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Preface

The content of this volume is mainly based on selected talks that were given at the
“International Meeting on Game Theory (ISDG12-GTM2019),” as joint meeting of
“12th International ISDG Workshop” and “13th International Conference on Game
Theory and Management,” held in St. Petersburg, Russia on July 03–05, 2019. The
meeting was organized by St. Petersburg State University and International Society
of Dynamic Games (ISDG).

Every year starting from 2007, an international conference “Game Theory and
Management” (GTM) has taken place at the Saint Petersburg State University.
Among the plenary speakers of this conference series were the Nobel Prize winners
Robert Aumann, John Nash, Reinhard Selten, Roger Myerson, Finn Kidland, Eric
Maskin, and many other famous game theorists. The underlying theme of the
conferences is the promotion of advanced methods for modeling the behavior that
each agent (also called player) has to adopt in order to maximize his or her reward
once the reward does not only depend on the individual choices of a player (or a
group of players), but also on the decisions of all agents that are involved in the
conflict (game). In particular, the emphasis of the ISDG12-GTM2019 conference
was on the following topics:

• Cooperative games and applications
• Dynamic games and applications
• Pursuit-evasion games
• Dynamic networks
• Stochastic games and applications
• Market models
• Networking games
• Auctions
• Game theory applications in fields such as strategic management, industrial

organization, marketing, public management, financial management, human
resources, energy and resource management, and others.

v
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In this volume, two sorts of contributions prevail: chapters that are mainly
concerned with the application of game-theoretic methods and chapters where the
theoretical background is developed.

In the chapter of Petr Ageev and Svetlana Tarashnina, a three-player hierarchical
game with perfect information modeling the competition on telecommunication
market is considered. The Nash equilibrium is found and the results are illustrated
on an example.

In the chapter of Sadettin Haluk Citci and Kubra Uge, dynamic Bertrand
competition in mixed oligopoly where a private firm competes with a social welfare
maximizing public firm is considered. The corresponding game-theoretic model is
constructed and it is proved that under some conditions the game possesses the
unique Bayes equilibrium in dominant strategies.

In the chapter of Denis Fedyanin, the version of Tullock rent-seeking game is
considered. The results provide insights into the impact of reflexive analysis on the
properties of information control. In the most simple case, the Nash equilibrium is
found and its properties are discussed.

In the chapter of Ekaterina Gromova and Anastasiya Malakhova, a special
differential 3-person cooperative game on network is considered. For finding
solutions in such class of games, the characteristic function must be calculated.
There are different approaches for the definition of this function. The authors use
classical Neumann–Morgenstern approach and found the values of this function in
explicit form.

In the chapter of Igor Konnov, the problem of finding the optimal performance
of a composite system taking in account the possible external interference and
corresponding protecting measures. In general, the problem can be formulated as
a parametric zero-sum game. The author proposes an inexact penalty method for
the solution which can be applied also to more general cases.

In the chapter of Alexei Korolev, the network game-theoretic model with
production and knowledge externalities and stochastic parameters is considered.
The explicit expressions for the dynamics of a single agent and dyad agents in the
form of Brownian random processes are derived and the qualitative analysis of the
solutions is provided.

In the chapter of David A. Kosian and Leon A. Petrosyan, the new type of
characteristic function for the cooperative games with hypergraph communication
structure is proposed. The value of the characteristic function for each coalition is
computed as sum of the cooperative payoffs of players from this coalition under an
additional condition that players outside the coalition are cutting links with coalition
members. Is it proved that the corresponding game is convex.

In the chapter of Nikolay A. Krasovskii and Alexander M. Tarasyev, the
algorithm is developed for finding the value function of the zero-sum setting for
differential dynamic bimatrix games on an infinite time interval. The results are
illustrated on nontrivial and interesting example of 2 × 3 bimatrix game. The
construction of the value functions of both associated zero-sum games is provided
and a feedback strategy of the first player is found.
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In the chapter of Suriya Kumacheva, Elena Gubar, Ekaterina Zhitkova, and
Galina Tomilina, the effect of information spreading about future tax audits is
considered using an evolutionary game approach. The scenario analysis has shown
that the propagation of information about the possible audit may increase the tax
collection.

In the chapter of Denis Kuzyutin, Ivan Lipko, Yaroslavna Pankratova, and Igor
Tantlevskij, the problem of time consistency of cooperative solutions in dynamic
multicriterial games is considered. The variation of a known IDP technique which
guarantees the no negativity of stage payments necessary for the realization of time-
consistent solutions is proposed. Results are illustrated on interesting examples.

In their chapter, Mario Alberto Garcia Meza and Cesar Gurrola Rios considered
conditions under which the cooperation between companies may give better results
than competition. While substitute goods hardly find solution for cooperation, in the
article the examples are given on how the complementarily can achieve such results.
The existing time-consistency problem in cooperation is not considered.

In the chapter of Ekaterina Orlova, the one-shot cooperative game model of
Eurasian gas network is considered and different solution concepts such as the
Shapley value, core, and nucleolus are compared. Among other topics, the effect
of liberalization is studied. Many interesting examples based on real data analysis
are presented.

In the chapter of Dmitry Rokhlin and Gennady A. Ougolnitsky, the continuous-
time dynamic game in the case of one leader and one follower is considered. The
conditions for the existence of Stackelberg solution are derived and the solution
is found in explicit form in a game-theoretic model of a nonrenewable resource
extraction problem.

In the chapter of Ovanes Petrosian, Maria Nastych, and Yin Li, the differential
game model is applied to analyze the world oil market. The looking forward
approach is proposed to take into account dynamically updating information. To
model the situation on different time intervals, non-cooperative and cooperative
approaches are used. The numerical simulations based on open access date are
presented.

In the chapter of Simon Rothfuß, Jannik Steinkamp, Michael Flad, and Sören
Hohmann, the game-theoretic approach is used to model the interaction of humans
and automated assistant systems. The goal is to design emancipated cooperative
decision-making systems capable of negotiating with humans. Two game concepts:
event-based game and game model based on war of attrition are proposed for
describing the negotiation process.

Alexander Sidorov in his chapter tries to show on developed mathematical
models that in some cases the typical presumption of the most economic theories
that free entry is desirable for social efficiency may not be always true. He considers
the one-sector economy with horizontally differentiated good and one production
factor-labor with special classes of utility functions.

Igor Shevchenko in his chapter considers a classical game of obstacle tag
proposed first by R. Isaaks in his book. The solution of the game in the sense of
saddle point is not known although many papers are published on the subject. The
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author proposes the strategy for the pursuer which allows him to choose the geodesic
lines and evaluates the guaranteed results for this strategy.

The ISDG12-GTM2019 program committee thanks all the authors for their
active cooperation and participation during the preparation of this volume. Also,
the organizers of the conference gratefully acknowledge the financial support given
by the Saint Petersburg State University. Last but not least, we thank the reviewers
for their outstanding contribution and the science editor.

Saint Petersburg, Russia L. A. Petrosyan
Petrozavodsk, Russia V. V. Mazalov
Saint Petersburg, Russia N. A. Zenkevich
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Chapter 1
Competition as a Hierarchical Multistage
Game

Petr Ageev and Svetlana Tarashnina

Abstract We investigate the process of competition on the market of telecommuni-
cation services between three firms: the leader, the challenger and the follower. In
this work we construct a model of competition between three players in the form of a
multistage hierarchical non-zero sum game and compare it with our previous model
of competition between three players in the form of a multistage non-hierarchical
non-zero sum game. Compared to previous model, a hierarchical component was
introduced. As solution of the game we find a subgame perfect equilibrium. We
illustrate and compare the results with an example for three companies working on
the Saint-Petersburg telecommunications market with the same initial conditions as
in the previous work.

Keywords Hierarchical game · Subgame perfect equilibrium · Competition
model · Telecommunication market

1.1 Introduction

Competition between three companies on the market was investigated. All firms
have different types: the leader, the challenger and the follower. The leader is a
company that prevails on the market and acts in three main directions:

• expansion of the market by new customers attracting and new areas finding;
• increasing its market share;
• protecting business from attacks by defensive strategies.

The challenger firm is a company that does not lag far behind the leader of the
market and tries to become the leading company by using attacking strategies. The

P. Ageev (�) · S. Tarashnina
Saint Petersburg State University, St. Petersburg, Russia
e-mail: st012558@student.spbu.ru; s.tarashnina@spbu.ru
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2 P. Ageev and S. Tarashnina

follower firm is a company that pursues following others companies policy and does
not risk achieved market positions. This firm uses strategies aimed to expand its
market share, but those that do not cause active opposition to competitors.

In paper [1] the competition on the market is presented by a multistage decision-
making model. At the first stage, the decision is made by the leader. At the next
stage, taking into account the leader’s strategy, the decision is made by the company-
follower. At the same time each firms pursues its own goals during strategy
selection.

First of all, we introduce a hierarchical component into the game, that was
described in [2]. The hierarchy is introduced by player decision prioritizing, who is
located at a higher hierarchical level relative to the opponent located at a lower level.
Let the leading company be located on the first, the most important hierarchical
level, the challenger company—on the second, the follower firm, respectively, on
the third level. Thus, at the same hierarchical level there is only one player (firm).
Mentioned hierarchy component means that the leader and the challenger choose
their strategies consistently compared to the previous model, where the leader and
the challenger companies act simultaneously. Due to the challenger is located at a
lower hierarchical level, this company taking into account both the leader strategy
and subscribers preferences, while the leader taking into account only subscribers
preferences. In our model at the first stage, the leader decides which services should
be offered to subscribers and chooses service price. Since the leader company is
located on the first hierarchical level, we believe that when this firm make a decision,
player takes into account only the preferences of subscribers and tries to satisfy of
as many of them as possible. At this stage of the game, part of subscribers make
their choice in favor of the leader.

At the second step of the game, the challenger company makes a decision about
telecommunication services that should be offered and chooses its price. During this
choice, the challenger company takes into account the preferences of subscribers
and the leader strategy. At this step, part of subscribers choose the second player.

At the next step of the game, the follower firm, taking into account the choice
of competitors, decides what should be offered to potential customers. At the same
time, the follower company seeks to retain old subscribers and, if possible, attract
a part of competitors clients. At this step, the remaining part of subscribers makes
their choice. Suppose that at the start of the game, all subscribers are informed about
all tariffs that operators able to offer.

We assume that each customer must choose one of the telecommunication
services (tariff). If a customer decides to keep old tariff, we believe that he chooses
the appropriate relevant company service. The leader and the challenger aim to
maximize their profits by attracting some of the competitors’ customers. The
purpose of the follower is to maximize profit and to save his customers without
negative reaction of competitors.

We formalize this problem of competition on the telecommunications market
between three companies as a hierarchical nonzero-sum game. As a solution of this
game we consider a subgame perfect equilibrium (SPE) [3–5]. Example is given
and discussed in the paper. The obtained solution allows each company to develop
a long-term strategy to maximize its summing payoff.
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1.2 Game Formulation

We introduce the following assumptions:

1. Firms are informed about subscribers preferences.
2. As a profit we will understand the difference between the price of the service

and the unit costs for it; the profit can only be positive.
3. The income from the sale of a certain service is determined by quantity of

subscribers who have decided to use this service, and corresponding price.
4. Service price is the total cost of services, which should be paid by subscriber

per month.
5. Telecommunication service is a certain tariff consisting of a services package.

For example, a tariff consists of v minutes for all outgoing calls, b gigabytes of
Internet and z outgoing SMS messages. Further, the number of outgoing SMS
messages is omitted from consideration, since to date SMS messages have been
replaced by so-called messengers.

6. Since quite often subscribers use the Internet for outgoing calls, and the demand
for such tariffs is higher, telecommunication operators set the price for the
Internet tariffs higher despite the fact that the unit costs for such services is
much lower.

7. We assume that the same type services unit costs are equal for the same
company.

8. Let the fixed costs for operator are equal for all of the offered tariffs.
9. The fixed costs for larger companies are higher than their competitors have, and

the unit costs are lower.
10. Subscribers are informed about services which may be offered by any player.
11. The situation on the market when different firms offer similar tariffs for the

same price is not possible.

We denote by F1 the leader, F2 is the challenger and F3 is the follower. Let N =
{F1, F2, F3} be the set of players—telecommunication companies, which provide
services on the market.

Let I = {1, . . . ,m} be the set of services (tariffs) that are offered on the
telecommunications market. Each element of ir ∈ I is specific type of service. This
service will be called the service type ir , offered by any firm.

Denote by I1, I2 and I3 subsets of I , which contain the offered services,
respectively, by the leading firm, the challenger firm and the follower firm. Assume
that I1 ∪ I2 ∪ I3 = I and I1 ∩ I2 ∩ I3 = ∅.

Let the following quantities are known:

• ck
i is the price of service i for the player Fk , where i ∈ Ik and k ∈ {1, 2, 3};

• ai is the unit costs of service i;
• fk is the fixed costs (i.e. costs that are not depends on the services scope) for the

player service Fk , k ∈ {1, 2, 3}. At the same time, the fixed costs are constant.
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We denote by J = {1, . . . , n} the set of subscribers using the services offered
on the market. Each element j ∈ J is a certain subscriber (customer). We assume,
that subscriber chooses one of the firm services, based on his internal preferences,
which are specified by splitting the set J into two subsets JT and JP . JT includes
subscribers, who mainly think about low price during selection an operator. In turn,
JT is divided into JT1 , JT2 and JT3 . JT1 consists of subscribers, who mainly think
about low price and about number of minutes for outgoing calls within the tariff.
JT2 is subscribers, who pays attention to the low price and the volume of Internet
traffic provided within the tariff. JT3 —set of subscribers, who need a balanced tariff
in terms of the internet traffic and the number of minutes for outgoing calls. The
subset JP contains “conservative” subscribers. They are subscribers who are not
able to change operator, because it is a problem for various reasons, for example,
they are corporate users. The following expressions hold:

JT1 ∪ JT2 ∪ JT3 = JT , (1.1)

JT1 ∩ JT2 ∩ JT3 = ∅. (1.2)

We suppose that J = JT ∪ JP , JT ∩ JP = ∅. It means, that one subscriber able
to choose only one firm. If he has several SIM-cards, we say that, in terms of our
game, these are different subscribers, because spending for different SIM-cards is
unique. We have

J 0 = J = J 0
1 ∪ J 0

2 ∪ J 0
3 . (1.3)

Expression (1.1) describes the distribution of the subscribers set between players at
the initial stage of the game. Let the following relations hold:

|J 0
1 ∩ JT | ≥ |J 0

2 ∩ JT | > |J 0
3 ∩ JT |,

|J 0
1 ∩ JP | > |J 0

2 ∩ JP | > |J 0
3 ∩ JP |.

We assume that subscribers from the JP ∩ J 0
k always choose the player k, where

k ∈ {1, 2, 3}, and the service that the operator k offers at the moment, regardless of
the offered tariff.

By the strategy of player Fk , where k ∈ {1, 2, 3}, we define s
ir
k = (ck

ir
, vk

ir
, bk

ir
),

ir ∈ Ik. We denote the set of strategies Fk by Sk = {sir
k : ir ∈ Ik}. Obviously, the

player strategy is characterized by the following indicators: the price ck
ir

, the number

of minutes vk
ir

, the number of gigabytes for the mobile Internet bk
ir

.
Let introduce the subscriber j ∈ J preference relationships for services offered

by firms F1 and F2.
For subscriber j ∈ J we say that the strategy (c1

il
, v1

il
, b1

il
) of the firm F1

is preferable to the strategy (c2
ip

, v2
ip

, b2
ip

) of the firm F2, i.e. (c1
il
, v1

il
, b1

il
) �
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(c2
ip

, v2
ip

, b2
ip

) if the following condition hold:

(1 − α)× c1
il

v1
il

+ α × c1
il

100× b1
il

< (1 − α)×
c2
ip

v2
ip

+ α ×
c2
ip

100× b2
ip

.

For subscriber j ∈ J ∩ JT1 α = 0, for subscriber j ∈ J ∩ JT2 α = 1, for subscriber
j ∈ J ∩ JT3 α = 1

2 . Similarly for the opposite case.
If it holds:

(1 − α)× c1
il

v1
il

+ α × c1
il

100× b1
il

= (1− α)×
c2
ip

v2
ip

+ α ×
c2
ip

100× b2
ip

,

we assume that subscribers will choose an operator with a higher market status.
The process of identifying preferred strategies by subscribers is carried out in

pairs for players, i.e. firstly for the leader and for the challenger, then for the leader
and for the follower, as well as for the challenger and for the follower.

We introduce the switching function Vj (s
ir
k ).

Vj (s
ir
k ) =

{
1, if ir is preferred service for subscriber j ;
0, otherwise,

i.e., the function characterizes the preference for the subscriber j ∈ J of the service
ir ∈ Ik offered by the player Fk , compared to all other types of services that are
offered on the market. For regular subscribers, i.e. for j ∈ J ∩ JP :

Vj (s
i
k) = 1 for all i ∈ Ik, k ∈ {1, 2, 3}.

We assume that the services are selected by subscriber for a month in advance.
Let introduce the value gj (s

ir
k ) = (ck

ir
− air ), which characterizes the profit of a

company Fk by the subscriber j when the firm uses strategy s
ir
k . The ir service,

which offers a larger amount of Internet traffic is designated as i
gb
r . The service,

which offers a greater number of minutes for outgoing calls is designated as imnt
r .

Balanced service is designated as i
gbmnt
r . Taking into account of assumption 6, we

obtain the following inequality

gj (s
i
gb
r

k ) ≥ gj (s
i
gbmnt
r

k ) ≥ gj (s
imnt
r

k ) > 0,

for k ∈ {1, 2, 3}, ir ∈ Ik , j ∈ J .
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Denote by Gk(s
ir
k ) the total profit of firm k from customers j ∈ JP ∩ J 0

k , which
choose the service ir , i.e.

Gk(s
ir
k ) =

∑
j∈JP∩J 0

k

gj (s
ir
k ),

where k ∈ {1, 2, 3} and ir ∈ Ik .
The payoff functions in [2] were defined by the following way:

H1(s
il
1 , s

ip
2 , J 0) = −f1 +

∑
j∈JT ∩J 0

gj (s
il
1 )× Vj (s

il
1 )× (1 − Vj(s

ip
2 ))+G1(s

il
1 ),

where il ∈ I1, ip ∈ I2.

H2(s
il
1 , s

ip
2 , J 0) = −f2 +

∑
j∈JT ∩J 0

gj (s
ip
2 )× Vj (s

ip
2 )× (1 − Vj (s

il
1 ))+G2(s

ip
2 ),

where il ∈ I1, ip ∈ I2.

H3(s
il
1 , s

ip
2 , s

is
3 , J 0) = −f3+

+
∑

j∈JT ∩J 0

gj (s
is
3 )× Vj (s

is
3 )× (1 − Vj (s

il
1 ))× (1 − Vj (s

ip
2 ))+G3(s

is
3 ),

where il ∈ I1, ip ∈ I2, is ∈ I3.
We transform these payoff functions for the case of a hierarchical non-

antagonistic game. For the leader we have:

H1(s
il
1 , J 0) = −f1 +

∑
j∈JT ∩J 0

gj (s
il
1 )× Vj (s

il
1 )+G1(s

il
1 ),

where il ∈ I1.
For the challenger we have:

H2(s
ip
2 , J 0, J 1

1 ) = −f2 +
∑

j∈JT ∩(J 0\J 1
1 )

gj (s
ip
2 )× Vj (s

ip
2 )+G2(s

ip
2 ),

where il ∈ I1, ip ∈ I2.
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For the follower we have:

H3(s
is
3 , J 0, J 1

1 , J 1
2 ) = −f3 +

∑
j∈JT ∩(J 0\(J 1

1∪J 1
2 ))

gj (s
is
3 )× Vj (s

is
3 )+G3(s

is
3 ),

where il ∈ I1, ip ∈ I2, is ∈ I3.
The payoff functions expresses the total profit of players taking into account

changes in income due to the loss and acquisition of subscribers.

Vj (s
il
1 )+ Vj (s

ip
2 )+ Vj (s

is
3 ) ≤ 1, il ∈ I1, ip ∈ I2, is ∈ I3, j ∈ J. (1.4)

Inequality (1.4) shows that it is not possible that for the subscriber j ∈ J two
services are the most preferable at the same time compared to each other.

The game leader is determined by the number of subscribers available to the
company at the beginning of the game. At the end of the game, in the case of equality
of the subscribers for several companies, the leader is determined by the amount of
total profit. Since, ceteris paribus, the follower firm can both play along with the
leader firm and play along with the challenger firm, for definiteness, we assume that
player F3 plays along to player F1.

Thus, the competition on the telecommunications market can be formalised in
the form of non-zero sum game Γ :

Γ =< N, S1, S2, S3,H1,H2,H3 > .

1.3 Nash Equilibrium

We assume that for the same strategy type for the same player the value gj (s
ir
k ) will

be greater for the strategy s
ir
k , if this tariff has greater volume of the services. That

is, if i1 and i2 are “Internet” tariffs, than the value of gj (s
i1
k ) will be greater if the

service i1 offers larger package of Internet traffic. This is due to the fact that when
the volume of the service increases, the price for it increases, while the unit costs
according to the assumptions for the same type services are the same.

We build a subgame perfect equilibrium in the same way as shown in the
paper [2].

Theorem 1.1 In a non-zero sum two-stage game Γ =< N, S1, S2, S3,H1,

H2,H3 > the strategies s∗1 , s∗2 , s∗3 lead to a subgame perfect equilibrium if the
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next inequalities (1.5) are fulfilled:

g(s∗1 ) ≥

∑
j∈JT ∩J 0

Vj (s
i2
1 )+w1

∑
j∈JT ∩J 0

Vj (s
∗
1 )+w1

× g(s
i2
1 ),

g(s∗2 ) ≥

∑
j∈JT ∩(J 0\J 1

1 )

Vj (s
i2
2 )+w2

∑
j∈JT ∩(J 0\J 1

1 )

Vj (s
∗
2 )+ w2

× g(s
i2
2 ),

g(s∗3 ) ≥

∑
j∈JT ∩(J 0\(J 1

1∪J 1
2 ))

Vj (s
i2
3 )+w3

∑
j∈JT ∩(J 0\(J 1

1∪J 1
2 ))

Vj (s
∗
3 )+w3

× g(s
i2
3 ),

(1.5)

for ∀si2
1 ∈ {S1}, ∀si2

2 ∈ {S2}, ∀si2
3 ∈ {S3}, where wk = |JP ∩ J 0

k |, k ∈ {1, 2, 3}.

1.4 Results Comparison

In order to compare the results, we use the same strategies and the same conditions
(for example, the initial distribution of subscribers between operators), presented
in [2].

We assume that I1 = {1, 2}, I2 = {3, 4}, I3 = {5, 6}.
• Tariff 1 contains 200 min of outgoing calls, 2 GB of Internet traffic. Fixed costs

f 1
1 are equal to 70, the unit cost a1 is equal to 60.

• Tariff 2 contains 100 min of outgoing calls, 6 GB of Internet traffic. Fixed costs
f 1

2 are 70, the unit cost a2 is 50.
• Tariff 3 contains 200 min of outgoing calls, 3 GB of Internet traffic. Fixed costs

f 2
3 are equal to 60, the unit cost a3 is equal to 70.

• Tariff 4 contains 150 min of outgoing calls, 5 GB of Internet traffic. Fixed costs
f 2

4 equal to 60, the unit cost a4 equals to 60.
• Tariff 5 contains 150 min of outgoing calls, 4 GB of Internet traffic. Fixed costs

f 3
5 equal to 50, the unit cost a5 is 70.

• Tariff 6 contains 100 min of outgoing calls, 7 GB of Internet traffic. Fixed costs
f 3

6 equal to 50, the unit cost a6 equals to 60.
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Let J = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}. Divide JT into
three sets JT1 , JT2 and JT3 . We have JT1 = {1, 2, 3, 4, 5}, JT2 = {6, 7, 8, 9}, JT3 =
{∅}.

The set JP includes customers 10, 11, 12, 1314, 15, 16, 17.
Let J 0

1 ∩ JP = {10, 11, 12, 13}, J 0
2 ∩ JP = {14, 15, 16}, J 0

3 ∩ JP = {17}.
Assume that

J 0
1 ∩ JT = {1, 4, 6, 9}, J 0

2 ∩ JT = {2, 5, 7}, J 0
3 ∩ JT = {3, 8}.

Let us move on to the strategy sets: S1 = {s1
1 , s2

1 }, S2 = {s1
2 , s2

2 }, S3 = {s1
3 , s2

3 },

s1
1 = (300, 1), s2

1 = (330, 2),

s1
2 = (310, 3), s2

2 = (320, 4),

s1
3 = (320, 5), s2

3 = (340, 6).

Thus, Table 1.1 shows the initial data and conditions.
Then, according to the tariff preference rules, we get the following results.

Table 1.2 presents the results of the subscribers distribution between players,
depends on used strategies.

Figure 1.1 shows the constructed subgame perfect equilibrium and players
payoffs.

Then, the game situation, when in the node 1 player F1 chooses the strategy s1
1 ,

in nodes 2 and 3 player F2 chooses the strategy s2
2 , and in nodes 4, 5, 6, 7 player

F3 chooses the strategy s2
3 , is the subgame perfect equilibrium, which is written as

[(s1
1); (s2

2 ); (s2
2); (s2

3 ); (s2
3); (s2

3); (s2
3 )].

Table 1.1 Baseline data

Firm Strategy Tariff Fixed costs Unit costs Minutes Gigabytes Price

Leader S1
1 1 70 60 200 2 300

S2
1 2 70 50 100 6 330

Challenger S1
2 3 60 70 200 3 310

S2
2 4 60 60 150 5 320

Follower S1
3 5 50 70 150 4 320

S2
3 6 50 60 200 7 340
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Table 1.2 Distribution results

Strategy Customers Customers Customers Payoffs

profile of firm F1 of firm F2 of firm F3 (H1, H2, H3)

s1
1 , s1

2 , s1
3 {1, 2, 3, 4, 5, 10, 11, 12, 13} {14, 15, 16} {6, 7, 8, 9, 17} (2090, 660, 1200)

s2
1 , s1

2 , s1
3 {6, 7, 8, 9, 10, 11, 12, 13} {1, 2, 3, 4, 5, 14, 15, 16} {17} (2170, 1860, 270)

s1
1 , s2

2 , s1
3 {1, 2, 3, 4, 5, 10, 11, 12, 13} {6, 7, 8, 9, 14, 15, 16} {17} (2090, 1760, 200)

s2
1 , s2

2 , s1
3 {6, 7, 8, 9, 10, 11, 12, 13} {1, 2, 3, 4, 5, 14, 15, 16} {17} (2170, 2020, 270)

s1
1 , s1

2 , s2
3 {1, 2, 3, 4, 5, 10, 11, 12, 13} {14, 15, 16} {6, 7, 8, 9, 17} (2090, 660, 1350)

s2
1 , s1

2 , s2
3 {10, 11, 12, 13} {1, 2, 3, 4, 5, 14, 15, 16} {6, 7, 8, 9, 17} (1050, 1860, 1350)

s1
1 , s2

2 , s2
3 {1, 2, 3, 4, 5, 10, 11, 12, 13} {14, 15, 16} {6, 7, 8, 9, 17} (2090, 720, 1350)

s2
1 , s2

2 , s2
3 {10, 11, 12, 13} {1, 2, 3, 4, 5, 14, 15, 16} {6, 7, 8, 9, 17} (1050, 2020, 1350)

4F3

F2

F1

(s3
1) (s3

2) (s3
1) (s3

2) (s3
1) (s3

1)(s2
2)

(s2
2) (s2

2)

(s3
2)

(s2
1)(s2

1)

(s1
1) (s1

2)

2090 2090 2090 2090
660
1200

660
1350

1760
200

720
1350

2170
1860
200

1050
1860
1350

2020
200

1050
2020
1350

2170

5 6

2 3

1

7

Fig. 1.1 Subgame perfect equilibrium

1.5 Conclusion

Thus, we obtain that the strategies included in the subgame perfect equilibrium
coincide with those that were found in [2]. One of the reasons for this result is the
fact that in our previous work the JT set was divided into JT1 and JT2 . In our new
game formulation, the set JT3 was added, but according to the initial conditions,
it is initially empty. However, from the result interpretation point of view, it is
fundamentally different compared to the previous one, since in this case we see
that the challenger company generally loses achieved market position and becomes
a follower on the market, while the follower firm becomes a challenger.
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Chapter 2
Information Exchange in Price Setting
Mixed Duopoly

Sadettin Haluk Citci and Kubra Uge

Abstract Consider a dynamic Bertrand competition in mixed oligopoly, where a
private firm competes with a social welfare maximizing public firm. Firms produce
substitute products, face stochastic demand and each firm receive noisy signals
on common stochastic demand. In this mixed oligopoly, we examine incentives
of public and private firms to share their private signals through an independent
trade agency and we characterize equilibrium outcomes. We established two main
effects of information sharing: information sharing increases production efficiency
by enabling firms to predict stochastic demand shocks better. However, more precise
signals increase power of private firm to capture consumer surplus and lowers social
welfare. In Perfect Bayesian equilibrium of the mixed oligopoly game, private firm
shares all signals it receives with the public firm, whereas public firm shares no
information with the private firm. The market outcome is never optimal: it satisfy
neither of informational efficiency, production efficiency and allocative efficiency.

Keywords Mixed oligopoly · Information sharing · Information acquisition ·
State owned enterprises · Stochastic demand

2.1 Introduction

Do firms in oligopolistic markets share information sufficiently or are oligopolistic
markets informationally efficient? This question has become more important in the
last decade as firms have started to use big data more intensely and competitive
intelligence activities have started to be more central in firm activities. Framingham
[3] reports that big data and business analytics revenues were 189 billion dollar
in 2019. An example better crystallizing the argument is competitive intelligence
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system adoption of the European unit of Cisco Systems [1]. Cisco initially started
to use this system to acquire information on firm demand, industry demand and
competitors’ activities. Meanwhile, Cisco voluntarily disclosed some of information
is gathered.

Acquiring and sharing information on demand and cost conditions is extensively
analyzed for pure oligopolies in the literature. Early contributions to the literature
were made by Ponssard [10], Novshek and Sonnenschein [9], Clarke [2], Fried [4],
Vives [11] and Gal-Or [5]. In the following years, many other studies have been
added to the literature such as Haraguchi and Matsumura [6], Myatt and Wallace
[8]. The literature showed that information sharing behaviors of firms extensively
depend on the type of competition (Cournot or Bertrand), types of products and
nature of uncertainty (whether it is cost of demand uncertainty). When uncertainty
is on common demand parameters, firms tend to share all information they have
with each other if they compete in quantities and goods are complements or if
they compete in prices and goods are substitutes [11]. The results are reversed if
uncertainty is on cost parameters.

This study extends prior literature by examining firms’ incentives to acquire and
share information on stochastic demand in mixed oligopolies. Mixed oligopolies,
characterized as the competition between private firms with a public firm whose
objective is not solely profit maximization, exist in many oligopolistic markets. 10%
of world 2000 largest publicly listed firms are identified as state-owned enterprises
[7]. State owned enterprises represent 62% of Russia’s stock market capitalization.
Therefore, a sizeable part of economic activities are maintained in mixed oligopolies
rather than in pure oligopolies. This study focuses on mixed oligopolies to extend
the information sharing literature in this direction.

Specifically, we consider a mixed duopoly where a private firm competes a la
Bertrand with a social welfare maximizing public firm. Firms produce substitute
products under common demand uncertainty and each firm receives an observation
sample on uncertain demand parameter. In this model economy, firms play two-
stage game and decide the extent of information to reveal with the other firm in
the first stage and decide pricing in the second stage. In equilibrium, private firm
always shares all information it has, whereas social welfare maximizing public
firm shares no information. These actions are dominant strategies for both firms.
Moreover, we established that the market outcome is never optimal: it does not
satisfy informational efficiency, production efficiency and allocative efficiency.

2.2 Model

We study a dynamic model economy where a social welfare maximizing public firm
(firm 1) competes with a private firm (firm 2) in prices. In the economy, there are
two differentiated, substitute goods, produced by each firm. To derive closed form
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solutions, utility function of consumers is assumed to be quadratic, strictly concave
and symmetric in the quantity of the goods.

U(q1, q2) = α × (q1 + q2)− βq2
1 + 2γ q1q2 + βq2

2

2
. (2.1)

The specified utility function yields linear demand functions:

p1 = α − βq1 − γ q2,

p2 = α − γ q1 − βq2, (2.2)

where α > 0, β > γ > 0 and the assumption γ > 0, guarantees that the goods are
substitutes. Accompanying consumer surplus can be defined as follows:

CS = U(q1, q2)−∑2
i=1 piqi,

CS = α × (q1 + q2)− βq2
1+2γ q1q2+βq2

2
2 − p1q1 − p2q2. (2.3)

To simplify the model, without loss of generality, marginal costs of both firms
are assumed to be zero. As a result, the profit function of the private firm is equal to:

π2 = p2q2,

π2 = (α − γ q1 − βq2)× q2, (2.4)

and total producer surplus is equal to:

PS = p1q1 + p2q2. (2.5)

Both firms are assumed to be risk neutral. The private firm aims to maximize
solely its profit function. However, the public firm takes into account both its
own profit function, private firm’s profit function (producer surplus) and consumer
surplus. Public firm aims to maximize social welfare, defined by the following
equation

SW = 2α2(β − γ )− β(p2
i + p2

j )+ 2γpipj

2(β2 − γ 2)
. (2.6)

The crucial part of the model is that we model uncertainty in demand and allow
firms to choose information sharing about this uncertainty. Specifically, following
to Vives (1984), we assume that demand intercept, α is a random variable and is
normally distributed with mean ᾱ and variance V(α). Each firm starts to game with
ni independent observation sample (ti1, ti2, ti3, . . . , tin), where tik = α + uik and
uik’s are independent and identically distributed random variables. Their mean is
zero, variance σ 2

u and independent with α.
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There is an independent trade agency that collects the observation samples. Firm
1 (public firm) receives n1 observation sample and allows the trade agency to reveal
λ1n1 observation where 0 ≤ λ1 ≤ 1. Also, Firm 2 (private firm) receives n2
observation sample and allows the trade agency to reveal λ2n2 observation where
0 ≤ λ2 ≤ 1. There are λ1n1 + λ2n2 observation sample in the common pool after
each firm shares λini observation it has.

As a result of this information sharing process, each firm observes a private noisy
signal for the random variable α. The equation of signals is given as

si = α + 1

(ni + λjnj )
(

ni∑
k−1

uik +
λj nj∑
k=1

ujk), i = 1, 2. (2.7)

We have bivariate, normally distributed error terms with zero means for si , where
vi = σ 2

u /(ni+λjnj ) and σ12 = ((λ1n1+λ2n2)/(n1+λ2n2)(n2+λ1n1))σ
2
u , implies

that vi ≥ σ12 ≥ 0, i = 1, 2.
With these assumptions, we define following equations: E(α|si ) = (1−ti)ᾱ+tisi

and E(sj |si) = (1 − di)ᾱ + disi , with ti = V (α)/(V (α) + vi) and di = (V (α) +
σ12)/(V (α)+ vi), i=1,2, i �= j , where 1 ≥ di ≥ ti ≥ 0 since vi ≥ σ12 ≥ 0.

The equations imply that signals give more precise information about the demand
intercept as the variance decreases. The conditional expectation formula is as the
following:

E(α|si ) = (1 − ti)ᾱ + tisi . (2.8)

If the precision of the signals increase, ti increases because when ti increases
E(α|si ) gets closer to si than ᾱ. Also, ti increases as vi increases because ti =
V (α)/(V (α) + vi). While the signal goes from being perfectly precise to being
completely imprecise, vi goes from 0 to ∞ and ti goes from 1 to 0. Last, all of these
are common knowledge.

Public and private firms play two-stage game. Timing of the game is as follows:
in the first stage, both firms receive private noisy signal about the uncertain demand
parameter. Each firm decides the amount of observation to share with its competitor.
Then, the independent trade agency collects these observations and distributes these
observations. In the second stage, given their received signal si , based on their
collected and received information about uncertain demand, each firm decides price
to charge. The game ends at the end of the second stage.

2.3 Analysis

In this section, we determine Perfect Bayesian Equilibrium of the model. We start
to solve model using backward induction. Equilibrium price strategies in the second
stage are derived by establishing convergence points of “I think that he thinks that I
think. . . ” type model.
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Public firm maximizes following expected social welfare function with respect
to p1.

E(SW |s1) = E

(
2α2(β − γ )− β(p2

i + p2
j )+ 2γpipj )

2(β2 − γ 2)
|s1

)
. (2.9)

While private firm maximizes following expected profit function with respect
to p2.

E(π2|s2) = E

(
p2(α(β − γ )− βp2 + γp1)

(β2 − γ 2)
|s2

)
. (2.10)

So, the best response functions for each firm are as follows:

p1(s1) = γ
β

E(p2(s2)|s1)

and

(p2|s2) = E
(

α(β−γ )+γp1
2β

|s2

)
. (2.11)

This yields following equations:

p1(s1) = γ

β
E1

(
β − γ

2β
E2(α|s2)+ γ

2β
E2(p1(s1)|s2)

∣∣∣ s1

)
. (2.12)

After some messy calculations, we obtain following best response function in
terms of exogenous variables:

p1(s1) = γ (β − γ )

2β2

(
2β2

2β2 − γ 2

)
ᾱ + γ (β − γ )

2β2

(
2β2

2β2 − γ 2d1d2

)
d1t2(s1 − ᾱ)

(2.13)

and we can re-write expected social welfare function as the following:

E(SW |s1) = 1

2(β2 − γ 2)

[
2(β − γ ) E(α2)− β E(p1(s1))− β E(p2(s2)|s2

1)

+ 2γ E(p1(s1) p2(s2) | s1)
]
. (2.14)

Again, after proper substitution and calculations, we derive expected social
function in exogenous terms:

(SW |s1) = 1

2(β2 − γ 2)

[
2(β − γ )(V (α)+ ᾱ2)

− β
(
X2

1 +X2
2 t2

2 (V (α)+ v1)+ Z2
1 + Z2

2 t2
2 d2

1 (V (α)+ v1)
)

+ 2γ
(
X1 Z1 + X2 Z2 t2

2 d1(V (α)+ v1)
) ]

, (2.15)
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where X1 = γ (β−γ )

2β2
2β2

2β2−γ 2 ᾱ, x2 = γ (β−γ )

2β2
2β2

2β2−γ 2d1d2
d1, and Z1 = β−γ

2β
ᾱ

2β2

2β2−γ 2 ,

Z2 = β−γ
2β

2β2

2β2−γ 2d1d2
.

Then, we make a similar analysis to derive best response function and expected
profit of the private firm in exogenous terms. We already derived the following
function for the best response function of the private firm:

p2(s2) = E

(
α(β − γ )+ γp1

2β

∣∣∣s2

)
. (2.16)

This yields,

p2(s2) = β − γ

2β
E2(α)+ γ

2β
E2

(
γ

β
E1(p2)

)
. (2.17)

After proper substitution and calculations, we derive best response function of
the private firm in exogenous terms.

p2(s2) = β − γ

2β
ᾱ

2β2

2β2 − γ 2 +
β − γ

2β
t2(s2 − ᾱ2)

2β2

2β2 − γ 2d1d2
. (2.18)

Or we can re-write this function in linear form as follows:

p2(s2) = Z1 + t2Z2(s2 − ᾱ). (2.19)

Then, the expected profit of the private will be equal to:

E(π2|s2) = 1

β2 − γ 2

(
Z2

1 + Z2
2 t2

2 (V (α)+ v2)
)

. (2.20)

So far, we derived best response functions of both firms and corresponding
expected values of their objective functions by solving each firm’s equilibrium price
decisions in the second period. The derived conditional expected values of both
firms’ objective functions, E(SW |s1) and E(π2|s2), show how these functions are
related to the signals s1 and s2. Now, following the backward induction, we turn to
the first period and derive their information sharing decisions in the first period of
the game. The following lemma summarizes our first result.

Lemma 2.1 An increase in the precision of private firm’s information, or in the
precision of public firm’s information, or correlation of signals unconditionally
raises expected profit of private firm.

Proof The following equations show the derivative of expected profit of private
firm with respect to the precision of private firm’s information (v2), the precision of
public firm’s information (v1), and correlation of signals (σ12).

∂E(π2|s2)

∂v2
= −1

4

(
ζ + η(β − γ ) V (α)2 (V (α)+ v1)

2 β2)

(ζ − η)3 (β + γ )

)
, (2.21)
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where ζ = β2
(
V (α)2 + (v1 + v2)V (α)+ v1v2

)
and η = 1

2γ 2 (V (α)+ σ12)
2

The derivative, ∂E(π2|s2)
∂v2

, is always negative for all values of the parameters. As a
result, an increase in the precision of private firm’s information, the decrease of the
variance (v2), raises the expected profit of the private firm.

∂E(π2|s2)

∂v1
= −1

4

(
β2γ 2V (α)2(β − γ )(V (α)+ v2)(V (α)+ v1)(V (α)+ σ12)

(ζ − η)3 (β + γ )

)
.

(2.22)

Then, as long as γ �= 0, ∂E(π2|s2)
∂v1

< 0. As we assumed that goods are substitutes
(γ > 0), then the derivative is negative.

Last,

∂E(π2|s2)

∂σ12
= 1

2

(
β2γ 2V (α)2(β − γ )(V (α)+ v2)(V (α)+ v1)

2(V (α)+ σ12)
2

(ζ − η)3 (β + γ )

)
.

(2.23)

The assumption β > γ > 0 guarantees that the derivative is positive, ∂E(π2|s2)
∂σ12

>

0. As a result, the increase of the correlation of the signals raises expected profit of
the private firm. �

The first lemma summarizes that the increase of all kind of information in the
pool has a positive effect on the expected profit of the firm. The reason of this result
is simple. There are two effects of the increase of the information: the first one is
the output adjustment effect. More information leads firms to adjust to shocks and
increases efficiency. Evidently, through this effect, more information in the market
has tendency to increase the expected profit of the private firm. The second effect is
that: when the firm is price setter, more information leads greater scope to extract
consumer surplus. As, the private firm solely aims to increase its profit, through this
effect, more information again has tendency to increase the expected profit. Hence,
as more information has positive impact on profit through both channels, the net
effect is also positive on the expected profit.

The next lemma summarizes the effect of more information in the market on
social welfare.

Lemma 2.2 An increase in the precision of private firm’s information, or in the
precision of public firm’s information, or correlation of signals unconditionally
lowers expected social welfare.

Proof The derivative of the expected social welfare with respect to relevant
parameters are as follows:

∂E(SW |s1)

∂v1
= 1

8

(
(ζ + η)(β − γ )2 V (α)2 (V (α)+ σ12)

2 β

(ζ − η)3

)
, (2.24)
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where β2(V (α)2 + (v1 + v2)V (α)+ v1v2) = ζ and 1
2γ 2(V (α)+ σ12)

2 = η

Then the derivative with respect to v1 is positive, ∂E(SW |s1)
∂v1

> 0.

∂E(SW |s1)

∂v2
= 1

4

(
(V (α)+ v1)

2 (β − γ )2 V (α)2 (V (α)+ σ12)
2 β3

(ζ − η)3

)
.

(2.25)

Similarly, the derivative with respect to v2 is positive, ∂E(SW |s1)
∂v2

> 0. That
implies an increase of the precision of information, a decrease in v1 or v2, lowers
expected social welfare.

∂E(SW |s1)

∂σ12
= −1

4

(
(ζ + η) (V (α)+ σ12) (V (α)+ v1) (β − γ )2 V (α)2 β

(ζ − η)3

)
.

(2.26)

Last, the derivative with respect to σ12 is negative, ∂E(SW |s1)
∂σ12

< 0, which
completes the proof. �

The reason behind the results summarized in Lemma II stems from the trade-
off between increasing production efficiency versus increasing power of capturing
consumer surplus. As the Lemma I shows more information in the market leads
greater scope to extract consumer surplus of the private firm, this leads overall fall
in the social welfare.

Lemma 2.3 An increase in λj lowers vi and vi is independent of λi , i = 1, 2,
j �= i.

Proof Equation is as follows:

vi = σ 2
u

ni + λjnj

, (2.27)

vi is inversely related to λj , while independent of λi . �
Lemma 2.4 If λj < 1, i = 1, 2, j �= i, then σ12 increases with λi , while if λj = 1,
then σ12 is independent of λi

Proof Equation for σ12 is as follows:

σ12 = (λ1n1 + λ2n2)

(n1 + λ2n2)(n2 + λ1n1)
σ 2

u . (2.28)

Now for i = 1

∂σ12

∂λ1
= − (λ2 − 1)n1n2

(n1 + λ2n2)(n2 + λ1n1)2 σ 2
u . (2.29)
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If λ2 = 1, the derivative is 0, if λ2 < 1, then the derivative is positive.
Similarly for i = 2

∂σ12

∂λ2
= − (λ1 − 1)n1n2

(n1 + λ2n2)(n2 + λ1n1)2 σ 2
u . (2.30)

If λ1 = 1, the derivative is 0, if λ1 < 1, then the derivative is positive. �
The previous two lemmas, Lemma III and Lemma IV show effects of increasing

the number of observations in the pool on variance, vi and correlation of signals,
σ12. After these lemmas, the next corollary summarizes net effect of information
sharing on expected profit of the private firm and expected social welfare.

Corollary 1 More information sharing in the pool increases expected profit of the
private firm while decreases expected social welfare.

Proof Lemma I together with Lemma III and Lemma IV imply that increase in
λi , i = 1, 2, has increasing effect on expected profit of the private firm. Similarly,
Lemma II together with Lemma III and Lemma IV imply that increase in λi , i =
1, 2, has increasing effect on expected social welfare. �

Table 2.1 summarizes the net effects of more information sharing and channels
in which more information affects expected profit and social welfare.

The next proposition summarizes main result of the paper.

Proposition 1 Suppose goods are substitutes. Then the two-stage Bertrand game
has a unique Perfect Bayes Equilibrium in dominant strategies. There is partial
information pooling: the public firm does not share any information, while private
firm completely shares all information it has.

Proof As corollary shows, more information in the pool increases expected profit of
the firm in all cases, independently of the best response of the public firm. As a result,
dominant strategy of the private firm is to share all information it has. Conversely,
more information in the pool decreases overall expected social welfare in all cases.
Thus, no information sharing is the dominant strategy for social welfare maximizing
public firm. �

An important remark is that although one of the firms is social welfare maximiz-
ing public firm, the market outcome is never first-best optimal. As there is partial
information sharing, the market outcome does not maximize production efficiency
and does not enhance informational efficiency.

Table 2.1 Effects of
information sharing on
expected profit and social
welfare

λ2 ↑ v1 ↓ Eπ2 ↑ ESW ↓
σ12 ↑ Eπ2 ↑ ESW ↓

λ1 ↑ v2 ↓ Eπ2 ↑ ESW ↓
σ12 ↑ Eπ2 ↑ ESW ↓
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A relevant question here might be whether public firm may choose not to use the
information that the private firm provides. As less information in the information
pool has always social welfare increasing effect, one may argue that public firm may
choose not to receive information provided by the private firm. If ex ante the public
firm could guarantee that it would not use the information shared by the private firm,
it would choose not to use the information shared by the private firm. However,
once the private firm puts observations it has to the information pool and shares
them, the public firm ex post cannot guarantee that it will not use the information
that the private firm shares. Because as more information has always positive effect
on enhancing production efficiency, once received the information shared, the best
the public firm can do is to use this information. Hence, the public firm uses all
information shared in equilibrium.

Last, we compare equilibrium outcomes established in mixed oligopoly with the
ones in pure oligopolies. In a very similar two stage duopoly setting, Vives [11]
analyzes informational equilibrium outcomes for a pure duopoly. The information
setting and production functions of the firms are same in that paper with the ones
assumed in this study. Vives [11] establishes that if goods are substitutes and
firms compete a la Bertrand, in Perfect Bayesian equilibrium of the game, both
private firms share all information that they have with each other. This implies
that information sharing behavior of private firm does not change according to
whether it competes in a pure oligopoly market or in a mixed oligopoly market.
However, behavior of the public firm is totally different as we showed in this study.
In sum, although there is full information sharing in a pure oligopoly with Bertrand
competition, informational equilibrium is characterized with partial information
sharing in mixed oligopoly. Thus, comparing with equilibrium outcomes in pure
oligopoly, mixed oligopoly yields less information efficiency and less production
efficiency but still enhances social welfare.

2.4 Conclusion

We have considered informational outcomes in a mixed oligopoly, where a private
firm competes with a social welfare maximizing public firm. We analyzed firms’
incentives to share and diffuse information when firms produce substitute products
and compete in prices under stochastic common demand shocks. It seemed there are
two main effects: information sharing increases production efficiency by enabling
firms to predict stochastic demand shocks better. The other effect is to increase
power of capturing consumer surplus. For private firm, both effects work in the
same direction and gives incentive to private firm to share all private signals it
received with the public firm. As a result, in equilibrium, private firm always share
all information it has. For the public firm, which aims to maximize social welfare,
production efficiency motive gives it tendency to share information. However, as
more information also increases private firm’s power of capturing consumer surplus,
this second effect leads public firm to not to share the information it has. In
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equilibrium, the second effect dominates the first one and as a result, in order to
reduce private firm’s power of capturing consumer surplus, the public firm shares
no information with the private firm. Hence, the equilibrium is characterized with
partial information sharing.

There are several lines to extend the analysis of this study. We have considered
only Bertrand competition with substitute goods. The prior studies on the informa-
tion sharing in pure oligopolies show that equilibrium outcomes heavily depend
on type of goods and type of competition. Thus, extending analyzes for Cournot
competition and for complement goods will be beneficial. Another line of research
may focus on the effects of privatization with taking informational outcomes into
account. This line of research may establish important policy implications.
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Chapter 3
Reflexive and Epistemic Properties
of the Tullock Rent-Seeking Game

Denis Fedyanin

Abstract This study sets out to investigate the impact of information control in the
Tullock rent-seeking game. The game itself is constructed by using a normal form
and making suggestions on the agents’ believes and knowledge. We found domains
of parameters where monotonicity of the impact holds too. Together, these results
provide valuable insights into the effects of reflexive analysis on the properties of
information control.

Keywords Parametrized equilibrium · Epistemic models · Informational
structure · Social interaction · Opinion · Tullock · Rent-seeking · Control

3.1 Introduction

Players discuss parameters of the competition for a prize and compete by making
costly investments. Players have initial beliefs, types. Communication between them
could be fruitful or not.

We analyze how we should change beliefs or parameters of the competition
(game) to get higher investment (action) or utility for the given player. Our
investigation splits into several parts. We should be able to model the beliefs, should
be able to predict the results of the negotiations of players based on their primary
types, expectations and available communication, and should be able to find the
equilibria [4, 5].

The critical part is types and uncertainties. Epistemic games [10], epistemic
logic [2, 14, 15], k-level epistemic models [7], reflexive models, fuzzy logic [8],
and numerous other directions have been developed during years and have many
results. In our case, we use a particular type of structures. The structures are simple,
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symmetric, and fruitful. We avoid fuzziness by using a specific variety of standard
uncertainties.

Communication and belief interaction is also an object of investigations in
opinion dynamics models, and they could be considered sometimes like judgement
aggregation [11]. There are many problems and successes with the aggregates of
preferences like the social choice domain [1]. Social cognitive maps are also close
to our method. The uniqueness of our paper is in a sophisticated approach. Other
models of negotiations like auctions could be used here too. We have chosen the
simplest from the unusual for us models.

The game-theoretical part is based on the known Nash equilibriums of the purest
form of our game. It is an exciting game by itself, and we are sure that it still
hides many secrets to be discovered. Our uniqueness is that we reshape basic
games with three parameters into a game with more settings. Though they have
symmetric properties, the standard methods of solving these games could not be
directly applied without preliminary investigations.

3.2 The Model

First of all, our research is based on a fundamental concept on the Nash equilibrium
and rent-seeking game where higher investments increase the probability of winning
the prize [12, 13]. There are applications: competition for monopoly rents, invest-
ments in R&D, competition for a promotion/bonus, political contests. A formal
model is the following. Set of players N = {1, . . . , n}, strategies xi > 0,∀i ∈ N ,
utility function

fi = xα
i∑

j∈N xα
j

M − xi,∀i ∈ N.

Restrictions

M ≥ 1, 0 < α < 1.

The parameter M is the amount of the resource that is given and should be split
among agents; the parameter α is the measure for the probability of winning for the
agents with small actions. If α is very large, then the probability of winning for the
agents with small actions is smaller.

The very vital part is that we allow payers do not have the same belief about the
parameters of the game. It makes the difference with a classic Tullock game. We
add the classic game as one of the cases (Game 1) to compare the results and show
how our method of using control could be applied to this case.

We have two types of players and two types of communication (available or not),
and we analyzed all possible combinations. It leads us to the four unique blends of
types and communications for analysis. We have suggested epistemic models for all
of them and calculated equilibriums for the first three of them.
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We suggest the following algorithm to classify which model suits specific cases
in the real world.

1. Is there a difference in beliefs and real value of the parameters α,M, n. If there
is no, then the Game 1 should be used, and Nash equilibrium will be the solution
for parametrized equilibrium.

2. If there is a meaningful social interaction among agents? If there is no, then
we should use Game 2 to find a solution since the game splits into the separate
Games of type 1. The difference with Game 1 is that parameters α,M, n in these
games will differ, and the combined output actions would not necessarily form a
Nash equilibrium in Game 1. Thus the values of utilities would not obligatorily
coincide with the values of utility functions in Game 1. Trust is crucial since
it could be communication, but all lie. It means that there is no meaningful
communication since agents could choose a strategy just to discard incoming
messages.

3. Are all agents stubborn, or they all want to come to a consensus? It is not a
complete list of alternatives, but our next models correspond only to these two
extreme cases. If the agents want to come to a consensus, we suggest using a
model 3 that is a De Groot model—the linear model of opinion modification.
It leads us to a Game 1 -like a model when we have a single belief about the
parameter, but since it is the result of some negotiations, we should take into
account the social influences of agents. In case all agents are stubborn, then we
should use Game 4. It is the most complicated model. We do not investigate this
game in this paper but mention it since it is a part of a general method.

We have considered the decision rules to choose which game should be used.
These decisions are schematically shown in Fig. 3.1.

We will use a more generic version of the Nash equilibrium that is informational.
It is very similar to the standard Nash equilibrium but takes into account informa-
tional structure in agents’ representations of the game. The formal definition can be
found in [9].

Reflective game ΓI is a game described by the following tuple:

ΓI = {N, (Xi)i∈N, fi(·)i∈N, I }, (3.1)

Fig. 3.1 The decision tree
representations of the
classification of the games by
the types of belief dynamics
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Fig. 3.2 An example of a
simple informational
structure that is similar to
Harsanyie types approach [6]

Fig. 3.3 The informational
structure for the Game 1

where N is the set of real agents, Xi is the set of valid actions of the i th agent, fi(·)
is its target function, i ∈ N, I—informational structure or belief representations
(Fig. 3.2).

3.3 Epistemic Models of Beliefs

We use Chkhartishvili-Novikov notations for belief representations [9]. In brief,
it is the graph of possible worlds (rectangles) and images of agents (circles).
Some images coincide with real agents, and others are just phantom agents.
Term ‘phantom agent’ is a feature of Chkhartishvili-Novikov notations for belief
representations. A possible world is connected to an image of an agent iff the world
contains the image of the agent. An image of an agent is connected to a potential
world iff the agent considers this world possible. We will use this notation in this
paper. For example, two agents and a single possible world are shown in the Fig. 3.1.
It is the simplest case—the informational structure for a game in the normal form
where Nash equilibrium directly coincides with equilibrium in the reflexive game
(Fig. 3.3).

3.4 Properties of the Equilibria for the Games 1–3

3.4.1 Game 1: Players with Common Knowledge

We have to find a solution for the system of the best responses (BR) of the players.

x∗1 = BR(x∗−1,M, n, α); . . . ; x∗n = BR(x∗−n,M, n, α).

This solution gives us equilibrium.
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Actions of agents are

x∗i =
n− 1

n2 αM; ∀i ∈ N.

Furthermore, monotonicity could be found by an analysis of the following deriva-
tives.

∂

∂M
x∗i =

n− 1

n2 α > 0; ∂

∂α
x∗i =

n− 1

n2 M > 0; ∂

∂n
x∗i =

2 − n

n3 αM < 0.

Utility functions are

fi(x
∗) = n− (n− 1)α

n2 M.

Futhermore, monotonicity could be found by an analysis of the following
derivatives.

∂

∂M
fi(x

∗) = n− (n− 1)α

n2
> 0; ∂

∂α
fi(x

∗) = −n− 1

n2
M < 0.

∂

∂n
fi(x

∗) = (1 − α)n − 2(n− (n− 1)α)

n3 M < 0.

3.4.2 Game 2: Players Without Communication

A brief example of this model is the following. Let there are Ann and Bob. Ann
watches the TV channel, and there is a claim that there is a storm nearby. She could
think that it is such important news that everyone should know it. Bob does not
know anything about the storm and feels that nobody thinks that there is a storm.
Both of them are wrong in detail but make actions as they are right. We can model
this situation to see Fig. 3.4 for Chkhartishvili-Novikov representations of beliefs of
such agents.

Fig. 3.4 The informational
structure in
Chkhartishvili-Novikov form
for players without
communication
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We have to find a solution for the system of the best responses (BR) of the
players.

x∗1 = BR(x∗−1,M, n, α); . . . ; x∗n = BR(x∗−n,M, n, α);

x∗1
1 = BR(x∗1−1,M1, n1, α1); . . . ; x∗1

n = BR(x∗1−n,M1, n1, α1);

x
∗j
1 = BR(x

∗j
−1,Mj , nj , αj ); . . . ; x∗jn = BR(x

∗j
−n,Mj , nj , αj );

x∗n1 = BR(x∗n−1,Mn, nn, αn); . . . ; x∗nn = BR(x∗n−n,Mn, nn, αn);

x∗1 = x∗1
1 ; . . . ; x∗n = x∗nn .

This solution gives us equilibrium.
Actions of agents are

x∗i =
ni − 1

n2
i

αiMi.

Moreover, monotonicity could be found by an analysis of the following deriva-
tives.

∂

∂Mi

x∗i =
ni − 1

n2
i

αi > 0; ∂

∂Mj

x∗i = 0; ∂

∂M
x∗i = 0.

∂

∂αi

x∗i =
ni − 1

n2
i

Mi > 0; ∂

∂αj

x∗i = 0; ∂

∂α
x∗i = 0.

∂

∂ni

x∗i =
2 − ni

n3
i

αiMi < 0; ∂

∂nj

x∗i = 0; ∂

∂n
x∗i = 0.

Utility functions are

fi(x
∗) = xα

i∑
j∈N xα

j

M − xi;

fi(x
∗) =

(
ni−1
n2

i

αiMi

)α

∑
j∈N

(
nj−1

n2
j

αjMj

)α M − ni − 1

n2
i

αiMi,∀i ∈ N.

Futhermore, monotonicity could be found by an analysis of the following deriva-
tives.
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Real-world properties are the following.

∂

∂M
fi(x

∗) =

(
ni−1
n2

i

αiMi

)α

∑
j∈N

(
nj−1

n2
j

αjMj

)α > 0;

∂

∂α
fi(x

∗) =

(
ni−1
n2

i

αiMi

)α ∑
j∈N

(
nj−1

n2
j

αjMj

)α (
ln α −∑

j∈N ln αj

)
(∑

j∈N

(
nj−1

n2
j

αjMj

)α)2 M > 0; , ∀i ∈ N.

Belief properties are the following.

∂

∂Mi
fi(x

∗) =

α

(
ni−1
n2

i

αi

)α

Mα−1
i

(∑
j∈N

(
nj−1
n2

j

αjMj

)α)
− α

(
ni−1
n2

i

αi

)α

M2α−1
i

(∑
j∈N

(
nj−1
n2

j

αjMj

)α)2 M

+ni − 1

n2
i

αi;

∂

∂Mj

fi(x
∗) =

(
nj − 1

n2
j

αj

)α

Mα−1
j

α

(
ni−1
n2

i

αiMi

)α

(∑
j∈N

(
nj−1
n2

j

αjMj

)α)2 M > 0;

∂

∂αi

fi(x
∗) =

α

(
ni−1
n2

i

Mi

)α

αα−1
i

(∑
j∈N

(
nj−1

n2
j

αjMj

)α)
− α

(
ni−1
n2

i

Mi

)α

α2α−1
i

(∑
j∈N

(
nj−1
n2

j

Mjαj

)α)2 M

+ni − 1

n2
i

Mi;
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Fig. 3.5 The informational structure in Chkhartishvili-Novikov form for players with communi-
cation and consensus

∂

∂αj

fi(x
∗) =

(
nj − 1

n2
j

Mj

)α

αα
j

2α

(
ni−1
n2

i

αiMi

)α

(∑
j∈N

(
nj−1
n2
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αjMj

)α)2 M > 0.

Properties of beliefs about a number of agents are the following (Fig. 3.5).
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.

3.4.3 Game 3: Players with Communication and Consensus

There could be communication between agents, and they can communicate accord-
ing to the de Groot model [3]. There is no difference if the existence of such
communication is common knowledge among all agents, or it is not.

M∗ =
∑
i∈N

wM
i Mi; α∗ =

∑
i∈N

wα
i αi; n∗ =

∑
i∈N

wn
i ni,

where wM
i ,wα

i , wn
i is the influence of the agent i on a social network consensus

opinion about M,α, n
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We have to find a solution for the system of best responses (BR) of players.

x∗1 = BR(x∗−1,
∑

i

wM
i Mi,

∑
i

wn
i n,

∑
i

wα
i α);

. . .

x∗n = BR(x∗−n,
∑

i

wM
i Mi,

∑
i

wn
i n,

∑
i

wα
i α).

This solution gives us an equilibrium.
Actions of agents are

x∗i =
n∗ − 1

(n∗)2
α∗M∗.

Moreover, monotonicity could be found by an analysis of the following derivatives.
Real-world properties are the following.

∂

∂M
x∗j = 0; ∂

∂α
x∗j = 0; ∂

∂n
x∗j = 0.

Belief properties are the following

∂

∂Mi
x∗j =

n∗ − 1

(n∗)2
α∗wM

i > 0; ∂

∂αi
x∗j =

n∗ − 1

(n∗)2
wα

i M∗ > 0; ∂

∂ni
x∗j =

2 − n∗
(n∗)3

wn
i α∗M∗ < 0.

Dependencies of social influences in network are

∂

∂wM
i

x∗j =
n∗ − 1

(n∗)2
α∗Mi > 0; ∂

∂wα
i

x∗j =
n∗ − 1

(n∗)2
αiM

∗ > 0; ∂

∂wn
i

x∗j =
2 − n∗
(n∗)3

niα
∗M∗ < 0.

Utility functions are

fi(x
∗) = M

n
− (n∗ − 1)α∗M∗

(n∗)2
.

Furthermore, monotonicity could be found by an analysis of the following deriva-
tives.

Real-world properties are the following.

∂

∂M
fj (x

∗) = 2

n
> 0; ∂

∂α
fi(x

∗) = 0; ∂

∂n
fi(x

∗) = −M

n2 < 0.
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Fig. 3.6 The informational
structure in
Chkhartishvili-Novikov form
for stubborn players with
communication without
consensus

Belief properties are the following

∂

∂Mi

fj (x
∗) = wM

j

n∗ − (n∗ − 1)α∗

(n∗)2 > 0
; ∂

∂αj

fi(x
∗) = −M∗(n∗ − 1)wα

j

(n∗)2
< 0;

∂

∂nj

fi(x
∗) = (1 − α∗)wn

j n∗ − 2wn
j (n∗ − (n∗ − 1)α∗)

(n∗)3 M∗ < 0.

Dependencies of network social influences are (Fig. 3.6)

∂

∂wM
i

fj (x
∗) = Mj

(n∗ − (n∗ − 1)α∗)
(n∗)2 > 0; ∂

∂wα
j

fi(x
∗) = −M∗(n∗ − 1)αj

(n∗)2 < 0;

∂

∂wn
j

fi(x
∗) = (1 − α∗)njn

∗ − 2nj (n
∗ − (n∗ − 1)α∗)

(n∗)3 M∗ < 0.

3.4.4 Game 4: Stubborn Players with Communication Without
Consensus

If there is communication with no trust at all, then all agents ‘become stubborn’, and
other opinions do not change their views. There is no difference if the existence of
such communication is common knowledge among all agents, or it is not.

We have to find a solution for the system of th best responses (BR) of the players.

x∗1 = BR(x∗−1,M1, n1, α1); . . . ; x∗n = BR(x∗−n,Mn, nn, αn).

This solution gives us an equilibrium.
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Table 3.1 The monotonicity of the actions and the utilities for the games (columns) for the
controls of beliefs and the real world (rows)

Game 1 Game 1 Game 2 Game 2 Game 3 Game 3

Control Strategy xi Utility fi Strategy xi Utility fi Strategy xi Utility fi

M ↗ ↗ 0 ↗ 0 ↗
Mi NA NA ↗ ↗ ↗ ?

Mj NA NA ↗ ↗ 0 ↗
n ↘ ↘ 0 ↘ 0 NA

ni NA NA ↘ ? ↘ ?

nj NA NA ↘ ? 0 ↘
α ↗ ↘ 0 0 0 ↗
αi NA NA ↗ ↘ ↘ ?

αj NA NA ↗ ↘ 0 ↗
wM

i NA NA ↗ ↗ NA NA

wM
j NA NA ↗ ↗ NA NA

wn
i NA NA ↘ ? NA NA

wn
j NA NA ↘ ? NA NA

wα
i NA NA ↗ ↘ NA NA

wα
j NA NA ↗ ↘ NA NA

3.5 Conclusion

In this paper, we considered a Tullock rent-seeking game with parameters: benefits
for large players α, budget M , number of players n, and suggested that this are
uncertain parameters for agents. We applied our previously developed method and
found useful preliminary information for monotonicity analysis and further control
analysis (Table 3.1).
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Chapter 4
Solution of Differential Games
with Network Structure in Marketing

Ekaterina Gromova and Anastasiya Malakhova

Abstract A marketing network model of goodwill accumulation with spillover
effect is analysed in a differential game theory framework. Cooperative form of
the game is considered under α-characteristic function. An approach is illustrated
on a numerical example with particular values of the model parameters fixed.

Keywords Network differential games · Characteristic function · Differential
game theory

4.1 Introduction

Modern mathematical game theory sets out to model, analyse and resolve various
issues associated with conflict-controlled processes. Of particular interest are
dynamic processes, the conflict processes developing over time, which could be
well described in differential games terms [6].

Another essential branch of mathematical game theory covers network models.
The models taking place under an assumption of some network structure among
players. Differential games on networks were widely studied in [11]. Moreover, such
game formulation found its place in economic and marketing issues [5].

In recent literature [8, 9], dynamic processes in marketing, which evolves over
time, are often described in the framework of differential game theory. But there are
only a few papers in which marketing is considered with the network structure of
participants, especially in the continuous-time formulation [1].

In this paper differential game with network structure applied for a marketing
model of goodwill accumulation is considered [7]. Additionally, the model includes
the spillover effect [2] that accounts for the influence of other players’ decisions on
the total payoff of the players.
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The paper is organised as follows. Section 4.2 is dedicated to the game
formulation with all the additional necessary assumptions given. The cooperative
setup is proposed in Sect. 4.3. In the following section α-characteristic function of
the game is calculated in the form of maxmin problem. In Sect. 4.4 the proposed
approach is illustrated by a numerical example.

4.2 Game Formulation

Consider a differential game of three (N = 3) players Γ (t0, x0). The game starts
from the initial time instant t0 and initial state x0 and supposed to proceed on the
infinite interval. The game is assumed to have a network structure represented by
the non-oriented graph illustrated by the Fig. 4.1.

Assume that the dynamic of the common state variable for each player takes form
of the following differential equation (4.1)

ẋi = αiui(t)− δixi(t), i = {1, 2, 3}, xi(t0) = xi
0. (4.1)

The state variables xi(t) refer to the amount of stock of the player (advertis-
ing, technology, resource, capital). The control variables ui(t) are the open-loop
strategies of the player i and represent the investment/extraction effort of the player
(firm). In addition, both the controls and the state variables are required to be (almost
everywhere) differentiable.

The player’s payoff consists of components depending on his network connec-
tions with other players. If the player i is connected with the player j then the
payoff component takes form (4.2)

hij (t) = e−pt (aixi(t)+ cj xi(t)uj (t)− 1

2
u2

i (t)). (4.2)

Thus, the payoff of the player is the sum of connection components

Ji

(
xi

0, x
K(i)
0 ; ui, uK(i)

)
=

∞∫
t0

∑
j∈K(i)

hij (τ )dτ, (4.3)

Fig. 4.1 The game’s network
structure
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here K(i) = {(i, j), j ∈ N, (i, j) ∈ L}—the set of all connections of the player i,
L = {i, j }—edges of the graph.

The payoff functional of the considered model (4.2) has a linear-quadratic form.
This fact implements a number of valuable properties. In particular, Hamilton-
Jacobi-Bellman approach and Maximum Principle yield the same decision if they
are restricted to linear-feedback forms, see Dockner et al. (2000) [3].

Assume the following restriction which are standard for economical applica-
tions.

• Non-negative constrains on the controls’ value due to its nature as an effort level,
thus

ui ∈ Ui ⊆ R+, i = {1, 2, 3}

• Open-loop strategies is taken from the closed compact set

ui(t) ∈ Ûi ⊂ CompR, i = {1, 2, 3}

• Non-negative constrains on the common state’s value due to it’s nature as a stock
level, thus

xi ∈ Xi ⊆ R+ i = {1, 2, 3}.

This game has a linear-quadratic structure which takes place commonly among
advertising and marketing models (see Deal et al. (1979) [2] and He et al. (2007)
[5]) and includes a spillover effect represented by the term cjxi(t)uj (t). This effect
represents a specific economic behaviour in the form of positive or negative impact
on the value of the economic agent i by state and investments product of the firm
j . Such phenomenon is widespread for advertising and goodwill models, where the
value of advertising for one firm positively depends on advertising efforts of the
other firm provided they have similar products.

4.3 Differential Game in the Form of Characteristic Function

To define the cooperative game the characteristic function (ch.f.) V (S, x0, t0)

should be constructed for every coalition S ⊂ N in the game Γ (x0, t0). In the
modern literature under the characteristic function in cooperative games is implied
a mapping from the set of all possible coalitions to real set:

V (·) : 2N → R,

V (∅) = 0.
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Note that the value of the characteristic function for the grand coalition N is
equal to V (N, x0, t0). There are several main approaches to the construction of the
characteristic function which show the power of the coalition S (see, for example, [4,
14]). The most commonly used classes of characteristic functions can be indicated in
the order that they appeared in literature as α-, β-, γ -, δ-, ζ -characteristic function.

The value V (S, x0, t0) can be interpreted as a power of the coalition S. The
essential property is the property of superadditivity:

V (S1 ∪ S2, x0, t0) ≥ V (S1, x0, t0)+ (4.4)

+V (S2, x0, t0),∀S1, S2 ⊆ N, S1 ∩ S2 = ∅.

However, the use of superadditive characteristic function in solving various
problems in the field of cooperative game theory in static and dynamic setting,
provides a number of advantages such as:

1. provides the individual rationality property for cooperative solutions,
2. encourages players to sustain large coalitions and eventually unite into a Grand

coalition N ,
3. delivers clear meaning to the Shapley value (a component of the division for each

player is equal to its average contribution to the payoff of the Grand coalition
under a certain mechanism of its formation),

4. necessary when you build a strongly dynamically stable optimality principles.

Thus, in many aspects more useful to have superadditive characteristic function.
It is rather easy to construct the characteristic function V (S, x0, t0) in the

form of α—ch.f. [12]. The characteristic function of coalition S is constructed
through the classical approach of Neumann, Morgenstern, formulated in 1944 in
[10]. According to this approach, under V α(S, x0, t0) is understood the maximum
guaranteed payoff of coalition S, and the value V α(S) can be calculated on the
basis of the auxiliary zero-sum game ΓS,N\S(t0, x0) between the coalition S and
anti-coalition N \ S.

V α (S, x0, t0) =

⎧⎪⎪⎨
⎪⎪⎩

0, S = {∅},
valΓS,N\S (x0, t0, ) , S ⊂ N,

maxu1,u2,...un

∑n
i=1 Ji (x0, t0, u(t)) , S = N.

(4.5)

In this paper, without loss of generality, characteristic function calculation could
be divided into three main steps: ch.f. for coalition which consists of the only one
individual player, two players coalition and grand coalition.
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4.3.1 One Player Coalition Characteristic Function

Calculate the value of the characteristic function for a coalition consisting only of
the player {1}. Characteristic function would be calculated as a function of time
moment θ , where θ is the initial moment. We assume that θ = 0. The following
maximisation problem is settled

V ({1}, x0, t0) = max
u1

min
u2,u3

∞∫
θ

e−pt (2a1x1(t)+ c2x1(t)u2(t)+ c3x1(t)u3(t)− 2
1

2
u2

1(t))dt.

(4.6)

Minimisation by u2(t) and u3(t) will result in zero controls. Ultimately, we need
to solve the following maximisation problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∫
θ

e−pt (2a1x1(t)− u2
1(t))dt → maxu1,

ẋ1(t) = α1u1(t)− δ1x1(t),

x1(t0) = x1
0 .

(4.7)

Using Maximum Principal [13] the following form of optimal control depending
on adjoint variable is obtained

u∗1(t) = 0.5α1ψ1(t)e
pt .

Corresponding differential equation for adjoint variable is

ψ̇1(t) = δ1ψ1(t)− 2a1e
−pt .

Under transversality conditions

lim
t→∞ψ1(t) = 0.

To simplify denote the variable

λ1(t) = eptψ1(t).
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Thus, by solving the system below a final form for optimal control could be
obtained

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̇1(t) = (p + δ1)λ1(t)− 2a1,

ẋ1(t) = α1u1(t)− δ1x1(t),

x1(t0) = x0,

limt→∞ e−ptλ(t) = 0.

(4.8)

As the result

u∗1(t) =
α1a1

p + δ1
= Const. (4.9)

The optimal trajectory could be derived under the assumption that the game was
started from the point (θ, x∗(θ)).

x∗(t) = α2
1a1

δ1(p + δ1)
+ x∗(θ)eδ1(θ−t ) − α2

1a1

δ1(p + δ1)
eδ1(θ−t ).

In particular, if θ = t0 = 0 and x(t0) = x1
0

x∗(t) = α2
1a1

δ1(p + δ1)
(1 − e−δ1t )+ x1

0e−δ1t .

Characteristic function for coalition consisting of the only player one is

V ({1}, x0, t0) =
∞∫

θ

e−pt (2a1x
∗
1 (t)− u∗2

1 (t))dt =

=
∞∫

θ

e−pt (2a1
α2

1a1

δ1(p + δ1)
+ x∗(θ)eδ1(θ−t )− α2

1a1

δ1(p + δ1)
eδ1(θ−t )− (

α1a1

p + δ1
)2)dt =

= (
2α2

1a2
1

δ1(p + δ1)
− α2

1a2
1

(p + δ1)2
)(− 1

p
)e−pt+

+(x∗(θ)− α2
1a1

δ1(p + δ1)
)eδ1θ (− 1

δ1 + p
)e−(δ1+p)t

∣∣∣∣
∞

θ

=

= −α2
1a2

1(2p + δ1)

pδ1(p + δ1)2 e−pθ + (x∗(θ)− α2
1a1

δ1(p + δ1)
)eδ1θ (− 1

δ1 + p
)e−(δ1+p)θ .
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4.3.2 Two Player Coalition Characteristic Function

Without loss of generality, consider the coalition of {1, 2} as an example of two
players coalition. In other cases calculation would be the same accurate to indexes.

V ({1, 2}, x0, t0) = max
u1,u2

min
u3

∞∫
θ

e−pt (h12(t)+ h13(t)+ h21(t)+ h23(t))dt =

= max
u1,u2

min
u3

∞∫
θ

e−pt (2a1x1(t)− u2
1(t)+ c1x2(t)u1(t)+ 2a2x2(t)− u2

2(t)+

+c2x1(t)u2(t)+ (x1(t)+ x2(t))c3u3(t))dt.

Minimisation by u3(t) will result in zero controls. Ultimately, we need to solve
the following maximisation problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
θ

e−pt(2a1x1(t)− u2
1(t)+ c1x2(t)u1(t)+ 2a2x2(t)− u2

2(t)+
+c2x1(t)u2(t))dt → maxu1,u2,

ẋ1(t) = α1u1(t)− δ1x1(t),

ẋ2(t) = α2u2(t)− δ2x2(t),

x1(t0) = x1
0 ,

x2(t0) = x2
0 .

(4.10)

Using Maximum principle for the first player

u∗1(t) = 0.5ψ1(t)α1e
pt + 0.5c1x2(t).

Due to the index symmetry among players both optimal control forms could be
derived

{
u∗1(t) = 0.5ψ1(t)α1e

pt + 0.5c1x2(t),

u∗2(t) = 0.5ψ2(t)α2e
pt + 0.5c2x1(t).

(4.11)



44 E. Gromova and A. Malakhova

Denote again for the first player and for the second player correspondingly
λi(t) = eptψi(t), i = {1, 2}.

{
λ̇1(t) = (p + δ1)λ1(t)− (2a1 + c2u2(t)),

λ̇2(t) = (p + δ2)λ2(t)− (2a2 + c1u1(t)).
(4.12)

Corresponding differential equations for adjoint variables in aggregate with
dynamic equations lead to the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̇1(t) = (p + δ1)λ1(t)− 0.5c2α2λ2(t)− 0.5c2
2x1(t)− 2a1,

λ̇2(t) = (p + δ2)λ2(t)− 0.5c1α1λ1(t)− 0.5c2
1x2(t)− 2a2,

ẋ1(t) = 0.5α2
1λ1(t)− δ1x1(t)+ 0.5α1c1x2(t),

ẋ2(t) = 0.5α2
2λ2(t)− δ2x2(t)+ 0.5α2c2x1(t).

(4.13)

In matrix form

⎛
⎜⎜⎝

λ̇1(t)

λ̇2(t)

ẋ1(t)

ẋ2(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

δ1 + p −0.5α2c2 −0.5c2
2 0

−0.5α1c1 δ2 + p 0 −0.5c2
1

0.5α2
1 0 −δ1 0.5α1c1

0 0.5α2
2 0.5α2c2 −δ2

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

λ1(t)

λ2(t)

x1(t)

x2(t)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
−2a1

−2a2

0
0

⎞
⎟⎟⎠ .

To solve the system the corresponding homogeneous system.
Denote A as

A =

⎛
⎜⎜⎝

δ1 + p −0.5α2c2 −0.5c2
2e

pt 0
−0.5α1c1 δ2 + p 0 −0.5c2

1e
pt

0.5α2
1 0 −δ1 0.5α1c1e

pt

0 0.5α2
2 0.5α2c2e

pt −δ2

⎞
⎟⎟⎠ .

To obtain the decision, eigen values and eigen vectors of the matrix A should be
derived and analysed to understand if the decision is in real or complex surface.
Nevertheless, the above described operation are rather computationally complex to
obtain the decision in an analytical form. However, an approach could be illustrated
on the simplified system in case of constant values of some of the system parameters
which are denote in the way not being in contradiction with the economical meaning
of the model. This result is shown in the section below.
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4.3.3 Grand Coalition Characteristic Function

Calculate the characteristic function for a coalition consisting of three players
(Grand coalition).

V ({1, 2, 3}, x0, t0) = max
u1,u2,u3

∞∫
θ

e−pt (h12(t)+ h13(t)+ h21(t)+ h23(t)+ h31(t)+

+h32(t))dt = max
u1,u2,u3

∞∫
θ

e−pt (2a1x1(t)+2a2x2(t)+2a3x3(t)+(x2(t)+x3(t))c1u1(t)+

+(x1(t)+ x3(t))c2u2(t)+ (x1(t)+ x2(t))c3u3(t)− u2
1(t)− u2

2(t)− u3
1(t))dt.

The following maximisation problem is needed to be solved

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
θ

e−pt (2a1x1(t)+ 2a2x2(t)+ 2a3x3(t)+ (x2(t)+ x3(t))c1u1(t)+ (x1(t)+

+x3(t))c2u2(t)+ (x1(t)+ x2(t))c3u3(t)− u2
1(t)− u2

2(t) − u3
1(t))dt → maxu1,u2,u3 ,

ẋ1(t) = α1u1(t)− δ1x1(t),

ẋ2(t) = α2u2(t)− δ2x2(t),

ẋ3(t) = α3u3(t)− δ3x3(t),

x1(t0) = x1
0,

x2(t0) = x2
0,

x3(t0) = x3
0 .

(4.14)

Using Maximum Principle derive the optimal controls depending on adjoint
variables

⎧⎪⎪⎨
⎪⎪⎩

u∗1(t) = 0.5ψ1(t)α1e
pt + 0.5c1(x2(t)+ x3(t)),

u∗2(t) = 0.5ψ2(t)α2e
pt + 0.5c2(x1(t)+ x3(t)),

u∗3(t) = 0.5ψ3(t)α3e
pt + 0.5c3(x1(t)+ x2(t)).

(4.15)

Denote again for every player λi(t) = eptψi(t), i ∈ {1, 2, 3}.
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Corresponding differential equations for adjoint variables in aggregate with
dynamic equations lead to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1(t) = (p + δ1)λ1(t)− 0.5c2α2λ2(t)− 0.5c3α3λ3(t)−
−0.5(c2

2 + c2
3)x1(t)− 0.5c2

3x2(t)− 0.5c2
2x3(t)− 2a1,

λ̇2(t) = (p + δ2)λ2(t)− 0.5c1α1λ1(t)− 0.5c3α3λ3(t)−
−0.5c2

1x3(t)− 0.5c2
3x1(t)− 0.5(c2

1 + c2
3)x2(t)− 2a2,

λ̇3(t) = (p + δ3)λ3(t)− 0.5c1α1λ1(t)− 0.5c2α2λ2(t)−
−0.5c2

1x2(t)− 0.5c2
2x1(t)− 0.5(c2

1 + c2
2)x3(t)− 2a3,

ẋ1(t) = 0.5α2
1λ1(t)− δ1x1(t)+ 0.5α1c1x2(t)+ 0.5α1c1x3(t),

ẋ2(t) = 0.5α2
2λ2(t)− δ2x2(t)+ 0.5α2c2x1(t)+ 0.5α2c2x3(t),

ẋ3(t) = 0.5α2
3λ3(t)− δ3x3(t)+ 0.5α3c3x1(t)+ 0.5α3c3x2(t).

(4.16)

Denote the system matrix Â

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 + p −0.5α2c2 −0.5α3c3 −0.5(c2
2 + c2

3) −0.5c2
3 −0.5c2

2

−0.5α1c1 δ2 + p −0.5α3c3 −0.5c2
3 −0.5(c2

1 + c2
3) −0.5c2

1

−0.5α1c1 −0.5α2c2 δ3 + p −0.5c2
2 −0.5c2

1 −0.5(c2
1 + c2

2)

0.5α2
1 0 0 −δ1 0.5α1c1 0.5α1c1

0 0.5α2
2 0 0.5α2c2 −δ2 0.5α2c2

0 0 0.5α2
3 0.5α3c3 0.5α3c3 −δ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As in the case of two player there is a computational complexity on the way
to analytical solution which depends on all the system parameters. However, the
approach is the same as for the case of two players.

4.4 Numerical Example

To show the existence of the feasible solution of such a system as (4.13), denote the
parameters of the model in the following way, so the analytical form of the decision
could take reasonable view

α1 = α2 = α = 1,

c1 = c2 = c = 1.
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Therefore, A matrix takes form

A =

⎛
⎜⎜⎝

δ1 + p −0.5 −0.5 0
−0.5 δ2 + p 0 −0.5
0.5 0 −δ1 0.5
0 0.5 0.5 −δ2

⎞
⎟⎟⎠

Eigen values for this matrix could be simplified to the following form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5

(
p −

√(√
(δ1 − δ2)2 + 1 − (δ1 + δ2 + p)

)2 − 1

)

0.5

(
p +

√(√
(δ1 − δ2)2 + 1 − (δ1 + δ2 + p)

)2 − 1

)

0.5

(
p −

√(√
(δ1 − δ2)2 + 1 + (δ1 + δ2 + p)

)2 − 1

)

0.5

(
p +

√(√
(δ1 − δ2)2 + 1 + (δ1 + δ2 + p)

)2 − 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

All the eigen values of A are different. However, there is an issue if they are on the
real surface of they are complex ones.

If the following conditions are held then the eigen values of A are real numbers
and the decision of the system exists on the real surface.

⎧⎪⎨
⎪⎩
(√

(δ1 − δ2)2 + 1 − (δ1 + δ2 + p)
)2 ≥ 1,(√

(δ1 − δ2)2 + 1 + (δ1 + δ2 + p)
)2 ≥ 1.

(4.17)

4.5 Conclusion

We proposed an analysis of the marketing network model in the form of differential
game. An approach is presented for the calculation of the α-characteristic function
of the game and illustration is given for the numerical example with particular values
of the number of model parameters.

Acknowledgments The work has been supported by Russian Scientific Foundation (grant N 17-
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Chapter 5
Penalty Method for Games of Constraints

Igor Konnov

Abstract We define a game problem for evaluation of composite system per-
formance under possible external interference and in the presence of protection
resources. The guaranteed joint system side decision is suggested to be found by
an inexact penalty method. This enables one to essentially simplify the solution
process in comparison with finding worst case strategies in the custom zero-sum
game.

Keywords Game of constraints · Evaluation of system performance · Zero-sum
games · Inexact penalty method

5.1 Introduction

We first describe a game problem for evaluation of composite system performance in
the case where capacities of its subsystems may be changed by some influence from
interference/protection sides. The problem somewhat extends those suggested in
[1, 2]. We suppose that the system contains m subsystems and can carry out various
works (or produce various goods) by implementing n working technologies, so that
each technology is accomplished with some fixed collection of the subsystems at
proper levels of their capacities. Let Y ⊂ R

n denote the set of all the technology
levels profiles. Next, suppose that there are t points within the system where the
restriction activity is possible and s points within the system where the protection
activity is possible. These restriction and protection activities have certain impact
on subsystems’ capacity. More precisely, let V ⊂ R

t define the set of all the
possible restriction interference volume profiles and U ⊂ R

s define the set of all
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possible protection activity volume profiles. For a given pair (u, v) ∈ U × V and
a given technology levels profile y ∈ Y the capacity excess for the i-th subsystem
is determined as value of the function βi(y, u, v), i = 1, . . . ,m. Let the value of
a function f (y, u, v) determine the estimate of the system utility at the technology
levels profile y, protection activity volume u, and restriction activity volume v. This
estimate reflects utility of the corresponding works, proper protection costs, and
possible interference costs. For a given pair (u, v) ∈ U × V we can define the
feasible set

D(u, v) = {y ∈ Y | βi(y, u, v) ≤ 0, i = 1, . . . ,m}

and the following problem of performance evaluation for the whole system:

max
y∈D(u,v)

→ f (y, u, v). (5.1)

We denote by H(u, v) the optimal value of the goal function in (5.1) and define the
antagonistic “attack-defense” game with the utility function H and strategy sets U

and V .
We observe that most works devoted to investigations of “attack-defense” type

games involve the assumption that there is a simple formula for calculation of the
value of the utility function for any pair of strategies; see e.g. [3–6]. This assumption
seems rather restrictive for complex systems as above, where each calculation of
the value of the utility function requires a solution of rather complex optimization
problem (5.1). Hence, the streamlined way of finding a solution of the game above
becomes very difficult for implementation.

In [1], it was suggested to find first the guaranteed system performance with the
help of the non-smooth penalty function approach. A simplified formulation of the
optimal guaranteed system performance problem was suggested in [2]. It enables
one to apply custom penalty methods to the problem of the optimal guaranteed
system performance and to find solutions of the above game. In this work we
propose an inexact penalty method for the more general problem of the optimal
guaranteed system performance, which enables us to simplify the calculation of its
solutions essentially.

5.2 Guaranteed System Performance

We will utilize the following general assumptions.

(A1) Y , U and V are nonempty compact sets in Rn, Rs and R
t , respectively.

(A2) f : Y ×U×V → R and βi : Y ×U×V → R, i = 1, . . . ,m, are continuous
functions.
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The usual worst case protection strategy in the game can be found from the problem

max
u∈U

→ min
v∈V

H(u, v). (5.2)

Clearly, problem (5.2) is very difficult for direct solution in the general case. We
recall that the indicator function for a set Z is defined by

δ(z|Z) =
{

0, if z ∈ Z,

+∞, if z /∈ Z.

Then we can rewrite problem (5.2) equivalently as follows:

max
u∈U

→ min
v∈V

max
y∈Y

η(y, u, v), (5.3)

where

η(y, u, v) = f (y, u, v)− δ((y, u, v)|D̃),

D̃ = {(y, u, v) | βi(y, u, v) ≤ 0, i = 1, . . . ,m} .

Following [1], we treat the pair (y, u) as a joint protection strategy for the system
side and replace (5.3) with the guaranteed system performance problem:

max
(y,u)∈Y×U

→ min
v∈V

η(y, u, v). (5.4)

For the sake of brevity, we will set x = (y, u) ∈ R
n × R

s , X = Y × U , hence
we will write f (x, v) ≡ f (y, u, v), η(x, v) ≡ η(y, u, v), βi(x, v) ≡ βi(y, u, v),
etc. Therefore, we propose now to solve the zero-sum game with the utility function
η(x, v) and strategy sets X and V .

We now show that problem (5.4) can be simplified as follows:

max
x∈X

→ σ(x), (5.5)

where

σ(x) = μ(x)− δ(x|D), D = {x hi(x) ≤ 0, i = 1, . . . ,m} ,
μ(x) = min

v∈V
f (x, v), hi(x) = max

v∈V
βi(x, v), i = 1, . . . ,m.

Proposition 5.1 Suppose that assumptions (A1) and (A2) are fulfilled. Then prob-
lems (5.4) and (5.5) are equivalent.
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Proof It suffices to show that, for each x ∈ X we have

σ(x) = min
v∈V

η(x, v). (5.6)

In case x /∈ D we have δ(x|D) = +∞, hence σ(x) = −∞. Next, there exists an
index l and a point v′ ∈ V such that βl(x, v′) > 0, hence δ((x, v′)|D̃) = +∞ and
η(x, v′) = −∞. Then (5.6) holds.

In case x ∈ D we have δ(x|D) = 0 and σ(x) = μ(x). Also, we now have
δ((x, v)|D̃) = 0 for each v ∈ V , hence η(x, v) = f (x, v) for each v ∈ V . It
follows that

min
v∈V

η(x, v) = min
v∈V

f (x, v).

Then (5.6) also holds true. �
The above property extends that in [2, Proposition 2.1]. We observe that

problem (5.5) can be written in the standard optimization form:

max
x∈B

→ μ(x), (5.7)

where

B = {x ∈ X hi(x) ≤ 0, i = 1, . . . ,m} .

We say that the system is reliable if B �= ∅. We denote by μ∗ the optimal value
in (5.5) or (5.7). This means that μ∗ = −∞ if B = ∅, hence μ∗ > −∞ for reliable
systems. Therefore, we can find the basic protection strategy from this optimization
problem. We observe that a problem similar to (5.7) was used in [7, Chapter IV] for
evaluation of the guaranteed system survivability with applications in energy sector.
Besides, similar formulations were used for obtaining the so-called robust solutions
of optimization problems; see e.g. [8, 9].

5.3 Descent Method for Auxiliary Problems

We suggest to solve the above problem with the help of an inexact penalty method.
In order to substantiate the method we have to specialize the basic assumptions.

(B1) Y , U and V are nonempty, convex and compact sets in R
n, R

s and R
t ,

respectively.
(B2) f : Y×U×V → R is a continuous function, which is concave in the variables

y and u, βi : Y ×U ×V → R, i = 1, . . . ,m, are continuous functions, which
are convex in the variables y and u.
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Then conditions (A1) and (A2) are fulfilled, (5.2) and (5.7) are convex opti-
mization problems. For a point h ∈ R

m we denote by [h]+ its projection onto the
non-negative orthant

R
m+ = {

v ∈ R
m | vi ≥ 0 i = 1, . . . ,m

}
.

For the sake of simplicity, we take the most popular quadratic penalty function for
the set B defined by

P(x) = ‖[h(x)]+‖2, h(x) = (h1(x), . . . , hm(x))�. (5.8)

Then the original problem (5.5) (or (5.7)) is replaced by a sequence of auxiliary
penalized problems of the form

max
x∈X

→ Ψτ (x), (5.9)

where

Ψτ (x) = μ(x)− 0.5τP (x), τ > 0. (5.10)

We intend to find only approximate solutions of problem (5.8)–(5.10) with an
iterative method without line-search, which is based on those suggested in [10, 11].
It follows from Proposition 5 in [11] that problem (5.8)–(5.10) is now equivalent to
the mixed variational inequality (MVI for short): Find a point x(τ) ∈ X such that

μ(x(τ))− μ(x̃)+ 〈[τh(x(τ ))]+, h(x̃)− h(x(τ ))〉 ≥ 0 ∀x̃ ∈ X. (5.11)

Let us fix τ > 0 and define the gap function

ϕτ (x) = max
x̃∈X

Φτ (x, x̃) = Φτ (x, x̃(x)),

where

Φτ (x, x̃) = μ(x̃)− μ(x)+ 〈[τh(x)]+, h(x)− h(x̃)〉 − 0.5 ‖x − x̃‖2

at any point x. Under the assumptions made the point x̃(x) is defined uniquely. This
point is also a solution of the optimization problem

max
x̃∈X

→
{
μ(x̃)− 〈[τh(x)]+, h(x̃)〉 − 0.5‖x̃ − x‖2

}
. (5.12)

Hence, we can define the single-valued mapping x �→ x̃(x). We give now its
basic properties as proper adjustment of those in [11, Lemma 3] with respect to
problem (5.8)–(5.10).

Lemma 5.1 Let conditions (B1) and (B2) be satisfied. Then the following state-
ments are true.
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(a) The mapping x �→ x̃(x) is continuous on the set X.
(b) At any point x ∈ X the inequality holds

Ψ ′
τ (x; x̃(x)− x) ≥ ‖x̃(x)− x‖2.

(c) The set of fixed points of the mapping x �→ x̃(x) on X coincides with the set of
solutions of problem (5.8)–(5.10).

Now we can apply an adaptive composite step method without line-search based
on the general scheme (SBM) in [10] for problem (5.8)–(5.10).

Method (ACS)

Step 0: Choose a point z0 ∈ X, a number θ ∈ (0, 1) and a sequence {αl} → 0,
αl ∈ (0, 1). Set i = 0, l = 0, choose a number λ0 ∈ (0, α0].

Step 1: Take the point z̃i = x̃(zi ). If z̃i = zi , stop. Otherwise set di = z̃i − zi and
zi+1 = zi + λid

i . If

Ψτ (z
i+1) ≥ Ψτ (z

i)+ θλi‖di‖2,

take λi+1 ∈ [λi, αl], set i = i + 1 and go to Step 1.
Step 2: Set λ′i+1 = min{λi, αl+1}, l = l + 1, take λi+1 ∈ (0, λ′i+1], set i = i + 1

and go to Step 1.

Unlike the usual descent methods, the direction finding procedure of (ACS) is
based on MVI (5.10), rather than the initial problem (5.9), although its descent
condition involves the auxiliary function Ψτ . Besides, (ACS) does not involve any
line-search.

Due to Lemma 5.1, termination of (ACS) yields a solution of problem (5.8)–
(5.10). Hence, we will consider only the case where the sequence {zi} is infinite.
Convergence properties of (ACS) are obtained directly from Lemma 5.1 and
Theorem 3.1 in [10].

Proposition 5.2 Let assumptions (B1) and (B2) be fulfilled. Then all the limit points
of the sequence {zi} are solutions of problem (5.8)–(5.10), besides, we have

lim
i→∞Ψτ (z

i) = Ψ ∗
τ ,

where Ψ ∗
τ = max{Ψτ (x) | x ∈ X}.

We intend to find an approximate solution of problem (5.8)–(5.10) in a finite
number of iterations and need additional properties of the function ϕτ . First we note
that by definition ϕτ (x) ≥ 0 for any x ∈ X. Next, due to Lemma 5.1, the function
ϕτ is continuous on the set X. It follows from Lemma 4 in [11] that the following
relations are equivalent:

ϕτ (x) = 0 and x = x̃(x).
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We can now conclude from Lemma 5.1(c) that the optimization problem

min
x∈X

→ ϕτ (x)

is equivalent to problem (5.8)–(5.10) and to MVI (5.11). Therefore, the value ϕτ (x)

gives an error estimate for these problems at x ∈ X and Proposition 5.2 now implies

lim
i→∞ ϕτ (z

i) = 0.

This property enables us to attain any approximation with respect to the gap
function.

Corollary 5.1 Let all the conditions of Proposition 5.2 be satisfied. Then, for any
number ε > 0 there exists an iteration number i = i(ε) of Method (ACS) such that
ϕτ (z

i) ≤ ε.

We now give additional error estimates for the gap function from [11, Lemma 4
and Proposition 6].

Proposition 5.3 Let assumptions (B1) and (B2) be fulfilled. Then, for any point
∈ X, the following inequalities hold:

ϕτ (x) ≥ 0.5‖x − x̃(x)‖2 (5.13)

and

Ψτ (x)− Ψτ (x̃)+ 〈x̃(x)− x, x̃ − x〉 ≥ −ϕτ (x)+ 0.5 ‖x − x̃(x)‖2 ∀x̃ ∈ X.

(5.14)

5.4 Inexact Penalty Method

We now define the optimization problem:

max
x∈B ′ → μ(x), (5.15)

where

B ′ = {
x ∈ X | P(x) = P ∗} , P ∗ = min

x∈X
P(x),

and set

μ′ = max
x∈B ′ μ(x).
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From the definitions it follows that μ′ > −∞. Besides, μ′ = μ∗ if B �= ∅ since
P ∗ = 0. Unlike (5.7), formulation (5.15), (5.8) can be used even if the system is
non-reliable. It enables one to reveal “bottle necks” in the system structure whose
protection should be strengthened.

We now describe the two-level implementable penalty method, which uses
approximate solutions of problems (5.8)–(5.10) based on the gap function ϕτ .

Method (PCS) Choose a point x0 ∈ X and sequences of positive numbers {εk},
{τk}.

At the k-th stage, k = 1, 2, . . ., we have a point xk−1 ∈ X and numbers εk , τk .
Applying Method (ACS) to problem (5.8)–(5.10) with the starting point z0 = xk−1

and τ = τk , we obtain the point z̃ = zi such that

ϕτk (z̃) ≤ εk, (5.16)

and set xk = z̃.

Theorem 5.1 Let assumptions (B1) and (B2) be fulfilled and let the parameters
{εk} and {τk} satisfy the conditions:

{εk} ↘ 0, {τk} ↗ +∞. (5.17)

Then the following assertions are true.

(a) The number of iterations at each stage of Method (PCS) is finite.
(b) The sequence {zl} generated by Method (PCS) has limit points and all these

points are solutions to problem (5.15), besides,

lim
k→∞μ(xk) = μ′. (5.18)

Proof Assertion (a) follows from Corollary 5.1. Since the set X is compact, the
sequence {xk} is bounded, hence it has limit points. For brevity, denote by x̄k =
x̃(xk) the solution of problem (5.12) at τ = τk , x = xk . Now from (5.14) it follows
that

Ψτk (x
k)− Ψτk (x̃)+ 〈x̄k − xk, x̃ − xk〉 ≥ −ϕτk (x

k) ∀x̃ ∈ X.

Taking into account (5.13) and (5.16) we obtain

Ψτk (x
k)− Ψτk (x̃)+√

2εk‖x̃ − xk‖ ≥ −εk ∀x̃ ∈ X. (5.19)

Setting x̃ = x∗ ∈ B ′ in this inequality and using (5.17) give

0 ≤ P(xk) ≤ P(x∗)+ 2[μ(xk)− μ(x∗)+ εk +
√

2εk‖x̃ − xk‖]/τk → P ∗
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as k →∞. If x̄ is an arbitrary limit point of {xk}, then x̄ ∈ B ′. Next, relation (5.19)
also gives

μ(xk) ≥ μ(x∗)− εk −
√

2εk‖x∗ − xk‖ + 0.5τk[P(xk)− P ∗]
≥ μ(x∗)− εk −

√
2εk‖x∗ − xk‖,

hence μ(x̄) = μ′. It follows that (5.18) holds. �
We notice that the case P ∗ = 0 corresponds to the usual penalty method. Then

relation (5.18) can be strengthened. In fact, setting x̃ in (5.19) to be a solution x(τk)

of (5.8)–(5.10) and taking a point x∗ ∈ B ′ will yield

μ(xk) ≥ Ψτk (x
k) ≥ Ψτk (x(τk))− εk −

√
2εk‖x(τk)− xk‖

= Ψ ∗
τk
− εk −

√
2εk‖x(τk)− xk‖ ≥ Ψτk (x

∗)− εk −
√

2εk‖x(τk)− xk‖
= μ∗ − εk −

√
2εk‖x(τk)− xk‖,

hence

lim
k→∞μ(xk) = lim

k→∞Ψτk (x
k) = lim

k→∞Ψ ∗
τk
= μ∗.

5.5 Some Application Issues

After finding a joint protection strategy x∗ = (y∗, u∗) for the system side from the
guaranteed system performance problem (5.5) one can calculate solution strategies
of the interference side. These strategies appear to be mixed; see [2]. Next, since the
interference side may have incomplete and inexact information about the system, its
real strategy may differ from the optimal one. Hence, the protection (system) side
may take the strategy (y∗, u∗) as a basis, but change it properly after the strategy
deviations of the interference side.

Let us now consider the custom approach based on the antagonistic “attack-
defense” game with the utility function H and strategy sets U and V . Then each
calculation of the value of the utility function will require a solution of optimization
problem (5.1). Moreover, the utility function H(u, v) does not possess the concavity-
convexity property even under additional assumptions, hence solution of this game
is very difficult especially for high-dimensional problems.

In order to solve problem (5.8)–(5.10) we can in principle apply some other
suitable convex optimization method instead of (ACS); see e.g. [12, 13]. Following
[11], we can also apply a similar method with line-search. We observe that both
(ACS) and that method solve the optimization problem (5.12) at each iteration for
finding the point x̃(x) at x. If we add the convexity assumption for the functions
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f and βi , i = 1, . . . ,m, in the variable v, then the calculations of values of the
functions μ and hi , i = 1, . . . ,m, also reduce to convex optimization problems.

In order to illustrate some preferences of the proposed method we describe
applications to special cases of problem (5.1).

Example 5.1 We take the special case where the functions f and βi are affine in
y. More precisely, we are given the parametric linear programming problem of the
form:

min →
n∑

j=1

cjyj

subject to

n∑
j=1

aij yj ≤ b̃i(u, v), i = 1, . . . ,m;

yj ≥ 0, j = 1, . . . , n;
u ∈ U, v ∈ V ;

or briefly,

max → {〈c, y〉 | Ay ≤ b̃(u, v), y ≥ 0}, u ∈ U, v ∈ V, (5.20)

where A is an m× n matrix, c, y ∈ R
n, b̃(u, v) ∈ R

m. This case corresponds to the
linear working technology. Hence, cj is the system utility per unit level of the j -th
working technology, aij is the loading level of the i-th subsystem per unit level of
the j -th working technology, whereas b̃i(u, v) is the maximal capacity of the i-th
subsystem at the activity profile (u, v). Here the system utility does not depend on
both restriction and protection activity. We also suppose that U and V are nonempty
convex and compact sets in R

s and R
t , respectively, and that b̃i , i = 1, . . . ,m, are

continuous functions, which are convex in v and concave in u.
First we take the custom antagonistic game approach. Then due to (5.20) we

define its utility function

H(u, v) = max{〈c, y〉 | Ay ≤ b̃(u, v), y ≥ 0}

and strategy sets U and V . We can show that H(u, v) is concave in u under the
above assumptions. In fact, fix any v ∈ V , take arbitrary points u′, u′′ ∈ U and
denote by y ′ and y ′′ the corresponding solutions of the inner problem (5.20), i.e.
〈c, y ′〉 = H(u′, v) and 〈c, y ′′〉 = H(u′′, v). Choose an arbitrary number λ ∈ (0, 1)

and set u(λ) = λu′ + (1 − λ)u′′ and y(λ) = λy ′ + (1 − λ)y ′′. Then y(λ) ≥ 0 and
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due to the concavity of b̃(·, v) we have

b̃(u(λ), v) ≥ λb̃(u′, v) + (1 − λ)b̃(u′′, v) ≥ Ay(λ),

i.e. y(λ) is a feasible point in (5.20) at (u(λ), v). It follows that

H(u(λ), v) ≥ 〈c, y(λ)〉 = λH(u′, v)+ (1 − λ)H(u′′, v),

hence, H(·, v) in concave. However, H(·, v) is not convex in general. Even if b̃(u, ·)
is affine we can only prove as above that H(u, ·) is concave. Similarly, if b̃ is jointly
concave we can prove that so is H . Therefore, the utility function H(u, v) is not
concave-convex, hence solution of the antagonistic game is very difficult.

Next we take the proposed penalty approach. Set bi(u) = min
v∈V

b̃i(u, v) for

i = 1, . . . ,m. Then the guaranteed system performance problem (5.7) is written
as follows:

max → {〈c, y〉 | Ay ≤ b(u), y ≥ 0, u ∈ U},

it is clearly a convex optimization problem. It is replaced by a sequence of auxiliary
penalized problems of the form

max
y∈Rn+,u∈U

→ {〈c, y〉 − 0.5τ‖[Ay − b(u)]+‖2};

cf. (5.8)–(5.10). Each penalized problem is solved approximately with Method
(ACS). The main part of this method consists of finding the value of the single-
valued mapping x �→ x̃(x) at x = (y, u), where x stands for the current iterate. In
other words, we have to solve the auxiliary optimization problem (5.12), which is
now written as follows:

max
ỹ∈Rn+,ũ∈U

→ {〈c, ỹ〉 − 〈τ [Ay − b(u)]+, Aỹ − b(ũ)〉 − 0.5(‖ỹ − y‖2 + ‖ũ− u‖2)}.

Clearly, it can be solved separately in each vector variable, i.e. it reduces to the
independent optimization problems:

max
ỹ∈Rn+

→ {〈c, ỹ〉 − 〈τ [Ay − b(u)]+, Aỹ〉 − 0.5‖ỹ − y‖2} (5.21)

and

max
ũ∈U

→ {〈τ [Ay − b(u)]+, b(ũ)〉 − 0.5‖ũ− u‖2}. (5.22)

Since the pair (y, u) is fixed, problem (5.21) decomposes into n simple independent
one-dimensional quadratic optimization problems, their solutions are found by
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an explicit formula. Problem (5.22) has a unique solution, its calculation can be
simplified after further specialization of the set U and functions bi , i = 1, . . . ,m.
The other parts of Method (PCS) can be implemented easily.

Example 5.2 We now take the example of an optimal flow distribution problem in
computer and telecommunication data transmission networks, which was described
in [1] and is based on the network flow distribution model from [14].

This model describes a network that contains m transmission links (arcs) and
accomplishes some submitted data transmission requirements from n selected pairs
of origin-destination vertices within a fixed time period. Denote by yj and dj the
current and maximal value of data transmission for pair demand j , respectively,
and by ci the capacity of link i, which depends on network protection-interference
profiles (u, v) ∈ U × V , i.e. ci = ci(u, v). Each pair demand is associated with
a unique data transmission path, hence each link i is associated uniquely with the
set N(i) of pairs of origin-destination vertices, whose transmission paths contain
this link. For each pair demand j we denote by μj(yj ) the utility value at the data
transmission volume yj . Then we can write the parametric utility maximization
problem as follows:

max → μ(y) =
n∑

j=1

μj(yj )

subject to

∑
j∈N(i)

yj ≤ ci(u, v), i = 1, . . . ,m;

0 ≤ yj ≤ dj , j = 1, . . . , n;
u ∈ U, v ∈ V.

If the functions μj(yj ) are concave, this is a parametric convex optimization
problem. The sets U,V of protection-interference activity profiles are usually
determined as polyhedra, for instance, we take

U =
{

u ∈ R
s 0 ≤ ui ≤ αi, i = 1, . . . , s,

s∑
i=1

ui ≤ C′
}

,

V =
⎧⎨
⎩v ∈ R

t 0 ≤ vj ≤ βj , j = 1, . . . , t,

t∑
j=1

vj ≤ C′′
⎫⎬
⎭ .

In addition we suppose that the functions ci(u, v) are concave-convex. Then as
above we can show that the custom antagonistic game approach leads to the utility
function H(u, v), which is concave in u under the above assumptions, but is not
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convex in v in general. Therefore, solution of this antagonistic game will be very
difficult.

In [1], the guaranteed system performance problem was replaced by a sequence
of general convex non-smooth optimization problems. Now we describe application
of the proposed method. Set d = (d1, . . . , d1)

� and bi(u) = min
v∈V

ci(u, v) for

i = 1, . . . ,m. Then the guaranteed system performance problem (5.7) is written
as follows:

max →
⎧⎨
⎩μ(y)

∑
j∈N(i)

yj ≤ bi(u), i = 1, . . . ,m, 0 ≤ x ≤ d

⎫⎬
⎭ .

It is clearly a convex optimization problem. We find its solution with taking a
sequence of auxiliary penalized problems of the form

max
y∈[0,d],u∈U

→ {μ(y)− 0.5τP (y, u)}, (5.23)

where

P(y, u) =
m∑

i=1

⎡
⎣ ∑

j∈N(i)

yj − bi(u)

⎤
⎦

2

+
;

cf. (5.8)–(5.10). Each penalized problem (5.23) is solved approximately with
Method (ACS). The main part of this method consists of finding the point x̃(x) at
x = (y, u), where x stands for the current iterate. It is a solution of problem (5.12),
which is now written as follows:

max
ỹ∈[0,d],ũ∈U

→

⎧⎪⎨
⎪⎩

μ(ỹ) −τ
m∑

i=1

[ ∑
j∈N(i)

yj − bi(u)

]
+

( ∑
j∈N(i)

ỹj − bi(ũ)

)

−0.5(‖ỹ − y‖2 + ‖ũ− u‖2)

⎫⎪⎬
⎪⎭ .

Again, this problem reduces to the independent convex optimization problems:

max
ỹ∈[0,d]

→
⎧⎨
⎩μ(ỹ)− τ

m∑
i=1

⎡
⎣ ∑

j∈N(i)

yj − bi(u)

⎤
⎦
+

∑
j∈N(i)

ỹj − 0.5‖ỹ − y‖2

⎫⎬
⎭

and

min
ũ∈U

→
⎧⎨
⎩0.5‖ũ− u‖2 − τ

m∑
i=1

⎡
⎣ ∑

j∈N(i)

yj − bi(u)

⎤
⎦
+

bi(ũ)

⎫⎬
⎭ .
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Both the problems admit further decomposition with easy solution. Hence, this
method seems more efficient than that in [1].

Therefore, the proposed method admits a decomposition technique which simpli-
fies the implementation essentially.

5.6 Conclusions

We considered a general problem of performance evaluation for some composite
system involving subsystems. This system can produce several kinds of commodi-
ties having different load volumes, so that each kind of commodity (or each kind
of work) may be accomplished with some collections of the subsystems. The
subsystems capacity may be changed under influence of some activity both for
restriction of their performance and for protection from this restriction. In such a
way, we obtained an “attack-defense” type antagonistic game where calculation of
the value of the utility function requires a solution of the optimization problem.

We proposed to modify the formulation of the above game problem in order to
evaluate guaranteed system performance in the general case. The problem suggested
to be solved by an inexact penalty optimization method. This enables one to
essentially simplify the solution process in comparison with finding worst case
strategies in the custom zero-sum game. An example of applications that shows
the efficiency of the proposed approach was also described.
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Chapter 6
Adjustment Dynamics in Network Games
with Stochastic Parameters

Alexei Korolev

Abstract In this paper we introduce stochastic parameters into the network game
model with production and knowledge externalities. This model was proposed
by V. Matveenko and A. Korolev as a generalization of the two-period Romer
model. Agents differ in their productivities which have deterministic and stochastic
(Wiener) components. We study the dynamics of a single agent and the dynamics
of a dyad where two agents are aggregated. We derive explicit expressions for
the dynamics of a single agent and dyad dynamics in the form of Brownian
random processes, and qualitatively analyze the solutions of stochastic equations
and systems of stochastic equations.

Keywords Network games · Differential games · Brownian motion · Stochastic
differential equations · Ito’s lemma · Heterogeneous agents · Productivity

6.1 Introduction

Recent decades have seen an increase in research on social networks, economics
of networks and games on networks (e.g. [2–8, 10]). Numerous theoretical results
in these areas are widely used in the analysis of real-life networks such as the
Internet, social interactions, foreign relations, etc. However, the existing literature
pays much less attention to production networks. In [11] a model with production
and knowledge externalities with two time periods is considered which generalizes
the Romer model [14], where essentially a special case of the complete network
is being examined. Agents are located in the nodes of a network of arbitrary
form and derive utility from consumption in both periods. In the first period
an agent receives an endowment which can be allocated between investment in
knowledge and consumption. The consumption in the second period is determined
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by production, which depends on her own investment and investments made by her
closest neighbors in the network.

In [11] the concept of Nash equilibrium with externalities is introduced. As in the
usual Nash equilibrium, agents maximize their gain (utility) and none of the agents
find it beneficial to deviate if others do not change their behavior. However, this
model assumes that the agent cannot change its behavior arbitrarily, as the concept
of Nash equilibrium implies, but to a certain extent is bounded by the equilibrium
situation in the game. Namely, in [11] it is assumed that the agent makes a decision
taking into account a certain environment formed by her and her neighbors in the
network, and although she affects the environment, it is taken as exogenously given
when making the decision.

However, [11] considers only networks with homogeneous agents. In [12] a gen-
eralization of the model [11] is studied where the productivities of the agents may be
different. The dynamics of networks in discrete time is introduced and the concept
of dynamic stability of equilibria is defined. The authors characterize equilibrium
behavior of the agents and provide conditions under which in equilibrium agent is
passive (does not invest), active (invests part of the income), hyperactive (invests all
income). Conditions for the existence of internal equilibrium (i.e., equilibrium with
active agents) are established for several networks, and a theorem about comparison
of agents’ utilities is proved.

Also, [12] considers dynamics in discrete time which occur when networks
are combined. In [13] the dynamics of networks with production and knowledge
externalities is studied, and the concept of dynamic stability of equilibria is defined
in continuous time framework. However, in all of the above papers, the network
parameters were deterministic.

The contribution of this paper is in describing transition dynamics in the
stochastic case where agent productivity has both deterministic and Brownian
components. We study the behavior of a single agent and of a dyad. It turns out
that the threshold values of parameters under which agent’s equilibrium behavior
changes in the stochastic case are shifted compared to the deterministic case.

The rest of the paper is organized as follows. Section 6.2 describes the main
model and reviews some of the previous results. We define Nash equilibrium in
the network with production and knowledge externalities, define dynamic stability
of equilibrium and characterize the equilibrium behavior of agents. Section 6.3
considers the dynamics of a single agent in deterministic and stochastic cases,
i.e., when agent has constant productivity and when her productivity consists of
two terms (deterministic and a stochastic processes). We derive explicit expression
for the dynamics of a single agent in the form of Brownian random processes
(see Proposition 6.2) and provide a qualitative analysis of the solution to the
stochastic equation (see Corollary 6.2). Section 6.4 compares the dynamics in the
dyad for deterministic and stochastic cases. We derive explicit expressions for
the dyad dynamics in the form of Brownian random processes (see Theorem 6.3)
and provide a qualitative analysis of the solutions of stochastic equations systems
(see Corollary 6.3). Section 6.5 concludes and discusses possible topics for further
research.
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6.2 Deterministic Model and Review of Previous Results

We begin by describing our main model and reviewing some of its properties,
since our new model differs from the original model in the stochastic nature of
the parameters. Our main model, formulated in [11], is deterministic and is the
generalization of the Romer model [14] for networks.

Consider a network (undirected graph) with n nodes, i = 1, 2, . . . , n; each node
represents an agent. In period 1, each agent i has initial endowment of good, ε, and
can use it for consumption in period 1, ci

1, and for investment into knowledge, ki .
Knowledge is used in the production of good for consumption ci

2 in the period 2:

ci
1 + ki = ε, i = 1, 2, . . . , n.

Preferences of agent i are described by quadratic utility function:

Ui

(
ci

1, c
i
2

)
= ci

1

(
ε − aci

1

)
+ bic

i
2,

where a is a satiation coefficient, bi > 0 characterizes the value of comfort and
health in period 2 compared to consumption in period 1. It is assumed that ci

1 ∈
[0, ε], the utility increases in ci

1, and is concave in ci
1 (i.e., the marginal utility of

consumption decreases). These assumptions hold in particular when 0 < a < 1/2.
By environment of agent i we mean the sum of investments by the agent herself

and her neighbors:

Ki = ki + K̃i , K̃i =
∑

j∈N(i)

kj ,

where N (i) is the set of neighboring nodes of node i, K̃i we will call the
pure externality. Production in node i is described by production function:

F (ki,Ki) = BikiKi, Bi > 0

which depends on the state of knowledge in node i, ki , and on environment, Ki ,
while Bi is a technological coefficient.

We will denote the product biBi by Ai and assume that a < Ai . Since increase in
any of parameters bi, Bi leads to increase of the second period consumption, we will
call Ai “productivity”. We will assume that Ai �= 2a, i = 1, 2, . . . , n. If Ai > 2a,
we will say that agent i is productive, and if Ai < 2a, we will say that agent i is
unproductive.

There are three possible types of agent’s behavior: agent i is called passive if
she makes no investment, ki = 0 (i.e. consumes the whole endowment in period 1);
active if 0 < ki < ε; hyperactive if she makes maximally possible investment ε

(i.e. consumes nothing in period 1).
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Consider the following game. Players are agents i = 1, 2, . . . , n. Possible actions
(strategies) of player i are the values of investment ki from the interval [0, ε]. Nash

equilibrium with externalities (hereinafter referred to as equilibrium) is a
profile of knowledge levels (investments)

(
k∗1, k∗2 , . . . , k∗n

)
, such that each k∗i is a

solution of the following problem P (Ki) where player i maximizes her utility given
environment Ki :

Ui

(
ci

1, c
i
2

)
−→

ci
1,c

i
2,ki

max

⎧⎨
⎩

ci
1 ≤ ε − ki,

ci
2 ≤ F (ki,Ki) ,

ci
1 ≥ 0, ci

2 ≥ 0, ki ≥ 0,

and the environment Ki is defined by the profile
(
k∗1 , k∗2 , . . . , k∗n

)
:

Ki = k∗i +
∑

j∈N(i)

k∗j

The first two constraints in problem P (Ki) are evidently binding in the
solution. Substituting the equalities into the objective function, we obtain a
payoff function, or indirect utility f unction:

Vi (ki,Ki) = Ui

(
ε − ki, Fi (ki,Ki)

) = (ε − ki)
(
ε − a (ε −Ki)

)+ AikiKi =

= ε2 (1 − a)− kiε (1 − 2a)− ak2
i + AikiKi . (6.1)

If all players’ solutions are internal (0 < ki < ε), i.e. all players are active, the
equilibrium is called inner . Otherwise it is called corner equilibrium. A corner
equilibrium in which the level of knowledge at each node is 0 or ε, i.e. all players
are passive or hyperactive, we will call purely corner equilibrium.

Clearly, the inner equilibrium (if it exists for given values of parameters) is
defined by the system

D1Vi (ki,Ki) = 0, i = 1, 2, . . . , n, (6.2)

or according to (6.1) it is

D1Vi (ki,Ki) = ε (2a − 1)− 2aki + AiKi = 0, i = 1, 2, . . . , n. (6.3)

Let us introduce the following notations: Ã—diagonal matrix, which has num-
bers A1, A2, . . . , An on the main diagonal, I—unit n × n matrix, M—network
adjacency matrix, i.e. Mij = Mji = 1, if there is the edge connecting nodes i and
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j , and Mij = Mji = 0 otherwise. It is assumed that Mii = 0 for all i = 1, 2, . . . , n.
The system of Eqs. (6.3) takes the form:

(
Ã− 2aI

)
k + ÃM k = ε̄, (6.4)

where k = (k1, k2, . . . , kn)
T , ε̄ = (

ε (1 − 2a) , ε (1 − 2a) , . . . , ε (1 − 2a)
)T .

Theorem 6.1 ([12], Theorem 1.1) The system of Eqs. (6.4) for a complete network
has a unique solution.

Thus, the system of Eqs. (6.3) for a complete network always has a unique solution
ks , whose components we will call the stationary values of the investment. In the
inner equilibrium k∗i = ks

i , i = 1, 2, . . . , n.
The following proposition plays a central role in the analysis of equilibria in

deterministic version of model.

Proposition 6.1 ([12], Lemmas 2.1, 2.2 and Corollary 2.1) In equilibrium, the
agent i is passive if and only if

Ki ≤ ε (1 − 2a)

Ai

;

the agent i is active if and only if

ε (1 − 2a)

Ai

< Ki <
ε

Ai

,

or, equivalently,

ki = ε(2a − 1)+ AiK̃i

2a − Ai

;

the agent i is hyperactive if and only if

Ki ≥ ε

Ai

.

In [12] the adjustment dynamics in discrete time is introduced, which begins
after a small deviation of the agents’ strategies from the equilibrium, or when the
networks which were in equilibrium, are combined together. In [13] adjustment
dynamics is studied in continuous time.

Definition 6.1 ([13], Definition 5) In the adjustment process, each agent maxi-
mizes her utility by choosing a level of investment; when she makes her decision,
she treats her environment as exogenously given. Therefore, if ki(t0) = 0, where t0
is an arbitrary moment, and D1Vi(ki,Ki)|ki=0 ≤ 0, then ki(t) = 0 for any t > t0,
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and if ki(t0) = ε and D1Vi (ki,Ki) |ki=ε ≥ 0, then ki(t) = ε for any t > t0; in all
other cases, ki(t) solves the differential equation:

k̇i = Ai

2a
K̃i + Ai − 2a

2a
ki − ε(1 − 2a)

2a
.

Definition 6.2 ([13], Definition 6) The equilibrium is called dynamically stable

if, after a small deviation of one of the agents from the initial equilibrium, the
adjustment dynamics returns the network back to the initial equilibrium. Otherwise,
the equilibrium is called dynamically unstable.

The natural generalization of the deterministic model described above is to
introduce stochastic parameters. The assumption that agents’ productivities may
have stochastic components seems quite realistic, while the endowments of agents
are constants for this concept.

In new version of the model, the productivity of each agent has not only
deterministic A, but also Brownian (Wiener) component αWt (W0 = 0). Thus, the
total productivity of agent i is now equal to Ai+αWi

t . All other assumptions remain
the same as in our main deterministic model.

In this paper we lay the groundwork for the stochastic model by considering the
behavior of a single agent and dyad agents in the stochastic case.

6.3 The Stochastic Extension of Model for Single Agent

Consider first the dynamics of a single agent. We assume that the deterministic
component of her productivity A does not depend on time, and her initial investment
at time t = 0 is k(0) = k0. Then the dynamics of a single agent is described by the
following equation:

k̇ =
(

A+ αWt

2a
− 1

)
k − ε(1 − 2a)

2a
,

or in differential form,

dk =
(

A

2a
− 1

)
kdt + α

2a
kdWt − ε(1 − 2a)

2a
dt. (6.5)

Proposition 6.2 The dynamics of investments in knowledge of a single agent is

k(t) = eλt+μWt−μ2

2 t k0 − ε(1 − 2a)

2a

∫ t

0
eλ(t−τ )−μ2

2 (t−τ )+μ(Wt−Wτ )dτ.
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Proof Introducing the notation

λ = A

2a
− 1, μ = α

2a
, Ψt = −λt − μWt + 1

2
μ2t (6.6)

and multiplying equation (6.5) by eΨt , we get

eΨt dk = λkeΨt dt + μkeΨt dWt − ε(1 − 2a)

2a
eΨt dt. (6.7)

Note that by Ito’s lemma

deΨt = −λeΨt dt − μeΨt dWt + 1

2
μ2eΨt dt + 1

2
μ2eΨt dt = eΨt (−λdt − μdWt + μ2dt),

(6.8)

and therefore given (6.7) and (6.8):

d
(
keΨt

) = eΨt dk + kdeΨt + dkdeΨt =

= λkeΨt dt+μkeΨt dWt− ε(1 − 2a)

2a
eΨt dt+keΨt

(
−λdt − μdWt + μ2dt

)
−μ2keΨt dt =

= −ε(1 − 2a)

2a
eΨt dt.

So

k(t) = e−Ψt

(
k0 − ε(1 − 2a)

2a

∫ t

0
eΨτ dτ

)
=

= eλt+μWt−μ2

2 t k0 − ε(1 − 2a)

2a

∫ t

0
eλ(t−τ )−μ2

2 (t−τ )+μ(Wt−Wτ )dτ. (6.9)

�
Proposition 6.3 The mathematical expectation of geometric Brownian motion

without drift, i.e. eμWt , where W0 = 0, is equal to e
μ2

2 t .

Proof By Ito’s lemma

deμWt = μeμWt dWt + 1

2
μ2eμWt dt,
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or in finite form

eμWt = eμW0 + μ

∫ t

0
eμWs dWs + 1

2
μ2

∫ t

0
eμWs ds. (6.10)

Taking the mathematical expectation from both parts of (6.10) and taking into

account the property of Brownian processes E
[∫ t

0 eμWs dWs

]
= 0, we obtain

E
[
eμWt

]
= E

[
eμW0

]
+ 1

2
μ2

∫ t

0
E
[
eμWs

]
ds,

or

d

dt
E
[
eμWt

]
= 1

2
μ2E

[
eμWt

]
, E

[
eμW0

]
= 1.

Solving this differential equation, we find

E
[
eμWt

]
= e

μ2

2 t .

�
Remark 6.1 The mathematical expectation of the stochastic process k(t) according
to (6.9) is equal to

E [k(t)] = eλtk0 + ε(1 − 2a)

2a

∫ t

0
eλ(t−τ )d(t − τ ) = (

k0 − ks
)
e

A−2a
2a t + ks,

where

ks = ε(1 − 2a)

A− 2a

is the stationary value of the investment. Thus, the dynamics of the mathematical
expectation of the value of investments in the knowledge of a single agent coincides
with the dynamics of the value of her investments in knowledge in the deterministic
case, when α = 0, i.e.

k(t) = (
k0 − ks

)
e

A−2a
2a

t + ks. (6.11)

However, the boundaries of various scenarios of the agent’s behavior (and
the behavior itself) in the stochastic case are obviously shifted compared to the
deterministic case.
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Remark 6.2 In the deterministic case, among the two possible corner equilibria, the
equilibrium k = 0 is always possible and stable because, according to (6.3),

D1V (0, 0) = ε(2a − 1) < 0,

and it follows from Proposition 6.1 that the equilibrium k = ε is possible if A ≥ 1
and is stable if A > 1 since according to (6.3),

D1V (ε, ε) = ε(2a − 1)− 2aε + Aε = Aε − ε.

Inner equilibrium

k∗ = ks = ε(1− 2a)

A− 2a
,

in accordance with the Proposition 6.1 is possible if and only if 0 < ks < ε i.e.
when A > 2a, A > 1. The inner equilibrium is unstable, since the root of the
characteristic equation λ = (A− 2a)/2a > 0.

Corollary 6.1 In the deterministic case, the following cases take place.

(1) A < 2a < 1. Then ks < 0, λ < 0, and for any initial value of k0 ∈ [0, ε], we
have

lim
t→∞ k(t) = 0.

(2) 2a < A < 1. Then ks > ε, λ > 0, and for any initial value of k0 ∈ [0, ε], we
have

lim
t→∞ k(t) = 0.

(3) A = 1. Then ks = ε, λ > 0, and for any initial value of k0 ∈ [0, ε), we have

lim
t→∞ k(t) = 0,

and for the initial value k0 = ε, the agent remains in unstable equilibrium
k = ε, but after a small deviation she begins to decrease her investment and
converges to a stable equilibrium k = 0.

(4) A > 1 > 2a. Then ks ∈ (0, ε), λ > 0, and three cases are possible.
If k0 ∈ [0, ks), then

lim
t→∞ k(t) = 0.
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If k0 ∈ (ks, ε], then

lim
t→∞ k(t) = ε.

If k0 = ks then the agent remains in this unstable equilibrium k = ks , but after a
small deviation she will continue to move in the same direction and converge to one
of two stable equilibria, respectively, k = 0 or k = ε.

In the stochastic case, we will use the law of the iterated logarithm.

Theorem 6.2 ([9], The Law of the Iterated Logarithm) For a one-dimensional
Brownian motion Wt , the following equality holds:

lim
t→∞ sup

Wt√
2 t ln ln t

= 1 a.s.

We rewrite expression (6.9) taking into account (6.6) as follows:

k(t) = e
A−2a

2a
t+ α

2a
Wt− α2

8a2 t
(

k0 − ε(1 − 2a)

2a

∫ t

0
e
−A−2a

2a
τ− α

2a
Wτ+ α2

8a2 τ
dτ

)
.

(6.12)

To perform a qualitative analysis of the behavior of the solution, it is important to

know in the case A > 2a + α2

4a
whether the value of last integral term in the right

hand side of the Eq. (6.12) reaches the value k0 when t →∞.

Remark 6.3 Random density of

∫ ∞

0
e
−A−2a

2a
τ− α

2a
Wτ+ α2

8a2 τ
dτ

if A > 2a + α2

4a
according to [1] is

f (k) =
(

α2

8a2

)− 4a(A−2a)

α2 +1

Γ
(

4a(A−2a)

α2 − 1
) · exp

(
− 8a2

α2k

)

k
4a(A−2a)

α2

,

where Γ is the gamma function. Then the probability that

ε(1 − 2a)

2a
·
∫ ∞

0
e
−A−2a

2a
τ− α

2a
Wτ+ α2

8a2 τ
dτ
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does not reach k0 is equal to

P̂ =
(

α2

8a2

)− 4a(A−2a)

α2 +1

Γ
(

4a(A−2a)

α2 − 1
) ·

∫ 2ak0
e(1−2a)

0

exp
(
− 8a2

α2k

)

k
4a(A−2a)

α2

dk. (6.13)

Corollary 6.2 In the stochastic case, the following cases take place.

(1) A < 2a + α2

4a
. Then according to the law of the iterated logarithm we have

lim
t→∞ k(t) = 0 a.s.

(2) A = 2a + α2

4a
. Then the process k(t) will fluctuate between 0 and ε.

(3) A > 2a + α2

4a
. Then with probability P̂ (see (6.13)) we get

lim
t→∞ k(t) = ε

and with probability 1 − P̂ respectively

lim
t→∞ k(t) = 0.

6.4 The Stochastic Extension of Model for Dyad

Definition 6.3 A dyad is a network consisting of two nodes connected by an arc.

Suppose that two agents with different productivity and with initial values of
investment in knowledge k0

1 and k0
2 are aggregated into a dyad. The productivity of

each agent has both a constant and a random (Brownian) component. We assume
that changes in the productivity of dyad agents are caused by the same random
influences in this network, and the sizes of random components are proportional to
the constant components of productivities. In other words, the productivity of the
first agent is A1 + α1Wt , the productivity of the second agent is A2 + α2Wt , while

A1

A2
= α1

α2
. (6.14)

The dynamics in such a dyad is described by a system of stochastic equations

⎧⎨
⎩

k̇1 =
(

A1
2a
− 1

)
k1 + α1

2a
Wtk1 + A1

2a
k2 + α1

2a
Wtk2 − ε(1−2a)

2a
,

k̇2 = A2
2a

k1 + α2
2a

Wtk1 +
(

A2
2a
− 1

)
k2 + α2

2a
Wtk2 − ε(1−2a)

2a
,
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or, in differential form,

⎧⎨
⎩

dk1 =
(

A1
2a
− 1

)
k1dt + α1

2a
k1dWt + A1

2a
k2dt + α1

2a
k2dWt − ε(1−2a)

2a
dt,

dk2 = A2
2a

k1dt + α2
2a

k1dWt +
(

A2
2a
− 1

)
k2dt + α2

2a
k2dWt − ε(1−2a)

2a
dt.

(6.15)

The matrix notation of system (6.15) has the form

dk = Akdt + αkdW + Ēdt, (6.16)

where

dk =
(

dk1

dk2

)
, A =

( A1
2a
− 1 A1

2a
A2
2a

A2
2a
− 1

)
, k =

(
k1

k2

)
,

α =
( α1

2a
α1
2a

α2
2a

α2
2a

)
, Ē =

(
− ε(1−2a)

2a

− ε(1−2a)
2a

)
.

We first consider the deterministic case when α1 = α2 = 0.

Proposition 6.4 In the deterministic case, the dynamics of investments in knowl-
edge of dyad agents is given by

⎧⎪⎪⎨
⎪⎪⎩

k1 =
(

A2k
0
1−A1k

0
2

4Ā
− e(1−2a)(A1−A2)

8aĀ

)
e−t + A1

k̄0−D̄

Ā
e

(
Ā
a
−1

)
t +D1,

k2 = −
(

A2k
0
1−A1k

0
2

4Ā
− e(1−2a)(A1−A2)

8aĀ

)
e−t + A2

k̄0−D̄

Ā
e

(
Ā
a
−1

)
t +D2,

(6.17)

where D1 and D2 are determined by the expression (6.18)

D1 = ε(1 − 2a)

2a
· A1 − A2 + 2a

A1 + A2 − 2a
, D2 = ε(1 − 2a)

2a
· A2 − A1 + 2a

A1 + A2 − 2a
. (6.18)

The proof of this statement is in Appendix.

Theorem 6.3 In the stochastic case, the dynamics of investments in knowledge of
dyad agents is given by

k1(t) = ε(1 − 2a)(A1 − A2)

2a(A1 + A2)
+

[
A2k

0
1 − A1k

0
2

A1 + A2
+ ε(1 − 2a)(A2 − A1)

2a(A1 + A2)

]
e−t+

+
⎡
⎣A1(k

0
1 + k0

2)

A1 + A2
− A1ε(1 − 2a)

a(A1 + A2)

∫ t

0
e

(
− Ā

a + (α1+α2)2

8a2 +1

)
τ− α1+α2

2a Wτ

dτ

⎤
⎦×
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× e

(
Ā
a
− (α1+α2)2

8a2 −1
)
t+ α1+α2

2a
Wt

, (6.19)

k2(t) = ε(1 − 2a)(A2 − A1)

2a(A1 + A2)
+

[
A1k

0
2 − A2k

0
1

A1 + A2
+ ε(1 − 2a)(A1 − A2)

2a(A1 + A2)

]
e−t+

+
⎡
⎣A2(k

0
1 + k0

2)

A1 + A2
− A2ε(1 − 2a)

a(A1 + A2)

∫ t

0
e

(
− Ā

a
+ (α1+α2)2

8a2 +1
)
τ− α1+α2

2a
Wτ

dτ

⎤
⎦×

× e

(
Ā
a − (α1+α2)2

8a2 −1

)
t+ α1+α2

2a Wt

. (6.20)

The proof of this theorem is in Appendix.

Remark 6.4 Deterministic case solution

k(t) = eAtk0 + eAt

(∫ t

0
e−Aτdτ

)
Ē (6.21)

is obtained from (6.25) by putting α = 0. However, in the deterministic case, the
solution obtained by the Euler method is better suited to analyze the behavior of the
function k(t).

Remark 6.5 Note that we could obtain the same expression (6.17) which is
convenient for a qualitative analysis by substituting the expressions for S, S−1, etJ

in (6.21), i.e. calculating

(
k1(t)

k2(t)

)
= 1

A1 + A2

(
1 A1

−1 A2

)(
e−t 0

0 e

(
Ā
a −1

)
t

)(
A2 −A1

1 1

)
+

+ 1

A1 + A2

(
1 A1

−1 A2

)(
e−t 0

0 e

(
Ā
a −1

)
t

)(
A2 −A1

1 1

)(∫ t

0 e−τ dτ 0

0
∫ t

0 e

(
Ā
a −1

)
τ
dτ

)
×

×
(

A2 −A1

1 1

)(
− ε(1−2a)

2a

− ε(1−2a)
2a

)
. (6.22)

However, in the stochastic case, we had to use matrix exponentials and Ito’s lemma
to obtain expressions similar to (6.22). Moreover, we could not write the integrals
of the Wiener processes in the closed form.

All possible equilibria in the deterministic version of the model under considera-
tion are listed in [8].
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Proposition 6.5 ([8]) Let in deterministic dyad A1 > A2. Then there are 6
equilibria:

(1) equilibrium in which k1 = k2 = 0;
(2) equilibrium in which k1 = k2 = ε;
(3) equilibrium in which k1 = ε, 0 < k2 < ε;
(4) equilibrium in which 0 < k1 < ε, k2 = 0;
(5) equilibrium in which k1 = ε, k2 = 0;
(6) equilibrium in which both agents are active.

While equilibria 1, 2, 3, 5 are dynamically stable, equilibria 4 and 6 are unstable.

In the stochastic case, there are not so many equilibria. Equilibrium in this case
is a point in the phase space to which a (stochastic) transition process converges
as t tends to infinity. Thus, in our stochastic model, the very concept of unstable
equilibrium is senseless.

To perform a qualitative analysis of the behavior of the solution, it is important

to know in the case A1 + A2 > 2a + (α1+α2)2

4a
whether the values of the integral

terms in the right hand side of Eqs. (6.19) and (6.20) reach the values respectively
A1(k

0
1+k0

2 )

A1+A2
and

A2(k
0
1+k0

2 )

A1+A2
when t →∞, i.e. whether the random process

∫ t

0
e

(
− Ā

a
+ (α1+α2)2

8a2 +1
)
τ− α1+α2

2a
Wτ

dτ

reaches the value

2ak̄0

ε(1 − 2a)
= a(k0

1 + k0
2)

ε(1 − 2a)
.

Remark 6.6 Random density of

∫ ∞

0
e

(
− Ā

a + (α1+α2)2

8a2 +1

)
t− α1+α2

2a Wt

dt

if A1 + A2 > 2a + (α1+α2)2

4a
according to [1] is

f (k) =
(

(α1+α2)2

8a2

)− 4a(A1+A2−2a)

(α1+α2)2
+1

Γ
(

4a(A1+A2−2a)

(α1+α2)2 − 1
) ·

exp
(
− 8a2

(α1+α2)2k

)

k

4a(A1+A2−2a)

(α1+α2)2

.

Then the probability that

A1ε(1 − 2a)

a(A1 + A2)

∫ t

0
e

(
− Ā

a + (α1+α2)2

8a2 +1

)
τ− α1+α2

2a Wτ

dτ <
A1(k

0
1 + k0

2)

A1 + A2



6 Adjustment Dynamics in Network Games with Stochastic Parameters 79

which can be rewritten as

A2ε(1 − 2a)

a(A1 + A2)

∫ t

0
e

(
− Ā

a
+ (α1+α2)2

8a2 +1
)
τ− α1+α2

2a
Wτ

dτ <
A2(k

0
1 + k0

2)

A1 + A2

is equal to

P̃ =
(

(α1+α2)
2

8a2

)− 4a(A1+A2−2a)

(α1+α2)2
+1

Γ
(

4a(A1+A2−2a)

(α1+α2)
2 − 1

) ·
∫ 2ak̄0

ε(1−2a)

0

exp
(
− 8a2

(α1+α2)2k

)

k

4a(A1+A2−2a)

(α1+α2)2

dk. (6.23)

Corollary 6.3 In the stochastic case, the following cases take place.

(1) If A1 +A2 < 2a+ (α1+α2)2

4a
then according to the law of the iterated logarithm,

we have

lim
t→∞ k1(t) = 0 a.s.

lim
t→∞ k2(t) = 0 a.s.

(2) If A1 + A2 = 2a + (α1+α2)2

4a
then the processes k1(t) and k2(t) will fluctuate

between 0 and ε.
(3) If A1 + A2 > 2a + (α1+α2)

2

4a
then with probability P̃ (see (6.23)) we get

lim
t→∞ k1(t) = ε,

lim
t→∞ k2(t) = ε.

and with probability 1 − P̃ respectively

lim
t→∞ k1(t) = 0,

lim
t→∞ k2(t) = 0.

6.5 Conclusion

In this paper we develop and generalize the model proposed in [11, 12]. The
contribution of this paper is in describing transition dynamics in the stochastic
case where agent productivity has both deterministic and Brownian components.
Previously, the transition dynamics between dynamically stable equilibria in the
network were considered only in the deterministic case. It turns out that the
boundaries of various scenarios of the agent’s behavior (and the behavior itself)
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in the stochastic case are shifted compared to the deterministic case. We derive
the explicit expressions for the dynamics of a single agent and dyad agents in the
form of Brownian random processes (see Proposition 6.2 and Theorem 6.3), and
provide a qualitative analysis of the solutions of stochastic equations and systems of
stochastic equations (see Corollaries 6.2 and 6.3). We establish in which direction
and with what probability the random process will evolve and to what state it will
come in each case.

The next task is to study the transition dynamics in stochastic triangles with
heterogeneous agents and in complete stochastic networks with agents having
stochastic productivities. It might be also useful to consider the dynamics in
networks with arbitrary correlation functions between the stochastic components
of different parameters.

Appendix

The proof of Proposition 6.4.

Proof The system of differential equations in the deterministic case has the form

⎧⎨
⎩

k̇1 =
(

A1
2a
− 1

)
k1 + A1

2a
k2 − ε(1−2a)

2a
,

k̇2 = A2
2a

k1 +
(

A2
2a
− 1

)
k2 − ε(1−2a)

2a
.

(6.24)

The characteristic equation for system (6.11) is as follows

(λ+ 1)2 − A1 + A2

2a
(λ+ 1) = 0,

therefore eigenvalues are

λ1 = −1; λ2 = −1 + Ā

a
,

where Ā = A1+A2
2 . Obviously, we can choose as the eigenvectors of the matrix A

the vectors

e1 =
(

1
−1

)
, e2 =

(
A1

A2

)
.

So the transition matrix is

S =
(

1 A1

−1 A2

)
,
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then

AS = SJ, etA = SetJ S−1,

where

J =
(
−1 0

0 −1+ Ā
a

)
, etJ =

(
e−t 0

0 exp
((

Ā
a
− 1

)
t
)
)

,

S−1 = 1

A1 + A2

(
A2 −A1

1 1

)
.

The general solution of system (6.11) is as follows

(
k1

k2

)
= C1

(
1
−1

)
exp(−t)+ C2

(
A1

A2

)
exp

((
Ā

a
− 1

)
t

)
+

(
D1

D2

)
.

We find the constants D1 and D2 by solving the system of equations

⎧⎨
⎩

(
A1
2a
− 1

)
k1 + A1

2a
k2 = ε(1−2a)

2a
,

A2
2a

k1 +
(

A2
2a
− 1

)
k2 = ε(1−2a)

2a
.

It is easy to verify that they are determined by the expression (6.18). We find the
integration constants C1 and C2 from the initial conditions:

{
k0

1 = C1 + A1C2 +D1,

k0
2 = −C1 + A2C2 +D2,

so

C2 = k̄0 − D̄

Ā
,

where

k̄0 = k0
1 + k0

2
2

, D̄ = D1 +D2

2
= ε(1 − 2a)

2(Ā− a)
, A2D1−A1D2 = ε(1 − 2a)(A1 − A2)

2a
.

Then

C1 = A2k
0
1 − A1k

0
2

4Ā
− ε(1 − 2a)(A1 − A2)

8aĀ
.

Thus, the solution is determined by expression (6.17). �
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The proof of Theorem 6.3.

Proof It is clear that the matrices A and α commute; therefore, for the matrix
exponentials, the relation

eAteαWt = eAt+αWt

holds and we can solve the matrix equation (6.16) by multiplying from the left by
the matrix exponent

e−At−αWt+ α2
2 t .

Denote, as in the one-dimensional case, for brevity

Ψ = −At − αWt + α2

2
t .

Then we have

d
(
eΨ k

) = eΨ dk + deΨ k̇ + deΨ ḋk =

= eΨ
(
Akdt + αkdWt + Ēdt

)+ eΨ

(
−Adt − αdWt + α2

2
dt + α2

2
dt

)
k− eΨ kα2dt =

= eΨ Ēdt.

Thus, Eq. (6.16) takes the form

d

(
e−At−αWt+ α2

2 t k

)
= e−At−αWt+ α2

2 t Ēdt,

therefore, the solution of matrix equation (6.8) can be written as

k(t) = eAt+αWt− α2
2 t k0 + eAt+αWt− α2

2 t

(∫ t

0
e−Aτ−αWτ+ α2

2 τ dτ

)
Ē. (6.25)

Notice, that

α2 = 1

2a

(
α1 α1

α2 α2

)
· 1

2a

(
α1 α1

α2 α2
·
)
= 1

4a2

(
α2

1 + α1α2 α2
1 + α1α2

α1α2 + α2
2 α1α2 + α2

2
·
)

.



6 Adjustment Dynamics in Network Games with Stochastic Parameters 83

The eigenvalues of the matrix

A− α2

2
=

⎛
⎝ A1

2a
− α2

1+α1α2

8a2 − 1 A1
2a
− α2

1+α1α2

8a2

A2
2a
− α2

1+α1α2

8a2
A2
2a
− α2

1+α1α2

8a2 − 1
·
⎞
⎠ .

are obviously λ1 = −1 and λ2 = Ā
a
− (α1+α2)

2

8a2 − 1. As eigenvectors we can take

e1 =
(

1
−1

)

and

e2 =
(

A1

A2

)

or in view of (6.14)

e2 =
(

α1

α2

)
.

The eigenvalues of the matrix α are λ1 = 0 and λ2 = α1 + α2, and obviously we

can choose the same e1 and e2 as eigenvectors as for the matrix A− α2

2 . Therefore,

to reduce to the diagonal form of the matrices
(
A− α2

2

)
t and αWt we can use the

same transition matrices

S =
(

1 A1

−1 A2

)
, S−1 = 1

A1 + A2

(
1 A1

−1 A2

)
,

so we get

(
A− α2

2

)
t + αWt = S(J t +ΛWt)S

−1,

where

J =
(
−1 0

0 Ā
a
− (α1+α2)2

8a2 − 1

)
, Λ =

(
0 0
0 α1+α2

2a

)
,
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and correspondingly

exp

((
A− α2

2

)
t + αWt

)
=

= S

(
exp(−t) 0

0 exp
((

Ā
a
− (α1+α2)

2

8a2 − 1
)

t + α1+α2
2a

Wt

)
)

S−1. (6.26)

Substituting (6.26) into (6.25) we obtain

(
k1(t)

k2(t)

)
= 1

A1 + A2

(
1 A1

−1 A2

)
×

×
(

exp(−t) 0

0 exp
((

Ā
a
− (α1+α2)2

8a2 − 1
)

t + α1+α2
2a

Wt

)
)(

A2 −A1

1 1

)(
k0

1
k0

2

)
−

−e(1− 2a)

2a
· 1

A1 + A2

(
1 A1

−1 A2

)
×

×
(

exp(−t) 0

0 exp
((

Ā
a
− (α1+α2)

2

8a2 − 1
)

t + α1+α2
2a

Wt

)
)
×

×
(∫ t

0 exp(τ )dτ 0

0
∫ t

0 exp
((
− Ā

a
+ (α1+α2)2

8a2 + 1
)

τ − α1+α2
2a

Wτ

)
dτ

)
×

×
(

A2 −A1

1 1

)(
1
1

)
. (6.27)

Calculating expression (6.27) we get expressions (6.19)–(6.20). �
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Chapter 7
New Characteristic Function
for Cooperative Games with Hypergraph
Communication Structure

David A. Kosian and Leon A. Petrosyan

Abstract Cooperation in the games with hypergraph communication structure is
considered. As usual in cooperative game theory, to define the allocation rule, the
characteristic function is used. The communication possibilities are described by the
hypergraph in which the nodes are players and hyperlinks are the communicating
subgroups of players. The payoff of each player is influenced by actions of other
players dependent from a distance between them on hypergraph. The new approach
for constructing the characteristic function in the game is proposed. This approach
does not require the use of maxmin operations which substantially simplifies the
calculations. It is proved that the constructed characteristic function satisfies the
convexity property. The results are shown in an example.

Keywords Cooperation · Charactetistic function · Hypergraph · Communication
structure

7.1 Introduction

In classic cooperative games with transferable utility, it is assumed that all players
have an opportunity to form a grand coalition and the total payoff from the
cooperation can be distributed among the players.

The undirected graph can represent a communication structure. Initially, games
with undirected graph communication structure were studied by Myerson [1]. After
that, games with a communication structure have received attention in cooperative
game theory. As a particular case, the hypergraph communication structure can be
considered.
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Owen [2] studied games with a tree as a communication structure. Meessen [3]
introduced the positional value for the games with graph communication structure.

The TU-games with hypergraph communication structure were studied by
Nouweland, Borm and Tijs [4]. They characterized the Myerson value and the
positional value for these games. The third value, which is called degree value for
games with a hypergraph communication structure, was introduced in [5].

Hypergraph communication structure is an extension of the graph communi-
cation structure with hyperlinks containing more than two players. A hyperlink
can be a model of groups of people or members in associations, sports teams
etc. Also, people in social network chats can be modelled as hyperlinks. In this
case, the cooperation between associations, clubs or companies can be described by
transferable utility games with hypergraph communication structure.

Despite a large number of researches in the field of cooperative game theory, they
are mostly focused on allocation rules while this paper focuses on the construction
of characteristic functions for the games with hypergraph communication structure.

The paper is organized as follows. First, basic definitions and notations concern-
ing the hypergraph communication structure are given. Then the definition of the
game with specially defined discounted payoff function is provided. Next, the new
characteristic function is introduced, and its convexity proved. Finally, the results
are explained in an example.

7.2 Communication Structure

The hypergraph is a pair (N,H), H ⊆ {H ∈ 2N
∣∣|H | � 2}, N is a finite set and

H is a given set of subsets of N . The cardinality of H should be greater or equal to
two. If |H | = 2, for all i this structure will be a graph. H ∈H is called a hyperlink.
The elements of the set N are called vertexes.

The hypergraph (N,H
′
) is called reduction of (N,H) if it is obtained by remov-

ing all hyperlinks which are entirely contained in other hyperlinks. A hypergraph is
called reduced if it coincides to its reduction, that is, it does not have a hyperlink
inside other hyperlinks.

A simple cycle with length s in hypergraph (N,H) is a sequence

(H0, n0,H1, n1, . . . , Hs−1, ns−1,Hs),

where H0, . . . , Hs−1—are different hyperlinks and hyperlink Hs coincides with H0,
n0, . . . , ns−1—are different vertexes, and ni ∈ Hi ∩Hi+1 for all i = 0, . . . , s − 1.

An acyclic hypergraph is a hypergraph without cycles.
In the paper, we shall consider games with acyclic reduced hypergraph commu-

nication structure (N,H).
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The path between two hyperlinks Hi and Hj is a sequence Hk1,Hk2 , . . . , Hkl

where:

1. Hi = Hk1,Hj = Hkl .

2. ∀i : 1 ≤ i ≤ k − 1,Hli ∩Hli+1 �= ∅.
The path between the two hyperlinks is called “minimal” path if it contains a

minimal number of hyperlinks.
The distance between two vertexes i, j is defined as the number of hyperlinks l

in the minimal path between hyperlinks Hk1,Hkl where i ∈ Hk1, j ∈ Hkl .
Neighbours of vertex i ∈ N with level 1 are the vertexes j ∈ N1

i that are at a
distance 1 from i. Neighbours of vertex i ∈ N with level k are the vertexes j ∈ Nk

i

that are at a distance k from i, etc. Finally, the vertexes which have no connection
with i are denoted by N−1

i . For any i ∈ N the set of vertexes is split into neighbors
with levels k ∈ [1, . . . , li ,−1] denoted by Nk

i .

7.3 Definition of the Game

In the game setting, the set of vertexes N is identified with the set of players.
Thus N := {1, . . . , n} is considered as set of players. The communication

structure is described by the acyclic reduced hypergraph. Each player is a vertex
in this structure.

Denote by li the distance between player i and the farthest player.
Players i and j are called connected if there is a path between the hyperlinks in

which they are included.
Define the strategy set Ui of each player. In this paper, we suppose that the sets

Ui , i ∈ N are finite. Let ui ∈ Ui be a strategy of player i. After players have chosen
their strategies, the strategy profile u = (ui , . . . , un) is formed.

The payoff function of the player i is defined as:

Ki(u) =
li∑

m=1

∑
j∈Nm

i

δm−1h
j

i (ui , uj ), δ ∈ (0, 1), h
j

i (ui , uj ) ≥ 0, i, j ∈ N.

7.4 Cooperation

Consider now the cooperative version of the game. It is supposed that the players
agree to choose cooperative strategies u∗i , i ∈ N which maximize the sum of their
payoffs:

max
u

∑
i∈N

Ki(ui , . . . , un) =
∑
i∈N

Ki(u
∗
i , . . . , u

∗
n).
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Strategy profile u∗ = (u∗i , . . . , u∗n) we shall call cooperative behaviour.
In the cooperative game theory, the important role takes the characteristic

function defined over the subsets of the player set N .
This paper focused on the definition of characteristic function for the games

with hypergraph communication structure. Characteristic function is a real-valued
function v : 2N → R and v(∅) = 0.

In the classical cooperative game theory the characteristic function is defined by
Von Neumann and Morgenstern [6]:

v(S) = max
uS

min
uN\S

∑
i∈S

Ki(u1, . . . , un), S ⊆ N,

here uS = {ui}, i ∈ S and uN\S = {ui}, i ∈ N \ S.

In this paper, we propose another definition of characteristic function which
does not require complicated maxmin computations. The approach is similar to one
proposed in [7].

7.4.1 Characteristic Function

For each coalition S ⊆ N define now the hypergraph (S,HS) as a restriction of
hypergraph (N,H) over S, here HS = {H \ (N \ S)|H ∈H}.

If player i does not belong to coalition S, he does not interact with the players
from this coalition. Also, the player does not act as a link between these players.
Thus the player can be eliminated from the hypergraph. For any coalition S, a new
communication structure is created by eliminating the players who are not in S. For
a better understanding show this elimination by example.

Consider six player game with communication structure which is shown on the
Fig. 7.1.

Construct the communication structure for coalition S = 1, 2, 4, 5. It is needed
to eliminate players 3, 6 (Fig. 7.2).

Fig. 7.1 Example of
hypergraph
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Fig. 7.2 New
communication structure for
coalition S

Fig. 7.3 Final
communication structure for
coalition S

The resulted hypergraph is not reduced since hyperlink H3 is contained in
hyperlink H2, then it is necessary to construct the reduction of the hypergraph
(Fig. 7.3).

Suppose that for any coalition S, the communication structure is constructed and
denote by Sk

i , i ∈ S the neighbours with a connection level k in S. Also let lSi be
a distance between player i and the farthest player in S. Define the characteristic
function in the following way:

v(∅) = 0,

v({i}) = 0,

v(S) =
∑
i∈S

lSi∑
m=1

∑
j∈Sm

i

δm−1h
j
i (u

∗
i , u

∗
j ), (7.1)

v(N) =
∑
i∈N

li∑
m=1

∑
j∈Nm

i

δm−1h
j
i (u

∗
i , u

∗
j ).

As follows from (7.1), the value of the characteristic function for each coalition
additively depends on the pairwise interaction of the players in S when they use
cooperative strategies. Also, from (7.1) it follows that for calculating v(S) for each
player i ∈ S, only payoffs from interaction with neighbours with a level k �= −1
are taken into account. Because of the communication structure is acyclic reduced
hypergraph the distance between players i and j in coalition S does not change or
the path between does not exist.
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Theorem 7.1 (Convexity) For any two coalitions A, B follows that

v(A ∪ B) ≥ v(B)+ v(A)− v(A ∩ B). (7.2)

Proof Denote A ∩ B = C then Ā = A \ C and B̄ = B \ C.

v(A) =
∑
i∈Ā

lAi∑
m=1

∑
j∈Am

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈C

lAi∑
m=1

∑
j∈Am

i

δm−1h
j
i (u

∗
i , u

∗
j ) =

=
∑
i∈Ā

lĀi∑
m=1

∑
j∈Ām

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈Ā

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )+

+
∑
i∈C

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j

i (u
∗
i , u

∗
j )+

∑
i∈C

lĀi∑
m=1

∑
j∈Ām

i

δm−1h
j

i (u
∗
i , u

∗
j )

v(B) =
∑
i∈B̄

lBi∑
m=1

∑
j∈Bm

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈C

lBi∑
m=1

∑
j∈Bm

i

δm−1h
j
i (u

∗
i , u

∗
j ) =

=
∑
i∈B̄

lB̄i∑
m=1

∑
j∈B̄m

i

δm−1h
j

i (u
∗
i , u

∗
j )+

∑
i∈B̄

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j

i (u
∗
i , u

∗
j )+

+
∑
i∈C

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈C

lB̄i∑
m=1

∑
j∈B̄m

i

δm−1h
j
i (u

∗
i , u

∗
j )

v(A ∩ B) = v(C) =
∑
i∈C

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )

v(A ∪ B) =
∑
i∈Ā

lĀi∑
m=1

∑
j∈Ām

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈Ā

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )+

+
∑
i∈C

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈C

lĀi∑
m=1

∑
j∈Ām

i

δm−1h
j
i (u

∗
i , u

∗
j )+

+
∑
i∈B̄

lB̄i∑
m=1

∑
j∈B̄m

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈B̄

lCi∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )+
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+
∑
i∈C

lB̄i∑
m=1

∑
j∈B̄m

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈B̄

lĀi∑
m=1

∑
j∈Ām

i

δm−1h
j
i (u

∗
i , u

∗
j )+

+
∑
i∈Ā

lB̄i∑
m=1

∑
j∈B̄m

i

δm−1h
j
i (u

∗
i , u

∗
j ).

After substituting these expressions into (7.2) and moving all the components to
the left, we get the following inequality:

v(A ∪ B)− v(B)− v(A)+ v(A ∩ B) =

=
∑
i∈B̄

lĀi∑
m=1

∑
j∈Ām

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈Ā

lB̄i∑
m=1

∑
j∈B̄m

i

δm−1h
j
i (u

∗
i , u

∗
j ) ≥ 0.

(7.3)

Because h
j
i ≥ 0 then the (7.3) holds and the theorem is proved. �

The vector ξ = (ξ1, . . . , ξn) which satisfies the conditions:

ξj ≥ v({j }), j ∈ N,

n∑
j=1

ξj = v(N),

where v({j})—is the value of characteristic function for coalition S = {j } is called
an imputation.

The set of nondominant imputations in the cooperative game (N,v) is called core.
For the imputation α = (α1, . . . , αn) to belong to the core, it is necessary and
sufficient that:

v(S) ≤
∑
i∈S

αi (7.4)

hold for all S ⊂ N .
Consider the set of neighbours with level k of player i. For any coalition S, i ∈ S

it holds that Sk
i ⊆ Nk

i . Denote by Ck
i = Nk

i \ Sk
i . Consider the following imputation

α̂ = (α̂1, . . . , α̂n) where

α̂i = Ki(u
∗) =

li∑
m=1

∑
j∈Nm

i

δm−1h
j

i (u
∗
i , u

∗
j )

is the payoff of player i under cooperative strategy profile.
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Lemma 7.1 The imputation α̂ belongs to the core.

Proof

v(S) =
∑
i∈S

lSi∑
m=1

∑
j∈Sm

i

δm−1h
j

i (u
∗
i , u

∗
j ),

∑
i∈S

α̂i =
∑
i∈S

Ki(u
∗) =

∑
i∈S

li∑
m=1

∑
j∈Nm

i

δm−1h
j
i (u

∗
i , u

∗
j ) =

=
∑
i∈S

lSi∑
m=1

∑
j∈Sm

i

δm−1h
j
i (u

∗
i , u

∗
j )+

∑
i∈S

li∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j )

After substituting these expressions into (7.4) and moving all the components to the
left, we get the following inequality:

v(S)−
∑
i∈S

αi =
∑
i∈S

li∑
m=1

∑
j∈Cm

i

δm−1h
j
i (u

∗
i , u

∗
j ) ≥ 0. (7.5)

Because h
j
i ≥ 0 then (7.5) holds and the lemma is proved.

�
From the theorem, it follows that the game is convex and the core of this game is

not empty, and the Shapley value belongs to the core.

7.4.2 Example

Consider the cooperative game with player set N = {1, 2, 3, 4, 5, 6} δ = 0.5 and
hypergraph H = {H1 = {1, 2, 3},H2 = {3, 4, 5},H3 = {5, 6}} which is shown on
the Fig. 7.1:

In this example, we consider the case when each player plays bimatrix game
with players which have a connection with him. All players have the same sets of
strategies ui = {A,B}. A is the strategy to choose the first row/column and B to
choose the second.

Payoffs of players 1 and 2, 1 and 3, 1 and 4 are represented in the form of
following 2 × 2 matrices:

(
(5, 1) (8, 6)

(6, 5) (2, 3)

)(
(1, 0) (4, 7)

(4, 1) (6, 2)

)(
(2, 0) (4, 14)

(12, 6) (20, 8)

)
.
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Payoffs of players 1 and 5, 1 and 6, 2 and 3:

(
(0, 2) (6, 16)

(6, 4) (4, 12)

)(
(24, 32) (24, 20)

(36, 8) (20, 16)

)(
(9, 3) (5, 1)

(1, 6) (2, 1)

)
.

For players 2 and 4, 2 and 5, 2 and 6:

(
(10, 2) (4, 0)

(10, 14) (10, 12)

)(
(0, 8) (12, 2)

(8, 12) (4, 6)

)(
(24, 4) (16, 8)

(20, 4) (8, 16)

)
.

Payoffs of players 3 and 4, 3 and 5, 3 and 6:

(
(4, 3) (1, 3)

(5, 6) (4, 2)

)(
(0, 5) (3, 0)

(5, 3) (5, 6)

)(
(0, 2) (8, 4)

(2, 6) (6, 0)

)
.

Payoffs of players 4 and 5, 4 and 6, 5 and 6:

(
(0, 2) (2, 2)

(5, 0) (6, 5)

)(
(2, 2) (12, 8)

(12, 4) (2, 6)

)(
(3, 5) (2, 3)

(3, 4) (3, 6)

)
.

The sets Nk
i have the form:

N1
1 = {2, 3}, N2

1 = {4, 5}, N3
1 = {6},

N1
2 = {1, 3}, N2

2 = {4, 5}, N3
2 = {6},

N1
3 = {1, 2, 4, 5}, N2

3 = {6},

N1
4 = {3, 5}, N2

4 = {1, 2, 6},

N1
5 = {3, 4, 6}, N2

5 = {1, 2},

N1
6 = {5}, N2

6 = {3, 4}, N3
6 = {1, 2}.

The sum of the players’ payoffs is equal to:

∑
i∈N

Ki(u
∗
i , . . . , u

∗
n) =

∑
i∈N

li∑
m=1

∑
j∈Nm

i

δm−1h
j

i (u
∗
i , u

∗
j ) =

= h2
1(u

∗
1, u

∗
2)+h3

1(u
∗
1, u

∗
3)+δh4

1(u
∗
1, u

∗
4)+δh5

1(u
∗
1, u

∗
5)+δ2h6

1(u
∗
1, u

∗
6)+h1

2(u
∗
2, u

∗
1)+

+h3
2(u

∗
2, u

∗
3)+δh4

2(u
∗
2, u

∗
4)+δh5

2(u
∗
2, u

∗
5)+δ2h6

2(u
∗
2, u

∗
6)+h1

3(u
∗
3, u

∗
1)+h2

3(u
∗
3, u

∗
2)+
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+h4
3(u

∗
3, u

∗
4)+ h5

3(u
∗
3, u

∗
5)+ δh6

3(u
∗
3, u

∗
6)+ h3

4(u
∗
4, u

∗
3)+ h5

4(u
∗
4, u

∗
5)+ δh1

4(u
∗
4, u

∗
1)+

+δh2
4(u

∗
4, u

∗
2)+ δh6

4(u
∗
4, u

∗
6)+h3

5(u
∗
5, u

∗
3)+h4

5(u
∗
5, u

∗
4)+h6

5(u
∗
5, u

∗
6)+ δh1

5(u
∗
5, u

∗
1)+

+δh2
5(u

∗
5, u

∗
2)+h5

6(u
∗
6, u

∗
5)+δh3

6(u
∗
6, u

∗
3)+δh4

6(u
∗
6, u

∗
4)+δ2h1

6(u
∗
6, u

∗
1)+δ2h2

6(u
∗
6, u

∗
2).

The cooperative strategy profile is u∗ = {A,B,B,B,B,A} and the correspond-
ing joint payoff is equal to 131.

h2
1(A,B) = 8 h3

1(A,B) = 4 δh4
1(A,B) = 2 δh5

1(A,B) = 3

δ2h6
1(A,A) = 6 h1

2(B,A) = 6 h3
2(B,B) = 2 δh4

2(B,B) = 5

δh5
2(B,B) = 2 δ2h6

2(B,A) = 5 h1
3(B,A) = 7 h2

3(B,B) = 1

h4
3(B,B) = 4 h5

3(B,B) = 5 δh6
3(B,A) = 1 h3

4(B,B) = 2

h5
4(B,B) = 6 δh1

4(B,A) = 7 δh2
4(B,B) = 6 δh6

4(B,A) = 6

h3
5(B,B) = 6 h4

5(B,B) = 5 h6
5(B,A) = 3 δh1

5(B,A) = 8

δh2
5(B,B) = 3 h5

6(A,B) = 4 δh3
6(A,B) = 3 δh4

6(A,B) = 2

δ2h1
6(A,A) = 8 δ2h2

6(A,B) = 1

The characteristic function has the form (see Table 7.1).
Consider the imputation α̂ = (α̂1, . . . , α̂6).

α̂1 = 23; α̂2 = 20; α̂3 = 18;

α̂4 = 27; α̂5 = 25; α̂6 = 18.

From Table 7.1, it is seen that conditions (7.4) hold for all S ⊂ N and the
imputation α̂ = (α̂1, . . . , α̂6) belongs to the core.

Compute now the Shapley value φ(v) = (φ1(v), . . . , φ6(v)) for this example

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (v(S) − v(S \ {i})).

We get:

φ1(v) = 22, 6; φ2(v) = 15, 4(3); φ3(v) = 33, 7(6)

φ4(v) = 17, 9(3); φ5(v) = 28, 7(6); φ6(v) = 12, 5.
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Table 7.1 Values of characteristic function for all coalitions

S v(S) S v(S) S v(S) S v(S)

∅ 0 3,4 6 2,3,4 20 1,3,4,5 59

1 0 3,5 11 2,3,5 19 1,3,4,6 26

2 0 3,6 0 2,3,6 3 1,3,5,6 56

3 0 4,5 11 2,4,5 11 1,4,5,6 26

4 0 4,6 0 2,4,6 0 2,3,4,5 47

5 0 5,6 7 2,5,6 7 2,3,4,6 20

6 0 1,2,3 28 3,4,5 28 2,3,5,6 36

1,2 14 1,2,4 14 3,4,6 6 2,4,5,6 26

1,3 11 1,2,5 14 3,5,6 22 3,4,5,6 47

1,4 0 1,2,6 14 4,5,6 26 1,2,3,4,5 92

1,5 0 1,3,4 26 1,2,3,4 54 1,2,3,4,6 54

1,6 0 1,3,5 31 1,2,3,5 55 1,2,3,5,6 86

2,3 3 1,3,6 11 1,2,3,6 28 1,2,4,5,6 40

2,4 0 1,4,5 11 1,2,4,5 25 1,3,4,5,6 92

2,5 0 1,4,6 0 1,2,4,6 14 2,3,4,5,6 72

2,6 0 1,5,6 7 1,2,5,6 21 1,2,3,4,5,6 131

7.5 Conclusion

In the paper games with hypergraph communication structure were considered. The
discounted payoff function, which depends on the distance between players, was
proposed. The coalition-building process was described. The characteristic function
based on cooperative strategy profiles was introduced. This form of characteristic
function substantially simplifies the computation of the characteristic function and
based on this function, different solution concepts. It was proved that the newly
introduced characteristic function is convex, which implies that the Shapley Value
belongs to the core, and the core is not empty. An example illustrated the results
with the Shapley Value as a solution.
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Chapter 8
Minimax Generalized Solutions
of Hamilton-Jacobi Equations
in Dynamic Bimatrix Games

Nikolay A. Krasovskii and Alexander M. Tarasyev

Abstract The paper deals with the dynamic bimatrix game whose dynamics
describes the motion of flows corresponding to the control signals. A specific feature
of the model is connected with increasing the dimension of the matrix game to 2×3
payoff matrices. This increase of the dimension is necessary as an initial step in
solving the dynamic version of the well-known matrix game “rock-paper-scissors”,
which is an algorithmically complex problem. For the considered 2 × 3 dynamic
bimatrix game the sets of acceptable situations for players are constructed in the
static setting. Basing on these constructions, an algorithm is developed for finding
the value function for the first player in the antagonistic setting of a differential
game on an infinite time interval. The stability properties of the value function are
verified using the conjugate derivatives apparatus in the framework of the theory of
generalized minimax (viscosity) solutions of the Hamilton-Jacobi equations.
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8.1 Introduction

The paper is devoted to the study of a dynamic bimatrix game, the dynamics of
which is associated with evolutionary changes [3, 12–14], investment processes
[8, 11], decomposition algorithms of the auction type [9], and Kolmogorov’s
differential equations for probabilities [5]. The novelty of this work is in increasing
the dimension of the bimatrix game to 2 × 3 payoff matrices. Such increase in the
dimension seriously complicates the construction of solutions in a dynamic bimatrix
game. Besides, such a transition is a step towards the consideration of the well-
known algorithmically complex game “rock-paper-scissors” [2], especially in the
dynamic setting.

At the first step of solving the problem, acceptable situations of the players
are constructed in a static setting. Saddle points in antagonistic games and Nash
equilibrium points [20] are found on the prism of possible game situations.

At the second step, a differential game of the antagonistic type is considered
on an infinite time horizon. The problem is to construct the value function of
such a game as a generalized minimax (viscosity) solution of the Hamilton-Jacobi
equations [1, 15–17]. For this purpose, on the basis of a generalized method of
characteristics, we construct domains on the prism of possible situations in which
the value function is described by smooth components. The continuous pasting of
these smooth components is verified on the boundaries of the domains. Continuous
pasting is not smooth on all boundaries of the domains. It is worth to remind
that at smooth pasting points the value function satisfies the Hamilton-Jacobi
equation. At the points of non-smooth pasting, it is necessary to check differential
inequalities that provide stability properties of the value function. In the paper, such
a verification is implemented basing on the apparatus of conjugated derivatives [16].

Let us note that basing on the value function, one can construct guaranteeing
positional strategies [6, 7] of players and use them to generate equilibrium trajecto-
ries in a dynamic bimatrix game based on the approach proposed in [4] for obtaining
Nash solutions in the dynamic setting. The papers [18, 19] are devoted to numerical
methods and approximation schemes for the construction of attainability sets and
value functions.

In the future studies, it is planned to construct equilibrium trajectories based
on guaranteeing strategies generated by value functions as generalized minimax
solutions of the Hamilton-Jacobi equations.

8.2 Players’ Payoff Functions

The paper is devoted to the construction of the value function in the dynamic
bimatrix game on the infinite time horizon t ∈ [t0,+∞). In this section we consider
a static statement of 2 × 3 bimatrix game for each period of time t . Let us assume,
that payoffs of the first player is described by the matrix A = aij , and payoffs of the
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second player is described by the matrix B = bij :

A =
(

a11 a12 a13

a21 a22 a23

)
, B =

(
b11 b12 b13

b21 b22 b23

)
.

The structure of matrices A and B means that the first player has two possible
strategies and the second player has three possible strategies in the static game. Let
us introduce notations. By the symbol x, 0 ≤ x ≤ 1 we denote the probability that
the first player chooses the first strategy and, respectively, (1− x) is the probability
that he holds to the second strategy. The symbol y1, 0 ≤ y1 ≤ 1 stands for the
probability that the second player chooses the first strategy, the symbol y2, 0 ≤
y2 ≤ (1 − y1) denotes the probability that the second player selects the second
strategy, and, respectively (1 − y1 − y2) is the probability that he plays the third
strategy. Thus we consider the game on the rectangular prism of possible situations:

P = {(x, y1, y2) : 0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1)}. (8.1)

The payoff functions of players in the time period t , t ∈ [t0,+∞) is determined
as mathematical expectations of payoffs, given by corresponding matrices A and B

in the bimatrix game, and can be interpreted as “local” interest of players.
Payoff function of the first player is given as follows:

gA(x, y1, y2) = XAYT =

= (x, 1 − x)×
(

a11 a12 a13

a21 a22 a23

)
×

( y1

y2

1 − y1 − y2

)
=

= a11xy1 + a21(1− x)y1 + a12xy2 + a22(1 − x)y2+
+a13x(1 − y1 − y2)+ a23(1 − x)(1 − y1 − y2) =
= xy1C

1
A + xy2C

2
A − xαA − y1βA − y2γA + a23,

(8.2)

where the game situation (x, y1, y2) depends on time period t , x = x(t), y1 = y1(t),
y2 = y2(t), and parameters C1

A, C2
A, αA, βA, γA are determined according to the

classical theory of bimatrix games (see [20])

C1
A = a11 − a21 − a13 + a23;

C2
A = a12 − a22 − a13 + a23;

αA = a23 − a13;
βA = a23 − a21;
γA = a23 − a22.
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Payoff function of the second player is determined analogously:

gB(x, y1, y2) = XBYT =

= (x, 1 − x)×
(

b11 b12 b13

b21 b22 b23

)
×

( y1

y2

1 − y1 − y2

)
=

= xy1C
1
B + xy2C

2
B − xαB − y1βB − y2γB + b23,

where

C1
B = b11 − b21 − b13 + b23;

C2
A = b12 − b22 − b13 + b23;

αB = b23 − b13;
βB = b23 − b21;
γB = b23 − b22.

8.3 Sets of Acceptable Situations for Players in Antagonistic
Games

In this section we consider sets of acceptable situations for players in the antagonis-
tic games. For this we analyze cases of maximum and minimum values of players’
payoff functions on the prism P (8.1).

8.3.1 Antagonistic Game with Payoff Matrix A

For definiteness and convenience of graphical illustrations, we consider the follow-
ing case for the matrix A:

C1
A > 0, C2

A > 0, αA > 0, 0 <
αA

C1
A

< 1, 0 <
αA

C2
A

< 1.

The set of acceptable situations for the first player in the antagonistic game with
the matrix A is determined as follows:

max
x

{
x[y1C

1
A + y2C

2
A − αA]

}− y1βA − y2γA + a23.

Situations for the realization of the maximum are the following:

1. (y1C
1
A + y2C

2
A − αA) > 0:

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), x = 1.
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2. (y1C
1
A + y2C

2
A − αA) = 0:

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), 0 ≤ x ≤ 1.

3. (y1C
1
A + y2C

2
A − αA) < 0:

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), x = 0.

The set of acceptable situations for the second player in the antagonistic game
with the matrix A is determined as follows:

min
(y1,y2)

{
y1(C

1
Ax − βA)+ y2(C

2
Ax − γA)

}− xαA + a23.

Situations for the realization of the minimum are the following:

1. (C1
Ax − βA) > 0 and (C2

Ax − γA) > 0.

We obtain: x >
βA

C1
A

and x >
γA

C2
A

.

Then the minimum is reached under the following conditions:
y1 = 0, y2 = 0, x > a = max

{ βA

C1
A

,
γA

C2
A

}
.

2. (C1
Ax − βA) = 0 and (C2

Ax − γA) > 0.

We obtain: x = βA

C1
A

and x >
γA

C2
A

. Let βA

C1
A

≥ γA

C2
A

.

Then the minimum is reached under the following conditions:
0 ≤ y1 ≤ 1, y2 = 0, x = βA

C1
A

.

3. (C1
Ax − βA) < 0 and (C2

Ax − γA) > 0.

We obtain: x <
βA

C1
A

and x >
γA

C2
A

.

Then the minimum is reached under the following conditions:

y1 = 1, y2 = 0, x ∈
(

γA

C2
A

,
βA

C1
A

)
.

4. (C1
Ax − βA) < 0 and (C2

Ax − γA) = 0.

We obtain: x <
βA

C1
A

and x = γA

C2
A

.

Then the minimum is reached under the following conditions:
y1 = 1, y2 = 0, x = γA

C2
A

.

5. (C1
Ax − βA) < 0 and (C2

Ax − γA) < 0.

We obtain: x <
βA

C1
A

and x <
γA

C2
A

. For the definiteness, let us assume that (C1
Ax −

βA) < (C2
Ax−γA). These inequalities are not burdensome and a change in the signs

of these inequalities leads to similar calculations with a change in the signs of the
parameters.

Then the minimum is reached under the following conditions:
y1 = 1, y2 = 0, x <

γA

C2
A

.

On Fig. 8.1 we depict the planes of acceptable situations of the first player for
the matrix A by the pink (shaded) color. The red (bold) polygon line with numbered
segments represents the corresponding acceptable situations of the second player for
the matrix A. The green circle on the polygon line has an abscissa γA

C2
A

. The saddle



104 N. A. Krasovskii and A. M. Tarasyev

Fig. 8.1 Antagonistic game
with payoff matrix A
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point SA is located on the intersection of acceptable sets of players and is depicted
by the pink circle.

The saddle point SA has the following coordinates:

x = βA

C1
A

, y1 = αA

C1
A

, y2 = 0.

8.3.2 Antagonistic Game with Payoff Matrix B

Without loss of generality let us consider the following case for the matrix B:

C1
B < 0, C2

B < 0, αB < 0, 0 <
αB

C1
B

< 1, 0 <
αB

C2
B

< 1.

The set of acceptable situations for the first player in the antagonistic game with
the matrix B is determined as follows:

min
x

{
x[y1C

1
B + y2C

2
B − αB ]

}− y1βB − y2γB + b23.

Situations of the realization of the minimum are the following:

1. (y1C
1
B + y2C

2
B − αB) > 0:

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), x = 0.

2. (y1C
1
B + y2C

2
B − αB) = 0:

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), 0 ≤ x ≤ 1.

3. (y1C
1
B + y2C

2
B − αB) < 0:

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), x = 1.
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The set of acceptable situations for the second player in the antagonistic game
with the matrix B is determined as follows:

max
(y1,y2)

{
y1(C

1
Bx − βB)+ y2(C

2
Bx − γB)

}− xαB + b23.

Situations of the realization of the maximum are the following:

1. (C1
Bx − βB) > 0 and (C2

Bx − γB) > 0.

We obtain: x <
βB

C1
B

and x <
γB

C2
B

. Let us assume for the definiteness that:
βB

C1
B

<
γB

C2
B

. These inequalities are not burdensome and a change in the signs

of these inequalities leads to similar calculations with a change in the signs of
the parameters.
We get three cases:

1a. (C1
Bx − βB) > (C2

Bx − γB).
Then the maximum is reached under the following conditions:
y1 = 1, y2 = 0, x <

βB

C1
B

.

1b. (C1
Bx − βB) = (C2

Bx − γB).
Then the maximum is reached under the following conditions:
0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), x <

βB

C1
B

.

1c. (C1
Bx − βB) < (C2

Bx − γB).
Then the maximum is reached under the following conditions:
y1 = 0, y2 = 1, x <

βB

C1
B

.

2. (C1
Bx − βB) ≤ 0 and (C2

Bx − γB) > 0.

We obtain: x ≥ βB

C1
B

and x <
γB

C2
B

.

Then the maximum is reached under the following conditions:

y1 = 0, y2 = 1, x ∈
(

βB

C1
B

,
γB

C2
B

)
.

3. (C1
Bx − βB) < 0 and (C2

Bx − γB) = 0.

We obtain: x >
βB

C1
B

and x = γB

C2
B

.

Then the maximum is reached on the interval:
y1 = 0, 0 ≤ y2 ≤ 1, x = γB

C2
B

.

4. (C1
Bx − βB) < 0 and (C2

Bx − γB) < 0.

We obtain: x >
βB

C1
B

and x >
γB

C2
B

.

Then the maximum is reached under the following conditions:
y1 = 0, y2 = 0, x >

γB

C2
B

.

The saddle point SB has the following coordinates:

x = γB

C2
B

, y1 = 0, y2 = αB

C2
B

.
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Fig. 8.2 Nash equilibrium
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8.3.3 Nash Equilibrium in the Static Game

In order to construct the Nash equilibria in the static game we combine the
acceptable situations of the first player in the game with the matrix A and the
acceptable situations of the second player in the game with the matrix B. The
intersection points of these acceptable sets generate the Nash equilibria. In the
considered case we obtain the unique Nash equilibrium with coordinates:

xN = γB

C2
B

, yN
1 = 0, yN

2 = αA

C2
A

.

On Fig. 8.2 we depict by the pink circle the Nash Equilibrium point NE at the
intersection of situations of realizations of maximum for both players.

8.4 Game Dynamics

In this section we consider game dynamics and construct Hamilton-Jacobi equation.
The system of differential equations is considered, which sets the dynamics of

behavior of two players:

⎧⎨
⎩

ẋ(t) = −x(t)+ u(t), x(t0) = x0,

ẏ1(t) = −y1(t)+ v1(t), y1(t0) = y0
1 ,

ẏ2(t) = −y2(t)+ v2(t), y2(t0) = y0
2 ,

(8.3)

0 ≤ u(t) ≤ 1, 0 ≤ v1(t) ≤ 1, 0 ≤ v2(t) ≤ 1− v1(t).
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Here the parameter x = x(t), 0 ≤ x ≤ 1 means the probability that the first
player holds to the first strategy (respectively, (1−x) is the probability that he holds
to the second strategy). Parameter y1 = y1(t), 0 ≤ y1 ≤ 1 means the probability of
choosing the first strategy by the second player, parameter y2 = y2(t), 0 ≤ y2 ≤
(1 − y1) is the probability that he holds to the second strategy. And, respectively,
(1 − y1 − y2) is the probability that he plays the third strategy.

Control parameters u = u(t), v1 = v1(t) and v2 = v2(t) satisfy conditions
0 ≤ u ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ (1 − v1) and can be interpreted as signals that
recommend changing strategies by players.

For example, the value u = 0 corresponds to the signal for the first player:
“change the first strategy to the second”. The value u = 1 corresponds to the signal
for the first player: “change the second strategy to the first”. The value u = x

corresponds to the signal for the first player: “keep the previous strategy”.
The value v1 = 1 corresponds to the signal for the second player: “hold to the

first strategy”. The value v2 = 1 corresponds to the signal for the second player:
“hold to the second strategy”. The value (1− v1 − v2) = 1 corresponds to the signal
for the second player “hold to the third strategy”.

Let us note, that the basis for the dynamics (8.3) and its properties were
considered in [12]. In this dynamics Kolmogorov’s differential equations are
generalized under the assumption that the coefficients of incoming and outgoing
flows are not set a priori and can be constructed in the controlled process on the
feedback principle.

“Global” interests J∞A of the first player are determined as multivalued (two-
digit) functions formed by lower and upper limits of “local” payoffs (8.2)

J∞A = [J−A , J+A ],
J−A = J−A (x(·), y1(·), y2(·)) = lim inf

t→∞ gA(x(t), y1(t), y2(t)),

J+A = J+A (x(·), y1(·), y2(·)) = lim sup
t→∞

gA(x(t), y1(t), y2(t)),

(8.4)

calculated for the trajectories (x(·), y1(·), y2(·)) of the system (8.3). For the second
player “global” interests J∞B are determined symmetrically.

8.5 The Value Function

In the paper [11] it is proved, that in the game with functionals (8.4), despite the
multi-valuedness of these functionals, there exists an single-valued value function
wA = wA(x, y1, y2), which for each initial position x = x0, y1 = y0

1 , y2 = y0
2

sets the minimax (maximin) value of functionals (8.4), determined in the class of
positional strategies of players [6, 7].
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Let us note, that the function wA at points of smoothness should satisfy the
Hamilton-Jacobi equation:

−∂wA

∂x
x − ∂wA

∂y1
y1 − ∂wA

∂y2
y2+

+max
{
0,

∂wA

∂x

}+ min
{
0,

∂wA

∂y1
,
∂wA

∂y2

} = 0.

(8.5)

The Hamilton-Jacobi equation (8.5) is associated with the Hamiltonian of the
following form:

H(x, y1, y2, s1, s2, s3) = −s1x−s2y1−s3y2+max{0, s1}+min{0, s2, s3}. (8.6)

Here vector s = (s1, s2, s3) ∈ R3 is a conjugate vector, which at points of
differentiability of the value function coincides with the gradient vector:

s1 = ∂wA

∂x
, s2 = ∂wA

∂y1
, s3 = ∂wA

∂y2
. (8.7)

In addition, the property of u-stability [6, 7] should be fulfilled for all initial
values (x, y1, y2):

wA(x, y1, y2) ≤ gA(x, y1, y2), 0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1).

(8.8)

The property of v-stability is valid for the points (x, y1, y2), that satisfy the strict
inequality:

wA(x, y1, y2) < gA(x, y1, y2).

Let us remind, that the properties of u-stability and v-stability at points of
nondifferentiability of the value function can be effectively tested by means of the
conjugate derivatives technique [16].

Let us provide the definitions of conjugate derivatives. The definition of the upper
conjugate derivative is presented as follows:

D∗wA(x, y1, y2)|(s) = sup
h∈R3

(〈s, h〉−∂−wA(x, y1, y2)|(h)
)
, s = (s1, s2, s3) ∈ R3,

where the derivative in the direction h = (h1, h2, h3) is given by the formula:

∂−wA(x, y1, y2)|(h1, h2, h3) =
= lim inf

δ↓0

wA(x + δh1, y1 + δh2, y2 + δh3)−wA(x, y1, y2)

δ
.
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The definition of the lower conjugate derivative is given as follows:

D∗wA(x, y1, y2)|(s) = inf
h∈R3

(〈s, h〉 − ∂+wA(x, y1, y2)|(h)
)
, s = (s1, s2, s3) ∈ R3,

(8.9)

where the derivative in the direction h = (h1, h2, h3) is given by the formula:

∂+wA(x, y1, y2)|(h1, h2, h3) =
= lim sup

δ↓0

wA(x + δh1, y1 + δh2, y2 + δh3)−wA(x, y1, y2)

δ
.

(8.10)

The property of u-stability at all interior points of the prism (8.1) is expressed by
the inequality:

D∗wA(x, y1, y2)|(s) ≤ H(x, y1, y2, s),(
0 < x < 1, 0 < y1 < 1, 0 < y2 < (1 − y1), s = (s1, s2, s3) ∈ R3

)
,

(8.11)

and the property of v-stability at interior points of the prism (8.1), where the value
function is strictly less than the payoff function, is determined by the inequality:

D∗wA(x, y1, y2)|(s) ≥ H(x, y1, y2, s),(
0 < x < 1, 0 < y1 < 1, 0 < y2 < (1 − y1), wA(x, y1, y2) < gA(x, y1, y2),

s = (s1, s2, s3) ∈ R3
)
.

(8.12)

8.6 Smooth Components of the Value Function

In this section, we provide the description for the structure of the value function,
which is presented by four components of smooth functions, that satisfy Hamilton-
Jacobi equation (8.5). The structure of the value function presumes, that smooth
components are pasted together continuously on the junction surfaces. Wherein,
such pasting can be smooth, and then the Hamilton-Jacobi equation is fulfilled
automatically at the junction points. The non-smooth (but continuous) pasting of the
components is also possible, and in that case, it is necessary to verify the properties
of u- and v-stability, for example, in the form of the inequalities for the conjugate
derivatives [16].

Smooth components are calculated basing on the generalized method of charac-
teristics [11, 15], and its construction is implemented by the following scheme.

Step 1. On the first step, we construct smooth components of the value function
with fixed time moment T of the game termination. For that, the value func-
tion is determined along the characteristics of Hamilton-Jacobi equations,
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which are straight lines directed to the vertices of the prism of possible
game situations and are generated by marginal values of controls u, v1, and
v2.

Step 2. On the second step, continuous pasting of these smooth components is
implemented, and the conditions of u- and v-stability are checked at the
points of nonsmoothness on the basis of the technique of differential
inequalities for Hamilton-Jacobi equations [15, 16].

Step 3. On the third step, we calculate lower envelopes of these terminal value
functions by the time parameter T of the game termination. To this end,
we calculate derivatives of these functions by the time parameter T , equate
these derivatives to zero, exclude parameter T , and obtain stationary smooth
components for the value function on infinite horizon.

Step 4. On the fourth step, we check that these smooth components satisfy the
stationary Hamilton-Jacobi equation.

Step 5. On the fifth step, using smooth components we paste the continuous
function, for which we verify properties of u- and v-stability basing on the
techniques of conjugate derivatives [16].

A more detailed description of the algorithm in the 2 × 2-dimensional case is
provided in the papers [10, 11], and here this algorithm is generalized for the 2× 3-
dimensional case.

As a result of the described calculations, we obtain the following four smooth
functions, as the elements of the “mosaic”:

ψ1
A = a23 −

(
C1

AαAx + βA(C1
Ay1 + C2

Ay2)
)2

4(C1
A)2x(C1

Ay1 + C2
Ay2)

,

ψ2
A = a11 −

(
(C1

A − αA)(1 − x)+ (C1
A − βA)

(
1− y1 − C2

A

C1
A

y2
))2

4C1
A(1 − x)

(
1 − y1 − C2

A

C1
A

y2
) ,

ψ3
A = xy1C

1
A + xy2C

2
A − xαA − y1βA − y2γA + a23,

ψ4
A = a23C

1
A − αAβA

C1
A

= vA.

Smooth functions ψi
A, i = 1, . . . , 4 are pasted together along the next surfaces

K
j
A, j = 1, . . . , 5.

K1
A = {

0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1), x = ξ1
A(y1, y2) = βA

C1
A

}
,

K2
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),
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x = ξ2
A(y1, y2) = βA

αA

y1 + C2
AβA

C1
AαA

y2, C1
Ay1 + C2

Ay2 − αA ≥ 0},

K3
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

x = ξ3
A(y1, y2) = (C1

A − βA)

(C1
A − αA)

y1 + C2
A(C1

A − βA)

C1
A(C1

A − αA)
y2 − (αA − βA)

(C1
A − αA)

,

C1
Ay1 + C2

Ay2 − αA ≤ 0}.

On the surface K1
A two smooth components ψ3

A and ψ4
A are merged. The surface

K2
A connects two smooth components ψ1

A and ψ4
A. And two smooth components

ψ2
A and ψ4

A are joined on the surface K3
A.

Let us note, that continuity of junction for surfaces K1
A, K2

A, K3
A of the

corresponding components can be checked directly.
On the surface K4

A we have the junction of two smooth components ψ1
A and ψ3

A:

K4
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

x = ξ4
A(y1, y2) = βA(C1

Ay1 + C2
Ay2)

C1
A

(
2(C1

Ay1 + C2
Ay2)− αA

) ,
C1

Ay1 + C2
Ay2 − αA ≤ 0}.

In order to obtain the continuous junction on the surface K4
A it is necessary to

introduce the additional condition, which is not restrictive:

(
βA

C2
A

C1
A

− γA

)
= 0. (8.13)

On the last fifth surface K5
A the smooth components ψ2

A and ψ3
A are pasted

together continuously:

K5
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

x = ξ5
A(y1, y2) = 1 − (C1

A − βA)
(
C1

A − (C1
Ay1 + C2

Ay2)
)

C1
A

(
C1

A + αA − 2(C1
Ay1 + C2

Ay2)
) ,

C1
Ay1 + C2

Ay2 − αA ≥ 0}.

Let us turn to the analytical description of the value function wA.
In the considered case the value function (x, y1, y2) → wA(x, y1, y2) is

determined as follows:

wA(x, y1, y2) = ψi
A(x, y1, y2), if (x, y1, y2) ∈ Ei

A, i = 1, . . . , 4.

(8.14)
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Here domains Ei
A, i = 1, . . . , 4, are determined as follows:

E11
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

ξ4
A(y1, y2) ≤ x ≤ 1, C1

Ay1 + C2
Ay2 − αA ≤ 0},

E12
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

ξ2
A(y1, y2) ≤ x ≤ 1, C1

Ay1 + C2
Ay2 − αA ≥ 0},

E1
A = E11

A ∪ E12
A ,

E21
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

0 ≤ x ≤ ξ3
A(y1, y2), C1

Ay1 + C2
Ay2 − αA ≤ 0},

E22
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

0 ≤ x ≤ ξ5
A(y1, y2), C1

Ay1 + C2
Ay2 − αA ≥ 0},

E2
A = E21

A ∪ E22
A ,

E31
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

ξ1
A(y1, y2) ≤ x ≤ ξ4

A(y1, y2), C1
Ay1 + C2

Ay2 − αA ≤ 0},
E32

A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

ξ5
A(y1, y2) ≤ x ≤ ξ1

A(y1, y2), C1
Ay1 + C2

Ay2 − αA ≥ 0},
E3

A = E31
A ∪ E32

A ,

E41
A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

ξ1
A(y1, y2) ≤ x ≤ ξ2

A(y1, y2), C1
Ay1 + C2

Ay2 − αA ≥ 0},
E42

A = {0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1),

ξ3
A(y1, y2) ≤ x ≤ ξ1

A(y1, y2), C1
Ay1 + C2

Ay2 − αA ≤ 0},
E4

A = E41
A ∪ E42

A . (8.15)

8.7 Feedback Strategy of the First Player

The feedback (positional) strategy of the first player is generated by the structure of
the value function wA. Let us note that the feedback strategy has a discontinuous
character on the surfaces K2

A and K3
A on which one can observe the change of

control signals. More precisely, the structure of the feedback strategy looks like:

u = u(x, y1, y2) =
{

1, if (x, y1, y2) ∈ E2
A ∪E32

A ∪ E41
A ,

0, if (x, y1, y2) ∈ E1
A ∪E31

A ∪ E42
A .

(8.16)
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8.8 Properties of u- and v-Stability

In this section, we prove that for the function wA the necessary and sufficient
conditions are fulfilled. Namely, we need to prove the validity of the differential
inequalities (8.11) and (8.12) and the boundedness condition (8.8). These necessary
and sufficient conditions imply that the function wA is the generalized minimax
solution of the Hamilton-Jacobi equation (8.5), and, hence, coincides with the value
function.

Let us start with the boundedness condition. It is obviously fulfilled since the
functions ψi

A, i = 1, . . . , 4 are the lower envelopes of the terminal solution
w1(T , t, x, y1, y2) and, hence,

ψi
A(x, y1, y2) ≤ gA(x, y1, y2), i = 1, · · · , 4,

0 ≤ x ≤ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ (1 − y1).

Let us check, that differential inequalities (8.11), (8.12) are fulfilled for the
function wA. It is not difficult to prove, that functions ψi

A, i = 1, 2, 4, satisfy the
Hamilton-Jacobi equation (8.5) at internal points of the domains Ei

A, i = 1, 2, 4.
As to the function ψ3

A, one can verify that it coincides with the boundary function
gA and, therefore, for it is necessary to check only the inequality, which expresses
the property of u-stability:

−∂ψ3
A

∂x
x − ∂ψ3

A

∂y1
y1 − ∂ψ3

A

∂y2
y2+

+max
{
0,

∂ψ3
A

∂x

}+ min
{
0,

∂ψ3
A

∂y1
,
∂ψ3

A

∂y2

} ≥ 0

at the internal points of the domain E3
A. This inequality is verified by direct

calculations for the function ψ3
A.

It remains to check the differential inequalities (8.11), (8.12) on the surfaces K
j
A,

j = 1, . . . , 5.
At the points of the surface K2

A the functions ψ1
A and ψ4

A are continuously pasted
together. Let us show that this pasting is also smooth.

Let us calculate partial derivatives of these functions:

∂ψ1
A

∂x
=

(
β2

A(C1
Ay1 + C2

Ay2)
2 − (C1

AαAx)2
)

4(C1
Ax)2(C1

Ay1 + C2
Ay2)

,

∂ψ1
A

∂y1
=

(
(C1

AαAx)2 − β2
A(C1

Ay1 + C2
Ay2)

2
)

4C1
Ax(C1

Ay1 + C2
Ay2)2

,
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∂ψ1
A

∂y2
= C2

A

(
(C1

AαAx)2 − β2
A(C1

Ay1 + C2
Ay2)

2
)

4(C1
A)2x(C1

Ay1 + C2
Ay2)2

,

∂ψ4
A

∂x
= 0,

∂ψ4
A

∂y1
= 0,

∂ψ4
A

∂y2
= 0.

One can see that these derivatives are equal to zero on the surface K2
A:

∂ψ1
A

∂x
|K2

A
= ∂ψ4

A

∂x
|K2

A
= 0,

∂ψ1
A

∂y1
|K2

A
= ∂ψ4

A

∂y1
|K2

A
= 0,

∂ψ1
A

∂y2
|K2

A
= ∂ψ4

A

∂y2
|K2

A
= 0.

In other words, functions ψ1
A and ψ4

A are smoothly pasted together here.
Analogously one can prove smooth pasting of the functions ψ2

A and ψ4
A on the

surface K3
A.

Let us consider the surface K4
A, where the functions ψ1

A and ψ3
A are merged. We

have already calculated values of partial derivatives ∂ψ1
A/∂x, ∂ψ1

A/∂y1, ∂ψ1
A/∂y2.

Let us estimate partial derivatives ∂ψ3
A/∂x, ∂ψ3

A/∂y1, ∂ψ3
A/∂y2:

∂ψ3
A

∂x
= C1

Ay1 + C2
Ay2 − αA,

∂ψ3
A

∂y1
= C1

Ax − βA,

∂ψ3
A

∂y2
= C2

Ax − γA.

One can verify that pasting is smooth here. Really, for partial derivatives, calculated
on the surface K4

A we have:

∂ψ1
A

∂x
|K4

A
= ∂ψ3

A

∂x
|K4

A
= C1

Ay1 + C2
Ay2 − αA,

∂ψ1
A

∂y1
|K4

A
= ∂ψ3

A

∂y1
|K4

A
= βA(C1

Ay1 + C2
Ay2 − αA)(

αA − 2(C1
Ay1 + C2

Ay2)
) ,

∂ψ1
A

∂y2
|K4

A
= ∂ψ3

A

∂y2
|K4

A
= C2

AβA(C1
Ay1 + C2

Ay2 − αA)

C1
A

(
αA − 2(C1

Ay1 + C2
Ay2)

) .

Analogously one can check the smoothness of the function wA on the surface
K5

A.
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Along the last surface K1
A functions ψ3

A and ψ4
A are pasted together. We have

already calculated partial derivatives of these functions. Values of these derivatives
on the surface K1

A are determined by relations:

∂ψ3
A

∂x
|K1

A
= C1

Ay1 + C2
Ay2 − αA,

∂ψ4
A

∂x
|K1

A
= 0,

∂ψ3
A

∂y1
|K1

A
= (C1

Ax − βA) |K1
A
= ∂ψ4

A

∂y1
|K1

A
= 0,

∂ψ3
A

∂y2
|K1

A
= (C2

Ax − γA) |K1
A
= C2

A

C1
A

βA − γA = ∂ψ4
A

∂y2
|K1

A
= 0.

The last equality is fulfilled under the condition (8.13).
Let us note that in the case of fulfillment of relations wA = ψ3

A = ψ4
A = gA

on the surface K1
A it is necessary to check only the u-stability condition (8.11). The

pasting on this surface is continuous but nonsmooth. In some neighbourhood of the
surface K1

A this pasting is based on the minimum operation for the functions ψ3
A and

ψ4
A:

wA(x, y1, y2) = min{ψ3
A(x, y1, y2), ψ

4
A(x, y1, y2)}.

For the calculation of directional derivatives for the function wA at the points
(x, y1, y2) ∈ K1

A we obtain relations (see (8.9), (8.10)), which are generated by the
minimum operation of two linear functions of directions h:

∂wA(x, y1, y2)|(h1, h2, h3) =
= min{(C1

Ay1 + C2
Ay2 − αA) · h1 + 0 · h2 + 0 · h3, 0 · h1 + 0 · h2 + 0 · h3} =

= min{(C1
Ay1 + C2

Ay2 − αA) · h1, 0}, h = (h1, h2, h3) ∈ R3.

The lower conjugate derivative of the function wA at points (x, y1, y2) ∈ K1
A in

directions s = (s1, s2, s3) ∈ R3 is determined by the following formula:

D∗wA(x, y1, y2)|(s1, s2, s3) =

=

⎧⎪⎪⎨
⎪⎪⎩

0,

if s1 = λ(C1
Ay1 + C2

Ay2 − αA)+ (1 − λ) · 0 and s2 = 0, s3 = 0,

−∞,

otherwise,

(8.17)

here the parameter λ, 0 ≤ λ ≤ 1, serves for the construction of the convex hull of
gradient vectors for the functions ψ3

A and ψ4
A.

Taking into account relations (8.6) and (8.7) for the Hamiltonian and the
conjugate vectors, we obtain that for the points (x, y1, y2) ∈ K1

A and conjugate
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vectors s = (s1, s2, s3), s1 = λ(C1
Ay1+C2

Ay2−αA), s2 = 0, s3 = 0 the Hamiltonian
H(x, y1, y2, s1, s2, s3) is determined by the following formula:

H(x, y1, y2, s1, 0, 0) = −s1x + max{0, s1} =
=

{−s1x, if s1 ≤ 0,

s1(1 − x), otherwise.
(8.18)

It is obvious that for these values the Hamiltonian (8.18) does not exceed the lower
conjugate derivative (8.17). Hence, the property of u-stability expressed by the
inequality (8.11) on the surface K1

A is proved.
The verification of conditions (8.11), (8.12) for the function wA at each point

of the prism (8.1) of the acceptable situations is completed. Thus, we have proved
that the function wA (8.14)–(8.15) satisfies the properties of u- and v-stability in the
form of conjugate derivatives for the Hamilton-Jacobi equations and, hence, it is the
value function of the game with functional (8.4) on the infinite horizon.

8.9 Example of the Value Function Construction

Let us consider as an example payoff matrices of two players. We present matrices
A, B and their main “game” parameters in the following form:

A =
(

100 58 5
18 28 40

)
, B =

(−50 30 40
100 55 0

)
,

C1
A = a11 − a21 − a13 + a23 = 117,

C2
A = a12 − a22 − a13 + a23 = 65,

αA = a23 − a13 = 35,

βA = a23 − a21 = 22,

γA = a23 − a22 = 12,

xA = βA

C1
A

= 0.19, yA
1 = αA

C1
A

= 0.3, yA
2 = αA

C2
A

= 0.54.

Let us note, that the condition (8.13) is valid for the matrix A.
Saddle point SA has the following coordinates:

SA = (xA; yA
1 ; 0) = (

βA

C1
A

; αA

C1
A

; 0) = (0.19; 0.3; 0).
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C1
B = b11 − b21 − b13 + b23 = −190;

C2
B = b12 − b22 − b13 + b23 = −65;

αB = b23 − b13 = −40;
βB = b23 − b21 = −100;
γB = b23 − b22 = −55;
xB = γB

C2
B

= 0.85; yB
1 = αB

C1
B

= 0.21; yB
2 = αB

C2
B

= 0.62.

Saddle point SB has the following coordinates:

SB(xB; 0; yB
2 ) = (

γB

C2
B

; 0; αB

C2
B

) = (0.85; 0; 0.62).

The point of the static Nash equilibrium NE has the following coordinates:

NE(xB; 0; yA
2 ) = (

γB

C2
B

; 0; αA

C2
A

) = (0.85; 0; 0.54).

On Fig. 8.3 we present surfaces of pasting of smooth components for the value
function in the dynamic game with the matrix A. The surface K4

A is depicted in dark
blue color and the surface K5

A is depicted in dark red. The surface K2
A is shown

in violet. The surface K3
A is presented in orange. The set of acceptable situation of

the first player is given in grey color. The set of acceptable situation for the second
player in the antagonistic game with the matrix A is presented by the red polygon
line. The saddle point SA lies on the intersection of the set of acceptable situations
of players for the matrix A.

All surfaces which determine the components of the value function are generated
from the saddle point SA. The feedback strategy of the first player in the dynamic
game is also connected with the saddle point SA. It has the discontinuous character,

Fig. 8.3 Value function for
the matrix A
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which is given by the switching surfaces K2
A, K3

A for control signals according to
the structure (8.16) generated by the value function (8.14)–(8.15).

8.10 Conclusion

For the considered 2×3 dynamic bimatrix game we construct the sets of acceptable
situations for players in the static setting. Basing on these constructions, we develop
an algorithm for finding the value function for the first player in the antagonistic
setting of a differential game on an infinite time interval. The stability properties
of the value function are verified using the conjugate derivatives apparatus in the
framework of the theory of generalized minimax (viscosity) solutions of Hamilton-
Jacobi equations. The illustration example is presented for construction of the
value function in the 2 × 3 dynamic bimatrix game. The next step would be the
development of the proposed methodology for dynamic bimatrix games of higher
dimensions, i.e. for a dynamic version of the well-known matrix game “rock-paper-
scissors”.
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Chapter 9
Analysis of Economic Behaviour
in Evolutionary Model of Tax Control
Under Information Diffusion

Suriya Kumacheva, Elena Gubar, Ekaterina Zhitkova, and Galina Tomilina

Abstract Nowadays many economic fields are dependent on information flows.
Information serves as a strategic tool in economics, business and many social
processes. In particular, spreading information among taxpayers can be used as
a control parameter in tax control. The probability of auditing which encourages
tax payments used to be considered as a unique tool to stimulate tax collection.
The current study represents a combined approach where tools of evolutionary
game theory and network modeling are applied to the analysis of agents’ economic
behavior. Information of possible tax auditing is disseminated across the population
of taxpayers and is supposed to be a main factor influencing their decision on
whether to evade or not. According to the previous research, interactions and
dissemination of information or rumors among taxpayers in long-term period
can be formulated as an evolutionary process. It is assumed that agents tend to
spread information or rumors over their own contact network of neighbors and
colleagues rather than over randomly chosen agents. Thus, the network model of
social interaction is constructed. Information spreading in the network of various
topology (e.g. grid, random network, etc.) is considered as an evolutionary process
where agents’ behavior is described by the stochastic imitation dynamics and
their interaction is described by different modifications of the bimatrix games
which generate evolutionary dynamics. Scenario analysis is supported by the series
of experiments. Numerous simulations help visualize the process of information
spreading across different types of network, imitation protocols and players payoffs.
The results show that information flow helps encourage tax payments in the
population.
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9.1 Introduction

Nowadays various types of tax noncompliance [1–3, 7, 24, 27, 32–34] represent
a very significant problem for many economies and fiscal policies. Over the
last decades mathematical science has been solving this problem using different
approaches and taking into consideration the related fields of knowledge. Math-
ematical modeling considers the problem of assessing tax risks and modeling
tax control from a position of institutional economics, decision and game theory,
probabilistic modeling, methods of modern applied statistics, data mining and data
analysis methods and many others. Following the tradition of combining different
approaches, this work has been designed as the intersection of game-theoretic
approach for principal-agent models, evolutionary dynamics and network modeling.

Earlier mathematical models of tax control had a number of common features.
Among those features there is a hierarchical structure. The games that imply such
models are often based on the “principle-agent” scheme, which considers risk
neutral agents as taxpayers. Usually risk neutral agents do not possess such char-
acteristics as conscientiousness and honesty, or, conversely, an excessive tendency
to risk and, possibly, fraud, and they make rational decisions taking into account the
economic envelopment. In many mathematical models of tax control, the solution
of the problem is always formulated in the form of some optimality criteria. For
example, in [24] the solution is mentioned as the agent’s optimal reporting rule. In
[7] and [27] similar results were titled as an optimal contract or an optimal scheme.
In [32–34] the solution was formulated in the form of the threshold rule.

However, the considered mathematical models have some natural limitations. In
practice, tax authorities have a strong limitation of the budget. Thus, the application
of the majority of so-called “ideal” solutions to real-life cases is a very expensive
procedure. Due to this fact, reaching the optimal proportion of the audited taxpayers
is extremely rarely achieved. This fact can be considered as Problem One which
will be studied (discussed) further. This problem encourages tax authority to find
additional ways to stimulate taxpayers to fair payments subject to the limitation
of resources. As Problem Two we choose the complete information in various
mathematical models. However, the information sources or mechanism from which
taxpayers receive information about upcoming tax audits are not usually discussed.
The formulation of both problems leads to the fact that information about future
tax audits can be disseminated among taxpayers, encouraging them to avoid of high
penalties and pay taxes in accordance with their actual income level.

The network modeling is one of the actively developing approaches for simu-
lating and visualizing the dynamic processes in social trends. To investigate tax
noncompliance, this technique was successfully used in [1, 14]. In the current
work the information spreading process plays a major role in changing the ratio
of tax evaders and non-evaders in society. Various papers [9, 15, 22] consider the
phenomenon of information dissemination as an epidemic or evolutionary processes.
According to the previous research, we considered information spreading in terms
of epidemic processes [12] by applying the modification of Susceptible-Infected-
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Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) models. They have
been transformed further into the opinion dynamic models by using the tools of
the Markov process [13]. In [10, 11] this problem was considered as a combination
of network modeling and evolutionary game theory. The current work modifies all
previous results and generalizes the recent approach.

We consider a large but finite population of taxpayers (hereafter—economic
agents) structured as an indirect network. Unlike the models, which consider
taxpayers with different propensity to risk [13, 18–20], the current study focuses
solely on the behavior of risk neutral agents, since they have the greatest impact
on the final state of the system. Generally, taxpayers with fixed propensity to
risk, such as risk-avoiding and risk-loving, behave the way determined by their
risk-status and rarely change their opinion. Whereas the risk-neutral taxpayers are
independent and rational in their choices, they are inclined to change the taxation
strategy according to the economic environment. To analyze how economic behavior
of rational taxpayers changes depending on the received information, we conduct
imitation analysis applied to the network models with different topology (e.g. grid,
random network, etc.). The social interaction is defined by imitation dynamics
[6, 28, 35], which are based on the classes of the bimatrix games with known
structures, i.e. the Prisoner’s Dilemma, the Stag Hunt game, the Hawk-Dove game.
We consider a set of scenarios describing the decision making process with different
initial data, imitation rules and definitions of payoff functions.

A series of repeated experiments were carried out to analyze the economic
behavior of agents in the simulated networks. The specially designed software runs
102 times to evaluate the statistical stability of the received stochastic results for
analyzing the tendencies in taxpayers behavior.

The paper has the following structure. Section 9.1 represents the overview of
static and dynamic models. Section 9.2 contains behavioral models of risk-neutral
agents. Section 9.3 discusses the network model of annual process of tax auditing.
Section 9.4 contains numerical simulations and their results. Section 9.5 concludes
the paper.

9.2 The Model of Risk-Neutral Agents

Based on the previous research, we assume that the majority of agents consists of the
risk-neutral taxpayers. The assumption of the rationality of agents behavior arises
from [5] which can be considered as the basic model for the current paper. The usage
of two possible levels of income ξ considered—H (high) and L (low)—among the
members of population leads to the simplification of the computation. Generally,
the gradation of the taxpayers’ income can be expanded, see [4, 17] or replaced by
a continuous variable as in [5, 27, 34]. This approach has been applied in [7, 33]
and such simplification does not impact on the essence of the results. Thereby, we
consider a model where ξ, η ∈ {L,H }, where 0 < L < H , η ≤ ξ , here ξ is a
true income and η is a declared income. Thus, the total taxable population of size
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n consists of two subgroups defined by numbers nH and nL, which are satisfied to
condition nL + nH = n.

The assessment of efficiency of the fiscal system can be evaluated by its total
revenue. First, it is necessary to analyze possible behavior and the corresponding
profit function of taxpayers. Only three options are possible:

u (L(L)) = (1 − θ) · L; (9.1)

u (H(H)) = (1 − θ) ·H ; (9.2)

u (L(H)) = H − θL− PL(θ + π)(H − L), (9.3)

where PL is the probability of audit agents, who declared η = L, constants θ and π

are tax and penalty rates correspondingly, c is the unit cost of auditing.
Following the results of [5], which are similar to the “Threshold rule” obtained

for the class of taxation models, we formulate a theorem which will be used further
as one of the main prerequisites for the current study.

Theorem 9.1 The optimal value P ∗ of the auditing probability is

P ∗ = θ

θ + π
. (9.4)

For each risk neutral taxpayer the optimal strategy is

η∗(ξ) =
{

H, PL ≥ P ∗;
L, PL < P ∗. (9.5)

The proof of this theorem was also given in [5].
Considering a classical taxation model, where an information about possible tax

auditing is excluded, we assume that the total taxable population evades due to
their risk neutrality (according to the Theorem 9.1). From (9.5) it follows that our
assumption corresponds to the pessimistic case (where the tax auditing is absent and
everyone evades) represented in [5]. In this case only agents with true income level
L pay and therefore the total tax revenue T T R0 is

T T R0 = nLθL+ nH (θ L+ PL (θ + π)(H − L))− nPL c. (9.6)

Previously, in Sect. 9.1 the necessity of elimination the problem of incomplete
information in the game-theoretical models and method of stimulation the honest
payments in the population was discussed. The following scheme was offered, if
the model admits a possibility of disseminating information over the taxpayers
then an injection of information occurs in the form “PL ≥ P ∗”, referring to the
optimistic case of equality (9.5). It means that at the initial time moment the number
of taxpayers n0

inf = n0
nev was informed about the grows of probability of tax
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auditing. Informed taxpayers become spreaders in population and according to their
rationality, formalized in the Theorem 9.1, they decide to remain honest taxpayers.

In each time moment t ∈ [0, T ] the relation between the number of evaders nev

and payers nnev will change continuously:

nH = nev(t)+ nnev(t),

or, which is the same, νnev(t) + νev(t) = 1 (where νev , νnev are the portions of
evaders and payers correspondingly).

Thus, the system has reached a steady state at time moment T , since the
information has flown through the population. The corresponding total tax revenue
T T RT is defined as follows:

T T RT = nLθL+ nH

(
νT
nevθH + νT

ev (θL+ PL(θ + π)(H − L))
)−

−n(PL c + ν0
inf cinf ).

(9.7)

Variable νT
nev defines the portion of honest taxpayers at the moment t = T ,

νT
ev corresponds with the portion of evaders at the moment t = T , value ν0

inf

is the fraction of the initially informed agents at initial time moment t0 = 0
(ν0

inf = νinf (t0)) and cinf is the unit cost of the initial injection. It is assumed
that information spreading is more cost-effective than the audit: cinf << c.

9.3 Network Model

In the previous research, the process of information spreading about the upcoming
tax audit in a taxpayer population was formulated in terms of the epidemic models
[12] or the Markov process [13], and also as the simplest evolutionary processes [10,
11, 19]. Based on [20], this paper contributes to the study of evolutionary processes
in the network extending the previous results. In this paragraph we formulate some
basic assumptions of the network evolutionary model.

Generally, a population of agents with different behaviors can be divided into
several subpopulations according to a number of behavioral types. As opposed to the
original formulation of the evolutionary game, where evolution of the population is
described through the set of random meetings in the well-mixed population, here
we suppose that the social connections of each taxpayer can be represented by
networks of different topology [20, 22, 25]. Therefore, the inter-agent interactions
are only feasible among the connected taxpayers. Hence, the evolution process
occurs over the links between nodes in the network. The evolution process describes
the transformation of Uninformed taxpayers into Informed ones according to the
stochastic imitation rules [6, 21, 28, 35]. Following the recent papers [13, 19],
the current study discusses three methods of selecting neighbors in terms of the
imitation dynamics [6]. The first method describes a random choice: the agent who
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receives information is randomly selected from a set of agents connected with the
active one. The second rule is formulated as a principle of the most influential
neighbor: information is spread by the agents with the largest number of direct
connections with their neighbors. If there are several agents with an equally large
numbers of contacts, the choice between them is made at random. The third method
is based on the neighbor with the highest income: information is spread by the agents
with the highest income.

Thus, we consider the indirect network (N,K), where N = {1, . . . , nH } is a
set of economic agents with high level of income and K ⊂ N × N is an edge set
(each edge in K represents two-players symmetric game Γ between the connected
taxpayers). It is assumed that the taxpayers choose strategies from a binary set
X = {ev, nev} and receive payoffs according to the 2 × 2 matrix of payoffs. Each
instant time moment agents use a single strategy against all opponents, and thus
the games occur simultaneously. The strategy state is x(t) = (x1(t), . . . , xnH (t))T ,
where xi(t) ∈ X is a strategy of taxpayer, who use strategy i, i = 1, nH , at time
moment t . Aggregated payoff of agent i will be defined as in [25, 26]:

ui = ωi

∑
j∈Mi

axi(t), xj (t), (9.8)

where axi(t), xj (t) is a component of payoff matrix, Mi := {j ∈ L : {i, j } ∈ K} is a
set of neighbors for taxpayer i, weighted coefficient ωi = 1 for cumulative payoffs
and ωi = 1

|Mi | for average payoffs. Vector of payoffs of the entire population is

u(t) = (u1(t), . . . , unH (t))T . In current paper the payoff matrix has one of the
structures represented further.

9.3.1 Payoff Matrices

The instant interactions between taxpayers are defined through the two-players
symmetric bimatrix game Γ (A,B), where a payoff matrix of the first player is A

and a payoff matrix of the second player is symmetric B = AT [28, 35]. In this
particular case each taxpayer can choose between two behaviors X = {ev, nev},
where nev is the behavior “not evade”, ev is the behavior “to evade”. Following
[20] we continue to use the payoff matrix with the known structure to simplify
the prediction of taxpayers behavior. Here we use the modification of tree classical
bimatrix games such as the Prisoner’s Dilemma, the Stag Hunt game, the Hawk-
Dove game. Since the structure of these bimatrix games is well-known as well as the
structure of its equilibrium sets, then they help estimate the impact of the network
structure and the imitation rules.
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Modifying the Prisoner’s Dilemma game [23] we obtain the following payoff
matrix:

nev ev

nev u+ SW, (u+ SW) (u− SW, u(L(H)))

ev (u(L(H)), u − SW) (u, u)

where nev is the strategy “to cooperate”, which in our case corresponds to the
behavior “to pay taxes” or “not evade”, ev is the strategy “to defect” and describes
the behavior “to evade”. Payoff u = 1/2u(L(L))+1/2u(H(H)) defines the average
profit of a “mean” agent, variable SW reflects a social welfare, obtained in the
participation in social consolidation. The payoff matrix defines all possible meetings
between taxpayers with different attitude to tax payments (i.e. the meeting between
honest taxpayers or two evaders, etc.).

Hereafter in the next two games we follow the same technique.
The modified version of the Stag Hunt game [30] is represented below:

nev ev

nev (u+ SW, u+ SW) (0, u− SW)

ev (u− SW, 0) (u− SW, u− SW)

Here the strategy nev, which is corresponding to social strategy “to hunt a stag”
in classical form of the game, means “to pay taxes/not evade” in our framework,
similarly the strategy ev, which describes the individual behavior “to hunt a hare”
in original game, in our interpretation recommends taxpayer “to evade”.

Finally, the following matrix is the modified case of the Hawk-Dove game:

ev nev

ev

(
u(L(H)) − (θ + π)(H − L)

2
,
u(L(H)) − (θ + π)(H − L)

2

)
(u + SW, 0)

nev (0, u+ SW)

(
u+ SW

2
,
u+ SW

2

)

The strategy ev, which originally corresponds “to be a Hawk” and dictates to an
agent the usage of an aggressive behavior, in our case, leads taxpayer “to evade”.
The strategy nev fits to the behavior of a Dove and imposes to remain passive, that
in our case can be considered as the behavior “to pay taxes/not evade”. Additionally,
we assume that the condition u(L(H)) << (θ + π)(H − L) should be satisfied
and it works for the large values of the parameters θ and π or if the value of the
difference (H − L) is large.
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9.3.2 Behavioral Dynamics

In evolutionary game agents of population adopt their behavior to the better
performing strategies. Many studies, for example, [8] and [29], focus on the
dynamics with a strategy updated rules, which dictate agents to choose from their
self-inclusive neighborhood an exemplary player who received the greatest payoff.
If this payoff is not greater than the payoff of the updating player, then the player
keeps his/her own strategy.

Population changes according to the rule, which is a function of the strategies
and payoffs of neighboring agents:

xi(t + 1) = f ({xj (t), uj (t) : j ∈ Mi ∪ {i}}), t > 0. (9.9)

This rule corresponds to a strategy of each player at time t + 1, which depends
on its neighborhood players’ information at the moment t , including their strategies
and payoffs.

Remark 9.1 The assumption for the update rule is that it is payoff monotonic [35].
It means that if there exists a better performing strategy in the neighborhood of agent
i, then the agent will switch to that strategy with a probability σ > 0.

This rule appoints a method of adaptation agents behavior to the changes in
his/her environment, which means that taxpayer can switch on the another strategy
if at least one neighbor has the better payoff. As the basis of the dynamics we use
the proportional imitation rule [28, 29, 35], in which each agent chooses a neighbor
randomly and if this neighbor receives a higher payoff by using a different strategy,
then the agent will switch with a probability proportional to the payoff difference.
In [25] the proportional imitation rule was presented as

p (xi(t + 1) = xj (t)) :=
[

λ

|Mi |(uj (t)− ui(t))

]1

0
(9.10)

for each agent i ∈ K , where j ∈ Mi is a uniformly randomly chosen neighbor,
λ > 0 is an arbitrary rate constant, and the notation [z]10 indicates max(0, min(1, z)).

Remark 9.2 Imitation rule can be considered as a revision protocol, which is a map
ρ: Rn × X → Rn×n+ . The scalar ρij (ui(x), x) is called the conditional switch rate
from strategy i ∈ X to strategy j ∈ X given payoff vector u(x) and population
state x.

This proportional imitation rule is a widely studied model with important
property that the dynamics in well-mixed population can be approximated by the
replicator dynamics.
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Thereby we can determine the following term:

Definition 9.1 A network evolutionary game is a system ((N,K), Γ ) which
includes

• a network (graph) (N,K);
• a game G such that if (i, j) ∈ K , then i and j play Γ iteratively with strategies

xi(t) and xj (t) respectively

and takes into account an information based strategy updating rule, which can be
expressed as (9.9).

In contrast to previous research [6, 28, 35], in the current work, we define three
modifications of imitation rules, each of them is based on either a choice made by
an exemplary agent, or taxpayers’ payoffs, etc. The main assumption of the current
study is the application of these imitation rules only to the subgroup of risk-neutral
taxpayers, as far as, in our hypothesis, this group is the most influenceable on the
tax collections in the entire population. Proportions of risk-loving and risk-averse
taxpayers are fixed at the initial time moment.

The strategy of player i at time t + 1, xi(t + 1), is selected as the best strategy
from strategies of neighborhood players j ∈ Ni at time t according to the chosen
imitation rule.

• Rule 1. A random neighbor. When a taxpayer i receives an opportunity to revise
his/her strategy then he/she chooses an exemplary agent at random with equal
probability to all connected neighbors.

• Rule 2. Neighbor with the highest payoff. When agent i receives an opportunity
to revise his/her strategy then he/she considers current payoffs of all taxpayers
and chooses an agent (or a set of agents) with maximum payoff. If there are
several agents with the maximum payoff then an exemplary agent is chosen at
random among this subset.

• Rule 3. The most influenceable neighbor. Firstly, taxpayer i estimates a number
of connections of all the nearest neighbors and selects an exemplary agent from
the set of agents with the maximum number of links. If there are several agents
with the maximum links, then an opponent is selected at each iteration of the
dynamic process at random among the subset of the most influenceable agents.

9.4 Numerical Simulations and Experimental Results

In this section we represent the numerical simulations which illustrate the scenario
analysis of taxpayers behavior. Each series of experiments corresponds to the
specific network configuration such as grid, strongly and weakly connected random
graphs or different imitation rules or the instant games. Each agent evaluates
his/her own profit, which is determined by the matrix of the instant game and
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Table 9.1 Two modeled groups and average income

Group Income interval (rub./month) Average income (rub.) Proportion of population (%)

L Less 25,000 L = 12,500 51

H More 25,000 H = 50,000 49

information about the neighboring agents’ choice, following to the next calculating
algorithms:

• Cumulative: the computed sum of the profits from each interaction;
• Average: the sum of the profits from interactions divided by their number.

The values of parameters are fixed throughout experiments: a tax rate is θ = 13%,
penalty rate is π = 13%, optimal value of the probability of audit is P ∗ = 0.5,
actual value of the probability of audit for agents who declared L is PL = 0.1,
unit cost of auditing is c = 7455 (rub.), as a unit cost of information injection we
consider cinf = 10%c = 745.5 (rub.).

Two possible taxpayers’ income levels L and H are calculated as the mean values
of the uniform and Pareto distributions [16] by using the empirical data based on the
distribution of the income among the population of Russian Federation in 2018 [31].
The proportions of the entire population (see Table 9.1) correspond with the results
from [19].

The stopping point of the iteration process can be defined by the condition√√√√ n∑
i=1

(xi(t)− xi(t + 1)) ≤ 10−2, where xi(t) is the i-th agent’s profit at iteration t

for each t ∈ [0, T ].
To illustrate the application of the model of information spreading, we run

different experiments 102 times for each initial distribution of honest taxpayers
and evaders. This allows us to discuss the statistically stable trends received after
conducting a scenario analysis of the taxpayers’ behavior, taking into account their
rationality. These initial distributions are represented by the networks with different
topology and are examined in the series of numerical simulations.

The network consists of 25 nodes, which correspond to the number of the
taxpayers with high level of income nH = 25, and helps to visualize the
evolutionary process and use to illustrate the main results. The specially designed
software allows to simulate a process with a larger number of nodes and receives
data for statistical analysis. For this modeled population different agents’ strategies
are depicted as colored dots—agents who use the strategy “to pay taxes” are drown
as yellow dots, and agents who use the strategy “to evade” are drown as blue
dots correspondingly. We study the dynamic process in the population using the
following modifications of the network:

• strongly connected network, where the probability of link formation is 1/10;
• weakly connected network, where the probability of link formation is 1/3;
• grid.
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Fig. 9.1 Series 1.
Example 9.1. The Prisoner’s
Dilemma; initial state:
(nnev, nev) = (5, 20)

Fig. 9.2 Series 1.
Example 9.1. The Prisoner’s
Dilemma; final state:
(nnev, nev) = (0, 25)

Fig. 9.3 Series 1.
Example 9.2. The
Hawk-Dove game; initial
state: (nnev , nev) = (5, 20)

Each experiment is designed for the same number of nodes. Thus, according to the
formula (9.6) the initial value of total tax revenue T T R0 = 69219.75 is constant in
each of the examples.

Figures 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14
demonstrate the evolution of the proportions of taxable population during the
iteration process.
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Fig. 9.4 Series 1.
Example 9.2. The
Hawk-Dove game; final state:
(nnev, nev) = (20, 5)

Fig. 9.5 Series 2.
Example 9.1. The Rule 3. The
most influenceable neighbor;
initial state:
(nnev, nev) = (8, 17)

Fig. 9.6 Series 2.
Example 9.1. The Rule 3. The
most influenceable neighbor;
final state:
(nnev, nev) = (0, 25)

9.4.1 Series 1

Here the series of numerical simulation implemented with the following combi-
nation of parameters: the network topology is a weakly connected graph and the
imitation rule is a random neighbor. Figures 9.1, 9.2, 9.3, 9.4 represent the initial
and final states of the system subject to an average method of computing of the
agent’s profit. Initial state of system is (nnev, nev) = (5, 20).
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Fig. 9.7 Series 2.
Example 9.2. Rule 2.
Neighbor with the highest
payoff; initial state:
(nnev, nev) = (8, 17)

Fig. 9.8 Series 2.
Example 9.2. Rule 2.
Neighbor with the highest
payoff; final state:
(nnev, nev) = (25, 0)

Fig. 9.9 Series 2.
Example 9.3. Rule 1. Random
neighbor; initial state:
(nnev, nev) = (8, 17)

Example 9.1 This example uses the Prisoner’s Dilemma as an instant.
The system reaches its steady state at the moment t = T and the final value of

the total tax revenue computed by the formula (9.6) is T T RT = 65518.25 rubles.
Comparing this value with the initial value T T R0 we can see that in this experiment
the total tax revenue decreases.This result does not contradict the previous research
as far as the result of the information spreading over the population is the decreasing
of the portion of non-evaders.
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Fig. 9.10 Series 2.
Example 9.3. Rule 1. Random
neighbor; final state:
(nnev, nev) = (25, 0)

Fig. 9.11 Series 3.
Example 9.1. Grid; initial
state: (nnev , nev) = (13, 12)

Fig. 9.12 Series 3.
Example 9.1. Grid; final state:
(nnev, nev) = (9, 16)
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Fig. 9.13 Series 3.
Example 9.2. Weakly
connected network; initial
state: (nnev , nev) = (13, 12)

Fig. 9.14 Series 3.
Example 9.2. Weakly
connected network; final
state: (nnev , nev) = (15, 10)

Example 9.2 An instant game we use is the Hawk-Dove game with the same
parameters as in the previous example.

The total tax revenue is T T RT = 143518.25 rubles at the final moment.
Therefore, in this case spreading of information is cost-effective unlike to the
previous experiment. This situation is caused by the number of honest taxpayers
having increased from nnev = 5 to nnev = 20.

9.4.2 Series 2

In this series of experiments the following parameters are constant: the network is
a strongly connected graph, the instant game is the Stag Hunt game, the payoff is
cumulative. Figures 9.5, 9.6, 9.7, 9.8, 9.9, 9.10 present initial and final states of the
system for application of the different imitation rules. Initial state of system for each
example is (nnev, nev) = (8, 17).

Example 9.1 In this example the rule “The most influenceable neighbor” is applied.
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The value of T T RT = 63281.75 rubles, therefore, in this example the total tax
revenue decreases along with the portion of non-evaders.

Example 9.2 Here the rule “Neighbor with the highest payoff” is applied.
In this case T T RT = 160781.75 rubles, nnev is increasing, thus, for this example

spreading of information is cost-effective.

Example 9.3 Now we apply the rule “Random neighbor”.
T T RT = 160781.75 rubles, nnev = 25. It means that in this case spreading of

information is also cost-effective.

9.4.3 Series 3

In this series we study the different network modifications for the following initial
conditions: the instant game is the Hawk-Dove game, the type of payoff is average
and the imitation rule is “The most influenceable neighbor”. Figures 9.11, 9.12, 9.13,
9.14, 9.15, 9.16 present initial and final states of the system for application of the
different imitation rules. Initial state of system for each example is (nnev, nev) =
(13, 12).

Example 9.1 In this example the initial parameters are the same as in the previous
cases and they are visualized by the grid network.

In this example T T RT = 94654.25 rubles and we can see that the spreading of
information is cost-effective. Here the value of nnev increases.

Example 9.2 In this example we consider weakly connected graph as a network.
The example shows that the spreading of information is also cost-effective as far

as T T RT = 118054.25 rubles and nnev increases.

Example 9.3 Here an example with strongly connected network is represented.
In this example nnev increases, T T RT = 106354.25 rubles, thus, spreading of

information is also cost-effective.

Fig. 9.15 Series 3.
Example 9.3. Strongly
connected network; initial
state: (nnev , nev) = (13, 12)
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Fig. 9.16 Series 3.
Example 9.3. Strongly
connected network; final
state: (nnev , nev) = (12, 13)

9.4.4 Results on Numerical Simulations

Based on the aggregated data (see Table 9.2) the following tendencies have been
revealed. If the Prisoner’s Dilemma is used as an instant game, then the agents’
behavior depends on the network topology or the imitation rule. Any stochastic
element in the structure of scenario (for example, if the network is a random graph,
or if the imitation protocol is the “Random neighbor”) leads to the fact that the
steady state of the evolutionary game is the equilibrium (ev, ev), which means that
both agent prefer to evade. If the dynamic process occurs in the grid then the steady
state is the equilibrium (nev, nev) and it means that agents incline to prefer social
behavior and pay taxes honestly.

The choice of the Stag Hunt game as an instant game simulated evolutionary
process and provides the following results. In the majority experiments agents
choose honest behavior and pay their taxes, the equilibrium profile (nev, nev)

corresponds to this case. Agents are inclined to use the strategy “to evade” only
in few experiments. Moreover, imitation rule “Neighbor with the highest payoff”
leads to the mixed strategy profile as a steady state, where honest agents prevail
regardless of the network topology.

If the instant game is the Hawk-Dove game, then we obtain a steady state as an
equilibrium profile, which depends on the network parameters. Thus, if information
is propagated in random networks, then two pure asymmetric equilibriums (ev, nev)

or (nev, ev) are possible as a steady state. The mixed equilibrium profile can be used
as a steady state only if the topology of the network is grid. In this case we can say
that in contrast to the powerful influence of network topology, an imitation rule does
not impact on the propagation process.
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9.5 Conclusions

In the current paper, the model of tax control, which includes the information
dissemination about the future tax auditing have been applied to the analysis of
economic agents’ behavior. The process of information spreading was formulated
as an evolutionary process on the networks with different topology, the dynamics
of the process was described by the specially designed imitation rules. The scenario
analysis of the taxpayers behavior has shown that the propagation of information
about possible tax audit has a positive effect on the tax collecting. The total amount
of honest taxpayers increases which leads to the growth of the total revenue of fiscal
system. Moreover, if the structure of payoff matrix and the imitation rule are known
it is simpler to analyse how information dissemination impacts on the effectiveness
of tax control.
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Chapter 10
Cooperation Enforcing in Multistage
Multicriteria Game: New Algorithm
and Its Implementation

Denis Kuzyutin, Ivan Lipko, Yaroslavna Pankratova, and Igor Tantlevskij

Abstract To enforce the long-term cooperation in a multistage multicriteria game
we use the imputation distribution procedure (IDP) based approach. We mainly
focus on such useful properties of the IDP like “reward immediately after the move”
assumption, time consistency inequality, efficiency and non-negativity constraint.
To overcome the problem of negative payments along the optimal cooperative trajec-
tory the novel refined A-incremental IDP is designed. We establish the properties of
the proposed A-incremental payment schedule and provide an illustrative example
to clarify how the algorithm works.

Keywords Dynamic game · Multistage game · Multicriteria game · Cooperative
solution · Shapley value · Time consistency · Imputation distribution procedure

10.1 Introduction

The theory of multicriteria games (multiobjective games or the games with vector
payoffs) develops at the overlap of classical game theory and multiple criteria
decision analysis. It can be used to model various real-world decision-making
problems where several objectives (or criteria) have to be taken into account
(see, e.g., [1, 2, 14, 26] a player aims at simultaneously increasing production,
obtaining large quote for the use of a common resource, saving costs of water
purification, saving health care costs, etc. Starting from [29], much research has
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been done on non-cooperative multicriteria games (see, e.g., [8, 12, 24, 31]).
Different cooperative solutions for static and dynamic multicriteria games were
examined in [9–11, 13, 22].

This paper is mainly focused on the dynamic aspects of cooperation enforcing in
an n-person multistage multicriteria games in extensive form (see, e.g., [6, 7, 20])
with perfect information. In order to achieve and implement a long-term cooperative
agreement in a multicriteria dynamic game the players have to solve the following
problems. First, when players seek to reach the maximal total vector payoff of the
grand coalition, they face the problem of choosing a unique Pareto optimal payoffs
vector. In the dynamic setting it is necessary that a specific method the players
agreed to accept in order to choose a particular Pareto optimal solution not only
takes into account the relative importance of the criteria, but also satisfies time
consistency [5, 6, 9, 17–20, 25, 27], i.e., a fragment of the optimal cooperative
trajectory in the subgame should remain optimal in this subgame. In the paper, we
assume that the players employ the refined leximin (RL) algorithm, introduced in
[11], to select a unique Pareto optimal solution for each multicriteria optimization
problem they face. This approach allows constructing time consistent cooperative
trajectory and vector-valued characteristic function. Another appropriate method—
the rule of the minimal sum of relative deviations from the ideal payoffs vector—was
suggested in [13].

After choosing the cooperative trajectory it is necessary to construct a vector-
valued characteristic function. For instance, when analyzing the Example 10.1, we
employ a friendly computable ζ -characteristic function introduced in [3] as well
as the RL-algorithm in order to choose a particular Pareto efficient solution for the
auxiliary vector optimization problems. To determine the optimal payoff allocation
we adopt the vector analogue of the Shapley value [9, 22, 28]. Such an approach
is based on the assumption that the payoff can be transferred between the players
within the same criterion. It is worth noting that the main measurable criteria used
in multicriteria resource management problems usually satisfy this component-wise
transferable utility property.

Lastly, to guarantee the sustainability of the achieved long-term cooperative
agreement the players are expected to use an appropriate imputation distribution
procedure (IDP), i.e. a payoff allocation rule that determines the actual current
payments to every player along the optimal cooperative trajectory. The IDP based
approach was extensively studied for single-criterion differential and multistage
games (see, e.g. [15, 16, 18, 20, 21]) and was extended to multicriteria multistage
games in [9, 10]. The detailed review of useful properties the IDP may satisfy for
multistage multicriteria games is presented in [9–13].

In particular, two novel properties an acceptable payment schedule for the
multistage game should satisfy which take into account the sequence of the players’
actions along the optimal cooperative trajectory were suggested in [12]. Firstly, a
player which moves at position x according to the cooperative scenario expects
to receive some reward for the “correct” move immediately after this move, while
the other players (which are inactive at x) should get zero current payments.
Furthermore, if the position x is the last player i’s node along the cooperative
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trajectory this player should get the rest of her optimal payoff right after her last
move. These properties were formalised in the so-called Reward Immediately after
the Move (RIM) assumption (see [12] for details).

In this paper we mainly focus on the RIM assumption, efficiency and non-
negativity constraint as well as time consistency property. The first so-called
“incremental” IDP was suggested in [18] to ensure time consistency of the solution
in differential single-criterion game, then this simple IDP was extended to different
classes of dynamic games. The A-incremental IDP that satisfies RIM assumption,
efficiency constraint and time consistency for multicriteria multistage game was
designed in [12]. However, as it is demonstrated in the paper, the A-incremental
IDP, as well as the classical incremental IDP may imply negative current payments
to some players at some nodes (see [4, 9, 20] for details). One approach how
to overcome this negative feature of the incremental IDP—the refined payment
schedule for multicriteria games—was constructed in [9]. Another regularisation
method for single-criterion multistage game was proposed in [4]. In this paper
we provide a refinement of the A-incremental imputation distribution procedure
for multicriteria multistage game. This “refined A-incremental IDP” is proved to
satisfy the RIM assumption, non-negativity constraint, efficiency condition and time
consistency inequality.

Hence, the main contribution of this paper is twofold:

– we reveal one possible disadvantage of the A-incremental payment schedule,
namely that it may imply negative current payments to the players. To overcome
this drawback we design the novel A-refined imputation distribution procedure
which satisfies a number of usefull properties (in particular, non-negativity).

– we provide the step-by-step algorithm how to implement this novel allocation
rule. Then we compare the implementation of the simple A-incremental IDP and
the refined A-incremental IDP for given 3-person bicriteria multistage game.

The rest of the paper is organized as follows: The class of r-criteria multistage n-
person games in extensive form with perfect information is formalized in Sect. 10.2.
The optimal cooperative trajectory and vector-valued characteristic function are
constructed in Sect. 10.3 using the refined leximin algorithm. We provide an
illustrative example of the 3-person bicriteria multistage game here. Different useful
properties of imputation distribution procedure are formulated in Sect. 10.4. In
Sect. 10.5, we discuss the implementation of the A-incremental IDP and reveal the
problem of negative payments. We provide a refined A-incremental IDP and the
algorithm of its implementation in Sect. 10.6 and a brief conclusion in Sect. 10.7.

10.2 Multistage Game with Vector Payoffs

We consider a finite multistage r-criteria game in extensive form with perfect
information following [7, 9, 20]. First we define the following notations that will
be used throughout the paper:
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• N = {1, . . . , n} is the finite set of players;
• K is the game tree with the root x0 and the set of all nodes P ;
• S(x) is the set of all direct successors (descendants) of the node x and S−1(y) is

the unique predecessor (parent) of the node y �= x0 such that y ∈ S(S−1(y));
• Pi is the set of all player i’s decision nodes, Pi ∩ Pj = ∅ for i �= j , and Pn+1 =
{yj }mj=1 is the set of all terminal nodes, S(yj ) = ∅ ∀yj ∈ Pn+1, ∪n+1

i=1 Pi = P ;
• ω = (x0, . . . , xt−1, xt , . . . , xT ) is the trajectory (or path) in the game tree,

xt−1 = S−1(xt ), 1 � t � T ; xT = yj ∈ Pn+1, the lower index t in xt denotes
the number of the node within the trajectory ω and can be interpreted as the “time
index”, T is an ordinal number of the last node of the trajectory ω;

• hi(x) = (hi/1(x), . . . , hi/r (x)) is the i-th player’s vector payoff at the node
x ∈ P\{x0}.
We assume that

hi/k(x) ≥ 0; ∀i ∈ N; k = 1, . . . , r; x ∈ P\{x0}.

Let us use MGP (n, r) to denote the class of all finite multistage n-person r-
criteria games in an extensive form with perfect information. Since we will focus on
the games with perfect information we restrict ourselves to the class of pure strate-
gies (see, e.g., [7, 20]). The pure strategy ui(·) of player i is a function with domain
Pi that specifies for every node x ∈ Pi the next node ui(x) ∈ S(x) which the player
i should choose at x. Let Ui denote the (finite) set of all i-th player’s pure strategies,
U = ∏

i∈N Ui . Every strategy profile u = (u1, . . . , un) ∈ U generates the trajectory
ω(u) = (x0, . . . , xt , xt+1, . . . , xT ) = (x0, x1(u), . . . , xt (u), xt+1(u), . . . , xT (u)),
where xt+1 = uj (xt ) ∈ S(xt ) if xt ∈ Pj , 0 ≤ t ≤ T − 1, xT ∈ Pn+1, and,
respectively, a collection of all players’ vector payoffs.

Denote by

Hi(u) = (Hi/1(u), . . . ,Hi/r (u)) = h̃i(ω(u)) =
T∑

τ=1

hi(xτ (u)),

the value of player i’s vector payoff function, given by the strategy profile u =
(u1, . . . , un).

In the multistage multicriteria game Γ x0 defined above every intermediate node
xt ∈ P\Pn+1 generates a subgame Γ xt with the subgame tree Kxt and the subroot
xt as well as a factor-game with the factor-game tree KD = {xt }∪(K\Kxt ) (see, for
instance [20]). Decomposition of the original extensive game Γ x0 at node xt into the
subgame Γ xt and the factor-game Γ D generates the corresponding decomposition
of pure strategies.

Let P
xt

i (PD
i ), i = 1, . . . , n denote the restriction of Pi on the subtree Kxt (KD),

and u
xt

i (uD
i ), i = 1, . . . , n, denote the restriction of the player i’s pure strategy

ui(·) in Γ x0 on P
xt

i (PD
i ). The strategy profile uxt = (u

xt

1 , . . . , u
xt
n ) generates

the trajectory ωxt (uxt ) = (xt , xt+1, . . . , xT ) = (xt , xt+1(u
xt ), . . . , xT (uxt )) and,



10 Cooperation enforcing in multistage multicriteria game 145

respectively, a collection of all player’s vector payoffs in the subgame. Denote by

H
xt

i (uxt ) = h̃
xt

i (ωxt (uxt )) =
T∑

τ=t+1

hi(xτ (u
xt )), (10.1)

the value of player i’s vector payoff function in the subgame Γ xt , and by U
xt

i the
set of all player i’s pure strategies in Γ xt , Uxt = ∏

i∈N U
xt

i . Note that

Hi(u) = h̃i(ω(u)) =
T∑

τ=1

hi(xτ (u)) =
t∑

τ=1

hi(xτ (u))+
T∑

τ=t+1

hi(xτ (u
xt )) = h̃i (ω

xt (u))+ h̃
xt

i (ωxt (uxt )),

(10.2)

where ωxt (u) = (x0, x1, . . . , xt−1, xt ) denotes a part of trajectory ω(u) before the
subgame Γ xt starts.

Remark 10.1 Since Pi = P
xt

i ∪ PD
i while P

xt

i ∩ PD
i = ∅, one can compose

the player i’s pure strategy Wi = (uD
i , v

xt

i ) ∈ Ui in the original game Γ x0 from
his strategies v

xt

i ∈ U
xt

i and uD
i ∈ UD

i in the subgame Γ xt and factor-game Γ D

respectively [20].
Let a, b ∈ Rm; we use the following vector inequalities: a � b if ak � bk,∀k =

1, . . . ,m; a > b if ak > bk,∀k = 1, . . . ,m; a ≥ b, if a � b and a �= b. The last
vector inequality implies that vector b is Pareto dominated by a.

10.3 Designing a Cooperative Solution

If the players agree to cooperate in multicriteria game Γ x0 , they maximize w.r.t. the
binary relation ≥ the total vector payoff

∑n
i=1 Hi(u). Denote by PO(Γ x0) the set

of all Pareto optimal strategy profiles from U , i.e.:

u ∈ PO(Γ x0) if � v ∈ U :
∑
i∈N

Hi(v) ≥
∑
i∈N

Hi(u)

The set PO(Γ x0) is known to be nonempty (see, e.g., [23]) and in general it
contains multiple strategy profiles. Since the set PO(Γ x0) may contain more than
one strategy profile, the players face the problem how to select a unique Pareto
optimal cooperative strategy profile ū ∈ PO(Γ x0) and corresponding optimal
cooperative trajectory ω̄ = ω̄(ū) = (x̄0, x̄1, . . . , x̄T ). In a dynamic game it is
essential that a specific method the players agreed to employ in order to choose
a particular Pareto optimal solution has to satisfy time consistency, that is, a
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fragment ω̄xt (ūxt ) = (x̄t , x̄t+1, . . . , x̄T ) of the optimal trajectory ω̄ in the subgame
Γ x̄t ∈ G(ū) should remain optimal trajectory for this subgame.

We employ the so-called Refined Leximin algorithm, introduced in [11] to find
optimal cooperative trajectory in Example 10.1. This approach looks reasonable for
the special case when the criteria have significantly different importance, and all
the players rank the criteria in the same order. In other circumstances, the players
may employ other appropriate methods to choose a unique Pareto optimal solutions
(an example of such methods—the rule of minimal sum of relative deviations from
the ideal payoffs vector—was suggested in [13]). Note that the main result of the
paper—Proposition 10.1—does not depend on the particular time consistent rule
which the players have agreed to use in order to choose a unique Pareto optimal
solution.

Let us briefly remind the main idea of the RL algorithm and the notations (the
reader could find the comprehensive specification of this algorithm in [11, 12]).
Suppose that all the criteria are ordered in accordance with their relative importance
for the players, namely let criterion 1 be the most important for every player i ∈ N ,
the next to be the 2-nd criterion, and so on, and the last criterion r be the least
important one. When choosing the optimal cooperative trajectory the players are
expected to maximise the total vector payoff primarily on the first criterion, i.e.

max
u∈U

∑
i∈N

Hi/1(u) =
∑
i∈N

Hi/1(ū) = H̄1.

If there exists a unique trajectory ω̄ = ω(ū) satisfying this condition then this
trajectory is called the optimal cooperative trajectory while ū) is the optimal
cooperative strategy profile.

If there are several trajectories ω(u) with
∑

i∈N Hi/1(u) = H̄1 the players should
choose such trajectory from this set PO1(Γ

x0) that

max
u∈PO1(Γ x0 )

∑
i∈N

Hi/2(u) = H̄2,

and so on. Lastly, if there are several trajectories ω ∈ {ω(u), u ∈ POr(Γ
x0)}, the

players should choose the trajectory from this set with minimal number j of the
terminal node yj .

We will suppose henceforth that the players have agreed to use the RL algorithm
in order to choose the optimal cooperative strategy profile ū ∈ PO(Γ x0) and the
corresponding optimal cooperative trajectory ω̄ = ω(ū) = (x̄0, . . . , x̄T ).

Let

MaxL
u∈U

∑
i∈N

Hi(u) =
∑
i∈N

Hi(ū) (10.3)
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denote the maximal (in the sense of the RL algorithm) total vector payoff. Note that
the Pareto optimal cooperative trajectory ω̄ = ω(ū) = (x̄0, . . . , x̄T ) based on the
RL algorithm was proved to satisfy time consistency [11].

Let us use the following example to demonstrate how the players choose the
cooperative trajectory and then to explore and compare the A-incremental IDP and
the refined A-incremental payment schedule.

Example 10.1 (A 3-Player Bicriteria Multistage Game) The game tree K is shown
in Fig. 10.1. Let n = 3, r = 2, P1 = {x0, x2, x4, x6}, P2 = {x1, x5}, P3 = {x3},
Pn+1 = {z1, . . . , z9},

h(xt ) =
(

h1/1(xt ) h2/1(xt ) h3/1(xt )

h1/2(xt ) h2/2(xt ) h3/2(xt )

)
,

i.e. the columns correspond to the players while the rows correspond to the
criteria. The players’ payoffs at all nodes x ∈ P\{x0} are:

h(x1) =
(

0 6 0
0 0 12

)
, h(x2) =

(
6 0 0
0 0 12

)
, h(x3) =

(
0 6 0
0 0 12

)
,

h(x4) =
(

6 0 0
0 12 0

)
, h(x5) =

(
0 6 0
0 0 12

)
, h(x6) =

(
6 0 0
0 0 12

)
,

x0 x1

x2 x3 x4

x5 x6 x7 = z9

z1

z3

z2

z5

z6

z7

z8

z4

Fig. 10.1 The game tree



148 D. Kuzyutin et al.

h(x7) =
(

30 30 30
60 30 30

)
, h(z1) =

(
18 0 0
18 0 0

)
, h(z2) =

(
0 18 0
0 18 0

)
,

h(z3) =
(

18 0 0
18 0 0

)
, h(z4) =

(
0 0 18
0 0 18

)
, h(z5) =

(
0 18 0

60 18 0

)
,

h(z6) =
(

18 0 0
18 0 0

)
, h(z7) =

(
90 6 0
162 0 6

)
, h(z8) =

(
18 0 0
150 0 0

)
,

There are three pure strategy Pareto optimal strategy profiles in PO(Γ x0):

ū1(x0) = x1, ū2(x1) = x2, ū1(x2) = x3, ū3(x3) = x4, ū1(x4) = x5,

ū2(x5) = x6, ū1(x6) = x7

that generates trajectory ω̄(ū) = (x0, x1, x2, x3, x4, x5, x6, x7),

u′1(x0) = x1, u′2(x1) = x2, u′1(x2) = x3, u′3(x3) = x4, u′1(x4) = z7,

that generates trajectory ω̄(u′) = (x0, x1, x2, x3, x4, z7) and

u′′1(x0) = x1, u′′2(x1) = x2, u′′1(x2) = x3, u′′3(x3) = x4, u′′1(x4) = x5,

u′2(x5) = x6, u′′1(x6) = z8

that generates trajectory ω̄(u′′) = (x0, x1, x2, x3, x4, x5, z8).
Using RL algorithm the players choose the optimal cooperative strategy profile

ū = (ū1, ū2, ū3) which generates the optimal cooperative trajectory ω̄ = ω(ū) =
(x0, x1, x2, x3, x4, x5, x6, x7) = (x̄0, x̄1, x̄2, x̄3, x̄4, x̄5, x̄6, x̄7).

After selecting a cooperative trajectory it is necessary to construct a vector-
valued characteristic function for a multicriteria cooperative game. In Example 10.1
we use a vector-valued analogue of the so-called ζ -characteristic function intro-
duced in [3] and again the RL algorithm (see [11] for details). Namely:

V x0(S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, S = ∅
MinL

uj ,j∈N\S
∑
i∈S

Hi(ūS, uN\S), S ⊂ N,

MaxL

u∈U

∑
i∈N

Hi(u), S = N

(10.4)

where

MinL

uj ,j∈N\S
∑
i∈S

Hi(ūS, uN\S) = − MaxL

uj ,j∈N\S(−
∑
i∈S

Hi(ūS, uN\S)).
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Let Γ x0(N, V x0) denote multicriteria game Γ x0 ∈ MGP (n, r) with characteris-
tic function V x0 . It is worth noting that one can use other approaches to construct
characteristic function (CF) for multicriteria game, say classical α-CF or δ-CF [21],
but as it was mentioned in [3] the ζ -characteristic function is much more easy to
compute (it is essential especially for multicriteria case). Note that the main result
of the paper—Proposition 10.1—does not depend on the specific method which the
players employ to calculate the vector-valued characteristic function.

We assumed that the players adopt a single-valued cooperative solution ϕx0 (for
instance, the vector analogue of the Shapley value [9, 28]) for the cooperative game
Γ x0(N, V x0) which satisfies the efficiency property

n∑
i=1

ϕ
x0
i = V x0(N) =

T∑
τ=1

n∑
i=1

hi(x̄τ ), (10.5)

and the individual rationality property

ϕ
x0
i � V x0({i}), i = 1, . . . , n. (10.6)

Denote by Γ x̄t (N, V x̄t ), x̄t ∈ ω̄(ū), t = 0, . . . , T − 1 a subgame along the
optimal cooperative trajectory with the characteristic function V x̄t which can be
computed in the subgame using (10.4). Note that V x̄t (N) = ∑T

τ=t+1
∑

i∈N hi(x̄τ ).

In addition, we assume that the same properties (10.5) and (10.6) are valid for
the cooperative solutions ϕx̄t at each subgame Γ x̄t (N, V x̄t ), t = 0, . . . , T − 1.

10.4 Imputation Distribution Procedure and Its Properties

Let β = {βi/k(x̄τ )}, i = 1, . . . , n; k = 1, . . . , r; τ = 1, . . . , T denote the
Imputation Distribution Procedure—IDP [9, 18, 20, 25] or the payment schedule.
The IDP-based approach implies that the players have agreed to accumulate the
cooperative vector payoff

∑
i∈N Hi(ū) = V x0(N), obtained using the initial payoffs

hi(x̄τ ), and then allocate this summary payoff between the players along the
optimal cooperative trajectory ω̄(ū). Then βi/k(x̄τ ) corresponds to the actual current
payment which the player i receives at x̄τ w.r.t. criterion k (instead of hi/k(x̄τ ))
according to the IDP β.

From now on we suppose that the IDP β should satisfy the following assumption
(see [12] for details):

Assumption RIM (Reward Immediately After the Move) If x̄t ∈ Pi , t =
0, . . . , T − 1, then βj (x̄t+1) = 0 for all j ∈ N\{i}, i.e. the only player who can
receive nonzero current payment at node x̄t+1 is the player i which moves at the
previous node x̄t = S−1(x̄t+1).
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For given player i ∈ N let (yi
1, y

i
2, . . . , y

i
T (i)) denote the ordered set of all the

positions from the set Pi ∩ ω̄ along the optimal trajectory ω̄, where nodes {yi
τ } are

listed in order of their location in ω̄. Namely,

yi
1 = x̄t i(1), yi

2 = x̄t i(2), . . . , y
i
T (i) = x̄t i (T (i));

and for all yi
λ = x̄t i(λ) and yi

m = x̄t i (m), we have λ < m if and only if t (λ) < ti(m).
Below, we introduce a number of useful properties an acceptable IDP may satisfy

(see [9–11]). Note that we need to modify known definitions of efficiency and time
consistency to take assumption RIM into account.

To simplify the notations, henceforth we will omit superscript i in t i (λ), λ =
1, . . . , T (i), i.e. we will write βi(x̄t (λ)+1) instead of βi(x̄t i (λ)+1), e.t.c.

Definition 10.1 ([12]) The imputation distribution procedure β = {βi/k(xt )}
satisfies the efficiency condition if

T∑
t=1

βi(x̄t ) =
T (i)∑
λ=1

βi(x̄t (λ)+1) = ϕ
x̄0
i , i = 1, . . . , n. (10.7)

Indeed, if (10.7) holds then the payment schedule for every player can be
considered as a rule for the step-by-step allocation of the player i’s optimal payoff.

Definition 10.2 The IDP β = {βi/k(x̄t )}meets the time consistency (TC) inequality
if for every player i ∈ N such that |T (i)| � 2, for all τ = 1, . . . , T (i)− 1 it holds
that

τ∑
λ=1

βi(x̄t (λ)+1)+ ϕ
x̄t(τ )+1
i � ϕ

x̄0
i . (10.8)

The vector inequality (10.8) implies that every player has an incentive to continue
cooperation at every subgame along the cooperative trajectory.

Definition 10.3 ([9]) The imputation distribution procedure β = {βi/k(x̄t )} satis-
fies the balance condition if ∀t = 0, . . . , T ; ∀k = 1, . . . , r it holds that

t∑
τ=1

n∑
i=1

βi/k(x̄τ ) ≤
t∑

τ=1

n∑
i=1

hi/k(x̄τ ) (10.9)

Note that (10.9) is always satisfied for t = T due to the efficiency condi-
tion (10.7) and (10.5). If β does not satisfy (10.9) at some intermediate node x̄t , we
will suppose that the players may borrow the required amount on account of future
earnings. For the sake of simplicity we assume that an interest-free loan is available
for the grand coalition N while recognising that in general case the enforcing of a
cooperative agreement may require extra costs (see [9]).
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Definition 10.4 ([9]) The IDP β satisfies the non-negativity constraint if

βi/k(x̄t ) � 0, i = 1, . . . , n; k = 1, . . . , r; t = 1, . . . , T .

Note that there could be different payment schedules that may or may not satisfy
the properties listed above (several IDP for multicriteria games are examined in [9–
11]). The A-incremental IDP that satisfies RIM assumption, efficiency constraint
and time consistency (equation) for multicriteria multistage game was suggested in
[12]:

Definition 10.5 The A-incremental imputation distribution procedure β =
{βi/k(x̄t )}, t = 0, . . . , T ; i ∈ N is formulated as follows

(c1) βi/k(x̄0) = 0, i = 1, . . . , n; k = 1, . . . r;
(c2) if x̄t ∈ Pi , t = 0, . . . , T − 1, then βj (x̄t+1) = 0 for all j ∈ N\{i};
(c3) if x̄t ∈ Pi and T (i) = 1, i.e. ω̄ ∩ Pi = (yi

1) = {x̄t (1)}, then

βi(x̄t (1)+1) = ϕ
x̄0
i (10.10)

(c4) if x̄t ∈ Pi and T (i) = 2, i.e. ω̄ ∩ Pi = (yi
1, y

i
2) = (x̄t (1), x̄t (2)), then

βi(x̄t (1)+1) = ϕ
x̄0
i − ϕ

x̄t(1)+1
i ; βi(x̄t (2)+1) = ϕ

x̄t(1)+1
i (10.11)

(c5) if x̄t ∈ Pi and T (i) ≥ 3, i.e. ω̄ ∩ Pi = (yi
1, y

i
2, . . . , y

i
T (i)) =

(x̄t (1), x̄t (2), . . . , x̄t (T (i))), then

βi(x̄t (1)+1) = ϕ
x̄0
i − ϕx̄t(1)+1;

βi(x̄t (λ)+1) = ϕ
x̄t(λ−1)+1
i − ϕ

x̄t(λ)+1
i , λ = 2, . . . , T (i)− 1;

βi(x̄t (T (i))+1) = ϕ
x̄t(T (i))−1)+1
i .

(10.12)

10.5 A-Incremental IDP May Imply Negative Current
Payments

Let us use the game from Ex. 1 to demonstrate the A-incremental IDP implementa-
tion and properties and to reveal one possible disadvantage of this payment schedule.
We will adopt the vector analogue of the Shapley value as an optimal cooperative
solution when analysing Ex. 1.
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Definition 10.6 ([22, 28]) The Shapley value of Γ x0(N, V x0) denoted by ϕx0 is
defined for each player i ∈ N as

ϕ
x0
i =

∑
S⊂N,i∈S

(n− |S|)!(|S| − 1)!
n! (V x0(S)− V x0(S \ {i})). (10.13)

Example 10.1 (Continued) The values of the vector-valued ζ -characteristic func-
tion (10.4) for the game Γ x0 are

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x0(S) 0 0 0 18 0 0 126
0 0 0 0 12 0 192

and the Shapley value for original game Γ x0 is

ϕx0 =
(

45 45 36
66 60 66

)
.

The vector-valued ζ -characteristic functions and the respective Shapley values
for the subgames along the cooperative trajectory ω̄ can be constructed using the
same approach.

The subgame Γ x1(N, V x1):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x1(S) 0 0 0 12 0 0 120
0 0 0 0 0 12 180

ϕx1 =
(

42 42 36
56 62 62

)
.

The subgame Γ x2(N, V x2):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x2(S) 0 0 0 6 6 0 114
0 0 0 0 84 0 168

ϕx2 =
(

40 37 37
70 28 70

)
.
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The subgame Γ x3(N, V x3):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x3(S) 0 0 0 0 6 0 108
0 0 0 0 72 12 156

ϕx3 =
(

37 34 37
60 30 66

)
.

The subgame Γ x4(N, V x4):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x4(S) 0 0 0 72 0 0 102
60 0 0 90 72 0 144

ϕx4 =
(

46 46 10
95 29 20

)
.

The subgame Γ x5(N, V x5):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x5(S) 0 0 0 66 0 0 96
60 0 0 90 60 12 132

ϕx5 =
(

43 43 10
85 31 16

)
.

The subgame Γ x6(N, V x5):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x6(S) 30 0 0 60 60 0 90
60 0 0 90 90 0 120

ϕx6 =
(

60 15 15
90 15 15

)
.

Applying the A-incremental IDP (10.10), (10.12), (10.13) we obtain the follow-
ing current payments along the optimal cooperative path ω̄ = (x̄0 = y1

1 , x̄1 =
y2

1 , x̄2 = y1
2 , x̄3 = y3

1 , x̄4 = y1
3 , x̄5 = y2

2 , x̄6 = y1
4 , x̄7) : β1(x̄1) = ϕ

x̄0
1 − ϕ

x̄1
1 =
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(
3

10

)
, β1(x̄3) = ϕ

x̄1
1 −ϕ

x̄3
1 =

(
5
−4

)
, β1(x̄5) = ϕ

x̄3
1 −ϕ

x̄5
1 =

( −6
−25

)
, β1(x̄7) =

ϕ
x̄5
1 =

(
43
85

)
, since T (1) = 4;

βj (x̄1) = βj (x3) = βj (x5) = βj (x7) =
(

0
0

)
, j = 2, 3;

β2(x̄2) = ϕ
x̄0
2 − ϕ

x̄2
2 =

(
8

32

)
, β2(x̄6) = ϕ

x̄2
2 =

(
37
28

)
since T (2) = 2;

βj (x̄2) = βj (x̄6) =
(

0
0

)
, j = 1, 3;

β3(x̄4) = ϕ
x̄0
3 =

(
36
66

)
since T (3) = 1; βj (x̄4) =

(
0
0

)
, j = 1, 2.

The efficiency condition for the player 1 and criterion 2 takes the form:

7∑
t=1

β1/2(x̄t ) =
4∑

λ=1

β1/2(x̄t (λ)+1) = 10 − 4 − 25+ 85 = 66 = ϕ
x̄0
1 .

The time consistency equations for the player 1 and criterion 2 take the form:

τ = 1 :
1∑

λ=1

β1/2(x̄t (λ)+1)+ ϕ
x̄1
1 = 10+ 56 = 66 = ϕ

x̄0
1 ;

τ = 2 :
2∑

λ=1

β1/2(x̄t (λ)+1)+ ϕ
x̄3
1 = 10− 4 + 60 = 66 = ϕ

x̄0
1 ;

τ = 3 :
3∑

λ=1

β1/2(x̄t (λ)+1)+ ϕ
x̄5
1 = 10− 4 − 25+ 85 = 66 = ϕ

x̄0
1 .

As it was mentioned in the Introduction, the A-incremental IDP, as well as the
classical incremental IDP may imply negative current payments to some players at
some nodes (see [4, 9, 20] for details). Thus, in Example 10.1 the A-incremental
IDP implies negative payments to player 1 at x̄3 and x̄5.

10.6 Refined A-Incremental IDP and Its Implementation

Below we introduce a refinement of A-incremental payment schedule that is
designed to satisfy assumption RIM, efficiency, time consistency inequality and non-
negativity constraint.
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We will use an auxiliary integer variable ai/k(λ) to denote the number of
nodes x̄t (τ )+1 on the optimal cooperative path ω̄ from x̄τ to x̄t (λ)+1 for which
βi/k(x̄t (τ )+1) = 0 after the last positive current payment (one may call it the
payment delay variable). We assume that t i (0) = −1 for any i.

Definition 10.7 The refined A-incremental imputation distribution procedure β̂ =
{β̂i/k(x̄t )}, t = 0, . . . , T ; i ∈ N is formulated as follows

(c1) β̂i/k(x̄0) = 0, i = 1, . . . , n; k = 1, . . . r;
(c2) if x̄t ∈ Pi , t = 0, . . . , T − 1, then β̂j (x̄t+1) = 0 for all j ∈ N\{i};
(c3) if x̄t ∈ Pi and T (i) = 1, i.e. ω̄ ∩ Pi = (yi

1) = {x̄t (1)}, then

β̂i/k(x̄t (1)+1) = ϕ
x̄0
i/k (10.14)

(c4) if x̄t ∈ Pi and T (i) = 2, i.e. ω̄ ∩ Pi = (yi
1, y

i
2) = (x̄t (1), x̄t (2)), then

β̂i/k(x̄t (1)+1) = max{ϕx̄0
i/k − ϕ

x̄t(1)+1
i/k , 0} (10.15)

β̂i/k(x̄t (2)+1) = ϕ
x̄0
i/k − β̂i/k(x̄t (1)+1) (10.16)

(c5) if x̄t ∈ Pi and T (i) ≥ 3, i.e. ω̄ ∩ Pi = (yi
1, y

i
2, . . . , y

i
T (i)) =

(x̄t (1), x̄t (2), . . . , x̄t (T (i))), then

Step 1 (λ = 1):

β̂i/k(x̄t (1)+1) = max{ϕx̄0
i/k − ϕx̄t(1)+1, 0}; (10.17)

• if β̂i/k(x̄t (1)+1) > 0, then ai/k(1) = 0 (no delay in payment compared to
A-incremental IDP);

• if β̂i/k(x̄t (1)+1) = 0, then ai/k(1) = 1 (the delay in payment for a one
step).

Step 2 (λ = 2):

β̂i/k(x̄t (2)+1) = max{ϕx̄t(1−ai/k(1))+1

i/k − ϕ
x̄t(2)+1
i/k , 0}, (10.18)

• if β̂i/k(x̄t (2)+1) > 0, then ai/k(2) = 0;
• if β̂i/k(x̄t (2)+1) = 0, then ai/k(2) = ai/k(1)+ 1.
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Step λ (λ = 2, . . . , T (i)− 1):

β̂i/k(x̄t (λ)+1) = max{ϕx̄t(λ−1−ai/k(λ−1))+1

i/k − ϕ
x̄t(λ)+1
i/k , 0}, (10.19)

• if β̂i/k(x̄t (λ)+1) > 0, then ai/k(λ) = 0 (no delay in payment);
• if β̂i/k(x̄t (λ)+1) = 0, then ai/k(λ) = ai/k(λ− 1)+ 1 (the delay in payment

at x̄t (λ)+1 for ai/k(λ) steps).

Step λ = T (i):

β̂i/k(x̄t (T (i))+1) = max{ϕx̄0
i/k−

T (i)−1∑
λ=1

β̂i/k(x̄t (λ)+1), 0} = ϕ
x̄t(T (i)−1−ai/k (T (i)−1))+1

i/k

(10.20)

By the construction of this refined payment schedule the following proposition
holds.

Proposition 10.1 Refined A-incremental IDP satisfies assumption RIM, efficiency
condition (10.7), non-negativity constraint and time consistency inequality (10.8).

Now we will apply the refined A-incremental algorithm (10.14)–(10.20) to the
game from Example 10.1.

Example 10.1 (Continued) Note that if the A-incremental IDP implies non-
negative current payments to the ith player w.r.t. criterion k at all nodes along
the cooperative trajectory ω̄, then β̂i/k(x̄t ) = βi/k(x̄t ), x̄t ∈ ω̄. Hence, the current
payments to the player 2 and 3 according to the refined A-incremental IDP β̂ will
not change compared to the A-incremental IDP β.

Let us now consider the payments to the player i = 1:

β̂1/1(x̄1) = max{ϕx̄0
1/1 − ϕ

x̄1
1/1; 0} = 3, a1/1(1) = 0;

β̂1/2(x̄1) = max{ϕx̄0
1/2 − ϕ

x̄1
1/2; 0} = 10, a1/2(1) = 0;

β̂1/1(x̄3) = max{ϕx̄1
1/1 − ϕ

x̄3
1/1; 0} = max{5; 0} = 5, a1/1(2) = 0;

β̂1/2(x̄3) = max{ϕx̄1
1/2 − ϕ

x̄3
1/2; 0} = max{−4; 0} = 0, a1/2(2) = 1;

β̂1/1(x̄5) = max{ϕx̄3
1/1 − ϕ

x̄5
1/1; 0} = max{−6; 0} = 0, a1/1(3) = 1;

β̂1/2(x̄5) = max{ϕx̄1
1/2 − ϕ

x̄5
1/2; 0} = max{−29; 0} = 0, a1/2(3) = 2;

β̂1/1(x̄7) = ϕ
x̄3
1/1 = 37;

β̂1/2(x̄7) = ϕ
x̄1
1/2 = 56.

All the payments to player i = 1 are non-negative now. Note that the current
payments at x̄7 are less than the relevant payments according to the simple A-
incremental IDP.
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The efficiency condition for the player 1 and criterion 2 now takes the form:

7∑
t=1

β̂1/2(x̄t ) =
4∑

λ=1

β̂1/2(x̄t (λ)+1) = 10+ 0 + 0 + 56 = 66 = ϕ
x̄0
1 .

The time consistency inequalities for the player 1 and criterion 2 take the form:

τ = 1 :
1∑

λ=1

β̂1/2(x̄t (λ)+1)+ ϕ
x̄1
1 = 10+ 56 ≥ 66 = ϕ

x̄0
1 ;

τ = 2 :
2∑

λ=1

β̂1/2(x̄t (λ)+1)+ ϕ
x̄3
1 = 10+ 0 + 60 ≥ 66 = ϕ

x̄0
1 ;

τ = 3 :
3∑

λ=1

β̂1/2(x̄t (λ)+1)+ ϕ
x̄5
1 = 10+ 0+ 0 + 85 ≥ 66 = ϕ

x̄0
1 .

Note that the refined A-incremental IDP may not necessarily satisfy balance
condition (10.9). Let us for instance consider the balance condition in Example 10.1
for t = 4 and k = 2:

4∑
τ=1

3∑
i=1

β̂i/2(x̄τ ) = 108 >

4∑
τ=1

3∑
i=1

hi/2(x̄τ ) = 48.

As it was firstly noted in [9], in general it is impossible to design a time consistent
IDP which satisfies both the balance condition and non-negativity constraint.

10.7 Conclusion

When analyzing Example 10.1, we adopt the Shapley value as an optimal imputation
and use the RL algorithm for choosing a unique Pareto optimal solution (to
find optimal cooperative trajectory and to construct vector-valued characteristic
function). It is worth noting that the provided algorithm to calculate the refined
A-incremental IDP as well as Proposition 10.1 remains valid if the players employ
another optimal imputation, other approach to calculate the characteristic function
and other time consistent rule for choosing a particular Pareto optimal solution, for
instance, the rule of minimal sum of relative deviations from the ideal payoffs vector
[13].

Note that, since the set of active players in extensive form game changes while
the game is evolving along the optimal path, multistage game could be considered
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as an example of the so-called “games with changing conditions”. The RIM
assumption and the proposed refined A-incremental payment schedule allows taking
into account this specific feature of a n-person multistage game. It is worth noting
that similar assumptions could be implied implicitly in some ancient texts—cf., for
instance, the so-called “History of King David’s ascent to power” in connection
with David’s activity at the beginning of his career (see, e.g.: [30]). The detailed
interdisciplinary analysis of the relevant motivation for “optimal” behaviour could
be an interesting issue for further research.
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Chapter 11
Complementarity of Goods
and Cooperation Among Firms
in a Dynamic Duopoly

Mario Alberto Garcia Meza and Cesar Gurrola Rios

Abstract We construct a simple model to show how complementarities between
goods yield a possibility for cooperation between rival firms. To show this, we use a
simple dynamic model of Cournot oligopoly under sticky prices. While cooperation
in an oligopoly model with sticky prices is not feasible, there exists a feasible
cooperation when good are perfect complements and not substitutes.

Keywords Differential games · Cooperative games · Sticky prices · Cournot
duopoly

11.1 Introduction

While competition is often assumed to deliver the best social outcome, there are
reasons to try to promote cooperation among firms. A classical example where
less competition is desirable is when firms are parte of a supply chain and
integration results in avoiding the problem of double marginalization (cf. [15]).
An often overlooked market situation that requires the need of cooperation is
when small firms do not have direct economies of scale and therefore cannot
compete with big businesses unless they cooperate. In [6], the authors describe for
example the situation many small businesses in poor countries encounter, with small,
unprofitable businesses, facing the paradox of having a high marginal return and a
small overall return.

Nevertheless, achieving cooperation requires that the marginal returns of being in
a coalition are higher than those of individual efforts. Moreover, business contracts
of cooperation may require a long time commitment, and therefore it should be clear
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for all participants that such a commitment is profitable throughout the entire period
of the coalition for it to be sustainable.

While substitute goods hardly find a feasible (profitable) solution for cooperation
among firms, complementarity is one way to achieve it. In this article we give
an example on how complementarity can achieve such results. A good A is
complementary to another B when its popularity is linked with the demand of B.
In other words

Definition 11.1 Let qj (pi) with j �= i be the quantity supplied by firm j to the
market. Firm’s j ’s offered product is a complement of firm’s i’s, if

∂pi

∂qj
> 0. (11.1)

Where pi(t) represents the price of product i.

As a result, there might be incentives for the firms for cooperation. In this paper
we use as an example an oligopoly with sticky prices. In Sect. 11.2 we set up the
baseline model and compare its results of cooperation in Sect. 11.3. In Sect. 11.4, we
make the case for complimentary goods as an instance when cooperation is possible
by and example.

The critical variable to look for to determine the feasibility of cooperation is the
profit obtained. In this case we observe the stable quantities and prices that firms
use in their optimal strategies under the model.

11.2 Non-Cooperative Oligopoly

For a first approach, we set up the model of a sticky price duopoly without
cooperation and with a demand function similar to the model in a Cournot oligopoly
model [4]. While the initial models on sticky prices date back to [14], further
instances can be found in [5] and [3]. Consider an oligopoly composed by N =
1, 2, . . . , n firms competing in the period of time T = [0,∞). Each firm can choose
the quantity qi(t) they offer to the market at the period of time t ∈ T, considering
that the market price p(t) is determined by the demand equation

p̂(t) = a −Q(t), (11.2)

where Q(t) = ∑n
i∈1 biqi . For the price to be positive, the sum of the quantities

offered to the market has to be less than a. Naturally, there are no incentives for the
firms to offer more if that entails a negative price. The coefficient bi is an indicator
of the complementarity of goods. For the current section and Sect. 11.3 we will
assume that b1 = b2 = · · · = bn = 1, which can be interpreted as a market
in which all goods are perfect substitutes. Whenever bi �= bj there is an implicit
complementarity between goods for i �= j .
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Proposition 11.1 We say that two goods i and j are perfect complementswhenever
bi + bj = 0.

Note that if a good i is a perfect complement of j in the terms described by
Proposition 11.1 then its price increases with the quantity of j and Eq. (11.1) holds.

Nevertheless, this dynamic competition model considers the existence of menu
costs. Although the concept of menu cost was introduced by [13] as a consideration
to price adjustment in a macroecomic environment, [1] showed that price stickiness
can be a result of bounded rationality when firms refuse to update their price
unless the benefit is high enough [2]. The price dynamics thus is expressed by the
differential equation

ṗ(t) = s[a −Q(t)− p(t)], p(0) = p0, (11.3)

where s is a speed-of-adjustment parameter and p(t) is the current price. The
interpretation of this equation is that the dynamics of the price are determined by the
difference between the price determined by the market forces and the current price.
A speed parameter that tends to infinity would then reveal the case of a market that
updates the price immediately.

To know the instant profit of a firm that acts in a non-cooperative scenario, we
need to state their profit function. Thus, each firm has as their objective to maximize

Ji =
∫ ∞

0
e−ρt

[
p(t) − c − qi(t)

2

]
qi(t)dt, (11.4)

subject to (11.3). Here, the cost of production has the same structure for both firms
and is equal to C(t) = c + qi(t)

2 and ρ is the discount factor.
A concept of solution for this kind of problem is a Nash equilibrium. In particular,

we can consider an open-loop Nash equilibrium or a Feedback solution [16]. An
open loop Nash equilibrium would be conceptually equivalent to say that the firms
observe her rivals and their own behavior and decide all the trajectory of their
strategy a priori whereas a feedback solution requires a continuous response from
the players. The feedback solution uses dynamic programming techniques to find
optimal strategies and, while somehow more computational exhaustive it tends to
achieve more precise answers (cf. [16]).

Here we will find feedback solutions for the problem. Thus, we state the problem
above in terms of the Hamilton Jacobi Bellman (HJB) equation

ρVi = max
qi≥0

{[
p(t) − c − qi(t)

2

]
qi(t)+ s

∂Vi

∂p
[a −Q(t)− p(t)]

}
. (11.5)
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Maximizing the right part of the equation yields the feedback quantities for firms:

q∗i (t) =
{

p(t)− c − s ∂V
∂p

if ∂Vi

∂p
< (p(t)− c)/s,

0 if ∂Vi

∂p
≥ (p(t)− c)/s.

(11.6)

These values point to the optimal strategies that all players should execute in
order to obtain the optimal possible profit under oligopoly conditions. Note that the
optimal quantity is still a function of the market price p(t) and the term ∂Vi

∂p
. This

last one is usually interpreted as a shadow price, that is, a monetary value assigned
to costs that are unknowable or difficult to directly calculate (see [11]).

The result obtained in (11.6) can thus be inserted into Eq. (11.5) and solve for
the value function, which yields

Vi = 1

ρ

⎡
⎣s

∂Vi

∂p

⎛
⎝ n∑

j=1

∂Vj

∂p
+ a + nc − (n+ 1)p

⎞
⎠ − ( ∂Vi

∂p
− c + p)( ∂Vi

∂p
+ c − p)

2

⎤
⎦ ,

(11.7)

provided that qi(t) is positive, otherwise

Vi = s(a − p)

ρ

∂Vi

∂p
. (11.8)

Unless stated otherwise, from this point, we shall focus on the positive solution.
Since we are facing a nonhomogeneous Clairaut differential system, we can use as
an ansatz for the value function a linear equation

Vi(p) = α + γp + ηp2. (11.9)

To find out the values of coefficients α, γ and η. Consider that (11.9) implies

∂Vi

p(t)
= γ + ηp. (11.10)

Note that, since there is a unique market price for goods, be them substitutes
or complements, the value function will have the same structure for all players.
Since they are symmetrical players in all other senses, this result is acceptable, but
might be useful to keep in mind for modeling situations in which the good is not
homogeneous. In other words, the demand function described in Eq. (11.2) is the
only source of information about the complementarities of the goods.
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In order to solve the equation, we acknowledge the equivalence between
Eq. (11.7) and (11.9) and substitute (11.10). The roots of the polynomial are
obtained by solving the following system of equations:

α = n

2ρ

(
2γ ns(a + cn+ γ n2s)+ c2 − γ 2n2s2

)
,

γ = aηns + cηn2s − c

−2ηn3s2 + ηn2s2 + n2s + ns + ρ
, (11.11)

η = 2n2s + 2ns + ρ ±√
4n4s2 + 4n2ρs + 8n2s2 + 4nρs + ρ2

4n2s2 (2n− 1)
.

Therefore, a solution of the system is obtained by getting the values of the
parameters. This solution coincides with solutions in [3] and [8] and can be used to
compute the real value of the feedback quantities. Recall that the optimal quantities
can be stated by substituting (11.10) into (11.6).

q∗i (t) = p(t) − c − s[γ + 2ηp(t)]. (11.12)

Note that η has two possible values. It can be shown that only when the sign of
the square root on the right side of the equation is negative yields a stable solution
for the system. To find this stable solution, we should equate to zero the left hand
side of Eq. (11.3), and solve for p(t). This process yields

p̄ = a + cn+ γ ns

n+ 1 − 2ηns
, (11.13)

which can be introduced in the value of q∗i (t) to obtain

q̄i = 2aηs − a + c + γ s

2ηns − n− 1
. (11.14)

This is the general feedback solution before the introduction of the solution
values of the parameters η and γ . For example, consider the solution of the stable
quantity when n = 3:

qi∈{1,2,3} =
(a − c)

(
4ρ + 7s +√

(ρ + 8s)2 − 20s2
)

16ρ + 33s + 4
√

(ρ + 8s)2 − 20s2
(11.15)

which has real valued optimal quantities as long as

s >
±ρ(

√
5− 4)

22
. (11.16)
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Since the discount factor is usually a measure of the value of money across time,
it only makes sense that ρ is a positive number, and since s only makes sense as well
as a positive number,1 then there is a solution for all possible values of s, regardless
of the discount factor.

11.3 Cooperation in Business

While cooperation is possible by the firms, that does not mean that the incentives
for it are set. In fact, in this section we will explore why there does not exist a
cooperative solution in such a model and what can we do about it.

A cooperation between firms would mean that each firm has as a goal to
maximize the joint profit of the grand coalition

J (q1, . . . , qn) =
∫ ∞

0
e−ρt

n∑
i=1

[(
p(t)− c − qi(t)

2

)
qi(t)

]
dt (11.17)

subject to the sticky price dynamics described in Eq. (11.3). Analogously to
the problem of non-cooperative firms, this problem can be translated into the
corresponding HJB equation

ρV = max
q1,...,qn

{
n∑

i=1

[
p(t)− c − qi(t)

2

]
qi(t) +

n∑
i=1

s
∂V

∂p

(
a −

n∑
i=1

qi(t)− p(t)

)}
.

(11.18)

Maximizing the right hand side of the equation thus yields

qi(Q) = p(t)− c + s
∂V

∂p
. (11.19)

Note that while in the HJB equation (11.5) every firm is maximizing their own
individual value function Vi , in a cooperative problem the maximization is done
jointly by all firms as if it were a monopoly.

Inserting the optimal quantities in Eq. (11.19) of the coalition in equation into
the HJB equation, we obtain the value function

ρV C = ns
∂V

∂p

(
a − p(t)− ∂V

∂p
n2s

)
+ n(c − p(t))2 − n2

2

(
ns

∂V

∂p
− c + p

)2

.

1A negative number of s would be interpreted as a reversal in the process of convergence of prices.
This would mean that the prices are drifting ever apart from the natural prices of the market.
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The same as in the non-cooperative problem, we can observe that the value
function as a function of the price can be stated as a linear quadratic function.
Therefore, we introduce as an informed guess the Eq. (11.9) into the HJB equation.
This allows us to state that a solution to the system can be obtained by solving for
the parameters

α = n

2ρ
[2γ s(a + cn2 − γ n2s)− c2n+ 2c2 − γ 2n3s2],

γ = n
(
2aηs + 2cηn2s + cn− 2c

)
2ηn4s2 + 4ηn3s2 + n3s + ns + ρ

, (11.20)

η = −2n3s + 2ns + ρ ±√
24n4s2 + 4n3ρs + (2ns + ρ)2

4n3s2 (n+ 2)
.

Note that, again this is a set of two linear systems of equations, depending on the
sign of the squared root in η. Let η+ be the value of η whenever the sign before the
squared root is plus and η− the value when the sign is minus.

An important issue to consider in this case is whether there exists a stable solution
for the control and the prices. In the case of the system with η+ this condition does
not hold, and therefore we will focus on the system where η = η−.

Let q̄C
n be the stable quantity that optimizes profit while on cooperation. For

example, consider the case where n = 3, then

q̄C
3 = (a − c)(4ρ + 45s +√

(ρ + 60)2 − 1620s2)

5(3ρ + 33s −√
(ρ + 60)2 − 1620s2)

. (11.21)

It is possible to verify that q̄C
n > qi described in Eq. (11.15) and that, in the limit,

the profits of the firm with cooperation are lower than those without cooperation.
This result is consistent regardless of the use of the parameters.

In a practical sense, we can infer that firms do not have any interest of engaging
in cooperation under these circumstances. While there might be some exogenous
reasons to cooperate (e.g. there is a war of attrition going on with some other agent),
this is not captured by the current model.

Although this result is natural, since the nature of the basic market is non-
cooperative, it is important to note that there exists an important interest in the
results of cooperation among firms for business reasons. This cooperation retains
a for-profit motivation and can be used for internationalization of small firms [7],
development of strategic sectors in an economy (see [10] and [17]) or to implement
cooperative marketing strategies for a complementary sector or members of a
franchise [9].
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11.4 Complementary Goods

The possibility of cooperation depends on the comparison of profits obtained
by firms under cooperation and without it. While the Cournot model found in
Sects. 11.2 sand 11.3 does not yield any profitable solution for cooperation, we
explore the possibility that such cooperation can be achieved when the goods are
complimentary.

Proposition 11.2 Cooperation among firms is feasible when profits satisfies the
property of superadditivity, i.e.:

πC ≥ πi + πj (11.22)

for different firms i and j .

A simple way to show this feasibility comes from the implementation of
complementary goods into the market with sticky prices. This can be achieved by
the use of Proposition 11.1. For simplicity, consider a simple modification to the
Cournot model where n = 2, b1 = 1 and b2 = −1. This implies that there are
only two firms and one is a perfect complement of the other. This implies slight
modifications in the statement of the problem that are omitted from this article, but
can be easily computed from the equations previously displayed.2

Considering a similar approach as in previous sections, the problems to solve
are stated in the terms of a dynamic programming problem with the same price
dynamics as a restriction. In a similar way, we find that the HJB equations can
be stated and solved by stating an informed guess about their shape. As before, a
suitable ansatz is the linear function displayed in Eq. (11.9). The use of the stated
values for b1 and b2 implies that the system to solve is reduced to

α = aγ s+ c2
2 + 3γ 2s2

2
ρ

,

γ = 2aηs−c

−6ηs2+ρ+s
, (11.23)

η = ρ+2s±
√

ρ2+4ρs−8s2

12s2 .

As before, we focus on the version of the problem with real solutions. Naturally,
the same version with η− arises for solution of the system. The result of this process
yields

γ = aρ + 2as − a
√

(ρ + 2s)2 − 10s2 − 6cs

3s(ρ +√
(ρ + 2s)2 − 10s2)

,

2A complete detail of the calculations made for this paper can be found in the repository in https://
github.com/MariusAgm/Oligopolios/tree/master/Jupyter. This includes Jupyter notebooks with the
results obtained in the paper and some comprobations of the claims of the paper.

https://github.com/MariusAgm/Oligopolios/tree/master/Jupyter
https://github.com/MariusAgm/Oligopolios/tree/master/Jupyter


11 Complementarity of Goods and Cooperation Among Firms in a Dynamic Duopoly 169

and

η = ρ + 2s −√
(ρ + 2s)2 − 10s2

12s2
.

The value of alpha is omitted due to reasons of space. To find the value of the
stable price and quantity, we introduce the value functions and the previous values
of γ and η, then we find the stable price by stating that ṗ(t) = 0 in Eq. (11.3)
and solving for p(t). The resulting stable price is then plugged into the optimal
quantities to obtain:

q̄ = aρ − 10as + 5a
√

(ρ + 2s)2 − 10s2 − cρ + 10cs − 5c
√

(ρ + 2s)2 − 10s2

9
(
ρ +√

(ρ + 2s)2 − 10s2
) .

(11.24)

Which has real solutions as long as s <
ρ
(

1−√3
)

4 .
It is important to note that the existence of real solutions is dependent on the size

of s. Recall that a small size of the speed parameter implies a slower recuperation
toward the market price or higher menu costs from the firms. Moreover, it is possible
to find instances where the profits of cooperation are higher than competition under
complementary goods, when the speed parameter is sufficiently low in comparison
to the discount rate ρ.

It only makes sense that the rate of adjustment of the market prices s is related
with the discount rate ρ. If the speed of adjustment is low enough for the firms to
collect benefits, there is a window of opportunity for firms to profit from a lower
discount rate.

As a result, we must only plug the stable prices and quantities to obtain the
stable profit for the firms with and without cooperation and with complementary
and substitute goods. The analysis of such profits yields as a result that, while
cooperation does not show superadditivity in the case of perfect substitutes, we can
find an instance of the property when the goods are complementary.

This paper only shows the result of duopoly with complementary goods. In
further research, it is important to verify if the same result holds in a set of n good.
This would require a more complex system of complementarities in which the set
of coefficients in the demand function would be arranged in a matrix. Moreover, it
would require that the price of the goods would not be unique but a complete vector

⎡
⎢⎢⎢⎣

p1

p2
...

pn

⎤
⎥⎥⎥⎦ = A−

⎡
⎢⎣

b11 · · · bnn

...
. . .

...

bn1 · · · bnn

⎤
⎥⎦
⎡
⎢⎢⎢⎣

q1

q2
...

qn

⎤
⎥⎥⎥⎦ . (11.25)
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This results in a totally different kind of interaction between firms and a different
market structure that can be further studied.

11.5 Discussion

While competition remains one of the more important ways to allocate resources
in an efficient way in the context of a market economy, cooperation among firms
remain a key issue for economists and policymakers (see, for example the work of
Roemer in this particular field [12]).

The correct identification of the mechanisms that yield cooperation is thus an
important area for policy and lawmaking. This is particularly true nowadays while
we are in the look for novel ways of structuring markets that remain profitable for
businesses while at the same time yield a higher social return.

We envision thus, future work on the field of identification of market structures
that allow cooperation. In the context of the present work, it is important to identify
if cooperation remains feasible in a general sense under complementarity and the
conditions that allow it. This in turn leads the way for the identification of the
conditions of market structure that yield cooperative markets.
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Chapter 12
Cooperative Solutions for the Eurasian
Gas Network

Ekaterina Orlova

Abstract We relate three solutions for cooperative games, the Shapley value, the
nucleolus and the core. We use an empirical case study, provided in Hubert and
Orlova (2018) to analyze the liberalization of network access in the European
gas market. For these games the Shapley value is not in the core. To obtain a
differentiated picture of the (in)stability of an allocation, we propose the nε-core
which is a generalization of the strong ε-core, and define three stability measures.
We find that the liberalization of network access increases the degree of instability of
the Shapley value for all three metrics. The nucleolus is a unique point in the core,
hence often used to characterize stable imputations. We show that liberalization
compresses the core, but not always the nucleolus corresponds well to the shifts in
the minimal and maximal values which players might receive in the core.

Keywords Network access · Natural gas · Shapley value · Nucleolus · Core

12.1 Introduction

In a recent series of papers, cooperative game theory has been used to assess
the power structure in the network for natural gas and how it is affected by
investments in new pipelines or changes in access regulation.1 In this applied

This paper is part of larger collaborative research project on the Eurasian gas network which was
developed and supervised by Prof. Dr. Franz Hubert and to which Onur Cobanli made essential
contributions. The draft of this paper was written in the 2014 at Humboldt University Berlin.
1[11] consider the strategic relevance of various options to expand the network. [10] investigate
three pipeline projects in detail: Nord Stream, South Stream, and Nabucco. [1] considers pipeline
projects for the Central Asian region. [12] and [13] look at the liberalization of pipeline access
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literature dis-aggregated network models are being used which are calibrated with
real data. While the results are typically robust with respect to the assumptions on
parameters, the findings turn out to be very sensitive depending on which solution
from cooperative game theory, the Shapley value or the nucleolus, is used to obtain
the power index. Moreover, the Shapley value appears to fit economic intuition and
the empirical evidence better than the nucleolus [10, 11, 13]. At the cost of some
simplification, the basic story of these papers is one of ‘cutting out the middlemen’.
Either a new pipeline can bypass a transit country or access to an existing pipeline is
liberalized. Intuition suggests that in both cases the owner of the bottleneck facility
is weakened, while customers and gas producers would be strengthened.

[10] find for the Shapley value that new pipelines weaken those transit countries
which they allow to circumvent, while producers and importers gain. For the
nucleolus, in contrast, these pipelines appear to be essentially irrelevant.

[13] study the effect of granting third party access to pipelines within EU on
the balance of power between ‘local champions’ within EU, acting as middlemen,
EU customers, and external natural gas suppliers.2 In [13] we distinguish between
the liberalization of access to transmission networks and liberalization of access
to distribution systems. As a result, three market structures are considered. Before
the onset of reforms, in the fragmented market, regional champions control local
production, LNG imports, access to both transmission and distribution systems. The
first step of reform is opening of access to trunk pipes that provides free transit of
gas within EU and creates the integrated market. In the integrated market regional
champions lose control over transmission, but keep control over access to local
customers. The second step of reform opens access to distribution networks that
provide access to customers in a region and leads to the fully liberalized market. In
the liberalized market champions retain control only over local production and LNG
imports, but they are not needed for access to local customers.

One of the results obtained in [13] refers to the influence of full liberalization on
the players outside the EU. Under the Shapley value the customers gain less than
the champions lose and one third of champions’ losses leaks away to the group of
external gas suppliers. For the nucleolus, in contrast, [13] obtain pure redistribution
from champions to customers while outside producers gain nothing. Therefore,
results in the Shapley value case support concerns of the critics of liberalization
policy that such a policy might strengthen outside producers.3 While the limited

within the European Union, with the first paper emphasizing regional effects and cartels, while the
second paper’s focus is on customers versus local champions.
2The development of liberalization process was mainly determined by several consecutive
Directives of the EU Commission: Directive 98/30/EC, also known as the First Gas Directive [3],
Directive 2003/55/EC, known as the Second Gas Directive [4], Directive 2009/73/EC [5] which
refers to the Third Energy Package.
3Incumbents pointed out the strong import dependency of the EU in the gas industry and argued
that

there is a need for a limited number of strong market players in order to deal with the
high level of concentration of gas producers outside the European Union [2, Second Phase,
p. 207].
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empirical evidence supports the Shapley value as the more appropriate solution for
this network [10, 11], at least two major questions remain.

First, the Shapley value, if not in the core, may be an unlikely outcome because it
lacks stability. We find that for none of the variants considered in [13] the core is ever
empty, but the Shapley value never belongs to the respective core. Thus, we find that
the Shapley value is unstable for each market structure. This result, however, does
not tell us anything about the degree of instability of the Shapley value and how it
depends on the market structure. Stability is black or white. In an applied analysis
we need measures of stability that can be used, once an allocation is not in the core.
In this paper we introduce stability measures and analyze the degree of instability
of the Shapley value depending on the market structure.

Second, the nucleolus is just one element of the core and may be misleading
when used to measure the impact of some change on the set of stable allocations. In
this paper we study whether the effect of liberalization on the nucleolus is a good
indicator of the impact of reform on the core.

Therefore, using the model of the Eurasian gas network developed in [13], in
this paper we focus on different questions. In [13] we analyze power redistribution
from the reform, applying the Shapley value and the nucleolus. Here we focus on the
stability issue in the Shapley value case and discuss how the change of the nucleolus
is related to the change of the core.

In an applied analysis it might be useful to have a metric which allows for
different degrees of stability. We take into account that it might be more difficult
to set up larger coalitions, but do it in a different manner as compared to the weak
ε-core [20]. We approximate the core by relaxing the strong ε-core concept with
respect to the size of deviating coalitions. For a group of players the decision to
deviate from the proposed allocation should involve not only the computation of the
respective value function, but also the agreement about the rent sharing. We suggest
to consider whether the allocation is stable with respect to the set of coalitions, the
size of which can be limited from above. The more we restrict the size of coalitions,
the larger becomes the relaxed core, as the payoff allocation has to satisfy the smaller
number of conditions. We call the relaxed core the nε-core.

The nε-core enables to introduce three stability measures related to the coalition
size and the costs. In general, the first metric is based on the minimal costs of
establishing a coalition for a given upper bound on the size of coalitions. The second
metric refers to the minimal number of players, which are necessary for setting up
a coalition to veto the payoff for a given costs of establishing a coalition. The third
metric is a probabilistic one. It is based on the probability of picking up a deviating
coalition for the given costs and for the given upper bound on the coalition size.
To analyze how the instability of the Shapley value changes with liberalization, we
apply the three measures to our real life model. We find that liberalization increases
the degree of instability. Opening of access to pipelines increases the minimal costs
of setting up a coalition that provide the stability of the Shapley value, decreases
the minimal number of players in a deviating coalition and raises the probability of
selecting such a coalition if we select coalitions at random.
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To study whether the impact of reform on the nucleolus is a good indicator of the
influence on the core, we proceed in two steps. As the first step, we analyze the effect
of liberalization on the core. To deal with the numerous inequalities, characterizing
the core, we partially describe it by computing the minimal and the maximal gains
of players in the core. Then, we discuss whether the change of the nucleolus is a
good indicator of the change of the core.

We find that liberalization compresses the core. The core in case of the fully
liberalized market is contained in the core of the integrated market, which, in its turn,
is contained in the core of the fragmented market. According to this compression,
the full liberalization shrinks the range of values between the minimal and the
maximal payoffs of all players in the core. The impact of full liberalization is
dominated by the second step of reform for the EU champions and the customers,
but by the first step for the countries outside EU and for the EU regions without
champions and customers. For the champion and the customers in a region the
compression of the range is of the same magnitude, but is determined by different
factors. For all champions the compression is a result of the decrease of maximal
gains in the core. For all customers the range decreases because the minimal gains
increase.

We are interested in how the change of the nucleolus is related to the change of
the core.4 We find that in the fragmented market the nucleolus of a player tends to
be centrally located, i.e. in the middle between the minimal and the maximal payoffs
in the core. For each step of reform for a number of players the nucleolus and the
respective midpoint shift into the same direction. However, for each step we find
examples of movement into the opposite direction and cases when the nucleolus
changes, but the range is not affected. Overall, it is difficult to infer the pattern of
the impact on the core from the change of the nucleolus. At the same time, as the
core compresses, the nucleolus becomes a more precise estimate of a point in the
core in the liberalized market.

To the best of our knowledge, there are no applied studies devoted to ε-cores
and stability issues which are calibrated with real data. In addition, the paper
contributes to the quantitative studies using the cooperative approach. Application
of the cooperative game theory to the real world problems is mainly limited to the
voting games [19] and the cost allocation problems [21]. While the Shapley value
is the most widely used measure of voting power from the cooperative game theory
[8, 18], in the literature on the cost allocation problems various solutions are applied,
including the nucleolus, the Shapley value and the core.5 For example, in the series

4Two findings about the compression of the range: (i) that the total effect of reform is dominated
by the second step only for the EU champions and the customers and (ii) that the losses of the
champion and the customers in a region are of the same magnitude, correspond to the results in
case of nucleolus. In [13] we find that in case of nucleolus the second step of reform dominates the
effect of full liberalization only for the EU champions and the customers, and that full liberalization
leads to pure redistribution of power between the champion and the customers in a region.
5See [9] for a detailed review of studies, applying cooperative game theory to the cost allocation
problems.
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of papers the landing fees for Birmingham airport were computed using the Shapley
value and the nucleolus. [15] find that the fees in the Shapley value case are larger
than the actual charges for the smallest and the largest aircrafts. [14] receives the
similar results for the nucleolus. [16] find that the structure of movement fees based
on the Shapley value approximates the actual structure of charges better than the
set of fees given the nucleolus. Comparison of the cost allocations resulted from the
different solutions with the real tariffs was also conducted by [6, 7] and [22]. Our
paper refers to the empirical studies comparing the Shapley value, the nucleolus and
the core.

The paper is organized as follows. In Sect. 12.2 we describe the nε-core and
introduce stability measures, in Sect. 12.3 we compare the Shapley value, the
nucleolus and the core according to the amount of power allocated to players. We
study the core of the games and report the influence of liberalization on the minimal
and the maximal values achievable in the core in Sect. 12.4. In Sect. 12.5 we relate
the nucleolus and the core. In Sect. 12.6 we relate the Shapley value and the core by
studying the degree of instability of the Shapley value.

12.2 The nε-Core and Stability Measures

The inter-dependencies among the players in the Eurasian gas network can be
represented by a game in value function form Γ = (N, ν), where N is the set
of players and the value function ν : 2|N | → R+ gives the maximal payoff,
which a coalition S ⊆ N can achieve [13]. Let x be a vector of payoffs. We
denote the set of payoff vectors which are efficient Σi∈Nxi = ν(N) as X∗(Γ ).
Let x(S) = ∑

i∈S xi, S ⊆ N be the corresponding payment to a group of players S.
If the excess e(x, S) = v(S) − x(S) is positive for a coalition, these players could
block or veto x.

[20] proposed a useful generalization of the core, the so called strong ε-core,
which requires that the gains from blocking x must not be larger than a threshold
ε, formally c(ε) = {x ∈ X∗(Γ ) : e(x, S) ≤ ε,∀S ⊂ N}. The strong ε-core is
the set of payoffs that cannot be vetoed by any coalition if establishing a coalition
entails a fixed cost of ε (a negative ε indicates a bonus). The authors defined also the
weak ε-core by making the costs of setting up a coalition proportional to the size of
coalition. Formally, cw(ε) = {x ∈ X∗(Γ ) : e(x, S) ≤ ε|S|,∀S ⊂ N}.

Here we propose to relax the strong ε-core with respect to the coalition size n in a
different way than the weak ε-core. We allow for fixed costs of setting up a coalition
and control for the number of players in a deviating coalition. We introduce an upper
bound on the size of coalitions which provides stability of an allocation.

Our approach can be motivated by the following thought experiment. Consider
a game (N, v). The players have to agree on a proposed payoff x. As a first step,
every single player checks whether the offer is individually acceptable. In total
this requires the computation of |N | values v({i}). Next, pairs of players consider
whether to object x. To do so another |N |(|N | − 1) values have to be computed and,
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upon finding that the excess is large enough, a pair would have to agree on how
to share before seriously blocking the proposal.6 Then we move on to groups of
three players, then four and so on. As we reach ever larger coalitions, not only the
number of necessary computations might grow, also the complexity of organizing
the group will increase. Instead of relating coalition size to these cost in a particular
way, we propose to account for the group size directly. Let S (n), 1 ≤ n < |N |
denote the set of coalitions which can be formed by permutations of at most n

players: S (n) = {S ⊂ N : |S| ≤ n, S �= ø, N}. We define the nε-core as
c(n, ε) = {x ∈ X∗(Γ ) : e(x, S) ≤ ε,∀S ∈ S (n)}. Besides the fixed cost of setting
up a coalition to veto x, the nε-core can also account for the fact that it might be
more costly to set up larger coalitions. The larger we select ε and the smaller we
select n, the larger will be the nε-core. Obviously, c(1, 0) is equivalent to individual
rationality: xi ≥ v({i}), i ∈ N . The strong ε-core is c(|N |−1, ε) and c(|N |−1, 0)

yields the core.
With the nε-core we have two dimensions to measure the stability of a given

payoff x. For a given n we can look for the minimal ε∗(x, n) so that x ∈ c(n, ε∗) or
we can ask for the minimal n∗(x, ε) so that x ∈ c(n∗−1, ε). In other words, n∗(x, ε)

denotes the minimal number of players which are necessary to veto a payoff x.
Finally, we take c(n, ε) as given. For a payoff vector x not in c(n, ε), we assess

the ‘degree’ of instability by comparing the number of coalitions which could gain
from vetoing x to the total number of coalitions formed by permutations of at most
n players. Let Ŝ = {S : S ∈ S (n) and e(x, S) > ε}. The larger the fraction
f (x, n, ε) = |Ŝ |/|S (n)| is, the more likely it is that we pick a coalition rejecting
x if we select coalitions at random.

12.3 Concepts: Power Allocation

In this section we study how the Shapley value, the nucleolus and the core are related
to each other with respect to the power in our real world game. We use the same
model of the Eurasian gas network as in [13]. We refer the interested reader to [13]
for the definition of players (we have 20 players), for details of the model calibration
and the value function calculation, for the description of games determined by the
three access regimes. As both the Shapley value and the nucleolus were computed
in [13], here we have to characterize the core.7

According to the definition of the core, its characterization involves 2|N | − 2 (in
our case over a million) inequalities, and hence, it is of limited practical use as such.
To deal with such large set of inequalities we introduce the partial description of the

6For the game with |N | players there are |N |(|N | − 1)/2 pairs of players, but each player in a pair
has to implement the calculation so that in total |N |(|N | − 1) values will be computed. For the
groups of k players the total number of computations is kc

|N |
k .

7The analyzed games are not convex, but the core is never empty for the analyzed games.
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Fig. 12.1 Different solutions for external producers and transit countries. The grey bar presents
the min-max range of a player in the core. Blue elliptical disks and red circles present the nucleolus
and the Shapley values, respectively. All figures are in percentage of the total surplus

core. The partial description involves finding the minimal and the maximal gains
of a player in the core. In the following we refer to the interval of values between
the minimum and the maximum as to the ‘min-max range’ of a player in the core.
We compute the min-max range for all players. It is important to note that one has
to be careful with the interpretation of any vector with coordinates taken from the
min-max ranges. Not all such vectors will belong to the core.

We report the results for the short-sighted scenario, when investment options are
not available for a coalition, and a high value of demand intercept.8 The results are
robust to changes of parameters (see Appendix).

All results are presented in the graphs (see Figs. 12.1, 12.2, 12.3). For each player
and for all three market structures we depict the min-max range as the grey bar. All
figures are given as percentage of the total surplus. We also present the nucleolus
and the Shapley value as the blue elliptical disks and the red circles, respectively.
Trivially, as the nucleolus belongs to the core, it lies in the min-max range.

The Shapley value assigns more power to Russia, Norway, Algeria and Libya
than the nucleolus (Fig. 12.1). Moreover, all external producers get larger shares
than the corresponding maximal values achievable in the core. Both Belarus and
Ukraine have less power under the Shapley value as compared to the nucleolus. In
addition, Belarus is assigned less power than the respective minimal values in the
core. The same pattern holds for Ukraine in the integrated and liberalized markets.

8These are the basic parameter settings in [13].
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Fig. 12.2 Different solutions for EU champions and customers

Fig. 12.3 Different solutions for EU regions
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In the fragmented market the share of Ukraine under the Shapley value falls into the
min-max range.

For the EU champions and the customers the results depend on the market
structure (Fig. 12.2). In the fragmented and integrated markets the Shapley values
belong to the respective min-max ranges. The relation of the power under the
Shapley value and the nucleolus depends on the player and the access regime. For
example, the Shapley value assigns less power to the champions in Italy, South-
West and Center-East regions, but allocates more power to Netherlands’ champion
than the nucleolus. The latter holds for the champion in Center region only in the
fragmented market. In the liberalized market the Shapley value assigns more power
to all EU champions than the nucleolus. Moreover, their shares are larger than the
corresponding maximal values in the core. The opposite pattern emerges for the
EU customers. They appear less powerfull under the Shapley value than under the
nucleolus and receive less than their minimal values in the core.

We present the results for the EU regions without champions and customers in
Fig. 12.3. With few exceptions, we observe that the Shapley value allocates less
power to these regions as compared to the nucleolus and that it does not belong to
the min-max range.

12.4 Liberalization: Compression of the Core

As it can be seen from Figs. 12.1, 12.2, 12.3, liberalization compresses the min-
max range for all players. If the compression results in a small scope between the
minimal and the maximal values, then we will not find the allocation in the core
which is very different from the nucleolus.

To understand why we observe the compression of the core, consider two games
Γ 0 = (N, ν0) and Γ 1 = (N, ν1) with non-empty cores. Let games Γ 0 and Γ 1 have
the same set of players and the same values of grand coalition: ν0(N) = ν1(N) (as
well as the same values of the empty set: ν0(ø) = ν1(ø) = 0). For other coalitions
the value function of Γ 1 either increases or does not change in comparison to the
value function of Γ 0: ν1(S) ≥ ν0(S) ∀S �= N . We denote the core for the game Γ 0

as c0 and for the game Γ 1 as c1. Then, by definition of the core, c1 ⊆ c0.
Consecutive liberalization of access to the transmission and distribution systems

does not change the total surplus due to calibration [13], but either increases the
value function or does not change the value function for any other coalition: ν2(S) ≥
ν1(S) ≥ νo(S) ∀S �= N . In other words, the value function never decreases for
any coalition. We know, that the core is not empty for each market structure. Then,
obviously, the core compresses with each step of liberalization. The core in the
fragmented market case contains the core in the integrated market case, and the
latter contains the core in the fully liberalized market case. Compression of the core
is reflected in the change of minimal and maximal values that players get in the core.
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Typically, it is difficult to explain why the minimal and the maximal values
change. But occasionally the effect is simple. The maximal value of a player in
the core might be given by his contribution to the grand coalition. The player cannot
require a higher payment, as then the rest of the players will ‘kick’ him out and
form the coalition on their own. If for either two market structures the maximum of
a player is equal to the respective contribution, it is enough to consider the effect of
reform on the contribution. The minimal value of a player in the core, in the simplest
case, is given by his stand alone value. In other words, by the amount that the player
can assure on his own. Liberalization does not influence the stand alone values of
players. If for either two market structures the minimum of a player is equal to his
stand alone value, then trivially there is no effect on the minimum. If the minimum
of a player is determined by the binding individual rationality constraint only for the
initial market structure, we proceed as following. For the new access regime we find
the coalitions corresponding to the binding constraints. Then we consider the effect
of reform on the values of such coalitions.

We study the effect of each step of reform and the overall impact of full
liberalization on the minimal value, the maximal value and the difference between
the two. We refer to the difference between the maximal and the minimal values as to
the range or the span. Results are presented in Table 12.1. All figures are expressed
as percentage of the redistributed amount resulted from the full liberalization.9

In the columns 2–4 we report the influence of liberalization of access to the high-
pressure pipelines on all three values. In the columns 5–7 we report the incremental
effect of liberalization of access to the distribution systems. In the columns 8–10 the
impact of full liberalization is shown. The range can be reduced either because of
the increase of minimal value or the decrease of maximal value, or because of both
changes. We report the impact on the minimal and the maximal values and point out
the change, which is the most important for the compression.

We start analysis with the first step of liberalization. For all EU champions,
except the champion in South-West, we observe a modest compression. The
decrease of maximal values tends to be more significant than the increase of minimal
values.10 In the fragmented market for all champions the maximal payoffs are
determined by the respective contributions to the grand coalition. The pattern is
similar in the integrated market.11 Consequently, we may consider the effect of
the first step on the contributions. Opening of access to trunk pipes decreases

9The redistributed amount from the full liberalization is equal to the sum of benefits of those
players who gain from two steps of reform. For the estimates of redistribution given nucleolus see
[13].
10The only exception is the champion in Netherlands, for the champion in Center-East the two
effects are shown as equal due to rounding.
11In the integrated market only for the champion in Center the calculated maximal value is less
than the respective contribution. But the difference between the respective contribution and the
maximum is minor.
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Table 12.1 Impact of liberalization on the minimal/maximal values in the core

Change of minimal/maximal values in the core [% of redistribution]

Step 1: transmission Step 2: distribution Two steps together

Δmin / Δmax / Δspan Δmin / Δmax / Δspan Δmin / Δmax / Δspan

Outside countries

Russia 0.1 −8.9 −9.0 0.0 −0.1 −0.1 0.1 −9.0 −9.1

Belarus 0.6 0.0 −0.6 0.0 0.0 0.0 0.6 0.0 −0.6

Ukraine 4.2 0.0 −4.2 0.0 0.0 0.0 4.2 −0.1 −4.2

Algeria 0.3 0.0 −0.3 0.0 0.0 0.0 0.3 0.0 −0.3

Libya 0.1 0.0 −0.1 0.0 0.0 0.0 0.1 0.0 −0.1

Norway 0.5 0.0 −0.6 0.0 0.0 0.0 0.5 −0.1 −0.6

Netherlands

Champion 0.1 0.0 −0.1 0.0 −25.2 −25.2 0.2 −25.2 −25.4

Customers 0.0 0.0 0.0 25.2 0.0 −25.2 25.2 0.0 −25.2

Center-Easta

Champion 0.1 −0.1 −0.2 0.0 −21.7 −21.7 0.1 −21.8 −21.9

Customers 0.0 0.0 0.0 21.6 0.0 −21.6 21.6 0.0 −21.6

Italy

Champion 0.2 −0.4 −0.6 0.0 −39.6 −39.6 0.2 −40.0 −40.2

Customers 0.0 0.0 0.0 39.4 0.0 −39.4 39.4 0.0 −39.4

Centerb

Champion 0.1 −0.4 −0.4 0.0 −54.8 −54.8 0.1 −55.2 −55.3

Customers 0.0 −0.1 −0.1 54.6 0.0 −54.6 54.6 −0.1 −54.7

South-Westc

Champion 0.0 0.0 0.0 0.0 −37.0 −37.0 0.0 −37.0 −37.0

Customers 0.0 0.0 0.0 36.3 0.0 −36.3 36.3 0.0 −36.3

Poland 0.4 0.0 −0.4 0.0 0.0 0.0 0.4 0.0 −0.4

Belgium 0.1 0.0 −0.2 0.0 0.0 0.0 0.2 0.0 −0.2

United Kingdom 0.0 −0.2 −0.3 0.0 0.0 0.0 0.0 −0.2 −0.3

Turkey & Balkand 4.9 0.0 −4.9 0.0 0.0 0.0 5.0 0.0 −5.0
a Austria, Czech Republic, Slovakia, Hungary, Serbia and Slovenia
b Germany, Switzerland, Denmark and Luxembourg
c France, Spain and Portugal
d Romania, Bulgaria and Greece

contributions of champions to the grand coalition as in the integrated market the
gas can be shipped freely within EU.12

For the EU customers, except the customers in Center, there is no compression
of the range. In the fragmented and integrated markets for all customers the minimal
values are determined by the respective stand alone values. As a result, we do not
observe any impact on the minimal values. The maximal values of all customers,

12The contribution of the champion in Netherlands is not affected by the first step of reform.
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except the customers in Center, are determined by the corresponding contributions
to the grand coalition.13 Neither step of reform has impact on the contribution of a
customer to the grand coalition. As a result, we observe the minor decrease of the
range only for the customers in Center.

The span compresses for the producers and the transit countries outside EU. For
all countries, except Russia, the range decreases due to the increase of minimal
values. Only for North-African countries the increase of minimal values corresponds
to the simple case. In the fragmented market the minimal values of Algeria and
Libya are determined by the respective stand alone values. In the integrated market
producers can ship gas freely within EU and the minimal values are determined by
the coalitions with regions which could not be accessed in the fragmented market.
Opening of access to trunk pipes increases the values of such coalitions making
the individual rationality constraints non-binding. For Russia the compression is the
strongest, but the decrease of maximal value cannot be explained by the simple case.
For other producers and transit countries the maximal values are either determined
by the respective contributions or are slightly less than the contributions. Neither
step of reform has impact on the contribution of a supplier or a transit country. As a
result, if the maximal values are affected, they decrease only slightly.

The incremental impact of liberalization of access to the distribution systems
on the range varies for the different groups of players. For all EU champions and
customers the span decreases. The compression resulted from the second step of
reform is much larger than from the first step. Therefore, the total impact on the
range is clearly dominated by the second step for the champions and the customers.
The pattern is different for all other players. The incremental compression is either
zero or close to zero, and hence, tends to be substantially less than from the opening
of access to high-pressure pipelines. Therefore, the total effect is dominated by the
first step of reform for these players. In the following we find the main factors of
compression for the EU champions and the customers.

For all champions the impact of the second step of reform on the minimal
values is essentially zero. The maximal values drop substantially. Recall, that in
the integrated market the maximal values tend to be determined by the respective
contributions to the grand coalition. In the liberalized market this pattern holds
for all champions. In contrast to the integrated market, in the liberalized market
customers can be reached without a champion. Hence, the share of the total
surplus which the champion can require decreases substantially. As a result, for
the EU champions the compression from the full liberalization is determined by the
decrease of maximal values from the opening of access to distribution networks.

The pattern is reversed for the EU customers. The impact on the maximal values
is essentially zero, but the minimal values increase a lot. In the integrated market
the minimal values are determined by the respective stand alone values. In the
liberalized market the individual rationality constraints become non-binding. The

13Only in the integrated market for the customers in Center the calculated maximal value is slightly
less than the respective contribution.
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minimal values increase because opening of access to distribution networks raises
the values of coalitions with customers which could not be accessed by producers in
the integrated market. As a result, for the EU customers the compression from the
full liberalization is determined by the increase of minimal values from the opening
of access to low-pressure pipelines.

We report the results for the last column of Table 12.1. The range compresses sig-
nificantly for the EU champions and the customers. Though we observe the different
factors of compression, the magnitude of the loss in the span is approximately the
same for the champion and the customers in a region. For example, for the champion
in Netherlands the range decreases by 25.4 percentage points. The decrease for the
customers is equal to 25.2 percentage points. In comparison to the champions and
the customers, the magnitude of losses in the span is low for all other players. The
largest compression is observed for Russia and is equal to 9.1 percentage points.
It is more than two times less than the lowest shrinkage within the group of EU
champions and customers.14

12.5 Liberalization: The Nucleolus and the Core

In [13] we find that under the nucleolus the total effect of reform on power is
dominated by the second step only for the EU champions and the customers. For
all other players the total effect is dominated by the first step of reform. We receive
the similar result for the compression of the core. In addition, given the nucleolus,
there is pure redistribution of power between the champion and the customers in a
region. We find that the min-max range compresses for both the champion and the
customers in a region and the losses in the range are of the same magnitude. At a
first glance, these findings allow us to assume that the change of the nucleolus is a
good indicator of the impact of liberalization on the core.

To check this hypothesis, for each player we consider the direction of the
movement of the nucleolus as compared to the shift of the midpoint of the min-
max range. The idea behind such measurement is the following. On the one hand, in
the fragmented market for most of the players the nucleolus is centrally located in
the min-max range (see Figs. 12.1, 12.2, 12.3).15 On the other hand, the movement
of the midpoint depicts the pattern of compression of the min-max range. If the
increase of minimal value is larger than the decrease of maximal value, then the
center shifts to the right. If the opposite holds, then the center shifts to the left. In
the previous section we discussed the dominant effects of compression. Thus, we
consider the impact of reform on the nucleolus to be a good indicator of the effect

14The lowest compression of the span within the group of EU champions and customers is equal
to 21.6 percentage points and corresponds to the customers in Center-East region.
15The difference between the center and the nucleolus is larger than 10% only for Belarus, Belgium,
Poland and UK. For these players the nucleolus is shifted to the right endpoint of the min-max
range.
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on the core, if the nucleolus is shifted into the same direction as the midpoint of the
respective min-max range.

We start analysis with the first step of reform. The nucleolus and the respective
center move into the same direction for two-third of the players. This pattern holds
for all players in the group of outside producers and transit countries and for all
players in the group of EU regions without champions and customers (see Figs. 12.1
and 12.3). Within the group of EU champions and customers the values shift into
the same direction only for the champions in Center, Center-East and Italy. In
some cases the compression ‘forces’ the nucleolus to move into the same direction.
Consider, for example, Russia. The decrease of maximum is larger than the increase
of minimum so that the midpoint shifts to the left. The nucleolus moves into the
same direction. As the maximal value in the integrated market is less than the
nucleolus in the fragmented market, the movement into the opposite direction is
not possible. For the rest of the players we observe two cases. First, the nucleolus
shifts into the opposite direction as compared to the respective midpoint. Second,
the midpoint is not affected, but the nucleolus changes. The first case holds for the
champions in Netherlands and South-West and for the customers in Center. The
second case holds for all other customers.

These two cases are also fulfilled for the second step of reform. The nucleolus
moves into the opposite direction for Algeria. For Belarus the min-max range is not
affected, but the nuclelous decreases. For all other players the values shift into the
same direction. The champions and the customers are exposed to the largest shift
of both the nucleolus and the center. In contrast to the integrated market, in the
liberalized market for the champions and the customers the nucleolus is not always
centrally located in the respective min-max range. Nevertheless, the magnitude
of the shift of the nucleolus and the midpoint is approximately the same due to
the substantial compression of the min-max range. In other words, the nucleolus
becomes a more precise estimate of a point in the core in the liberalized market.

Overall, in the fully liberalized market, as compared to the fragmented market,
for all players the nucleolus and the midpoint move into the same direction. But
for each step of reform we find exceptions. We find players, for which the values
shift into the opposite direction as well as cases when the midpoint is not affected,
but the nucleolus changes. Taken together, not always the impact of reform on the
nucleolus corresponds well to the effect on the core.

12.6 Liberalization: Degree of Instability of the Shapley
Value

For each access regime there are a number of coalitions which find it profitable to
deviate from the Shapley value. This means that for neither market structure the
Shapley value is in the core and, hence for neither market structure the Shapley
value is stable. In this section we study the degree of instability of the Shapley value
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Table 12.2 Impact of liberalization on stability measures

Stability measures

Fragmented Integrated Liberalized

ε∗(φ, |N | − 1)/
∑

φ0
EU 1.7 2.2 8.0

n∗(φ, 0) − 1 8 1 1

f (φ, |N | − 1, 0) 0.0002 0.0019 0.0907

depending on the access regime. To implement this analysis we relate the Shapley
values to the measures of stability introduced in Sect. 12.2. The results for the three
metrics are presented in Table 12.2. The first metric to consider is the minimal costs
of setting up a coalition of any size ε∗(φ, |N | − 1), such that it is not profitable
to deviate from the Shapley value. We report ε∗(φ, |N | − 1) as percentage of the
joint share of EU players in the fragmented market in the first row of Table 12.2.
In the second row, for zero costs of establishing a coalition, we present the second
metric. The second measure is the maximal number of players n∗(φ, 0) − 1, such
that all coalitions, formed by permutations of at most this number, cannot block the
Shapley value. In the third row we find f (φ, |N | − 1, 0), the fraction of coalitions
which could gain from vetoing the Shapley value. Computation of the third metric
involves assumption that setting up a coalition of any size would not cost anything.

We start analysis with the first metric. In the fragmented market the costs of
establishing a coalition have to constitute at least 1.7% of the joint rent of the
EU players. Then rejection of the Shapley value becomes unprofitable for all
coalitions. Opening of access to trunk pipes raises the value of threshold up to
2.2%. In the liberalized market the costs increase up to 8%, which is several times
larger than the corresponding values in both the fragmented and integrated markets.
With liberalization a coalition gets access to resources that were unavailable in the
fragmented market and, hence, can gain more than before the reform. As a result,
the costs of establishing a coalition have to increase in order to make the deviation
from the respective Shapley value unprofitable.

Now we turn to the second metric, related to the size of deviating coalitions.
In the following calculations we set ε equal to zero. For each market structure
we search for n∗(φ, 0), the minimal number of players necessary for setting up
a coalition to veto the corresponding Shapley value. In the fragmented market
n∗(φ, 0) = 9, so that the coalitions, formed by permutations of at most 8 players,
cannot improve by acting on their own. In other words, in the fragmented market
almost half of the players has to be in a coalition to be able to veto the Shapley
value. We find two coalitions with 9 players for which the excess is positive. The two
coalitions include different types of players: EU champions and customers, outside
producers, transit countries for Russian gas and Turkey & Balkan region.16 In the
integrated and liberalized markets the size of deviating coalitions diminishes. In

16The coalitions are: {Algeria, Turkey & Balkan, Belarus, customers in Center-East, champion
in Center-East, customers in Italy, champion in Italy, Russia, Ukraine} and {Turkey & Balkan,
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both cases the minimal number of players in a deviating coalition is equal to 2.
In the integrated market Belgium and Libya find it more profitable to cooperate
on their own rather than to accept their Shapley values. In the liberalized market
the customers in Center region can veto the Shapley value together with either the
champion in Netherlands or with Norway. Thus, while in the fragmented market
the deviation requires bargaining between relatively large sets of players, in the
integrated/liberalized market the deviation from the Shapley value can be profitable
even when there are only two players in a coalition.

The third metric is the fraction of coalitions, which could block the Shapley value.
In the following calculations we set ε equal to zero and consider the set of coalitions
which can be formed by permutations of at most 19 players (n = |N | − 1 = 19).
We find the ratio of the number of coalitions which can veto the Shapley value
and the total number of coalitions. The fraction of deviating coalitions increases
when we move from the fragmented to the integrated and liberalized markets. In the
fragmented market, the fraction is the lowest and is close to zero. In the integrated
market, the share increases, but it is still less than 1% of the total number of relevant
coalitions. The fraction increases further in the liberalized market, so that with
probability 9% we can pick a coalition rejecting the Shapley value if we select
coalitions at random.

Therefore, as liberalization provides access to new resources for a coalition, the
attractiveness to act on its own increases in the integrated/liberalized market in
comparison to the fragmented market. As a result, the instability of the Shapley
value raises with liberalization with respect to all three measures. For the two
measures, the costs of establishing a coalition and the fraction of deviating
coalitions, the second step of reform dominates the first step with respect to the
increase of the degree of instability. The opposite holds for the second criteria.

12.7 Conclusion

When applying cooperative game theory to the real world problems, we have to
decide on how to solve the game. Though in the simple models different solutions
may provide the same results, it can be completely misleading for the more
complicated cases. In [13] we consider the Eurasian natural gas supply system and
study the impact of opening access to transmission and distribution networks on the
balance of power between regional champions, customers and external producers. In
this case the Shapley value and the nucleolus yielded different results with respect
to the power redistribution.

In general, the choice of the concept is complicated by the fact that the Shapley
value and the nucleolus have different merits and shortcomings. The nucleolus

Belarus, customers in Center-East, champion in Center-East, customers in Italy, champion in Italy,
Libya, Russia, Ukraine}.
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presents the stable imputation for the game with the non-empty core, which is not
necessarily true for the Shapley value. While the Shapley concept features not only
the aggregate, but also the strong monotonicity, the nucleolus does not satisfy even
the property of the aggregate monotonicity [17, 23].

In this paper we use the model of the Eurasian natural gas supply system to relate
the Shapley value and the nucleolus to the core. We examine the degree of instability
of the Shapley value and how it depends on the market structure. We study whether
the effect of liberalization on the nucleolus is a good indicator of the influence on
the core.

To evaluate the degree of instability of a payoff allocation which is not in the
core, we propose several stability measures. We relax the strong ε-core concept by
taking into account the size of deviating coalitions. Using the nε-core one can study
whether the payoff allocation is stable with respect to the set of coalitions, the size
of which is bounded from above. We introduce three stability measures related to
the coalition size and the costs of setting up a coalition. We find that liberalization
increases the instability of the Shapley value for all criteria.

To study whether the change of the nucleolus might be considered as an indicator
of the change of the core in our model, we first analyze the impact of liberalization
on the core. We find that liberalization consecutively compresses the core. The
compression is depicted in the decrease of the range of values between the minimum
and the maximum of a player in the core. As the nucleolus tends to be centrally
located in the min-max range in the fragmented market, we compare the direction
of the shift of the nucleolus with the movement of the respective midpoint. For
each step of reform we find players characterized by the movement of values into
the opposite direction. In addition, we also find examples when the min-max range
is not affected, but the nucleolus changes. Hence, it is difficult to judge about the
change of the core on the basis of the impact of liberalization on the nucleolus.

Taken together, the Shapley value suits better for the application to the Eurasian
natural gas system. As it is pointed out in [13], the results under the Shapley value
correspond to the intuition derived from the middleman story. Though the instability
of the Shapley value increases for all criteria, the degree of increase differs between
the metrics. The first measure, the minimal costs, and the third measure, the
fraction of deviating coalitions, provide less sharp results than the second measure.
Liberalization consecutively increases the minimal costs of establishing a coalition,
but even in the fully liberalized market this amount does not exceed 10% of the
joint rent of EU players. The fraction of deviating coalitions in the liberalized
market never exceeds 20%. Simultaneously, according to the second metric, only
two players are enough to reject the Shapley value in the fully liberalized market.
Looking at all three metrics together, we find it easier to apply the Shapley value in
the fragmented market. So that taking into account the second criteria, application
of the Shapley value in the integrated and liberalized markets requires more caution.
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Appendix

As in [13], we assess the robustness of our results by considering three more
variants: a high value of demand intercept and the far-sighted scenario, a low value
of intercept and the short-sighted scenario, the low value of intercept and the far-
sighted scenario. We will discuss the robustness of our results in the same order as
they are reported in the main text.

Power Allocation
We start analysis with the comparison of concepts according to the power allocation
(see Figs. 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12). With minor
modifications, all previous statements from the main text could be repeated for
each of three scenarios. For example, for all variants of parameters it holds that
the Shapley value assigns more power to all outside producers than the nucleolus
and the core. It also holds that Belarus and Ukraine have less power in the Shapley
value case as compared to the nucleolus. Moreover, for Belarus the shares are less
than the respective minimal values in the core. Only for Ukraine it depends on the
scenario and the access regime whether the Shapley value falls into the min-max
range.

For all scenarios, in the fragmented and integrated markets, the Shapley values of
champions and customers belong to the respective min-max ranges. All results for
the liberalized market can be repeated. For all scenarios the Shapley value assigns

Fig. 12.4 Different solutions for external producers and transit countries (far-sighted scenario,
high intercept). The grey bar presents the min-max range of a player in the core. Blue elliptical
disks and red circles present the nucleolus and the Shapley values, respectively. All figures are in
percentage of the total surplus
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Fig. 12.5 Different solutions for EU champions and customers (far-sighted scenario, high inter-
cept)

Fig. 12.6 Different solutions for EU regions (far-sighted scenario, high intercept)
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Fig. 12.7 Different solutions for external producers and transit countries (short-sighted scenario,
low intercept). The grey bar presents the min-max range of a player in the core. Blue elliptical
disks and red circles present the nucleolus and the Shapley values, respectively. All figures are in
percentage of the total surplus

more power to all champions than the nucleolus and the core. All customers have
less power under the Shapley value than under the nucleolus and the core.

In case of all variants the Shapley value tends to allocate less power to other EU
regions as compared to the nucleolus. For the low value of demand intercept only
in half of the cases it holds that the Shapley value does not belong to the respective
min-max range.

Liberalization: Compression of the Core
The impact of liberalization on the minimal values, the maximal values and the
range is presented in Tables 12.3, 12.4, 12.5. For all scenarios it holds that the total
effect on the range is dominated by the second step of reform only for the EU
champions and the customers, but by the first step of reform for all other players.
For the champions the compression of the range is determined by the decrease of
maximal values resulted from the second step of reform. For the customers the
compression is determined by the increase of minimal values from the second
step. The statements concerning the influence of liberalization on the minimum
and the maximum hold for all scenarios.17 For example, in the fragmented and

17Minor modifications in the statements might refer to the maximal values. In the basic scenario
for a number of maximal values it holds that the value is equal to the respective contribution. With
the change of parameters some of these maximal values become slightly less than the respective
contributions.
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Fig. 12.8 Different solutions for EU champions and customers (short-sighted scenario, low
intercept)

Fig. 12.9 Different solutions for EU regions (short-sighted scenario, low intercept)
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Fig. 12.10 Different solutions for external producers and transit countries (far-sighted scenario,
low intercept). The grey bar presents the min-max range of a player in the core. Blue elliptical
disks and red circles present the nucleolus and the Shapley values, respectively. All figures are in
percentage of the total surplus

integrated markets the minimal values of all customers are determined by the
binding individual rationality constraints so that we do not observe any impact of the
first step of reform on the minimal values of customers. In contrast, in the liberalized
market the individual rationality constraints become non-binding. In other words,
the minimal values increase with the second step of reform.

Liberalization: The Nucleolus and the Core
The main results concerning the relation of the nucleolus and the core are robust to
changes of parameters. With the first step of reform the nucleolus and the respective
midpoint move into the same direction for 60% or 70% of the players, depending
on the variant. Within the group of champions and customers such pattern holds
only for two or four players. For other players in this group the values shift into the
opposite direction or the min-max range is not affected, but the nucleolus changes.
For the players outside EU and for the EU regions without champions and customers
the values shift into the same direction for all scenarios. In case of the second step
of reform for all variants it holds that for all champions and customers the nucleolus
is forced to move into the same direction as the respective midpoint. Among other
players we find examples when the values shift into the opposite direction. We also
find cases when the min-max range is not affected, but the nucleolus changes.

Liberalization: Degree of Instability of the Shapley Value
Results concerning the degree of instability of the Shapley value are robust to
changes of parameters (Tables 12.6, 12.7, 12.8). For all scenarios it holds that
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Fig. 12.11 Different solutions for EU champions and customers (far-sighted scenario, low
intercept)

Fig. 12.12 Different solutions for EU regions (far-sighted scenario, low intercept)
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Table 12.3 Impact of liberalization on the minimal/maximal values in the core (far-sighted
scenario, high intercept)

Change of minimal/maximal values in the core [% of redistribution]

Step 1: transmission Step 2: distribution Two steps together

Δmin / Δmax / Δspan Δmin / Δmax / Δspan Δmin / Δmax / Δspan

Outside countries

Russia 0.1 −6.7 −6.7 0.0 −0.1 −0.1 0.1 −6.7 −6.8

Belarus 0.6 0.0 −0.6 0.0 0.0 0.0 0.6 0.0 −0.6

Ukraine 1.3 0.0 −1.3 0.0 0.0 0.0 1.3 −0.1 −1.4

Algeria 0.3 0.0 −0.3 0.0 0.0 0.0 0.3 0.0 −0.3

Libya 0.1 0.0 −0.1 0.0 0.0 0.0 0.1 0.0 −0.1

Norway 0.5 0.0 −0.6 0.0 0.0 0.0 0.5 −0.1 −0.6

Netherlands

champion 0.1 0.0 −0.1 0.0 −25.8 −25.8 0.2 −25.8 −25.9

customers 0.0 0.0 0.0 25.8 0.0 −25.8 25.8 0.0 −25.8

Center-Easta

champion 0.1 −0.1 −0.2 0.0 −22.2 −22.2 0.1 −22.3 −22.4

customers 0.0 0.0 0.0 22.1 0.0 −22.1 22.1 0.0 −22.1

Italy

champion 0.2 −0.4 −0.6 0.0 −40.5 −40.6 0.2 −41.0 −41.2

customers 0.0 0.0 0.0 40.3 0.0 −40.3 40.3 0.0 −40.3

Centerb

champion 0.1 −0.4 −0.5 0.0 −56.1 −56.1 0.1 −56.5 −56.5

customers 0.0 −0.1 −0.1 55.9 0.0 −55.9 55.9 −0.1 −56.0

South-Westc

champion 0.0 0.0 0.0 0.0 −44.1 −44.1 0.0 −44.1 −44.1

customers 0.0 0.0 0.0 43.7 0.0 −43.8 43.7 0.0 −43.8

Poland 0.4 0.0 −0.4 0.0 0.0 0.0 0.4 0.0 −0.4

Belgium 0.1 0.0 −0.2 0.0 0.0 0.0 0.2 0.0 −0.2

United Kingdom 0.0 −0.2 −0.3 0.0 0.0 0.0 0.0 −0.2 −0.3

Turkey & Balkand 3.8 0.0 −3.8 0.0 0.0 0.0 3.9 0.0 −3.9
a Austria, Czech Republic, Slovakia, Hungary, Serbia and Slovenia
b Germany, Switzerland, Denmark and Luxembourg
c France, Spain and Portugal
d Romania, Bulgaria and Greece

liberalization increases the instability of the Shapley value. The minimal costs of
establishing a coalition in the fully liberalized market are several times larger than
the counterparts in the fragmented and integrated markets. Opening of access to
pipelines decreases the minimal number of players in a deviating coalition. In the
fully liberalized market only two players are enough to veto the Shapley value.
The fraction of deviating coalitions raises with each step of reform. The increase
realized from the second step of liberalization is larger than from the first step for
all scenarios.
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Table 12.4 Impact of liberalization on the minimal/maximal values in the core (short-sighted
scenario, low intercept)

Change of minimal/maximal values in the core [% of redistribution]

Step 1: transmission Step 2: distribution Two steps together

Δmin / Δmax / Δspan Δmin / Δmax / Δspan Δmin / Δmax / Δspan

Outside countries

Russia 0.1 −8.8 −9.0 0.0 −0.2 −0.2 0.1 −9.0 −9.1

Belarus 1.3 0.0 −1.3 0.0 0.0 0.0 1.3 0.0 −1.3

Ukraine 4.5 −0.1 −4.6 0.1 0.0 −0.1 4.6 −0.1 −4.7

Algeria 1.0 0.0 −1.0 0.0 0.0 0.0 1.0 0.0 −1.0

Libya 0.3 0.0 −0.3 0.1 0.0 −0.1 0.4 0.0 −0.4

Norway 1.6 −0.1 −1.7 0.0 0.0 0.0 1.6 −0.1 −1.7

Netherlands

champion 0.5 0.0 −0.5 0.0 −25.4 −25.5 0.5 −25.4 −25.9

customers 0.0 0.0 0.0 25.3 0.0 −25.3 25.3 0.0 −25.3

Center-Easta

champion 0.3 −0.2 −0.5 0.0 −22.1 −22.1 0.3 −22.3 −22.6

customers 0.0 0.0 0.0 21.7 0.0 −21.7 21.7 0.0 −21.7

Italy

champion 0.5 −1.3 −1.8 0.1 −40.3 −40.4 0.6 −41.6 −42.2

customers 0.0 0.0 0.0 39.6 0.0 −39.6 39.6 0.0 −39.6

Centerb

champion 0.2 −1.2 −1.4 0.0 −55.7 −55.7 0.2 −56.9 −57.1

customers 0.0 −0.3 −0.3 55.1 0.0 −55.2 55.1 −0.3 −55.4

South-Westc

champion 0.0 −0.1 −0.1 0.0 −37.8 −37.9 0.0 −38.0 −38.0

customers 0.0 0.0 0.0 36.7 0.0 −36.8 36.7 −0.1 −36.8

Poland 0.9 −0.2 −1.1 0.1 0.0 −0.1 1.0 −0.2 −1.1

Belgium 0.5 −0.1 −0.6 0.0 0.0 0.0 0.5 −0.1 −0.6

United Kingdom 0.1 −0.7 −0.8 0.0 0.0 0.0 0.1 −0.7 −0.8

Turkey & Balkand 3.4 0.0 −3.4 0.2 0.0 −0.2 3.6 0.0 −3.6
a Austria, Czech Republic, Slovakia, Hungary, Serbia and Slovenia
b Germany, Switzerland, Denmark and Luxembourg
c France, Spain and Portugal
d Romania, Bulgaria and Greece
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Table 12.5 Impact of liberalization on the minimal/maximal values in the core (far-sighted
scenario, low intercept)

Change of minimal/maximal values in the core [% of redistribution]

Step 1: transmission Step 2: distribution Two steps together

Δmin / Δmax / Δspan Δmin / Δmax / Δspan Δmin / Δmax / Δspan

Outside countries

Russia 0.1 −8.4 −8.5 0.0 −0.2 −0.2 0.1 −8.5 −8.7

Belarus 1.4 0.0 −1.4 0.0 0.0 0.0 1.4 0.0 −1.4

Ukraine 2.2 −0.1 −2.3 0.1 0.0 −0.1 2.3 −0.1 −2.4

Algeria 1.0 0.0 −1.0 0.0 0.0 0.0 1.0 0.0 −1.0

Libya 0.3 0.0 −0.3 0.1 0.0 −0.1 0.5 0.0 −0.5

Norway 1.6 −0.1 −1.7 0.0 0.0 0.0 1.6 −0.1 −1.7

Netherlands

champion 0.5 0.0 −0.5 0.0 −26.0 −26.0 0.5 −26.0 −26.5

customers 0.0 0.0 0.0 25.9 0.0 −25.9 25.9 0.0 −25.9

Center-Easta

champion 0.3 −0.2 −0.5 0.0 −22.6 −22.6 0.3 −22.8 −23.1

customers 0.0 0.0 0.0 22.1 0.0 −22.1 22.1 0.0 −22.1

Italy

champion 0.5 −1.3 −1.9 0.1 −41.2 −41.3 0.6 −42.5 −43.2

customers 0.0 0.0 0.0 40.4 0.0 −40.5 40.4 0.0 −40.5

Centerb

champion 0.2 −1.3 −1.5 0.0 −56.9 −56.9 0.2 −58.2 −58.4

customers 0.0 −0.3 −0.3 56.3 0.0 −56.4 56.3 −0.3 −56.6

South-Westc

champion 0.0 −0.1 −0.1 0.0 −44.3 −44.3 0.0 −44.4 −44.4

customers 0.0 0.0 0.0 43.3 0.0 −43.3 43.3 −0.1 −43.3

Poland 0.9 −0.2 −1.1 0.1 0.0 −0.1 1.0 −0.2 −1.1

Belgium 0.5 −0.1 −0.6 0.0 0.0 0.0 0.5 −0.1 −0.6

United Kingdom 0.1 −0.7 −0.8 0.0 0.0 0.0 0.1 −0.7 −0.8

Turkey & Balkand 3.4 0.0 −3.4 0.2 0.0 −0.2 3.6 0.0 −3.6
a Austria, Czech Republic, Slovakia, Hungary, Serbia and Slovenia
b Germany, Switzerland, Denmark and Luxembourg
c France, Spain and Portugal
d Romania, Bulgaria and Greece

Table 12.6 Impact of liberalization on stability measures (far-sighted scenario, high intercept)

Stability measures

Fragmented Integrated Liberalized

ε∗(φ, |N | − 1)/
∑

φ0
EU 1.5 2.1 7.6

n∗(φ, 0) − 1 6 1 1

f (φ, |N | − 1, 0) 0.0003 0.0027 0.1775
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Table 12.7 Impact of liberalization on stability measures (short-sighted scenario, low intercept)

Stability measures

Fragmented Integrated Liberalized

ε∗(φ, |N | − 1)/
∑

φ0
EU 1.0 1.4 7.1

n∗(φ, 0) − 1 8 2 1

f (φ, |N | − 1, 0) 0.0001 0.0011 0.0820

Table 12.8 Impact of liberalization on stability measures (far-sighted scenario, low intercept)

Stability measures

Fragmented Integrated Liberalized

ε∗(φ, |N | − 1)/
∑

φ0
EU 1.0 1.2 6.6

n∗(φ, 0) − 1 7 2 1

f (φ, |N | − 1, 0) 0.0001 0.0014 0.1400

Acknowledgments I am very grateful to my supervisor Prof. Dr. Franz Hubert, without whom
this work would be impossible. We thank Johannes H. Reijnierse for providing us with MATLAB
code for calculating the nucleolus.

References

1. Cobanli, O.: Central Asian gas in Eurasian power game. Energy Policy 68, 348–370 (2014)
2. DG Competition Report on Energy Sector Inquiry. SEC(2006) 1724, Brussels
3. Directive 98/30/EC of the European Parliament and of the Council of 22 June 1998 concerning

common rules for the internal market in natural gas. Official Journal of the European
Communities, L204

4. Directive 2003/55/EC of the European Parliament and of the Council of 26 June 2003
concerning common rules for the internal market in natural gas and repealing Directive
98/30/EC. Official Journal of the European Union, L176

5. Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009
concerning common rules for the internal market in natural gas and repealing Directive
2003/55/EC. Official Journal of the European Union, L211(94)

6. Engevall, S., Göthe-Lundgren, M., Värbrand, P.: The traveling salesman game: An application
of cost allocation in a gas and oil company. Ann. Oper. Res. 82, 203–218 (1998)

7. Engevall, S., Göthe-Lundgren, M., Värbrand, P.: The heterogeneous vehicle-routing game.
Transp. Sci. 38(1), 71–85 (2004)

8. Felsenthal, D.S., Machover, M.: A priori voting power: What is it all about? Polit. Stud. Rev.
2, 1–23 (2004)

9. Fiestras-Janeiro, M.G., García-Jurado, I., Mosquera, M.A.: Cooperative games and cost
allocation problems. Top 19(1), 1–22 (2011)

10. Hubert F., Cobanli, O.: Pipeline power: A case study of strategic network investments. Rev.
Netw. Econ. 14(2), 75–110 (2016)

11. Hubert, F., Ikonnikova, S.: Investment options and bargaining power in the eurasian supply
chain for natural gas. J. Ind. Econ. 59(1), 85–116 (2011)

12. Hubert, F., Orlova, E.: Competition or countervailing power for the European gas market.
Discussion Paper (2014)

13. Hubert, F., Orlova, E.: Network access and market power. Energy Econ. 76, 170–185 (2018)



200 E. Orlova

14. Littlechild, S.: A simple expression for the nucleolus in a special case. Int. J. Game Theory
3(1), 21–29 (1974)

15. Littlechild, S.C., Owen, G.: A simple expression for the Shapley value in a special case. Manag.
Sci. 20(3), 370–372 (1973)

16. Littlechild, S.C., Thompson, G.F.: Aircraft landing fees: A game theory approach. Bell J. Econ.
8(1), 186–204 (1977)

17. Megiddo, N.: On the nonmonotonicity of the bargaining set, the kernel and the nucleolus of a
game. SIAM J. Appl. Math. 27(2), 355–358 (1974)

18. Montero, M.: On the nucleolus as a power index. Homo Oeconomicus 22(4), 551–567 (2005)
19. Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee

system. Am. Polit. Sci. Rev. 48(03), 787–792 (1954)
20. Shapley, L.S., Shubik, M.: Quasi-cores in a monetary economy with nonconvex preferences.

Econometrica 34(4), 805–827 (1966)
21. Shubik, M.: Incentives, decentralized control, the assignment of joint costs and internal pricing.

Manag. Sci. 8(3), 325–343 (1962)
22. Thomas, L.C.: Dividing credit-card costs fairly. IMA J. Manag. Math. 4(1), 19–33 (1992)
23. Young, H.P.: Monotonic solutions of cooperative games. Int. J. Game Theory 14(2), 65–72

(1985)



Chapter 13
Optimal Incentive Strategy
in a Continuous Time Inverse
Stackelberg Game

Dmitry B. Rokhlin and Gennady A. Ougolnitsky

Abstract We consider a continuous time dynamic incentive problem in the case
of one leader and one follower. Follower’s ε-optimal strategy is determined via an
auxiliary control problem. The main result is similar to that obtained by the authors
for a stochastic discrete time model. We give an illustrative example concerning a
non-renewable resource extraction problem.

Keywords Incentive strategy · Inverse Stackelberg game · Continuous time ·
Resource extraction

13.1 Introduction

The theory of incentives is an important research stream for several decades [10–
13]. The adequate mathematical model of an incentive mechanism is provided by
inverse Stackelberg games [16, 17]. In these games the leader (she) reports to the
follower (he) her strategy as a function of his control actions, and maximizes her
payoff on the set of the best responses of the follower. The most comprehensive
approach to the solution of this difficult mathematical problem was proposed by
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Germeyer in the static case [3] and developed by Kononenko in the dynamic case
[6–8]. Following this approach, the leader rewards the follower if he cooperates, and
punishes him, otherwise. Kononenko [6–8] has proved that such control mechanism
forms an ε-optimal strategy of the leader.

Novikov and Shokhina [15] and Novikov [14] used this idea in his theory of con-
trol in organizational systems for the model with specific payoff functions. Namely,
the leader maximizes the difference between her revenue and incentive payments,
meanwhile the follower maximizes the difference between these payments and his
labor cost. In the static case it was shown that in the optimal control mechanism
the leader compensates the follower his cost (with an incentive surplus), if the latter
cooperates and accepts leader’s optimal plan, and refuses to pay, otherwise. The
leader optimal plan is determined as a solution of an auxiliary optimization problem
of maximization of the difference between leader’s revenue and follower’s cost.

Rokhlin and Ougolnitsky [19] generalized this result for an incentive model
with Markov dynamics and discounted optimality criteria in the case of complete
information, discrete time and infinite planning horizon. In this model, the leader
influences the follower by selecting an incentive function that depends on the system
state and the actions of the follower, who employs closed-loop control strategies.
System dynamics, revenues of the leader and costs of the follower depend on
the system state and follower’s actions. It was shown that finding an approximate
solution of the inverse Stackelberg game reduces to the solution of an auxiliary
optimal control problem with the objective function equal to the difference between
the revenue of the leader and the cost of the follower. An ε-optimal strategy of the
leader is an economic incentive for the follower to implement the strategy, which is
optimal in this auxiliary problem.

In this paper we consider a continuous time setup of the incentive problem
characterized above. Section 13.2 contains the problem formulation. Section 13.3
exposes the main result. Section 13.4 describes an illustrative example. The leader
payoff function in this example includes an additional term, related to the intention
to reach a desirable state (a form of the homeostasis condition). Section 13.5
concludes.

13.2 Problem Formulation

Consider a controlled dynamical system

ẋt = b(t, xt , αt ), x0 = y, αt ∈ A, t ∈ [0, T ].
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where b = (b1, . . . , bd), xt ∈ R
d and A ⊂ R

m is a compact set. There are two
players: the leader and the follower. It is assumed that their payoffs are given by

J1(x, c, α) =
∫ T

0
(f (t, xt , αt )− c(t, xt , αt )) dt + ϕ(xT ),

J2(x, c, α) =
∫ T

0
(c(t, xt , αt )− g(t, xt , αt )) dt.

respectively. Here α is the control of the follower, and c is the incentive function
selected by the leader.

Let us say that h = h(t, x, a) is a Caratheodory function on [0, T ] × R
d × A, if

h is Borel measurable in t and continuous in (x, a) [1, Definition 4.50]. Denote by
Cr = Cr([0, T ] × R

d × A) the class of Caratheodory functions. Clearly, Cr is a
linear space. We impose the following conditions:

• bi, f, g, c ∈ Cr([0, T ] × R
d × A);

• ϕ is continuous;
• f , g, c are uniformly bounded;
• b is Lipschitz in x uniformly in (t, a):

‖b(t, x, a)− b(t, y, a)‖ ≤ L‖x − y‖, (13.1)

where ‖ · ‖ is the Euclidean norm in R
d ;

• c ≥ 0, g(t, x, 0) = 0.

The set of incentive functions c, satisfying the above conditions is denoted by C.
A strict control is a Borel measurable mapping from [0, T ] to A. The set of strict

controls is denoted by A. In general, to get an optimal solution this set should be
enlarged. A relaxed control is a positive Borel measure μ on [0, T ] × A such that
μ(·, A) is the Lebesgue measure λ on [0, T ]. The set of relaxed controls is denoted
by A r . Any relaxed control μ admits a representation μ(dt, da) = dtqt (da), where
q is a probability kernel from [0, T ] to A. A strict control α ∈ A is identified with
the relaxed control dtδαt (da), where δa is the Dirac measure, concentrated at a.

The set A r is endowed with the weak topology, induced by the neighborhoods
of zero

∣∣∣∣
∫
[0,T ]×A

η(t, a)μ(dt, da)

∣∣∣∣ < ε, (13.2)

where η is a continuous function and ε > 0. This topology coincides with the
narrow topology, generated by the neighborhoods (13.2), where η is a Caratheodory
function: that is, it is Borel measurable in t and continuous in a [22, Theorem 3]. In
these topologies the set A r is compact and metrizable [9, Lemma 3.3], and the set
A is dense in A r [22, Proposition 8].
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The Lipschitz condition (13.1) ensures that the equation

xt = y +
∫
[0,t ]×A

b(s, xs, a)μ(ds, da), t ∈ [0, T ] (13.3)

has a unique continuous solution x for any μ ∈ A r . Denote by Cd the set of
continuous Rd -valued functions with the uniform norm ‖x‖C = maxt∈[0,T ] ‖xt‖.

Now let us give a formal description of the game:

• The leader selects an incentive function c ∈ C.
• The follower finds an optimal solution (x∗, μ∗) of the problem

J2(x, c, μ) =
∫
[0,T ]×A

(c(t, xt , a)− g(t, xt , a))μ(dt, da) → max
(x,μ)∈Cd×A r

,

(13.4)

where x satisfies (13.3), and implements the related the optimal control μ∗.
• The leader gets the reward

J1(x
∗, c, μ∗) =

∫
[0,T ]×A

(f (t, x∗t , a)− c(t, x∗t , a))μ∗(dt, da)+ ϕ(x∗T ).

Denote by R(c) the set of optimal solutions of (13.4). Leader’s aim is to
maximize

G(c) = inf
(x∗,μ∗)∈R(c)

J1(x
∗, c, μ∗)

over c ∈ C.
Since the leader considers the worst-case scenario, this is a weak Stackelberg

game: [2]. Furthermore, it may be classified as an inverse Stackelberg game (see
[16, 17]), as long as leader’s strategies depend on the strategies of the follower.

Let us call VL = supc∈C G(c) the value of the leader. An element cε ∈ C is
called an ε-Stackelberg solution if G(cε) ≥ VL − ε.

Note, that we consider the terminal term ϕ(xT ) only for the leader, keeping in
mind that usually only she is interested in controlling the state of the system: see
an example in Sect. 13.4. In this example xt is the amount of available resource,
αt is the intensity of resource extraction, f , g are the instantaneous leader’s gain
and follower’s cost respectively. The terminal term ϕ measures the deviation of the
resource amount from the desired level.

Consider an auxiliary problem:

J (x,μ) =
∫
[0,T ]×A

(f (t, xt , a)− g(t, xt , a))μ(dt, da)+ ϕ(xT ) → max
(x,μ)∈Cd×A r

,

(13.5)
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where x satisfies (13.3), and let V = sup(x,μ)∈Cd×A r J (x, μ) be its value. The
objective function (13.5) represents the hypothetical leader’s gain, which she could
receive by extracting resource by herself and facing the related costs. It appears
that V coincides with the value of the leader VL. Moreover, an (ε + δ)-Stackelberg
solution cε,δ of the leader consists in covering follower’s cost with an incentive
premium, which is proportional to δ and stimulates an ε-optimal solution of (13.5).
All these assertions are the content of Theorem 13.2, which is the main result of the
paper.

13.3 The Main Result

The next theorem contains technical and essentially known results, concerning the
solvability of a general deterministic continuous-time the optimal control problem.

Theorem 13.1 Assume that h ∈ Cr([0, T ] × R
d × A) is a bounded function, and

χ : Rd �→ R is a continuous function. Then

(i) the problem

J (x,μ) =
∫
[0,T ]×A

h(t, xt , a)μ(dt, da)+ χ(xT ) → max
(x,μ)∈Cd×A r

, (13.6)

where x satisfies (13.3), is solvable;
(ii) for any ε > 0 there exists an ε-optimal strict control αε ∈ A:

J (xε, αε) ≥ J ∗ − ε,

where xε is the solution of (13.3), corresponding to αε , and J ∗ is the optimal
value of (13.6).

(iii) if for all (t, x) ∈ [0, T ] × R
d the set

{(b(t, x, a), z) : a ∈ A, h(t, x, a) ≥ z} ⊂ R
d × R (13.7)

is convex, then there exists an optimal strict control α∗ ∈ A.

Proof

(i) Let (xn, μn) ∈ Cd ×A r be a maximizing sequence:

J (xn, μn) → J ∗, xn
t = y +

∫
[0,t ]×A

b(s, xn
s , a)μn(ds, da). (13.8)
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We may assume that μn → μ∗ ∈ A r in the narrow topology by the
compactness of A r . The sequence xn satisfies the inequality

‖xn
t − xn

s ‖ =
∥∥∥∥
∫
[s,t ]×A

b(u, xn
u, a)μn(du, da)

∥∥∥∥ ≤ K(t − s),

with some constant K ≥ |b|. It follows that the sequence xn is uniformly
bounded and equicontinuous. By the Arzela-Ascoli theorem there exists a
subsequence, converging to x∗ ∈ Cd . Without loss of generality we can assume
that xn → x∗ in Cd and ‖xn‖C ≤ γ .

Assume that |h| ≤ dγ on [0, T ]×Bγ ×A, where Bγ = {y ∈ R
d : ‖y‖ ≤ γ }.

We claim that
∫
[0,T ]×A

h(t, xn
t , a)μn(dt, da) →

∫
[0,T ]×A

h(t, x∗t , a)μ∗(dt, da). (13.9)

The function (t, a) �→ h(t, x∗t , a) is measurable in t and continuous in a.
Moreover, |h| ≤ dγ . By the definition of the narrow topology,

∫
[0,T ]×A

h(t, x∗t , a)μn(dt, da) →
∫
[0,T ]×A

h(t, x∗t , a)μ∗(dt, da).

(13.10)

Furthermore, by the Scorza-Dragoni theorem [18, Theorem 2.5.19] for any
ε > 0 there exists a compact set Kε ⊂ [0, T ]with λ(Kc

ε ) ≤ ε, Kc
ε = [0, T ]\Kε

such that h|Kε×Rd×A is continuous. Since the function h is uniformly continu-
ous on Kε × Bγ × A, for any ε > 0 there exists δ > 0 such that

|h(t, xn
t , a)− h(t, x∗t , a)| ≤ ε if ‖xn − x∗‖C ≤ δ.

Thus,

∫
Kε×A

|h(t, xn
t , a)− h(t, x∗t , a)|μn(dt, da) ≤ T ε for ‖xn − x∗‖C ≤ δ,

(13.11)

∫
Kc

ε×A

|h(t, xn
t , a)− h(t, x∗t , a)|μn(dt, da) ≤ 2dγ

∫
Kc

ε×A

μn(dt, da) = 2εdγ .

(13.12)
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Using the relations (13.10), (13.11), and (13.12), from the inequality

∣∣∣∣
∫
[0,T ]×A

h(t, xn
t , a)μn(dt, da)−

∫
[0,T ]×A

h(t, x∗t , a)μ∗(dt, da)

∣∣∣∣
≤

∫
[0,T ]×A

|h(t, xn
t , a)− h(t, x∗t , a)|μn(dt, da)

+
∣∣∣∣
∫
[0,T ]×A

h(t, x∗t , a)μn(dt, da)−
∫
[0,T ]×A

h(t, x∗t , a)μ∗(dt, da)

∣∣∣∣

we get

lim sup
n→∞

∣∣∣∣
∫
[0,T ]×A

h(t, xn
t , a)μn(dt, da)

−
∫
[0,T ]×A

h(t, x∗t , a)μ∗(dt, da)

∣∣∣∣ ≤ (T + 2dγ )ε,

thus proving the claim (13.9).
The same argumentation shows that

∫
[0,t ]×A

b(s, xn
s , a)μn(ds, da) →

∫
[0,t ]×A

b(s, x∗s , a)μ∗(ds, da)

We have justified the passage to the limit in (13.8), which implies that (x∗, μ∗)
is a solution of (13.6):

x∗t = y +
∫
[0,t ]×A

b(s, x∗s , a)μ∗(ds, da),

J (x∗, μ∗) =
∫
[0,T ]×A

h(t, x∗t , a)μ(dt, da)+ χ(x∗T ) = J ∗.

(ii) Take a sequence αn ∈ A, converging to an optimal μ∗ ∈ A in the narrow
topology. As in the proof of (i), considering αn instead of μn, we can argue
that the optimal value J ∗ can be approximated with arbitrary accuracy by
J (xn, αn).

(iii) This is the well-known result and (13.7) is known as the Roxin condition: see
[4] (Theorem 3.6 and condition (3.4)) for a rather general result or [9, Theorem
3.6] for an exposition. � 

Recall that V = sup(x,μ)∈Cd×A r J (x, μ) is the value of the auxiliary prob-
lem (13.5). Let ρ : A×A �→ R+ be any metric on A.



208 D. B. Rokhlin and G. A. Ougolnitsky

Theorem 13.2 Under the adopted assumptions the following holds true.

(i) VL = V .
(ii) Let αε ∈ A be a ε-optimal solution of the auxiliary problem (13.5). Then

cε,δ(t, x, a) = g(t, x, a)+ δ

T
(1 − ρ(a, αε

t ))
+, (13.13)

where z+ := max{z, 0} is an (ε + δ)-Stackelberg solution, and

R(cε,δ) = {dtδαε
t
(da)}.

Proof By Theorem 13.1, R(c) �= ∅, c ∈ Cr . For (x∗, μ∗) ∈ R(c) we have

G(c) ≤ J1(x
∗, c, μ∗) ≤ J1(x

∗, c, μ∗)+ J2(x
∗, c, 0)

≤ J1(x
∗, c, μ∗)+ J2(x

∗, c, μ∗) = J (x∗, μ∗) ≤ V.

Hence,

VL ≤ V. (13.14)

Furthermore, consider the functional of the follower for the incentive func-
tion (13.13):

J2(x, cε,δ, μ) = δ

T

∫
[0,T ]×A

(1 − ρ(a, αε
t ))

+μ(dt, da)

= δ

T

∫
[0,T ]×A

(1 − ρ(a, αε
t ))

+qt (da)dt.

Note that an ε-optimal solution αε ∈ A of (13.5) exists by Therorem 13.1.
Clearly, if (x, dtqt (da)) ∈ R(cε,δ), then qt (da) = δαε

t
(da) λ-a.e., since this is

the unique control, providing zero value to the last expression. In other words, αε is
the optimal control of the follower. Denote by xε the related trajectory. Since

cε,δ(t, xε
t , α

ε
t ) = g(t, xε

t , αε
t )+

δ

T
,

we get

VL ≥ G(cε) = J1(x
ε, cε,δ, αε)

=
∫
[0,T ]×A

(
f (t, xε

t , α
ε
t )− g(t, xε

t , αε
t )−

δ

T

)
dt + ϕ(xε

T )

= J (αε)− δ ≥ V − ε − δ.

Together with (13.14) this inequality implies both assertions of the theorem. � 
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The form of the second term (the incentive premium) in (13.13) is not so essential,
but in accordance with the economic meaning, it should be non-negative. The closer
the actions of the follower are to the desired control αε , communicated by the leader,
the larger will be incentive premium, which is proportional to δ. Note also that the
leader always communicates to the follower a strict control strategy. We believe that
in practice it is impossible to communicate a relaxed strategy.

13.4 Example

Consider a non-renewable resource extraction problem. Let xt be the amount of
remaining resource, and denote by αt the intensity of its extraction:

ẋt = −αt , αt ∈ [0, α], t ∈ [0, T ]; x0 = y. (13.15)

Assume that the leader obtains instantaneous profit by selling the resource at the
market price P(t). Besides the profit, the leader is interested in setting the resource
level as close as possible to y1 at some predefined time moment T :

J1(x, c, α) =
∫ T

0
(P (t)αt − c(t, xt , αt )) dt − B

2
(xT − y1)

2 → max. (13.16)

A problem similar to (13.15), (13.16), but with unspecified horizon and the hard
boundary condition xT = y1, was considered in [5, Chapter 10].

Follower’s gain is simply the difference between the incentive function and the
extraction cost:

J2(x, c, α) =
∫ T

0
(c(t, xt , αt )− C(t)αt ) dt → max .

In this example it is enough to use only strict controls.
Consider the auxiliary problem (13.5):

− J (x, α) =
∫ T

0
(C(t)− P(t))αt dt + B

2
(xT − y1)

2 → min . (13.17)

To solve the problem (13.15), (13.17) let us apply the Pontryagin maximum
principle. Consider the Hamiltonian

H = −λa − (C(t) − P(t))a.

The adjoint equation

λ̇t = −Hx = 0
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shows that λ is constant. An optimal control α∗ satisfies the maximum principle:

α∗t ∈ arg max
a∈[0,α]H(t, a, λ) =

{
α, P (t) − C(t) > λ,

0, P (t) − C(t) < λ.

Let us assume that the equation t �→ P(t) − C(t) = λ has only finite number
of solutions for any constant λ. Then α∗t ∈ {0, α} except may be finite number of
points τi ∈ [0, T ]:

τ0 = 0 < τ1 < · · · < τk = T , k ≥ 1,

and the values α∗t = 0 and α∗t = 1 alternate on the neighbor intervals (τi−1, τi),
(τi, τi+1) if k ≥ 2. Thus,

α∗t = α · IS(t), S =
⋃
i∈J

(τi, τi+1), IS(t) =
{

1, t ∈ S,

0, 0 �∈ S
(13.18)

for some set of indexes J ⊂ {0, . . . , k − 1}.
According to Theorem 13.2 the leader should select an incentive function

c(t, x, a) = C(t)a + δ

T

(
1 − |a − α∗t |/α

)+

(we put ρ(a, b) = |a − b|/α). Then follower’s optimal strategy coincides with α∗.
To make the problem more interesting assume that the true instantaneous cost C̃

of the follower differs from the estimate C of the leader. Then follower’s payoff will
be

J̃2(x, c, α∗) =
∫ T

0
(c(t, xt , αt )− C̃(t)αt ) dt

=
∫ T

0

(
C(t)αt − C̃(t)αt + δ

T
(1 − |a − α∗t |/α)+

)
dt → max .

(13.19)

We interested under what conditions the follower will implement the strategy α∗,
which the leader tried to communicate. Writing down the relations of the maximum
principle for the problem (13.15), (13.19), we see that the adjoint variable equals to
zero and the follower optimal strategy α̂t satisfies the condition

α̂t ∈ arg max
a∈[0,α]

(
(C(t)− C̃(t))a + δ

T
(1 − |a − α∗t |/α)+

)
.
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Substituting α∗ from (13.18), we get

α̂t ∈ arg max
a∈[0,α]

(
(C(t)− C̃(t))a + δ

T
(1 − a/α)

)
, t ∈ (τi−1, τi ), i �∈ J,

α̂t ∈ arg max
a∈[0,α]

(
(C(t)− C̃(t))a + δ

T
a/α

)
, t ∈ (τi−1, τi ), i ∈ J.

The desired condition α̂ = α∗ is equivalent to the inequalities

C(t)− C̃(t)− δ

T α
< 0, t ∈ (τi−1, τi), i �∈ J,

C(t) − C̃(t)+ δ

T α
> 0, t ∈ (τi−1, τi ), i ∈ J.

Thus, the condition α̂ = α∗ will be satisfied if

δ > T α sup
t∈[0,T ]

|C(t)− C̃(t)|. (13.20)

If this condition fails, the leader may encounter an undesirable behavior of the
follower.

Under the condition (13.20) the gain of the leader equals to

J1(x
∗, c, α∗) =

∫ T

0
(P (t)α∗t − c(t, x∗t , α∗t )) dt − B

2
(x∗T − y1)

2

=
∫ T

0

(
P(t)α∗t − C(t)α∗t

)
dt − B

2
(x∗T − y1)

2 − δ = V (C)− δ.

We write V (C) for the optimal value of the auxiliary problem (13.15) and (13.17),
where follower’s cost is estimated as C(t)a by the leader. For the leader, the
magnitude of δ is related to the tradeoff between the controlled decrease of the
payoff and the protection against an undesirable behavior of the follower.

Note, that in fact there is no need to stimulate zero extraction strategy of the
follower. That is, the leader can consider the incentive function

ĉ(t, x, a) = c(x, t, a)IS(t) =
(

C(t)a + δ

T

a

α

)
IS(t).

Indeed, in this case the follower with any strictly positive cost C̃ will select α̂t = 0,
t ∈ [0, T ]\S. Under the condition

δ > T α sup
t∈S

|C(t)− C̃(t)|,
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weaker than (13.20), this allows to guarantee somewhat larger lower estimate of
leader’s payoff:

J1(x
∗, ĉ, α∗) =

∫ T

0

(
P(t)α∗t −

(
C(t)α + δ

T

)
IS(t)

)
dt − B

2
(x∗T − y1)

2

= V (C)− λ(S)

T
δ.

13.5 Conclusion

We considered a dynamic incentive problem in continuous time for the case of
one leader and one follower. It is shown that to implement an ε-optimal incentive
mechanism, the leader should solve an optimal control problem to maximize the
difference between her revenue and the cost of the follower, report a fixed optimal
plan to the follower, and cover the costs of the follower with an incentive premium ε.
This result is similar to that obtained in our paper [19] for a discrete-time stochastic
model. From the other side, it is another generalization of a static case result
obtained in [14, 15].

The dynamic case of several agents in discrete time was studied by Rokhlin and
Ougolnitsky in [20, 21]. We plan a similar investigation for the continuous time
model with several agents and different information structures. Also, the condition
of homeostasis, which is now partially taken into account by the second term in the
leader payoff function (13.16), seems to be important in applications and should be
analyzed in details.
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Chapter 14
The Looking Forward Approach
in a Differential Game Model of the Oil
Market with Non-transferable Utility

Ovanes Petrosian, Maria Nastych, and Yin Li

Abstract The paper applies the Looking Forward Approach to analyze the world
oil market within the framework of a differential game model of a quantity
competition oligopoly. More precisely, the Looking Forward Approach is used
to take into account dynamically updating information. Under information we
understand the forecast of oil demand dynamics. We use a non-cooperative game
modeling for the period from December 2015 to November 2016, because over this
period the countries did not cooperate officially in what concerns the amounts of oil
to be produced. For the period from December 2016 to May 2017, a non-transferable
utility cooperative game modeling is adapted due to the agreement to reduce oil
extraction signed by the largest oil exporters at the end of November 2016. We use
both solutions, which correspond to the historical cooperative solution and the sub-
game consistent solution proposed developed in the field of dynamic games. In order
to define the parameters of the model, open source data is used, with the results of
numerical simulations and comparison between the historical data and model data
for both periods also presented.
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14.1 Introduction

The paper is devoted to constructing a game theoretical model for the world oil
market using the Looking Forward Approach. Game models with the Looking
Forward Approach allow taking into account the variability of market demands, an
adaptation of participants actions to the changing environment and actual planning
horizons for demand. Oil market has a highly volatile prices, therefore the Looking
Forward Approach is applied to the oil market and the resulting model is studied.
We suppose that countries do not have or cannot use long-term forecasts for the
parameters of the oil market. Therefore, their behavior can be modeled using the
approach proposed.

The object of this paper is to simulate the oil market dynamics during two
particular periods, from December 2015 to November 2016 and from December
2016 to May 2017. The OPEC countries and eleven non-OPEC countries reached a
6-month-long agreement about the reduction of oil production for the latter period
at the summit in Vienna on November 30, 2016. The agreement was aimed to result
in the growth of oil prices. These countries, taken together, account for over 60%
of oil production in the world. To show the effect of the agreement, we consider
two game theoretical models corresponding to the two periods mentioned. We
suppose that the countries did not cooperate officially on the amounts of oil to be
produced before November 30, 2016. Therefore, their behavior can be simulated
using a non-cooperative game model. Hence, firstly, we build a non-cooperative
game for the time interval from December 2015 to November 2016 and adapt it to
the real oil price data. As an optimality principle, the feedback Nash equilibrium
is used. Making an agreement on the quantity of oil production seems to be a
case of purely cooperative behavior. Therefore, we construct a coalitional game
model for the time interval from December 2016 to May 2017. The cooperation
is modeled using a non-transferable utility game model. Subsequently, we construct
a classical cooperative solution for this type of games, i.e. a sub-game consistent
solution proposed in [38]. Furthermore, we model the cooperative agreement which
was actually used by the countries and call it the historical solution. According to
the historical agreement, the solution is based on the oil production quantities in
November 2016. It prescribes players 1 and 2 to linearly lower the quantities of
oil production to the level previously agreed upon. Obviously, the second solution
is not sub-game consistent, though it allows us to model the latest real-life market
agreement.

We present the results of the statistical simulation and comparison between the
historical data and model data over both periods. In particular, we give a comparison
of the theoretical trajectory of oil price between December 2015 and November
2016 with the statistical data. Over the period between December 2016 and May
2017, we compare the trajectory of oil price corresponding to the statistical data,
the subgame consistent cooperative solution defined in [38] and the cooperative
solution corresponding to the agreement signed by the largest oil exporters at the
end of 2016. In order to define the parameters of the model, open source data on the
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world oil market is used. We used the International Energy Agency for monthly data
on crude oil supply from January 2015 to May 2017, the Finam agency for monthly
data on Brent and light oil prices from January 2015 to May 2017, Rystad Energy
Ucube and oil market news for the cost of producing a barrel of oil in 2016.

The largest oil exporters reached the agreement to reduce oil production aiming
at raising prices after November 30, 2016, and in all our models we consider all
of them in groups of five to one players. This is not the first time when the OPEC
has restricted oil extraction hoping to control the prices on oil. These actions of
the members seem rational in a sense, as oil prices started to fall steadily in 2014.
Thus, in our game models, all the members of the OPEC together are called player
one. The other eleven countries which signed the agreement and which clearly have
common interests, although with more freedom in decision-making as compared to
the OPEC countries, are called player two. At the same time, the steady fall in oil
prices was largely due to the US shale oil and gas revolution, which started in 2012.
Therefore, our models include US shale and non-shale oil producing companies as
the main market rivals, and we call them players three and four, respectively. All
the other oil exporting countries constitute player five. We combine the countries
into players from one to five according to the described rule, since in our models we
consider only the price change process. Furthermore, such a combination greatly
simplifies the computational process without exerting any serious effect on the
plausibility of the results.

The global oil market is one of the most significant markets and a crucial
component in growth rate and budget scenarios for some resource-dependent
countries. In all fairness, this has been given a detailed coverage in literature.
Most of the existing models consider the oil market as a market with imperfect
competition. Market power models for the oil market explain the presence of the
OPEC by cartel behavior, by a dominant firm, or by target behavior in most cases.
Thus, Dahl and Yucel in [6] describe OPEC behavior as a loose coordination or
duopoly. In the paper [31] the pattern of extraction in the oil market is shown to
be inconsistent with either the patterns predicted by the competitive theory or the
dominant firm-competitive fringe theory. Danielsen and Kim [7] provide significant
evidence of cooperation among the OPEC countries. Smith in [34] asserts that
the OPEC is much more than simply a non-cooperative oligopoly but less than
a frictionless cartel. Youhanna in [39] affirms that a partial market sharing cartel
model dominates over all other models. Gulen in [10] provides evidence of output
coordination and suggests that the OPEC acted like a cartel in the 1980s (1982–
1993). The author of [17] maintains that the OPEC behavior is consistent with the
cartel theory. Bockem in [4] states that the crude oil market is best described as a
price leader model, with the OPEC appearing to be the leader and all non-OPEC
countries being regarded as price takers. The paper [30] claims that the OPEC
behaves more like an oligopoly, with Saudi Arabia as a price leader and the largest
producer. In the paper [1] the author asserts that the Nash–Cournot non-cooperative
model can potentially explain the oil market better than the competitive one. Moran
in [18] and Krasner in [13] analyze the main features of oil oligopoly. The authors
in [16] give a selective survey of oligopoly models for energy production. In the
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paper [33] the author examines cartel formation in the world oil market under the
Cournot setting. The authors in [3] also use the quantity competitive environment
to model collisions and proportionate adjustment of production levels. Following
this well-established tradition, we use the oligopoly quantity setting to model the oil
market.

Existing differential games often rely on the assumption of time-invariant game
structures for the derivation of equilibrium solutions. However, many events in the
considerably distant future are intrinsically obscure and unknown. In this paper,
information about the players’ future payoffs will be revealed as the game proceeds.
Making use of the newly obtained information, the players revise their strategies
accordingly, and the process continues indefinitely. The Looking Forward Approach
for differential games provides a more realistic and practical alternative to the
study of classical differential games. It enables us to construct game theoretical
models in which the game structure can change or update over time (time-dependent
formulation) and the players do not possess full information about the change
of the game structure while obtaining full information about the game structure
on the truncated time interval. The length of the truncated time interval will be
called the information horizon as it refers to the duration of the period when
the information is available to the players. By the information about the game
structure we understand information about the motion equation and payoff functions.
The duration of the period for which this information is relevant is known in
advance. The information about the game structure is updated at certain points.
The Looking Forward Approach was mainly developed for cooperative games
with transferable utility [9, 21–23], but there are also papers on non-cooperative
differential games [36], dynamic games [37] and a game with non-transferable
utility [25]. The key element of the Looking Forward Approach is the notion of
a truncated subgame, which helps to model the behavior of the players between
the time points of information updating. We define all optimal strategies and a
corresponding trajectory for each of the truncated subgames. When the information
updates, we define a corresponding solution for the next truncated subgame. The
resulting strategies and the corresponding trajectory are defined by the combination
of optimal strategies and trajectories in each truncated subgame. The concept of
the Looking Forward Approach is new in game theory, especially in differential
games, and it provides avenues for further study of differential games with dynamic
updating. So far there have been no known attempts of constructing approaches to
model conflict-controlled processes where information about the process updates
dynamically in time.

The Looking Forward Approach shares a common ground with the Model
Predictive Control theory developed within the framework of numerical optimal
control. We analyze [8, 15, 24, 26, 32, 35] to obtain recent results in this area.
The main problem that the Model Predictive Control solves mathematically is the
provision of movement along the target trajectory under the conditions of random
perturbations and unknown dynamical system. At each time step, the optimal control
problem is solved by defining the controls which will lead the system to the target
trajectory. The Looking Forward Approach, on the other hand, solves the problem
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of modeling the behavior of the players when the information about the process
updates dynamically. It means that the Looking Forward Approach does not use
a target trajectory, but resolves the issue of composing a trajectory which will be
used by the players and of allocating the cooperative payoff along the trajectory.
Another interesting class of games is connected to the class of differential games
with continuous updating was considered in the papers [14, 27], here it is supposed
that the updating process evolves continuously in time. In the paper [27], the system
of Hamilton–Jacobi–Bellman equations are derived for the Nash equilibrium in
a game with continuous updating. In the paper [14] the class of linear-quadratic
differential games with continuous updating is considered and the explicit form of
the Nash equilibrium is derived.

In the first part of the paper, the Looking Forward Approach is applied to the
non-cooperative oligopoly differential model [5] of the oil market with the largest
oil exporters and other oil-producing countries. Non-cooperative game theory deals
with strategic interactions among multiple decision makers with the objective
functions depending on the choices of all the players and suggests solution concepts
for a case when players do not cooperate or make any arrangements about their
actions. A player cannot simply optimize her own objective function independent
from the choices of the other players. In 1950 and 1951 in [19, 20] by John Nash,
such a solution concept was introduced, which is now called the Nash equilibrium.
In the second part of the paper, we consider a partially cooperative differential
game with non-transferable utility, which uses the non-cooperative game described
above as the initial model. We assume that players one and two cooperate and
the rest use Nash equilibrium strategies against them. The cooperative differential
game theory offers socially convenient and group efficient solutions to different
decision problems involving strategic actions. One of the fundamental questions
in the theory of cooperative differential games with the non-transferable utility is
the formulation of optimal behavior for players or economic agents, the design
of Pareto optimal trajectories, the computation of the corresponding solution, and
the analysis of its sub-game consistency. The well-known solution in the games
with non-transferable utility is the Nash bargaining solution. Haurie analyzed the
problem of dynamic instability of Nash bargaining solutions in differential games
[11]. The notion of time consistency of differential games solutions was formalized
mathematically by Petrosyan [28]. In the paper [38] the authors derive sub-game
consistent solutions for a class of cooperative stochastic differential games with non-
transferable utility. Another technique for the construction of a sub-game consistent
solution is presented in [29].

The paper is divided into two sections. In Sect. 14.1, a non-cooperative game
model with the Looking Forward Approach is constructed. We describe the initial
game model, define the notion of truncated sub-game, define the feedback Nash
equilibrium for each truncated sub-game, describe the process of information
updating, introduce the notion of conditionally cooperative trajectory and the
corresponding non-cooperative outcome, describe the results of the numerical
simulation of oil price on the market for the time interval from December 2015
to November 2016. In Sect. 14.2 we construct a partial cooperative game model
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corresponding to the model described in Sect. 14.1. We define a set of Pareto
optimal outcomes, the sub-game consistent solutions from [38] for each truncated
sub-game, introduce a solution concept for the whole game and the conditionally
Pareto optimal trajectory, study the sub-game consistency of the solution concept,
construct the historical solution and, finally, compare the solution based on the sub-
game consistent solution [38] and the historical solution. Further on, we model
oil price dynamic for the time interval from December 2016 to May 2017 in the
numerical simulation part.

14.2 Non-cooperative Game Model

14.2.1 Initial Game Model

Let us consider a differential game model of Cournot oligopoly [5] on the oil market.
An oligopolistic market of n asymmetrical countries (players) belonging to the set
N = {1, . . . , n}, producing oil, and competing for the quantity produced qi under
price stickiness is given by the differential game Γ (p0, T − t0) with prescribed
duration T − t0 and initial state p(t0) = p0 ∈ P ⊂ R.

In compliance with the model, the market price pi evolves according to the
differential equation:

ṗ(t) = s(p̂(t)− p(t)), p(t0) = p0, (14.1)

where p̂(t) ∈ P ⊂ R is the notional level of the price at the time t , p(t) is its
current level, and the parameter s : 0 < s < 1 is the speed of adjustment. Thus,
prices adjust to the difference between its notional and current levels.

Further, we assume that the notional prices at any time t are defined by the linear
inverse demand function

p̂(t) = a − d
∑
i∈N

qi(t). (14.2)

Players i ∈ N choose quantity qi(t) ∈ Ui ⊂ R produced in order to maximize
their profits:

Ki(p0, T − t0; q1, . . . , qn) =
∫ T

t0

e−ρ(t−t0) [qi(t)(p(t) − ci − giqi(t))] dt,

(14.3)
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here, 0 ≤ ρ ≤ 1 represents the positive discount rate, which is taken to be the
same for all the periods and all the players in order to simplify the model and
to equalize the players as symmetrical participants in the global capital market.
Ci(t) = ciqi(t)+ giq

2
i (t) is the total cost function for each player i.

14.2.2 Truncated Subgame

Let us suppose that the information for the players is updated at fixed time instants
t = t0 + jΔt , j = 0, . . . , l, where l = T

Δt
− 1. During the time interval [t0 +

jΔt, t0 + (j + 1)Δt], the players have certain information about the dynamics of
the game (14.1) and the payoff function (14.5) within the time interval [t0+jΔt, t0+
jΔt + T ], where Δt ≤ T ≤ T . At the instant t = t0 + (j + 1)Δt the information
about the game is updated and the same procedure repeats for the time interval with
number j + 1.

To model this kind of behavior we introduce the following definition, where
vectors pj,0 = p(t0 + jΔt), pj,1 = p(t0 + (j + 1)Δt).

Definition 14.1 Let j = 0, . . . , l. A truncated subgame Γ̄j (pj,0, t0 + jΔt, t0 +
jΔt+T ) is defined on the time interval [t0+jΔt, t0+jΔt+T ]. The motion equation
and the initial condition of the truncated subgame Γ̄j (pj,0, t0 + jΔt, t0 + jΔt +T )

have the following form:

ṗ(t) = s
(
aj − dj

∑
i∈N

q
j

i (t)− p(t)
)
, p(t0 + jΔt) = pj,0. (14.4)

The payoff function of player i in truncated subgame j is equal to

K
j

i (pj,0, t0 + jΔt, t0 + jΔt + T ; qj

1 , . . . , q
j
n ) =

=
∫ t0+jΔt+T

t0+jΔt

e−ρ(t−t0)
[
q

j

i (t)(p(t) − ci − giq
j

i (t))
]
dt.

(14.5)

The motion equation and the payoff function on the time interval [t0 + jΔt, t0 +
jΔt + T ] coincide with that of the game Γ (p0, T − t0) on the same time interval
(Fig. 14.1).
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Fig. 14.1 Behavior of the players in the game with truncated information can be modeled using
the truncated subgames Γ̄j (pj,0, t0 + jΔt), j = 0, . . . , l

14.2.3 Non-cooperative Outcome in Truncated Subgame

According to [2, 12], a non-cooperative Nash equilibrium solution of the game
Γ̄j (pj,0, t0 + jΔt, t0 + jΔt + T ) can be defined by the Hamilton–Jacobi–Bellman
partial differential equations. Let us consider a family of subgames Γ̄j (p(t), t, t0 +
jΔt + T ) with the payoff structure (14.3) and the dynamics (14.15), starting at the
time t ∈ [t0 + jΔt, t0 + jΔt + T ] with the initial state p(t). Let qNE

j (t, p) =
(q

jNE
1 (t, p), . . . , q

jNE
n (t, p)) for t ∈ [t0 + jΔt, t0 + jΔt + T ] denote a set

of feedback strategies that constitutes a Nash equilibrium solution to the game
Γ̄j (p(t), t, t0 + jΔt + T ) and V

j

i (τ, p) : [t, T ] × Rn → R denote the value
function of player i ∈ N that satisfies the corresponding Hamilton–Jacobi–Bellman
equations [2, 12].

Theorem 14.1 Assume there exists a continuously differential function V
j
i (t, p) :

[t0 + jΔt, t0 + jΔt + T ] × R → R satisfying the partial differential equation

− V
j,i
t (t, p) = max

q
j
i

{
e−ρ(t−t0)

[
q

j
i (p − ci − giq

j
i )
]
+

+ V
j,i
p (t, p)s

(
a − d

[
q

j
i (t)+

∑
k �=i

q
jNE
k (t)

]
− p(t)

)}
, i = 1, . . . , n. (14.6)
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where V
j
i (t0 + jΔt + T , p) = 0. Let qNE

j (t)(t, p) denote the controls which

maximize the right hand side of (14.6). Then qNE
j (t)(t, p) provides a feedback Nash

equilibrium in the truncated subgame Γ̄j (pj,0, t0 + jΔt, t0 + jΔt + T ).

Since the considered differential game is an LQ differential game, then the
feedback Nash equilibrium is unique [2].

In this game model the Bellman function V
j

i (t, p) can be obtained in the form:

V
j
i (t, p) = e−ρ(t−t0)

[
A

j
i (t)p

2 + B
j
i (t)p + C

j
i (t)

]
, i = 1, n. (14.7)

Substituting (14.7) in (14.6) we can determine Nash equilibrium strategies in the
following form:

q
jNE
i (t, p) = −

(ci − p)+ sd
[
B

j
i (t)+ 2A

j
i (t)p

]
2gi

, i = 1, n, (14.8)

where functions A
j

i (t), B
j

i (t), C
j

i (t), t ∈ [t0 + jΔt, t0 + jΔt + T ] are defined by
the system of differential equations:

Ȧ
j
i (t) = A

j
i (t) [ρ + 2s] + (2A

j
i (t)dj s − 1)2

4gi

−
∑
k �=i

A
j
i (t)dj s − 2A

j
i (t)A

j
k(t)d

2s2

gk

Ḃ
j
i (t) = B

j
i (t) [ρ + s] − ci

2gi

− 2A
j
i (t)aj s −

∑
k �=i

A
j

i (t)B
j

k (t)d2
j s2

gk

−

−
∑
k∈N

B
j
i (t)dj s − A

j
i (t)ckdj s − A

j
k(t)B

j
i (t)d2

j s2

gk

Ċ
j

i (t) = C
j

i (t)ρ − B
j

i (t)aj s + c2
i + (B

j

i (t)dj s)
2

4gi

+
∑
k �=i

B
j

i (t)B
j

k (t)d2
j s2

2gk

+

+
∑
k∈N

B
j
i (t)ckdj s

2gk

with the boundary conditions A
j
i (t0 + jΔt + T ) = 0, B

j
i (t0 + jΔt + T ) = 0 and

C
j

i (t0 + jΔt + T ) = 0.
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Substituting qNE
j (t, p) (14.8) into (14.15) yields the dynamics of a Nash

equilibrium trajectory:

ṗ(t) = s
(
a − d

∑
i∈N

q
jNE
i (t, p)− p(t)

)
, p(t0 + jΔt) = pj,0. (14.9)

Let pNE
j (t) denote the solution of system (14.9).

14.2.4 Conditionally Non-cooperative Trajectory

Suppose that each truncated subgame Γ̄j (pj,0, t0 + jΔt, t0 + jΔt + T ) develops
along pNE

j (t) then the whole non-cooperative game with the Looking Forward
Approach develops along:

Definition 14.2 Conditionally non-cooperative trajectory {p̂NE(t)}Tt=t0
is a combi-

nation of pNE
j (t) for each truncated subgame Γ̄j (p

NE
j,0 , t0 + jΔt, t0 + jΔt + T ):

{p̂∗NE(t)}Tt=t0
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pNE
0 (t), t ∈ [t0, t0 +Δt),

. . . ,

pNE
j (t), t ∈ [t0 + jΔt, t0 + (j + 1)Δt),

. . . ,

pNE
l (t), t ∈ [t0 + lΔt, t0 + (l + 1)Δt].

(14.10)

Along the conditionally non-cooperative trajectory the players receive payoff
according to the following formula:

Definition 14.3 The resulting non-cooperative outcome for player i = 1, . . . , n in
the subgame of the game Γ (p0, T−t0) with the Looking Forward Approach starting
at t ∈ [t0 + jΔt, t0 + jΔt + T ] has the following form:

V̂i(t, p̂NE(t)) =
l∑

m=j+1

[
V m

i (t0 +mΔt, pNE
m,0)− V m

i (t0 + (m+ 1)Δt, pNE
m,1)

]
+

+
[
V

j
i (t, pNE

j (t))− V
j
i (t0 + (j + 1)Δt, pNE

j,1 )
]
, i ∈ N.

(14.11)
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14.2.5 Numerical Simulation

The first game starts in December 2015 and lasts till the summit in Vienna in
November 2016. We consider oil as a homogeneous product and appraise the
demand function with the parameters of an average world oil price and the total
world oil supply. We calculate average oil prices for each period based only on two
major trading classifications, namely that of Brent crude and of light crude, which
are accessible on the Finam agency data source. As the initial price, we take the
average price in December 2015 which is equal to p0 = 34.51.

Total world supply Brent, Light Average price,
Date MMBD $ for barrel $ for barrel $ for barrel

12.2015 96.411 35.910 33.110 34.510

01.2016 95.875 36.640 33.990 35.315

02.2016 95.420 40.140 37.820 38.980

03.2016 95.294 47.320 45.990 46.655

04.2016 95.400 49.520 48.750 49.135

05.2016 95.187 49.740 48.640 49.190

06.2016 95.954 43.270 41.760 42.515

07.2016 96.891 46.970 45.000 45.985

08.2016 95.894 49.990 48.050 49.020

09.2016 96.001 48.510 46.970 47.740

10.2016 97.362 44.520 43.120 43.820

11.2016 97.241 47.034 45.908 46.471

To ensure that the slope of demand is negative, we decided not to regress the
historical oil prices for the quantity produced and took into account the average
price and the total world supply (in the table above) for only one previous period
and a fixed choke price. Thus, we assume the parameter of demand aj to be equal
to 300 at each period, and, thus, the parameter dj can be obtained from the (14.2) as

dj = (aj − p̂(t − 1))
∑
i∈N

qi(t − 1). (14.12)

The length of each Δt-time interval is 1 month. The players use the appraised
demand with parameters aj and dj as the forecast for the next T = 3 periods. We
set values upon the parameters of cost function by using the total cost of producing
a barrel and the average volumes of oil production for our players in 2016 and by
fixing the parameter gi at the level 0.7 for each player and each period. Both the
parameters of ci and gi remain unchanged during the game. We assume that the
speed of adjustment s = 0.2 and the discount factor r = 10%.
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Date a d

12.2015 300 2.717

01.2016 300 2.754

02.2016 300 2.761

03.2016 300 2.735

04.2016 300 2.659

05.2016 300 2.630

06.2016 300 2.635

07.2016 300 2.683

08.2016 300 2.622

09.2016 300 2.617

10.2016 300 2.628

11.2016 300 2.631

i Producer c g

1 OPEC 3.169 0.7

2 Non-OPEC 17.333 0.7

3 US shale 20.238 0.7

4 US non-shale 18.182 0.7

5 Others 20.867 0.7

Figure 14.2 shows the comparison of the conditionally non-cooperative trajectory
{p̂NE(t)}Tt=t0

and the historical average oil price dynamics. In Fig. 14.3 Nash
feedback strategies (14.8) corresponding to the {p̂NE(t)}Tt=t0

and the historical
quantities of production of oil are presented for each group of countries.

According to Figs. 14.2 and 14.3, we can suggest that the parameters ci and gi

from the table below can be used for modeling the cooperative agreement in the
time interval from December 2016 to May 2017.

We can see the payoff of players V̂i (t, p̂NE(t)), i ∈ N corresponding to the Nash
equilibrium strategies along the trajectory p̂NE(t) on Fig. 14.4.

Fig. 14.2 Conditionally non-cooperative trajectory of the oil price p̂NE(t) (thick solid line) with
the Looking Forward Approach, historical oil price trajectory (thick dotted line)
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Fig. 14.3 Nash feedback strategies defined with the Looking Forward Approach (solid lines), and
the corresponding historical quantities of oil production (dashed lines)

Fig. 14.4 Payoffs of players corresponding to the Nash equilibrium V̂i (t, p̂NE(t))

14.3 Partially Cooperative Game Model

As it was mentioned in the introduction, at the end of November 2016 two groups of
countries, the OPEC and the non-OPEC, i.e. players 1 and 2 signed the cooperative
agreement. By using the model constructed in Sect. 14.1, we build a model of such
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partial cooperation by introducing a 4-person game, where players 1 and 2 act as one
player and the remaining players (players 3, 4, 5) act independently. As a historical
cooperative solution, a linear reduction of quantities produced to the level agreed
upon is used. However, we also construct a cooperative solution suggested in the
paper [38] which possesses the subgame consistency property. In the simulation
example, we discuss the difference between the historical solution and the solution
proposed in [38].

14.3.1 Partially Cooperative Truncated Subgame

In order to model the behavior of the players with players 1, 2 cooperating and the
others acting independently, at first we construct a 4-person differential game. We
denote the set of players in this game as Ñ = {(1, 2), 3, 4, 5}, |Ñ | = 4. Players 1
and 2 cooperate by combining their strategies sets, but the actual payoffs remain
individual. Thus, for players 1 and 2, we construct an analog of a cooperative
differential game with non-transferable payoffs. Players 1, 2 orient themselves
towards payoff defined as a linear combination of their respective payoffs with fixed
αj coefficients:

K̃
j

1,2(αj , pj,0, t0 + jΔt, t0 + jΔt + T ; qj

1 , . . . , q
j

5 ) =

=
∑

i∈{1,2}
α

j

i K
j

i (pj,0, t0 + jΔt, t0 + jΔt + T ; qj

1 , . . . , q
j

5 ), (14.13)

where K
j
i (pj,0, t0 + jΔt, t0 + jΔt + T ; qj

1 , . . . , q
j

5 ) are defined in (14.3) and

αj ∈ Λj = {α : α
j
1 + α

j
2 = 1, α

j
i ≥ 0, i = 1, 2}. (14.14)

Individual payoffs K̃
j
i (αj , pj,0, t0+jΔt, t0+jΔt+T ; qj

1 , . . . , q
j

5 ), i = 1, 2 which
the players obtain during the game are calculated according to the formula (14.3).
The payoffs of players i = 3, 4, 5 are calculated according to the formula (14.3).

It turns out that for any αj ∈ Λj we obtain a unique differential game:

Definition 14.4 Let j = 0, . . . , l. A partially cooperative truncated subgame
Γ̃

αj

j (pj,0, t0 + jΔt, t0 + jΔt + T ) is defined on the time interval [t0 + jΔt, t0 +
jΔt + T ]. The motion equation and the initial condition of the truncated subgame
Γ̃

αj

j (pj,0, t0 + jΔt, t0 + jΔt + T ) have the following form:

ṗ(t) = s
(
aj − dj

∑
i∈N

q
j
i (t)− p(t)

)
, p(t0 + jΔt) = pj,0. (14.15)
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The payoff function K̃
j

1,2(αj , pj,0, t0 + jΔt, t0 + jΔt + T ; qj

1 , . . . , q
j

5 ) of play-
ers {1, 2} in truncated subgame j is defined as in (14.13), the payoff function
K̃

j
i (αj , pj,0, t0 + jΔt, t0 + jΔt + T ; qj

1 , . . . , q
j

5 ) of players i = 3, 4, 5 is defined
as in (14.3).

14.3.2 Pareto Optimal Outcomes

Suppose that players 1 and 2 can agree on the form of a joint payoff function, i.e.
about the coefficients αj ∈ Λj . The set of outcomes for all possible αj ∈ Λj for
players 1 and 2 defines the set of Pareto optimal outcomes for players 1 and 2. Let
us consider the feedback Nash equilibrium q∗αj

(t, p) in the game Γ̃
αj

j (pj,0, t0 +
jΔt, t0 + jΔt + T ) of 4 persons. Then the payoffs in the Nash equilibrium for
all possible values of αj of players 1 and 2 form a set of Pareto-optimal outcomes

K̃
j

1 (αj , pj,0, t0+jΔt, t0+jΔt+T ; q∗αj

1 , . . . , q
∗αj

5 ) and K̃
j

2 (αj , pj,0, t0+jΔt, t0+
jΔt + T ; q∗αj

1 , . . . , q
∗αj

5 ). We define the feedback Nash equilibrium strategies of
players as in [2].

We denote the value of players {1, 2} in the feedback Nash equilibrium with a
determined αj by the function W

αj

1,2(t, p), where t, p are the time and the initial state

of the partially cooperative truncated subgame Γ̃
αj

j (pj,0, t0 + jΔt, t0 + jΔt + T )

correspondingly. By the function W
αj

i (t, p), i = 3, 4, 5 we denote the payoff of
players i = 3, . . . , 5 using the Nash equilibrium strategies q∗αj

(t, p). Sufficient
conditions for the solution and the feedback Nash equilibrium are given by the
following assertion.

Theorem 14.2 Assume there exist continuously differential functions W
αj

1,2(t, p),

W
j

3 (t, p), W
j

4 (t, p), W
j

5 (t, p): [t0 + jΔt, t0 + jΔt + T ] × R → R satisfying
the following partial differential equation

−W
1,2, αj

t (t, p) = max
q

j
1 ,q

j
2

{ 2∑
i=1

e−ρ(t−t0)α
j
i

[
q

j
i (p − ci − giq

j
i )
]
+

+W
1,2, αj
p (t, p)s

(
a − d

[ 2∑
i=1

q
j
i (t)+

5∑
k=3

q
∗αj

k (t)
]
− p(t)

)}
,

−W
i, αj

t (t, p) = max
q

j
i

{
e−ρ(t−t0)

[
q

j
i (p − ci − giq

j
i )
]
+

+W
i, αj
p (t, p)s

(
a − d

[
q

j
i (t)+

5∑
k �=i

q
∗αj

k (t)
]
− p(t)

)}
, i = 3, . . . , 5, (14.16)
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where W
αj

1,2(t0 + jΔt + T , p) = 0, W
αj

i (t0 + jΔt + T , p) = 0, i=3, . . . ,5. Then
q∗αj

(t, p) provides a feedback Nash equilibrium in the partial cooperative truncated

subgame Γ̃j (pj,0, t0 + jΔt, t0 + jΔt + T ).

In this game model the Bellman function W
αj

1,2(t, p), W
αj

i (t, p), i = 3, . . . , 5
can be obtained in the form:

W
αj

1,2(t, p) = e−ρ(t−t0)
[
A

1,2
j (t)p2 + B

1,2
j (t)p + C

1,2
j (t)

]
,

W
αj

i (t, p) = e−ρ(t−t0)
[
Ai

j (t)p
2 + Bi

j (t)p + Ci
j (t)

]
, i =, 3, 4, 5.

(14.17)

Feedback Nash equilibrium strategies for the partial cooperative truncated
subgame:

q
∗αj

i (t, p) = −
(ci − p)+ ds

[
B

1,2
j (t)+ 2A

1,2
j (t)p

]
2αigi

, i = 1, 2,

q
∗αj

i (t, p) = −
(ci − p)+ sd

[
Bi

j (t)+ 2Ai
j (t)p

]
2gi

, i = 3, 4, 5. (14.18)

Functions A
1,2
j (t), B

1,2
j (t), C

1,2
j (t), Ai

j (t), Bi
j (t), Ci

j (t), t ∈ [t0 + jΔt, t0 +
jΔt + T ] are defined by the system of differential equations:

A
1,2
j (t0 + jΔt + T ), B

1,2
j (t0 + jΔt + T ), C

1,2
j (t0 + jΔt + T ):

Ȧ
1,2
j (t) = A

1,2
j (t)(ρ + 2s)+

∑
k∈{1,2}

(
α

j
k

4gk

+ (A
1,2
j (t)dj s)

2

α
j
k gk

)
+

+
∑

k∈{3,4,5}

2Ak
j(t)A

1,2
j (t)d2

j s2

gk

−
∑
k∈N

A
1,2
j (t)dj s

gk

,

Ḃ
1,2
j (t) = B

1,2
j (t)(ρ + s)− 2A

1,2
j (t)aj s −

∑
k∈{1,2}

(
αk

j ck

2gk

− A
1,2
j (t)B

1,2
j (t)d2

j s2

α
j
k gk

)

−
∑

k∈{3,4,5}

(
A

1,2
j (t)Bk

j (t)d2
j s2

gk

+ Ak
j(t)B

1,2
j (t)d2

j s2

gk

)
+

−
∑
k∈N

(
B

1,2
j (t)dj s

2gk

− A
1,2
j (t)ckdj s

gk

)
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Ċ
1,2
j (t) = C

1,2
j (t)ρ − B

1,2
j (t)aj s +

∑
k∈{1,2}

(
αk

j c
2
k

4gk

+ (B
1,2
j (t)dj s)

2

4α
j
k gk

)
+

+
∑

k∈{3,4,5}

B
1,2
j (t)Bk

j (t)d2
j s2

2gk

+
∑
k∈N

B
1,2
j (t)ckdj s

2gk

,

A
1,2
j (t0 + jΔt + T ) = 0, B

1,2
j (t0 + jΔt + T ) = 0, C

1,2
j (t0 + jΔt + T ) = 0.

Ai
j (t0 + jΔt + T ), Bi

j (t0 + jΔt + T ), Ci
j (t0 + jΔt + T ), for i = 3, . . . , 5:

Ȧi
j (t) = Ai

j (t)(ρ + 2s)+
∑

k∈{1,2}

(
1

4gi

+ 2Ai
j (t)A

1,2
j (t)d2

j s2

α
j
k gk

)
+

+
∑

k∈{3,4,5}

2Ak
j(t)A

i
j (t)d

2
j s2

gi

−
∑
k∈N

Ai
j (t)dj s

gk

,

Ḃi
j (t) = Bi

j (t)(ρ + s)− 2Ai
j (t)aj s − ci

2gi

−
∑
k∈N

(
Bi

j (t)dj s

2gk

− Ai
j (t)ckdj s

gk

)

+
∑

k∈{1,2}

(
Ai

j (t)B
1,2
j (t)d2

j s2

α
j
k gk

+ A
1,2
j (t)Bi

j (t)d
2
j s2

α
j
k gk

)
+

+
∑

k∈{3,4,5}

(
Ai

j (t)B
k
j (t)d2

j s2

gk

+ Ak
j (t)B

i
j (t)d

2
j s2

gk

)

Ċi
j (t) = Ci

j (t)ρ +
c2
i

4gi

− Bi
j (t)aj s +

∑
k∈{1,2}

Bi
j (t)B

1,2
j (t)d2

j s2

2α
j

k gk

+

+
∑

k∈{3,4,5}

Bi
j (t)B

k
j (t)d2

j s2

2gk

+
∑
k∈N

Bk
j (t)ckdj s

2gk

,

Ai
j (t0 + jΔt + T ) = 0, Bi

j (t0 + jΔt + T ) = 0, Ci
j (t0 + jΔt + T ) = 0.

Substituting q∗αj
(t)(t, p) (14.18) into (14.15) yields the dynamics of the feedback

Nash equilibrium trajectory corresponding to the vector of weights for the players
1, 2:

ṗ(t) = s
(
a − d

∑
i∈N

q
∗αj

i (t, p)− p(t)
)
, p(t0 + jΔt) = pj,0. (14.19)

We denote by p∗αj
(t) the solution of system (14.19) corresponding to the fixed

weights αj = (α
j

1 , α
j

2 ). Further we call p∗αj
(t) the Pareto optimal trajectory.
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14.3.3 Individual Players Payoffs Under Cooperation

In the previous section we defined the payoff of players 3, 4, 5, but we did not define
the individual payoff of players 1, 2. The next step is to define the individual payoffs
of the players under cooperation. This can be achieved by substituting the Pareto
optimal trajectory p∗αj

(t) (14.19) and strategies q∗αj
(t, p) (14.18) into the formula

of each player’s payoff (14.3). The payoff of players 1, 2 in the truncated subgame
Γ̃j (pj,0, t0 + jΔt, t0 + jΔt + T ) along the Pareto optimal trajectory p∗αj

(t) with

strategies q∗αj
(t, p) involved is denoted by W

αj

1 (t, p) and W
αj

2 (t, p). The other and
more preferable way is to apply the results from the paper [38], where a special
form of Hamilton–Jacobi–Bellman equation is solved for each player, but with
fixed strategies q∗αj

(t, p) (14.18) (so no maximization in the right-hand side of the
equation is involved). The size of the current paper being limited, we cannot present
it here.

14.3.4 Subgame Consistent Solutions

In the paper [38] the notion of subgame consistency property of a cooperative
solution in a game with non-transferable payoffs is defined as follows:

Definition 14.5 The payoff vector W(t, p∗(t)) = (W1(t, p
∗(t)), . . . ,Wn(t, p

∗(t)))
along the trajectory p∗(t) is subgame consistent in the game Γc(p0, T − t0) with
non-transferable payoffs if it satisfies the following conditions:

1. the payoff vector

W(t, p∗(t)) = (W1(t, p
∗(t)), . . . ,Wn(t, p∗(t))), t ∈ [t0, T ] (14.20)

should be Pareto optimal;
2. the payoff vector should satisfy the individual rationality property

Wi(t, p
∗(t)) ≥ Vi(t, p

∗(t)), t ∈ [t0, T ], i = 1, n, (14.21)

where Vi(t, p
∗(t)) is an individual payoff of player i = 1, n.

Definition 14.6 Let us define the set Sτ
j =

⋂
t0+jΔt≤t<τ S

j
t for τ ∈ [t0 + jΔt, t0 +

(j + 1)Δt), j = 0, . . . , l, where S
j
t is a set of αj = (α

j

1 , α
j

2 ) that satisfy individual
rationality at the moment of time t for i = 1, n:

Wαj

i (t, p∗
αj (t)) ≥ V

j
i (t, p∗

αj (t)), (14.22)
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where Vi(t, p
∗(t)) is the payoff of player i ∈ N in the non-cooperative game

with Nash equilibrium strategies, but calculated along the Pareto optimal trajectory
p∗

αj (t).

S
t0+(j+1)Δt
j is a set of αj = (α

j

1 , α
j

2 ) that satisfy individual rationality (14.22)
throughout the time interval before the information about the game structure is
updated, at the moment of time t = t0 + (j + 1)Δt . Set S

t0+(j+1)Δt
j provides a

corresponding set of subgame consistent solutions:

{
Wαj (t, p∗αj

(t)) = (W
αj

1 (t, p∗αj
(t)), . . . ,W

αj
n (t, p∗αj

(t))),

t ∈ [t0 + jΔt, t0 + (j + 1)Δt], αj ∈ S
t0+(j+1)Δt
j , i = 1, n, j = 0, . . . , l

}
.

(14.23)

For a more general case in [38], where individual rationality property (14.22)
holds on the whole time interval it was proved that:

Theorem 14.3 A solution optimality principle under which the players agree to
choose the same weights α = (α1, . . . , αn) ∈ Λ in all the subgames Γc(p

∗
α(t), T −

t), t ∈ [t0, T ] such that

Wα
i (t, p∗α(t)) ≥ Vi(t, p

∗
α(t)), t ∈ [t0, T ], i = 1, n. (14.24)

yields a subgame consistent solution to the cooperative game Γc(p0, T − t0).

14.3.5 Solution Concept

Suppose that at the beginning of each truncated subgame Γ̃j (pj,0, t0 + jΔt, t0 +
jΔt + T ) weights αj ∈ S

t0+(j+1)Δt
j are chosen. Then each truncated subgame

develops along the Pareto optimal trajectory p∗αj
(t) and as a consequence, the whole

game Γc(p0, T − t0) develops along the following trajectory. If we denote p∗j,0 =
p∗αj−1

(t0 + jΔt), then:

Definition 14.7 The conditionally Pareto optimal trajectory {p̂∗(t)}Tt=t0
is a

combination of Pareto optimal trajectories p∗αj
(t) for each truncated subgame

Γ̃j (p
∗
j,0, t0 + jΔt, t0 + jΔt + T ) and defined weights αj ∈ S

t0+(j+1)Δt

j :

{p̂∗(t)}Tt=t0
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p∗α0
(t), t ∈ [t0, t0 +Δt),

. . . ,

p∗αj
(t), t ∈ [t0 + jΔt, t0 + (j + 1)Δt),

. . . ,

p∗αl
(t), t ∈ [t0 + lΔt, t0 + (l + 1)Δt].

(14.25)
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Now let us define the solution for the whole game Γc(p0, T − t0). Let p∗j,1 =
p∗αj

(t0 + (j + 1)Δt):

Definition 14.8 The resulting solution for the game Γc(p0, T−t0) with the Looking
Forward Approach corresponding to the chosen weights αj ∈ S

t0+(j+1)Δt

j for each

truncated subgame Γ̃j (pj,0, t0 + jΔt, t0 + jΔt + T ), j = 0, . . . , l is defined in the
following way, let t ∈ [t0 + jΔt, t0 + (j + 1)Δt]:

Ŵi(t, p̂
∗(t)) =

l∑
m=j+1

[
W

αm

i (t0 +mΔt, p∗m,0)−W
αm

i (t0 + (m+ 1)Δt, p∗m,1)
]
+

+
[
W

αj

i (t, p∗αj
(t))−W

αj

i (t0 + (j + 1)Δt, p∗j,1)
]
. (14.26)

Therefore the set of all possible solutions in the game Γc(p0, T − t0) has the
following form:

{
Ŵ (t, p̂∗(t)) = (Ŵ1(t, p̂

∗(t)), . . . , Ŵn(t, p̂
∗(t))), t ∈ [t0, T ],

αj ∈ S
t0+(j+1)Δt
j , ∀j = 0, . . . , l

}
. (14.27)

In a game with a moving information horizon, we call a solution conditionally
Pareto optimal if it is constructed using the Pareto optimal solutions in each trun-
cated subgame. In this sense, we call the resulting solution Ŵ(t, p̂∗(t)) conditionally
Pareto optimal.

14.3.6 Subgame Consistency of Solution Concept

In [25] the subgame consistency property of the resulting solution (14.26) was
proved for a case of full cooperation. A similar result can be obtained for a partial
cooperation:

Theorem 14.4 The resulting solution Ŵ (t, p̂∗(t)) is subgame consistent in the
gameΓc(p̂

∗(t), T−t)with the Looking Forward Approach if the following condition
is satisfied, let ∀t ∈ [t0 + jΔt, t0 + (j + 1)Δt], j = 0, . . . , l, i = 1, n:

W
αj

i (t, p∗αj
(t))− V

j

i (t, p∗αj
(t)) ≥

≥ Wαj (t0 + (j + 1)Δt, p∗j,1)− V
j
i (t0 + (j + 1)Δt, p∗j,1), (14.28)
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14.3.7 Historical Cooperative Agreement

In order to make a comprehensive comparison of theoretical results and the real
situation, it is necessary to mention the complexity of such an agreement at countries
scale. It affects not only oil market situations inside the countries but also its balance
and all macroeconomic indicators. The agreement is of both economic and political
nature. According to the agreement of November 30, 2016, the OPEC countries
and 11 non-OPEC countries decided to reduce their production by 1.18–7.69% for
different countries. Herewith, Iran, Libya, and Nigeria are allowed to boost their
output. After the agreement was reached, oil prices did start to increase. However, by
the end of May 2017, they had fallen to almost the same level. Countries-outsiders,
notably the US shale producers, increased their output. Most of the countries inside
the agreement succeeded in fulfilling it. After 6 months all these counties decided
to prolong the agreement for the next year.

To model this cooperative agreement we construct linear type strategies for
players 1 and 2. We use Nash equilibrium strategies in the non-cooperative
differential game for the other players. The optimal strategies for players 3, 4, 5
are obtained in the same way as in Sect. 14.1 using the Hamilton–Jacobi–Bellman
equation with the strategies (14.29) involved.

According to the statistical data, we suppose that the strategies of players i = 1, 2
under the cooperative agreement have the following form:

q̄∗1 (t) = 3.5%qavr
1 (tnov)

(
1 − 3.5%t/T

)
(14.29)

q̄∗2 (t) = 3.1%qavr
2 (tnov)

(
1 − 3.1%t/T

)
, (14.30)

where qavr(tnov) = (qavr
1 (tnov), q

avr
2 (tnov)) = (39.838, 18.771) is the average

quantity of produced oil in tnov , which is November 2016 and T corresponds to
May 2017.

14.3.8 Numerical Simulation

The second game starts immediately after the summit and lasts from December 2016
until May 2017. As we did for the previous time interval, we calculate the average
oil prices for each period based only on the two major trading classifications of
Brent crude and light crude which are accessible on the Finam agency data source.
We take the average price in December 2016 as the initial price p0 = 53, 73 for the
second game.
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Total world supply, Brent, Light, Average price,
Date MMBD $ for barrel $ for barrel $ for barrel

12.2016 97,324 55,008 52,449 53,728

01.2017 96,627 55,607 52,951 54,279

02.2017 96,412 56,122 53,661 54,892

03.2017 96,411 52,592 49,873 51,232

04.2017 97,075 53,841 51,216 52,529

05.2017 97,529 51,533 48,744 50,139

In order to test the constructed model with the Looking Forward Approach, we
use the same players’ parameters ci and gi as for the previous time interval and
we suppose the parameter of demand aj to be equal to 300 at each Δt-period. The
players use the appraised demand with parameters aj and bj as the forecast for the
next T = 3 periods. Parameter dj is obtained using the formula (14.12).

Date a d

01.2017 300 2.530

02.2017 300 2.543

03.2017 300 2.542

04.2017 300 2.580

05.2017 300 2.549

i Producer c g

1 OPEC 3.169 0.7

2 Non-OPEC 17.333 0.7

3 US shale 20.238 0.7

4 US non-shale 18.182 0.7

5 Others 20.867 0.7

In Fig. 14.5 we can see the conditionally Pareto optimal trajectory p̂∗(t) (solid
line) and the set of Pareto optimal trajectories p∗αj

(t) (dashed lines) corresponding

the weights αj ∈ S
t0+(j+1)Δt
j in each truncated subgame Γ̃j (p

∗
j,0, t0 + Δt, t0 +

Δt+T ). In Fig. 14.6 the optimal strategies corresponding to the {p̂∗αj
(t)}Tt=t0

and the
historical quantities of oil production are presented for each group of the countries.

14.3.9 Analysis of Optimality of Corporate Agreement

In Fig. 14.7 we can see the individual payoff of player i = 1 under cooperation
W

j
1 (t, p∗αj

(t)) (solid lines) for all possible weights αj ∈ S
t0+(j+1)Δt
j and α∗j ∈

S
t0+(j+1)Δt
j , j = 3. In Fig. 14.8 we can see the payoff of players Ŵi(t, p̂

∗(t))
(solid lines), i ∈ N and the payoff of players V̂i(t, p̂

∗(t)) (dashed lines), i ∈ N

corresponding to the Nash equilibrium strategies along the conditionally Pareto
optimal trajectory p̂∗(t).
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Fig. 14.5 Conditionally Pareto optimal trajectory p̂∗(t) (solid line), set of Pareto optimal trajecto-
ries p∗αj

(t) (dashed lines) corresponding to weights αj ∈ S
t0+(j+1)Δt
j in each truncated subgame

Γ̃j (p
∗
j,0, t0 +Δt, t0 +Δt + T )
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Fig. 14.6 Optimal strategies defined with the Looking Forward Approach (solid lines), and the
corresponding historical quantities of oil production (dashed lines)
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Fig. 14.7 The set of individual payoffs W
j

1 (t, p∗αj
(t)) of player 1 for all possible weights αj ∈

S
t0+(j+1)Δt

j in the truncated subgame Γ̃j (p
∗
j,0, t0 +Δt, t0 +Δt + T ), j = 3

Fig. 14.8 Ŵi(t, p̂
∗(t)) (solid lines) and V̂i (t, p̂

∗(t)) (dashed lines), i ∈ N
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14.3.10 Comparison of Historical Cooperative Solution
and Proposed Solution

This section presents the comparison of the historical cooperative agreement
proposed in (14.29) with the strategies q̄∗(t) involved as well as the subgame
consistent cooperative solution proposed in (14.26). In Fig. 14.9 we can see the
conditionally Pareto optimal trajectory p̂∗αj

(t) corresponding to the chosen weights

α∗j ∈ S
t0+(j+1)Δt

j in all the truncated subgames Γ̃j (p
∗
j,0, t0 + Δt, t0 + Δt + T ),

j = 0, . . . , l trajectory p̄∗(t) corresponding to the historical cooperative agreement
and the historical oil price dynamics.

In Fig. 14.10 the optimal strategies (14.8) corresponding to the p̂∗αj
(t), strategies

q̄∗(t) (14.29) corresponding to the historical cooperative agreement are presented
for each group of countries and the historical quantities of oil production for each
group of countries. In Fig. 14.11 we can see the payoff of players Ŵi(t, p̂

∗(t)) (solid
lines), i ∈ N along the trajectory p̂∗(t) and payoffs corresponding to the historical
cooperative agreement (dashed lines).

On the whole, the decision to cooperate was justified for the countries under
consideration. It can be seen by comparing the cooperative and non-cooperative
solutions on the second time interval. In Fig. 14.12 we can see the conditionally
Pareto optimal trajectory p̂∗αj

(t) (solid line) corresponding to the chosen weights

Fig. 14.9 The conditionally Pareto optimal trajectory p̂∗αj
(t) (thick solid line) corresponding to

chosen weights α∗j ∈ S
t0+(j+1)Δt

j , j = 0, . . . , l, the trajectory p̄∗(t) (dashed line) corresponding
to the historical cooperative agreement (14.29) and the historical oil price dynamics (thin solid
line)
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Fig. 14.10 The optimal strategies (14.8) defined with the Looking Forward Approach (solid lines),
and the strategies (14.29) corresponding to the historical cooperative agreement (dashed lines)

Fig. 14.11 Ŵi (t, p̂
∗(t)), i ∈ N (solid lines) and the payoffs corresponding to the historical

cooperative agreement (dashed lines)

α∗j ∈ S
t0+(j+1)Δt

j in all the truncated subgames Γ̃j (p
∗
j,0, t0 +Δt, t0 +Δt + T ), j =

0, . . . , l and the conditionally non-cooperative trajectory of the oil price dynamics
p̂NE(t) corresponding to the Nash equilibrium (dashed line).

Nevertheless, the analysis of individual countries’ profits confirms the profitabil-
ity of the agreement only for the first player. In Fig. 14.13 we can see the payoff of
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Fig. 14.12 The conditionally Pareto optimal trajectory p̂∗αj
(t) (solid line) and the conditionally

non-cooperative trajectory of the oil price p̂NE(t) (dashed line)

Fig. 14.13 Ŵi (t, p̂
∗(t)), i ∈ N (solid lines) and the payoffs of players corresponding to the Nash

equilibrium V̂i (t, p̂NE(t)) (dashed lines)
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the players Ŵi(t, p̂
∗(t)) (solid lines), i ∈ N along the trajectory p̂∗(t) and payoffs

of the players corresponding to the Nash equilibrium V̂i(t, p̂NE(t)) (dashed lines).
This analysis corresponds to the historical solution. In fact, only the OPEC

countries gain benefits. The solution proposed by the model suggests that the
countries should reduce oil extraction to an even higher extent. This would lead
to an even greater rise in prices (Fig. 14.9) and, therefore, to profits for all the
market participants. Thus, the countries have rational incentives to such cooperative
behavior. The presence of these incentives for collusion and compliance with the
agreements reached stimulated its participants to extend the agreement at a meeting
in May 2017.

14.4 Conclusion

The paper considers a differential game model of the oil market. The Looking
Forward Approach is used to construct a model where the information about the
process updates dynamically. An attempt has been made to construct an oil market
model for two time periods with two different market conditions. Namely, we
assume that from December 2015 to November 2016 a non-cooperative oligopoly
structure was in action on the oil market. Therefore, we construct a non-cooperative
game model and adapt it to the real oil price data. Thereafter, at the end of November
2016, the largest oil exporters signed an agreement for a reduction of oil extraction
with the aim of raising prices on oil. We assume that from December 2016 to May
2017 the oligopoly game transformed into a cooperative one for this case. Here,
we use a non-transferable utility game model. Numerical results show the high
applicability of the Looking Forward Approach for modeling and simulating real-
life conflict-controlled processes. However, there are still numerous questions which
remain open, such as defining an appropriate value for the information horizon,
defining the form of the payoff functions, and the type of forecast for the parameters
used for the players.

To simulate the behavior of the players over the second period from December
2016 to May 2017 we construct a subgame consistent solution proposed in the paper
[38]. It turns out that the result of the proportional reduction of oil production for the
cooperating countries consisted in decreasing revenues because the other countries,
on the contrary, increased their oil production, which kept the price at the same level.
It is shown that the proposed solution would give better results for the cooperating
players, i.e. players 1 and 2.
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Chapter 15
Cooperative Decision Making
in Cooperative Control Systems
by Means of Game Theory

Simon Rothfuß, Jannik Steinkamp, Michael Flad, and Sören Hohmann

Abstract Current state cooperative control systems assisting the human in various
applications, e. g. assisted driving, lack the ability of emancipated cooperative
decision making. Due to certain situations in which this a crucial skill, the authors’
objective is the automation design leading to cooperative control systems able to
take part in human-machine negotiations.

In this work, we therefore introduce two games for modeling the cooperative
decision making process. First, the event-based game is introduced in a complete
information setting with focus on modeling the system dynamics the decision
making process is based on, e.g. a vehicle. We also provide an analytical as well
as a numerical solution approach to find parameterized strategies that are in a Nash
equilibrium.

The second game is an enhanced war of attrition that models the negotiation
process in an incomplete information setting. It includes a new cost structure that
allows a better approximation of the costs in a realistic application of cooperative
control systems. We proof that the resulting strategy leads to a Bayesian Nash
equilibrium.
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15.1 Introduction

In modern society humans are increasingly supported by automated assistance
systems facilitating tasks in a wide range of applications. Examples are collaborative
robots for lifting heavy equipment or driving assistance systems for lane keeping.
All of these cooperative systems require a thorough automation design that takes
into account the presence of and interaction with the human in order to ensure
user acceptance and safety. One example of a design paradigm for such assistive
systems can be found in Shared Control approaches, e.g. driving assistance systems
based on game theory [9, 16]. Cooperative systems following this or other design
approaches greatly contribute to reduced manual workload and increased human
safety of today’s society.

However, current state-of-the-art cooperative systems involving human-machine
interaction lack the ability for cooperative decision making. An example are driving
assistance systems like the lane keeping assistant. It supports the driver by warning
and counter-steering if the vehicle gets too close to lane markings. However the
decision to change or remain within the lane is made by the driver alone who is
able to overrule the actions of the automation. Another example are the collision
avoidance assistance systems that support the execution of the evasion maneuver
after the driver decided on the concrete maneuver, i.e. evasion direction [8, 9].

Besides these parallel cooperative systems on action-level, there are conduct-by-
wire concepts that enable sequential cooperation on a maneuver basis. The driver
controls the car via maneuver commands and e.g. may use a touchpad instead of a
steering wheel [3].

All these concepts exhibit the general approach which is the application of the
master-slave principle with the human in the leading role who is supported by an
assistance system. Nevertheless, this setting is not suitable for situations in which
the automation has more or more reliable information about the cooperative task
than the human. If the human, lacking important information, stays in the lead poor
decisions may result inadvertently and vice versa. In these situations an emancipated
discussion between the cooperating partners is needed. This has not been considered
in literature so far.

As a consequence, our goal is the automation design of emancipated cooperative
decision making systems capable to negotiate with humans. The interaction between
automation and human may take place via some sort of dynamical system.

To support this objective we introduce an exemplary situation in which eman-
cipated cooperative decision making is vital. This situation is an emergency
evasion maneuver situation on a freeway, depicted in Fig. 15.1. The green vehicle
is controlled by the human driver and an Advanced Driving Assistance System
(ADAS) and is therefore called ego-vehicle in the following. The vehicle in front
of the ego-vehicle performs an emergency braking maneuver. Assume the only
way for the ego-vehicle to circumvent a crash is to change the lane to the right
or left. This choice could be ambiguous or at least one of the driving agents (driver
or ADAS) could prefer one of the two evasion options. In both cases, we assume
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Fig. 15.1 Exemplary evasion maneuver with two options: left and right

that the driving agents need to agree on one option in order to successfully evade
the obstacle. Assuming that both agents behave rationally, they will base their
evaluation and ultimately their preference on the information they obtain about the
situation. Therefore, the maneuver negotiation will strongly depend on the reliability
of information the agents individually obtain. Also, the information sources of
agents my differ. This difference in information status can easily appear as the
following example demonstrates: the human is usually capable of recognizing and
analyzing complex environments while the ADAS relies on fast, precise and reliable
information about difference in velocity to the obstacle vehicle via radar sensors.
Furthermore the system state, e.g. the position and motion of the vehicle, can have
an influence on decision making. E.g. the closer the obstacle, the higher the pressure
to agree on a decision becomes. In addition, it takes more effort to avoid a collision
the smaller the distance between vehicle and obstacle becomes.

As a result both agents need to align their information status in order to reach a
mutual decision. In critical situations like in the ADAS context haptic communica-
tion is a suitable communication channel due to its direct cognition and low latency
[13]. However the haptic channel is not suited for the exchange of all relevant
information. Instead one can only transmit intentions or other low-level information.
This communicated information can then be included in further individual decision
making. In the view of one agent the resulting negotiation process consists in the
attempt to understand the opponent and to make the opponent understand oneself in
order reach an agreement with limited communication resources.

Similar situations beyond the ADAS context can be found in robotics and
other human-machine cooperation contexts, e.g. a worker and a robot have to
cooperatively decide how to align a heavy work piece for future processing steps
w.r.t. human context awareness and safety sensor information of the automation.
Another example is the cooperative negotiation of an operator and a production
management system to schedule tasks of a plant, combining the computational
power of the automation with the experience of the human operator.

Since our objective is the design of a suitable automation for cooperative decision
making while considering the introduced thoughts on cooperative decision making
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from above, we propose a model-based design approach. Therefore, a model of
the emancipated cooperative decision making process is required. A widespread
approach in the community designing automation to interact with humans is to
establish a model for human-human interaction (cf. [9, 16, 17]). This model enables
the automation to imitate human actions. An advantage of this approach is a more
natural interaction from the point of view of the human, which leads to a high user
acceptance [12].

Hence, following the approach to imitate human behavior, we require models
capturing human cooperative decision making, i.e. human negotiation techniques
and behavior. In our view the following features are essential for such models.

1. In a human negotiation, participants often have equal rights and follow an
objective throughout the negotiation [19].

2. The model of the negotiation process should capture the dynamicity of a human-
machine cooperation, i.e. the negotiation process itself (exchange of offers,
deadlines, etc.) as well as the system dynamics the interaction is usually based
on, e.g. in case of cooperative vehicle guidance the vehicle dynamics.

3. The negotiation model should be able to deal with incomplete information
scenarios, respecting the low-level communication channel. In addition and
in general, the specific human negotiation behavior has to be assumed to be
unknown. However, some probabilistic assumptions on the behavior can be
made.

4. The resulting negotiation strategy of such models should be deterministic
w.r.t. the the available information in order to facilitate automation design.

To the knowledge of the authors, only the fields of negotiation theory and game
theory offer models for decision making with the potential to adapt them to
the features from above. Negotiation theory originates in the context of multi-
agents systems [2] and was also successfully applied by Rothfuss et al. to model
emancipated human-machine negotiation [17, 18]. In this paper we focus on the
alternative models of game theory.

Like in negotiation theory, decision makers in game theory are usually modeled
as emancipated and individual rational players. This already fulfills the first
requirement from above. In the following we present some state-of-the-art models
from game theory that are in or close to the scope of human-machine negotiation.

Looking at current models for assistance systems, differential games are often
applied to model human-human or human-machine interaction on a trajectory basis.
Na and Cole [9] and Flad et al. [16] provide such approaches in the context
of driving assistance systems. In these cases, the assistance system supports the
driver in the tracking of a given reference trajectory of the vehicle. To do this,
the system also takes the system dynamics of the vehicle into account. In the
context of cooperative decision making, the decision options would be various,
conflicting reference trajectories. However, these approaches assume conflict-free
references w.r.t. the given application. Therefore, they are not designed to resolve
conflict situations, i.e. agreeing on a set of conflict-free reference trajectories, in an
appropriate way.
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In contrast to this, the class of coordination games explicitly focuses on making
decisions how to coordinate players or their attributes. As an example, Zlotkin
and Rosenschein [21] formulate the Postmen problem describing the strategic
distribution of workload among players. In the incomplete information setting with a
fixed interaction protocol, they propose an extended Zeuthen strategy [20] to achieve
a Nash equilibrium. In our case however, we aim to model a decision on how to work
on one cooperative task in contrast to distributing several tasks.

Another example of coordination games are revision games proposed by
Calcagno et al. [5]. In these games players can revise their choice of action at
decision times that are given by a exogenous Poison process until a deadline is
reached. They apply a generalized form of backward induction to find a solution
strategy. In the presented complete information game setting a trivial instantaneous
solution, i.e. an agreement is found. Similar to this game setup, Caruana and Einav
[6] introduce a game with switching costs that occur if players change their actions.
In a two options complete information game, that can be described as the battle
of sexes game, an instantaneous agreement is found. Hence, both aforementioned
games are only able to find an instantaneous agreement solution. The models are not
able to describe the process of negotiation which leads to the agreement. However,
this process is essential considering negotiations with human participants as humans
are not able to resolve conflicts instantaneously.

The war of attrition is a widely known coordination game introduced by Smith
[15] for modeling conflicts among deer. The key aspect of the game with incomplete
information setting is to achieve a price by outlasting the other players while facing
increasing costs over time. A unique Bayesian Nash equilibrium can be found. This
model has a wide range of application, e.g. in oligopoly theory [10], establishment
of technical standards [7], auction theory [14] and strategic negotiation behavior
[1, 4]. With respect to the required features of our application, the war of attrition
model fulfills already all requirements except the consideration of an interaction
system model. However, all of the coordination and bargaining games from above
lack this interaction system model. Therefore, an adaptation of the war of attrition
to our application seems the most promising.

In summary and to the knowledge of the authors there is no model available
in literature that comprises all of the required features. To fill this void, our
contribution is the introduction of a new game-theoretic model in the scope of
human-machine negotiation as well as adapting an existing game to this scope. First,
we propose a new event-based game definition for modeling cooperative decision
making between human and machines with complete information in Sect. 15.2. It
intentionally focuses on a complete information setting for a more descriptive and
holistic nature. This is achieved by a detailed description of the negotiation and
interaction process. Furthermore, a system dynamics model that is influenced by
players during the negotiation process and its effects on the negotiation process
is considered. It therefore explicitly aims at the second of the above introduced
features.
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Second, we revisit the war of attrition game model in Sect. 15.3 and adapt it to the
desired scenario with incomplete information. The adaptation includes an extended
cost function. Furthermore, we obtain a unique Bayesian Nash equilibrium strategy.
Hence, the adapted war of attrition model focuses on the third (incomplete informa-
tion) and fourth (deterministic solution) of the above mentioned requirements.

To demonstrate the two new games by providing examples, we introduce a
specific problem definition that will be considered by the examples in the following
sections.

Problem 15.1 The challenge is to provide a model of the negotiation process
between human H and automation A in the scenario depicted in Fig. 15.2. The
scenario setup is as follows:

• There are two decision makers, the human H and the automation A.
• The decision makers face a deadline D for decision making, i.e. the obstacle O

with width wobs at distance sobs.
• The decision makers are in a vehicle V with constant speed v in a 2D-space (s, q)

towards the deadline D. Without loss of generality the vehicle is assumed to be
a point mass.

• The two decision options lef t and right describe the evasion direction of vehicle
V around obstacle O .

• The decision makers shall take into account the vehicle motion when determining
their strategies.

wobss(t)

sobs

q(t)

0

v

Fig. 15.2 Exemplary evasion scenario with obstacle at distance sobs, obstacle width wobs and
potential maneuvers left and right
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15.2 Event-Based Game

This section introduces an event-based game as a new way of modeling human-
machine negotiation. First, we provide the general definition of the event-based
game. Second, we propose the application of parameterized strategies and present
two solution approaches for determining these strategies. The section concludes
with a discussion of the event-based game as a modeling approach for human-
machine negotiation.

15.2.1 Definition

In the following we introduce the general event-based game definition focusing
on the consideration of system dynamics and the timing of a human negotiation
process.

Definition 15.1 An event-based game ΓEB is a 6-tuple (P,S,E,A,Σ,Π). It has
the following components:

• the set of players P with |P| = N

• the set of actions for each player A = A1 × · · · ×AN

• the set of possible events for each player E = E1 × · · · × EN

• the deterministic system dynamicsS that typically transforms actions into events
or triggers events according to internal system states. An example of such
systems are hybrid discrete event systems based on a differential state space
model:

e = Φ (x, a) (event trigger function)

ẋ = f (x, u) (differential state space equation)

u = b (x, a, e) (hybrid input function)

with e ∈ E, a ∈ A, state x ∈ R
n with initial state x0 and input u ∈ R

p.
• the set of strategy sets for all players Σ = {Σi | i ∈ P}. A strategy σ ∈ Σi of

player i is defined as a mapping of a sequence of event-time-tuples
(
(e, t)k

)
k∈R+

to sequence of action-time-tuple
(
(a, t)l

)
l∈R+ :

σ : {((e, t)k)k∈R+}i
→ {(

(a, t)l
)
l∈R+

}
i

with e ∈ Ei , a ∈ Ai and t ∈ R
+.

• the set of payoff functions Π = {πi | i ∈P}, that assign a payoff to each strategy
combination of all players and the occurring sequence of event-time-tuples:

πi : Σ × Ei × t → R.
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Remark 15.1 The system S acts as a communication and interaction channel
among players. Its event-based character suits the unpredictable timing of human
communication.

Note that Definition 15.1 describes a complete information game. Therefore, players
may determine their strategy according to their payoff function w.r.t. the strategies
of all other players and their consequences.

Remark 15.2 The above definition of strategies may result in non-causal strategies.
In an implementation causal strategies can be ensure by additional constraints on
the time-sequences of events and actions of all players: all identical event-time
sequences until a specific time t∗ (indicated by {·}∗) must lead to the identical action-
time sequence.

{(
(e, t)k

)
k∈R+

}
i
→ {(

(a, t)l
)
l∈R+

}
i
, ∀i, t ≤ t∗.

Given this game definition we provide in the following approaches to determine
strategies for all players maximizing their individual payoff and hence find Nash
equilibria of the game.

15.2.2 Solution with Parameterized Strategies

The payoffs gained by the individual players of an event-based game depend on
the actions played by all players and the corresponding events of the discrete event
system. Thus, if the strategy of each player i can be parameterized by a vector θ i

and the given system is deterministic the payoffs can be expressed as a function Ψ

of the profile of all parameters θ = (θ1, . . . , θn):

πi = Ψi (θ) .

The best-response correspondence for player i is defined as the set of optimal
strategies for which holds

BRi (θ¬i ) = arg max
θ i

πi(θ) (15.1)

w.r.t. the fixed profile of strategies for all other players θ¬i .
Note that the best response is not necessarily unique.
A Nash equilibrium consists of strategies that are best responses to each other.

Therefore the following lemma is stated.

Lemma 15.1 (Nash Equilibrium in Event-Based Games with Parameterized
Strategies) A profile of strategy vectors θ∗ = (θ∗

1 , . . . , θ∗
N

) corresponds to a Nash
equilibrium if

θ∗i ∈ BRi (θ
∗
¬i

), ∀ i ∈P.
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We present two approaches to find equilibria in an event-based game. For an exem-
plary scenario with a low number of actions and events and a first order differential
system we present an analytical function for all equilibria in Sect. 15.2.2.1. For
larger setups iterative numerical solution methods can be applied. As an example
we propose the Cournot dynamics methods in Sect. 15.2.2.2.

15.2.2.1 Example Yielding Analytical Solution

We model the example given in Problem 15.1 and Fig. 15.2 as an event-based game
with two players (P = {1, 2}). They can choose to steer to the left (L), to steer
to the right (R) or not to steer at all (M). Thus, their respective action sets are
A1 = A2 = {L,M,R}. Furthermore, it is assumed that both players i ∈P are able
to detect a collision as well as the Time to Collision (TTC) falling below a threshold
τi . This leads to the event set for both players:

E1 = {Crash, TTC falls below τ1}, (15.2a)

E2 = {Crash, TTC falls below τ2}. (15.2b)

Events and action are coupled by the system S in (15.3)

s(t) =
∫ t

0
vs dt s(0) = 0, vs = const. (15.3a)

q(t) =
∫ t

0
vq dt q(0) = 0, vq =

∑
i∈{1,2}

(
vq,i1{ai=L} − vq,i1{ai=R}

)
(15.3b)

with the players’ actions input, i.e. steering input, described by means of

1{ai=a} =
{

1 if ai = a at time t , a ∈ Ai

0 if ai �= a at time t , a ∈ Ai

(15.4)

It describes a vehicle as point mass with position (s, q) and velocity (vs, vq)

cooperatively steered by the two players heading towards an obstacle. The obstacle
is static and its position is fixed at (sobs, 0). It has width wobs. Thus crossing the
line between the points (sobs,−wobs/2) and (sobs, wobs/2) leads to a crash. The TTC is
defined as

TTC =
{

sobs−s/vs s ≤ sobs ∧ |q| ≤ wobs/2

∞ else
(15.5)

Each player’s actions shall be restricted to use a trigger strategy of the following
kind: Start with action M (no steering) and start to steer L or R after a time-



254 S. Rothfuß et al.

threshold is met, causing a constant lateral velocity vq,i . Thus, this strategy can
be expressed in parametric form using the threshold τi = θi .

The payoff-functions in (15.6) penalize a collision as well as steering effort. The
costs for steering are weighted individually with the factor ri . Note that this factor
could also be part of θi . However, we set it as a known constant value for reasons of
clarity and comprehensibility.

πi (τi , τ¬i ) = −1Crash − ri · 1TTC falls below τi (15.6a)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ¬Crash ∧ ¬TTC falls below τi

−ri ¬Crash ∧ TTC falls below τi

−1 Crash ∧ ¬TTC falls below τi

−1 − ri Crash ∧ TTC falls below τi

(15.6b)

Incorporating the descriptions of the system and the events and simplifying leads
to parameterized payoff functions. In the following the resulting payoff function of
player one including the system dynamics is stated.

π1 (θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 θ1 < θ2 ∧
∣∣vq,2(θ

+
2 − θ+1 )

∣∣ > wobs/2

−r1 θ1 > θ2 ∧
∣∣vq,1(θ

+
1 − θ+2 )

∣∣ > wobs/2

−r1
θ1 < θ2 ∧

∣∣vq,1θ
+
1 + vq,2θ

+
2

∣∣ > wobs/2

∧ ∣∣vq,2(θ
+
2 − θ+1 )

∣∣ ≤ wobs/2

−r1
θ1 ≥ θ2 ∧

∣∣vq,1θ
+
1 + vq,2θ

+
2

∣∣ > wobs/2

∧ ∣∣vq,1(θ
+
1 − θ+2 )

∣∣ ≤ wobs/2

−1 θ1 ≤ 0 ∧ ∣∣vq,2θ
+
2

∣∣ ≤ wobs/2

−1 − r1 θ1 > 0 ∧ ∣∣vq,1θ
+
1

∣∣ ≤ wobs/2 ∧ θ2 ≤ 0

−1 − r1 θ1 > 0 ∧∣∣vq,1θ
+
1 + vq,2θ

+
2

∣∣ ≤ wobs/2 ∧ θ2 > 0

(15.7)

with θ+i defined as: θ+i = max (θi, 0).
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Using the values ri = 0.1 and vq,i = 1, i ∈ {1, 2} as an example leads to:

π1 (θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 θ1 < θ2 ∧
∣∣θ+2 − θ+1

∣∣ > 1

−0.1 θ1 > θ2 ∧
∣∣θ+1 − θ+2

∣∣ > 1

−0.1 θ1 < θ2 ∧
∣∣θ+1 + θ+2

∣∣ > 1 ∧ ∣∣θ+2 − θ+1
∣∣ ≤ 1

−0.1 θ1 ≥ θ2 ∧
∣∣θ+1 + θ+2

∣∣ > 1 ∧ ∣∣θ+1 − θ+2
∣∣ ≤ 1

−1 θ1 ≤ 0 ∧ ∣∣θ+2 ∣∣ ≤ 1

−1.1 θ1 > 0 ∧ θ1 ≤ 1 ∧ θ2 ≤ 0

−1.1 θ1 > 0 ∧ θ1 + θ2 ≤ 1 ∧ θ2 > 0

(15.8)

Based on the parameterized payoff functions, the best-response correspondences
can be obtained by optimization

BR1(θ2) = arg max
θ1

π1 (θ1, θ2) (15.9)

BR2(θ1) = arg max
θ2

π2 (θ1, θ2) . (15.10)

Figure 15.3 shows the graphs of both best-response correspondences BR1 and BR2.
Their intersection is the set of parameter profiles constituting Nash equilibria. This
set is not a singleton.

Fig. 15.3 Nash equilibria of
thresholds in the event-based
game applied to the evasion
maneuver scenario

−1 0 1 2

−1

0

1

2

θ1

θ 2

BR1(θ2) BR2(θ1) Nash Equilibria
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15.2.2.2 Iterative Numerical Solution Methods

If no analytical solution can be found, iterative numerical solution methods
can be applied to find numerically a Nash equilibrium in an event-based game
i.e. solve (15.9) and (15.10). Figure 15.4 shows the Cournot dynamics method
which we propose to solve an event-based game in parameterized form with
complete information. It is based on alternating best-responses of both players to
the parameters of the respective other player, starting from some initial parameters.
The best-responses in an event-based game can be found by numerical optimization
based on a simulation of the system’s behavior. If neither of the players changes his
set of parameters in an iteration w. r. t. a small, chosen ε > 0 a Nash equilibrium

Fig. 15.4 Best-response
dynamics to numerically find
a Nash equilibrium by
bilaterally and iteratively
determining the best response
to the other player’s strategy
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is found. The method is not guaranteed to converge. Therefore, in a practical
implementation a stopping criterion based on a maximum number of iterations is
included.

15.2.3 Discussion

The event-based game introduces the ability to jointly model the features of a
human-human (and hence a human-machine) negotiation process and the system
dynamics the interaction is based on. The individual negotiation participants are
represented by individual players. The individual strategical thinking of human
negotiators is enabled by individual payoff functions evaluating strategies and their
consequences. The exchange of offers among the players is modeled via actions
and events, allowing to model a selective and individual human perception and
influence of the negotiation process. As humans trigger actions and are able to
receive events at non-predefined times, the definition allows for events and actions
to occur at arbitrary times. Last but not least, the event-based systems dynamics are
included, connecting actions and events and allow for events driven by autonomous
system behavior. This resembles the human ability to not only react to actions of the
opponent but also to relevant system behavior.

In order to find equilibria, we provide an approach that parameterizes the strategy
and payoff function. Solutions can be found in analytical form or by iterative
numerical solution methods. A practical implementation of the approach in case
of multiple equilibria might require extensions that determine which equilibrium
to choose. In this situation one might consider to reformulate the event-based
game with incomplete information via a distribution of several types of each player
potentially leading to a unique equilibrium.

15.3 Game Model Based on War of Attrition

In this section we reconsider the war of attrition game due to its ability to model a
concession process, i.e. a special yet important form of negotiation process, yielding
a unique equilibrium. In addition to a unique equilibrium its incomplete information
setting is another advantage compared to the event-based game of Sect. 15.2. The
minor downside in comparison to the event-based game is the relaxation of the initial
requirement of a detailed system model consideration towards disagreement costs
which increase linearly over time.

In the following, we first introduce the basic principle of the war of attrition.
This is followed by its adaptation to our negotiation setting, i.e. the integration
of a better approximation of the system behavior, and the proof that the solution
leads to a Bayesian Nash equilibrium. Last but not least we present a exemplary
implementation of the enhanced model.
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15.3.1 Basic Principle

In a war of attrition players compete for a price by trying to outlast the other
players. The players’ valuation v of the price is only known by themselves. Common
knowledge is the probability density function f (v) and the cumulative distribution
function F(v), respectively, of the valuation of the other players. All players face
the same costs for waiting in disagreement. These costs increase linearly with slope
1. In this setup the optimal waiting-time τ (v) for outlasting the other players in the
unique perfect Bayesian Nash equilibrium is given by the following equation [11,
p. 216–219].

τ (v) =
∫ v

0
ṽ

f (ṽ)

1 − F(ṽ)
dṽ . (15.11)

This waiting-time yields the highest expected payoff. It is also a special case of the
result given in [4].

In the following the war of attrition is used to model the strategic interaction
between two drivers cooperatively steering a car in an evasive steering maneuver.
By the nature of the war of attrition only two maneuvers i.e. actions are available. It
is therefore assumed that both players have individual preferences for evading the
obstacle on the left and on the right, respectively. The absolute difference between
these preferences is interpreted as the valuation of the price in a war of attrition
that arises between the two players if they prefer different options and consequently
steer in opposite directions until one of them gives in.

In the basic form the war of attrition is only able to approximate the interaction
system behavior by cost function which is linearly increasing over time. In
order to be able to model more complex interaction system behaviors we adapt
the conventional war of attrition model in the following towards a solution of
Problem 15.1 by enhancing the cost structure.

15.3.2 Adaptation

To incorporate the system’s behavior the war of attrition model is extended by a
non-linear time-dependent cost function c(t). Consider the following assumptions
on this cost function:

Assumption 15.1 c (t) : R
+ → R

+ is a continuous, strictly increasing and
therefore invertible function with its inverse function c−1

c (t) ∈ C1, (15.12)

c′ (t) > 0 ∀t . (15.13)
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In addition, consider this assumption on the threshold function:

Assumption 15.2 τi (v) : R+ → R
+ is differentiable with an integrable derivative

and

τi (0) = 0. (15.14)

Based on these assumptions the following lemma on the threshold for maximizing
the expected payoff is stated.

Lemma 15.2 The threshold of player i in a war of attrition maximizing his expected
payoff w. r. t. the density distribution of valuation fv of player ¬i, a cost function
c (t) and the player i’s valuation vi is given by

τi (vi ) = c−1
(∫ v

0
ṽ

f (ṽ)

1 − F(ṽ)
dṽ

)
(15.15)

w.r.t. Assumptions 15.1 and 15.2.

Proof Following the approach of Fudenberg and Tirole [11, pp. 216-219] we set
up the objective function for maximizing the expected payoff (15.16) w.r.t. the
threshold τ (v) of player i, the density distribution of thresholds fτ of player ¬i,
the cost function c (t) and the player i’s valuation vi .

πi =
∫ τi (vi )

0
(vi − c(t)) fτ (t) dt. (15.16)

With the derivative of πi by τi (vi ) the necessary condition for the maximum is
found:

vi · fτ (τi (vi ))− c′ (τi (vi )) (1 − Fτ (τi (vi ))) = 0. (15.17)

The proof of sufficiency of condition (15.17) is analogous to Fudenberg and Tirole
[11, pp. 217–218] and therefore it is not presented here.

According to the fundamental theorem of calculus and with the assumption τi (v)
being a differentiable function with integrable derivative the density distribution and
the cumulative distribution function of (15.17) can be transformed to

vi · fv (vi )

τ ′ (vi )
− c′ (τi (vi )) (1 − Fv (vi )) = 0. (15.18)

The transformed condition (15.18) is rearranged in (15.19) to be integrated w. r. t. vi
and (15.14).

c′ (τi (vi )) τ ′ (vi ) = vi · fv (vi ) / (1 − Fv (vi )) . (15.19)
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With the cost function c (t) being continuous, strictly increasing and therefore
invertible (Assumption 15.1: conditions (15.12) and (15.13)) the resulting threshold
function is

τi(vi ) = c−1
(∫ vi

0
ṽ

f (ṽ)

1 − F(ṽ)
dṽ

)
. (15.20)

Furthermore, this function fulfills Assumption 15.2 of τi (v) being a differentiable
function with integrable derivative. �
As a result (15.15) yields the optimal threshold for conceding w.r.t. the expected
payoff in the incomplete information setting. It considers the invertible cost function
c(t). This cost function might resemble an approximation of the interaction system
behavior and allows for modeling soft negotiation deadlines.

15.3.3 Bayesian Nash Equilibrium

In the following we provide the proof that the result of Lemma 15.2 is a Bayesian
Nash equilibrium.

Theorem 15.1 The following symmetric strategy profile yields a sub-game-perfect
Bayesian Nash equilibrium: Start to act towards your preferred option. Give in and
start to act towards the other option if your threshold is reached and the other player
has not given in. The threshold is calculated according to (15.15).

Proof We have to show, that the proposed strategy is a best response to itself.
If both players prefer the same option, an agreement is reached immediately

without costs.
If players prefer different options, both will realize the conflict and hence the

war of attrition they are in. By following the above introduced symmetric strategy
of waiting until their thresholds that individually and statistically maximize their
payoff at all times, they find themselves in a sub-game-perfect Bayesian Nash
equilibrium.

Therefore, this also applies for the overall game. �

15.3.4 Example

In the following, we provide an exemplary parameterization of the enhanced war of
attrition and the resulting chart of thresholds for the scenario given in Problem 15.1.
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15.3.4.1 Cost Function

The solely time-dependent cost function should be an approximation of the system
model in the evasion maneuver. Hence, the steering effort and a collision have to
be penalized. It is assumed that a quadratic term of time is a good approximation
of penalizing the effort for evasive steering. This is motivated by the fact that
later steering leads to overproportionally higher effort to get around the obstacle.
Furthermore, it is exemplary assumed that the collision will occur after 4 s with
a given v, sobs and wobs. Therefore, we apply a cubic component yielding high a
penalty for waiting longer than 3 s and subsequently risking a collision.

The combined cost function is given by (15.21) and depicted in Fig. 15.5.

c(t) = t2 + 100 (t − 3)3 1t>3 with 1{t>3} =
{

1 if t > 3,

0 else.
(15.21)

15.3.4.2 Density Function

As an example, we apply the following density function of the valuation v , i. e. the
preference difference, of the opponent.

f (v) = 4

3

(
1

2

1

20
ϕ
( v

20

)
+ 1

2

1

10
ϕ

(
v − 50

10

))
1v∈[0,100]. (15.22)

It is a normalized superposition of two Gaussian distributions with expected values
0 and 50 and standard deviation of 20 and 10 on the interval v ∈ [0, 100] and is
depicted in Fig. 15.6.

In an application scenario analogous to Problem 15.1, e.g. on a freeway, the
preference differences v could be seen as the result of a criticality analysis of the
two evasion options.

Fig. 15.5 Exemplary cost
function c(t)
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100

time t in s

c(
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Fig. 15.6 Exemplary density function f (v)

15.3.4.3 Resulting Thresholds

With the exemplary cost (15.21) and density function (15.22) the resulting thresh-
olds w.r.t. the own preference difference v can be calculated according to (15.15) of
Lemma 15.2. For the range of v ∈ [0, 100] the thresholds are depicted in Fig. 15.7.
One can observe the continuous but nonlinear increase of thresholds with increasing
preference v . This is due to the continuous nonlinear cost function. Furthermore a
saturation behavior of the threshold around 4 s is visible. This is caused by the cost
function heavily penalizing a collision at that time.
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Fig. 15.7 Example of a threshold function τ(v)
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15.3.5 Discussion

The previous sections reveal the possibility that the war of attrition model can be
adapted for modeling the human-automation negotiation process in the evasion
maneuver scenario with two evasion maneuver options. The game yields one
continuous time, easy to calculate solution for a threshold at which the player will
change from his preferred option to the other one. It depends on costs resembling the
system behavior and disagreement costs, the distribution of preference differences
of the other player and the player’s own preference difference. This solution is a
unique Bayesian Nash equilibrium.

In application, the identification of the opponent’s preference difference distribu-
tion is required as well as the cost function. Although, the cost function is only
time-dependent and has to be common knowledge to all players, we argue that
both aspects are valid assumptions in a practical implementation. I. e. deadline
and system behavior are both aspects of negotiation scenario that usually can be
observed by all players.

In future work, we will extend the war of attrition model towards more than two
potential maneuver options towards a realistic application of the proposed model.
Furthermore, we will investigate how to determine and estimate the cost function
and preference difference distribution of the opponent, respectively.

15.4 Conclusion

In this work, we proposed two game concepts for describing the negotiation process
in cooperative decision making with humans. These models form the basis for the
objective to design an emancipated automation that is able to take part in cooperative
decision making with a human.

Contrary to state-of-the-art models, the proposed modeling approaches are able
to explicitly describe the process of cooperative decision making with human
participants. Moreover, the behavior of the system through which participants
interact with each other is also considered in the models. Accounting for this
dynamical system is crucial for a meaningful solution in several applications. An
example is given by the dynamics of a vehicle which are relevant for a safe human-
machine cooperative guidance.

The newly introduced event-based game has the ability to provide a detailed
description of the negotiation process and the dynamical system the automation
and the human interact with. We proposed to utilize parameterized strategies to
analytically or numerically calculate equilibria. The solution may be ambiguous
and usually requires complete information. Hence, in a practical implementation
additional identification methods may be required.

Furthermore, we enhanced the conventional war of attrition model by means of
a time-dependent cost function. This allows the consideration of the approximated
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interaction system behavior, e.g. in form of negotiation constraints like deadlines.
With the new cost function and the incomplete information setting we proved that
the resulting solution leads to a unique Bayesian Nash equilibrium.

In summary, the introduced two models form a basis for the design of automated
negotiation agents that are able to interact with humans on the decision level in an
emancipated and intuitive way.
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Chapter 16
Social Inefficiency of Free Entry Under
the Product Diversity

Alexander Sidorov

Abstract The paper addressed to a question whether the free entry of profit-seeking
large firms (oligopolies) is advantageous for consumers, or the governmental
restrictions to enter may have the positive effect on consumers’ well-being. The
negative welfare effect of excessive enter is well-known in case of homogeneous
good, though there was hypothesis that consumers’ love for variety in case of
differentiated good may offset this effect. The main result of this paper is that
this almost never happened. We study a general equilibrium model with imperfect
Bertrand-type price competition. Firms assumed to have non-zero impact to market
statistics, in particular, to consumer’s income via distribution of non-zero profit
across consumers-shareholders. It is proved that the governmental restrictions in
certain bounds increases Social welfare under quite natural assumptions on utilities,
which hold for most of the commonly used classes of utility functions, such as
Quadratic, CARA, HARA, CES, etc.

Keywords Bertrand competition · Additive preferences · Ford effect · Excessive
enter · Consumer’s welfare

16.1 Introduction

The typical presumption of the most of economic theories is that free entry is
desirable for social efficiency. As several articles have shown, however, when
firms must incur fixed set-up costs upon entry, the number of firms entering a
market need not equal the socially desirable number. Spence [13] and Dixit and
Stiglitz [6], for example, demonstrate that in a monopolistically competitive market,
free entry can result in too little entry relative to the social optimum. In more
later work von Weizsäcker [14] and Perry [11] point to a tendency for excessive
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entry in homogeneous product markets. Nevertheless, despite these findings, many
economists continue to hold the presumption that free entry is desirable, in part,
it seems, because the fundamental economic forces underlying these various entry
biases remain somewhat mysterious. The empirical studies in broadcasting industry
allow to draw the conclusion that the share of social losses due to excessive entry
of radio stations is about 40%, see e.g., [4] and the more recent paper [5]. As
for theoretical justification of this effect, the paper of Mankiw and Whinston, [8],
consider the general model of oligopolistic competition between firms producing the
homogeneous good. Authors formulated their assumptions in terms of equilibrium
characteristics and the production cost function, which imply the entry excess of
firms over the social optimum. These assumptions have a neat economic intuition
and cover many well-known examples of the oligopolistic competition models, e.g.,
the linear Cournot oligopoly model, however, an assumption on homogeneity of
good turns out to be crucial. In case of production diversity authors presented a
counter-example with the opposite ranking of free-entry equilibrium number of
firms and the social optimum. At the very end of Conclusion the following problem
was formulated

The introduction of product diversity, however, can reverse this bias toward excessive entry.
Intuitively, a marginal entrant adds to variety, but does not capture the resulting gain in social
surplus as profits. Hence, in heterogeneous product markets the direction of any entry bias
is generally unclear, although efficient levels of entry remain an unlikely occurrence.

The purpose of this paper is to make the problem more clear. The goal is to
provide a simple conditions, under which the number of entrants in a free-entry
equilibrium is excessive or insufficient. Our analysis compares the number of firms
that enter a market when there is free entry with the number that would be desired
by a social planner who is unable to control the behavior of firms once they
are in the market. That is, we consider the second-best problem of choosing the
welfare-maximizing number of firms. We demonstrate that the crucial conditions
for establishing the presence of an entry bias can be stated quite simply in terms
of consumers’ utility. In short, this paper shows that under the mild and natural
assumption the free-entry number of firms is socially excessive. We also provide the
sufficient condition for the opposite case and construct the corresponding example
of utility function satisfying this condition.

16.2 The Model

Consider the one-sector economy with horizontally differentiated good and one pro-
duction factor–labor. There is a continuum [0, L] of identical consumers endowed
with one unit of labor. The labor market is perfectly competitive and labor is chosen
as the numéraire. There is a finite number N ≥ 2 of “large” firms producing the
varieties of some horizontally differentiated good and competing with prices. Each
variety is produced by a single firm and each firm produces a single variety, thus the
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horizontally differentiated good may be represented as a finite-dimensional vector
x = (x1, . . . , xN) ∈ RN+ . The “large” size of firm implies that impact of single firm
to market statistics is not negligible and should be strategically taken into account
by other competitors. To operate, every firm needs a fixed requirement f > 0 and
a marginal requirement c > 0 of labor, which may be normalized to 1 without loss
of generality. Wage is also normalized to 1, thus the cost of producing qi units of
variety i ∈ {1, . . . , N} is equal to f + 1 · qi .

Consumers share the same additive preferences given by

U(x) =
N∑

i=1

u(xi), (16.1)

where u(·) is thrice continuously differentiable, strictly increasing, strictly concave,
and such that u(0) = 0. Following [15], we define the relative love for variety (RLV)
as follows:

ru(x) = −xu′′(x)

u′(x)
,

which is strictly positive for all x > 0. Under the CES, we have u(x) = xρ where ρ

is a constant such that 0 < ρ ≤ 1, thus implying a constant RLV given by 1−ρ. The
natural generalization of CES utility is the HARA function u(x) = (x + α)ρ − αρ ,
α > 0. Another example of additive preferences is provided by Behrens and Murata
[1], who consider the CARA utility u(x) = 1 − exp(−αx) where α > 0 is the
absolute love for variety; the RLV is now given by αx.

Very much like the Arrow-Pratt’s relative measure of the risk aversion, the RLV
measures the intensity of consumers’ variety-seeking behavior. Following the paper
[15], we suggest that the low-tier utility function u(x) satisfies the following

Assumption 16.1

ru(x) < 1, ru′(x) < 2 (16.2)

for all x in some neighborhood of zero.

A consumer’s income is equal to her wage plus her share in the total profits.
Since we focus on symmetric equilibria, consumers must have the same income,
which means that profits have to be uniformly distributed across consumers. In this
case, a consumer’s income y is given by

y = 1 + 1

L

N∑
i=1

Πi ≥ 1, (16.3)
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where the profit made by the oligopoly selling amount qi of variety i ∈ {1, . . . , N}
at price pi is given by

Πi = (pi − 1)qi − f. (16.4)

Evidently, the income level varies with firms’ strategies pi .
A consumer’s budget constraint is given by

N∑
i=1

pixi = y. (16.5)

The first-order condition for utility maximization yields

u′(xk) = λpk, (16.6)

where λ is the Lagrange multiplier

λ =
∑N

i=1 u′(xi)xi

y
> 0, (16.7)

which implies that the inverse demand may be represented in closed form

pk = yu′(xk)∑N
i=1 u′(xi)xi

(16.8)

for all varieties k ∈ {1, . . . , N}.
Let p = (p1, . . . , pN) be a price profile. Consumers’ demand functions xi(p) are

obtained by solving the system of Eqs. (16.8) where aggregate income of consumers
y is now defined as follows:

y(p) = 1 −Nf +
N∑

i=1

(pi − 1)xi(p).

It follows from (16.7) that the marginal utility of income λ is a market aggregate
that depends on the price profile p. Indeed, the budget constraint

N∑
j=1

pjxj (p) = y(p)



16 Social Inefficiency of Free Entry 271

implies that

λ(p) = 1

y(p)

N∑
i=1

xi(p)u′ (xi(p)) . (16.9)

Since u′(x) is strictly decreasing, the demand function for variety i is thus given by

xk(p) = ξ(λ(p)pk), (16.10)

where ξ is the inverse function to u′. Moreover, the i-th firm profit can be rewritten
as follows:

Πi(p) = L(pi − 1)xi(p)− f = L(pi − 1)ξ(λ(p)pi)− f. (16.11)

16.2.1 Market Equilibrium

The market equilibrium is defined by the following conditions:

(i) each consumer maximizes her utility (16.1) subject to her budget
constraint (16.5),

(ii) each firm k maximizes its profit (16.4) with respect to pk ,
(iii) product market clearing:

Lxk = qk for all k ∈ {1, . . . , N} ,

(iv) labor market clearing:

Nf +
N∑

i=1

qi = L.

Market equilibrium is symmetric when qk = qj , pk = pj for all k �= j .
Conditions (iii) and (iv) imply that

x̄ ≡ 1

N
− f

L
(16.12)

are the only candidate symmetric equilibrium demands for “oligopolistic”
varieties.

This definition of equilibrium is similar to concepts used in [10] and [12] with
exception of an assumption on the free entry until the zero-profit condition. The
number of firms now is considered as an exogenous parameter.
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16.2.2 First Order Condition for Bertrand Oligopoly Under
the Ford Effect

As shown by (16.6) and (16.7), the income level influences firms’ demands, whence
their profits. As a result, firms must anticipate accurately what the total income
will be. In addition, firms should be aware that they can manipulate the income
level, whence their “true” demands, through their own strategies with the aim of
maximizing profits. This feedback effect is known as the Ford effect.

In popular literature, this idea is usually attributed to Henry Ford, who raised
wages at his auto plants to five dollars a day in January 1914. As specified in
[2], the Ford effect may have different scopes of consumers income, which is sum
of wage and a share of the distributed profits. The first specification (proposed in
[9]) and used in [2]) is to suppose that firms take into account the effects of their
decision on the total wage bill, but not on the distributed profits, which is still treated
parametrically. This case may be referred as “Wage Ford effect” and it is exactly
what Henry Ford meant. Another intermediate specification of The Ford effect is an
opposite case to the previous one: firms take wage as given, but take into account
the effects of their decisions on distributed profits. This case may be referred as
“Profit Ford effect”. Finally, the extreme case, Full Ford effect, assumes that firms
take into account total effect of their decisions, both on wages and on profits. These
two cases are studied in newly published paper [3]. In the presented research, we
shall assume that wage is given. This includes the way proposed by O. Hart in
[7], when the workers fix the nominal wage through their union. This assumption
implies that only the Profit Ford effect is possible, moreover, firms maximize their
profit anyway, thus being price-makers but not wage-makers, they have no additional
powers at hand in comparison to No Ford case, with except the purely informational
advantage—knowledge on consequences of their decisions. Nevertheless, as it was
shown in [12], this advantage allows firms to get more market power, which justify
the common wisdom “Knowledge is Power”. The Ford effect assumption suggests
actually that the large firms act as “sharks” rather than “dolphins”, gathering the
maximum market power.

The generalized Bertrand equilibrium is a vector p∗ such that p∗i maximizes
Πi(pi,p∗−i ) for all i ∈ {1, . . . , N}. Applying the first-order condition to (16.11)
yields

pi − 1

pi

= − ξ(λpi)

λpiξ ′(λpi)
(

1 + pi

λ
∂λ
∂pi

) , (16.13)

which involves ∂λ/∂pi because λ depends on p.
It was mentioned already that the “large” firms (oligopolies) have non-zero

influence on market statistics, in particular, we can expect that ∂λ/∂pk �= 0.
By the standard interpretation, the Lagrange multiplier λ is a marginal utility of
money, therefore “large” firms understand that the demand functions (16.10) must
satisfy the budget constant as an identity. The consumer budget constraint, before
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symmetrization, can be rewritten as follows:

N∑
i=1

piξ(λ(p)pi) = 1 −Nf +
N∑

i=1

(pi − 1)ξ(λ(p)pi),

which boils down to

N∑
i=1

ξ(λ(p)pi ) = 1 − Nf. (16.14)

Differentiating (16.14) with respect to pk yields

ξ ′(λpk)λ+ ∂λ

∂pk

N∑
i=1

ξ ′(λpi)pi = 0

or, equivalently,

1 + pk

λ

∂λ

∂pk
=

∑N
i �=k ξ ′(λpi)λpi∑N
i=1 ξ ′(λpi)λpi

. (16.15)

Substituting (16.15) into (16.13) and symmetrizing the resulting expression we
obtain

m(N) = ru

(
1

N
− f

L

)
N

N − 1
. (16.16)

16.3 Consumers’ Welfare Under the Free and Restricted
Enter

Using (16.16) we can calculate the firm’s profit at symmetric equilibrium. Indeed,
the markup definition

m = p − c

p
= p − 1

p

implies

p − 1 = m

1 −m
.
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Substituting (16.16) for m we obtain

Π̄ = L(p − 1)x̄ − f = L
ru

(
1
N
− f

L

)
− (N − 1)

f
L(

1 − ru

(
1
N
− f

L

))
N − 1

. (16.17)

In what follows we shall use the notion ϕ ≡ f/L to make formulas more compact.
This allows us to determine Zero-Profit “number” of firms N̂(ϕ) as root of equation
Π̄ = 0 , which is equivalent to equation

ru

(
N−1 − ϕ

)
= (N − 1)ϕ. (16.18)

This number is typically non-integer; this is not a big problem, however, because
this number only indicates that for all integers N < N̂(ϕ) profit Π̄ > 0, while
N > N̂(ϕ) implies Π̄ < 0. The corresponding equilibrium consumption x(ϕ) =(
N̂(ϕ)

)−1 − ϕ.

Proposition 16.1 For all sufficiently small ϕ there exist unique solution N̂(ϕ) of
Eq. (16.18). Moreover, for ϕ → 0 we have x(ϕ) → 0, N̂(ϕ) →∞.

Proof This statement immediately follows from [12], Proposition 15.3. �
Now consider the following Social Welfare function (actually, an indirect utility)

V (N) = Nu(x̄) = N · u
(

1

N
− f

L

)
, (16.19)

with the firm’s number as a variable. To save space we use the following notion
ϕ ≡ f/L. The first order condition

V ′(N) = u

(
1

N
− ϕ

)
− 1

N
u′

(
1

N
− ϕ

)
= 0

determines the Social optimum of firms’ number1 N∗(ϕ). It is obvious that for CES
utility with u(x) = xρ , which implies ru(x) = 1− ρ, the Social optimal number of
firms is equal to

N∗(ϕ) = 1 − ρ

ϕ
.

1Of course, the actual number of firms is integer number, but this number indicates only that for
N < N + 1 ≤ N∗(ϕ) Social Welfare increases with number of firms V (N) < V (N + 1), while
N∗(ϕ) ≤ N < N + 1 implies V (N) > V (N + 1).
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On the other hand, the number of firms determined by zero-profit condition Π̄(N) =
0 is equal to

N̂(ϕ) = 1 − ρ

ϕ
+ 1 = N∗(ϕ)+ 1.

This means that Social optimum is less than Free Entry number, though, the
difference is not too large.

This result, i.e., inequality N̂(ϕ) > N∗(ϕ), will be generalized to the wide class
of utility functions. Moreover, we also present the counterexample with opposite
ranking N̂(ϕ) < N∗(ϕ).

Let

εu(x) ≡ x · u′(x)

u(x)

be an elasticity of utility function u(x), while

A(x) ≡ 1 − ru(x)+ x

2
+

√(
1 − ru(x)− x

2

)2

− xru(x). (16.20)

Proposition 16.2 For any ϕ = f/L > 0 the inequality N̂(ϕ) > N∗(ϕ) holds if
and only if εu(x(ϕ)) > A(x(ϕ)).

Proof The Social welfare function is bell-shaped due to

V ′′(N) = 1

N3 · u′′
(

1

N
− ϕ

)
< 0,

therefore N̂(ϕ) > N∗(ϕ) is equivalent to inequality V ′(N̂(ϕ)) < 0 = V ′(N∗(ϕ)).
On the other hand, the inequality

V ′(N̂(ϕ)) = u
(
N̂(ϕ)−1 − ϕ

)
− N̂(ϕ)−1u′

(
N̂(ϕ)−1 − ϕ

)
= u (x(ϕ))−

−(x(ϕ) + ϕ) · u′ (x(ϕ)) = u (x(ϕ))
x(ϕ) + ϕ

x(ϕ)

(
x(ϕ)

x(ϕ) + ϕ
− x(ϕ)u′ (x(ϕ))

u (x(ϕ))

)
< 0

holds if and only if,

x(ϕ)

x(ϕ)+ ϕ
− εu(x(ϕ)) < 0. (16.21)
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Note that x(ϕ) = N̂(ϕ)−1 − ϕ is an implicit function, derived from Zero-profit
condition

Π̄ = 0 ⇐⇒ ru

(
N−1 − ϕ

)
= (N − 1)ϕ,

which generally cannot be represented in closed form. Its inverse function, ϕ(x),
however, has closed form solution. Indeed, Zero-profit condition may be rewritten
in terms of x = N−1 − ϕ and ϕ as follows

ru (x) = (N − 1)ϕ =
(

1

x + ϕ
− 1

)
ϕ ⇐⇒ ϕ2 − (1− ru(x)− x)ϕ + xru(x) = 0

with obvious solution of corresponding quadratic equation

ϕ(x) = 1 − ru(x)− x

2
−

√(
1 − ru(x)− x

2

)2

− xru(x). (16.22)

Note that the second solution of this equation,

ϕ+(x) = 1− ru(x)− x

2
+

√(
1 − ru(x)− x

2

)2

− xru(x),

is not admissible, because ϕ+(0) = 1 − ru(0) �= 0, while x(ϕ) converges to zero
when ϕ → 0. This implies that condition (16.21) is equivalent to

x

x + ϕ(x)
< εu(x)

for x > 0, which after substitution of (16.22) and rearranging terms takes on the
form εu(x) > A(x) for x = x(ϕ). Vice versa, the opposite ranking N̂(ϕ) < N∗(ϕ)

is equivalent to inequality εu(x(ϕ)) < A(x(ϕ)). �
In what follows we suggest that the following assumption holds.

Assumption 16.2 There exist finite limits of the following fractions:

u′′(0)

u′(0)
= lim

x→0

u′′(x)

u′(x)
,

u′′′(0)

u′′(0)
= lim

x→0

u′′′(x)

u′′(x)
. (16.23)

It is obvious that CES utility does not satisfy the Assumption 16.2, while HARA
u(x) = (x + α)ρ − αρ , CARA u(x) = 1− e−αx and Quadratic u(x) = αx − x2/2
utilities fit it well.
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Lemma 16.1 Let Assumptions 16.1 and 16.2 hold, then ru(0) = 0, εu(0) = 1,
A(0) = 1. Moreover, there exist the limit values

r ′u(0) = −u′′(0)

u′(0)
, ε′u(0) = 1

2

u′′(0)

u′(0)
, and A′(0) = u′′(0)

u′(0)
.

Proof Direct calculation shows that

r ′u(x) = −u′′(x)

u′(x)

(
1 − xu′′(x)

u′(x)
+ xu′′′(x)

u′′(x)

)
,

which implies r ′u(0) = −u′′(0)
u′(0)

. Using the L’Hospital rule, we obtain

lim
x→0

εu(x) = lim
x→0

xu′(x)

u(x)
= lim

x→0

u′(x)+ xu′′(x)

u′(x)
= 1.

Moreover,

ε′u(x) = u′(x)

u(x)
− x

(
u′(x)

u(x)

)2

+ xu′′(x)

u′(x)

u′(x)

u(x)
= εu(x)

1− ru(x)− εu(x)

x
,

while limx→0(1 − ru(x) − εu(x)) = 0. Therefore, using the L’Hospital rule once
again, we obtain

lim
x→0

ε′(x) = lim
x→0

εu(x)
1 − ru(x)− εu(x)

x
= εu(0)

(
−r ′u(0)− lim

x→0
ε′u(x)

)
,

which implies

ε′u(0) = 1

2

u′′(0)

u′(0)
.

Calculating derivative

A′(x) = 1

2

(
1 − r ′u(x)

)−
1−ru(x)−x

2

(
1 + r ′u(x)

)+ xr ′u(x)+ ru(x)

2

√(
1−ru(x)−x

2

)2 − xru(x)

,

and substituting x = 0, we obtain

A′(0) = 1

2

(
1 − r ′u(0)

)−
1−ru(0)

2

(
1 + r ′u(0)

)+ ru(0)

1 − ru(0)
= u′′(0)

u′(0)
.

�
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Fig. 16.1 (a) Firm’s profit Π(N). (b) Social welfare V (N)

Remark 16.1 It is easy to see that these assumptions are satisfied for all widely
used non-CES “pro-competitive” classes of utility functions: HARA u(x) = (x +
α)ρ − αρ, α > 0, CARA u(x) = 1 − e−αx, α > 0, quadratic functions u(x) =
αx − x2/2, α > 0, as well as for any superposition of functions from these classes.

Theorem 16.1 Let Assumptions 16.1 and 16.2 hold, then inequality (16.3) is
satisfied for all sufficiently small x > 0, and thus N∗(ϕ) < N̂(ϕ) holds for all
sufficiently small ϕ.

Proof Due to Lemma 16.1,

A′(0)− ε′u(0) = u′′(0)

u′(0)
− u′′(0)

2u′(0)
= u′′(0)

2u′(0)
< 0,

which implies that A(x)− εu(x) < 0 for all x > 0 sufficiently small. �
To illustrate this result visually, let’s consider the HARA utility u(x) = √

x + 1− 1
and ϕ = f/L = 0.01. Figure 16.1 shows that industry may accommodate with
positive profit up to 6 firms, while the optimum number is approximately 4.

16.3.1 When Assumption 16.2 Does Not Hold

Consider two examples of utility function, that does not satisfy Assumption 16.2.
These examples show that result may be ambiguous.
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Case 16.1 Let u(x) = xρ + αx for α > 0, then

εu(x) = 1 − 1 − ρ

1 + αx1−ρ
, ru(x) = ρ(1 − ρ)

ρ + αx1−ρ
,

which implies ru(0) = 1 − ρ, εu(0) = ρ, while

ε′u(x) = α(1 − ρ)2

(1 + αx1−ρ)2 · xρ
→+∞, r ′u(x) = − αρ(1 − ρ)2

(ρ + αx1−ρ)2 · xρ
→−∞,

when x → 0. Differentiating the difference A(x)− εu(x), we obtain

A′(x)−ε′u(x) = 1

2
−

1+ru(x)−x
2 − αρ(1−ρ)2·x1−ρ

2(ρ+αx1−ρ)2

2

√(
1−ru(x)−x

2

)2 − xru(x)

+

+α(1 − ρ)2

xρ

⎡
⎢⎢⎣

ρ(1−ru(x))

2(ρ+αx1−ρ)2

2

√(
1−ru(x)−x

2

)2 − xru(x)

+ ρ

2(ρ + αx1−ρ)2 −
1

(1 + αx1−ρ)2

⎤
⎥⎥⎦ .

It is easy to see that

1

2
−

1+ru(x)−x
2 − αρ(1−ρ)2·x1−ρ

2(ρ+αx1−ρ)2

2

√(
1−ru(x)−x

2

)2 − xru(x)

→−1 − ρ

ρ
,

while term in brackets

ρ(1−ru(x))

2(ρ+αx1−ρ)2

2

√(
1−ru(x)−x

2

)2 − xru(x)

+ ρ

2(ρ + αx1−ρ)2 −
1

(1 + αx1−ρ)2 →
1 − ρ

ρ
> 0,

when x → 0. This implies that

lim
x→0

(A′(x)− ε′u(x)) = +∞⇒ A(x) > εu(x)

for all sufficiently small x > 0, or, equivalently, N∗(ϕ) > N̂(ϕ) for all sufficiently
small ϕ = f/L.
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Case 16.2 Let u(x) = xρ + αx with α < 0. This function satisfies u′(x) > 0 for
all sufficiently small x > 0. Direct calculations show that

ε′u(x) = α(1 − ρ)2

(1 + αx1−ρ)2 · xρ
→−∞, r ′u(x) = − αρ(1 − ρ)2

(ρ + αx1−ρ)2 · xρ
→+∞,

and

lim
x→0

(A′(x)− ε′u(x)) = −∞⇒ A(x) < εu(x)

for all sufficiently small x > 0, or, equivalently, N∗(ϕ) < N̂(ϕ) for all sufficiently
small ϕ = f/L.

Note that the case α = 0, corresponding to the CES function, we obtain

lim
x→0

(A′(x)− ε′u(x)) = −1− ρ

ρ
< 0 ⇒ A(x) < εu(x)

with the same conclusion, which was proved directly at the very beginning of this
Section.

16.4 Concluding Remarks

Economists have long believed that unencumbered entry is desirable for social
efficiency. This view has persisted despite the illustration in several articles of the
inefficiencies that can arise from free entry in the presence of fixed set-up costs.
In this article we have attempted to elucidate the fundamental and intuitive forces
that lie behind these entry biases. The previous papers with similar conclusions
were based on assumption on the zero love for variety. Moreover, some papers,
e.g., [8], suggested that in case of diversified goods the positive welfare effect of
the love for variety may offset the negative effect of excessive enter. Our paper
shows that generally this is not true–negative effect prevails for all known classes of
utilities with non-decreasing love for variety. Nevertheless, the opposite example of
insufficient enter was also built on the base of AHARA-utility with decreasing love
for variety.
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Chapter 17
An Alternative Pursuit Strategy
in the Game of Obstacle Tag

Igor Shevchenko

Abstract According to the generalized Isaacs’ approach, when solving a differ-
ential game, one has to fill the state space with trajectories on which the value
function in some sense meets the main equation. Singular surfaces are manifolds
where the value function or its derivatives are discontinuous. The obstacle tag game
is a prototypical example which was used by R. Isaacs to illustrate some phenomena
arising in differential games. The solution proposed by J.R. Isbell contains no
singular surfaces. Afterward, several solutions with corner surfaces were described.
J. Breakwell first constructed the field of optimal trajectories with a focal line and
then with two switch envelops. A. Melikyan formed a field with two equivocal
surfaces. In the paper, we consider the obstacle chase as an alternative pursuit
game. In the part of the state space where the segment PE crosses the obstacle
and alternatives are not consistent, as compared to Cases 7 and 8 of the Isbell’s
solution, the generated pursuit strategy with memory allows P to switch geodesic
lines a finite number of times only on boundaries of the secondary domain, and
thereby prevents sliding motions. Numerical simulations for particular states show
that the guaranteed results for this strategy are quite close to the value functions for
fixed alternatives and to those that constructed by J. Breakwell and A. Melikyan.
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17.1 Introduction

In the game of obstacle tag, let at t = t1 the segment P t1Et1 cross the circular
obstacle centered at C (see Fig. 17.1). Striving to catch E in minimal time, P may
follow the geodesical line shortest at this instant. However, when E retreats on the
continuation of this line, P may recognize that the other geodesic line becomes of
equal length (when P, E, C are collinear at t = t2) first, and then gets even shorter
(at t = t3). Switching the line, e.g., at t = t3, P may reduce the initially evaluated
chase time that equal to the length of the geodesic line at the current state divided
by the speed difference. At the first International Symposium on the Theory and
Applications of Differential games held in Amherst in 1969, R. Isaacs mentioned
[1] that the ideas of his book [3] aren’t suitable for analyzing the obstacle tag game
in the described situation (see Problem 6.10.1). Different aspects of this game were
studied by numerous authors (see, e.g., [1, 4–6] for the most relevant results and
further references).

J.R. Isbell described a solution of this game without using any formalism [4]. He
assumed that P moves along the geodesic line whereas E maintains collinearity of P,
C, E (Case 7) or takes a secant line to the circle (Case 8) avoiding the situation shown
in Fig. 17.1 by that ways. According to the generalized Isaacs’ approach, singular
surfaces is the main subject of zero-sum two-person differential games with full
information. The state space has to be filled with the trajectories corresponding to
the coupled optimal pursuit-evasion strategies. The value function is evaluated as
the payoff for these trajectories. Singular surfaces are manifolds where the value
function or its derivatives are discontinuous. However, there is no general theory
of construction for singular surfaces. Commonly, a researcher needs to explore
different known options for such surfaces [2]. The Isbell’s solution is rather simple
and includes no singular surfaces. It was revisited several times by J. Breakwell and
his students with the use of a focal line first, and two switching envelops then [1, 5].
A. Melikyan and his students suggested that P and E have to move along straight
lines in the attraction domains of the corner surfaces and their solution contains two
equivocal surfaces [6].

A pursuit-evasion game is called alternative if it can be terminated by P at will on
any of two given terminal manifolds, the payoff functionals of Boltza type on these
manifolds differ only in their terminal parts (the integral part is common and equal
to 1) and the optimal feedback strategies and the value functions are known [7–9].

Fig. 17.1 Switching
preferable geodesic lines
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We consider the obstacle tag game as an alternative pursuit game. At every state
where the segment PE crosses the obstacle, P has two alternatives, i.e., to follow the
south or north geodesic line. For each of them, the guaranteed catch time is known,
and P may choose those with lesser value. However, if a any state P chooses the
shortest path to E, a sliding mode may arise on the manifold with collinear P, C,
E, and the payoff is undefined there if the corresponding trajectories are defined as
limits of Euler broken lines there.

First, we describe a setup of the game. Then, we analyze the structure of the game
space in terms of relations of domination between alternatives, and their consistency.
Finally, we describe a pursuit strategy with memory and evaluate the guaranteed
result solving control optimization problems for E.

17.2 Setup

Let the obstacle be a circular hole of unit radius centered at zc = (xc, yc) in the
plane. Let zp = (xp, yp) and ze = (xe, ye) be Cartesian coordinates of players,
||zp − zc|| > 1, ||ze − zc|| > 1. Let P and E have simple motions with speed 1
and β, β < 1, the players perfectly measure all coordinates and P strive to catch
E in minimum time. We consider the game only for the initial states where the
obstacle separates players. The game terminates at the first instant when P gets on
the obstacle boundary or the line segment PE is tangential to the circle. P can follow
the shortest geodesic line chosen at the initial state and guarantee that the time spent
on E’s point capture is less or equal to the initial distance between P and E along the
geodesic line divided by (1 − β). Our goal is to generate a pursuit strategy which
allows P to choose geodesic lines if it would be advantageous to him, and evaluate
corresponding guaranteed results for this strategy.

We will put the game into different reduced spaces of dimension three. Depend-
ing on the chosen state space, we will have different equations describing motions.
The target set will be the set of states where P fixes his choice of the geodesic line
when evaluates the guaranteed payoff finally.

Let the obstacle be centered at zc = (0, 1), and P be on the negative part of the
x-axis. If zp = (−ρp, 0) then ρp > 0 is the distance from P to the obstacle along
the tangential line. Let ze = (xe, ye) be Cartesian coordinates of E, xe, ye ≥ 0,
||ze − zc|| > 1. Let αp = arctan ρ−1

p and ye/(ρp + xe) ≤ tan αp . Then, the function
V s that evaluates the guaranteed time needed for point capture of E along the south
geodesic line and its continuation may be described as

V s(ρp, xe, ye) = ρp + θe + ρe

1 − β
, (17.1)

where θe = αe + γe, αe = arctan ρ−1
e , de =

√
x2
e + (1 − ye)2, γe = arctan(ye −

1)/xe, ρe =
√

d2
e − 1 (see Fig. 17.2).
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Fig. 17.2 The first reduced
space

Fig. 17.3 The second
reduced space

In the second reduced space [5], the obstacle is centered at the origin O. P lies
on the negative part of the x-axis at zp = (−dp, 0), dp ≥ 1, the distance from the
origin to E equals de ≥ 1 and ξ is the angle between OP and OE (see Fig. 17.3). The
evaluation function may be represented as

V s(dp, ξ, de) =
√

d2
p − 1 + ξ − arccos d−1

p − arccos d−1
e +√

d2
e − 1

1 − β
. (17.2)

At the instant t > 0, let P and E be separated by the obstacle and move at angles
up(t) and ue(t) (see Fig. 17.4). Then, for arccosd−1

p ≤ ξ ≤ π , their motions may
be described by the equations

ḋp(t) = cos up(t),

ξ̇ (t) = sin up(t)

dp(t)
+ β

sin(ue(t)+ π − ξ(t))
de(t)

, (17.3)

ḋe(t) = β cos(ue(t)+ π − ξ(t)).

Let Z ⊆ R3 and M be the game space and terminal set, Up = {up : ||up|| ≤ 1},
Up = {ue : ||ue|| ≤ β}, z(t) ∈ Z, up(t) ∈ Up, ue(t) ∈ Ue and

ż(t) = f (z(t), up(t), ue(t)), z(0) = z0, (17.4)
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Fig. 17.4 A two-dimensional model of the state space: two fields of trajectories

be the equation that describes motions.
Strategies are rules that map available information into control values. We use

equations like (17.4) to generate pencils of trajectories for given initial states and
strategies, and then to evaluate the performance index for them. We consider only
trajectories that are limits of Euler broken lines when diameters of time partitions
tend to zero. This approach allows getting solutions that provide results close to
guaranteed in numerical simulations of the game development.

Let Δ = {t0, t1, . . ., ti , ti+1, . . .} be a partition of the time axis R+. For a given
z0 ∈ Z and a chosen strategy Up with available information I (e.g., Up ÷ up :
Z → Up for feedback strategies or Up ÷ up : R+ × C3

[0,∞) → Up for memory

strategies), let denote as Zp(z0,Up,Δ) the pencil of piecewise-constant solutions
of the inclusion

ż(t) ∈ co{f (z(ti), up(ti), ue) : ue ∈ Ue}, (17.5)

where t ∈ [ti , ti+1), i ∈ N , t0 = 0, ti →i→∞ ∞, up(ti) generated by Up with
information available at the instant t = ti . By this means Zp(z0,Up,Δ) contains
continuous functions z : R+ → Z for which there exists an absolutely continuous
restriction onto [0, θ ] for any θ > 0 that meets (17.5) for almost all t ∈ [0, θ ].

For the first (south) alternative, given z0, Up, M = Ms , ε > 0, Δ and z(·) ∈
Zp(z0,Up,Δ), let

τ s
ε (z(·)) = min{ti ∈ Δ : z(ti) ∈ Ms

ε }, (17.6)



288 I. Shevchenko

if ∃ti ∈ Δ : z(ti) ∈ Ms
ε , and+∞ otherwise, where Ms

ε = {z : z ∈ Z, minz′∈Ms ||z−
z′|| ≤ ε} is the ε-neighbourhood of Ms .

Let

Ps
ε(z(·)) = τ s

ε + V s(z(τ s
ε )), (17.7)

if τ s
ε = τ s

ε (z(·)) < +∞, and +∞ otherwise. Let also |Δ| = supi∈N(ti+1 − ti). The
guaranteed result for a particular pursuit strategy Up may be evaluated as

Ps(z0,Up) = lim
ε→0+Ps

ε(z
0,Up), (17.8)

where

Ps
ε(z

0,Up) = lim|Δ|→+0
Ps

ε(z
0,Up,Δ), (17.9)

Ps
ε(z

0,Up,Δ) = sup
z(·)∈Zp(z0,Up,Δ)

Ps
ε(z(·)).

For coupled pursuit and evasion strategies Up and Ue, the guaranteed result that
defined according to the described scheme is denoted as Ps(z0,Up,Ue).

Similarly, we define the game with the second (south) alternative and the terminal
set Mn, the guaranteed payoff Pn(z0,Up) for z0 ∈ Z and Up, etc.

The game with free alternative is completed on M = Ms ∪Mn. For z0 ∈ Z and
Up, if P fixes the preferable alternative, he guarantees the payoff

P(z0,Up) = min(Ps (z0,Up),Pn(z0,Up)).

Our goal is to generate featured pursuit strategies for the game with free
alternative and evaluate corresponding guaranteed payoffs.

17.3 Gradient Strategies

In the game with south alternative, define the (universal) gradient pursuit strategy
for P that generates the control according to the following relation [10]

us
p(z) = arg min

up∈Up

max
ue∈Ue

∂V s(z)

∂f (z, up, ue)
, z ∈ Z. (17.10)

For z = (dp, ξ, de) and (17.2), (17.3), where −π ≤ ue, ue ≤ π , we have

∂V s(z)

∂f (z, up, ue)
= sin(up + arccos d−1

p )− β sin(ue − ξ + arccos d−1
e )

(1 − β)
. (17.11)
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Therefore, the guaranteed pursuit strategy corresponds to us
p = − arcsin d−1

p , i.e. P
follows the south geodesic line at every state.

Moreover, the (universal) gradient evasion strategy that defined a similar way
corresponds to us

e = arcsin d−1
e − (π − ξ) when at every state E flees on the

continuation of south geodesic line,

min
us

p

max
us

e

∂V s(z)

∂f (z, up, ue)
= ∂V s(z)

∂f (z, us
p, us

e)
= −1. (17.12)

and

min
us

p

∂V s(z)

∂f (z, up, ue)
= ∂V s(z)

∂f (z, us
p, ue)

< −1 (17.13)

if ue �= us
e [6, 11].

The same results are valid for the north alternative with the evaluation function
V n and controls un

p, un
e .

Therefore, in the game with a fixed alternative, at any state, the payoff V s or
V n is guaranteed if P follows the respective geodesic line and E retreats on its
continuation.

17.4 Decomposition of the State Space

Let us denote as U0
p ÷ u0

p : Z → Up the pursuit gradient strategy that at the state

z generates the control u0
p(z0, z) = us

p(z) (17.10) if the south geodesic lines is

preferable for P at the state z0 (or either of them if they are of equal length) and
un

p(z) otherwise. If P updates the target alternative at any current state, denote this

universal strategy as UZ
p ÷ ut

p : Z → Up. Also let us use similar notations U0
e and

UZ
e for corresponding evasion strategies.
At any state, P has two alternative ways to chase E with known guaranteed results

evaluated with V s or V n. Then the state space is filled with two families of ideal
trajectories corresponding to the coupled geodesic pursuit-evasion strategies U0

p and

U0
e (see Fig. 17.4). Starting at z0 ∈ Z, P with U0

p can guarantee the payoff equal to

min(V s(z0), V n(z0)).
Consider guaranteed results if P can switch between alternatives.
At the state z0 ∈ Z, an alternative (south or north) is called consistent (stable) if it

dominates the other one at the initial state and also at any state emerged when P and
E move along the related geodesic line and its continuation. Let us divide the state
space depending on the consistency of the relation of domination (see Fig. 17.5):

• Zs and Zn are subsets where the particular alternative (south or north) strictly
dominates the other one and is consistent,

• Ds|n disjoints Zs and Zn, and V s = V n there,
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Fig. 17.5 A two-dimensional
model of the state space: a
partition of the state space

• Zs̄ and Zn̄ are subsets where the particular alternative strictly dominates other
and is not consistent, Z

¯s|n = Zs̄ ∪ Zn̄,
• D

¯s|n disjoints Zs̄ and Zn̄, and V s = V n there,
• D0 ⊂ Ds|n disjoints Ds|n and D

¯s|n,
• Bs disjoints Zs and Zs̄ , and when the players move along the south geodesic line

and its continuation, the south alternative strictly dominates the north one, and
there exists exactly one instant when the alternatives become equivalent,

• Bn is defined similar to Bs .

In the game of obstacle tag (see Fig. 17.6), for a given ρp , Z ¯s|n consists from two
curvilinear triangles. They are joined along the half-line from P trough C. All D0

for different ρp lie on this half-line

y = 1 +√
β, x ≥ √

1 − β. (17.14)

Fig. 17.6 Decomposition of
the reduced space for a given
ρp
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It is evident that Z
¯s|n = ∅ for ρp < ρ∗p(β) where

ρ∗p(β) = √
(1 − β)/β.

Therefore, actually the game may be terminated on the subsurface ρp = ρ∗p(β), and

the state definitely leaves Z
¯s|n when P follows the geodesic line.

The dotted line in Fig. 17.6 shows the locus of E’s terminal positions of the
secondary domain D̃0 for different ρp for some known solutions of the game(see,
e.g., [5, 6]). It has the parametric representation

xe = 1/
√

1 − (1 − s)2, (17.15)

ye = β/
√

β2 − (β − s)2, 0 < s ≤ β. (17.16)

The half-line D0 (see (17.14)) is a horizontal asymptote for it.

17.5 Alternative Pursuit Strategy with Memory

The strategy UZ
p is discontinuous on D = Ds|n ∪ D

¯s|n. When the state gets in the

neighbourhood of D
¯s|n, piecewise-constant solutions of the inclusion (17.5) with

UZ
p stay there for some time. For P, it may lead to the switching control in sliding

mode for which the payoff couldn’t be evaluated with the use Euler broken lines.
For the initial state z0 ∈ Z

¯s|n = Zs̄ ∪ D
¯s|n ∪ Zn̄, let us allow P to remember

the history of the game development and to update the target alternative no more
than once on Bs or Bn when the state leaves Z

¯s|n. Let us denote the corresponding
strategy as U1

p. The strategy UB
p prevents P from switching between alternative

strategies in the neighbourhood of D
¯s|n.

Let us evaluate the guaranteed result Ps|n (see (17.8)) when z0 ∈ Z
¯s|n, P applies

U1
p(z0, z) in z ∈ Z

¯s|n and UZ
p (z0, z) for z the rest of the state space. In order to do

that, we setup and solve optimization control problems for termination sets D
¯s|n, Bs

and Bn (see Fig. 17.7 for z0 ∈ Zs̄). Thereafter, we assume that E moves at the angle
ψ in a straight line within Z

¯s|n until the first instant when the state arrives on one of
the terminal sets. The maximal of three corresponding estimations determines the
guaranteed result.

On Bs and Bn, the guaranteed results correspond to the gradient strategies
(see Sect. 17.3). From the boundaries, the state shifts on D0 since Bs and Bn are
themselves ideal trajectories for the coupled gradient strategies. Thus, in all cases,
the state leaves the closure of Z

¯s|n through D0 (see Fig. 17.7).
If the state under the E’s control first gets on D

¯s|n and then on D0 along D
¯s|n (see

Fig. 17.7), the guaranteed result is described in [7]. It turns out that the preliminary
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Fig. 17.7 A two-dimensional
model of the state space:
different options to leave Zs̄

straight line is tangent to the curvilinear motion along D
¯s|n (the Isbell’s Case 8 in

[4]) where at the state (ρp, xe, ye) ∈ D
¯s|n E chooses the angle [7]

ψD
¯s|n = arcsin

(ye − 1)

β

√
1 + ρ2

p

+ arcsin
1√

1 + ρ2
p

.

It is important to note that the Isbell’s solution for Case 7 [4] when the state shifts
on D0 directly from within Z

¯s|n is just infeasible.
Thus far, for the initial state z0 ∈ Z

¯s|n at any current state z ∈ Z
¯s|n with the

reduced coordinates (ρp, xe, ye), the angle ψ chosen by E determines the instants

τ s|n, τ s̄, τ n̄ when the state arrives on D
¯s|n, Bs , Bn, and the associated payoffs.

The maximal of them defines the guaranteed result Ps|n for the described pursuit
strategy. As numerical simulations show, in the secondary optimization problem,
the preferable option for E always corresponds to the case when E from the initial
states Zs̄ shifts on Bn̄, and on Bs̄ from Zn̄. In this case, E takes the secant line
with minimal angle for which he gets from Zs̄ on Bn̄ missing Bs̄ or from Zn̄ on Bs̄

missing Bn̄.
Let (dp, π, 1) be the state vector in the second reduced space. An example of

the optimal evasion trajectory generated with the use of the described approach and
provided the guaranteed result is shown in Fig. 17.8 (D ¯s|n, Bs , Bn, etc. are given for
t = τD0

). Detail descriptions of solutions of the obstacle tag game mentioned in,
e.g., [1, 5, 6] are not available. However, it may be safely suggested that for the states
with E on the obstacle and collinear with P and C, the known the value function
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Fig. 17.8 An example of
optimal evasion in Zs̄

take the value defined on straight line motions of the players along the segment
PE and its continuation. Then, the guaranteed result for them may be evaluated as

τ D̃0 + V s(dp − τ D̃0
, π, 1 + βτ D̃0

) (see (17.2)) where τ D̃0
is the first instant when

E gets on D̃0 (17.15) (see also Fig. 17.7). It’s also worth noting that for 0.1 ≤ β ≤
0.9, ρp > ρ∗p(β), the maximum relative difference between these values and the
guaranteed results for the described pursuit strategy with memory is about 1%.

17.6 Conclusion

In the situations shown in Fig. 17.1, evaluation of the guaranteed result as corre-
sponding to the south geodesic line appears too pessimistic to P. On the other hand,
if P chooses the shortest geodesic at any current state, this feedback strategy is
discontinuous for collinear P, C, E. The resulting pencil of trajectories approximated
by Euler broken lines doesn’t include associated trajectory with P and E moving
along the half-line. To form a pursuit strategy and to evaluate the guaranteed result,
e.g., J. Breakwell and A. Melikyan described the fields of trajectories for coupled
optimal strategies of the players with two switch envelops or equivocal lines [1, 5, 6].
The construction of such fields involves a cumbersome integration of characteristic
equations for Hamilton-Jacobi-Isaacs equations.

We considered the obstacle chase game as an alternative pursuit game. The state
space was divided into several parts depending on the domination and consistency
features of alternatives at the initial state. In the parts corresponding to the situation
similar to that shown in Fig. 17.1, the generated strategy with memory allows P
to switch between alternatives only a finite number of times on their boundaries.
The guaranteed results fit the evasion strategy whereby E takes a secant line to the
obstacle until the state arrives on the boundary. Therefore, for the states in the special
region, P uses a strategy that doesn’t depend on the current position of E until the
state reaches the boundary.

The approach can be modified to handle the games with convex obstacles of
different shapes; see, e.g., [6]. However, decomposition of the state space will be
asymmetrical and there will be different termination options for the alternatives
when solving the secondary control problems for E.
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