
Chapter 17
An Alternative Pursuit Strategy
in the Game of Obstacle Tag

Igor Shevchenko

Abstract According to the generalized Isaacs’ approach, when solving a differ-
ential game, one has to fill the state space with trajectories on which the value
function in some sense meets the main equation. Singular surfaces are manifolds
where the value function or its derivatives are discontinuous. The obstacle tag game
is a prototypical example which was used by R. Isaacs to illustrate some phenomena
arising in differential games. The solution proposed by J.R. Isbell contains no
singular surfaces. Afterward, several solutions with corner surfaces were described.
J. Breakwell first constructed the field of optimal trajectories with a focal line and
then with two switch envelops. A. Melikyan formed a field with two equivocal
surfaces. In the paper, we consider the obstacle chase as an alternative pursuit
game. In the part of the state space where the segment PE crosses the obstacle
and alternatives are not consistent, as compared to Cases 7 and 8 of the Isbell’s
solution, the generated pursuit strategy with memory allows P to switch geodesic
lines a finite number of times only on boundaries of the secondary domain, and
thereby prevents sliding motions. Numerical simulations for particular states show
that the guaranteed results for this strategy are quite close to the value functions for
fixed alternatives and to those that constructed by J. Breakwell and A. Melikyan.
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17.1 Introduction

In the game of obstacle tag, let at t = t1 the segment P t1Et1 cross the circular
obstacle centered at C (see Fig. 17.1). Striving to catch E in minimal time, P may
follow the geodesical line shortest at this instant. However, when E retreats on the
continuation of this line, P may recognize that the other geodesic line becomes of
equal length (when P, E, C are collinear at t = t2) first, and then gets even shorter
(at t = t3). Switching the line, e.g., at t = t3, P may reduce the initially evaluated
chase time that equal to the length of the geodesic line at the current state divided
by the speed difference. At the first International Symposium on the Theory and
Applications of Differential games held in Amherst in 1969, R. Isaacs mentioned
[1] that the ideas of his book [3] aren’t suitable for analyzing the obstacle tag game
in the described situation (see Problem 6.10.1). Different aspects of this game were
studied by numerous authors (see, e.g., [1, 4–6] for the most relevant results and
further references).

J.R. Isbell described a solution of this game without using any formalism [4]. He
assumed that P moves along the geodesic line whereas E maintains collinearity of P,
C, E (Case 7) or takes a secant line to the circle (Case 8) avoiding the situation shown
in Fig. 17.1 by that ways. According to the generalized Isaacs’ approach, singular
surfaces is the main subject of zero-sum two-person differential games with full
information. The state space has to be filled with the trajectories corresponding to
the coupled optimal pursuit-evasion strategies. The value function is evaluated as
the payoff for these trajectories. Singular surfaces are manifolds where the value
function or its derivatives are discontinuous. However, there is no general theory
of construction for singular surfaces. Commonly, a researcher needs to explore
different known options for such surfaces [2]. The Isbell’s solution is rather simple
and includes no singular surfaces. It was revisited several times by J. Breakwell and
his students with the use of a focal line first, and two switching envelops then [1, 5].
A. Melikyan and his students suggested that P and E have to move along straight
lines in the attraction domains of the corner surfaces and their solution contains two
equivocal surfaces [6].

A pursuit-evasion game is called alternative if it can be terminated by P at will on
any of two given terminal manifolds, the payoff functionals of Boltza type on these
manifolds differ only in their terminal parts (the integral part is common and equal
to 1) and the optimal feedback strategies and the value functions are known [7–9].

Fig. 17.1 Switching
preferable geodesic lines
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We consider the obstacle tag game as an alternative pursuit game. At every state
where the segment PE crosses the obstacle, P has two alternatives, i.e., to follow the
south or north geodesic line. For each of them, the guaranteed catch time is known,
and P may choose those with lesser value. However, if a any state P chooses the
shortest path to E, a sliding mode may arise on the manifold with collinear P, C,
E, and the payoff is undefined there if the corresponding trajectories are defined as
limits of Euler broken lines there.

First, we describe a setup of the game. Then, we analyze the structure of the game
space in terms of relations of domination between alternatives, and their consistency.
Finally, we describe a pursuit strategy with memory and evaluate the guaranteed
result solving control optimization problems for E.

17.2 Setup

Let the obstacle be a circular hole of unit radius centered at zc = (xc, yc) in the
plane. Let zp = (xp, yp) and ze = (xe, ye) be Cartesian coordinates of players,
||zp − zc|| > 1, ||ze − zc|| > 1. Let P and E have simple motions with speed 1
and β, β < 1, the players perfectly measure all coordinates and P strive to catch
E in minimum time. We consider the game only for the initial states where the
obstacle separates players. The game terminates at the first instant when P gets on
the obstacle boundary or the line segment PE is tangential to the circle. P can follow
the shortest geodesic line chosen at the initial state and guarantee that the time spent
on E’s point capture is less or equal to the initial distance between P and E along the
geodesic line divided by (1 − β). Our goal is to generate a pursuit strategy which
allows P to choose geodesic lines if it would be advantageous to him, and evaluate
corresponding guaranteed results for this strategy.

We will put the game into different reduced spaces of dimension three. Depend-
ing on the chosen state space, we will have different equations describing motions.
The target set will be the set of states where P fixes his choice of the geodesic line
when evaluates the guaranteed payoff finally.

Let the obstacle be centered at zc = (0, 1), and P be on the negative part of the
x-axis. If zp = (−ρp, 0) then ρp > 0 is the distance from P to the obstacle along
the tangential line. Let ze = (xe, ye) be Cartesian coordinates of E, xe, ye ≥ 0,
||ze − zc|| > 1. Let αp = arctan ρ−1

p and ye/(ρp + xe) ≤ tan αp . Then, the function
V s that evaluates the guaranteed time needed for point capture of E along the south
geodesic line and its continuation may be described as

V s(ρp, xe, ye) = ρp + θe + ρe

1 − β
, (17.1)

where θe = αe + γe, αe = arctan ρ−1
e , de = √

x2
e + (1 − ye)2, γe = arctan(ye −

1)/xe, ρe = √
d2
e − 1 (see Fig. 17.2).



286 I. Shevchenko

Fig. 17.2 The first reduced
space

Fig. 17.3 The second
reduced space

In the second reduced space [5], the obstacle is centered at the origin O. P lies
on the negative part of the x-axis at zp = (−dp, 0), dp ≥ 1, the distance from the
origin to E equals de ≥ 1 and ξ is the angle between OP and OE (see Fig. 17.3). The
evaluation function may be represented as

V s(dp, ξ, de) =
√

d2
p − 1 + ξ − arccos d−1

p − arccos d−1
e + √

d2
e − 1

1 − β
. (17.2)

At the instant t > 0, let P and E be separated by the obstacle and move at angles
up(t) and ue(t) (see Fig. 17.4). Then, for arccosd−1

p ≤ ξ ≤ π , their motions may
be described by the equations

ḋp(t) = cos up(t),

ξ̇ (t) = sin up(t)

dp(t)
+ β

sin(ue(t) + π − ξ(t))
de(t)

, (17.3)

ḋe(t) = β cos(ue(t) + π − ξ(t)).

Let Z ⊆ R3 and M be the game space and terminal set, Up = {up : ||up|| ≤ 1},
Up = {ue : ||ue|| ≤ β}, z(t) ∈ Z, up(t) ∈ Up, ue(t) ∈ Ue and

ż(t) = f (z(t), up(t), ue(t)), z(0) = z0, (17.4)
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Fig. 17.4 A two-dimensional model of the state space: two fields of trajectories

be the equation that describes motions.
Strategies are rules that map available information into control values. We use

equations like (17.4) to generate pencils of trajectories for given initial states and
strategies, and then to evaluate the performance index for them. We consider only
trajectories that are limits of Euler broken lines when diameters of time partitions
tend to zero. This approach allows getting solutions that provide results close to
guaranteed in numerical simulations of the game development.

Let Δ = {t0, t1, . . ., ti , ti+1, . . .} be a partition of the time axis R+. For a given
z0 ∈ Z and a chosen strategy Up with available information I (e.g., Up ÷ up :
Z → Up for feedback strategies or Up ÷ up : R+ × C3

[0,∞) → Up for memory

strategies), let denote as Zp(z0,Up,Δ) the pencil of piecewise-constant solutions
of the inclusion

ż(t) ∈ co{f (z(ti), up(ti), ue) : ue ∈ Ue}, (17.5)

where t ∈ [ti , ti+1), i ∈ N , t0 = 0, ti →i→∞ ∞, up(ti) generated by Up with
information available at the instant t = ti . By this means Zp(z0,Up,Δ) contains
continuous functions z : R+ → Z for which there exists an absolutely continuous
restriction onto [0, θ ] for any θ > 0 that meets (17.5) for almost all t ∈ [0, θ ].

For the first (south) alternative, given z0, Up, M = Ms , ε > 0, Δ and z(·) ∈
Zp(z0,Up,Δ), let

τ s
ε (z(·)) = min{ti ∈ Δ : z(ti) ∈ Ms

ε }, (17.6)
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if ∃ti ∈ Δ : z(ti) ∈ Ms
ε , and +∞ otherwise, where Ms

ε = {z : z ∈ Z, minz′∈Ms ||z−
z′|| ≤ ε} is the ε-neighbourhood of Ms .

Let

Ps
ε(z(·)) = τ s

ε + V s(z(τ s
ε )), (17.7)

if τ s
ε = τ s

ε (z(·)) < +∞, and +∞ otherwise. Let also |Δ| = supi∈N(ti+1 − ti). The
guaranteed result for a particular pursuit strategy Up may be evaluated as

Ps(z0,Up) = lim
ε→0+Ps

ε(z
0,Up), (17.8)

where

Ps
ε(z

0,Up) = lim|Δ|→+0
Ps

ε(z
0,Up,Δ), (17.9)

Ps
ε(z

0,Up,Δ) = sup
z(·)∈Zp(z0,Up,Δ)

Ps
ε(z(·)).

For coupled pursuit and evasion strategies Up and Ue, the guaranteed result that
defined according to the described scheme is denoted as Ps(z0,Up,Ue).

Similarly, we define the game with the second (south) alternative and the terminal
set Mn, the guaranteed payoff Pn(z0,Up) for z0 ∈ Z and Up, etc.

The game with free alternative is completed on M = Ms ∪ Mn. For z0 ∈ Z and
Up, if P fixes the preferable alternative, he guarantees the payoff

P(z0,Up) = min(Ps (z0,Up),Pn(z0,Up)).

Our goal is to generate featured pursuit strategies for the game with free
alternative and evaluate corresponding guaranteed payoffs.

17.3 Gradient Strategies

In the game with south alternative, define the (universal) gradient pursuit strategy
for P that generates the control according to the following relation [10]

us
p(z) = arg min

up∈Up

max
ue∈Ue

∂V s(z)

∂f (z, up, ue)
, z ∈ Z. (17.10)

For z = (dp, ξ, de) and (17.2), (17.3), where −π ≤ ue, ue ≤ π , we have

∂V s(z)

∂f (z, up, ue)
= sin(up + arccos d−1

p ) − β sin(ue − ξ + arccos d−1
e )

(1 − β)
. (17.11)
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Therefore, the guaranteed pursuit strategy corresponds to us
p = − arcsin d−1

p , i.e. P
follows the south geodesic line at every state.

Moreover, the (universal) gradient evasion strategy that defined a similar way
corresponds to us

e = arcsin d−1
e − (π − ξ) when at every state E flees on the

continuation of south geodesic line,

min
us

p

max
us

e

∂V s(z)

∂f (z, up, ue)
= ∂V s(z)

∂f (z, us
p, us

e)
= −1. (17.12)

and

min
us

p

∂V s(z)

∂f (z, up, ue)
= ∂V s(z)

∂f (z, us
p, ue)

< −1 (17.13)

if ue �= us
e [6, 11].

The same results are valid for the north alternative with the evaluation function
V n and controls un

p, un
e .

Therefore, in the game with a fixed alternative, at any state, the payoff V s or
V n is guaranteed if P follows the respective geodesic line and E retreats on its
continuation.

17.4 Decomposition of the State Space

Let us denote as U0
p ÷ u0

p : Z → Up the pursuit gradient strategy that at the state

z generates the control u0
p(z0, z) = us

p(z) (17.10) if the south geodesic lines is

preferable for P at the state z0 (or either of them if they are of equal length) and
un

p(z) otherwise. If P updates the target alternative at any current state, denote this

universal strategy as UZ
p ÷ ut

p : Z → Up. Also let us use similar notations U0
e and

UZ
e for corresponding evasion strategies.
At any state, P has two alternative ways to chase E with known guaranteed results

evaluated with V s or V n. Then the state space is filled with two families of ideal
trajectories corresponding to the coupled geodesic pursuit-evasion strategies U0

p and

U0
e (see Fig. 17.4). Starting at z0 ∈ Z, P with U0

p can guarantee the payoff equal to

min(V s(z0), V n(z0)).
Consider guaranteed results if P can switch between alternatives.
At the state z0 ∈ Z, an alternative (south or north) is called consistent (stable) if it

dominates the other one at the initial state and also at any state emerged when P and
E move along the related geodesic line and its continuation. Let us divide the state
space depending on the consistency of the relation of domination (see Fig. 17.5):

• Zs and Zn are subsets where the particular alternative (south or north) strictly
dominates the other one and is consistent,

• Ds|n disjoints Zs and Zn, and V s = V n there,
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Fig. 17.5 A two-dimensional
model of the state space: a
partition of the state space

• Zs̄ and Zn̄ are subsets where the particular alternative strictly dominates other
and is not consistent, Z

¯s|n = Zs̄ ∪ Zn̄,
• D

¯s|n disjoints Zs̄ and Zn̄, and V s = V n there,
• D0 ⊂ Ds|n disjoints Ds|n and D

¯s|n,
• Bs disjoints Zs and Zs̄ , and when the players move along the south geodesic line

and its continuation, the south alternative strictly dominates the north one, and
there exists exactly one instant when the alternatives become equivalent,

• Bn is defined similar to Bs .

In the game of obstacle tag (see Fig. 17.6), for a given ρp , Z ¯s|n consists from two
curvilinear triangles. They are joined along the half-line from P trough C. All D0

for different ρp lie on this half-line

y = 1 + √
β, x ≥ √

1 − β. (17.14)

Fig. 17.6 Decomposition of
the reduced space for a given
ρp
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It is evident that Z
¯s|n = ∅ for ρp < ρ∗

p(β) where

ρ∗
p(β) = √

(1 − β)/β.

Therefore, actually the game may be terminated on the subsurface ρp = ρ∗
p(β), and

the state definitely leaves Z
¯s|n when P follows the geodesic line.

The dotted line in Fig. 17.6 shows the locus of E’s terminal positions of the
secondary domain D̃0 for different ρp for some known solutions of the game(see,
e.g., [5, 6]). It has the parametric representation

xe = 1/
√

1 − (1 − s)2, (17.15)

ye = β/
√

β2 − (β − s)2, 0 < s ≤ β. (17.16)

The half-line D0 (see (17.14)) is a horizontal asymptote for it.

17.5 Alternative Pursuit Strategy with Memory

The strategy UZ
p is discontinuous on D = Ds|n ∪ D

¯s|n. When the state gets in the

neighbourhood of D
¯s|n, piecewise-constant solutions of the inclusion (17.5) with

UZ
p stay there for some time. For P, it may lead to the switching control in sliding

mode for which the payoff couldn’t be evaluated with the use Euler broken lines.
For the initial state z0 ∈ Z

¯s|n = Zs̄ ∪ D
¯s|n ∪ Zn̄, let us allow P to remember

the history of the game development and to update the target alternative no more
than once on Bs or Bn when the state leaves Z

¯s|n. Let us denote the corresponding
strategy as U1

p. The strategy UB
p prevents P from switching between alternative

strategies in the neighbourhood of D
¯s|n.

Let us evaluate the guaranteed result Ps|n (see (17.8)) when z0 ∈ Z
¯s|n, P applies

U1
p(z0, z) in z ∈ Z

¯s|n and UZ
p (z0, z) for z the rest of the state space. In order to do

that, we setup and solve optimization control problems for termination sets D
¯s|n, Bs

and Bn (see Fig. 17.7 for z0 ∈ Zs̄). Thereafter, we assume that E moves at the angle
ψ in a straight line within Z

¯s|n until the first instant when the state arrives on one of
the terminal sets. The maximal of three corresponding estimations determines the
guaranteed result.

On Bs and Bn, the guaranteed results correspond to the gradient strategies
(see Sect. 17.3). From the boundaries, the state shifts on D0 since Bs and Bn are
themselves ideal trajectories for the coupled gradient strategies. Thus, in all cases,
the state leaves the closure of Z

¯s|n through D0 (see Fig. 17.7).
If the state under the E’s control first gets on D

¯s|n and then on D0 along D
¯s|n (see

Fig. 17.7), the guaranteed result is described in [7]. It turns out that the preliminary
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Fig. 17.7 A two-dimensional
model of the state space:
different options to leave Zs̄

straight line is tangent to the curvilinear motion along D
¯s|n (the Isbell’s Case 8 in

[4]) where at the state (ρp, xe, ye) ∈ D
¯s|n E chooses the angle [7]

ψD
¯s|n = arcsin

(ye − 1)

β

√
1 + ρ2

p

+ arcsin
1

√
1 + ρ2

p

.

It is important to note that the Isbell’s solution for Case 7 [4] when the state shifts
on D0 directly from within Z

¯s|n is just infeasible.
Thus far, for the initial state z0 ∈ Z

¯s|n at any current state z ∈ Z
¯s|n with the

reduced coordinates (ρp, xe, ye), the angle ψ chosen by E determines the instants

τ s|n, τ s̄, τ n̄ when the state arrives on D
¯s|n, Bs , Bn, and the associated payoffs.

The maximal of them defines the guaranteed result Ps|n for the described pursuit
strategy. As numerical simulations show, in the secondary optimization problem,
the preferable option for E always corresponds to the case when E from the initial
states Zs̄ shifts on Bn̄, and on Bs̄ from Zn̄. In this case, E takes the secant line
with minimal angle for which he gets from Zs̄ on Bn̄ missing Bs̄ or from Zn̄ on Bs̄

missing Bn̄.
Let (dp, π, 1) be the state vector in the second reduced space. An example of

the optimal evasion trajectory generated with the use of the described approach and
provided the guaranteed result is shown in Fig. 17.8 (D ¯s|n, Bs , Bn, etc. are given for
t = τD0

). Detail descriptions of solutions of the obstacle tag game mentioned in,
e.g., [1, 5, 6] are not available. However, it may be safely suggested that for the states
with E on the obstacle and collinear with P and C, the known the value function
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Fig. 17.8 An example of
optimal evasion in Zs̄

take the value defined on straight line motions of the players along the segment
PE and its continuation. Then, the guaranteed result for them may be evaluated as

τ D̃0 + V s(dp − τ D̃0
, π, 1 + βτ D̃0

) (see (17.2)) where τ D̃0
is the first instant when

E gets on D̃0 (17.15) (see also Fig. 17.7). It’s also worth noting that for 0.1 ≤ β ≤
0.9, ρp > ρ∗

p(β), the maximum relative difference between these values and the
guaranteed results for the described pursuit strategy with memory is about 1%.

17.6 Conclusion

In the situations shown in Fig. 17.1, evaluation of the guaranteed result as corre-
sponding to the south geodesic line appears too pessimistic to P. On the other hand,
if P chooses the shortest geodesic at any current state, this feedback strategy is
discontinuous for collinear P, C, E. The resulting pencil of trajectories approximated
by Euler broken lines doesn’t include associated trajectory with P and E moving
along the half-line. To form a pursuit strategy and to evaluate the guaranteed result,
e.g., J. Breakwell and A. Melikyan described the fields of trajectories for coupled
optimal strategies of the players with two switch envelops or equivocal lines [1, 5, 6].
The construction of such fields involves a cumbersome integration of characteristic
equations for Hamilton-Jacobi-Isaacs equations.

We considered the obstacle chase game as an alternative pursuit game. The state
space was divided into several parts depending on the domination and consistency
features of alternatives at the initial state. In the parts corresponding to the situation
similar to that shown in Fig. 17.1, the generated strategy with memory allows P
to switch between alternatives only a finite number of times on their boundaries.
The guaranteed results fit the evasion strategy whereby E takes a secant line to the
obstacle until the state arrives on the boundary. Therefore, for the states in the special
region, P uses a strategy that doesn’t depend on the current position of E until the
state reaches the boundary.

The approach can be modified to handle the games with convex obstacles of
different shapes; see, e.g., [6]. However, decomposition of the state space will be
asymmetrical and there will be different termination options for the alternatives
when solving the secondary control problems for E.
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