
Abderrahmane Nitaj
Amr Youssef (Eds.)

LN
CS

 1
21

74

12th International Conference on Cryptology in Africa
Cairo, Egypt, July 20–22, 2020
Proceedings

Progress in Cryptology –
AFRICACRYPT 2020

Lecture Notes in Computer Science 12174

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Abderrahmane Nitaj • Amr Youssef (Eds.)

Progress in Cryptology -
AFRICACRYPT 2020
12th International Conference on Cryptology in Africa
Cairo, Egypt, July 20–22, 2020
Proceedings

123

Editors
Abderrahmane Nitaj
Mathematics, LMNO
Université de Caen
Caen, France

Amr Youssef
School of Engineering
and Computer Science
Concordia University
Montreal, QC, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-51937-7 ISBN 978-3-030-51938-4 (eBook)
https://doi.org/10.1007/978-3-030-51938-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0372-1757
https://doi.org/10.1007/978-3-030-51938-4

Preface

This volume contains the papers accepted for presentation at the 12th International
Conference on the Theory and Application of Cryptographic Techniques
(Africacrypt 2020). The aim of this series of conferences is to provide an international
forum for practitioners and researchers from industry, academia, and government
agencies from all over the world for a wide-ranging discussion of all forms of cryp-
tography and its applications. The initiative of organizing Africacrypt started in 2008
where it was first held in Morocco. Subsequent yearly events were held in Tunisia,
South Africa, Senegal, Morocco, and Egypt. This year, on the initiative of the orga-
nizers from Zewail City of Science and Technology, Africacrypt 2020, which is
organized in cooperation with the International Association for Cryptologic Research
(IACR), was planned to be held in Cairo, Egypt, during July 20–22. Unfortunately,
because of the COVID-19 outbreak, the physical event had to be canceled.

We received 49 submissions authored by researchers from 36 different countries.
After a reviewing process that involved 37 Program Committee members and 34
external reviewers, the Program Committee went through a significant online discus-
sion phase before deciding to accept 21 papers. All submitted papers received at least
three reviews. We are indebted to the members of the Program Committee and the
external reviewers for their diligent work and fruitful discussions. We are also grateful
to the authors of all submitted papers for supporting the conference. The authors of
accepted papers are thanked again for revising their papers according to the suggestions
of the reviewers. Apart from one conditionally accepted paper, the revised versions
were not checked again by the Program Committee, so authors bear full responsibility
for their content. The general chair, Dr. Ashraf Badawi, and the local Organizing
Committee from Zewail City of Science and Technology were, as always, a pleasure to
work with. We are deeply thankful for their effort in the planning phase of the con-
ference. We are also thankful to the staff at Springer for their help with producing the
proceedings and to the staff of EasyChair for the use of their conference management
system.

May 2020 Abderrahmane Nitaj
Amr Youssef

Organization

Africacrypt 2020 was organized by Zewail City of Science and Technology, Giza,
Egypt, in cooperation with the International Association for Cryptologic Research
(IACR).

General Chair

Ashraf Badawi Zewail City of Science and Technology, Egypt

Program Chairs

Abderrahmane Nitaj University of Caen Normandie, France
Amr Youssef Concordia University, Canada

Organizing Committee

Ashraf Badawi (Chair) Zewail City of Science and Technology, Egypt
Ahmed Eldakrory Zewail City of Science and Technology, Egypt
Nourhan Magdy Zewail City of Science and Technology, Egypt

Program Committee

Riham Altawy University of Victoria, Canada
Elena Andreeva Danish Technical University, Denmark
Muhammad Rezal

Kamel Ariffin
Universiti Putra Malaysia, Malaysia

Hatem M. Bahig Ain Shams University, Egypt
Magali Bardet University of Rouen Normandie, France
Lejla Batina Radboud University, The Netherlands
Hussain Ben-Azza ENSAM Meknes, Morocco
Olivier Blazy University of Limoges, France
Sébastien Canard Orange Labs, France
Nicolas Courtois University College London, UK
Joan Daemen Radboud University, The Netherlands
Luca De Feo IBM Research, Switzerland
Milena Dukanovic University of Montenegro, Montenegro
Nadia El Mrabet SAS, CGCP, EMSE Saint-Étienne, France
Guang Gong University of Waterloo, Canada
Aline Gouget Thales DIS, France
Kishan Gupta Indian Statistical Institute Kolkata, India
Javier Herranz Universitat Politècnica de Catalunya, Spain

Sorina Ionica University of Picardie, France
Tetsu Iwata Nagoya University, Japan
Juliane Krämer TU Darmstadt, Germany
Fabien Laguillaumie University of Lyon, LIP, France
Subhamoy Maitra Indian Statistical Institute Kolkata, India
Abderrahmane Nitaj University of Caen Normandie, France
Yanbin Pan Chinese Academy of Sciences, China
Christophe Petit University of Oxford, UK
Elizabeth Quaglia Royal Holloway, University of London, UK
Palash Sarkar Indian Statistical Institute Kolkata, India
Alessandra Scafuro North Carolina State University, USA
Ali Aydin Selçuk TOBB University, Turkey
Djiby Sow University Cheikh Anta Diop, Senegal
Pantelimon Stanica Naval Postgraduate School in Monterey, USA
Noah Stephens-Davidowitz Massachusetts Institute of Technology, USA
Willy Susilo University of Wollongong, Australia
Joseph Tonien University of Wollongong, Australia
Vanessa Vitse University of Grenoble Alpes, France
Amr Youssef Concordia University, Canada

Additional Reviewers

Khalid Abdelmoumen
Simon Abelard
Amira Barki
Andreas Brasen Kidmose
Guilhem Castagnos
Dung Hoang Duong
Muhammad Elsheikh
Ashley Fraser
Shihui Fu
Stefan-Lukas Gazdag
Adel Hamdi
Turgut Hanoymak
Murat Burhan İlter
David Jao
Guillaume Kaim
Orhun Kara
Liliya Kraleva
Zhen Liu

Kalikinkar Mandal
Simon-Philipp Merz
Romy Minko
Murat Osmanoglu
Ayoub Otmani
Carles Padró
Simon Pontié
Francisco Rodríguez Henríquez
Raghvendra Rohit
Arnab Roy
Niels Samwel
Patrick Struck
Léo Weissbart
Charlotte Weitkämper
Julian Wälde
Oğuz Yayla
Mahmoud Yehia

viii Organization

Contents

Zero Knowledge

QA-NIZK Arguments of Same Opening for Bilateral Commitments 3
Carla Ràfols and Javier Silva

Signatures of Knowledge for Boolean Circuits Under
Standard Assumptions . 24

Karim Baghery, Alonso González, Zaira Pindado, and Carla Ràfols

LESS is More: Code-Based Signatures Without Syndromes 45
Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti,
and Paolo Santini

UC Updatable Databases and Applications . 66
Aditya Damodaran and Alfredo Rial

Symmetric Key Cryptography

Impossible Differential Cryptanalysis of Reduced-Round
Tweakable TWINE . 91

Mohamed Tolba, Muhammad ElSheikh, and Amr M. Youssef

MixColumns Coefficient Property and Security of the AES
with A Secret S-Box . 114

Xin An, Kai Hu, and Meiqin Wang

New Results on the SymSum Distinguisher on Round-Reduced SHA3 132
Sahiba Suryawanshi, Dhiman Saha, and Satyam Sachan

Cryptanalysis of FLEXAEAD. 152
Mostafizar Rahman, Dhiman Saha, and Goutam Paul

BBB Secure Nonce Based MAC Using Public Permutations. 172
Avijit Dutta and Mridul Nandi

Elliptic Curves

On Adaptive Attacks Against Jao-Urbanik’s Isogeny-Based Protocol 195
Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit,
and Charlotte Weitkämper

A SAT-Based Approach for Index Calculus on Binary Elliptic Curves. 214
Monika Trimoska, Sorina Ionica, and Gilles Dequen

Post Quantum Cryptography

Hash-Based Signatures Revisited: A Dynamic FORS with Adaptive Chosen
Message Security . 239

Mahmoud Yehia, Riham AlTawy, and T. Aaron Gulliver

LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes
on ARM Cortex-M4 . 258

Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc Stöttinger

Lattice Based Cryptography

Round Optimal Secure Multisignature Schemes from Lattice with Public
Key Aggregation and Signature Compression . 281

Meenakshi Kansal and Ratna Dutta

Sieve, Enumerate, Slice, and Lift: Hybrid Lattice Algorithms
for SVP via CVPP . 301

Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger

Side Channel Attacks

Online Template Attack on ECDSA: Extracting Keys via the Other Side 323
Niels Roelofs, Niels Samwel, Lejla Batina, and Joan Daemen

When Similarities Among Devices are Taken for Granted: Another Look
at Portability. 337

Unai Rioja, Lejla Batina, and Igor Armendariz

Cryptanalysis

A Tale of Three Signatures: Practical Attack of ECDSA with wNAF 361
Gabrielle De Micheli, Rémi Piau, and Cécile Pierrot

Attacking RSA Using an Arbitrary Parameter . 382
Muhammad Rezal Kamel Ariffin, Amir Hamzah Abd Ghafar,
and Muhammad Asyraf Asbullah

New Algorithms and Schemes

A New Encoding Algorithm for a Multidimensional Version
of the Montgomery Ladder. 403

Aaron Hutchinson and Koray Karabina

x Contents

New Ideas to Build Noise-Free Homomorphic Cryptosystems. 423
Gerald Gavin and Sandrine Tainturier

Author Index . 453

Contents xi

Zero Knowledge

QA-NIZK Arguments of Same Opening
for Bilateral Commitments

Carla Ràfols and Javier Silva(B)

Universitat Pompeu Fabra, Barcelona, Spain
{carla.rafols,javier.silva}@upf.edu

Abstract. Zero-knowledge proofs of satisfiability of linear equations
over a group are often used as a building block of more complex pro-
tocols. In particular, in an asymmetric bilinear group we often have two
commitments in different sides of the pairing, and we want to prove that
they open to the same value. This problem was tackled by González,
Hevia and Ràfols (ASIACRYPT 2015), who presented an aggregated
proof, in the QA-NIZK setting, consisting of only four group elements.
In this work, we present a more efficient proof, which is based on the
same assumptions and consists of three group elements. We argue that
our construction is optimal in terms of proof size.

Keywords: Pairing-based cryptography · Zero-knowledge proofs ·
Commitments

1 Introduction

Bilinear groups have been used to design countless cryptographic protocols, some
of them with no equivalent in other settings. In particular, such groups have
been very useful to design non-interactive zero-knowledge (NIZK) proofs in the
common reference string (CRS) model. The first works to realize that pairings
allowed for the construction of efficient NIZK proofs were [5,17,19,20], culminat-
ing in the work of Groth–Sahai [21]. The latter presents a NIZK proof system for
satisfiability of most types of linear and quadratic equation in bilinear groups,
in the CRS model and under standard, constant size and weak assumptions.
Groth–Sahai proofs are one of the fundamental building blocks in pairing-based
cryptography, with well-known applications as anonymous credentials [13], e-
Cash [3], ring-signatures [8], shuffles [18], signatures of knowledge [4], and tight
CCA encryption [22].

Groth–Sahai proofs follow the usual commit-and-prove paradigm: first, the
prover commits to the solution of the equation, and then produces a “proof”
formed of some group elements, which the verifier uses together with the com-
mitments to get convinced of the satisfiability of the equation. The commit-
and-prove framework is used implicitly in the original work of Groth and Sahai
[21], and formalized explicitly in [10,13]. In this view, a NIZK proof proves
some property of a committed value, and many different statements about a
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-51938-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_1

4 C. Ràfols and J. Silva

single committed value can be proven.1 This formalization is also a conceptually
cleaner approach. It allows to differentiate clearly between the “commit” and
the “proof” part among all the elements computed by the prover. In this work
we also make the separation between commitment and proof, so when we discuss
proof sizes we refer exclusively to the latter part.

For many equation types, the Groth–Sahai proof system is still the state of
the art. Few improvements are known, like the general techniques to replace dual
mode commitments by ElGamal ciphertexts [10], aggregation of many Groth–
Sahai proofs [16,24], which are of limited applicability, or some techniques to
encode partial satisfiability [30].

A notable exception are quasi-adaptive NIZK (QA-NIZK) arguments of mem-
bership in linear spaces over a source group [24,26,27], introduced by Jutla–Roy
[23], which allow to prove satisfiability of linear equations. More precisely, let
e : G1 ×G2 → GT be an asymmetric bilinear group equipped with a pairing. We
use implicit notation as in [12], where [y]1 ∈ G

n
1 denotes a vector (y1P, . . . , ynP),

for P a generator of G1. Such QA-NIZK arguments allow to prove that a vector
[y]1 ∈ G

n
1 is of the form y = Mw, for some public matrix [M]1 ∈ G

n×t
1 . These

arguments are extremely efficient: under an assumption weaker than DDH, their
size is only 1 group element, for most distributions of [M]1.2 The same statement
proven with Groth–Sahai proofs requires O(t) elements for committing to w and
O(n) elements to prove that y is of this form.

Because of their efficiency, these arguments have many applications, for
instance to different flavors of identity-based encryption [23] or group signa-
tures [28]. These arguments also have a close relation to structure-preserving
signatures [1,2,25]. Membership in linear spaces naturally encodes statements
about ciphertexts and commitments: for example, two ElGamal ciphertexts (or
more generally, any ‘algebraic’ commitment scheme, like Pedersen or Groth–
Sahai commitments) encrypt the same message if their difference is in a certain
linear space dependent of the public key. More generally, QA-NIZK arguments
allow to aggregate proof easily: proving that two vectors of ElGamal commit-
ments open pairwise to the same value requires only one group element, using
the constructions of Kiltz-Wee [26], and the security relies on Kernel assump-
tions [29]. On the other hand, with the Groth–Sahai proof system, this requires
two elements of each group G1,G2 for each pair of ciphertexts.

In this paper, we consider the problem of proving that two commitments,
one in G1 and one in G2, open to the same value. This statement appears
naturally when one wants to prove quadratic relations in asymmetric bilinear
groups. Indeed, suppose that we want to prove that a commitment opens to a
bit, that is, that the opening of some commitments satisfies the quadratic equa-
tion X(X − 1) = 0. This often appears as part of a larger proof, for example
in ring signatures [8,14,15], e-voting [7] or range proofs [6]. To prove that a
commitment opens to a bit, Groth–Sahai proofs proceed as follows:

1 In contrast, if one thinks of Groth–Sahai proofs as NIZK proofs of satisfiability of
quadratic equations, formally commitments cannot be reused across proofs.

2 More precisely, [M]1 should be taken from a witness sampleable distribution.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 5

1. Rewrite the equation as X(Y − 1) = 0.
2. Commit to a solution: [c]1 = Com(x; r) and [d]2 = Com(y; s).
3. Prove satisfiability of the equation X(Y − 1) = 0 using the commitments c, d

and providing some additional proof elements.
4. Prove that the commitments c, d open to the same value.

We note that step 4 is proving the linear equation X = Y . Informally, the idea is
that step 3 is a quadratic check which requires commitments in different groups,
and step 4 makes sure there is some consistency between these values. Formally,
the need for it arises from the fact that Groth–Sahai proofs work for disjoint
sets of variables in G1 and G2.

This is one of the main techniques for proving quadratic equations in Zp in
bilinear groups (in the CRS model and under standard assumptions), and any
efficiency improvement in the same opening step (4) would have a direct impact
on the overall efficiency. We note that there is another construction, introduced
very recently in [9], that proves that a commitment over G1 opens to either 0 or
1. Their approach consists of using a pairing to compile interactive arguments
into non-interactive ones, and they manage to prove that a commitment opens to
a bit with 7 group elements. For comparison, the Groth–Sahai approach requires
10 group elements using our approach. Groth–Sahai proofs still seem better for
proving that n commitments to a bit: in [9] the proof scales linearly, whereas if
we use the aggregated version of our scheme, n proofs require 6n + 3 elements.

1.1 Our Results

To the best of our knowledge, there are two ways of proving step 4. One is to
use standard Groth–Sahai proofs, which requires 2 group elements in each of G1

and G2. The alternative is to use QA-NIZK arguments of membership in linear
spaces. However, because the statement is split between G1 and G2, we need
to resort to arguments of membership in bilateral spaces, which show, for two
vectors [x]1, [y]2, and some matrices [M]1, [M]2 that there exists some w such
that x = Mw and y = Nw. These were constructed by González et al. [16]
under some computational assumption in bilinear groups.3 However, this does
not improve step (4) over the cost of Groth–Sahai proofs. The proof of González
et al. only improves on the state of the art for the aggregated case, namely to
show that n pairs of commitments open (pairwise) to the same value with a proof
made of 2 elements in G1 and 2 elements in G2, independent of n. However, this
is not an improvement for a single pair of commitments.

Noticing the gap between one element for one-sided proofs and four elements
for bilateral proofs, a natural question is how much we can reduce the proof size
in the bilateral case. In this paper, we give a construction which reduces the
3 Standard QA-NIZK arguments can be proven sound under Kernel Matrix Diffie-

Hellman Assumptions (KerMDH) [29], and bilateral arguments can be proven sound
under Split KerMDH, a natural generalization to bilinear groups. In its weakest and
most efficient instatiation, KerMDH is weaker than DDH, and SKerMDH is weaker
than 2-Lin.

6 C. Ràfols and J. Silva

proof size of [16] to three elements, while maintaining the same computational
assumption in the soundness proof.

We note that this is the first concrete improvement for step (4) since the
publication of the work of Groth–Sahai. Our result is a sophisticated combination
of the techniques of Kiltz–Wee [26] and González et al. [16]. Additionally, we
argue that our constructions are optimal, by showing that any two-element proof
is vulnerable to a simple attack.

1.2 Our Techniques

We briefly review the linear space membership proof of Kiltz–Wee [26]. Their
core idea is a clever translation to the bilinear group setting of a hash proof
system, which is essentially a NIZK proof in the symmetric key setting. Given a
matrix M ∈ Z

m×t
p , the starting point is a proof system for the language

LM = {[c]1 ← G
m
1 | ∃w s. t. c = Mw}

which works as follows: prover and verifier share a key K ← Z
m×(k+1)
p , where

k will depend on the hardness assumption used to ensure soundness. The pro-
jection [M�K]1 is published in the CRS. The prover sends [π]1 = w�[M�K]1,
and the verifier checks that

[c�]1K
?= [π]1.

Intuitively, the proof is sound because if c is not in Im(M) then c�K is uniformly
random given M�K, and thus there is no way for the prover to produce such a
proof.

Kiltz–Wee take this idea and remove the need for a shared secret key by using
a bilinear group. Now the CRS includes [A,KA]2, for a matrix A ∈ Z

(k+1)×k
p .

This partially fixes K without revealing it, the goal being that the verifier can
use these elements to verify without needing to know K as before. The proof is
still the same, but the verification is now

e([c�]1, [KA]2)
?= e([π]1, [A]2).

By assuming the hardness of a Kernel problem on A, i.e., it is hard to find
non-trivial cokernel elements of A, we are essentially back to the argument of
the hash proof system. For the right choice of distribution of A, the assumption
is believed to hold starting at k = 1, so in this case we have that the proof is
formed of 2 group elements.

However, this can be taken one step further. Assuming that the distribution
of [M]1 is witness sampleable, that is, that we can efficiently sample M̃ such
that [M̃]1 is distributed as [M]1, then it is enough to use the truncated matrix
A ∈ Z

k×k
p instead of A, thus using K ∈ Z

m×k
p , which yields proofs consisting of

only one group element.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 7

We now consider the natural generalization of this approach to bilateral
proofs, as developed by González et al. [16].4 Consider the following language:

LM,N = {([c]1, [d]2) ← G
m
1 × G

n
2 | ∃w s. t. c = Mw,d = Nw}.

To account for two-sided statements, we consider one key K for G1 and one
key L for G2, and so we publish the following elements in the CRS:

[M�K + Z,A,LA]1, [N�L − Z,A,KA]2,

where Z ∈ Z
t×k
p . The prover produces the proofs [π]1 = w�[M�K + Z]1 and

[θ]2 = w�[N�L − Z]2, and the verifier checks the equation

e([c�]1, [KA]2) + e([LA]1, [d]2)
?= e([π]1, [A]2) + e([A]1, [θ]2). (1)

Intuitively, the term Z in the CRS elements produces terms in the verification
equation that will not cancel out unless w is the same in both sides. In a similar
way as above, the soundness of this scheme reduces to the hardness of a Split
Kernel problem, which is a Kernel problem with the solution split between G1

and G2. However, Split Kernel problems are easy for k = 1, and so we must take
at least k = 2. This has a direct impact on the sizes of the keys K and L, and
so this approach yields proofs of two group elements in G1, and two in G2, and
two verification equations.

Our strategy to reduce the proof size is to use only one element in G2, so
instead of having θ = (θ, θ̂) as above, we reuse the same θ. To make it work,
we require the condition that the columns of N�L are equal, so that θ = (θ, θ),
and it is enough to send it once. This introduces extra complexity in the CRS
generation, and the simulation of the CRS for the adversary in the soundness
security reduction, particularly in the aggregated case. We present the proof
directly for the most efficient case, k = 2.

To solve these new issues, we need to reformulate the problem slightly. Instead
of considering the pair of commitments ([c]1, [d]2) as the statement, we consider
just [c]1, and build a proof of F -knowledge of F (w) = [w]1,2. Indeed, in applica-
tions the commitment [d]2 is an artifact of the proof, as when proving quadratic
statements we need to split the commitments between G1 and G2 to exploit
the pairing. Regarding zero-knowledge, this change implies that the simulator
knows the opening of one of the commitments. We note that both openings are
required for proving zero-knowledge in Groth–Sahai proofs.

We stress that our modified formalization is due to the intricacies of the
soundness reduction, and has no actual impact in most applications. This is
because, as we have seen in the proof of X(X − 1) = 0 above, the commitment
in G2 is a byproduct of the proof, and thus can be seen as part of it, while the
‘meaningful’ statement is about the commitment in G1.

Interestingly, our trick of reusing θ does not work for both sides, and in fact
in Sect. 5 we show an attack for any two-element proof of this form. We argue
4 The actual construction requires some masking terms to ensure zero-knowledge, but

we omit these for simplicity of the presentation.

8 C. Ràfols and J. Silva

that the general form of any proof of bilateral same opening consisting of only
two elements must have a verification equations that looks essentially like Eq. (1)
above, but with π, θ scalars instead of vectors; then we show a simple algebraic
attack that exploits the two-sided nature of the proof.

2 Preliminaries

Let G be some probabilistic polynomial time algorithm which on input 1λ, where
λ is the security parameter, returns the group key which is the description of
an asymmetric bilinear group gk := (p,G1,G2,GT , e,P1,P2), where G1,G2 and
GT are additive groups of prime order p, the elements P1,P2 are generators
of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable, non-
degenerate bilinear map, and there is no efficiently computable isomorphism
between G1 and G2.

Elements in Gγ are denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T}
and PT := e(P1,P2). For simplicity, we often write [a]1,2 for the pair [a]1, [a]2,
and [a, b]γ for ([a]γ , [b]γ). The pairing operation will be written as a product, that
is, [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in
boldface. Given a matrix T = (ti,j), [T]γ is the natural embedding of T in Gγ ,
that is, the matrix whose (i, j)th entry is ti,jPγ . We denote by |Gγ | the bit-size
of the elements of Gγ .

2.1 Quasi-Adaptive Non-interactive Zero-Knowledge Proofs

A Quasi-Adaptive NIZK proof system [23] enables to prove membership in a lan-
guage defined by a relation Rρ, which is in turn determined by some parameter ρ
sampled from a distribution Dgk . We say that Dgk is witness sampleable if there
exists an efficient algorithm that samples (ρ, ω) from a distribution Dpar

gk such
that ρ is distributed according to Dgk , and membership of ρ in the parameter
language Lpar can be efficiently verified with ω. While the Common Reference
String (CRS) can be set based on ρ, the zero-knowledge simulator is required
to be a single PPT algorithm that works for any relation Rgk . We assume that
CRS contains an encoding of ρ, which is thus available to V.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations Rgk = {Rρ}ρ∈sup(Dgk) with parameters sampled from a distri-
bution Dgk over the parameter language Lpar, if there exists a PPT simulator
(S1,S2), such that for all non-uniform PPT adversaries A1, A2, A3 we have:

Quasi-adaptive Completeness:

Pr

[
gk ← K0(1

λ); ρ ← Dgk ;CRS ← K1(gk , ρ);
(x, w) ← A1(gk ,CRS); π ← P(CRS, x, w)

: V(CRS, x, π) = 1 if Rρ(x, w)

]
= 1.

Computational Quasi-adaptive Soundness:

Pr
[
gk ← K0(1λ); ρ ← Dgk ;
CRS ← K1(gk , ρ); (x, π) ← A2(gk ,CRS) :

V(CRS, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 9

Perfect Quasi-adaptive Zero-Knowledge:

Pr[gk ← K0(1
λ); ρ ← Dgk ;CRS ← K1(gk , ρ) : AP(CRS,·,·)

3 (gk ,CRS) = 1]

= Pr[gk ← K0(1
λ); ρ ← Dgk ; (CRS, τ) ← S1(gk , ρ) : AS(CRS,τ,·,·)

3 (gk ,CRS) = 1]

where
– P(CRS, ·, ·) emulates the actual prover. It takes input (x,w) and outputs

a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.
– S(CRS, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated

proof S2(CRS, τ, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We will prove that our schemes have F -knowledge soundness, which we define
in the context of witness sampleable distributions. Intuitively, F -knowledge
means that, with access to some extraction key, it is possible to extract a function
F of the witness from the statement and the proof. We note that our definition
differs from the definition in [10], as we give the extraction key generator access
to the witness ω that proves membership of ρ in Lpar (in practice, this means
that it has access to the discrete logarithms of the commitment key) and allow
to extract information from not only the statement, but also the proof.

Given a function F , a scheme is F -knowledge sound if there exist a soundness
PPT extraction key generator E1 and a DPT extractor E2 such that for any non-
uniform PPT adversary A2, we have:

Computational Quasi-adaptive F -knowledge Soundness:

Pr

⎡
⎣ gk ← K0(1λ); ρ ← Dgk ;

(CRS, xk) ← E1(gk , (ρ, ω));
(x, π) ← A2(gk ,CRS)

:
V(CRS, x, π) = 1 and
E2xk(x, π) �= F (x,w)

⎤
⎦ ≈ 0,

and the distributions of the CRS produced by K1 and E1 are the same.

We also define a stronger notion of zero-knowledge, called composable zero-
knowledge [17]. Essentially, this means that real and simulated proofs are indis-
tinguishable even when the simulation trapdoor is known. More formally, a
scheme is composable zero-knowledge if there exists a PPT simulator (S1,S2)
such that for any non-uniform PPT adversary A3 we have:

Composable Quasi-adaptive Zero-Knowledge:

Pr
[

gk ← K0(1λ); ρ ← Dgk ; (CRS, τ) ← S1(gk , ρ);
(x,w) ← A3(gk,CRS, τ);π ← P(gk,CRS, x, w) : A3(π) = 1

]

= Pr
[

gk ← K0(1λ); ρ ← Dgk ; (CRS, τ) ← S1(gk , ρ);
(x,w) ← A3(gk,CRS, τ);π ← S2(gk,CRS, τ, x) : : A3(π) = 1

]
.

and the CRS produced by K1 and S1 are indistinguishable.

10 C. Ràfols and J. Silva

2.2 Assumptions

Definition 1. Let 	, k ∈ N. We call D�,k a matrix distribution if it outputs (in
PPT time, with overwhelming probability) matrices in Z

�×k
p . We define Dk :=

Dk+1,k.

The following applies for Gγ , where γ ∈ {1, 2}.

Assumption 1 (Matrix Decisional Diffie-Hellman Assumption in Gγ

[11]). For all non-uniform PPT adversaries A,

|Pr[A(gk, [A,Aw]γ) = 1] − Pr[A(gk, [A,z]γ) = 1]| ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D�,k,w ← Z
k
p, [z]γ ← G

�
γ

and the coin tosses of adversary A.

Intuitively, the D�,k-MDDH assumption means that it is hard to decide
whether a vector is in the image space of a matrix or it is a random vector,
where the matrix is drawn from D�,k. In this paper we will refer to the following
matrix distributions:

Lk : A =

⎛
⎜⎝

a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... ak
1 1 ... 1

⎞
⎟⎠ , RLk : A =

⎛
⎜⎝

a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... ak
r1 r2 ... rk

⎞
⎟⎠ ,

where ai, ri ← Zp for i = 1, . . . , k. The Lk-MDDH Assumption is the k-linear
family of Decisional Assumptions and corresponds to the Decisional Diffie-
Hellman (DDH) Assumption in Gγ when k = 1. The SXDH Assumption states
that DDH holds in Gγ for γ = 1, 2.

Additionally, we will be using the following family of computational assump-
tions:

Assumption 2 (Kernel Diffie-Hellman Assumption in Gγ [29]). For all
non-uniform PPT adversaries A:

Pr
[
[x]3−γ ← A(gk, [A]γ) : x �= 0 ∧ x�A = 0

] ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D�,k and the coin tosses of
adversary A.

The D�,k-KerMDHGγ
Assumption is not stronger than the D�,k-MDDHGγ

Assumption, since a solution to the former allows to decide membership in
Im([A]γ). In asymmetric bilinear groups, there is a natural variant of this
assumption.

Assumption 3 (Split Kernel Diffie-Hellman Assumption [16]). For all
non-uniform PPT adversaries A:

Pr
[
[r]1, [s]2 ← A(gk, [A]1,2) : r �= s ∧ r�A = s�A

] ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D�,k and the coin tosses of
adversary A.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 11

While the Kernel Diffie-Hellman Assumption says one cannot find a non-zero
vector in one of the groups which is in the co-kernel of A, the split assumption
says one cannot find different vectors in G

�
1 × G

�
2 such that the difference of

the vector of their discrete logarithms is in the co-kernel of A. As a particular
case, [16] considers the Split Simultaneous Double Pairing Assumption in G1,G2

(SSDP) which is the RL2-SKerMDH Assumption.

3 Linear Relations in a Bilinear Group

3.1 Algebraic Commitment Schemes

We present the type of commitments for which our QA-NIZK arguments can
be used. These generalize many common schemes, like (multi-)Pedersen com-
mitments and Groth–Sahai commitments. Our commitments are in the source
groups, Gγ for γ = 1, 2, of a bilinear group. Let F ∈ Z

m×n
p and U ∈ Z

m×�
p be

full-rank matrices. The commitment key is ck = [F,U]γ , and the commitment
to a message x ∈ Z

n
p with randomness r ∈ Z

�
p is defined as

Comck(x; r) = [Fx + Ur]γ .

Choosing the appropriate distributions for ([F]γ , [U]γ), we can have two com-
mitment keys, one that produces a perfectly binding commitment scheme and
one that produces a perfectly hiding commitment scheme, and these two key
distributions are computationally indistinguishable under a MDDH assumption
(see [11] for details). In the description of our schemes and the soundness proofs
we will use the perfectly binding key, switching to perfectly hiding to argue that
our schemes are zero-knowledge.

The most well-known example is Groth–Sahai commitments to integers: given
x ∈ Zp and randomness r ∈ Zp, this is an instantiation of the commitment
defined above, with the matrices F ← Z

2
p,U ← Z

2
p when in perfectly binding

mode, and F ← Z
2
p,U = λF for λ ← Zp, when in perfectly hiding mode.

3.2 Linear Equations in a Bilinear Group

A set of linear equations split between the two sides of a bilinear group can be
written as (

[c]1
[d]2

)
=

(
[M]1
[N]2

)
X,

where X is the vector of unknowns, [c,M]1 are the coefficients in G1 and [d,N]2
are the coefficients in G2. Thus, proving satisfiability of this system is equivalent
to proving that there exist some vector w such that

w ∈ Im
(

M
N

)
.

12 C. Ràfols and J. Silva

Thus, these proofs are usually seen as proofs of membership in a linear sub-
space, in this case split between G1 and G2. The problem of same opening of
two algebraic commitments,

[c]1 = Comck1(x; r) = [Fx + Ur]1, [d]1 = Comck2(x; s) = [Gx + Vs]2

can be seen in this framework of membership in linear spaces, where

(
[c]1
[d]2

)
=

(
[F U 0]1
[G 0 V]2

) ⎛
⎝x

r
s

⎞
⎠ .

Since we are particularly interested in the case of same opening, we present
our constructions directly for this application, although it would be easy to
generalize to any matrices [M]1, [N]2, as long as they verify some conditions on
their dimensions. As a warm-up, we develop first a non-aggregated version of
the proof, as the main ideas are easier to visualize in this case.

4 Non-aggregated Scheme

Given x ∈ Zp and two commitments [c]1, [d]2 to x, we provide a proof of both
commitments opening to the same element x. More precisely, given a group
description gk and commitment keys ck1 = [f ,u]1 ∈ G

2×2
1 and ck2 = [g,v]2 ∈

G
2×2
2 , we want to prove F -knowledge in the language

Lgk,ck1 = {[c]1 ∈ G
2
1 | ∃x, r s. t. [c]1 = Comck1(x; r) = [xf + ru]1},

where F (x, r) = [x]1,2.

– gk := (p,P1,P2,G1,G2,GT , e) ← G(1λ).
– K0(gk): set ck1 = [f ,u]1 ← Dpar, where Dpar is witness sampleable, that is,

there exists an efficiently sampleable distribution D̃par outputting (f̃ , ũ) such
that [f̃ , ũ]1 is distributed as [f ,u]1.

– K1(gk, ck1): set ck2 = [g,v]2, where g,v ← Z
2
p. Choose a1, a2 ← Zp and also

ku, k̂u, lv, l̂v ← Z
2
p conditioned on

l�v v = l̂�v v, (2)

Finally, choose z2 ← Zp and set

w =
k�

u f

l�v g
, z1 = z2w,

ŵ =
k̂�

u f

l̂v
�

g
, ẑ1 = z2ŵ.

Algorithm K1 outputs the following CRS:(
gk, ck1, [k�

u u]1, [k̂�
u u]1, [a1w]1, [a2ŵ]1, [a1wlv]1, [a2ŵl̂v]1, [z1]1, [ẑ1]1,

ck2, [l�v v]2, [a1]2, [a2]2, [a1ku]2, [a2k̂u]2, [z2]2

)
.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 13

– P(CRS, ([c]1, x, r) ∈ R): commit to x in G2 by choosing s ← Zp and setting

[d]2 = Comck2(x, s) = [xg + sv]2.

Choose δ ← Zp and output [d]2 and

[π]1 = [rk�
u u + δz1]1, [θ]2 = [sl�v v + δz2]2,

[π̂]1 = [rk̂�
u u + δẑ1]1,

– V(CRS, [c]1, ([d, θ]2, [π, π̂]1) : The algorithm outputs 1 iff the following equa-
tions hold:

e
(
[c�]1, [a1ku]2

) − e([a1wl�v]1, [d]2)
?= e([π]1, [a1]2) − e([a1w]1, [θ]2),

e
(
[c�]1, [a2k̂u]2

)
− e([a2ŵl̂�v]1, [d]2)

?= e([π̂]1, [a2]2) − e([a2ŵ]1, [θ]2).

Completeness. Both equations are analogous, and it is easy to see that for honest
provers, using that f�ku = w(l�v g), we have that

c�(a1ku) − (a1wl�v)d = (xf� + ru�)(a1ku) − (a1wl�v)(xg + sv)

= a1xf�ku − a1x(wl�v g) + (ru�ku)a1 − a1w(sv�lv) = πa1 − a1wθ.

F -extractor. We now define the algorithm that, given the extraction key xk =
(f , g,u,v), outputs a function of the witness, in this case F (x, r) = [x]1,2.

– Extxk([c]1, [d]2): knowing f ,u, we can find a vector u⊥ such that u�u⊥ = 0
and f�u⊥ = 1, and compute [c�]1u⊥ = [x]1. Similarly, we obtain [x]2 from
[d]2, using g,v.

Theorem 1. The above scheme is computationally F -knowledge sound under
the RL2-SKerMDH assumption. More precisely, there exists an adversary B
against the RL2-SKerMDH problem such that for any PPT adversary A, we
have that

AdvF−KnowledgeSoundness(A) ≤ AdvRL2-SKerMDH(B).

Proof. We assume the existence of an adversary A against the F -knowledge
soundness of the scheme (that is, A is able to produce a statement and an
accepting proof such that Extxk([c]1, [d]2) = ([x]1, [y]2) and x �= y), and we use
it to build an adversary B against the RL2-SKerMDH problem. B receives the
challenge matrix

[A]1,2 = [a1||a2]1,2 =

⎡
⎣a1 0

0 a2

r1 r2

⎤
⎦
1,2

,

and builds the environment for A as follows. B samples f ,u ← D̃par and k′
u, k̂′

u ←
Z
2
p, and u⊥ ← Z

2
p conditioned on u�u⊥ = 0. Implicitly, B defines

ku = k′
u + a−1

1 r1u
⊥, k̂u = k̂′

u + a−1
2 r2u

⊥.

14 C. Ràfols and J. Silva

Observe that this implies that

a1ku = a1k
′
u + r1u

⊥, a2k̂u = a2k̂
′
u + r2u

⊥, (3)

which B can compute in G2. For the other side, B samples g,v ← Z
2
p and

l′v ← Z
2
p, and let v⊥ ∈ Z

2
p be the unique vector such that v�v⊥ = 0 and

f�u⊥ = g�v⊥. (4)

B defines

w =
k′�

u f

l′�v g
, ŵ =

k̂′�
u f

l′�v g
, (5)

(note that l′v is the same in both), and implicitly

lv = l′v + (a1w)−1r1v
⊥, l̂v = l′v + (a2ŵ)−1r2v

⊥,

which means that

a1wlv = a1wl′v + r1v
⊥, a2ŵl̂v = a2ŵl′v + r2v

⊥, (6)

and these can be computed in G1. Note that, by construction,

a1f
�ku

a1wg�lv
=

a1f
�k′

u + r1f
�u⊥

a1wg�l′v + r1g�v⊥ = 1,

where we have used equalities (5) and (4), and therefore w = f �ku

g�lv
. A similar

argument shows that ŵ = f �k̂u

g� l̂v
. B can also compute

[k�
u u]1 = [k′�

u u]1, [k̂�
u u]1 = [k̂′�

u u]1, [l�v v]2 = [l′�v v]2 = [l̂�v v]2.

Finally, choose z2 ← Zp and set

z1 = wz2, ẑ1 = ŵz2,

completing the CRS. The CRS is then sent to adversary A, who outputs a
statement [c]1 and a proof [d]2, [π]1, [π̂]1, [θ]2 such that

c�(a1ku) − (a1wl�v)d = πa1 − (a1w)θ,

c�(a2k̂u) − (a2ŵl̂�v)d = π̂a2 − (a2ŵ)θ.

Notice that, using the equalities (3) and (6), we can rewrite these expressions in
terms of the columns of A. Indeed, these are equivalent to

c�(k′
u||k̂′

u||u⊥)a1 − d�(wl′v||ŵl′v||v⊥)a1 = (π, π̂, 0)a1 − (wθ, ŵθ, 0)a1,

c�(k′
u||k̂′

u||u⊥)a2 − d�(wl′v||ŵl′v||v⊥)a2 = (π, π̂, 0)a2 − (wθ, ŵθ, 0)a2.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 15

We rearrange this as a solution of the RL2-SKerMDH problem that the reduction
B can compute:

e([(c�k′
u − π||c�k̂′

u − π̂||c�u⊥)]1, [A]2) = e([(w(d�l′v − θ)||ŵ(d�l′v − θ)||d�v⊥)]2, [A]1).

It remains to argue that this is not the trivial solution. To do so, we look at the
third component. As {f ,u} and {g,v} are bases of Z2

p, we can write c = xf +ru
and d = yg+sv for some x, y, r, s ∈ Zp. Since the proof provided by the adversary
is false, it must be that x �= y. Then, in the first equation, the third component
on the left is c�u⊥ = xf�u⊥, while the corresponding component on the right
is d�v⊥ = yg�v⊥. Since f�u⊥ = g�v⊥ and x �= y, these values are different.
We conclude that we have found a nontrivial solution of the RL2-SKerMDH
problem. ��
Theorem 2. The above scheme is composable zero-knowledge, with simulation
trapdoor τ = (ku, k̂u, lv).

Proof. We switch to a game in which the commitments in G2 are perfectly
hiding instead of perfectly binding, and prove that in this case the scheme has
perfect zero-knowledge. The CRS simulator generates the CRS as in the honest
execution of the protocol, and also outputs τ = (ku, k̂u, lv) as the simulation
trapdoor. The proof simulator chooses δ ← Zp and uses τ to produce:

[dsim]2 = Comck2(0; s) = s[v]2

[πsim]1 = [c�]1ku + δ[z1] [θsim]2 = [d�
sim]lv + δ[z2]

[π̂sim]1 = [c�]1k̂u + δ[ẑ1]

We have that dsim is distributed as d, as the commitment is perfectly hiding,
and πsim, π̂sim, θsim are uniformly random elements conditioned on satisfying the
verification equations for any fixed c,d, which is the same distribution that
π, π̂, θ have in an honest execution. ��

5 Aggregated Scheme

Given x ∈ Z
n
p and two commitments [c]1, [d]2 to x, we provide a proof of

both commitments opening to the same vector x. More precisely, given a group
description gk and commitment keys ck1 = [F,U]1, and ck2 = [G,V]2, where
F ∈ Z

m1×n
p ,G ∈ Z

m2×n
p and U ∈ Z

m1×�1
p ,V ∈ Z

m2×�2
p , we want to prove

F -knowledge in the language

Lgk,ck1 = {[c]1 ∈ G
m1
1 | ∃x, r s. t. [c]1 = Comck1(x; r)},

where F (x, r) = [x]1,2.

– gk := (p,P1,P2,G1,G2,GT , e) ← G(1λ).

16 C. Ràfols and J. Silva

– K0(gk): set ck1 = [F,U]1 ← Dpar, where Dpar is witness sampleable, that is,
there exists an efficiently sampleable distribution D̃par outputting (F̃, Ũ) such
that [F̃, Ũ]1 is distributed as [F,U]1.

– K1(gk, ck1): set ck2 = [G,V]2, where G ← Z
m2×n
p ,V ← Z

m2×�2
p . Also choose

a1, a2 ← Zp and ku, k̂u ← Z
m1
p . Set lv, l̂v ← Z

m2
p conditioned on

l�v V = l̂�v V, k�
u F = w(l�v G), k̂�

u F = ŵ(l̂�v G), (7)

for some w, ŵ ← Zp. Choose z2 ← Zp and set

z1 = wz2, ẑ1 = ŵz2.

Algorithm K1 outputs the following CRS:
(

gk, [U�ku]1, [U�k̂u]1, [a1w]1, [a2ŵ]1, [a1wlv]1, [a2ŵl̂v]1, [z1]1, [ẑ1]1,

[V�lv]2, [a1]2, [a2]2, [a1ku]2, [a2k̂u]2, [z2]2

)
.

– P(CRS, ([c]1, (x, r)) ∈ R): commit to x in G2 as [d]2. Choose δ ← Zp and
output [d]2 and

[π]1 = [r�U�ku + δz1]1, [θ]2 = [s�V�lv + δz2]2,

[π̂]1 = [r�Û�ku + δẑ1]1,

– V(CRS, [c]1, ([d, θ]2, [π, π̂]1)): The algorithm outputs 1 iff the following equa-
tions hold:

e
(
[c�]1, [a1ku]2

) − e([a1wl�v]1, [d]2)
?= e([π]1, [a1]2) − e([a1w]1, [θ]2),

e
(
[c�]1, [a2k̂u]2

)
− e([a2ŵl̂�v]1, [d]2)

?= e([π̂]1, [a2]2) − e([a2ŵ]1, [θ]2).

Completeness. It is easy to check that, if the prover is honest,

c�(a1ku) − (a1wl�v)d = (x�F� + r�U�)(a1ku) − (a1wl�v)(Gx + Vs)

= a1x
�F�ku − a1(wl�v G)x + a1r

�U�ku − a1wl�v Vs = πa1 − a1wθ.

We have used that k�
u F = w(l�v G). The second equation is completely analo-

gous.

Note on Dimensions. For this scheme to work and be secure, we require some
relations between the dimensions of the different elements involved.

(1) We want our commitments to be perfectly binding to be able to open the
commitments in the source groups, so we require that mi ≥ n + 	i, for
i = 1, 2.

QA-NIZK Arguments of Same Opening for Bilateral Commitments 17

(2) To be able to find lv, l̂v verifying the Eq. (7), we need to solve the linear
system ⎛

⎝G� 0
0 G�

V� −V

⎞
⎠

(
lv
l̂v

)
=

⎛
⎝F�ku

F�k̂u

0

⎞
⎠ .

Since F is only known in G1, the system cannot be fully solved over Zp.
However, we do not need the full solution over Zp, as only the projection
V�lv needs to be given in G2, while the full lv is necessary in G1. Thus
we proceed as follows: we start by sampling t ← Z

�2
p and setting V�lv =

V�l̂v = t. Then we consider the system
⎛
⎜⎜⎝

G� 0
0 G�

V� 0
0 V

⎞
⎟⎟⎠

(
lv
l̂v

)
=

⎛
⎜⎜⎝

F�ku

F�k̂u

t
t

⎞
⎟⎟⎠ .

The matrix is known over Zp and the right hand side is known over G1

(since F is known over G1 and the rest is known over Zp), so the system can
be solved over G1 using Gaussian elimination. The system has solutions if
2m2 ≥ 2n + 2	2, which is implied by condition (1) above.

(3) In the proof of the zero-knowledge property, we want to be able to switch
the commitment in G2 to perfectly hiding, so we need to ensure that it has
enough randomness. Thus 	2 ≥ n.

(4) Consider the matrices (F||U) and (G||V). These are of size mi × (n + 	i),
for i = 1, 2, respectively. In the soundness reduction we will be interested
in finding nonzero vectors u⊥,v⊥ such that w�u⊥ = 0 for any vector
w outside of the span of the columns of F, and the same for v⊥ and G.
Additionally, we will require that

F�u⊥ = G�v⊥.

As we have already established that mi ≥ n+	i, we might need to add more
columns to the matrices (F||U) and (G||V) so that they form bases of Zmi

p ,

so let U,V ∈ Z
mi×(mi−n)
p be the augmented matrices such that (F||U) and

(G||V) are bases of Zmi
p for i = 1, 2, respectively. Then the vectors u⊥,v⊥

are given by the nontrivial solutions of the linear system
⎛
⎜⎝

U
�

0
0 V

�

F� −G�

⎞
⎟⎠

(
u⊥

v⊥

)
= 0.

This matrix is of size (m1 + m2 − n) × (m1 + m2), and therefore it has
nontrivial solutions.

F -extractor. We now define the algorithm that, given the extraction key xk =
(F,G,U,V), outputs a function of the witness, in this case F (x, r) = [x]1,2.

18 C. Ràfols and J. Silva

– Extxk([c]1, [d]2): as above, consider U,V so that (F||U) and (G||V) are bases
of Zmi

p for i = 1, 2, respectively. Knowing F,U, we can find a matrix U⊥ ∈
Z

m1×n
p such that U

�
U⊥ = 0 and F�U⊥ = I, and compute [c�]1U⊥ = [x]1.

Similarly, we obtain [x]2 from [d]2, using G,V.

Theorem 3. The above proof system is computationally F -knowledge sound
under the RL2-SKerMDH assumption. More precisely, there exists an adversary
B against the RL2-SKerMDH problem such that for any PPT adversary A, we
have that

AdvF−KnowledgeSoundness(A) ≤ AdvRL2-SKerMDH(B)

Proof. Assume that there is an adversary A against the soundness of the
scheme (A is able to produce a statement and an accepting proof such that
Extxk([c]1, [d]2) = ([x]1, [y]2) and x �= y). We use it to build an adversary B
against the RL2-SKerMDH problem. B receives the challenge matrix

[A]1,2 = [a1||a2]1,2 =

⎡
⎣a1 0

0 a2

r1 r2

⎤
⎦
1,2

,

and builds the environment for A as follows. We sample G ← Z
m2×n
p ,V ←

Z
m2×�2
p , and let V be as in (4) above. We choose w, ŵ ← Zp and l′v ← Z

m2
p Let

v⊥ ∈ Z
m2
p such that V

�
v⊥ = 0. Implicitly set

lv = l′v + (a1w)−1r1v
⊥, l̂v = l′v + (a2ŵ)−1r2v

⊥.

Observe that this implies that

a1wlv = a1wl′v + r1v
⊥, a2ŵl̂v = a2ŵl′v + r2v

⊥, (8)

which we can compute over G1. For the other side, we sample (F,U) ← D̃par

and define U as in (4) above. We also sample k′
u, k̂′

u ← Z
m1
p conditioned on

k′�
u F = w(l′�v G), k̂′�

u F = ŵ(l̂′�v G). (9)

Let u⊥ ∈ Z
m1
p such that U

�
u⊥ = 0 and

F�u⊥ = G�v⊥. (10)

We implicitly define

ku = k′
u + a−1

1 r1u
⊥, k̂u = k̂′

u + a−1
2 r2u

⊥.

which means that

a1ku = a1k
′
u + r1u

⊥, a2k̂u = a2k̂
′
u + r2u

⊥. (11)

QA-NIZK Arguments of Same Opening for Bilateral Commitments 19

Note that, by construction,

a1wG�lv = a1wG�l′v + r1G�v⊥ = a1F�k′
u + r1F�u⊥ = a1F�ku

where we have used equalities (9) and (10), and therefore F�ku = w(G�lv) A
similar argument shows that F�k̂u = ŵ(G�l̂v). We can also compute

[k�
u U]1 = [k′�

u U]1, [k̂�
u U]1 = [k̂′�

u U]1, [l�v V]2 = [l′�v V]2 = [l̂�v V]2.

Finally, choose z2 ← Zp and set

z1 = wz2, ẑ1 = ŵz2,

completing the CRS. The CRS is then sent to adversary A, who outputs a
statement [c]1, [d]2 and a proof [π]1, [π̂]1, [θ]2 such that

c�(a1ku) − (a1wl�v)d = πa1 − (a1w)θ,

c�(a2k̂u) − (a2ŵl̂�v)d = π̂a2 − (a2ŵ)θ.

Notice that, using equalities (11) and (8), we can rewrite these expressions in
terms of the columns of A. Indeed, these are equivalent to

c�(k′
u||k̂′

u||u⊥)a1 − d�(wl′v||ŵl′v||v⊥)a1 = (π, π̂, 0)a1 − (wθ, ŵθ, 0)a1,

c�(k′
u||k̂′

u||u⊥)a2 − d�(wl′v||ŵl′v||v⊥)a2 = (π, π̂, 0)a2 − (wθ, ŵθ, 0)a2,

We rearrange this as a solution of the RL2-SKerMDH problem that the reduction
can compute:

e([(c�k′
u − π||c�k̂′

u − π̂||c�u⊥)]1, [A]2) = e([(w(d�l′v − θ)||ŵ(d�l′v − θ)||d�v⊥)]2, [A]1).

It remains to argue that this is not the trivial solution. To do so, we look at
the third component. As the columns of (F||U) and (G||V) are bases of Z

mi
p

for i = 1, 2, respectively, we can write c = Fx + Ur and d = Gy + Vs for
some x,y ∈ Z

n
p , r, s ∈ Z

�
p. Since the proof provided by the adversary is false, it

must be that x �= y. Then, in the first equation, the third component on the
left is c�u⊥ = x�F�u⊥, while the corresponding component on the right is
d�v⊥ = y�G�v⊥. Since F�u⊥ = G�v⊥ and x �= y, these values are different.
We conclude that we have found a nontrivial solution of the RL2-SKerMDH
problem. ��
Theorem 4. The above proof system is composable zero-knowledge, with simu-
lation trapdoor τ = (ku, k̂u, lv).

The proof is completely analogous to the proof of Theorem 2.

20 C. Ràfols and J. Silva

6 Optimality of Our Constructions

We argue that our constructions are optimal in terms of proof size, at least based
on this general strategy of commit-and-prove schemes, and where the prover is
limited to linear algebraic operations on the group elements, and verification is
a pairing equation. To the best of our knowledge, this is the approach that is
always taken in the literature. We prove optimality by arguing that any such
proof formed of two elements (plus the commitments) is vulnerable to an attack.

We now consider any proof in which we have two commitments [c]1 and [d]2
to the values x and y, respectively, and we have a two-element proof [π]1, [θ]2
of same opening, that is, x = y. We consider a CRS formed of elements in
G1 and G2, and we assume that each side of the CRS is closed under linear
combination. We can do this without loss of generality, since given the CRS it
is easy to compute linear combinations of its elements.

Then the general verification equation of such a proof looks like this:

e([c�]1, [k1]2) + e([k�
2]1, [d]2) + e([π]1, [k3]2) + e([k4]1, [θ]2) = [0]T , (12)

where [k1, k3]2, [k2, k4]1 are elements (some of them vectors of elements) of the
CRS. We note two omissions from this general equation: there is no affine term
and there are no “quadratic” terms, i.e., terms in c�d, πd, cθ or πθ. This is
because the linear terms (those in Eq. (12)) force π and θ to be linear in the
witness, and so the terms above are quadratic. The quadratic condition causes
the appearance of terms with coefficient xy, which must cancelled out with other
quadratic terms of the same coefficient. We note that, unlike in the linear part,
this check does not make a distinction when x = y or x �= y, so we conclude that
these quadratic terms do not contribute to achieving soundness. The intuition
behind this is that we are proving membership in a linear space, and non-linear
operations take us out of the space.

This leaves us with the Eq. (12) above. We now observe a very simple attack
on any scheme with a verification equation like this. We set

[c]1 = α[k4]1, [d]2 = β[k3]2,
[π]1 = −β�[k2]1, [θ]2 = −α�[k1]2,

where α,β ← Z
2
p. It is trivial to verify that the first term in the equation

cancels out with the fourth and the second with the third, and with overwhelming
probability the openings of [c]1 and [d]2 do not match. Intuitively, this attack
works because of the two-sided nature of the proof: the elements that are given
in the CRS to ensure verifiability in one side are used to fool the other. Indeed,
in an honest execution the first term is expected to cancel out with the third,
and the second with the fourth, while in this attack the pairs are jumbled.

One could also consider one-sided two-element proofs, i.e., of the form
[π1, π2]1 or [θ1, θ2]2, but these can be handled in a very similar way. For example,
in the first case, the general verification equation would be

e([c�]1, [k1]2) + e([k�
2]1, [d]2) + e([π1]1, [k3]2) + e([π2]1, [k4]2) = [0]T , (13)

QA-NIZK Arguments of Same Opening for Bilateral Commitments 21

and the attack would consist of setting

[c]1 = α[k2]1, [d]2 = β(r[k3]2 + s[k4]2) − α[k1]2,
[π1]1 = −rβ�[k2]1, [π2]1 = −sβ�[k2]1,

for β ← Z
2
p, α, r, s ← Zp. Thus we conclude that, with this approach, there is

no possible proof of same opening of commitments in different groups which
consists of less than three group elements, making our constructions optimal.

Acknowledgements. The second author was supported by a PhD grant from the
Spanish government, co-financed by the ESF (Ayudas paracontratos predoctorales para
la formación de doctores 2016).

References

1. Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structure-
preserving signatures for bilateral messages. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 3–22. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98113-0 1

2. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 21

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-cash and sim-
ulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03298-1 9

4. Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and
DAA in the standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38980-1 33

5. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 1

6. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

7. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, Vienna, Austria,
24–28 October 2016, pp. 1614–1625. ACM Press (2016)

8. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

9. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and
zaps for algebraic languages (2020)

https://doi.org/10.1007/978-3-319-98113-0_1
https://doi.org/10.1007/978-3-319-98113-0_1
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-38980-1_33
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38

22 C. Ràfols and J. Silva

10. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

13. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 14

14. Ghadafi, E.M.: Sub-linear blind ring signatures without random oracles. In: Stam,
M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 304–323. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45239-0 18

15. González, A.: Shorter ring signatures from standard assumptions. In: Lin, D., Sako,
K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 99–126. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17253-4 4

16. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 25

17. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

18. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 4

19. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

20. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

21. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

22. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. Des.
Codes Crypt. 80(1), 29–61 (2015). https://doi.org/10.1007/s10623-015-0062-x

23. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

24. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 17

25. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 14

https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-642-45239-0_18
https://doi.org/10.1007/978-3-030-17253-4_4
https://doi.org/10.1007/978-3-030-17253-4_4
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/s10623-015-0062-x
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14

QA-NIZK Arguments of Same Opening for Bilateral Commitments 23

26. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

27. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

28. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 296–316.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

29. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 27

30. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-46497-7_10

Signatures of Knowledge for Boolean
Circuits Under Standard Assumptions

Karim Baghery1,2(B), Alonso González3(B), Zaira Pindado4(B),
and Carla Ràfols4(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
karim.baghery@kuleuven.be

2 University of Tartu, Tartu, Estonia
3 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),

Lyon, France
alonso.gonzalez@ens-lyon.fr

4 Universitat Pompeu Fabra, Barcelona, Spain
{zaira.pindado,carla.rafols}@upf.edu

Abstract. This paper constructs unbounded simulation sound proofs
for boolean circuit satisfiability under standard assumptions with proof
size O(n + d) bilinear group elements, where d is the depth and n is the
input size of the circuit. Our technical contribution is to add unbounded
simulation soundness to a recent NIZK of González and Ràfols (ASI-
ACRYPT’19) with very small overhead. Our new scheme can be used to
construct the most efficient Signature-of-Knowledge based on standard
assumptions that also can be composed universally with other crypto-
graphic protocols/primitives.

Keywords: NIZK · Signatures · Bilinear groups

1 Introduction

As one of the essential tools in modern cryptography, Non-Interactive Zero-
Knowledge (NIZK) proof systems allow a party to prove that for a public state-
ment �x, she knows a witness �w such that (�x, �w) ∈ R, for some relation R, without
leaking any information about �w and without interaction with the verifier. Due
to their impressive advantages and functionalities, NIZK proof systems are used
ubiquitously to build larger cryptographic protocols and systems [2,16]. Among
the various constructions of NIZK arguments, there is usually a trade-off between
several performance measures, in particular, between efficiency, generality and
the strength of the assumptions used in the security proof.

Zero-knowledge Succinct Argument of Knowledge (zk-SNARKs) [8,13] are
among the most practically interesting NIZK proofs. They allow to generate
succinct proofs for NP-complete languages (3 group elements for CircuitSat [13])
but they are constructed based on non-falsifiable assumptions (e.g. knowledge
assumptions [6]). A well-known impossibility result of Gentry and Wichs [9]
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 24–44, 2020.
https://doi.org/10.1007/978-3-030-51938-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_2

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 25

shows that this is unavoidable if one wants to have succinctness for general
languages. Thus, non-falsifiable assumptions are an essential ingredient to have
very efficient constructions, while falsifiable assumptions give stronger security
guarantees and more explicit and meaningful security reductions [22].

Groth-Sahai proofs [15] also allow to prove general languages1 under stan-
dard assumptions non-succinctly, trading security for succinctness. On the other
extreme, some constructions of Quasi-Adaptive NIZK (QA-NIZK) generate very
efficient proofs based on falsifiable assumptions for very specific statements (e.g.
membership in linear spaces).

Somewhere in between, recent work by González and Ràfols [11] constructs a
NIZK argument for boolean CircuitSat under falsifiable assumptions by combin-
ing techniques of QA-NIZK arguments and zk-SNARKs of size O(n + d) group
elements, where n is the length of the input and d is the depth of the circuit.

The primary requirements in a NIZK argument are Completeness, Zero-
Knowledge (ZK), and Soundness. Completeness guarantees that if both parties
honestly follow the protocol, the prover will convince the verifier. Zero-knowledge
preserves prover’s privacy and ensures that the verifier will not learn more than
the truth of the statement from the proof. Soundness guarantees that a dis-
honest prover cannot convince an honest verifier. However, in practice usually
bare soundness is not sufficient and one might need stronger variations of it,
known as Knowledge Soundness, Simulation Soundness or Simulation Knowl-
edge Soundness (a.k.a. Simulation Extractability) [12,24]. Knowledge soundness
ensures that if an adversary manages to come up with an acceptable proof,
he must know the witness. Simulation soundness (a.k.a. unbounded simulation
soundness) ensures that an adversary cannot come up with valid proof for a
false statement, even if he has seen an arbitrary number of simulated proofs.
This notion basically guarantees that the proofs are sound and non-malleable.
The strongest case, Simulation Extractability (SE) implies that an adversary
cannot come up with a fresh valid proof unless he knows a witness, even if he
has seen an arbitrary number of simulated proofs. In both notions knowledge
soundness and simulation extractability the concept of knowing is formalized by
showing that there exists an extraction algorithm, either non-Black-Box (nBB)
or Black-Box (BB), that can extract the witness from the proof.

Zk-SNARKs (either knowledge sound ones [8,13], or SE ones [1,14]) are the
best-known family of NIZK arguments that achieve nBB extraction which is
achieved under non-falsifiable assumptions. While SE with nBB extraction is a
stronger notion in comparison with (knowledge) soundness, it is still not suffi-
cient for UC-security and needs to be lifted. The reason is that in UC-secure
NIZK arguments, to simulate the corrupted parties, the ideal-world simulator
should be able to extract witnesses without getting access to the source code of
environment’s algorithm, which is only guaranteed is BB SE [4,12].

1 GS proofs allow to prove satisfiability of any quadratic equation over Zp, where p is
the order of a bilinear group. In particular, this can encode CircuitSat. The size of
the resulting proof is linear in the total number of wires.

26 K. Baghery et al.

SE NIZK arguments have great potential to be deployed in practice [18,20],
or construct other primitives such as Signature-of-Knowledge (SoK) [5]. In an
SoK, a valid signature of a message M for some statement �x and a relation R
can only be produced if the signer knows a valid witness �w such that (�x, �w) ∈ R.
Groth and Maller [14] constructed a SE zk-SNARK and a generic construction of
an SoK from any SE NIZK argument, resulting in an SoK for CircuitSat. While
their construction is for general NP relations and it is also succinct, it also relies
on non-falsifiable assumptions and cannot be used in the UC framework.

Briefly speaking, this paper constructs a SE NIZK argument with BB extrac-
tion for Boolean CircuitSat which is secure under falsifiable assumptions. The
proposed construction is based on the result of [11]. We show that the proposed
construction adds minimal overhead to the original construction, resulting in a
SE NIZK argument with BB extraction and proof size O(n + d). That the pro-
posed construction also allows one to construct a (universally composable) SoK
of roughly the same size. A comparison of our SoK with prior schemes can be
found in Table 1.

Table 1. A comparison of our proposed SoK with prior schemes, where ns the secret
input size in a boolean circuit, d the depth of the circuit, nPPE is the number of pairing
product equations (each multiplication gate in an arithmetic circuit can be encoded as
a pairing product equation, in such case nPPE = n), nX , nY are the number of variables
in all the pairing product equations in G1,G2, respectively, �K is the size of the output
of a hash function. PE: Pairing Equations, SAP: Square Arithmetic Equations, QE:
Quadratic Equations.

Construction Language Signature Size Assumption

BFG [3] PE (nPPEnX , nPPEnY) + �K Falsifiable

GM [14] SAP 3 Non-falsifiable

Sect. 3.2 QE (2ns + 6d + 13, 2d + 11) + �K Falsifiable

1.1 Our Contribution

Trivial Approach for Boolean CircuitSat. Let φ some boolean circuit, and
let ai, bi, ci be the left, right and output wires of gate i. An argument for Boolean
CircuitSat, where the prover shows knowledge of some secret input satisfying the
circuit, can be divided into three sub-arguments:

1) an argument of knowledge of some boolean input: to prove that the secret
input is boolean, the prover must show that each input value satisfies some
quadratic equation,

2) a set of linear constraints, which proves “correct wiring”, namely that ai, bi

are consistent with �c and the specification of the circuit,
3) a set of quadratic constraints, which proves that for all i, ai, bi and ci are in

some quadratic relation which expresses correct evaluation of gate i.

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 27

It is straightforward to prove CircuitSat by computing perfectly binding com-
mitments to all the wires ai, bi, ci and use, for example, GS NIZK proofs for
each of the three sub-arguments. However, the proof size is obviously linear in
the number of wires.

New Techniques. In a recent result, González and Ràfols [11] give a proof for
Boolean CircuitSat of size O(n + d) group elements. We now give an overview
of their techniques, which is the main building block of our paper. The key to
their result is to prove 2) and 3) succinctly for each level of the circuit. More
specifically (ignoring zero-knowledge, momentarily), if Lj (resp. Rj , Oj) is a
shrinking (non-hiding, deterministic) commitment to all left (resp. right, output)
wires at depth j, they construct:

2’) an argument that shows that the opening of Lj is in the correct linear
relation (given by the wiring constraints in the circuit specification) with
the input and the openings of O1, . . . , Oj−1,

3’) an argument that shows that the opening of Oj is in the correct quadratic
relation (which depends on the type of gates at level j) with the opening of
Lj and Rj .

The abstraction given above of the results of [11] hides an important subtlety:
“the opening of Lj” (and similarly for the other shrinking commitments Oj , Rj)
is not well defined, as many openings are possible, so it is unclear what it means
for these sub-arguments to be sound. However, as the authors of [11] observe
when we are using these as part of a global proof of CircuitSat, “the opening
of Lj” to which we intuitively refer is well defined in terms of the openings in
previous levels. In other words, in the soundness proof, 2’) can be used to prove
that if the reduction can extract an opening of O1, . . . , Oj−1 consistent with
the input and the circuit, it can also extract a consistent opening of Lj (and
similarly Rj). On the other hand, 3’) shows that if the reduction can extract an
opening of Lj and Rj consistent with the input and the circuit, it can also extract
an opening of Oj . For this reason, González and Ràfols informally called 2’)
and 3’) “arguments of knowledge transfer” (linear and quadratic, respectively):
given knowledge of the input, arguments 2’) and 3’) can be used alternatively
to transfer this knowledge to lower levels of the circuit.

Promise Problems. To formalize this intuitive notion, the authors of [11]
define their sub-arguments 2’) and 3’) as arguments (with completeness and
soundness) for certain promise problems:

2’) Given the input �c0 and openings (�c1, . . . ,�cj−1) of O1, . . . , Oj−1, the argu-
ment shows that Lj can be opened to some �aj with the correct linear relation
to (�c1, . . . ,�cj−1) (similarly for Rj).

3’) Given �aj and �bj , openings of Lj and Rj , the argument shows that there is
an opening �cj of Oj that is in the correct quadratic relation (which depends
on the type of gates at level j) with �aj and �bj .

28 K. Baghery et al.

From an efficiency point of view, the interesting thing is that the arguments are of
constant size. This explains the proof size O(n+d): O(n) is for committing to the
input (with extractable commitments, which exist under falsifiable assumptions
because the input is boolean), and d is the cost of doing 2’) and 3’) repeatedly
for each level. At a conceptual level, the key issue is that the verifier never
checks that the openings are correct (i.e. in 2’) it never checks that �ci is a valid
opening of Oi, and in 3’) that �aj , �bj are valid openings of Lj , Rj), which is
the promise. Soundness is only guaranteed if the promise holds, and nothing
is said when it does not hold (when the given openings are invalid). In fact,
the verifier does not need these openings, they are just part of the statement
to define soundness in a meaningful way, reflecting the fact that in the global
argument for boolean circuit sat, the openings at level j are uniquely determined
by transferring the knowledge of the circuit to lower levels. So excluding the need
to read the statement, the verifier works in constant time (it would work in linear
time if it verified the statement). In particular, when using the sub-arguments
in a global proof, verification of each of the sub-arguments is constant size, and
the global verifier runs in time O(n + d).

Security Proof. The sub-arguments 2’) and 3’) of [11] are not new. More
specifically, for 2’) the authors just use the QA-NIZK argument of linear spaces
for non-witness samplable distributions of Kiltz and Wee [19], a generalization
of [17,21] and for 3’) they use techniques appeared in the context of zk-SNARKs
(as e.g. [8]) to write many quadratic equations as a single relation of polynomial
divisibility that can be proven succinctly. The challenge they solve is to give a
proof that 2’) and 3’) are sound for the aforementioned promise problems under
falsifiable assumptions. For 2’), they prove that soundness holds under some
decisional assumption related to the matrix which defines the linear relations and
for 3’) they prove this is a straightforward consequence of a q-type assumption
in bilinear groups.

Our Techniques: General Approach. This paper builds a SE NIZK for
CircuitSat under falsifiable assumptions building on the work of [11]. There are
several generic techniques to solve this problem. To the best of our knowledge,
existing generic solutions are variations of the following approach, described
for example in [12]: build an OR proof that given some circuit φ and a public
input �xp, either the circuit is satisfiable with public input xp or a signature of
M = (φ, �xp) is known. The simulator uses as a trapdoor the signature secret key.
We note that this approach results in a considerable (although also constant)
overhead (around 20 group elements).2 Our approach is based on the following
observation: to compute “fake proofs” of satisfiability, a simulator just needs to
lie either about the satisfiability of quadratic equations or linear equations, but
not both. Further, it is sufficient to lie in the last gate. In particular, we choose

2 Using OR proofs (the less efficient construction for PPE given in [23] or adding a bit
as an auxiliary variable) plus the Boneh-Boyen signature for adaptive soundness.

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 29

the following strategy to simulate a proof for a circuit φ and a public input
�xp: complete the input arbitrarily, compute consistent assignments to all gates
but choose the last left and right wire arbitrarily so that the last gate outputs
one. Thus the simulator outputs only honest proofs except for the last linear
relation, which is a simulated proof for a false statement, i.e. the simulator does
not need the simulation trapdoor for sub-arguments 1) and 3’) and standard
soundness is sufficient. To be consistent with this strategy, our SE NIZK for
boolean CircuitSat uses the construction of [11] but replaces 2’), the proof that
the linear relation holds, with 2”) an unbounded simulation sound proof for the
same promise problem.

Recall that the argument 2’) of [11] is just the QA-NIZK argument for mem-
bership in linear spaces of Kiltz and Wee for non-witness samplable distributions
with a security proof is adapted for promise problems (non-trivially). We take
the most efficient USS QA-NIZK argument of membership in linear spaces in
the literature, also due to Kiltz and Wee [19] and we adapt the USS argument to
work for bilateral linear spaces (linear spaces split among the two source groups
in a bilinear group) as in [10] and for promise problems as in [11]. The over-
head of the construction with respect to the original CircuitSat proof is minimal
(3|G1|). BB extractability is achieved because of the soundness of the argument
which proves that the input is boolean and the fact that ElGamal ciphertexts
of 0 or 1 are BB extractable (the extraction trapdoor is the secret key). Using
the generic transformation of Groth and Maller [14], the result gives directly an
SoK for boolean CircuitSat.

Generalization of Our Techniques. The observation that to add unbounded
simulation soundness to NIZK arguments which prove both quadratic and linear
equations it suffices to have USS in the linear part can have other applications.
For example, a direct application is to give USS to the construction of Daza et al.
[7], which gives a compact proof that a set of perfectly binding commitments
open to 0 or 1. Second, we observe that the advantage of our approach is that
to get tight security we only need to construct a tight USS for promise problems
in bilateral linear spaces, which we leave for future work. The result would be
a signature of knowledge for circuits with a loss of d (the circuit depth) in the
reduction (inherited from [11]).

2 Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. Let λ ∈ N be the information-theoretic security parameter, say λ = 128.
All adversaries will be stateful. For an algorithm A, let Im(A) be the image of
A, i.e., the set of valid outputs of A. By y ← A(x; r) we denote the fact that A,
given an input x and a randomizer r, outputs y. We denote by negl an arbitrary
negligible function. For distributions A and B, A ≈c B means that they are
computationally indistinguishable.

30 K. Baghery et al.

In pairing-based groups, a bilinear group generator BGgen(1λ) is a PPT algo-
rithm returns the group key gk := (p,G1,G2,GT , e,P1,P2), the description of an
asymmetric bilinear group, where G1,G2 and GT are additive groups of prime
order p, the elements P1,P2 are generators of G1,G2 respectively, e : G1 ×G2 →
GT is an efficiently computable, non-degenerate bilinear pairing, and there is
no efficiently computable isomorphism between G1 and G2. Elements in Gγ are
denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T} and PT := e(P1,P2).
For simplicity, we often write [a]1,2 for the pair [a]1, [a]2. The pairing operation
will be written as a product ·, that is [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T .
Vectors and matrices are denoted in boldface. Given a matrix T = (ti,j), [T]γ
is the natural embedding of T in Gγ , that is, the matrix whose (i, j)th entry is
ti,jPγ . We denote by |Gγ | the bit-size of the elements of Gγ .

2.1 Definitions

We recall the formal definition of QA-NIZK proofs. A QA-NIZK proof system
[17] enables to prove membership in a language defined by a relation Rρ, which
is determined by some parameter ρ sampled from a distribution Dgk . While the
CRS can be constructed based on ρ, the simulator of zero-knowledge is required
to be a single PPT algorithm that works for the whole collection of relations
Rgk . For witness-relations Rgk = {Rρ}ρ∈sup(Dgk) with parameters sampled from
a distribution Dgk over associated parameter language Lpar, a QA-NIZK argu-
ment system Π consists of tuple of PPT algorithms Π = (K0,K1,P,V,S0,S1, E),
defined as follows,

Parameter generator, gk ← K0(1λ): K0 is a PPT algorithm that given 1λ

generates group description gk .
CRS generator, crs ← K1(gk , ρ): K1 is a PPT algorithm that given gk , sample

string ρ ← Dgk , and then uses gk , ρ and generate (crs, trs, tre); finally output
crs (that also contains parameter ρ) and store simulation trapdoor trs and
extraction trapdoor tre as the trapdoors of CRS.

Prover, π ← P(crs, �x, �w): P is a PPT algorithm that, given (crs, �x, �w), where
(�x, �w) ∈ R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier, {0, 1} ← V(crs, �x, π): V is a PPT algorithm that, given (crs, �x, π),
returns either 0 (reject) or 1 (accept).

CRS Simulator, (crs, trs, tre) ← S1(gk , ρ): S1 is a PPT algorithm that, given
(gk , ρ), output (crs, trs, tre), where trs is simulation trapdoor and tre is the
extraction trapdoor.

Prover Simulator, π ← S2(crs, �x, trs): S2 is a PPT algorithm that for valid
statements, given (crs, �x, trs), output a simulated argument π.

Extractor, �w ← E(gk , crs, �x, π, tre): E is a PPT algorithm that, given
(crs, �x, π, tre) extracts the witness �w; where tre is the extraction trapdoor.

We require an argument QA-NIZK system Π to be quasi-adaptive complete, com-
putationally quasi-adaptive sound and perfectly quasi-adaptive zero-knowledge, as
defined below.

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 31

Definition 1 (Quasi-Adaptive Completeness). A quasi-adaptive argument
Π is perfectly complete for Rρ, if for all λ, and all (�x, �w) ∈ Rρ,

Pr
[
gk ← K0(1λ), ρ ← Dgk ,
crs ← K1(gk , ρ), π ← P(crs, �x, �w) : V(crs, �x, π) = 1

]
= 1.

Definition 2 (Computational Quasi-Adaptive Soundness). A quasi-
adaptive argument Π is computationally quasi-adaptive sound for Rρ, if for all
λ, and for all non-uniform PPT A,

Pr
[
gk ← K0(1λ), ρ ← Dgk ,
crs ← K1(gk , ρ), (�x, π) ← A(gk , crs) :

V(crs, �x, π) = 1 ∧
(�x, �w) �∈ Rρ

]
≈ 0

Definition 3 (Perfectly Quasi-Adaptive Zero-Knowledge). A quasi-
adaptive argument Π is perfectly quasi-adaptive zero-knowledge for Rρ, if for
all λ, and for all non-uniform PPT A,

Pr

⎡
⎢⎣

gk ← K0(1λ), ρ ← Dgk ,

crs ← K1(gk , ρ) :

AP(crs,·,·)(gk , crs) = 1

⎤
⎥⎦ = Pr

⎡
⎢⎣

gk ← K0(1λ), ρ ← Dgk ,

(crs, trs, tre) ← S1(gk , ρ) :

AS2(crs,trs,·,·)(gk , crs) = 1

⎤
⎥⎦

where P(crs, ·, ·) emulates the actual prover, and given (crs, �x, �w) outputs a proof
π if (�x, �w) ∈ Rρ, otherwise it outputs ⊥; and S2(crs, trs, ·, ·) is an oracle that
given (crs, trs, �x, �w), it outputs a simulated proof S2(crs, trs, �x) if (�x, �w) ∈ Rρ

and ⊥ if (�x, �w) /∈ Rρ.

We also consider Simulation Soundness for our proofs, we take the next def-
inition from Kiltz and Wee [19].

Definition 4 (Unbounded Simulation Adaptive Soundness). A quasi-
adaptive argument Π is unbounded simulation adaptive sound for Rρ, if for all
λ, and for all non-uniform PPT A,

Pr

⎡
⎣ gk ← K0(1λ), ρ ← Dgk ,

(crs, tr) ← S1(gk , ρ);
(�x∗, τ∗, π∗) ← AO(·)(gk , crs, ρ)

:
(�x∗, π∗) �∈ Qtags ∧ (�x, �w) �∈ Rρ

∧ V(crs, �x∗, π∗) = 1

⎤
⎦ ≈ 0,

where O(�x) returns (�x, π) ← S2(crs, tr, τ, �x) and adds τ to the set Qtags.

Now we define a variation of definition BB simulation extractability for QA-
NIZKs that is used in the construction of new schemes. To the best of our
knowledge, this is the first time that this definition is defined for QA-NIZKs.

Definition 5 (Quasi-Adaptive BB Simulation Extractability). A non-
interactive argument scheme Π is quasi-adaptive black-box simulation-
extractable for Rρ, if for all λ, and for all non-uniform PPT A, there exists
a black-box extractor E such that,

Pr

⎡
⎢⎢⎣

gk ← K0(1λ), ρ ← Dgk ,
(crs, trs, tre) ← S1(gk , ρ);
(�x∗, π∗) ← AO(·,·)(gk , crs, ρ),
�w ← E(gk , crs, �x∗, π∗, tre)

:
V(crs, �x∗, π∗) = 1

∧ (�x, �w) �∈ Rρ ∧ (�x∗, π∗) �∈ Q

⎤
⎥⎥⎦ ≈ 0,

32 K. Baghery et al.

where O(�x) returns (�x, π) ← S2(crs, �x, trs) and adds (�x, π) to the set of simulated
proofs Q.

A key note about Definition 5 is that the extraction procedure is black-box
and the extractor E works for all adversaries.

2.2 Boolean Circuits

As in González and Ràfols [11], we slice a boolean circuit in layers according to
the level of each gate. Throughout the paper, φ : {0, 1}n → {0, 1} is a boolean
circuit with m gates of fan-in two and d is the depth. To simplify the exposition
of our result in limited space, we consider only NAND gates, but it is immediate
to extend our result to include gates of φ of any type as was done in fact in [11].

The gates of φ are indexed by a pair (i, j), where i denotes the gate depth
and j is some index in the range 1, . . . , ni, where ni is the number of gates at
level i.

In Lemma 1 we now express in equations what it means for a tuple (�a,�b,�c) to
be a valid assignment to the left, right and output wires of φ respectively, where
�a = (�a1, . . . ,�ad), �b = (�b1, . . . ,�bd) and �c = (�c0,�c1, . . . ,�cd) and �yi = (yi,1, . . . , yi,ni

)
for all �y ∈ {�a,�b,�c}. A valid assignment should give ai,j , bi,j and ci,j the values
of the left, right and output wires of the gate indexed by (i, j) and c0,1, . . . , c0,n

some boolean values which represent a satisfying input.
Lemma 1 breaks down CircuitSat in different items which reflect the different

building blocks used by [11] and also our work. The input vector �x (which cor-
responds to �c0) is divided in two parts, the first np components being the public
input �xp and the rest is the secret input �xs of length ns. The main achievement
of [11] is to do two aggregated proof of all the constraints at the same depth with
just two constant size proofs, one for the multiplicative and the other for the lin-
ear constraints. Therefore, items c) (resp. d)) require that for each i = 1, . . . , d,
a set of quadratic (resp. linear) equations holds. In the next two subsections
(Sect. 2.3, 2.4) we sketch the aggregated proofs of the sets of equations described
in c) and d).

Lemma 1. Let φ : {0, 1}n → {0, 1}, be a circuit with m NAND gates. Then,
for any public input �xp ∈ {0, 1}np , (�a,�b,�c) is a valid input for satisfiability of
φ(�xp, ·) if and only if:

a) (c0,1, . . . , c0,np
) = (�xp).

b) Boolean secret input: (c0,np+1, . . . , c0,n) = (�xs) ∈ {0, 1}ns .
c) Correct gate evaluation at level i, for i = 1, . . . , d:

ci,j = 1 − ai,jbi,j , j = 1, . . . , ni,

d) Correct “wiring” (linear constraints) at level i:

ai,j = ckL,�L , bi,j = ckR,�R ,

for some indexes 0 ≤ kL, kR < i,
L ∈ {1, . . . , nkL
} and
R ∈ {1, . . . , nkR

}.
In other words, for all i, there exist some matrices Fi,Gi such that �ai =
Fi�c|i−1 and �bi = Gi�c|i−1, where �c�

|i−1 = (�c�
0 , . . . ,�c�

i−1).
e) Correct output: cd,1 = 1.

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 33

2.3 Aggregated Proofs of Quadratic Equations

We now describe the construction proposed in González and Ràfols [11] to prove
correct gate evaluation at level i, for i = 1, . . . , d − 1, i.e. a proof that ci,j =
1 − ai,jbi,j , for all j = 1, . . . , ni. It consists, for k = 1, 2, of a Groth-Sahai NIZK
Proof that some secret values [Li,k]1, [Ri,k]2, [Oi,k]1, [O∗

i,k]2, [Hi,k]1 satisfy the
following relation3:

[1]T − e([Li,k]1, [Ri,k]2) − e([Oi,k]1, [1]2) = e([Hi,k]1, [tk]2), (1)
e([Oi,j]1, [1]2) = e([1]1, [O∗

i,j]2). (2)

where if t(X) =
∏

r∈R(X − r), tk = t(sk) and λi(X) =
∏

j∈R\{ri}
(X − rj)
(ri − rj)

is the ith Lagrangian polynomial associated to R, a set of W = maxi=1,...,d ni

points used for interpolation, then

Li,k =
∑

ajλj(sk), Ri,k =
∑

bjλj(sk), Ci,k =
∑

cjλj(sk), Hi,k = hi(sk),

where s1, s2 are random secret points specified in the CRS, and hi(X) =
(1 − (

∑
ajλj(X))(

∑
bjλj(X)) − ∑ cjλj(sk))/t(X). Alternatively, for each ni

we define Λni
=
(

λ1(s1) . . . λni
(s1)

λ1(s2) . . . λni
(s2)

)
,

[�Li]1 = [Λni
�ai]1, [�Ri]2 = [Λni

�bi]2, [�Oi]1 = [Λni
�ci]1,

and Λ is called Lagrangian Pedersen commitment in [11].
To the reader familiar with the literature, it is obvious that Eq. (1) uses

SNARK techniques originally appeared in [8] (what we could call “polynomial
aggregation”) for proving many quadratic equations simultaneously. What is
new in [11], is the security analysis, which avoids non-falsifiable assumptions.

GS proofs are necessary for zero-knowledge because �Li, �Ri, �Oi need to be
deterministic for the proof to work. The authors of [11] use this proof as a
building block in a larger proof, and for this they prove the following:
“if (�ai,�bi) are valid openings of [Li,k]1, [Ri,k]2 for k = 1, 2 then 1 − �ai ◦�bi is a
valid opening of Oi,k.”

Formally, the authors define the languages

Lquad
YES =

{
(�a,�b, [�L]1, [�R]2, [�O]1) : �1 − �a ◦�b = �c,[

�L
]
1

= [Λ]1�a,
[
�R
]
2

= [Λ]2�b,
[
�O
]
1

= [Λ]1�c

}

3 The second equation is added to have the element Oi,j in both groups G1,G2. This
will allow us to use simple QA-NIZK proofs of membership in linear spaces in G1

and G2 for the linear constraints, instead of using proofs of membership in bilateral
spaces (spaces with parts in G1 and in G2.).

34 K. Baghery et al.

Lquad
NO =

{
(�a,�b, [�L]1, [�R]2, [�O]1) : �1 − �a ◦�b = �c,[

�L
]
1

= [Λ]1�a,
[
�R
]
2

= [Λ]2�b,
[
�O
]
1

�= [Λ]1�c

}
.

The argument consists of giving some values �H, �O∗ chosen by the prover
which satisfy Eq. (1) for �L, �R, �O. Completeness holds for Lquad

YES and soundness
for values Lquad

NO under the (R,m)-Rational Strong Diffie-Hellman assumption
[11]. When (1) are proven with GS proofs, they argue that zero-knowledge also
holds.

Note that the fact [�L]1 = [Λ]1�a, or [�R]2 = [Λ]2�b is never checked by the
verifier, this is the promise. The argument does not give any guarantee when
this does not hold.

2.4 Aggregated Proofs of Linear Equations

In this section we explain the technique used in González and Ràfols [11] to prove
correct “wiring” at level i, for i = 1, . . . , d−1, i.e. an aggregated proof for linear
constraints. As we have seen in Lemma 1, we can express linear constraints at
level i as:

�ai = Fi�c|i−1, �bi = Gi�c|i−1 for all i = 1, . . . , d. (3)

Then at level i left and right constraints can be expressed, respectively as:
(

�O|i−1

�Li

)
=
(
Ci

F̃i

)(
�c|i−1

)
,

(
�O|i−1

�Ri

)
=
(

Ci

G̃i

)(
�c|i−1

)
(4)

where Ci =

⎛
⎜⎜⎜⎝

I �0 . . . 0
0 Λn1 . . . �0

0 0
. . . 0

0 0 . . . Λni−1

⎞
⎟⎟⎟⎠, F̃i = Λni

Fi, G̃i = Λni
Gi and Λni

is the

matrix of the Lagrangian Pedersen commitment key defined in last section, and
�O0 is just the input of the circuit.

To make the argument zero-knowledge, the prover does never give �Oi, �Li or
�Ri in the clear, but rather, for k = 1, 2 and any i ∈ [d], it gives GS commitments
[�z]1 to the input (i.e. to all components of �O0 = �c0), to the vector �Oi as [�zO,i]1,
to the vector �Li as [�zL,i]1 and to the vector �Ri as [�zR,i]2 (a part from other
GS commitments necessary for the quadratic proof). The matrices which define
the linear relation between committed values are defined from Ci, F̃i = Λni

Fi,
G̃i = Λni

Gi adding columns and rows to accommodate for the GS commitment
keys in the relevant groups (see full details in [11]). We denote these matrices
ML

i ,NL
i for the left constraints and MR

i ,NR
i for the right constraints.

González and Ràfols prove that the QA-NIZK argument of Kiltz and Wee
[19] (with standard soundness) for membership in linear spaces for non-witness
samplable distributions is an argument for the following promise problem:

LLin
YES =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 = [N]1 �w

}

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 35

LLin
NO =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 �= [N]1 �w

}

parametrized by matrices M,N.
If we use this construction for matrices ML

i and NL
i (similarly for right side),

this argument can be used to prove that, if we can extract �c|i−1, then we can
extract an opening �ai of �Li which is in the correct linear relation with �c|i−1.

The authors prove completeness of the argument for statements in LLin
YES and

soundness for LLin
NO under M�

L -MDDH, M�
R-MDDH and KerMDH assumption,

where ML (resp. MR) is the distribution of matrices ML
i (resp. MR

i) described
above4.

We note that for simplicity, we have explained the result of [11] as proving
a linear system of constraints for each level and each side (left or right), but in
fact a single QA-NIZK argument for bilateral spaces for non-witness samplable
distributions [10] is used in [11] to gain efficiency (the proof requires then only
2 elements in G1 and G2 instead of O(d) elements).

3 SE NIZK Argument for Boolean CircuitSat

We present our Quasi-Adaptive argument for Boolean CircuitSat for the lan-
guage defined as

Lφ =
{

(�xp) ∃�xs ∈ {0, 1}ns s.t. φ(�xp, �xs) = 1
}

.

As consequence of Lemma 1 the language Lφ,ck can be equivalently defined
as

Lφ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(�xp)

∃�xs s.t. �xs ◦ (�xs −�1) = �0;
�c0 := (�xp, �xs);
∀i ∈ [d],∃�ai,�bi,�ci ∈ Z

ni
p s.t. ;

�ai = Fi�c|i−1,�bi = Gi�c|i−1 ∈ Z
ni
p ,

1 − �ai ◦�bi = �ci.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

In the following ΠQ denotes the argument for Quadratic Equations described
in Sect. 2.3, ΠL the USS membership argument for linear spaces presented in
Sect. 4 and Input an argument to prove that some BB extractable commitments
to integers open to binary values.

K0(λ,W,R): On input some set R ⊂ Zp of cardinal W , choose a bilinear group
gk and output (gk,W).

Dgk,W,R: Pick commitment keys (ck1, ck2) = ([Λ]1, [Λ]2) that are the Lagrangian
Pedersen commitment keys associated to R. Output (ck1, ck2, crsGS).

4 An important point is that these MDDH assumptions can be reduced to a decisional
assumption in bilinear groups which does not depend on the circuit. In fact, ML

i

only depends on n, n1, . . . , ns, and the assumption can be reduced to a decisional
assumption which only depends on Λ and the GS commitment key.

36 K. Baghery et al.

K1 (gk , φ): Given (ck1, ck2, crsGS) ← Dgk,W and φ : {0, 1}n → {0, 1} of maxi-
mum width W . For each i ∈ [d] define matrices [ML

i]1, [MR
i]2, [NL

i]1, [MR
i]2

as explained in Sect. 2.4. Let crsInput the crs of the argument Input for a vec-
tor of size ns is binary. Let crsQ the crs of ΠQ for proving correct evaluation
of (at most) W gates. For each i ∈ [d], let crsL

L,i (crsR
L,i) the crs for the USS

argument of linear knowledge transfer ΠL of left (right) wires at depth i. Let
crsL =

{
crsL

L,i, crs
R
L,i

}
i∈[d]

and trL =
{
trLL,i, tr

R
L,i

}
i∈[d]

, where trLL,i (trRL,i) are the
trapdoors of the ΠL arguments of left (right) wires at depth i.

Output crs = (ck1, ck2, crsGS, crsInput, crsQ, crsL), tr = trL.

P
(
crs, �xs, �r,�a,�b,�c, �xp

)
: Computes the commitment of the secret input [�z]1 =

comck1,ck2(�xs, �r) and constructs the proof Input for [�z]1. For each i ∈ [d] compute
Lagrangian Pedersen commitments to the wires [�Oi]1,2, [�Li]1, [�Ri]2, give a GS
proof ΠQ,i that they satisfy Eq. (1) and let [�zO,i,k]1, [�z∗

O,i,k]2, [�zL,i,k]1, [�zR,i,k]2
the correspondent GS commitments to �O, �L, �R, for k = 1, 2. Compute proofs
ΠL,i of correct wiring and ΠL,0 that the opening of [�z]1 is correctly assigned to

[�zO,0]1. Outputs π =
(
[�z]1, Input, [�zO]1, [�zL]1, [�z∗

O]2, [�zR]2 , �ΠL,ΠL,0, �ΠQ

)
.

V (crs, �xp, π): Verify all the proofs in π with the corresponding verification algo-
rithms VInput, VΠL

and check Eq. (1).

S (crs, �xp, tr): Extend the input with zeros, �x = (�xp, 0, . . . , 0) and evaluate

the circuit honestly with this input to obtain the corresponding �ai,�bi,�ci for
each i = 1, . . . , d. Change the last gate values, i.e. the right and left val-

ues of the last gate at level d to �̂ad = 0, �̂bd = 1, �̂cd = 1. Compute the
commitment [�z]1 = comck1,ck2(�0, �r), honest proofs Input and ΠQ,i and com-
mitments [�zO,i,k]1, [�zL,i,k]1, [�z∗

O,i,k]2, [�zR,i,k]2 for each i = 1, . . . , d. Run the
simulator SΠL

to obtain d simulated ΠS
L,i,Π

S
R,i together with ΠS

L,0. Finally,
πS = ([�z]1, Input, [�zO]1, [�zL]1, [�zR]2 , [�z∗

O]2,ΠS
L,ΠS

L,0,ΠQ).

Completeness and Zero-Knowledge are directly from the completeness and zero-
knowledge of the respective subarguments.

Unbounded Simulation Extractable Adaptive Soundness is proved in the following
theorem.

Theorem 1. If A is an adaptive adversary against the Unbounded Simulation
BB Extractability Soundness of the Boolean CircuitSat argument described in
Sect. 3 that makes at most Q queries to S, then there exist PPT adversaries B1,
B2, B3 against the BB Extractable Soundness of Input, the Unbounded Simulation
Soundness of ΠL argument and the soundness of ΠQ argument, respectively, such
that

AdvUSS(A) ≤ AdvES-Input(B1) + dAdvUSS-ΠL
(B2) + 2dAdvSound-ΠQ

(B3).

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 37

Proof (sketch). The simulator algorithm generates honestly the Input and ΠQ

arguments and an adversary sees only simulated proofs of the linear argument
ΠL. Therefore, an adversary that creates a new proof for an invalid statement
breaks either the knowledge soundness of the Input, the soundness of the ΠQ

arguments, or the USS of the linear arguments ΠL. ��

3.1 Concrete USES QA-NIZK for Boolean CircuitSat

For the scheme described above, one can take as Input, and ΠQ the same building
blocks as [11], namely the bitstring argument of Daza et al. [7] and the argument
described in Sect. 2.3. The USS for promise problems given in Sect. 4.

To simplify the exposition we have ommitted many details that actually make
the proof more efficient. In particular, instead of using two linear arguments for
each depth of the circuit, we can use the linear argument for all the linear
constraints of the circuit at once (as it is also done in the original work). First,
it is easy to see one can prove all the left (and right) constraints together, by
considering a larger matrix. Second, left and right constraints can be merged in a
single matrix which consists of elements in both groups, and using an argument
for some promise problem in bilateral linear spaces. This also makes the auxiliary
variable O∗ (and related equations) unnecessary.

Efficiency. Then, the building blocks (1), (2) of our instantiation are exactly
the same as in González and Ràfols [11]. The cost of committing to the input
plus proving it is boolean with the argument of [7] is (2ns + 4)|G1| + 6|G2|. We
take the same quadratic constraints proof from [11] with Zero-Knowledge that
is 12d|G1| + 4d|G2| for the commitments and 8d|G1| + 4d|G2| for the GS proofs.
This is the same cost as in [11], but in the full version we will give different
tradeoffs to reduce the proof size at the cost of increasing the common reference
string. In any case, the overhead of using an USS argument for promise problems
in bilateral spaces as opposed to the argument for bilateral spaces with standard
soundness used in González and Ràfols [11] is only 3|G1|.

3.2 Universally Composable Signature of Knowledge

Following the same approach as Groth and Maller [14], the SE NIZK argu-
ment with BB extractability together with a universal one-way hash function
allows to construct a UC secure SoK for boolean CircuitSat based on falsifiable
assumptions in bilinear groups in a straightforward way. The full details of this
construction will appear in the full version of the paper.

4 USS QA-NIZK Arguments of Knowledge Transfer for
Linear Spaces

In this section we prove that the USS argument for membership in linear spaces
of Kiltz and Wee also satisfies the “knowledge transfer” property, or more techni-
cally, that it has soundness for the same promise problem described in Sect. 2.4.

38 K. Baghery et al.

We give the argument for membership in linear spaces in one group in detail in
Sect. 4.1 and we present the scheme for the bilateral version in Sect. 4.2.

4.1 USS LinDk
Argument

In this section we present LinDk
, a quasi-adaptive USS argument of membership

in linear spaces in the group G1 for the promise problem defined by languages

LLin
YES =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 = [N]1 �w

}

LLin
NO =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 �= [N]1 �w

}

parameterized by matrices M ∈ Z
�1×n
p ,N ∈ Z

�2×n
p sampled from some distri-

butions M,N . Completeness holds for YES instances, and soundness guaran-
tees that NO instances will not be accepted. That is, as in [11], we assume
[�x]1 = [M]1 �w holds when proving soundness. In the CircuitSat context, this can
be assumed because the idea is that this is proven by first proving knowledge
of the input and then by “transferring” this knowledge to the lower layers via
the quadratic or the linear argument we have presented. We consider the general
language L that includes all tuples (�w, �x, �y) of the right dimension, some of them
which are outside of LLin

YES ∪ LLin
NO. We allow simulation queries for any tuple in

L. Note that it would be enough to allow the adversary just to ask for queries
in LLin

NO in some contexts, as in Sect. 3 for CircuitSat, but we define for general
statements.

Scheme Definition. The argument is presented in Fig. 1 and is just the USS
QA-NIZK argument of [19] written in two blocks, which adds a pseudorandom
MAC to the basic (not simulation sound, just sound) QA-NIZK argument of
membership linear spaces for non-witness samplable distributions also given in
[19]. If in the basic arguments proofs are of the form [�x�, �y�]1(K1,K2), in the
USS variant they are given by

([
(�x�, �y�)(K1,K2) + �r�Λ(Λ0 + τΛ1)

]
1
,
[
�r�Λ�]

1

)
.

Our contribution is not in the scheme but in the security analysis. Our proof
follows [11] that proved that the basic argument in [19] is complete and sound
for the same promise problem under some MDDH and KerMDH assumptions
related to the matrix M. Our contribution is to modify their analysis to adapt
it to simulation soundness for the scheme of Fig. 1.

Perfect Completeness, Perfect Zero-Knowledge. Our language LLin
YES is the same

language for membership proofs in a linear space [M,N]�1 used in [19]:{
(�w, [�x, �y]1) : [�x�, �y�]�1 = [M,N]�1 �w

}
, so perfect completeness and perfect zero-

knowledge are immediate.

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 39

K(gk , [M]1, [N]1) : P (crs, τ, [x]1, [y]1, w) :
K1 ← Z

�1×(k+1)
p ,K2 ← Z

�2×(k+1)
p , Pick �r ← Z

k
p and return

K� = K�
1 ,K�

2

)
�π = w�[B]1 + �r�[P0 + τP1]1,

A,Λ ← Dk, [�r�Λ�]1
)
.

Λ0,Λ1 ← Z
(k+1)×(k+1)
p V (crs, τ, [x]1, [y]1, �π) :

C1 = K1A,C2 = K2A, Check if:
[B]1 =

[
M�K1 + N�K2

]
1

e (�π1, [A]2) − e x�, y�]
1
, [C]2

)

(P0,P1) = (Λ�Λ0,Λ�Λ1) = e (�π2, [Q0 + τQ1]2)
(Q0,Q1) = (Λ0A,Λ1A) S (crs, τ, [x]1, [y]1, tr) :
Return crs = gk , [B]1, [A]2, [P0]1 , Sample �r ← Z

k
p and return

[P1]1 , [Q0]2, [Q1]2, [C1]2, [C2]2, [Λ]1
)

�π = [�x�, �y�]1K + �r�[P0 + τP1]1,
tr = (K1,K2) [�r�Λ�]1

)
.

Fig. 1. The LinDk argument for proving membership in linear spaces in blocks [�x, �y]1 ∈
Im[M,N]1 where M ∈ Z

�1×n
p ,N ∈ Z

�2×n
p .

Unbounded Simulation Soundness. For any adversary A that sends any number
Q of queries (�wi, [�xi, �yi]1) ∈ L to the query simulator oracle S, receives simulated
proofs {�πi}Q

i=1 as described in Fig. 1, the probability that the adversary A comes
up with a proof �π∗ for a statement (�w∗, [�x∗, �y∗]1) ∈ LLin

NO different of the queried
ones and different tag τ∗, such that V(crs, τ∗, [�x∗, �y∗]1, �π∗) = 1 is negligible.

We use Definition 4 and our proof is analogous to USS proof of [19], where the
authors argue that partial information about matrix K is hidden across all the
simulated proofs which fits perfectly with the soundness argumentation in [11],
where the authors prove the block K2,2 is hidden from the adversary. We need
an extra change of games because our matrices admit more rows than columns
and we have to assure the projection of our matrices does not reveal information
of K2.

For the following theorem, we use the Computational Core Lemma of Kiltz
and Wee in Sect. 4.1. of [19], which is independent of M,N , it just assumes the
Dk-MDDHG1 , so we can use it directly in our proof.

Theorem 2. The LinDk
scheme in Fig. 1 is a Quasi-adaptive Non-Interactive

Zero-Knowledge Argument with Unbounded Simulation Soundness such that for
any adversary A that makes at most Q queries to S there exist adversaries B1,
B2, B3 against the Dk-KerMDH, M�-MDDH assumptions in G1 for which the
advantage of A is bounded by

AdvUSS-LinDk
(A) ≤AdvDk−KerMDHG1

(B1) + 2QAdvDk-MDDHG1
(B2)

+ AdvM�-MDDHG1
(B3) +

Q + 1
p

.

Proof. Let A be an adversary that plays the game described in USS Definition 4.
We will proceed by changing to indistinguishable games in order to bound the

40 K. Baghery et al.

advantage of A. Let Game0 be the real game and Advi the advantage of winning
Gamei.

– Game1 is the same as Game0 except the verification algorithm V is changed
to

V∗(crs, τ, [�x, �y]1, �π) :
Check: �π1 = [�x�, �y�]1K + �π2(Λ0 + τΛ1).

If a tuple ([�x, �y]1, �π) passes verification of V but does not pass verification
of V∗, it means that the value �π − [�x�, �y�]1K − �π2(Λ0 + τΛ1) ∈ G

k+1
1 is

a non-zero vector in the cokernel of A. Thus, there exists an adversary B1

against KerMDHG1 such that

|Adv0 − Adv1| ≤ AdvDk−KerMDHG1
(B1).

– Game2 is the same as Game1 except the simulation algorithm S is changed to

S∗(crs, τ, [�x, �y]1, tr) :
�r ← Z

k
p, μ ← Zp

Return: �π = ([(�x�, �y�)K + μ�a⊥ + �r�(P0 + τP1)]1, [�r�Λ]1)
,

where �a⊥ is an element from the Kernel of A. Let B2 be an adversary against
Dk-MDDHG1 . B2 picks K itself and answers queries (τi, �wi, [�xi, �yi]1) from A:

• if τi �= τ∗: B2 queries the oracle Ob, defined in the core lemma [19], who
simulates S if b = 0, or S∗ if b = 1.

• if τi = τ∗: B2 samples �r ← Zp and computes ([(�x�
i , �y�

i)K + �r�(P0 +
τiP1)]1, [�r�Λ�

0]1).
Then B2 queries V∗ to simulate verification of the final message of A,
(τ∗, �w∗, [�x∗, �y∗]1). Now, it is easy to check if (�w∗, [�x∗, �y∗]1) ∈ LLin

NO by com-
puting [M]1 �w∗ and [N]1 �w∗. The difference between respective advantages is
bounded using the core lemma of [19] as

|Adv1 − Adv2| ≤ 2QAdvDk−MDDHG1
(B2) +

Q

p
.

– Game3 is the same as Game2 except the matrix K ← Z
(�1+�2)×(k+1)
p is changed

in K to K = K′ + �b�a⊥ where K′ ← Z
(�1+�2)×(k+1)
p , �b1 ← Z

�1
p , �b2 ← Z

�2
p ,

�b� = (�b�
1 ,�b�

2) and B = (M�,N�)K + (�z + N��b2)�a⊥, where �z = M��b1. It is
direct to see that both K, K′ are uniformly distributed in Z

(�1+�2)×(k+1)
p , so

the advantages of both games are equivalent.
– Game4 is the same as Game3 except that now �z ← Z

�1
p . Let B3 be an adversary

against Dk-MDDHG1 that receives ([M�]1, [�z]1) as a challenge and computes
the crs as in previous game with this [�z]1 in B and runs A as in Game3.
Finally, when the advantage of B3 to distinguish between Game3 and Game4
is bounded by the probability of distinguishing between a random vector from
the image of the matrix M�, so

|Adv3 − Adv4| ≤ AdvM�−MDDHG1
(B3).

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 41

Now we bound the advantage of adversary A in winning Game4. Firstly, we show
what is leaked about vector �b for the adversary’s view:

– the matrix C = (K′ +�b�a⊥)A completely hides the vector �b,
– the output of S∗, (�x, �y)�(K′ +�b�a⊥)+μ�a⊥ completely hides �b because μ masks

(�x�, �y�)�b,
– the matrix B contains information about �z+N��b2, but �z is uniformly random

and independent of �b2, so �z masks �b2.

Note that if the adversary A passes the verification V∗ with some �π∗ for
an statement (�w∗, �x∗, �y∗) ∈ LLin

NO, it can also construct a valid proof π = (�π∗
1 −

�w∗B, �π∗
2) for the statement (�w∗,�0, �y − �y∗) ∈ LLin

NO where �y = N�w∗. It must hold
that

π = (0, �y − �y∗)(K′ +�b�a⊥) = (�y − �y∗)K′
2 + (�y − �y∗)�b2�a⊥, (∗)

Note �y − �y∗ is not zero because �y �= �y∗. Since �b2 remains completely hidden to
the adversary and K′

2 is independent of �b2, the probability that equation (∗)
holds is less that 1/p. ��

K(gk , [M]1, [N]1, [P]2) : P (crs, τ, [x1]1, [x2]1, [y]2, w) :
K1 ← Z

�1×(k+1)
p ,K2 ← Z

�2×(k+1)
p , Pick �r ← Z

k
p and return

K3 ← Z
�3×(k+1)
p , �π = w�[B]1 + �r�[P0 + τP1]1,

A,Λ ← Dk,Γ ← Z
n×(k+1)
p , [�r�Λ�]1

)
,

Λ0,Λ1 ← Z
(k+1)×(k+1)
p θ = w�[D]2.

C1 = K1A,C2 = K2A,C3 = K3A, V (crs, τ, [x1]1, [x2]1, [y]2, �π, θ) :
[B]1 =

[
M�K1 + N�K2 + Γ

]
1

Check if: e (�π1, [A]2) − e ([A]1, θ)
[D]2 =

[
P�K3 − Γ

]
2

−e x�
1

]
1
, [C1]2

) − e x�
2

]
1
, [C2]2

)

(P0,P1) = (Λ�Λ0,Λ�Λ1) +e [C3]1 ,
[
y�]

2

)
= e (�π2, [Q0 + τQ1]2)

(Q0,Q1) = (Λ0A,Λ1A) S (crs, τ, [x1]1, [x2]1, [y]2, tr) :
Return crs = (gk , [B]1, [A]1,2, [P0]2, Sample �r ← Z

k
p and return

[P1]2 , [Q0]1, [Q1]1, [C1]2, [C2]2, �π = [�x1, �x2]1(K�
1 ,K�

2)
[C3]1, [Λ]1) +�r�(P0 + τP1), [�r�Λ�]1

)
,

θ = [�y]2K�
3 .

tr = (K1,K2,K3)

Fig. 2. The BLinDk argument for proving membership in linear spaces in blocks
([�x1, �x2]1, [�y]2) ∈ Im ([M,N]1, [P]2,) where M ∈ Z

�1×n
p ,N ∈ Z

�2×n
p ,P ∈ Z

�3×n
p .

4.2 USS BLinDk
Argument

In this section we present the USS argument for membership in linear spaces in
groups G1, G2, which is just an extension to bilateral spaces of the USS LinDk

argument presented in Sect. 4.1 for the promise problem defined by languages

42 K. Baghery et al.

LBlin
YES =

{
(�w, [�x1]1, [�x2]1, [�y]2) :

[�x1]1 = [M]1 �w and
[�x2]1 = [N]1 �w, [�y]2 = [P]2 �w

}

LBlin
NO =

{
(�w, [�x1]1, [�x2]1, [�y]2) :

[�x1]1 = [M]1 �w and
[�x2]1 �= [N]1 �w or [�y]2 �= [P]2 �w

}

parameterized by matrices M ∈ Z
�1×n
p ,N ∈ Z

�2×n
p ,P ∈ Z

�3×n
p sampled from

some distributions M,N ,P. This argument is presented in Fig. 2. QA-NIZK
arguments of membership in linear spaces were extended to the bilateral case
in [10] for both samplable and non-witness samplable distributions. In [11], the
authors proved that the argument for non-witness samplable distributions of [10]
is also sound and complete for this promise problem. Adding the pseudorandom
MAC given in [19] we get USS. The proof is essentially the same as in Sect. 4.1,
but now the linear spaces are split in two groups G1 and G2. The core lemma
would be the analogous one and the reduction of the proof of USS is bounded
by SKerMDH and Dk-MDDHG1 Assumptions.

Acknowledgement. Karim Baghery was supported by CyberSecurity Research Flan-
ders with reference number VR20192203.

References

1. Baghery, K.: Subversion-resistant simulation (knowledge) sound NIZKs. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 42–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1 3

2. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press, May 2014

3. Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and
DAA in the standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38980-1 33

4. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

5. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

6. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

7. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 11

8. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-642-38980-1_33
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 43

9. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

10. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 25

11. González, A., Ràfols, C.: Shorter pairing-based arguments under standard assump-
tions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923,
pp. 728–757. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-
8 25

12. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

13. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

14. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0 20

15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

16. Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part II. LNCS, vol. 11273, pp. 190–220. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3 7

17. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

18. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy, pp.
157–174. IEEE Computer Society Press, May 2019

19. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

20. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press,
May 2016

21. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

22. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

44 K. Baghery et al.

23. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

24. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999

https://doi.org/10.1007/978-3-662-46497-7_10

LESS is More: Code-Based Signatures
Without Syndromes

Jean-François Biasse1, Giacomo Micheli1, Edoardo Persichetti2(B),
and Paolo Santini2,3

1 University of South Florida, Tampa, USA
{biasse,gmicheli}@usf.edu

2 Florida Atlantic University, Boca Raton, USA
epersichetti@fau.edu

3 Universitá Politecnica delle Marche, Ancona, Italy
p.santini@pm.univpm.it

Abstract. Devising efficient and secure signature schemes based on cod-
ing theory is still considered a challenge by the cryptographic commu-
nity. In this paper, we construct a signature scheme by exploring a new
approach to the area. To do this, we design a zero-knowledge identi-
fication scheme, which we then render static via standard means (e.g.
Fiat-Shamir). We show that practical instances of our protocol have the
potential to outperform the state of the art on code-based signatures,
achieving small data sizes with a low computational complexity.

Keywords: Post-Quantum · Code-Based · Code Equivalence ·
Signatures · Zero-Knowledge

1 Introduction

Digital signatures are arguably one of the most important cryptographic prim-
itives in the modern times. Many famous examples include schemes based on
RSA, as well as discrete logarithm assumptions (DSA, ECDSA), all currently
standardized. However, none of the above will remain secure once a quantum
computer with sufficient power and stability becomes available, due to the sem-
inal work of Shor [34]. As a consequence, the cryptographic world is focusing
its efforts on producing Post-Quantum secure signature schemes. At present,
the scene is dominated by protocols based on lattice problems such as LWE and
SIS, as well as multivariate equations (MQ, UOV), with the noticeable exception
of isogeny-based signatures (e.g. [17,20]), a newer family of primitives with very
promising data size. Also, hash-based schemes such as SPHINCS [8] offer a con-
servative choice with reasonable performance and confidence in security. At the
contrary, the community is still struggling to produce efficient and consolidated
code-base signature schemes. A testament of this is given by the ongoing Post-
Quantum Standardization effort by NIST [27], where only 4 code-based signature
schemes were initially submitted, none of which progressed to further rounds of
the competition. Indeed, many code-based schemes have been proposed over the
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 45–65, 2020.
https://doi.org/10.1007/978-3-030-51938-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_3

46 J.-F. Biasse et al.

years, either following the hash-and-sign approach like CFS [11], or relying on the
Fiat-Shamir transform [18] to convert an identification scheme into a signature
scheme. Unfortunately, many of the various proposals have been broken, and all
those that are still considered secure suffer from one or more flaws, be that a
huge public key, a large signature or a slow signing algorithm, which ultimately
make them unsuitable for practical applications.

Our Contribution. In this paper, we propose a signature scheme based on a
novel approach from coding theory. The scheme is built upon an identification
scheme that relies on the hardness of the Linear Code Equivalence problem;
consequently, we name our protocol LESS as in Linear Equivalence Signature
Scheme. This problem has been studied for a long time with regards to its
application to the McEliece and Niederreiter cryptosystem but, to the best of our
knowledge, no scheme has ever been instantiated on it as a stand-alone problem.
In a 2013 paper [32], where the hardness of the problem is studied, there is a
brief reference to zero-knowledge protocols, and the authors describe a version
of Girault’s identification scheme [21] using monomial matrices. However, this
is still fundamentally a protocol based on the hardness of Syndrome Decoding,
following the traditional approach of code-based cryptography. Our approach,
on the other hand, does not involve syndromes and decoding at all, and is purely
based on the hardness of determining the linear isometry between two codes. This
allows us to choose parameters that are much smaller than those usually selected
by schemes based on SDP, which have to protect against generic decoding attacks
such as those in the Information-Set Decoding (ISD) family, or equivalent. As
a consequence, we are able to design extremely practical instances, while at the
same time setting up a new framework for code-based signatures.

The paper is organized as follows. In Sect. 2, we define our notation and give
some preliminary definitions about coding theory and identification schemes.
In Sect. 3, we present the central notion upon which our protocol is based, the
Code Equivalence Problem. We then introduce our scheme, in Sect. 4, along
with a proof of security. A careful security analysis and description of attack
techniques is given in Sect. 5. In Sect. 6, we make further considerations about
the problem, and we discuss the applicability of Quantum attacks. We briefly
describe the Fiat-Shamir transform in Sect. 7, and give other details of how
we can convert our identification scheme into a full-fledged signature scheme.
In Sect. 8, we provide an accurate comparison with the state-of-the-art code-
based signature schemes, present some performance figures, and explain our
computational advantage. Finally, we conclude in Sect. 9.

2 Preliminaries

We denote scalars with lowercase letters, and sets with uppercase letters. Vectors
and matrices are written in boldface, respectively lowercase and upper case. We
will use ⊗ to denote the Kronecker product between matrices (or vectors). We
write a for a function or relation, and A for an algorithm. In stands for the n×n

LESS is More: Code-Based Signatures Without Syndromes 47

identity matrix, and [a; b] for the set of integers {a, a + 1, . . . , b}. Finally, we use

U(A) to indicate the uniform distribution over the set A, and $←− A for the action
of sampling uniformly at random from A.

Let Fq be the finite field of order q. We write GLk(q) for the set of invertible
k × k matrices with elements in Fq. Let Sn be the set of permutations over
n elements. These can equivalently be described as functions π : F

n
q → F

n
q or

in matrix form as n × n matrices with exactly one 1 per row and column. By
analogy, we denote with Mn(q) the set of monomial matrices with elements in
Fq, i.e. all the matrices of the form Q = DP where P is an n × n permutation
matrix and D = {dij} is an n × n diagonal matrix such that dii = di ∈ F

∗
q .

Given a vector x = (x1, · · · , xn) ∈ F
n
q and a permutation π ∈ Sn, we write the

action of π on x as π(x) = (xπ−1(1), · · · , xπ−1(n)).

2.1 Coding Theory

An [n, k]-linear code C of length n and dimension k over Fq is a k-dimensional
vector subspace of F

n
q . It can be represented by a matrix G ∈ F

k×n
q , called

generator matrix, whose rows form a basis for the vector space. Then, the gen-
erator matrix defines the code as a mapping between vectors u ∈ F

k
q and the

corresponding words uG. Obviously, there exist more than one generator matrix
for the same code, corresponding to different choices of basis. It follows that all
generator matrices are connected via a change-of-basis matrix, i.e. an invert-
ible matrix S ∈ GLk(q) such that G′ = SG. Alternatively, a linear code can
be represented as the kernel of a matrix H ∈ F

(n−k)×n
q , known as parity-check

matrix, i.e. C = {x ∈ F
n
q : HxT = 0}. Once again, the parity-check matrix

of a code is not unique. For both cases, there exists a standard choice, called
systematic form. For the generator matrix, this corresponds to G = (Ik | M),
which can be obtained as the row-reduced echelon form starting from any other
generator matrix. The systematic form of the parity-check matrix is given by
H = (−MT | In−k). Note that, in general, it is possible that computing the
row-reduced echelon form of G returns a matrix that does not have full rank.
If this is the case, there are procedures to obtain a matrix in systematic form
by reducing with respect to a different minor (for example, the Round 2 specifi-
cation document of [10] describes one that works in constant-time). We denote
such a procedure with SF.

For every linear code, we can define the dual code as the set of words that
are orthogonal to the code, i.e. C⊥ = {y ∈ F

n
q : ∀x ∈ C, x · yT = 0} It is

then easy to see that a parity-check matrix of a linear code is a generator of its
dual, and viceversa. In fact, it must be that G ·HT = 0k×(n−k). Codes that are
contained in their dual, i.e. C ⊆ C⊥, are called weakly self-dual, and codes that
are equal to their dual, i.e. C = C⊥, are called simply self-dual.

2.2 Identification Schemes and Zero-Knowledge Protocols

We now recall some standard cryptographic notions about the so-called Sigma
protocols, and how to derive identification schemes from them. To do so, we

48 J.-F. Biasse et al.

follow the general outline given in [20], in turn based on definitions and notation
from [1,5,12,23,37].

Definition 1 (Sigma Protocol). Consider two sets X and Y parameterized
by a security parameter λ. Let R be a relation on X × Y defining a language
L = {y ∈ Y : ∃x ∈ X,R(x, y) = 1}. We call witness an element x ∈ X such
that, given y ∈ L, verifies R(x, y) = 1. We define a Sigma Protocol as a 3-round
interactive protocol between two PPT algorithms, a Prover P and a Verifier V,
as described in Table 1 below.

Table 1. Sigma protocol.

Prover Data A witness x for y ∈ L.

Verifier Data y ∈ L.

PROVER VERIFIER

α ← P(x, y)
α−−→
β←−− β ← V(α, y)

γ ← P(α, β, x, y)
γ−−→ {0, 1} ← V(α, β, γ, y)

The triple (α, β, γ) forms a transcript of the protocol, and the three values are
usually known as commitment, challenge and response, respectively. A transcript
for which the verifier outputs 1 (accept) is called valid.
Sigma protocols are often required to satisfy the following properties:

– Completeness: when y ∈ L, an honest prover is accepted with probability 1.
– 2-Special Soundness: there exists an extractor algorithm X such that, for any

y ∈ L, given two valid transcripts (α, β, γ) and (α, β′, γ′) with β 	= β′, the
output X (α, β, γ, β′, γ′) is a witness for R.

– Honest-Verifier Zero-Knowledge: there exists a simulator algorithm S such
that, on input y ∈ L, is able to generate a valid transcript (α, β, γ) that is
distributed identically to one obtained from a real execution of the protocol.

An identification scheme can be defined as a special type of Sigma protocol,
where the relation R is defined over key pairs (sk, pk), and one can think of sk
as a witness for pk.

Definition 2. Let λ be a security parameter. A Canonical Identification Scheme
is composed by a triple of PPT algorithms (K,P,V), respectively Key Generator,
Prover and Verifier, and a parameter �, the length of the challenge, interacting
as described in Table 2, below.

As before, the exchanged data takes the name of commitment, challenge, and
response. Note that we have made explicit the role of the randomness ρ in the
generation of the challenge (remember that P is a probabilistic algorithm). The
scheme is said to be non-trivial if � ≥ λ.

LESS is More: Code-Based Signatures Without Syndromes 49

Table 2. Canonical identification scheme.

Private Key A private key sk output by K(1λ).

Public Key The public key pk corresponding to sk.

PROVER VERIFIER

cmt ← P(sk, pk, ρ)
cmt−−→
ch←−− ch ← {0, 1}�

rsp ← P(sk, pk, ρ, cmt, ch)
rsp−−→ {0, 1} ← V(pk, cmt, ch, rsp)

An impersonator I is a PPT adversary that aims to get verified by V with-
out knowing the private key. The impersonator is able to observe a number of
transcripts from honest executions, before producing a commitment, receiving a
corresponding challenge, and finally outputting its response. The impersonator
is commonly said to have cheating probability equal to 1/2�. We say that I wins
if V(pk, cmt, ch, rsp) = 1, and we define I’s advantage as

∣
∣
∣
∣
Adv(I, λ) = Pr[I wins] − 1

2�

∣
∣
∣
∣
.

We say that an identification scheme is secure against impersonation under
passive attacks if the advantage of any PPT impersonator is negligible.

Usually, identification schemes are defined using challenges that are too
short to obtain a non-trivial instance, the most common case being, as in
this paper, � = 1 (i.e. the challenge is a single bit). However, it is possi-
ble to obtain a non-trivial scheme by iterating the protocol t times (which
can be done in parallel). Formally, the prover generates commitments cmti
for i = 1, . . . , t, then receives a challenge ch ∈ {0, 1}t�, parses it into t blocks
chi of length � each, and produces responses rspi for i = 1, . . . , t. The verifier
receives as input (pk, cmt1, . . . , cmtt, ch, rsp1, . . . , rspt) and accepts if and only if
V(pk, cmti, chi, rspi) = 1 for i = 1, . . . , t. This reduces the cheating probability
to 1/2t�, which makes the scheme non-trivial as long as t ≥ λ/�.

3 The Code Equivalence Problem

In this section we introduce the ideas upon which we base the security of our
protocol. We first formally define the notion of code equivalence.

Definition 3 (Permutation Code Equivalence). We say that two codes C

and C′ are permutationally equivalent, and write C
PE∼ C′, if there is a permuta-

tion π ∈ Sn that maps C into C, i.e.

C′ = {π(x), x ∈ C} .

The previous notion of code equivalence can be extended using linear isometries.
Indeed, let μ = (v, π) ∈ F

∗n
q � Sn be an isometry μ, such that

μ(x) = (v1xπ−1(1), · · · , vnxπ−1(n)).

We can then generalize the previous definition as follows.

50 J.-F. Biasse et al.

Definition 4 (Linear Code Equivalence). We say that two codes C and
C′ are linearly equivalent, and write C

LE∼ C′, if there is a linear isometry μ =
(v;π) ∈ F

∗n
q � Sn such that C′ = μ(C), i.e. C′ = {μ(x), x ∈ C} .

It is clear the previous definitions can equivalently be stated in terms of generator
(or parity-check) matrices; furthermore, the application of a permutation (resp.
linear isometry) corresponds to the right multiplication by a permutation matrix
P (resp. monomial matrix Q).

Let C and C′ be two codes with respective generator matrices G and G′: we
then have

C
PE∼ C′ ⇐⇒ ∃(S,P) ∈ GLk(q) × Sn s.t. G′ = SGP ,

C
LE∼ C′ ⇐⇒ ∃(S,Q) ∈ GLk(q) × Mn(q) s.t. G′ = SGQ.

Another notion of code equivalence (using semilinear isometries) is often
found in the literature; however, it is not needed for our protocol, and therefore
we do not present it here. We instead refer the interested reader to [32] for further
details, and move on to present the hard problems connected to the notions we
just described.

Problem 1 (Permutation Code Equivalence). Let G,G′ ∈ F
k×n
q be two

generator matrices for, respectively, linear codes C and C′. Determine whether
the two codes are permutationally equivalent, i.e. if there exist two matrices
S ∈ GLk(q) and P ∈ Sn such that G′ = SGP .

Problem 2 (Linear Code Equivalence). Let G,G′ ∈ F
k×n
q be two generator

matrices for, respectively, linear codes C and C′. Determine whether the two
codes are linearly equivalent, i.e. if there exist two matrices S ∈ GLk(q) and
Q ∈ Mn(q) such that G′ = SGQ.

The two problems above are clearly two different flavors of the same problem,
namely, deciding whether two codes are equivalent, which differ according to
which notion of code equivalence is considered. However, as we will see, the
connection between the two is not as obvious as it seems.

3.1 Hardness

As proven in [28], the permutation equivalence problem is unlikely to be NP-
complete, since this property would imply a collapse of the polynomial hierarchy.
While the problem can be efficiently solved for some families of codes, there are
however many instances that, after almost 40 years of study, are still intractable.

The first algorithm to solve this problem was proposed by Leon in 1982 [24],
and is able to reconstruct the secret permutation from its action on the set
of codewords with fixed weight. The permutation can efficiently be recovered
when this set is not too large. The bottleneck is in the codewords search, whose
time complexity is nqO(k). Thus, as noted in [4], Leon’s algorithm is impractical,
unless considering codes of small dimension defined over small finite fields.

LESS is More: Code-Based Signatures Without Syndromes 51

The Support Splitting Algorithm (SSA), due to Sendrier [31,32], strongly
improves upon Leon’s algorithm. The algorithm is based on the concept of the
hull, that is, the intersection between a code and its dual. The hull computation
requires simple linear algebra while the time complexity of the whole algorithm
essentially grows as qh, where h is the hull’s dimension. For random codes, this
dimension is with high probability equal to a small constant [33], de facto making
SSA a polynomial-time solver for permutation equivalence in many cases.

One case in which SSA fails is that of codes with a trivial (i.e. zero) hull.
However, an efficient treatment of this situation has recently been provided [4]
through a reduction, running in time O(nω) (with 2 ≤ ω ≤ 3), from permutation
equivalence to an instance of the graph isomorphism problem between undirected
weighted graphs. Another case which cannot efficiently be solved through SSA
is that of codes with a large hull. In fact, since the time complexity is dominated
by qh, SSA becomes quickly unfeasible as h grows. This is, for instance, the
case of self-dual (or weakly self-dual codes), for which h = k: for such codes,
SSA can be made arbitrarily hard by choosing codes with a sufficiently large
dimension. The hardness of such instances is corroborated by the reduction to
graph isomorphism in [4] which, for non-trivial hulls, runs in time O(hnω+h+1)
and, as expected, becomes quickly unfeasible for large values of h.

We conclude this section with a note on the hardness of linear equivalence.
As shown in [32], the problem of establishing the linear equivalence between
two codes can always be reduced to that of finding a permutation equivalence
between their closures. Thus, constructing the closures (as we detail in Sect. 5)
and applying SSA is enough to solve the linear equivalence. However, when q ≥ 5,
the closure of a code is always weakly-self dual. It follows that such instances
are exactly the hardest ones for SSA to solve. These results are confirmed by
the analysis in [29], which includes a study of algebraic approaches to the code
equivalence problem.

4 Protocol Description

We begin by describing the underlying identification scheme, in Table 3.
We now show that our protocol satisfies the necessary security requirements

for identification schemes.

Completeness. It is immediate to check that the protocol is correct, and an
honest prover always gets accepted. In fact, if b = 0 the verifier receives μ = Q̃
and then obviously can check that H(SF(Gμ)) = H(SF(GQ̃)) = H(SF(G̃)) = h
since by construction G̃ = GQ̃. On the other hand, if b = 1, then μ = Q−1Q̃ and
we have H(SF(G′μ)) = H(SF(SGQQ−1Q̃)) = H(SF(SG̃)), which is also equal
to h since SG̃ generates the same code as G̃ and therefore the two matrices have
the same systematic form.

52 J.-F. Biasse et al.

Table 3. The LESS identification scheme.

Public Data Parameters q, n, k ∈ N, matrix G ∈ F
k×n
q and hash function H.

Private Key Invertible matrix S ∈ GLk(q) and monomial matrix Q ∈ Mn(q).

Public Key G′ = SGQ.

PROVER VERIFIER

Choose Q̃
$←− F

n×n
q and set G̃ = GQ̃.

h−−→
Set h = H(SF(G̃)).

b←−− b
$←− {0, 1}.

If b = 0 then μ = Q̃. Accept if H(SF(Gμ)) = h.μ−−→
If b = 1 then μ = Q−1Q̃. Accept if H(SF(G′μ)) = h.

Honest-Verifier Zero-Knowledge. In this section we show that the produced
responses do not leak information about the private key. We do this by proving
that there exists a probabilistic polynomial time simulator algorithm S that,
without the knowledge of the private key, is able to produce a transcript which
is indistinguishable from one obtained after an interaction with an honest verifier.
To this end, we introduce the following straightforward Lemma.

Lemma 1. Let Mn(q) be the set of monomial matrices as defined in Sect. 2.

Then for any A ∈ Mn(q) and B
$←− Mn(q), we have A−1B ∼ U(Mn(q)).

The simulator works as follows.

– When the challenge is b = 0, it can trivially simulate correctly by choosing
a matrix Q̃ uniformly at random. This, in fact, corresponds to a legitimate
response for this challenge, and doesn’t include the secret.

– When the challenge is b = 1, the simulator again chooses a matrix, say Q∗,
uniformly at random. By Lemma 1, we have seen that the product Q−1Q̃
that would be output by an honest execution of the protocol is uniformly
distributed among all monomial matrices. Therefore S is able to simulate
correctly in this case.

This simple argument shows that both responses are actually indistinguish-
able from randomly generated ones, and thus do not reveal any secret.

Soundness. Finally, we prove that the protocol is 2-special sound. We do this
by describing an extractor algorithm and showing that it is able to find a witness,
i.e. solve the code equivalence problem. To this end, let A be an adversary that
is given an instance {G,G′} as in Problem 2. The algorithm proceeds as follows.

To begin, set G and G′ as public data and public key for the identification
scheme. Then, obtain a transcript (cmt, ch0, ch1, rsp0, rsp1) such that ch0 	= ch1
and the verifier accepts (cmt, chi, rspi) for i ∈ {0, 1}: in other words, the tran-
script is such that both challenges are satisfied for the same commitment. Thus,

LESS is More: Code-Based Signatures Without Syndromes 53

the two responses must be two monomial matrices Q̃ and Q∗ such that

H(SF(GQ̃)) = H(SF(G′Q∗)).

Unless he is able to find a collision for the hash function, this means

SF(GQ̃) = SF(G′Q∗).

At this point, since two matrices with the same systematic form define the same
linear code, we have that

ŜGQ̃ = G′Q∗

for some invertible matrix Ŝ or, if we write Q̂ = Q̃(Q∗)−1,

ŜGQ̂ = G′.

It is then easy to verify that Q̂, which can be calculated immediately from the
two responses, and Ŝ, which can be then computed via linear algebra, provide
the desired witness.

5 Security Analysis

In this section we assess the complexity of the state-of-the-art algorithms for
solving the code equivalence problem. We begin by analyzing Leon’s algorithm
and SSA, which both originally target the permutation equivalence problem. We
then describe how the algorithms can be applied to solve linear equivalence.

5.1 Leon’s Algorithm

Leon’s algorithm [24] solves permutation equivalence by analyzing its action
on the subset of codewords with fixed weight ω. Once such a set is computed,
it gets partitioned into smaller subsets, which are then used to retrieve the
permutation mapping one code to the other. The partitioning phase has very
low complexity, while finding all codewords of weight ω is the actual bottleneck
of the algorithm. Usually ω is set as the minimum distance of the code (which,
for random codes, can be estimated with the GV bound); if this set does not
have sufficient structure, then ω is slightly increased. We now briefly describe
how the codeword enumeration can be performed. Let G be the generator of a
code C of length n and dimension k, and GSF = SF(G). For δ ≤ w, and i ≤ k−δ,
we define

U(δ, i) =
{

u ∈ F
k
q s.t. wt(u) = δ, ui = 1, uj = 0 ∀j < i

}

.

It can then be easily seen that, when ω ≤ k (which is the case we consider in
this paper) we have

{c ∈ C s.t. wt(c) = ω} ⊆
{

a(uGSF), a ∈ F
∗
q \ {1}, u ∈

ω⋃

δ=1

k−δ⋃

i=0

U(δ, i)

}

.

54 J.-F. Biasse et al.

From a practical point of view, the codeword search can be performed by testing
all codewords of the form uGSF. Once a codeword of weight ω is found, then
all of its scalar multiples are computed. In particular, few scalar multiples will
be computed, with respect to the whole number of tested codewords, since we
expect the set of weight-ω codewords to be relatively small; thus, we can neglect
the computational cost of this step. For each candidate u, we need to compute
n − k codeword symbols; when u has weight δ, this can be done with δ − 1
multiplications (since the first non null entry of u is 1) and δ − 1 sums in Fq.
Since all sets U(δ, i) are disjoint, it can be straightforwardly shown that the
number of vectors u that are tested is

∑ω
δ=1

(
k
δ

)

(q − 1)δ−1. Then, by neglecting
the cost of the partitioning step, we have

CLEON = O

(

4(n − k)
ω∑

δ=1

(δ − 1)
(

k

δ

)

(q − 1)δ−1

)

. (1)

One final remark is about eventual future developments regarding Leon’s algo-
rithm. Indeed, the algorithm is inefficient for large codes, or for large finite fields,
since the codeword enumeration quickly becomes unfeasible. This step cannot be
avoided, as the algorithm requires to find all the codewords of weight ω. We do
not exclude the possibility of strong improvements in Leon’s algorithm, leading
to the possibility of operating with just a subset of all such codewords. In such a
case, codewords of some weight ω can be efficiently determined by means of ISD
algorithms which, at each call, randomly pick a codeword of the desired weight.
Thus, multiple ISD calls can be used to find the required number of codewords
of the desired weight. If this scenario ever became a concern, the issue could be
entirely avoided by choosing code parameters such that even a single ISD call is
computationally too expensive.

5.2 The Support Splitting Algorithm

A fundamental concept to analyze SSA is that of signature function, introduced
in [31], which is defined in the following way.

Definition 5. Let C be a linear code of length n; we say that a function S is a
signature function over a set F if it maps C and a position i ∈ [0;n − 1] to F
and is such that

S(C, i) = S
(

π(C), π(i)
)

, ∀π ∈ Sn.

We say a signature function is fully discriminant if S(C, i) 	= S(C, j), ∀i 	= j.

Signature functions can be used to recover information about the permutation
that is acting on the code; in particular, once in possession of a fully discriminant
signature, the permutation π can immediately be recovered, since

S(C, i) = S(C′, j) ⇐⇒ j = π(i). (2)

Assuming that such a fully discriminant function S is available, SSA corre-
sponds to the trivial algorithm that searches for collisions between the sets of

LESS is More: Code-Based Signatures Without Syndromes 55

values S(C, i) and S(C′, j), for (i, j) ∈ [1;n] × [1;n]. We point out that the exis-
tence of such a function (and one that doesn’t require unfeasible computation)
is clearly not guaranteed for all pairs of codes. In such cases, SSA makes use of
signatures refining, that is, new computations and combinations of signatures,
that proceed until a fully discriminant function is obtained [32]. In this paper,
with a conservative choice, we assume that the chosen signature function is fully
discriminant for the pair of codes considered, and that the refining of signatures
is never required. In this way, we are guaranteed to provide a lower bound on the
actual complexity of SSA. The signature function proposed by Sendrier in [31]
is based on the hull space of a code, which is defined as

Hull (C) = C ∩ C⊥.

An efficiently computable signature function, which at the same time is suffi-
ciently discriminant, can be obtained from the weight enumerator function of
the hull of a code (with some proper additional operations). For the complete
details, we refer to reader to [31]; for the purpose of this paper, we are just inter-
ested in the associated complexity, which grows as qdHull , where dHull denotes
the dimension of the hull. Then, a conservative estimate for the complexity of
using SSA to solve the Permutation Equivalence Problem is given by

CSSA = O
(

n3 + n2qdHull log n
)

. (3)

The leading term in Eq. (3) is clearly qdHull . Thus, the dimension of the
hull plays a central role in determining the complexity of the algorithm. As
verified empirically in [31], the hull of random codes is very likely to have small
dimension. Furthermore, it has been shown in [33] how, as n grows, the size
of the hull of a random code approaches a small constant which depends only
on q. It follows that, for random codes, Permutation Code Equivalence can be
efficiently solved by SSA with high probability. However, for special choices such
as weakly self-dual codes, the hull can be made arbitrarily large by increasing
the code dimension. Thus, for such codes, SSA has exponential complexity.

5.3 Application to Linear Code Equivalence

We now describe how the algorithms can be used to tackle the linear equivalence
problem. To do that, we need to introduce the concept of closure of a code.

Definition 6. Let Fq = {a0 = 0, a1, · · · , aq−1}, and a = (a1, · · · , aq−1). We
define the closure of a linear code C as

C̃ = {c ⊗ a, c ∈ C}.

As observed by Sendrier in [32], the linear equivalence problem between a pair
of codes C and C′ can be reduced to the permutation code equivalence problem
between their closures C̃ and C̃′. We remark that the above definition for the
closure is slightly different from the one considered in [32], since we consider a

56 J.-F. Biasse et al.

different order to build the closure’s coordinates; clearly, this has no practical
impact in the relation between the linear and permutation equivalence problems.

To use Leon’s algorithm, it is necessary to enumerate all the low-weight code-
words in the closures. Then, one can run the algorithm on the set of codewords
of weight ω′ = (q − 1)ω, where ω can be approximated by the GV bound for
parameters n, k and q. The time complexity can be estimated through Eq. (1) by
setting ω = dGV(n, k, q). To use SSA, instead, it is enough to apply the algorithm
directly on the closures. However, a crucial result is that, for q ≥ 5, closures of
codes are always weakly self-dual, i.e., have a hull of maximum dimension k.

It is worth noting that an isometry between C and C′ can be built (with
simple linear algebra) from a linear equivalence between their duals C⊥ and C′⊥,
whose closures have hull of dimension n − k. Thus, when 2k > n, the optimal
strategy is to attack the duals of the considered codes.

6 Quantum Attacks on the Code Equivalence Problem

To the best of our knowledge, there are no dedicated quantum algorithms for
solving the Code Equivalence Problem. In here, we discuss the applicability of
the usual quantum cryptanalysis approaches.

First, we consider the use of Grover’s search algorithm [22], which is known to
improve the cryptanalysis of a system in almost all cases. Indeed, the algorithm
allows us to efficiently search an unsorted database X, consisting of N entries,
for an element x ∈ X such that f(x) = 1. The cost of the algorithm is in
O(

√
NCf), where f : X → {0, 1} and where Cf is the cost of implementing

f . Note that here “cost” means either number of gates or execution time (i.e.
circuit depth). With regards to Leon’s algorithm, it can indeed be expected that
an application of Grover can improve the search part of the algorithm, leading
to the usual speedup which corresponds, in the worst case, to roughly halving
the complexity exponent (if one ignores the remaining part). This is similar to
what happens in the case of Information-Set Decoding (see for instance [7]).
Interestingly, though, a Grover search over all possible secrets (i.e. P ∈ Sn)
would not outperform the classical SSA because of the size of Sn.

In principle, it is also possible to use Grover’s algorithm within SSA. Indeed,
for each i ∈ [1;n], the search for j ∈ [1;n] such that j = π(i) corresponds to
finding j ∈ [1;n] such that f(j) = 1, where the function f : [1;n] → {0, 1} is
defined as

f(j) =
{

1 if S(C′, j) = S(C, i)
0 otherwise

for a fully discriminant function S. Following the application of Bennett’s generic
method [6] (which converts any algorithm taking time T and space S into a
reversible algorithm taking time T 1+ε and space O(S log T)), the cost of a quan-
tum circuit evaluating f is that of S, which is in Õ(nqdHull log n). Thus, the search
for j ∈ [1;n] such that j = π(i) costs

O(
√

|[1;n]|Cf) = Õ(n3/2qdHull log n).

LESS is More: Code-Based Signatures Without Syndromes 57

This process needs to be repeated n/2 times. Every time a pair (i, π(i)) is
found, both elements can be removed from the search space. This means that, in
the previous formulas, we replace [1;n] with [1;n](k), where n−2k ≤ |[1;n](k)| ≤
n − k (at each stage we remove either 1 or 2 elements depending on whether
π(i) = i). Our total cost is

O

((
∑

k≤n/2

√

|[1;n](k)|
)

Cf

)

.

We can bound this using the fact that

n/2
∑

k=1

√
2k

︸ ︷︷ ︸

Ω(n3/2)

≤
∑

k≤n/2

√

|[1;n](k)| ≤
n∑

k=n/2

√
k

︸ ︷︷ ︸

Ω(n3/2)

.

In the end, the complexity of the overall procedure is Õ(n5/2qdHull log n), which
does not outperform the classical method consisting in 2n evaluations of S fol-
lowed by a matching of the values obtained.

The other famous family of algorithms for quantum cryptanalysis is based on
quantum Fourier sampling. These algorithms can be seen as generalizations of
Shor’s algorithm for factoring and solving the Discrete Logarithm Problem [34].
The general approach is to rephrase a problem as the search for a secret subgroup
H within a known “control group” G. The Quantum Fourier Transform (QFT)
over G allows us to create a state whose measurement (hopefully) yields an
element in Ĥ. By repeating this operation and using ad-hoc methods depending
on H, one can recover H and solve the problem. In [15] and in the follow up
work [14], Dinh, Moore and Russell show that to use a similar approach for
solving the Permutation Equivalence Problem, one would have to choose G =
(GLk(q) × Sn) � Z2. A criterion is given in Corollaries 1 and 2 of [14] for linear
codes to be HSP-hard, meaning that it does not reveal any information about
Ĥ. The criterion asks that the code has very high rate, namely, that qk2 ≤ n0.2n,
and that the automorphism group of the code has very small degree.

The authors give some concrete examples of families of codes that satisfy the
criterion. This is the case, for instance, of Alternant codes and Goppa codes. For
these families, it is possible to give explicit bounds on the size of the automor-
phism group. Moreover, since these codes are subfield subcodes of Generalized
Reed-solomon codes, the criterion can be satisfied by considering a generator
matrix over the extension field and referring to the dimension of the “parent”
code. This makes it so that the resulting code does not need to have the very
high rate mentioned above, thus generating practical cryptographic instances.

The results just presented naturally extend to the Linear Equivalence Prob-
lem via the use of the closure. We note that these conditions, as interesting
as they are from a theoretical point of view, are not necessary for our codes
to offer quantum resistance. Indeed, no attack relying on the quantum Fourier
sampling has been described so far in literature. Interestingly, the conditions

58 J.-F. Biasse et al.

are also not sufficient to claim post-quantum resistance since other attacks not
based on quantum Fourier sampling might exist. This is for example the case
of certain Goppa codes which satisfy the conditions described in [15] showing
the impossibility of using the quantum Fourier sampling method, despite being
attacked by the classical SSA because their hull has a small dimension.

7 Signature Scheme

The usual security notion that is required for signature schemes is Existen-
tial Unforgeability against Chosen-Message Attacks, or simply EUF-CMA. The
attack model allows an adversary to perform polynomially-many queries to a
signing oracle, in order to obtain valid message-signature pairs that could be
used to extrapolate information. The adversary’s goal is to be able to produce
a single valid message-signature pair (different than those queried).

There is a standard conversion mechanism due to Fiat and Shamir, that
allows to transform a canonical identification scheme into a signature scheme.
The idea of the so-called Fiat-Shamir transform [18] is to make the protocol
non-interactive by having the prover run the scheme with itself, using a random
oracle to generate the challenge. The prover can then send the whole transcript
(cmt1, . . . , cmtt, rsp1, . . . , rspt) as a signature to the verifier, who accepts if and
only if V(pk, cmti, chi, rspi) = 1 for all i = 1, . . . , t (Table 4).

Table 4. The Fiat-Shamir transform.

Private Key A (signing) private key sk output by K(1λ).

Public Key The (verification) public key pk corresponding to sk.

SIGNER VERIFIER

Input message m

cmti ← P(sk, pk, ρi)

ch = H(m, cmt1, . . . , cmtt)

chi ∈ {0, 1}� ← ch

rspi ← P(sk, pk, ρi, cmti, chi)

σ = (cmt1, . . . , cmtt, rsp1, . . . , rspt)
σ−−→

ch = H(m, cmt1, . . . , cmtt)

chi ∈ {0, 1}� ← ch

{0, 1} ← V(pk, cmti, chi, rspi)

The following theorem was proved in [1] and states the security of the Fiat-
Shamir transform in all generality.

Theorem 1. Consider a non-trivial canonical identification protocol that is
secure against impersonation under passive attacks. Then the signature scheme
derived using the Fiat-Shamir transform is secure against chosen-message
attacks in the random oracle model.

LESS is More: Code-Based Signatures Without Syndromes 59

In the attack scenario that includes a quantum adversary, able to make quan-
tum queries to the random oracle, the Fiat-Shamir transform could in prin-
ciple not suffice to guarantee security, as the strategy employed in the proof
requires techniques that are not compatible (e.g. rewinding). As a consequence,
Unruh designed an alternative transform [36], which is proved to be secure in the
QROM. The transform is considerably less practical than Fiat-Shamir, and this
prompted a follow-up body of work trying to analyze the situation. Recently,
two contributions [16,25] appeared at CRYPTO 2019, explaining how it may
be safe, in certain instances, to still employ Fiat-Shamir in the presence of a
quantum adversary. In particular, in [16], the case of lattice signatures is ana-
lyzed explicitly, and the authors show that popular schemes, such as those based
on the work of Lyubashevsky [26], satisfy the collapsing property necessary to
achieve existential unforgeability in the QROM. This is done by introducing a
(rather plausible) assumption, which is justified by the authors, mentioning that
the separation between the collision resistance and collapsingness properties is
usually only artificial. As a matter of fact, the former is already a feature in the
majority of Sigma protocols that are used with Fiat-Shamir, since it is necessary
to guarantee unforgeability, and our scheme is no exception. Following the argu-
ments detailed in Sect. 4, we can argue that applying Fiat-Shamir to the LESS
identification scheme is enough to preserve EUF-CMA security in the QROM.

8 Concrete Instances

In this section we present concrete instances of the LESS protocol, as well as a
thorough comparison with the state of the art of code-based signatures. To high-
light the novelty of our approach, we remind the reader that all existing schemes
in literature are based on the traditional method in code-based cryptography,
which relies on the hardness of the syndrome decoding problem.

Identification Schemes. The credit for the first code-based identification
scheme is attributed to Stern [35]. The protocol, proposed in 1989, is a very
simple 3-pass scheme with three commitments, and thus a cheating probability
of 2/3, which in turn means the number of rounds necessary to guarantee secu-
rity is quite high. Since the size of the public key is also very large, the scheme
is quite impractical, and remains in literature mostly as a reference. The scheme
was then marginally improved by Véron [38], using a slightly different formula-
tion for the private key. In 2010, Cayrel, Véron and El Yousfi introduce a new
scheme [9] with a few interesting modifications, such as the use of q-ary codes
and a 5-pass framework, leading to a cheating probability is q/(2q − 1) which,
for large enough values of q, can be approximated as 1/2. It follows that, despite
the large alphabet size, the scheme performs better than its predecessors. The
entire line of work can be further improved by using circulant matrices, as shown
in [19], a variation of Stern’s scheme instantiated with quasi-cyclic codes, and
later by Aguilar, Gaborit and Schrek [2]. The latter, a 5-pass scheme similar
to [9], is usually regarded as the most efficient proposal to obtain a signature

60 J.-F. Biasse et al.

scheme from an identification scheme. Yet, as we will see, the communication
cost is still very high, leading to an impractical signature size.

Other Approaches. Two schemes have recently come to attention as promis-
ing solutions for code-based signatures. Wave [13] describes a family of trapdoor
one-way preimage sampleable functions, following the CFS framework and uti-
lizing a new class of codes known as Generalized (U | U + V) Codes to sample
preimages of high weight, rather than low weight as usual. This novel approach
is extremely interesting, but is still far from practical, leading to a scheme with
a huge public key (about 4 Mb) and a high-complexity signing algorithm (in the
order of λ3 for a security level of λ bits, as mentioned by the authors). Duran-
dal [3] obtains a signature scheme applying the Fiat-Shamir transform to an
identification scheme using codes in the rank metric. The scheme is based on the
framework of Schnorr [30], successfully exploited by Lyubashevsky for the lattice
case [26], and obtains relatively small keys and signature sizes. However, there
are some concerns about security, mostly due to the lack of an explicit proof
of leakage immunity and to a security reduction that relies on a new ad-hoc
problem which is rather convoluted and not so well-studied.

8.1 Choice of Parameters

We now provide some concrete instances of the scheme, which we depict in
Table 5. In light of what explained in Sect. 6, our main concern is the classical
security, so we choose system parameters to achieve 128-bit security against
Leon’s algorithm and SSA.

Table 5. Proposed LESS instances, targeting 128-bit security.

n k q Type

LESS-I 54 27 53 MONO

LESS-II 106 45 7 MONO

LESS-III 60 25 31 PERM

Clearly, to instantiate the scheme we need to choose a public code which does
not allow for an easy solution of the corresponding code equivalence problem. The
first and most natural approach is to rely on the hardness of Linear Equivalence
by using random codes over Fq with q ≥ 5, and choose n and k such that
the complexities of Leon’s algorithm and SSA are above the desired security
level. LESS-I and LESS-II instances have been designed with this criteria; in
the last column of Table 5 we remark the fact that monomial matrices are used
in the protocol. In particular, LESS-I parameters have been obtained with the
goal of optimizing the trade-off between security and performance, by looking
for the triplet of values (n, k, q) that minimizes the (maximum) communication

LESS is More: Code-Based Signatures Without Syndromes 61

cost per round and, at the same time, guarantees that the complexities of both
Leon’s algorithm and SSA are above the desired security level. Note that this
is not the case in some of the previous works such as [9], where the average
communication cost is considered, and the average is taken over the cost of
different responses. However, when designing a signature scheme, one is only
interested in the maximum size of the signature, and therefore we deem more
relevant to take into the account the maximum cost for each round. On the
other hand, LESS-II parameters have been obtained by seeking the best trade-
off between the scheme security and the computational efficiency of the algebra
in the underlying finite field: for this reason, the field size is relatively small (i.e.,
q = 7 versus q = 53 for LESS-I) and of practical use.

The final choice, aimed at obtaining a performance advantage, is to restrict
the scheme to permutations. In this case, in fact, the communication cost is
reduced by the amount of bits necessary to transmit the scaling factors in each
monomial matrix. However, to provide security, random codes are no longer
enough, since, as we have seen, they have usually a very small hull. Therefore, it
becomes necessary to choose a weakly-self dual code. It is possible to show that
such a code can be generated in polynomial time. We call this parameter set
LESS-III, and remark the fact that it uses only permutations in the last column
of Table 5.

8.2 Performance and Comparison

The maximum communication cost per round is calculated as follows. We denote
by lHash and lSeed the sizes of, respectively, a hash and a seed for a pseudorandom
generator. In our scheme, the commitment is a hash value (thus, requiring lHash

bits), and the challenge is a single bit. When b = 0, the reply is a random mono-
mial matrix and can be compactly transmitted by sending the corresponding
seed. This trick however cannot be applied in the case b = 1 which, requires the
transmission of n

(�log2 n� + �log2 (q − 1)�)

bits. Then, the maximum commu-
nication cost per round is

lHash + 1 + max
{

n
(�log2 n� + b �log2 (q − 1)�)

, lSeed
}

,

where b = 0 or 1 depending on whether permutations or monomials are used.
Note that, in order to have a fair comparison, we had to scale up parameters

for all the compared schemes, since those were given according to a variety of
different metrics (none of which were sufficient to guarantee a secure signature
scheme). This means for example that we require 128 bits of security against
impersonation (commonly given at 2−16), and assume that hash digests and seeds
are 128 bits long. Following the suggestion of [20, Remark 2], we instantiate Fiat-
Shamir with a number of rounds equal to the desired security level (in this case
128). The resulting signature scheme achieves 128-bit security with a signature
size which, with respect to the AGS scheme, gets reduced by a factor which
ranges from 57% for LESS-II to 82% for LESS-III (Table 6).

62 J.-F. Biasse et al.

Table 6. Comparison between code-based signature schemes obtained from identifica-
tion schemes, for 128-bit security. All sizes in bits, except where indicated.

Véron [38] CVE [9] AGS [2] LESS-I LESS-II LESS-III

Public Matrix 262,144 86,528 599 8,748 14,310 7,500

Public Key 1,024 832 599 8,748 14,310 7,500

Max. Comm. Cost per Round 2,434 3,593 2,792 777 1,189 489

Number of rounds 219 129 128 128 128 128

Signature size (kB) 66.63 57.94 44.67 12.43 19.02 7.82

Regarding a comparison with the two new approaches, the numbers are as
follows. For Wave, the key size is given by 0.368n2 bits and the signature size
by 2n. The authors suggest using a code of length n = 9, 078, which leads
to 30,326,911 bits of public key, i.e. roughly 3.8 MB, and 2.2 kB of signature.
Durandal features more practical sizes: two sets of parameters are proposed, the
smallest of which has 121,961 bits of public key and 32,514 bits of signature,
which corresponds to approximately 15 kB and 4 kB, respectively. The proposed
LESS instances feature a much smaller public key, while the signature size is
only a few times bigger.

9 Conclusion

In this paper, we have presented LESS, a new code-based signature scheme
derived from a zero-knowledge identification scheme. Our protocol is based on an
innovative use of a long-standing problem in code-based cryptography, the Code
Equivalence problem. Rather than looking at this in the context of McEliece-like
encryption, in fact, our scheme exploits the action of linear isometries on codes
as a stand-alone tool to provide security. This problem and its hardness have
been thoroughly studied over the years, and therefore it is possible to give an
accurate security assessment.

Since our scheme doesn’t involve syndromes and doesn’t require any hardness
assumptions or security results connected to decoding, we are able to choose, to
our advantage, ad hoc parameters which would not normally be usable within
the traditional code-based framework (due to poor error-correction capability).
As a result, for instance, all the codes considered have very short lengths, which
means the sizes of the objects involved in the signature scheme can be kept
small. The public keys in our protocol are among the smallest in code-based
cryptography, without needing to resort to families with special structure such
as Quasi-Cyclic (QC) codes. Furthermore, the size of our signatures is as short
a few Kilobytes (less than 8 for the LESS-III parameter set), in line with the
major post-quantum signature schemes. Our design performs better than the
traditional solutions based on identification schemes in nearly every aspect, and
compares very well with modern approaches to code-based signatures such as
Wave [13] and Durandal [3]. Finally, we expect to see very good performance

LESS is More: Code-Based Signatures Without Syndromes 63

from the computation point of view, due to the simplicity of the underlying
arithmetic. Naturally, a full-fledged and optimized implementation will be the
topic of a follow-up work. To conclude, we see our work as but the first step in
paving the way for a new, very promising trend in code-based cryptography.

Acknowledgments. Jean-François Biasse was supported by the U.S. National Sci-
ence Foundation under grant 1839805, and grant 1846166, by NIST under grant
60NANB17D184, and by a Seed Grant of the Florida Center for Cyber-security.

Edoardo Persichetti and Paolo Santini were supported by the U.S. National Science
Foundation under grant 1906360.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 28

2. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification
scheme with reduced communication. In: 2011 IEEE Information Theory Work-
shop, pp. 648–652, October 2011. https://doi.org/10.1109/ITW.2011.6089577

3. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank
metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 25

4. Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation code equivalence is not
harder than graph isomorphism when hulls are trivial. In: IEEE ISIT 2019, pp.
2464–2468, July 2019

5. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

6. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

7. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6

8. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

9. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 12

10. https://classic.mceliece.org/
11. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital

signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 10

12. Damg̊ard, I.: On Σ-protocols. Lecture Notes, University of Aarhus, Department of
Computer Science (2002)

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1109/ITW.2011.6089577
https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-19574-7_12
https://classic.mceliece.org/
https://doi.org/10.1007/3-540-45682-1_10

64 J.-F. Biasse et al.

13. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-
way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 2

14. Dinh, H., Moore, C., Russell, A.: Limitations of single coset states and quantum
algorithms for code equivalence. Quantum Inf. Comput. 15(3–4), 260–294 (2015).
ISSN 1533-7146

15. Dinh, H., Moore, C., Russell, A.: McEliece and niederreiter cryptosystems that
resist quantum fourier sampling attacks. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 761–779. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 43

16. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

17. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In:
IEEE International Symposium on Information Theory, pp. 191–195. IEEE (2007)

20. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

21. Girault, M.: A (non-practical) three-pass identification protocol using coding the-
ory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp.
265–272. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0030367

22. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
STOC 1996, Philadelphia, Pennsylvania, USA, pp. 212–219. ACM (1996). ISBN
0-89791-785-5. https://doi.org/10.1145/237814.237866

23. Katz, J.: Digital Signatures. Springer, Boston (2010). https://doi.org/10.1007/978-
0-387-27712-7

24. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans.
Inf. Theory 28(3), 496–511 (1982). https://doi.org/10.1109/TIT.1982.1056498.
ISSN 1557-9654

25. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

26. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

27. https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cry-
ptography-Standardization

28. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf.
Theory 43(5), 1602–1604 (1997)

29. Saeed, M.A.: Algebraic approach for code equivalence. Ph.D. thesis (2017)

https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-642-22792-9_43
https://doi.org/10.1007/978-3-642-22792-9_43
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/BFb0030367
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1109/TIT.1982.1056498
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cry-ptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cry-ptography-Standardization

LESS is More: Code-Based Signatures Without Syndromes 65

30. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

31. Sendrier, N.: The support splitting algorithm. IEEE Trans. Inf. Theory 46, 1193–
1203 (2000). https://doi.org/10.1109/18.850662

32. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its appli-
cation to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS,
vol. 7932, pp. 203–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38616-9 14

33. Sendrier, N., Symbolique, P.: On the dimension of the hull. SIAM J. Discrete Math.
10, 282–293 (1995). https://doi.org/10.1137/S0895480195294027

34. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

35. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

36. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

37. Venturi, D.: Zero-knowledge proofs and applications. Lecture Notes, Sapienza Uni-
versity of Rome, Department of Computer Science (2015)

38. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1997). https://doi.org/10.1007/
s002000050053

https://doi.org/10.1007/BF00196725
https://doi.org/10.1109/18.850662
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1137/S0895480195294027
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/s002000050053
https://doi.org/10.1007/s002000050053

UC Updatable Databases and
Applications

Aditya Damodaran and Alfredo Rial(B)

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
{aditya.damodaran,alfredo.rial}@uni.lu

Abstract. We define an ideal functionality FUD and a construction ΠUD

for an updatable database (UD). UD is a two-party protocol between an
updater and a reader. The updater sets the database and updates it at
any time throughout the protocol execution. The reader computes zero-
knowledge (ZK) proofs of knowledge of database entries. These proofs
prove that a value is stored at a certain position in the database, without
revealing the position or the value.

(Non-)updatable databases are implicitly used as building block in
priced oblivious transfer, privacy-preserving billing and other privacy-
preserving protocols. Typically, in those protocols the updater signs each
database entry, and the reader proves knowledge of a signature on a
database entry. Updating the database requires a revocation mechanism
to revoke signatures on outdated database entries.

Our construction ΠUD uses a non-hiding vector commitment (NHVC)
scheme. The updater maps the database to a vector and commits to the
database. This commitment can be updated efficiently at any time with-
out needing a revocation mechanism. ZK proofs for reading a database
entry have communication and amortized computation cost independent
of the database size. Therefore, ΠUD is suitable for large databases. We
implement ΠUD and our timings show that it is practical.

In existing privacy-preserving protocols, a ZK proof of a database
entry is intertwined with other tasks, e.g., proving further statements
about the value read from the database or the position where it is stored.
FUD allows us to improve modularity in protocol design by separating
those tasks. We show how to use FUD as building block of a hybrid
protocol along with other functionalities.

Keywords: Vector commitments · ZK proofs · Universal
composability

1 Introduction

In priced oblivious transfer (POT) [3], a provider offers N messages to a user.
Each message mi is associated with a price pi (∀i ∈ [1, N]). The user purchases
a message mi without disclosing i or pi.

This research is supported by the Luxembourg National Research Fund (FNR) CORE
project “Stateful Zero-Knowledge” (Project code: C17/11650748).

c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 66–87, 2020.
https://doi.org/10.1007/978-3-030-51938-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_4&domain=pdf
http://orcid.org/0000-0003-4030-6859
http://orcid.org/0000-0003-1107-4841
https://doi.org/10.1007/978-3-030-51938-4_4

UC Updatable Databases and Applications 67

In privacy-preserving billing (PPB) [25], a user receives meter readings from
a meter that measures the consumption c of some service. The provider defines a
tariff policy that typically consists of several functions. For example, a different
rate ri is applied depending on the time interval i of consumption. The user
pays a price p = ric for her consumption at time interval i and proves that
pi is correct without revealing c, ri or i. Usually, multiple prices p are aggre-
gated and paid together so that the aggregate reveals little information about
each (c, ri, i).

In POT [9,41] (resp. PPB [39,40]) protocols, the user frequently uses a zero-
knowledge (ZK) proof to prove that pi (resp. ri) is correctly associated with i.
The user discloses neither pi (resp. ri) nor i. Nevertheless, the user needs to prove
in ZK statements about i and pi (resp. ri), such as proving that she retrieves mi

and that she has enough funds to pay pi.
We can generalize the task of associating i with pi (resp. ri) as the task of

proving that an entry is read from a database. Consider a database DB of N
entries of the form [i, vri] (∀i ∈ [1, N]), where i is the position and vri the value
stored at that position. The provider establishes the contents of DB, which are
revealed to the user. Then the user proves knowledge of a database entry [i, vri].
The provider does not learn [i, vri] but is guaranteed that [i, vri] is stored in DB.

To allow the user to prove knowledge of an entry [i, vri] from DB, DB needs to
be stored into some data structure that allows for efficient ZK proofs. POT [9,41]
and PPB [39,40] protocols typically use a signature scheme with efficient ZK
proofs of signature possession. The provider computes signatures si on tuples [i,
vri] (∀i ∈ [1, N]) and sends them to the user. Then the user proves knowledge
of a signature si on [i, vri] to prove that i and vri are stored together in DB.

Practical POT and PPB protocols require that the provider be able to update
DB, so the data structure should allow efficient updates. However, if signatures
are used, each time a database entry is updated, a signature revocation mecha-
nism would be needed to revoke the signatures that sign old database entries.

In addition to proving that [i, vri] ∈ DB, the user needs to prove other state-
ments about i and vri . Very frequently, in cryptographic protocol design, these
two types of statements are intertwined. I.e, protocols use ZK proofs that involve
both statements to prove that the witness is stored in a data structure and
statements to prove something else about the witness. To improve modularity
in protocol design, we propose to separate those tasks.

Our Contribution: FUD. We use the universal composability (UC) frame-
work [14] and define an ideal functionality FUD for an updatable database (UD)
in Sect. 3. We define UD as a two-party task between a reader R and an updater
U . U sets a database DB and updates it at any time. Both R and U know the
content of DB. R reads in ZK an entry [i, vri] from DB. FUD ensures that it is
not possible to prove that [i, vri] is stored in DB if that is not the case.

In the UC framework, modular protocol design can be achieved by describing
hybrid protocols. In a hybrid protocol, the protocol building blocks are described
by their ideal functionalities, and parties in the real world invoke those ideal
functionalities. We show how to use FUD as building block in a protocol where

68 A. Damodaran and A. Rial

FUD handles the tasks of storing a database DB and proving that an entry [i, vri]
is stored in DB, while the ideal functionality FR

ZK for zero-knowledge is used to
prove further statements about i and vri . One challenge when defining a hybrid
protocol is to ensure that two functionalities receive the same input. To this end,
FUD uses the method proposed in [10], which consists in receiving committed
inputs produced by a functionality FNIC for non-interactive commitments. We
show how to use FUD as building block in a protocol designed modularly in
Sect. 6.

The advantages of our modular design are threefold. First, it simplifies the
security analysis because security proofs in the hybrid model are simpler and
because, by separating the handling of the database from ZK proofs about other
statements, each building block becomes simpler to analyze. Second, it allows
multiple instantiations by replacing each of the ideal functionalities by any pro-
tocols that realize them. Third, it allows the study of the task of creating an
updatable database in isolation, which eases the comparison of different con-
structions for it.

Our Contribution: ΠUD. In Sect. 4, we propose a construction ΠUD for FUD. ΠUD

is based on non-hiding vector commitments (NHVC) [15,33]. A NHVC scheme
allows us to compute a commitment com to a vector x = (x[1], . . . ,x[N]). To
open the value x[i] committed at position i, an opening wi is computed. The
size of wi is independent of N .

ΠUD works as follows. U sends a database DB to R, and both U and R map
DB to a vector x and compute a commitment com to x. To update an entry [i,
vri] to [i, vr′

i], U sends [i, vr′
i] to R, and both U and R update com to obtain a

commitment com ′ to a vector x′ such that x′[i] = vr′
i, while the other positions

remain unchanged. Therefore, updates do not need any revocation mechanism.
To prove in ZK that an entry [i, vri] is in DB, R computes an opening wi for
position i and a ZK proof of knowledge of (wi, i, vri) that proves that x[i] = vri .

We discuss a variant of FUD and ΠUD where R reads several entries
simultaneously. We also discuss a variant where the database is of the form
[i, vri,1, . . . , vri,m], i.e., a database where a tuple of values is stored in each
entry.

We describe an efficient instantiation of ΠUD (and its variants) that uses
a NHVC scheme based on the DHE assumption, similar to the mercurial VC
scheme in [33]. The size of the public parameters of the scheme grows linearly
with N . The size of com and wi is constant and independent of i and N . The
computation cost of com and wi grows linearly with N . However, the cost of
updating com and wi grows only with the number of updated positions and
is independent of N . Also, after wi is computed, it can be reused to compute
multiple ZK proofs. In our efficiency analysis in Sect. 5, we show that the size
of a ZK proof that [i, vri] ∈ DB is independent of the size N of the database.
Moreover, when wi is already computed (after the first proof for position i), the
computation cost is also independent of N . We implement our instantiation of
ΠUD and report timings for updating and reading DB, which attest that our
solution is practical.

UC Updatable Databases and Applications 69

ΠUD can be regarded as an efficient way of implementing an OR proof, i.e., a
ZK proof for a disjunction of statements. Namely, proving that [i, vri] is in DB is
equivalent to computing an OR proof where the prover proves that he knows at
least one of the entries. Typically, the size of an OR proof would grow with N ,
while our proof is of size independent of N . In fact, ΠUD is suitable for databases
of large sizes. We compare our construction with related work in Sect. 7.

2 Modular Design and FNIC

We refer to [14] for a description of the UC framework. An ideal functionality can
be invoked by using one or more interfaces. In the notation in [10], the name of a
message in an interface consists of three fields separated by dots, e.g., ud.read.ini
in FUD in Sect. 3. The first field indicates the name of FUD and is the same
for all interfaces. This field is useful for distinguishing between invocations of
different functionalities in a hybrid protocol. The second field indicates the kind
of action performed by FUD and is the same in all messages that FUD exchanges
within the same interface. The third field distinguishes between the messages
that belong to the same interface, and can take the following values. A message
ud.read.ini is the incoming message received by FUD, i.e., the message through
which the interface is invoked. ud.read.end is the outgoing message sent by FUD,
i.e., the message that ends the execution of the interface. ud.read.sim is used by
FUD to send a message to the simulator S, and ud.read.rep is used to receive a
message from S.

We use the method in [10] to allow FUD to be used as building block in
modularly-designed protocol. This method allows us to ensure, when needed,
that FUD and other functionalities receive the same input. In [10], a function-
ality FNIC for non-interactive commitments is proposed. FNIC consists of four
interfaces:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message m and obtain

a commitment com and an opening open. A commitment com consists of
(com ′, parcom,COM.Verify), where com ′ is the commitment, parcom are the
public parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment com to
check that com contains the correct parcom and COM.Verify.

4. Any party Pi uses the com.verify interface to send (com,m, open) to verify
that com is a commitment to m with opening open.

To ensure that a party Pi sends the same input m to several functionalities,
Pi first uses com.commit to get a commitment com to m with opening open.
Then Pi sends (com,m, open) to each functionality, and each functionality runs
COM.Verify to verify com. Finally, other parties receive com from each function-
alities and use com.validate to validate com. Then, if com received from all the
functionalities is the same, the binding property provided by FNIC ensures that
all the functionalities received the same input m. FUD receives committed inputs
as described in [10].

70 A. Damodaran and A. Rial

3 Functionality FUD

FUD interacts with a reader R and an updater U . FUD maintains a database DB
that consists of N entries [i, vri]. FUD has two interfaces ud.update and ud.read:

1. U sends the ud.update.ini message on input (i, vui)∀i∈[1,N]. For all i ∈ [1,N],
FUD updates DB to contain value vui at position i. If vui = ⊥, no update at
position i takes place. FUD sends (i, vui)∀i∈[1,N] to R.

2. R sends ud.read.ini on input (i, vri , comi , openi , comri , openri), where [i, vri]
is a DB entry and (comi , openi) and (comri , openri) are commitments and
openings to i and vri . FUD verifies the commitments and checks that there
is an entry [i, vri] in DB. FUD sends (comi , comri) to U .

FUD stores a counter cr for R and a counter cu for U . These counters are
used to check that R and U have the same version of DB. When U initiates the
ud.update interface, cu is incremented. When FUD sends the update to R, FUD

checks that cu = cr + 1 and then increments cr . In the ud.read interface, FUD

checks that cu = cr , which ensures that they have the same DB.
When invoked by U or R, FUD first checks the correctness of the input and

aborts if it does not belong to the correct domain. FUD also aborts if an interface
is invoked at an incorrect moment in the protocol. For example, R cannot invoke
ud.read if ud.update was never invoked.

The session identifier sid has the structure (R,U , sid ′). Including the iden-
tities in sid ensures that any reader can initiate an instance of FUD with any
updater. FUD implicitly checks that sid in a message equals the one received
in the first invocation. Before FUD queries the simulator S, FUD saves its state,
which is recovered when receiving a response from S. To match a query to a
response, FUD creates a query identifier qid .

Description of FUD. FUD is parameterised by a universe of values Uv and by a
database size N .

1. On input (ud.update.ini, sid , (i, vui)∀i∈[1,N]) from U :
– Abort if sid /∈ (R,U , sid ′).
– For all i ∈ [1,N], abort if vui /∈ Uv.
– If (sid ,DB, cu) is not stored:

• For all i ∈ [1,N], abort if vui = ⊥.
• Set DB ← (i, vui)∀i∈[1,N] and cu ← 0 and store (sid ,DB, cu).

– Else:
• For all i ∈ [1,N], if vui �= ⊥, update DB with [i, vui].
• Increment cu and update DB and cu in (sid ,DB, cu).

– Create a fresh qid and store (qid , (i, vui)∀i∈[1,N], cu).
– Send (ud.update.sim, sid , qid , (i, vui)∀i∈[1,N]) to S.

S. On input (ud.update.rep, sid , qid) from S:
– Abort if (qid ′, (i, vui)∀i∈[1,N], cu ′) such that qid = qid ′ is not stored.

UC Updatable Databases and Applications 71

– If (sid ,DB, cr) is not stored, set DB ← (i, vui)∀i∈[1,N] and cr ← 0 and
store (sid ,DB, cr).

– Else:
• Abort if cu ′ �= cr + 1.
• For all i ∈ [1,N], if vui �= ⊥, update DB with [i, vui].
• Increment cr and update cr and DB in (sid ,DB, cr).

– Delete the record (qid , (i, vui)∀i∈[1,N], cu ′).
– Send (ud.update.end, sid , (i, vui)∀i∈[1,N]) to R.

2. On input (ud.read.ini, sid , i, vri , comi , openi , comri , openri) from R:
– Abort if (sid ,DB, cr) is not stored.
– Abort if i /∈ [1,N], or if vri /∈ Uv, or if [i, vri] /∈ DB.
– Parse the commitment comi as (com ′

i , parcom,COM.Verify).
– Parse the commitment comri as (comr ′

i , parcom,COM.Verify).
– Abort if COM.Verify is not a ppt algorithm.
– Abort if 1 �= COM.Verify(parcom, com ′

i , i, openi).
– Abort if 1 �= COM.Verify(parcom, comr ′

i , vri , openri).
– Create a fresh qid and store (qid , comi , comri , cr).
– Send (ud.read.sim, sid , qid , comi , comri) to S.

S. On input (ud.read.rep, sid , qid) from S:
– Abort if (qid ′, comi , comri , cr ′) such that qid = qid ′ is not stored, or if

cr ′ �= cu, where cu is in (sid ,DB, cu).
– Delete the record (qid , comi , comri , cr ′).
– Send (ud.read.end, sid , comi , comri) to U .

Variants of FUD. It is straightforward to modify the ud.read interface of FUD

to allow R to read a tuple (i, vri , comi , openi , comri , openri)∀i∈S (S ⊆ [1,N])
of database entries simultaneously. This variant of FUD allows us to reduce
communication rounds when a party in a protocol that uses FUD needs to read
more than one value simultaneously, e.g. a buyer that purchases several items at
once and reads the prices of those items from the database.

FUD can also be modified to store a database of the form [i, vri,1, . . . , vri,m],
i.e., a database where a tuple of values is stored in each entry. In the ud.update
interface, U sends (i, vui,1, . . . , vui,m)∀i∈[1,N], and each value vui,j (j ∈ [1,m])
can be updated or not independently of other values in the same entry. In the
ud.read interface, R sends (i, vri,1, . . . , vri,m) along with commitments and open-
ings to the position and values, i.e., all the values in an entry are read. The
position j ∈ [1,m] of each value vri,j is not hidden from U . This variant of FUD

is useful for protocols where a party needs to read a tuple of values and prove
that they are stored in the same entry and that each vri,j is stored at a certain
position j within the entry, e.g. a user that consumes some utility and reads a
pricing function that is represented by a tuple of values.

FUD can also be modified to interact with two parties such that both of them
can read and update the database, or such that a party reads and updates and
the other party receives read and update operations. ΠUD can be easily adapted
to realize the variants of FUD discussed here.

72 A. Damodaran and A. Rial

4 Construction ΠUD

4.1 Building Blocks

Non-Hiding Vector Commitments. A non-hiding vector commitment (NHVC)
scheme allows one to succinctly commit to a vector x = (x[1], . . . ,x[n]) ∈ Mn

such that it is possible to compute an opening w to x[i], with the size of w
independent of i and n. The scheme consists of the following algorithms.

VC.Setup(1k, �). On input the security parameter 1k and an upper bound � on
the size of the vector, generate the parameters of the vector commitment
scheme par , which include a description of the message space M.

VC.Commit(par ,x). On input a vector x ∈ Mn (n ≤ �), output a commitment
com to x.

VC.Prove(par , i,x). Compute an opening w for x[i].
VC.Verify(par , com, x, i,w). Output 1 if w is a valid opening for x being at

position i and 0 otherwise.
VC.ComUpd(par , com, j, x, x′). On input a commitment com with value x at

position j, output a commitment com ′ with value x′ at position j. The other
positions remain unchanged.

VC.WitUpd(par ,w , i, j, x, x′). On input an opening w for position i valid for a
commitment com with value x at position j, output an opening w ′ for position
i valid for a commitment com ′ with value x′ at position j.

A non-hiding VC scheme must be correct and binding [15].

Ideal Functionality FCRS.Setup
CRS . Our protocol uses the functionality FCRS.Setup

CRS for
common reference string generation in [14]. FCRS.Setup

CRS interacts with any parties
P that obtain the common reference string, and consists of one interface crs.get.
A party P uses the crs.get interface to request and receive the common reference
string crs from FCRS.Setup

CRS . In the first invocation, FCRS.Setup
CRS generates crs by

running algorithm CRS.Setup. The simulator S also receives crs.

Ideal Functionality FAUT. Our protocol uses the functionality FAUT for an
authenticated channel in [14]. FAUT interacts with a sender T and a receiver
R, and consists of one interface aut.send. T uses the aut.send interface to send
a message m to FAUT. FAUT leaks m to the simulator S and, after receiving a
response from S, FAUT sends m to R. S cannot modify m. The session identifier
sid contains the identities of T and R.

Ideal Functionality FR
ZK. Let R be a polynomial time computable binary relation.

For tuples (wit , ins) ∈ R we call wit the witness and ins the instance. Our
protocol uses the ideal functionality FR

ZK for zero-knowledge in [14]. FR
ZK is

parameterized by a description of a relation R, runs with a prover P and a
verifier V, and consists of one interface zk.prove. P uses zk.prove to send a witness
wit and an instance ins to FR

ZK. FR
ZK checks whether (wit , ins) ∈ R, and, in that

case, sends the instance ins to V. The simulator S learns ins but not wit .
We give the security definitions for non-hiding VC schemes and depict

FCRS.Setup
CRS , FAUT and FR

ZK in the full version [17].

UC Updatable Databases and Applications 73

4.2 Description of ΠUD

In ΠUD, an NHVC com is used to commit to the database DB. To this end,
com commits to a vector x such that x[i] = vri for all i ∈ [1,N]. FVC.Setup

CRS is
parameterized by VC.Setup and generates the parameters par .

In the ud.update interface, U uses FAUT to send to R the update
(i, vui)∀i∈[1,N]. In the first execution of this interface, U and R run VC.Commit
to commit to (i, vui)∀i∈[1,N]. In the following executions, U and R update com
by using VC.ComUpd. If R already stores openings wi, R runs VC.WitUpd to
update them.

In the ud.read interface, R uses FR
ZK to prove that comi and comri commit to

a position i and a value vri such that x[i] = vri , where x is the vector committed
in com. The witness of R includes an opening wi. R runs VC.Prove to compute
it if it is not stored.

Description of ΠUD. N denotes the database size. The universe of values Uv is
given by the message space of the NHVC scheme.

1. On input (ud.update.ini, sid , (i, vui)∀i∈[1,N]):
– If (sid , par , com,x, cu) is not stored:

• U uses crs.get to obtain the parameters par from FVC.Setup
CRS . To com-

pute par , FVC.Setup
CRS runs VC.Setup(1k,N).

• U initializes a counter cu ← 0 and a vector x such that x[i] = vui for
all i ∈ [1,N]. U runs com ← VC.Commit(par ,x) and stores (sid , par ,
com,x, cu).

– Else:
• U sets cu ′ ← cu + 1, x′ ← x and com ′ ← com. For all i ∈ [1,N] such

that vui �= ⊥, U computes com ′ ← VC.ComUpd(par , com ′, i,x′[i], vui)
and x′[i] ← vui .

• U replaces the stored tuple (sid , par , com,x, cu) by (sid , par , com ′,x′,
cu ′).

– U uses aut.send to send the message 〈(i, vui)∀i∈[1,N], cu ′〉 to R.
– If (sid , par , com,x, cr) is stored and cu ′ �= cr + 1, R aborts.
– For j = 1 to N , if (sid , j,wj) is stored, R sets w ′

j ← wj and, for all
i ∈ [1,N] such that vui �= ⊥, w ′

j ← VC.WitUpd(par ,w ′
j , j, i,x[i], vui). R

replaces (sid , j,wj) by (sid , j,w ′
j).

– R performs the same operations as U to set or update a tuple (sid , par ,
com,x, cr).

– R outputs (ud.update.end, sid , (i, vui)∀i∈[1,N]).
2. On input (ud.read.ini, sid , i, vri , comi , openi , comri , openri):

– R parses comi as (com ′
i , parcom,COM.Verify).

– R parses comri as (comr ′
i , parcom,COM.Verify).

– R aborts if COM.Verify is not a ppt algorithm.
– R aborts if 1 �= COM.Verify(parcom, com ′

i , i, openi).
– R aborts if 1 �= COM.Verify(parcom, comr ′

i , vri , openri).
– R takes the stored tuple (sid , par , com,x, cr) and aborts if x[i] �= vri .

74 A. Damodaran and A. Rial

– If (sid , i,wi) is not stored, R runs wi ← VC.Prove(par , i,x) and stores
(sid , i,wi).

– R sets the witness wit ← (wi, i, openi , vri , openri) and the instance ins ←
(par , com, parcom, com ′

i , comr ′
i , cr). R uses zk.prove to send wit and ins

to FR
ZK. The relation R is

R ={(wit , ins) :
1 = COM.Verify(parcom, com ′

i , i, openi) ∧
1 = COM.Verify(parcom, comr ′

i , vri , openri) ∧
1 = VC.Verify(par , com, vri , i,wi)}

– U receives ins = (par ′, com ′, parcom, com ′
i , comr ′

i , cr) from FR
ZK.

– U takes the stored tuple (sid , par , com,x, cu) and aborts if cr �= cu, or if
par ′ �= par , or if com ′ �= com.

– U sets comi ← (com ′
i , parcom,COM.Verify) and comri ← (comr ′

i , parcom,
COM.Verify). (COM.Verify is part of the description of R.)

– U outputs (ud.read.end, sid , comi , comri).

Theorem 1. ΠUD securely realizes FUD in the (FVC.Setup
CRS , FAUT, FR

ZK)-hybrid
model if the NHVC scheme is binding.

We analyze in detail the security of ΠUD in the full version [17].

Variants of ΠUD. In Sect. 3, we describe a variant of FUD where R reads several
database entries simultaneously, and another variant where the database entries
are of the form [i, vri,1, . . . , vri,m]. To construct the former, in the read phase, R
simply needs to compute openings wi for each entry read. Relation R replicates
the equations described above for each entry read.

For the latter, com commits to a vector x of length N × m such that x[(i −
1)m+ j] = vri,j for all i ∈ [1,N] and j ∈ [1,m]. In the update phase, each vector
component can be updated independently of others regardless of whether they
belong to the same database entry. To read the database entry i, R needs to
compute openings (w(i−1)m+1, . . . ,wim) to open the positions [(i − 1)m + 1, im]
of the committed vector x. R must also prove that those positions belong to the
database entry i. To this end, the relation R is modified to involve a witness
wit ← (i, openi , {w(i−1)m+j , vri,j , openri,j }∀j∈[1,m]) and an instance ins ← (par ,
com, parcom, com ′

i , {comr ′
i,j }∀j∈[1,m], cr)

R ={(wit , ins) :
1 = COM.Verify(parcom, com ′

i , i, openi) ∧
{1 = COM.Verify(parcom, comr ′

i,j , vri,j , openri,j) ∧
1 = VC.Verify(par , com, vri,j , (i − 1)m + j,w(i−1)m+j)}∀j∈[1,m]}

UC Updatable Databases and Applications 75

5 Instantiation and Efficiency Analysis

Bilinear Maps. Let G, G̃ and Gt be groups of prime order p. A map e : G × G̃ →
Gt must satisfy bilinearity, i.e., e(gx, g̃y) = e(g , g̃)xy; non-degeneracy, i.e., for all
generators g ∈ G and g̃ ∈ G̃, e(g , g̃) generates Gt; and efficiency, i.e., there exists
an efficient algorithm G(1k) that outputs the pairing group setup grp ← (p,G, G̃,
Gt, e, g , g̃) and an efficient algorithm to compute e(a, b) for any a ∈ G, b ∈ G̃.

�-Diffie-Hellman Exponent (DHE) Assumption. Let (p,G, G̃,Gt, e, g , g̃) ← G(1k)
and α ← Zp. Given (p,G, G̃,Gt, e, g , g̃) and a tuple (g1, g̃1, . . . , g�, g̃�, g�+2, . . . ,

g2�) such that gi = g(αi) and g̃i = g̃(αi), for any p.p.t. adversary A, Pr[g(α�+1) ←
A(p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g�, g̃�, g�+2, . . . , g2�)] ≤ ε(k).

NHVC Scheme. We use a NHVC scheme secure under the �-DHE assump-
tion [33].

VC.Setup(1k, �). Generate groups (p,G, G̃,Gt, e, g , g̃) ← G(1k), pick α ← Zp

and compute (g1, g̃1, . . . , g�, g̃�, g�+2, . . . , g2�), where gi = g(αi) and g̃i = g̃(αi).
Output par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g�, g̃�, g�+2, . . . , g2�,M = Zp).

VC.Commit(par ,x). Let |x| = n ≤ �. Output com =
∏n

j=1 gx[j]
�+1−j .

VC.Prove(par , i,x). Let |x| = n ≤ �. Output w =
∏n

j=1,j �=i g
x[j]
�+1−j+i .

VC.Verify(par , com, x, i,w). Output 1 if e(com, g̃i) = e(w , g̃) · e(g1, g̃�)x, else 0.
VC.ComUpd(par , com, j, x, x′). Output com ′ = com · gx′−x

�+1−j .

VC.WitUpd(par ,w , i, j, x, x′). If i = j, output w , else w ′ = w · gx′−x
�+1−j+i .

This NHVC scheme is correct and binding under the �-DHE assumption. This
theorem is proven in the full version [17].

Commitment Scheme for FNIC. A commitment scheme consists of algorithms
CSetup, Com and VfCom. CSetup(1k) generates the parameters parc , which
include a description of the message space M. Com(parc , x) outputs a commit-
ment com to x ∈ M and an opening open. VfCom(parc , com, x , open) outputs 1
if com is a commitment to x with opening open or 0 otherwise.

We use the Pedersen commitment scheme [38]. CSetup(1k) takes a group G of
prime order p with generator g , picks random α, computes h ← gα and sets the
parameters parc ← (G, g , h), which include a description of the message space M
← Zp. Com(parc , x) picks random open ← Zp and outputs a commitment com
← gxhopen to x ∈ M and an opening open. VfCom(parc , com, x , open) outputs
1 if com = gxhopen . In [10], it is shown that any trapdoor commitment scheme,
such as Pedersen commitments, realizes FNIC.

ZK Proof for FR
ZK. To instantiate FR

ZK, we use the scheme in [12]. In [12], a
UC ZK protocol proving knowledge of exponents (w1, . . . , wn) that satisfy the
formula φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (1)

76 A. Damodaran and A. Rial

The formula φ(w1, . . . , wn) consists of conjunctions and disjunctions of “atoms”.
An atom expresses group relations, such as

∏k
j=1 g

Fj

j = 1, where the gj ’s are
elements of prime order groups and the Fj ’s are polynomials in the variables
(w1, . . . , wn).

A proof system for (1) can be transformed into a proof system for more
expressive statements about secret exponents sexps and secret bases sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (2)

The transformation adds an additional base h to the public bases. For each
gj ∈ sbases, the transformation picks a random exponent ρj and computes a
blinded base g′

j = gjhρj . The transformation adds g′
j to the public bases bases,

ρj to the secret exponents sexps, and rewrites g
Fj

j into g′
j
Fj h−Fjρj .

The proof system supports pairing product equations
∏k

j=1 e(gj , g̃j)Fj = 1
in groups of prime order with a bilinear map e, by treating the target group
Gt as the group of the proof system. The embedding for secret bases is
unchanged, except for the case in which both bases in a pairing are secret. In this
case, e(gj , g̃j)Fj must be transformed into e(g′

j , g̃
′
j)

Fj e(g′
j , h̃)−Fj ρ̃j e(h, g̃′

j)
−Fjρj

e(h, h̃)Fjρj ρ̃j .

Signature Schemes. We use a signature scheme for the ZK proof for relation
R in Sect. 5.1. A signature scheme consists of the algorithms KeyGen, Sign and
VfSig. KeyGen(1k) outputs a secret key sk and a public key pk , which include a
description of the message space M. Sign(sk ,m) outputs a signature s on the
message m ∈ M. VfSig(pk , s,m) outputs 1 if s is a valid signature on m and 0
otherwise. This definition can be extended to blocks of messages m̄ = (m1, . . . ,
mn). In this case, KeyGen(1k ,n) receives the maximum number n of messages
as input. A signature scheme must be existentially unforgeable [23].

We use the structure-preserving signature (SPS) scheme in [2]. In SPSs, the
public key, the messages, and the signatures are group elements in G and G̃, and
verification must consist purely in the checking of pairing product equations. We
employ SPSs to sign group elements, while still supporting efficient ZK proofs
of signature possession. In this SPS scheme, a elements in G and b elements in
G̃ are signed.

KeyGen(grp, a, b). Let grp ← (p,G, G̃,Gt, e, g , g̃) be the bilinear map parameters.
Pick at random u1, . . . , ub, v, w1, . . . wa, z ← Z

∗
p and compute Ui = gui , i ∈

[1..b], V = g̃v, Wi = g̃wi , i ∈ [1..a] and Z = g̃z. Return the verification key
pk ← (grp, U1, . . . , Ub, V,W1, . . . ,Wa, Z) and the signing key sk ← (pk , u1,
. . . , ub, v, w1, . . . , wa, z).

Sign(sk , 〈m1, . . . ,ma+b〉). Pick r ← Z
∗
p, set R ← gr, S ← gz−rv

∏a
i=1 m−wi

i , and
T ← (g̃

∏b
i=1 m−ui

a+i)
1/r, and output the signature s ← (R,S, T).

VfSig(pk , s, 〈m1, . . . ,ma+b〉). Output 1 if e(R, V)e(S, g̃)
∏a

i=1 e(mi,Wi) = e(g,

Z) and e(R, T)
∏b

i=1 e(Ui,ma+i) = e(g, g̃).

UC Updatable Databases and Applications 77

5.1 UC ZK Proof for Relation R

To instantiate FR
ZK with the protocol in [12], we need to instantiate R with our

chosen NHVC and commitment schemes. Then we need to express R following
the notation for UC ZK proofs described above.

In R, we need to prove that the position i committed in com ′
i equals the posi-

tion opened in the NHVC com thorough the verification equation e(com, g̃i) =
e(w , g̃) · e(g1, g̃�)x. In our NHVC scheme, α is secret, which makes the relation
between g̃i = g̃αi

and i not efficiently provable. To solve this problem, the public
parameters are extended with SPSs that bind g i with g̃i. Given the parameters
par = (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g�, g̃�, g�+2, . . . , g2�,M = Zp,R = Zp), and
the key pair (sk , pk), for i ∈ [1, �], FCRS.Setup

CRS computes si ← Sign(sk , 〈g i, gsid ,
g̃i〉), where sid is the session identifier. (We note that, in many practical settings,
U can compute the parameters and signatures.) We remark that these signatures
do not need to be updated when the database is updated.

Let (U1, V,W1,W2, Z) be the public key of the signature scheme. Let (R,S,
T) be a signature on (g i, gsid , g̃i). Let (g , h) be the parameters of the Pedersen
commitment scheme. R involves proofs about secret bases and we use the trans-
formation described above for those proofs. The base h is also used to randomize
secret bases in G, and another base h̃ ← G̃ is added to randomize bases in G̃.
Following the notation in [12], we describe the proof as follows.

Ki, openi , v, openri , g̃i,w , R, S, T :

comi = g ihopeni ∧ comri = gvhopenri ∧ (3)

e(R, V)e(S, g̃)e(g,W1)ie(gsid ,W2)e(g, Z)−1 = 1 ∧ (4)

e(R, T)e(U1, g̃i)e(g, g̃)−1 = 1 ∧ (5)

e(com, g̃i)−1e(w , g̃)e(g1, g̃�)v = 1 (6)

Equation 3 proves knowledge of the openings of the Pedersen commitments comi

and comri . Equation 4 and Eq. 5 prove knowledge of a signature (R,S, T) on a
message 〈g i, gsid , g̃i〉. Equation 6 proves that the value v in comri is equal to the
value committed in the position i of the vector commitment com.

Instantiations of Variants of ΠUD. To instantiate the variant of ΠUD where sev-
eral database entries are read simultaneously, we replicate the ZK proof described
above for each entry read. To instantiate the variant with database entries
[i, vri,1, . . . , vri,m], we compute signatures si ← Sign(sk , 〈g i, gsid , g̃(i−1)m+1,
. . . , g̃im〉) to bind the entry i to the positions [(i − 1)m + 1, im] that need to
be opened in the committed vector. The public key of the signature scheme is
now (U1, . . . , Um, V,W1,W2, Z). The ZK proof for relation R is:

78 A. Damodaran and A. Rial

Ki, openi , {vri,j , openri,j , g̃(i−1)m+j ,w(i−1)m+j}∀j∈[1,m], R, S, T :

comi = g ihopeni ∧ {comri,j = gvri,jhopenri,j }∀j∈[1,m] ∧
e(R, V)e(S, g̃)e(g,W1)ie(gsid ,W2)e(g, Z)−1 = 1 ∧
e(R, T)e(U1, g̃(i−1)m+1) · · · e(Um, g̃im)e(g, g̃)−1 = 1 ∧
{e(com, g̃(i−1)m+j)−1e(w(i−1)m+j , g̃)e(g1, g̃�)vri,j = 1}∀j∈[1,m]

The signature on 〈g i, gsid , g̃(i−1)m+1, . . . , g̃im〉 also binds the positions of the
database entry i together and reveals the position j ∈ [1,m] of each value vri,j

within the entry.

5.2 Efficiency Analysis

We analyze the storage, communication, and computation costs of our instanti-
ation of ΠUD.

Storage Cost. R and U store the common reference string, whose size grows
linearly with N . Throughout the protocol execution, R and U also store the
last update of com and the committed vector. R stores the openings wi. In
conclusion, the storage cost is linear in N .

Communication Cost. In the ud.update interface, U sends (i, vui)∀i∈[1,N] to R.
The communication cost is linear in the number of entries updated, except for
the first update in which all entries must be initialized. In the ud.read interface,
R sends an instance and a ZK proof to U . The size of the witness and of the
instance is constant and independent of N . Therefore, the communication
cost of the proof is constant. In conclusion, after the first update phase, the
communication cost does not depend on N .

Computation Cost. In the ud.update interface, U and R update com with
cost linear in the number of updates (except for the first update where all
the positions are initialized). R also updates the stored openings wi with cost
linear in the number of updates. In the ud.read interface, if wi is not stored,
R computes it with cost that grows linearly with N . However, if wi is stored,
the computation cost of the proof is constant and independent of N .
We note that it is possible to defer opening updates to the ud.read interface,
so as to only update openings that are actually needed to compute ZK proofs.
Thanks to that, the computation cost in the ud.update interface is constant. In
the ud.read interface, if wi is stored but needs to be updated, the computation
cost grows linearly with the number of updates but it is independent of N .
The only overhead introduced by deferring opening updates is the need to
store the tuples (i, vui)∀i∈[1,N] sent by U .

In summary, after initializing com and the openings wi, the communication and
computation costs are independent of N , which makes our instantiation of ΠUD

practical for large databases.

UC Updatable Databases and Applications 79

5.3 Implementation and Efficiency Measurements

We have implemented our instantiation of ΠUD in the Python programming
language, using the Charm cryptographic framework [4], on a computer equipped
with an Intel Core i5-7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM.
The BN256 curve was used for the pairing group setup.

To compute the UC ZK proofs for R, we use the compiler in [12]. The public
parameters of the proof system contain a public key of the Paillier encryption
scheme, the parameters for a multi-integer commitment scheme and the specifi-
cation of a DSA group. (We refer to [12] for a description of how those primitives
are used in the compiler.) The cost of a proof depends on the number of elements
in the witness and of the number of equations composed by Boolean ANDs. The
computation cost for the prover of a Σ-protocol for R involves one evaluation of
each of the equations and one multiplication per value in the witness. The com-
piler in [12] extends a Σ-protocol and requires, additionally, a computation of a
multi-integer commitment that commits to the values in the witness, an evalua-
tion of a Paillier encryption for each of the values in the witness, a Σ-protocol
to prove that the commitment and the encryptions are correctly generated, and
3 exponentiations in the DSA group. The computation cost for the verifier, as
well as the communication cost, also depends on the number of values in the
witness and on the number of equations. Therefore, as the number of values in
the witness and of equations is independent of N in our proof for relation R, the
computation and communication costs of our proof do not depend on N .

Table 1. ΠUD execution times in seconds

1024 bit key 2048 bit key

Interface N = 100 N = 1000 N = 100 N = 1000

First update 0.6844 5.9952 0.7940 6.0822

Computation of com or wi 0.0032 0.03787 0.0032 0.03787

1-entry update of com or wi 0.0001 0.0001 0.0001 0.0001

Read 0.7496 0.7545 3.8945 3.5911

Table 1 lists the execution times of the update and read interfaces of the
protocol, in seconds. The execution times of the interfaces of the protocol have
been evaluated against the size N of the database, and against the security
parameter of the Paillier encryption algorithm.

In the first update, the public parameters of all the building blocks are com-
puted, and the database is set up by computing com. In the second row of
Table 1, we show the cost of just computing com, which is virtually the same
as that of computing an opening wi. The computation time of com and wi is
very small. (As required by our applications in Sect. 6, the committed vector
that we use consists of small numbers rather than random values in Zp.) In the
1-entry update, one database entry is modified and com is updated. The cost of

80 A. Damodaran and A. Rial

updating an opening wi is virtually the same. As can be seen, the cost of the
first update grows linearly with the size N of the database, as does the cost of
setting up com or wi, whereas the cost of updating com or wi is very small and
independent of N . The execution times for the read interface depend greatly
upon the security parameters for the Paillier encryption scheme. However, the
execution time is independent of the database size N .

6 Modular Design with FUD and Applications

Consider the following relation R′:

R′ ={(wit , ins) : [i, vri] ∈ DB ∧ 1 = predi(i) ∧ 1 = predv(vri)}

where the witness is wit = (i, vri) and the instance is ins = DB. predi and predv

represent predicates that i and vri must fulfill, e.g., predicates that require i and
vri to belong to a range or set of values.

We would like to construct a ZK protocol for R′ that separates each of the
equations of R′. We show how this protocol is constructed by using FUD and
FNIC as building blocks, along with the functionalities FRi

ZK and FRv

ZK.

1. On input DB, the verifier uses the ud.update interface to send DB to FUD,
which sends DB to the prover.

2. On input (i, vri), the prover checks that [i, vri] ∈ DB.
3. The prover runs the com.setup interface of FNIC. The prover uses the

com.commit interface of FNIC on input i to obtain a commitment comi with
opening openi . Similarly, the prover obtains from FNIC a commitment comri
to vri with opening openri .

4. The prover uses ud.read to send (i, vri , comi , openi , comri , openri) to FUD.
FUD sends comi and comri to the verifier.

5. The verifier runs the com.setup interface of FNIC. The verifier uses the
com.validate interface of FNIC to validate the commitments comi and comri .
Then the verifier stores comi and comri and sends a message to the prover
to acknowledge the receipt of the commitments.

6. The prover parses the commitment comi as (com ′
i , parcom,COM.Verify). The

prover sets the witness wit ← (i, openi) and the instance ins ← (parcom,
com ′

i). The prover uses the zk.prove interface to send wit and ins to FRi

ZK,
where Ri is

Ri = {(wit , ins) : 1 = COM.Verify(parcom, com ′
i , i, openi) ∧ 1 = predi(i)}

7. The verifier receives ins from FRi

ZK. The verifier checks that the commitment
in ins is equal to the stored commitment comi . If it is equal, the binding
property guaranteed by FNIC ensures that FUD and FRi

ZK received as input
the same position i.

8. The last two steps are replicated to prove that vri fulfills 1 = predv(vri) by
using FRv

ZK.

UC Updatable Databases and Applications 81

We think that a modular design has two advantages. First, it allows for a
simple security analysis. A security proof of a protocol described in the hybrid
model is much simpler than a proof that requires reductions to the security
properties of different cryptographic primitives. Moreover, each of the building
blocks realizes a simpler task and thus requires a simpler protocol with a less
involved security analysis. Second, it facilitates the study in isolation of how to
create efficient and secure ZK data structures. Namely, different constructions
for FUD can easily be compared in terms of security and efficiency.

Application to POT. The POT protocols in [9,41] are based on previously pro-
posed oblivious transfer (OT) protocols. However, they do not use OT as a
building block. Instead, the OT protocol is modified ad-hoc to create the POT
protocol, and its security has to be reanalyzed when analyzing the security of
the POT protocol.

FUD can be used to design a POT protocol modularly. The database DB
consists of entries [i, pi], where pi is the price to be paid for message mi. To
purchase mi, the buyer uses the ud.read interface of FUD to read the entry [i, pi].
The provider receives the commitments comi to i and comri to pi. comri is used
as input to a functionality FRv

ZK where the buyer proves that he subtracts the
price pi from his account. comi is used as input to a functionality for oblivious
transfer (modified to receive committed inputs as described in [10]) to allow the
buyer to retrieve mi.

Therefore, FUD allows the design of a POT protocol that uses a functionality
for OT as building block. Thanks to that, the POT protocol can be instantiated
with multiple OT schemes and their security does not need to be reanalyzed.
Moreover, FUD allows the provider to update prices at any time.

Application to PPB. In the PPB protocols in [39,40], a meter reading comprises
the consumption c and the time interval i of consumption. The tariff policy asso-
ciates a different function p = fi(c) to each time interval (and possibly to each
consumption interval). FUD can be used to design a PPB protocol modularly,
where the database DB consists of entries [i, fi]. The PPB protocol works as
follows. First, the meter outputs a signed meter reading (c, i). The user reads [i,
fi] through FUD, and the provider receives commitments comi to i and comri to
fi. comi is used as input to a functionality FRi

ZK to prove that i equals the value
signed in the meter reading. comri is used as input to a functionality FRv

ZK to
prove that p = fi(c). If fi is represented by a tuple of values (e.g. the coefficients
of a polynomial) the variant of FUD for databases of the form [i, vri,1, . . . , vri,m]
should be used. If the formula fi also changes with the consumption interval, the
database can also store the minimum and maximum values of the consumption
interval to allow the user to prove that he uses the right formula. Using FUD

allows the design of PPB protocols modularly and allows the provider to modify
the pricing policies efficiently and at any time.

82 A. Damodaran and A. Rial

7 Related Work

Accumulators. A cryptographic accumulator [6] allows us to represent a set
X succinctly as a single accumulator value A. To prove that a value x ∈ X, a
party computes a witness Wx whose size is independent of X. Some accumulator
schemes are equipped with efficient ZK proofs to prove knowledge of Wx such
that x ∈ X.

NHVC schemes are similar to accumulator schemes that use a trusted setup
and are non-hiding [5,11,13,37], i.e., A does not hide X. (Recently, hiding accu-
mulators [19,21] have been proposed.) The instantiation of NHVC schemes based
on the DHE assumption resembles the accumulator scheme in [11]. The main
difference between accumulators and NHVC schemes is that, while accumulators
allow us to commit to a set, NHVC schemes allow us to commit to a vector of
messages, where each message is committed at a specific position. This allows
parties to prove statements about the position i and about the value vri stored
at i, which is needed for FUD.

Vector Commitments. VC schemes [15,33] can be non-hiding and hiding, and
can be based on different assumptions such as CDH, RSA and DHE. It would
be possible to instantiate our construction under the more standard CDH or
RSA assumptions. However, the instantiation of NHVC schemes based on DHE
has efficiency advantages. A mercurial VC scheme based on DHE was proposed
in [33], and subsequently non-hiding and hiding DHE VC schemes were used
in [24,28,31]. In our instantiation of ΠUD, we use a NHVC scheme based on
DHE that is extended with a ZK proof of knowledge of a witness wi to prove
that a value vri is stored at position i. For this proof, a signature scheme is used
along with the NHVC scheme.

Recently, in [29], subvector commitments (SVC) are proposed. In SVC, a
commitment can be opened to a set of positions such that the size of the open-
ing does not depend on the size of the set. A construction for SVC secure under
the cube Diffie-Hellman assumption is given, in which the public parameter size
grows quadratically with the vector length. Our functionality FUD only requires
to open one vector component at a time. SVC may be used to construct the vari-
ant of FUD where several positions are read simultaneously, or the variant where
the database entries are of the form [i, vri,1, . . . , vri,m]. In the read phase, SVC
would yield a ZK proof where one opening can be used to open several positions
(at the expense of increasing the storage cost of the public parameters). Despite
that SVC provides openings of size independent of the number of positions open,
we note that the entire witness of the ZK proof would still grow with the num-
ber of positions opened, and thus the efficiency of those proofs would not be
independent of the number of positions opened. In [7,29], constructions for SVC
based on groups of hidden order are proposed, which are better suited for bit
vectors.

Polynomial commitments allow a committer to commit to a polynomial and
open the commitment to an evaluation of the polynomial. Polynomial commit-
ments can be used as vector commitments by committing to a polynomial that

UC Updatable Databases and Applications 83

interpolates the vector to be committed. In [26], a construction of polynomial
commitments from the SDH assumption is proposed. The polynomial commit-
ment scheme from SDH has the disadvantage that efficient updates cannot be
computed without knowledge of the trapdoor. A further generalization of vector
commitments and polynomial commitments are functional commitments [29,32].

Zero-Knowledge Data Structures. Zero-Knowledge Sets (ZKS) [35] allow a prover
P to commit to a set X and to subsequently prove to a verifier V (non-)
membership of an element x in X. Zero-Knowledge Databases (ZKDB) are sim-
ilar to ZKS but each element x ∈ X is associated with a value v, in such a way
that a proof that x ∈ X reveals v to V. Both ZKS and ZKDB are two-party
protocols between a prover and a verifier. Zero-knowledge requires that proofs of
(non-)membership reveal nothing else beyond (non-)membership, not even the
set size.

A ZKS with short proofs for membership and non-membership is proposed
in [33] and an updatable ZKDB with short proofs is proposed in [15]. In [26],
constructions for “nearly” ZKS and ZKDB, which do not hide the size of the
set or database, are given. In [22], a construction for zero-knowledge lists (ZKL)
is proposed, where a list is defined as an ordered set. In contrast to our work,
existing constructions for ZKS, ZKDB and ZKL are not updatable, with the
exceptions of the ZKDB in [15,34].

The main difference between ZK data structures and our work is that ZK
data structures hide the database content from the verifier, while in our work
the database is public. Another difference is that our database is oblivious in
the sense that it provides ZK proofs about a committed position i and value
v, without revealing i or v. In existing ZK data structures, the prover reveals
i and v along with the proof to the verifier. This property allows our database
to be used as building block in privacy-preserving protocols where i and v must
remain hidden from the verifier. As for modular design, in those works a method
to integrate modularly the proposed ZK data structures as building blocks of
other protocols is not given.

ZK Proofs for Large Datasets. In most ZK proofs, the computation and commu-
nication costs grow linearly with the size of the witness, which is inadequate for
proofs about datasets of large size N . However, some techniques attain costs sub-
linear in N . Probabilistically checkable proofs [27] achieve verification cost sub-
linear in N , but the cost for the prover is linear in N . In succinct non-interactive
arguments of knowledge [20], verification cost is independent of N , but the cost
for the prover is still linear in N . ZK proofs for oblivious RAM programs [36]
consist of a setup phase where the prover commits to the dataset, with cost
linear in N for the prover and constant for the verifier. After setup, multiple
proofs can be computed about the dataset with cost sublinear (proportional to
the runtime of an ORAM program) for prover and verifier.

Our construction is somehow similar to [36], i.e. a database is committed,
and then ZK proofs are computed. Storage cost is linear in N . However, the
verification cost of a ZK proof is constant and independent of N . To compute a

84 A. Damodaran and A. Rial

ZK proof, only the cost of computing an opening wi is linear in N , but wi can
be reused and updated with cost independent of N . Therefore, computing a ZK
proof has an amortized cost independent of N , which makes our construction
practical for large databases.

8 Conclusion and Future Work

We have proposed an ideal functionality FUD and a construction ΠUD for an
updatable database. In addition to POT and PPB, (non-)updatable databases
are implicitly used as building blocks of other protocols. For example, many
oblivious transfer with access control [1,8,16,30] protocols and other privacy
preserving access control protocols [28] use a database that associates the index
i of messages mi with an access control policy ACPi (∀i ∈ [1, N]). As another
example, privacy-preserving client-side profiling protocols [18] use a database
that stores a codification of a profiling algorithm. These protocols also use sig-
natures as a way of implementing the database. In those protocols, the reader
needs to remain anonymous and unlinkable towards the updater. Therefore, to
be used in those protocols, FUD and ΠUD need to be modified to interact with
multiple readers and to guarantee unlikability of readers towards the updater.

References

1. Abe, M., Camenisch, J., Dubovitskaya, M., Nishimaki, R.: Universally composable
adaptive oblivious transfer (with access control) from standard assumptions. In:
Proceedings of the 2013 ACM Workshop on Digital Identity Management, DIM
2013, pp. 1–12 (2013)

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

3. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2011). https://doi.org/10.1007/3-540-44987-6 8

4. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptogr. Eng. 3(2), 111–128 (2013)

5. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 20

6. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993.
LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-48285-7 24

7. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20

UC Updatable Databases and Applications 85

8. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: Proceedings of the 2009 ACM Conference on Computer and Communications
Security, CCS 2009, pp. 131–140 (2009)

9. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer
with rechargeable wallets. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 66–81.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 8

10. Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular protocol
design and applications to revocation and attribute tokens. In: Robshaw, M., Katz,
J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 208–239. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 8

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00468-1 27

12. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 24

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001 (ePrint 2000/067 version 14-Dec-2005). pp. 136–145
(2001)

15. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

16. Coull, S.E., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00468-1 28

17. Damodaran, A., Rial, A.: UC updatable databases and applications. http://hdl.
handle.net/10993/42984

18. Danezis, G., Kohlweiss, M., Livshits, B., Rial, A.: Private client-side profiling with
random forests and hidden Markov models. In: Fischer-Hübner, S., Wright, M.
(eds.) PETS 2012. LNCS, vol. 7384, pp. 18–37. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31680-7 2

19. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 7

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPS. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

21. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set algebra. In: Cheon, J., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 3

https://doi.org/10.1007/978-3-642-14577-3_8
https://doi.org/10.1007/978-3-662-53015-3_8
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-00468-1_28
https://doi.org/10.1007/978-3-642-00468-1_28
http://hdl.handle.net/10993/42984
http://hdl.handle.net/10993/42984
https://doi.org/10.1007/978-3-642-31680-7_2
https://doi.org/10.1007/978-3-642-31680-7_2
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-662-53890-6_3

86 A. Damodaran and A. Rial

22. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order
queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 8

23. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

24. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25516-8 26

25. Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering billing.
In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 192–
210. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4 11

26. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

27. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: ACM STOC 1992, pp. 723–732 (1992)

28. Kohlweiss, M., Rial, A.: Optimally private access control. In: WPES 2013, pp.
37–48 (2013)

29. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 19

30. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Adaptive oblivious
transfer with access control from lattice assumptions. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 533–563. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 19

31. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 34

32. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
ICALP 2016, pp. 30:1–30:14 (2016)

33. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 30

34. Liskov, M.D.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 174–198. Springer, Berlin, Heidelberg (2005). https://
doi.org/10.1007/11593447 10

35. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS 2003, pp. 80–91
(2003)

36. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for
RAM programs. In: Coron, J.S., Nielsen, J. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 501–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 18

37. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

https://doi.org/10.1007/978-3-319-28166-7_8
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-22263-4_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-319-70694-8_19
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-540-30574-3_19

UC Updatable Databases and Applications 87

38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46766-1 9

39. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: WPES 2011, pp. 49–
60 (2011)

40. Rial, A., Danezis, G., Kohlweiss, M.: Privacy-preserving smart metering revisited.
Int. J. Inf. Secur. 17(1), 1–31 (2016). https://doi.org/10.1007/s10207-016-0355-8

41. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp.
231–247. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-
1 15

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/s10207-016-0355-8
https://doi.org/10.1007/978-3-642-03298-1_15
https://doi.org/10.1007/978-3-642-03298-1_15

Symmetric Key Cryptography

Impossible Differential Cryptanalysis
of Reduced-Round Tweakable TWINE

Mohamed Tolba, Muhammad ElSheikh, and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering, Concordia University,
Montréal, Québec, Canada

youssef@ciise.concordia.ca

Abstract. Tweakable TWINE (T-TWINE) is a new lightweight tweak-
able block cipher family proposed by Sakamoto et al. at IWSEC 2019.
T-TWINE is the first Tweakable Block Cipher (TBC) that is built on
Generalized Feistel Structure (GFS). It is based on the TWINE block
cipher in addition to a simple tweak scheduling based on SKINNY’s
tweakey schedule. Similar to TWINE, it has two versions, namely, T-
TWINE-80 and T-TWINE-128, both have a block length of 64 bits and
employ keys of length 80 and 128 bits, respectively. In this paper, we
present impossible differential attacks against reduced-round versions of
T-TWINE-80 and T-TWINE-128. First, we present an 18-round impos-
sible differential distinguisher against T-TWINE. Then, using this distin-
guisher, we attack 25 and 27 rounds of T-TWINE-80 and T-TWINE-128,
respectively.

Keywords: Cryptanalysis · Impossible differential attacks ·
Tweakable · Block ciphers · TWINE · T-TWINE

1 Introduction

Tweakable Block Ciphers (TBCs) [11] differ from the conventional block ciphers
since they accept an additional input called a tweak. Different specific keyed
instances of the cipher can be generated by varying this tweak. TBCs allow new
interesting highly-secure modes of operation and applications to become possible
as they are designed to allow changing the tweak very efficiently compared to
the key setup operation.

Block ciphers can be used to build TBCs through modes of operation such
as LRW (Liskov, Rivest, and Wagner) and XEX (Xor-Encrypt-Xor) [14]. These
modes of operations, for one TBC encryption/decryption, require few cipher
calls. Therefore, they are efficient. However, their provable security guarantee,
which is 2n/2 for n-bit block cipher, is not enough, in particular, for TBCs
employed in modes of operation aiming to achieve “beyond-the-birthday-bound”
(BBB) security. As a result, less efficient modes of operations [9,10], compared
to LRW and XEX, are proposed to achieve BBB security guarantee.

Dedicated constructions is another approach to build efficient TBCs with an
acceptable level of security guarantee. HPC [16], one of the submission to the
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 91–113, 2020.
https://doi.org/10.1007/978-3-030-51938-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_5

92 M. Tolba et al.

AES competition, is the first proposal, where the tweak is called “spice”. Three-
fish [4], Deoxys-BC [7], SKINNY [2] and QARMA [1] are examples of recently
proposed dedicated TBCs. Challenges such as designing efficient dedicated TBCs
while having sufficient security guarantee is solved by the tweakey flamework [6]
which is based on a Substitution Permutation Network (SPN).

Tweakable TWINE (T-TWINE) [15] is the first dedicated TBC that is based
on Generalized Feistel Structure (GFS) [13,20]. The only work on GFS-based
TBC, before the T-TWINE proposal, is done by Goldenberg et al. [5] and Mit-
suda and Iwata [12] who focused on studding the provable security of the round
functions that are instantiated by PRFs. TWINE, which is a GFS-based block
cipher, was proposed by Suzaki et al. [18] after a comprehensive study done
by Suzaki and Minematsu [17] showing the effect of the choice of sub-block
permutation on the diffusion, the number of differential/linear active S-boxes,
and the maximum numbers of rounds for impossible differential characteristics
and saturation characteristics. The choice of the permutation of TWINE was a
result of the work done in [17], it permutes over 16 nibbles to achieve the best
characteristics.

T-TWINE [15] is built with the goal of reducing the cost of design, security
evaluation, and implementation. As a result, TWINE was selected to be the basic
building block of T-TWINE with extremely simple tweak scheduling. This tweak
schedule is based on the SKINNY’s [2] tweakey schedule. Similar to TWINE, T-
TWINE has a block size of 64 bits and iterates using either 80-bit or 128-bit key
over 36 rounds. It accepts an additional 64-bit tweak. It also uses independent
key and tweak schedules where the tweak is mixed with the states by adding few
nibble XORs to TWINE. Therefore, it has the same hardware cost of TWINE
except for the additional tweak registers.

The designers of T-TWINE evaluated its security against differential, linear,
impossible differential, and integral attacks in the chosen-tweak setting. However,
they only presented distinguishers without converting any distinguisher to a key
recovery attack. For impossible differential, they utilized the miss-in-the-middle
approach to search the impossible differential characteristics that have one active
nibble in the 16 tweak nibbles and one active nibble in 16 ciphertext nibbles at
the decryption side. However, the 18-round impossible differential distinguisher
that was proposed by the designers does not seem to be correct as we will
illustrate in Sect. 31.

In this paper, we start by presenting an 18-round impossible differential dis-
tinguisher. Then, we use this distinguisher to launch a 25-round attack against
T-TWINE-80 by pre-appending and appending 4 and 3 rounds, respectively.
Finally, we launched a 27-round attack against T-TWINE-128, using the 18-
round distinguisher, by pre-appending and appending 6 and 3 rounds, respec-
tively. The data, time, and memory complexities of the 25-round (27-round)
against T-TWINE-80 (T-TWINE-128) are 261.5 (260) chosen plaintexts, 270.86

25-round (2120.83 27-round) encryptions, 266 (2118) 64-bit block, respectively.

1 This has also been confirmed through personal communications with the designers.

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 93

The rest of the paper is organized as follows. Section 2 provides the notations
used throughout the paper and a brief description of T-TWINE. In Sect. 3, we
present the impossible differential distinguisher used in our attacks. The details
of our attacks are presented in Sects. 4 and 5. Finally, the paper is concluded in
Sect. 6.

2 Specifications of T-TWINE

The following notation will be used throughout the rest of the paper:

– K: The 80 or 128 bits master key.
– Kj : The jth nibble of K. The indices of the nibbles begin from 0.
– RKi: The 32-bit round key used in round i + 1.
– RKi

j : The jth nibble of RKi. The indices of the nibbles begin from 0.
– T : The 64-bit tweak.
– Ti: The ith nibble of the tweak T .
– RT i: The 24-bit round tweak used in round i + 1, where RT i ← ti0||ti1||

ti2||ti3||ti4||ti5, and tij is the jth nibble of RT i.
– Xi: The 16 4-bit nibbles output of round i.
– Xj

i: jth nibble of Xi.
– ΔXi,ΔXi

j : The difference at state Xi and nibble Xi
j , respectively.

– ⊕: The XOR operation.
– ||: The concatenation operation.
– Rotz(x): The z-bit left cyclic shift of x.

T-TWINE is based on TWINE [18]. T-TWINE-80/128 iterates 36 rounds
over 64-bit block using 80/128-bit key, respectively, and 64-bit tweak T . The
block cipher has three parts: data processing, key schedule, and tweak schedule.
Except for the tweaks addition, T-TWINE-80/128 has the same data process-
ing and key schedule of TWINE-80/128, respectively. Both T-TWINE-80 and
T-TWINE-128 employ the same generalized Feistel structure and tweak schedule
where the only difference between them is the key schedule.

Data Processing Part. As depicted in Fig. 1, the round function is based on
a variant of Type-2 GFS with 16 4-bit nibbles [17]. It has four operations: 4-bit
S-box (S, see Table 1), round key XOR, round tweak XOR, and a 16-nibble
shuffle operation (π, see Table 2). Both versions of T-TWINE have the same
number of rounds (36). The nibble shuffle operation in the last round is omitted.

Table 1. 4-bit S-box S in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

Key Schedule. A round key RKi of 8 nibbles is generated from the master key
K for each round i, where 0 ≤ i < 35. Each version of T-TWINE has its own key

94 M. Tolba et al.

5 4 3 2 1 0

Fig. 1. The T-TWINE round function, for simplicity we use tj instead of ti
j . For exam-

ple t0 equivalent to ti
0

schedule. Algorithm 1 and 2 show the details of T-TWINE-80/128, respectively,
where CON i

H and CON i
L are predefined constants. For further details, the reader

is referred to [15,18].

Tweak Schedule. A round tweak RT i of 6 nibbles is generated from the tweak
T for each round i, where 0 ≤ i < 35. Both versions of T-TWINE have the same
tweak schedule, shown in Algorithm 3, where πt is a 6-nibble permutation s.t.
(0, 1, 2, 3, 4, 5) → (1, 0, 4, 2, 3, 5).

3 An Impossible Differential Distinguisher of T-TWINE

Impossible differential cryptanalysis was proposed independently by Knudsen [8]
and Biham, Biryukov and Shamir [3]. It exploits a (truncated) differential char-
acteristic of probability exactly 0 and thus acts as a distinguisher. Then, this
distinguisher is turned into a key-recovery attack by prepending and/or append-
ing additional rounds, which are usually referred to as the analysis rounds. The
keys involved in the analysis rounds which lead to the impossible differential are
wrong keys and thus are excluded. Miss-in-the-Middle is the general technique
used to construct impossible differentials, where the cipher, E, is split such that
E = E2 ◦ E1, and we try to find two deterministic differentials, the first one
covers E1 and has the form Δδ → Δγ, and the second covers E−1

2 , and has the
form Δβ → Δζ. When the intermediate differences Δγ,Δζ do not match, the
differential Δδ → Δβ that covers the whole cipher E holds with zero probability.

Table 2. Nibble shuffle π

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 95

Algorithm 1: Key Schedule of T-TWINE-80
Data: The 80-bit master key K
Result: The round keys RK = RK0||RK1|| · · · ||RK35

k0||k1|| · · · ||k19 ← K;
for i ← 0 to 34 do

RKi ← k1||k3||k4||k6||k13||k14||k15||k16;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);

k7 ← k7 ⊕ (0||CON i
H);

k19 ← k19 ⊕ (0||CON i
L);

k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k19 ← Rot16(k0|| · · · ||k19);

RK35 ← k1||k3||k4||k6||k13||k14||k15||k16;
RK ← RK0||RK1|| · · · ||RK35;

Algorithm 2: Key Schedule of T-TWINE-128
Data: The 128-bit master key K
Result: The round keys RK = RK0||RK1|| · · · ||RK35

k0||k1|| · · · ||k31 ← K;
for i ← 0 to 34 do

RKi ← k2||k3||k12||k15||k17||k18||k28||k31;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);
k23 ← k23 ⊕ S(k30);

k7 ← k7 ⊕ (0||CON i
H);

k19 ← k19 ⊕ (0||CON i
L);

k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k31 ← Rot16(k0|| · · · ||k31);

RK35 ← k2||k3||k12||k15||k17||k18||k28||k31;
RK ← RK0||RK1|| · · · ||RK35;

Algorithm 3: Tweak Schedule of T-TWINE
Data: The 64-bit tweak T
Result: The round tweaks RT = RT 0||RT 1|| · · · ||RT 35

t00||t01|| · · · ||t016 ← T ;
for i ← 0 to 35 do

RT i ← ti
0||ti

1||ti
2||ti

3||ti
4||ti

5;
for h ← 0 to 5 do

ti
πt[h] ← ti

h;

for h ← 0 to 15 do
ti+1
(h−6) mod 16 ← ti

h;

RT ← RT 0||RT 1|| · · · ||RT 35;

96 M. Tolba et al.

The designers of T-TWINE in [15] presented an 18-round impossible differ-
ential distinguisher. They found this distinguisher using the Miss-in-the-Middle
approach. The distinguisher begins at “1R” with zero differences and the tweak
has a non-zero difference at the first nibble t0. As mentioned above, this 18-
round impossible differential distinguisher does not seem to be correct. In what
follows, we list some of the problems (mistakes) we identified in this distin-
guisher (See Fig. 5): i) the numbers of rounds involved in the distinguisher is
only 17 not 18 (as the plaintext is marked “1R” and the ciphertext is marked
“18R”), ii) the tweaks used in the distinguisher are wrong. For example, the
tweaks that are used in the seventh and ninth rounds are actually the tweaks
of the sixth and seventh rounds, respectively, and iii) this distinguisher assumes
that the tweak has difference at nibble “0” at the first round, then it appear
again at nibble “0” at the nineteenth round, while it should appear again at the
seventeenth round, after 16 rounds of the tweak schedule. Moreover, as shown
in Figure 8 of [15] (See Fig. 5), the zero difference at “1R” associated with a
non-zero difference at the first nibble t0 of the tweak gives, after being propa-
gated 7 rounds in the forward direction, the difference at “8R” in the form of
(1, 1, 1, 0, 0, ?, 0, 1, 1, ?, 0, 1, ?, ?, ?, ?). However, the correct difference should be in
the form of (?, 1, ?, 0, 1, ?, ?, 1, 1, ?, ?, 1, ?, ?, ?, ?).

In this section, we present an 18-round distinguisher that begins and ends
with zero difference and has a difference at t12 at the first round, see Fig. 2. To
the best of our knowledge, this is the first valid 18-round impossible differential
distinguisher. This distinguisher is found using the Miss-in-the-Middle approach,
where we propagate the difference in the tweak forward 8 rounds with probability
1 and propagate the difference in the tweak backward 10 rounds with probability
1, then match at the middle at the end of round 8. As seen in Fig. 2, there is
a contradiction at nibble “6”, where in the forward path, it should have a zero
difference, while in the backward path, it should have a non-zero difference.

3.1 Observations

In this section, we present some useful observations that will be utilized in our
attack.

Observation 1 [18,19]. For any input difference a(�= 0) and output difference
b(∈ ΔS[a]) of the S-box in TWINE, the average number of pairs that satisfy
the differential characteristic (a → b) is 16

7 . Given an 8-bit pair (Xi
2j ,X

i
2j+1)

and (Xi
2j ⊕ a,Xi

2j+1 ⊕ b), the probability that RKi
j leads to the S-box differential

characteristic (a → b) is 7−1.

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 97

Fig. 2. An 18-round impossible differential distinguisher

98 M. Tolba et al.

Observation 2. Given two nonzero differences Δi and Δo in F16, the equation:
S(x) + S(x + Δi) = Δo has one solution on average. This property also applies
to S−1.

Observation 3. If the impossible differential illustrated in Fig. 2 is extended 6
rounds forward and 3 rounds backward, then we have the following relations, see
Fig. 3: ΔX0

3 ∈ S[ΔX0
2], ΔX0

7 ∈ S[ΔX0
6], ΔX0

13 ∈ S[ΔX0
12], ΔX0

6 ∈ S[ΔX0
11],

ΔX0
11 ∈ S[ΔX0

2], ΔX27
1 ∈ S[ΔT2], ΔX27

15 ∈ S[ΔX27
14], ΔX27

14 ∈ S[ΔX27
11],

ΔX27
11 ∈ S[ΔT2] that hold with probability (7

16)9 = 2−10.734.

Observation 4. If the impossible differential illustrated in Fig. 2 is extended 4
rounds forward and 3 rounds backward, then we have the following relations, see
Fig. 4: ΔX0

1 ∈ S[ΔX0
0], ΔX0

11 ∈ S[ΔX0
10], ΔX0

15 ∈ S[ΔX0
14], ΔX0

14 ∈ S[ΔT7],
ΔX0

0 ∈ S[ΔX0
3], ΔX0

3 ∈ S[ΔX0
10], ΔX0

10 ∈ S[ΔT7], ΔX25
1 ∈ S[ΔT7], ΔX25

15 ∈
S[ΔX25

14], ΔX25
14 ∈ S[ΔX25

11], ΔX25
11 ∈ S[ΔT7] that hold with probability (7

16)11 =
2−13.119.

4 Impossible Differential Key-Recovery Attack
on 27-Round T-TWINE-128

In this section, we present the first attack on 27-round T-TWINE-128 in the
chosen-tweak model. We use the notion of data structures to generate enough
pairs of messages to launch the attack. Our utilized structure takes all the pos-
sible values of the 12 nibbles X0

2 , X0
3 , X0

4 , X0
5 , X0

6 , X0
7 , X0

8 , X0
9 , X0

11, X0
12, X0

13,
X0

15 while the remaining nibbles assume a fixed value. In addition, we choose
the tweak T2 such that it takes all its possible values. Thus, one structure gen-
erates 24×13 × (24×13 − 1)/2 ≈ 2103 possible pairs. Hence, we have 2103 possible
pairs of messages satisfying the plaintext differences. In addition, we utilize the
following pre-computation tables in order to efficiently extract/filter the round
keys involved in the analysis rounds:

– H1: For all the 220 possible values of X1
1 , ΔX1

1 , X1
4 , t04 and RK0

1 = K3,
compute X0

2 , ΔX0
2 , X0

3 , and ΔX0
3 . Then, store X1

1 , ΔX1
1 , X1

4 , and RK0
1 = K3

in H1 indexed by X0
2 , ΔX0

2 , X0
3 , ΔX0

3 , and t04. ΔX0
3 is chosen such that

ΔX0
3 ∈ S[ΔX0

2], see Observation 3. Therefore, H1 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H2: For all the 220 possible values of X1
3 , ΔX1

3 , X1
8 , t03, and RK0

3 = K15,
compute X0

6 , ΔX0
6 , X0

7 , and ΔX0
7 . Then, store X1

3 , ΔX1
3 , X1

8 , and RK0
3 = K15

in H1 indexed by X0
6 , ΔX0

6 , X0
7 , ΔX0

7 , and t03. ΔX0
7 is chosen such that

ΔX0
7 ∈ S[ΔX0

6], see Observation 3. Therefore, H2 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H3: For all the 216 possible values of X1
10, ΔX1

15, X1
15, and RK0

6 = K28,
compute X0

12, ΔX0
12, X0

13, and ΔX0
13. Then, store X1

10, ΔX1
15, X1

15, and
RK0

6 = K28 in H3 indexed by X0
12, ΔX0

12, X0
13, and ΔX0

13. ΔX0
13 is cho-

sen such that ΔX0
13 ∈ S[ΔX0

12], see Observation 3. Therefore, H3 has 7× 212

rows and on average about 216/(7 × 212) = 16/7 values in each row.

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 99

Fig. 3. Impossible differential attack on 27-round T-TWINE-128

100 M. Tolba et al.

Fig. 4. Impossible differential attack on 25-round T-TWINE-80

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 101

– H4: For all the 232 possible values of X2
1 , ΔX2

1 , X2
4 , t14, RK1

1 = K7, X1
9 , t01,

and RK0
5 = K18, compute X1

3 = X0
6 , ΔX1

3 = ΔX0
6 , X0

10, X0
11, and ΔX0

11.
Then, store X2

1 , ΔX2
1 , X2

4 , RK1
1 = K7, X1

9 , and RK0
5 = K18 in H4 indexed

by X1
3 = X0

6 , ΔX1
3 = ΔX0

6 , X0
10, X0

11, ΔX0
11, t14, and t01. ΔX0

6 is chosen such
that ΔX0

6 ∈ S[ΔX0
11], see Observation 3. Therefore, H4 has 7 × 224 rows and

on average about 232/(7 × 224) = (16/7) × 24 values in each row.
– H5: For all the 240 possible values of X2

3 , ΔX2
3 , X2

8 , t13, RK1
3 = K19, X1

13,
ΔX1

13, t02, ΔT2, and RK0
4 = K17, compute X0

4 , ΔX0
4 , X0

8 , ΔX0
8 , X0

9 , and
ΔX0

9 . Then, store X2
3 , ΔX2

3 , X2
8 , RK1

3 = K19, X1
13, ΔX1

13, and RK0
4 = K17

in H5 indexed by X0
4 , ΔX0

4 , X0
8 , ΔX0

8 , X0
9 , ΔX0

9 , t13, t02, and ΔT2. H5 has
236 rows and on average about 240/236 = 24 values in each row.

– H6: For all the 244 possible values of X3
0 , X3

5 , ΔX3
5 , t25, RK2

0 = K10, X2
5 ,

t15, RK1
0 = K6, X1

5 , t05, and RK0
0 = K2, compute X2

1 , ΔX2
1 = ΔX0

11, X1
1 =

X0
2 , ΔX1

1 = ΔX0
2 , X0

0 , and X0
1 . Then, store X3

5 , ΔX3
5 , RK2

0 = K10, X2
5 ,

RK1
0 = K6, X1

5 , and RK0
0 = K2 in H6 indexed by X2

1 , ΔX2
1 = ΔX0

11,
X1

1 = X0
2 , ΔX1

1 = ΔX0
2 , X0

0 , X0
1 , t05, t15, and t25. ΔX0

11 is chosen such that
ΔX0

11 ∈ S[ΔX0
2], see Observation 3. Therefore, H6 has 7 × 232 rows and on

average about 244/(7 × 232) = (16/7) × 28 values in each row.
– H7: For all the 232 possible values of X2

10, ΔX2
10, X2

15, ΔX2
15, RK1

6 = K1 +
S(K0), X1

7 , ΔX1
7 , and RK0

2 = K12, compute X1
13, ΔX1

13, X0
4 , ΔX0

4 , X0
5 , and

ΔX0
5 . Then, store X2

10, ΔX2
10, X2

15, ΔX2
15, RK1

6 = K1 + S(K0), X1
7 , ΔX1

7 ,
and RK0

2 = K12 in H7 indexed by X1
13, ΔX1

13, X0
4 , ΔX0

4 , X0
5 , and ΔX0

5 . H7

has 224 rows and on average about 232/224 = 28 values in each row.
– H8: For all the 236 possible values of X2

11, ΔX2
11, X2

14, ΔX2
14, t10, RK1

7 = K0,
X1

11, t00, and RK0
7 = K31, compute X1

15, ΔX1
15, X0

14, X0
15, and ΔX0

15. Then,
store X2

11, ΔX2
11, X2

14, ΔX2
14, RK1

7 = K0, X1
11, and RK0

7 = K31 in H8 indexed
by X1

15, ΔX1
15, X0

14, X0
15, ΔX0

15, t10, and t00. H8 has 228 rows and on average
about 236/228 = 28 values in each row.

– H9: For all the 220 possible values of X3
2 , X3

9 , ΔX3
9 , t21, and RK2

5 = K26,
compute X2

10, ΔX2
10, X2

11, and ΔX2
11. Then, store X3

9 , ΔX3
9 , and RK2

5 = K26

in H9 indexed by X2
10, ΔX2

10, X2
11, ΔX2

11, and t21. H9 has 220 rows and on
average about 220/220 = 1 value in each row.

– H10: For all the 220 possible values of X3
11, ΔX3

11, X3
14, t20, and RK2

7 =
K4 + S(K16), compute X2

14, ΔX2
14, X2

15, and ΔX2
15. Then, store X3

11, ΔX3
11,

X3
14, and RK2

7 = K4 + S(K16) in H10 indexed by X2
14, ΔX2

14, X2
15, ΔX2

15,
and t20. H10 has 220 rows and on average about 220/220 = 1 value in each row.

– H11: For all the 240 possible values of X4
7 , ΔX4

7 , X4
12, RK3

2 = K24, X3
1 , t24,

RK2
1 = K11, X2

9 , t11, and RK1
5 = K22, compute X3

5 , ΔX3
5 , X2

3 , ΔX2
3 , X1

10,
and X1

11. Then, store X4
7 , ΔX4

7 , RK3
2 = K24, RK2

1 = K11, and RK1
5 = K22

in H11 indexed by X3
5 , ΔX3

5 , X2
3 , ΔX2

3 , X1
10, X1

11, t24, and t11. H11 has 232

rows and on average about 240/232 = 28 values in each row.
– H12: For all the 212 possible values of X2

7 , X2
12, and RK1

2 = K16, compute
X1

4 , and X1
5 . Then, store X2

7 , X2
12, and RK1

2 = K16 in H12 indexed by X1
4 ,

and X1
5 . H12 has 28 rows and on average about 212/28 = 24 value in each

row.

102 M. Tolba et al.

– H13: For all the 216 possible values of X2
6 , X2

13, t12, and RK1
4 = K21, compute

X1
8 , and X1

9 . Then, store X2
6 , X2

13, and RK1
4 = K21 in H13 indexed by X1

8 ,
X1

9 , and t12. H13 has 212 rows and on average about 216/212 = 24 value in
each row.

– H14: For all the 228 possible values of X4
2 , X4

9 , t31, ΔT2, RK3
5 = K30, X3

15,
and RK2

6 = K5 +S(K4 +S(K16)), compute X3
11, ΔX3

11, X2
12, and X2

13. Then,
store RK3

5 = K30, and RK2
6 = K5 + S(K4 + S(K16)) in H14 indexed by X3

11,
ΔX3

11, X2
12, t31, ΔT2, and X2

13. H14 has 224 rows and on average about 228/224

= 24 values in each row.
– H15: For all the 244 possible values of X5

3 , ΔX5
3 , X5

8 , t43, RK4
3 = K31+S(K7),

X4
13, t32, RK3

4 = K29, X3
3 , t23, and RK2

3 = K23 + S(K30), compute X4
7 , ΔX4

7 ,
X3

9 , ΔX3
9 , X2

6 , and X2
7 . Then, store X5

3 , ΔX5
3 , RK3

4 = K29, and RK2
3 =

K23 +S(K30) in H15 indexed by X4
7 , ΔX4

7 , X3
9 , ΔX3

9 , X2
6 , X2

7 , t43, t32, t23, and
RK4

3 = K31 + S(K7). H15 has 240 rows and on average about 244/240 = 24

values in each row.
– H16: For all the 248 possible values of X6

1 , X6
4 , t54, ΔT2, RK5

1 = K23+S(K30),
X5

9 , t41, RK4
5 = K3, X4

15, RK3
6 = K9 +S(K8 +S(K20)), X3

7 , and RK2
2 = K20,

compute X5
3 , ΔX5

3 , X3
14, X2

8 , X2
4 , and X2

5 . Then, store RK4
5 = K3, RK3

6 =
K9 + S(K8 + S(K20)), and RK2

2 = K20 in H16 indexed by X5
3 , ΔX5

3 , X3
14,

X2
8 , X2

4 , X2
5 , RK5

1 = K23 +S(K30), RK4
5 = K3, t54, ΔT2, and t41. H16 has 244

rows and on average about 248/244 = 24 values in each row.
– H17: For all the 220 possible values of X26

14 , ΔX26
14 , X26

15 , t260 , and
RK26

7 = f1(K0,K1,K4,K5,K6,K7, RK3
6 ,K10,K16,K17,K18,K19,K20,K21,

K28,K29,K30), compute X27
14 , ΔX27

14 , X27
15 , and ΔX27

15 . Then, store X26
14 and

ΔX26
14 in H17 indexed by X27

14 , ΔX27
14 , X27

15 , ΔX27
15 , RK26

7 , and t260 . ΔX27
15 is

chosen such that ΔX27
15 ∈ S[ΔX27

14], see Observation 3. Therefore, H17 has
7 × 220 rows and on average about 220/(7 × 220) = (16/7) × 2−4 values in
each row.

– H18: For all the 220 possible values of X26
0 , X26

1 , t265 , ΔT2, and RK26
0 =

f2(K0,K1,K3,K16,K20,K21, RK3
6 ,K27,K28), compute X27

0 , ΔX27
1 , and

X27
1 . Then, store RK26

0 in H18 indexed by X27
0 , ΔX27

1 , X27
1 , t265 , and ΔT2.

ΔX27
1 is chosen such that ΔX27

1 ∈ S[ΔT2], see Observation 3. Therefore, H18

has 7 × 216 rows and on average about 220/(7 × 216) = 16/7 values in each
row.

– H19: For all the 228 possible values of X25
10 , X25

11 , t251 , RK25
5 =

f3(K0,K1,K2,K4,K12,K13, RK3
6 ,K15,K16,K20,K21,K24,K28), X26

8 , t262 ,
and RK26

4 = f4(K0,K4,K5,K11,K16,K24), compute X27
2 , X27

9 , and X27
8 .

Then, store X25
11 and RK25

5 in H19 indexed by X27
2 , X27

9 , X27
8 , RK26

4 , t251 , and
t262 . H19 has 224 rows and on average about 228/224 = 24 values in each row.

– H20: For all the 244 possible values of X24
14 , X24

15 , t240 , ΔT2, RK24
7 = f5(K0,

K1,K2,K10,K11,K12,K13, RK3
6 ,K20,K21,K22,K24,K28,K29,K30), X25

15 ,
t250 ,RK25

7 = f6(K0,K1,K2,K3,K4,K5,K6,K12,K13,K14,K15,K16,K17,
K24,K25,K26,K28), X26

10 , t261 ,and RK26
5 = f7(0,K1,K4,K5,K6,K8,K12,

K13,K16,K17,K19,K20,K24,K25,K28), compute X25
11 , X27

14 = X26
14 , ΔX27

14 =
ΔX26

14 , X27
11 , ΔX27

11 , and X27
10 . Then, store RK25

7 , RK26
5 in H20 indexed by

X25
11 , X26

14 , ΔX26
14 , X27

11 , ΔX27
11 , X27

10 , t240 , ΔT2, RK24
7 , t250 , and t261 . ΔX27

14 and

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 103

ΔX27
11 are chosen such that ΔX27

14 ∈ S[ΔX27
11] and ΔX27

11 ∈ S[ΔT2], recep-
tively, see Observation 3. Therefore, H19 has 72 × 236 rows and on average
about 244/(72 × 236) = (16/7)2 values in each row.

In the general approach, the round keys involved in the analysis rounds are
guessed and the plaintext/ciphertext pairs are filtered to satisfy the differen-
tial path leading to the impossible differential distinguisher. Here, we use the
above proposed pre-computation tables to deduce the round keys that lead
a specific pair of plaintext/ciphertext to the impossible differential. Then, we
exclude the deduced keys as they are wrong keys. Our attack proceeds as fol-
lows. We initialize an array H of 231×4=124 entries to “0”, where each entry
is 1-bit and the index of the array is 31 key nibbles involved in the attack, as
we will see later. Then we generate 2m structures as described above. There-
fore, we have 2m+103 pairs of plaintext/ciphertext pairs generated using 2m+48

chosen plaintexts. Then, we ask the encryption oracle for their correspond-
ing ciphertexts. The plaintext/ciphertext pairs that satisfy Observation 3 are
2m+103 × 2−10.734 = 2m+92.266 pairs. After the ciphertext filtration, we have
only 2m+92.266 × 2−12×4 = 2m+44.266 remaining pairs. For each remaining pair,
we access the pre-computation tables in sequential order from table H1 to H20

one by one in order to deduce 31 key nibbles that lead each remaining pair of
plaintext/ciphertext to the impossible differential. Then, we mark them in H as
invalid “1”. Table 3 summarize these steps by identifying which table will be used
and which key nibble is involved in this step in addition to the time complexity
of each step.

Remarks on the analysis steps:

1. During steps 1–14 and step 18, we directly access the corresponding table
to obtain the values of the involved key nibbles. For example, in step 1, we
determine the number of possible values of RK0

1 = K3 that satisfy the path to
the impassible differential by accessing H1. Therefore, we have (16/7) possible
values for K3.

2. During steps 15, 16, 17, 19, and 20, and because some combinations of the
key nibbles determined during the previous steps are used in the indexing
of the tables H15 to H20, we firstly deduce these indices and then access
the corresponding table. For example, during step 15, we deduce the value of
RK4

3 = K31+S(K7) that is used in the indexing of table H15, then determine
the number of possible values of RK3

4 = K29 and RK2
3 = K23 + S(K30) that

satisfy the path by accessing H15. After that, the value of RK2
3 = K23 +

S(K30) is used to deduce the value of K23 using the determined value of K30

from Step 14.
3. During steps 7 and 8, we determine the possible values of RK1

6 = K1+S(K0)
and RK1

7 = K0, respectively. Therefore, after step 8, we can deduce the values
of K1. In the same manner, we can deduce the values of K4 and K5 after steps
10, 12 and 14 where we determine the values of RK2

7 = K4 + S(K16) and
RK1

2 = K16, and RK2
6 = K5 + S(K4 + S(K16)), respectively.

104 M. Tolba et al.

4. During step 17, we deduce the value of RK26
7 = f1(K0,K1,K4,K5,K6,K7,

RK3
6 ,K10,K16,K17,K18,K19,K20,K21,K28,K29,K30), then determine the

values of X26
14 and ΔX26

14 that satisfy the path by accessing H17. Therefore,
no new key nibbles are involved during this step but there is a filtration of
some keys.

5. During steps 18 and 19, we can determine the values of RK26
0 = f2(K0,

K1,K3,K16,K20,K21, RK6
3,K27,K28) and RK25

5 = f3(K0,K1,K2,K4,
K12,K13, RK3

6 ,K15,K16,K20,K21,K24,K28), respectively. Therefore, we can
deduce the values of K27 and K13, respectively, since all the other key nibbles
in f2 and f3 are determined during the previous steps.

6. After step 20, we have 260 × (16/7)9 possible values for K0,K1,K2,K3,
K4,K5,K6,K7,K9+S(K8+S(K20)),K10,K11,K12,K13,K15,K16,K17,K18,
K19,K20,K21,K22,K23,K24,K26,K27,K28,K29,K30,K31, RK25

7 = f6(K14,
K25), RK26

5 = f7(K8,K25). Hence, we marks them in H as invalid “1” in
step 21.

Attack Complexity. As depicted in Fig. 3, we have 37 round keys involved in
the analysis rounds. According to the key schedule, these 37 round keys take
only 2124 possible values (see step 21 in Table 3). As mentioned in step 21, we
remove on average 260 × (16/7)9 = 270.734 out of 2124 possible values of these
37 round keys involved in the attack for each pair of the 2m+44.266 remaining
pairs. Hence, a wrong key is not discarded using one pair with probability 1 −
270.734−124 = 1 − 2−53.266. Therefore, we have 2124 × (1 − 2−53.266)2

m+44.266 ≈
2124 × (e−1)2

m+44.266−53.266 ≈ 2124 × 2−1.4×2m−9
remaining candidates for 124-

bit of the key, after processing all the 2m+44.266 remaining pairs. We evaluated
the computational complexity of the attack as a function of m, as illustrated in
Table 3, to determine the optimal value of m that leads to the best computational
complexity. As steps 20 and 21 dominate the time complexity of the attack, see
Table 3, we choose m = 12 in order to optimize the time complexity of the
attack. Therefore, we have 2124 × 2−1.4×212−9=3

= 2124−11.2 = 2112.8 remaining
candidates for 124-bit of the key. The remaining key nibbles can be retrieved
by guessing K8 and exhaustively searching the 2112.8 remaining key candidates
using 2 plaintext/ciphertext pairs. This step requires 2 × 24 × 2112.8 = 2117.8

encryptions. Therefore, the time complexity of the attack is 2120.245 + 2119.245 +
2117.8 ≈ 2120.83 encryptions. The data complexity of the attack is 2m+4×13 = 264

chosen tweak/plaintext combinations that can be generated using 2m+48 = 260

chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store H. Hence, the memory complexity is 2124 ×
2−6 = 2118 64-bit blocks.

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 105

5 Impossible Differential Key-Recovery Attack
on 25-Round T-TWINE-80

In this section, we present the first attack on 25-round T-TWINE-80 in the
chosen-tweak model. We use the notion of data structures to generate enough
pairs of messages to launch the attack. Our utilized structure takes all the pos-
sible values in 7 nibbles X0

0 , X0
1 , X0

3 , X0
10, X0

11, X0
14, X0

15 while the remaining
nibbles take a fixed value. In addition, we choose the tweak T7 such that it takes
all the values. Thus, one structure generates 24×8 × (24×8 − 1)/2 ≈ 263 possi-
ble pairs. Hence, we have 263 possible pairs of messages satisfying the plaintext
differences. In addition, we utilize the following pre-computation tables in order

Table 3. Time complexity of the different steps of the attack on 27-round T-TWINE-
128, where NK denotes the number of keys to be excluded.

StepTableKey nibbles Time complexity (in 27-round encryptions) NK m = 12

1 H1 K3 2m+44.266 × (16/7) × 4

8 × 27
≈ 2m+39.704 (16/7) 251.704

2 H2 K15 2m+44.266 × (16/7)2 × 4

8 × 27
≈ 2m+40.896 (16/7)2 252.896

3 H3 K28 2m+44.266 × (16/7)3 × 4

8 × 27
≈ 2m+42.089 (16/7)3 254.089

4 H4 K7, K18 2m+44.266 × 24 × (16/7)4 × 6

8 × 27
≈ 2m+47.867 24 × (16/7)4 259.867

5 H5 K17, K19 2m+44.266 × 28 × (16/7)4 × 7

8 × 27
≈ 2m+52.089 28 × (16/7)4 264.089

6 H6 K2, K6, K10 2m+44.266 × 216 × (16/7)5 × 7

8 × 27
≈ 2m+61.282 216 × (16/7)5 273.282

7 H7 K1 + S(K0), K12 2m+44.266 × 224 × (16/7)5 × 8

8 × 27
≈ 2m+69.474 224 × (16/7)5 281.474

8 H8 K0, K1, K31 2m+44.266 × 232 × (16/7)5 × 7

8 × 27
≈ 2m+77.282 232 × (16/7)5 289.282

9 H9 K26 2m+44.266 × 232 × (16/7)5 × 3

8 × 27
≈ 2m+76.059 232 × (16/7)5 288.059

10 H10 K4 + S(K16) 2m+44.266 × 232 × (16/7)5 × 4

8 × 27
≈ 2m+76.474 232 × (16/7)5 288.474

11 H11 K11, K22, K24 2m+44.266 × 240 × (16/7)5 × 5

8 × 27
≈ 2m+84.796 240 × (16/7)5 296.796

12 H12 K4, K16 2m+44.266 × 244 × (16/7)5 × 3

8 × 27
≈ 2m+88.059 244 × (16/7)5 2100.059

13 H13 K21 2m+44.266 × 248 × (16/7)5 × 3

8 × 27
≈ 2m+92.059 248 × (16/7)5 2104.059

14 H14 K5, K30 2m+44.266 × 252 × (16/7)5 × 2

8 × 27
≈ 2m+95.474 252 × (16/7)5 2107.474

15 H15 K23, K29 2m+44.266 × 256 × (16/7)5 × 4

8 × 27
≈ 2m+100.474 256 × (16/7)5 2112.474

16 H16 RK3
6 = K9 + S(K8 +

S(K20)), K20

2m+44.266 × 260 × (16/7)5 × 3

8 × 27
≈ 2m+104.059 260 × (16/7)5 2116.059

17 H17 – 2m+44.266 × 256 × (16/7)6 × 2

8 × 27
≈ 2m+100.667 256 × (16/7)6 2112.667

18 H18 K27 2m+44.266 × 256 × (16/7)7 × 1

8 × 27
≈ 2m+100.860 256 × (16/7)7 2112.860

19 H19 K13 2m+44.266 × 260 × (16/7)7 × 2

8 × 27
≈ 2m+105.860 260 × (16/7)7 2117.860

20 H20 RK25
7 = f6(K14,

K25), RK26
5 =

f7(K8, K25)

2m+44.266 × 260 × (16/7)9 × 2

8 × 27
≈ 2m+108.245 260 × (16/7)9 2120.245

21 H – 2m+44.266 × 260 × (16/7)9 × 1

8 × 27
≈ 2m+107.245 260 × (16/7)9 2119.245

106 M. Tolba et al.

to efficiently extract/filter the round keys involved in the analysis rounds. Note
that, for the 7 round keys that are involved in the 3 rounds below the distin-
guisher, we wrote them as 7 functions f1, f2, f3, f4, f5, f6, f7 of the key nibbles
that are not involved in the above analysis rounds, K0,K2,K5,K7,K9,K10,K11,
K12,K13, and ignored the other key nibbles as they are known.

– H1: For all the 220 possible values of X1
0 , X1

5 , ΔX1
5 , t05 and RK0

0 = K1,
compute X0

0 , ΔX0
0 , X0

1 , and ΔX0
1 . Then, store X1

5 , ΔX1
5 , and RK0

0 = K1

in H1 indexed by X0
0 , ΔX0

0 , X0
1 , ΔX0

1 , and t05. ΔX0
1 is chosen such that

ΔX0
1 ∈ S[ΔX0

0], see Observation 4. Therefore, H1 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H2: For all the 220 possible values of X1
2 , X1

9 , ΔX1
9 , t01, and RK0

5 = K14,
compute X0

10, ΔX0
10, X0

11, and ΔX0
11. Then, store X1

9 , ΔX1
9 , and RK0

5 = K14

in H2 indexed by X0
10, ΔX0

10, X0
11, ΔX0

11, and t01. ΔX0
11 is chosen such that

ΔX0
11 ∈ S[ΔX0

10], see Observation 4. Therefore, H2 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H3: For all the 220 possible values of X1
11, ΔX1

11, X1
14, t00, and RK0

7 = K16,
compute X0

14, ΔX0
14, X0

15, and ΔX0
15. Then, store X1

11, ΔX1
11, X1

14, and
RK0

7 = K16 in H3 indexed by X0
14, ΔX0

14, X0
15, ΔX0

15, and t00. ΔX0
15 is

chosen such that ΔX0
15 ∈ S[ΔX0

14], see Observation 4. Therefore, H3 has
7 × 216 rows and on average about 220/(7 × 216) = 16/7 values in each row.

– H4: For all the 228 possible values of X2
7 , ΔX2

7 , X2
12, RK1

2 = K8, X1
1 , t04, and

RK0
1 = K3, compute X1

5 = X0
0 , ΔX1

5 = ΔX0
0 , X0

2 , X0
3 , and ΔX0

3 . Then, store
X2

7 , ΔX2
7 , RK1

2 = K8, and RK0
1 = K3 in H4 indexed by X1

5 = X0
0 , ΔX1

5 =
ΔX0

0 , X0
2 , X0

3 , ΔX0
3 , and t04. ΔX0

0 is chosen such that ΔX0
0 ∈ S[ΔX0

3],
see Observation 4. Therefore, H4 has 7 × 220 rows and on average about
228/(7 × 220) = (16/7) × 24 values in each row.

– H5: For all the 228 possible values of X2
2 , X2

9 , t11, ΔT7, RK1
5 = K18, X1

15, and
RK0

6 = K15, compute X0
14 = X1

11, ΔX0
14 = ΔX1

11, X0
12, and X0

13. Then, store
RK1

5 = K18 and RK0
6 = K15 in H5 indexed by X1

11, ΔX1
11, X0

12, X0
13, t11, and

ΔT7. ΔX0
14 is chosen such that ΔX0

14 ∈ S[ΔT7], see Observation 4. Therefore,
H5 has 7 × 220 rows and on average about 228/(7 × 220) = (16/7) × 24 values
in each row.

– H6: For all the 244 possible values of X3
3 , ΔX3

3 , X3
8 , t23, RK2

3 = K14, X2
13,

t12, RK1
4 = K17, X1

3 , t03, and RK0
3 = K6, compute X2

7 , ΔX2
7 = ΔX0

3 , X1
9 ,

ΔX1
9 = ΔX0

10, X0
6 , and X0

7 . Then, store X3
3 , ΔX3

3 , RK2
3 = K14, RK1

4 = K17,
and RK0

3 = K6 in H6 indexed by X2
7 , ΔX2

7 = ΔX0
3 , X1

9 , ΔX1
9 = ΔX0

10, X0
6 ,

X0
7 , t23, t12, t03, and RK2

3 = K14. ΔX0
3 is chosen such that ΔX0

3 ∈ S[ΔX0
10],

see Observation 4. Therefore, H6 has 7 × 236 rows and on average about
244/(7 × 236) = (16/7) × 24 values in each row.

– H7: For all the 248 possible values of X4
1 , X4

4 , t34, ΔT7, RK3
1 = K15, X3

9 , t21,
RK2

5 = K3, X2
15, RK1

6 = K19, X1
7 , and RK0

2 = K4, compute X3
3 , ΔX0

10 =
ΔX3

3 , X1
14, X0

8 , X0
4 , and X0

5 . Then, store RK3
1 = K15, RK2

5 = K3, RK1
6 =

K19, and RK0
2 = K4 in H7 indexed by X3

3 , ΔX0
10 = ΔX3

3 , X1
14, X0

8 , X0
4 ,

X0
5 , RK3

1 = K15, RK2
5 = K3, t34, ΔT7, and t21. ΔX0

10 is chosen such that
ΔX0

10 ∈ S[ΔT7], see Observation 4. Therefore, H7 has 7 × 240 rows and on
average about 248/(7 × 240) = (16/7) × 24 values in each row.

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 107

– H8: For all the 220 possible values of X24
0 , X24

1 , t245 , ΔT7, and RK24
0 =

f1(K0,K2,K5,K9,K10,K12,K13), compute X25
0 , ΔX25

1 , and X25
1 . Then,

store RK24
0 in H8 indexed by X25

0 , ΔX25
1 , X25

1 , t245 , and ΔT7. ΔX25
1 is chosen

such that ΔX25
1 ∈ S[ΔT7], see Observation 4. Therefore, H8 has 7× 216 rows

and on average about 220/(7 × 216) = 16/7 values in each row.
– H9: For all the 220 possible values of X24

14 , ΔX24
14 , X24

15 , t240 , and RK24
7 = f2(K0,

K2,K5,K7,K9,K10,K11,K12,K13), compute X25
14 , ΔX25

14 , X25
15 , and ΔX25

15 .
Then, store X24

14 , ΔX24
14 , and RK24

7 = f2(K0,K2,K5,K7,K9,K10,K11,K12,
K13) in H9 indexed by X25

14 , ΔX25
14 , X25

15 , ΔX25
15 , and t240 . ΔX25

15 is chosen such
that ΔX25

15 ∈ S[ΔX25
14], see Observation 4. Therefore, H9 has 7 × 216 rows

and on average about 220/(7 × 216) = 16/7 values in each row.
– H10: For all the 232 possible values of X23

14 , ΔX23
14 , X23

15 , t230 , RK23
7 = f3(K0,

K2,K5,K7,K9,K10,K11,K12,K13), X24
10 , t241 , and RK24

5 = f4(K0,K2,K5,
K7,K9,K10,K11,K12,K13), compute X25

14 = X24
14 , ΔX25

14 = ΔX24
14 , X25

11 ,
ΔX25

11 , and X25
10 . Then, store X23

14 , ΔX23
14 , RK23

7 = f3(K0,K2,K5,K7,K9,
K10,K11,K12,K13), and RK24

5 = f4(K0,K2,K5,K7,K9,K10,K11,K12,K13)
in H10 indexed by X25

14 = X24
14 , ΔX25

14 = ΔX24
14 , X25

11 , ΔX25
11 , X25

10 , t230 , and t241 .
ΔX25

14 is chosen such that ΔX25
14 ∈ S[ΔX25

11], see Observation 4. Therefore,
H10 has 7×224 rows and on average about 232/(7×224) = (16/7)×24 values
in each row.

– H11: For all the 244 possible values of X22
14 , X22

15 , t220 , ΔT7, RK22
7 = f5(K0,

K2,K5,K7,K9,K10,K11,K12,K13), X23
10 , t231 ,RK23

5 = f6(K0,K2,K5,K7,
K9,K10,K11,K12,K13), X24

8 , t242 , and RK24
4 = f7(K0,K2,K5,K9,K10,K12,

K13), compute X23
14 , ΔX25

11 = ΔX23
14 , X25

2 , X25
9 , and X25

8 . Then, store
RK22

7 = f5(K0,K2,K5,K7,K9,K10,K11,K12,K13), RK23
5 = f6(K0,K2,K5,

K7,K9,K10,K11,K12,K13), and RK24
4 = f7(K0,K2,K5,K9,K10,K12,K13)

in H11 indexed by X23
14 , ΔX25

11 = ΔX23
14 , X25

2 , X25
9 , X25

8 , t220 , ΔT7, t231 , and
t242 . ΔX25

11 is chosen such that ΔX25
11 ∈ S[ΔT7], see Observation 4. Therefore,

H11 has 7×232 rows and on average about 244/(7×232) = (16/7)×28 values
in each row.

Our attack proceeds as follows. We initialize an array H of 218×4=72 entries
to “0”, where each entry is 1-bit and the index of the array is 18 key nibbles
involved in the attack, as we will see later. Then, we generate 2m structures as
described above. Therefore, we have 2m+63 pairs of plaintext/ciphertext pairs
generated using 2m+28 chosen plaintexts. Next, we ask the encryption oracle
for their corresponding ciphertexts. The plaintext/ciphertext pairs that satisfy
Observation 4 are 2m+63 × 2−13.119 = 2m+49.881 pairs. After the ciphertext fil-
tration, we have only 2m+49.881 × 2−12×4 = 2m+1.881 remaining pairs. For each
remaining pair, we perform the following steps:

1. Determine the number of possible values of RK0
0 = K1 that satisfy the path

by accessing H1. Therefore, we have (16/7) possible values for K1.
2. Determine the number of possible values of RK0

5 = K14 that satisfy the path
by accessing H2. Therefore, we have (16/7)2 possible values for K1,K14.

3. Determine the number of possible values of RK0
7 = K16 that satisfy the path

by accessing H3. Therefore, we have (16/7)3 possible values for K1,K14,K16.

108 M. Tolba et al.

4. Determine the number of possible values of RK1
2 = K8, RK0

1 = K3 that
satisfy the path by accessing H4. Therefore, we have 24 × (16/7)4 possible
values for K1,K3,K8,K14,K16.

5. Determine the number of possible values of RK1
5 = K18, RK0

6 = K15 that
satisfy the path by accessing H5. Therefore, we have 28 × (16/7)5 possible
values for K1,K3,K8,K14,K15,K16,K18.

6. Determine the number of possible values of RK2
3 = K14, RK1

4 = K17, RK0
3

= K6 that satisfy the path by accessing H6. Therefore, we have 212×(16/7)6

possible values for K1,K3,K6,K8,K14,K15,K16,K17,K18.
7. Determine the number of possible values of RK3

1 = K15, RK2
5 = K3, RK1

6

= K19, RK0
2 = K4 that satisfy the path by accessing H7. Therefore, we have

216×(16/7)7 possible values for K1,K3,K4,K6,K8,K14,K15,K16,K17,K18,
K19.

8. Determine the number of possible values of RK24
0 that satisfy the path by

accessing H8. Therefore, we have 216×(16/7)8 possible values for K1,K3,K4,
K6,K8,K14,K15,K16,K17,K18,K19, RK24

0 .
9. Determine the number of possible values of RK24

7 that satisfy the path by
accessing H9. Therefore, we have 216×(16/7)9 possible values for K1,K3,K4,
K6,K8,K14,K15,K16,K17,K18,K19, RK24

0 , RK24
7 .

10. Determine the number of possible values of RK23
7 , RK24

5 that sat-
isfy the path by accessing H10. Therefore, we have 220 × (16/7)10

possible values for K1,K3,K4,K6,K8,K14,K15,K16,K17,K18,K19, RK24
0 ,

RK24
7 , RK23

7 , RK24
5 .

11. Determine the number of possible values of RK22
7 , RK23

5 , RK24
4 that sat-

isfy the path by accessing H11. Therefore, we have 228 × (16/7)11 possible
values for K1,K3,K4,K6,K8,K14,K15,K16,K17,K18,K19, RK24

0 , RK24
7 ,

RK23
7 , RK24

5 , RK22
7 , RK23

5 , RK24
4 .

12. The deduced 228 × (16/7)11 values for 18 key nibbles, K1,K3,K4,K6,K8,
K14,K15,K16,K17,K18,K19, RK24

0 , RK24
7 , RK23

7 , RK24
5 , RK22

7 ,K23
5 , RK24

4 ,
involved in the attack are wrong keys. Hence, mark them in H invalid “1”.

Attack Complexity. As depicted in Fig. 4, we have 22 round keys involved in
the analysis rounds. According to the key schedule, these 22 round keys take
only 272 possible values (see step 12 in Table 4). As mentioned in step 12, we
remove on average 228 × (16/7)11 = 241.119 out of 272 possible values of these
22 round keys involved in the attack for each pair of the 2m+1.881 remaining
pairs. Hence, a wrong key is not discarded using one pair with probability 1 −
241.119−72 = 1 − 2−30.881. Therefore, we have 272 × (1 − 2−30.881)2

m+1.881 ≈
272 × (e−1)2

m+1.881−30.881 ≈ 272 × 2−1.4×2m−29
remaining candidates for 72-bit

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 109

of the key, after processing all the 2m+1.881 remaining pairs. We evaluated the
computational complexity of the attack as a function of m, as illustrated in
Table 4, to determine the optimal value of m that leads to the best computational
complexity. As steps 11 and 12 dominate the time complexity of the attack,
see Table 4, we choose m = 33.5 in order to optimize the time complexity of
the attack. Therefore, we have 272 × 2−1.4×233.5−29=4.5

= 272−31.678 = 240.322

remaining candidates for 72-bit of the key. These 72-bit of the key include 11
master key nibbles and 7 round key nibbles. To retrieve the whole master key,
we perform the following steps:

1. Retrieve K10 from RK24
4 by guessing the 6 key nibbles K0,K2,K5,K9,

K12,K13. Since this step includes 18 S-box operations, it requires
240.322+24=64.322 × 18

8× 25 ≈ 260.848 encryptions. Since RK24
4 and RK24

0 are
functions in the same nibbles of the master key, we can compute RK24

0 using
the retrieved K10 and then match the computed value with its value in the
remaining candidate key. As a result, we have 4-bit filtration. Hence, we
have only 240.322+24−4=60.322 remaining key candidates. This step requires
240.322+24=64.322 × 37

8× 25 ≈ 261.888 encryptions.
2. Using the same technique, retrieve K7 from RK23

5 by guessing K11. This step
requires 260.322+4=64.322 × 90

8× 25 ≈ 263.167 encryptions. Since RK24
5 is also

a function in the same nibbles of the master key, we can compute it using
the retrieved K7 and compare it with its value in the remaining candidate.
As a result, we have 4-bit filtration. Hence, we have only 260.322+4−4=60.322

80-bit remaining key candidates. This step requires 260.322+4=64.322× 112
8× 25 ≈

263.485. Then, we perform the previous filtration to the following round key
nibbles RK22

7 , RK23
7 , and RK24

7 . Finally, we have another 3 4-bit filtrations.
Therefore, we have only 260.322−12 = 248.322 remaining candidates for the
whole master key. The time complexity of this step is dominated by 264.335

encryptions.

The right master key can be retrieved by exhaustively searching the 248.322

remaining key candidates using 2 plaintext/ciphertext pairs. This step requires
2× 248.322 = 249.322 encryptions. Therefore, the time complexity of the attack is
dominated by steps 11 and 12 in Table 4 which requires 270.441 +268.856 ≈ 270.86

encryptions, see Table 4. The data complexity of the attack is 2m+4×8 = 265.5

chosen tweak/plaintext combinations that can be generated using 2m+28 = 261.5

chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store H. Hence, the memory complexity is 272×2−6 =
266 64-bit blocks.

110 M. Tolba et al.

6 Conclusion

In this work, we presented two impossible differential attacks against reduced-
round versions of T-TWINE. Both attacks use our proposed 18-round impossible
differential distinguisher. To the best of our knowledge, this distinguisher is the
first valid 18-round distinguisher. Utilizing this distinguisher, we launched 25-
round and 27-round attacks on T-WINE-80 and T-TWINE-128, respectively.
The presented attacks are the first published attacks against both versions of
T-TWINE.

Table 4. Time complexity of the different steps of the attack on 25-round T-TWINE-
80, where NK denotes the number of keys to be excluded.

Step Time complexity (in 25-round encryptions) NK m = 33.5

1 2m+1.881 × (16/7) × 3

8 × 25
≈ 2m−2.985 (16/7) 230.515

2 2m+1.881 × (16/7)2 × 3

8 × 25
≈ 2m−1.793 (16/7)2 231.707

3 2m+1.881 × (16/7)3 × 4

8 × 25
≈ 2m−0.185 (16/7)3 233.315

4 2m+1.881 × 24 × (16/7)4 × 4

8 × 25
≈ 2m+5.008 24 × (16/7)4 238.508

5 2m+1.881 × 28 × (16/7)5 × 2

8 × 25
≈ 2m+9.200 28 × (16/7)5 242.700

6 2m+1.881 × 212 × (16/7)6 × 5

8 × 25
≈ 2m+15.715 212 × (16/7)6 249.215

7 2m+1.881 × 216 × (16/7)7 × 4

8 × 25
≈ 2m+20.586 216 × (16/7)7 254.086

8 2m+1.881 × 216 × (16/7)8 × 1

8 × 25
≈ 2m+19.778 216 × (16/7)8 253.278

9 2m+1.881 × 216 × (16/7)9 × 3

8 × 25
≈ 2m+22.556 216 × (16/7)9 256.056

10 2m+1.881 × 220 × (16/7)10 × 4

8 × 25
≈ 2m+28.164 220 × (16/7)11 261.664

11 2m+1.881 × 228 × (16/7)11 × 3

8 × 25
≈ 2m+36.941 228 × (16/7)11 270.441

12 2m+1.881 × 228 × (16/7)11 × 1

8 × 25
≈ 2m+35.356 228 × (16/7)11 268.856

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 111

A 18-round Impossible Differential Characteristic
as Depicted in Figure 8 of [15]

→ 6R

→ 7R

→ 17R

→ 16R

→ 15R

Input of Round #1

Ouput of Round #1
Input of Round #2

Ouput of Round #17
Input of Round #18

17
 R

ou
nd

s

Fig. 5. 18-round impossible differential characteristic as depicted in Figure 8 of [15]
with our comments.

References

1. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency S-boxes. IACR Trans. Sym-
metric Cryptol. 4–44 (2017)

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2

112 M. Tolba et al.

4. Ferguson, N., et al.: The SKEIN hash function family (2010). http://www.
skeinhash.info

5. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking Luby-Rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76900-2 21

6. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

7. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submitted to CAESAR
Competition (2016). https://competitions.cr.yp.to/round3/deoxysv141.pdf

8. Knudsen, L.: DEAL: a 128-bit block cipher. Complexity 258(2), 216 (1998). NIST
AES Proposal

9. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–151. SPringer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3 8

10. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 2

11. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2010)

12. Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008.
LNCS, vol. 5324, pp. 22–37. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-88733-1 2

13. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

14. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

15. Sakamoto, K., et al.: Tweakable TWINE: building a tweakable block cipher on
generalized feistel structure. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019.
LNCS, vol. 11689, pp. 129–145. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26834-3 8

16. Schroeppel, R.: An overview of the hasty pudding cipher (1998). http://www.cs.
arizona.edu/rcs/hpc

17. Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 2

18. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35999-6 22

http://www.skeinhash.info
http://www.skeinhash.info
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://doi.org/10.1007/978-3-662-43933-3_8
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-030-26834-3_8
https://doi.org/10.1007/978-3-030-26834-3_8
http://www.cs.arizona.edu/rcs/hpc
http://www.cs.arizona.edu/rcs/hpc
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 113

19. Zheng, X., Jia, K.: Impossible differential attack on reduced-round TWINE. In:
Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 123–143. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12160-4 8

20. Zheng, Y., Matsumoto, T., Imai, H.: Impossibility and optimality results on con-
structing pseudorandom permutations. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 412–422. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-46885-4 41

https://doi.org/10.1007/978-3-319-12160-4_8
https://doi.org/10.1007/3-540-46885-4_41

MixColumns Coefficient Property
and Security of the AES with A Secret

S-Box

Xin An1,2, Kai Hu1,2, and Meiqin Wang1,2(B)

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, Shandong, China

{anxin19,hukai}@mail.sdu.edu.cn, mqwang@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry of

Education, Shandong University, Qingdao 266237, Shandong, China

Abstract. The MixColumns operation is an important component pro-
viding diffusion for the AES. The branch number of it ensures that any
continuous four rounds of the AES have at least 25 active S-Boxes, which
makes the AES secure against the differential and linear cryptanalysis.
However, the choices of the coefficients of the MixColumns matrix may
undermine the AES security against some novel-type attacks. A particu-
lar property of the AES MixColumns matrix coefficient has been noticed
in recent papers that each row or column of the matrix has elements that
sum to zero. Several attacks have been developed taking advantage of
the coefficient property.

In this paper we investigate further the influence of the specific coef-
ficient property on the AES security. Our target, which is also one of
the targets of the previous works, is a 5-round AES variant with a secret
S-Box. We will show how we take advantage of the coefficient property to
extract the secret key directly without any assistance of the S-Box infor-
mation. Compared with the previous similar attacks, the present attacks
here are the best in terms of the complexity under the chosen-plaintext
scenario.

Keywords: AES · MixColumns · Exchange attack · Key recovery
attack · Secret S-Box

1 Introduction

The Advanced Encryption Standard (AES) [7] is designed to achieve good resis-
tance against the differential [3] and linear cryptanalysis [13]. This includes the
selection of the S-Box and linear components such as the MixColumns matrix.
For the AES, the branch number of its MixColumns matrix is chosen as five
then it ensures that any four continuous rounds of differential (linear) charac-
teristics have at least 25 active S-Boxes [7,8]. Considering that the maximum
correlation and the maximum difference propagation probability over the AES
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 114–131, 2020.
https://doi.org/10.1007/978-3-030-51938-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_6

MixColumns Coefficient Property and Security of the AES 115

S-Box are 2−3 and 2−6, respectively, there are no effective differential or linear
characteristics for four or more rounds of the AES.

For the performance reasons, the coefficients of the AES MixColumns are
chosen from a group of low-weight numbers. Therefore it is not surprising that
there are elements in each row or column that will add up to zero. For example,
its first row is

[
02, 03, 01, 01

]
thus 01 ⊕ 01 = 0 and 01 ⊕ 02 ⊕ 03 = 0.

Several attacks have been developed facilitated by this property and show that
the property can be a potential weakness [2,9,10,12,15]. For convenience, we
conclude it into two types concretely as follows as did in [12],

Property 1. Each row or column of the MixColumns matrix has two elements
that sum to zero.

Property 2. Each row or column of the MixColumns matrix has three ele-
ments that sum to zero.

At Crypto 2016, Sun et al. noticed Property 1 for the first time and established
the first zero-correlation linear hull and the first integral distinguisher for the
5-round AES [15]. The two attacks exploited the existing 4-round corresponding
properties and extended them one more round based on the MixColumns coef-
ficient property. We take the 5-round zero-correlation linear hull as an example.
As is well-known, the previous zero-correlation linear hull can cover at most 3.5
rounds of the AES (without last MixColumns) [4] which is illustrated in Fig. 11.

correlation = 0

3.5-round existing zero-correlation

MC 5-th R

extension based on Property 1

Fig. 1. Extending 3.5-round zero-correlation linear hull for AES to 5 rounds exploiting
Property 1

Let the first column of the input mask and the output mask of the Mix-
Columns after the 3.5-round zero-correlation linear hull be Γin and Γout, respec-
tively. According to the propagation of the mask over a linear map [4], we have
Γin = MT

AESΓout, where MT
AES is the transpose of the matrix used by the AES

MixColumns. Then if we can ensure that the two active masks of Γout are equal,
we can make certain that Γin has only three active bytes like Fig. 1. Finally, the
zero-correlation linear can be extended to 5 rounds.

Although the two distinguishers in [15] cost the whole codebook, they
spawned a sequence of new fundamental results that are based on Property 1 or 2.
1 In [4], the output mask of the 3.5-round zero-correlation linear hull has only one

active byte, but it is easy to check that with 3 active byte in the output mask it is
still a zero-correlation linear hull.

116 X. An et al.

Soon after, two following improvements were proposed which aimed to reduce
the complexities [6,12]. At FSE 2017, Grassi et al. took Property 1 proposing
the first impossible differential distinguisher for the 5-round AES [10]. Later at
CT-RSA 2018, the impossible differential distinguisher was further improved by
Grassi exploiting Property 2 [9]. In the same paper, he also discussed the attacks
on an AES variant with a secret S-Box. By combining the MixColumns coeffi-
cient property and the multiple-of-n attack [11], Grassi managed to extract the
secret key from the 5-round AES without knowing any information of the S-Box
or recovering it in advance as it was done in [16].

The security of the AES variant with a secret S-Box was firstly studied by
Tiessen et al. at FSE 2015 [16]. Assuming that the choice of the S-Box is made
uniformly at random from all 8-bit S-Boxes and keeping all other components
unchanged, the size of the secret information increases from 128 bits to 1812 bits2

(we focus on the AES-128). Generally speaking, a key-recovery attack requires
the details of the S-Box since we have to peel off some key-involved components.
Consequently, the authors of [16] needed to recover an equivalent S-Box by the
square attack [16] and then found the equivalent secret key. However, the works
in [9] showed that it is possible to recover the key information directly without
recovering the S-Box in advance if we take advantage of Property 1 or 2 appro-
priately. At Africacrypt 2019, Bardeh and Rønjom further studied the influence
of Property 1 under the adaptive-chosen-ciphertext scenario, which is the newest
result in this direction. The AES variant with a secret S-Box has been a pop-
ular target for studying the MixColumns coefficient property. In this paper, we
also study how to take the MixColumns coefficient property to extract the key
information without any knowledge of the S-Box.

1.1 Our Contribution

To explore the influence of the MixColumns coefficient property on the security of
the AES, in this paper we propose two new attacks on the 5-round AES variant
with a secret S-Box based on Property 1 and 2 respectively. Our attacks are
developed upon the newest technique called the exchange attack [1], we manage
to transform the 5-round exchange attack to two key-recovery attacks. Compared
with those previous attacks based on the MixColumns coefficient property, our
5-round attacks need only 242.6 or 246 chosen plaintexts, which are new records
under the chosen-plaintext scenario. All the attacks on the 5-round AES related
to the MixColumns coefficient property are listed in Table 1 for a convenient
comparison.

Organization of This Paper

In Sect. 2, we introduce some background knowledge needed in this paper. In
Sect. 3 and 4, we present two new attacks exploiting Property 1 and Property 2,
respectively. We conclude this paper in Sect. 5.

2 The number of all the 8-bit S-Boxes is 28! which is about log
(28!)
2 ≈ 1684 bits

information. Totally, the security information is about 1684 + 128 = 1812 bits.

MixColumns Coefficient Property and Security of the AES 117

Table 1. Attacks on the 5-round AES taking the mixcolumns coefficient property

Attack Round Data Computation Reference

Integral 5 2128 CC 2129.6 XOR [15]

Impossible differential 5 2102 CP 2107 M ≈ 2100.4 E� [10]

Impossible differential 5 276.4 CP 281.5 M ≈ 274.9 E [9]

Integral 5 296 CP 296 E [12]

Multiple-of-n 5 253.6 CP 255.6 M ≈ 248.86 E [9]

Zero difference 5 229.19 CP+232ACC 231 XOR [2]

Exchange 5 242.6 CP 242.6 E Sect. 3

Exchange 5 246 CP 246 E Sect. 4

CC: chosen ciphertexts, CP: chosen plaintexts, ACC: adaptive chosen ciphertexts

M: memory access, XOR: XOR operation, E: 5-round AES encryption
�: In [9,10], the authors used the scale that 100 times of memory access are approxi-

mately equivalent to 1 times of 5-round AES. In this paper, we use the same scale.

2 Preliminary

2.1 Description of the AES

The AES (Advanced Encryption Standard) [7] is an iterated block cipher with
the substitution-permutation network (SPN). It has three versions with the key
size 128, 192, 256 bits and the number of rounds is 10, 12, 14, respectively. The
length of the block cipher is 128-bit and it will be initialized as a 4×4 matrix of
bytes as values in the finite field F28 defined over the the irreducible polynomial
x8 + x4 + x3 + x + 1 (AES finite field). The round function of the AES, except
the last one, applies four operations to every state matrix:

– SubBytes (SB) - each of the 16 bytes in the state matrix is replaced by another
value getting from an 8-bit S-Box. In our attack the adversary does not know
the exact information about the S-Box.

– ShiftRows (SR) - the i-th (0 ≤ i ≤ 3) row of the state matrix is rotated to
the left by i position(s).

– MixColumns (MC) - each column of the state matrix is multiplied by an MDS
matric MAES from the left over the AES finite field. The invertible matrix
MAES is shown as follows, each byte of matrix is presented as hexadecimal.

MAES =

⎡

⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤

⎥
⎥
⎦ (1)

– AddRoundKey(AK) - the state of the AES is XORed with the 128-bit round
key.

In the first round an additional AK will be applied to the plaintext ahead
the SB operation. And in the last round the MixColumns operation is omitted
for convenient decryption. In this paper, we focus on the 5-round AES variant

118 X. An et al.

where we consider the five full rounds of the AES keeping the last MC only for
convenient description.

The AES Variant with A Secret S-Box. The target of this paper is an AES
variant with a secret S-Box, i.e., the S-Box is replaced by a secret one and other
structure and components are as the same as the original AES.

2.2 Notations

Let x denote a plaintext, a ciphertext, an intermediate state or a key. Then xi,j

with i, j ∈ {0, 1, 2, 3} denotes the byte located at the intersection of the i-th
row and the j-th column. The secret key is usually denoted by k. We denote one
round of the AES by R and denote r full rounds of the AES by Rr3. In this paper,
we will also adopt the notations of the subspaces for the AES proposed initially
in [10]. For a pair (x, x′), its dual pair (x̂, x̂′) is generated by exchanging the first
diagonal between x and x′. We call a pair and its dual pair, i.e., (x, x′, x̂, x̂′) a
pair-of-pair. For a matrix or a vector v, we denote its transpose by vT .

Subspaces of the AES. The subspace trial of the AES works with vectors and
vector spaces over F

4×4
28 . We denote the unit vectors of F4×4

28 by e0,0, e0,1, ..., e3,3

where ei,j has a single 1 in the intersection of the i-th row and the j-th column.

Definition 1 (Column Space [10]). The column space Ci are defined as Ci =
〈e0,i, e1,i, e2,i, e3,i〉.

Definition 2 (Diagonal and Inverse-Diagonal Space [10]). The diagonal
spaces Di and inverse-diagonal spaces IDi are defined as Di = SR−1(Ci) and
IDi = SR(Ci).

Definition 3 (Mixed Space [10]). The i-th mixed spaces Mi are defined as
Mi = MC(IDi).

Definition 4 ([10]). For I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, let CI ,DI , IDI and
MI defined as

CI =
⊕

i∈I

Ci,DI =
⊕

i∈I

Di, IDI =
⊕

i∈I

IDi,MI =
⊕

i∈I

Mi.

We refer readers to [10] for more details.
Next we introduce a useful one round subspace trail.

Lemma 1 ([10]). For any coset DI ⊕ a there exists a unique b ∈ C⊥
I such that

after one round R(DI ⊕ a) belongs to a coset of column space, i.e., R(DI ⊕ a) =
CI ⊕ b. In other words, if x ⊕ x′ ∈ DI , then R(x) ⊕ R(x′) ∈ CI .

3 For the unity of description, we do not omit the last MC of Rr when we metion Rr.

MixColumns Coefficient Property and Security of the AES 119

2.3 Exchange Attack

The exchange attack is a new distinguisher proposed at Asiacrypt 2019 which
can be used to attack the 5- and 6-round AES [1]. Since this paper only use the
distinguishing attack on the 5-round AES, we only introduce some basic ideas
about its application to the 5-round AES.

For a pair of states, if we exchange their first diagonals between the two
values and get its dual pair, it is equivalent to swap the corresponding column
after one round encryption. Furthermore, in some special cases, to exchange
a column is equivalent to exchange a diagnoal. For example, if the difference
of the state pair behaves like the rightmost state in Fig. 2, exchanging its first
column is equivalent to exchange its first diagonal, because only the byte at the
intersection of the first column and the first diagnoal is active.

exchange exchange exchange exchange exchangeexchange exchange exchange exchange exchange

AK SB SR MC AK

Fig. 2. Swapping the first column is equivalent to swap the first diagonal.

In [1], the authors modified a theorem from [14], which states an exchange-
difference relation over 4 rounds of the AES.

Theorem 1 (4-round Exchange-Difference Relation [14]). Let x, x′ ∈
F

4×4
28 , exchange some diagonals between x and x′ and get x̂, x̂′, then for J ⊆

{0, 1, 2, 3} and 0 < |J | ≤ 3,

Pr(R4(x̂) ⊕ R4(x̂′) ∈ MJ |R4(x) ⊕ R4(x′) ∈ MJ) = 1.

According to the exchange attack illustrated in Fig. 2 [1], we choose a pair of
plaintext x, x′ ∈ DJ ⊕ a where J = {0, 1}, and exchange the first diagonal
to get its dual pair x̂, x̂′ ∈ CI ⊕ a. With some probability x ⊕ x′ and x̂ ⊕ x̂′

may satisfy a special difference pattern making that it is equivalent to exchange
some diagonals of (R(x), R(x′)) to get (R(x̂), R(x̂′)). Then it meets the starting
condition of Theorem 1, we can get a 5-round exchange-equivalent relation for
the AES.

3 Improved Key-Recovery Attack Based on Property 1

In this section, we show how to combine Property 1 with the exchange attack
to establish an improved key-recovery attack on the 5-round AES with a secret
S-Box. The basic idea of this attack is to extend the 4-round exchange-difference
relation (Theorem 1) to 5 rounds. In the attack, we first choose two plaintexts

120 X. An et al.

p, p′ from a subspace S0 = a⊕DI where I = {0, 1}, and expect that R(p), R(p′)
will be in a specific subspace S1 = b ⊕ CI as follows,

S1 �

⎧
⎪⎪⎨

⎪⎪⎩
b ⊕

⎡

⎢
⎢
⎣

x1 x2 0 0
0 0 0 0
0 x3 0 0
0 x4 0 0

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

x1, x2, x3, x4, b ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭
. (2)

For two randomly drawn plaintexts p, p′ ∈ S0, the probability that R(p)⊕R(p′) ∈
S1 is 2−32. However, taking Property 1 into consideration and choosing p, p′

carefully according to some secret key information, we can vary the probability
of R(p) ⊕ R(p′) ∈ S1 between the wrong and right key guess.

Once R(p) ⊕ R(p′) ∈ S1, we can exchange the first diagonal between p and
p′ and get its dual pair (p̂, p̂′), thus (R(p), R(p′)) and (R(p̂), R(p̂′)) are two
pairs satisfying the starting condition of Theorem 1. Hence, R5(p) ⊕ R5(p′) and
R5(p̂) ⊕ R5(p̂′) will be always in the same MJ for certain J ⊆ {0, 1, 2, 3} at
the same time. For sake of convenience, in this section we call such pair-of-pair
(p, p′, p̂, p̂′) a right pair-of-pair.

Details. Based on Property 1, if the four input bytes of MC have two zero-
difference values and the difference of the remaining two bytes are equal, the
output vector will have one zero-difference byte with probability 1. Without loss
of generality, we assume the input difference is [a, 0, 0, a]T , then

⎡

⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

a
0
0
a

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

3a
0
2a
a

⎤

⎥
⎥
⎦ . (3)

It can be seen that the second value of the output difference must be zero. Then
if the second column of the input difference of MC is really the patten such as
[a, 0, 0, a]T where a ∈ F28\{0}, the probability that R(p) ⊕ R(p′) ∈ S1 (Eq. 2)
will be 2−24 rather than 2−32. For this reason, we define the set Az,δ as follows,

Az,δ �

⎧
⎪⎪⎨

⎪⎪⎩
a ⊕

⎡

⎢
⎢
⎣

y0 z 0 0
0 y1 0 0
0 0 y2 0

z ⊕ δ 0 0 y3

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

∀y0, y1, y2, y3, a ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭
where z, δ ∈ F28 , (4)

and then choose two different plaintexts p ∈ Az0,δ and p′ ∈ Az1,δ where z0 	= z1.
Let the two secret key bytes which are XORed with p0,1 (Resp. p′

0,1) and p3,0

(Resp. p′
3,0) be k0,1 and k3,0, respectively. After f � SR ◦ SB ◦AK operation, the

second column of f(p) ⊕ f(p′) is

(f(p) ⊕ f(p′))C1 =

⎡

⎢
⎢
⎣

S-Box(z0 ⊕ k0,1) ⊕ S-Box(z1 ⊕ k0,1)
0
0

S-Box(z0 ⊕ δ ⊕ k3,0) ⊕ S-Box(z1 ⊕ δ ⊕ k3,0)

⎤

⎥
⎥
⎦ .

MixColumns Coefficient Property and Security of the AES 121

To meet the condition shown in Eq. 3, Eq. 5 should be met,

S-Box(z0⊕k0,1)⊕S-Box(z1⊕k0,1) = S-Box(z0⊕δ⊕k3,0)⊕S-Box(z1⊕δ⊕k3,0) (5)

Since the S-Box is a secret permutation, Eq. 5 has only two solutions, i.e.,

δ = k0,1 ⊕ k3,0 or δ = z0 ⊕ z1 ⊕ k0,1 ⊕ k3,0.

If we let δ run through all values in F28 , we can guarantee that there are at least
two values of δ leading that Eq. 5 holds. For sake of simplicity, we call the two δ
right δ and other values wrong δ. For right δ, the probability that R(p)⊕R(p′) ∈
S1 will be 2−24. For wrong δ, the probability is still 2−32. Combinining with
Theorem 1, we conclude the following proposition,

Proposition 1. Let p ∈ Az0,δ and p′ ∈ Az1,δ. (p̂, p̂′) is the dual pair of (p, p′).
If δ is right, for certain MJ with |J | = 3,

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−54.

While for wrong δ,

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−62.

Proof. If two pairs satisfy the starting condition of Theorem 1, they will be in
the same MJ at the same time after 4 rounds of encryption. Let |J | = 3, the
probability for the two pairs being a right pair-of-pair is 2−30 since we have four
choices of J .

For wrong δ, the starting condition of Theorem 1 is statisfied with probability
2−32. Then, the probability for the two pairs being a right pair-of-pair is about
2−62, which is consistent with the random case. While for right δ, the starting
condition is met with probability 2−24, so the probability for the two pairs being
a right pair-of-pair is 2−54. �

Finding δ Candidates. We can take advantage of Proposition 1 to find the
right δ that implies k0,1 ⊕ k3,0. The process for finding δ is illustrated in
Algorithm 1. For each candidate δ ∈ F28 , we find collision pairs and check
whether there is at least one collision pair satisfying that its dual pair is also a
collision pair. We explain briefly some crucial lines in Algorithm 1.

Line 4. For Az0,δ and Az1,δ, we require that the i-th plaintexts in Az0,δ and
Az1,δ should have the same value in the first diagonal. In this way, (ci

z0
, cj

z1
)

must be the dual pair of (ci
z1

, cj
z0

). We can prepare a subset of D0 with size 2N

and use it to generate the two sets Az0,δ and Az1,δ where z0 	= z1.

Line 14. Since we have stored all the ciphertexts in tables, we only need to
store the indexes of ciphertexts into the two hash tables. If the i-th lines of Tz0

and Tz1 are not empty simultaneously, we find a collision pair pointed by the
corresponding indexes.

122 X. An et al.

Algorithm 1. Finding δ Candidates (Property 1)
1: procedure Core(z0, z1, r, c) � Return a set containing the possible right δ
2: for Each δ ∈ F28 do
3: Initialize 2 sequence tables Cz0 , Cz1 , 1 table Δ
4: Prepare two sets Az0,δ, Az1,δ with 229 plaintexts � Make sure

Az0,δ[i]D0 = Az1,δ[i]D0 , according to Equation 4
5: for i = 0; i < 229; i = i + 1 do
6: for j = 0; j < 2; j = j + 1 do
7: ci

zj
← R5(pi

zj
) � pi

zj
is the i-th plaintext in Azj ,δ

8: Czj [i] ← ci
zj

� Store ci
zj

9: end for
10: end for
11: for k = 0; k < 4; k = k + 1 do � For each Mk space, search for collisions
12: Initialize 2 hash tables Tz0 , Tz1

13: for i = 0; i < 229; i = i + 1 do
14: for j = 0; j < 2; j = j + 1 do
15: Tzj [MC−1(ci

zj
)IDk] ← index(ci

zj
) � index(ci

zj
) = i

16: end for
17: end for
18: for i = 0; i < 232; i = i + 1 do � For each line of Tz0 and Tz1

19: if there is a collision pair with indexes (i0, i1) and i0 �= i1 then
20: ci1

z0 ← Cz0 [i1], ci0
z1 ← Cz1 [i0] � (ci0

z0 , ci1
z1) and (ci1

z0 , ci0
z1) are dual

pairs
21: if ci1

z0 ⊕ ci0
z1 ∈ Mk then � (ci1

z0 , ci0
z1) is also collided

22: Δ ← δ
23: end if
24: end if
25: end for
26: end for
27: end for
28: return Δ
29: end procedure

Algorithm 2. Remove wrong δ

1: procedure Remove(Δ, z0, z1)
2: for δ ∈ Δ do
3: if δ ⊕ z1 ⊕ z2 /∈ Δ then
4: Remove δ from Δ
5: end if
6: end for
7: return Δ
8: end procedure

MixColumns Coefficient Property and Security of the AES 123

Line 20. (ci
z0

, cj
z1

) and (ci
z1

, cj
z0

) are dual pairs, then we need to check if ci
z1

⊕
cj
z0

∈ Mk.

Determine the Size of Az0,δ And Az1,δ . For Az0,δ and Az1,δ with 2N ele-
ments, we can obtain 22N pairs (p, p′) by choosing p ∈ Az0,δ and p′ ∈ Az1,δ. By
exchanging the first diagonal, we get 22N−1 pair-of-pairs such as (p, p′, p̂, p̂′).

For 5-round AES, these 22N−1 pair-of-pairs can be regarded as 22N−1

Bernoulli trials, and the number of right pair-of-pairs should obey Binomial dis-
tribution B(22N−1, 2−54) when δ is right. Otherwise, it will obey B(22N−1, 2−62).
Let Nr and Nw be the number of right pair-of-pairs for right and wrong δ,
respectively.
For right δ,

Pr(Nr ≥ 1) = 1 − Pr(Nr = 0) = 1 − (1 − 2−54)2
2N−1 ≈ 1 − exp(−22N−1−54).

For wrong δ,

Pr(Nw ≥ 1) = 1 − Pr(Nw = 0) = 1 − (1 − 2−62)2
2N−1 ≈ 1 − exp(−22N−1−62).

When we take N = 29, Pr(Nr ≥ 1) ≈ 0.9997 while Pr(Nw ≥ 1) ≈ 0.0308, which
means we can distinguish the right δ from the wrong δ.

Determining the Exact k0,1 ⊕ k3,0. Either of the right δ including δ = k0,1⊕
k3,0 and δ = k0,1 ⊕ k3,0 ⊕ z0 ⊕ z1 will bring at least one right pair-of-pair with
probability about 0.9997. Therefore, they will be both returned by Algorithm 1
with probability 0.99972 ≈ 0.9994. At the same time, the probability for a wrong
δ being recommended is 0.0308. For all the 28−2 wrong δ, on average there will be
(28 −2)×0.0308 ≈ 8 wrong δ which are also recommended. All the δ candidates
are inserted into a set Δ, which is returned by Algorithm 1 finally.

To remove the wrong δ from Δ, we XOR z0 ⊕ z1 with each value in Δ. For
right δ, δ ⊕ z0 ⊕ z1 should be also in Δ in a high probability (0.9994) while for
wrong δ, the probability is about 2−8. The method of removing wrong δ is shown
in Algorithm 2.

Now the set Δ contains only k0,1 ⊕k3,0 and k0,1 ⊕k3,0 ⊕z0 ⊕z1. To determine
the exact right key byte, we have to call Algorithm 1 and Algorithm 2 again with
(z2, z3) where z2 ⊕ z3 	= z0 ⊕ z1. With Δ′ = {k0,1 ⊕ k3,0, k0,1 ⊕ k3,0 ⊕ z2 ⊕ z3}
returned, we can easily determine the right k0,1 ⊕ k3,0 by comparing Δ and Δ′.
Therefore we recover one byte key information with 0.99942 ≈ 0.9988 success
probability. The process is illustrated in Algorithm 3.

The procedure RecoverKeyByte(r, c) (Algorithm 3) can be used to recover
kr,c ⊕kr+1,c+1

4. Since the equal bytes in MC matrix are all adjacent, for the i-th
diagonal of the key state, we can recover k0,i⊕k1,i+1, k1,i+1⊕k2,i+2, k2,i+2⊕k3,i+3

and k3,i+3⊕k0,i. However, from any three out of the four values we can derive the
remaining one, which means we can recover three bytes of useful key information
for one diagonal. For the four diagonals of key state, we can recover 12 bytes of
key information, i.e. we can get the secret key up to 232 variants.
4 In this paper, the addition of indexes are modulo 4.

124 X. An et al.

Algorithm 3. Recover the real key kr,c ⊕ kr+1,c+1 (Property 1)
1: procedure RecoverKeyByte(r, c) � Recover kr,c ⊕ kr+1,c+1 with 99.88%

probability
2: Allocate z0, z1, z2, z3 s.t. z0 ⊕ z1 �= z2 ⊕ z3
3: Δ0 ← Core(z0, z1, r, c)
4: if |Δ0| == 0 then
5: return ⊥
6: else
7: Δ0 ← Remove(Δ0, z0, z1)
8: end if
9: Δ1 ← Core(z2, z3, r, c)

10: if |Δ1| == 0 then
11: return ⊥
12: else
13: Δ1 ← Remove(Δ1, z0, z1)
14: end if
15: if Δ0, Δ1 have the same value then
16: return δ ← (Δ0, Δ1) � Right kr,c ⊕ kr+1,c+1 must lie in both set
17: else
18: return ⊥
19: end if
20: end procedure

Data Complexity. From Algorithm 1, for every δ ∈ F28 we use four sets Azi,δ

for i = 0, 1, 2, 3 each with 229 plaintexts. Therefore we need 229 × 28 × 4 = 239

chosen plaintexts to recover one byte key. In order to recover 12 key bytes, the
total data complexity is 239 × 12 ≈ 242.6 chosen plaintexts.

Computation Complexity. Firstly, we evaluate the complexity of Algorithm 1.
For each possible δ ∈ F28 we encrypt two sets Az0,δ and Az1,δ each with 229 plain-
texts, this operation needs 229 × 2 = 230 5-round encryptions. After obtaining 230

ciphertexts, we insert them into Cz0 and Cz1 with 230 table-lookups. To insert all
the ciphertexts to Tz0 and Tz1 , we need 230 table-lookups again. Then we compare
each line ofTz0 andTz1 to find collisionpairs, it requires 2×232 = 233 table-lookups.
For the two sets Az0,δ and Az1,δ each with 229 chosen plaintexts, on average we can
obtain 229 × 229 × 2−32 = 226 collision pairs.Oncewefind a collision pair (ci

z0
, cj

z1
),

we need a time of XOR to check whether (ci
z1

, cj
z0

) is collided. These memory oper-
ations above need about 233 table-lookups. Considering we have four possible Mk,
the whole memory operations cost 235 table-lookups. We use the convention that
100 times of table look-ups are equivalent to one time 5-round encryption. Hence,
encrypting the plaintexts is dominant in the time complexity, which requires 230

5-round encryptions for each δ.
To determine the exact one byte information of key (Algorithm 3), the time

complexity is 28 × 2 × 230 = 239 5-round encryptions. Recovering 12 bytes key
requires 239 × 12 ≈ 242.6 times of 5-round encryption.

MixColumns Coefficient Property and Security of the AES 125

Memory Complexity. We allocate 2 sequence tables with size 229 and 2 hash
tables with size 232. Since these tables can be reused, the total memory com-
plexity is about 232 × 2 + 229 × 2 ≈ 233 128-bit blocks.

Practical Verification. Using C/C++ implementation, we practically verified
our key-recovery attack on a small-scale variant of the AES as presented in [5].
The block size of the small-scale AES is 64 bits, and each word is a 4-bit nibble
in the state matrix. We simply recover one byte of the secret key XOR in our
experiment. The experimental result supports our theory.5

4 Improved Key-Recovery Attack Based on Property 2

Similar to the exchange attack based onProperty 1,we can also combineProperty 2
of MC matrix with exchange attack to realize the key recovery attack with a secret
S-Box. To exploit Property 2, we focus on another subspace S′

1 that two plaintexts
p, p′ ∈ DI , I = {0, 1} should fall into after the first round encryption.

S′
1 �

⎧
⎪⎪⎨

⎪⎪⎩
b ⊕

⎡

⎢
⎢
⎣

a1 0 0 0
0 0 0 0
0 a3 0 0
a2 a4 0 0

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

a1, a2, a3, a4, b ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭
. (6)

If we exchange the first diagonal between p and p′, it is equivalent to exchange the
first column between R(p) and R(p′). Since R(p), R(p′) ∈ S′

1, it is also equivalent
to exchange the first and the fourth diagonals between R(p) and R(p′).

Details. Property 2 of MC says that three elements in each row can be XORed
to zero. If the input difference of the four bytes of MC has three equal values
and the remaining one value is zero, the output difference will have two zero-
difference byte with probability 1. Without loss of generality, we assume the
input difference is [a, a, a, 0]T , then

⎡

⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

a
a
a
0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
2a
3a

⎤

⎥
⎥
⎦ (7)

It can be seen that there are two zero-difference values in the output difference
with probability 1. Then if the input difference of MC is really the pattern such
as [a, a, a, 0]T for any a ∈ F28\{0}. To achieve it, we define the set Aw,δ1,δ2 as
follows,

Aw,δ1,δ2 �

⎧
⎪⎪⎨

⎪⎪⎩
a ⊕

⎡

⎢
⎢
⎣

y1 w 0 0
0 y2 w ⊕ δ1 0
0 0 y3 w ⊕ δ2

0 0 0 y4

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

∀y0, y1, y2, y3 ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭

where w, δ1, δ2 ∈ F28 .

(8)

5 https://github.com/anxin19/5-round-AES-keyrecoveryattack.git.

https://github.com/anxin19/5-round-AES-keyrecoveryattack.git

126 X. An et al.

We choose two different plaintexts p ∈ Aw0,δ1,δ2 , p
′ ∈ Aw1,δ1,δ2 . Let the key bytes

XORed with p0,1, p1,2, p2,3 (Resp. p′
0,1, p

′
1,2, p

′
2,3) are k0,1, k1,2, k2,3, respectively.

After the operation f = SR ◦ SB ◦AK, the difference between the second column
of f(p) and f(p′) is

f(p)C1 ⊕ f(p′)C1 =

⎡

⎢
⎢
⎣

S-Box(w0 ⊕ k0,1) ⊕ S-Box(w1 ⊕ k0,1)
S-Box(w0 ⊕ δ1 ⊕ k1,2) ⊕ S-Box(w1 ⊕ δ1 ⊕ k1,2)
S-Box(w0 ⊕ δ2 ⊕ k2,3) ⊕ S-Box(w1 ⊕ δ2 ⊕ k2,3)

0

⎤

⎥
⎥
⎦ (9)

To meet the condition shown in Eq. 7, the following equation should be satisfied
(denote S-Box(·) by S(·) for short),

{
S(w0 ⊕ k0,1) ⊕ S(w1 ⊕ k0,1) = S(w0 ⊕ δ1 ⊕ k1,2) ⊕ S(w1 ⊕ δ1 ⊕ k1,2)
S(w0 ⊕ k0,1) ⊕ S(w1 ⊕ k0,1) = S(w0 ⊕ δ2 ⊕ k2,3) ⊕ S(w1 ⊕ δ2 ⊕ k2,3)

(10)

Since the S-Box is a secret permutation, there can be only four kinds of solutions,

(δ1, δ2) = (k0,1 ⊕ k1,2, k0,1 ⊕ k2,3) or
(δ1, δ2) = (k0,1 ⊕ k1,2, w0 ⊕ w1 ⊕ k0,1 ⊕ k2,3) or
(δ1, δ2) = (w0 ⊕ w1 ⊕ k0,1 ⊕ k1,2, k0,1 ⊕ k2,3) or
(δ1, δ2) = (w0 ⊕ w1 ⊕ k0,1 ⊕ k1,2, w0 ⊕ w1 ⊕ k0,1 ⊕ k2,3)

(11)

Similar with the attack in Sect. 3, we let (δ1, δ2) run through all possible values
in F28 × F28 . There will be at least four values of (δ1, δ2) that make Eq. 10 hold.
We call the four (δ1, δ2) in Eq. 11 right (δ1, δ2) and the other values wrong
(δ1, δ2). For right (δ1, δ2), the probability of R(p1) ⊕ R(p2) ∈ S′

1 is 2−16 while
for wrong (δ1, δ2) the probability is still 2−32. Combining with Theorem 1, we
conclude the following proposition.

Proposition 2. Let p ∈ Aw0,δ1,δ2 and p′ ∈ Aw1,δ1,δ2 . (p̂, p̂′) is generated by
exchanging the first diagonal between p and p′. If (δ1, δ2) is right, for certain MJ

with |J | = 3,

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−46,

while for wrong (δ1, δ2),

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−62.

The proof of Proposition 2 is similar to the Proposition 1, we omit it here.

Finding (δ1, δ2) Candidates. We can also take advantage of Proposition 2
to find the right (δ1, δ2) which implies the key byte information k0,1 ⊕ k1,2 and
k0,1 ⊕ k2,3. The process for finding (δ1, δ2) candidates is similar to Algorithm 1
except we need to guess two key byte difference. The process is illustrated in
Algorithm 4.

MixColumns Coefficient Property and Security of the AES 127

Determine the Size of Aw0,δ1,δ2 And Aw1,δ1,δ2 . If the size of Aw0,δ1,δ2 and
Aw1,δ1,δ2 are both 2M , we can obtain 22M pairs of (p, p′) by choosing p ∈ Aw0,δ1,δ2

and p′ ∈ Aw1,δ1,δ2 . By exchanging the first diagonal, we can get totally 22M−1

pair-of-pairs such as (p, p′, p̂, p̂′). If R5(p)⊕R5(p′) ∈ MJ and R5(p̂)⊕R5(p̂′) ∈ MJ

for |J | = 3 hold at the same time, then we call such (p, p′, p̂, p̂′) a right pair-of-
pair. Consider the number of right pair-of-pairs,
For right (δ1, δ2),

Pr(Mr ≥ 1) = 1 − Pr(Mr = 0) = 1 − (1 − 2−46)2
2M−1 ≈ 1 − exp(−22M−1−46).

For wrong (δ1, δ2),

Pr(Mw ≥ 1) = 1 − Pr(Mw = 0) = 1 − (1 − 2−62)2
2M−1 ≈ 1 − exp(−22M−1−62).

When we take M = 25, Pr(Mr ≥ 1) ≈ 0.9997 while Pr(Mw ≥ 1) ≈ 0.0001
which means we can distinguish the right (δ1, δ2) from the wrong ones.

Determining k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3. In this attack, we also have a prob-
ability 1 − (1 − 0.0001)2

16−4 ≈ 0.9986 nearly close to 1 to return at least one
wrong (δ1, δ2). On average, approximately (216 − 4) × 0.0001 ≈ 7 wrong (δ1, δ2)
will be returned. To remove the wrong (δ1, δ2) from Δ, we XOR w0 ⊕ w1 with
the two components of each value in Δ and check whether the result is in Δ or
not as Algorithm 5. To determine the exact (k0,1 ⊕ k1,2, k0,1 ⊕ k2,3), we need
to use additional two sets Aw2,δ1,δ2 Aw3,δ1,δ2 where (w0, w1) 	= (w2, w3) with 225

plaintexts and do the same. Finally, the probability that we succeed to recover
the two key bytes with probability 0.99974×2 ≈ 0.9976. The process is illustrated
in Algorithm 6 .

After we recover two key bytes information, we can take the same strategy
to recover another different key byte information in the same diagonal. At last
we can recover 12 key byte difference, i.e., we can get the entire secret key up to
232 variants.

Data Complexity. According to Algorithm 4, for each (δ1, δ2) we use two sets
Aw0,δ1,δ2 and Aw1,δ1,δ2 each with 225 plaintexts. Additional two sets Aw2,δ1,δ2 and
Aw3,δ1,δ2 are also required to find the exact two key byte information. Therefore,
totally we need 225 × 216 × 2 × 2 = 243 chosen plaintexts to recover two key
bytes. To find the 12 bytes key information, the total data complexity is about
243 × 8 = 246.

Computation Complexity. Encrypting two sets with 225 plaintexts we need
225 × 2 = 226 5-round encryption which is the donimant in the complexity of
Algorithm 4. The total time complexity is about 226 × 216 × 2× 8 = 246 5-round
encryption.

Memory Complexity. We allocate two sequence tables with size 225 to store
the two ciphertext sets and additionally 2 hash tables with size 232. The memory
complexity is finally 233 128-bit blocks.

128 X. An et al.

Algorithm 4. Finding (δ1, δ2) Candidates (Property 2)
1: procedure Core′(w0, w1, r, c) � Return a set containing possible (δ1, δ2)
2: for Each (δ1, δ2) ∈ F28 × F28 do
3: Initialize 2 sequence tables Cw0 and Cw1 , 1 table Δ
4: Prepare two sets Aw0,δ1,δ2 , Aw1,δ1,δ2 with 225 plaintexts each as Eq. 8
5: for i = 0; i < 225; i = i + 1 do
6: for j = 0; j < 2; j = j + 1 do
7: ci

wj
← R5(pi

wj
)

8: Cwj [i] ← ci
wj

� Push back ci
wj

into sequence table
9: end for

10: end for
11: for k = 0; k < 4; k = k + 1 do
12: Initialize 2 hash tables Tw0 , Tw1

13: for i = 0; i < 225; i = i + 1 do
14: for j = 0; j < 2; j = j + 1 do
15: Twj [MC−1(ci

wj
)IDk] ← index(ci

wj
) � Insert the index of ci

wj
into

hash table
16: end for
17: end for
18: for i = 0; i < 232; i = i + 1 do
19: if there is a collision pair with indexes (i0, i1) and i0 �= i1 then
20: ci1

w0 ← Cw0 [i1], ci0
w1 ← Cw1 [i0] � (ci0

w0 , ci1
w1) and (ci1

w0 , ci0
w1) are

dual pairs
21: if ci1

w0 ⊕ ci0
w1 ∈ Mk then � (ci1

w0 , ci0
w1) is also collided

22: Δ ← δ
23: end if
24: end if
25: end for
26: end for
27: end for
28: return Δ
29: end procedure

Algorithm 5. Remove wrong (δ1, δ2)
1: procedure Remove′(Δ, w0, w1)
2: for each (δ1, δ2) ∈ Δ do
3: if (δ1 ⊕ w0 ⊕ w1, δ2 ⊕ w0 ⊕ w1) /∈ Δ then
4: Remove′ (δ1, δ2) from Δ
5: end if
6: end for
7: return Δ
8: end procedure

MixColumns Coefficient Property and Security of the AES 129

Algorithm 6. Recover kr,c ⊕ kr+1,c+1 and kr,c ⊕ kr+2,c+2 (Property 2)
1: procedure RecoverKeyByte′(r, c, t) � Recover kr,c ⊕ kr+1,c+1 and

kr,c ⊕ kr+2,c+2 with 99.76% success probability
2: Allocate w0, w1, w2, w3 s.t. w0 ⊕ w1 �= w2 ⊕ w3

3: Δ0 ← Core′(w0, w1, r, c)
4: if |Δ0| == 0 then
5: return ⊥ � Fail
6: else
7: Δ′

0 ← Remove′(Δ0, w0 ⊕ w1)
8: end if
9: Δ1 ← Core′(w2, w3, r, c)

10: if |Δ1| == 0 then
11: return ⊥
12: else
13: Δ′

1 ← Remove′(Δ1, w2 ⊕ w3)
14: end if
15: if Δ′

0, Δ
′
1 have the same value then

16: return (δ1, δ2) ← (Δ′
0, Δ

′
1) � Right kr,c ⊕ kr+1,c+1 and kr,c ⊕ kr+2,c+2

must lie in both sets
17: else
18: return ⊥
19: end if
20: end procedure

5 Conclusion

In this paper, we explore the impact of the MC coefficient property on the
security of the AES variant with a secret S-Box. We provide two attacks based
on Property 1 and Property 2 respectively and achieve the best record in terms
of the complexity under chosen-plaintext scenario. Such attacks remind us to
notice the choice of MC matrix for AES-like ciphers.

To our best knowledge, no previous attacks on the AES have taken advantage
of other properties except the branch number of the MC matrix. It means that
we may substitute any other MDS matrix free of Property 1 or 26 for the AES
MC matrix without hazarding its security against other attacks. In [9], Grassi
showed that about only 6.87% among all the MDS matrices have the two kinds
of properties. Nevertheless, the choice of MC is still a difficult work since we
should consider the performance of the cipher. The MC matrix of AES is already
qualified for its pretty low weight, thus it is an interesting open question how
to choose a proper MDS matrix without the particular coefficient property and
achieve the same or even higher efficiency simultaneously.

Acknowledgement. We thank the anonymous reviewers for their valuable comments.
This work is supported by the National Key Research and Development Project No.
2018YFA0704702, Major Scientific and Technological Innovation Project of Shandong

6 Its inverse matrix should not have Property 1 or 2.

130 X. An et al.

Province, China under Grant No. 2019JZZY010133, National Natural Science Founda-
tion of China (NSFC) under Grant No. 61572293, 61502276 and 61692276.

References

1. Bardeh, N.G., Rønjom, S.: The exchange attack: how to distinguish six rounds of
AES with 2̂88.2 chosen plaintexts. In: Galbraith, S., Moriai, S. (eds.) ASIACRYPT
2019, Part III. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 12

2. Bardeh, N.G., Rønjom, S.: Practical attacks on reduced-round AES. In: Buchmann,
J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 297–
310. SPringer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0 15

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

4. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanal-
ysis of block ciphers. Des. Codes Crypt. 70(3), 369–383 (2012). https://doi.org/
10.1007/s10623-012-9697-z

5. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LnCS, vol. 3557, pp. 145–162. Springer,
Heidelberg (2005). https://doi.org/10.1007/11502760 10

6. Cui, T., Sun, L., Chen, H., Wang, M.: Statistical integral distinguisher with multi-
structure and its application on AES. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP
2017, Part I. LNCS, vol. 10342, pp. 402–420. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60055-0 21

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

8. Daemen, J., Rijmen, V.: Security of a wide trail design. In: Menezes, A., Sarkar, P.
(eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 1–11. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36231-2 1

9. Grassi, L.: Mixcolumns properties and attacks on (round-reduced) AES with a
single secret S-box. In: Smart, N. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 243–
263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 13

10. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

11. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of 5-
round AES. In: Coron, J.S., Nielsen, J. (eds.) EUROCRYPT 2017, Part II. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6 10

12. Hu, K., Cui, T., Gao, C., Wang, M.: Towards key-dependent integral and impossible
differential distinguishers on 5-round AES. In: Cid, C., Jacobson Jr., M. (eds.) SAC
2018. LNCS, vol. 11349, pp. 139–162. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-10970-7 7

13. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

14. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 217–243. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 8

https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-23696-0_15
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/978-3-319-60055-0_21
https://doi.org/10.1007/978-3-319-60055-0_21
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/3-540-36231-2_1
https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-319-70694-8_8

MixColumns Coefficient Property and Security of the AES 131

15. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-Like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 22

16. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with
a secret S-box. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 175–189.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 9

https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-48116-5_9

New Results on the SymSum Distinguisher
on Round-Reduced SHA3

Sahiba Suryawanshi(B), Dhiman Saha, and Satyam Sachan

de.ci.phe.red Lab, Department of Electrical Engineering and Computer Science,
Indian Institute of Technology Bhilai, Sejbahar, India

{sahibas,dhiman,satyams}@iitbhilai.ac.in

Abstract. In ToSC 2017 Saha et al. demonstrated an interesting prop-
erty of SHA3 based on higher-order vectorial derivatives which led to
self-symmetry based distinguishers referred to as SymSum and bettered
the complexity w.r.t the well-studied ZeroSum distinguisher by a factor
of 4. This work attempts to take a fresh look at this distinguisher in the
light of the linearization technique developed by Guo et al. in Asiacrypt
2016. It is observed that the efficiency of SymSum against ZeroSum drops
from 4 to 2 for any number of rounds linearized. This is supported by the-
oretical proofs. SymSum augmented with linearization can penetrate up to
two more rounds as against the classical version. In addition to that, one
more round is extended by inversion technique on the final hash values.
The combined approach leads to distinguishers up to 9 rounds of SHA3

variants with a complexity of only 264 which is better than the equivalent
ZeroSum distinguisher by the factor of 2. To the best of our knowledge
this is the best distinguisher available on this many rounds of SHA3.

Keywords: SHA3 · Keccak · Distinguisher · SymSum · ZeroSum ·
Higher-order derivatives

1 Introduction

The hash function Keccak [3] which went on to be adopted as the SHA3 [18]
standard is one of the most extensively studied hash algorithms. While find-
ing pre-images and collisions constitute the primary analysis strategies of a
hash function, the paradigm of devising distinguishers give insight into the
non-randomness of the construction. Further, it has been evidenced by numer-
ous results in contemporary literature where distinguishers have been exploited
to mount collision and pre-image attacks thereby amplifying their scope and
impact. In case of SHA3, one of most investigated distinguisher is the ZeroSum
distinguisher which is based on the fundamental result of higher-order deriva-
tives that the (d+1)th derivative of a d–degree function leads to a zero function.
This translates to obtaining a zero XOR-Sum for 2d+1 computations of a vectorial
function. The main research is in the direction of tight-bounding the value of d
which automatically leads to reduction in complexity of computing the ZeroSum.

c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 132–151, 2020.
https://doi.org/10.1007/978-3-030-51938-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_7

New Results on the SymSum Distinguisher on Round-Reduced SHA3 133

Most of the results have been reported on the internal permutation Keccak-f
and/or Keccak-p. In 2009, Aumasson and Meier [1] introduced ZeroSum distin-
guisher on Keccak-f which penetrated up to 16 rounds by leveraging on the
inside-out strategy. In 2011, Plasencia et al. [15] introduce 4 round distinguisher
for Hash function rather than internal permutation function, and also give a
2 round pre-image attack and 3 round near-collision attack on SHA3-224 and
SHA3-256 variants. The same year, Boura et al. [4] improvise ZeroSum distin-
guisher. They present ZeroSum distinguisher and high order differential deriva-
tive for the full Keccak-p permutation. In 2012, Duan et al. [6] state an advanced
ZeroSum distinguisher full round Keccak-f with 21579 complexity. The same year,
Duc et al. [7] present the Unaligned Rebound Attack for 8 round distinguisher
with lesser complexity. In 2013, Morawiecki et al. [14] present rotational crypt-
analysis. It allows a preimage attack on 4-round Keccak with complexity 2506. It
also states distinguisher on 5 rounds Keccak-f [1600] permutation with 215 com-
plexity. In 2014 Das et al. analyze differential propagation properties of Keccak
furthermore uses for 6 round Distinguisher with 252 complexity. In 2015, Jean
et al. [10] produce internal differential boomerang distinguisher. They gener-
ate boomerang pairs and analyze the differential property. Their distinguisher
depends on round constant. So, according to where permutation starts, their
query complexity varies. For Keccak-f permutation, when it starts at 0 round,
with complexity 25, they distinguish up to 6 rounds, and with 213 complexity to
7 rounds. Similarly, when permutation begins with 3rd round with complexity
210.3, they distinguish up to 7 rounds, and with 218.3 complexity to 8 rounds.
Same year, Dinur et al. [5] proposed a Cube attack like a cryptanalysis technique
that includes algebraic and structural analysis, which contains key recovery and
MAC forgery, practical up to 6 rounds and theoretical to 9 rounds of Keccak.
In 2016, Guo et al. [8] introduce the linearization technique called Linear Struc-
ture. It permits linearization up to 3 rounds of Keccak. It extends the ZeroSum
distinguisher of Keccak-p permutation up to 15 rounds and pre-image attack
up to 4 rounds.

It is evidenced from the above discussion that most of the results have been
reported on Keccak-p that few on the hash function SHA3. Moreover, only a few
of the distinguishers on Keccak-p can be extended on to any SHA3 variant itself.
However, in 2017, Saha et al. [17] introduced a new distinguisher called SymSum
which examines a symmetric property of the output-sum of SHA3 when evalu-
ated on symmetric inputs. These distinguishers penetrate up to 9 rounds and
theoretically achieve a 4-fold improvement over ZeroSum in terms of complex-
ity. The prime observation was the position of the nonlinear operation χ in the
sequence of sub-operations in the Keccak-p round function. Same year, Huang
et al. [9] improvise a Cube attack named Conditional Cube attack, impose some
conditions on specific bits and use Mixed Integer Linear Programming (MILP)
to construct conditional cubes with complexity 233, 7 round cube distinguisher
builds on SHA3-224. The same year, Qiao et al. [16] introduce a pre-image attack
up to 5 rounds, by linearize all S-box at first round and form a 3 round differ-
ential trail for SHAKE128 and SHA3-224. They put some conditions so that it

134 S. Suryawanshi et al.

satisfies for linearization and differential trail. Same year, Li et al. [12] proposed
a cross-linear structure for a pre-image attack. They constructed a cross-linear
structure for Keccak [400] and found a pre-image. The complexity of their attack
is 2150 for 3 round SHA3-256. In 2019, Li et al. [13] proposed a pre-image attack
referred to as the Allocating Approach on 4 round SHA3-256.

In this work, we investigate the SymSum property introduced by Saha et al.
further and try to augment with observations by Guo et al. in their work on lin-
ear structures. In particular, we achieve a one/two-round advantage by combining
SymSum with linear structures. However, the structures we use slightly differ from
the ones reported in [8] since we do not have any requirement of keeping χ−1 to be
linear. This is attributed to the fact that we are mounting the attack on the hash-
function and hence cannot leverage the inside-out technique. Consequently, we can
relax the constraints that were imposed for the same. Further, we show a simple
trick to gain one more round by just inverting1 the last round χ before computing
the output-sum. Using all these techniques, we are able to mount SymSum distin-
guishers on up to 9-rounds of SHA3 variants with a complexity of only 264. We show
that SymSum loses its 4-fold advantage over ZeroSum when augmented with linear
structures and also furnish a proof for the same. The present SymSum distinguishers
still have a 2-fold advantage making them the best available distinguishers on SHA3
which are independent of the number (≥1) of rounds linearized. We validate most
of claims by providing experimental evidence for some of the practically verifiable
distinguishers. Our results are summarized in Table 1.

Table 1. Summary of the results reported

SHA3-variant #Rounds ZeroSum SymSum Remarks

SHA3-224 8 265 264 2R Linear

SHA3-256 7 233 232 2R Linear

SHA3-384 8 233 232 2R Linear + χ−1

SHA3-512 8 265 264 1R Linear + χ−1

SHAKE128 9 265 264 2R Linear + χ−1

10 2513 2511 χ−1

SHAKE256 8 233 232 2R Linear + χ−1

9 2257 2255 χ−1

10 2513 2511 χ−1

Organization. Rest of the paper is organized as follows. Section 2 gives a brief
description of the SHA3 and SymSumdistinguisher and linear structures of Keccak-p.
Section 3 provides proof of how the efficiency of SymSum reduces when we apply
linearization. The new distinguishers introduced in this work are illustrated
in Sect. 4. The experiments on round-reduced SHA3 to validate the claims are
1 This applies to SHA3 variants where at least one entire plane is available from the hash

value.

New Results on the SymSum Distinguisher on Round-Reduced SHA3 135

reported in Sect. 5. A discussion on all the devised distinguishers is furnished in
Sect. 6. Finally, concluding remarks are given in Sect. 7.

2 Preliminaries

In this section, we give a brief description of the SymSum distinguisher and the
idea of linear structure in Keccak-p.

2.1 The Keccak Hash Function

The Keccak structure follows Sponge [2] construction that applies fixed-length
permutation on variable-length input and maps to variable-length output. It
gives F

n
2 length element output from F

m
2 length input element where n and m

are of any length. The permutation applied on finite-state b = r + c bits, where
r is rate and c is capacity. Here the finite state b of Sponge construction is
the width of Keccak-f permutation. The Sponge construction has 2 phases: the
absorption and squeezing phases. Firstly the input message M padded according
to the padding rule that makes input message after padding M

′
multiple of r

and breaks M
′

into m1,m2, . . . mk each of size r. Initially, state b set to all 0′s
which is initialization vector (IV) and input of f is the XORed value of the first
input message block m1 of size r and r bits of IV then the output of f is XORed
with next input message m2 and input to f this will happen until all the message
blocks get processed this is absorption phase. The required output digest collects
on the squeezing phase. Suppose Z is the required digest. If Z < r then, it takes
first Z bits of the output of absorbing phase, otherwise, if Z > r then, it needs
to input to f and get more bits repeatedly until it gets Z bits output digest.
Finally, the output digest Z is the output of the Sponge function.

Keccak-p Permutation: There are 7 Keccak-f permutations which are denoted
by Keccak-f [b, nr], here nr is the number of rounds and b is the width of Keccak-f
permutation. nr depends on b and calculated as nr = 12 + 2l , here l = log2(

b
25)

where b ∈ {25, 50, 100, 200, 400, 800, 1600}. Keccak-f permutations states can
denote as 5 × 5 × w where w = b

25 such that w ∈ {1, 2, 4, 8, 16, 32, 64}. Here
we use Keccak-f [1600] that require 24 rounds. Each round has 5 mapping R =
ι ◦ χ ◦ π ◦ ρ ◦ θ.

θ: θ mapping is a linear operation that provides diffusion. In the θ map-
ping A[x, y, z] XORed with parities of neighbouring 2 columns in the following
manner:

A[x, y, z] = A[x, y, z] ⊕ P [(x − 1) mod 5, ∗, z] ⊕ P [(x + 1) mod 5, ∗, (mod64)]

Here P [x, ∗, z] is parity of a column that can be calculated as:

P [x, ∗, z] = ⊕4
j=0 A[x, j, z]

ρ: ρ mapping is another linear operation that rotates each lane by some
predefined values. Here first column and last row represent y axis and x axis
values respectively.

136 S. Suryawanshi et al.

A[x, y, z] = A[x, y, z≪t] for x, y = 0, ...4

Here ≪ is a bitwise rotation.
π: π mapping is another Linear operation which permutes on slices by inter-

changing lanes as:

A[y, (2x + 3y) mod 5, z] = A[x, y, z] for x, y = 0, ...4, z = 0, ...63

χ: χ is the only Non-linear operation that operates on rows independently as:

A[x, y, z] = A[x, y, z] ⊕ (∼A[x + 1, y, z]) ∧ A[x + 2, y, z]

ι: A unique RC add to lane A[0, 0] depend on round number.

A[0, 0, ∗] = A[0, 0, ∗] ⊕ RC

2.2 SymSum Distinguishers on SHA3

In 2017, Saha et al. introduced an interesting algebraic property related to
SPN round functions where the non-linear transformation preceded the round-
constant addition. This was used to devise a new class of distinguishers referred
to as SymSum. The basic result was that the round-constants could not influence
the highest degree monomials which determined the upper-bound on the degree
of a vectorial function. This helped them devise a round-constant independent
function by computing a special type of derivative called the m–fold vectorial
derivative. They further showed that the order of this derivative can be a factor
of 4 less than the ZeroSum distinguisher which actually computes the m–fold
simple derivatives. To verify this property, they used self-symmetric input states
as inputs and the hypothesis was that the output sum across all hash values
would also preserve the self-symmetry. Self-symmetry of Keccak can be defined
as the first 32 slices are identical to the last 32 slices of the Keccak state as
shown in Fig. 1. Here σ1 and σ2 are identical.

Fig. 1. Self-symmetric state of Keccak [11]

New Results on the SymSum Distinguisher on Round-Reduced SHA3 137

For brevity, the main results are mentioned below, where TYPE-II as defined
in [17] are monomials that are dependent on round-constants:

Lemma 1. [17] For SPN round function G, if the ordering of components is in
such a way that the non-linear function precedes from round constant addition
then G can express as: G = F + C × H where d◦G = d◦F and d◦G > d◦H where
G,F ,H : Fn

2 → F
n
2 and C is a constant.

Theorem 1. [17] The upper-bound on the degree of TYPE-II monomials is
given by the following expression: d◦Fq

s′ ≤ d◦Fq − d◦N .

Lemma 2. [17] The (d◦F − d◦N + 1)–fold vectorial derivative of Fq, is a
function that is independent of round constant.

Here d◦F , d◦N are the upper bounds on the degrees of function G and non-
linear function N respectively and Fq is function after q rounds. Using the above
mentioned lemmas the authors furnished a proof that SymSum distinguisher is
better than ZeroSum distinguisher for SHA3 by a factor of 4.

2.3 Linear Structures

The idea of linearization as introduced by Guo et al. is basically a lane-wise
restriction on the input space so as to handle the linear θ and non-linear χ oper-
ations of the Keccak-p round function. The authors demonstrate linearization
of the Keccak-p permutation up to 3 rounds: 1 round backward and 2 rounds
forward. It extends the ZeroSum distinguisher and also leads to new pre-image
attacks. To understand the technique, one needs to look at the Boolean expres-
sion of the χ function. The primary observation is that if two consecutive vari-
ables never come together in a row then, then all output co-ordinate functions of
χ become linear. The operation θ which relies on the column parity of spatially
adjacent columns can be handled so that it does not diffuse the state by keeping
the column parity constants across calls to Keccak-p. The idea is captured in
Fig. 2. As evident from the figure, to handle the effect of θ on the variables, the
following condition is imposed where α is any constant:

A[1, 0] ⊕ A[1, 1] ⊕ A[1, 2] ⊕ A[1, 3] ⊕ A[1, 4] = α

This can be equivalently written as A[1, 4] =
⊕3

j=0 A[1, j] ⊕ α. This results, in
1 round linearization of Keccak with degree of input up to 256.

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 3,4 4,4

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 4,2 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

θ π .ρ χ .ι

2,4

Fig. 2. Keccak state configuration for 1-round linearization with degrees of freedom
256 [8]. Here white cells are constants, orange cells are variable with degree 1, and
green cells have degree at most 1. (Color figure online)

138 S. Suryawanshi et al.

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 4,2 0,3 1,4

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

θ π .ρ χ .ι

3,1

Fig. 3. Keccak state configuration for linearization with degree of freedom 512 [8]

To increase the degree of freedom, it is possible to take variables at different
columns as shown in Fig. 3 as A[i, 4] =

⊕3
j=0 A[i, j]⊕ αi where i = 0, 2, j =

0, 1, 2, 3.
For 2-round linearization, the input state should be taken as shown in the

Fig. 4, here light gray cells and dark grey has value 0 and 1 respectively. To
handle θ at 1 round variables need to satisfy the following condition.

A[1, 0] ⊕ A[1, 1] ⊕ A[1, 2] ⊕ A[1, 3] = A[1, 4] ⊕ 0xf...f

A[2, 0] ⊕ A[2, 1] ⊕ A[2, 2] ⊕ A[2, 3] = 0xf...f

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 2,0 3,0 4,0

0,1 2,1 3,1 4,1

0,2 2,2 3,2 4,2

0,3 2,3 3,3 4,3

0,4 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

1,0

1,1

1,2

1,3

1,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

π .ρ

π .ρ

χ .ιθ

χ .ι

0,0 4,1 3,2 2,3 1,4

3,3 2,4 1,0 0,1 4,2

1,1 0,2 4,3 3,4 2,0

4,4 3,0 2,1 1,2 0,3

2,2 1,3 0,4 4,0 3,1

θ

2,4

Fig. 4. State configuration to handle χ at 2nd round [8]

At second-round θ, ρ, π permute variables, so to handle 2 round θ variables
have to satisfy the following conditions.

A[2, 0]≪62 = A[0, 0] ⊕ A[2, 2]≪43

A[2, 1]≪6 = S[0, 1]≪36 ⊕ A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕ A[2, 0]≪62

3 Investigating Effect of Linear Structures on SymSum

Our first study constitutes analyzing the effect of using linear structures in con-
junction with the SymSum property. We extend the ZeroSum distinguisher and
SymSum distinguisher by applying linearization technique up to 2 rounds. How-
ever, we argue that because of linearization, the difference in complexities for
obtaining SymSum and ZeroSum decreases from the factor of 4 to 2. We next try to
furnish theoretical arguments to support this claim. Thus, we first need to look

New Results on the SymSum Distinguisher on Round-Reduced SHA3 139

at a more general result that compares the behaviour of a SPN round function
(as observed in [17]) with and without linearization. For the SPN round function
without applying linear structures, the behaviour is described by Lemma 1. The
following lemma captures the same while incorporating the effect of linearization.

Lemma 3. For any SPN round function G iterated for nr rounds, if lr(≤ nr)
rounds are linearized, the degrees of the linearized version (G) and unlinearized
versions (G′) are related by the degree (λ) of the non-linear component function
by the following relation:

d◦
G ≤ λlr × d◦

G
′ where

⎧
⎪⎨

⎪⎩

G = Gnr

G
′ = Gnr−lr ◦ G′lr

G′ ← Linearized version of G
Here d◦

G, d◦
G

′ are the upper bounds on the degrees of G,G′ respectively.

Proof. Let us write down the degree of the unlinearized version G. Since the
degree grows exponentially (before asymptotically converging on the highest
possible degree which is determined by the number of independent input vari-
ables) in the degree of the non-linear component, we can write the following
expression:

G = G ◦ G ◦ G ◦ · · · nr times
=⇒ d◦

G ≤ (d◦G)nr

= λnr (1)

Now let us write the expression for the linearized version:

G
′ = {G ◦ G ◦ G ◦ · · · (nr − lr) times} ◦ {G′ ◦ G′ ◦ G′ ◦ · · · lr times}

=⇒ d◦
G

′ ≤ (d◦G)nr−lr × (d◦G′)lr

= λnr−lr [∵ d◦G′lr = 1] (2)

From Eq. 1 and Eq. 2 it follows that: d◦
G ≤ λlr × d◦

G
′. �

With the above proof in place, we revisit Lemma 1 in the light of lineariza-
tion. We argue that Lemma 1 still holds for the linearized version G

′ of G.
This implies that the degree of G′ will be determined by monomials which are
independent of round constants (TYPE-I) from monomials that involve round
constants (TYPE-II). We use the same terminology as stated in [17] and redo
the proof of Lemma 1.

Lemma 4. Lemma 1 holds under linearization.

Proof. Let us consider the SPN round function (G) as stated above with the
restriction that the non-linear operation precedes the round-constant addition
(as required by Lemma 1). So, let G = C ◦ N ◦ L where C represents the round

140 S. Suryawanshi et al.

constant addition, N is non-linear component, and L is the linear component.
So for nr rounds, G can be written as:

G = (Cnr
◦ N ◦ L) ◦ (Cnr−1 ◦ N ◦ L) ◦ · · · ◦ (C1 ◦ N ◦ L)

=
[
(Cnr

◦ N ◦ L) ◦ · · · ◦ (C2 ◦ N ◦ L) ◦ C1

]
◦ (N ◦ L) (3)

However, if linear structures are applied for lr rounds then G
′ can be

expressed as:

G
′ = (Cnr

◦ N ◦ L) ◦ (Cnr−1 ◦ N ◦ L) ◦ · · · ◦ (Cnr−lr
◦ Nnr−lr ◦ Lnr−lr)

◦ (Clr
◦ L′ ◦ L) ◦ · · · ◦ (C1 ◦ L′ ◦ L)

=
[
(Cnr

◦ N ◦ Lq) ◦ · · · ◦ (Cnr−lr
◦ N ◦ L) ◦ (Clr

◦ L′ ◦ L) ◦ · · · ◦ C1

]
◦ (L′ ◦ L)

(4)

Here L′
is a linearized version of N thus d◦L′

will be reduced by (λ − 1).
Due to Eq. (3) and (4), it can be observed that after 1 round, the round constant
C1 has no effect of N (or L′

in case of linearization). Now, using the strategy
described in [17] to segregate monomials which are independent of round con-
stants (TYPE-I) from monomials that involve round constants (TYPE-II) we can
visualize any co-ordinate function of G′ as Fnr :

Fnr = Fnr

c′ ⊕ Fnr
c where

{
TYPE-I ∈ Fnr

c′

TYPE-II ∈ Fnr
c

(a) To Prove: d◦Fm
c′ > d◦Fm

c (Proof by induction)

Base case: Let nr = 1 which implies G = G1 = C1 ◦ N ◦ L,

However, we have to take into account the linearization. So let lr = 1.
Therefore G

′ = G′1 = C1 ◦ L′ ◦ L. Hence the degree of TYPE-I and TYPE-II
monomials are:

d◦Fc′ = d◦(L′ ◦ L) = λ − (λ − 1) = 1

d◦Fc = 0
[

∵ C1 is independent of L′]

Thus d◦Fc′ > d◦Fc. Hence lemma hold for base condition i.e., at nr = 1.

Inductive hypothesis: Let us assume the lemma hold for nr = m i.e.,
d◦Fm

c′ > d◦Fm
c .

Inductive step: Let nr = m + 1. Fm+1 = Cm+1 ◦ N ◦ L ◦ Fm

d◦Fm+1
c ≤ d◦(N ◦ L) × d◦Fm

c

< d◦(N ◦ L) × d◦Fm
c′

[
∵ d◦Fm

c′ > d◦Fm
c

]

≤ d◦Fm+1
c′

Hence, by induction, the lemma holds ∀nr ∈ N. �

New Results on the SymSum Distinguisher on Round-Reduced SHA3 141

Our next claim is that the difference in the degrees of TYPE-I and TYPE-II
monomials as stated by Saha et al. in [17] no longer holds as we linearize the
SPN. For any value of lr ≥ 1, the following theorem holds instead. One can
note that unlike [17], the following result is independent of the degree of the
non-linear component.

Theorem 2. With at least one round linearized, the upper-bound on the degree
of TYPE-II monomials in terms of TYPE-I monomials is given by:

d◦Fnr
c ≤ d◦Fnr

c′ − 1

Proof. We start by segregating the TYPE-IImonomials further. The new sub-type
is referred to as TYPE-III and represents a TYPE-II monomial which is indepen-
dent of any variables and constitutes only constants terms as stated below:

∏
Ci where Ci is any constant term

Suppose our function is in the linear form up to lr rounds (lr ≥ 1) then using
notations used above:

G′lr = (Clr
◦ L′ ◦ L) ◦ (Clr−1 ◦ L′ ◦ L) ◦ · · · ◦ (C2 ◦ L′ ◦ L) ◦ (C1 ◦ L′ ◦ L)

Since there is no non-linear function, the degree of TYPE-I and TYPE-II
monomials never change. Also for TYPE-II monomials, only TYPE-III monomi-
als occur. Thus the degree of TYPE-I monomials and TYPE-II monomials should
1 and 0 (because of TYPE-III), respectively i.e., d◦F lr

c = 0 and d◦F lr
c′ = 1. Now,

we prove by induction.

Base Case: Let nr = lr+1, i.e. G′ = G◦G′lr implying a single non-linear function
and d◦N = λ.

Now, TYPE-I monomials will reach the highest degree after the current round
when λ TYPE-I monomials mix together under N in the current round. This final
degree of TYPE-I is expressed as:

d◦F lr+1

c′ =
λ∑

i=1

[
d◦F lr

c′
]
i

= 1 + 1 · · · λ times [∵ d◦F lr
c′ = 1]

= λ (5)

Next, TYPE-II monomials reach the highest degree when (λ − 1) TYPE-I
monomials from (λ − 1) co-ordinate functions mix with one TYPE-II monomial.
Thus for TYPE-II monomials we have

d◦F lr+1
c =

λ−1∑

i=1

[
d◦F lr

c′
]
i
+ d◦F lr

c

=
λ−1∑

i=1

1 + 0 [∵ d◦F lr
c = 0 (TYPE-III) d◦F lr

c′ = 1]

= λ − 1 (6)

Hence, by Eq. (5) and (6) theorem holds for base case.

142 S. Suryawanshi et al.

Inductive Hypothesis: Let us assume the theorem holds for nr = m rounds i.e.,

d◦Fm
c ≤ d◦Fm

c′ − 1

Inductive Step: Let nr = m + 1 then by Lemma 3 we have d◦Fm
c′ ≤ λm−lr and

d◦Fm
c ≤ λm−lr − 1. Then by arguments similar to the base-case, we have degree

of TYPE-I monomials as:

d◦Fm+1
c′ =

λ∑

i=1

[
d◦Fm

c′
]
i

≤
λ∑

i=1

λm−lr = λm−lr+1 (7)

Similarly for TYPE-II monomials

d◦Fm+1
c =

λ−1∑

i=1

[
d◦Fm

c′
]
i
+ d◦Fm

c

≤
λ−1∑

i=1

λm−lr + λm−lr − 1

= (λ − 1)λm−lr + λm−lr − 1 = λm−lr+1 − 1
≤ d◦Fm+1

c′ − 1 [By Eq. 7] (8)

Thus by principle of induction Theorem 2 holds ∀nr ∈ N. �
We now have the following corollary which forms the base of all distinguishers
reported in this work. As one might realize this constitutes a deviation from the
result reported in [17] as stated in Lemma 2.

Corollary 1. With lr linearized rounds
(

d◦
G

λlr

)
–fold vectorial derivative of G is

a function which is independent of round constants.

The corollary easily follows from Lemma 3 and Theorem 2. Since linearized
version G′ of G has degree

(
d◦

G

λlr

)
and the maximum degree of TYPE-II mono-

mials in G′ is
(

d◦
G

λlr
− 1

)
, so the

(
d◦

G

λlr

)
–fold vectorial derivative of G will result

in a round-constant independent function. Consequently, such a function would
preserve the SymSum property as introduced in [17]. In the next section, we show
how the above results are used to mount highly efficient and practical SymSum
distinguishers on SHA3 variants.

4 Augmenting the SymSum Distinguisher

The SymSum property can be extended at varied number of rounds based on
the augmentation strategies like prepending linear structures and appending
the hash-inversion trick wherever applicable. This is captured by Fig. 5. In the
subsequent sub-sections we explore these strategies that help us to reach highest
number of rounds for some SHA3 variants.

New Results on the SymSum Distinguisher on Round-Reduced SHA3 143

Fig. 5. Various extension strategies to verify the SymSum property by augmenting 1-
round, 2-round linear structures and the hash-inversion trick

4.1 Extending SymSum Using 1-Round Linearization and χ−1 Trick

To gain an advantage of 2 rounds for the SymSum distinguisher, we linearize the
first round and perform χ−1 ◦ ι−1 on the output digest when applicable. The
input set should satisfy the following conditions so that it linearizes 1 round
and also satisfies the condition for SymSum distinguisher which constitutes giving
self-symmetric inputs:

1. The input set is a set of inputs such that the first 32 slices of the state are
the same as the last 32 slices

2. For linearization, input state has the restriction that ∀A[i, j] where i =
0, 2, j = 0, 1, 2, 3,

A[i, 3] =
2⊕

j=0

A[i, j] ⊕ αi for any constant α

(a) Keccak state for 1-round linearization
of SHAKE128 and SHA3-224

(b) Input state for 1-round lineariza-
tion of SHAKE128

Fig. 6. Different slice configurations for SHA3

The χ−1 trick applies only to those variants of SHA3 which give at least one
plane ofKeccak state in the output hash value. Therefore, it is not applicable
to SHA3-224 and SHA3-256 because they give 224 and 256 bits of hash value
respectively which is less that 320 bits required for a full plane. The degree of
freedom of this state will be 192 if we take the input state equivalent to the
state shown in Fig. 6a. Therefore, after 1-round linearization and applying χ−1

144 S. Suryawanshi et al.

strategy, SymSum on SHAKE128 can distinguish up to 9 rounds. For the other
variants of SHA3, the input state is different because of the difference in size of
capacity part. For instance, after computing the output sum for 4 rounds on
SHA3, we get SymSum for 24 invocations. For the classical SymSum distinguisher,
it is obtained at 215 and 214. Therefore, the extended SymSum distinguisher has
an advantage of 2 rounds, although the effectiveness reduces by the factor of 2.

4.2 Extension of SymSum Distinguisher up to 3 Rounds:

We now show the use of 2-round linear structures in conjunction with inverting
the hash for the last round. For 2 round linearization we use the linear structure,
for which we need to handle the θ, ρ, π, χ mappings of Keccak. To handle the first
round χ we take variables in 2 alternative columns so that no two variables come
adjacent in χ operation, thus maintaining the linearity after the first round. We
restrict other columns to 0 and/or 1, as shown in the Fig. 7 so that before χ in
the second round no two adjacent lanes become variable. Additionally, because
of the columns that have variables, constant values may change because of θ. To
handle θ the following conditions need to be imposed:

A[0, 0] ⊕ A[0, 1] ⊕ A[0, 2] ⊕ A[0, 3] = A[0, 4] ⊕ 0xff . . . f

A[2, 0] ⊕ A[2, 1] ⊕ A[2, 2] ⊕ A[2, 3] = 0xff . . . f

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

1,40,34,23,12,0

3,42,31,20,14,0

0,44,33,22,11,0

2,41,30,24,13,0

4,43,32,21,10,0

3,14,00,41,32,2

0,31,22,13,04,4

2,03,44,30,21,1

4,20,11,02,43,3

1,42,33,24,10,0

χ .ι

θ χ .ι

π .ρ

π .ρ

1,4

1,3

1,2

1,1

1,0

1,40,34,23,12,0

3,42,31,20,14,0

0,44,33,22,11,0

2,41,30,24,13,0

4,43,32,21,10,0

1,40,34,23,12,0

3,42,31,20,14,0

0,44,33,22,11,0

2,41,30,24,13,0

4,43,32,21,10,0

4,43,42,40,4

4,33,32,30,3

4,23,22,20,2

4,13,12,10,1

4,03,02,00,0

θ

Fig. 7. Keccak state for 2-round linearization with degree of freedom 64 [8]

Now, to linearize the second round we need to handle θ of second round.
But for this the positions of the variables after first round χ need to be closely
handles as would change due to ρ and π in the first round. Therefore to make
two rounds linear the variables should satisfy the conditions as below:

A[2, 0]≪62 = A[0, 0] ⊕ A[2, 2]≪43

A[2, 1]≪6 = S[0, 1]≪36 ⊕ A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕ A[2, 0]≪62

New Results on the SymSum Distinguisher on Round-Reduced SHA3 145

It has been shown in [8] that the above system of equations has 128 degrees of
freedom. However, for the SymSum property, we have the additional restriction of
self-symmetric inputs which lead to revisiting the system of equations as below.
The main idea is to rewrite the equations considering half of the state and then
extend the solutions to the other half thereby always keeping the over-all solution
self-symmetric.

A[0, 0, k] ⊕ A[0, 1, k] ⊕ A[0, 2, k] ⊕ A[0, 3, k] = A[0, 4, k] ⊕ 0xff . . . f

A[2, 0, k] ⊕ A[2, 1, k] ⊕ A[2, 2, k] ⊕ A[2, 3, k] = 0xff . . . f
(9)

Here k ∈ {0, 1, . . . , 31}. Similarly, to make the second round linear the rela-
tions are rephrased w.r.t a 32-lane state as follows:

A[2, 0, k]≪30 = A[0, 0, k] ⊕ A[2, 2, k]≪11

A[2, 1, k]≪6 = S[0, 1, k]≪4 ⊕ A[2, 3, k]≪15

A[2, 2, k]≪11 = A[0, 2, k]≪3

A[2, 3, k]≪15 = A[0, 3, k]≪9 ⊕ A[2, 0, k]≪30

(10)

From the above equations, we get the first 32 slices that are as per our require-
ment, therefore, we take a copy of this state and make them the last 32 slices.
By doing this the degree of freedom will be 64 because we have 8 × 32 variables
and 6×32 equations. Accordingly, the degree of freedom is 8×32−6×32. Hence
for SHAKE128, we get the SymSum for 9 rounds with complexity 264.

5 Experimental Validation

In this section, we present experimental validation of some of the claims furnished
above. In particular, we choose SHAKE128 as it has the smallest capacity part
allowing for more control over the input. However, the attacks can easily be
extended onto other SHA3 variants with proper adjustments. In the following we
demonstrate an attack on 6-rounds of SHAKE128 using the 1-round linearization
and hash-inverse strategy. Due to 2-round extension, the degree of 6-rounds
reduces to 26−2 = 16 and by Corollary 1, the 16th order vectorial derivative will
exhibit SymSum property.

Figure 6b shows input state for SHAKE128. Here orange, white, light gray lanes
are variable, constant and 0’s (that is also capacity part of SHAKE128) respec-
tively. Here, we have taken first and third column as variables which satisfies the
conditions as per Eq. (9). The input base message for our experiment is shown
below:

8bd9162e 8bd9162e 1245c1c7 1245c1c7 0a3f3940 0a3f3940 eb6e955a eb6e955a 61d62226 61d62226

64cf1036 64cf1036 36da615c 36da615c 3d3b488a 3d3b488a e86d0018 e86d0018 1b16874d 1b16874d

64cf1036 64cf1036 44bbe571 44bbe571 0d0b9c27 0d0b9c27 72f3c98c 72f3c98c 53598e96 53598e96

ebc29253 ebc29253 75f22314 75f22314 92d8c5f9 92d8c5f9 372772f3 372772f3 3839af6d 3839af6d

b185e09f b185e0

Table 2 shows the full Keccak State, where **** is the variable nibble that
generates individual messages by altering their values. To maintain the Self-
Symmetry **** and **** should be the equivalent. To make one round linear

146 S. Suryawanshi et al.

each message generated by changing **** should satisfy the condition described
above thus the value of † † †† and † † †† will modify accordingly.

Table 2. Representing Keccak State

****9162e ****9162e 1245c1c7 1245c1c7 0a3f3940 0a3f3940 eb6e955a eb6e955a 61d62226 61d62226

64cf1036 64cf1036 36da615c 36da615c 3d3b488a 3d3b488a e86d0018 e86d0018 1b16874d 1b16874d

64cf1036 64cf1036 44bbe571 44bbe571 0d0b9c27 0d0b9c27 72f3c98c 72f3c98c 53598e96 53598e96

† † ††9253 † † ††9253 75f22314 75f22314 92d8c5f9 92d8c5f9 372772f3 372772f3 3839af6d 3839af6d

b185e09f b185e09f 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

By changing **** values of the input base message, 216 individual messages
were produced and inputted to 6-round SHAKE128 with output hash-size of 320.
For each of the hash-values, apply χ−1 ◦ ι−1 and compute the output-sum. We
witnessed ZeroSum with complexity 217 and SymSum with 216 that confirms the
expected outcome predicted by theoretical arguments.

6 Discussion

In this work, we have extended the classical SymSum distinguisher up to 3 rounds
by applying linear structures and the χ−1 trick. Together, we have an advantage
of 3 rounds on almost all previously reported derivative based distinguishers.

One of the most important observations was the shift in the highest degree
reachable by TYPE-II monomials which are fundamental to achieving a round-
constant independent function thereby being the basis of the SymSum distin-
guisher. As dictated by Theorem 2, irrespective of the number (≥ 1) of rounds
linearized SymSum loses its 4 factor advantage over ZeroSum. However, that is
a little price to pay against the increase in the number of rounds penetrated.
A comparison among the various approaches that extend the SymSum distin-
guisher is furnished in Fig. 8. The comparisons are provided for 7, 8, 9 and 10
rounds for each variant of SHA3. As one can observe for SHA3-224 and SHA3-256,
the best distinguisher in terms if #Rounds is still the classical SymSum. This is
due to the fact that χ−1 is not applicable for SHA3-224 and SHA3-256 as the
output hash value length is <320 bits which is minimum requirement for apply-
ing χ−1 on the hash-digest. Another observation is that for SHA3-384/512 and
SHAKE128/256, the maximum rounds are reached using χ−1 technique over clas-
sical SymSum. This is attributed to the degrees of freedom that is available when
we just augment classical SymSum with χ−1 technique. On the other hand, linear
structures lead to drastic reduction in degrees of freedom. Also, it can be noted
that SymSum always enjoys a degree 2 advantage as predicted by the results dis-
cussed earlier. However, for the same number of round ZeroSum always has a
better degree of freedom for well-understood reason of not having to conform to
the self-symmetry constraint.

The maximum degree of freedom for different variants and approaches is
depicted in Table 3. The table also shows the corresponding slice/state config-
uration for achieving that degree of freedom. Moreover, the constraints to be

New Results on the SymSum Distinguisher on Round-Reduced SHA3 147

1

2

4

8

16

32

64

128

256

512

7 8 9 10

Cl
as

sic
al

Cl
as

sic
al

Cl
as

sic
al

1
Lin

ea
r R

ou
nd

1
Lin

ea
r R

ou
nd

2L
in

ea
r R

ou
ndlo
g 2

Co
m

pl
ex

ity

Number of Rounds

SHA3-224

127

64

32

255

127

511

1

2

4

8

16

32

64

128

256

512

7 8 9 10

Cl
as

sic
al

Cl
as

sic
al

Cl
as

sic
al

1
Li

ne
ar

 R
ou

nd

1
Lin

ea
r R

ou
nd

2L
in

ea
r R

ou
ndlo

g 2
Co

m
pl

ex
ity

Number of Rounds

SHA3-256

127

64

32

255

128

511

1

2

4

8

16

32

64

128

256

512

7 8 9 10

Cl
as

sic
al

Cl
as

sic
al

In
ve

rs
e
χ

In
ve

rs
e
χ

In
ve

rs
e
χ

1
Lin

ea
r R

ou
nd

1
Li

ne
ar

 R
ou

nd

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

lo
g 2

Co
m

pl
ex

ity

Number of Rounds

SHA3-384

127

63 64

32 32

16

255

127
128

64

32

255

1

2

4

8

16

32

64

128

256

512

7 8 9 10

Cl
as

sic
al

Cl
as

sic
al

In
ve

rs
e
χ

In
ve

rs
e
χ

In
ve

rs
e
χ

1
Lin

ea
r R

ou
nd

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

lo
g 2

Co
m

pl
ex

ity

Number of Rounds

SHA3-512

127

63 64

32

255

127

64

255

1

2

4

8

16

32

64

128

256

512

7 8 9 10

Cl
as

sic
al

Cl
as

sic
al

Cl
as

sic
al

In
ve

rs
e
χ

In
ve

rs
e
χ

In
ve

rs
e
χ

In
ve

rs
e
χ

1
Lin

ea
r R

ou
nd

1
Lin

ea
r R

ou
nd

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

1
Li

ne
ar

 R
ou

nd
 +

 in
ve

rs
e
χ

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

2L
in

ea
r R

ou
nd

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

lo
g 2

Co
m

pl
ex

ity

Number of Rounds

SHAKE 128

127

63 64

32 32

16

25 5

127
128

64 64

32

511

255

128

64

511

1

2

4

8

16

32

64

128

256

512

7 8 9 10

Cl
as

sic
al

Cl
as

sic
al

Cl
as

sic
al

In
ve

rs
e
χ

In
ve

rs
e
χ

In
ve

rs
e
χ

In
ve

rs
e
χ

1
Lin

ea
r R

ou
nd

1
Lin

ea
r R

ou
nd

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

1
Lin

ea
r R

ou
nd

 +
 in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

2L
in

ea
r R

ou
nd

 +
in

ve
rs

e
χ

lo
g 2

Co
m

pl
ex

ity

Number of Rounds

SHAKE256

127

63 64

32 32

16

255

127128

64

32

511

255

511

Fig. 8. Comparison of SHA3 variants for different approaches as applying χ−1, 1-round
linearization, 1-round linearization + χ−1, 2-round linearization and 2-round lineariza-
tion + χ−1 with classical SymSum distinguisher

applied on the slice variables to fulfill the condition for 1-round linearization
is also exhibited in the table. Similar data is furnished in Table 4 for 2-round
linearization. It is worth mentioning that for SHA3-512 2-round linearization
is not applicable as the rate part is substantially lower leaving very less room
to formulate the necessary constraints. It is easy to appreciate that the results
reported here are better than ZeroSum and classical SymSum. Interestingly, even
the simple χ−1 trick helps classical SymSum to breach the 10-round barrier (as
stated in [17]) which is now possible to be distinguished with 2511 calls to SHA3.

148 S. Suryawanshi et al.

Table 3. Slice configuration, conditions and maximum degree of freedom for 1-round
linearization of SHA3 variants. Orange, white and gray represent variable, constant and
0. Here we give one of the possible slice configurations and corresponding conditions
and maximum degree of freedom.

Variant Slice Configuration Restrictions on variables Degree of
Freedom

SHAKE128 A[0, 4] = α1 ⊕
3∑

i=0

A[0, i]

A[j, 3] = α2 ⊕
2∑

i=0

A[j, i] (j ∈ {2, 3})

2224

SHAKE256 A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[j, 2] = α2 ⊕
1∑

i=0

A[j, i] (j ∈ {2, 3})

2160

SHA3-224 A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[2, 3] = α2 ⊕
2∑

i=0

A[2, i]

2192

SHA3-256 A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[j, 2] = α2 ⊕
1∑

i=0

A[j, i] (j ∈ {2, 3})

2160

SHA3-384 A[0, 2] = α1 ⊕
1∑

i=0

A[0, i]

A[2, 2] = α2 ⊕
1∑

i=0

A[2, i]

2128

SHA3-512 A[0, 1] = α1 ⊕ A[0, 0]
A[j, 1] = α2 ⊕ A[j, 0] (j ∈ {2, 3})

264

New Results on the SymSum Distinguisher on Round-Reduced SHA3 149

Table 4. Slice configuration, conditions and degree of freedom for 2-round linearization
of SHA3 variants. Orange, white, light gray and dark gray represent variable, constant,
0 and 1 respectively. Here we give one of the possible slice configurations and corre-
sponding conditions and maximum degree of freedom. Note that this strategy is not
applicable for SHA3 512

Variant Slice Configuration Restrictions on variables
Degree of
Freedom

SHAKE128

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[0, 0] ⊕ A[0, 1] ⊕ A[0, 2] ⊕ A[0, 3] = 0xff...f

A[2, 0] ⊕ A[2, 1] ⊕ A[2, 2] ⊕ A[2, 3] = 0xff...f

A[2, 0]≪30 = A[0, 0] ⊕ A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4 ⊕ A[2, 3]≪15

A[2, 2]≪11 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪9 ⊕ A[2, 0]≪30

264

SHAKE256

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[i, 0] ⊕ A[i, 1] ⊕ A[i, 2] = 0, i = 0, 2
A[2, 0]≪30 = A[0, 0] ⊕ A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4

A[2, 2]≪11 = A[0, 2]≪3

232

SHA3-224

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[0, 0] ⊕ A[0, 1] ⊕ A[0, 2] ⊕ A[0, 3] = A[0, 4] ⊕ 0

A[2, 0] ⊕ A[2, 1] ⊕ A[2, 2] ⊕ A[2, 3] = 0

A[2, 0]≪30 = A[0, 0] ⊕ A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4 ⊕ A[2, 3]≪15

A[2, 2]≪11 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪9 ⊕ A[2, 0]≪30

264

SHA3-256

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[i, 0] ⊕ A[i, 1] ⊕ A[i, 2] = 0, i = 0, 2
A[2, 0]≪30 = A[0, 0] ⊕ A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4

A[2, 2]≪11 = A[0, 2]≪3

232

SHA3-384

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[i, 0] ⊕ A[i, 1] ⊕ A[i, 2] = 0, i = 0, 2
A[2, 0]≪30 = A[0, 0] ⊕ A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4

A[2, 2]≪11 = A[0, 2]≪3

232

7 Conclusion

This work aims to combine two very interesting results on SHA3 namely the
SymSum property and the idea of linear structures to devise the best distinguishers
on the SHA3 standard in terms of complexity and number of rounds penetrated.

150 S. Suryawanshi et al.

The main contribution lies in studying the effect of linearization on the core
SymSum property. The results show that due to the effect of linear structures
the factor of four advantage that SymSum enjoys over ZeroSum is reduced to
two. Theoretical arguments are provided to explain this reduction. A simple
χ inversion trick is also devised on applicable variants to penetrate one round
further. With the combined power of all strategies, this work reaches up to 9
rounds of certain SHA3 variants with a practically feasible complexity of 264.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. Rump session of Cryptographic Hardware
and Embedded Systems-CHES 2009, vol. 67 (2009)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In:
EcryptHash Workshop 2007, May 2007

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submis-
sion. Submission to NIST (Round 3) (2011). http://keccak.noekeon.org/Keccak-
submission-3.pdf

4. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 15

5. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 28

6. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. IACR Cryptology ePrint Archive 2011, 23 (2011)

7. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack: application to
Keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 402–421. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 23

8. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I.
LNCS, vol. 10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 9

9. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 9

10. Jean, J., Nikolić, I.: Internal differential boomerangs: practical analysis of the
round-reduced Keccak-f permutation. In: Leander, G. (ed.) FSE 2015. LNCS,
vol. 9054, pp. 537–556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48116-5 26

11. Kuila, S., Saha, D., Pal, M., Roy Chowdhury, D.: Practical distinguishers against 6-
round Keccak-f exploiting self-symmetry. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 88–108. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06734-6 6

12. Li, T., Sun, Y., Liao, M., Wang, D.: Preimage attacks on the round-reduced Kec-
cak with cross-linear structures. IACR Trans. Symmetric Cryptol. 2017(4), 39–57
(2017)

http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-642-34047-5_23
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-662-48116-5_26
https://doi.org/10.1007/978-3-662-48116-5_26
https://doi.org/10.1007/978-3-319-06734-6_6

New Results on the SymSum Distinguisher on Round-Reduced SHA3 151

13. Liu, T., Sun, Y.: Preimage attacks on round-reduced Keccak-224/256 via an allo-
cating approach. IACR Cryptology ePrint Archive 2019, 248 (2019)

14. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 13

15. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round Kec-
cak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol.
7107, pp. 236–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25578-6 18

16. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. IACR Cryptology ePrint Archive 2017, 128 (2017)

17. Saha, D., Kuila, S., Chowdhury, D.R.: SymSum: symmetric-sum distinguishers
against round reduced SHA3. IACR Trans. Symmetric Cryptol. 2017(1), 240–258
(2017)

18. Standards and Technology (NIST). SHA-3: Cryptographic hash algorithm compe-
tition. http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Cryptanalysis of FlexAEAD

Mostafizar Rahman1(B), Dhiman Saha2, and Goutam Paul1

1 Cryptology and Security Research Unit (CSRU),
Indian Statistical Institute, Kolkata, Kolkata 700108, India

mrahman454@gmail.com, goutam.paul@isical.ac.in
2 de.ci.phe.red Lab, Department of Electrical Engineering and Computer Science,

Indian Institute of Technology, Bhilai, Raipur 492015, India
dhiman@iitbhilai.ac.in

Abstract. This paper analyzes the internal keyed permutation of
FlexAEAD which is a round-1 candidate of the NIST LightWeight
Cryptography Competition. In our analysis, we report an iterated trun-
cated differential leveraging on a particular property of the AES S-box
that becomes useful due to the particular nature of the diffusion layer of
the round function. The differential holds with a low probability of 2−7

for one round which allows it to penetrate the same number of rounds as
claimed by the designers, but with a much lower complexity. Moreover,
it can be easily extended to a key-recovery attack at a little extra cost.
We further report a Super-Sbox construction in the internal permutation,
which is exploited using the Yoyo game to devise a 6-round deterministic
distinguisher and a 7-round key recovery attack for the 128-bit internal
permutation. Similar attacks can be mounted for the 64-bit and 256-bit
variants. All these attacks outperform the existing results of the designers
as well as other third-party results. The iterated truncated differentials
can be tweaked to mount forgery attacks similar to the ones given by
Eichlseder et al. Success probabilities of all the reported distinguishing
attacks are shown to be high. All practical attacks have been experimen-
tally verified. To the best of our knowledge, this work reports the first
key-recovery attack on the internal keyed permutation of FlexAEAD.

Keywords: AES S-box · Distinguisher · FlexAEAD · Iterated
differential · Key recovery · NIST lightweight cryptography
competition · Yoyo

1 Introduction

In the modern era, the aim is to connect each of the physical devices, even the
miniature ones, with the internet so that they can be monitored and controlled
remotely for maximum utilization. These devices are powered with the ability of
communicating among themselves. Such a huge interconnected system, consist-
ing of numerous tiny devices, is not free from vulnerabilities. Moreover, a security
breach in such systems can be catastrophic. So, a major concern in the world of

c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 152–171, 2020.
https://doi.org/10.1007/978-3-030-51938-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_8

Cryptanalysis of FlexAEAD 153

internet-of-things is how to provide security and privacy to each system with the
constraints of limited power and area. SKINNY [9], PRESENT [10], QARMA [6],
KATAN and KTANTAN [11], GIFT [8] are some of the block ciphers which
are designed for such constrained environments. Until recently, no standardiza-
tion process has been introduced (like AES Development [2], SHA-3 Project [4],
CAESAR Competition [1]) for cryptographic schemes in lightweight environ-
ments. NIST LightWeight Cryptography (LWC) competition [3] is a major step
towards addressing these issues. There are a total of 57 submissions in this com-
petition. Apart from authenticated encryption algorithms in lightweight envi-
ronment, some of the designs also comprise of hash functions. Some of them
have also provided new primitives for block cipher design.

FlexAEAD is one of the round-1 candidates proposed by Nascimento and
Xexéo in NIST LWC competition [17]. It is a family of lightweight authenti-
cated encryption schemes with associated data. In this version, the processing of
Associate Data (AD) has been added to the original variants [15,16,18]. There
are mainly three variants of FlexAEAD that have been listed with block
sizes of 64, 128 and 256 bits. In general, a FlexAEAD scheme is denoted by
FlexAEAD-b, with b being the block size. The size of nonce and tag is the same
as block size across all variants. The length of key is 128 bits for FlexAEAD-64
and FlexAEAD-128 whereas it is 256 bits for FlexAEAD-256. The nonce in
FlexAEAD is used to generate sequence numbers which are eventually XOR-ed
with associated data, plaintext and intermediate-state to produce ciphertext-tag
pair. The lightweight of FlexAEAD essentially comes from the fact that for
computational purposes it uses XOR operations, a look-up table for substitu-
tion layer and bit reorganizations for BlockShuffle layer. FlexAEAD has an
underlying block cipher; internal keyed permutation (PFk) of 64, 128 and 256
bits. We have analyzed the PFk function and reported several results. A brief
description of PFk has been provided in Sect. 2.1. The PFk with x-bit state is
referred to as Flex-x.

Existing Security Claims. The designers have claimed that mounting an
attack on Flex-x based on differential and linear characteristics is more diffi-
cult than the brute force attack. According to their analysis, the probability of
best differential characteristic for Flex-64, Flex-128 and Flex-256 is 2−168,
2−204 and 2−240 respectively. The number of chosen plaintext pairs required
for a linear trail in Flex-64, Flex-128 and Flex-256 are 2272, 2326 and 2380

respectively [17]. Eichlseder et al. have claimed several forgery attacks [12,13]
on FlexAEAD. They have followed several different approaches: like changing
associated data, truncating ciphertexts and reordering ciphertexts. They have
reported differential characteristics for 5-round Flex-64, 6-round Flex-128 and
7-round Flex-256 with probability 2−66, 2−79 and 2−108 respectively. Length
extension attacks based on associated data have also been shown [14]. Table 1
shows the comparison of different trail probabilities reported till date with the

154 M. Rahman et al.

ones furnished in the current work. For uniformity, we have enlisted trail prob-
abilities for same number of rounds.

Table 1. Comparison of trail probabilities of internal keyed permutation of
FlexAEAD

Block Size #rounds Trail probability Technique Reference

64 5 2−66 Differential characteristics [12]

5 2−46 Clustered characteristics [12]

5 2−21 Iterated truncated differential This Work Sect. 3

5 2−13 Yoyo Game This Work Sect. 4.3

128 6 2−79 Differential characteristics [12]

6 2−54 Clustered characteristics [12]

6 2−21 Iterated truncated differential This Work Sect. 3

6 1 Yoyo Game This Work Sect. 4.2

256 7 2−108 Differential characteristics [12]

7 2−70 Clustered characteristics [12]

7 2−21 Iterated Truncated Differential This Work Sect. 3

9 2−11 Yoyo Game This Work Sect. 4.3

Our Contributions. First of all, we report an iterated truncated differential
for all the variants of PFk using the property of AES Difference Distribution
Table (DDT) where the output difference of a byte is confined to either upper or
lower nibble. The probability of the truncated differential for one round is 2−7.
Its iterative nature makes it possible to penetrate more number of rounds for all
Flex-x. These differentials are further exploited to devise key-recovery attacks
on all the variants.

Next, we explore the application of the Yoyo property which has been intro-
duced by Rønjom et al. [20] on generic 2-round Substitution Permutation Net-
works and further extended on AES-based permutations and block ciphers [7,21].
We have been able to devise deterministic Yoyo distinguishers for 4, 6 and
8 rounds of Flex-64, Flex-128 and Flex-256 respectively which are further
extended by one more round to mount key recovery attacks. All key recovery
attacks (reported in this work) with their respective complexities are summa-
rized in Table 2. For the iterated truncated differential, the maximum number
of rounds that is penetrable for a Flex-x variant are enlisted in the table. The
attacks with practical complexities are experimentally verified.

Further, we have used the iterated truncated differentials to mount forgery
attacks on FlexAEAD similar to the ones reported by Eichlseder et al. [12,13].
Finally, to measure the effectiveness of all distinguishers reported in this work,
their theoretical success probabilities are estimated by following the approach
given in [19]. The success probabilities are estimated to be high and some of
them with practical complexities are experimentally verified.

Cryptanalysis of FlexAEAD 155

Table 2. Comparison of Key Recovery Attacks. Encs, Decs, MAs refers to encryption
queries, decryption queries and Memory Accesses respectively. For uniformity, memory
accesses and memory complexity has been provided in terms of Flex-128 state. 1 MA
for Flex-128 corresponds to 2 MA in Flex-64 and 0.5 MA in Flex-256. Memory
complexity is also normalized by the same ratio.

Block size #rounds Data complexity Time complexity Memory

complexity

Attack type Section No. of

Current Work

Encs Decs MAs

64 7 230.5 234.5 218.5 Iterated truncated

differential

3.2

5 210 216.5 215.5 210 Yoyo attack 4.3

128 16 293.5 2108.5 220.5 Iterated truncated

differential

3.2

7 210.5 216.5 216.5 211.5 Yoyo attack 4.3

256 21 2109.5 2125.5 222.5 Iterated truncated

differential

3.2

9 211 216.5 217.5 213 Yoyo attack 4.3

All the attacks presented in this paper exploit the vulnerability that merely
dividing the bytes into nibbles while using AES S-box is susceptible to differential
attacks as diffusion may be slow in some scenarios. Although, FlexAEAD is
out of NIST lightweight cryptography competition, this particular vulnerability
has a far-reaching impact on designing ciphers using AES S-box. Hence, it forms
the basis of continued motivation for this work.

Outline. The necessary details about PFk and Yoyo game are briefly visited in
Sect. 2. Section 3 describes the key-recovery attacks based on Iterated Truncated
Differential. Section 4 details the attacks based on Yoyo game. The success prob-
abilities of distinguishing attacks and their experimental verification are illus-
trated in Sect. 5. Forgery attacks based on Iterated Differentials are described in
Sect. 6. Finally, the concluding remarks are furnished.

Fig. 1. Byte representation of Flex-128 block cipher

2 Preliminaries

The analysis in this paper is regarding the PFk of FlexAEAD. So, first of all,
a brief description of PFk is given. Since a major part of this work uses the Yoyo
strategy, for the sake of completeness, a brief description of Yoyo game and its
relevant results are provided.

156 M. Rahman et al.

2.1 Internal keyed Permutation PFk

The design strategy of PFk follows the Feistel construction. Let m be the number
of bytes in a Flex-x state (m = x/8). The state of Flex-x is denoted by B and
is divided into two equal halves: the bytes in the left half being numbered from
B[0] to B[m

2 − 1], and the ones on the right half from B[m
2] to B[m − 1]. Each

byte is divided into two parts representing the two nibbles with the upper half
(upper nibble) being the most significant one. The other nibble is called as lower
nibble. After the BlockShuffle operation, m nibbles from B[0] to B[m

2 − 1]
constitute the upper nibbles of each bytes whereas the nibbles from B[m

2] to
B[m − 1] constitute the lower ones. The bytes at position B[i] and B[i + m

2]
are referred to as a “pair of symmetric bytes”. Application of BlockShuffle
operation on state s in r-th round is denoted by BSr(s). Figure 1 shows the
byte representation in Flex-128 state.

Figure 2 shows the round function of Flex-128. Each round of Flex-x starts
with the BlockShuffle operation. Then the state is bifurcated and the right
half goes through subbytes operation. AES S-box is used for byte substitution.
The left half is modified by XOR-ing it with the right half and applying the
subbytes operation. The modified values of the left half are XOR-ed with the
right half values and subbytes is applied to get new values of the right half. Then
the left and right half are combined to form the new state and the next round
follows. In Flex-x there are no round keys; there are only two subkeys Kα, Kβ

which are used at the beginning and the end of round functions respectively.
The total number of rounds for Flex-64, Flex-128 and Flex-256 are 5, 6
and 7 respectively [17]. In authenticated encryption modes, three PFk are used
sequentially for encrypting a block of plaintext, which makes the effective number
of rounds 15, 18 and 21 in FlexAEAD-64, FlexAEAD-128 and FlexAEAD-
256 respectively.

Key Generation. Key generation in Flex-x uses the PFk where the master key
K is divided into two parts and used as two subkeys. State is initialized with
0|K|/2 and three times PFk is applied to generate part of the subkey to be used
for encryption of the plaintext. This process is repeated several times till the
required number of subkeys is obtained. Apart from the first round, each time
the state is initialized with the output of the previous round. The key generation
algorithm makes it difficult to recover the master key from a known subkey. The
key recovery attacks presented in this paper refers to the recovery of subkeys.

2.2 Yoyo Game

By applying the Yoyo game strategy, a deterministic distinguisher for two generic
Substitution-Permutation (SP) rounds have been reported [20]. This has been
used to devise a 6-round Flex-128 distinguisher and a 7-round Flex-128 key
recovery attack. To apply their results, first Zero Difference Pattern and Swap-
ping of Words need to be defined which were originally given in [20].

Cryptanalysis of FlexAEAD 157

Let F : Fn
q → F

n
q be a permutation with q = 2k and

F (x) = S ◦ L ◦ S ◦ L ◦ S(x).

Here, S is the concatenation of several smaller S-boxes operating on elements
from Fq in parallel and L is the linear layer over F

n
q . A state is defined as the

vector of words α = (α0, α1, · · · , αn−1) ∈ F
n
q .

Definition 1. Zero Difference Pattern. [20] Let α ∈ F
n
q for q = 2k. The

Zero Difference Pattern for α is

ν(α) = (z0, z1, ..., zn−1),

where ν(α) takes values in F
n
2 and zi = 1 if αi = 0 or zi = 0 otherwise.

Fig. 2. Round function of Flex-128 block cipher

Definition 2. Swapping of Words. [20] Let α, β ∈ F
n
q be two states and

v ∈ F
n
2 be a vector, then ρv(α, β) is a new state in F

n
q created from α, β by

swapping components among them. The ith component of ρv(α, β) is defined as

ρv(α, β)i =

{
αi, if vi = 1;
βi, if vi = 0.

(1)

The following theorem describes the deterministic distinguisher for 2 generic
SP-rounds (G2).

158 M. Rahman et al.

Theorem 1. [20] Let p0, p1 ∈ F
n
q , c0 = G2(p0) and c1 = G2(p1). For any vector

v ∈ F
n
2 , c

′0 = ρv(c0, c1) and c
′1 = ρv(c1, c0). Then

ν(G−1
2 (c

′0) ⊕ G−1
2 (c

′1)) = ν(p
′0 ⊕ p

′1) = ν(p0 ⊕ p1). (2)

The notion behind devising such distinguisher is to choose a plaintext pair
according to some Zero Difference Pattern and query this plaintext pair to the
cipher to obtain a ciphertext pair. Words are swapped between the two cipher-
texts on the basis of the substitution layer to produce modified ciphertexts that
are queried to obtain new pair of plaintexts. Theorem 1 states that the Zero
Difference Pattern of the original plaintext pair and the modified plaintext pair
should be the same if the cipher is of the form S ◦L◦S. In the following section,
details regarding iterated truncated differential attacks on PFk are discussed.

3 Iterated Truncated Differential Attacks on PFk

Differential of iterative characteristics can be easily exploited to penetrate full
rounds of a cipher. The fundamental strategy behind devising an iterated differ-
ential is to choose the output differential in a way such that after some operations
the input differential can be produced easily. Alkhzaimi et al. have reported such
differentials for SIMON family of block ciphers [5]. In this work, iterated differ-
entials in truncated form have been considered. First of all, a particular property
of AES S-box which has been exploited needs to be discussed.

Property of AES DDT Table. From AES DDT table it has been observed
that the number of randomly chosen input differences that map to output dif-
ferences, such that the non-zero bits in each output difference are confined to
the upper nibble is 4096. Same is true if they are confined to the lower nibble.
In other words,∣∣{(x1, x2)|

(
S(x1) ⊕ S(x2)

)
& 0xf0 = 0,∀x1, x2 ∈ F28

}∣∣ = 4096,

∣∣{(x1, x2)|
(
S(x1) ⊕ S(x2)

)
& 0x0f = 0,∀x1, x2 ∈ F28

}∣∣ = 4096,

where S is the AES S-box. Therefore, with probability 4096
216 = 2−4 a random

input difference transits to upper nibble in the output difference. With same
probability, random input difference transits to lower nibble. The way this prop-
erty is exploited to devise iterated truncated differential is provided in the next
subsection.

Cryptanalysis of FlexAEAD 159

Fig. 3. Iterated Truncated Differential with One-round probability of 2−7. Note that
the key-addition is not shown, since it has no effect on the trail

3.1 One Round Probabilistic Iterated Truncated Differential

Refer to Fig. 3 for the iterated differential of Flex-128. In X1, keeping the differ-
ence in B[0] ensures that in Y1 difference are in B[0] and B[8]. With probability
2−7 both differences are confined in either upper nibble or lower nibble in those
bytes. Therefore, after BlockShuffle only one byte is active in X2. In X2 the
active byte can be either B[0] or B[1], depending on whether the upper or lower
nibbles in Y1 are active. The iterative nature of the differential comes from the
fact that in X2 only one byte is active at the cost of 2−7 probability under the
constraints that only one byte is active in X1, and this particular event can be
repeated an infinite number of times. Similar kinds of iterated truncated differ-
ential with the same probability exists for Flex-64 and Flex-256. Now, how
these one round differentials are exploited to penetrate more number of rounds
is discussed.

160 M. Rahman et al.

Table 3. Iterated differential trails

Block size f rmax Trail probability

64 1 7 2−42

2 6 2−28

128 1 16 2−105

2 15 2−91

3 12 2−63

256 1 21 2−140

2 21 2−123

3 21 2−126

4 21 2−119

Table 4. Comparison of differential probabilities

Block size #rounds Active S-boxes P†
D Q∗

D

64 15 28 2−168 2−98

128 18 34 2−204 2−119

256 21 40 2−240 2−119

† Probability of the classical differential trail claimed by
the designers
* Probability of the iterated truncated differential trail

Application to Variants of PFk . The one round iterated truncated differ-
ential can be applied to all the versions of PFk. The iterated differential occurs
with probability 2−7. Depending on the blocksize, last few rounds can be made
free as no byte to nibble transition is needed for those rounds.
Let the iterated truncated differential is kept free for last f rounds for Flex-x.
Then the probability of the trail is 2−7×(r−f). For uniform random discrete dis-
tribution, the same event will occur with probability 2−8×(x

8 −2f) = 2−(x−8×2f).
For devising a distinguisher for x-bit flex,

2−7×(r−f) > 2−(x−8×2f)

=⇒ r <
(x − 8 × 2f)

7
+ f. (3)

Then, the probability of the iterated truncated differential trail for r-round
Flex-x is 2−7×(r−f). Table 3 shows the trail probabilities for different Flex-x.
rmax denotes the maximum number of rounds reachable under the constraints
of fixed f . Table 4 compares the differential probabilities claim of the designers
with our claim using the iterated differential. PD denotes the designers’ claim
whereas QD denotes our claim.

Another aspect of such kind of trails is the position of active byte in each
round. As mentioned in 3.1, if B[0] is active in X0, then either B[0] or B[1] is

Cryptanalysis of FlexAEAD 161

active in X2. If B[1] is active in X2, then either B[2] or B[3] is active in X3. In
general, for Flex-x if B[m] or B[x

2×8 + m] is active in Xi, then either B[2m]
or B[2m + 1] is active in X(i+1). Now, the mechanism of transforming these
distinguishers to key recovery attacks is detailed.

3.2 Key Recovery Using Iterated Truncated Differential

At the end of each round, the difference in a pair of symmetric bytes after S-box
transits to the same nibble with probability 2−7. This has been used as a filtering
technique to eliminate wrong key bytes. Let the first subkey, Kα for Flex-128
is being recovered. Using iterated truncated differential for r rounds a right pair
can be identified with probability 2−7×(r−f), where f is number free rounds.
Suppose, in the right pair the initial difference is in B[i] and B[i+8]. So, we guess
key byte Kα[i] and Kα[i + 8]. There are 216 possible guesses and these are used
to verify whether at the end of first-round byte to nibble transition occur. Out of
216, 29 key-byte candidates remain. For further filtering, two more right pairs are
used. The second right pair reduces the candidate numbers to 22. After filtering
using three different right pairs, it is expected only one candidate should remain
for the key byte pair

(
216 ×(2−7)3 = 2−5 < 1

)
. For the remaining symmetric key

bytes, the procedure is repeated 7 more times. In the end, it is expected that
only one key candidate should pass the test. The other subkeys can be recovered
similarly. After recovering the first subkey, the values of the plaintexts are exactly
known till the second subkey whitening. The same key recovery attacks are
applicable for Flex-64 and Flex-256. In the next subsections, details about the
complexities of all attacks and experimental verification of practical ones are
provided.

3.3 Complexity Evaluation

Distinguisher. To distinguish iterated truncated differential for r rounds,
27×(r−f) number of plaintext pairs are required, where f is the number of free
rounds at the end. In devising the distinguishers, difference can be kept in 2
bytes only in X1, which yields

(
216

2

) ≈ 231 pairs of plaintexts. For distinguishers
requiring more than 231 pairs, a different set of states is needed. So, the data
complexity is 27×(r−f)

231 × 216 = 27×(r−f)

215 encryption queries. Time complexity
involves the memory accesses required to compute the specified collisions, which
is the number of plaintext pairs needed, i. e., 27×(r−f). Memory complexity is
216 Flex-x states, which is the memory required for storing different states.

Consider a particular case for 21-round Flex-256. According to Inequality 3,
the value of f can be set to 4. For this case

1. Data Complexity is 27×17

215 = 2104 encryption queries..
2. Time Complexity is 2119 memory accesses.
3. Memory Complexity is 216 Flex-256 states = 217 Flex-128 states.

162 M. Rahman et al.

Key Recovery. Complexities of key recovery attack of Flex-x depends on
distinguisher. To recover each pair of key-byte, three different right pairs are
required. This procedure also needs to be repeated x

16 times for recovering the
full key. Therefore, data complexity, time complexity and memory complexity of
distinguisher needs to be multiplied by a factor of 3 × x

16 . Moreover, candidate
key-byte recovery for each pair of byte can be computed in parallel. To recover
the other subkey, a plaintext, ciphertext pair

(
p1, c1

)
is chosen and PFk round

functions till the second subkey whitening is computed offline and XOR-ed with
c1. So, the complexities of r-round Flex-x with f free rounds are-

1. Data Complexity is 3 × x
16 × 27×(r−f)

215 encryption queries.
2. Time Complexity is 3 × x

16 × 27×(r−f) memory accesses.
3. Memory Complexity is 3 × x

16 × 216 Flex-x states.

The complexities of particular cases for 7-round Flex-64 with f = 1, 16-
round Flex-128 with f = 1 and 21-round Flex-256 with f = 4 have been listed
in Table 2.

3.4 Experimental Verification

The key recovery attack using iterated differentials has been experimentally ver-
ified for 8 rounds Flex-128 with f = 3. The attack initiates after a key is chosen
randomly. The number of key candidates after using the first right pairs for each
pair of symmetric bytes (from (Kα[0], Kα[8]) to (Kα[7], Kα[15])) are 316, 520,
632, 448, 568, 484, 368 and 356 respectively. It conforms to the theoretical anal-
ysis, which states that the number of candidates should be around 29. After
using the second right pairs, the number of candidates is reduced to 2, 12, 4, 4,
6, 5, 2 and 5 respectively which is close to the theoretical value of 22. The third
right pair reduces the number for all pairs of bytes to 1. The key recovery attack
correctly recovers the subkeys.

In the next section, details regarding attacks on PFk using Yoyo game strategy
are provided.

4 Yoyo Attacks on PFk

The Yoyo distinguishing attack has been briefly described in Sect. 2.2. First, the
result of Yoyo game on 2-generic SP rounds has been applied for devising r-
round Flex-x deterministic distinguisher. Then cipher specific properties has
been exploited to penetrate one more extra round and recover the key. Here, r
is 4, 6 and 8 for Flex-64, Flex-128 and Flex-256 respectively. First, details
about Super-Sbox of Flex-x is given.

Cryptanalysis of FlexAEAD 163

Fig. 4. Super-Sbox of Flex-128 Block Cipher

4.1 Super-Sbox

Refer to Fig. 4 for the Super-Sbox construction in Flex-128 block cipher. Con-
sider the bytes {B[0], B[2], · · · B[7]} at X1. Due to round function, only the
symmetric bytes affect each other. So, in Y1 every symmetric bytes depends
on every symmetric bytes at X1. Due to BS2, B[2i], B[2i + 8] (0 ≤ i ≤ 3)
from Y1 constitutes the B[4i], B[4i + 1] (0 ≤ i ≤ 3) at X2. Due to applica-
tion of BS3, {B[2i], B[2i + 1], B[2i + 8], B[2i + 9]}, (0 ≤ i ≤ 1) at Y2 affects
{B[8i], B[8i + 1], B[8i + 2], B[8i + 3]}, (0 ≤ i ≤ 1) at X3. This constitutes a
Super-Sbox which spans over 2.5 rounds (omitting the initial BlockShuffle).
There are two 64-bit Super-Sbox in the Flex-128 state. In similar way, Flex-
64 and Flex-256 has 32-bit and 128-bit Super-Sbox which span over 1.5 and 3.5
rounds respectively. In the next subsection, how these Super-Sboxes are used to
design deterministic Yoyo distinguishers is discussed.

4.2 Deterministic Distinguisher for r-round Flex-x

In devising this distinguisher, Theorem 1 has been used directly. For this purpose,
the S ◦ L ◦ S layers need to be identified in this construction. The S here cor-
responds to Super-Sbox described in Sect. 4.1 whereas the L corresponds to the
BlockShuffle layer. A pair of plaintexts is chosen such that only one of the Super-
Sbox is active at X1.Yoyo game is played using these two plaintexts to obtain a new
pair of texts. The same Super-Sbox should be active in the new pair of texts and the
other should be inactive. For a uniform random discrete distribution, this occurs
with probability 1

2
x
2
. Next, attack procedures and their corresponding complexi-

ties are provided. In the attack procedure, steps pertaining to Flex-128 has been
described. Same attack strategy follows for Flex-64 and Flex-256.

164 M. Rahman et al.

Attack Procedure

1. Choose two 128-bit plaintexts p1, p2 such that, wt(ν(p1 ⊕ p2)) = 1. Inverse
BlockShuffle is applied to p1, p2 and then they are queried to encryption
oracle to obtain c1, c2.

2. As there is two Super-Sboxes, so only one swapping is possible. One of the
Super-Sbox is swapped between c1 and c2 to form c′

1, c
′
2, which are queried to

decryption oracle and p′
1, p

′
2 is obtained.

3. Check whether wt(ν(BS(p′
1)⊕BS(p′

2))) = 1 or not. If it is 1, then distinguish
it as Flex-128; otherwise it is a random permutation.

Complexity Evaluation. The attack needs 2 encryption queries and 2 decryp-
tion queries; its time complexity is 2 BlockShuffle, 2 inverse BlockShuffle
operation and 2 Flex-128 state XOR, and the memory complexity is negligible.

4.3 Key Recovery for (r + 1)-round Flex-x

For attacking (r + 1)-round Flex-x, Yoyo distinguishing attack on r-round is
composed with the one round trail of iterated truncated differential. The attack
for Flex-128 is shown in Fig. 5. With probability 2−7 only one Super-Sbox is
active at X2. By virtue of Yoyo game, only one Super-Sbox should be active in
W2. Due to inverse BlockShuffle, the differences should be confined to either
upper nibbles or lower nibbles in Z1; the other half should be free. With prob-
ability 2−8, two symmetric bytes become free at Z1. There are 8 (4 and 16
for Flex-64 and Flex-256 respectively) choices for symmetric byte positions
which increases the probability to 2−5

(
2−6 and 2−4 for Flex-64 and Flex-

256
)
. Therefore, at the cost of 2−12, two symmetric bytes become free for the 7-

round Flex-128. Probability of the same event for 5-round Flex-64 and 9-round
Flex-256 is 2−13 and 2−11 respectively. Now, the attack steps of Flex-128, it’s
corresponding complexities and experimental verifications are discussed.

Attack Procedure

1. Choose 26 plaintexts such that they differ only in B[0] and B[8]. Apply inverse
BlockShuffle on them and query them to encryption oracle to obtain corre-
sponding ciphertexts. Consider all ciphertext pairs, swap bytes between them
according to the Super-Sbox output and query them to the decryption oracle
to obtain new pairs of plaintexts. Check whether the pair has a pair of free
symmetric bytes. At least one such pair is expected.

2. Repeat step 1 two more times to obtain two more right pairs. Let (c1, c2),
(c3, c4) and (c5, c6) be such pairs and their corresponding plaintexts are
(p1, p2), (p3, p4) and (p5, p6). After byte swapping, (c1, c2), (c3, c4) and
(c5, c6) becomes (c′

1, c
′
2), (c′

3, c
′
4) and (c′

5, c
′
6). BlockShuffle is applied on the

decrypted value of these modified ciphertexts to obtain (p′
1, p

′
2), (p′

3, p
′
4) and

(p′
5, p

′
6).

Cryptanalysis of FlexAEAD 165

Fig. 5. 7-round Yoyo Distinguisher for Flex-128

3. Guess key bytes 0 and 8 for Kα, run one round encryption for p′
1, p

′
2 and

observe whether same nibble in B[0] and B[8] remains free or not for the
pair. Using nibble transition, out of 216 candidates, 27 are filtered out. Then
the remaining two right pairs subsequently reduces the number of candidates
for Kα[0] and Kα[8] to 22 and 1 respectively.

4. For the remaining 7 symmetric pairs of bytes, step 3 is repeated 7 more
times. At, the end 1 key candidates are expected for Kα. For each Kα, Kβ is
computed by using a plaintext-ciphertext pair. If there is more than one Kα,
Kβ pair, they are exhaustively tried for finding the right key candidate.

Complexity Evaluation. Let probability of the event that “two symmetric
bytes become free” is 2−p. So, for retrieving a right pair, 2

p
2 encryption queries

and 2p decryption queries are required. For guessing each pair of key byte, 3 such
right pairs are needed and to recover the key, this process need to be repeated x

16

times. Therefore, data complexity of the attack is 3×x
16 × 2

p
2 encryption queries

and 3×x
16 × 2p decryption queries.

Time complexity is 3×x
16 ×2p memory accesses for retrieving the stored cipher-

texts.
Memory complexity is 3×x

16 × 2
p
2 +1 Flex-x states for storing the plaintexts

and ciphertexts.
The complexities of 7-round Flex-128 key recovery attack are-

1. Data Complexity is 24 × 26 ≈ 210.5 encryption queries and 24 × 212 ≈ 216.5

decryption queries.
2. Time Complexity is 216.5 memory accesses.
3. Memory Complexity is 211.5 Flex-128 states.

166 M. Rahman et al.

Experimental Verification. The Yoyo attack for 7-round Flex-128 has been
experimentally verified. Initially the oracle chooses a master key randomly and
computes the subkeys. Adversarial algorithm queries according to attack steps in
Sect. 4.3 and retrieves right pairs. The number of key candidates corresponding
to each symmetric bytes

(
from (Kα[0], Kα[8]) to (Kα[7], Kα[15])

)
after filtering

with first right pairs are 502, 618, 546, 496, 510, 486, 552 and 538 respectively
which conforms to the theoretical value of 29. The second right pairs further
reduces it to 6, 7 6, 7, 7, 3, 3 and 5 respectively which is close to the theoretical
value of 22. The third pairs reduces all these values to 1. This reduction in
the number of key candidates using the right pairs conforms to the theoretical
analysis. At last, the algorithm successfully recovers the subkeys.

In the next section, we discuss the success probability of distinguishing
attacks reported in this work.

5 Success Probability of Distinguishing Attacks

The effectiveness of an attack depends on its success probability. First, the suc-
cess probability of all reported distinguishers is computed. Then, the success
probability of practical ones is experimentally verified. To deduce the theoreti-
cal estimation of success probabilities, the following theorem from [19] has been
applied.

Theorem 2. [19] Suppose, the event e happens in uniform random bitstream
with probability p and in keystream of a stream cipher with probability p(1 +
q). Then the data complexity of the distinguisher with false positive and false
negative rates α and β is given by

n >

(
κ1

√
1 − p + κ2

√(
1 + q

)(
1 − p(1 + q)

))2

pq2
(4)

where Φ(−κ1) = α and Φ(κ2) = 1 − β.

For computing success probability, we consider κ1 = κ2 in theorem 2, which
gives us α = β. Then the success probability is given by (1 − β). Note that,
in the theorem data complexity essentially refers to sample complexity. Table 5
lists the success probabilities of different distinguishers presented in this paper.

Experimental Verification. For experimental verification of success probabil-
ities, the strategy from [21] has been followed. First, consider a blackbox which
can act as either a cipher C or a uniform discrete random permutation R. Then
the experiment is run two times in the following ways:

1. Consider the blackbox as C and repeat the experiment ac times.
2. Consider the blackbox as R and repeat the experiment ar times.

Cryptanalysis of FlexAEAD 167

Table 5. Success probabilities of various distinguishers

Distinguisher type Block size f #rounds p × (1 + q) p Success probability

Iterated 64 1 7 2−42 2−48 0.8

128 1 16 2−105 2−112 0.82

256 4 21 2−119 2−192 0.84

Yoyo 64 n/a 5 2−13 2−14 0.61

128 n/a 7 2−12 2−13 0.61

256 n/a 9 2−11 2−12 0.61

Table 6. Confusion matrix of C and R

Actual Observed

C R
C oc − nFP nFN

R nFP or − nFN

Table 7. Experimental verification of success probability

Distinguisher #rounds f #n Blackbox Detected as C Detected as R Experimental

Success

Probability

Estimated

Success

Probability

Flex-64 5 2 100 Flex-64 65 35 0.8 0.83

R 5 95

Flex-64 6 2 100 Flex-64 79 21 0.76 0.77

R 27 73

Let out of (ac+ar) experiments, distinguisher decides it as C oc times and
as R or times. nFP and nFN denotes the number of false positives and false
negatives respectively. Based on this parameters, the confusion matrix is shown
in Table 6.

Then the success probability is calculated by:

Pr[Success] =
(oc − nFP) + (or − nFN)

oc + or

=
(oc − nFP) + (or − nFN)

ac + ar
.

The values of success probabilities for 5-round and 6-round Flex-64 derived
using experiments and theoretical estimations are listed in Table 7.

Trade-Off Between Success Rate and Free Rounds. The iterated trun-
cated differentials can have a different number of free rounds at the end. More
number of free rounds reduces the trail complexity at the expense of success rate.
For analysis, consider the case pertaining to 6-round Flex-64 with the number
of free rounds 1 and 2. The success rate for both cases is listed in Table 8.

168 M. Rahman et al.

Table 8. Comparison of Success Rate for Flex-64

f #rounds p × (1 + q) p Success probability

1 6 2−35 2−48 0.83

2 6 2−28 2−32 0.77

Table 9. Comparison of Success Rate for Flex-256

f p × (1 + q) p Success probability

1 2−140 2−240 0.84

2 2−133 2−224 0.84

3 2−126 2−208 0.84

4 2−119 2−192 0.84

For 21-round Flex-128, the number of free rounds can take any value
between 1 and 4. For each of the cases, the theoretical estimation of success
probability is almost equal. The estimated success probabilities have been shown
in Table 9. The difference between the distribution of random bitstream and 21-
round Flex-128 for each case is so huge, that it has a negligible effect on the
success probability.

In the following section, we show how to mount forgery attacks on Flex-
AEAD variants using the idea of iterated truncated differentials.

6 Forgery Attacks on FlexAEAD

Eichlseder et al. have shown forgery attacks on FlexAEAD by applying several
strategies [12]. All those strategies are also applicable using the differentials
described in this paper. The main difference between these two approaches is
the differential characteristics for the sequence generation. First, the differential
characteristic of the sequence generation step is shown.

6.1 Differential Characteristics in Sequence Generation

A sequence of bits is used by FlexAEAD for authenticated encryption. These
sequences are generated by using PFk, with initial state being the nonce. For
details on sequence generation refer to [17]. The difference between two consecu-
tive sequence numbers is that their last call to PFk differ by a INC32 call. INC32
is a 32-bit word operation which acts as an XOR operation with probability 2−1.

Cryptanalysis of FlexAEAD 169

Fig. 6. Differential Characteristics of Sequence Generation for FlexAEAD-128. Note
that, plaintext difference or associated data difference can cancel out difference in
Si ⊕ Si+1 with probability 2−8.

Consider, m 32-bit words in a r-round Flex-x state. Due to INC32 with
probability 2−m, m nibbles at m

2 symmetric positions become active between
two subsequent sequence generation steps. Due to BlockShuffle, those m active
nibbles is converted to m

2 active bytes which occupies m
4 symmetric positions.

In the next round, those active bytes transits to m
8 symmetric positions (m

4
active bytes) at the cost of 2−2m. In the next round, m

16 symmetric positions get
occupied at the cost of 2−m. After repeating the process,

(
log2(m) − 2

)
times,

only one symmetric position remains occupied by the active byte. For the rest(
r − log2(m) + 2

)
rounds, with probability 2−8 for each round the position of

two active nibbles in the output get fixed (Note that, in the iterated truncated
differential, the position of active is not fixed and that is why the probability of
2−7 is paid). With 2−8 probability the value of the active nibbles can be fixed
to a specific value.

By following this approach, the difference of two consecutive sequence num-
bers can be fixed to a specific value with probability 2−50 for FlexAEAD-64,
2−60 for FlexAEAD-128 and 2−80 for FlexAEAD-256 (Corresponding com-
plexities of forgery attacks are computed by taking the inverse of these probabil-
ities). Differential characteristics of sequence generation for FlexAEAD-128 is
shown in Fig. 6. Once the output difference value is fixed, the techniques (Chang-
ing Associated Data, Truncating Ciphertext, Reordering Ciphertext) in [12] can
be applied to forge ciphertext-tag pair. Comparison between several approaches
regarding forgery attack is enlisted in Table 10.

170 M. Rahman et al.

Table 10. Comparison of Forgery Attacks on FlexAEAD

Scheme Complexity Technique Reference

FlexAEAD-64 250 Changing Associated Data
Truncating Ciphertext
Reordering Ciphertext

Current Work

246 [12]

FlexAEAD-128 260 Current Work

254 [12]

FlexAEAD-256 280 Current Work

270 [12]

7 Conclusion

In this work, we analyzed all variants of PFk of FlexAEAD. We reported a
one round differential characteristic of PFk, which due to its iterative nature
was exploited to penetrate a large number of rounds. We also showed that the
generalized Yoyo distinguishing attack on SPN ciphers was applicable for PFk.
While deploying Yoyo attack, a Super-Sbox construction of 1.5, 2.5 and 3.5
rounds in 64-bit, 128-bit and 256-bit PFk respectively were reported. All these
attacks were easily exploited to recover the subkeys. In addition, the iterated
truncated differential attack strategy was applied to the nonce-based sequence
number generator which was exploited to devise similar kinds of forgery attacks
on FlexAEAD as given by Eichlseder et al. [12]. The success probabilities of all
distinguishing attacks were shown to be high. All attacks reported in this work
with practical complexities were experimentally verified. All these attacks have
exploited a vulnerability in the design which is based on dividing the nibbles
into two parts while using AES S-box.

References

1. CAESAR Competition. https://competitions.cr.yp.to/caesar.html
2. National Institute of Standards and Technology (NIST): AES Development

(1997). https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/
archived-crypto-projects/aes-development

3. National Institute of Standards and Technology (NIST): Lightweight cryp- tog-
raphy standardization process (2019). https://csrc.nist.gov/projects/lightweight-
cryptography

4. National Institute of Standards and Technology (NIST): SHA-3 Standardization
Process (2007). https://csrc.nist.gov/projects/hash-functions/sha-3-project

5. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON Family of Block
Ciphers. Cryptology ePrint Archive, Report 2013/543 (2013). https://eprint.iacr.
org/2013/543

https://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/ lightweight-cryptography
https://csrc.nist.gov/projects/ lightweight-cryptography
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://eprint.iacr.org/2013/543
https://eprint.iacr.org/2013/543

Cryptanalysis of FlexAEAD 171

6. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency S-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

7. Banik, S., et al.: Cryptanalysis of ForkAES. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 43–63. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 3

8. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small
present - towards reaching the limit of lightweight encryption. In: CHES (2017)

9. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: CRYPTO (2016)

10. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN – a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K.
(eds.) Cryptographic Hardware and Embedded Systems - CHES 2009, pp. 272–
288. Springer, Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04138-9 20

12. Eichlseder, M., Kales, D., Schofnegger, M.: Forgery Attacks on FlexAE and Flex-
AEAD. Cryptology ePrint Archive, Report 2019/679 (2019). https://eprint.iacr.
org/2019/679

13. Eichlseder, M., Kales, D., Schofnegger, M.: Official Comment: FleaxAEAD. Posting
on the NIST LWC mailing list (2019)

14. Mege, A.: Official Comment: FLEXAEAD. Posting on the NIST LWC mailing list
(2019)

15. do Nascimento, E.M., Xexéo, J.A.M.: A flexible authenticated lightweight cipher
using even-mansour construction. In: IEEE International Conference on Commu-
nications, ICC 2017, Paris, France, 21–25 May 2017, pp. 1–6 (2017)

16. do Nascimento, E.M., Xexéo, J.A.M.: A Lightweight Cipher with Integrated
Authentication. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO
BRASILEIRO EM SEGURANÇA DA INFORMAÇÕO E DE SISTEMAS COM-
PUTACIONAIS, SBSEG, vol. 18 (2018)

17. do Nascimento, E.M., Xexéo, J.A.M.: FlexAEAD - a lightweight cipher with
integrated authentication (2019). https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf

18. do Nascimento, E.: Algoritmo de Criptografia Leve com Utilização de Autenticação.
Ph.D. thesis, Instituto Militar de Engenharia, Rio de Janeiro (2017)

19. Paul, G., Ray, S.: On data complexity of distinguishing attacks versus message
recovery attacks on stream ciphers. Des. Codes Cryptol. 86(6), 1211–1247 (2017).
https://doi.org/10.1007/s10623-017-0391-z

20. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

21. Saha, D., Rahman, M., Paul, G.: New Yoyo tricks with AES-based permutations.
IACR Trans. Symmetric Cryptol. 2018(4), 102–127 (2018)

https://doi.org/10.1007/978-3-030-21568-2_3
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-642-04138-9_20
https://eprint.iacr.org/2019/679
https://eprint.iacr.org/2019/679
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://doi.org/10.1007/s10623-017-0391-z
https://doi.org/10.1007/978-3-319-70694-8_8

BBB Secure Nonce Based MAC Using
Public Permutations

Avijit Dutta1(B) and Mridul Nandi2

1 Indian Institute of Technology, Kharagpur, India
avirocks.dutta13@gmail.com

2 Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

Abstract. In the recent trend of CAESAR competition and NIST light-
weight competition, cryptographic community have witnessed the sub-
missions of several cryptographic schemes that are build on public ran-
dom permutations. Recently, in CRYPTO 2019, Chen et al. have ini-
tiated an interesting research direction in designing beyond birthday
bound PRFs from public random permutations and they proposed two
instances of such PRFs. In this work, we extend this research direction
by proposing a nonce-based MAC build from public random permuta-
tions. We show that our proposed MAC achieves 2n/3 bit security (with
respect to the state size of the permutation) and the bound is essentially
tight. Moreover, the security of the MAC degrades gracefully with the
repetition of the nonce.

Keywords: Faulty nonce · Mirror theory · Public permutation ·
Expectation method

1 Introduction

Nonce-Based MAC. Message Authentication Code (or in short MAC) is an
important cryptogaphic primitive to authenticate any digital message or packet
transmitted over an insecure communication channel. When a sender wants to
send a message m, she computes a MAC function with input m, the shared secret
key k, and possibly an auxiliary input variable ν (called nonce), and obtains a
tag t. Then she sends (ν,m, t) to the receiver. Upon receiving, receiver verifies
the authenticity of (ν,m, t) by computing the MAC using (ν,m, k) and checks
whether the computed tag t′ matches with t.

Wegman-Carter (WC) MAC [25] is the first example of a nonce-based MAC
which masks the hash value of the message with an encrypted nonce to gen-
erate the tag. WC MAC gives optimal security when the nonce is unique for
every authenticated messages. However, its security is compromised if the nonce
repeats even once. Wegman-Cater MAC, when instantiated with a polynomial
hash, then the repetition of the nonce reveals the hash key of the polynomial
hash. However, maintaining the uniqueness of the nonce for every authenticated
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 172–191, 2020.
https://doi.org/10.1007/978-3-030-51938-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_9

BBB Secure Nonce Based MAC Using Public Permutations 173

messages is a challenging task in practical contexts. For example, it is difficult
to maintain the uniqueness of the nonce while implementing the cipher in a
stateless device or in cases where the nonce is chosen randomly from a small set.
The nonce may also accidentally repeats due to a faulty implementation of the
cipher or due to the fault occured by resetting of the nonce itself [4]. Therefore,
the guard from the nonce repetition attack is much desired from a nonce-based
MAC.

As a remedy of this, Encrypted Wegman-Carter-Shoup (EWCS) [11] MAC
was proposed that guarantees the security even when the nonce repeats. But its
security is limited only up to the birthday bound even when nonce is unique. To
this end, Encrypted Wegman-Carter with Davies-Meyer [11] (or EWCDM) and
Decrypted Wegman-Carter with Davies-Meyer [13] (or DWCDM) have been pro-
posed that gives beyond the birthday bound security when nonce is unique1 and
birthday bound security when nonce repeats2. However, the security of both
these constructions fall to the birthday bound with a single repetition of the
nonce, i.e., if the nonce ever repeats accidentally, security of both the construc-
tions immediately drops to the birthday bound.

Nonce Based Enhanced Hash-then-Mask. In FSE 2010 [21], Minematsu
proposed EHtM, a beyond birthday bound secure probabilisitic MAC. It is build
upon two independent n-bit keyed functions Fk1 and Fk2 and an n-bit axu hash
function Hkh

, defined as follows:

EHtM(m) Δ= (r ←$ {0, 1}n,Fk1(r) ⊕ Fk2(r ⊕ Hkh
(m))).

This construction has been further analyzed in [15] for improving its security
bound. In Eurocrypt 2019, Dutta et al. [16] proposed a nonce-based variant of
EHtM, called nEHtM MAC, where the random salt r is replaced by an n − 1
bit nonce value ν and an n-bit block cipher Ek is used as an internal primitive
instead of two independent n-bit keyed functions. Schematic diagram of nEHtM
is shown in Fig. 1 Similar to EWCDM and DWCDM, nEHtM gives beyond the
(birthday bound) security in nonce-respecting (resp. nonce misuse) setting. But,
unlike these two constructions, security of nEHtM MAC degrades gracefully with
the repetition of the nonce. In other words, security of nEHtM remains beyond
the birthday bound with a single repetition of the nonce (which is not true for
EWCDM and DWCDM). That is, one can get adequate security from nEHtM if the
repetition of the nonce occurs in a controlled way, a feature which is not present
in EWCDM or DWCDM. This phenomena is formally captured by a notion, called
faulty nonce model [16]. Informally, it says that a nonce is faulty if it appears
in a previous signing query. It has been stated in [16] that faulty nonce model is
a weaker notion than multicollision of nonces – a natural and a popular metric
to measure the misuses of nonce. Under the notion of faulty nonce model, Dutta
et al. have shown that nEHtM is secured roughly upto 22n/3 queries.

1 We call this notion nonce-respecting setting.
2 We call this notion nonce-misuse setting.

174 A. Dutta and M. Nandi

We would like to mention here that this construction was also analyzed by
Moch and List [22] in parallel to [16] in the name of HPxNP, where two inde-
pendent n-bit block ciphers have been used (as they did not use the domain
separation technique). However, Moch and List analyzed its security under the
condition of the uniqueness of the nonce, whereas Dutta et al. [16] proved its
graceful security with respect to the repetition of the nonce.

1.1 Permutation Based Cryptography

All the above discussed nonce-based MACs are build on block ciphers as their
underlying primitives and even stronger, these primitives are evaluated only in
the forward direction. As most of the block ciphers are designed to be efficient in
both the forward and the inverse direction, block ciphers are over-hyped prim-
itives for such purpose [10]. On the other extreme, cryptographic permutations
are particularly designed with the motive to be fast in the forward direction, but
not necessarily in the inverse direction. Examples of such permutation includes
Keccak [2], Gimli [1], SPONGENT [5]. Moreover, in most of the cases evalu-
ating an unkeyed public permutation is faster than evaluating a keyed block
cipher, as the latter involves in evaluating the underlying key scheduling algo-
rithm each time the block cipher is invoked in the design. With the advance-
ment of public permutation-based designs and the efficiencies of evaluating it
in the forward direction, numerous public permutation-based inverse-free hash
and authenticated encryption designs have been proposed. The use of cryp-
tographic permutation gained the momentum during SHA-3 competition [24].
Furthermore, the selection of the permutation-based Keccak sponge function as
the SHA-3 standard has given a high level of confidence on using this primitive
in the community. Today, permutation-based sponge construction has become
a successful and a full-fledged alternative to the block cipher-based modes. In
fact, in the first round of the ongoing NIST light-weight competition [23], 24
out of 57 submissions are based on cryptographic permutations, and out of 24,
16 permutation based proposals have been qualified for the second round. This
statistics, beyond any doubt, clearly depicts the wide adoption of permutation
based designs [1,3,7,8,12,14] in the community. In another direction, a long line
of research work has been carried out in the study of designing block ciphers
and tweakable block ciphers out of public random permutations. Even Man-
sour (EM) [17] and Iterated Even Mansour (IEM) cipher [6] are the notable
approaches in this direction.

Nonce-based MAC build from Public Permutations.Nonce-based MACs
using public permutations are mostly designed with sponge type of constructions.
But the drawback of such designs are: (i) they do not use the full size of the permu-
tation for guarranting security and (ii) they attain only the birthday bound secu-
rity in the size of its capacity c, i.e., c/2 bit security (except Bettle [7], whose secu-
rity bound is roughly the size of its capacity). Now, it is an admissible fact that the
sponge type designs, which offer c/2-bit security, are good in practice when they
are instantiated with large size permutations such as Keccak [2], whose state size

BBB Secure Nonce Based MAC Using Public Permutations 175

is 1600 bits. But such large size permutations are not suitable for use in resource
constrained environment. In such scneario, instead of using such large size permu-
tations, one aims to use light-weight permutations such as SPONGENT [5] and
PHOTON [18], whose state size go as low as 88 and 100 bits respectively. If we
use these light-weight permutations as underlying primitives in birthday bound
secure sponge type constructions, then it practically offers inadequate security.
As a result, sponge type constructions instantiated with light-weight permuta-
tions are not suitable for deploying in resource constrained environment. Thus, it
is natural to ask

Can we design a public permutation-based nonce-based MAC that gives an
adequate security when instantiated with light-weight permutation?

This question hinted us to think of designing a MAC whose security depends
on the entire size of the underlying permutation (unlike sponge type construc-
tions whose security depends on only a part of the entire size of the underlying
permutation) and the security must cross the birthday barrier. Coming up with
such a design is the goal of this paper. In this direction, Chen et al. [10] have
shown two instances of public permutation-based pseudo random functions that
give beyond the birthday bound security with respect to the size of the permu-
tation. We extend this line of research work by designing a public permutation-
based nonce-based MAC that gives beyond the birthday bound security with
respect to the size of the permutation.

Our Contribution. The sole contribution of this paper is to design a beyond
birthday bound secure nonce-based MAC using public random permutations.
To this end we propose nEHtMp, a nonce based MAC designed using public
permutations. As depicted in Fig. 1, our construction structurally resembles to
the nEHtM MAC [16] where we replace its block cipher with a public random
permutation and an appropriate masking of the key.

ν

Ek

0
⊕

m

Ek

1

Hk′

n − 1

⊕ k

n − 1

⊕

t

ν

π

0
⊕

m

π

1

Hk′

n − 1

⊕ k

n − 1

⊕

t

x

⊕ k1

π1

⊕ k2

π2

⊕ k3

y

Fig. 1. (Left): nEHtM MAC based on block cipher Ek; (Middle): nEHtMp MAC based
on single public random permutation π; (Right): 2-round iterated even mansour cipher.

176 A. Dutta and M. Nandi

Note that, by instantiating the underlying block cipher of nEHtM MAC
with 2-round iterated Even-Mansour cipher (as shown in Fig. 1), one can easily
make the public permutation variant of nEHtM MAC, which becomes secure
beyond the birthday bound (in faulty nonce model). However such transforma-
tion requires 4 permutation calls, 7 xor operations and one hash evaluation. Com-
pared to this, nEHtMp requires only 2 permutation calls, 3 xor operations and
one hash evaluation. We have shown that nEHtMp is secured roughly up to 22n/3

queries in the nonce-respecting setting. Moreover, this security bound degrades
in a graceful manner under the faulty nonce model [16]. We show the unforge-
ability of this construction through an extended distinguishing game and apply
the expectation method to bound its distinguishing advantage. We also show
that our proven security bound is tight by giving a matching attack on it with
roughly 22n/3 query complexity and 22n−4 time complexity3.

2 Preliminaries

General Notations: For n ∈ N, we denote the set of all binary strings of
length n and the set of all binary strings of finite arbitrary length by {0, 1}n

and {0, 1}∗ respectively. We often refer the elements of {0, 1}n as block. For an
n-bit binary string x = (xn−1 . . . x0), msb(x) denotes the first bit of x in left
to right ordering, i.e. msb(x) = xn−1. Moreover, chopmsb(x) Δ= (xn−2 . . . , x0),
i.e., chopmsb(x) returns the string x by dropping just its msb. For any element
x ∈ {0, 1}∗, |x| denotes the number of bits in x and for x, y ∈ {0, 1}∗, x‖y denotes
the concatenation of x followed by y. We denote the bitwise xor operation of
x, y ∈ {0, 1}n by x ⊕ y. We parse x ∈ {0, 1}∗ as x = x1‖x2‖ . . . ‖xl where
for each i = 1, . . . , l − 1, xi is a block and 1 ≤ |xl| ≤ n. For a sequence of
elements (x1, x2, . . . , xs) ∈ {0, 1}∗, xi

a denotes the a-th block of i-th element xi.
For a value s, we denote by t ← s the assignment of s to variable t. For any
natural number j ∈ N, 〈j〉s denotes the s bit binary representation of integer
j. For i ∈ {0, 1}n, leftk(i) represents the leftmost k bits of i. Similarly, rightk(i)
represents the rightmost k bits of i. For any finite set X , X ←$ X denotes that
X is sampled uniformly at random from X and X1, . . . , Xs ←$ X denotes that
Xi’s are sampled uniformly and independently from X . FX (n) denotes the set
of all functions from X to {0, 1}n. We often write F(n) when the domain is clear
from the context. We denote the set of all permutations over {0, 1}n by P(n).
For integers 1 ≤ b ≤ a, (a)b denotes the product a(a − 1) . . . (a − b + 1), where
(a)0 = 1 by convention and for q ∈ N, [q] refers to the set {1, . . . , q}.

2.1 Public Permutation Based Nonce Based MAC

Let F : K × N × M → T be a keyed function where K,N ,M and T are the key
space, nonce space, message space and the tag space respectively. We assume that

3 Time complexity does not refer to the evaluation of permutations, but only refers to
the time required to find a suitable matching pair.

BBB Secure Nonce Based MAC Using Public Permutations 177

F makes internal calls to the public random permutations π = (π1, . . . , πd) for
d ≥ 1, where all of the d permutations are independent and uniformly sampled
from P(n) for some n ∈ N. For simplicity, we write Fπ

k to denote F with uniform k
and uniform π. Based on Fπ

k , we define the nonce-based message authentication
code I = (I.KGen, I.Sign, I.Ver) build from public permutations as follows: For
k ∈ K, the signing algorithm I.Signk, takes as input (ν,m) ∈ N × M and
outputs t ← Fπ

k (ν,m) and the verification algorithm I.Verk, takes as input
(ν,m, t) ∈ N × M × T and outputs 1 if Fπ

k (ν,m) = t; otherwise it outputs 0.
A signing query (ν,m) by an adversary A is called a faulty query if A has

already queried to the signing algorithm with the same nonce but with a different
message. Let A be a (η, qm, qv, p, t)-adversary against the unforgeability of I with
oracle access of the signing algorithm I.Signk, the verification algorithm I.Verk
and the d-tuple of permutations π and their inverses π = (π−1

1 , . . . , π−1
d) such

that it makes at most η faulty signing queries out of qm signing, qv verification
and p primitive queries with running time of A at most t. A is said to be nonce
respecting (resp. nonce misuse) if η = 0 (resp. η ≥ 1). However, A may repeats
nonces in its verification queries. Moreover, the primitive queries are interleaved
with the signing and the verification queries. A is said to forge I if for any
of its verification queries (not obtained through a previous signing query), the
verification algorithm returns 1. The advantage of A against the unforgeability
of the nonce based MAC I is defined as

AdvnMAC
I (A) Δ= Pr

[
AI.Signk,I.Verk,π ,π−1

forges
]
,

where the randomness is defined over k ←$ K, π1, . . . , πd ←$P(n) and the ran-
domness of the adversary (if any). We write

AdvnMAC
I (η, qm, qv, p, t) Δ= max

A
AdvnMAC

I (A),

where the maximum is taken over all (η, qm, qv, p, t)-adversaries A. In this paper,
we skip the time parameter of the adversary as we will assume throughout the
paper that the adversary is computationally unbounded. This will render us to
assume that the adversary is deterministic.

Upper bound on AdvnMAC
I (A) ([15]). To obtain an upper bound for

AdvnMAC
I (A), we consider a random oracle RF that samples the tag t inde-

pendently and uniformly at random from {0, 1}n for every nonce message pair
(ν,m) and the Rej oracle always returns ⊥ for any (ν,m, t). Then, AdvnMAC

I (A)
is upper bounded by

max
A

∣∣∣∣ Pr
[
AI.Signk,I.Verk,π ,π−1 ⇒ 1

]
− Pr

[
ARF,Rej,π ,π−1 ⇒ 1

] ∣∣∣∣, (1)

where AO ⇒ 1 denotes that adversary A outputs 1 after interacting with its
oracle O (which could be a multiple of oracles).

178 A. Dutta and M. Nandi

2.2 Almost Xor Universal and Almost Regular Hash Function

Let Kh and X be two non-empty finite sets and H be a keyed function H :
Kh ×X → {0, 1}n. Then, H is said to be an εaxu-almost xor universal (axu) hash
function, if for any distinct x, x′ ∈ X and for any Δ ∈ {0, 1}n,

Pr [Kh ←$ Kh : HKh
(x) ⊕ HKh

(x′) = Δ] ≤ εaxu.

Moreover, H is said to be an εreg-almost regular (ar) hash function, if for any
x ∈ X and for any Δ ∈ {0, 1}n,

Pr [Kh ←$ Kh : HKh
(x) = Δ] ≤ εreg.

2.3 Expectation Method

The Expectation Method of Hoang and Tessaro [19] was used to derive a
tight multi-user security bound of the key-alternating cipher. This technique
has subsequently been used in [16,20]. Let A be a computationally unbounded
deterministic distinguisher that interacts with either of the two worlds: Ore or
Oid, where these oracles are possibly randomized stateful systems. After the
interaction, A returns a single bit. This interaction between A and the system
results in an ordered sequence of queries and responses which is summarized
in τ = ((x1, y1), (x2, y2), . . . , (xq, yq)), called a transcript, where xi is the i-th
query of A and yi is the corresponding response of the system to which A inter-
acts with. Let Dre (resp. Did) be the random variable that takes a transcript
resulting from the interaction between A and Ore (resp. Oid). A transcript τ is
said to be attainble if Pr[Did = τ] > 0. Let Θ denotes the set of all attainable
transcripts.

Let Φ : Θ → [0,∞) be a non-negative function which maps any attainable
transcript to a non-negative real value. Suppose there is a set of good transcripts
GoodT ⊆ Θ such that for any τ ∈ GoodT,

Pr [Dre = τ]
Pr [Did = τ]

≥ 1 − Φ(τ). (2)

Then, the statistical distance between Dre and Did can be bounded as

Δ(Dre,Did) ≤ E[Φ(Did)] + Pr[Did ∈ BadT], (3)

where BadT
Δ= Θ \ GoodT is the set of all bad transcripts. In other words, the

advantage of A in distinguishing Ore from Oid is bounded by E[Φ(Did)]+Pr[Did ∈
BadT]. In the rest of the paper, we write Θ, GoodT and BadT to denote the set
of attainable, set of good and set of bad transcripts respectively.

2.4 Sum-Capture Lemma

We use the sum capture lemma by Chen et al. [9]. Informally, the result states
that for a random subset S of {0, 1}n of size q and for any two arbitrary subsets

BBB Secure Nonce Based MAC Using Public Permutations 179

A and B of {0, 1}n, the size of the set {(s, a, b) ∈ S × A × B : s = a ⊕ b} is at
most q|A||B|/2n, except with negligible probability. In our setting, S is the set
of tag values ti, which are sampled with replacement from {0, 1}n.

Lemma 1 (Sum-Capture Lemma). Let n, q ∈ N such that 9n ≤ q ≤ 2n−1.
Let S = {t1, . . . , tq} ⊆ {0, 1}n such that ti’s are with replacement sample of
{0, 1}n. Then, for any two subsets A and B of {0, 1}n, we have

Pr[|{(t, a, b) ∈ S × A × B : t = a ⊕ b}| ≥ q|A||B|/2n + 3
√

nq|A||B|] ≤ 2
2n

, (4)

where the randomness is defined over the set S.

3 Solving a System of Affine (Non)-equations

In this section, we present a lower bound on the number of solutions of a sys-
tem of bi-variate affine equations and bi-variate affine non-equations over a
finite number of unknown variables which are without replacement samples of
{0, 1}n. This result will become handy for analysing the security of our proposed
construction.

Initial Setup: Consider an undirected edge-labelled acylic graph G = (V Δ=
{Y1, . . . , Yα},F � F ′,L) with edge labelling function L : F � F ′ → {0, 1}n,
where the edge set is partitioned into two disjoint sets F and F ′. For an edge
{Yi, Yj} ∈ F , we write L({Yi, Yj}) = λij (and so λij = λji) and L({Yi, Yj}) = λ′

ij

for all {Yi, Yj} ∈ F ′. Let G= Δ= (V,F ,L|F) denotes the subgraph of G, where
L|F is the function L restricted over the set F . We say G is good if it satisfies
the following two conditions: (i) for all paths Pst in graph G=, L(Pst) �= 0. where
L(Pst)

Δ=
∑

e∈Pst
L(e) = Ys ⊕ Yt and Pst is a path of G= between vertex s and

t and (ii) for all cycles C in G such that the edge set of C contains exactly one
non-equation edge e′ ∈ F ′, L(C) �= 0, where L(C) Δ=

∑
e∈C L(e). For such a

good graph G, the induced system of equations and non-equations is defined as:

EG =

{
Yi ⊕ Yj = λij ∀ {Yi, Yj} ∈ F ,

Yi ⊕ Yj �= λ′
ij ∀ {Yi, Yj} ∈ F ′,

The set of components in G is denoted by comp(G) = (C1, . . . ,Ck), μi denotes
the size of (i.e. the number of vertices in) the i-th component Ci and μmax =
max{μ1, . . . , μk} is the size of the largest component of G. ρi the total number
of vertices upto the i-th component with the convention that ρ0 = 0 (Fig. 2).

Definition 1 (Injective Solution). With respect to the system of equations
and non-equations EG (as defined above), an injective function Φ : V → R,
where R ⊆ {0, 1}n, is said to be an injective solution if Φ(Yi) ⊕ Φ(Yj) = λij for
all {Yi, Yj} ∈ F and Φ(Yi) ⊕ Φ(Yj) �= λ′

ij for all {Yi, Yj} ∈ F ′.

180 A. Dutta and M. Nandi

Y2 Y4

Y1 Y3

λ1

λ2

λ3

Y5

Y6 Y7

λ4

λ5

λ6

Y1 Y3

Y2 Y4

λ1

λ3

λ2

Fig. 2. (Left): Graph is a tree of size 4; (Middle): Graph is a cycle of size 3; (Right):
Graph with equation edges and non-equation edge. Continuous red edge represents
equation edge and dashed blue edge represents non-equation edge. (Color figure online)

Theorem 1. Let U = {u1, . . . , uσ} be a non-empty finite subset of {0, 1}n, for
some σ ≥ 0. Let G = (V,F � F ′,L) be a good graph with α vertices such
that |F| = qm, |F ′| = qv. Let comp(G=) = (C1, . . . ,Ck) and |Ci| = μi, ρi =
(μ1 + · · · + μi). Then the total number of injective solutions, chosen from a set
Z = {0, 1}n \ U of size 2n − σ, for the induced system of equations and non-
equations EG is at least:

(2n − σ)α

2nqm

(
1 −

k∑
i=1

6(ρ′
i−1)

2
(
μi

2

)
22n

− 2qv

2n

)
, (5)

provided ρ′
kμmax ≤ 2n/4 where ρ′

i = ρi + σ.

Proof. We proceed the proof by counting the number of solutions in each of the
k components. Let μ̃ij denotes the number of edges from F ′ connecting vertices
between i-th and j-th component of G= and μ′

i to be the number of edges in F ′

incident on vi ∈ V \ G=(V). For the first component, the number of solutions
is at least exactly (2n − μ1σ). We fix such a solution and count the number of
solutions for the second component. which is (2n − μ1μ2 − μ̃1,2 − μ2σ). This is
because, let Yiμ1+1 be an arbitrary vertex of the second component and let yiμ1+1

be a solution of it. This solution is valid if the following conditions hold:

• yiμ1+1 /∈ U .
• yiμ1+1 does not take μ1 values (yi1 , . . . , yiμ1

) from the first component.
• It must discard μ1(μ2−1) values (yi1 ⊕L(Pj), . . . , yiμ1

⊕L(Pj)) for all possible
paths Pj from a fixed vertex to any other vertex in the second component.

• It must discard p(μ2 −1) values as (yiμ1+1 ⊕L(Pj)) /∈ Y for all possible paths
Pj from Yiμ1+1 to any other vertices in the second component.

• yiμ1+1 does not take μ̃12 values to compensate for the fact that the set of
values is no longer a group.

Summing up all the conditions, the number of solutions for the second com-
ponent is at least (2n − μ1μ2 − μ2σ − μ̃12). In general, the total number of

solutions for the i-th component is at least
k∏

i=1

(
2n − ρi−1μi − μiσ −

i−1∑
j=1

μ̃ij

)
.

BBB Secure Nonce Based MAC Using Public Permutations 181

Suppose there are k′ vertices that do not belong to the set of vertices of the
subgraph G=. Fix such a vertex Yρk+i and let us assume that μ′

ρk+i blue dashed
edges are incident on it. If yρk+i is a valid solution to the variable Yρk+i, then
we must have (a) yρk+i should be distinct from the previous ρk assigned values,
(b) yρk+i should be distinct from the (i−1) values assigned to the variables that
do not belong to the set of vertices of the subgraph G=(V), (c) yρk+i should be
distinct from the values of U , and (d) yρk+i should not take those μ′

ρk+i values.
Therefore, the total number of solutions is at least

hα ≥
k∏

i=1

(
2n − ρi−1μi − μiσ −

i−1∑
j=1

μ̃ij

)
·

∏
i∈[k′]

(2n − ρk − σ − i + 1 − μ′
ρk+i). (6)

Let χi
Δ= (μ̃i1 + . . . + μ̃i,i−1), q′′

v
Δ= (μ′

ρk+1 + . . . + μ′
ρk+k′) and ρ′

i = ρi + σ. After
a simple algebraic calculation on Eq. (6), we obtain

hα
2nqm

(2n − σ)α
≥

k∏
i=1

(2n − ρ′
i−1μi − χi)2n(μi−1)

(2n − ρ′
i−1)μi︸ ︷︷ ︸

D.1

k′∏
i=1

(2n − ρ′
k − i + 1 − μ′

ρk+i)
(2n − ρ′

k − i + 1)
︸ ︷︷ ︸

D.2

.

By expanding (2n − ρ′
i−1)μi

we have (2n − ρ′
i−1)μi

≤ 2nμi − 2n(μi−1)

(
ρ′

i−1μi +

(
μi

2

))
+ 2n(μi−2)Ai, where Ai =

((
μi

2

)
(ρ′

i−1)
2 +

(
μi

2

)
(μi − 1)ρ′

i−1 +
(
μi

2

)

(μi−2)(3μi−1)
12

)
.

Bounding D.1. With a simplification on the expression of D.1, we have

D.1 ≥
k∏

i=1

(
1 − Ai

22n − 2n(ρ′
i−1μi +

(
μi

2

)
) + Ai

− 2nχi

22n − 2n(ρ′
i−1μi +

(
μi

2

)
) + Ai

)

(4)

≥
k∏

i=1

(
1 − 2Ai

22n
− 2χi

2n

)
(5)

≥
(

1 −
k∑

i=1

6(ρ′
i−1)

2
(
μi

2

)
22n

− 2q′
v

2n

)
,

where (4) follows from the fact that 2n(ρ′
i−1μi +

(
μi

2

)
)−Ai ≤ 22n/2, which holds

true when ρ′
kμmax ≤ 2n/4, (5) holds true due to the fact that Ai ≤ 3(ρ′

i−1)
2
(
μi

2

)
and (χ1 + . . . + χk) = q′

v, the total number of blue dashed edges across the
components of G= and μ1 + . . . + μk ≤ α.

Bounding D.2. For bounding D.2, we have

D.2 ≥
k′∏

i=1

(
1 −

μ′
ρk+i

(2n − ρ′
k − i + 1)

)
(6)

≥
(

1 −
k′∑

i=1

2μ′
ρk+i

2n

)
(7)

≥
(

1 − 2q′′
v

2n

)
,

182 A. Dutta and M. Nandi

where (6) follows due to the fact that (ρ′
k + i − 1) ≤ 2n/2 and (7) follows as

we denote (μ′
ρk+1 + . . . + μ′

ρk+k′) = q′′
v , the total number of blue dashed edges

incident on the vertices outside of the set G=(V).

Combining D.1 and D.2. Finally, by combining the expression of D.1 and D.2,
we have

hα
2nqm

(2n − σ)α
≥

(
1 −

k∑
i=1

6(ρ′
i−1)

2
(
μi

2

)
22n

− 2qv

2n

)
,

where qv = q′
v + q′′

v , the total number of non-equation edges in G. ��

4 Security of nEHtM in Public Permutation Model

In this section, we first state that nEHtMp achieves 2n/3-bit security in public
permutation model in the faulty nonce model. Followed by this, we demonstrate
a matching attack in Subsect. 4.2 to show the security bound is tight.

4.1 Security of nEHtMp

We show that nEHtMp is secure against all adversaries that makes roughly 22n/3

queries in the faulty nonce model. However, similar to nEHtM, the construction
posses a birthday bound forging attack when the number of faulty nonces reaches
to an order of 2n/2 [16].

Theorem 2. Let M and Kh be two finite and non-empty sets. Let π ←$P(n) be
an n-bit public random permutation and H : Kh ×M → {0, 1}n−1 be an (n− 1)-
bit εaxu-almost xor universal and εreg-almost regular hash function. Moreover,
K ←$ {0, 1}n−1 be an n − 1 bit random key and η be a fixed parameter. Then
the forging advantage for any (η, qm, qv, 2p)-adversary against the construction
nEHtMp[π,H,K] that makes at most η faulty queries out of qm signing, qv verit-
ication and altogether 2p primitive queries, is given by

AdvMAC
nEHtMp

(η, qm, qv, 2p) ≤ 12η2

22n

(
qm + 2p

)2

+

(
p + qm

)(
192pqm

22n
+

48pq2mεaxu
22n

)

+
48q3m
22n

+
12q4mεaxu

22n
+

2qv
2n

+
p2εreg

2n

(
3qm + 2qv

)
+

qm
2n

+ εaxu

(
4q3m
2n

+ 2ηqm +
pq2m
2n

+
q2m

2n+1
+ (η + 1)qv

)

+ εreg(2ηp + p
√

3nqm) +
2p2qm
22n

+
2 + 2η

2n
+

2p
√

3nqm
2n

.

By assuming εaxu ≈ 2/2n and εreg ≈ 2/2n, the above bound is simplified to

AdvMAC
nEHtMp

(η, qm, qv, 2p) ≤ 80q3m
22n

+
4(qm + qv)

2n
+

4p
√

3nqm
2n

+
12η2

22n

(
qm + 2p

)2

+ (p + qm)

(
200pqm

22n
+

96pq2m
23n

+
4η

2n

)
+

2ηqv
2n

+
4p2qv
22n

+
2

2n
+

2η

2n
.

BBB Secure Nonce Based MAC Using Public Permutations 183

We defer the proof of this theorem in Sect. 5. The forging advantage of nEHtMp

for η ≤ 2n/3, qm ≤ 22n/3 and p ≤ 22n/3 is thus given by

AdvMAC
nEHtMp

(qm, qv, 2p) ≤
(

29qm
22n/3

+
6qv

22n/3
+

28p

22n/3

)
+

296p2qm
22n

+
296pq2m

22n
+

4p2qv
22n

+
4

22n/3
.

4.2 Matching Attack on nEHtMp

In this section we show a matching attack on nEHtMp with 22n/3 signing queries
and total 22n/3 + 2 primitive queries. For carrying out the attack, we consider
the following version of Polyhash function, a specific instantiation of an axu and
ar hash function: for a message m, if the size of m is not a multiple of n, where
n is the key size of the hash function, then we first apply an injective padding
(e.g., 10∗) on it to generate a padded message m′. Then the output of the hash
function for m′ is computed as follows:

Polykh
(m′) = kl+1

h ⊕ kl
h · m′

l ⊕ kl−1
h m′

l−1 ⊕ . . . ⊕ kh · m′
1,

where l denotes the number of message blocks of m′ and m′
i denotes the i-th

message block of m′. Now, it is easy to see that the hash function is (lmax+1)/2n-
secure axu and ar hash function, where lmax is the maximum number of message
blocks allowed. With this instance of the hash function of nEHtMp, we mount the
following attack. To begin with, we exploit bad event B.1 to mount the attack on
the construction. We construct a deterministic adversary A that forges nEHtMp

by making 22n/3 signing queries and total 22n/3 + 2 many primitive queries to π
as follows:

Attack Algorithm:

1. A first chooses a single block message m consisting of all zeroes, i.e., m = 0n.
2. Then A makes 22n/3 signing queries with (νj ,m) and obtains the tag tj for

j ∈ [22n/3], where νj = 0n/3−1‖〈j〉2n/3.
3. A makes 22n/3−1 forward primitive queries to π with x1

j and obtains the
output y1

j for j ∈ [22n/3−1], where x1
j = 0‖〈j〉2n/3−1‖0n/3.

4. A makes again 22n/3−1 forward primitive queries to π with x2
j

and obtains the output y2
j for j ∈ [22n/3−1], where x2

j =
1‖leftn/3−1(〈j〉2n/3−1)‖0n/3‖rightn/3(〈j〉2n/3−1).

5. Then, A finds a tripet (i, j, l) ∈ [22n/3] × [22n/3−1] × [22n/3−1] such that ti =
y1

j ⊕ y1
l .

6. A makes two additional forward primitive queries to π with x1
� = x1

j ⊕0‖1n−1

and x2
� = x2

k ⊕ 0‖1n−1. Let the received response be y1
� and y2

� respectively.
7. Finally, A forges with (νi ⊕ 1n−1,m, y1

� ⊕ y2
�).

Analysis of the Forging Advantage. We first note that the structure of
νj , x

1
j and x2

j are as follows:

ν =

{
0 0 . . . 0︸ ︷︷ ︸

n/3−1

‖ � � . . . �︸ ︷︷ ︸
n/3

‖ � � . . . �︸ ︷︷ ︸
n/3

}
, x1 =

{
0‖ � � . . . �︸ ︷︷ ︸

n/3−1

‖ � � . . . �︸ ︷︷ ︸
n/3

‖ 0 0 . . . 0︸ ︷︷ ︸
n/3

}
.

184 A. Dutta and M. Nandi

x2 =
{

1‖ . . . ︸ ︷︷ ︸
n/3−1

‖ 0 0 . . . 0︸ ︷︷ ︸
n/3

‖ . . . ︸ ︷︷ ︸
n/3

}
.

Note that, the number of elements (νi, x
1
j) that satisfy the relation 0‖(νi⊕k) = x1

j

is exactly 2n/3. As a result, the expected number of triplets (i, j, �) that satisfy
0‖(νi⊕k) = x1

j and 1‖(νi⊕k2
h) = x2

� is exactly 1. For this particular triplet (i, j, �)
that satifies the relation, A makes two additional forward primitive queries to
π with x1

� = x1
j ⊕ Δ and x2

� = x2
� ⊕ Δ, where Δ = 0‖1n−1. Thus, if A makes a

forging query with νi ⊕1n−1 (which is distinct from all other nonces that belong
to the signing queries) and with the same message m = 0n, then we have

π(0‖(νi ⊕ 1n−1 ⊕ k)) ⊕ π(1‖(νi ⊕ 1n−1 ⊕ k2
h))

= π((0‖(νi ⊕ k)) ⊕ Δ) ⊕ π((1‖(νi ⊕ k2
h)) ⊕ Δ) = π(x1

�) ⊕ π(x2
�) = y1

� ⊕ y2
�

which makes (νi ⊕ 1n−1,m, y1
� ⊕ y2

�) a valid and succesful forging attempt. Note
that, the number of signing queries required is 22n/3 and the total number of
primitive queries required is 22n/3 + 2. However, the time complexity of this
attack is 22n−2.

5 Proof of Theorem 2: MAC Security of nEHtMp

Due to Eq. (1), we bound the distinguishing advantage instead of bounding
the forging advantage of nEHtMp. For this, we consider any information the-
oretic deterministic distinghisher A that has access to the following oracles in
either the real world or in the ideal world: in the real world it has access to
(nEHtMp.Sigπ

(k,kh), nEHtMp.Verπ(k,kh), π, π−1); in the ideal world it has access to
(RF,Rej, π, π−1). We summarize the interactions of the distinguisher with its
oracle in a transcript τm ∪ τv, where τm

Δ= {(ν1,m1, t1), . . . , (νqm
,mqm

, tqm
)} is

the MAC transcript and τv
Δ= {(ν′

1,m
′
1, t

′
1, b

′
1), . . . , (ν

′
qv

,m′
qv

, t′qv
, b′

qv
)} is the ver-

ification transcript. Primitives queries to π are summarized in two lists in the
form of τ

(1)
p

Δ= {(x1
1, y

1
1), . . . , (x1

p, y
1
p)} and τ

(2)
p

Δ= {(x2
1, y

2
1), . . . , (x2

p, y
2
p)}, where

msb(x1
i) = 0 and msb(x2

i) = 1. We assume that none of the transcripts contain
any duplicate elements and after the interaction, we reveal the keys k, kh to the
distinguisher (before it output its decision), which happens to be the keys used
in the construction for the real world and uniformly sampled dummy keys for
the ideal world. The complete view is denoted by τ ′ = (τm, τv, τ

(1)
p , τ

(2)
p , k, kh).

5.1 Definition and Probability of Bad Transcripts

For the notational simplicity, we denote Hkh
(mi) = Hi. x̂b

i denotes chopmsb(xb
i)

for b = 1, 2. We also define three sets: (a) T Δ= {ti : (νi,mi, ti) ∈ τm}, (b)
Y1

Δ= {y1
i : (x1

i , y
1
i) ∈ τ

(1)
p } and (c) Y2

Δ= {y2
i : (x2

i , y
2
i) ∈ τ

(2)
p }. The main idea

of identifying bad events is to avoid the input collision of the permutation with
primitive queries as that will determine the corresponding tag; hence losing the

BBB Secure Nonce Based MAC Using Public Permutations 185

randomness of the tag, which in turn, will help the adversary to distinguish the
output from random.

Definition 2 (Bad Transcript for nEHtMp). Given a parameter ξ ∈ N,
where ξ ≥ η, an attainable transcript τ ′ = (τm, τv, τ

(1)
p , τ

(2)
p , k, kh) is called a

bad transcript if any one of the following holds:

– B.1 : ∃ i ∈ [qm], j, � ∈ [p] such that νi ⊕ k = x̂1
j , νi ⊕ Hi = x̂2

� .
– B.2 : ∃ i, j, � ∈ [qm], i �= j, i �= � such that νi = νj and νi ⊕ Hi = ν� ⊕ H�.
– B.3 : ∃ i �= j ∈ [qm], � ∈ [p] such that νi ⊕ k = x̂1

� and νi ⊕ Hi = νj ⊕ Hj.
– B.4 : ∃ i �= j ∈ [qm], � ∈ [p] such that νi = νj and νi ⊕ Hi = x̂2

� .
– B.5 : ∃ i �= j ∈ [qm] such that νi = νj and ti = tj.
– B.6 : ∃ i �= j ∈ [qm] such that νi ⊕ Hi = νj ⊕ Hj and ti = tj.
– B.7 : #{(ti, y1

j , y2
�) ∈ T × Y1 × Y2 : ti = y1

j ⊕ y2
� } ≥ p2qm/2n + p

√
3nqm.

– B.8 : ∃ i ∈ [qm], j, � ∈ [p] such that νi ⊕ k = x̂1
j , y

1
j ⊕ ti = y2

� .
– B.9 : ∃ i ∈ [qm], j, � ∈ [p] such that νi ⊕ Hi = x̂2

j , y
2
j ⊕ ti = y1

� .
– B.10 : {i1, . . . , iξ+1} ⊆ [qm] such that νi1⊕Hi1 = νi2⊕Hi2 = . . . = νiξ+1⊕Hiξ+1

(the optimal value of ξ shall be determined later in the proof).
– B.11 ∃ a ∈ [qv], ∃ i ∈ [qm] such that νi = ν′

a, νi ⊕ Hi = ν′
a ⊕ H′

a and ti = t′a.
– B.12 ∃ a ∈ [qv], ∃ j, � ∈ [p] such that ν′

a ⊕ k = x̂1
j , ν′

a ⊕ H′
a = x̂2

� and
t′a = y1

j ⊕ y2
� .

– B.13 ∃ i ∈ [qm] such that ti = 0n.

Lemma 2. Let Did and BadT be defined as in Sect. 2.3. Then

Pr[Did ∈ BadT] ≤ p2εreg
2n

(3qm + 2qv) + εaxu

(
q2m
2ξ

+ 2ηqm +
pq2m
2n

+
q2m

2n+1
+ (η + 1)qv

)

+ εreg(2ηp + p
√

3nqm) +
2p2qm
22n

+
2 + 2η

2n
+

2p
√

3nqm
2n

+
qm
2n

.

Proof of the lemma can be found in Sect. 6.

5.2 Analysis of Good Transcripts

For a good transcript τ ′ = (τm, τv, τ
(1)
p , τ

(2)
p , kh, k), the ideal interpolation prob-

ability is

pid(τ ′) Δ= Pr[Did = τ ′] =
1

|Kh| · 1
2n−1

· 1
2nqm

· 1
(2n)2p

. (7)

Computing Real Interpolation Probability. To compute the real inter-
polation probability, we regroup the elements of τm, τ

(1)
p and τ

(2)
p into three new

transcripts τ̂m, τ̂
(1)
p and τ̂

(2)
p in the following way: initially the new transcripts

are set to the old one. Now, for each (νi,mi, ti) ∈ τm, if (a) νi ⊕ k = x̂1
j , then

186 A. Dutta and M. Nandi

τ̂m ← τm\{(νi,mi, ti)} and τ̂
(2)
p ← τ̂

(2)
p ∪{1‖(νi⊕Hi), ti⊕y1

j); if (b) νi⊕Hi = x̂2
j ,

then τ̂m ← τm \ {(νi,mi, ti)} and τ̂
(1)
p ← τ̂

(1)
p ∪ {0‖(νi ⊕ k), ti ⊕ y2

j). Since τ ′ is a
good transcript, it does not meet any of the bad conditions listed in Definition 2.
We know that if νi ⊕ k = x̂1

j , then νi ⊕ Hi cannot collide with x̂2
� (due to ¬B.1)

and y1
j ⊕ ti cannot collide with y2

� (due to ¬B.8). Similarly for τ̂
(2)
p . This way, we

will end up with soundly defined τ̂
(1)
p and τ̂

(2)
p and a set of signing queries τ̂m

that does not collide with any tuple in τ̂
(1)
p or τ̂

(2)
p .

Let s1, s2 ≤ p be the number of signing queries that collides with any element
of τ

(1)
p and τ

(2)
p respectively. Therefore, p1

Δ= |τ̂ (1)
p | = p + s2, p2

Δ= |τ̂ (2)
p | = p + s1

and q′
m

Δ= |τ̂m| = qm − s1 − s2. We denote q′
p = p1 + p2 = 2p + s1 + s2. We say

that a permutation π is compatible with τ̂
Δ= τ̂m ∪ τv ∪ τ̂

(1)
p ∪ τ̂

(2)
p if the following

holds:

• for all (νi,mi, ti) ∈ τ̂m, π(0‖(νi ⊕ k)) ⊕ π(1‖(νi ⊕ Hi)) = ti
• forall a ∈ [qv], π(0‖(ν′

a ⊕ k)) ⊕ π(1‖(ν′
a ⊕ H′

a)) �= t′a
• for all (x1

i , y
1
i) ∈ τ̂

(1)
p , π(x1

i) = y1
i

• for all (x2
i , y

2
i) ∈ τ̂

(2)
p , π(x2

i) = y2
i .

Therefore, the remaining part is to count the number of compatible permu-
tations π. As a result, we have

pre(τ ′) Δ= Pr[Dre = τ̂] =
1

|Kh| · 1
2n−1

· hα

(2n)p1+p2+α
, (8)

where hα denotes the number of injective solutions to the following system of
equations and non-equations (E= ∪ E �=), with α many distinct variables. For
notational simplicity, we denote π(0‖νi ⊕ k) as Ui and π(1‖νi ⊕ Hi) as Vi.

E= =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1 ⊕ V1 = t1

U2 ⊕ V2 = t2
...

Uq′
m

⊕ Vq′
m

= tq′
m

E �= =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U ′
1 ⊕ V ′

1 �= t′1
U ′

2 ⊕ V ′
2 �= t′2
...

U ′
qv

⊕ V ′
qv

�= t′qv

where q′
m = qm − s1 − s2. It is to be noted here that E= ∪ E �= is defined over

α many distinct variables. Therefore, some variables in E= ∪ E �= may collide to
each other. Thus, from Eq. (7) and Eq. (8), we have,

pre(τ ′)
pid(τ ′)

=
2ns1

(2n − 2p)s1︸ ︷︷ ︸
A.1

· 2ns2

(2n − 2p − s1)s2︸ ︷︷ ︸
A.2

· hα · 2nq′
m

(2n − 2p − s1 − s2)α︸ ︷︷ ︸
A.3

. (9)

Note that, A.1 ≥ 1 and A.2 ≥ 1. Therefore, we are left to bound A.3. Note that,
the induced graph G of E= ∪ E �= has α many vertices. Moreover, |F| = qm and
|F ′| = qv. It is easy to verify that as τ ′ is a good transcript, G is a good graph.

BBB Secure Nonce Based MAC Using Public Permutations 187

Therefore, by putting σ = q′
p in Theorem 1, we have

hα ≥ (2n − 2p − s1 − s2)α

2nq′
m

·
(

1 −
k∑

i=1

6(ρ′
i−1)

2
(
μi

2

)
22n

− 2qv

2n

)
. (10)

From Eq. (8) and Eq. (10), we have

pre(τ ′)
pid(τ ′)

≥
(

1−
k∑

i=1

6(ρ′
i−1)

2
(
μi

2

)
22n

−2qv

2n

)
(1)

≥ 1−
(k∑

i=1

24(q′
m + q′

p)
2
(
μi

2

)

22n
+

2qv

2n

︸ ︷︷ ︸
Φ(τ ′)

)
,

where the simplification for (1) follows from the fact ρ′
i−1 = α+q′

p ≤ 2(q′
m +q′

p).
Now, from Sect. 6.2 of [16] we have

E

⎡
⎢⎣

k∑
i=1

(
μi

2

)
⎤
⎥⎦ ≤ (q′

m)2εaxu/2 + η2/2 + 2q′
m. (11)

By applying the expectation method of Sect. 2.3 on Eq. (11), we have

E[Φ(Did)] ≤
12(q′

m + q′
p)

2

22n

(
(q′

m)2εaxu + η2 + 4q′
m

)
+

2qv

2n
. (12)

By doing a simple algebra on Eq. (12) and by assuming q′
m ≤ qm, q′

p ≤ 4p, we
have

E[Φ(Did)] ≤
(

12q4
mεaxu

22n
+

12η2q2
m

22n
+

48q3
m

22n
+

48pq3
mεaxu

22n
+

48η2pqm

22n
+

192pq2
m

22n

+
48p2q2

mεaxu

22n
+

48η2p2

22n
+

192p2qm

22n
+

2qv

2n

)
. (13)

Finalizing the proof. We have assumed that ξ ≥ η and from the condition
of Theorem 1, we have ξ ≤ 2n/(8q′

m + 2q′
p) ≤ 2n/8q′

m. By assuming η ≤ 2n/8q′
m

(otherwise the bound becomes vacuously true) we choose ξ = 2n/8q′
m. Hence,

the result follows by applying Eq. (3), Lemma 2, Eq. (13) and ξ = 2n/8q′
m.

6 Proof of Lemma 2

By the union bound,

Pr[Did ∈ BadT] ≤
7∑

i=1

Pr[B.i] + Pr[B.8 | B.7] + Pr[B.9 | B.7] +
13∑

i=10

Pr[B.i]. (14)

188 A. Dutta and M. Nandi

In the following, we bound the probabilities of all the bad events individually.
The lemma will follow by adding the individual bounds.

Bounding B.1. For any possible signing query (νi,mi, ti) ∈ τm and a pair
of any possible primitive queries (x1

j , y
1
j) ∈ τ

(1)
p and (x2

� , y
2
�) ∈ τ

(2)
p , the only

randomness in the equation νi ⊕k = x̂1
j is k and the randomness in the equation

νi ⊕ Hi = x̂2
� is kh, the hash key. In the ideal world, k and kh are dummy keys,

sampled uniformly and independently from their respective space. Therefore,
for a fixed choice of i, j and �, the probability of the event is εreg/2n−1, where
εreg is the regular advantage of the underlying hash function. Summing over all
possible choices of i, j and � we have

Pr[B.1] ≤ 2p2qmεreg
2n

. (15)

Bounding B.2. Let N be the set of all query indices i for which there is a j �= i
such that νi = νj . It is easy to see that |N | ≤ 2η. Event B.2 occurs if for some
j ∈ N , νj ⊕Hj = ν� ⊕H� for some � �= j. For any such fixed i, j, �, the probability
of the event is at most εaxu, where εaxu is the almost xor universal advantage of
the underlying hash function. The number of such choices of (i, j, �) is at most
2ηqm. Hence,

Pr[B.2] ≤ 2ηqmεaxu. (16)

Bounding B.3. For any two signing queries (νi,mi, ti), (νj ,mj , tj) ∈ τm and a
primitive query (x1

� , y
1
�) ∈ τ

(1)
p , the only randomness in the equation νi ⊕ k = x̂1

�

is k and the randomness in the equation Hi ⊕ Hj = νi ⊕ νj is kh. In the ideal
world, k and kh are dummy keys, sampled uniformly and independently from
their respective space. Therefore, for a fixed choice of i, j and �, the probability
of the event is εaxu/2n−1, where εaxu is the almost xor universal advantage of
the underlying hash function. Summing over all possible choices of i, j and � we
have

Pr[B.3] ≤ pq2
mεaxu

2n
. (17)

Bounding B.4. For any two signing queries (νi,mi, ti), (νj ,mj , tj) ∈ τm and a
primitive query (x2

� , y
2
�) ∈ τ

(2)
p , the only randomness in the equation νi ⊕Hi = x̂2

�

is kh. In the ideal world, kh is sampled uniformly from Kh. Therefore, for a fixed
choice of i, j and �, the probability of the event is εreg. The number of choices of
i �= j ∈ [qm] such that νi = νj is at most 2η and the number of choices of � is at
most p. Summing over all possible choices of i, j and � we have

Pr[B.4] ≤ 2ηpεreg. (18)

Bounding B.5. For a fixed choice of indices i and j, the probability of the event
is at most 1/2n. Number of choices of i and j such that νi = νj is at most 2η.
Summing over all possible choices of i and j we have

Pr[B.5] ≤ 2η

2n
. (19)

BBB Secure Nonce Based MAC Using Public Permutations 189

Bounding B.6. Similar to B.5, for a fixed choice of indices i and j, the probabil-
ity of the event is at most εaxu/2n, as the event νi ⊕Hi = νj ⊕Hj is independent
over ti = tj . Summing over all possible choices of i and j we have

Pr[B.6] ≤ q2
mεaxu

2n+1
. (20)

Bounding B.7. Event B.7 is bounded by Lemma 1, where we take A = Y1 and
B = Y2.

Pr[B.7] ≤ 2
2n

. (21)

Bounding B.8 | B.7. Let C
Δ= p2qm/2n + p

√
3nqm. As we are bounding the

event B.8 | B.7, number of i, j and � that satifies ti = y1
j ⊕ y2

� is at most C. For a
fixed choice of indices i, j and �, the probability of the event is at most 1/2n−1.
Hence, by summing over all possible choices of i, j and �, we have

Pr[B.8 | B.7] ≤ 2p2qm

22n
+

2p
√

3nqm

2n
. (22)

Bounding B.9 | B.7. Bounding B.9 | B.7 is identical to that of B.8 | B.7. For
a fixed choice of indices i, j and �, the probability of the event is at most εreg.
Summing over all possible choices of i, j and � we have

Pr[B.9 | B.7] ≤ p2qmεreg
2n

+ p
√

3nqmεreg. (23)

Bounding B.10. Event B.10 occurs if there exist ξ + 1 distinct signing query
indices {i1, . . . , iξ+1} ⊆ [qm] such that νi1 ⊕ Hi1 = . . . = νiξ+1 ⊕ Hiξ+1 . This
event is thus a (ξ + 1)-multicollision on the εuniv-universal hash function4 map-
ping (ν,m) to ν ⊕ Hkh

(m) (as Hkh
is an εaxu-almost-xor universal). Therefore,

by applying the multicollision theorem of universal hash function (Theorem 1)
of [16], we have

Pr[B.10] ≤ q2
mεaxu/2ξ. (24)

Bounding B.11. For some a ∈ [qv] and i ∈ [qm], if νi = ν′
a, νi⊕Hi = ν′

a⊕H′
a and

ti = t′a, then mi �= m′
a (as the distinguisher is non-trivial). Hence the probability

that νi ⊕ Hi = ν′
a ⊕ H′

a holds is at most εaxu, due to the axu probability of the
hash function. Now, for any choice of a ∈ [qv], there can be at most (η + 1)
indices i such that νi = ν′

a. Hence, the required probability is bounded as

Pr[B.11] ≤ (η + 1)qvεaxu. (25)

Bounding B.12. For any possible verification query (ν′
a,m′

a, t′a) ∈ τv and a pair
of any possible primitive queries (x1

j , y
1
j) ∈ τ

(1)
p and (x2

� , y
2
�) ∈ τ

(2)
p , the only

4 A hash function Hkh is said to be an εuniv-universal hash function if for all x �= x′,
Pr[Hkh(x) = Hkh(x′)] ≤ εuniv.

190 A. Dutta and M. Nandi

randomness in the equation ν′
a ⊕k = x1

j is k and the randomness in the equation
ν′

a ⊕ H′
a = x2

� is kh. In the ideal world, k and kh are dummy keys, sampled
uniformly and independently from their respective spaces. Therefore, for a fixed
choice of a, j and �, the probability of the event is εreg/2n−1. Summing over all
possible choices of a, j and � we have

Pr[B.12] ≤ 2qvp2εreg
2n

. (26)

Bounding B.13. For a fixed choice of i, the probability that ti = 0n is exactly
2−n. Summing over all possible choices of i we have

Pr[B.13] ≤ qm

2n
. (27)

The proof follows from Eq. (14)–Eq. (27). ��

Acknowledgement. We would like to thank all the anonymous reviewers of
Africacrypt 2020. Mridul Nandi is supported by NTRO Project.

References

1. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

3. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Elephant. NIST LWC (2019)
4. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting

adversaries: practical forgery attacks on GCM in TLS. In: 10th USENIX Workshop
on Offensive Technologies, WOOT 2016, Austin, TX, USA, 8–9 August 2016 (2016)

5. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Comput. 62(10), 2041–2053 (2013)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small
number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 5

7. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

8. Chakraborty, B., Nandi, M.: Orange. NIST LWC (2019)
9. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the two-

round even-mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 3

https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-662-44371-2_3
https://doi.org/10.1007/978-3-662-44371-2_3

BBB Secure Nonce Based MAC Using Public Permutations 191

10. Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from
public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part I. LNCS, vol. 11692, pp. 266–293. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 10

11. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I.
LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 5

12. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. NIST LWC (2019)

13. Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? To make a
single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 631–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 21

14. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. NIST LWC
(2019)

15. Dutta, A., Jha, A., Nandi, M.: Tight security analysis of ehtm MAC. IACR Trans.
Symmetric Cryptol. 2017(3), 130–150 (2017)

16. Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty
nonce model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS,
vol. 11476, pp. 437–466. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17653-2 15

17. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–161 (1997). https://doi.org/10.1007/
s001459900025

18. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

19. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53018-4 1

20. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 381–
411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 13

21. Minematsu, K.: How to thwart birthday attacks against MACs via small ran-
domness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 13

22. Moch, A., List, E.: Parallelizable MACs based on the sum of PRPs with security
beyond the birthday bound. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M.,
Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 131–151. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21568-2 7

23. NIST. Lightweight cryptography (2018). https://csrc.nist.gov/Projects/
Lightweight-Cryptography. Accessed 01 Aug 2019

24. Rogaway, P., Bellare, M., Black, J.: SHA-3 standard. ACM Trans. Inf. Syst. Secur.
(TISSEC) 6(3), 365–403 (2003)

25. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-319-96884-1_21
https://doi.org/10.1007/978-3-030-17653-2_15
https://doi.org/10.1007/978-3-030-17653-2_15
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1007/978-3-642-13858-4_13
https://doi.org/10.1007/978-3-030-21568-2_7
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

Elliptic Curves

On Adaptive Attacks Against
Jao-Urbanik’s Isogeny-Based Protocol

Andrea Basso1, Péter Kutas1, Simon-Philipp Merz2, Christophe Petit1,
and Charlotte Weitkämper1(B)

1 University of Birmingham, Birmingham, UK
a.basso@cs.bham.ac.uk, p.kutas@bham.ac.uk, christophe.f.petit@gmail.com,

c.weitkaemper@pgr.bham.ac.uk
2 Royal Holloway, University of London, Egham, UK

simon-philipp.merz.2018@rhul.ac.uk

Abstract. The k-SIDH protocol is a static-static isogeny-based key
agreement protocol. At Mathcrypt 2018, Jao and Urbanik introduced
a variant of this protocol which uses non-scalar automorphisms of spe-
cial elliptic curves to improve its efficiency.

In this paper, we provide a new adaptive attack on Jao-Urbanik’s
protocol. The attack is a non-trivial adaptation of Galbraith-Petit-Shani-
Ti’s attack on SIDH (Asiacrypt 2016) and its extension to k-SIDH by
Dobson-Galbraith-LeGrow-Ti-Zobernig (IACR eprint 2019).

Our attack provides a speedup compared to a näıve application of
Dobson et al.’s attack to Jao-Urbanik’s scheme, exploiting its inherent
structure. Estimating the security of k-SIDH and Jao-Urbanik’s variant
with respect to these attacks, k-SIDH provides better efficiency.

Keywords: Elliptic curves · Isogenies · k-SIDH · Adaptive attack

1 Introduction

With the expected advent of quantum computers, current public key cryptogra-
phy algorithms based on discrete logarithm and factorization problems will have
to be replaced by stronger, so-called post-quantum cryptography algorithms.
Isogeny-based cryptography is among the leading approaches currently consid-
ered for post-quantum cryptography. A major protocol in isogeny-based cryp-
tography is the SIDH key exchange protocol [7], whose principles underlie the
SIKE algorithm recently submitted to the NIST post-quantum standardization
process [6,8].

In internet communication contexts, key exchange protocols are often used in
a semi-static mode, where the server uses the same static secret key to establish
any new session key with a client. Galbraith et al. have shown that the basic
SIDH protocol is vulnerable to adaptive attacks in these contexts [4]. In SIKE
the attacks are defeated by using a variant of the Fujisaki-Okamoto transform.

The k-SIDH protocol is an alternative countermeasure to Galbraith et al.’s
attack suggested by Azarderakhsh et al. [2]. The protocol has the additional
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 195–213, 2020.
https://doi.org/10.1007/978-3-030-51938-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_10

196 A. Basso et al.

advantage to allow for static-static key exchange (where both parties use static
keys), but it comes at the cost of a significant efficiency loss as it essentially
involves running k2 instances of the SIDH protocol in parallel for an integer
k > 1, with k = 92 suggested by the authors. Very recently, Dobson et al.
described an adaptive attack against the 2-SIDH protocol [3]. Their attack also
generalizes to the k-SIDH protocol with k > 2, though the required number of
instances of the protocol with the server is exponential in k.

Our Contributions. In this paper, we provide a new adaptive attack on a variant
of the k-SIDH protocol suggested by Jao and Urbanik [10]. The Jao-Urbanik
protocol introduces some redundancy in k-SIDH’s secret keys using the non-
trivial automorphisms of curves with j-invariants 0 or 1728 to increase efficiency.
While the authors of the protocol conjectured that the inherent structure could
be exploited in attacks and chose larger security parameters to account for this,
we provide a concrete attack.

Our attack borrows from Galbraith et al. and Dobson et al.’s attacks, but it
crucially differs from them in the following ways:

– We use the underlying relationship between the kernel generators of corre-
sponding curves to match up triples of candidate curves instead of exhaus-
tively searching over all possibilities when querying for the first key bits.

– Instead of separately computing the key bits and pullbacks at any step of
the attack, we combine these stages by guessing the key bits and computing
candidate pullbacks first to then validate any possible combination using the
oracle.

– Contrasting to the attack in [3], we manage to compute precise pullbacks at
each step instead of having to keep track of multiple candidates which are
indistinguishable to the attacker.

– Overall, we significantly reduce the number of oracle queries by exploiting
the structure underlying the Jao-Urbanik protocol.

We show that our attack requires to run O(32k/3) instances of the protocol with
the server, if the Jao-Urbanik protocol is instantiated with secret isogenies of
degree a power of two. This is almost a cube root speedup compared to Dobson
et al.’s attack on the same instantiation.

While our attack does not break the security level for the parameter sets
recommended by Jao and Urbanik, we give estimated attack costs for their
parameters. Under consideration of currently known attacks against k-SIDH and
Jao-Urbanik’s protocol, we conclude that the former provides a better efficiency-
security trade-off.

Outline. The remaining of this paper is organized as follows. To begin with,
we give some background on isogenies and supersingular isogeny protocols in
Sect. 2. We then recall the Dobson et al. attack on k-SIDH in Sect. 3 and the
Jao-Urbanik protocol in Sect. 4. We continue by describing our attack on Jao-
Urbanik’s scheme in Sect. 5, and conclude the paper in Sect. 6. The Appendix
includes an extension of our attack.

On Adaptive Attacks Against Jao-Urbanik’s Protocol 197

2 Preliminaries

For a full treatment of background information on elliptic curves we refer to
Silverman [9].

2.1 Isogenies

Let Fq be a finite field of characteristic p. In the following we assume p > 3 and
therefore an elliptic curve E over Fq can be defined by its short Weierstrass form

E(Fq) = {(x, y) ∈ F
2
q | y2 = x3 + Ax + B} ∪ {OE},

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the projective
curve Y 2Z = X3 +AXZ2 +BZ3. The set of points on an elliptic curve forms an
abelian group with OE being the identity element. The j-invariant of an elliptic
curve is

j(E) = 1728
4A3

4A3 + 27B2
,

and there is an isomorphism f : E → E′ between the curves E and E′ if and
only if j(E) = j(E′).

Given two elliptic curves E1 and E2 over a finite field Fq, an isogeny is a
morphism φ : E1 → E2 such that φ(OE1) = OE2 . The condition implies that
isogenies are also group homomorphisms. If there exists an isogeny φ : E1 → E2,
then there exists a unique isogeny φ̂ : E2 → E1, called the dual isogeny, such
that φ ◦ φ̂ = [n] (where [n] denotes the multiplication-by-n map on E2). If there
exists a non-constant isogeny between two curves, then they are called isogenous.
The degree of an isogeny φ is its degree when treated as an algebraic map. If
the isogeny is separable (which is always the case in this work), the degree is
equal to the size of the kernel of φ. An isogeny from E to itself is called an
endomorphism. Endomorphisms of an elliptic curve form a ring under addition
and composition. If E is defined over a finite field then the endomorphism ring
is either an order in an imaginary quadratic number field (such curves are called
ordinary) or an order in the quaternion algebra ramified at p (the characteristic
of the finite field) and at infinity. The latter curves are called supersingular. In
this paper we will only consider supersingular elliptic curves.

Since an isogeny defines a group homomorphism E1 → E2, its kernel is a
subgroup of E1. Conversely, any subgroup S ⊂ E1 determines a (separable)
isogeny φ : E1 → E2 with ker(φ) = S and E2 = E1/S. Furthermore, if the
degree of the isogeny is smooth, Vélu’s formulae [11] provide a polynomial time
algorithm for computing the isogeny (as a rational map) from its kernel.

The following lemma [9, Chapter III, Corollary 4.11] describes how the iso-
genies corresponding to two subgroups can be related if one subgroup contains
the other:

Lemma 1. Let Ei, i = 1, 2, 3 be elliptic curves and let φ : E1 → E2 and ψ :
E1 → E3 be two isogenies such that ker(φ) ⊆ ker(ψ). Then there exists an
isogeny λ : E2 → E3 such that ψ = λ ◦ φ which is unique up to isomorphism.

198 A. Basso et al.

2.2 SIDH

In this subsection, we recall Jao and De Feo’s original scheme [7].
Let E be a supersingular elliptic curve. In the setup, one chooses two small

primes �A and �B and a prime p which is of the form p = �eA

A �eB

B f − 1, where f
is a small cofactor and eA and eB are large integers. Let PA, QA be generators
of the �eA

A -torsion and let PB , QB be generators of the �eB

B -torsion of E. Then
the protocol is as follows:

1. Alice chooses a random cyclic subgroup of E[�eA

A] of order �eA

A . As PA, QA

form a basis of the �eA

A -torsion, there exist integers xA, yA such that A =
[xA]PA + [yA]QA generates this subgroup. Similarly, Bob chooses a random
cyclic subgroup of E[�eB

B] of order �eB

B generated by B = [xB]PB + [yB]QB

for some xB, yB .
2. Alice computes the isogeny φA : E → E/〈A〉 and Bob computes the isogeny

φB : E → E/〈B〉.
3. Alice sends the curve E/〈A〉 and the points φA(PB) and φA(QB) to Bob and

Bob similarly sends (E/〈B〉, φB(PA), φB(QA)) to Alice.
4. Alice and Bob both use the images of the torsion points to compute the

shared secret which is the curve E/〈A,B〉 (e.g. Alice can compute φB(A) =
[xA]φB(PA) + [yA]φB(QA) and E/〈A,B〉 = EB/〈φB(A)〉).

Due to efficiency reasons in [7], the authors suggested the use of �A = 2 and
�B = 3. They also suggested to use the starting curve E with j-invariant 1728.
In [1], the authors use a variant of the Fujisaki-Okamoto transform [5] to obtain
an IND-CCA secure key encapsulation mechanism. For concrete parameters of
the scheme the reader is referred to [1].

Note that by [4, Lemma 2.1], it is possible for Alice (and analogously for
Bob) to always choose the secret integers xA, yA such that one of them equals
1 given that the generators PA, QA of the 2eA -torsion are independent. Hence
it suffices to choose a single secret instead of two integers. In practice, this is
usually done for efficiency reasons, and we will also use the convention in the
following.

In [4] Galbraith et al. propose an adaptive attack against SIDH, showing that
SIDH is not suitable for static-static key exchange; see Sect. 2.4 for a description
of the GPST attack.

2.3 k-SIDH

Now we recall the k-SIDH scheme of Azarderakhsh et al. [2]. This protocol is
a modification of the original SIDH which is potentially secure against active
attacks. The protocol is as follows. Both parties agree on a curve E as well
as a basis of the 2eA -torsion and a basis of the 3eB -torsion. Alice chooses k
different secret integers α(1), . . . , α(k) modulo 2eA and Bob chooses k different
secret integers β(1), . . . , β(k) modulo 3eB . Let h be a preimage resistant hash
function. The steps of the protocol are the following:

On Adaptive Attacks Against Jao-Urbanik’s Protocol 199

1. Alice computes the curves E
(r)
A = E/〈PA + [α(r)]QA〉 and the corresponding

isogenies φA,r.
2. Bob computes the curves E

(r)
B = E/〈PB + [β(r)]QB〉 and the corresponding

isogenies φB,r.
3. Alice sends E

(r)
A , φA,r(PB), φA,r(QB) to Bob and Bob sends E

(r)
B , φB,r(PA),

φB,r(QA) to Alice.
4. Alice and Bob perform the SIDH key exchange for every pair E

(r)
A , E

(s)
B and

compute the corresponding j-invariant jr,s.
5. The shared secret is the hash h(j1,1||j1,2|| . . . ||jk,k) of all the j-invariants.

2.4 The GPST Attack on Static SIDH

The adaptive GPST attack actively recovers the static SIDH key α of a party, say
Alice, where 〈PA + [α]QA〉 is the subgroup corresponding to her secret isogeny.
An attacker uses the key exchange protocol as an oracle to recover Alice’s static
key bit-wise. For simplicity, we set n := eA in the following.
Definition 1 (Oracle in static SIDH). Upon receipt of an elliptic curve E,
two linearly independent points R,S ∈ E[2n] of order 2n and another elliptic
curve E′, the oracle responds 1 if j(E/〈R + [α]S〉) = j(E′) and 0 otherwise.

To recover Alice’s secret key, an attacker first generates the ephemeral key
(EB , R := φB(PA), S := φB(QA)) honestly as specified by the SIDH key
exchange. Then, they query the oracle on (EB , R, S + [2n−1]R,EAB), which
reveals whether EB/〈R + [α](S + [2n−1]R)〉 is isomorphic to EB/〈R + [α]S〉. By
the following lemma, this reveals the least significant bit of the static secret α.

Lemma 2 [4, Lemma 2]. For linearly independent R,S ∈ E[2n] of order 2n, α
is even if and only if 〈R + [α](S + [2n−1]R)〉 = 〈R + [α]S〉.

Afterwards, the attacker can proceed iteratively for all but the last two bits.
Assume the attacker has recovered the i least significant bits of α, i.e. the partial
key Ki :=

∑i−1
k=0 αk2k such that α = Ki + αi2i + α′2i+1. To learn the next bit

αi ∈ {0, 1}, the attacker queries the oracle on
(
EB , [θ](R − [2n−i−1][Ki]S), [θ]([1 + 2n−i−1]S), EAB

)
. (1)

Here, θ is a suitable scaling parameter to avoid detection of the attack by
Weil pairing validation. We omit further details as this has no relevance to the
methods presented in this paper, and we refer to the original paper [4] for the
computational details. In this exposition we omit such factors for simplicity.

The bit αi is deduced from the oracle’s answer using the following lemma.
Lemma 3 ([4]). The oracle call (1) returns 1 if and only if αi = 0.

Proof. The curve computed by Alice is EB/G′ where G′ = 〈R′ + [α]S′〉 = 〈(R −
[2n−i−1][Ki]S) + [α]([1 + 2n−i−1]S)〉 = 〈R + [α]S + [α − Ki][2n−i−1]S)〉. This is
equal to G if and only if αi = 0.
�

The last two bits αn−2, αn−1 should be brute-forced, as there is no suitable
scaling parameter θ to avoid detection by Weil pairing validation. Note that this
does not require any oracle query.

200 A. Basso et al.

3 The DGLTZ Attack

The DGLTZ attack [3] follows roughly the same methodology as the GPST one.
In this section, let α(r) denote Alice’s k secret keys associated to the kernel

generators A(r) = R+[α(r)]S for some points R,S spanning E[2n]. For simplicity
we will largely only use two secret keys α, β with corresponding kernel generators
A,B. Then we denote by αi the i-th bit of α = K

(a)
i +αi2i +α′2i+1, where K

(a)
i

is the i-th partial key, and analogously for β. Dobson et al. first justify the
existence of the following oracle.

Definition 2 (Oracle in k-SIDH). Let H be some public hash function. Upon
receipt of an elliptic curve E, two points R,S spanning E[2n] and a hash value
h, the oracle reveals whether h = H

(
j(E/〈R+[α(1)]S〉), . . . , j(E/〈R+[α(k)]S〉)).

Note that this oracle provides information related to the k-tuple of static
secret keys (α(1), . . . , α(k)), but it does not immediately reveal information on
each individual secret key separately.

To compensate for this limited information, multiple oracle queries will be
made using the same malicious points but different hash values. After obtaining
the curves EA(i) := E/〈A(i)〉 from Alice’s public keys, the attacker successively
recovers the next bit of all the different secrets simultaneously. This is done
by using malicious points in oracle queries as in the GPST attack, guessing all
the j-invariants computed by Alice as a result of these malicious points, and
verifying each guess with an oracle query.

The attacker recovers the first bit of all secrets with queries of the form(
E,R, [1+2n−1]S,H(j1|| . . . ||jk)

)
, where the ji are guesses on the k shared secret

curves computed by Alice. Candidate tuples for the guess can be restricted by
the following lemma.

Lemma 4. Let α be any of Alice’s secret keys. Consider the isogeny path from
E to EA, and replace the last step in this path by the only other possible step
that leaves the path non-backtracking. Let E′

A be the final curve of this path. Let
s ∈ {0, 1}. Let R′ := R − [s][2n−1]S and S′ := [1 + 2n−1]S. Then the SIDH key
computed by Alice is either EA or E′

A. Moreover, it is EA if and only if α0 = s.

The number of candidate tuples is 7k as for each secret there are 7 possible
curves they have to query (the respective EA(i) and six curves which are 4-
isogenous to it). In the iterative step the attacker uses queries of the form (E,R−
[K(a)

i][2n−i−1]S, [1+2n−i−1]S,H(j1|| . . . ||jk)), which correspond to the following
elliptic curves: E/〈A+[αi][2n−1]S〉, E/〈B+[K(b)

i −K
(a)
i][2n−i−1]S+[βi][2n−1]S〉.

If to recover the next bits one wanted to perform a similar exhaustive search as
for the first bit computation, then one would need an exponential amount of
queries even for k = 2 as the distance (in the isogeny graph) from the second
curves to EA increases as i grows. To remedy this, the authors observe that
E/〈B + [K(b)

i − K
(a)
i][2n−i−1]S + [βi][2n−1]S〉 is 2-isogenous to Ei/〈ψB,i(B +

[K(b)
i − K

(a)
i][2n−i−1]S + [βi][2n−1]S)〉 where Ei is the (n − i)-th curve in the

On Adaptive Attacks Against Jao-Urbanik’s Protocol 201

isogeny path from E to EB and ψB,i is the corresponding partial isogeny. In order
to be able to compute these curves, one has to compute certain intermediate
points on Ei (which the authors refer to as “pullbacks”), namely ψi(B) and
[2n−i]ψi(S). This pullback-computation is required after each key bit has been
recovered, and at the i-th step makes use of the known partial keys with the
following query:

(
E,R − [K(a)

i+1][2
n−i−1]S, [1 + 2n−i−1]S,H(j1, . . . , jk)

)
.

It can be computed that the corresponding curve is Ei+1/〈ψB,i+1(B + [K(b)
i+1 −

K
(a)
i+1][2

n−i−1]S)〉 (and not 2-isogenous to it as in the previous stage). Näıvely,
the attacker would query the oracle with all the possibilities for ψB,i+1(B) and
[2n−i−1]ψB,i+1(S). Note however that when the oracle returns 1, there will be
two possibilities for the correct pullbacks which, due to the oracle model, cannot
be distinguished. One could either have found ψB,i+1(B) and [2n−i−1]ψB,i+1(S)
or ψB,i+1(B)+C and [2n−i−1]ψB,i+1(S)+C, where C generates the kernel of the
isogeny from Ei+1 to Ei. Thus the authors choose one pullback ψB,i(B) for B
and then have to keep a 2-element set of candidates for [2n−i−1]ψB,i+1(S). The
computation of bits uses 24k queries1 and the pullback computation uses 16k

queries under certain technical conditions which are addressed in the appendix
of [3]. At each step, the intermediate isogenies are computed using the following
lemma:

Lemma 5. Let A(i) = P +[α(i)]Q be the generator of the subgroup corresponding
to the i-th secret isogeny and let ψ

(i)
j := φ

(i)
n ◦ φ

(i)
n−1 ◦ · · · ◦ φ

(i)
j+1. Then, we have

ker φ
(i)
j = 〈[2j−1]ψ(i)

j (A(i))〉, ker φ̂
(i)
j = 〈[2n−1]ψ(i)

j−1(Q)〉.

4 The Jao-Urbanik Protocol

In this section, we present the Jao-Urbanik protocol [10], the main target of our
attack.

To reduce the cost associated to k-SIDH [2], Jao and Urbanik propose to
exploit the existence of non-trivial automorphisms on certain elliptic curves for
a non-interactive key exchange by using distinct isogenies between isomorphic
curves. As in the original SIDH proposal [7], the authors suggest choosing param-
eters as follows: Let �A and �B be two small primes, eA and eB integers such that
�eA

A ≈ �eB

B ; then choose a small cofactor f such that p = �eA

A �eB

B f ± 1 is prime.
To simplify our description, we will again set �A = 2 and �B = 3 (as widely used
in discussions of SIDH) when describing the protocol here.

The only elliptic curves with non-trivial automorphisms are curves with
j-invariants j ∈ {0, 1728}; note these are all supersingular over Fp for p =
2eA3eBf − 1 since p ≡ 2 (mod 3) and p ≡ 3 (mod 4). As Jao and Urbanik

1 Note that this estimation is not given in [3].

202 A. Basso et al.

primarily suggest to use the former, we focus on curves with j(E) = 0 in this
exposition. For such curves, there exists an automorphism η6 of order six defined
by η6(x, y) = (ζ3x,−y) for ζ3 a primitive third root of unity. Thus, η6 further
satisfies η2

6 = η6 − 1.
The existence of these automorphisms can be exploited in the following way.

If G ⊆ E is a subgroup, η6(G) and η2
6(G) are also subgroups of E and we may

assume that all three are distinct2. Hence, the isogenies from E associated to the
kernels G, η6(G) and η2

6(G), respectively, are all distinct while the corresponding
quotients are isomorphic. For example, consider φ : E → E/G; the map φ ◦
η−1
6 : E → E/G has kernel η6(G) and hence we have E/G ∼= E/η6(G). In an

SIDH-setting when Alice sends a public key (EA, φA(PB), φA(QB)), we can thus
view this as Alice actually having sent three distinct but related public keys.
These keys all have isomorphic target curves E/〈A〉 ∼= E/〈η6(A)〉 ∼= E/〈η2

6(A)〉,
and hence share the same j-invariant, but the corresponding isogenies are not
isomorphic. The same applies to any of Bob’s public keys.

Lemma 6. Suppose a base curve E with j(E) = 0 together with the parameters
as suggested by Jao and Urbanik [10] is used for SIDH. Then a single exchange
of Alice’s and Bob’s SIDH public keys pkA = (EA, φA(PB), φA(QB)) and pkB =
(EB , φB(PA), φB(QA)), where {PA, QA = η6(PA)} and {PB , QB = η6(PB)} are
bases of E[2eA] and E[3eB] respectively, yields three shared secret (isomorphism
classes of) curves.

It follows that per public key pair, Alice and Bob obtain three shared secret
curves, each identified by its j-invariant, as a secret in the Jao-Urbanik version
of SIDH; see Fig. 1. Hence, in the k′-SIDH setting where each party sends k′

public keys, using the Jao-Urbanik technique results in a shared secret

h = Hash(j1,1||j′
1,1||j′′

1,1|| . . . ||jk′,k′ ||j′
k′,k′ ||j′′

k′,k′),

obtained by hashing the concatenation of the j-invariants corresponding to the
k = 3(k′)2 shared secret curves instead of the (k′)2 curves as in standard k′-
SIDH.

4.1 Parameter Selection

In [10, Section 4] Jao and Urbanik discuss the security of their scheme for general
� := �A. They correctly identify that the relationship between the curves can
be exploited for an attack but do not consider this extra structure fully when
providing an estimate on the security of the scheme. Based on their brief analysis,
they suggest the use of k′ = 18 keys for � = 11 when 256-bit security is required.
We believe the proposed parameters are safe but that their security analysis
could be elaborated on.
2 We have η6(G) = G exactly when G ⊂ ker(η6 + k) for some odd k. Note that

this is impossible since η2
6 − η6 + 1 = 0 implies that deg(η6) = tr(η6) = 1 so that

deg(η6 + k) = (η6 + k)(η̄6 + k) = deg(η6) + ktr(η6) + k2 = 1 + k + k2 is odd and
hence not divisible by 2eA .

On Adaptive Attacks Against Jao-Urbanik’s Protocol 203

∼= EAB
∼=

∼= EAη6(B)
∼=

∼= EAη2
6(B)

∼=

Shared secret:
h = Hash j(EAB), j(EAη2

6(B)), j(EAη6(B))
)

Alice

A ⊆ E[2eA]
with A = 〈PA + [α]η6(PA)〉

φA : E → E/A = EA,
RA := φA(PB), SA := φA(η6(PB))

pkA = EA, RA, SA

)

EB/〈[α]RA + SA)〉
EB/〈−RA + [α + 1]SA〉

EB/〈−[α + 1]RA + [α]SA〉

Bob

B ⊆ E[3eB]
with B = 〈PB + [β]η6(PB)〉

φB : E → E/B = EB ,
RB := φB(PA), SB := φB(η6(PA))

pkB = EB , RB , SB

)

EA/〈[β]RB + SB〉
EA/〈−[β + 1]RB + [β]SB〉
EA/〈−RB + [β + 1]SB〉

pkA

pkB

Fig. 1. Jao-Urbanik’s protocol using one key and automorphism η6; public parameters:
E : y2 = x3 + 1 with j(E) = 0 defined over field of characteristic p = f2eA3eB − 1,
bases {PA, η6(PA)} of E[2eA] and {PB , η6(PB)} of E[3eB].

In their discussion, the authors do not disclose a precise attack model and
consider an oracle which receives a list of curves and returns true if all of them
are on the secret isogeny path E → E/〈A〉.3 However, using such an oracle, the
attack proposed by Jao-Urbanik is not optimal. We will show that the extra
structure can be exploited further by realizing that all intermediate curves on
the three paths associated to one secret are isomorphic. Furthermore, in [3] it is
demonstrated that using the straightforward generalization of the GPST oracle
to k-SIDH would lead to an exponential-time attack even for k = 2. In order
to go around this issue, Dobson et al. compute extra points which increases the
complexity of the attack substantially. In other words, in the k-SIDH setting, the
cost of the call to an oracle which returns true if and only if all the guessed curves
are on the correct path is not constant but exponential in k. This observation
clearly applies to the Jao-Urbanik scheme as well.

4.2 Current Impact of DGLTZ on Jao-Urbanik Protocol

Applying the DGLTZ attack to the Jao-Urbanik protocol is not straightforward.
The DGLTZ attack assumes that all the secret kernels are of the form 〈[α]P +Q〉
which is not the case in the Jao-Urbanik scheme due to the following. To one

3 Note that the GPST attack [4] shows how to implement a similar oracle for SIDH.

204 A. Basso et al.

secret the following three kernels are associated: 〈[α]P + Q〉, 〈−P + [α + 1]Q〉,
〈−[α+1]P +[α]Q〉. The parity of the coefficient of Q in the second and the third
kernel is different, thus in particular, it is impossible that both of them are odd
(hence for every λ-multiple of the kernel the coefficient of Q will be even). This
difficulty could potentially be overcome, however a number of O(24k) queries,
where k = 3k′ and k′ is the number of secrets, will still be required.

Our aim is that instead of treating the three curves independently we use
that the three kernels are related and propose an attack in the next section which
uses O(32

k
3) queries, thus providing a nearly cube root speedup.

5 Adaptive Attack Against the Jao-Urbanik Scheme

In this section, we describe our adaptive attack on the η6 case of the Jao-Urbanik
protocol [10]. Thus, the starting curve E has j-invariant 0 and admits an auto-
morphism of order 6, η6. We want to attack Alice’s �eA

A -torsion, so for simplicity,
we again write � := �A and n := eA, and set � = 2 in our exposition. See Sub-
sect. 5.4 for a discussion on how this attack generalizes to larger �. Let P and
Q = η6(P) be such that {P,Q} form a basis of E[2n] and let α be one of Alice’s
secret keys, to which we associate the following three kernel generators

A = [α]P + Q, A′ = η6(A) = −P + [α + 1]Q,
A′′ = η2

6(A) = −[α + 1]P + [α]Q,

and the three isogenies

ψA,0 : E → EA = E/〈A〉, ψ′
A,0 : E → E′

A = E/〈A′〉,
ψ′′

A,0 : E → E′′
A = E/〈A′〉.

Similarly, we denote with γ any other secret key different from α. The associated
kernels are generated by C, C ′, C ′′, the curves are EC , E′

C , E′′
C and in general

the notation corresponding to γ will have a subscript C. When there is no doubt
about the corresponding secret key or when a property holds for all keys, we
may drop the subscript.

The isogeny ψA,0 can be decomposed into n individual 2-isogenies. We index
intermediate curves by EA,i, with EA,0 = EA and EA,n = E. The intermediate
isogenies are denoted by φA,i : EA,i → EA,i−1. We also call ψA,i the composition
φA,n ◦ . . . ◦ φA,i+1. We introduce similar notations for E′

A and E′′
A, and denote

by ηi the isomorphism between EA and E′
A (see Lemma 8). We summarize all

notations in Fig. 2.
We define

Ai = ψA,i(A), Pi = ψA,i(P).

Our attack is a non-trivial adaption of the GPST and DGLTZ attacks [3,4].
It similarly has two stages. Firstly, we compute the first bit of each key (see
Subsect. 5.2) and we recover the “pullbacks” A1, A′

1, A′′
1 and [2n−1]P1, [2n−1]P ′

1,
[2n−1]P ′′

1 (for every secret A). In the second stage, we show inductively that
given the first i bits of every key and Ai, [2n−i]PA,i (for every secret A), we

On Adaptive Attacks Against Jao-Urbanik’s Protocol 205

E . . . EA,i EA,i−1 . . . EA := E/〈A〉

E . . . E′
A,i E′

A,i−1 . . . E′
A := E/〈η6(A)〉

E . . . E′′
A,i E′′

A,i−1 . . . E′′
A := E/〈η2

6(A)〉

ψA,i

ηA,n:=η6

φA,i

ηA,i

φA,1

ηA,0
ψ′
A,i

η′
A,n:=η6

φ′
A,i

η′
A,i

φ′
A,1

η′
A,0ψ′′

A,i

φ′′
A,i φ′′

A,1

Fig. 2. Isogeny paths between the relevant curves.

can deduce the (i + 1)-th bit and the new pullbacks (see Subsect. 5.3). In other
words, if we write

α = 2i+1α′ + 2iαi + KA,i,

where KA,i indicates the known part of the key, we can recover αi from knowledge
of the i-th pullbacks.

This is not dissimilar to what is done in the DGLTZ attack, but our attack
exploits the additional structure between the shared secrets in the Jao-Urbanik
protocol to recover the exact pullbacks at each step (instead of keeping two
candidates) and reduce the number of queries needed for bit recovery. We thus
show that the security of the Jao-Urbanik protocol with k′ secret keys is only
slightly better than the security of k′-SIDH, thus greatly decreasing the benefits
of the Jao-Urbanik protocol. A more detailed study of the complexity of our
attack can be found at the end of Subsect. 5.3.

We present our attack only by querying with points on the starting curve E,
as in the DGLTZ attack. AppendixA presents a method to extend our attack
to an arbitrary curve, which can also be applied to the DGLTZ attack.

We start by showing essential properties of the partial isogenies ψA,i, ψ′
A,i, ψ

′′
A,i

and of the corresponding curves EA,i, E′
A,i, E′′

A,i in the following two lemmas.

Lemma 7. For simplicity, denote subscripts of the form A, i by i. Then,

ker(ψi) = 〈[2i]A〉, ker(ψ′
i) = 〈[2i]A′〉, ker(ψ′′

i) = 〈[2i]A′′〉,
ker(φi) = 〈[2i−1]Ai〉, ker(φ′

i) = 〈[2i−1]A′
i〉, ker(φ′′

i) = 〈[2i−1]A′′
i 〉,

ker(φ̂i) = 〈[2n−1]Pi−1〉, ker(φ̂′
i) = 〈[2n−1]P ′

i−1〉, ker(φ̂′′
i) = 〈[2n−1]P ′′

i−1〉.
Lemma 8. Let notation be as above. Then EA,i, E′

A,i and E′′
A,i are isomorphic.

Proof. We have that ker(ψA,i) ⊆ ker(ψ′
A,i ◦ ηA,n). Thus, there exists an isogeny

ηA,i : EA,i → E′
A,i such that ψ′

A,i ◦ ηA,n = ηA,i ◦ψA,i. By examining the degrees,
we find that deg ηA,i = 1 and thus ηA,i is an isomorphism. The same reasoning
holds for E′′

A,i.
�

206 A. Basso et al.

The isomorphisms ηA,i and η′
A,i are assumed to be known when EA,i, E′

A,i

and E′′
A,i are known, since they can be easily computed (a 1-isogeny between

two curves can be recovered in O(1)).

5.1 Attack Model: A New Oracle

In this section, we describe our assumptions and our attack model.
Firstly, let k′ denote the number of Alice’s secret keys. We assume that

Alice has a static set of keys α(1), . . . , α(k′) and that the attacker impersonates
Bob to recover Alice’s secret keys. The attacker engages with Alice on sessions
of Jao-Urbanik’s protocol and sends particularly chosen data, not necessarily
conforming to the protocol. By checking whether the two parties have obtained
the same shared secret, the attacker may recover information on Alice’s keys.
We model this information leakage in terms of an oracle and represent each
interaction with Alice as an oracle query.

An adaption of the second oracle presented in [3] to the η6 variant of the Jao-
Urbanik protocol gives an oracle O′(E(1), . . . , E(k′), R(1), S(1), . . . , R(k′), S(k′), h)
that returns true if

h = Hash(j1,1||j1,2|| . . . ||jk′,k′−1||jk′,k′),

where jr,s denotes the concatenation of

j
(
E(r)/〈[α(r)]R(s) + S(s)〉

)
, j

(
E(r)/〈−R(s) + [α(r) + 1]S(s)〉

)
,

j
(
E(r)/〈−[α(r) + 1]R(s) + [α(r)]S(s)〉

)
.

Similarly to what is done for the third oracle in [3], we can simplify the oracle by
assuming that the attacker generates one secret key and sends repeated copies of
the same curve and points. Note that any information that can be recovered with
querying with distinct curves can also be recovered by querying with repeated
copies of the same curve.

Hence, we obtain the following oracle

O(E,R, S, h) = O′(E, . . . , E,R, S, . . . , R, S, h), (2)

which is the one we use in our attack. As noted in [3], the attacker could change
one curve at each iteration, but all but one curves (k′ − 1, in this case) have to
remain constant across iterations for the attack to succeed.

5.2 Exploiting the Additional Structure: First Step

Let us focus on one of Alice’s secrets α. The attack extends straightforwardly to
all the keys. In order to recover the first bits of α, the attacker sends the modified
points P ′ = [1 + 2n−1]P , Q′ = Q, so that Alice uses the following kernels in her
computation of the shared secret:

On Adaptive Attacks Against Jao-Urbanik’s Protocol 207

1. Â = 〈[α]P ′ + Q′〉 = 〈[α]P + Q + [α0][2n−1]P 〉,
2. Â′ = 〈−P ′ + [α + 1]Q′〉 = 〈−P + [α + 1]Q + [2n−1]P 〉,
3. Â′′ = 〈−[α + 1]P ′ + [α]Q′〉 = 〈−[α + 1]P + [α]Q − [α0 + 1][2n−1]P 〉.

Note that, depending on the value of the least significant bit α0, either the
first or third curve computed has not been altered by using the modified points.
Thus the attacker already knows one of j(ÊA) or j(ÊA′′), where ÊA = E/〈Â〉,
although they do not know at this stage which one of the two.

The attacker now computes E∗
A, the sets containing all six proper 4-neighbors

of the curves EA in Alice’s public key, and their respective j-invariants. If α0 = 0,
〈[α]P ′ + Q′〉 = 〈A〉, and hence the first curve Alice obtains is isomorphic to
her original EA. The second curve is independent of α0 and is a 4-neighbor of
E′

A, since they share the 2-neighbor E/〈2A′〉. Similarly, the third curve is a 4-
neighbor of E′′

A since they share 2-neighbor E/〈2A′′〉. Note that the intermediate
2-neighbors in this construction are isomorphic since their kernel generators differ
only by an application of η6. Hence, the three curves EA, E/〈−P ′+[α+1]Q′〉 and
E/〈−[α+1]P ′+[α]Q′〉 are the three distinct 2-neighbors of E/〈2A〉 (distinctness
follows from simple computations on the kernel generators), as depicted in Fig. 3.

E′′
A

∼= EA,2

E/〈2A〉 ∼= EA,1

EA

E′
A

EA,3
. . .

2

2

2

Fig. 3. The isogeny paths between EA, E′
A and E′′

A.

Analogously if α0 = 1, we find that the three computed curves all share a
common 2-neighbor. The attacker proceeds analogously for the choices of any
other curve. This allows the attacker to match up candidate curves for EA, E′

A

and E′′
A among the 4-neighbors of EA, depending on which combination of first

key bits they are querying for at the time: the attacker may choose any curve in
E∗

A as a candidate curve for E′
A, depending on the guessed bit they may select

EA or E′′
A to be equal to EA and then select the unique curve in E∗

A which is also
a 4-neighbor of E′

A as a candidate for the remaining curve. Querying the oracle
for all possible combinations (12k/3 combinations, six for each neighbor and one
for the curve itself) gives the attacker the first bit of each secret.

Now, given the position of EA, E′
A and E′′

A in the isogeny graph, we know
that E/〈2A〉 must be the first intermediate curve EA,1 and similarly E′′

A must
be EA,2. This means the attacker can easily recover the first two intermediate
curves without additional oracle queries, unlike what happens in the DGLTZ
attack. Since the isogenies between EA and EA,1 (i.e. φA,1) and between EA,1

and EA,2 (i.e. φA,2) are known, the attacker can compute the first pullbacks of

208 A. Basso et al.

A and [2n−1]P (up to odd scalar multiplication) by setting A1 to be a generator
of ker(φA,1) and [2n−1]PA,1 a generator of ker(φ̂A,2) (see Lemma 7). Finally, the
attacker obtains the pullbacks A′

1 = ηA,1(A1) and A′′
1 = η′

A,1(A1). This approach
can be easily repeated for every following curve.

5.3 Intermediate Bit and Pullback Computation

Suppose we have recovered the first i bits of each key and have the relevant
pullbacks. Let α be one of Alice’s secrets keys and let γ denote any other secret
key.

Now, we want to recover the (i + 1)-th bit and compute the new pullbacks.
In the DGLTZ attack, the bit recovery and pulling back are two separate stages,
but in order to exploit the additional structure of Jao-Urbanik’s scheme, we
combine them together.

The attacker does not actively recover the (i + 1)-th key bits, but instead
tries all the 2k′

possibilities and uses the pullback queries to validate both the
bit guesses and the pullback candidates.

Using Lemma 7, it is possible to compute φ̂i+1 and thus recover φi+1. With
this information, the attacker can obtain candidates for the pullbacks of A and
P . The same applies to φ′

i+1 and φ′′
i+1.

The attacker then queries the oracle with the following points

P ′ = [1 + 2n−i−1]P, Q′ = Q − [KA,i][2n−i−1]P.

These are the oracle’s internal kernel computations

〈[α]P ′ + Q′〉 = 〈A + [αi][2n−1]P 〉,
〈−P ′ + [α + 1]Q′〉 = 〈A′ − [K2

A,i + KA,i + 1][2n−i−1]P

+ [KA,i][αi][2n−1]Q〉,
〈−[α + 1]P ′ + αQ′〉 = 〈A′′ − [K2

A,i + KA,i + 1][2n−i−1]P

− [KA,i + 1][αi][2n−1]P 〉,

〈[γ]P ′ + Q′〉 = 〈C + [KC,i − KA,i][2n−i−1]P

+ [γi][2n−1]P 〉,
〈−P ′ + [γ + 1]Q′〉 = 〈C ′ − [KC,iKA,i + KA,i + 1][2n−i−1]P

− [KA,i][γi][2n−1]P 〉,
〈−[γ + 1]P ′ + [γ]Q′〉 = 〈C ′′ − [KC,iKA,i + KA,i + 1][2n−i−1]P

− [KA,i + 1][γi][2n−1]P 〉.

All kernels can be shifted with ψi+1 (e.g. E/〈C + [KC,i − KA,i][2n−i−1]P +
[γi][2n−1]P 〉 = EC,i+1/〈Ci+1 + [KC,i − KA,i][2n−i−1]PC,i+1 + [γi][2n−1]P 〉) sim-
ilarly to the DGLTZ attack by applying [9, Chapter III, Corollary 4.11.]. Now,

On Adaptive Attacks Against Jao-Urbanik’s Protocol 209

since the candidate pullbacks for Ai+1 (preimages of Ai via φA,i), Ci+1 (preim-
ages of Ci via φC,i), [2n−i−1]PC,i+1 (preimages of

[
1
2

]
[2n−i]PC,i), [2n−i−1]PA,i+1

(preimages of
[
1
2

]
[2n−i]PA,i) and their isomorphic correspondents are known, the

attacker can query the oracle with the hash values of all 2k′
2k′

8k′
possibilities

(2 for each bit, 2 for the kernel generator pullback candidates and 4 · 2 for the
P pullback candidates). Note that the attacker may try a candidate for the first
curve and then shift it to the second curve using the isomorphisms ηi or η′

i

(therefore reducing an a priori complexity of 32k to 32k′
). We show that if we

find a match, then we have found the correct pullbacks for Ci+1 and PC,i+1 as
well as the correct key bits for C. First we prove a simple lemma about parities.

Lemma 9. Let KA,i, KC,i be natural numbers. Then,

1. K2
A,i + KA,i + 1 is odd.

2. It is not possible that all of (KA,i − KC,i), (KA,iKC,i + KA,i + 1) and
(KA,iKC,i + KC,i + 1) have the same parity.

Proof. The first claim is trivial. For the second claim, observe that the sum
of these quantities is even, thus it is not possible that all three of them are
odd. If KA,i − KC,i is even, then KA,i and KC,i have the same parity and then
KA,iKC,i + KA,i + 1 = KA,i(KC,i + 1) + 1 is odd.
�
Now, we prove our main lemma.

Lemma 10. If the oracle query returns true, then we have found γi, Ci+1 and
PC,i+1.

Proof. Suppose the attacker guesses that αi is 0. It is clear from the above com-
putation that we always get at least one match when we substitute Ci+1, γi and
PC,i+1. If γi = 0, then it follows from the computation of [3, Claim 1], that the
number of matches for the first curve is exactly two. The other match corresponds
to choosing Ci+1 + [2i]Ci+1 as the preimage of Ci and [2n−i−1]PC,i+1 + [2i]Ci+1

as the preimage of
[
1
2

]
[2n−i]PC,i. Due to Lemma 9, it is not possible that

(KA,i − KC,i), (KA,iKC,i + KA,i + 1) and (KA,iKC,i + KC,i + 1) are all odd.
Assume for instance that (KA,i − KC,i) is odd and (KA,iKC,i + KA,i + 1) is
even. Then we show that the second curve will not match as its kernel will be
generated by C ′

i+1 + [KC,iKA,i + KA,i + 1][2n−i−1]PC,i+1 + [2i]Ci+1. Hence it
will be 4-isogenous to the queried curve. The other cases follow similarly.

When γi = 1, then there will be another match for the first curve. Namely
when we pull back

[
1
2

]
[2n−i]Pi as [2n−i−1]Pi+1 + [2n−1]Pi+1. However, again a

similar calculation to [3, Claim 1] (one has to distinguish cases depending on the
parity of KA,i and KC,i) shows that either the second or the third curve will not
match. The calculations when the attacker guesses αi to be 1 are analogous.
�

Lemma 10 implies that for all secrets except α we know the correct bits and
pullbacks (as otherwise we cannot receive 1 from the oracle). However, we have
seen that the coefficient K2

A,i+KA,i+1 is odd, thus there will be multiple matches.

210 A. Basso et al.

In order to retrieve αi and the corresponding pullbacks we do another query with
different points, switching KA,i with KC,i. For this, we can use the previously
computed pullbacks and thus only query the oracle 32 times (corresponding to
the 32 possibilities for the pullbacks and the bit). Since the correct pullbacks are
computed, we are able to recover the isogenies φA,i+1 and φC,i+1 using Lemma 7.
Finally, since the next intermediate curves are computed we compute the isomor-
phisms between them. Thus, we have proven the following theorem.

Theorem 1.

1. There exists an algorithm that recovers the first bit of each secret using
O(12k′

) = O(12
k
3) queries to the oracle defined in (2).

2. There exists an algorithm that recovers the intermediate bits and pullbacks
using O(32k′

) = O(32
k
3) queries to the oracle defined in (2).

5.4 Attack Costs for General �

So far, we have demonstrated our attack on the Jao-Urbanik protocol with
parameter choice � = 2 for simplicity. However, in their proposal, the authors
suggest the use of � = 11 or � = 13 and further compute that k′ = 18 keys
are necessary to obtain security against Grover’s algorithm for � = 11; see [10,
Section 4]. Thus we briefly assess the cost of our attack and the DGLTZ attack
for arbitrary �. We divide the discussion into two parts. First, we estimate the
number of queries needed for computing the first key bits and later the number
of queries needed in the iterative step.

The complexity estimate of our attack is a straightforward generalization of
Theorem 1. During the recovery of the first bit of every key, we query - as before -
for any of the �k′

possible first �-adic digit combinations by first fixing the curve
(either EA or E′′

A using notation as in Subsect. 5.2) corresponding to the guessed
key digit to be the curve given in Alice’s public key. Then we select any of the
�(�+1) �2-neighbors of the correct curve to be E′

A and choose one of the remaining
�−1 curves which are �2-isogneous to both previously selected curves as the third
curve associated to a given key. Hence, for each possible combination of first key
digits we have

(
�(�+1)(�−1)

)k′
choices of curves. Thus, there exists an algorithm

which recovers the first digit of each secret using O(�k′
�3k′

) = O(�4k′
) = O(�

4k
3)

oracle queries.
For the iterative step, we again first guess the i-th �-adic digits and then

compute candidate preimages for the first curve and shift them to the other
two curves using the respective isomorphisms. There are �k′

possibilities for the
digits and �2k′

possibilities for each preimage. This implies that we need O(�5k′
)

queries in total.
Hence, for general �, we can summarize our findings in the following theorem.

Theorem 2.

1. There exists an algorithm that recovers the first digit of each secret using
O(�4k′

) = O(�
4k
3) queries to the oracle defined in (2).

On Adaptive Attacks Against Jao-Urbanik’s Protocol 211

2. There exists an algorithm that recovers the intermediate digits and pullbacks
using O(�5k′

) = O(�
5k
3) queries to the oracle defined in (2).

5.5 Comparison of k′-SIDH and Jao-Urbanik’s Protocol

Theorem 2 does not break the security parameters suggested by Jao and Urbanik.
However, in order to assess the security gain of Jao-Urbanik’s protocol, we com-
pare it with the security of k′-SIDH for arbitrary �. Since the DGLTZ method
requires an extra step which computes the i-th digits and then uses that infor-
mation to compute candidate pullbacks, the overall complexity of the attack is
�4k′

for k′-SIDH. The following table gives an overview of the number of SIDH-
instances and public keys occurring when executing the different protocols, as
well as the respective cost of attacking the �-torsion (Table 1).

Table 1. Comparisons between Jao-Urbanik’s scheme and k-SIDH

SIDH instances # Public key exchanges Attack cost

Jao-Urbanik with k′ keys 3(k′)2 (k′)2 O(�5k
′
)

k-SIDH with k = k′ (k′)2 (k′)2 O(�4k
′
)

k-SIDH with k = 5
4k′ (5

4k′)2≈1.56(k′)2 ≈1.56(k′)2 O(�4
5
4 k′

) = O(�5k
′
)

Therefore, we can observe that the Jao-Urbanik protocol with k′ secrets is
as secure as 5k′

4 -SIDH when comparing necessary oracle queries. Consequently,
it is more efficient to use 5k′

4 -SIDH than the Jao-Urbanik scheme with k′

keys and the same � when measuring security with respect to the currently
known attacks, as the former has a computational cost equivalent to 3(k′)2

SIDH exchanges, whereas the latter has a computational cost equivalent to
1.56(k′)2 SIDH exchanges. Note that the Jao-Urbanik scheme maintains a mod-
erate advantage in public key size, since it requires sharing k′ keys, compared to
the 5

4k′ keys shared in k-SIDH.

6 Conclusion

We have introduced an adaptive attack against Jao-Urbanik’s protocol with
parameter � = 2. While Jao and Urbanik suggest using � = 11 or � = 13, our
attack can be extended to that case as briefly described in the previous section.
The complexity of such an attack increases significantly, possibly reaching levels
where the protocol is secure for the specified parameter sets. However, even in
that case, our attack provides a nearly cubic speedup compared to a generic
application of Dobson et al.’s attack against the Jao-Urbanik scheme. Assessing
security of k-SIDH and Jao-Urbanik’s variant of it with respect to currently
known attacks, we conclude that Jao-Urbanik’s protocol does not seem to offer
a sufficient security improvement over k-SIDH with the same number of secret
keys to justify the roughly two times more computations needed.

212 A. Basso et al.

We leave a more thorough examination of whether a combination of stages in
an attack on k-SIDH can evoke further optimizations to future work. Any poten-
tial improvements in the attack cost would then make it necessary to reevaluate
the efficiency-security trade-off when comparing k-SIDH and the Jao-Urbanik
protocol.

Acknowledgments. We would like to thank David Jao and David Urbanik for their
valuable comments and feedback on this work. Furthermore, we are grateful to Samuel
Dobson, Steven D. Galbraith, Jason LeGrow, Yan Bo Ti, and Lukas Zobernig for their
helpful clarifications regarding the DGLTZ attack.

Work by the second and fourth authors was supported by an EPSRC New Investi-
gator grant (EP/S01361X/1).

A Querying with EB

The following lemma shows how to lift from the path EB → EAB to the path
E → EA.

Lemma 11. Let ψA,i be the partial isogeny from E to Ei and let ψB
A,i be the

corresponding partial isogeny from EB to EAB. Let A be the kernel of the isogeny
from E to EA and let AB = φB(A). Let Ei be the i-th curve in the isogeny path
from E to EA and EB

i be the i-th curve in the isogeny path from EB to EAB.
Let δi : EB

i → Ei be the isogeny which is the SIDH lift of φB. Assume we know
ψ′

i(AB) and ψ′
i(φB(Q)). Then we can compute [3n]ψi(A) and [3n]ψi(Q).

Proof. The proof follows from the observation that δi ◦ ψ′
i = ψi ◦ φ̂B .
�

The Lemma can be applied to compute the relevant pullbacks on the isogeny
paths from E to EA, E′ to E′

A and E′′ to E′′
A in the following manner. First one

computes a pullback candidate on the path starting from EB . Then it is lifted
with the above lemma to the path starting from E (using the fact that 3n is
odd). Then it can further be shifted to the other two isomorphic curves. Finally
these points can be shifted back with φB .

References

1. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization project (2017)

2. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement
using multiple protocol instances. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 45–63. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-72565-9 3

3. Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, L.: An adaptive attack
on 2-SIDH (2019). http://eprint.iacr.org/2019/890

4. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
http://eprint.iacr.org/2019/890
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

On Adaptive Attacks Against Jao-Urbanik’s Protocol 213

5. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

6. Jao, D., et al.: SIKE: Supersingular isogeny key encapsulation (2017). http://sike.
org/

7. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

8. National Institute of Standards and Technology: NIST post-quantum cryptography
project (2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto/

9. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

10. Urbanik, D., Jao, D.: New techniques for SIDH-based NIKE (accepted at Math-
Crypt 2018, to appear in J. Math. Cryptol.; personal communication)

11. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Séries A 273,
305–347 (1971)

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
http://sike.org/
http://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/978-0-387-09494-6

A SAT-Based Approach for Index
Calculus on Binary Elliptic Curves

Monika Trimoska(B), Sorina Ionica, and Gilles Dequen

Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France
{monika.trimoska,sorina.ionica,gilles.dequen}@u-picardie.fr

Abstract. Logical cryptanalysis, first introduced by Massacci in 2000,
is a viable alternative to common algebraic cryptanalysis techniques over
boolean fields. With xor operations being at the core of many crypto-
graphic problems, recent research in this area has focused on handling
xor clauses efficiently. In this paper, we investigate solving the point
decomposition step of the index calculus method for prime-degree exten-
sion fields F2n , using sat solving methods. We experimented with dif-
ferent sat solvers and decided on using WDSat, a solver dedicated to
this specific problem. We extend this solver by adding a novel symme-
try breaking technique and optimizing the time complexity of the point
decomposition step by a factor of m! for the (m+ 1)th summation poly-
nomial. While asymptotically solving the point decomposition problem
with this method has exponential worst time complexity in the dimension
l of the vector space defining the factor base, experimental running times
show that the presented sat solving technique is significantly faster than
current algebraic methods based on Gröbner basis computation. For the
values l and n considered in the experiments, the WDSat solver coupled
with our symmetry breaking technique is up to 300 times faster than
Magma’s F4 implementation, and this factor grows with l and n.

Keywords: Discrete logarithm · Index calculus · Elliptic curves ·
Point decomposition · Symmetry · Satisfiability · dpll algorithm

1 Introduction

The index calculus algorithm originally denoted a technique to compute discrete
logarithms modulo a prime number, but it now refers to a whole family of algo-
rithms adapted to other finite fields and some algebraic curves. It includes the
Number Field Sieve (NFS) [23], dedicated to logarithms in Zq and the algo-
rithms of Gaudry [15] and Diem [8] for algebraic curves defined over Fqn , where
q = pk. Index calculus algorithms proceed in two main steps. The sieving (or
point decomposition) step concentrates most of the number theory and algebraic
geometry needed overall. By splitting random elements over a well-chosen factor
base, it produces a large sparse matrix, the rows of which are “relations”. In a
second phase, the matrix step produces “good” combinations of the relations by

c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 214–235, 2020.
https://doi.org/10.1007/978-3-030-51938-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_11

A SAT-Based Approach for Index Calculus 215

finding a non-trivial vector in the kernel of this matrix. This, in turn, enables the
efficient computation of any discrete logarithm on the input domain. A crucial
step of the index calculus on elliptic curves is to solve the point decomposition
problem (pdp), by generating sufficiently many relations among suitable points
on the curve. Using the so-called summation polynomials attached to the curve,
this boils down to solving a system of polynomial equations whose solutions are
the coordinates of points. The resulting algorithm has complexity O(q2−2/n), but
this hides an exponential factor in n which comes from the hardness of solving
the point decomposition problem.

Consequently, when q is large, n ≥ 3 is small and log q > cm for some constant
c, the Gaudry-Diem algorithm has a better asymptotic complexity than generic
methods for solving the discrete logarithm problem and Gröbner basis algorithms
have become a well-established technique [18] to solve these systems. Since a large
number of instances of pdp needs to be solved, most of the research in the area
has focused on improving the complexity of this step. Several simplifications such
as symmetries and polynomials with lower degree obtained from the algebraic
structure of the curve have been proposed [10].

When we consider elliptic curves defined over F2n with n prime, solving the
pdp system via Gröbner bases quickly becomes a bottleneck, and index calculus
algorithms are slower than generic attacks, from a theoretical and a practical
point of view. Moreover, it is not known how to define the factor base in order
to exploit all the symmetries coming from the algebraic structure of the curve,
without increasing the number of variables when solving pdp [36]. Finally, note
that for random systems, pure Gröbner basis algorithms are both theoretically
and practically slower than simpler methods, typically exhaustive search [6,24],
hybrid methods [2] and sat solvers. It is thus natural that we turn our attention
towards combinatorics tools to solve the pdp in characteristic 2.

Until recent years, sat solvers have been proven to be a powerful tool in the
cryptanalysis of symmetric schemes. They were successfully used for attacking
secret key cryptosystems such as Bivium, Trivium, Grain, AES [16,17,22,30,31].
However, their use in public key cryptosystems has rarely been considered. A
prominent example is the work of Galbraith and Gebregiyorgis [14], where they
explore the possibility of replacing available Gröbner basis implementations with
generic sat solvers (such as MiniSat), as a tool for solving the polynomial
system for the pdp over binary curves. They observe experimentally that the
use of sat solvers may potentially enable larger factor bases to be considered.

In this paper, we take important steps towards fully replacing Gröbner basis
techniques for solving pdp with constraint programming ones. First, we model
the point decomposition problem as a logical formula, with a reduced number
of clauses, when compared to the model used in [14]. We compare different
sat solvers and decide that the recently introduced WDSat solver [35] is most
adapted to this problem and yields the fastest running times. Secondly, we pro-
pose a symmetry breaking technique and we implement it as an extension of
this solver. We show that by using the extended solver, the proven worst-case
complexity of solving a PDP is O(2ml

m!), where m is the number of points in the

216 M. Trimoska et al.

decomposition and l is the dimension of the vector space defining the factor base.
This is to be compared against the Gröbner basis algorithm proposed in [11],
whose runtime O(2ωn/2) (with n ∼ ml and ω the linear algebra constant) is
proven under heuristic assumptions.

We experimented with the index calculus attack on the discrete logarithm for
elliptic curves over prime-degree binary extension fields. We obtain an impor-
tant speedup in comparison with the best currently available implementation
of Gröbner bases (F4 [11] in Magma [4]) and generic solvers [1,31,32]). Con-
sequently, we were able to display results for a range of parameters l and n
that were not feasible with previous approaches. In addition, our experiments
show that Gröbner bases cannot compete with sat solvers techniques in terms of
memory requirements. To illustrate, a system solved with the extended WDSat
solver using only 17 MB of memory requires more than 200 GB when using the
Gröbner basis method.

However, our experiments suggest that this improved pdp resolution does
not render the index calculus attack faster than generic methods for solving the
ECDLP in the case of prime-degree extension fields F2n .

This paper is organized as follows. Section 2 gives an overview of the index
calculus algorithm on elliptic curves, introduces the pdp problem and briefly
recalls algebraic and combinatorial techniques used in the literature to solve this
problem. Section 3 details the logical models used in our experiments. Section 4
explains the symmetry breaking technique that we implemented in a sat solver.
In Sect. 5 we give worst time complexity estimates for solving a pdp instance
and derive the complexity of our sat-based index calculus algorithm. Finally,
Sect. 6 presents benchmarks obtained with our implementation. We compare this
against results obtained using Magma’s F4 implementation and several available
best generic sat-solvers, such as MiniSat [32] and CryptoMiniSat [31].

2 An Overview of Index Calculus

In 2008 and 2009, Gaudry [15] and Diem [8] independently proposed a technique
to perform the point decomposition step of the index calculus attack for elliptic
curves over extension fields, using Semaev’s summation polynomials [27]. Since
this paper focuses on binary elliptic curves, we introduce Semaev’s summation
polynomials here directly for these curves.

Let F2n be a finite field and E be an elliptic curve with j-invariant different
from 0, defined by an equation

E : y2 + xy = x3 + ax2 + b, (1)

with a, b ∈ F2n . Using standard notation, we take F̄2n to be the algebraic closure
of F2n and E(F2n) (resp. E(F̄2n)) to be the set of points on the elliptic curve
defined over F2n (resp. F̄2n). Let O be the point at infinity on the elliptic curve.
For m ∈ N, the m-th summation polynomial is a multivariate polynomial in
F2n [X1, . . . , Xm] with the property that, given points P1, . . . , Pm ∈ E(F̄2n),

A SAT-Based Approach for Index Calculus 217

then P1 ± . . . ± Pm = O if and only if Sm(xP1 , . . . ,xPm
) = 0. We have that

S2(X1,X2) = X1 + X2, (2)

S3(X1,X2,X3) = X2
1X2

2 + X2
1X2

3 + X1X2X3 + X2
2X2

3 + b,

and for m ≥ 4 we have the following recursive formula:

Sm(X1, . . . , Xm) = (3)
ResX(Sm−k(X1, . . . , Xm−k−1,X), Sk+2(Xm−k, . . . , Xm,X)).

The polynomial Sm is symmetric and has degree 2m−2 in each of the variables.
Let V be a vector subspace of F2n/F2, whose dimension l will be defined later.
We define the factor basis B to be:

B = {(x,y) ∈ E(F2n)|x ∈ V }.

Heuristically, we can easily see that the factor base has approximatively 2l ele-
ments. Given a point R ∈ E(F2n), the point decomposition problem is to find m
points P1, . . . , Pm ∈ B such that R = P1±. . .±Pm. Using Semaev’s polynomials,
this problem is reduced to the one of solving a multivariate polynomial system.

Definition 1. Given s ≥ 1 and an l-dimensional vector subspace V of F2n/F2

and f ∈ F2n [X1, . . . , Xm] any multivariate polynomial of degree bounded by s,
find (x1, . . . ,xm) ∈ V m such that f(x1, . . . ,xm) = 0.

Using the fact that F2n is an n-dimensional vector space over F2, the equation
f(x1, . . . ,xm) = 0 can be rewritten as a system of n equations over F2, with
ml variables. In the literature, this is called a Weil restriction [15] or Weil
descent [26]. The probability of having a solution to this system depends on the
ratio between n and l. Roughly, when n/l ∼ m the system has a reasonable
chance to have a solution.

Recent work on solving the decomposition problem has focused on using
advanced methods for Gröbner basis computation such as Faugère’s F4 and F5

algorithms [11,12]. This is a natural approach, given that similar techniques for
small degree extension fields in characteristic >2 yielded index calculus algo-
rithms which are faster than the generic attacks on the DLP.

A common technique when working with Semaev’s polynomials is to use a
symmetrization process to further reduce the degree of the polynomials appear-
ing in the pdp system. In short, since Sm is symmetric, we can rewrite it
in terms of the elementary symmetric polynomials e1 =

∑
1≤i1≤m Xi1 , e2 =∑

1≤i1,i2≤m Xi1Xi2 , . . ., em =
∏

1≤i≤m Xi. We denote by S′
m+1 the polyno-

mial obtained after symmetrizing Sm+1 in the first m variables, i.e. we have
S′

m+1 ∈ F2n [e1, . . . , em,Xm+1].
In [36], the authors report on experiments carried on systems obtained using

a careful choice of the vector space V and application of the symmetrization
process. Using Magma’s F4 available implementation, we experimented with
both the symmetric and the non-symmetric version for pdp systems and found,

218 M. Trimoska et al.

as in [36], that the symmetric version yields better results. Therefore, in order
to set the notation, we detail this approach here.

Let t be a root of a defining polynomial of F2n over F2. Following [36],
we choose the vector space V to be the l-dimensional subspace generated by
1, t, t2, . . . , tl−1. Assuming that m(l − 1) ≤ n we can write:

e1 = d1,0 + . . . + d1,l−1t
l−1

e2 = d2,0 + . . . + d2,2l−2t
2l−2 (4)

. . .

em = dm,0 + . . . + dm,m(l−1)t
m(l−1),

where the di,j with 1 ≤ i ≤ m, 0 ≤ j ≤ i(l − 1) are binary variables. After
choosing xm+1 ∈ F2n and substituting e1, . . . , em as in Eq. (4), we get:

S′
m+1(e1, . . . , em,xm+1) = f0 + . . . + fn−1t

n−1,

where fi, 0 ≤ i ≤ n − 1 are polynomials in the binary variables di,j , 1 ≤ i ≤ m,
0 ≤ j ≤ i(l−1). After a Weil descent, we obtain the following polynomial system

f0 = f1 = . . . = fn−1 = 0. (5)

One can see that with this approach, the number of variables is increased by
a factor m, but the degrees of the polynomials in the system are significantly
reduced. Further simplification of this system can be obtained if the elliptic curve
has a rational point of order 2 or 4 [14]. Since this is a restriction, we did not
implement this approach and used the system in Eq. (5) as the starting point
for our sat model of the point decomposition problem.

2.1 Solving the Decomposition Problem Using SAT Solvers

Before presenting our approach for finding solutions to the pdp using sat solvers,
we give preliminaries on the Satisfiability problem, its terminology and solving
techniques. A sat solver is a special-purpose program to solve the sat problem.
Using sat solvers as a cryptanalytic tool requires expressing the cryptographic
problem as a Boolean formula in conjunctive normal form (cnf). The basic
building block of a cnf formula is a literal, which is either a propositional variable
or its negation. An or -clause is a non-exclusive disjunction (∨) of literals x1 ∨
x2 ∨ . . . ∨ xk. A cnf formula is a unique or-clause or a conjunction (∧) of at
least two or-clauses. An interpretation of a given propositional formula consists
in assigning a truth value (true/false) to each of its variables. A cnf formula
is said to be satisfiable if there exists at least one interpretation under which the
formula is true, and it is said to be unsatisfiable otherwise. The propositional
satisfiability problem (sat) is the problem of determining whether a (usually
cnf) formula is satisfiable.

In the remainder of this paper, we will refer to an or-clause simply by a
clause, since cnf is the standard form used in sat solvers. A clause where the

A SAT-Based Approach for Index Calculus 219

operation between literals is an exclusive or, will be referred to as a xor-clause.
The use of the logical xor operator (⊕) is common in cryptography. When
working on cryptographic problems the cnf form can be extended to a cnf-
xor form, which is a conjunction of both or-clauses and xor-clauses.

A straightforward method for solving the sat problem is to complete the
truth table associated with the formula in question. This is equivalent to an
exhaustive search method and thus impractical. Luckily, in some cases, a partial
assignment on the set of variables can determine whether a clause is satisfiable.
Assigning l, a literal from the partial assignment, to true will lead to:

1. Every clause containing l is removed (since the clause is satisfied).
2. In every clause that contains ¬l this literal is deleted (since it can not con-

tribute to the clause being satisfied).

The second rule above can lead to obtaining a clause composed of a single literal,
called a unit clause. Since this is the only literal left that can satisfy the clause,
it must be set to true and therefore propagated. The described method is called
unit propagation. The reader can refer to [3] for more details.

A conflict occurs when it exists at least one clause with all literals assigned
to false in the formula. If this case is a consequence of a direct assignment, or
eventually of Unit Propagation, this has to be undone. This is commonly known
as backtracking.

Example 1. For instance, these two atomic operations can be illustrated with
the following example built of a set of 5 clauses numbered C1 to C5:

C1 : ¬x1 ∨ x2 ∨ ¬x4

C2 : x1 ∨ x3 ∨ x4

C3 : x1 ∨ ¬x3

C4 : x1 ∨ x3

C5 : x2 ∨ x4

Assigning the variable x1 to false leads the clause C1 to be satisfied by the
literal x1. Another consequence is that the clauses C2, C3 and C4 cannot be
satisfied by the literal x1. Hence, x1 can be deleted from these clauses. Then,
C3 is a unit clause composed of the literal ¬x3 and as a consequence, x3 has to
be assigned to false. We say that the truth value of x3 is inferred through unit
propagation.

When we set x3 to its inferred value false, we apply the second rule to
clauses C2 and C4. As a consequence, clause C4 can not be satisfied by any of its
literals. This constitutes a conflict and it invokes a backtracking procedure. The
backtracking procedure consists in going back to the state that the formula was
in before the last assumption was made. In our example, the last assumption
was that x1 is false and thus, we go back to the initial state.

The basic backtracking search with unit propagation that we described com-
poses the Davis-Putnam-Logemann-Loveland (dpll) algorithm [7], which is a

220 M. Trimoska et al.

state-of-the-art complete sat solving technique. dpll works by trying to assign
a truth value to each variable in the cnf formula, recursively building a binary
search tree of height equivalent (at worst) to the number of variables. After each
variable assignment, the formula is simplified by unit propagation. If a conflict
is met, a backtracking procedure is launched and the opposite truth value is
assigned to the last assigned literal. If the opposite truth value results in conflict
as well, we backtrack to an earlier assumption or conclude that the formula is
unsatisfiable - when there are no earlier assumptions left. The number of conflicts
is a good measure for the time complexity of a sat problem solved using a dpll
-based solver. If the complete search tree is built, the worst-case complexity is
O(2v), where v is the number of variables in the formula. Figure 1 illustrates the
binary search tree resulting from the resolution of Example 1.

x1

X x2

X x3

x4

OK

F T

F T

F

F

Fig. 1. Binary search tree constructed with the dpll algorithm.

A common variation of the dpll is the conflict-driven clause learning (cdcl)
algorithm [29]. In this variation, each encountered conflict is described as a new
clause which is learnt (added to the formula). State-of-the-art cdcl solvers, such
as MiniSat [32] and Glucose [1], have been shown to be a powerful tool for
solving cnf formulas. However, they are not equipped to handle xor-clauses
and thus parity constraints have to be translated into cnf. Since handling cnf-
clauses derived from xor constraints is not necessarily efficient, recent works
have concentrated on coupling cdcl solvers with a xor-reasoning module. Fur-
thermore, these techniques can be enhanced by Gaussian elimination, as in the
works of Soos et al. (resulting in the CryptoMiniSat solver) [30,31], Han and
Jiang [17], Laitinen et al. [21,22].

3 Model Description

This section gives in full detail the three models we used in our experiments: the
algebraic one used by Yun-Ju et al. [36], the cnf model used by Galbraith and
Gebregiyorgis [14] and the model we propose.

A SAT-Based Approach for Index Calculus 221

3.1 The Algebraic Model

Since the logical models are constructed starting from the algebraic one, we
present first the model used when solving the pdp problem using Gröbner
basis. The elementary symmetric polynomials ei are written in terms of the
di,j binary variables, as in Eq. (4). Similarly, since we look for a set of solutions
(x1, . . . ,xm) ∈ V m, the Xi variables are written formally as follows:

X1 = c1,0+ . . . + c1,l−1t
l−1

X2 = c2,0+ . . . + c2,l−1t
l−1

. . .

Xm = cm,0+ . . . + cm,l−1t
l−1,

where ci,j , with 1 ≤ i ≤ m, 0 ≤ j ≤ l − 1, are binary variables. Using Eq. (4),
we derive the following equations:

d1,0 = c1,0+ . . . + cm,0

d1,1 = c1,1+ . . . + cm,1 (6)
. . .

dm,m(l−1) = c1,l· . . . · cm,l.

The remaining equations correspond to polynomials fi, 0 ≤ i ≤ n − 1, obtained
via the Weil descent on S′

m+1. Recall that these are polynomials in the binary
variables di,j . We now describe how we derive logical formulas from this system.

3.2 The CNF-XOR Model

When creating constraints from a boolean polynomial system, the multiplica-
tion of variables becomes a conjunction of literals and the sum of multiple terms
becomes a xor-clause. From the two sets of equations in the algebraic model,
we obtain two sets of xor-clauses, where the terms are single literals or con-
junctions. To illustrate, the logical formula derived from Eq. (6) is as follows:

¬d1,0 ⊕ c1,0 ⊕ . . . ⊕ cm,0

¬d1,1 ⊕ c1,1 ⊕ . . . ⊕ cm,1 (7)
. . .

¬dm,m(l−1) ⊕ (c1,l ∧ . . . ∧ cm,l).

sat solvers adapted for xor reasoning in the literature perform on xor
clauses obtained by xoring single literals, and not conjunctions of several ones.
To follow this paradigm, we have to transform the system above further. We sub-
stitute all conjunctions in a xor clause by a newly added variable. For example,

222 M. Trimoska et al.

let c′ be the variable substituting a conjunction (ci1,j1 ∧ ci2,j2 ∧ ... ∧ cik,jk). We
have c′ ⇔ (ci1,j1 ∧ ci2,j2 ∧ ... ∧ cik,jk), which rewrites as

(c′ ∨ ¬ci1,j1 ∨ ¬ci2,j2 ∨ ... ∨ ¬cik,jk) ∧
(¬c′ ∨ ci1,j1) ∧
(¬c′ ∨ ci2,j2) ∧ (8)
· · ·
(¬c′ ∨ cik,jk)

For clarity, variables introduced by substitution of monomials containing
exclusively the variables ci,j will be denoted c′ and clauses derived from these
substitutions are said to be in the X-substitutions set of clauses. Similarly, sub-
stitutions of the monomials containing only the di,j variables are denoted by d′

and the resulting set is referred to as the E-substitutions set of clauses.
After substituting conjunctions, we will refer to the set of clauses obtained

from Eq. (7) as the E-X-relation set of clauses. Finally, the equations corre-
sponding to polynomials fi, 0 ≤ i ≤ n − 1, are derived in the same manner and
the resulting clauses will be referred to as the F set of clauses.

That concludes the four sets of clauses in our sat model. This model does
not represent a cnf formula, since the E-X-relation set and the F set are made
up of xor-clauses. Hence, it will be referred to as the cnf-xor model.

Proposition 1. Assigning all ci,j variables, for 1 ≤ i ≤ m and 0 ≤ j ≤ l − 1,
leads to the assignment of all variables in the cnf-xor model through unit prop-
agation.

Proof. Let us examine the unit propagation process for each set of clauses sep-
arately.

1. Clauses in the X-substitutions set are obtained by transforming c′ ⇔ (ci1,j1 ∧
ci2,j2∧...∧cik,jk). We note that on the right of these equivalences there are only
ci,j variables and on the left, there is one single c′ variable. The assignment
of all of the ci,j variables will yield the assignment of all variables on the left
of the equivalences, i.e. all c′ variables.

2. Clauses in the E-X-relations set are obtained by transforming the algebraic
system in (6). We observe that on the right of the equations there are only
ci,j and c′ variables and on the left there is one single di,j variable. When all
ci,j and all c′ variables are assigned, all di,j variables will have their truth
value assigned through unit propagation on the E-X-relation set.

3. Clauses in the E-substitutions set are obtained by transforming d′ ⇔ (di1,j1 ∧
di2,j2 ∧ ...∧dik,jk). Similarly as with the X-substitutions set, we have only di,j

variables on the right of these equivalences and one single d′ variable on the
left. The assignment of all of the di,j variables will thus yield the assignment
of all d′ variables.

4. At this point, all variables in the parity constraints in the set F were assigned
and we simply check whether the obtained interpretation satisfies the formula.

A SAT-Based Approach for Index Calculus 223

We conclude that variables in all four types of clauses of our CNF-XOR model
were assigned through unit propagation.
�

3.3 The CNF Model

Since most modern sat solvers read and process cnf formulas, we explain the
classical technique for transforming a cnf-xor model to a cnf model. In fact,
this is also the technique used in Magma’s available implementation for deriving
a cnf model from a boolean polynomial system.

A xor-clause is said to be satisfied when it evaluates to true, i.e. when an
odd number of literals in the clause are set to true and the rest are set to false.
The cnf-encoding of a ternary xor-clause (x1 ⊕ x2 ⊕ x3) is

(x1 ∨ ¬x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ ¬x3) ∧ (9)
(¬x1 ∨ ¬x2 ∨ x3) ∧

(x1 ∨ x2 ∨ x3)

Similarly, a xor-clause of size k can be transformed into a conjunction of 2k−1

or-clauses of size k. Since the number of introduced clauses grows exponentially
with the size of the xor-clause, it is a good practice to cut up the xor-clause
into manageable size clauses before proceeding with the transformation. To cut
a xor-clause (x1 ⊕ . . .⊕xk) of size k in two, we introduce a new variable x′ and
we obtain the following two xor-clauses:

(x1 ⊕ . . . ⊕ xi ⊕ x′) ∧
(xi+1 ⊕ . . . ⊕ xk ⊕ ¬x′).

In our experiments with MiniSat in Sect. 6, we used a cnf model obtained
after cutting into ternary xor-clauses, since any xor sat problem reduces in
polynomial time to a 3-xor sat problem [3]. To the best of our knowledge,
Magma’s implementation adopts a size 5 for xor clauses. The optimal size
at which to cut the xor-clauses depends on the nature of the model and can
be determined by running experiments using different values. Running these
experiments was out of the scope of our work, as the WDSat solver does not
use the cnf model.

We implemented all three models described in this section and we present
Table 1 to serve as a comparison on the number of variables, equations and
clauses. Values for the algebraic and cnf-xor model are exact, whereas those
for the cnf model are averages obtained from experiments presented in Sect. 6.
The value of m is always 3.

In 2014, Galbraith and Gebregiyorgis [14] used Magma’s implementation to
compute the equivalent cnf logical formulas of the polynomial system resulting
from the Weil descent of a pdp system and ran experiments using the general-
purpose MiniSat solver to get solutions for these formulas. One can infer from

224 M. Trimoska et al.

Table 1. The number of variables and equations/clauses for the three models.

Gröbner model cnf model cnf-xor model

l n #Vars #Equations #Vars #cnf-clauses #Vars #cnf-clauses #xor-clauses

6 19 51 52 5019 19577 767 2364 52

7 23 60 62 8223 32201 1101 3466 62

8 23 69 68 11036 43210 1510 4835 68

9 37 78 88 20969 82721 2000 6495 88

10 47 87 104 32866 130040 2577 8470 104

11 59 96 122 49538 196434 3247 10784 122

Table 1 that the model they used has a significantly larger number of clauses
and variables when compared to the cnf-xor model. This motivated our choice
of the cnf-xor model for this work.

4 Breaking Symmetry

Since Semaev’s summation polynomials are symmetric, if {x1, . . . ,xm} is a solu-
tion, then all permutations of this set are solutions as well. These solutions are
equivalent and finding more than one is of no use for the pdp. When a dpll
-based sat solver is used (see Sect. 2.1), we observe redundancy in the binary
search tree. Indeed, for m = 3 when a potential solution {x1,x2,x3} has been
eliminated, {x2,x1,x3} does not need to be tried out. To avoid this redundancy,
we establish the following constraint x1 ≤ x2 ≤ . . . ≤ xm, where ≤ is the
lexicographic order on {false,true}l with false < true.

It would be tedious to add this constraint to the model itself, since this would
imply adding new clauses and complexifying the sat model. Instead, we decided
to add this constraint in the dpll algorithm using a tree-pruning-like technique.
In a classical dpll implementation we try out both false and true for the truth
value of a chosen variable. In our symmetry breaking variation of dpll , in some
cases, the truth value of false will not be tried out as all potential solutions
after this assignment would not satisfy the constraint x1 ≤ x2 ≤ . . . ≤ xm. Our
variation of dpll is detailed in Algorithm 1 and the line numbers that distinguish
it from a classical dpll algorithm are in bold. Note that one crucial difference
between the two algorithms is the choice of a variable on line 4. While this choice
is arbitrary in a classical dpll algorithm, in Algorithm1 variables need to be
chosen in the order from the leading bit of x1 to the trailing bit of xm. If this is
not respected, our algorithm does not yield a correct answer.

Using the notation in Sect. 3, ci,j corresponds to the jth bit of the ith x-
vector, where 1 ≤ i ≤ m and 0 ≤ j ≤ l − 1. We recall from Proposition 1 that
assigning all ci,j variables in the cnf-xor model leads to the assignment of all
variables through unit propagation. In Algorithm1, we decide whether to try out
the truth value of false for ci,j or not by comparing two x-vectors bit for bit,

A SAT-Based Approach for Index Calculus 225

Algorithm 1. Function dpll br sym(F , compare) : Recursive function imple-
menting the dpll algorithm coupled with our symmetry breaking technique.
Input: Propositional formula F and a flag compare
Output: true if formula is satisfiable, false otherwise.

1: if all clauses and all xor-clauses are satisfied then
2: return true.
3: end if
4: choose next ci,j .
5: if j = 0 then
6: compare ← true.
7: end if
8: if (i = 1) or (compare is false) or (ci−1,j is set to false) then
9: (contradiction, F ′) ← assign(F , ¬ci,j).
10: if contradiction then
11: backtrack().
12: compare ← false.
13: else
14: if dpll br sym(F ′, compare) returns false then
15: backtrack().
16: compare ← false.
17: else
18: return true.
19: end if
20: end if
21: end if
22: (contradiction, F ′) ← assign(F , ci,j).
23: if contradiction then
24: backtrack().
25: return false.
26: end if
27: return dpll br sym(F ′, compare).

in the same way that we would compare binary numbers. When we are deciding
on the truth value of ci,j we have the following reasoning:

• If ci−1,j is false, we try to set ci,j both to false and true (if false fails).
When ci,j is set to false, all of the potential xi solutions are greater than
or equal to xi−1, thus we continue with the same bit comparison on the next
level. However, when ci,j is set to true, all of the potential xi solutions are
strictly greater than xi−1 and we no longer do bit comparison on further
levels.

• If ci−1,j is true, we only try out the truth value of true for ci,j and we
continue to do bit comparison since the potential xi solutions are still greater
than or equal to xi−1 at this point.

Lastly, we give further information which explains in full detail Algorithm1.
We use a flag denoted compare to instruct whether to do bit comparison at the

226 M. Trimoska et al.

current search tree level or not. On line 6 we reset the compare flag to true
since ci,j , when j = 0, corresponds to a leading bit of the next x-vector. Lastly,
if-conditions on line 8 have to be checked in the specified order.

The assign procedure assigns the specified literal to true in a formula F ,
simplifies F and infers truth values for other literals. The backtrack procedure
is used to undo all changes made to F after the last truth-value assignment. For
more details on how these procedures are handled in the WDSat implementa-
tion, see [35].

5 Time Complexity Analysis

As we explained in Sect. 2, the time complexity of a sat problem in a dpll
context is measured by the number of conflicts. This essentially corresponds to
the number of leaves created in the binary search tree. The worst-case complexity
of the algorithm is thus 2h, where h is the height of the tree.

As per Proposition 1, we only reason on ci,j variables from the cnf-xor
model. Therefore, h = ml and the worst-case complexity for the pdp is 2ml.
Furthermore, using the symmetry breaking technique explained in Sect. 4, we
optimize this complexity by a factor of m!. Indeed, out of the m! permutations of
the solution set {x1, . . . ,xm}, only one satisfies x1 ≤ x2 ≤ . . . ≤ xm (neglecting
the equality). This concludes that the worst-case number of conflicts reached for
one pdp computation is

2ml

m!
. (10)

Going further in the time complexity analysis, we observe that to find one
conflict we go through (in the worst case) all clauses in the model during unit
propagation. Hence, the running time per conflict grows linearly with the number
of clauses. First, let us count the number of clauses in the X-substitutions set. For
every 2 ≤ d ≤ m there exist

(
m
d

) · ld monomials of degree d given by products of
variables ci,j , and they each yield d+1 clauses (see Eq. (8)). In total, the number
of clauses in the X-substitutions set is

(
m∑

d=2

(
m

d

)

· ld)(d + 1).

Recall that degree one monomials are not substituted and thus do not produce
new clauses. We can adapt this reasoning for the E-substitutions set as well.

The number of xor-clauses in the cnf-xor model is equivalent to the number
of equations in the algebraic model. We have m(m+1)

2 (l − 1) + m in the E-X-
relation set and n in the F set.

Remark 1. Using this analysis, we approximate the number of clauses, denoted
by C, for m = 3, as all experiments presented in this paper are performed using
the fourth summation polynomial.

C ≈
(

3
2

)

· 3l2 +
(

3
3

)

· 4l3 +
((

3
2

))

· 3(3l − 2)2 + (6l − 3) + n ≈ (11)

≈ 4l3 + 171l2 − 210l + n + 69.

A SAT-Based Approach for Index Calculus 227

In practice, many monomials have no occurrence in the system after the Weil
descent. In fact, the value in Eq. (11) is a huge overestimate and exact values for
l ∈ {6, . . . , 11} are shown in Table 1.

Assuming that we take m small, we conclude that the number of clauses in
our model is polynomial in l.

Let T be a constant representing the time to process one clause. The running
time of the pdp is bounded by

C · T · 2ml/m!.

This allows us to establish the following result on the complexity of our
SAT-based index calculus algorithm.

Theorem 1. The complexity of the index calculus algorithm for solving ECDLP
on a curve defined over F2n , using a factor base given by a vector space of
dimension l, is Õ(2n+l), where the Õ hides a polynomial factor in l.

Proof. In order to perform a whole ECDLP computation, one has to find 2l

linearly independent relations. Following [9], the probability that a random point
can be written as a sum of m factor basis elements is heuristically approximated
by 2ml

m!2n . The time complexity for the full decomposition phase, using a DPLL-
based solver coupled with the breaking symmetry technique is CT2n+l.
�

This worst-case complexity is to be compared to the O(2ω n
2 +l) complexity of

Faugère et al. [13]. Both approaches rely on the heuristic approximation of the
probability that a random point can be decomposed in the factor base. However,
we underline here that Faugère et al.’s proof of this result is based on an heuristic
assumption on the Gröbner basis computation for pdp, while our analysis for
the sat-based approach simply relies on the rigorously proved worst case for the
dpll search tree (see Eq. (10)).

6 Experimental Results

We conducted experiments using S′
4 on binary Koblitz elliptic curves [20] defined

over F2n . We experimented with Gröbner bases and sat approaches. In [35],
WDSat is reported to outperform the Gröbner basis methods, as well as all
generic SAT solvers for this particular problem. First, we confirm this by exper-
imenting with higher parameters and results are reported in Table 2. Secondly,
we extend the WDSat solver with our symmetry breaking algorithm described
in Sect. 4. Our symmetry breaking algorithm yields faster running times and we
were able to perform experiments using greater parameters. Results are shown
in Table 3. All tests were performed on a 2.40 GHz Intel Xeon E5-2640 pro-
cessor. Our Weil descent implementation used to generate benchmarks is open
source [34].

228 M. Trimoska et al.

The Gröbner basis approach takes as input an algebraic model. We used the
grevlex ordering, as this is considered to be optimal in the literature. The Min-
iSat solver processes a cnf model input, whereas CryptoMiniSat (CMS) and
WDSat use the cnf-xor model. WDSat can also process directly an algebraic
model in ANF form. Using the cnf-xor model is a huge advantage, as it has
far fewer clauses and variables than the cnf model. Gaussian elimination can
be beneficial for sat instances derived from cryptographic problems. However, it
has been reported to yield slower running times for some instances, as perform-
ing the operation is very costly. For this reason, CryptoMiniSat and WDSat
do not include Gaussian elimination by default, but the feature can be turned
on explicitly. We experimented with both variants for both xor-able solvers.

With WDSat we set a custom order of branching variables, which allowed
us to make use of unit propagation as explained in Proposition 1 and branch
only on the ci,j variables. CryptoMiniSat does not have this feature in the
current version as the authors report that custom order of branching variables
leads to slower running times in most cases. We added this feature to the source
code of CryptoMiniSat and we ran tests both with a custom order as per
Proposition 1 and with the order chosen by the solver.

Table 2 compares different approaches, showing results for optimal variants
of each solving tool. Running times of all variants of CryptoMiniSat and
WDSat are given in Appendix A. We experimented with different values of n
for each l and we performed tests on 20 instances for each parameter size. Half
of the instances have a solution and the other half do not. We show running time
and memory averages on satisfiable and unsatisfiable instances separately since
these values differ between the two cases. sat solvers stop as soon as they find
a solution and if this is not the case they need to respond with certainty that
a solution does not exist. Hence, running times of sat solvers are significantly
slower when there is no solution. On the other hand, [36] indicates that the
computational complexity of Gröbner bases is lower when a solution does not
exist.

We set a timeout of 10 h and a memory limit of 200 GB for each run. Using
MiniSat, we were not able to solve the highest parameter instances (l = 8)
within this time frame. On the other hand, Gröbner basis computations for
these instances halted before timeout because of the memory limit. This data
is in line with previous works. Indeed, [36] and [28] show experiments using the
fourth summation polynomial with l = 6, whereas the highest parameter size
achieved in [14] is l = 8.

Table 2 shows the average runtime in seconds, the average number of con-
flicts and the average memory use in MB. The WDSat solver allocates memory
statically, according to predefined constant memory requirements. This explains
why memory averages do not vary much between the different size parameters,
or between satisfiable and unsatisfiable instances.

Our experimental results show that performing Gaussian elimination on the
system comes with a significant computational cost and yields a small decrease
in the number of conflicts (see Table 4 in the Appendix). As this was the case for

A SAT-Based Approach for Index Calculus 229

Table 2. Comparing different approaches for solving the pdp.

satisfiable unsatisfiable

Algorithm l n Runtime #Conflicts Memory Runtime #Conflicts Memory

Gröbner 6 17 207.220 NA 3601 142.119 NA 3291

19 215.187 NA 3940 155.765 NA 4091

7 19 3854.708 NA 38763 2650.696 NA 38408

23 3128.844 NA 35203 2286.136 NA 35162

8 23 >200GB >200GB

26a >200GB >200GB

MiniSat 6 17 62.702 408189 12.7 270.261 1463309 24.2

19 229.055 1778377 23.6 388.719 2439933 29.8

7 19 406.918 1919565 33.6 6777.431 25180492 105

23 12945.613 61610582 152 13260.586 59289671 163

8 23 8027.974 63384411 256 >10 h

26 >10 h >10 h

CMS with Proposition 1 6 17 15.673 61812 34.5 62.396 260843 39.3

19 14.128 53767 33.2 64.563 259688 42.1

7 19 176.463 484098 41.5 843.367 2077747 72.3

23 300.021 638152 48.9 1012.412 2070190 73.6

8 23 1700.949 2420937 76.7 11959.938 16756106 82.4

26 3000.831 4179236 79.4 14412.193 16783213 81.8

WDSat with Proposition 1 6 17 .601 49117 1.4 3.851 254686 1.4

19 .470 38137 1.4 3.913 255491 1.4

7 19 9.643 534867 16.7 44.107 2073089 16.7

23 9.303 477632 16.7 47.347 2067168 16.7

8 23 68.929 2646071 16.8 525.057 16666331 16.8

26 185.480 6261107 16.9 533.607 16684378 16.9
a The non-prime-degree case of n = 26 is not handled differently. The factor base is an l-

dimensional vector space and the Weil descent does not include specific reductions which can be

applied to non-prime degrees.

all instances derived from the Weil descent on S′
4, we concluded that Gaussian

elimination is not beneficial for this model. Choosing the WDSat variant with-
out Gaussian elimination as optimal, we continued experiments for bigger size
parameters using this variant coupled with the symmetry breaking technique.
Table 3 shows results for l ∈ {6, 7, 8, 9, 10, 11} and n sizes up to 89. All values
are an average of 100 runs, as running times for satisfiable instances can vary
remarkably. If we compare the number of conflicts for the first three values for l
in this Table to that of the basic WDSat solver without the breaking symme-
try extension in Table 2, we observe a speedup factor that rapidly approaches
6.1 This confirms our claims in Sect. 5 that the symmetry breaking technique
proposed in this paper yields a speedup by a factor of m!.

Comparing results for l = 6 and l = 7 in Table 3 with the equivalent results
for the Gröbner basis method in Table 2, we observe that WDSat is up to 300
times faster than Gröbner bases for the cases where there is no solution and up to

1 We compare the cases where there is no solution, as these have more stable averages.

230 M. Trimoska et al.

1700 times faster for instances allowing a solution. This is a rough comparison,
as the factor grows with parameters l and n.

Table 3. Experimental results using the complete WDSat solver. Running times are
in seconds and memory use is in MB.

satisfiable unsatisfiable

l n Runtime #Conflicts Memory Runtime #Conflicts Memory

6 17 .220 17792 1.4 .605 43875 1.4

19 .243 19166 1.4 .639 44034 1.4

7 19 2.205 130062 1.4 6.859 351353 1.4

23 3.555 189940 1.4 7.478 350257 1.4

8 23 29.584 1145966 17.0 81.767 2800335 17.0

26 39.214 1426216 17.0 85.822 2803580 17.0

9 37 447 10557129 17.1 1048 22396994 17.1

47 609 12675174 17.2 1167 22381494 17.2

59 611 11297325 17.3 1327 22390211 17.3

67 677 11608420 17.4 1430 22388053 17.4

10 47 5847 95131900 17.3 11963 179019409 17.3

59 6849 97254458 17.4 13649 179067171 17.4

67 6530 88292215 17.4 14555 179052277 17.4

79 7221 86174432 17.5 16294 179043408 17.5

11 59 64162 727241718 19.2 135801 1432191354 19.2

67 70075 741222864 19.3 145357 1432183842 19.3

79 61370 599263451 19.4 161388 1432120827 19.4

89 85834 736610196 19.5 175718 1432099666 19.5

Lastly, we experimented with the collision search [25] generic method, using
the open source code at [33]. This implementation solves the discrete log problem
in the case of prime field curves. We did not adapt the code for extension fields
and the computation time for scalar multiplication on the curve might vary
between the two cases. Even so, this allows for a rough comparison between
the running times of generic methods and the work presented in this paper. In
a uni-thread environment, a whole collision search computation for parameter
n = 59 has an average runtime of 0.8 h on our platform. Computing 2l successful
decompositions for parameters n = 59 and l = 9 would take more than 86 h
according to results in Table 3. The estimated running time becomes consider-
ably higher when we take into account unsuccessful decompositions as well. We
conclude that for the case of prime-degree extension fields, even with the signif-
icant speedup that we achieved for the pdp, index calculus attacks are still not
practical compared to the PCS generic method.

A SAT-Based Approach for Index Calculus 231

7 Conclusions and Future Work

Gröbner basis methods have been shown powerful in solving the pdp in the index
calculus attack for elliptic curves defined over small degree extension fields in
characteristic >2. In this paper, we argue that for finite fields in characteristic 2 a
sat-based approach yields better results. We started by explaining that general-
purpose sat solvers cannot yield considerably faster running times because the
number of variables in a sat model is significantly larger than the number of
variables in the algebraic model.

Our first contribution is to propose a pdp cnf-xor model with only ml core
variables, whose assignment propagates all remaining variables in the model. To
solve this model we use a sat solver dedicated to solving systems derived from
a Weil descent. As our second contribution, we optimized the time complexity
of this solver by a factor of m! using a symmetry breaking technique.

We presented experiments for the pdp on prime-degree extension fields in
characteristic 2, using parameter sizes of up to l = 11 and n = 89. This presents
a significant improvement over the current state-of-the-art, as experiments using
l > 8 have never been shown before for this case. Moreover, memory is no longer
a constraint for the pdp when the Gröbner basis computation is replaced with
sat solving.

For technical reasons and lack of space, we were not able to provide here a
complete comparison to other existing exhaustive search-based implementations,
such as the libFes library [5] based on Bouillaguet et al.’s algorithm [6] and the
Joux-Vitse hybrid algorithm [19]. For a more complete set of benchmarks, includ-
ing experiments with Semaev’s polynomials for m > 3, the interested reader is
referred to the first author’s upcoming PhD thesis. It would also be interest-
ing to test the performance of sat solvers on the simplified system obtained by
considering the action of 2-torsion and 4-torsion points on the factor base, as
in [14].

Acknowledgements. We thank the anonymous reviewers of the Africacrypt confer-
ence for their comments. The experimental results presented here were obtained using
the MatriCS platform of the Université de Picardie Jules Verne.

A Appendix

Table 4 gives runtime and memory averages for different variations of Crypto-
MiniSat and WDSat.

232 M. Trimoska et al.

Table 4. Comparing different variations of CryptoMiniSat and WDSat for solving
the pdp.

satisfiable unsatisfiable

Approach l n Runtime #Conflicts Memory Runtime #Conflicts Memory

CMS 6 17 133.983 775948 48.4 363.513 1709971 59.5

19 560.080 3396192 64.1 1172.740 5726372 70.1

7 19 1210.612 5713259 85.3 10258.351 26079224 117

23 3637.032 12159752 80.4 19857.454 47086152 130

8 23 9846.554 18509058 123 >10 h

26 6905.477 13269631 115 >10 h

CMSGE 6 17 119.866 677336 54.5 436.811 1877699 64.2

19 224.484 1219840 58.7 615.952 2763754 76.5

7 19 893.425 3722805 86.5 3587.929 8642108 107

23 580.007 1753040 82.4 3253.786 8183887 132

8 23 11265.010 19604250 155 >10 h

26 3933.637 7920920 157 >10 h

CMS with Proposition 1 6 17 15.673 61812 34.5 62.396 260843 39.3

19 14.128 53767 33.2 64.563 259688 42.1

7 19 176.463 484098 41.5 843.367 2077747 72.3

23 300.021 638152 48.9 1012.412 2070190 73.6

8 23 1700.949 2420937 76.7 11959.938 16756106 82.4

26 3000.831 4179236 79.4 14412.193 16783213 81.8

CMSGE with Proposition 1 6 17 17.698 62161 39.1 86.049 294428 63.2

19 16.301 52730 39.8 88.738 293859 62.7

7 19 220.037 479197 51.2 2551.277 2418051 72.5

23 367.105 653673 59.4 1329.494 2380614 93.1

8 23 2493.328 2419268 112 19058.671 19359334 164

26 4956.952 4171674 126 19907.670 19534832 167

WDSat with Proposition 1 6 17 .601 49117 1.4 3.851 254686 1.4

19 .470 38137 1.4 3.913 255491 1.4

7 19 9.643 534867 16.7 44.107 2073089 16.7

23 9.303 477632 16.7 47.347 2067168 16.7

8 23 68.929 2646071 16.8 525.057 16666331 16.8

26 185.480 6261107 16.9 533.607 16684378 16.9

WDSat GE with Proposition 1 6 17 9.193 48178 1.4 56.718 253123 1.4

19 7.041 36835 1.4 58.876 252799 1.4

7 19 169.629 528383 16.7 736.863 2062232 16.7

23 159.101 473223 16.7 779.432 2060501 16.7

8 23 1290.702 2630567 16.8 9124.361 16639322 16.8

26 3404.765 6231289 16.9 9623.677 16636122 16.9

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 399–404 (2009)

A SAT-Based Approach for Index Calculus 233

2. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate sys-
tems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009). https://doi.org/10.
1515/JMC.2009.009

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). https://doi.org/10.1006/
jsco.1996.0125

5. Bouillaguet, C.: LibFES-lite (2016). https://github.com/cbouilla/libfes-lite
6. Bouillaguet, C., Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Fast

exhaustive search for quadratic systems in F2 on FPGAs. In: Lange, T., Lauter, K.,
Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 205–222. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43414-7 11

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

8. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math-
ematica 147(1), 75–104 (2011). https://doi.org/10.1112/S0010437X10005075

9. Diem, C.: On the discrete logarithm problem in elliptic curves II. Algebra Number
Theory 7(6), 1281–1323 (2013)

10. Faugère, J.-C., Huot, L., Joux, A., Renault, G., Vitse, V.: Symmetrized summation
polynomials: using small order torsion points to speed up elliptic curve index cal-
culus. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 40–57. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 3

11. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

12. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation. ISSAC 2002, pp. 75–83. ACM, New York
(2002). http://doi.acm.org/10.1145/780506.780516

13. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of
index calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 4

14. Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic
curves in characteristic two. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 409–427. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13039-2 24

15. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009).
https://doi.org/10.1016/j.jsc.2008.08.005

16. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018). https://doi.org/10.1016/j.ipl.2018.07.001

17. Han, C.-S., Jiang, J.-H.R.: When boolean satisfiability meets gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 410–426. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 31

https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
https://github.com/cbouilla/libfes-lite
https://doi.org/10.1007/978-3-662-43414-7_11
https://doi.org/10.1112/S0010437X10005075
https://doi.org/10.1007/978-3-642-55220-5_3
https://doi.org/10.1007/978-3-642-55220-5_3
http://doi.acm.org/10.1145/780506.780516
https://doi.org/10.1007/978-3-642-29011-4_4
https://doi.org/10.1007/978-3-319-13039-2_24
https://doi.org/10.1007/978-3-319-13039-2_24
https://doi.org/10.1016/j.jsc.2008.08.005
https://doi.org/10.1016/j.ipl.2018.07.001
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-642-31424-7_31

234 M. Trimoska et al.

18. Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made
practical. Application to a previously unreachable curve over F

6
p. In: Pointcheval,

D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 3

19. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) NuTMiC 2017. LNCS,
vol. 10737, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76620-1 1

20. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 22

21. Laitinen, T., Junttila, T., Niemela, I.: Equivalence class based parity reasoning
with DPLL(XOR). In: Czumaj, A (ed.) 2011 IEEE 23rd International Conference
on Tools with Artificial Intelligence, pp. 649–658, November 2011. https://doi.org/
10.1109/ICTAI.2011.103

22. Laitinen, T., Junttila, T.A., Niemelä, I.: Conflict-driven XOR-clause learning
(extended version). CoRR abs/1407.6571 (2014). http://arxiv.org/abs/1407.6571

23. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. In: Lenstra, A.K., Lenstra, H.W. (eds.) The development of the number field
sieve. LNM, vol. 1554, pp. 11–42. Springer, Heidelberg (1993). https://doi.org/10.
1007/BFb0091537

24. Lokshtanov, D., Mikhailin, I., Paturi, R., Pudlák, P.: Beating brute force for (quan-
tified) satisfiability of circuits of bounded treewidth. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 2018, New
Orleans, LA, USA, 7–10 January 2018, pp. 247–261 (2018). https://doi.org/10.
1137/1.9781611975031.18

25. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

26. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 28

27. Semaev, I.A.: Summation polynomials and the discrete logarithm problem on ellip-
tic curves. IACR Cryptology ePrint Archive 2004, 31 (2004). http://eprint.iacr.
org/2004/031

28. Shantz, M., Teske, E.: Solving the elliptic curve discrete logarithm problem using
Semaev polynomials, Weil descent and Gröbner basis methods – an experimental
study. In: Fischlin, M., Katzenbeisser, S. (eds.) Number Theory and Cryptography.
LNCS, vol. 8260, pp. 94–107. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-42001-6 7

29. Silva, J.P.M., Sakallah, K.A.: Conflict analysis in search algorithms for satisfiability.
In: ICTAI, pp. 467–469. IEEE Computer Society (1996)

30. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: Prag-
matics of SAT (2010)

31. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

32. Sörensson, N., Eén, N.: A SAT solver with conflict-clause minimization. In: Pro-
ceedings of the Theory and Applications of Satisfiability Testing (2005)

33. Trimoska, M., Ionica, S., Dequen, G.: Parallel Collision Search Implementation
(2019). https://github.com/mtrimoska/PCS

https://doi.org/10.1007/978-3-642-29011-4_3
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/3-540-46766-1_22
https://doi.org/10.1109/ICTAI.2011.103
https://doi.org/10.1109/ICTAI.2011.103
http://arxiv.org/abs/1407.6571
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1137/1.9781611975031.18
https://doi.org/10.1137/1.9781611975031.18
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/978-3-642-34961-4_28
http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2004/031
https://doi.org/10.1007/978-3-642-42001-6_7
https://doi.org/10.1007/978-3-642-42001-6_7
https://doi.org/10.1007/978-3-642-02777-2_24
https://github.com/mtrimoska/PCS

A SAT-Based Approach for Index Calculus 235

34. Trimoska, M., Ionica, S., Dequen, G.: EC Index Calculus Benchmarks (2020).
https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks

35. Trimoska, M., Ionica, S., Dequen, G.: Parity (XOR) reasoning for the index calculus
attack. CoRR abs/2001.11229 (2020). https://arxiv.org/abs/2001.11229

36. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: Improvement of Faugère et al.’s
method to solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS,
vol. 8231, pp. 115–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41383-4 8

https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks
https://arxiv.org/abs/2001.11229
https://doi.org/10.1007/978-3-642-41383-4_8
https://doi.org/10.1007/978-3-642-41383-4_8

Post Quantum Cryptography

Hash-Based Signatures Revisited: A
Dynamic FORS with Adaptive Chosen

Message Security

Mahmoud Yehia, Riham AlTawy(B), and T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC V8P 5C2, Canada

raltawy@uvic.ca

Abstract. FORS is the underlying hash-based few-time signing scheme
in SPHINCS+, one of the nine signature schemes which advanced to
round 2 of the NIST Post-Quantum Cryptography standardization com-
petition. In this paper, we analyze the security of FORS with respect to
adaptive chosen message attacks. We show that in such a setting, the
security of FORS decreases significantly with each signed message when
compared to its security against non-adaptive chosen message attacks.
We propose a chaining mechanism that with slightly more computa-
tion, dynamically binds the Obtain Random Subset (ORS) generation
with signing, hence, eliminating the offline advantage of adaptive cho-
sen message adversaries. We apply our chaining mechanism to FORS
and present DFORS whose security against adaptive chosen message
attacks is equal to the non-adaptive security of FORS. In a nutshell, using
SPHINCS+-128s parameters, FORS provides 75-bit security and DFORS
achieves 150-bit security with respect to adaptive chosen message attacks
after signing one message. We note that our analysis does not affect the
claimed security of SPHINCS+. Nevertheless, this work provides a bet-
ter understanding of FORS and other HORS variants, and furnishes a
solution if new adaptive cryptanalytic techniques on SPHINCS+ emerge.

Keywords: Digital signatures · Hash-based signature schemes ·
Post-Quantum Cryptography · Adaptive chosen message attacks

1 Introduction

The current digital signature infrastructure adopts schemes that rely on the
hardness of factoring or finding discrete logarithms in finite groups [12,18,24].
Given recent advances in physics which point towards the eventual construction
of large scale quantum computers [1], these hard problems will be solved in poly-
nomial time using Shor’s algorithm [25]. Lattice-based, coding-based, and mul-
tivariate signatures are considered quantum resilient schemes in the Q1 model
[7]. However, either their exact security with respect to quantum attacks is still
not clear [5,11] or their communication/storage complexity is impractical to a
multitude of applications, e.g., megabyte keys for the matrices of McEliece-based
cryptosystems [27]. On the other hand, hash-based digital signatures have mod-
erately sized keys (order of kilobytes), and their quantum security relies solely
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 239–257, 2020.
https://doi.org/10.1007/978-3-030-51938-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_12

240 M. Yehia et al.

on that of hash functions based on Grover’s algorithm. They have been proven
to offer simple quantum resilient security properties [26]. Note that the proofs
in [26] follow the Q1 model where no superposition queries to quantum oracles
are allowed [7].

Hash-based signature algorithms are comprised of two schemes, an underlying
signing scheme and an extension algorithm. The former algorithm defines the
main signing procedure where a key pair can be used to sign one (Lamport
[19], Winternitz one time signature scheme (WOTS), WOTS++ [8,14]) or a few
messages (e.g., Biba [21], HORS [23], HORS++ [22], PORS [2], and FORS [4]),
after which a new key pair should be generated to maintain security against
forgery attacks. More precisely, the security of hash-based few time (HBFT)
signature schemes decreases after revealing each signature, and hence their bit-
security is given under the condition that re-keying is required after r signatures.
Accordingly, translating this constraint to acceptable attack models implies that
a maximum of r queries are allowed to the signing oracle.

The extension algorithm is a top level construction that employs several
instances of underlying signing schemes (OTS and HBFT) in a Merkle tree struc-
ture. Suchanalgorithmenables signingmultiplemessageswhere signatures are ver-
ifiedwithonepublic key (Merkle root).Extensionalgorithms canbe stateful suchas
Merkle Signature Scheme MSS [20], eXtended Merkle Signature Scheme (XMSS)
[9], XMSS+ [15], Multi Tree XMSS (XMSSMT) [16], and XMSS with tightened
security (XMSS-T) [17], or stateless such as SPHINCS [5], SPHINCS+ [4,6], and
Gravity SPHINCS [3]. Stateless signature algorithms conform to the basic defini-
tion of digital signatures where no state updates are required to guarantee security,
and only keys are needed to securely generate valid signatures at any time.

The security of hash-based signature algorithms relies on the security of the
underlying basic signing schemes. SPHINCS is a hyper-tree construction that
uses WOTS and HORS trees for signing. In [2], Aumasson and Endignoux inves-
tigated the subset-resilience problem [23] and showed that HORS is vulnerable
to weak-message attacks where an adaptive adversary looks for messages that
produce smaller Obtain Random Subsets (ORSs). Consequently, they reported
a 7-bit decrease in the expected security of SPHINCS against classical attacks.
Moreover, they proposed PORS, a variant of HORS which employs a pseudo-
random bit generator (PRNG) instead of a hash function to obtain random sub-
sets with distinct elements, thus avoiding the effect of weak messages. However,
PORS is not secure against adaptive chosen message attacks where an adver-
sary is able to generate random subsets for as many messages as they want, and
select a set of r message for online queries. Finally, FORS, another HORS vari-
ant, was proposed and is currently adopted in SPHINCS+, a round 2 candidate
in the NIST Post-Quantum Cryptography standardization competition [4,10].
Compared to PORS, FORS mitigates weak-message attacks by increasing the
size of the keys by a factor of κ where κ is the number of random subsets, and
the overall signature size is also increased when it is integrated in a hyper-tree
structure. On its own, the security of FORS against adaptive chosen message
attacks decreases significantly with each signed message, which currently has no
known effect on the security of SPHINCS+ because it employs a pseudorandomly
generated randomizer that is publicly sent along with the signature, and is used

Hash-Based Signatures Revisited 241

as a key for the hash function in FORS to obtain the random subsets. However,
if cryptanalytic techniques are devised which can annihilate how this public ran-
domizer is utilized or can break its generation procedure, then SPHINCS+ will
be vulnerable to adaptive chosen message attacks. Hence, given the significance
of SPHINCS+ as a candidate for standardization, we believe our analysis of
its underlying signature scheme, FORS, is important, along with DFORS which
offers a drop-in strengthened candidate.

Our Contribution. In what follows, we summarize the contributions of this paper.

– We analyze the security of FORS against adaptive chosen message adver-
saries. We show that its bit security with respect to adaptive chosen mes-
sage attacks decreases significantly when compared to its security in a non-
adaptive setting. We adopt the adaptive chosen message attack model defined
by Reyzin and Reyzin [23] and used in the analysis of HORS and PORS.

– We propose a hash chaining mechanism that binds the process of generat-
ing a message ORS with signing it, which eliminates the offline adversarial
advantage and makes ORS generation feasible only for the signing entity. We
apply the chaining scheme to FORS and present Dynamic Forest Of Random
Subsets (DFORS), a new HORS variant that resists adaptive chosen message
attacks. We show that the bit-security of DFORS with respect to adaptive
chosen message attacks is more than that of FORS by a factor of r+1, where
r is the number of signed messages per key under a given security level.

– We analyze the security of DFORS with respect to adaptive chosen message
adversaries, discuss its limitations, and report its theoretical computational
and communication performance. Finally, we compare DFORS with FORS and
other HORS variants.

2 Preliminaries

In what follows, we provide the notation and definitions used throughout the
paper. FORS can be seen as a generalized instance of HORS and it inherits
most of the specifications of HORS. Accordingly, for completeness, we provide
a brief overview of the HORS signature scheme.

2.1 Notation

Let n denote our security parameter. Consider a finite key space K, message
space of arbitrary length M, the two hash families H and G where H = {Hk :
{0, 1}∗ → {0, 1}κτ |k ∈ K}, and G = {Gk : {0, 1}∗ → {0, 1}n|k ∈ K}. Hk (resp.
Gk) is an κτ -bit (resp. n-bit) keyed one-way function. Let the κτ -bit message
digest of an arbitrary length message m ∈ M be divided into κ elements, each of
length τ bits, such that the integer representation of a given element is a subset
of {0, 1, . . . , t − 1}, where t = 2τ . We refer to the set {0, 1, . . . , t − 1} by T , and
the subset of κ-elements of the set T is denoted by Sκ(T). Let ORSκ(m) denote
an Obtain Random Subset function which returns a κ element subset from the
κτ -bit hash value of a message m, formally defined as follows

ORSκ(m) : Hk(m) → Sκ(T)|k ∈ K

242 M. Yehia et al.

The notion of ORS functions was introduced by Reyzin and Reyzin when HORS
was proposed [23]. It has been shown that the security of the scheme is reduced
to the subset resilience problem [23]. More precisely, for a given bit-security
level, at most r messages can be signed before re-keying is required, otherwise
an adversary can find a message whose ORS is covered by the union of the
ORSs of the r messages.

Definition 1. The messages (m1,m2, . . . ,mr,mr+1) are in an r-subset-cover
relation, Cr

κ, if the Obtain Random Subset of message mr+1 (ORSκ(mr+1)) is a
subset of the union of all Obtain Random Subsets of the r-messages, ORSκ(m1)∪
ORSκ(m2) ∪ . . . ∪ ORSκ(mr), formally

Cr
κ(m1,m2, . . . ,mr+1) ⇔ ORSκ(mr+1) ⊆

r⋃

i=1

ORSκ(mi).

If finding the above cover relation for a given ORS function is infeasible, then
it is said that such a function is r-subset resilient.

Definition 2. An ORS function is r-subset-resilient if for any polynomial
time adversary A(1n,κ,t), the probability of finding (m1,m2, . . . ,mr+1) such that
ORSκ(mr+1) is a subset of ORSκ(m1) ∪ ORSκ(m2) ∪ . . . ∪ ORSκ(mr) is negli-
gible, Formally

Pr[(m1,m2, . . . ,mr+1) ← A(1n,κ,t) : Cr
κ(m1,m2, . . . ,mr+1)] ≤ negl(n, t).

Definition 3. An ORS function is r-target-subset-resilient, if for any polyno-
mial time adversary A who is given the ORSs of r messages

⋃r
i=1 ORSκ(mi),

it is infeasible to find a message mr+1 such that its κ-element ORSκ(mr+1) is
a subset of the union of ORSs of the r messages, formally

Pr[(mr+1) ← A(1n,κ,t,m1,m2,...,mr) : Cr
κ(m1,m2, . . . ,mr+1)] ≤ negl(n, t).

2.2 Hash to Obtain Random Subset (HORS) Few-Time Digital
Signature Scheme

In HORS [23], the signer randomly generates t secret keys each of n-bit length,
(SK = sk0, sk1, . . . , skt−1). Using a one-way function f : {0, 1}n → {0, 1}n, the
signer computes the public key, PK = (pk0 = f(sk0), pk1 = f(sk1), . . . , pkt−1 =
f(skt−1)). For signing an arbitrary length message m ∈ M, ORSκ(m) =
{h0, h1, . . . , hκ−1} is evaluated by dividing the κτ -bit message digest value of
HK(m) into κ elements, each of length τ bits. Each element is represented
by an integer hi where 0 ≤ i ≤ κ − 1 and hi ∈ {0, 1, . . . , t − 1}, t = 2τ .
To generate the signature, σ, the signer reveals the secret keys whose indices
correspond to the integer representation of the κ elements in the ORS, i.e.,
σ = (skh0 , skh1 , . . . , skhκ−1). For verification, the verifier computes ORSκ(m) =
{h0, h1, . . . , hκ−1}, then checks if f(skhi

) = pkhi
, otherwise verification fails.

The description of HORS is given in Algorithm3 in AppendixA.

Hash-Based Signatures Revisited 243

Security. Assuming that f is a one-way function, the security of HORS is reduced
to the hardness of the (target) subset-resilience problem [23]. It has been shown
that the probability of finding a message (mr+1) such that ORSκ(mr+1) is cov-
ered by the obtained random subsets of the r previously signed messages is (rκ/t)κ

which corresponds to the probability of κ randomly chosen elements being a subset
of the revealed rκ secret keys. The corresponding bit-security is then

log2(t/rκ)κ = κ(log2 t − log2 r − log2 κ).

In [2], it was proven that the security of HORS with respect to adaptive chosen
message attacks is

κ

r + 1
(log2 t − log2 r − log2 κ) +

log2 r!
r + 1

,

(see Appendix B). A practical example of a weak-message attack was also given
where an adaptive adversary finds messages that map to subsets with repeated
indices which results in smaller subsets, i.e., number of distinct elements < κ.
Such subsets are easier to cover and consequently, a 7-bit decrease in the expected
security of SPHINCS against classical attacks was reported.

Variants. HORS++ [22] was introduced to provide security against adaptive
attacks. A one-to-one mapping function S(m) that belongs to a cover-free family
[13] is utilized to ensure that for any r + 1 messages S(mr+1) �

⋃r
i=1(S(mi).

Three constructions for S(m) based on polynomials over finite fields, error cor-
recting codes, and algebraic curves over finite fields were presented. Conse-
quently, HORS++ increases the signature size and the size of the secret keys to
achieve the same security level of HORS against non-adaptive chosen message
attacks. Moreover, the computational efficiency is decreased due to the computa-
tion of S(m). Later, PORS was suggested to replace HORS in SPHINCS where
the idea of having distinct elements in subsets of weak messages was enforced
by use of a pseudorandom bit generator to obtain the subsets [2]. However,
although PORS mitigates weak-message attacks, it is still vulnerable to adap-
tive chosen message attacks under the definition given in Appendix B. Lastly,
FORS was proposed and used in SPHINCS+ [4], where security against weak-
message attacks is achieved by increasing the key size from t values to κt values
such that each index out of the κ indices in the ORS reveals a secret key from a
different pool of t secret keys. Accordingly, when integrated in a tree structure
the size of the signature also increases.

3 FORS Security Analysis

Unlike HORS which generates t secret keys from which the secret keys that are
indexed by ORS(m) are released, FORS generates (κt) secret keys and dedicates
t secret keys for each index out of the κ indices. By doing so, FORS mitigates
weak message attacks because even if two elements in ORS(m) are equal, they
index values from different secret key pools. The n-bit public key of FORS is the
hash of the concatenation of κ Merkle tree roots. Each root is associated with a

244 M. Yehia et al.

binary hash tree whose leaves are the hashes of t secret key elements in a given
pool. Accordingly, one FORS instance has κ trees, each of height log t = τ .

Figure 1 depicts the signatures of message 100 011 110 using (a) HORS and
(b) FORS, where κ = 3 and t = 8. In FORS, the first 3 bits, i.e., 100, of the
message selects sk4, the secret key corresponding to the 4-th leaf indexed from
the left and starting from 0 in the first tree along with its authentication path to
root0. Similarly, the second (resp. third) 3 bits of the message selects sk3 (resp.
sk6) from the second (resp. third) tree with the authentication path to root1
(resp. root2). In HORS, the three 3-bit parts of the message index sk4, sk3, and
sk6 from the same tree, and with each selected secret key a 3 node authentication
path is selected, hence the overlap in the node (colored in pale red and gray)
at the pre-root level. More details about hash trees and authentication path
calculations are provided in Sect. 4.

root

(a) HORS signature within a binary tree construction

root2root1root0

(b) FORS signature within κ binary trees construction

Fig. 1. HORS and FORS signatures of the message 100 011 110 where κ = 3 and t = 8.
The 8 rectangles under each tree depict the eight secret keys whose hashes are stored
in the corresponding leaf nodes.

It can be verified from Fig. 1 that if two 3-bit parts of the message are equal,
then the same secret key value is revealed in HORS. This fact is exploited in
the weak messages attack where an adversary searches for messages that have
as many repeated indices as possible, which lead to ORSs containing fewer dis-
tinct elements, and thus can be easily covered with the ORSs of the revealed r
messages. However, this problem is mitigated in FORS because repeated indices
select secret keys from different pools. In what follows, we investigate the security
of FORS with respect to non-adaptive chosen message attacks.

3.1 FORS in a Non-adaptive Setting

Reyzin and Reyzin introduced clear attack models for analyzing HBFT signature
schemes against (non) adaptive chosen message attacks [23]. Such models are
used in the analysis of all HORS-variants, i.e., PORS, and FORS. Specifically,

Hash-Based Signatures Revisited 245

in a non-adaptive setting, also referred to by r-target subset resilience prob-
lem (see Definition 3), an adversary is required to first choose r messages
m1,m2, . . . ,mr, after which they are provided with key k of Hk and allowed
to select a message mr+1 and evaluate Hk(mr+1). A successful non-adaptive
chosen message attack happens when the adversary is able to find Cr

κ, i.e., find
a message mr+1 that is in an r-subset cover relation with m1,m2, . . . ,mr. This
scenario corresponds to an attacker who is trying to forge a signature after
observing all r allowed signatures per key, or an adversary who is allowed r
queries at a time before being supplied with k to verify any of the returned
signatures. Few-time signature schemes are expected to maintain their security
against forgery attacks even after releasing all r signatures.

Finding Cr
κ in FORS. Given an adversary who observed the signatures of r

messages, finding a message mr+1 that is in an r−subset cover relation with the
other r messages (Cr-FORS

κ (m1,m2, . . . ,mr+1)) has probability of success (r/t)κ

[6], which is equal to the probability that each log t-bit element out of the κ
elements in ORS(mr+1) is covered by an element at the same position of the
ORSs of the other r messages, i.e., hi(mr+1) ∈ ⋃r

j=1 hi(mj) for 0 ≤ i ≤ κ − 1,
where hi(mj) denotes the i-th ORS element of the j-th message. Accordingly,
the corresponding bit-security against non-adaptive chosen message attacks is
given by

log2(t/r)κ = κ(log2 t − log2 r).

3.2 Adaptive Chosen Message Attack Against FORS

In this setting, an adversary is given the hash key k and allowed to evaluate Hk

for any message of their choice before selecting r + 1 messages. This attack also
indicates the r-subset resilience of the signature algorithm (see Definition 2). The
definition of adaptive chosen message attack is given in AppendixB. Applying
the same analysis to FORS, given the key k of Hk, an adversary A generates
the ORSs of q > r messages offline, where Hk(mi) = h0||h1||. . . ||hκ−1 and
ORS(mi) = {h0, h1, . . . , hκ−1}, for 0 ≤ i ≤ q − 1 A searches for all possible
combinations of (r + 1) message sets from the set of q messages. For any given
r+1 messages combination, the probability that message mr+1 is covered by the
remaining r messages (i.e., Cr-FORS

κ (m1,m2, . . . ,mr+1)), is (r/t)κ. Accordingly,
A obtains

(
q

r+1

)
sets of r + 1 messages and each set gives

(
r+1

r

)
possible choices

for mr+1. Therefore, the probability of A successfully generating Cr-FORS
κ is

bounded from above by

SuccCrFORS
κ (A) ≤

(
q

r + 1

)(
r + 1

r

)
(r/t)κ,

SuccCr-FORS
κ ≤ q

(
q − 1

r

)
(r/t)κ,

SuccCr-FORS
κ (A) ≤ q.(q − 1) . . . (q − r)

r!
(r/t)κ.

246 M. Yehia et al.

which can be approximated by

SuccCr-FORS
κ (A) ≤ qr+1

r!
(r/t)κ.

Assuming a success probability close to 1, the above equation can be expressed as

(r + 1) log2 q − log2 r! +κ(log2 r − log2 t) = 0.

Then the bit security of FORS with respect to adaptive chosen message attacks
is given by

κ

r + 1
(log2 t − log2 r) +

log2 r!
r + 1

.

One may conclude that due to the offline adversarial advantage given to A (i.e.,
knowledge of k implies the feasibility of evaluating ORSs for more than r mes-
sages of their choice), FORS bit security against adaptive chosen message attacks
decreases by a factor of (r + 1) when compared to the non-adaptive setting. Note
that, currently there is no attack against SPHINCS+ that can utilize the offline
adversarial privileges and produce r + 1 messages in an r-subset cover relation.
This is because SPHINCS+ uses a fixed pseudorandom generation of the key k to
get the obtained random subset ORSκ(Hk(m)). We also note that k is message
dependent and is sent in the clear with each signature so verification takes place.
Accordingly, in the event of attacks on the process by which k is evaluated from
m, a dramatic decrease in the security of SPHINCS+ will follow. Consequently, in
the following section we present a technique that is robust against adaptive cho-
sen message attacks on FORS. Our mechanism annihilates the adversarial offline
advantages associated with knowing the hash key k.

4 Dynamic Forest of Random Subsets (DFORS)

In this section we present Dynamic Forest Of Random Subsets DFORS, a new
HORS-variant that mitigates the offline advantage of an adversary which leads to
the adaptive chosen message attack on FORS (discussed in Sect. 3). The main fea-
ture of DFORS is that the generation of the ORS is performed concurrently with
signing such that each signature element is utilized to generate the next element of
the ORS. In other words, signing and ORS generation are bound together using a
chaining mechanism that utilizes the revealed secret keys. This procedure ensures
that given a message, only the signer is able to efficiently generate an ORS. By
doing so, even if an adversary has knowledge of k, they are not able to compute
ORSs of a given message of their choice unless they have some secret key knowl-
edge. In what follows we give a detailed specification of DFORS.

4.1 DFORS Parameters

DFORS uses the following parameters.

n : The security parameter and the bit-length of (i) the secret seed SK.seed,
(ii) secret keys ski,j (0 ≤ i ≤ t − 1, 0 ≤ j ≤ κ − 1), (iii) public key PK.root,
and (iv) the output of the used one way function F , and hash function G.

Hash-Based Signatures Revisited 247

κ : The number of (i) sub-strings of the input message, (ii) secret key pools
where each contains t secret keys, and (iii) hash trees.
τ : The bit length of a sub-string of the input message and the hash tree
height.
t : the number of secret keys per pool and the number of leaves in each hash
tree, t = 2τ .

The input message for DFORS is of length κ log t = κτ bits. To achieve n-bit
security when signing r messages, we have κτ > n (see Sect. 5.1).

4.2 Key Generation

In what follows, we give the specifications of the secret and public key generation
procedures. Moreover, DFORS is described in Algorithm 2.

Secret Key Generation. Let SK.seed denote an n-bit secret seed that is
sampled at random. Given a pseudorandom function, PRF : {0, 1}n ×{0, 1}n →
{0, 1}n, the n-bit κt secret key values ski,j , 0 ≤ i ≤ t − 1, 0 ≤ j ≤ κ − 1 are
generated by

ski,j = PRF (SK.seed, i + jt),

where each set of t secret keys belong to one of the κ pools.

Hash Trees and Public Key Generation. Using one-way function F :
{0, 1}n → {0, 1}n applied on the secret keys ski,j , 0 ≤ i ≤ t−1, 0 ≤ j ≤ κ−1, the
leaf nodes of the κ hash trees are generated, Li,j = F (ski,j). Every t leaves, L∗,j ,
are combined together in a Merkle tree construction to form the j-th (out of κ)
tree. Then, the roots of these κ trees, root0, root1, . . . , rootκ−1, are concatenated
to form an input to the hash function to get the n-bit public key expressed as

PK.root = Gk(root0||root1||. . . ||rootκ−1).

Binary Hash Tree. DFORS uses the XMSS binary Merkle tree construction [9].
The height of the binary hash tree is τ . It has τ + 1 levels, t = 2τ leaf nodes
(each of size n bits) on level 0, i.e., Li, 0 ≤ i ≤ t − 1, and an n-bit root node on
level τ . We denote the nodes in level j by Ni,j where 0 ≤ i < 2τ−j , 0 ≤ j ≤ τ
and Ni,0 = Li. To construct the tree, the hash function G and a 2n-bit mask, q,
per hash evaluation are used. These bit masks are introduced to provide second-
preimage resistance. The rationale for using different bit masks for each hash
evaluation is to mitigate multi-target attacks [17]. For details on generating the
hash keys Ki,j and bit masks qi,j , the reader is referred to [4,17]. Formally, for
0 < j ≤ τ , a node Ni,j is given by

Ni,j = Gki,j
((N2i,j−1||N2i+1,j−1) ⊕ qi,j).

Figure 2 shows a simplified example of one of the κ trees in DFORS with t = 8.
Assuming it is the j-th tree, it depicts the nodes in the authentication path
(colored in gray) associated with revealing sk3,j .

248 M. Yehia et al.

level3

level2

level1

level0

Tree Root

L0 L1 L2 L3 L4 L5 L6 L7

Fig. 2. A binary hash tree with the nodes in the authentication path (colored in gray)
for leaf node L3 (colored in black)

4.3 Signing and ORS Generation

We denote by Z(h) a function that takes as input κτ bits, h, and outputs the
j-th τ bits of h, where j = h mod κ. Formally, Z : {0, 1}κτ → {0, 1}τ , and letting
h = h0||h1||. . . ||hκ−1, for 0 ≤ j ≤ κ − 1

Z(h) : hj ← {h0||h1||. . . ||hκ−1}, j = h mod κ.

The signing algorithm takes as input the message m, the secret seed SK.seed,
and the hash key k. It constructs the κ trees as explained above in Sect. 4.2. To
compute the κ random subset ORSκ(m) = (b0, b1, . . . , bκ−1), the algorithm first
evaluates Hk(m) = h0, then computes Z(h0) = b0. The first element in the
signature, sig0, is comprised of i) the secret key of index b0 in the first pool,
σ0 = skb0,0, and ii) the corresponding authentication path Auth0, thus sig0 =
σ0, Auth0. Next, h0 and skb0,0 are used to choose the second random element,
Z(h1) = b1, where h1 = Hskb0,0(h

0||h0). The second signature element, sig1, is
the secret key of index b1 in the second pool, σ1 = skb1,1, and its corresponding
authentication path Auth1, sig1 = σ1, Auth1. In general, the i-th element of
the ORSκ(m) is given by Z(hi) = bi where hi = Hskbi−1,i−1(h

0||hi−1). The i-th
signature element, sigi, is the secret key value of index bi in the i-th pool and its
corresponding authentication path Authi, sigi = σi, Authi, where σi = skbi,i.
The above process is repeated until κ elements are generated (b0, b1, . . . , bκ−1).
Finally, the signature is given by

Σ = (sig0, sig1, . . . , sigκ−1) = (skb0 , Auth0, skb1 , Auth1, . . . , skbκ−1 , Authκ−1)

= (σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1).

The ORS generation and signing process is illustrated in Fig. 3.
The authentication path of a leaf Li contains all the sibling nodes of the nodes

in the path from the leaf Li to the tree root. It is required so that the verifier can
successfully generate the root in order to verify the signature element σi related
to the leaf node Li. Figure 2 shows a simple hash tree with the authentication
path for leaf L3 colored in black and the authentication path nodes colored in
gray, Authi = (L2, N0,1, N1,2).

Hash-Based Signatures Revisited 249

...

h0 = Hk(m) → h0
0 h0

1
. . . h0

j0
= b0 . . . h0

κ−1

h1 = Hskb0
(h0 ‖ h0) → h1

0
. . . h1

j1
= b1 . . . h1

κ−1

hκ−2 = Hskbκ−3
(h0 ‖ hκ−3) → hκ−2

0 hκ−2
1

. . . h
κ−2
jκ−2

. . . hκ−2
κ−1

hκ−1 = Hskbκ−2
(h0 ‖ hκ−2) → hκ−1

0
. . . h

κ−1
jκ−1

. . . hκ−1
κ−1

bκ−1

bκ−2

ORSκ(m) → b0 b1 . . . bκ−2 bκ−1

Fig. 3. The DFORS procedure to compute ORSκ(m), where ji = hi mod κ, bi = hi
ji

,
and skbi is the bi-th secret key in the i-th secret key pool.

4.4 Signature Verification

The verification algorithm takes as input the message m, the public
key PK.root, the hash key K, and the signature Σ = (σ0, Auth0, σ1,
Auth1, . . . , σκ−1, Authκ−1). It computes Hk(m) = h0, then Z(h0) = b0 to get
the leaf index of the first hash tree. Then, it applies the one-way function F
to the signature element σ0 of the signature Σ to get the leaf node Lb0 in the
first tree. The authentication path Auth0 and the leaf Lb0 are used to compute
the root of the first tree. The leaf index b0 is required so that the verifier knows
which node is concatenated on the right and on the left. The tree root calcula-
tion procedure is described in Algorithm1. Generally, the verification algorithm
computes the i-th tree root by applying Algorithm1 on σi, Authi, and the leaf
index bi where bi = Z(hi), and hi = Hσi−1(h

0||hi−1). This process is repeated
until κ tree roots are computed which are then concatenated to form an input
to the hash function G. If the output of G is equal to PK.root, the signature is
valid, otherwise verification fails.

Algorithm 1. Tree Root Computation
Input: Leaf node Li, Leaf index i, Auth. Path = (A0, A1, . . . , Aτ−1).
Output: The Tree Root Nτ .

Set N0 ← Li

for 1 ≤ j ≤ τ do
if �i/2j−1� ≡ 0 mod 2 then

Nj = Gki,j (Nj−1||Aj−1 ⊕ qi,j)
else

Nj = Gki,j (Aj−1||Nj−1 ⊕ qi,j)
end if

end for
Return (Nτ)

250 M. Yehia et al.

Algorithm 2. DFORS Algorithm
procedure Key Generation(t, κ)

SK.seed
R←− {0, 1}n

for 0 ≤ j ≤ κ − 1 do
for 0 ≤ i ≤ t − 1 do

ski,j ← PRF (SK.seed, i + jt)
Li,j ← F (ski,j)

end for
end for
Compute the roots of the κ tree as described in section 4.2
PK.root ← G(root0||root1||. . . ||rootκ−1)
Output (SK.seed, PK.root)

end procedure

procedure Signing(m, SK.seed,k, κ, t)
Generate the κ binary hash trees as in key generation procedure
h0 ← Hk(m), h0 = h0

0||h0
1||. . . ||h0

κ−1

b0 ← Z(h0) = h0
j0 , j0 = h0 mod κ

sig0 ← (σ0, Auth0), Where σ0 = skb0,0

for 1 ≤ i ≤ κ − 1 do
hi ← Hskbi−1,i−1(h

0||hi−1), hi = hi
0||hi

1||. . . ||hi
κ−1

bi ← Z(hi) = hi
ji

, ji = hi mod κ
sigi ← (σi, Authi), where σi = skbi,i

end for
Σ ← (σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1)
Output (Σ,m)

end procedure

procedure Verification(m, PK.root, k, Σ = (σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1))
h0 ← Hk(m), h0 = h0

0||h0
1||. . . ||h0

κ−1

b0 ← Z(h0) = h0
j0 , j0 = h0 mod κ

Lb0 ← F (σ0)
root0 ← Algorithm 1 (Lb0,0, b0, Auth0)
for 1 ≤ i ≤ κ − 1 do

hi ← Hσi−1(h
0||hi−1), hi = hi

0||hi
1||. . . ||hi

κ−1

bi ← Z(hi) = hi
ji

, ji = hi mod κ
Lbi ← F (σi)
rooti ← Algorithm 1 (Lbi,i, bi, Authi)

end for
if G(root0||root1||. . . ||rootκ−1) = PK.root then

out = 1
else

out = 0
end if
Output (out)

end procedure

5 Security and Efficiency

In what follows, we analyze the security of DFORS and demonstrate the effect of
the dynamic chaining on the security of FORS. Afterwards, the computational cost
of the DFORS key generation, signing, and verification algorithms are presented.
The bit size of the signature and keys are also given.

Hash-Based Signatures Revisited 251

5.1 DFORS Security Analysis

In this section, we present a detailed analysis of DFORS with respect to weak-
message attacks and r-target subset resilience adversaries. More precisely, since
the proposed chaining technique does not allow an adaptive adversary who has
knowledge of k to compute the ORSs of any message of their choice before asking
the signing oracle for its signature, DFORS is essentially r-subset resilient. Hence,
our analysis focuses on its security when an adversary is given the signatures of
r messages.

Weak-Message Attacks. DFORS inherits FORS mitigation to weak-message
attacks [6] because it specifies an independent key pool for each index in the ORS.
Consequently, even if an ORS element is repeated, the corresponding revealed
secret keys will be different.

r-Target Subset Resilience. According to Definition 3, we assume an adver-
sary A when given the ORSs of r messages will return mr+1 where
Cr

κ(m1,m2, . . . ,mr+1). In what follows, we show that the success probability
of A is bounded from above by (r/t)κ. Note that since ORS generation is secret
key dependent, the ORS function of DFORS is intrinsically r-subset resilient.
In other words, the value of any random ORS element, bi, depends on the pre-
viously revealed signature element σi−1 = skbi−1 and the original message m.
Accordingly, without any oracle queries, A has no feasible function to evaluate
ORSs of messages of their choice. On the other hand, if A is given the signa-
tures of r messages or they queried r messages of their choice, they need to
find a message mr+1 such that each element in its obtained random subset,
ORSDFORS

κ (mr+1) = (b0, b1, . . . , bκ−1), is covered by the elements at the same
corresponding positions in the ORSs of the other r messages

Cr
κ(m1,m2, . . . ,mr+1) ⇔ bi(mr+1) ∈

r⋃

j=1

bi(mj), 0 ≤ i ≤ κ − 1.

Due to the chaining process in generating b0, b1, . . . , bκ−1, A generates the ORSs
sequentially. At any position i, if bi(mr+1) /∈ ∪r

j=1bi(mj), then A fails. In addi-
tion, they cannot evaluate bi+1 = Z(Hskbi

(h0||hi)) when skbi
is not revealed

by any of signatures of the r messages, Generally, for the i-th position in
ORSDFORS

κ (mr+1)

bi(mr+1) /∈
r⋃

j=1

bi(mj) ⇒ skbi
/∈

r⋃

j=1

σi(mj),

where σi(mj) and bi(mj) denote the i-th signature element and i-th ORS ele-
ment of the j-th message, respectively. Thus, the probability that A finds
Cr

κ(m1,m2, . . . ,mr+1) successfully is equal to their probability of finding a

252 M. Yehia et al.

message mr+1 such that ∀i ∈ {0, 1, . . . , κ − 1}, each of the log t-bit bi(mr+1) ∈
{bi(m1), bi(m2), . . . , bi(mr)}. Since A is given r messages, the probability of
finding a cover for one bi(mr+1) is (r/t)i+1 because this implies that ∀j <
i; bj(mr+1) ∈ {bj(m1), bj(m2), . . . , bj(mr)}. Thus, the probability of finding a
cover for all the κ elements in ORSDFORS

κ is equal to the probability of finding a
cover for the last element, bκ−1(mr+1), which is (r/t)κ. Therefore

SuccCr-DFORS
κ (A) ≤ (r/t)κ,

so the corresponding DFORS bit-security against adaptive chosen message
attacks is

log2(t/r)κ = κ(log2 t − log2 r).

Compared to the adaptive chosen message attack security of FORS (See
Sect. 3), the bit security of DFORS is higher by a factor of (r + 1). The extra
cost is performing κ−1 more calls to the hash function. Unlike FORS, the signing
procedure cannot be parallelized because of the chaining mechanism.

5.2 Theoretical Efficiency

Key Generation. This procedure requires κt PRF function computations to
generate the t secret values for κ pools, κt one-way function F computations
to compute the leaf nodes of the hash trees, and κ(t − 1) + 1 hash function G
evaluations to evaluate the κ hash trees and get the public key PK.root.
Signing. This procedure requires κt PRF function computations, κt one-way
function F computations, κt hash function (H and G) to compute the κ hash
trees (κ(t − 1) hash G calls), and κ hash H calls to get ORSκ(m). Note that
the whole tree structure is computed with each signature, otherwise, the scheme
storage requirements will be huge.
Verification. This procedure requires κ one-way function F computations that
compute the trees leaves, κ(τ +1) hash function (H and G) evaluations to recon-
struct the κ trees roots from the revealed secret values and the authentication
paths (κτ calls to G), and κ calls H to get ORSκ(m).
Signature Size. The signature contains κ secret key elements and κτ tree node
for the associated authentication paths. Thus, the signature size is κn(τ + 1)
bits, where n is the bit size of each secret keys and hash tree node.
Length of Keys. The size of the secret key, SK.root, is equal to that of the public
key, PK.root, and it is n bits.

The computational complexities of the above procedures are given in Table 2.

5.3 Comparison with HORS Variants

DFORS inherits all the advantageous security properties of FORS. Addition-
ally, it is secure against adaptive chosen message attacks. In fact, for the same
parameters the bit-security of DFORS with respect to adaptive chosen message

Hash-Based Signatures Revisited 253

adversaries is equal to that of FORS under non-adaptive chosen message attacks.
Table 1 gives a comparison between the bit security level of FORS and DFORS
in an adaptive adversarial setting. We use the recommended parameters (i.e., n,
τ , and κ) for all six instances of SPHINCS+.

Table 1. DFORS and FORS security levels for an adaptive chosen message attack
using the SPHINCS+parameters for different numbers of signed messages

SPHINCS+ instance τ κ FORS DFORS

r = 1 r = 2 r = 4 r = 8 r = 1 r = 2 r = 4 r = 8

SPHINCS+-128s 15 10 75 47 27 15 150 140 130 120

SPHINCS+-128f 9 30 135 80 43 22 270 240 210 180

SPHINCS+-192s 16 14 112 70 40 22 224 210 196 182

SPHINCS+-192f 8 33 132 77 41 20 264 231 198 165

SPHINCS+-256s 14 22 154 95 54 29 308 286 264 242

SPHINCS+-256f 10 30 150 90 49 25 300 270 240 210

Table 2. Comparison between HORS, PORS, FORS, and DFORS

Algorithm KGen (# OWF)† Signing

cost

Verification

cost

Signature

size‡
SK/PK size‡ Adaptive

security

HORST t PRF t PRF κ(log t − 1 NO

t OWF t OWF κ OWF x + 1)+

t − 1 Hash t Hash κ(log t − x) +

2x†† Hash

2x††

PORS‡‡ t PRF t + κ PRF κ(log t − 1 NO

t OWF t OWF κ OWF �log κ�+1)

t − 1 Hash t Hash κ(log t − x −
1) + 2x†† Hash

FORS κt PRF κt PRF κ(log t + 1) 1 NO

κt OWF κt OWF κ OWF

κ(t − 1) + 1 Hash κ(t − 1) + 1 Hash κ log t + 1

Hash

DFORS κt PRF κt PRF κ(log t + 1) 1 YES

κt OWF κt OWF κ OWF

κ(t − 1) + 1 Hash κt Hash κ(log t + 1)

Hash

† OWF denotes one-way function.

‡ Size is given as a factor of n bits.

†† x = �log κ� for optimal signature size in case of HORST and for the upper bound on the signature size

in PORS.

‡‡ Verification cost and signature size are the upper bound values.

254 M. Yehia et al.

Table 1 shows the significant effect of increasing the number of signed mes-
sages, r, on the bit security of FORS. On the other hand, this effect is very
reasonable with DFORS. For instance, when r = 1, an adaptive attack on FORS
is equivalent to a collision attack on the underlying κτ -bit hash function H which
has a complexity of 2κτ/2 evaluations. However, due to the r-subset resilience
of DFORS where finding a covered ORS requires successive dependency on the
signature elements, an adversary must find a second preimage of the ORS in the
revealed secret keys, hence the complexity is 2κτ evaluations.

Table 2 presents a comparison between DFORSand other HORS variants with
respect to their computational efficiency, signature and key sizes, and security
against adaptive chosen message attacks.

6 Conclusion

We analyzed the security of FORS, the underlying hash-based few-time signing
scheme of SPHINCS+, with respect to adaptive chosen message attacks. We
showed that as the number of signed messages, r, increases, its bit-security with
respect to adaptive chosen message adversaries decreases significantly compared
to its non-adaptive counterpart. As a solution, we proposed DFORS, which builds
on FORS but utilizes a secret key dependent ORS function. Such a function binds
the process of generating the ORS with signing which makes it feasible only
for the signer. Accordingly, we showed that the bit security of DFORS against
adaptive chosen message attacks is more than that of FORS by a factor of r +1.
Note that our analysis does not affect the claimed security of SPHINCS+ but
rather provides a better understanding of the security of its underlying signing
scheme and offers a mechanism that can be adopted by most HORS variants to
provide security against adaptive chosen message attacks.

Acknowledgment. The authors would like to thank the reviewers for their valuable
comments that helped improve the quality of the paper.

A HORS Specification

The HORS key generation, signing, and verification procedures are given in
Algorithm 3.

Hash-Based Signatures Revisited 255

Algorithm 3. HORS Algorithm
procedure Key Generation(t)

Generate the secret key SK at random, SK = (sk0, sk1, . . . , skt−1)
Compute the public key PK = pk0, pk1, . . . , pkt−1 = f(sk0), f(sk1), . . . , f(skt−1)
Output (SK, PK)

end procedure

procedure Signing(m, κ, SK,k)
Compute h = Hk(m), h = h0||h1||. . . ||hκ−1.
ORSκ(m) = {h0, h1, . . . , hκ−1}.
σ = (σ0, σ1, . . . , σκ−1) = (skh0 , skh1 , . . . , skhκ−1)
Output (σ)

end procedure

procedure Verification(m, κ, σ, PK,k)
Compute h = Hk(m), h = h0||h1||. . . ||hκ−1

ORSκ(m) = {h0, h1, . . . , hκ−1}
for 0 ≤ i ≤ κ − 1 do

if f(σi) = pkhi then
out = 1

else
out = 0
break

end if
end for
Output (out)

end procedure

B Adaptive Chosen Message Attack against HORS

In [23], the following adaptive chosen message attack against HORS was defined.
Let A be an adaptive chosen message adversary against HORS such that given
the key k, A can compute the hash of any message m and ORSκ(m) offline.
Given a security parameter, n, under the birthday paradox, A can find r + 1
messages in a cover relation Cr

κ with which to query the signing oracle, formally

Pr[k ← K, (m1,m2, . . . ,mr+1) ← A(k) : Cr
κ(m1,m2, . . . ,mr+1)] ≤ negl(n).

Aumasson and Endignoux [2] subsequently presented an adaptive chosen
message attack against HORS and proved that the security level decreases by a
factor of r + 1 when compared to non adaptive chosen message attacks. Their
attack is as follows. Given an adversary A and a key k, the hash value Hk(m) for
any message of their choice can be computed, and say there are q > r messages.
For all possible combinations of (r+1) messages from the q messages, A searches
for Cr−HORS

κ (m1,m2, . . . mr+1) such that

Cr−HORS
κ ⇔ ORS(mr+1) ∈

r⋃

j=1

ORS(mj).

256 M. Yehia et al.

For any given subset, the probability of being an r-subset-cover relation is
(rκ/t)κ. The number of (r + 1)-message combinations which A can construct
from the q messages are

(
q

r+1

)
and each combination can form

(
r+1

r

)
choices.

Accordingly, their probability of success in defeating the r-subset resilience (SR)
is given by

Succr−SR
HORS(A) ≤

(
q

r + 1

)(
r + 1

r

)
(
rκ

t
)κ ≤ q

(
q − 1

r

)
(
rκ

t
)κ.

Assuming a success probability close to 1, the security level of HORS against an
adaptive chosen message attack is

κ

r + 1
(log2 t − log2 κ − log2 r) +

log2 r!
r + 1

.

References

1. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019)

2. Aumasson, J.-P., Endignoux, G.: Clarifying the subset-resilience problem. IACR
Cryptology ePrint Archive, p. 909 (2017)

3. Aumasson, J.-P., Endignoux, G.: Improving stateless hash-based signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76953-0 12

4. Bernstein, D., et al.: SPHINCS+-submission to the NIST post-quantum project
(2017)

5. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

6. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pp. 2129–2146 (201 9)

7. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 20

8. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 23

9. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

10. Centre, NCSR: Round 2 submissions - Post-quantum cryptography (2019). https://
csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

https://doi.org/10.1007/978-3-319-76953-0_12
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-25405-5_8
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3

Hash-Based Signatures Revisited 257

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

13. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Isr. J. Math. 51(1), 79–89 (1985)

14. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

15. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards.
In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6 5

16. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

17. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

18. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

19. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report, CSL-98, SRI International Palo Alto (1979)

20. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

21. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol. In:
Proceedings of the ACM Conference on Computer and Communications Security,
pp. 28–37 (2001)

22. Pieprzyk, J., Wang, H., Xing, C.: Multiple-time signature schemes against adaptive
chosen message attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 88–100. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24654-1 7

23. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing
and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp.
144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0 11

24. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Proceedings of the Annual Symposium on Foundations of Computer
Science, pp. 124–134 (1994)

26. Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca,
M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11659-4 15

27. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Nieder-
reiter’s public-key cryptosystems. IEEE Trans. Inf. Theory 40(1), 271–273 (1994)

https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-35999-6_5
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-540-24654-1_7
https://doi.org/10.1007/978-3-540-24654-1_7
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/978-3-319-11659-4_15

LMS vs XMSS: Comparison of Stateful
Hash-Based Signature Schemes on ARM

Cortex-M4

Fabio Campos1(B), Tim Kohlstadt1(B), Steffen Reith1(B), and Marc Stöttinger2(B)

1 Department of Computer Science,
RheinMain University of Applied Sciences, Wiesbaden, Germany

campos@sopmac.de, tim.kohlstadt@student.hs-rm.de, steffen.reith@hs-rm.de
2 Continental AG, Hanover, Germany

marc.stoettinger@continental-corporation.com

Abstract. Stateful hash-based signature schemes are among the most efficient
approaches for post-quantum signature schemes. Although not suitable for gen-
eral use, they may be suitable for some use cases on constrained devices. LMS
and XMSS are hash-based signature schemes that are conjectured to be quan-
tum secure. In this work, we compared multiple instantiations of both schemes
on an ARM Cortex-M4. More precisely, we compared performance, stack con-
sumption, and other figures for key generation, signing and verifying. To achieve
this, we evaluated LMS and XMSS using optimised implementations of SHA-
256, SHAKE256, Gimli-Hash, and different variants of KECCAK. Furthermore,
we present slightly optimised implementations of XMSS achieving speedups of
up to 3.11× for key generation, 3.11× for signing, and 4.32× for verifying.

Keywords: LMS · XMSS · Implementation · Hash-based signatures · Digital
signature · Post-quantum cryptography

1 Introduction

Digital-signature schemes are among the most important and widely used cryptographic
primitives. Schemes used in practice today (RSA [30], DSA [14], ECDSA [20], and
EdDSA [4]) are based on assumptions regarding the computational difficulty of solv-
ing certain mathematical problems. Due to Shor’s algorithm [32] and its variants, some
of these problems, such as integer factorisation and discrete logarithms, can be effi-
ciently solved on a quantum computer. Since the National Institute of Standards and
Technology (NIST) started a project (NIST-PQC1) to evaluate and standardise post-
quantum cryptographic algorithms, many solutions have been proposed. Hash-based
signature schemes (HBS) are among the most attractive candidates for quantum-safe

Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf.

1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 258–277, 2020.
https://doi.org/10.1007/978-3-030-51938-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_13&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/978-3-030-51938-4_13

LMS vs XMSS: Comparison on ARM Cortex-M4 259

signature schemes. Every signature scheme requires a hash function to reduce a mes-
sage to a small representation that can be easily signed. While other signature schemes
rely on additional computational hardness assumptions, hash-based approaches only
needs a secure hash function. HBS have been intensively analysed [5,10,13,16,27]
and the two schemes discussed in this work are currently undergoing a standardisation
process [18,26]. The Leighton-Micali Signature system (LMS) [26] and the eXtended
Merkle Signature Scheme (XMSS) [18] have been proposed in the Internet Engineer-
ing Task Force (IETF) as quantum-secure HBS. NIST proposed [11] to approve the use
of LMS and XMSS and their multi-tree variants Hierarchical Signature System (HSS)
and multi-tree XMSS (XMSSMT), respectively. This recommendation suggests the use
of some of the parameter sets from the RFCs and defines some new parameter sets.
It considers SHA-256 or SHAKE256 as underlying hash functions, with outputs of
192-bit or 256-bit length. HBS provide through the choice of parameters several trade-
offs between time and size. Hence, the parameter selection has a major impact on how
feasible it is to deploy HBS on resource-constrained environments such as embedded
microcontrollers. In this work, we chose a subset of parameters from the suggested sets
of the NIST recommendation which are suitable for embedded devices.

Due to the popularity and widespread use of Cortex-M4 microcontrollers in dif-
ferent applications, NIST recommended it to submission teams as an optimisation tar-
get for the second round of NIST-PQC. The pqm42 project [22] investigates the fea-
sibility and performance of the proposed NIST-PQC approaches on microcontrollers.
It provides a framework for testing and benchmarking NIST-PQC submissions on a
Cortex-M4 microcontroller. It includes reference and optimised implementations of
key-encapsulation mechanisms and signature schemes. The implementations and mea-
surements in our work were realised within the pqm4 framework.

Related Work. Many aspects regarding the implementations of HBS have been stud-
ied in the literature. Rohde, Eisenbarth, Dahmen, Buchmann, Paar [31] presented the
first implementation of GMSS [8], an improvement of Merkle’s hash-based signa-
ture scheme, on an 8-bit smart-card microprocessor. Hülsing, Busold, Buchmann [17]
implemented a variant of XMSS on a 16-bit smart card. A comparison between state-
ful and stateless HBS was given by Hülsing, Rijneveld, Schwabe [19]. For this, the
authors implemented SPHINCS and XMSSMT on an ARM Cortex M3. Van der Laan,
Poll, Rijneveld, de Ruiter, Schwabe, Verschuren [23] presented an implementation of
XMSS on the Java Card platform. Kannwischer, Rijneveld, Schwabe, Stoffelen [22]
presented the pqm4 framework for testing, speed benchmarking, and measurement of
stack consumption of NIST-PQC submissions on an ARM Cortex-M4 microcontroller.
Kampanakis, Fluhrer [21] provided the only comparison between LMS and XMSS on
a x86-architecture regarding their security assumptions, signature/public key sizes, per-
formance, and some other aspects.

Our Contribution. This paper aims at comparing stateful HBS on microcontrollers. To
achieve this, LMS and XMSS and their multi-tree variants were compared on an ARM

2 https://github.com/mupq/pqm4.

https://github.com/mupq/pqm4

260 F. Campos et al.

Cortex-M4. For this, we provide an adapted implementation of LMS for the Cortex-M4,
which represents the first implementation to date to the best of the authors’ knowledge.
We evaluated suitable parameter sets for constrained devices from the NIST recommen-
dation for stateful hash-based signature schemes [11]. Furthermore, deviating from the
RFC 8391 [18], we slightly modified the reference implementation of XMSS, leading
to noticeable speedups. We provide a comparative performance and stack consump-
tion analysis for several parameter sets of the instantiated versions of LMS and XMSS.
Thereby we instantiate both HBS with several optimised hash functions. All software
and results described in this paper are available in the public domain. It is publicly
available at https://doi.org/10.5281/zenodo.3631571. Further, we refer to the respective
projects included in our implementation for licensing information.

Organisation. The remainder of this document is structured as follows. First, we
start by giving preliminary information on hash-based signature schemes. In Sect. 3,
we reflect the main structural differences between LMS and XMSS. Details about the
implemented hash functions and the approaches to speed up XMSS are presented in
Sect. 4. Our implementation results are given in Sect. 5. Next, we discuss the results and
draw a conclusion in Sect. 6. Finally, Appendix A contains further evaluated results.

2 Hash-Based Signature Schemes

While the security of other post-quantum cryptographic approaches like isogeny-based
cryptography is still object to further research, hash-based schemes come with well-
understood security assumptions.

Both discussed stateful schemes in this work use a tree construction along with a
variant of a one-time signature schemes (OTS). Unlike in stateless schemes, in LMS
and XMSS the signer needs to keep track of which key pairs have already been used.
Therefore, the current state (index) is stored in the secret key, indicating which key pair
to use next. XMSS provides methods to decrease the worst case runtime by keeping
state information beyond the index [9]. To allow a fair comparison, this have not been
considered in this work.

2.1 One-Time Signature Schemes

Many techniques have been proposed for constructing OTS schemes [7,24,27]. One of
the most prominent OTS is the Winternitz OTS (WOTS) scheme [27], which is rela-
tively efficient, has been used in practice and allows space/time trade-offs. LMS and
XMSS use variants of WOTS.

Winternitz One-Time Signature Scheme. The main idea of all WOTS variants is to
use a function chain to sign multiple bits starting from random inputs. The key gener-
ation is processed as shown in Algorithm 1, where n is the security parameter, w is (a
power of 2) the “Winternitz parameter”, and f : {0,1}∗ → {0,1}n defines a one-way
function. Thereby, f w−1 should be interpreted as the (w−1)-th iteration of the one-way

https://doi.org/10.5281/zenodo.3631571

LMS vs XMSS: Comparison on ARM Cortex-M4 261

function f . Increasing the value of the Winternitz parameter w will linearly shrink the
size of a signature and increase exponentially the effort to perform key generation, sign-
ing and verification. Thus, the Winternitz parameter w enables space/time trade-offs.

Algorithm 1: Key generation.
Input : security parameter n, Winternitz paramater w.
Output: one-time key pair: (secret key X , public key Y).

1 �1 ← �n/ log2(w)�
2 �2 ← �log2(�1(w−1))/ log2(w)�+1
3 � ← �1 + �2
4 for i= 0, ..., �−1 do

5 xi
$←− {0,1}n // sampled uniformly at random

6 yi ← f w−1(xi)

7 return ((x0,x1, ...,x�−1),(y0,y1, ...,y�−1))

In order to protect against trivial attacks, a checksum C is computed and signed
along with the message, as shown in Algorithm 2 in line 5–7. A signature is computed
by mapping the i-th chunk of M′ to one intermediary value of the respective function
chain, by iterating the one-way function M′

i times. As shown in Algorithm 3, in WOTS
the public key can be calculated directly from the signature.

Algorithm 2: Signing.
Input : message M, secret key X , security parameter n, Winternitz parameter w.
Output: signature σ .

1 �1 ← �n/ log2(w)�
2 �2 ← �log2(�1(w−1))/ log2(w)�+1
3 � ← �1 + �2
4 (M0,M1, ...,M�1−1) ← split(M) // split M into log2(w)-bit chunks

5 C ← ∑�1−1
i=0 w−1−Mi

6 C ← pad(C) // pad C with zeros if necessary
7 M′ ← M ||C // concatenate M and C
8 (M′

0,M
′
1, ...,M

′
�−1) ← split(M′) // split M′ into log2(w)-bits chunks

9 for i= 0, ..., �−1 do
10 σi ← f M

′
i (xi)

11 return (σ0,σ1, ...,σ�−1)

According to [13], assuming f is a collision-resistant one-way function, this scheme
is existentially unforgeable under chosen-message attacks. XMSS makes use of the vari-
ant WOTS+. WOTS+, proposed by Hülsing [16], introduced a slight modification of the
chaining function by adding a random bitmask ri for each iteration, such that f 0(x) = x,
and f i(x) = f (f i−1(x)⊕ ri) for i > 0. This modification eliminates the requirement for
a collision resistant hash function.

262 F. Campos et al.

Algorithm 3: Verifying.
Input : signature σ , message M, public key Y , security parameter n, Winternitz

parameter w.
Output: valid or invalid.

1 �1 ← �n/ log2(w)�
2 �2 ← �log2(�1(w−1))/ log2(w)�+1
3 � ← �1 + �2
4 (M0,M1, ...,M�1−1) ← split(M) // split M into log2(w)-bit chunks

5 C ← ∑�1−1
i=0 w−1−Mi

6 C ← pad(C) // pad C with zeros if necessary
7 M′ ← M ||C // concatenate M and C
8 (M′

0,M
′
1, ...,M

′
�−1) ← split(M′) // split M′ into log2(w)-bits chunks

9 for i= 0, ..., �−1 do
10 if ((f w−1−M′

i (σi)) �= yi) then
11 return invalid

12 return valid

2.2 Many-Time Signature Schemes

Merkle trees enable the use of a single long-term public key created from a large set
of OTS public keys. In the following we will only briefly describe the methods for the
construction of many-time schemes and refer to [26] and [18] for further details on the
respective approach.

Merkle Trees. Based on the idea of one-time signature schemes Merkle’s approach
[27] is to construct a balanced binary tree (a so-called Merkle Tree) using a given hash
function to enable the use of a single public key (root of the tree) for verifying several
messages. A signer generates 2h one-time key pairs (Xj,Yj) where 0 ≤ j < 2h for a
selected h∈N and h≥ 2. The leaves of the tree are represented by the public keys Xj of
the OTS which are derived from the secret keys Yj for 0 ≤ j < 2h. Parameter h defines
the height of the resulting binary tree whose inner nodes are represented by the value
computed as n= f (nl || nr), where nl and nr are the values of the left and right children
of n. To verify a signature at leaf with index i, one additionally needs the authentication
path of i which is a sequence of h nodes. This authentication path contains the siblings of
all the nodes on the path between leaf i and the root. Thus summarizing, a signature on a
message m contains the one-time signature on m produced using Xj, the authentication
path, and the index j to indicate which key pair of the OTS was used.

Multi-trees. Rather than scaling up a single tree, LMS and XMSS define single and
multi-tree (hypertree) variants of their signature schemes. In the multi-tree variant, the
trees on the lowest layer are used to sign messages and the trees on higher layers are
used to sign the roots of the trees on the layer below. Considering a hypertree of total
height h that has d layers of trees of height h/d, the top layer d− 1 contains one tree,

LMS vs XMSS: Comparison on ARM Cortex-M4 263

Fig. 1. Overview with L-trees and WOTS chains (adopted from [34], Fig. 1). Grey nodes are the
private keys and the black nodes the public keys of the WOTS chains. The black node at the top
is the public key.

layer d−2 contains 2(h/d) trees, and so on. Finally, the lowest layer contains 2(h−(h/d))

trees. In order to generate the public key, only the single tree at the top of the structure
needs to be generated. This requires generating the OTS keys along the bottom of this
tree. The lower trees are generated deterministically as required. Thus, for a given h,
key generation in a hypertree is faster than in a single tree. A signature consists of all
the signatures on the way to the highest tree. Hence, the signature size increases and
signing and verifying takes slightly longer. The root of the top-level tree is the public
key. For further details on the multi-tree variants of LMS and XMSS, we refer to [26]
and [18], respectively.

3 Comparison

Roughly speaking, LMS and XMSS have a very similar construction. Both schemes use
Merkle trees [27] along with a variant of WOTS. For this reason, we will focus on the
most relevant structural differences of the schemes.

LMS and XMSS use different notations to specify equivalent parameters. As shown
in Table 1, we define a common notation for parameters used in this work. For further
details on the definition of the parameters, we refer to [26] and [18].

3.1 Prefixes and Bitmasks

In order to move away from collision resistance and towards collision resilience, within
LMS and XMSS whenever an input is hashed, a specific prefix is added to the input. In
the case of XMSS as mentioned in Sect. 2.1, WOTS+ [16] requires a random bitmask for
each chaining iteration as additional input. Although LMS and XMSS apply different
mechanisms to strengthen the security, the underlying constructions are very similar.

264 F. Campos et al.

Table 1. Notation.

Symbol Meaning XMSS LMS

n Security parameter � length of the hash digest (in bits) n n

h Height of the tree or hypertree in a multi-tree variant h h

d Number of Merkle Trees in the multi-tree variant d L

w Winternitz parameter w 2w

� Number of Winternitz chains used in a single OTS operation len p

To describe this principle theoretically, Bernstein, Hülsing, Kölbl, Niederhagen,
Rijneveld, Schwabe [5] introduced an abstraction called tweakable hash functions (Th)
as follows.

Definition 1 (Tweakable hash function): Let n,α ∈ N,P be the public parameters
space, and T be the tweak space. A tweakable hash function is an efficient function

Th : P ×T ×{0,1}α → {0,1}n, MD ← Th(P,T,M)

mapping an α-bit message M to an n-bit hash value MD using a public parameter
P ∈ P , also called function key, and a tweak T ∈ T .

Thus, a tweakable hash function adds specific context information (tweak) and pub-
lic parameters (function key) to the input. According to this definition, the constructions
within LMS and XMSS can roughly be described as follows.

Construction 1 (Prefix construction/LMS): Given a hash function H : {0,1}2n+α →
{0,1}n, we construct Th with P = T = {0,1}n, as

Th(P,T,M) = H(P||T ||M).

Construction 2 (Prefix and bitmask construction/XMSS): Given two hash functions
H1 : {0,1}2n × {0,1}α → {0,1}n with 2n-bit keys, and H2 : {0,1}2n → {0,1}α , we
construct Th with P = T = {0,1}n, as

Th(P,T,M) = H1(P||T,M⊕), with M⊕ =M⊕H2(P||T).

As defined in Construction 2, while XMSS additionally generates distinct random
inputs for each invocation of the hash function, LMS provides inputs with predictable
changes to the hash function. Construction 1 reduces the effort, but comes in return
at the cost of stronger security assumptions. For further details on the security model
of LMS and XMSS, we refer to [21] and for further security notions for the defined
constructions, we refer to [5].

3.2 WOTS Public Key Compression

Both schemes combine the public keys (final values) of a WOTS chain into an n-bit
value. While LMS hashes them together as a single message (see Fig. 2), XMSS uses
a tree (called L-tree) to compress these values (see Fig. 1). The construction in XMSS
obviously leads to a higher number of hash operations.

LMS vs XMSS: Comparison on ARM Cortex-M4 265

4 LMS and XMSS on the Cortex-M4

In the case of XMSS3, we removed all file-based procedures and implemented an inter-
face to the pqm4 framework. For this, we used a slightly modified version of the pqm4
framework. This modification allows updating the secret key during the signing process
by not passing the secret key as a constant. Thus, we enable the signing algorithm to
be stateful. For further practical considerations around statefulness in this context, we
refer to [25]. To port the reference implementation of LMS4 to Cortex-M4, apart from
smaller modifications, we integrated the single-thread version, and turned floating-point
operations off.

4.1 Implemented Hash Functions

Primarily for the purpose of speedup and to achieve a broader comparison range, we
integrated two more lightweight hash functions in addition to those recommended by
NIST [11] (SHA-256 and SHAKE256) and already available in pqm4. In particular,
we additionally evaluated LMS and XMSS using different variants of KECCAK and
Gimli-Hash.

KECCAK-f [800]. KECCAK-f describes a family of permutations originally spec-
ified in [1]. The KECCAK-p permutations within KECCAK-f are specified by a
fixed width of the permutation (b) and the respective number of rounds (nr)
required. Furthermore, the permutation is denoted by KECCAK-p[b,nr], where b ∈
{25,50,100,200,400,800,1600} and nr ∈ {12,14,16,18,20,22,24}. Thus, according
to [28], KECCAK-f [800], a permutation with 800 bits of width, applies to KECCAK-
p[800, 22]. For further details on KECCAK, we refer to [1] and [28].

In the case of KECCAK-f [800], we additionally considered a KECCAK permuta-
tion with only 12 rounds (KECCAK-p[800, 12] similar to River Keyak5) to reduce the
computational workload per hash invocation. Evidently, a reduced number of rounds
provides a smaller safety margin than the full 22 rounds recommended for KECCAK-
f [800] [28]. Nevertheless, since the best known practical collision attack against SHA-3
exists only up to 5 rounds [15], the margin provided by 12 rounds is still comfortable.
In a similar manner, Aumasson [2] proposed a general revision of the number of rounds
of widely used symmetric primitives to speed up the standards without increasing the
security risk. Furthermore to achieve a certain security level, we set the capacity c= 256
as specified in River Keyak (see footenote 5).

Gimli-Hash. The family of hash functions Gimli-Hash is built on top of a 384-bit
permutation called Gimli. The Gimli permutation [6] was designed to achieve high
security with high performance. According to the authors, the proposed permutation
is distinguished from other permutation-based primitives for its high cross-platform
performance. Furthermore, one of the core idea of Gimli was to define one standard that

3 https://github.com/XMSS/xmss-reference, commit fb7e3f8.
4 https://github.com/cisco/hash-sigs, commit 5efb1d0.
5 https://keccak.team/files/Keyakv2-doc2.2.pdf.

https://github.com/XMSS/xmss-reference
https://github.com/cisco/hash-sigs
https://keccak.team/files/Keyakv2-doc2.2.pdf

266 F. Campos et al.

Fig. 2. Overview without L-trees (adopted from [34], Fig. 1). Grey nodes are the private keys and
the black nodes the public keys of the WOTS chains. The black node at the top is the public key.

achieves high performance in lightweight as well as in non-lightweight environments.
Due to the selected design, Gimli fits into 14 easily usable integer registers on 32-bit
ARM microcontrollers. Gimli-Hash works on a 48-byte state with a rate of 16-byte.

We chose Gimli-Hash as an exemplary approach for the current round-2 candidates
in NIST’s Lightweight Cryptography Standardisation6 process. It is of practical impor-
tance to investigate the performance of the remaining candidates.

4.2 Speeding up XMSS

In this section, we discuss three methods for speeding up XMSS deviating from RFC
8391 [18]. The first described technique replaces the tree-based WOTS public-key com-
pression with a single hash call. This approach was first proposed in SPHINCS+ [3].
The second one, a structure omitting the use of bitmasks (the so-called “simple” ver-
sion) was proposed in the round-2 submission of SPHINCS+ [3] at NIST-PQC. Finally,
we describe a technique called “hash pre-computation”. This approach was first men-
tioned by Kampanakis, Fluhrer [21] and first described by Wang, Jungk, Wälde, Deng,
Gupta, Szefer, Niederhagen [34]. Thereby, recurring intermediate results of a certain
type of hash calls are temporarily stored and reused in the subsequent hash calls.

All these methods lead to speedups during key generation, signing and verifying.
However, during the signature verification, the hash pre-computation method only leads
to small speedups in certain parameter sets. Although the methods presented in the
following can also be implemented in other cases, in this work we will mainly focus on
the parameter sets from Table 3. Other approaches, which lead to possible speedups in
both LMS and XMSS, were intentionally not considered in this work.

Other acceleration methods, such as storing some top nodes in the secret key [12],
applying a more efficient tree traversal scheme [33] (already part of the XMSS reference
implementation7 and our implementation), or instantiating the schemes with shorter
hash functions, were intentionally not considered in this work. Although these methods

6 https://csrc.nist.gov/projects/lightweight-cryptography.
7 https://github.com/XMSS/xmss-reference, commit fb7e3f8.

https://csrc.nist.gov/projects/lightweight-cryptography
https://github.com/XMSS/xmss-reference

LMS vs XMSS: Comparison on ARM Cortex-M4 267

Fig. 3. Hash pre-computation within KECCAK-f [800] with a rate of 512 bits.

lead to significant speedups, they can be applied in LMS and XMSS and therefore have
no fundamental impact in our comparison.

The instantiation of the different parameter sets is managed by conditional compila-
tion. In the case of XMSS, the modifications presented in this section are also controlled
by preprocessing allowing to compile different versions of XMSS.

Tree-Less WOTS+ Public Key Compression. As described in SPHINCS+ [3], we
compress the end nodes of the WOTS chains (black nodes in Fig. 2) with a single call
to a tweakable hash function, as shown in Fig. 2. A tree-based compression (see L-
trees in Fig. 1) is slower than using a single call to a tweakable hash function with the
concatenated digest of all end nodes of the WOTS chains (see black nodes in Fig. 2) as
input.

Bitmask-Less Hashing. In this construction no bitmasks are generated and XORed
with the input of the tweakable hash functions. In this case, the tweakable hash function
is defined according to Construction 1 instead of Construction 2 (see Sect. 3.1). For the
resulting implications for security by applying Construction 1 in XMSS, we strongly
refer to [5].

Hash Pre-computation. Within XMSS, for a given key pair and a security parameter
n, the first 2n-bit block (n-bit domain separator and n-bit hash-function key) of the input
to the pseudo-random function (of type F : {0,1}3n → {0,1}n) is the same for all calls.
Considering this fact, we store the digest of the first 2n-bit block at the first call to the
pseudorandom function (PRF) and skip this effort by reusing this result in all further
calls. This approach can easily be applied whenever the internal block size/rate of the
used hash function is less than or equal to 2n bits. Depending on the internal block size
of the used hash function, the number of saved calls to the internal compression respec-
tively permutation function (SpeedupPRF) can be calculated as follows. Let Bbits ≥ 2n
bits be the internal block size/rate in bits and #callPRF be the number of calls to the
PRF, then

SpeedupPRF(Bbits,#callPRF) = �2n bits/Bbits�∗#callPRF .

268 F. Campos et al.

As in Fig. 3 exemplified for the case of KECCAK-f [800] and n = 256, this method
can basically be applied in every sponge construction, by reducing the rate to 2n bits
whenever the rate is longer than 2n bits. Hence, even in the case n = 256, it can be
implemented in SHAKE256 (KECCAK-f [1600]) by reducing the width of the rate from
1088 bits to 2n bits. However, in hash calls apart from the PRF invocations this would
increase the number of permutations required for inputs longer than 2n bits. A “hybrid
approach” (not considered in this paper) with variable rate width (512 bits for PRF calls
and 1088 for other hashing cases) could lead to a possible acceleration.

In the case of SHA-256 and n = 256, where the 512-bit block fits into a 512 bit
SHA-256 internal block, this approach reduces the number of calls to the compression
function by half. According to the standard definition [28] in KECCAK-f [800] with a
capacity of 256-bit length, the length of the rate should be 544 bits. In order to enable
hash pre-computation, we reduced the length of the rate to 512 bits. In other words,
the rate within an instantiation of XMSS using KECCAK-f [800] applying hash pre-
computation is 512 bits long, while a version without hash pre-computation makes use
of the whole 544 bits. This modified design with a longer capacity obviously has no
negative influence on the security of the hash function. In the case of KECCAK-f [800],
this approach reduces the number of required permutations by half. Since the rate in the
sponge construction within Gimli-Hash is 128 bits long, it results in saving 4 permuta-
tion runs per PRF invocation.

From now on as shown in Table 2, we call an implementation of XMSS with L-trees
using Construction 2 (see Sect. 3.1) without hash pre-computation XMSS_ROBUST, the
variant without L-trees using Construction 1 XMSS_SIMPLE, and the one without L-trees
applying Construction 1 and hash pre-computation XMSS_SIMPLE+PRE. The multi-tree
variants are called XMSSMTROBUST, XMSSMTSIMPLE, and XMSSMTSIMPLE+PRE, respec-
tively. XMSS_ROBUST and XMSSMTROBUST represent the current version of XMSS from
RFC 83918.

Table 2. Implemented variants of XMSS.

Design Multi-tree Tree-less WOTS+ Bitmask-less hashing Pre-computation

XMSS_ROBUST

XMSS_SIMPLE • •
XMSS_SIMPLE+PRE • • •
XMSSMTROBUST •
XMSSMTSIMPLE • • •
XMSSMTSIMPLE+PRE • • • •

5 Evaluation

We measured the performance of our implementations on a commercially available
microcontroller. We use the widely available board STM32F4DISCOVERY featuring
a 32-bit ARM Cortex-M4 with FPU core, 1-Mbyte Flash ROM, and 192-Kbyte RAM.

8 https://tools.ietf.org/html/rfc8391.

https://tools.ietf.org/html/rfc8391

LMS vs XMSS: Comparison on ARM Cortex-M4 269

Table 3. Selected parameter sets.

Scheme n w h Layer Signature size (bits)

LMS 256 16 5 1 2352

LMS 256 256 5 1 1296

LMS 256 16 10 1 2512

LMS 256 256 10 1 1456

XMSS 256 16 5 1 2340

XMSS 256 16 10 1 2500

HSS 256 16 10 2 4756

HSS 256 256 10 2 2644

XMSSMT 256 16 10 2 4642

The reference implementation of LMS9 and XMSS10 provided the basis for our imple-
mentation. The methods used for cycle counter reading, device communication at run-
time, and hardware-based random byte generation were provided by the pqm411 frame-
work. This framework in turn includes the libopencm312 library for providing these
methods. All test instances were compiled with GNU Tools for ARM Embedded Pro-
cessors 9-2019-q4-major13 (gcc version 9.2.1 20191025 (release) [ARM/arm-9-branch
revision 277599]) using the flags:
-03 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16.

We additionally evaluated LMS and XMSS using optimised assembly implemen-
tations of KECCAK-f [800] (KeccakP-800-u2-armv7m-le-gcc) from the eXtended
Keccak Code Package14 and of the Gimli15 (arm-m4 version) permutation.

In this work, LMS and XMSS share the same implementations to perform the hash
computations, clock-cycle measurement, and stack analysis, hence yielding an unbi-
ased comparison. The selection of the evaluated parameter sets is based on the recom-
mendation of NIST [11]. The parameter sets from Table 3 were implemented in com-
bination with Gimli-Hash, KECCAK (KECCAK-p[800,22] and KECCAK-p[800,12]),
SHAKE256, and SHA-256. The resulting signature size for each parameter set is also
shown in Table 3.

As shown in Table 4, the implemented modifications in XMSS and XMSSMT lead
to significant speedups. XMSS_SIMPLE achieves a speedup of up to 3.03× for key gen-
eration and signing, and up to 4.32× for verifying. In combination with the hash pre-
computation approach, key generation and signing achieve accelerations up to 3.11
times. However, when applying the hash pre-computation method, a speedup only

9 https://github.com/cisco/hash-sigs, commit 5efb1d0.
10 https://github.com/XMSS/xmss-reference, commit fb7e3f8.
11 https://github.com/mupq/pqm4, commit 8136c82.
12 https://libopencm3.org/.
13 https://developer.arm.com/.
14 https://github.com/XKCP/XKCP, commit 035a8ff.
15 https://gimli.cr.yp.to/impl.html, version 2017.06.27.

https://github.com/cisco/hash-sigs
https://github.com/XMSS/xmss-reference
https://github.com/mupq/pqm4
https://libopencm3.org/
https://developer.arm.com/
https://github.com/XKCP/XKCP
https://gimli.cr.yp.to/impl.html

270 F. Campos et al.

Table 4. Speedup in XMSS and XMSSMT exemplary with SHA-256.

Design w h Layer Key gena Signa Verifya

XMSS_ROBUST 16 5 1 738.46 747.85 13.84

XMSS_SIMPLE 16 5 1 243.25 247.72 3.20

Speedup factorb 3.03 3.01 4.32

XMSS_SIMPLE+PRE 16 5 1 237.27 241.02 3.73

Speedup factorb 3.11 3.10 3.71

XMSS_ROBUST 16 10 1 23631.70 23642.03 13.07

XMSS_SIMPLE 16 10 1 7784.50 7788.56 3.67

Speedup factorb 3.03 3.03 3.56

XMSS_SIMPLE+PRE 16 10 1 7586.15 7589.49 4.20

Speedup factorb 3.11 3.11 3.11

XMSSMTROBUST 16 10 2 738.43 1498.06 27.67

XMSSMTSIMPLE 16 10 2 243.49 494.55 7.77

Speedup factorc 3.03 3.03 3.56

XMSSMTSIMPLE+PRE 16 10 2 237.26 481.73 7.77

Speedup factorc 3.11 3.11 3.56
a All results (apart from speedup) are given in 106 clock cycles.
b Compared to XMSS_ROBUST.
c Compared to XMSSMTROBUST.

occurs in certain parameter sets, mostly when the number of rounds of the hash function
and the number of calls to the PRF are large enough to compensate for the additional
effort. In the case of verification, a speedup through hash pre-computation occurred
rarely (see Table 9 and Table 10).

Table 5. Number of hash operations for SHA-256, n= 256, and w= 16.

LMS XMSS_SIMPLE Ratioa HSS XMSSMTSIMPLE Ratiob

Key gen 1105990 1100800 0.99 34566 34400 0.99

Sign 2216417 2202194 0.99 112542 104371 0.93

Verify 2217208 2202686 0.99 113493 105359 0.93
a XMSS_SIMPLE/LMS
b XMSSMTSIMPLE/LMS

LMS vs XMSS: Comparison on ARM Cortex-M4 271

Reducing the number of rounds in KECCAK-f [800] to 12 instead of 22 yields a
speedup of up to roughly 1.66× for key generation and signing, and 1.72× for verifying
in all implemented variants of XMSS, and up to roughly 1.70× for key generation
and signing, and 1.76× for verifying in all implemented variants of LMS (see Table 9,
Table 10, and Table 11).

Table 6. Performance comparison for SHA-256, n= 256, w= 16, and h= 10.

LMS XMSS_ROBUST Ratioa XMSS_SIMPLE Ratiob XMSS_SIMPLE+PRE Ratioc

Key gend 3774.88 23631.70 6.26 7792.23 2.06 7586.15 2.01

Signd 3791.15 23642.03 6.23 7796.39 2.05 7596.24 2.00

Verifyd 2.65 13.07 4.93 3.57 1.34 4.20 1.58
a XMSS_ROBUST/LMS
b XMSS_SIMPLE/LMS
cXMSS_SIMPLE+PRE/LMS
d All results (apart from ratio) are given in 106 clock cycles.

Structurally, XMSS_SIMPLE, the variant without L-trees using Construction 1, differs
only marginally from LMS. To confirm this analysis, we measured the number of hash
operations required in LMS and XMSS_SIMPLE. As Table 5 shows, XMSS_SIMPLE and
XMSSMTSIMPLE hash operations are almost equivalent to LMS and HSS, respectively.
As shown in Table 6, although the changes in XMSS result in a slightly smaller number
of hash calls than in LMS, LMS unexpectedly requires fewer clock cycles for all tested
cases. We further measured the time spent performing hash operations for each scheme.
The results of this measurement are given in Table 7. In both schemes, at least 85% of
the time was spent on performing the hash computations. XMSS spends 15% of the
evaluated time on computing other operations, while LMS spends up to 94% of time on
hashing.

Table 7. Percentage of time on hashing for SHA-256, n= 256, w= 16, h= 10, and d = 2.

HSS XMSSMTSIMPLE

Key gen 92% 85%

Sign 92% 85%

Verify 94% 85%

272 F. Campos et al.

During key generation, the stack consumption of XMSS is on average slightly
higher than for LMS. However, as shown in Table 8, the difference during signing and
verification is 1.6× and almost 4× as high, respectively.

Table 8. Stack memory usage (bytes) for XMSSMT and HSS using Gimli-Hash.

Scheme Hash type w h Layer Key gen Sign Verify

XMSSMTROBUST Gimli-Hash 16 5 2 3560 3704 3604

XMSSMTSIMPLE Gimli-Hash 16 5 2 3512 3656 3600

XMSSMTSIMPLE+PRE Gimli-Hash 16 5 2 3484 3672 3572

HSS Gimli-Hash 16 5 2 3528 2268 936

HSS Gimli-Hash 256 5 2 3528 2268 980

The round-reduced version of KECCAK (KECCAK-p[800, 12]) achieved the best
performance (see Table 9, Table 10, and Table 11) while Gimli-Hash the lowest stack
consumption (see Table 12).

A complete overview of our results can be found in Appendix A.

6 Conclusion

We showed that the current reference implementation of LMS with some required mod-
ifications achieves good performance results on a Cortex-M4. Further, we presented
that the implemented modifications in XMSS lead to a significant speedup. Although
the XMSS_SIMPLE version of XMSS is structurally very similar to LMS, LMS still
achieves significantly better performance. Therefore, these performance differences are
not based on properties of the schemes but rather on properties of the reference imple-
mentation. In addition, the currently discussed correct selection of safety margins for
round-based symmetric cryptographic primitives is also considered in this work. In con-
sidering the fact that post-quantum approaches are more resource intensive than those
currently in use, it is worth considering round-reduced and lightweight designs and
concepts of hash functions in an embedded environment.

Our results based on reference implementations should merely give an idea on how
practical the evaluated stateful schemes could be in an embedded environment.

Acknowledgment. The work presented in this paper has been partly funded by the Ger-
man Federal Ministry of Education and Research (BMBF) under the project “QuantumRISC”
(16KIS1034) [29].

LMS vs XMSS: Comparison on ARM Cortex-M4 273

A Further Results

A.1 Speed and Stack Memory

Speed is measured in CPU clock cycles. Stack memory (bytes) excludes the space
required to store key material, messages, and in the case of hash pre-computation the
intermediate state.

Table 9. Speed in clock cycles for XMSS and LMS for h= 5.

Design Hash type w h d Key gen Sign Verify

XMSS_ROBUST Gimli-Hash 16 5 1 1048850892 1063994437 17850167

XMSS_SIMPLE Gimli-Hash 16 5 1 345097734 351135622 4843341

XMSS_SIMPLE+PRE Gimli-Hash 16 5 1 35652023 341236863 4991976

LMS Gimli-Hash 16 5 1 210439959 226186258 4601931

LMS Gimli-Hash 256 5 1 1688484184 1808265632 38644523

XMSS_ROBUST KECCAK-p[800, 22] 16 5 1 1162653236 1179847660 19384572

XMSS_SIMPLE KECCAK-p[800, 22] 16 5 1 380333946 387149205 5183652

XMSS_SIMPLE+PRE KECCAK-p[800, 22] 16 5 1 369894358 375718141 5838576

LMS KECCAK-p[800, 22] 16 5 1 180384764 193651049 4108963

LMS KECCAK-p[800, 22] 256 5 1 1445029158 1550179966 35721222

XMSS_ROBUST KECCAK-p[800, 12] 16 5 1 699127232 709176591 11945544

XMSS_SIMPLE KECCAK-p[800, 12] 16 5 1 230594112 234234392 3625308

XMSS_SIMPLE+PRE KECCAK-p[800, 12] 16 5 1 225063121 228715963 3444956

LMS KECCAK-p[800, 12] 16 5 1 106406966 114348011 2325050

LMS KECCAK-p[800, 12] 256 5 1 848547880 909533298 20963781

XMSS_ROBUST SHAKE256 16 5 1 1569880839 1593969977 25282729

XMSS_SIMPLE SHAKE256 16 5 1 515089881 523679528 7643266

LMS SHAKE256 16 5 1 482690432 519083330 10541350

LMS SHAKE256 256 5 1 3882760965 4165192023 92414919

XMSS_ROBUST SHA-256 16 5 1 738461396 747855715 13842083

XMSS_SIMPLE SHA-256 16 5 1 243254582 247726301 3207473

XMSS_SIMPLE+PRE SHA-256 16 5 1 237275019 241026688 3735483

LMS SHA-256 16 5 1 117988963 126516806 2576515

LMS SHA-256 256 5 1 941182086 1009663117 23252036

Table 10. Speed in clock cycles for XMSS and LMS for h= 10.

Design Hash type w h d Key gen Sign Verify

XMSS_ROBUST Gimli-Hash 16 10 1 33564541776 33577999022 19809084

XMSS_SIMPLE Gimli-Hash 16 10 1 11043410042 11048855367 5499037

XMSS_SIMPLE+PRE Gimli-Hash 16 10 1 10741004533 10746291644 5350407

LMS Gimli-Hash 16 10 1 6732401742 6760950108 4735761

LMS Gimli-Hash 256 10 1 54029816692 54252236257 41774596

XMSS_ROBUST KECCAK-p[800, 22] 16 10 1 37206439782 37224119943 19141666

XMSS_SIMPLE KECCAK-p[800, 22] 16 10 1 12156299702 12162295897 6023986

XMSS_SIMPLE+PRE KECCAK-p[800, 22] 16 10 1 11836857885 11842845219 5754294

LMS KECCAK-p[800, 22] 16 10 1 5770801259 5795821406 4082342

(continued)

274 F. Campos et al.

Table 10. (continued)

Design Hash type w h d Key gen Sign Verify

LMS KECCAK-p[800, 22] 256 10 1 46239422162 46435056305 35772292

XMSS_ROBUST KECCAK-p[800, 12] 16 10 1 22373006810 22383060343 12090021

XMSS_SIMPLE KECCAK-p[800, 12] 16 10 1 7379129292 7382968494 3460242

XMSS_SIMPLE+PRE KECCAK-p[800, 12] 16 10 1 7202125901 7205678899 3591854

LMS KECCAK-p[800, 12] 16 10 1 3403971523 3418764578 2445893

LMS KECCAK-p[800, 12] 256 10 1 27152481832 27267386528 20218474

XMSS_ROBUST SHAKE256 16 10 1 50237912742 50263977292 23600738

XMSS_SIMPLE SHAKE256 16 10 1 16483247517 16490948379 8606414

LMS SHAKE256 16 10 1 15443962652 15509782696 10611902

LMS SHAKE256 256 10 1 124246229161 124768084452 92485431

XMSS_ROBUST SHA-256 16 10 1 23631706453 23642038600 13071813

XMSS_SIMPLE SHA-256 16 10 1 7784507955 7788564498 3676358

XMSS_SIMPLE+PRE SHA-256 16 10 1 7586158652 7589495830 4201201

LMS SHA-256 16 10 1 3774882103 3791157911 2658884

LMS SHA-256 256 10 1 30117102840 30244495755 22424231

Table 11. Speed in clock cycles for XMSSMT and HSS for h= 10 with 2 layers.

Design Hash type w h d Key gen Sign Verify

XMSSMT ROBUST Gimli-Hash 16 10 2 1048850426 2132881606 33496306

XMSSMT SIMPLE Gimli-Hash 16 10 2 345098305 701246056 10713254

XMSSMT SIMPLE+PRE Gimli-Hash 16 10 2 335652685 681899583 10564618

HSS Gimli-Hash 16 10 2 210440071 478103461 5782431

HSS Gimli-Hash 256 10 2 1688484230 3829196649 49449332

XMSSMT ROBUST KECCAK-p[800, 22] 16 10 2 1162646143 2359535503 41171355

XMSSMT SIMPLE KECCAK-p[800, 22] 16 10 2 379877664 772410324 11268039

XMSSMT SIMPLE+PRE KECCAK-p[800, 22] 16 10 2 369895178 751777787 11335455

HSS KECCAK-p[800, 22] 16 10 2 180384846 410370171 4730609

HSS KECCAK-p[800, 22] 256 10 2 1445029240 3283683503 41004008

XMSSMT ROBUST KECCAK-p[800, 12] 16 10 2 699115534 1420918009 23592244

XMSSMT SIMPLE KECCAK-p[800, 12] 16 10 2 230594929 468987052 6745119

XMSSMT SIMPLE+PRE KECCAK-p[800, 12] 16 10 2 225063940 457454439 6882114

HSS KECCAK-p[800, 12] 16 10 2 106407050 242305287 2781069

HSS KECCAK-p[800, 12] 256 10 2 848547971 1926719634 24063701

XMSSMT ROBUST SHAKE256 16 10 2 1569879645 3190288610 50539786

XMSSMT SIMPLE SHAKE256 16 10 2 515090566 1046239697 16371600

HSS SHAKE256 16 10 2 482690353 1095714785 12421365

HSS SHAKE256 256 10 2 3882761056 8805213845 117271251

XMSSMT ROBUST SHA-256 16 10 2 738439917 1498069037 27673083

XMSSMT SIMPLE SHA-256 16 10 2 243495342 494559179 7775017

XMSSMT SIMPLE+PRE SHA-256 16 10 2 237269504 481736648 7775063

HSS SHA-256 16 10 2 117989078 268526114 3082339

HSS SHA-256 256 10 2 941182212 2140447370 26690663

LMS vs XMSS: Comparison on ARM Cortex-M4 275

Table 12. Stack memory usage (bytes) for XMSS and LMS for h ∈ {5,10}, and for XMSSMT

and HSS.

276 F. Campos et al.

References

1. Keccak implementation overview version 3.0. https://keccak.team/obsolete/Keccak-
implementation-3.0.pdf. Accessed 30 Apr 2019

2. Aumasson, J.P.: Too much crypto. Cryptology ePrint Archive, Report 2019/1492 (2019).
https://eprint.iacr.org/2019/1492. (version: 20200103:101600)

3. Bernstein, D.J., et al.: SPHINCS+ - Submission to the NIST post-quantum project (2017).
https://sphincs.org/data/sphincs+-specification.pdf

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security sig-
natures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/s13389-012-0027-1

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The
SPHINCS+ signature framework. In: Wang, X.F., Katz J. (eds.) Conference on Computer
and Communications Security (CCS 2019), pp. 17–43. ACM (2019, to appear)

6. Bernstein, D.J., et al.: GIMLI : a cross-platform permutation. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4_15

7. Bleichenbacher, D., Maurer, U.M.: Optimal tree-based one-time digital signature schemes.
In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 361–374. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9_30

8. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures
with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.) ACNS 2007.
LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72738-5_3

9. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In: Buchmann, J.,
Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88403-3_5

10. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme
basedonminimal securityassumptions. In:Yang,B.-Y. (ed.)PQCrypto2011.LNCS,vol.7071,
pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8

11. Cooper, D., Apon, D., Dang, Q., Davidson, M., Dworkin, M., Miller, C.: Recommendation
for stateful hash-based signature schemes. Technical report, National Institute of Standards
and Technology (2019)

12. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-preimage
resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299,
pp. 109–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_8

13. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005).
https://doi.org/10.1007/11586821_8

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

15. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical collision attacks against
round-reduced SHA-3. J. Cryptol. 33(1), 228–270 (2019). https://doi.org/10.1007/s00145-
019-09313-3

16. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In: Youssef,
A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_10

17. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards. In: Knud-
sen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6_5

https://keccak.team/obsolete/Keccak-implementation-3.0.pdf
https://keccak.team/obsolete/Keccak-implementation-3.0.pdf
https://eprint.iacr.org/2019/1492
https://sphincs.org/data/sphincs+-specification.pdf
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/3-540-60922-9_30
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/11586821_8
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-35999-6_5

LMS vs XMSS: Comparison on ARM Cortex-M4 277

18. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: extended Merkle
signature scheme. RFC 8391, 1–74 (2018). https://doi.org/10.17487/RFC8391

19. Hülsing, A., Rijneveld, J., Schwabe, P.: ARMed SPHINCS. In: Cheng, C.-M., Chung, K.-
M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 446–470. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_17

20. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm
(ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/10.1007/s102070100002

21. Kampanakis, P., Fluhrer, S.: LMS vs XMSS: comparison of two hash-based signature stan-
dards. IACR Cryptology ePrint Archive: Report 2017/349 (2017)

22. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-quantum crypto
library for the ARM Cortex-M4. https://github.com/mupq/pqm4

23. van der Laan, E., Poll, E., Rijneveld, J., de Ruiter, J., Schwabe, P., Verschuren, J.: Is Java card
ready for hash-based signatures? In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol.
11049, pp. 127–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97916-8_9

24. Lamport, L.: Constructing digital signatures from a one-way function. Technical report,
Technical Report CSL-98, SRI International Palo Alto (1979)

25. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann, J.: State
management for hash-based signatures. In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR
2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49100-4_11

26. McGrew, D.A., Curcio, M., Fluhrer, S.R.: Leighton-Micali hash-based signatures. RFC
8554, 1–61 (2019). https://doi.org/10.17487/RFC8554

27. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

28. National Institute of Standards and Technology: FIPS 202: Permutation-Based Hash and
Extendable-Output Functions (2015)

29. QuantumRISC: QuantumRISC – Next Generation Cryptography for Embedded Systems
(16KIS1034) (2020). https://www.quantumrisc.org/

30. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

31. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast hash-based signatures
on constrained devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol.
5189, pp. 104–117. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85893-
5_8

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Rev. 41(2), 303–332 (1999)

33. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3_32

34. Wang, W., et al.: XMSS and Embedded Systems - XMSS Hardware Accelerators for RISC-
V. Cryptology ePrint Archive, Report 2018/1225 (2018). https://ia.cr/2018/1225 (version:
20190522:113021)

https://doi.org/10.17487/RFC8391
https://doi.org/10.1007/978-3-662-49384-7_17
https://doi.org/10.1007/s102070100002
https://github.com/mupq/pqm4
https://doi.org/10.1007/978-3-319-97916-8_9
https://doi.org/10.1007/978-3-319-49100-4_11
https://doi.org/10.1007/978-3-319-49100-4_11
https://doi.org/10.17487/RFC8554
https://doi.org/10.1007/0-387-34805-0_21
https://www.quantumrisc.org/
https://doi.org/10.1007/978-3-540-85893-5_8
https://doi.org/10.1007/978-3-540-85893-5_8
https://doi.org/10.1007/978-3-540-24676-3_32
https://ia.cr/2018/1225

Lattice Based Cryptography

Round Optimal Secure Multisignature
Schemes from Lattice with Public Key
Aggregation and Signature Compression

Meenakshi Kansal(B) and Ratna Dutta

Indian Institute of Technology Kharagpur, Kharagpur, India
{kansal,ratna}@maths.iitkgp.ernet.in

Abstract. This paper presents the first construction for an efficient mul-
tisignature (MS) in the lattice setting, achieving signature compression
and public key aggregation simultaneously with single round signature
generation. The multisignature size in our construction is the same as
that of a single signature. The verification of a multisignature can be per-
formed with the aggregated public key and the verifier gets convinced
that the message has been signed by all the signers. More positively, our
aggregated public key size is also the same as that of a single signer.

Additionally, we extend our multisignature to an accountable sub-
group multisignature (ASM) that permits any subset of potential signers
to sign a common message with the property that the signature reveals
the identities of the signers to any verifier. Our ASM scheme enjoys the
same efficiency as that of our MS scheme without incurring any loss in
the security reduction. We design our schemes in the plain public key
model where there is no need to verify individual public keys. Our con-
structions are built in the standard lattice and are proven to be secure
under the hardness of the short integer solution (SIS) problem in the
random oracle model.

Keywords: Multisignature · Accountable subgroup multisignature ·
Public key aggregation · Lattice · Short integer solution

1 Introduction

Multisignature. In today’s digital world, reducing bandwidth is a desirable
and challenging task, especially for low energy devices. For instance, sensors
and cell phones have restricted battery life. Multisignature is a powerful cryp-
tographic primitive that helps to reduce the bandwidth taken by N signatures
from O(N) to O(1). A multisignature scheme provides a group of signers the
ability to sign collaboratively a common message in such a way that the size of
the multisignature remains the same as that of a single signature and the verifier
gets convinced that the message has been signed by all the signers. Multisigna-
ture becomes more efficient when the public keys can be aggregated to have size
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 281–300, 2020.
https://doi.org/10.1007/978-3-030-51938-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_14

282 M. Kansal and R. Dutta

asymptotically equivalent to that of the public key of an individual signer and
can be verified with the aggregated public key.

Accountable Subgroup Multisignature. Accountable subgroup multisigna-
ture, introduced by Micali et al. [17], enables a subset S of a set of potential
signers G to jointly produce a multisignature on a given message such that it
satisfies flexibility and accountability. Flexibility means that any subset S of G
can sign the document and the verification is then upto the verifier whether the
subset S is sufficient to approve the document (message) which is signed jointly
by the signers in S. For instance, consider a case as taken in [17], when a com-
pany X signs a contract of a company Y. Suppose a subset S of X containing
chief operating officer, chief financial officer and chief marketing officer sign the
contract and sends the signature to Y. If Y prefers to have the signature of the
chief executive officer then Y may reject the signature. Accountability refers to
the fact that the set S is known to the verifier.

Application of Multisignature and Accountable Subgroup Multisigna-
ture. Multisignatures find applications in areas where storage and bandwidth
costs are subject to minimization. Recently, multisignature has gained attention
due to the popularity of the distributed applications that supports decentral-
ize trust such as blockchain. Blockchain is a promising technology in the new
financial era where digital currency like Bitcoin is the central currency with no
intermediaries trusted parties such as bank to process transactions. Multisigna-
ture can reduce the size of blockchains [16]. In blockchain, a number of users agree
(sign) on a specific message and put the signature to a block. It is desirable to
aggregate these signatures into a single signature to reduce the size of the block.
Furthermore, since all the public keys need to be written to the blockchain, it is
also required to aggregate all the public keys into a single public key such that
the aggregated public key has the same size as that of a single public key.

In Bitcoin, multisig is the hash of l public keys and a number k with 1 ≤ k ≤ l.
Multisignature can reduce the multisig Bitcoin address. The multisig in real life
offers a feature that participation of all the l signers is not required to spend funds
from the multisig address, but a sufficient number k of participation is sufficient.
Accountable subgroup multisignature is a solution that allows a subset S of k
signers take part in the signature generation instead of all l signers where

(
l
k

)

is large [4]. The subset S may be decided by the verifier from the flexibility
property of the accountable subgroup multisignature [17].

Our Contribution. As pointed by Micali et al. [17], many proposed multisig-
nature schemes are vulnerable to rogue key attacks (for instance Harn [10], Li
et al. [14]) or their security requires trusted generation of each key (for instance
Ohta et al. [19], Ohta et al. [20]). They constructed the first multisignature
scheme in [17] without trusted key generation. However, it requires an inter-
active initialization session among all the signers where each signer proves to
the other signers that it possesses the secret key for the given public key. This
model does not support dynamic setting and is not suited for large groups.
Later, Boldyreva [3] introduced the concept of knowledge of secret key (KOSK)

Round Optimal Secure Multisignature Schemes 283

to overcome the interactive initialization round in the key registration process.
The KOSK assumption utilizes non-interactive zero knowledge proof of knowl-
edge (ZKPoK) involving heavy computation. Consequently, it is highly desirable
to construct multisignature scheme in the plain public key model where the
special registration of public key is not required.

Table 1. Comparative summary of multisignature resistant to rogue key attack and
secure in the ROM

MS Communication Rs Storage Computation Security assumption Model

|apk| |msig| |pk| |sk| Sign Verify

[4] |G2| |G1| 1 |G2| |Zq| 1E 2P co-DH PPK

[5] |G| 2|G| + 3|Zq| 2 |G| + 2|Zq| |Zq| 5E 6E DL PoP

[6] |G| 2|G| 1 |G| + 2|Zq| O((log T)2) 4E 3P+1E l-wBDHI∗3 PoP

[16] |G| |G| + |Zq| 3 |G| |Zq| 2E 1E DL PPK

[7] − O(n) 3 O(n) O(n) 2PM (N + 1)PM Ring-SIS PPK

Ours O(n2) ˜O(n2) 1 ˜O(n2) ˜O(n2) 2MM 2MM SIS PPK

Table 2. Comparative summary of accountable subgroup multisignature resistant to
rogue key attack and secure in the ROM

ASM Communication Rounds Storage Computation Security assumption Model

|apk| |msig| Rs Rg |pk| |sk| |mk| Sign Verify

[4] |G2| |G1| + |G2| 1 1 |G2| |Zq| |Zq| 1E 3P ψ-co-DH PPK

Ours O(n2) O(n2) 1 1 ˜O(n2) ˜O(n2) O(n2) 1MM (2 + L)MM SIS PPK

|apk|: size of the aggregated public key, |msig|: size of the compressed signature, |pk|: size of a public key, |sk|:
size of a secret key, |mk|: size of group membership key, co-DH: computational Diffie-Hellman, DL: discrete

logarithm, l-wBDHI∗3 : weak bilinear Diffie-Hellman inversion problem for type-3 pairings, SIS: short integer

solution, G, G1, G2 are groups of prime order q, |G|: bit size of an element of the group G, T : max number

of time periods in forward secrecy, λ: security parameter, n = O(λ), Rs: number of rounds in the signature

generation algorithm, PPK: plain public key model, PoP: proof of possession, E: number of exponentiations,

P: number of pairings, Rg : number of rounds in the group membership key generation algorithm, N : number

of signers, L: size of the subgroup, Model: model to prevent rogue key attack, PM: number of polynomial

multiplications, MM: number of matrix multiplications.

This paper constructs the first lattice based multisignature scheme support-
ing public key aggregation in the plain public key model. Specifically, we design a
multisignature scheme MS and an accountable subgroup multisignature scheme
ASM that exhibit signature compression as well as public key aggregation. The
verifier only requires an aggregated public key instead of all the public keys to
verify a multisignature. Each signer in MS takes part in the multisignature gen-
eration and uses public keys of all the participating signers. On the other hand,
each signer in our ASM uses aggregated public key along with a group member-
ship key to issue a multisignature. We require only a single round interactive
protocol among all the participating signers in a group G to generate a group
membership key which can be used to issue an accountable subgroup multisigna-
ture for any subset of signers S ⊆ G. Both our constructions achieve simulation

284 M. Kansal and R. Dutta

based security in the plain public key model against adversaries making bounded
number of queries to signatures and hashes. The security of our MS and ASM
is derived under the hardness of short integer solution (SIS) problem following
the security model of Boneh et al. [4].

As shown in Table 1, 2, our MS and ASM schemes are computationally effi-
cient as we have used matrix addition and multiplication. These are linear oper-
ations and are very efficient compared to exponentiations and pairings used
in [4–6,16]. Our construction enjoys the same round complexity as in the work
of Boneh et al. [4]. Similar to the existing works, the multisignature size in our
designs are independent of the number of signers involved. Since, our designs
are based on lattice, the storage and communication overheads are more (see
Table 1, 2) compared to the pairing based multisignature schemes [4–6,16].

The only lattice based multisignature scheme is by Bansarkhani et al. [7]
which compresses signature but does not support public key aggregation. It is
based on the signature scheme of Guneysu et al. [8,9]. The verifier requires
public keys of all the signers. The scheme uses ideal lattice and chooses secret
keys from polynomial rings where coefficients are bounded. The scheme is secure
under the hardness of ring-SIS problem. It involves three rounds of communi-
cation between a signer and cosigner to generate a multisignature. In contrast,
our scheme requires only one round of communication between a signer and
the designated signer, is built on standard lattice, the verifier requires only an
aggregated public key instead of public keys of all the signers and is proven to
be secure under the hardness of SIS problem.

Overview of Our Technique. In our MS construction, a trusted third party
generates the public parameter set Y that contains a public matrix A ∈ Z

n×m
q

along with hash functions H0 : {0, 1}∗ → Z
m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ and
H2 : {0, 1}∗ → Dn×n

Zq,σ modeled as random oracles in the security proof. Here

Dk×l
Zq,σ = {M ∈ Z

k×l
q : ||M|| ≤ σ

√
k}. Each user generates its own public-

secret key pair (pk, sk). The signer i chooses a short matrix Vi ∈ Z
m×m
q with

||Vi|| ≤ σ
√

m as its secret key ski and sets its own public key as pki = Yi =
A · Vi ∈ Z

n×m
q where σ is specified in the public parameter set Y. Note that

finding ski = Vi from pki = Yi is the SIS problem. As each signer generates
its own public-secret key pair, the adversary is allowed to generate public and
secret keys of users in the security game except for the challenged signer i∗. The
adversary is given access to the signing oracle corresponding to the signer i∗ ∈ G.
Let G be a group of signers involved in generating a multisignature on a message
M and PK is the set of public key of the signers in G who have participated in
this multisignature generation. Each signer i ∈ G uses its secret key ski together
with the public keys of all the signers in G to generate a signature Ti,M =
H0(M,PK)+ ski ·H1(pki,PK) ·H2(M) on M and sends Ti,M to the designated
signer. The designated signer aggregates all the received signatures Ti,M into a
multisignature TM =

∑

i∈G

Ti,M and outputs msigPK,M = (TM , pkagPK, G,M).

Anyone can aggregate the public keys in PK into an aggregated public key

Round Optimal Secure Multisignature Schemes 285

pkagPK =
∑

i∈G

pki · H1(pki,PK) ∈ Z
n×n
q . A verifier verifies a multisignature

msigPK,M = (TM , pkagPK, G,M) using the aggregated public key pkagPK. It
outputs 1 if A · TM = A · |G| · H0(M,PK) + pkagPK · H2(M) and ||TM || ≤
|G| · (||H0(M,PK)|| + σ3m

√
n). Otherwise, it outputs 0.

While the adversary makes a signature generation query, the simulator sim-
ulates the signature for the challenged signer i∗. The ranges of H1 and H2

have been specified with bounds to preserve the security. While simulating the
signature Ti∗,M for i∗ without knowing its secret key, the simulator calls for
H1(pki∗ ,PK) query, H2(M) query, chooses Ti∗,M ∈ Z

n×m
q and finds the value

of H0(M,PK) satisfying the equation A · Ti∗,M = A · H0(M,PK) + pki∗ ·
H1(pki∗ ,PK) · H2(M). As there is no bound restriction on the range of H0,
one can find H0(M,PK) using the Gauss elimination method or any other linear
algebra method. Using the generalized forking lemma, we finally show that if the
adversary is able to forge a multisignature, then the simulator finds V∗ ∈ Z

m×m
q

satisfying A · V∗ = 0 mod q with ||V∗|| ≤ σ
√

m. Thus the simulator solves an
instance of SIS problem and we have the following theorem.

Theorem 1 (Informal). The scheme MS is unforgeable in the random oracle
model if the SIS problem is hard.

The public parameter set Y in our ASM scheme uses a matrix A ∈ Z
n×m
q

and hash functions H0 : {0, 1}∗ → Z
m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ , H2 :
{0, 1}∗ → Z

n×n
q and H3 : {0, 1}∗ → Dn×n

Zq,σ where H0,H1,H2 are modeled as
random oracles in the security proof. The key generation and the key aggre-
gation are performed as in our MS scheme. All the members in a group of
signers G take part in the group membership key protocol. Let PK be the
set of public keys of the signers in G. Each member i ∈ G uses its secret
key ski together with the public keys of other signers in G, computes Mj,i =
H2(pkagPK, j) + ski · H1(pki,PK) · H3(j) for all j ∈ G and sends Mj,i to all
j ∈ G parallely where pkagPK =

∑

i∈G

pki · H1(pki,PK) ∈ Z
n×n
q . After receiving

Mi,j from all signers j ∈ G, the i-th signer generates its group membership key
mki,PK =

∑

j∈G

Mi,j . Let S be a subset of G and L be the set of all public keys in

S. Each signer i ∈ S using its secret key ski together with the public keys of all
the signers in G computes Ti,M = ski ·H0(pkagPK,M)+mki,PK and sends Ti,M

to the designated signer. The designated signer aggregates all the received sig-
natures Ti,M into a multisignature TM =

∑

i∈G

Ti,M and outputs accmsigL,M =

(TM , spkagL, pkagPK, G,M, S) where spkagL =
∑

i∈S

pki · H0(pkagPK,M) is the

aggregated subgroup public key. The verifier using the aggregated public key
pkagPK and aggregated subgroup public key spkagL, outputs 1 if A · TM =
spkagL + |G| · ∑

i∈S

A ·H2(pkagPK, i)+pkagPK · ∑

i∈S

H3(i) and ||TM || ≤ |S| ·σ√
m ·

H0(pkagPK,M) + |G| · max
i∈S

||H2(pkagPK, i)|| + |S| · |G| · σ3m
√

n. Otherwise, it

outputs 0.

286 M. Kansal and R. Dutta

The adversary is given access to the group membership key query for the
challenged signer i∗ ∈ G. The simulator and the adversary take part in the
group membership key generation protocol where the simulator simulates the
group membership key for the challenged signer i∗. The ranges of H1 and H3

have been specified with bounds to preserve the security. While simulating Mj,i∗

for i∗ without knowing its secret key, the simulator chooses Mj,i∗ such that
||Mj,i∗ || ≤ σ

√
m for each j ∈ G, queries to H1(pkj ,PK) oracle for each j ∈ G,

finds H2(pkagPK, j) satisfying A·Mj,i∗ = A·H2(pkagPK, j) +Yi∗ ·H1(pki∗ ,PK)·
H3(j). There is no bound on the range of H2 and thus can be found using any
linear algebra method. The adversary is also given signature oracle to query for
the challenged signer i∗ ∈ G. The simulator models the random oracle H0 to
simulate the signature for the challenged signer i∗. Finally, we apply generalized
forking lemma to show that forging an accountable subgroup multisignature
yields a solution to an SIS instance and proved the following theorem.

Theorem 2 (Informal). The scheme ASM is unforgeable in the random oracle
model if the SIS problem is hard.

Related Work. The first construction of multisignature was presented by
Itakura and Nakamura [12]. Multisignature schemes require homomorphic prop-
erties of arithmetic operations involved in standard signatures. Unfortunately,
the same homomorphic properties that permits aggregation of signatures into
multisignatures can enable a rogue key attack on such schemes. Infact, the mul-
tisignature schemes in early literature [10,11,13,14,18–20] were broken mostly
by mounting a rogue-key-attack. In this attack, a cheating group member sets
its public key as a function of the public key of an honest signer of the group
enabling it to forge multisignature easily. Many solutions were proposed to pre-
vent rogue key attack like key registration model, knowledge of secret key (KOSK)
assumption, proof of possession (PoP) assumption etc. These approaches have
higher complexity and are unrealistic assumptions on the public key infrastruc-
ture (PKI). The key registration model is parameterized by the key registration
and the adversarial behaviour is restricted by the security game based on the
successful or unsuccessful registration. In this model, the client registers with
the certifying authority through the key registration protocol and the adversary
can access the key registration oracle. Okamoto [19] and Micali [17] developed
proper security framework for multisignature. They also built constructions for
multisignatures and analyzed the security in the respective proposed models. In
contrast to [19], the security model of [17] addresses attacks in the key generation
phase. To prevent rogue key attack, Micali et al. [17] allows all the signers to
engage in an interactive protocol to generate public and secret keys. This scheme
is not dynamic in the sense that all the signers require to be fixed at the setup
phase.

The constructions in Boldyreva et al. [3], Lu et al. [15], on the other hand,
use KOSK assumption to achieve security against rogue key attack. When the
adversary provides a public key for a signer, it is required to provide a matching
secret key. In KOSK setting, a user has to prove the knowledge of secret key to

Round Optimal Secure Multisignature Schemes 287

the certifying authority during public key registration. However, PKI has yet not
realized the KOSK assumption. Bellare and Neven [2] pointed out that a scheme
is secure under the KOSK assumption face the upgradation of existing PKI as it
would require client and certifying authority to possess zero knowledge proof of
knowledge (ZKPoK) with extraction guarantees in fully concurrent settings. The
utilization of non interactive zero knowledge proof of knowledge requires heavy
computation.

To avoid the KOSK assumption for preventing rogue key attack, Ristenpart
and Yilek [21] modified the multisignature scheme of Boldyreva et al. [3] and
proved it is secure under the PoP assumption. Unlike KOSK, the PoP setting
does not ask to prove the knowledge of secret key, but it attests that a client has
the access to the public and secret key pair. One of the simplest ways to achieve
PoP in signature schemes is by sending the signature on the message requested
by the certifying authority.

Bellare and Neven [2] had overcome the KOSK assumption and proposed a
multisignature scheme in the plain public key model. In plain public key model,
the users do not need to prove the knowledge or possession of their secret keys.
The multisignature scheme of Micali et al. [17] is the first scheme that is secure
in the plain public key model. Downfall of this scheme is that the set of the
potential signers becomes static once the key setup phase is done. On the other
hand, the multisignature of Bellare and Neven [2] does not require a dedicated
key setup algorithm and is secure in the plain public key model. However, this
scheme requires several rounds of communication between the signers.

Recently, many multisignature schemes [4–6,16] have been proposed. The
scheme by Boneh et al. [4] is the first compact multisignature scheme secure
under the computational co-Diffie-Hellman problem with both signature com-
pression and public key aggregation. Further, they have constructed the first
short accountable subgroup multisignature scheme under the hardness of com-
putational Ψ -co-Diffie-Hellman problem in the random oracle model (ROM).
Drijvers et al. [6] proposed a construction for pairing based multisignature secure
under a variant of the bilinear Diffie-Hellman inversion problem in the ROM.
The work in Drijvers et al. [5] pointed out serious issues in the two round mul-
tisignature schemes without pairings and presented a variant of Bagherzandi
et al. [1] scheme secure under the discrete logarithm assumption in the ROM.
Maxwell [16] gave the first multisignature scheme secure in the palin public key
model. It is based on Schnorr signature and is secure under the hardness of dis-
crete logarithm problem. All the aforementioned schemes are secure only on the
classical machine and are not quantum computer resistant. The construction of
Bansarkhani et al. [7] is the only multisignature scheme that is secure under the
hardness of computational problems from lattice that are not succeptiable to
quantum attacks. The scheme is secure in the ROM under the ring-SIS problem.
However, the scheme is interactive involving three rounds during the signature
generation and does not support public key aggregation.

Drijvers et al. [6] proposed a multisignature scheme with forward secrecy
to address adaptive corruption. The adversary can corrupt committee members

288 M. Kansal and R. Dutta

after they have certified (signed) a message and use their signing keys to certify
(sign) a different message. Forward secure multisignatures prevent this attack
and enables signers to update their secret keys over time without changing their
respective verification keys.

2 Preliminaries

Notation. We provide below some of the notation that will be used: a ∈ Δn

means that a is a column vector of dimension n × 1 with elements from the set
Δ. For a vector x = (x1, x2, . . . , xn) ∈ Δn, ||x|| =

√
x2
1 + . . . + x2

n denotes the
Euclidean norm. Let X = (x1,x2, . . . ,xn) be a matrix with n columns in Δm

then ||X|| = max
1≤k≤n

||xk||. We say that a function f is negligible in λ if f = λ−ω(1).

Definition 1 (Lattice). A full rank matrix B ∈ Z
n×m
q is a basis of an m dimen-

sional lattice Λ if Λ = {y ∈ Z
m | ∃ x ∈ Z

m,y = B · x}. For any integer q ≥ 2,
a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q define Λ⊥

q (A) = {v ∈ Z
m
q |A · v =

0 mod q} and Λu
q (A) = {v ∈ Z

m
q |A · v = u mod q}.

Definition 2 (Discrete Gaussian Distribution). The discrete Gaussian distribu-
tion over a lattice Λ with center c ∈ R

m and parameter σ is DΛ,σ,c(y) = ρσ,c(y)
ρσ,c(Λ)

for all y ∈ Λ. Here ρσ,c(y) = exp(−π ||y−c||2
σ2) and ρσ,c(Λ) =

∑

y∈Λ

ρσ,c(y). If c = 0,

we simply denote it by DΛ,σ.

Definition 3 (Short Integer Solution (SIS) Problem). Given a uniformly random
matrix A ∈ Z

n×m
q and a real number β, the SIS problem is to find a vector

v ∈ Z
m
q such that A · v = 0 mod q and ||v|| ≤ β.

Generalized Forking Lemma [5]. Let us consider an algorithm A that takes
inA as input and interacts with a random oracle O. Let Ω = {r|r = (r̂, h1, h2,
. . ., hqH

)} be the randomness space and let r|j = (h1, h2, . . . , hj−1). Here r̂ is
the random tape of A, qH is the maximum allowable number of random oracle
queries and hj is the response to j-th random oracle query. The execution of
A is termed success if it outputs (I, {outi}i∈I) where I is a non empty subset
of {1, 2, . . . , qH}. The input inA is generated by the input generator IG. The
working of the algorithm FLA is explained below in Algorithm 1. We say that
FLA succeeds if it does not output fail.

Lemma 1 (Generalized Forking Lemma [5]). Let IG be a randomized input
generation algorithm and A be a randomized algorithm running in time τ with
access to a random oracle O such that A succeeds with probability ε. If q > 8nqH

ε ,
then FLA(inA) runs in time atmost τ · 8n2qH

ε ·ln(8n
ε) and succeeds with probability

atleast ε
8 , where the probability is over the choice of inA ← IG and over the coins

of FLA.

Round Optimal Secure Multisignature Schemes 289

Algorithm 1. Generalized Forking Algorithm FLA(inA)
1: (I, {outi}i∈I , aux) ← AO(inA, r) where r = (r̂h1, h2, . . . , hqH

);

2: if I = ∅ then
3: output fail;
4: else
5: Aux ← aux;
6: Let I = {i1, i2, . . . , in} such that i1 ≤ i2 ≤ . . . ≤ in;
7: for t = 1 to n do
8: successt ← 0; kt ← 0; kmax ← 8nqH

ε · ln(8n
ε);

9: repeat
10: r′′ ∈ Ω such that r′′|it = r|it ;

11: Let r′′ = (r̂, h1, h2, . . . , hit−1, h′′
it

, . . . , h′′
qH

); (Note that h′′
j 	= hj for j = it to qH)

12: (I′′, {out′′i }i∈I′′ , aux) ← AO(inA, r′′);
13: Aux ← Aux ∪ aux;
14: if (h′′

it
	= hit and I′′ 	= ∅ and it ∈ I′′) then

15: out′
it

← out′′it
; successt ← 1;

16: end if
17: kt ← kt + 1;
18: until successt = 1 or kt > kmax

19: end for
20: if (successt = 1 for all t = 1, 2, . . . , n) then
21: output (I, {outi}i∈I , {out′i}i∈I ,Aux)
22: else
23: output fail
24: end if
25: end if

2.1 Multisignature - Syntax, Definition and Security Model

Syntax of Multisignature. The multisignature scheme allows a group of sign-
ers with public keys {pki1 , pki2 , . . . , pkil

} to issue a multisignature ‘msig’ on a
message M in such a way that the verifier agrees that all the N signers have
signed the message M . Let there be a designated signer who combines all the
signatures of the signers into a single multisignature. The designated signer may
be one of the signers or an external party.

At high level, we define a multisignature scheme MS = {pg, kg, kag, sg, vrf} as
consisting of parameter generation algorithm pg, key generation algorithm kg and
key aggregation algorithm kag together with an interactive signature generation
protocol sg and a deterministic verification algorithm vrf. A trusted third party,
called the key generation center (KGC), generates the public parameter set Y ←
MS.pg. A user generates its public-secret key pair (pk, sk)←MS.kg. The public
keys are made public while the secret keys are kept secret to the users. The signer
i uses secret key ski to generate signature Ti,M on a message M and sends Ti,M

to the “designated signer”. The designated signer aggregates all the received
signatures Ti,M on the message M into a multisignature msigPK,M . Here PK is
the set of public key of the signers participated in this multisignature generation.
The key aggregation algorithm MS.kag can be run by anyone to aggregate the
public keys in a set PK into a single public key pkagPK. The verifier using
the aggregated public key pkagPK, runs the algorithm MS.vrf and returns 0,
indicating the multisignature msigPK,M is not properly generated or 1, assuring
that msigPK,M is correct. More concretely, we have the following.

290 M. Kansal and R. Dutta

• MS.pg(1λ) → Y. It is a probabilistic polynomial time (PPT) algorithm run
on a security parameter λ and outputs the public parameter set Y.

• MS.kg(Y, i) → (pki, ski). For each user i, this PPT algorithm returns the pub-
lic and secret key pair (pki, ski) on input the user i and the public parameter
set Y. The public key pki is made public while the secret key ski is kept secret
to the user.

• MS.kag(Y,PK) → pkagPK. Let PK be the set of public keys of signers. This
is a deterministic algorithm and it aggregates the public keys in PK into a
single public key pkagPK. It outputs the aggregated public key pkagPK which
asymptotically has the same size as a single public key.

• MS.sg(Y,PK,SK,M) → msigPK,M . With input the public parameter set Y,
the set of public and secret keys (PK,SK) of the signers and a message M ,
this single round protocol executes as follows. Let PK = {pki1 , pki2 , . . . , pkil

},
SK = {ski1 , ski2 , . . . , skil

} and IPK = {i1, i2, . . . , il}. The signer i ∈ IPK uses
PK along with its secret key ski to generate a signature Ti,M on M and
sends Ti,M to the designated signer. The designated signer aggregates all the
signatures Ti,M , i ∈ IPK on M into a single multisignature msigPK,M .

• MS.vrf(Y,msigPK,M) → (0 or 1). On input the public parameter set Y, a
multisignature msigPK,M , this deterministic algorithm returns 1 if msigPK,M

is valid. Otherwise, it returns 0.

Completeness. A multisignature scheme should satisfy completeness. That is,
for any Y ← MS.pg(1λ), for any N , if we have (pki, ski) ← MS.kg(Y, i) for
i = 1, 2, . . . , N , for any message M and for any set of public keys PK =
{pk1, pk2, . . . , pkN} with corresponding set of secret keys SK = {sk1, sk2, . . .,
skN}, ifmsigPK,M ← MS.sg(Y,PK, SK,M) thenMS.vrf(Y,msigPK,M) outputs 1.

Security Under Unforgeability. The unforgeability experiment ExpunforgF (λ)
between a simulator S and a forger F is described in Fig. 1 following the model
of Boneh et al. [4] that considers the infeasibility to forge multisignature with
atleast one honest signer. The forger has given polynomially many access to the
signature queries on any message M with any set of public keys PK.

Definition 4. We say that a multisignature is unforgeable if AdvunforgF (λ) =
Pr[ExpunforgF (λ) = 1] ≤ negl(λ) for every PPT adversary F in the experiment
ExpunforgF (λ) defined in Fig. 1 where negl(λ) is a negligible function in λ.

3 The MS

Our multisignature MS= (pg, kg, kag, sg, vrf) works as follows.

• MS.pg(1λ) → Y. A trusted third party, called key generation center (KGC),
generates the system parameters Y ← (n, q,m, σ,H0,H1,H2,A).

– choose n of size O(λ), q of size O(n3) and m ≥ 2n
log q�,
– pick the standard deviation σ of the discrete Gaussian distribution DΛ,σ

of size Ω(
√

n log q log n),

Round Optimal Secure Multisignature Schemes 291

1. The simulator S generates system parameters Y and a challenge public key pki∗ for user
i∗. The simulator S runs the forger on (Y, pki∗).

2. The forger is allowed to make signature queries to S on (Ml,PKl), 1 ≤ l ≤ qs where
Ml is a message and PKl is a set of public keys with pki∗ ∈ PKl i.e., has access to

the oracle O(Y,·,·,·) that simulates the honest signer i∗ with the public keys in PKl and
produce a signature Ti∗,M on M .

3. Finally, outputs a forgery msig∗
PK,M on a message M for a set of public keys PK.

4. The simulator S returns 1 if the following conditions hold:
(a) MS.vrf(Y,msig∗

PK,M) → 1,

(b) pki∗ ∈ PK.
(c) M �= Ml for 1 ≤ l ≤ qs.
Otherwise, S returns 0.

5. The forger wins the game if S returns 1.

Fig. 1. Unforgeability game ExpunforgF (λ)

– select a matrix A ∈ Z
n×m
q over Zq and sample cryptographically secure

hash functions H0 : {0, 1}∗ → Z
m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ and H2 :

{0, 1}∗ → Dn×n
Zq,σ where Dk×l

Zq,σ = {M ∈ Z
k×l
q : ||M|| ≤ σ

√
k}.

• MS.kg(Y, i) → (pki, ski). The signer i runs this algorithm using Y to generate
its own public and secret key pair (pki, ski) by performing the following steps.

– choose a short matrix Vi ∈ Dm×m
Zq,σ and compute Yi = A · Vi mod q ∈

Z
n×m
q ,

– set the public key pki = Yi ∈ Z
n×m
q and secret key ski = Vi ∈ Dm×m

Zq,σ .
The public key pki is made public and the secret key ski is kept secret to the
signer i.

• MS.kag(Y,PK) → pkagPK. This deterministic algorithm outputs the aggre-
gated public key pkagPK =

∑

i∈IPK
pki · H1(pki,PK) ∈ Z

n×n
q by extracting H1

from Y where PK = {pki1 , pki2 , . . . , pkil
} and IPK = {i1, i2, . . . , il} is the

index set of PK.
• MS.sg(Y,PK,SK,M) → msigPK,M . It is an interactive protocol among the

signers i ∈ IPK where PK = {pki1 , pki2 , . . . , pkil
} is the set of public keys

of the signers with pki = Yi, SK = {ski1 , ski2 , . . . , skil
} is the corresponding

set of secret keys with ski = Vi and IPK = {i1, i2, . . . , il} is the index set of
PK. The protocol executes the following steps where A, n,m, σ,H0,H1,H2

are extracted from Y.
– each signer i ∈ IPK generates a signature Ti,M on a message M ∈ {0, 1}∗

using its secret key ski = Vi as Ti,M = H0(M,PK) + ski · H1(pki,PK) ·
H2(M) and sends Ti,M to the designated signer. Note that

||Ti,M || ≤ ||H0(M,PK)|| + ||ski|| · ||H1(pki,PK)|| · ||H2(M)||
≤ ||H0(M,PK)|| + σ3m

√
n

as ski ∈ Dm×m
Zq,σ , H1(pki,PK) ∈ Dm×n

Zq,σ and H2(M) ∈ Dn×n
Zq,σ ,

292 M. Kansal and R. Dutta

– the designated signer in turn verifies whether ||Ti,M || ≤ ||H0(M,PK)||+
σ3m

√
n and A · Ti,M = A · H0(M,PK) + Yi · H1(pki,PK) · H2(M),

– if the verification fails, the designated signer does not accept the signa-
ture and returns ⊥. Otherwise, it issues the multisignature msigPK,M =(
TM , pkagPK, IPK,M

)
where TM =

∑

i∈IPK
Ti,M mod q.

• MS.vrf
(Y,msigPK,M

) → (0 or 1). On input the multisignature msigPK,M =
(TM , pkagPK, IPK,M), it outputs 1 if A · TM = A · |IPK| · H0(M,PK) +
pkagPK · H2(M), ||TM || ≤ |IPK| · (||H0(M,PK)|| + σ3m

√
n). Otherwise, it

returns 0.

The proof of the following Theorem3 is immediate from the construction.

Theorem 3. The scheme MS is complete.

3.1 Security Proof

Theorem 4. The scheme MS is (tF , qs, qH , εF)-unforgeable in the random ora-
cle model if SIS problem is ((tF + tqH

+ tqs
+ textra) ·8q2H · εF · log(8qH/εF), εF

8qH
)-

hard. In other words, suppose that there exists a forger F running in time tF
can break the security under unforgeability of our scheme MS with non-negligible
advantage εF making qs signature queries and qH hash queries. Then there exists
an algorithm S running in time (tF + tqH

+ tqs
+ textra) · 8q2H · εF · log(8qH/εF),

that for a given P ∈ Z
n×m
q finds a nonzero V ∈ Z

m×m
q satisfying ||V|| ≤ σ

√
m

and P · V = 0 mod q with non negligible advantage εF
8qH

. Here m ≥ 2n
log q�,
σ is of size Ω(

√
n log q log n), q is of size O(n3), tqH

, tqs
respectively denote the

time taken to answer hash and signature queries and textra is extra time taken
by the algorithm S.
Proof. We assume that there exists a forger F that wins the unforgeability game
played with a simulator S given in Definition 4 with probability εF .

1. Given an SIS instance P ∈ Z
n×m
q with m ≥ 2n
log q�, q is of size O(n3), σ is

of size Ω(
√

n log q log n), the simulator S sets Y = (n, q,m, σ,H0,H1,H2,A)
by setting A = P and H0 : {0, 1}∗ → Z

m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ and H2 :

{0, 1}∗ → Dn×n
Zq,σ where Dk×l

Zq,σ = {M ∈ Z
k×l
q : ||M|| ≤ σ

√
k}. The simulator

S generates a random matrix pki∗ = Yi∗ and randomness ρ = {ξ, C} where
C = {C1,C2, . . . ,CqH

}, ξ ∈ Z
m×n
q and each Ci ∈ Dm×n

Zq,σ for i = 1, 2, . . . , qH .
The simulator S speculates a random index k ∈ {1, 2, . . . , qH}. More precisely,
S guesses that F makes k-th H2 query on a message that is used by F to
output a valid forgery. It then runs F on input pki∗ ∈ Z

n×m
q , randomness ρ

and system parameters Y = (n, q,m, σ,H0,H1,H2,A).
2. The forger F is allowed to make qH many hash and qs many signature queries

which are simulated as follows.

Round Optimal Secure Multisignature Schemes 293

H1 Query. The simulator S maintains a list LH1 containing elements of the
form (x,H1(x)). If the tuple x = (pki,PKl), 1 ≤ l ≤ qH is already answered
then S returns from the list LH1 . If it is queried for the first time, S chooses a
random value from the set {C1,C2, . . . ,CqH

} for H1(pki,PK) for pki∗ ∈ PK if
pki∗ ∈ PK and i = i∗. Otherwise, it returns random value from Dm×n

Zq,σ . Finally,
the simulator stores ((pki,PK),H1(pki,PK)) in the list LH1 .

H2 Query. On receiving the query on a message Ml, 1 ≤ l ≤ qH if it already
queried then the simulator returns from the list LH2 . Otherwise, S honestly
generates and returns H2(Ml) to the forger F . The simulator stores (Ml,H2(Ml))
in the list LH2 .

H0 Query. The simulator maintains a list LH0 containing elements of the form
(x,H0(x)) where x = (Ml,PKl). If the message has already been queried then it
returns from the list LH0 . Otherwise, the simulator performs the following steps
to answer H0 query on any message Ml.

– choose Ti∗,Ml
∈ Dm×n

Zq,σ uniformly,
– query H1(pki∗ ,PKl) and H2(M) to the random oracles H1 and H2 respec-

tively,
– find B ∈ Z

m×n
q (using Gauss elimination method or any linear algebra

method) satisfying the equation A · B = A · Ti∗,Ml
− Yi∗ · H1(pki∗ ,PKl) ·

H2(Ml),
– return H0(Ml,PKl) = B to F and store ((Ml,PKl),H0(Ml,PKl)) in the list

LH0 and ((Ml,PKl), Ti∗,Ml
) in the list Lgood.

The distribution of Ti∗,Ml
is identical to the real protocol. Note that in the

real protocol, ||Ti,Ml
|| ≤ σ3m

√
n and as we have chosen Ti∗,Ml

∈ Dm×n
Zq,σ giving

||Ti∗,Ml
|| ≤ σ

√
m ≤ σ3m

√
n.

Signature Generation Query. When F makes a signature query on a message
Ml, with signers PKl, 1 ≤ l ≤ qs the simulator firstly checks whether pki∗ ∈ PKl.
If not, it aborts. Otherwise, S checks whether (Ml,H2(Ml)) ∈ LH2 with l = k
where k ∈ {1, 2, . . . , qH} is fixed at the beginning of the game. If yes, it aborts.
Otherwise, S checks whether ((Ml,PKl),Ti∗,Ml

) ∈ Lgood. If yes, then return
Ti∗,Ml

. If not, then S calls H0 query on (Ml,PKl) and return Ti∗,Ml
.

3. With the above knowledge, the forger F outputs a forgery msig∗
PK,M =

(T∗
M , pkagPK, IPK,M) on a message M . If it is a valid forgery then A ·T∗

M =
A · |IPK| · H0(M,PK) +

∑

i∈PK
pki · H1(pki,PK) · H2(M).

4. The algorithm S returns fail if (a) msig∗
PK,M is not a valid forgery. (b) pki∗ /∈

PK. (c) M = Ml for some 1 ≤ l ≤ qs.

As pki∗ ∈ PK for a valid forgery, H1(pki∗ ,PK) = Ct for some t, 1 ≤ t ≤ qH .
The simulator S computes pkagPK =

∑

i∈IPK
pki · H1(pki,PK) where pki is the

public key corresponding to the signer i ∈ IPK and H1(pki,PK) are simulated
as in the H1 query for each pki ∈ PK. Let Ej = H1(pkj ,PK) for pkj ∈ PK.

294 M. Kansal and R. Dutta

Then the algorithm SF (inS = P, ρ) outputs ({t}, {(msigPK,M , PK, pkagPK,
E1, · · · ,E|IPK|)}) where ρ = (ξ,C1,C2, . . . ,CqH

).
We prove the theorem by constructing an algorithm B that, on input an

SIS instance A ∈ Z
n×m
q and the above constructed simulator S, solves the SIS

problem. Particularly, B runs the generalized forking lemma FLS on SF (inS =
P, ρ) given in Sect. 2. The algorithm B outputs fail if FLS outputs (0,⊥). On the
other hand, B outputs a solution V∗ of the SIS instance as follows if FLS outputs
({t}, {out1}, {out2}). Here out1 = {(msig∗

PK,M , PK, E1, . . . ,E|IPK|)}, out2 =
({(msig

′
PK′,M , PK′, E′

1, . . . ,E
′
|IPK′ |)}) with msig∗

PK,M = (T∗
M , pkagPK, IPK,M)

and msig′
PK,M = (T′

M , pkagPK′ , IPK′ ,M) are obtained from two executions of
S with randomness ρ and ρ′ such that ρ|t = ρ′|t i.e., ρ = (ξ,C1,C2, . . ., Ct−1,
Ct, . . ., CqH

) and ρ′ = (ξ,C1,C2, . . . ,Ct−1,C′
t, . . . ,C

′
qH

). In other words, the
arguments of this query are identical (PK = PK′) but Ei∗ = H1(pki∗ ,PK) = Ct

and E′
i∗ = H1(pki∗ ,PK′) = C′

t with Ei∗ = E′
i∗ . Also pkagPK =

∑

i∈IPK
pki · Ei

and pkag′
PK =

∑

i∈IPK
pki ·E′

i. Since Ej = E′
j for all j ∈ IPK except j = i∗ before

the forking point and therefore pkagPK − pkag′
PK = pki∗Ei∗ − pk′

i∗E′
i∗ .

B extracts T∗
M and T′

M from msig∗
PK,M and msig′

PK,M respectively, sets
V∗ = T∗

M −T′
M = ski∗ ·(Ei∗ −E′

i∗)·H2(M) where ||V∗|| ≤ σ
√

m, ||Ei∗ || ≤ σ
√

m,
||E′

i∗ || ≤ σ
√

m and ||H2(M)|| ≤ σ
√

n. Thus ||V∗|| ≤ σ4m
√

n. Also note that
A ·T∗

M = A ·T′
M mod q. This implies A ·V∗ = 0 mod q. Hence, V∗ is a solution

to the SIS instance.
The probability of success of S is the probability that (i) F succeeds to

output a valid forgery with probability εF and (ii) (Mk,H2(Mk)) ∈ LH2 with
Mk = M i.e., F has asked the k-th H2 query on M . Here the index k is guessed
at prior by S before H2 queries are made. The algorithm S chooses the correct
index with probability 1

qH
. Thus the success probability of S is εF

qH
.

The running time of S is that of F plus the time taken to answer the queries
and the additional computation S makes. Let tqH

, tqs
be the time taken to

answer hash and sign queries. Let textra be extra time taken by S. Therefore,
the run time of S is tF + tqH

+ tqs
+ textra. By the generalized forking lemma,

if q > 8qH

εF
, the running time of B is (tF + tqH

+ tqs
+ textra) · 8q2H/εF · ln(8qH

εF
)

and the success probability of B is atleast εF
8qH

. ��

4 Accountable Subgroup Multisignature

Syntax of Accountable Subgroup Multisignature. Let PK = {pk1, pk2,
. . ., pkl} denotes the set of public keys of a group of signers IPK = {1, 2, . . . , l}
and SKPK = {sk1, sk2, . . . , skl} be the set of corresponding secret keys of the
set PK. Let L = {pki1 , pki2 , . . . , pkik

} be the set of public keys of a subgroup
of signers IL = {i1, i2, . . . , ik} and SKL = {ski1 , ski2 , . . . , skik

} be the set of cor-
responding secret keys of the set L. The accountable subgroup multisignature
scheme allows a subgroup IL ⊆ IPK to issue an accountable subgroup multisig-
nature accmsig on a message M in such a way that the verifier agrees that all

Round Optimal Secure Multisignature Schemes 295

the k signers in IL have signed the message M . Let there be a designated signer
who combines all the signatures of signers into a single accountable subgroup
multisignature. The designated signer may be one of the signers or an external
party.

An accountable subgroup multisignature scheme ASM= {pg, kg, kag, gmk,
sg, vrf} consists of parameter generation algorithm pg, key generation algorithm
kg and key aggregation algorithm kag together with an interactive group mem-
bership key protocol gmk, signature generation protocol sg and a deterministic
verification algorithm vrf. A trusted third party, called the key generation cen-
ter (KGC), generates the public parameter set Y ← AMS.pg. A user generates
its public-secret key pair (pk, sk)←ASM.kg. The public keys are made public
while the secret keys are kept secret to the users. All signer i ∈ IPK with its
own secret key ski execute the protocol ASM.gmk among themselves and gener-
ates a group membership key mki,PK i ∈ IPK. In signature generation protocol
ASM.sg, each signer i ∈ IL ⊆ IPK uses its secret key ski and group membership
key mki,PK to generate signature Ti,M on a message M and sends Ti,M to the
designated signer. The designated signer aggregates all the received signatures
Ti,M for i ∈ IL on the message M into an accountable subgroup multisignature
accmsigPK,L,M . The key aggregation algorithm ASM.kag can be run by any-
one to aggregate the public keys in a set PK into a single public key pkagPK.
The verifier runs the algorithm ASM.vrf and returns 0, if the multisignature
accmsigPK,L,M is not properly generated or 1 if accmsigPK,L,M is correct. More
concretely, description of these algorithms are given below.

• ASM.pg(1λ) → Y. It is a PPT algorithm run by a KGC on a security parameter
λ to generate the public parameter set Y.

• ASM.kg(Y, i) → (pki, ski). Each user i runs this algorithm with input the
public parameter set Y to generate the public and secret key pair (pki, ski).
The secret key ski is kept secret to the user i while the public key pki is made
publicly available.

• ASM.kag(Y,PK) → pkagPK. This is a deterministic algorithm and it aggre-
gates the public keys in PK into a single public key pkagPK. It outputs the
aggregated public key pkagPK which asymptotically has the same size as a
single public key.

• ASM.gmk(Y,PK,SKPK) → mki,PK. With input the public parameter set Y,
the set of public keys PK of the signers, the set of secret keys SKPK of the
signers in IPK, this interactive protocol runs among all signers in IPK and
generates group membership key mki,PK for each i ∈ IPK.

• ASM.sg(Y, L,PK,SKL,GL,M) → accmsigPK,L,M . With input the public
parameter set Y, the set of public keys PK of signers, the set of secret keys
SKL of signers in IL, the set of group membership keys GL = {mki,PK|i ∈
IL ⊆ IPK} and a message M , this interactive protocol works as follows. The
signer i ∈ IL uses its secret key ski and group membership key mki,PK to gen-
erate a signature Ti,M on M and sends Ti,M to the designated signer. The
designated signer aggregates all the signatures Ti,M for i ∈ IL on a message
M into a single accountable subgroup multisignature accmsigPK,L,M .

296 M. Kansal and R. Dutta

• ASM.vrf(Y, accmsigPK,L,M) → (0 or 1). On input the public parameter set
Y and an accountable subgroup multisignature accmsigPK,L,M , this deter-
ministic algorithm returns 1 if the accountable subgroup multisignature
accmsigPK,L,M is valid. Otherwise, it returns 0.

1. The simulator S generates system parameters Y and a challenge public key pki∗ . The
simulator S runs the forger on (Y, pki∗).

2a. The forger is allowed to make group membership key queries on a set of public keys
PKl, 1 ≤ l ≤ qm where PKl is a set of public keys with pki∗ ∈ PKl i.e., has access

to the oracle O(Y,PKl,·) in which S plays the role of the honest signer i∗. The simulator
stores the resulting membership key mki∗,PKl

but does not return it to .

2b. The forger is allowed to make signature queries on (Ml,PKl) where Ml is a message
and PKl is a set of public keys with pki∗ ∈ PKl , 1 ≤ l ≤ qs. That is, has access to the

oracle O(Y,·,PKl,·,·,Ml). The simulator plays the role of the honest signer i∗ and produce
a signature Ti∗,Ml

on Ml.

3. Finally, outputs a forgery accmsig∗
PK,L,M on a message M for L ⊆ PK where PK is a

set of public keys of a group of signers.
4. The simulator S returns 1 if the following conditions hold:

(a) ASM.vrf(Y, accmsig∗
PK,L,M) → 1,

(b) pki∗ ∈ L,
(c) M �= Ml 1 ≤ l ≤ qs.
Otherwise, S returns 0.

5. The forger wins the game if S returns 1.

Fig. 2. Unforgeability game ExpunfF (λ)

Completeness. An accountable subgroup multisignature scheme should sat-
isfy completeness. That is, for any Y ← ASM.pg(1λ), (pki, ski) ← ASM.kg(Y, i)
with i ∈ IPK where IPK is the index set for the set of public keys PK, SKPK
is the corresponding set of secret keys, any message M , any subset L ⊂ PK
with the set of secret keys SKL, group membership keys GL = {mki,PK|i ∈
IL ⊆ IPK} where mki,PK ← ASM.gmk(Y,PK,SKPK), if accmsigPK,L,M ←
ASM.sg(Y, L,PK,SKL,GL,M) then ASM.vrf(Y, accmsigPK,L,M) outputs 1.

Security Model. We consider the infeasibility to forge accountable subgroup
multisignature with atleast one honest signer following the security model of
Boneh et al. [4]. The forger has given access to qg many group membership key
queries along with qs many signature queries on any message with any set of
public keys PK and any subgroup of signers IL ⊆ IPK. The unforgeability game
ExpunfF (λ) between a forger F and a simulator L is described in Fig. 2.

Definition 5. We say that an accountable subgroup multisignature is unforge-
able if AdvunfF (λ) = Pr[ExpunfF (λ) = 1] ≤ negl(λ) for every PPT adversary F in
the experiment ExpunfF (λ) defined in Fig. 2 where negl(λ) is a negligible function
in λ.

Round Optimal Secure Multisignature Schemes 297

4.1 The ASM

We describe our accountable subgroup multisignature ASM= {pg, kg, kag, gmk,
sg, vrf} below.

• ASM.pg(1λ) → Y. The key generation center (KGC) generates the system
parameters Y ← (n, q,m, σ,H0,H1,H2,H3,A) as follows.

– parameters n, q,m, σ,H0,H1,A are generated as in the algorithm
MS.pg(1λ) of Sect. 3,

– sample cryptographically secure hash functions H2 : {0, 1}∗ → Z
n×n
q and

H3 : {0, 1}∗ → Dn×n
Zq,σ where Dk×l

Zq,σ = {M ∈ Z
k×l
q : ||M|| ≤ σ

√
k}.

• ASM.kg(Y, i) → (pki, ski). The signer i generates its own public and secret
key pair (pki, ski) same as in the algorithm MS.kg(Y, i) of Sect. 3. The secret
key ski = Vi ∈ Dm×m

Zq,σ is kept secret to the signer i and the public key
pki = Yi ∈ Z

n×m
q is made public. Note that Yi = A · Vi mod q.

• ASM.kag(Y,PK) → pkagPK. This deterministic algorithm outputs the aggre-
gated public key pkagPK =

∑

i∈IPK
pki · H1(pki,PK) ∈ Z

n×n
q .

• ASM.gmk(Y,PK,SKPK) → mki,PK. It is a single round protocol between the
signers in IPK where PK = {pki1 , pki2 , . . . , pkil

} is a set of public keys with
pki = Yi and SKPK = {ski1 , ski2 , . . . , skil

} is the collection of corresponding
secret keys with ski = Vi. All signers i ∈ IPK utilize the public parameter
set Y = (n, q,m, σ,H0,H1,H2,H3,A) and parallely execute the following.

– generate pkagPK ← ASM.kag(Y,PK) where pkagPK =
∑

i∈IPK
pki ·

H1(pki,PK),
– compute Mj,i = H2(pkagPK, j)+ ski ·H1(pki,PK) ·H3(j) for all j ∈ IPK,
– send Mj,i to signer j with ||Mj,i|| ≤ ||H2(pkagPK, j)|| + σ3m

√
n.

– On receiving Mi,j \ {i} from all signers j ∈ IPK, the i-th signer verifies
||Mi,j || ≤ ||H2(pkagPK, i)|| + σ3m

√
n. If the verification fails, it returns

⊥. Otherwise, it computes the group membership key
mki,PK =

∑

j∈IPK
Mi,j =

∑

j∈IPK

[
H2(pkagPK, i) + skj · H1(pkj ,PK) · H3(i)

]

• ASM.sg(Y, L,PK,SKL,GL,M) → accmsigPK,L,M . It is a one round protocol
run between the members of the set IL where L ⊆ PK = {pki1 , pki2 , . . . , pkil

}
is the set of public keys of the signers in IL with pki = Yi. The set
SKL is the collection of corresponding secret keys of the signers in IL with
ski = Vi. Each signer i ∈ IL performs the following steps by extracting
(n, q,m, σ,H0,H1,H2,H3,A) from Y.

– generate pkagPK ← ASM.kag(Y,PK) where pkagPK =
∑

i∈IPK
pki ·

H1(pki,PK),
– compute Ti,M = ski · H0(pkagPK,M) + mki,PK with ||Ti,M || ≤ σ

√
m ·

H0(pkagPK, M) + |IPK| · ||H2(pkagPK, i)|| + |IPK| · σ3m
√

n,
– send Ti,M to the designated signer.

298 M. Kansal and R. Dutta

Note that ||Ti,M || ≤ σ
√

m ·H0(pkagPK,M)+ |IPK| · ||H2(pkagPK, i)||+ |IPK| ·
σ3m

√
n.

The designated signer verifies whether ||Ti,M || ≤ σ
√

m · H0(pkagPK,M) +
|IPK| · ||H2(pkagPK, i)|| + |IPK| · σ3m

√
n. If not, it aborts and returns ⊥.

Otherwise, the designated signer combines all the signatures Ti,M , i ∈ IL to
produce TM =

∑

i∈IL

Ti,M with ||TM || ≤ |IL| · σ√
m · H0(pkagPK,M) + |IPK| ·

max
i∈IL

||H2(pkagPK, i)|| + |IL| · |IPK| · σ3m
√

n. The designated combiner also

aggregates the public keys in L and generates aggregated subgroup public key
spkagL =

∑

i∈IL

pki. It finally returns the accountable subgroup multisignature

accmsigPK,L,M = (TM , spkagL, pkagPK, IPK, IL,M).
• ASM.vrf(Y, accmsigPK,L,M) → (0 or 1). On receiving an accountable subgroup

multisignature accmsigPK,L,M = (TM , spkagL, pkagPK, IPK, IL,M), a verifier
runs this deterministic algorithm using the public parameter set Y and returns
1 if

– A·TM = spkagL·H0(pkagPK,M) + |IPK|· ∑

i∈IL

A·H2(pkagPK, i) + pkagPK·
∑

i∈IL

H3(i) where spkagL =
∑

i∈IL

pki and pkagPK =
∑

i∈IPK
pki · H1(pki,PK)

– ||TM || ≤ |IL| · σ
√

m · H0(pkagPK,M) + |IPK| · max
i∈IL

||H2(pkagPK, i)|| +

|IL| · |IPK| · σ3m
√

n. Otherwise, the verifier returns 0.

The proof of the following theorem is immediate from the construction.

Theorem 5. The scheme ASM described above is complete.

Theorem 6. The scheme ASM is unforgeable in the random oracle model if the
SIS problem is hard.

Proof (Sketch). We assume that there exists a forger F that wins the unforge-
ability game played with a simulator S given in Definition 5 with probability
εF .

1. This step is similar to the step 1 of the Theorem 4 in Sect. 3.1.
2. We give the hints of the simulation of H0, H1 and group membership key

queries. The H1-query on x = (pki,PK) is simulated from the already chosen
random values {C1,C2, . . . ,CqH

}. for pki ∈ PK if i = i∗. Otherwise a random
value is returned. Let bad1 be the event that a query to random oracles H0

or H2 is made involving pkagPK before making H1 query on (pki,PK) for
some pki. The simulator S aborts when the event bad1 occurs as it cannot
simulate the queries without knowing the public keys used to form pkagPK.
The group membership key query on PK is simulated only if pki∗ ∈ PK by
finding B ∈ Z

n×n
q satisfying A · Mi,i∗ = A · B + pki∗ · H1(pki∗ ,PK) · H3(i)

and sets H2(pkagPK, i) = B. Here Mi,i∗ ∈ Z
m×n
q is randomly chosen such

that ||Mi,i∗ || ≤ σ
√

m. Let bad2 be the event that a query to random oracle
H0 is made involving pkagPK before making group membership key query
on PK. The simulator S aborts when the event bad2 occurs as it cannot

Round Optimal Secure Multisignature Schemes 299

simulate the H0 query without knowing mki∗,PK. Also, H0-query on x =
(pkagPK,M) is simulated by finding B ∈ Z

n×n
q satisfying A ·Mi,i∗ = A ·B+

Yi∗ · H1(pki∗ ,PK) · H3(i) and sets H2(pkagPK, i) = B where Ti∗,M ∈ Z
m×n
q

is randomly chosen such that ||Ti∗,M || ≤ σ
√

m.
3. With the view of all the allowed queries, F outputs a valid forgery.
4. The simulator S applies the generalized forking lemma (on H1 query) and

solves the SIS instance as we have done in the Theorem 4 in Sect. 3.1. ��
The complete proof will be provided in the full version of the paper.

References

1. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Proceedings of the 15th
ACM Conference on Computer and Communications Security, pp. 449–458. ACM
(2008)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399. ACM (2006)

3. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

4. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

5. Drijvers, M., et al.: On the security of two-round multi-signatures. In: On the
Security of Two-Round Multi-signatures. IEEE (2019)

6. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for con-
sensus

7. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

8. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

9. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-
9 5

10. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEE Proc.-Comput. Digital Tech. 141(5), 307–313 (1994)

11. Horster, P., Michels, M., Petersen, H.: Meta-multisignature schemes based on the
discrete logarithm problem. Information Security — The Next Decade. IAICT, pp.
128–142. Springer, Boston (1995). https://doi.org/10.1007/978-0-387-34873-5 11

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-0-387-34873-5_11

300 M. Kansal and R. Dutta

12. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

13. Langford, S.K.: Weaknesses in some threshold cryptosystems. In: Koblitz, N. (ed.)
CRYPTO 1996. LNCS, vol. 1109, pp. 74–82. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-68697-5 6

14. Li, C.-M., Hwang, T., Lee, N.-Y.: Threshold-multisignature schemes where sus-
pected forgery implies traceability of adversarial shareholders. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 194–204. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0053435

15. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures, multisignatures, and verifiably encrypted signatures without random
oracles. J. Cryptol. 26(2), 340–373 (2012). https://doi.org/10.1007/s00145-012-
9126-5

16. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

17. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security,
pp. 245–254. ACM (2001)

18. Michels, M., Horster, P.: On the risk of disruption in several multiparty signature
schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 334–345. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034859

19. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir
scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57332-1 11

20. Ohta, K., Okamoto, T.: Multi-signature schemes secure against active insider
attacks. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 82(1), 21–31 (1999)

21. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/BFb0053435
https://doi.org/10.1007/s00145-012-9126-5
https://doi.org/10.1007/s00145-012-9126-5
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/BFb0034859
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13

Sieve, Enumerate, Slice, and Lift:

Hybrid Lattice Algorithms for SVP via CVPP

Emmanouil Doulgerakis(B), Thijs Laarhoven, and Benne de Weger

Eindhoven University of Technology, Eindhoven, The Netherlands
{e.doulgerakis,b.m.m.d.weger}@tue.nl, mail@thijs.com

Abstract. Motivated by recent results on solving large batches of clos-
est vector problem (CVP) instances, we study how these techniques can
be combined with lattice enumeration to obtain faster methods for solv-
ing the shortest vector problem (SVP) on high-dimensional lattices.

Theoretically, under common heuristic assumptions we show how to
solve SVP in dimension d with a cost proportional to running a sieve in
dimension d − Θ(d/ log d), resulting in a 2Θ(d/ log d) speedup and mem-
ory reduction compared to running a full sieve. Combined with tech-
niques from [Ducas, Eurocrypt 2018] we can asymptotically get a total
of [log(13/9) + o(1)] · d/ log d dimensions for free for solving SVP.

Practically, the main obstacles for observing a speedup in moderate
dimensions appear to be that the leading constant in the Θ(d/ log d) term
is rather small; that the overhead of the (batched) slicer may be large;
and that competitive enumeration algorithms heavily rely on aggres-
sive pruning techniques, which appear to be incompatible with our algo-
rithms. These obstacles prevented this asymptotic speedup (compared to
full sieving) from being observed in our experiments. However, it could
be expected to become visible once optimized CVPP techniques are used
in higher dimensional experiments.

Keywords: Lattice sieving · Lattice enumeration · Randomized
slicer · Shortest vector problem (SVP) · Closest vector problem (CVP)

1 Introduction

In recent decades, lattice-based cryptography has emerged as a front-runner for
building secure and efficient cryptographic primitives in the post-quantum age.
For an accurate and reliable deployment of these schemes, it is essential to obtain
a good understanding of the hardness of the underlying lattice problems, such
as the shortest (SVP) and closest vector problems (CVP).

To date, research on lattice algorithms has resulted in two main flavors of
algorithms: enumeration methods, requiring 2O(d log d) time and dO(1) space to
solve hard lattice problems in dimension d [5,13,15,20]; and sieving methods,
running in expected time and space 2O(d) [2,3,27,30]. Just a few years ago,
enumeration clearly dominated benchmarks for testing these algorithms in prac-
tice [1,9,14,15], but recent improvements to sieving have allowed it to overtake
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 301–320, 2020.
https://doi.org/10.1007/978-3-030-51938-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_15

302 E. Doulgerakis et al.

enumeration in practice as well [4,8,11,21,28]. Some attempts have also been
made to combine the best of both worlds, a.o. resulting in the tuple sieving line
of work [7,18,19]. A better comprehension of how to exploit the strengths and
weaknesses of each method remains an interesting open problem.

A long-standing open problem from e.g. [10,15] concerns the possibility of
speeding up lattice enumeration with a batch-CVP solver: if an efficient algo-
rithm exists that can solve a large number of CVP instances on the same lattice
faster than solving each problem separately, then this algorithm can be used to
solve the CVP instances appearing implicitly in the enumeration tree faster. For
a long time no such efficient batch-CVP algorithms were known, until the recent
line of work on approximate Voronoi cells and the randomized slicer [10,12,24]
showed that, at least in high dimensions, one can indeed solve large batches
faster in practice than solving each problem separately. This raises the question
whether these new results can be used to instantiate this conjectured hybrid
algorithm and obtain better results, in theory and in practice.

Contributions. In this work we study the feasibility of combining recent batch-
CVP algorithms with lattice enumeration, and show that we heuristically obtain
a 2Θ(d/ log d) speedup and memory reduction for solving SVP compared to the
state-of-the-art lattice sieve. This improvement is proper, in the sense that this
does not hide large order terms: we show that for solving SVP in dimension d, the
costs are proportional to those of running a sieve in dimension d − Θ(d/ log d),
making the leading constant explicit, and showing that the remaining overhead
is negligible. The hybrid constructions we propose are independent of e.g. the
underlying nearest neighbor data structure, and we expect that these and other
heuristic improvements can be applied to the hybrid algorithms as well.

Obtaining Θ(d/ log d) dimensions for free may sound familiar, as Ducas [11]
showed that sieving in dimension d − Θ(d/ log d) implies solving SVP in dimen-
sion d. As the asymptotic improvement of Ducas is greater than ours, to improve
upon his results we need to be able to combine both techniques. The feasibility of
such a combined hybrid algorithm relies on Assumption 4, which Sect. 5 aims to
verify with experiments. Combining both techniques, we asymptotically obtain
0.5305d/ log2 d dimensions for free, compared to Ducas’ 0.4150d/ log2 d.

Open Problems. Besides performing more extensive experiments, which may
assist in obtaining estimates for the crossover points between these hybrids and
plain lattice sieving, open problems include (i) finding a way to effectively incor-
porate pruning into the enumeration parts of the proposed hybrids; (ii) further
studying the theoretical and practical relevance of the proposed nested hybrid
algorithms, and their relation with progressive sieving ideas [11,25]; and (iii)
finding improvements for CVPP, potentially using a dual distinguisher. We fur-
ther stress that we introduced a new heuristic, Assumption 4, which may require
additional simulations to see if it is indeed valid (in high dimensions) or not.

Sieve, Enumerate, Slice, and Lift 303

Outline. In Sect. 2 we introduce notation and cover key ingredients of the hybrid
algorithms. Sections 3–4 describe these new algorithms, and state the main
heuristic results regarding the 2Θ(d/ log d) speedups for solving SVP. Section 5
describes experimental results, to verify the new heuristic assumption introduced
in Sect. 3 and to get an idea of the performance in practice. Appendices B, C
contain derivations omitted from Sect. 2.3 and Sect. 3 respectively.

2 Preliminaries

2.1 Lattice Problems

Let B = {b1, . . . , bd} ⊂ R
d be a set of linearly independent vectors, which we

may also interpret as a matrix with columns bi. The lattice generated by B
is defined as L = L(B) := {Bλ : λ ∈ Z

d}. We write vol(L) := det(BTB)1/2

for the volume of a lattice L. Given a basis B, we write B∗ = {b∗
1, . . . , b

∗
d} for

its Gram-Schmidt orthogonalization. We write Dt+L,s for the discrete Gaussian
distribution on t + L with probability mass function proportional to ρs(x) =
exp(−π‖x‖2/s2) [2]. We define λ1(L) := minv∈L\{0} ‖v‖ and for t ∈ R

d we
define d(t,L) := minv∈L ‖t − v‖, where all norms are Euclidean norms.

Definition 1 (Shortest vector problem – SVP(L)). Given a lattice L, find
a non-zero lattice vector s ∈ L satisfying ‖s‖ = λ1(L).

Definition 2 (Closest vector problem – CVP(L, t)). Given a lattice L
and a vector t ∈ R

d, find a lattice vector s ∈ L satisfying ‖t − s‖ = d(t,L).

In the preprocessing variant of CVP (CVPP), one is allowed to preprocess the
lattice L, and use the preprocessed data to solve a CVP instance t. This problem
naturally comes up in contexts where either L is known long before t is known,
or if a large number of CVP instances on the same lattice are to be solved.

2.2 Heuristic Assumptions

For our asymptotic analyses we will rely on a number of common heuristic
assumptions, which have often been used throughout the literature.

Assumption 1 (Gaussian heuristic). Given a full-rank lattice L and a
region A ⊂ R

d, the (expected) number of lattice points in A, denoted |A ∩ L|,
satisfies:

|A ∩ L| =
vol(A)
vol(L)

. (1)

Using volume arguments, the Gaussian heuristic predicts that λ1(L) = gh(L)
where gh(L) :=

√
d/(2πe) · vol(L)1/d · (1 + o(1)). For random targets t ∈ R

d, we
further expect that d(t,L) = gh(L) · (1 + o(1)) with high probability.

304 E. Doulgerakis et al.

Assumption 2 (Geometric series assumption [32]). After performing lat-
tice basis reduction on a lattice basis B, the Gram-Schmidt basis B∗ satisfies

‖b∗
i ‖ = qi−1‖b1‖, q ∈ (0, 1). (2)

The GSA is used in analyzing enumeration and Babai lifting (Sects. 2.3, 2.6).

Assumption 3 (Randomized slicer assumption [10]). Let s � 0, and
let X1,X2, · · · ∈ {0, 1} denote the events that running the iterative slicer on
ti ∼ Dt+L,s returns the shortest vector t′ ∈ t + L (Xi = 1) or not (Xi = 0).
Then the random variables Xi are identically and independently distributed.

This assumption is related to the randomized slicer, discussed in Sect. 2.5.

2.3 Lattice Enumeration

For constructing hybrid algorithms for solving SVP, we will combine several
existing techniques, the first of which is lattice enumeration. This method, first
described in the 1980s [13,20] and later significantly improved in practice [5,
15,29], can be seen as a brute-force approach to SVP: every lattice vector can
be described as an integer linear combination of the basis vectors, and given
some guarantees on the quality of the input basis, this results in bounds on
the coefficients of the shortest vector in terms of this basis. The algorithm can
be described as a depth-first tree search, requiring dO(1) memory and 2O(d log d)

time. For further details, we refer the reader to e.g. [15,16,26].
For our purposes, what is important to know is that the complexity of (par-

tial) enumeration is proportional to the number of nodes visited in the tree, and
that the number of nodes at depth k = o(d) for a strongly-reduced d-dimensional
lattice basis is 2O(k log d). More precisely, we will need the following lemma. A
heuristic derivation, based on estimates from [17], is given in Appendix B.

Lemma 1 (Costs of enumeration [17]). Let B be a strongly reduced basis of
a lattice. Then the number of nodes Ek at depth k = o(d), k = d1−o(1), satisfies:

Ek = dk/2+o(k). (3)

Enumerating all these nodes can be done in time Tenum and space Senum, with:

Tenum = Ek · dO(1), Senum = dO(1). (4)

2.4 Lattice Sieving

Another method for solving SVP, and which will be part of our hybrid algo-
rithms, is lattice sieving. This method dates back to the 2000s [3,28,30] and
has seen various recent improvements [4,8,11,19,21] that allowed it to surpass
enumeration in the SVP benchmarks [1]. This method only requires 2O(d) time
to solve SVP in dimension d (compared to 2O(d log d) for enumeration), but this

Sieve, Enumerate, Slice, and Lift 305

comes at the cost of a memory requirement of 2O(d). The algorithm starts out
by generating a large number of lattice vectors as simple combinations of the
basis vectors, and then proceeds by combining suitable pairs of vectors to form
shorter lattice vectors. For additional details, see e.g. [8,16,22,26].

In the context of this paper we will make use of the following result from [8],
which is the current state-of-the-art for (heuristic) lattice sieving in high dimen-
sions d. The statement below is stronger than saying that sieving merely solves
SVP, as lattice sieving commonly returns a list of all short lattice vectors within
radius approximately

√
4/3 · λ1(L). This same assumption was used in [11].

Lemma 2 (Costs of lattice sieving [8]). Given a basis B of a lattice L, the
LDSieve heuristically returns a list L ⊂ L containing the (4/3)d/2+o(d) shortest
lattice vectors, in time Tsieve and space Ssieve with:

Tsieve = (3/2)d/2+o(d), Ssieve = (4/3)d/2+o(d). (5)

With the LDSieve we can therefore solve SVP with the above complexities.

2.5 The Randomized Slicer

The third ingredient for our hybrid algorithms is the randomized slicer for solv-
ing CVP(P). This algorithm, described in [10], is an extension of the iterative
slicer [33], and follows a procedure of reducing targets t with a list L ⊂ L to find
shorter vectors t′ ∈ t + L. The goal is to find the shortest vector t∗ ∈ t + L by
repeatedly reducing t with L, since t − t∗ is the solution to CVP(L, t).

We will make use of two separate results from [12]. These results differ in
whether one desires to solve only one or many CVP instances on the same lattice;
as shown in [12], solving many CVP instances simultaneously allows for more
efficient memory management, thus allowing to achieve a better overall time
complexity for a given space bound. Here ζ = − 1

2 log2(1− 2(1−y)
1+

√
1−y

) = 0.2639 . . .

where y = 0.7739 . . . is a root of p(y) = 16y4 − 80y3 + 120y2 − 64y + 9.

Lemma 3 (Costs of the randomized slicer, single target [12]). Given a
list of the (4/3)d/2+o(d) shortest vectors of a lattice L and a target t ∈ R

d, the
randomized slicer solves CVP for t in time Tslice and space Sslice, with:

Tslice = 2ζd+o(d), Sslice = (4/3)d/2+o(d). (6)

Lemma 4 (Costs of the randomized slicer, many targets [12]). Given
a list of the (4/3)d/2+o(d) shortest vectors of a lattice L and a batch of n ≥
(13/12)d/2+o(d) target vectors t1, . . . , tn ∈ R

d, the batched randomized slicer
solves CVP for all targets ti in total time Tslice and space Sslice, with:

Tslice = n · (18/13)d/2+o(d), Sslice = (4/3)d/2+o(d). (7)

The amortized time complexity per instance equals Tslice/n = (18/13)d/2+o(d).

306 E. Doulgerakis et al.

2.6 Babai Lifting

Finally, we will revisit the extension to lattice sieving described in [11], based on
Babai’s nearest plane algorithm [6]. As observed by Ducas, lattice sieving returns
much more information about a lattice than just the shortest vector, and this
additional information can be used to obtain a few dimensions for free – to solve
SVP in dimension d, it suffices to run sieving on a sublattice of dimension d − �
with � = Θ(d/ log d), and use the resulting list of vectors in this sublattice to
find the shortest vector in the full lattice.

Lemma 5 (Costs of Babai lifting [11]). Let γ > 1, let B = {b1, . . . , bd} be
a sufficiently reduced basis of a lattice L, and let L′ ⊂ L be the sublattice of L
generated by B′ = {b1, . . . , bd−�}, where:

� =
2d log2 γ

log2 d
· (1 + o(1)). (8)

Then, given a list L′ of the γd+o(d) shortest vectors of L′, we can find a shortest
vector of L through Babai lifting of L′ in time Tlift and space Slift, with

Tlift = γd+o(d), Slift = γd+o(d). (9)

For γ =
√

4/3 this results in � = d log2(4/3)/ log2 d dimensions for free.

3 Sieve, Enumerate, Slice, and Lift!

Suppose we have a basis B = {b1, . . . , bd} of a lattice L = L(B), and we split it
into two disjoint parts as follows, for some choice 0 ≤ k ≤ d:

B = Bbot ∪ Btop, Bbot := {b1, . . . , bd−k}, Btop := {bd−k+1, . . . , bd}. (10)

This defines a partition of the lattice L = Lbot ⊕ Ltop as a direct sum of the
two sublattices Lbot := L(Bbot) and Ltop := L(Btop). Let us further denote
a solution s = SVP(L) as s = sbot + stop with sbot ∈ Lbot and stop ∈ Ltop.
Finding s can commonly be described as solving a CVP instance on Lbot:

stop �= 0 =⇒ s = stop − CVP(Lbot, stop). (11)

Note that the case stop = 0 is in a sense “easy”, as then s = SVP(Lbot). The
hardest problem instances occur when stop �= 0, and this will be our main focus.

Lattice enumeration can be viewed as a procedure for solving SVP based on
the above observations: first enumerate all target vectors t ∈ Ltop that have the
potential to satisfy t = stop, and then compute CVP(Lbot, t) for each of these
targets through a continued enumeration procedure on the sublattice Lbot, to
see which of them produces the solution to SVP on the full lattice. Observe that
lattice enumeration commonly solves each of these CVP instances separately,
even though each problem instance can be viewed as a CVP instance on the
same lattice Lbot, but with a different target vector t ∈ Ltop.

Sieve, Enumerate, Slice, and Lift 307

As previously outlined in e.g. [10,15], a truly efficient CVPP algorithm would
imply a way to speed up processing all these CVP instances in enumeration; one
would first run a one-time preprocessing on the sublattice Lbot, and then solve
all the CVP instances at some level k using the preprocessed data as input for
the CVP(P) oracle. The initial preprocessing step may be expensive, but these
costs can be amortized over the many CVP instances that potentially have to
be solved during the enumeration phase. At the time of [15] no good heuristic
CVPP algorithm was known, but with the results of [10,12,24] we may now
finally instantiate the above idea with the ingredients from Sects. 2.3–2.5.

3.1 Hybrid 1: Sieve, Enumerate–and–Slice

In the first hybrid, after the preprocessing (sieve) finishes, we compute closest
vectors to targets t ∈ Ltop one vector at a time. This algorithm has two phases,
where the second phase combines enumeration with the randomized slicer.

1. Sieve: First, run a lattice sieve on Lbot to generate a list L ⊂ Lbot.
2. Enumerate–and–slice: Then, run a depth-first enumeration in Ltop, where

for each leaf t ∈ Ltop we run the randomized slicer to find the closest vector
CVP(t) ∈ Lbot. We keep track of the shortest difference vector t − CVP(t),
and ultimately return the shortest one as a candidate solution for SVP(L).1

To optimize the asymptotic time complexity of this algorithm, note that the
cost of enumeration in Ltop is Tenum = 2O(k log d) while the costs of sieving and
slicing in Lbot are Tsieve,Tslice = 2O(d−k). To balance these costs, and minimize
the overall time complexity, we will therefore set k as follows:

k =
α · d

log2 d
, with α > 0 constant. (12)

Using Lemmas 1–3, optimizing α to obtain the best overall asymptotic time
complexity is a straightforward exercise, and we state the result below. A detailed
derivation of the following result is given in Appendix C.

Heuristic result 1 (Sieve, enumerate–and–slice). Let k = αd/ log2 d with

α < log2(
3
2) − 2ζ = 0.0570 (ζ as in Lemma 3) (13)

Let T(d)
1 and S(d)

1 denote the overall time and space complexities of the sieve,
enumerate–and–slice hybrid algorithm in dimension d. Then:

T(d)
1 = T(d−k)

sieve · (1 + o(1)), S(d)
1 = S(d−k)

sieve · (1 + o(1)). (14)

Letting α → log2(
3
2)−2ζ in the above result, we get k ≈ 0.0570d/ log2 d with

an asymptotic speedup of a factor 20.0167d/ log2 d and a memory reduction of a
factor 20.0118d/ log2 d compared to running a sieve directly on L. Note that the
result does not hide subexponential or even polynomial hidden order terms; the
time and space complexities are dominated by the preprocessing costs.
1 The case stop = 0 can be handled by checking if L contains an even shorter vector.

308 E. Doulgerakis et al.

3.2 Hybrid 2: Sieve, Enumerate, Slice

An alternative to the above approach is to separate the enumeration and slicing
procedures into two disjoint parts, and run the hybrid algorithm in three phases.
The benefit of this approach (cf. Sect. 2.5) is that the batched slicer can then be
used to achieve better amortized complexities for CVPP.

1. Sieve: As before, run a lattice sieve on Lbot, to generate a list L ⊂ Lbot.
2. Enumerate: Then, enumerate all nodes t ∈ Ltop at depth k in the enumer-

ation tree, and store them in a list of targets T ⊂ Ltop.
3. Slice: Finally, use the batched randomized slicer with the list L to solve CVP

on Lbot for all targets t ∈ T , and return the shortest vector t − CVP(t).

Asymptotically, the additional space required for storing the nodes from the
enumeration phase will not play a large role, compared to the memory required
for storing the output from the preprocessing phase. On the other hand, by
using the improved batch-CVPP slicer of Lemma 4 we can use nearest neighbor
searching more efficiently, without increasing the memory, leading to a bigger
improvement over standard sieving than with the first hybrid algorithm.

Heuristic result 2 (Sieve, enumerate, slice). Let k = αd/ log2 d with

α < log2(
13
12) = 0.1154 (15)

Let T(d)
2 and S(d)

2 denote the overall time and space complexities of the batched
sieve, enumerate, slice hybrid algorithm in dimension d. Then:

T(d)
2 = T(d−k)

sieve · (1 + o(1)), S(d)
2 = S(d−k)

sieve · (1 + o(1)). (16)

In the limit of α → log2(
13
12) we get k ≈ 0.1154d/ log2 d dimensions for

free, leading to an asymptotic speedup of a factor 20.0338d/ log2 d+o(d/ log d) and a
memory reduction of a factor 20.0240d/ log2 d+o(d/ log d) over direct sieving on L.

3.3 Hybrid 3: Sieve, Enumerate–and–Slice, Lift

For the third and fourth hybrids, we observe that similar to lattice sieving,
the slicer in the previous hybrid algorithms can actually produce much more
information about the lattice than just the shortest lattice vector; for other
targets t �= stop, as well as for “failed” outputs of the randomized slicer, the
slicer will also return many short lattice vectors. This suggests that to get even
more dimensions for free, we may be able to combine both hybrids with Babai
lifting as outlined in Lemma 5.

Instead of splitting the lattice into two parts, we now split the input lattice
basis into three parts B = Bbot ∪ Bmid ∪ Btop, where the three bases Bbot :=
{b1, . . . , b�}, Bmid := {b�+1, . . . , bd−k}, and Btop := {bd−k+1, . . . , bd} generate
lattices Lbot,Lmid,Ltop of dimensions �, d−k − � and k respectively. For Hybrid
3 we essentially run Hybrid 1 on Lmid ⊕ Ltop, and use Babai lifting to deal with
the additional � dimensions of Lbot. This leads to the following algorithm:

Sieve, Enumerate, Slice, and Lift 309

1. Sieve: Run a lattice sieve on Lmid to generate a list L ⊂ Lmid.
2. Enumerate–and–slice: Enumerate all nodes t ∈ Ltop, and repeatedly slice

each of them with the list L to find close vectors v ∈ Lmid. For each pair t,v
add the vector t − v to an output list S ⊂ Lmid ⊕ Ltop.

3. Lift: Finally, extend each vector s′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm. Return the shortest lifted vector.

As the slicer processes Ek = dk/2+o(k) = 2αd/2+o(d) target vectors, and
requires ρ = (16/13)d/2+o(d) rerandomizations per target for average-case CVP
to succeed (see [10,12] for details), the slicer outputs 2(α+log2(16/13))·d/2+o(d) lat-
tice vectors, and ideally we might hope this list contains, similar to sieving [11],
(almost) all lattice vectors of norm at most γ = 2(α+log2(16/13))/2+o(1) · gh(L).

Assumption 4 (Hybrid assumption). The list S, output by the slicer, con-
tains the 2(α+log2(16/13))·d/2+o(d) shortest lattice vectors of Lmid ⊕ Ltop.

Assuming that the above heuristic is indeed valid, we derive the following result
regarding the asymptotic time and space complexities of the described hybrid
algorithm. In Sect. 5 we will revisit this assumption, to study its validity2.

Heuristic result 3 (Sieve, enumerate–and–slice, lift). Let k = αd/ log2 d
and � = βd/ log2 d with

α < log2(
3
2) − 2ζ = 0.0570 . . . , β < log2(

24
13) − 2ζ = 0.3565 (17)

Let T(d)
3 and S(d)

3 denote the time and space complexities of the sieve, enumerate–
and–slice, lift hybrid algorithm in dimension d. Then, under Assumption 4:

T(d)
3 = T(d−k−�)

sieve · (1 + o(1)), S(d)
3 = S(d−k−�)

sieve · (1 + o(1)). (18)

Observe that the number of dimensions we save compared to a full sieve
here is k + � ≈ 0.4136d/ log2 d. Compared to the result of Ducas [11] of
� ≈ 0.4150d/ log2 d this new hybrid is asymptotically slightly worse than a sieve–
and–lift hybrid.

3.4 Hybrid 4: Sieve, Enumerate, Slice, Lift

Finally, combining the second hybrid with lifting, as in the third hybrid algorithm
above, results in the following optimized hybrid procedure:

1. Sieve: Run a lattice sieve on Lmid to generate a list L ⊂ Lmid.
2. Enumerate: Enumerate all nodes t ∈ T ⊂ Ltop at depth k in L.

2 After this paper was accepted, Léo Ducas and Wessel van Woerden informed us that
counterexamples to Assumption 4 can be found where S only contains at most an
exponentially small fraction of the shortest vectors of Lmid ⊕ Ltop. As a result, our
results relying on Assumption 4 should be seen as optimistic, best-case lower bounds
on the true algorithm complexities. More details can be found in the revised online
version https://eprint.iacr.org/2020/487.pdf.

https://eprint.iacr.org/2020/487.pdf

310 E. Doulgerakis et al.

3. Slice: Run the slicer, with the list L as input, to find close vectors in Lmid

to the targets t ∈ T . The result is a list S ⊂ Lmid ⊕ Ltop.
4. Lift: Finally, extend each vector s′ ∈ S to a candidate solution s ∈ L by

running Babai’s nearest plane algorithm. Return the shortest lifted vector.

Table 1. An overview of the techniques used in the hybrids, as well as the asymptotic
number of dimensions for free for each part and in total (last column). In sufficiently
high dimensions, under Assumption 4, Hybrid 4 outperforms all other algorithms, by
saving up to 0.53d/ log2 d dimensions compared to sieving in the full lattice.

Algorithm Sieve Enum./Slice Lift Dimensions for free

(Single) (Batch) (k
d log2 d) (�

d log2 d) (k+�
d log2 d)

Full sieve [8] � – – –

Hybrid 1 � � 0.0570 – 0.0570

Hybrid 2 � � 0.1154 – 0.1154

Hybrid 3 � � � 0.0570 0.3566 0.4136

SubSieve [11] � � – 0.4150 0.4150

Hybrid 4 � � � 0.1155 0.4150 0.5305

Not only does splitting the enumeration and slicing guarantee that the batched
version of the slicer gets better complexities; the smaller resulting value α also
means that the number of vectors output by the slicer is larger, which leads to
more dimensions for free from the lifting phase. In particular, with the batched
slicer the number of vectors output by the slicer is proportional to (4/3)d/2+o(d),
and we may get as many dimensions for free in the lifting phase as [11].

Heuristic result 4 (Sieve, enumerate, slice, lift). Let k = αd/ log2 d and
� = βd/ log2 d with

α < log2(
13
12) = 0.1154 . . . , β < log2(

4
3) = 0.4150 (19)

Let T(d)
4 and S(d)

4 denote the time and space complexities of the sieve, enumerate,
slice, and lift hybrid algorithm in dimension d. Then, under Assumption 4:

T(d)
4 = T(d−k−�)

sieve · (1 + o(1)), S(d)
4 = S(d−k−�)

sieve · (1 + o(1)). (20)

We again stress that the above result relies on a batched version of the ran-
domized slicer. With this batched hybrid algorithm with lifting, assuming the
hybrid assumption holds, we can potentially get up to k + � ≈ 0.5305d/ log2(d)
dimensions for free, which would improve upon Ducas’ � ≈ 0.4150d/ log2(d) [11].

An overview of the techniques used in the four hybrids, as well as the number
of dimensions for free in each algorithm, is given in Table 1.

4 Sieve, Enumerate, Slice, Repeat!

For the fourth hybrid, under Assumption 4 the enumeration and batched slicer
together take as input a list of all vectors of norm at most

√
4/3 · gh(L′) of

Sieve, Enumerate, Slice, and Lift 311

a suitable sublattice L′ ⊂ L, and output (almost) all lattice vectors of norm
at most

√
4/3 · gh(L) of L. This suggests one might replace the initial sieving

step on Lmid by a sieve, enumerate, slice hybrid (Hybrid 2), by splitting Lmid =
L(1)
mid⊕L(2)

mid with rank(L(2)
mid) = Θ(d/ log d); running a sieve on L(1)

mid; enumerating
L(2)
mid; and then using the slicer to find a list of short vectors L ⊂ Lmid. Under

Assumption 4, this substitution of the initial sieve by Hybrid 2 can be repeated
many times to obtain Θ(d/ log d) dimensions for free several times.

As an alternative interpretation, rather than running enumeration on k levels
directly, one additional level of nesting suggests we first run the lower k/2 levels
of enumeration, lift the resulting target vectors to obtain short vectors in a
lattice of rank d − k/2, and then run another k/2 levels of enumeration to find
short vectors in the full lattice. Splitting up the enumeration this way decreases
the overall enumeration costs and the number of targets for the slicing phases
(Ek/2 + Ek/2 � Ek), but at the same time the list output by the first slicing
phase might not be as good for the second slicing phase as what one would get
from running a sieve directly; even if Assumption 4 is true, likely this still comes
at a slight loss in the quality of the list, say in the first order terms.

We finally observe that the same idea of nesting does not seem to work for
the sieve, lift hybrid of [11]. Although one could define a “generalized” Babai
lifting procedure, lifting targets to all nearby vectors in the higher-rank lattice,
from a viewpoint of enumeration we are “missing” some branches in the tree
due to L only containing some nodes in the tree at level d − �. Therefore, if the

Fig. 1. The number of vectors found through a sieve (black) and sieve, enumerate,
slice hybrids for k ∈ {1, 2, 3, 4} (orange, green, blue, red) in dimension 60. The dashed
black line, and the purple line intersecting it for large norms, indicate the true number
of lattice vectors below this norm. The dashed colored lines indicate the lists obtained
from running sieving in sublattices of rank d − k. (Color figure online)

312 E. Doulgerakis et al.

shortest vector in the lattice is actually in one of those missing branches, then a
generalized lifting procedure will not succeed in finding this shortest vector.

Although we will briefly revisit the idea of nesting in the experiments in the
next section, we leave a technical study of nesting for future work.

5 Experimental Results

5.1 Verifying Assumption 4

To attempt to validate (or disprove) the new heuristic assumption, we performed
the following experiment. We used the 60-dimensional SVP challenge lattice
with seed 0 [1], pre-reduced with BKZ-50 [31], for which gh(L) ≈ 2001 and
λ1(L) ≈ 1943. The black dashed line in Fig. 1 shows the expected number of
lattice points below a certain norm by the Gaussian heuristic (Assumption 1).
The (barely visible) purple line intersecting this line for high norms shows the
actual number of lattice vectors found by a “relaxed” sieve [23], showing the
accuracy of the Gaussian heuristic for large balls.

To test Assumption 4, we then ran both a standard g6k lattice sieve to
produce a list L0 (black) [4]; and sieve, enumerate, slice hybrids for k ∈ {1, 2, 3, 4}
by (1) running g6k on the (d−k)-dimensional sublattice formed by b1, . . . , bd−k

to produce a list Lk, (2) running enumeration up to depth k in the full lattice to
obtain targets Tk, (3) slicing each target t ∈ Tk up to 20 · (16/13)(d−k)/2 times,
to obtain a list Sk, and (4) plotting the sorted norms of both Lk (dashed) and
Sk∪Lk (solid) in Fig. 1. These results show that (i) as expected, the preprocessed
lists Lk in rank d−k become increasingly poor approximations of the sieved list
L0 as k increases, and (ii) the sliced lists Sk ∪ Lk together form very good
approximations to the sieved list L0. Note that, at norm

√
4/3 · gh(L), all these

lists are quite far off from the prediction by the Gaussian heuristic.

5.2 Assessing the Sieve, Enumerate–and–Slice Hybrid

To study the practical performance of these hybrid algorithms, we performed
some preliminary experiments in dimensions 60–80, whose results are described
in Table 2. This table is deferred to Appendix A due to the page limit; instead
here we will describe the setup of the experiments, and discuss the results as
well as conclusions that can or cannot be drawn from these results.

BKZ. To start, we used the SVP challenge lattices [1] with seed 0 in dimensions
d ∈ {60, 65, 70, 75, 80}. We preprocessed each basis with BKZ with block size
d − 10. In case the shortest vector had a 0-coefficient for bd when expressed in
terms of B, we would rerandomize the basis and run BKZ again, to guarantee
that the preprocessed lists do not already contain the solution.

Sieve. Next, we used the g6k [35] framework to generate sieving lists in dimen-
sions d − k, for k = 0, 1, 2, 3. We disabled the “dimensions for free” from g6k, to
test the pure hybrids for their performance and limit the impact of other factors

Sieve, Enumerate, Slice, and Lift 313

for now. The case k = 0 corresponds to sieving in the full lattice, and the timings
in dimensions d − k clearly decrease with k, as shown in Table 2. The resulting
vectors were stored in an output file, and their sizes are also given in Table 2.

Enumerate. Then, we ran a full enumeration in the full lattice up to depth k, to
generate the target vectors for the slicer. These were again stored in a separate
file for later usage. Note that pruning would reduce the number of targets further,
but (1) this would decrease the success probability of the overall algorithm,
and (2) rerandomizing the lattice basis to get a high success probability would
(naively) require running the costly sieving preprocessing step several times. We
therefore restricted experiments to enumeration without pruning.

Slice. Finally, with the sieved list L and target vectors T as input, we identified
the target t ∈ T corresponding to the shortest vector in the lattice, and for
this target we ran the randomized slicer with 105 trials to estimate the success
probability piter of the slicer in finding the shortest vector. Table 2 shows the
inverse p−1

iter as well as the average time for each trial, which together with |T |
can then be used to estimate the time for the slicing as Tslice ≈ |T | · p−1

iter · Titer.

Nested Hybrid. We also tested a simple nested hybrid from Sect. 4, with two
successive (non-batched) enumerate–and–slice routines in dimension k = 1. In
the first slicing phase, we chose the total number of iterations such that the size
of the output list matches the size of a directly sieved list for k = 1. The rows
k = 1 + 1 in Table 2 suggest this approach compares favorably to k = 2.

Conclusions. Although the results in Table 2 mainly suggest that these hybrid
approaches may have a large overhead in practice, we stress that as d grows, the
time complexity grows slower than a full sieve. Furthermore, for the slicer we
did not use nearest neighbor techniques or batching to reduce the query times.
Also, note that as 0.11d/ log2 d < 2 for d < 128 we do not expect to obtain many
(additional) dimensions for free in dimensions 60 ≤ d ≤ 80. The aforementioned
reasons can provide some insight why the speedup was not observed in practice
in our experiments3.

Code in fplll. As part of this project, we implemented the iterative slicer in
fplll [34], and we expect this code to be included in the library soon.

Acknowledgements. The authors thank Léo Ducas for helpful suggestions regarding
the possible combination with his “dimensions for free”. Emmanouil Doulgerakis is sup-
ported by the NWO under grant 628.001.028 (FASOR). Thijs Laarhoven is supported
by a Veni grant from NWO under project number 016.Veni.192.005.

A Figures and Tables

Due to the page limit, we have deferred some tables and figures to the appendix.
Table 2 shows the experimental results for the experiments described in Sect. 5.
3 As discussed in the footnote to Assumption 4, a possible explanation for why this

may not lead to ω(d/ log d) dimensions for free is that Assumption 4 is imprecise
and too optimistic.

314 E. Doulgerakis et al.

Figures 2 and 3 present graphical overviews of the hybrid algorithms described
Sects. 3 and 4, where the horizontal axis depicts the basis vectors b1, . . . , bd and
the vertical axis corresponds to the time (with algorithms starting from the top
and ending at the bottom).

Table 2. Experimental results and estimates for the costs of the hybrid algorithms,
in dimensions d ∈ {60, 65, 70, 75, 80} and for parameter choices k ∈ {0, 1, 2, 3} as well
as the nested hybrid with two iterations of k = 1. Single-core timings are denoted
in milliseconds (ms), seconds (s), minutes (m), hours (h), and days (d). List sizes |L|
and estimates on the required number of rerandomizations p−1

iter are sometimes given
in multiples of one thousand (k). The last column gives estimates for the total time
complexities for these algorithms, by adding up the costs for BKZ, sieving, enumeration,
and slicing. The case k = 0 corresponds to running a sieve on the full lattice directly.

Parameters BKZ — Sieve — — Enum — — Slice — Total

d k T
(d−10)
BKZ |L| T

(d−k)
sieve |T | T(k)

enum T
(d−k)
iter p−1

iter T
(d−k)
slice T

(d)
hyb

60 0 4 s 18k 19 s – – – – – 23 s

1 4 s 16k 16 s 5 0 s 3.2ms 830 13 s 33 s

2 4 s 13k 12 s 30 0 s 2.7ms 530 43 s 59 s

3 4 s 12k 9 s 155 0 s 2.4ms 760 280 s 293 s

1+1 4 s 13k 12 s 4 0 s 3.0ms 500 6 s 51 s

(16k) (0 s) 5 0 s 3.2ms 1820 29 s

65 0 8 s 37k 78 s – – – – – 1m

1 8 s 32k 57 s 5 0 s 6.8ms 12.5k 7m 8m

2 8 s 28k 44 s 37 0 s 6.6ms 2.9k 12m 13m

3 8 s 24k 36 s 215 0 s 5.6ms 2.9k 58m 59m

1+1 8 s 28k 44 s 4 0 s 6.6ms 1.1k 0.5m 6m

(32k) (0 s) 5 0 s 6.8ms 6.7k 4m

70 0 1m 76k 5m – – – – – 6m

1 1m 65k 4m 6 0m 20ms 17k 35m 40m

2 1m 57k 3m 46 0m 16ms 1k 12m 16m

3 1m 49k 2m 293 0m 13ms 6k 381m 384m

1+1 1m 57k 3m 5 0m 15ms 2k 2m 43m

(65k) (0m) 5 0m 18ms 25k 37m

75 0 2m 155k 22m – – – – – 0.4 h

1 2m 134k 16m 6 0m 40ms 25k 2 h 2 h

2 2m 116k 11m 50 0m 48ms 20k 13 h 14 h

3 2m 101k 8m 366 0m 30ms 12k 37 h 37 h

1+1 2m 116k 11m 5 0m 35ms 4k 0.2 h >8 h

(134k) (0m) 6 0m 41ms >100k >7 h

80 0 14m 320k 74m – – – – – 1.5 h

1 14m 275k 58m 7 0m 95ms >100k >18 h >20 h

2 14m 240k 45m 64 0m 74ms >50k >66 h >67 h

3 14m 205k 36m 506 0m 66ms >50k >19 d >19 d

Sieve, Enumerate, Slice, and Lift 315

Hybrid 1

L

Lbot ⊕ Ltop

L ⊂ Lbot

s ∈ L

Sieve

Enumerate & Slice

Hybrid 2

L

Lbot ⊕ Ltop

L ⊂ Lbot T ⊂ Ltop

s ∈ L

Sieve Enumerate

Slice

Hybrid 3

L

Lbot ⊕ Lmid ⊕ Ltop

L ⊂ Lmid

S ⊂ Lmid ⊕ Ltop

s ∈ L

Sieve

Enumerate & Slice

Lift

Hybrid 4

L

Lbot ⊕ Lmid ⊕ Ltop

L ⊂ Lmid T ⊂ Ltop

S ⊂ Lmid ⊕ Ltop

s ∈ L

Sieve Enumerate

Slice

Lift

Fig. 2. A high-level description of the hybrid algorithms presented in this paper.
Hybrids 1 and 3 combine enumeration and slicing, performing the randomized slic-
ing procedure for only one target vector at a time. Hybrids 3 and 4 use the Babai
lifting technique from [11]. The asymptotics of the slicer depend on whether targets
are processed directly (left) or in batches (right). The lifting can be done directly as
well, without affecting the performance of the algorithm.

316 E. Doulgerakis et al.

Nested Hybrid

L

L1 ⊕ L2 ⊕ L3 ⊕ . . . ⊕ Lm

. . .

. . .

L1 ⊂ L1 T2 ⊂ L2

L2 ⊂ L1 ⊕ L2 T3 ⊂ L3

L3 ⊂ L1 ⊕ L2 ⊕ L3

Tm ⊂ LmLm−1 ⊂
m−1⊕

i=1

Li

Lm ⊂
m⊕

i=1

Li = L

s ∈ L

Sieve Enumerate

Slice Enumerate

Slice

Enumerate

Slice

Fig. 3. A high-level description of the potential recursive hybrid algorithm, which
starts on a lattice L1 of dimension d − Θ(d/ log d), and then repeatedly lifts the lists
Li ⊂ L1 ⊕ · · · ⊕ Li to lists Li+1 ⊂ L1 ⊕ · · · ⊕ Li+1 by enumerating targets Ti+1 ⊂ Li+1

and using the batched slicer with Li as input to create Li+1. Each lattice Li for i > 1
has dimension Θ(d/ log d).

Sieve, Enumerate, Slice, and Lift 317

B The Number of Nodes in the Enumeration Tree

We restate Lemma 1 and give a derivation of this claim based on results from [17]
and a straightforward asymptotic expansion of the resulting formulas.

Lemma 1 (Costs of enumeration). Let B be a strongly reduced basis of a
lattice4 satisfying the GSA. Then the number of nodes Ek in the enumeration
tree at depth k = o(d), with k = d1−o(1), heuristically satisfies:

Ek = dk/2+o(k). (21)

Enumerating all these nodes can be done in time Tenum and space Senum, with:

Tenum = Ek · dO(1), Senum = dO(1). (22)

Proof. As a starting point, we take the formula from [17, Section 6.2], which was
derived using the Gaussian heuristic:

Ek =
πk/2

Γ (k/2 + 1)
· ‖b1‖k

∏d
i=d−k+1 ‖b∗

i ‖
. (23)

For the gamma function, we can use a very rough version of Stirling’s approx-
imation of the form Γ (x) = (x/e)x+o(x), which for the first term above gives
an asymptotic scaling of (2πe/k)k/2+o(k) = k−k/2+o(k). For the terms ‖b1‖ and
‖b∗

i ‖, we apply the geometric series assumption, which states that ‖b∗
i ‖ = qi−1

for some q ∈ (0, 1). Using that
∑d

i=d−k+1(i − 1) = k(2d − k − 1)/2 = kd − o(kd)
for k = o(d), this reduces the above to:

Ek = k−k/2+o(k) · q−kd+o(kd) . (24)

Next, we note that for a sufficiently well-reduced basis B, we have ‖b1‖ =
O(λ1(L)) = O(

√
d) · vol(L)1/d. From the GSA, we then get:

vol(L) =
d∏

i=1

‖b∗
i ‖ = qd(d+1)/2‖b1‖d = qd(d+1)/2d−d/2+o(d) vol(L). (25)

From this we can conclude that q = d−1/d+o(1/d) and q−kd+o(kd) = dk+o(k). From
the assumptions that k = d1−o(1) and k = o(d) we then get:

Ek = d−k/2+o(k) · dk+o(k) = dk/2+o(k). (26)

As for the time and space complexities of enumeration, as has been noted several
times before [5,13,15] the time complexity is directly proportional to the size of
the enumeration tree, while the space complexity is only polynomial in d. ��

4 Similar to [11, Section 3.4], concretely we may assume B is quasi-HKZ reduced.

318 E. Doulgerakis et al.

C Asymptotics of the Hybrid Algorithms

Below we restate and give a derivation of Heuristic result 1, by analyzing the
concrete time and space complexities for each phase, and arguing that with a
suitable parameterization indeed the costs of the algorithm are strictly domi-
nated by the costs of the sieve in the preprocessing phase.

Heuristic result 1 (Sieve, enumerate–and–slice). Let k = αd/ log2 d with

α < log2(
3
2) − 2ζ = 0.0570 (ζas in Lemma 3) (27)

Let T(d)
1 and S(d)

1 denote the overall time and space complexities of the sieve,
enumerate–and–slice hybrid algorithm in dimension d. Then:

T(d)
1 = T(d−k)

sieve · (1 + o(1)), S(d)
1 = S(d−k)

sieve · (1 + o(1)). (28)

Proof. For the time complexities, recall that the costs of the individual parts of
the algorithm, by Lemmas 1–3, are given by:

Tsieve = 2
1
2 log2(

3
2)d+o(d), Tenum = 2

α
2 d+o(d), Tslice = 2(

α
2 +ζ)d+o(d). (29)

Clearly Tenum = o(Tslice) since ζ > 0. Now, due to α < α0 = log2(
3
2) − 2ζ being

strictly smaller than the point where Tsieve ≈ Tslice, we have Tslice = o(Tsieve)
as well, giving a total time complexity of T = Tsieve · (1 + o(1)). Finally, looking
closely, we note that the cost Tsieve actually corresponds to running a standard
lattice sieve in dimension d − k, which can be done in time T(d−k)

sieve as claimed.
For the space complexities, we recall them from Lemmas 1–3 as follows:

Ssieve = (4/3)d/2+o(d), Senum = poly(d), Sslice = (4/3)d/2+o(d). (30)

Since α < α0, the time complexity of the enumerate–and–slice procedure is
strictly smaller than the cost of the preprocessing phase, and this will remain
true even if we use a slightly smaller list as output from the preprocessing phase.
So for sufficiently small ε > 0, we may therefore choose to use a list L′ ⊂ L for
the enumerate–and–slice phase of size |L′| = |L|1−ε, while still maintaining a
time complexity Tslice = o(Tsieve). This guarantees that the overhead caused
by the quasilinear-space nearest neighbor data structure, required in the third
phase to achieve sublinear search costs, does not impose any overhead in the
asymptotic space complexity; the memory required in the third phase will then
be of size Sslice = (S1−ε

sieve)
1+o(1) = o(Ssieve). ��

For the other heuristic results, analogous derivations can be given to argue
that both the time and space complexities are dominated by the initial sieving
phase, as long as the parameters k (and �) are below the point where the sieving
and slicing (and lifting) become equally expensive. Further note that although
the batched slicer has a cost of (3/2)d/2+o(d)+n·(18/13)d/2+o(d) for n targets due
to the reinitializations of the costly nearest neighbor data structures [12], these
costs can again be made to be (3/2−ε)d/2+o(d)+n1−ε ·(18/13)d/2+o(d) by slightly
reducing the number of targets and the number of hash tables accordingly.

Sieve, Enumerate, Slice, and Lift 319

References

1. SVP Challenge (2019). https://www.latticechallenge.org/svp-challenge/
2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-

est vector problem in 2n time via discrete Gaussian sampling. In: Proceedings of
the 47th STOC, pp. 733–742 (2015). https://doi.org/10.1145/2746539.2746606

3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the 33rd STOC, pp. 601–610. ACM Press (2001)

4. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

5. Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enumeration with
discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 65–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 3

6. Babai, L.: On lovasz lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986). https://doi.org/10.1007/BF02579403

7. Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. In: Proceedings of the 12th
ANTS 19(A), pp. 146–162 (2016)

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Proceedings of the 27th SODA,
pp. 10–24. ACM-SIAM (2016)

9. Chen, Y., Nguyên, P.Q.: BKZ 2.0: Better lattice security estimates. In: Proceedings
of the 17th ASIACRYPT, pp. 1–20 (2011). https://doi.org/10.1007/978-3-642-
25385-0 1

10. Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vectors using
approximate Voronoi cells. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25510-7 1

11. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

12. Ducas, L., Laarhoven, T., van Woerden, W.: The randomized slicer for CVPP:
sharper, faster, smaller, batchier. Preprint (2019)

13. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice. Math. Comput. 44(170), 463–471 (1985)

14. Fukase, M., Kashiwabara, K.: An accelerated algorithm for solving SVP based on
statistical analysis. J. Inf. Process. 23(1), 67–80 (2015). https://doi.org/10.2197/
ipsjjip.23.67

15. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

16. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Proceedings of the 3rd IWCC, pp. 159–190 (2011). https://
doi.org/10.1007/978-3-642-20901-7 10

17. Hanrot, G., Stehlé, D.: Improved Analysis of Kannan’s Shortest Lattice Vector
Algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 10

https://www.latticechallenge.org/svp-challenge/
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.2197/ipsjjip.23.67
https://doi.org/10.2197/ipsjjip.23.67
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-540-74143-5_10

320 E. Doulgerakis et al.

18. Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -list prob-
lem in euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 16–40.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 2

19. Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time–memory trade-offs
for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10769, pp. 407–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 14

20. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of the 15th STOC, pp. 193–206. ACM Press (1983)

21. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

22. Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2016). http://repository.tue.nl/837539

23. Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 28

24. Laarhoven, T.: Approximate Voronoi cells for lattices, revisited. In: Proceedings of
the 1st MATHCRYPT (2019). https://arxiv.org/pdf/1907.04630.pdf

25. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3 14

26. Laarhoven, T., van de Pol, J., de Weger, B.: Solving hard lattice problems and
the security of lattice-based cryptosystems. Cryptology ePrint Archive, Report
2012/533, pp. 1–43 (2012). http://eprint.iacr.org/2012/533

27. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: Proceedings of the
42nd STOC, pp. 351–358. ACM Press (2010)

28. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proceedings of the 21st SODA, pp. 1468–1480. ACM-SIAM
(2010)

29. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Proceedings of the 26th SODA, pp. 276–294 (2015). https://doi.org/10.1137/
1.9781611973730.21

30. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2(2), 181–207 (2008)

31. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoret. Comput. Sci. 53(2), 201–224 (1987)

32. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

33. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative
slicing. SIAM J. Discrete Math. 23(2), 715–731 (2009). https://doi.org/10.1137/
060676362

34. The FPLLL development team: fplll, a lattice reduction library (2019). https://
github.com/fplll/fplll

35. The g6k development team: The general sieve kernel (G6K) (2019). https://github.
com/fplll/g6k

https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
http://repository.tue.nl/837539
https://doi.org/10.1007/978-3-319-69453-5_28
https://arxiv.org/pdf/1907.04630.pdf
https://doi.org/10.1007/978-3-319-79063-3_14
http://eprint.iacr.org/2012/533
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1137/060676362
https://doi.org/10.1137/060676362
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/g6k
https://github.com/fplll/g6k

Side Channel Attacks

Online Template Attack on ECDSA:

Extracting Keys via the Other Side

Niels Roelofs, Niels Samwel(B), Lejla Batina, and Joan Daemen

Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
nielsroelofs95@gmail.com, {nsamwel,lejla,joan}@cs.ru.nl

Abstract. We retrieve the ephemeral private key from the power trace
of a single scalar multiplication in an ECDSA signature generation and
from that the signing private key using an online template attack. The
innovation is that we generate the profiling traces using ECDSA signa-
ture verification on the same device. The attack can be prevented by
randomization of the (projective) coordinates of the base point.

Keywords: Online template attacks · Scalar multiplication · ECDSA

1 Introduction

Template attacks are a very powerful type of side channel attacks, typically
featuring two phases: profiling and key recovery [5]. In the profiling phase, the
device’s leakage is characterized as a probability distribution to make optimally
use of the information present in each time sample of a leakage trace. In the
attacking phase, the key is identified using the maximum likelihood principle. In
the public-key cryptography application scenario, template attacks can be used
to extract a private key from a single power consumption or electromagnetic
emanation trace of a device performing an exponentiation of scalar multiplica-
tion [15].

In this paper we concentrate on the scalar multiplication with a known base
point and a secret scalar. The goal of the adversary will be to extract the latter
one. Typically, an attacker derives some bits of the secret scalar based on some
well-defined positions in the trace and thereafter recovers the remainder of the
scalar via lattice reduction techniques. The first phase of the attack (profiling)
requires the generation of templates and for that the attacker ideally must be
able to take traces from the same device, running scalar multiplications with
chosen scalars. We call those profiling traces.

With classical template attacks, the required number of profiling traces to
perform a successful attack can be large, depending on the noise level, set-up,
implementation characteristics etc. An important innovation in this respect was
the technique of the Online Template Attack (OTA) [1] that reduces the number
of profiling traces to less than two times the number of scalar bits.

In real-world attack scenario’s it rarely happens that an attacker can get
profiling traces from the device that contains the target key. For that reason,
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 323–336, 2020.
https://doi.org/10.1007/978-3-030-51938-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_16

324 N. Roelofs et al.

one often obtains the profiling traces from a device of the same type running the
same software. This is, for instance, the case if the target device is a JavaCard
used for banking or used as an ID card, assuming that the attacker is able to
obtain an open JavaCard from the same type. However, profiling traces obtained
from a device different than the target device are not necessarily accurate due to
variations between individual chips. This is the so-called issue of portability that
has received wide coverage in many papers the last few years [3,6]. For dedicated
security products such as smart cards it is often even infeasible to obtain an open
device similar to the target device and profiling is simply out of the question.

In this paper we make use of a simple observation to generate profiling traces
using the target device itself, thereby completely bypassing the portability dis-
cussion and the non-availability of open devices. This observation is the fol-
lowing: products that support the Elliptic Curve Digital Signature Algorithm
(ECDSA) algorithm typically support both signature generation that includes
a scalar multiplication with an ephemeral private key and signature verifica-
tion that includes two scalar multiplications with scalars that are provided to
the device and can hence be chosen by an attacker. The idea is simply to use
scalar multiplications in the signature verification to generate profiling traces.
There are still some obstacles: the scalar multiplications in signature generation
and verification may make use of different algorithms. In a way, the issue of
portability between devices is now replaced by a portability problem between
algorithms. In this paper, we report on an attack that overcomes the difference
in algorithms and succeeds in extracting the private ephemeral key from a single
ECDSA signature generation trace using profiling traces from ECDSA signature
verification traces on the same device.

The remainder of the paper is structured as follows. We discuss related work
in Sect. 1.1 and summarize the contributions of this paper in Sect. 1.2. We pro-
vide the necessary background in Sect. 2. Section 3 focuses on the vulnerability
identified and how it might actually be exploited and in Sect. 4 we introduce the
actual exploitation process itself.

1.1 Related Work

There are two research directions that should be considered as relevant previous
work. The first one is on portability and the other one is the work on online
template attacks.

Considering the importance of portability, Elaabid and Guilley [9] show that,
when precharacterized templates are outdated, the consequence can be as dras-
tic as ranking the correct key last. The work of Choudary and Kuhn focuses on
differences between devices when performing portable template attacks (consid-
ering mainly DC offset caused by temperature changes) [7]. Bhasin et al. recently
compared different machine learning techniques on the efficacy with respect to
portability [3]. A common point in all those works is they identified the problem
and try to amortize the penalty due to portability.

Online template attacks are an adaptive template-attack technique that can
recover a complete scalar from only one power trace of a scalar multiplication

OTA on ECDSA: Extracting Keys via the Other Side 325

using this scalar [1]. The attack is characterized as online, because the templates
are created after the acquisition of the target trace. The attack is not a typical
template attack; i.e. no pre standard profiling template-building phase is neces-
sary. The attack is demonstrated by acquiring one target trace from the device
under attack and comparing patterns of certain identical operations from this
trace with templates obtained from the attacker’s device that runs the same
implementation. Our work examines another dimension of online templates, as
we address the portability issue at the same time by applying OTA on the same
device. This strategy requires the templates creation phase to use another algo-
rithm than the one which implementation we attack. This minor but subtle
difference requires some creativity with the new attack we propose as the tem-
plates to compare and identify within the actual trace are not readily available.
Our strategy is initiated by a common scenario in real-world applications where
one often has only one device available and it solves the portability problem.

1.2 Contributions

In this work we show the feasibility of OTA using a single device, so templates
collection and the key recovery are performed in identical conditions. This use
case puts the portability discussion in perspective. We successfully extract the
ephemeral private key from a single power consumption trace of an ECDSA sig-
nature generation implemented on an 8-bit microcontroller. We use the ECDSA
signature verification on the same device for the online templates. The fact that
the scalar multiplication in signature verification uses another algorithm than
the one in signature generation does not prevent our attack.

2 Background

In this section we discuss some principles needed to understand our attack: the
ECDSA signature scheme, the relevant scalar multiplication algorithms and the
principle of OTA.

2.1 ECDSA

By now it is almost twenty years ago that Johnson et al. proposed the elliptic
curve variant of the Digital Signature Algorithm [13]. Next to RSA [18] and
Ed25519 [2] it is one of the most commonly used signature algorithms. We specify
the ECDSA signing algorithm in Algorithm1 and its verifying counterpart in
Algorithm 2, along with the symbol clarification in Table 1.

In the context of side-channel analysis, in relation to elliptic curves, scalar
multiplications are the standard go-to, especially if the scalar is a secret value.
Namely, in the case of ECDSA, if an adversary somehow learns the value for
k by exploiting some side channel during the scalar multiplication on line 3 of
Algorithm 1, he can compute the private key d via line 8 of Algorithm 1 since it
is the only unknown variable left.

326 N. Roelofs et al.

Table 1. Symbol clarification for ECDSA related algorithms.

Symbol Meaning Element of

B Base point The elliptic curve

l Order of base point N

k Ephemeral private key Z/lZ

d Long-term private key Z/lZ

D Public key (D = [d]B) 〈B〉
H(...) Hash of input Z/lZ

M Message {0, 1}∗

(r, s) Signature (Z/lZ,Z/lZ)

Algorithm 1: ECDSA signature generation.
Input: d, l, B,M
Output: (r, s)

1 z ← H(M)
2 while true do
3 k ← create nonce(1, l − 1)
4 (x, y) ← [k]B
5 r ← x mod l
6 if r == 0 then
7 continue // new k needed

8 end
9 s ← k−1(z + rd) mod l

10 if s == 0 then
11 continue // new k needed

12 end
13 break

14 end
15 return (r, s)

Algorithm 2: ECDSA signature verification.
Input: l, r, s, B,D,M
Output: signature accepted

1 signature accepted ← 0
2 z ← H(M)
3 w ← s−1 mod l
4 u1 ← zw mod l
5 u2 ← rw mod l
6 (x, y) ← [u1]B + [u2]D
7 if x == r mod l then
8 signature accepted ← 1
9 end

10 return signature accepted

OTA on ECDSA: Extracting Keys via the Other Side 327

2.2 Double-and-Add

One of the simplest fast methods for scalar multiplication is the double-and-add
algorithm, see Algorithm 3.

This algorithm iterates over the scalar k, starting from the most significant
bit, doubles the intermediate result in every round and conditionally adds the
elliptic curve point if the scalar bit processed equals 1.

Algorithm 3: Double-and-add algorithm.
Input: (kn−1, kn−2, ..., k0), P
Output: Q = kP

1 Q ← O
2 for i ← n − 1 down to 0 do
3 Q ← 2Q
4 if ki == 1 then
5 Q ← Q + P
6 end

7 end
8 return Q

However, this procedure is insecure to use in a cryptographic setting when
k has to be kept private if a side-channel vector exists in the form of time due
to the conditional statement in line 4. If different rounds within the execution
of the algorithm can be distinguished from one another the secret scalar can be
reconstructed bit by bit. This is not necessarily trivial. Nevertheless, to prevent
such time-based attacks, one should avoid branching on secret data altogether.

2.3 Montgomery Ladder

An alternative for the double-and-add algorithm is the Montgomery ladder [16],
as specified in Algorithm 4. Peter Montgomery invented it back in 1987 to speed
up factorization using elliptic curves and it offers resistance against the type of
side-channel attacks as discussed above.

Due to the regular structure of the algorithm, and therefore the lack of
branches, the scalar multiplication occurs in constant time and even provides
protection against some power analysis techniques, such as simple power analy-
sis [14].

Still, the algorithm needs to somehow distinguish between 0 and 1 scalar bits
being processed. It does so by working with two shares, X0 and X1. Based on
the key bit, the shared a swapped in constant time by the function cswap. The
value shares are swapped if a bit is set.

Algorithm 4 only gives a high level overview of the Montgomery ladder. In
the last few decades quite some research has been done in optimizing it for
speed and/or memory usage and improving its resistance against side-channel
analysis. For the remainder of the paper we refer to the Montgomery ladder
implementation done by Hutter et al. [12].

328 N. Roelofs et al.

Algorithm 4: Montgomery ladder.
Input: (kn−1, kn−2, ..., k0), P
Output: Q = kP

1 X0 ← O
2 X1 ← P
3 for i ← n − 1 down to 0 do
4 X1 ← X0 + X1

5 X0 ← 2X0

6 (X0, X1) = cswap(X0, X1, ki)

7 end
8 return X0

2.4 Online Template Attack

OTA [1] can be seen as a combination a template attack [5] and doubling attacks
as introduced for the scalar multiplication operation on an elliptic curve [10].

The main difference between a standard template attack and OTA is that
the latter requires at most two power traces per scalar bit to recover, while in
the former case it easily can be hundreds or thousands. Additionally, with OTA
the process of template generation and matching can be interleaved per bit to
recover. So, OTA is faster in template generation building and matching and
uses significantly less storage in comparison to a standard template attack.

When looking at Algorithm3, the key idea of OTA is the following: based on
the bit value of kn−2, Q will equal 2P or 3P before the doubling operation at the
start of the third round of the for loop. That is because the most significant bit
kn−1 will equal 1. Although an adversary does not know which case occurred,
he can create his own profile trace, a template, for both cases. Assuming that
he has access to a power consumption trace of a target doing the secret scalar
multiplication and is able to identify a single doubling operation of an elliptic
curve point, he can apply correlation analysis techniques to derive the correct
scalar bit. That is, he compares how similar the doubling operation in the begin-
ning of the third round of the for loop is with both of his templates in terms of
power consumption. Depending on the scalar multiplication and the hardware
used, it might even be possible to only generate one template and accept the
corresponding correlation value based on a certain threshold value, which has to
be determined empirically.

Once the value of kn−2 has been identified, the whole process can be repeated
to determine the next bit of the scalar. The only matters that require updating
are the possible input values for the doubling operation on line 3 of Algorithm3
and the location of the doubling operation in the target trace. For example,
assuming that kn−2 = 0, the template traces will represent 4P and 5P .

Note that by itself it is overkill to apply OTA to the double-and-add algorithm
because a simple power analysis technique will already suffice. However, in the
next section we grasp the key idea of OTA and apply it to an implementation
of the Montgomery ladder.

OTA on ECDSA: Extracting Keys via the Other Side 329

3 Spotting the Attack Vector

This section focuses on the vulnerability identified and how it might actually be
exploited.

3.1 Finding the Similarity

As introduced before, for the attack to succeed, we need to find some key depen-
dent operation in the ECDSA signing procedure, that can be mimicked with its
verifying counterpart. If such a relation can be found, it allows an adversary to
generate templates of that operation, one where the bit of the scalar is 0 and
one where it is equal to 1.

In side channel analysis of ECDSA the typical method to achieve key extrac-
tion is to use the scalar multiplication of the ephemeral private key k with the
base point B, see line 3 of Algorithm 1. If k can be reconstructed, the extraction
of the private key is trivial. During the ECDSA verification procedure there are
two scalar multiplications taking place as well, so those can serve as an entry
point. However here arises a problem: the scalar multiplication method used dur-
ing signing is the Montgomery ladder, while its counterpart uses the standard
double and add algorithm. Not only do their internal computations differ, so
do their coordinate systems. In our scenario we assume the usage of standard
projective coordinates for the Montgomery ladder and Jacobian coordinates for
the double and add algorithm. So in order to find our targeted key-dependent
operation we have to dig deeper and look at the underlying field arithmetic in
both cases. Once again, solving this kind of issues is the core novelty of this
paper since it makes the portability discussion redundant by introducing the
new OTA-like method.

Signature generation and signature verification use different scalar multipli-
cation algorithms, thus we are not able to create templates of the whole double-
and-add iteration. Instead, we aim to find an operation that is computed in both
algorithms. Our requirements are: 1) In the signature generation algorithm the
input value of the operation should depend on the key and 2) in the signature
verification we should be able to control the input value.

The point that is doubled in the iteration depends on the key bit of the
previous iteration, namely 2P or 2P +1 (see line 4 and 5 of Algorithm 4) will be
doubled. We locate an operation in that step to create templates of the key bit
used in the previous iteration. For the point doubling operation, the x-coordinate
is squared. In the signature verification algorithm, there is also a squaring of the
x-coordinate. Since the x-coordinate is part of the public key D, an attacker can
control it. Therefore, this value of the x-coordinate and the squaring operation
is a good candidate for the generation of templates.

For each key bit, two templates are created, one for the case where 2P is
doubled and one where 2P + 1 is doubled, with P the resulting point of the
previous round in X0. The template consists of a power trace of the squaring
operation from the corresponding point doubling. To determine which key bit
was most likely in the target trace, the Pearson correlation [4] is computed with

330 N. Roelofs et al.

each template where the template with the highest correlation value corresponds
to the correct key bit.

3.2 Preparing the Input

Now that we have found our attack window, the question becomes how to get
meaningful data as input for the identified squaring operation so that we can
build our wanted templates. A first problem to overcome is to compute the
possible intermediate values for X0 in the Montgomery ladder which may serve
as input for the squaring operation in the Jacobian doubling.

The issue can quite easily be solved by implementing our own Montgomery
step function in SageMath1. After all, the input values for this step function are
known, except for the secret scalar itself of course, hence two possible values for
X0 which make up the template.

However, a more serious problem arises with our values just calculated.
Namely, when looking at line 6 of Algorithm 2, it only makes sense to feed our
template values for X0 via the public key D, since it is not likely that an outside
adversary can manipulate the base point B to use during a signature verifica-
tion. However, the complication that now arises is that typically in an ECDSA
signature verification implementation as a first step a check is made whether the
given D is really a public key, that is, whether the point D lies on the curve.
The issue here is that it is quite feasible that both computed values for X0 are
indeed not representing a point on the curve.

To circumvent this problem, Papachristodoulou [17] came up with the idea to
introduce bit flipping on the least significant bit of X0. By flipping it, effectively
a new value for X0, say x′, is computed. Together with its y′ component the
coordinate (x′, y′) might lie on the curve and hence pass the test that D is
a valid public key. If (x′, y′) is still not a point on the curve, the bit flipping
is reversed and instead the second least significant bit is flipped. This process
continues just as long until a point on the curve is found. Based on experiments
of Papachristodoulou and ourselves, a maximum of five tries are needed to find
an elliptic curve point that actually lies on the curve.

Since we now know how and what to fill in for D in Algorithm 2, we can focus
on the scalar u2. Looking at Algorithm3, we can think of line 3 as our Jacobian
doubling with our desired squaring operation. In order to get our calculated
values for X0 into the doubling, we need the most significant bit of u2 to be 1 so
that in the beginning of the second round in the for loop our wanted operation
happens. It does not really matter what happens afterwards, we only care about
the power trace of the squaring operation. u2 itself is depending on the signature
tuple (r, s). So, by some simple brute forcing of either of the values we should
have some random value for u2 for the most significant bit equals 1.

Today’s applications typically do not implement a simple double-and-add
algorithm and execute it two times to get both scalar multiplications during
ECDSA verification. Typically, they apply some kind of optimization, such as

1 http://www.sagemath.org.

http://www.sagemath.org

OTA on ECDSA: Extracting Keys via the Other Side 331

Non-Adjacent Form (NAF) [11] or the Straus-Shamir trick [19]. It is important
to note that also these implementations are affected, because the vulnerability
identified resides inside the underlying finite field arithmetic and not on the
higher level scalar multiplication algorithm.

Furthermore, also realize that when creating our templates, the correspond-
ing signature verification results do not have any meaning. It is a logical conse-
quence of taking an intermediate result of one algorithm and use it as input for
another in a different coordinate system. The takeaway here is that the verifica-
tion results are irrelevant, we only care about the retrieved power traces.

4 Exploiting the Attack Vector

Now that we have introduced the entry point of our attack, we will discuss our
measurement setup, after which we describe the procedure of bit extraction. We
will finish with an effective countermeasure against OTA.

4.1 Measurement Setup

For a total overview of the measurement setup, see Fig. 1 and Table 2 for the
symbol clarification.

The device used for our online template attack is the ChipWhisperer-Lite
Classic (CWLC). It uses the Atmel Xmega 128D4 8-bit processor which runs
at 32 MHz. Actually, the CWLC board consists of two parts: one with Xmega
target and one main board which communicates with the target. We access the
Xmega target via the main board via a USB-cable. On our computer we run
Jupyter notebook to interact with the board within a specially prepared virtual
machine2 provided by the manufacturers of the CWLC.

The board itself is connected to the Waverunner 8404M-MS from Teledyne
LeCroy which uses a sample rate of 25 Msamples/s in order to get a power trace.
Besides that, there is also wiring from the board to the oscilloscope to plot
any trigger mechanisms used. Even though the Xmega target runs our code in
constant time, the triggering makes the identification process of the squaring in
the trace a bit more convenient. However, it is not a necessity to use it. Finally,
the oscilloscope itself is connected to another computer which runs Inspector3,
a side-channel analysis tool we will discuss in the next section.

On a completely different note, it should be mentioned that the execution
time of a 256 bit elliptic curve scalar multiplication on a 8-bit architecture is a
costly endeavor: approximately 60 s. In contrast, a typical home computer does it
in the order of milliseconds. Additionally, the oscilloscope used can capture up to
128 Msamples. With our sampling rate of 25 Msamples/s this means that around
5 s of the signature generation can be captured. After doing some experimenting
with this setup we found out that one single round of the Montgomery ladder

2 https://github.com/newaetech/chipwhisperer.
3 https://www.riscure.com/security-tools/inspector-sca/.

https://github.com/newaetech/chipwhisperer
https://www.riscure.com/security-tools/inspector-sca/

332 N. Roelofs et al.

takes 192 ms and that the squaring we are interested in happens at a constant
offset of 111.5 ms from the start of a round and takes 10.8 ms. So, this means that
we can recover around 20 scalar bits with our setup. Remember, the scalar used
with ECDSA signing is different and randomly chosen for every single execution
so it is useless to take another target trace. However, this problem can simply
by bypassed by using an oscilloscope which has bigger storage capabilities. On
top of that, an adversary could try to lower the sampling rate. However, we did
not test such a scenario.

4.2 Bit Extraction

Once both profiling traces have been taken for the second most significant bit,
the post-processing can start. Realize that we start with the second bit, because
the most significant bit will always be 1.

The basic idea is to calculate the Pearson correlation coefficient between a
profile trace and every single offset of the target trace. To increase the speed of
these calculations we applied the principle of window resampling with a window
size of 20 with an overlap of 0.15, which leads to a sample reduction of factor
17. In our case window resampling means that the average is taken of 20 sam-
ples, which serves as 1 new sample, and that the last 3 samples of a window
are reused in the next window. These numbers have been chosen empirically
and are a balance between computation time and still being able to distinguish
between different templates. Namely, creating the windows too big in size effec-
tive leads to a situation where every window starts to look similar which gives
as a consequence that further analysis is not possible.

Table 2. Number clarification for OTA setup Fig. 1.

Number Meaning

1 CWLC Xmega target

2 CWLC main board

3 Micro-USB connector

4 Measuring cable to oscilloscope

5 Wiring for triggering to oscilloscope

6 Computer running Jupyter notebook

7 Waverunner 8404M-MS oscilloscope

8 Processing power trace with Inspector

The concept above can be implemented quite easily with the tool Inspector
from Riscure. If done so separately for both templates, we are given Fig. 2, where
(a) represents the correlation analysis when the second most significant bit of
the scalar equals equals 0 and (b) when it equals 1.

OTA on ECDSA: Extracting Keys via the Other Side 333

Fig. 1. Overview of the OTA attack setup.

The x-axis of both subfigures captures the time of one complete Montgomery
ladder step, 192 ms. The parts in the figure marked in red refer to the area where
the correlation coefficient between our template and our targeted squaring in the
Montgomery ladder in the target trace should be. And indeed, there is a peak
at an offset of 111.5 ms. The other correlation peaks in the figures represent
points in time where either another squaring or multiplication operation in the
Montgomery ladder occurs. Based on the implementation of Hutter et al. [12],
we should have the eleventh peak, which is indeed the case (note the peak at an
offset of 0 ms).

As a final step, the only thing that is now left to do is to compare the
correlation peak values at the offset of 111.5 ms: (a) gives a correlation of 0.88
and (b) 0.61. Therefore, the conclusion can be drawn that it is more likely that
the second most significant bit of the scalar equals 0. And indeed, when creating
our setup we set the most significant byte of the scalar to 0 × 97, which gives in
binary 10010111.

From here on onward, the whole procedure can be repeated for the third
most significant bit and thereafter the fourth et cetera. For every scalar bit to
recover new values have to be computed for X0. They will serve as input for
the templates to generate. Hereby it is important to realize that these values for
X0 depend on the previously scalar bits identified. Additionally, when trying to
derive to value for the nth bit, one should look at the correlation peak at an
offset of (n − 2)192 + 111.5 ms.

334 N. Roelofs et al.

In total, we repeated this procedure sixteen times and we were able to derive
the scalar bit every single time without error, once we applied the appropriate
window resampling parameters. Nevertheless, even if somehow a wrong bit would
get chosen, the correlation values would significantly drop in successive rounds
thereafter, clearly indicating that somewhere something went wrong.

Fig. 2. Correlation results second most significant bit templates. (a) represents bit 0
and (b) bit 1.

4.3 Countermeasures

As demonstrated above, simply implementing the elliptic curve scalar multiplica-
tion in a time constant way does not provide protection against OTA. However,
as Coron wrote in his influential paper [8], there are some countermeasures that
can be taken in order to prevent certain types of power analysis side-channel
attacks on elliptic curve cryptosystems.

One of those countermeasures described also protects against OTA: the con-
cept of randomized projective coordinates. It is based on the concept that the
projective representation of an elliptic curve point is not unique. See Eq. (1)
where λ is a random scalar in Fp, the finite field with modulo p.

(X,Y,Z) ← (λX, λY, λZ) (1)

When this concept is applied on the base point while signing, an adversary
can no longer create any meaningful templates for OTA. After all, it becomes
impossible to calculate the intermediate computation value of X0 in the Mont-
gomery ladder which he wants to serve as input for the squaring operation during
the verification process because the value is randomized.

A big advantage of this countermeasure is that it is very cheap to implement
in terms of speed: it only takes three finite field multiplications. In contrast, a full

OTA on ECDSA: Extracting Keys via the Other Side 335

Montgomery ladder consists of several thousands of such operations. However,
there is one big assumption that must not be overlooked: we assume that a
device has the capability to generate randomness, an operation that by itself is
far from trivial and definitely not implemented on every device out there in the
world.

5 Conclusion

In this paper we demonstrated the feasibility of extracting a secret scalar used
in the ECDSA verification procedure via its verifying counterpart, which does
not use any secret values by itself. By itself, this is nothing the new. However,
the novelty lies in the fact that a single device is used for both collecting the
target trace and building the profile traces, while different scalar multiplication
algorithms with different coordinate systems are used during ECDSA signing
and verification.

Although we showed a rather simple but effective attack, so is its counter-
measure of randomizing the coordinates of the base point. Granted, hereby we
assume that the device has the ability to generate random numbers, which is
definitely not always the case.

References

1. Batina, L., Chmielewski, �L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. J. Cryptogr. Eng. 9(1), 21–36 (2017). https://doi.org/10.
1007/s13389-017-0171-8

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/
s13389-012-0027-1

3. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. IACR Cryptol. ePrint Arch. 2019, 661 (2019)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

6. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.
Inf. Forensics Secur. 13(2), 490–501 (2018)

7. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

9. Elaabid, M.A., Guilley, S.: Portability of templates. J. Cryptogr. Eng. 2(1), 63–74
(2012). https://doi.org/10.1007/s13389-012-0030-6

https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/s13389-012-0030-6

336 N. Roelofs et al.

10. Fouque, P.-A., Valette, F.: The doubling attack – why upwards is better than
downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol.
2779, pp. 269–280. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45238-6 22

11. Hankerson, D., Vanstone, S., Menezes, A.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004). https://doi.org/10.1007/b97644

12. Hutter, M., Joye, M., Sierra, Y.: Memory-constrained implementations of elliptic
curve cryptography in co-Z coordinate representation. In: Nitaj, A., Pointcheval, D.
(eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21969-6 11

13. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/10.1007/
s102070100002

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

15. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48059-5 14

16. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

17. Papachristodoulou, L.: Masking curves: side-channel attacks on elliptic curve cryp-
tography and countermeasures. Ph.D. thesis, Radboud University Nijmegen (2019)

18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

19. Straus, E.G.: Addition chains of vectors (problem 5125). Am. Math. Mon. 70(806–
808), 16 (1964)

https://doi.org/10.1007/978-3-540-45238-6_22
https://doi.org/10.1007/978-3-540-45238-6_22
https://doi.org/10.1007/b97644
https://doi.org/10.1007/978-3-642-21969-6_11
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/3-540-48059-5_14

When Similarities Among Devices
are Taken for Granted: Another

Look at Portability

Unai Rioja1,2(B), Lejla Batina1(B), and Igor Armendariz2(B)

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
lejla@cs.ru.nl

2 Ikerlan Technology Research Centre, Arrasate-Mondragón, Gipuzkoa, Spain
{urioja,iarmendariz}@ikerlan.es

Abstract. The original idea of profiling implies attacking one device with
a leakage model generated from an “identical copy”, but this concept can-
not be always enforced. The leakage model is commonly generated with
traces from an “open device”, assuming that a model which works for one
device should work for another copy as well. In practice, applying a leakage
model to a different copy of the same device (commonly called portabil-
ity) is a hard problem to deal with, as intrinsic differences in the devices or
the experimental setups used to obtain the traces cause behavioural varia-
tions which lead to an unsuccessful attack. In this paper we propose a novel
similarity assessment technique that allows evaluators to quantify the dif-
ferences among various copies of the same device. Moreover, we support
this technique with actual experiments to show that this metric is directly
related to the portability issue. Finally, we derive a method that improves
the performance of template attacks.

Keywords: SCA · Profiling attacks · Template attacks · Portability ·
SCA evaluation · DTW

1 Introduction

Nowadays profiling attacks are considered the most powerful kind of Side-
Channel Attacks (SCAs). The idea behind profiling is different from the tra-
ditional concept of Differential Power Analysis (DPA) [3,4,10,19], for which the
attack is separated from the device (e.g., every device that implements AES
encryption is susceptible to the attacks using these techniques). In profiling
attacks, the goal of the attacker is to build a leakage model of a particular device
and to recover sensitive information comparing that model with the actual power
consumption of the device. The first requirement to carry out this kind of SCA
is to have, at least, two devices: the attacked device or the device under test
(DUT), and another identical hardware device over which we have full control.
The reason behind is that the attack requires two different stages: a profiling
stage (with a “copy” of the device), in which we model the power consumption
(side-channel), and an attack phase (with the “real” device), in which we use the
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 337–357, 2020.
https://doi.org/10.1007/978-3-030-51938-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_17

338 U. Rioja et al.

generated model to obtain the secret parameter with only one or a few traces.
Conversely, even though the original idea of a profiling attack is to generate the
power consumption model for an “identical” copy of the attacked device, this is
not always guaranteed in practice. This portability issue is often underestimated
in practice, although some previous works suggest that in real-world setups small
differences in the production of different devices, aging or even environmental
changes during the measurements cause different behaviours of those devices,
even leading to an unsuccessful attack [1,3,6,10,11,14,20,29].

In this work, our goal is to show how these dissimilarities can be addressed
from the evaluation point of view, measuring how similar two different devices
are and giving insights on how successful a portable profiling attack could be.
Moreover, although performing this kind of attack is challenging, in this work
we show the feasibility of a portable template attack in a realistic setup. We also
provide some suggestions to improve the success rate of these attacks with our
new point of interest (POI) selection technique.

Our main contribution is a novel similarity assessment technique with which,
from an evaluation point of view, general similarities/dissimilarities between
“identical” copies of the same device can be quantified. In addition, our work
has revealed some other contributions that are all detailed as follows:

– This paper proposes the usage of the well-known Dynamic Time Warping
(DTW from now on) statistical tool as a similarity assessment tool. Our
approach shows that the warped distance between two specific graphics can
quantify the similarities/dissimilarities between different devices or tracesets.

– We showcase the proposed technique with several experiments (portable tem-
plate attacks with four different copies of the same device), demonstrating
that the performance of the attack is directly related to this metric and hence
the more similar two copies of the same device are (or two different sets of
traces from the same device) the better results will be obtained.

– Finally, we propose an alternative POI selection technique which helps
improving the performance of portable template attacks. This technique is
also supported by the aforementioned experiments, showing how an unsuc-
cessful portable attack can be turned into a successful attack by choosing the
“best” points of interest while building the templates.

The paper is organized as follows, Sect. 2 summarizes the state of the art and
the related work on this topic. Section 3 highlights the common issues with porta-
bility as a starting point for our work. Section 4 explains the details of DTW and
our similarity assessment technique. Section 5 contains the experimental results
supporting our similarity assessment technique and our new POI selection tech-
nique (which is also explained in a practical manner in this section). Finally,
Sect. 6 draws the conclusions.

2 State of the Art

As mentioned above, profiling attacks are dominant in side-channel analysis
nowadays. In the profiling phase, the model of the device can be generated by

When Similarities Among Devices are Taken for Granted 339

using standard classification techniques like in Template attacks [7,28], Sup-
port Vector Machine (SVM) [15,16,21], Random Forest (RF) [22], regression or
the Stochastic models approach [32] or recently introduced Deep learning tech-
niques [5,24,27]. In the attacking phase, the model is applied and the secret key
is guessed. Template attacks and machine learning are the two most popular
approaches [23].

In this work, we focus on classical Template attacks because it is a well-
known and understood technique in the field of SCA. Moreover, it should be
noticed that although template attacks usually require more effort of an expert
with signal processing capabilities, they allow the attacker/evaluator to focus on
specific parts of the leakage keeping more control in the process (which is not
always possible with deep learning techniques).

2.1 Template Attacks

Template attacks are the original form of profiling attacks as proposed for SCA
by Chari et al. [7]. These attacks are based on building a multivariate model
of the probability distribution of the leakage. The Probability Density Function
(PDF) is usually computed assuming that the leakages follow a Gaussian distri-
bution, as in the case of unprotected devices (devices without SCA countermea-
sures). This is a parametric estimation and we focus on this kind of templates
technique because of its fast convergence and the fact that it is widely used
and consolidated by many previous works. Nevertheless, it should be mentioned
that there are other non-parametric estimations that are able to capture any
distribution (which might be helpful with protected devices) like histogram and
kernel-based estimators and also some other advanced tools [33].

The main goal in a “traditional” template attack is to deduce the secret
(key) used to perform cryptographic operations. Thus, the attacker has to first
take measurements of some device’s physical property (commonly the power
consumption or the electromagnetic radiation emitted by the device) during the
manipulation of some intermediate value iv = f(p, k) related to the plaintext p
and the secret key k. In the profiling phase the attacker uses a set of np profiling
traces (Tp,k) to build a Gaussian multivariate model (pdf) for each possible iv.
In order to do that, the mean vector μp,k and the covariance matrix

∑
p,k are

estimated for each iv, creating the so-called templates. Then, in the attack phase,
from a set of na real power traces and its input data (plaintext), the attacker tries
to guess the correct iv value (or its Hamming Weight) by using the maximum
likelihood principle. Since iv = f(p, k), knowing iv and p the secret key k can
be recovered.

Template attacks are optimal from an information-theoretic point of view
but in practice, they have several limitations: preprocessing dependency (the
effort of an expert in the field is mandatory most of the times), computational
complexity problems and the need for dimensionality reduction. The latter is
usually solved by selecting only a subset of the typically huge amount of samples
in each power trace (Points of Interest [POI] selection [28]), applying another
data-dimensionality reduction method as Principal Component Analysis (PCA)

340 U. Rioja et al.

[2,34] or Fisher’s Linear Discriminant Analysis (LDA) [12,18]. Due to the high
computational requirements of the other techniques, in this work, we reduce the
dimensionality of the problem by selecting a few samples (Points of Interest).
As we have mentioned, it also allows us to focus only on specific parts of the
leakage and improve the results of the “classical” template attack (Sect. 5).

2.2 Portability

Although having two identical devices to perform a profiling attack is mandatory,
in practice this is not always possible. The traces for the profiling phase and the
attack phase are usually captured from the same device in most of the works on
this topic [7,9,13]. Attacking a second device with a model generated with a first
device is often considered trivial, while in practice this is not the case. Even if
two devices are clones (“identical” copies of the same device) there always exist
differences in the construction of the devices that can cause different behaviours
in timing, voltage, etc. There could be different reasons for this, such as faults
in the manufacturing process, aging, slight differences in the resistance and/or
capacitance of the circuit, etc. Moreover, when two measurements are taken in
different time moments they will often cause deviations in the acquired power
traces, which could lead to an unsuccessful attack [1,11,29]. More precisely, we
are referring to various small variations in the experimental setup such as I/O
interference (serial port, USB, Radio, etc.), influence of the past state, mem-
ory management, garbage collection, differences in magnetic field penetration
(while taking electromagnetic measurements), changes in environmental param-
eters (temperature, humidity, electromagnetic noise, etc.), resonance due to LC
and RC oscillators, among other phenomenon.

To the best of our knowledge, there are not many papers discussing the
portability of profiling attacks. The work of Elaabid et al. is introducing the
portability issue and showing how waveform realignment and acquisition cam-
paigns normalization can improve the performance of portable template attacks
[11]. The work of Choudary et al. focuses on differences between devices when
performing portable template attacks while attacking four different copies of the
same device [8,10]. A more recent work successfully implements a portable tem-
plate attack over a wireless keyboard performing AES encryption [20]. In the
CHES 2018 Side Channel Contest CTF, portability was also considered, and
the winning attack was able to obtain a 100% of success in all devices [14]. In
[6], authors considered the usage of several devices during the various stages
of a profiling attack in order to attack an RSA implementation. Bhasin et al.
have recently made a comparison between different machine learning techniques
using portable profiling attacks, but they only focused on machine learning tech-
niques [3].

Our approach is orthogonal to all those works as we show a general way to
find and quantify differences between clone devices, by obtaining a measurement
of its dissimilarity. This metric is directly linked to portability: the more similar
two devices are, the better performance the portable template attack will achieve
and vice versa. Moreover, we show how this information can be used in the POI

When Similarities Among Devices are Taken for Granted 341

selection and we propose an improved POI selection technique, which assists in
finding the optimal leakage points for different devices.

3 The Issue of Portability

As mentioned in Sect. 2.2, to perform a portable profiling attack is a challenging
task, mainly because the behaviour of two theoretically identical devices could
be (slightly) different in practice. After several experiments we noticed that the
differences between two “identical” devices can be seen clearly in the graphics
used for POI selection. Those graphics (POI graphs from now on) are generated
by applying certain functions to the power traces in order to find the leaking
points and select proper POIs for Template Attacks. Below we describe some of
the most commonly used techniques:

Pearson Correlation Coefficient: This is a widely used metric in statistics,
which assesses the linear dependence between two variables x and y [17]. It takes
on a value between −1 and 1, where 0 means no (linear) correlation and 1 and −1
imply the total positive and negative linear correlation respectively. We compute
the Pearson correlation coefficient between the data manipulated by the target
device and the power consumption traces of the device while processing the data.
For a sample of the entire population, the coefficient is defined by Eq. (1):

Correlation(x, y) =
∑N

i=1((xi − x̄)(yi − ȳ))
√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(1)

SOSD: SOSD or sum of squared differences was proposed for POIs in [13] and is
defined by Eq. (2), where x̄yi

is the mean of the power traces and the manipulated
data is equal to yi. Its value is always positive and highlights big differences in
means.

SOSD(x, y) =
∑

i,j>i

(x̄yi
− x̄yj

)2 (2)

SOST: This is the normalized version of SOSD [13], which is equivalent to the
pairwise Student’s t-test. It is defined by Eq. (3), where nyi

and nyj
are the

number of traces where y is equal to yi and yj respectively.

SOST (x, y) =
∑

i,j>i

((x̄yi
− x̄yj

)/

√
σ2
yi

nyi

+
σ2
yj

nyj

)2 (3)

SNR: Signal-to-noise ratios are commonly used in electrical engineering and
signal processing. In the context of a side-channel attack, the SNR of a point
of a power trace can be computed by Eq. (4), where Pexp is the exploitable
power consumption and Psw.noise and Pel.noise correspond to the noise compo-
nent (switching noise and electronic noise). In a nutshell, it quantifies how much

342 U. Rioja et al.

information is leaking from a point of the power trace. For a deeper explanation
of the SNR calculation we refer to [25].

SNR =
V ar(Pexp)

V ar(Psw.noise + Pel.noise)
(4)

Ifwe compare twoPOIgraphs generatedwith traces fromtwo“identical” copies
of the same device, significant differences between them could be observed. The
spikes do not occur at the same time and with the same shape (or strength), which
can influence the portability of an attack. In Figs. 1, 2 and 3 these differences can
be noticed. Figure 1 shows the power traces of two copies of the same device dur-
ing some internal computations in which an 8-bit sensitive value is stored in mem-
ory (Voltage vs Time (samples)). In Fig. 2 the leaking part of the signal (the exact
point in which the 8-bit data is stored) is shown.Also, Fig. 3 shows the output of the
aforementionedPOI selection functions of both devices. It is important to note that
there are significant differences in the magnitude and shape of both graphs. Those
differences are very problematic when porting a template attack: the POIs selected
to generate the templates in the first devicewill notmatchwith the optimal POIs in
the second device. Thus, the portable template attack will probably fail.When per-
forming a Template attack, the highest points of the spikes that appear in the POI
selection graph are usually selected as POIs, in order to reduce the dimensionality
of the multivariate leakage model and make the attack feasible. However, as these
points are selected taking into account only the profiling device, a big spike for one
device could be a “valley” in others. Moreover, if the spikes match, the results could
still be bad if the value in the POI graph is too low. We should ideally select spikes
with a value that is high enough to represent leakage. In conclusion, two devices

Fig. 1. Differences between devices:
Power trace

Fig. 2. Differences between devices: Leak-
ing part of the power trace

Fig. 3. Differences between POI selection functions

When Similarities Among Devices are Taken for Granted 343

can be “identical” copies, but in practice there are often remarkable differences
between their leaking points. When we build templates from one device and then
try to attack another one, it is crucial that the selected POI represents a significant
leakage in both devices. Otherwise, the behaviour modeled with the Gaussian mul-
tivariate distribution will not apply to the second device and the attack will fail.

4 Similarity Assessment

In order to quantify how different two “identical” copies of a device are, a sim-
ilarity assessment technique is proposed next, which is based on the Dynamic
Time Warping (DTW) statistical tool.

4.1 Dynamic Time Warping

DTW is a well-known algorithm to measure similarity between two temporal
sequences and find the most similar points between them. In other words, this
technique is able to quantify the similarity between two signals (even if they are
not completely aligned) and obtain the optimal match (alignment). In Figs. 4 and
5 the difference between the “traditional” euclidean distance and the warped dis-
tance is demonstrated. Originally, DTW was used in speech recognition [30] but
later on, it has been proved its applicability in several fields like gesture recog-
nition, robotics, manufacturing, etc. This technique has been applied also in the
SCA field with the elastic alignment [35] as a special kind of alignment using
DTW (FastDTW [31], more precisely). This kind of alignment was proposed
in order to address cryptographic implementations with random delay coun-
termeasures. Afterwards, Muijrers et al. proposed another alignment algorithm
which can deal with this countermeasure [26]. This method can align traces with
less computational effort than elastic alignment (DTW algorithm is relatively
computationally costly, depending on the length of the path). However, we now
propose the usage of DTW algorithm for an entirely different task: assessing
differences between tracesets or devices. Our approach is to use DTW to quan-
tify how similar two devices are by measuring the similarity of two temporal
sequences representing the leakage of each device.

Warp Path and Warped Distance are the two main outcomes of the
DTW calculation. The former indicates the best alignment between two shapes
while the latter is a measure of the similarity between signals. In our case,
the DTW algorithm is applied to two discrete time signals (traces), X =
x1, x2, . . . , xi, . . . , x|X| and Y = y1, y2, . . . , yj , . . . , y|Y |. In order to compute the
warp path and warped distance, the DTW algorithm calculates a cost matrix :
an |X|-by-|Y | matrix containing the distances between all samples of X and Y .
Figure 6 shows an example of the cost matrix (and its warp path) of the two
example curves shown in Figs. 4 and 5. Each element of the matrix (i, j) repre-
sents the distance D(i, j) between samples xi and yi (the darker the cell is, the
largest distance). The warping path (in dark blue), connects the cells with smaller

344 U. Rioja et al.

Fig. 4. Euclidian distance

Fig. 5. Warped distance

Fig. 6. Cost matrix and warp path (Color
figure online)

distance starting from (1, 1) to (|X|, |Y |), and indicates the optimal alignment
between those two curves (shown graphically in Fig. 5). The cumulative distances
of the warping path is what we call warped distance (our similarity indicator
between two time series). Formally speaking, the warping path W between two
traces X and Y can be defined as:

W (X,Y) = (w0, w1, . . . , wK) where max(|X|, |Y |) ≤ K < |X| + |Y |

Here, K is the length of the warp path and wk = (i, j) the kth element of
the path. Also, this path has to follow several constraints. For wk = (ik, jk)
and wk−1 = (ik−1, jk−1) being two consecutive elements of the warp path, the
constraints are:

– Monotonicity: ik−1 ≤ ik and jk−1 ≤ jk
– Continuity: ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1
– Bound: w1 = (1, 1) and wK = (|X|, |Y |)

The boundary condition ensures that every index of both time series is
used in the warp path computation while monotonicity and continuity con-
straints assure that we do not skip any sample and we do not go backwards
in time. Several paths could satisfy these conditions but the minimum-distance
path is considered as the optimal warp path, where the distance is:

Dist(W) =
k=K∑

k=1

wk

When Similarities Among Devices are Taken for Granted 345

This minimum distance is what we call warped distance, a similarity measure
between two time series. To find the minimum distance warp path, the distance
D of each cell has to be computed. Dynamic programming can solve this problem
in a very effective manner, so the value of a cell in the cost matrix is:

D(i, j) = d(i, j) + min[D(i − 1, j),D(i, j − 1),D(i − 1, j − 1)]

Where d is usually computed as the typical Euclidean distance d(i, j) =
d(xi, yj) = (xi − yj)2 between samples xi and yi and D is known as the cumula-
tive distance (the euclidean distance d(i, j) plus the minimum of the cumulative
distances of the contiguous cells).

4.2 Similarity Assessment Technique

Once the basis of the DTW technique have been clarified, our similarity assess-
ment technique can be explained. In order to assess how similar two devices are,
we propose the following steps:

1. Step 1: Obtain POI graphics of both devices. A set of nPOI traces will
be captured from both devices. These traces must be taken when the device
is manipulating a certain sensitive variable, which must have a random value
each time in order to properly characterize the leakage. Once both sets of
traces are taken (nPOI(1) and nPOI(2)), two POI graphs are obtained by
applying one of the POI selection functions mentioned in Sect. 3.

Fig. 7. SOST graph of devices 1 & 2
(Without Standardization)

Fig. 8. SOST graph of devices 1 & 2
(With Standardization)

Fig. 9. Warped distance between Device 1 and Device 2 Fig. 10. Warp path
between Device 1 and 2

346 U. Rioja et al.

2. Step 2: Standardize both graphics. Zero-mean and normalization are
standard preprocessing techniques that are mandatory to apply after almost
every SCA acquisition. Our case is not an exception: an standardization of
both graphs before applying DTW can be helpful since DTW usually inter-
prets those differences as huge dissimilarities. Figures 7 and 8 show how the
distance value changes enormously depending on whether we apply this tech-
nique or not, even though both graphs are quite similar in shape. Our exper-
imental results show how a portable template attack can be successful if the
shapes of its POI graphs are similar enough, even if there are magnitude
differences (as shown in Sect. 5). In other words, it is more important how
the device leaks its information than the quantity of the leakage (as long as
the leakage is big enough). Thus, we propose to standardize each POI graph
using Eq. (5), where z is the re-scaled sample, xi is the sample to scale and μ
and σ are the mean and the standard deviation of the trace (Fig. 8).

z =
xi − μ

σ
(5)

3. Step 3: Compute the DTW algorithm in order to obtain the mini-
mum distance path (as explained above). In other words, by computing the
cumulative of the distances of the minimum distance warping path we obtain
the distance between both graphs : a quantitative measurement of the similar-
ity/dissimilarity of both time sequences.

Additionally, the graphical representation of the warped distance and warp-
ing path (Fig. 9) can be helpful in the POI selection since DTW highlights the
parts of the signal which are most similar between devices. To see graphically
misalignment problems and behavioural differences between devices is a good
starting point for an improved POI selection.

5 Experimental Results

In order to support our similarity assessment technique, we have performed
realistic experiments involving template attacks with four “identical” copies of
the same device (ATmega328P microcontroller) called Device 1 (D1), Device 2
(D2), Device 3 (D3) and Device 4 (D4). Additionally, we propose an improved
POI selection technique which helps to enhance the performance of the portable
template attack. We consider two main template attack use cases: using one
device in the profiling phase and using two devices in the profiling phase.

5.1 Setup

The target is a development board mounting an ATmega328P 8-bit microcon-
troller working at 16 MHz clock frequency. We are storing random data (8-bit
values) in flash memory using a memcpy() operation (in a random address each
time). During that operation, we measure the power consumption of the device
with a Tektronix CT1 current probe attached to a 20 GS/s digital oscilloscope

When Similarities Among Devices are Taken for Granted 347

Table 1. Portable template attack experiments using Device 1 (D1) for profiling.

POI Rank (D1 vs D1) Rank (D1 vs D2) Rank (D1 vs D3) Rank (D1 vs D4)

[97, 158, 220, 294] 1 46 17 18

(LeCroy Waverunner 9104) triggered by the microcontroller, which rises a GPIO
signal when the internal computation starts. Each power trace is formed by 400
samples taken at 1 GHz with 8-bit resolution. As an attacker, our goal is to
obtain the exact 8-bit value loaded in flash memory using template attacks. A
set of np profiling traces are taken from the profiling device(s) (storing random
8-bit values) and labeled with the stored value. The traces are preprocessed
by aligning them and applying the aforementioned standardization technique.
Then, a SOST function is ran in order to find possible POIs. 256 templates are
built by computing the mean and co-variance matrix for each labeled group (in
the selected POIs), using the pooled matrix optimization method. In the attack-
ing phase a set of na power traces of the attacking device storing a fixed 8-bit
value are taken. Then the multivariate model is applied and the 8-bit value is
guessed using the maximum likelihood principle. Each label will obtain a confi-
dence value and the 256 labels will be ranked. We consider the attack successful
when the correct candidate obtains a rank of 25 or less (the correct candidate is
in the top 10% of candidates). We assume that then, the correct value could be
guessed using (optimized) brute force.

5.2 Use Case 1: Template Attack Using One Device in Profiling
Phase

“Raw” Template Attack
In the profiling phase 20 000 power traces of D1 are taken and labeled with the
stored value. The traces are preprocessed and the SOST function is run in order
to find possible POI (Fig. 8, Device 1). Four significant spikes can be seen, corre-
sponding to the different moments in which the copied variable leaks (production,
travel across a bus, load into register, etc.). Thus, fourPOI are selected, one for each
significant spike [97, 158, 220, 294] and the model using 256 templates is built. In
the attacking phase 1 000 power traces of the same device (D1) storing a fixed value
are taken. Then the multivariate model is applied and the 8-bit value is guessed.
In Table 1 we can see that the rank of the correct candidate in this attack (D1 vs
D1) is 1 after 1 000 traces (successful attack). In order to perform a more realistic
template attack, 1 000 power traces from a second device (D2) storing the same
fixed 8-bit value are taken. Then the model computed before with traces from D1
is applied and the fixed value is guessed. As it can be seen in Table 1, the attack
is unsuccessful (the rank of the correct candidate in this attack (D1 vs D2) is 46)
because the multivariate model of D1 does not apply to D2. The process is repeated
with devices D3 and D4 (results appear in Table 1). In this case the attack is suc-
cessful (the rank of the correct candidate is less than 25), but the results are not
optimal. To enhance the model we apply our similarity assessment technique and
the improved POI selection technique.

348 U. Rioja et al.

Devices Distance
D1 vs D2 1,1028
D1 vs D3 2,4159
D1 vs D4 2,7628
D2 vs D3 2,4792
D2 vs D4 2,7153
D3 vs D4 0,9128

Fig. 11. SOST graphics of each one of the four analyzed devices and distances between
them

Improving the Results
First and foremost, we apply our similarity assessment method. Thus, 20 000
power traces of the second device storing random 8-bit values are taken and
labeled with the stored value. The traces are preprocessed and the SOST function
is run (Figs. 7 and 11, Device 2). The same process is repeated with D3 and D4.
Then, once we have the four POI selection graphs (Fig. 11, one for each device),
we run the DTW algorithm to compute the warped distance between D1 and the
rest (Fig. 11, D1 vs D2, D1 vs D3, D1 vs D4). Note that we also calculate other
distances (D2 vs D3, D2 vs D4, D3 vs D4) to measure the similarities among
the four devices. These results lead to the following conclusions: Devices D3 and
D4 are the most similar ones since their distance is the smallest one. Thus, the
distances between D1 & D3 and D1 & D4 are similar, and this fact validates the
results of the attacks D1 vs D3 and D1 vs D4, which are also similar (Fig. 1).
D2 is the most similar device to D1, but the attack is not successful. The reason
is that the selected POIs are not optimal for this device, as shown below.

Improved POI Selection: To improve the effectiveness of the attack we suggest
the following steps:

1. Analyze the performance of each POI individually to find which points
correspond to good leaking points (when we port the model to another device,
or even in the same device) and which ones are perturbing the model. In order
to do that, we build templates using only one of the aforementioned POI each
time [97, 158, 220, 294]. Then, we apply the templates to each device (D1, D2,
D3 and D4). The results are presented in Table 2, where it can be seen that
the POIs with better performance for D2 (the one with the worst results) are
the second and the third POIs.

2. Try different combinations of the POI with better performance to
guess which combination has best results. Theoretically, the optimal solu-
tion would be a combination of all of them, but in practice it is not always
the case. To avoid trying all possible combinations, points with better per-
formance in all cases (identified in previous step) must be selected. Also,

When Similarities Among Devices are Taken for Granted 349

Table 2. Improved POI selection (when Device 1 (D1) is used for profiling.)

Step POI Rank (D1 vs
D1)

Rank (D1 vs
D2)

Rank (D1 vs
D3)

Rank (D1 vs
D4)

GS

1 1st POI [97] 9 121 121 121 38.32

2nd POI [158] 1 70 170 161 35.19

3rd POI [220] 3 98 53 53 24.87

4th POI [294] 50 136 121 121 41.18

2 POI 1+3+4 1 140 13 14 27.01

POI 2+3 1 45 72 65 17.44

POI 1+2+3 1 36 49 42 12.68

POI 1+2 1 56 116 110 25.50

POI 3+4 3 148 37 38 31.73

3 [92, 153, 218] 1 2 16 15 2.48

the warped distance graphic (Fig. 9) can be used to identify the most sim-
ilar parts of these signals and choose the POI combinations accordingly. In
this case, we have tried the following combinations: 1+3+4, 2+3, 1+2+3,
1+2 and 3+4. Results can be seen in Table 2 (Step 2). To help identify-
ing which combination works best in all devices we recommend to compute
what we call Goodness Score (Table 2, column GS). This metric is com-
puted by adding the ranks of each row weighted by a coefficient (GS =
RankD1 ∗ CD1 + RankD2 ∗ CD2 + RankD3 ∗ CD3 + RankD4 ∗ CD4). The value
of the coefficients is obtained dividing the rank of the first attack in the
Table 1, by the number of possible combinations (256), so we obtain coeffi-
cients from 0 to 1 with the emphasis put on the devices with worse result. The
lower GS value, the better performance (generally speaking). Note that the
combination with the best performance (in all devices) includes those three
points of interest (1+2+3).

3. Adjust the selected POI: once we have found the best combination, we
can try to tune each POI moving the selected point in a small number of
samples (and adding another one near if necessary) and check if the results
improve. Based on experience, points that are not exactly at the peak some-
times provide better results because the behaviour of the devices is more
similar in those points. Summing up, we identified the most suitable zones to
select POIs in previous step, and we are now tuning the exact value of these
POIs. In our case, after a few trials we obtained very good results with [92,
153, 218] (Table 2, Step 3).

After applying the proposed techniques, we can conclude the following:

– Not all POIs have the same performance with all devices: For
instance, in Table 2 we can see how the templates built with the 2nd POI
have better performance attacking D2 than devices D3 or D4. However, with
the 3rd and 4th POIs we obtain a better performance attacking devices D3

350 U. Rioja et al.

Table 3. Portable template attacks experiments using Device 3 (D3) for profiling.

Step POI Rank
(D3 vs
D3)

Rank
(D3 vs
D4)

Rank (D3 vs
D1)

Rank (D3 vs
D2)

GS

0 [97, 158, 220, 294] 1 7 114 130

1 1st POI [97] 15 131 153 153 149.47

2nd POI [158] 5 30 75 75 72.32

3rd POI [220] 16 22 206 206 197.01

4th POI [294] 2 117 135 135 131.88

2 POI 1+3+4 1 43 194 191 184.56

POI 2+3 1 8 105 105 100.30

POI 1+2+3 1 9 111 117 109.09

POI 1+2 2 22 70 66 65.30

POI 3+4 3 42 196 196 187.97

3 [90, 153, 156] 8 1 16 8 11.25

and D4. The same happens with combinations of those POIs: POI 1+2 has
better performance for D2 than others, while profiling with POI 1+3+4 has
good results for devices D3 and D4 but not for D2, etc.

– DTW’s wrapping distance can assess the similarity between
devices. After selecting proper POI, we can see how the results of the Tem-
plate attacks and the similarity assessment technique are directly linked. In
Fig. 11 we notice how devices D3 and D4 have the smallest distance between
them, which means that they are very similar (Table 2 shows how the results
of the attacks are almost the same for both). Another example is that if we
compare the distance between D1 and the rest, the device with shortest dis-
tance is D2, and the performance of the portable attack is generally better
with that device. Again, distances from devices D3 and D4 are similar, as
well as the results of the portable attacks.

Extending the Problem to Other Device
With the aim of confirming the results shown above we repeat the same process,
but using D3 for generating the templates (Results shown in Table 3). The con-
clusions obtained when profiling with D1 are now validated. Devices D3 and D4
are very similar and hence the attack using the 4 POIs located in the 4th spike
of Device 3’s SOST is effective for D4 but unsuccessful for D1 and D2. After
analysing the performance of each POI and its combinations we obtain the same
conclusion: the POIs that work for D4 (the most similar device) do not work
properly for the rest of devices (D1 and D2). Only after adjusting the POI with
the best performance in devices D1 and D2 (POI 1+2) and adding another point
near the second POI, we can obtain good results in those devices, but at the
cost of sacrificing some performance for devices D3 and D4. In conclusion, it is
important to get a balance and find POIs that represent leakage in all devices.

When Similarities Among Devices are Taken for Granted 351

In this case, we had to select POIs that are not optimal for attacking D4 but
allowed us to successfully attack devices D1 and D2. Thus, the templates gen-
erated with the improved POI selection are suitable for attacking each one of
those four devices.

Extending the Problem to Different Measurements of the Same Device
With this experiment, we want to show that measurements taken at different
times may have substantial differences caused by slight changes in the device or
its environment. With D3, the previous process is repeated two times, obtain-
ing two sets of 20 000 random traces and two sets of 1 000 fixed traces. After
comparing both SOST graphs (Fig. 12) it can be noticed that, although both
graphs are very similar there are slight differences between both traces. In order
to check whether those differences affect the performance, we carry out two dif-
ferent attacks. In the first one, we build templates and implement the attack
with traces from the first measurement set (D3) while in the second attack we
use traces from the second measurement set (D3*) with the model from the first
measurement. The attack is successful in both cases, but the correct candidate
ranks as 1 in the first attack and as 4 in the second one, showing the worse
performance in the later.

Fig. 12. SOST graph of the 1st and 2nd measurements (Device 3).

5.3 Use Case 2: Template Attack Using Two Devices in Profiling
Phase

In order to improve the performance of the portable template attack, we try
building templates with two different devices and attacking a third one. Thus,
a model is built with 20 000 profiling traces from D1 and 20 000 profiling traces
from D2. The traces are preprocessed as in previous experiments and the SOST
function is calculated (Fig. 13, Device 1+2). This figure, when compared with
the SOST of each device separately (Fig. 11), suggests that the new SOST is a
combination of the other two. We select 7 POIs in each one of the significant
spikes ([95, 142, 153, 173, 207, 218, 237]) and generate the 256 templates. In
the attacking phase 1 000 power traces of devices D1 and D2 storing a fixed
8-bit value are used (500 from each one). Then the model is applied and the
fixed value is guessed. The results of this non-portable attack using two devices

352 U. Rioja et al.

for profiling are excellent and they can be seen in Table 4 (Step 0, [D1+D2] vs
[D1+D2]). For the portable attack, the model is applied to 1 000 power traces
from D3 storing the same fixed value. As it can be seen in Table 4 (Step 0),
the results are quite bad because the model does not suit this device. The same
happens with D4. As in the first use case, the similarity assessment method
is applied. Thus, 20 000 power traces from the third and fourth device storing
random 8-bit values are taken and labeled with the stored value. The traces
are preprocessed and the SOST function is calculated (Fig. 13, D3 and D4). We
can see that both shapes are completely different and hence the attack is not
successful because we are not selecting representative POIs for all the devices.
To improve the POI selection, we apply our technique, as shown in Sec. 5.2.
First, we analyze the performance of each POI individually (Table 4, Step 0).
Note that the results are almost the same in D3 and D4 because these devices
are very similar. Then, different combinations of the 7 POIs are tested (Table 4,
Step 2). The combination which throws best results is 2+3+6. After that, we
try to adjust the POI of interest, achieving the attack using the points [143, 157,
217] (Table 4, Step 3).

Fig. 13. SOST graph of devices 1+2, 3 and 4

Extending the Problem to Other Devices
In order to consolidate the results shown above we repeat the same process,
using devices D1 and D3 for templates generation. First of all, the SOST graph
of the profiling traceset (20 000 random traces form D1 and 20 000 random traces
from D3) is computed (Fig. 14). In this case, the model is built with traces
from two devices which have significant differences, as we have seen in previous
experiments. Then, a multivariate model is built using 10 POI located in each
one of the significant spikes of the SOST ([90, 104, 115, 155, 166, 178, 216, 234,
267, 296]). The results appear in Table 5 (Step 0). Note that the results are quite
good without applying our improved POI selection because we have constructed
a model with devices which are similar to the attacked devices (Devices D1 &
D2 and D3 & D4 are very similar). Nevertheless, the results with D2 are not as
good as expected, so we perform our improved POI selection. After analyzing
the performance of each POI individually, we can notice that, in general, all
points work better for one device than for the other. Thus, we try different

When Similarities Among Devices are Taken for Granted 353

Table 4. Portable template attacks experiments using Device 1 (D1) and Device 2
(D2) for profiling.

Step POI Rank
([D1+D2] vs
[D1+D2])

Rank
([D1+D2]
vs D3)

Rank
([D1+D2]
vs D4)

GS

0 [95, 142, 153, 173, 207, 218, 23] 1 42 41

1 1◦ POI 1 114 114 36.96

2◦ POI 4 61 61 19.79

3◦ POI 6 56 43 16.10

4◦ POI 8 74 74 24.02

5◦ POI 92 201 201 65.53

6◦ POI 2 58 58 18.81

7◦ POI 9 56 56 18.19

2 POI36 2 16 18 5.52

POI23467 1 20 19 6.33

POI3467 1 26 24 8.11

POI367 1 22 21 6.98

POI67 2 54 55 17.68

POI236 1 15 14 4.71

POI346 1 24 24 7.79

3 [143, 157, 217] 1 4 5 1.46

POI combinations to find the optimal one. In this case, we try to select points
that provide good results in both devices, avoiding points that work especially
bad in a certain device. The combination which provides the best results is POI
1+3+4+5+6+7+9. Finally, after adjusting the selected POI, we obtain excellent
results with [91, 115, 153, 168, 181, 216, 266] (Table 5, Step 3).

Fig. 14. SOST graph of devices 1+3, 2 and 4

354 U. Rioja et al.

Table 5. Portable template attacks experiments using Device 1 (D1) and Device 3
(D3) for profiling.

Step POI Rank

([D1+D3] vs

[D1+D3])

Rank

([D1+D3] vs

D2)

Rank

([D1+D3] vs

D4)

GS

0 [90, 104, 115, 155,

166, 178, 216, 234,

267, 296]

1 25 1

1 1◦ POI [90] 34 18 97 2.27

2◦ POI [104] 15 119 61 11.92

3◦ POI [115] 16 122 27 12.08

4◦ POI [155] 13 49 5 4.86

5◦ POI [166] 6 72 52 7.26

6◦ POI [178] 3 88 37 8.75

7◦ POI [216] 11 51 41 5.18

8◦ POI [234] 1 199 22 19.52

9◦ POI [267] 24 86 44 8.66

10◦ POI [296] 4 126 77 12.62

2 POI 5+7+9 2 34 12 3.38

POI 1+5+7+9 1 29 12 2.88

POI 1+4+5+6+9 1 34 20 3.40

POI 1+3+4+5+6+7 1 25 1 2.45

POI 1+3+4+5+6+9 2 35 4 3.44

POI

1+3+4+5+6+7+9

1 19 1 1.86

POI 3+4+5+6+7+9 1 21 1 2.06

POI 3+5+6+7+9 1 30 9 2.97

3 [91, 115, 153, 168,

181, 216, 266]

1 2 1 0.20

6 Conclusions

As mentioned above, the portability issue is usually underrated. Lots of related
works obtain the profiling and attacking data sets from the same device instead
of performing a profiling attack in the way it was conceived: generating a power
model on an “identical” copy of the device to attack. In this work we have
shown how performing this kind of attacks in a realistic setup is a complex task,
since slight differences in the construction of the devices or in the acquisition of
the traces cause different behaviours that usually ruin the attack. While some
devices maximize leakage in a particular point of the power traces, the leakage
of another “identical” copy of the device can be (slightly) shifted. Therefore,
it is crucial to take into account these variations and to generate the models
using the points where the leakage exist in all devices. In this paper we present a
way to understand better how variations between devices occur, and we describe
how to build models that allows finding and exploiting the common leakage. The
experimental results show how our similarity assessment measurement (warped
distance) is directly related to portability, since the portable template attacks

When Similarities Among Devices are Taken for Granted 355

have better performance in the most similar devices (devices with a smaller
distance between them). The experimental results also confirm that our improved
POI selection technique helps in finding the POIs which represent leakage in
several devices and in avoiding the ones that perturb the model, making it
not applicable to a particular device. Moreover, we have shown how building
multivariate leakage models with several devices also enhances the performance
of the attack, even more if the model is generated with devices with behavioural
differences.

In conclusion, the proposed similarity assessment technique allows evaluation
laboratories to identify behavioural differences between devices and quantify
them, and improves the POI selection in template attacks, as shown in the
different use cases presented.

References

1. Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power analysis, what is now
possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 38

2. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

3. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. In: Network and Distributed System Security Symposium, January 2020.
https://doi.org/10.14722/ndss.2020.24390

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

6. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. Cryp-
tology ePrint Archive, Report 2019/054 (2019)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.
Inf. Forensics Secur. 13(2), 490–501 (2018). https://doi.org/10.1109/TIFS.2017.
2757440

9. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

10. Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff,
E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 179–198. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10175-0 13

11. Elaabid, M., Abdelazizand Guilley, S.: Portability of templates. J. Cryptogr. Eng.
2(1), 63–74 (2012). https://doi.org/10.1007/s13389-012-0030-6

https://doi.org/10.1007/3-540-44448-3_38
https://doi.org/10.1007/11894063_1
https://doi.org/10.14722/ndss.2020.24390
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1109/TIFS.2017.2757440
https://doi.org/10.1109/TIFS.2017.2757440
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/s13389-012-0030-6

356 U. Rioja et al.

12. Fisher, R.: The statistical utilization of multiple measurements. Ann. Eugen. (Cam-
bridge) 8, 376–386 (1935). https://doi.org/10.1111/j.1469-1809.1938.tb02189.x

13. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

14. Gohr, A., Jacob, S., Schindler, W.: CHES 2018 side channel contest CTF - solution
of the AES challenges. IACR Cryptology ePrint Archive (2019)

15. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4 18

16. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1, 293–
302 (2011). https://doi.org/10.1007/s13389-011-0023-x

17. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning: With Applications in R. JABES 19, 556–557 (2014). https://doi.org/10.
1007/s13253-014-0179-9

18. Johnson, R.A., Wichern, D.W. (eds.): Applied Multivariate Statistical Analysis.
Prentice-Hall Inc., Upper Saddle River (1988)

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

20. Kim, K., Kim, T.H., Kim, T., Ryu, S.: AES wireless keyboard: Template attack
for eavesdropping. In: Black Hat Asia, Singapore (2018)

21. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learning. In: Constructive Side-Channel Analysis and Secure Design,
COSADE (2011)

22. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES. J. Cryptogr. Eng. 5(2), 123–139 (2015). https://doi.org/10.1007/
s13389-014-0089-3

23. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.X.: Template attacks versus
machine learning revisited and the curse of dimensionality in side-channel analysis:
extended version. J. Cryptogr. Eng. 8(4), 301–313 (2018). https://doi.org/10.1007/
s13389-017-0162-9

24. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. SPACE 2016, 3–26 (2016). https://doi.org/10.
1007/978-3-319-49445-6 1

25. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-
387-38162-6

26. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment
method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8 17

27. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 10

28. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31815-6 35

https://doi.org/10.1111/j.1469-1809.1938.tb02189.x
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13253-014-0179-9
https://doi.org/10.1007/s13253-014-0179-9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-642-27257-8_17
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-540-31815-6_35

When Similarities Among Devices are Taken for Granted 357

29. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 8

30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978).
https://doi.org/10.1109/TASSP.1978.1163055

31. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and
space. Intell. Data Anal. 11, 561–580 (2007). https://doi.org/10.3233/IDA-2007-
11508

32. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

33. Schneider, T., Moradi, A., Standaert, F.-X., Güneysu, T.: Bridging the gap:
advanced tools for side-channel leakage estimation beyond Gaussian templates and
histograms. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 58–78.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 4

34. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

35. Woudenberg, J., Witteman, M., Bakker, B.: Improving differential power analysis
by elastic alignment. CT-RSA 6558, 104–119 (2011). https://doi.org/10.1007/978-
3-642-19074-2 8

https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.3233/IDA-2007-11508
https://doi.org/10.3233/IDA-2007-11508
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-319-69453-5_4
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8

Cryptanalysis

A Tale of Three Signatures: Practical
Attack of ECDSA with wNAF

Gabrielle De Micheli1(B), Rémi Piau1,2, and Cécile Pierrot1

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
gabrielle.de-micheli@inria.fr
2 ENS Rennes, Rennes, France

Abstract. Attacking ECDSA with wNAF implementation for the scalar
multiplication first requires some side channel analysis to collect informa-
tion, then lattice based methods to recover the secret key. In this paper,
we reinvestigate the construction of the lattice used in one of these meth-
ods, the Extended Hidden Number Problem (EHNP). We find the secret
key with only 3 signatures, thus reaching a known theoretical bound,
whereas best previous methods required at least 4 signatures in practice.
Given a specific leakage model, our attack is more efficient than previous
attacks, and for most cases, has better probability of success. To obtain
such results, we perform a detailed analysis of the parameters used in
the attack and introduce a preprocessing method which reduces by a
factor up to 7 the total time to recover the secret key for some parame-
ters. We perform an error resilience analysis which has never been done
before in the setup of EHNP. Our construction find the secret key with a
small amount of erroneous traces, up to 2% of false digits, and 4% with
a specific type of error.

Keywords: Public key cryptography · ECDSA · Side channel attack ·
Windowed non-adjacent form · Lattice techniques

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) [13], first proposed in
1992 by Scott Vanstone [26], is a standard public key signature protocol widely
deployed. ECDSA is used in the latest library TLS 1.3, email standard OpenPGP
and smart cards. It is also implemented in the library OpenSSL, and can be found
in cryptocurrencies such as Bitcoin, Ethereum and Ripple. It benefits from a high
security based on the hardness of the elliptic curve discrete logarithm problem
and a fast signing algorithm due to its small key size. Hence, it is recognized as
a standard signature algorithm by institutes such as ISO since 1998, ANSI since
1999, and IEEE and NIST since 2000.

The ECDSA signing algorithm requires scalar multiplications of a point P on
an elliptic curve by an ephemeral key k. Since this operation is time-consuming
and often the most time-consuming part of the protocol, it is necessary to use

c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 361–381, 2020.
https://doi.org/10.1007/978-3-030-51938-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_18

362 G. De Micheli et al.

an efficient algorithm. The Non Adjacent Form (NAF) and its windowed vari-
ant (wNAF) were introduced as an alternative to the binary representation of
the nonce k to reduce the execution time of the scalar multiplication. Indeed,
the NAF representation does not allow two non-zero digits to be consecutive,
thus reducing the Hamming weight of the representation of the scalar. This
improves on the time of execution as the latter is dependent on the number of
non-zero digits. The wNAF representation is present in implementations such
as in Bitcoin, as well as in the libraries Cryptlib, BouncyCastle and Apple’s
Common-Crypto. Moreover, until very recently (May 2019), wNAF was present
in all three branches of OpenSSL.

However, implementing the scalar multiplication using wNAF representation
and no added layer of security makes the protocol vulnerable to side-channel
attacks. Side-channel attacks were first introduced about two decades ago by
Kocher et al. [14], and have since been used to break many implementations,
and in particular some cryptographic primitives such as AES, RSA, and ECDSA.
They allow to recover secret information throughout observable leakage. In our
case, this leakage corresponds to differences in the execution time of a part of
the signing algorithm, observable by monitoring the cache.

For ECDSA, cache side-channel attacks such as Flush&Reload [28,29] have
been used to recover information about either the sequence of operations used
to execute the scalar multiplication, or for example in [8] the modular inversion.
For the scalar multiplication, these operations are either a multiplication or an
addition depending on the bits of k. This information is usually referred to as
a double-and-add chain or the trace of k. A trace is created when a signature
is produced by ECDSA and thus we talk about signatures and traces in an
equivalent sense. At this point, we ask how many traces need to be collected to
successfully recover the secret key. Indeed, from an attacker’s perspective, the
least traces necessary, the more efficient the attack is. This quantity depends on
how much information can be extracted from a single trace and how combining
information of multiple traces is used to recover the key. We work on the latter
to minimize the number of traces needed.

The nature of the information obtained from the side channel attack allows
to determine what kind of method should be carried out to recover the secret
key. Attacks on ECDSA are inspired by attacks on a similar cryptosystem, DSA.
In 2001, Howgrave-Graham and Smart [12] showed how knowing partial infor-
mation of the nonce k in DSA can lead to a full secret key recovery. Later,
Nguyen and Shparlinski [19] gave a polynomial time algorithm that recovers the
secret key in ECDSA as soon as some consecutive bits of the ephemeral key
are known. They showed that using the information leaked by the side channel
attack, one can recover the secret key by constructing an instance of the Hid-
den Number Problem (HNP) [4]. The basic structure of the attack algorithm is
to construct a lattice which contains the knowledge of consecutive bits of the
epheremal keys, and by solving CVP or SVP, to recover the secret key. This type
of attack has been done in [3,8,26,28]. However, these results considered per-
fect traces, but obtaining traces without any misreadings is very rare. In 2018,

A Tale of Three Signatures 363

Dall et al. [6] included an error-resilience analysis to their attack: they showed
that key recovery with HNP is still possible even in the presence of erroneous
traces.

In 2016, Fan, Wang and Cheng [7] used another lattice-based method to
attack ECDSA: the Extended Hidden Number Problem (EHNP) [11]. EHNP
mostly differs from HNP by the nature of the information given as input. Indeed,
the information required to construct an instance of EHNP is not sequences
of consecutive bits, but the positions of the non-zero coefficients in any rep-
resentation of some integers. This model, which we consider in this article as
well, is relevant when describing information coming from Flush&Reload or
Prime&Probe attacks for example, the latter giving a more generic scenario
with no shared data between the attacker and the victim. In [7], the authors
are able to extract 105.8 bits of information per signature on average, and thus
require in theory only 3 signatures to recover a 256-bit secret key. In practice,
they were able to recover the secret key using 4 error-free traces.

In order to optimize an attack on ECDSA various aspects should be con-
sidered. By minimizing the number of signatures required in the lattice con-
struction, one minimizes the number of traces needed to be collected during
the side-channel attack. Moreover, reducing the time of the lattice part of the
attack, and improving the probability of success of key recovery allows to reduce
the overall time of the attack. In this paper, we improve on all three of these
aspects. Furthermore, we propose the first error-resilience analysis for EHNP
and show that key recovery is still possible with erroneous traces too.

Contributions: In this work, we reinvestigate the attack against ECDSA with
wNAF representation for the scalar multiplication using EHNP. We focus on
the lattice part of the attack, i.e., the exploitation of the information gathered
by the side-channel attack. We first assume we obtain a set of error-free traces
from a side-channel analysis. We preselect some of these traces to optimize the
attack. The main idea of the lattice part is then to use the ECDSA equation
and the knowledge gained from the selected traces to construct a set of modular
equations which include the secret key as an unknown. These modular equations
are then incorporated into a lattice basis similar to the one given in [7], and a
short vector in it will contain the necessary information to reconstruct the secret
key. We call “experiment” one run of this algorithm. An experiment succeeds if
the algorithm recovers the secret key.

A New Preprocessing Method. The idea of selecting good traces beforehand has
already been explored in [27]. The authors suggest three rules to select traces
that improve the attack on the lattice part. Given a certain (large) amount of
traces available, the lattice is usually built with a much smaller subset of these
traces. Trying to identify beforehand the traces that would result in a better
attack is a clever option. The aim of our new preprocessing—that completely
differs from [27]—is to regulate the size of the coefficients in the lattice, and this
results in a better lattice reduction time. For instance, with 3 signatures, we
were able to reduce the total time of the attack by a factor of 7.

364 G. De Micheli et al.

Analyzing the Attack. Several parameters intervene while building and reducing
the lattice. We analyze the performance of the attack with respect to these
parameters and present the best parameters that optimize either the total time
or the probability of success.

First, we focus on the attack time. Note that when talking about the overall
time of the attack, we consider the average time of a single experiment multi-
plied by the number of trials necessary to recover the secret key. We compare1

our times with the numbers reported in [7, Table 3] with method C. Indeed,
methods A and B in [7] use extra information that comes from choices in the
implementation which we choose to ignore as we want our analysis to remain as
general as possible. The comparison is justified as we consider the same leakage
model, and compare timings when running experiments on similar machines. For
4 signatures, our attack is slightly slower2 than timings in [7]. However, when
considering more than 4 signatures, our attack is faster. We experiment up to 8
signatures to further improve our overall time. In this case, our attack runs at
best in 2 min and 25 s. Timings for 8 signatures are not reported in [7], and the
case of 3 signatures was never reached before our work. In Table 1, we compare
our times with the fastest times reported by [7]. We choose their fastest times
but concerning our results we choose to report experiments which are faster (not
the fastest) with, if possible, better probability than theirs.

Table 1. Comparing attack times with [7], for 5000 experiments.

Number of signatures Our attack [7]

Time Success (%) Time Success (%)

3 39 h 0.2 – –

4 1 h 17min 0.5 41min 1.5

5 8 min 20 s 6.5 18min 1

6 ≈ 5 min 25 18min 22

7 ≈ 3 min 17.5 34min 24

8 ≈ 2 min 29 – –

The overall time of the attack is also dependent on the success probability
of key recovery. From Table 2, one can see that our success probability is higher
than [7], except for 7 signatures. They have 68% of success with their best
parameters whereas we only reach 45% in this case.
1 In order to have a fair comparison with our methodology, the times reported in [7]

with which we compare ourselves have to be multiplied by the number of trials
necessary for their attack succeed, thus increasing their total time by a lot. Using
5 signatures, their best total time would be around 15 h instead of 18min.

2 For 4 signatures, no times are reported without method A. Thus, we have no other
choice than to compare our times with theirs, using A. Yet their time for 4 signatures
without A should at least be the time they report with it.

A Tale of Three Signatures 365

For the sake of completeness, we mention that in [21], the authors use HNP
to recover the secret key using 13 signatures. Their success probability in this
case is around 54% and their overall time is close to 20 s, hence much faster.
However, as their leakage model is different, we do not further mention their
work.

Finding the Key with Only Three Signatures. Overall, combining a new prepro-
cessing method, a modified lattice construction and a careful choice of param-
eters allows us to mount an attack which works in practice with only 3 signa-
tures. However, the probability of success in this case is very low. We were able
to recover the secret key only once with BKZ-35 over 5000 experiments. This
result is difficult to quantify as a probability but we note that finding the key
a single time over 5000 experiments is still much better than randomly finding
a 256-bit integer. If we assume the probability is around 0.02%, as each trial
costs 200 s in average, we can expect to find the secret key after 12 days using
a single core. Note that this time can be greatly reduced when parallelizing the
process, i.e., each trial can be run on a separate core. On the other hand, if
we use our preprocessing method, with 3 signatures we obtain a probability of
success of 0.2% and a total time of key recovery of 39 h, thus the factor 7 of
improvement mentioned above. Despite the low probability of success, this result
remains interesting nonetheless. Indeed, the authors in [7] reported that in prac-
tice, the key couldn’t be recovered using less than 4 signatures and we improve
on their result.

Table 2. Comparing success probability with [7], for 5000 experiments.

Number of signatures Our attack [7]

Success (%) Time Success (%) Time

3 0.2 39 h – –

4 4 25 h 28 min 1.5 41 min

5 20 2 h 42 min 4 36 min

6 40 1 h 4 min 35 1 h 43 min

7 45 2 h 36 min 68 3 h 58 min

8 45 5 h 2 min – –

Resilience to Errors. We also investigate the resilience to errors of our attack.
Such an analysis has not yet been done in the setup of EHNP. It is important to
underline that collecting traces without any errors using any side-channel attack
is very hard. Previous works used perfect traces to mount the lattice attack.
Thus, it required collecting more traces. As pointed out in [7], more or less twice
as many signatures are needed if errors are considered. In practice, this led [7]
to gather in average 8 signatures to be able to find the key with 4 perfect traces.
We experimentally show that we are still able to recover the secret key even in

366 G. De Micheli et al.

the presence of faulty traces. In particular, we find the key using only 4 faulty
traces, but with a very low probability of success. As the percentage of incorrect
digits in the trace grows, the probability of success decreases and thus more
signatures are required to successfully recover the secret key. For instance, if
2% of the digits are wrong among all the digits of a given set of traces, it is
still possible to recover the key with 6 signatures. This result is valid if errors
are uniformly distributed over the digits. However, we have a better probability
to recover the key if errors consist in 0-digit faulty readings, i.e., 0 digits read
as non-zero. In other words, the attack could work with a higher percentage of
errors, around 4%, if we could ensure from the side channel attack and some
preprocessing methods that none of the non-zero digits have been flipped to 0.

Organization: Sect. 2 gives background on ECDSA and the wNAF representa-
tion. In Sect. 3, we explain how to transform EHNP into a lattice problem. We
explicit the lattice basis and analyze the length of the short vectors found in the
reduced basis. In Sect. 4, we introduce our preprocessing method which allows us
to reduce the overall time of our attack. In Sect. 5, we give experimental results.
Finally, in Sect. 6, we give an error resilience analysis.

2 Preliminaries

2.1 Elliptic Curves Digital Signature Algorithm

The ECDSA algorithm is a variant of the Digital Signature Algorithm, DSA, [17]
which uses elliptic curves instead of finite fields. The parameters used in ECDSA
are an elliptic curve E over a finite field, a generator G of prime order q and a
hash function H. The private key is an integer α such that 1 < α < q − 1 and
the public key is pk = [α]G, the scalar multiplication of G by α.

To sign a message m using the private key α, randomly select an ephemeral
key k ←R Zq and compute [k]G. Let r be the x-coordinate of [k]G. If r = 0,
select a new nonce k. Then, compute s = k−1(H(m) + αr) mod q and again if
s = 0, select a new nonce k. Finally, the signature is given by the pair (r, s).

In order to verify a signature, first check if r, s ∈ Zq, otherwise the signature
is not valid. Then, compute v1 = H(m) · s−1 mod q, v2 = r · s−1 mod q and
(x, y) = [v1]G + [v2]pk. Finally, the signature is valid if x ≡ r (mod q).

We consider a 128-bit level of security. Hence α, q and k are 256-bit integers.

2.2 WNAF Representation

The ECDSA algorithm requires the computation of [k]G, a scalar multiplica-
tion. In [10], various methods to compute fast exponentiation are presented. One
family of such methods is called window methods and comes from NAF repre-
sentation. Indeed, the NAF representation does not allow two non-zero digits
to be consecutive, thus reducing the Hamming weight of the representation of
the scalar. The basic idea of a window method is to consider chunks of w bits

A Tale of Three Signatures 367

in the representation of the scalar k, compute powers in the window bit by bit,
square w times and then multiply by the power in the next window. The window
methods can be combined with the NAF representation of k. For any k ∈ Z, a
representation k =

∑∞
j=0 kj2j is called a NAF if kj ∈ {0,±1} and kjkj+1 = 0

for all j ≥ 0. Moreover, every k has a unique NAF representation. The NAF
representation minimizes the number of non-zero digits kj . It is presented in
Algorithm 1.

The NAF representation can be combined with a sliding window method
to further improve the execution time. For instance, in OpenSSL (up to the
latest versions using wNAF 1.1.1b), the window size usually chosen was w = 3,
which is the value we set for all our experiments. The scalar k is converted into
wNAF form using Algorithm 2. The sequence of digits mi belongs to the set
{0,±1,±3, . . . ,±(2w − 1)}. Let k be the sum of its non-zero digits, renamed ki.
More precisely, we get k =

∑�
j=1 kj2λj , where � is the number of non-zero digits,

and λj represents the position of the digit kj in the wNAF representation.

Example 1. In binary, we can write 23 = 24+22+21+20 = (1, 0, 1, 1, 1) whereas
in NAF-representation, we have 23 = 25 − 23 − 20 = (1, 0,−1, 0, 0,−1). With
w = 3, the wNAF representation gives 23 = 24 + 7 × 20 = (1, 0, 0, 0, 7).

Input: k ∈ Z
+

Output: NAF representation of k
i = 0;
while k > 0 do

if k (mod 2) = 1 then
ki = 2 − (k (mod 4));
k = k − ki;

else
ki = 0;

end
k = k/2;
i = i + 1;

end
return ki−1, ki−2, . . . , k1, k0
Algorithm 1: NAF algorithm

Input: k ∈ Z
+, w ∈ N

Output: (m0,m1, . . . ,mn), i.e., k
in its wNAF
representation

i = 0;
while k > 0 do

if k (mod 2) = 1 then
mi = k (mod 2w+1);
if mi ≥ 2w then

mi = mi − 2w+1;
end
k = k − mi;

else
mi = 0;

end
k = k/2;
i = i + 1;

end
Algorithm 2: wNAF representation

2.3 Lattice Reduction Algorithms

A Z-lattice is a discrete additive subgroup of Z
n. It is usually specified by a

basis matrix B ∈ Z
n×n. The lattice L(B) generated by B consists of all integer

368 G. De Micheli et al.

combinations of the row vectors in B. The determinant of a lattice is the absolute
value of the determinant of a basis matrix: detL(B) = |det B|. The discreteness
property ensures that there is a vector v1 reaching the minimum non-zero value
for the euclidean norm. Let us write ||v1||2 = λ1. Let λi be the ith successive
minimum of the lattice. The LLL algorithm [15] takes as an input a lattice basis,
and returns in polynomial time in the lattice dimension n a reduced lattice basis
whose vectors bi satisfy the worst-case approximation bound ||bi||2 ≤ 2(n−1)/2λi.
In practice, for random lattices, LLL obtains approximation factors such that
||b1||2 ≤ 1.02nλ1 as noted by Nguyen and Stehlé [18]. Moreover, for random
lattices, the Gaussian heuristic implies that λ1 ≈

√
n/(2πe) det(L)1/n.

The BKZ algorithm [22,24] is exponential in some given block-size β and
polynomial in the lattice dimension n. It outputs a reduced lattice basis whose
vectors bi satisfy the approximation ||bi||2 ≤ iγ

(n−i)/(k−1)
β λi [23], where γβ is the

Hermite constant. In practice, Chen and Nguyen [5] observed that BKZ returns
vectors such that b1 ≤ (1 + εβ)nλ1 where εβ depends on the block-size β. For
random lattices, they get 1 + εβ = 1.01 for a block-size β = 85.

3 Attacking ECDSA Using Lattices

Using some side-channel attack, one can recover information about the wNAF
representation of the nonce k. In particular, it allows us to know the positions
of the non-zero coefficients in the representation of k. However, the value of
these coefficients are unknown. This information can be used in the setup of the
Extended Hidden Number Problem (EHNP) to recover the secret key. For many
messages m, we use ECDSA to produce signatures (r, s) and each run of the
signing algorithm produces a nonce k. We assume we have the corresponding
trace of the nonce, that is, the equivalent of the double-and-add chain of kG
using wNAF. The goal of the attack is to recover the secret α while optimizing
either the number of signatures required or the total time of the attack.

3.1 The Extended Hidden Number Problem

The Hidden Number Problem (HNP) allows to recover a secret element α ∈
Zq if some information about the most significant bits of random multiples of
α (mod q) are known for some prime q. Boneh and Venkatesan show how to
recover α in polynomial time with probability greater than 1/2. In [11], the
authors extend the HNP and present a polynomial time algorithm for solving
the instances of this extended problem. The Extended Hidden Number Problem
is defined as follows. Given u congruences of the form

aiα +
�i∑

j=1

bi,jki,j ≡ ci (mod q), (1)

where the secret α and 0 � ki,j � 2ηij are unknown, and the values ηij , ai, bi,j ,
ci, �i are known for 1 � i � u (see [11], Definition 3), one has to recover α in
polynomial time. The EHNP can then be transformed into a lattice problem and
one recovers the secret α by solving a short vector problem in a given lattice.

A Tale of Three Signatures 369

3.2 Using EHNP to Attack ECDSA

From the ECDSA algorithm, we know that given a message m, the algorithm
outputs a signature (r, s) such that

αr = sk − H(m) (mod q). (2)

The value H(m) is just some hash of the message m. We consider a set of
u signature pairs (ri, si) with corresponding message mi that satisfy Eq. (2).
For each signature pair, we have a nonce k. Using the wNAF representation
of k, we write k =

∑�
j=1 kj2λj , with kj ∈ {±1,±3, . . . ,±(2w − 1)} and the

choice of w depends on the implementation. Note that the coefficients kj are
unknown, however, the positions λj are supposed to be known via some side-
channel leakage. It is then possible to represent the ephemeral key k as the sum
of a known part, and an unknown part. As the value of kj is odd, one can write
kj = 2k′

j + 1, where −2w−1 � k′
j � 2w−1 − 1. Using the same notations as in [7],

set dj = k′
j + 2w−1, where 0 ≤ dj ≤ 2w − 1. In the rest of the paper, we will

denote by μj the window-size of dj . Note that here, μj = w but this window-size
will be modified later. This allows to rewrite the value of k as

k =
�∑

j=1

kj2λj = k̄ +
�∑

j=1

dj2λj+1, (3)

with k̄ =
∑�

j=1 2λj −
∑�

j=1 2λj+w. The expression of k̄ represents the known
part of k. By substituting k in Eq. (3), we get a system of modular equations:

αri −
�i∑

j=1

2λi,j+1sidi,j − (sik̄i − H(mi)) ≡ 0 (mod q) (4)

where the unknowns are α and the di,j . The known values are �i, which is the
number of non-zero digits in k for the ith sample, λi,j , which is the position of
the jth non-zero digit in k for the ith sample and k̄ defined above. Equation (4)
is then used as input to EHNP, following the method explained in [11]. The
problem of finding the secret key is then reduced to solving the short vector
problem in a given lattice presented in the following section.

3.3 Constructing the Lattice

Before giving the lattice basis construction, we redefine Eq. (4) to reduce the
number of unknown variables in the system. This will allow us to construct a
lattice of smaller dimension. Again, we use the same notations as in [7].

Eliminating One Variable. One straightforward way to reduce the lattice dimen-
sion is to eliminate a variable from the system. In this case, one can eliminate α

370 G. De Micheli et al.

from Eq. (4). Let Ei denote the ith equation of the system. Then by computing
r1Ei − riE1, we get the following new modular equations

∑�1
j=1 (2λ1,j+1s1ri)

︸ ︷︷ ︸
:=τj,i

d1,j +
∑�i

j=1 (−2λi,j+1sir1)
︸ ︷︷ ︸

:=σi,j

di,j

− r1(sik̄i − H(mi)) + ri(s1k̄1 − H(m1))
︸ ︷︷ ︸

:=γi

≡ 0 (mod q).

(5)
Using the same notations as in [7], we define τj,i = 2λ1,j+1s1ri, σi,j =

−2λi,j+1sir1 and γi = r1(sik̄i − H(mi)) + ri(s1k̄1 − H(m1)) for 2 � i � u,
1 � j � �i. Even if α is eliminated from the equations, if we recover some di,j

values from a short vector in the lattice, we can recover α using any equation in
the modular system (4). We now use Eq. (5) to construct the lattice basis.

From a Modular System to a Lattice Basis. Let L be the lattice constructed for
the attack, and we have L = L(B) where the lattice basis B is given below. Let
m = maxi,j μij for 1 � j � �i and 2 � i � u. We set a scaling factor Δ ∈ N to
be defined later. The lattice basis is given by

B =

Eq (5), i = 2 . . . Eq (5), i = u⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ2mq 0 0 0

0
. . .

...
0 · · · Δ2mq 0

Δ2mτ1,2 . . . Δ2mτ1,u 2m−μ1,1

...
... 0

. . .

Δ2mτ�1,2 . . . Δ2mτ�1,u 2m−μ1,�1

Δ2mσ2,1 0 0 2m−μ2,1

...
...

. . .

Δ2mσ2,�2

... 2m−μ2,�2

0
. . . 0

...
. . .

... Δ2mσu,1 2m−μu,1

...
...

. . .

0 0 Δ2mσu,�u 0 2m−μu,�u

Δ2mγ2 . . . Δ2mγu 2m−1 . . . 2m−1 2m−1

Let n = (u − 1) + T + 1 = T + u, with T =
∑u

i=1 �i, be the dimension of
the lattice. The u − 1 first columns correspond to Eq. (5) for 2 ≤ i ≤ u. Each of
the remaining columns, except the last one, corresponds to a dij , and contains
coefficients that allow to regulate the size of the dij . The determinant of L is
given by detL = qu−1 (Δ2m)u−1 2

∑
i,j(m−μi,j)2m−1.

The lattice is built such that there exists w ∈ L which contains the
unknowns di,j . To find it, we know there exists some values t2, t2, . . . , tu such
that if v = (t2, . . . , tu, d1,1, . . . , du,�u

,−1), we get w = vB, and

w = (0, . . . , 0, d1,12m−μ1,1 − 2m−1, . . . , du,�u
2m−μu,�u − 2m−1,−2m−1).

A Tale of Three Signatures 371

If we are able to find w in the lattice, then we can reconstruct the secret key
α. In order to find w, we estimate its norm and make sure w appears in the
reduced basis. After reducing the basis, we look for vectors of the correct shape,
i.e., with sufficiently many zeros at the beginning and the correct last coefficient,
and attempt to recover α for each of these.

How the Size of Δ Affects the Norms of the Short Vectors. In order to find the
vector w in the lattice, we reduce B using LLL or BKZ. For w to appear in the
reduced basis, one should at least set Δ such that

||w||2 � (1.02)n(det L)1/n. (6)

The vector w we expect to find has norm ||w||2 � 2m−1
√

T + 1. From Eq. (6),
one can deduce the value of Δ needed to find w in the reduced lattice:

Δ � (T + 1)(T+u)/(2(u−1))2
1+

∑
μi,j−(u+T)

u−1

q(1.02)
(T+u)2

u−1

:= Δth.

In our experiments, the average value of �i for 1 � i � u is �̃ = 26, and thus
T = u × �̃ on average. Moreover, the average value of μij is 7 and so on average
∑

μij = 7 × u × �̃. Hence, if we compute Δth for u = 3, . . . , 8, with these values,
we obtain Δth 	 1, which does not help us to set this parameter. In practice,
we verify that Δ = 1 allows us to recover the secret key. In Sect. 5, we vary the
size of Δ to see whether a slightly larger value affects the probability of success.

Too Many Small Vectors. While running BKZ on B, we note that for some spe-
cific sets of parameters the reduced basis contains some undesired short vectors,
i.e., vectors that are shorter than w. This can be explained by looking at two
consecutive rows in the lattice basis given above, say the jth row and the (j+1)th

row. For example, one can look at rows which correspond to the σi,j values but
the same argument is valid for the rows concerning the τj,i. From the definitions
of the σ values we have σi,j+1 = −2λi,j+1+1 · sir1 = −2λi,j+1+1 · (σi,j

−2λi,j+1). So
σi,j+1 = 2λi,j+1−λi,j · σi,j . Thus the linear combination given by the (j + 1)th

row minus 2λi,j+1−λi,j times the jth row gives a vector

(0 , · · · , 0 ,−2λi,j+1−λi,j+m−μi,j , 2m−μi,j+1 , 0 , · · · , 0). (7)

Yet, this vector is expected to have smaller norm than w. Some experimental
observations are detailed in Sect. 5.

Differences with the Lattice Construction Given in [7]. Let B′ be the lattice basis
constructed in [7]. Our basis B is a rescaled version of B′ such that B = 2mΔB′.
This rescaling allows us to ensure that all the coefficients in our lattice basis
are integer values. Note that [7] have a value δ in their construction which
corresponds to 1/Δ. In this work, we give a precise analysis of the value of Δ,
both theoretically and experimentally in Sect. 5, which is missing in [7].

372 G. De Micheli et al.

4 Improving the Lattice Attack

4.1 Reducing the Lattice Dimension: The Merging Technique

In [7], the authors present another way to further reduce the lattice dimension,
which they call the merging technique. It aims at reducing the lattice dimension
by reducing the number of non-zero digits of k. The lattice dimension depends
on the value T =

∑u
i=1 �i, and thus reducing T reduces the dimension. To

understand the attack, it suffices to know that after merging, we obtain some
new values �′ corresponding to the new number of non-zero digits and λ′

j the
position of these digits for 1 � j � �′. After merging, one can rewrite k =
k̄ +

∑�′

j=1 d′
j2

λ′
j+1, where the new d′

j have a new window size which we denote
μj , i.e., 0 � d′

j � 2μj − 1.
We present our merging algorithm based on Algorithm 3 given in [7]. Our

algorithm modifies directly the sequence {λj}�
j=1, whereas [7] work on the

double-and-add chains. This helped us avoid some implementation issues such
as an index outrun present in Algorithm 3 [7], line 7. To facilitate the ease of
reading of (our) Algorithm 3, we work with dynamic tables. Let us first recall
various known methods we use in the algorithm: push back(e) inserts an element
e at the end of the table, at(i) outputs the element at index i, and last() returns
the last element of the table. We consider tables of integers indexed in [0;S −1],
where S is the size of the table.

Input: vλ, a table of size n with the positions of non-zero digits in the trace
sorted in increasing order and n � 1, a window size w.

Output: vλ′ , a table of size n′ � n containing the merged λ values and table vμ

of same size n′, with the values of the window size μi.
Initialisation
i ← 1;
vλ′ ← empty array;
vμ ← empty array;
Processing
vλ′ .push back(vλ.at(0));
while i < n do

dist ← vλ.at(i) − vλ.at(i − 1);
if dist > w + 1 then

vμ.push back(vλ.at(i − 1) − vλ′ .last() + w);
vλ′ .push back(vλ.at(i));

end
i ← i + 1;

end
vμ.push back(vλ.at(n) − vλ′ .last() + w);
return (vλ′ , vμ)

Algorithm 3: Merging algorithm

A Tale of Three Signatures 373

A useful example of the merging technique is given in [7]. From 3 to 8 sig-
natures the approximate dimension of the lattices using the elimination and
merging techniques are the following: 80, 110, 135, 160, 190 and 215. Each new
lattice dimension is roughly 54% of the dimension of the lattice before apply-
ing these techniques, for the same number of signatures. For instance, with 8
signatures we would have a lattice of dimension 400 on average, far too large
to be easily reduced. For the traces we consider, after merging the mean of the
�i is 26, the minimum being 17 and the maximum 37 with a standard devia-
tion of 3. One could further reduce the lattice dimension by preprocessing traces
with small �i. However, the standard deviation being small, the difference in the
reduction times should not be affected too much.

4.2 Preprocessing the Traces

The two main pieces of information we can extract and use in our attack are
first the number of non-zero digits in the wNAF representation of the nonce k,
denoted � and the weight of each non-zero digit, denoted μj for 1 � j � �. Let T
be the set of traces we obtained from the side-channel leakage representing the
wNAF representation of the nonce k used while producing an ECDSA signature.
We consider the subset Sa = {t ∈ T |maxj μj � a, 1 � j � �}. We choose
to preselect traces in a subset Sa for small values of a. The idea behind this
preprocessing is to regulate the size of the coefficients in the lattice. Indeed,
when selecting u traces for the attack, by upper-bounding m = maxi,jμi,j for
2 � i � u, we force the coefficients to remain smaller than when taking traces
at random.

We work with a set T of 2000 traces such that for all traces 11 ≤ maxj μj ≤
67. The proportion of signatures corresponding to the different preprocessing
subsets we consider in our experiments are: 2% for S11, 18% for S15 and 44%
for S19. The effect of preprocessing on the total time is explained in Sect. 5.

5 Performance Analysis

Traces from the Real World. We work with the elliptic curve secp256k1 but
none of the techniques introduced here are limited to this specific elliptic curve.
We consider traces from a Flush&Reload attack, executed through hyper-
threading, as it can virtually recover the most amount of information.3

To the best of our knowledge, the only information we can recover are the
positions of the non-zero digits. We are not able to determine the sign or the
value of the digits in the wNAF representation. In [7], the authors exploit the

3 In practice, measurements done during the cache attack depend on the noise in the
execution environment, the threat model and the target leaky implementation. For
instance, Flush&Reload ran from another core would be noisy. Prime&Probe
would give the same information, with a more generic scenario. In an SGX scenario,
it would recover the largest amount of information but in a user/user threat model
it would be too noisy to lead to practical key recovery.

374 G. De Micheli et al.

fact that the length of the binary string of k is fixed in implementations such
as OpenSSL, and thus more information can be recovered by comparing this
length to the length of the double-and-add chain. In particular, they were able
to recover the MSB of k, and in some cases the sign of the second MSB. We do
not consider this extra information as we want our analysis to remain general.

We report calculations ran on error-free traces where we evaluate the total
time necessary to recover the secret key and the probability of success of the
attack. Our experiments have two possible outputs: either we reconstruct the
secret key α and thus consider the experiment a success, or we do not recover the
secret key, and the experiment fails. In order to compute the success probability
and the average time of one reduction, we run 5000 experiments for some specific
sets of parameters using either Sage’s default BKZ implementation [25] or a more
recent implementation of the latest sieving strategies, the General Sieve Kernel
(G6K) [1]. The experiments were ran using the cluster Grid’5000 on a single
core of an Intel Xeon Gold 6130. The total time is the average time of a single
reduction multiplied by the number of trials necessary to recover the key. The
number of trials necessary to recover the secret key corresponds the number
of experiments ran until we have a success for a given set of parameters. For
a fixed number of signatures, we either optimize the total time or the success
probability. We report numbers in Tables 3, 4 when using BKZ.4

Table 3. Fastest key recovery with respect to the number of signatures.

Number of signatures Total
time

Parameters Probability of
success (%)BKZ Preprocessing Δ

3 39 h 35 S11 ≈ 23 0.2

4 1 h 17 25 S15 ≈ 23 0.5

5 8 min 20 25 S19 ≈ 23 6.5

6 3 min 55 20 Sall ≈ 23 7

7 2 min 43 20 Sall ≈ 23 17.5

8 2 min 25 20 Sall ≈ 23 29

Comments on G6K: We do not report the full experiments ran with G6K since
using this implementation does not lead to the fastest total time of our attack:
around 2 min using 8 signatures for BKZ and at best 5 min for G6K.

4 In [7], the authors use an Intel Core i7-3770 CPU running at 3.40 GHz on a single
core. In order for the time comparison to be meaningful, we ran experiments with a
machine of comparable performance to estimate the timings of a single reduction. As
we obtained similar timings with an older machine than used in [7], the variations
we find when comparing ourselves to them solely come from the lattice construction
and the reduction algorithm being used rather than hardware differences.

A Tale of Three Signatures 375

Table 4. Highest probability of success with respect to the number of signatures.

Number of signatures Probability of
success (%)

Parameters Total
timeBKZ Preprocessing Δ

3 0.2 35 S11 ≈ 23 39 h

4 4 35 Sall ≈ 23 25 h 28

5 20 35 Sall ≈ 23 2 h 42

6 40 35 Sall ≈ 23 1 h 04

7 45 35 Sall ≈ 23 2 h 36

8 45 35 Sall ≈ 23 5 h 02

However, G6K allows to reduce lattices with much higher block-sizes than
BKZ. For comparable probabilities of success, G6K is faster. Considering the
highest probability achieved, on one hand, BKZ-35 leads to a probability of suc-
cess of 45%, and a single reduction takes 133 min. On the other hand, to reach
around the same probability of success with G6K, we increase the block-size to
80, and a single reduction is only around 45 min on average. This is an improve-
ment by a factor of 3 in the reduction time.

Only 3 Signatures. Using Δ ≈ 23 and no preprocessing, we recovered the secret
key using 3 signatures with BKZ-35 only once and three times with BKZ-40.
When using pre-processing S11, BKZ-35 and Δ ≈ 23, the probability of suc-
cess went up to 0.2%. Since all the probabilities remain much less than 1% an
extensive analysis would have taken too long. Thus, in the rest of the section,
the number of signatures only varies between 4 and 8. However, we want to
emphasize that it is precisely this detailed analysis on a slightly higher number
of signatures that allowed us to understand the impact of the parameters on
the performance of the attack and resulted in finding the right ones allowing to
mount the attack with 3 signatures.

Varying the Bitsize of Δ. In Fig. 1, we analyze the total time of key recovery as
a function of the bitsize of Δ. We fix the block-size of BKZ to 25 and take traces
without any preprocessing. We are able to recover the secret key by setting Δ =
1, which is the lowest theoretical value one can choose. However, we observed a
slight increase in the probability of success by taking a larger Δ. Without any
surprise, we note that the total time to recover the secret key increases with the
bitsize of Δ as the coefficients in the lattice basis become larger.

Analyzing the Effect of Preprocessing. We analyze the influence of our prepro-
cessing method on the attack time. We fix BKZ block-size to 25. The effect of
preprocessing is influenced by the bitsize of Δ and we give here an analyze for
Δ ≈ 225 since the effect is more noticeable.

376 G. De Micheli et al.

Fig. 1. Analyzing the overall time to recover the secret key as a function of the bitsize
of Δ. We report the numbers BKZ-25 and no preprocessing. The optimal value for Δ
is around 23 except for u = 8 where it is 25.

The effect of preprocessing is difficult to predict since its behavior varies
depending on the parameters, having both positive and negative effects. On the
one hand, we reduce the size of all the coefficients in the lattice, thus reducing the
reduction time. On the other hand, we generate more potential small vectors5 with
norms smaller than the norm of w. For this reason, the probability of success of the
attack decreases since the vector w is more likely to be a linear combination of vec-
tors already in the reduced basis. For example, with 7 signatures we find in aver-
age w to be the third or fourth vector in the reduced basis without preprocessing,
whereas with S11 it is more likely to appear in position 40.

The positive effect of preprocessing is most noticeable for u = 4 and u = 5,
as shown in Fig. 2. For instance, using S15 and u = 4 lowers the overall time by
a factor up to 5.7. For u = 5, we gain a factor close to 3 by using either S15 or
S19. For u > 5, using preprocessed traces is less impactful. For large Δ such as
Δ ≈ 225, we still note some lower overall times when using S15 and S19, up to
a factor 2. When the bitsize gets smaller, reducing the size of the coefficients in
the lattice is less impactful.

Balancing the Block-size of BKZ. Finally, we vary the block-size in the BKZ
algorithm. We fix Δ ≈ 23 and use no preprocessing. We plot the results in Fig. 3
for 6 and 7 signatures. For other values of u, the plot is very similar and we
omit them in Fig. 3. Without any surprise, we see that as we increase the block-
size, the probability of success increases, however the reduction time increases
significantly as well. This explains the results shown in Table 3 and Table 4: to
reach the best probability of success one needs to increase the block-size in BKZ
(we did not try any block-size greater than 40), but to get the fastest key recovery
attack, the block-size is chosen between 20 and 25, except for 3 signatures where
the probability of success is too low with these parameters.

5 In the sense of vectors exhibited in (7).

A Tale of Three Signatures 377

Fig. 2. Overall time to recover the secret key as a function of the preprocessing subset
for 4 and 5 traces. The other parameters are fixed: Δ ≈ 225 and BKZ-25.

Fig. 3. Analyzing the number of trials to recover the secret key and the reduction time
of the lattice as a function of the block-size of BKZ. We consider the cases where u = 6
and u = 7. The dotted lines correspond to the number of trials, and the continued lines
to the reduction time in seconds.

6 Error Resilience Analysis

It is not unexpected to have errors in the traces collected during side-channel
attacks. Obtaining error-free traces requires some amount of work on the signal
processing side. Prior to [6], the presence of errors in traces was either ignored
or preprocessing was done on the traces until an error-free sample was found,
see [2,9]. In [6], it is shown the lattice attack still successfully recovers the secret
key even when traces contain errors. An error in the setup given in [6] corresponds
to an incorrect bound on the size of the values being collected. In our setup, a
trace without errors corresponds to a trace where every single coefficient in the
wNAF representation of k has been identified correctly as either non-zero or not.
The probability of having an error in our setup is thus much higher. Side-channel
attacks without any errors are very rare. Both [21] and [6] give some analysis of
the attacks Flush&Reload and Prime&Probe in real life scenarios.

378 G. De Micheli et al.

In [7], the results presented in the paper assume the Flush&Reload is
implemented perfectly, without any error. In particular, to obtain 4 perfect traces
and be able to run their experiment and find the key, one would need to have in
average 8 traces from Flush&Reload – the probability to conduct to a perfect
reading of the traces being 56% as pointed out in [21]. In our work, we show
that it is possible to recover the secret key using only 4, even erroneous, traces.
However, the probability of success is very low.

Recall that an error in our case corresponds to a flipped digit in the trace
of k. Table 5 shows the attack success probability in the presence of errors. We
ran used BKZ-25 and Δ ≈ 23 with traces taken from Sall. We average over 5000
experiments. We write 	 1 when the attack succeeded less than five times over
5000 experiments, thus making it difficult to evaluate the probability of success.

Table 5. Error analysis using BKZ-25, Δ ≈ 23 and Sall.

Number of signatures Probability of success (%)

0 error 5 errors 10 errors 20 errors 30 errors

4 0.28 � 1 0 0 0

5 4.58 0.86 0.18 � 1 0

6 19.52 5.26 1.26 0.14 � 1

7 33.54 10.82 3.42 0.32 � 1

8 35.14 13.26 4.70 0.58 � 1

The attack works up to a resilience to 2% of errors. Indeed, for u = 6, we
recovered the secret key with 30 errors, i.e., 30 flipped digits over 6× 257 digits.

Different Types of Errors. There exists two possible types of errors. In the first
case, a coefficient which is zero is evaluated as a non-zero coefficient. In theory,
this only adds a new variable to the system, i.e., the number � of non-zero
coefficients is overestimated. This does not affect the probability of success much.
Indeed, we just have an overly-constrained system. We can see in Fig. 4 that the
probability of success of the attack indeed decreases slowly as we add errors
of this form. With errors only of this form, we were able to recover the secret
key up to nearly 4% of errors, (for instance with u = 6, using BKZ-35). The
other type of errors consists of a non-zero coefficients which is misread as a zero
coefficient. In this case, we lose information necessary for the key recovery and
thus this type of error affects the probability of success far more importantly as
can also be seen in Fig. 4. In this setup, we were not able to recover the secret
key when more than 3 errors of this type appear in the set of traces considered.

Strategy. If the signal processing method is hesitant between a non-zero digit
or 0, we would recommend to favor putting a non-zero instead of 0 to increase
the chance of having an error of type 0 → non-zero, for which the attack is a lot
more tolerant.

A Tale of Three Signatures 379

Fig. 4. Probability of success for key recovery with various types of errors when using
u = 8, BKZ-25, Δ ≈ 23, and no preprocessing.

7 Conclusion and Countermeasures

In the last decades, most implementations of ECDSA have been the target of
microarchitectural attacks, and thus existing implementations have either been
replaced by more robust algorithms, or layers of security have been added.

For example, one way of minimizing leakage from the scalar multiplication
is to use the Montgomery ladder scalar-by-point multiplication [16], much more
resilient to side-channel attacks due to the regularity of the operations. However,
this does not entirely remove the risk of leakage [28]. Additional countermeasures
are necessary.

When looking at common countermeasures, many implementations use blind-
ing or masking techniques [20], for example in BouncyCastle implementation of
ECDSA. The former consists in blinding the data before doing any operations,
and masking techniques randomize all the data-dependent operations by apply-
ing random transformations, thus making any leakage inexploitable.

However, it is important to keep in mind these lattices attacks as they can
be applied at any level of an implementation that leaks the correct information.

Acknowledgement. We would like to thank Nadia Heninger for discussions about
possible lattice constructions, Medhi Tibouchi for answering our side-channel questions,
Alenka Zajic and Milos Prvulovic for providing us with traces from OpenSSL that
allowed us to confirm our results on a deployed implementation, Daniel Genkin for
pointing us towards the Extended Hidden Number Problem, and Pierrick Gaudry for
his precious support and reading. Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several universities as well as other organizations.

References

1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. Cryp-
tology ePrint Archive, Report 2019/089 (2019). https://eprint.iacr.org/2019/089

https://eprint.iacr.org/2019/089

380 G. De Micheli et al.

2. Angel, J., Rahul, R., Ashokkumar, C., Menezes, B.: DSA signing key recovery
with noisy side channels and variable error rates. In: Patra, A., Smart, N.P.
(eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 147–165. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71667-1 8

3. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah... Just a Little
Bit” : a small amount of side channel can go a long way. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 5

4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in diffie-hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

5. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

6. Dall, F., et al.: Cachequote: Efficiently recovering long-term secrets of SGX EPID
via cache attacks (2018)

7. Fan, S., Wang, W., Cheng, Q.: Attacking OpenSSL implementation of ECDSA
with a few signatures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1505–1515. ACM Press, October 2016

8. Garćıa, C.P., Brumley, B.B.: Constant-time callees with variable-time callers. In:
Kirda, E., Ristenpart, T. (eds.) USENIX Security 2017, pp. 83–98. USENIX Asso-
ciation, August 2017

9. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extrac-
tion from mobile devices via nonintrusive physical side channels. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
1626–1638. ACM Press, October 2016

10. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1),
129–146 (1998)

11. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7 9

12. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptol. 23(3), 283–290 (2001)

13. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

16. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–243 (1987)

17. National Institute of Standards and Technology: Digital Signature Standard (DSS)
(2013)

18. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 18

19. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Cryptol. 30(2), 201–217 (2003)

https://doi.org/10.1007/978-3-319-71667-1_8
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/11792086_18

A Tale of Three Signatures 381

20. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

21. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 3–21. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16715-2 1

22. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoret. Comput. Sci. 53(2–3), 201–224 (1987)

23. Schnorr, C.P.: Block reduced lattice bases and successive minima. Comb. Probab.
Comput. 3, 507–522 (1994)

24. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66(2), 181–199 (1994)

25. The FPLLL development team: FPLLL, a lattice reduction library (2016)
26. Vanstone, S.: Responses to NIST’s proposals (1992)
27. Wang, W., Fan, S.: Attacking OpenSSL ECDSA with a small amount of side-

channel information. Sci. China Inf. Sci. 61(3), 032105 (2017)
28. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the

FLUSH+RELOAD cache side-channel attack. IACR Cryptol. ePrint Archive 2014,
140 (2014)

29. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, SEC 2014, Berkeley, CA, USA, pp. 719–732. USENIX Association
(2014)

https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-319-16715-2_1
https://doi.org/10.1007/978-3-319-16715-2_1

Attacking RSA Using an Arbitrary
Parameter

Muhammad Rezal Kamel Ariffin1,2(B) , Amir Hamzah Abd Ghafar1 ,
and Muhammad Asyraf Asbullah1,3

1 Institute for Mathematical Research, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

rezal@upm.edu.my
2 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3 Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Abstract. In this paper, we introduce a parameter u that is related
to N via an arbitrary relation. By knowing the parameter along with
RSA public key pairs, (N, e), we conduct two new attacks on the RSA
cryptosystem. The first attack works on the equation eX − uY = Z −
φb where φb is the best known lower bound of φ(N). It combines the
continued fraction method and Coppersmith’s method to factor N in
polynomial time. The second attack shows that given (Ni, ei) for 1 ≤
i ≤ k and a fixed X, we can simultaneously factor the k RSA moduli.
It manipulates the result from diophantine approximation to enable the
conditions of Coppersmith’s method. These attacks show that there are
more possible weak RSA key pairs.

Keywords: RSA cryptosystem · Cryptanalysis · Coppersmith’s
method · Diophantine approximation

1 Introduction

The RSA cryptosystem [16] is one of the vital components in transferring data
securely over the internet. This cryptosystem is comprised of three main algo-
rithms. Namely, key generation algorithm, encryption algorithm and decryption
algorithm. While the details of encryption and decryption algorithms can be
viewed in [16], for the key generation algorithm, one must generate two different
primes p and q where q < p < 2p. The product of the primes, N is known as
RSA modulus. Using the value of the modulus, the RSA public exponent,e is
chosen such that e < φ(N) and gcd(e, φ(N)) = 1 where φ(N) is Euler’s totient
function. Then, the corresponding RSA private exponent, d is computed via the
RSA key relation,

d ≡ e−1 (mod φ(N)). (1)

The RSA public key, (N, e) and secret parameters (p, q, φ(N), d) are said to
be the outputs of the algorithm. The security strength of RSA is embedded in
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 382–399, 2020.
https://doi.org/10.1007/978-3-030-51938-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_19&domain=pdf
http://orcid.org/0000-0001-5000-354X
http://orcid.org/0000-0003-3293-1160
http://orcid.org/0000-0002-0778-4456
https://doi.org/10.1007/978-3-030-51938-4_19

Attacking RSA Using an Arbitrary Parameter 383

the difficulty to factor its RSA modulus, N = pq since p and q are n–bit primes
where n is typically set to be 1024. The problem to factor N in polynomial time
is dubbed the integer factorization problem and the best algorithm to solve it
still runs in sub-exponential time [4]. However, previous attacks on RSA showed
that a small size of d can compromise the security of RSA [2,10,17]. This type of
attack is known as small private exponent attacks and it manipulates the form of
(1) by using suitable approximation of φ(N). This type of attack may generalize
by using the following equation.

ex − uy = z (2)

for suitable integers x, y, z [11–13]. These attacks usually combine the contin-
ued fraction method and Coppersmith’s method to formulate a new strategy in
factoring N .

In this paper, we present two new attacks upon RSA. These new attacks do
not depend on the RSA diophantine key equation as previous research did. To
initiate the attack, first we define a parameter u that can be computed from the
best known upper and lower bounds of φ(N). However it should be noted that
u can be an arbitrary value that is suitably larger than N . Using u, we show an
attack upon RSA that works when there exist integers X,Y and Z verifying the
equation eX − uY = Z − φb such that

1 ≤ Y < X <
u

2 (φ(N) − φb)
, φ(N) +

p − q

p + q
N1/4 < N − 2N1/2,

|Z − φ(N)| <
p − q

p + q
N1/4

where φb is the best known lower bound of φ(N). The first attack combines the
continued fraction method in [17] and Coppersmith’s method in [6] upon the
equation eX − uY = Z − φb. Note that this equation is not derived from the
RSA key equation.

The second attack generalizes the result from the first attack. We assume
that the adversary is given k instances of weak RSA moduli Ni = piqi with its
corresponding public exponent ei. We show that if there exist an integer X < N δ

and k integers Yi < N δ and |Zi − φ(Ni)| < pi−qi

pi+qi
N1/4 such that eiX − Yiui =

Zi − φb for i = 1, . . . , k, and |Zi − φbi
| < λN δ+ 1

4 where λ < 3
2

(
2

k+5
4 − 3

)
then

Ni = piqi can be factored in polynomial time.
From these two attacks, we realized there are about N

1
2−ε many pairs of

(N, e) that are probable candidates of weak keys of RSA. This may expose some
of the RSA users into using weak RSA public key pairs, (N, e).

The paper is organized as follows. In Sect. 2, a brief introduction to the con-
tinued fractions expansion via Legendre’s Theorem, the lattice basis reduction
and also simultaneous Diophantine approximation. Section 3 and Sect. 4 presents
the first and second attacks, respectively. Section 5 compares our findings against
previous findings with respect to their conditions. Then, the conclusion of our
work is presented in Sect. 6.

384 M. R. K. Ariffin et al.

2 Preliminaries

We first show the theorem of continued fractions below:

Theorem 1 (Legendre’s theorem). Let R is a rational number. Let x and y
are integers where y �= 0 and gcd(x, y)= 1. Suppose

∣∣∣∣R − x

y

∣∣∣∣ <
1

2y2

Then x
y is a convergent of the continued fraction expansion of R.

Proof. See [7].

To find the private keys of RSA using the weak RSA public keys (N, e), we
use Coppersmith’s method [5] to find the integer roots of a univariate or bivariate
polynomials modulo N . Particularly, given a large integer N , let

F (x) = xn + an−1x
n−1 + . . . + a1x + a0.

If there exists x0 < N1/n such that F (x0) ≡ 0 (mod N), then [5] showed that
x0 can be found in polynomial time with the aid of the LLL algorithm. The LLL
algorithm [9] produces a different polynomial f that is related to F (x) that sat-
isfy the conditions imposed for x0 with smaller values. Due to the smaller values,
this method runs in polynomial time. Coppersmith also applied the method in
[6] to factor N , given certain approximation of p as shown in the next theorem.

Theorem 2 (Coppersmith’s approximation of p). Let N = pq be the prod-
uct of two unknown integers such that p < q < 2p. Given an approximation of p
with additive error term at most N1/4, then p and q can be found in polynomial
time with respect to log(N).

Proof. See [6].

In the system of equations of k weak RSA moduli Ni = piqi, the next theorem
is required for the adversary to find pi and qi.

Theorem 3 (Simultaneous Diophantine Approximations). There is a
polynomial time algorithm with respect to log(pi) where i = 1, . . . , n, for given
rational numbers α1, ..., αn and 0 < ε < 1, to compute integers p1, · · · , pn and a
positive integer q such that

max
i

|qαi − pi| < ε and q ≤ 2n(n−3)/4 · 3n · ε−n.

Proof. See [15].

Attacking RSA Using an Arbitrary Parameter 385

3 The First Attack

We first define a parameter u in the following definition.

Definition 1. Let φa be the smallest integer value of known upper bound of
φ(N). Let φb be the largest integer value of known lower bound of φ(N). Then
we define u = φa + φb.

The next remark shows how we can find the best current approximation values
for φa and φb.

Remark 1. From [14] we know that 2
√

N < p + q < 3√
2

√
N . This means

N − 3√
2

√
N + 1 < φ(N) < N − 2

√
N + 1 as N − (p + q) + 1 = φ(N). Hence

the best current approximation for φa is
⌊
N − 2

√
N + 1

⌋
and the best current

approximation for φb is
⌈
N − 3√

2

√
N + 1

⌉
.

It should be noted that u can be an arbitrary value that is suitably larger than
N . However, in our case, we use u = φa + φb as in Definition 1. The following
lemmas and theorem show the conditions to be fulfilled by parameters in our
equation so that its information can be computed in order to find an approxi-
mation of p which satisfies Theorem 2.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Suppose we know
an approximation S of p + q such that S > 2N1/2,

√
S2 − 4N > p − q and

|p + q − S| <
p − q

p + q
N1/4.

Then P̃ = 1
2

(
S +

√
S2 − 4N

)
where |p − P̃ | < N1/4.

Proof. Suppose that S > 2N1/2 and let D =
√

S2 − 4N . We have

|(p − q)2 − D2| = |(p − q)2 − S2 + 4N | = |(p + q)2 − S2|.
Dividing by p − q + D, we get

|p − q − D| =
(p + q + S)|p + q − S|

p − q + D

Next, suppose |p + q − S| < p−q
p+q N1/4. Since p−q

p+q N1/4 < N1/4, then

p + q + S < 2(p + q) + N1/4

< 2(p + q) + 2N1/4

= 2(p + q) +
2N1/2

N1/4

< 2(p + q) +
p + q

N1/4

=
(

2 +
1

N1/4

)
(p + q)

386 M. R. K. Ariffin et al.

as 2N1/2 < (p + q). Let
√

S2 − 4N > p − q, then combining with p − q + D >
p − q + (p − q) = 2(p − q), we deduce

|p − q − D| <

(
2 + 1

N1/4

)
(p + q)|p + q − S|

2(p − q)

<

(
2 + 1

N1/4

)
(p + q)

2(p − q)
· (p − q)
(p + q)

N1/4

=
(

1 +
1

2N1/4

)
· N1/4

≈ N1/4

as 1
2N1/4 tends to be negligible for large N . Now, set P̃ = 1

2 (S + D). Finally we
can have

∣∣∣p − P̃
∣∣∣ =

∣∣∣∣p − 1
2
(S + D)

∣∣∣∣

=
1
2

|p + q − S + p − q − D|

≤ 1
2

· |p + q − S| +
1
2

|p − q − D|

<
1
2

· p − q

p + q
N1/4 +

1
2
N1/4

< N1/4

as (p−q)
(p+q) < 1. This terminates the proof.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Let e satisfy the
equation eX −uY = Z −φb where X,Y are positive integers with gcd(X,Y) = 1.
If 1 ≤ Y < X <

∣∣∣ u
2(φ(N)−φb)

∣∣∣ and |Z −φ(N)| < p−q
p+q N1/4 then Y

X is a convergent

of e
u − N1/4

2u .

Proof. Consider the equation

eX − uY = Z − φb (3)

Attacking RSA Using an Arbitrary Parameter 387

Let |Z − φ(N)| < p−q
p+q N1/4. Then divide (3) by uX we get

e

u
− Y

X
=

Z − φb

uX

≤
p−q
p+q N1/4 + φ(N) − φb

uX

<
N1/2

2N1/2 N1/4 + φ(N) − φb

uX

<
XN1/4

2uX
+

φ(N) − φb

uX

≤ N1/4

2u
+

φ(N) − φb

uX
(4)

since q − p < N1/2, p + q > 2N1/2 and X > 1. If X <
∣∣∣ u
2(φ(N)−φb)

∣∣∣ then
1

2X >
∣∣∣ 2(φ(N)−φb)

u

∣∣∣. As uX will always be a positive value, rearranging (4), we
obtain ∣∣∣∣

(
e

u
− N1/4

2u

)
− Y

X

∣∣∣∣ <

∣∣∣∣
φ(N) − φb

uX

∣∣∣∣

<
1

2X2

which satisfies Theorem 1. This terminates the proof.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let e satisfies the
equation eX −uY = Z −φb where X,Y are positive integers with gcd(X,Y) = 1.
If

1 ≤ Y < X <
u

2 (φ(N) − φb)
, φ(N) +

p − q

p + q
N1/4 < N − 2N1/2,

|Z − φ(N)| <
p − q

p + q
N1/4

then N can be factored in polynomial time.

Proof. Suppose e satisfies an equation eX − uY = Z − φb. Let X,Y and Z
satisfy the conditions in Lemma 2, then we can find the values of X and Y by
computing e

u − N1/4

2u . From the values of X and Y , we define

S = N − (eX − uY + φb) = N − Z.

Since φ(N) + p−q
p+q N1/4 < N − 2N1/2 then S ≥ N −

(
φ(N) + p−q

p+q N1/4
)

>

N − (
N − 2N1/2

)
= 2N1/2. We also have

S2 − 4N = (N − Z)2 − 4N

= N2 − 2NZ + Z2 − 4N

= N(N − 2Z − 4) + Z2

> N.

388 M. R. K. Ariffin et al.

Thus
√

S2 − 4N > N1/2 > p − q. We also observe that

S = N − Z

> N −
(

p − q

p + q
N1/4 + φ(N)

)

> N − φ(N) − p − q

p + q
N1/4

= p + q − 1 − p − q

p + q
N1/4 (5)

Rearranging (5), we get

|p + q − S − 1| < |p + q − S| <
p − q

p + q
N1/4

which satisfies Lemma 1. Thus we can find P̃ = 1
2

(
S +

√
S2 − 4N

)
such that

|p − P̃ | < N1/4. Based on Theorem 2, we can factor N in polynomial time.

Remark 2. Observe that Y
X is a convergent of the terms e

u − N
1
4

2u . Since u ≈ N ,

the condition Y < X will always hold. The convergents of e
u − N

1
4

2u will produce
a sequence, where candidates of X begins from the smallest possible integer
till 2u2. Since 1 < u

2(φ(N)−φb)
< 2u2, there will exist candidates of X where

1 < X < u
2(φ(N)−φb)

. Moreover, since the continued fractions process ends in
polynomial time, candidates for X can be tested in polynomial time. Thus,
we can guarantee the existence of the pair (X,Y) satisfying the conditions of
Theorem 4.

Given (N, e) the following is an algorithm to initiate factoring N = pq by
using the continued fraction and Coppersmith’s method via the LLL algorithm.
The algorithm is as follows:

Algorithm 1. Factoring RSA moduli satisfying Theorem 4.
Input: The RSA public key pair (N, e) and u.
Output: The prime factors p, q or ⊥.

1: Compute A to be the continued fraction of
(

e
u

− N1/4

2u

)

2: Set Y = numerator of A and X = denominator of A such that gcd(X, Y) = 1.

3: For each convergent Y
X

of
(

e
u

− N1/4

2u

)
, compute Z = eX − uY + φb

4: Compute S = N − Z and P̃ = 1
2

(
S +

√
S2 − 4N

)
5: Consider the polynomials F (v) = (v + P̃)
6: Construct a matrix M of coefficient vectors of elements of 〈F (v), N〉.
7: Run LLL algorithm onto M .
8: Construct the polynomials M ′(v) from the first row of output of Step 7.
9: Factor M ′(v) to obtain small root v0.

10: Compute p = v0 + P̃ and q = N
p

.
11: if q ∈ Z, then output p, q.
12: else Algorithm fails or ⊥.

Attacking RSA Using an Arbitrary Parameter 389

Remark 3. Due to the fact that the equation being manipulated given by eX −
uY = Z −φb does not represent the RSA key equation, we do not need an upper
bound of the decryption exponent d for the attack to work properly. Indeed,
there is no need to discuss the bound for d, since neither d nor its generalized
parameter is in our equation. Upon factoring N = pq, one is able to retrieve
d ≈ N . This is a major finding. All previous results related to studying the RSA
key equation has the condition the maximum bound of d is given by d < N1/2.

The following is an example to illustrate Algorithm 1.

Example 1. We use RSA-129 modulus in this example. Specifically, we are given

N = 351105307763848424671594790271619146599

and

e = 943837024474969735510396386229690517

Then we compute

φa =
⌊
N − 2

√
N + 1

⌋

= 351105307763848424634119181790162922235

and

φb =
⌈
N − 3√

2

√
N + 1

⌉

= 351105307763848424631845904942124460115

which values are used to compute

u = φa + φb

= 702210615527696849265965086732287382350.

Then we obtain the continued fraction expansion of e
u − N1/4

2u which is
[
0,

1
743

,
1

744
,

228
169631

, · · · ,
19879

14789889
,

1040411704253353285
774061754625882738716

, . . .

]

Taking Y
X = 19879

14789889 , then we compute

Z = eX − uY + φb

= 351105307763848424632785092052501507078.

Then we compute

S = N − Z

= 38809698219117639522

390 M. R. K. Ariffin et al.

and

P̃ =
1
2

(
S +

√
S2 − 4N

)

= 24448940821740240387

Let F (v) = (v + P̃) and V = 8000000, be the upper bound of the unknown
|p − P̃ |. We consider the polynomials, N2, NF (v), F (v)2, vF (v)2 and v2F (v)2

and build a matrix, M corresponding to these polynomials. Particularly,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N2 0 0 0 0

NP̃ N · V 0 0 0

P̃ 2 2P̃ V V 2 0 0

0 P̃ 2V 2P̃ V 2 V 3 0

0 0 P̃ 2V 2 2P̃ V 3 V 4.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let MLLL as the LLL-reduced matrix, we use the coefficients of the first row of
MLLL to construct the polynomial M ′(v) where

M ′(v) = −80322272v4 + 4316657527524354v3 − 17123235643412959749419v2

−25819107876857731036710641043v + 16394904467315025730472619833372752.

By finding the integer roots of M ′(v), we obtain

v = 493424.

Observe

p = v + P̃

= 24448940821740733811

Now we can solve the factorization of N by finding

q =
N

p
= 14360757397377109309.

Remark 4. The RSA private exponent, d corresponding with (N, e) as given in
Example 1 such that ed ≡ 1 (mod φ(N)) is

d = 44601440284214524132897789887339371933 ≈ N0.97675 ≈ N.

Remark 5. Observe that values of X and Y in Example 1 satisfy conditions
posed in Theorem 4.

Attacking RSA Using an Arbitrary Parameter 391

Remark 6. Observe that since 1 ≤ Y < X < u
2(φ(N)−φb)

,

e =
Z − φb + uY

X
≥ Z − φb + u

X

>
Z − φb + u

u
· 2(φ(N) − φb)

= 2(φ(N) − φb)
(

1 +
Z − φb

u

)

> 2(φ(N) − φb) ≈ N1/2.

This means our attack only works if e > N1/2.

3.1 Estimating Numbers of (N, e)’s Satisfying eX − uY = Z − φb

In this section, we give an estimation of the numbers of e satisfying eX − uY =
Z − φb. The following lemma states that the public parameter e < N satisfies
at most one equation eX − uY = Z − φb where the unknown parameters X,Y
and Z satisfy the conditions of Theorem 4.

Lemma 3. Let N = pq be an RSA modulus with q < p < 2q. For i = 1, 2, let e
satisfies the equation eXi − uYi = Zi − φb with gcd(X,Y) = 1,

1 ≤ Yi < Xi <
u

2 (φ(N) − φb)
, φ(N) +

p − q

p + q
N1/4 < N − 2N1/2,

and |Zi − φ(N)| <
p − q

p + q
N1/4.

Then X1 = X2, Y1 = Y2 and Z1 = Z2.

Proof. Suppose that e satisfying two equations

eX1 − uY1 = Z1 − φb and eX2 − uY2 = Z2 − φb

with

X1,X2 <
u

2 (φ(N) − φb)
and |Z1 − φ(N)|, |Z2 − φ(N)| <

p − q

p + q
N1/4.

Then, equating the term e, we have

Z1 − φb + uY1

X1
=

Z2 − φb + uY2

X2
(6)

Rearranged (6) to

X2(Z1 − φb) + X1(φb − Z2) = u(X1Y2 − X2Y1). (7)

Suppose X1,X2 < u
2(φ(N)−φb)

. Observe that

|Z1 − Z2| <
2(p − q)
p + q

N1/4 and φ(N) − φb > N1/4

392 M. R. K. Ariffin et al.

which implies Z1−Z2
(φ(N)−φb)

< 1. Consider the left hand side of (7),

X2(Z1 − φb) + X1(φb − Z2) <
u

2 (φ(N) − φb)
(Z1 − φb) +

u

2 (φ(N) − φb)
(φb − Z2)

=
u

2

(
Z1 − φb

(φ(N) − φb)
+

φb − Z2

(φ(N) − φb)

)

=
u

2

(
Z1 − Z2

(φ(N) − φb)

)

< u (8)

Hence from the right hand side of (7), we deduce that X1Y2 − X2Y1 = 0. Since
gcd(X1, Y1) = gcd(X2, Y2) = 1, it shows that X1 = X2 and Y1 = Y2. Thus, from
(6), this leads to Z1 = Z2.

The following result give the estimation of the number of e’s for which the
Theorem 4 applies.

Lemma 4. Let X and Y be two integers satisfying 1 ≤ Y < X < p−q
p+q N

1
4 and

gcd(X,Y) = 1. Then there exists an integer Z such that Z ≡ φb − uY (mod X)
and |Z − φ(N)| < p−q

p+q N
1
4 .

Proof. Assume that X and Y are fixed with gcd(X,Y) = 1. Let Z0 = φb − uY .
Let β ≡ φ(N) − Z0 (mod X) with 0 ≤ β < X and set Z = φ(N) − β. Then

Z = φ(N) − β ≡ Z0 ≡ φb − uY (mod X).

Define e = Z−Z0
X . Then eX = Z −Z0 = Z −φb +uY , that is eX −uY = Z −φb.

Moreover, we have

|Z − φ(N)| = β < X <
p − q

p + q
N

1
4 .

This terminates the proof. �	
Theorem 5. Let N = pq be the product of two balanced prime integers such
that p − q > c1

√
N . The number of possible values of the parameter e < N in

Theorem 4 where

e =
Z − φb + uY

X

and gcd(X,Y) = 1 with

1 ≤ Y < X <
p − q

p + q
N

1
4

is at least N
1
2−ε where ε > 0 is arbitrarily small for suitably large N .

Attacking RSA Using an Arbitrary Parameter 393

Proof. Let X and Y be two integers satisfying 1 ≤ Y < X < p−q
p+q N

1
4 and

gcd(X,Y) = 1. Then by Lemma 4, there exists an integer Z such that e =
Z−φb+uY

X is also an integer. Let z = Z − φb. Then

e =
z + uY

X
.

The number of the parameter e’s satisfying the equation e = z+uY
X with the

conditions given in the Theorem 4 is

#(e) =
N1∑

X=1

X−1∑
Y =1

gcd (X,Y)=1

1, (9)

where

N1 =
p − q

p + q
N

1
4 ≈ c1N

1
4

when p and q are balanced with p − q > c2
√

N for some positive constants c1
and c2.

Observe that for 1 ≤ Y < X < p−q
p+q N

1
4 we have the following.

X−1∑
Y =1

gcd (X,Y)=1

1 = φ(X) >
c3X

log log X
>

c3X

log log N
, (10)

where c3 is a constant (see [7], Theorem 328). Substitute (10) in (9), we obtain

#(e) >
c3

log log N

N1∑
X=1

X (11)

Next, for
∑N1

X=1 X, we have

N1∑
X=1

X =
N1(N1 + 1)

2
>

N 2
1

2
=

(
c1N

1
4

)2

2
(12)

Substitute (12) in (11), we obtain

#(e) >
c3

log log N
×

(
c1N

1
4

)2

2

>
c21c3

2 log log N
N

1
2 (13)

= N
1
2−ε

Hence a good approximation for the number of weak keys e is at least N
1
2−ε

where ε > 0 is arbitrarily small for suitably large N where N−ε = c21c3
2 log log N . �

394 M. R. K. Ariffin et al.

4 The Second Attack

In this section, we are given k RSA moduli Ni = piqi with its corresponding
public exponent ei and ui where ui = φai

+φbi
follows Definition 1. By using the

following theorem, we can factor k RSA moduli Ni simultaneously if there exist
suitable X and Yi that satisfy conditions required in the theorem. The ability
to factor these moduli simultaneously are based on the results from Theorem 2
and Theorem 3.

Theorem 6. For k ≥ 2, let Ni = piqi, 1 ≤ i ≤ k, be k RSA moduli. Let
N = mini Ni. Let ei, i = 1, . . . , k, be k public exponents. Define δ = k

2(k+1) . If
there exist an integer X < N δ and k integers Yi < N δ with gcd(X,Yi) = 1 and
|Zi − φ(Ni)| < pi−qi

pi+qi
N1/4 such that eiX − Yiui = Zi − φbi

for i = 1, . . . , k, and

|Zi − φbi
| < λN δ+ 1

4 where λ < 3
2

(
2

k+5
4 − 3

)
then one can factor the k RSA

moduli N1, · · · Nk in polynomial time.

Proof. For k ≥ 2 and i = 1, . . . , k, the equation eiX − uiYi = Zi − φbi
can be

rewritten as

eiX −
(

Ni − 2
√

Ni + 1 + Ni − 3√
2

√
Ni + 1

)
Yi = Zi − φbi

as ui = φai
+φbi

and φai
= Ni − 2

√
Ni +1, φai

= Ni − 3√
2

√
Ni +1. This implies

eiX − (2(Ni + 1)) Yi = Zi − φbi
−

(
2
√

Ni +
3√
2

√
Ni

)
Yi.

Hence ∣∣∣∣
eiX

2(Ni + 1)
− Yi

∣∣∣∣ =

∣∣∣Zi − φbi
−

(
2
√

Ni + 3√
2

√
Ni

)
Yi

∣∣∣
2(Ni + 1)

. (14)

Let N = mini Ni and suppose that Yi < N δ and |Zi − φbi
| < λN δ+ 1

4 . Then
|Zi − φbi

| < λpi−qi

pi+qi
N1/4 < λN δ+ 1

4 . Since 2
√

Ni + 3√
2

√
Ni < 9

2

√
Ni, we will get

∣∣∣Zi − φbi
−

(
2
√

Ni + 3√
2

√
Ni

)
Yi

∣∣∣
2Ni

≤
|Zi − φbi

| +
(
2
√

N + 3√
2

√
N

)
Yi

2N

<
λN δ+ 1

4 +
(

9
2

√
N

)
Yi

2N

<
λN δ+ 1

4 + 9
2N δ+ 1

2

2N

<

(
9
2 + λ

)
N δ+ 1

2

2N

=
(9

2 + λ

2

)
N δ− 1

2

Attacking RSA Using an Arbitrary Parameter 395

Plugging in (14), we get
∣∣∣∣

eiX

2(Ni + 1)
− Yi

∣∣∣∣ <

(9
2 + λ

2

)
N δ− 1

2

We now proceed to prove the existence of the integer X. Let ε =
(9

2+λ

2

)
N δ− 1

2 ,

δ = k
2(k+1) . We have

N δ · εk = N δ · Nkδ− k
2

(9
2 + λ

2

)k

= N δ(k+1)− k
2 ·

(9
2 + λ

2

)k

. (15)

Since δ = k
2(k+1) , (15) becomes

N0 ·
(9

2 + λ

2

)k

=
(9

2 + λ

2

)k

. (16)

Suppose λ < 3
2

(
2

k+5
4 − 3

)
then (16) becomes

(9
2 + λ

2

)k

<

⎛
⎝

9
2 + 3

2

(
2

k+5
4 − 3

)

2

⎞
⎠

k

=
(

9
4

+
3
4

(
2

k+5
4 − 3

))k

=
(
2

k+5
4 · 3 · 2−2

)k

= 2
k(k−3)

4 · 3k. (17)

Combining (15) and (17), we obtain

N δ < 2
k(k−3)

4 · 3k · ε−k

It follows that if X < N δ, then X < 2
k(k−3)

4 · 3k · ε−k. Summarizing, for i =
1, . . . , k, we have ∣∣∣∣

eiX

2(Ni + 1)
− Yi

∣∣∣∣ < ε, X < 2
k(k−3)

4 · 3k · ε−k

which satisfies the conditions in Theorem 3 which will find X and Yi for i =
1, . . . , k. Next, using the equation eiX − uiYi + φbi

= Zi, we get the value of Zi.
We also observe that

Si = Ni − Zi

≥ Ni −
(

pi − qi

pi + qi
N

1/4
i + φ(Ni)

)

= Ni − φ(Ni) − pi − qi

pi + qi
N

1/4
i

= pi + qi − 1 − pi − qi

pi + qi
N

1/4
i (18)

396 M. R. K. Ariffin et al.

Rearranging (18), we get

|pi + qi − Si − 1| < |pi + qi − Si| <
pi − qi

pi + qi
N

1/4
i

which satisfies Lemma 1. Thus we can find p̃i = 1
2

(
Si +

√
S2

i − 4Ni

)
such that

|pi − p̃i| < N
1/4
i . Based on Theorem 2, we can factor Ni in polynomial time.

We can build an algorithm to factor k RSA moduli Ni simultaneously. The
algorithm is shown in Algorithm 1:

Algorithm 2. Factoring k RSA moduli simultaneously satisfying Theorem 6
Input: The public RSA key pairs (Ni, ei) and ui for i = 2, 3, . . . , k.
Output: The prime factors pi, qi.
1: for i = 2, 3, . . . , k do
2: Compute φai =

⌊
Ni − 2

√
Ni + 1

⌋
.

3: Compute φbi =
⌈
Ni − 3√

2

√
Ni + 1

⌉
.

4: Compute ui = φai + φbi .
5: end for
6: Set N = min(N1, N2, N3).
7: Compute δ = k

2(k+1)
.

8: Compute λ =
⌊

3
2

(
2

k+5
4 − 3

)⌋
.

9: Compute ε =
(9

2+λ

2

)
Nδ− 1

2 .

10: Compute C =
[
3n+1 · 2

(n+1)(n−4)
4 4 · ε−n−1

]
.

11: Compute lattice L spanned by the rows of the matrix M shown in proof of Theorem
4 in [15].

12: Compute matrix K by applying LLL algorithm onto M .
13: Compute matrix H = KM−1.
14: Assign every element in the first row of H (starting from most left) as X, Y1, . . . , Yk

respectively.
15: for i = 2, 3, . . . , k do
16: Compute Si = Ni − Zi = Ni − (eiX − uiYi) + φbi .

17: Compute Di =
[√

S2
i − 4Ni

]
.

18: Compute P̃i = 1
2

(Si + Di).
19: Applying Coppersmith’s method in Theorem 2 onto each Pi to output pi.
20: Compute qi = Ni/pi.
21: if qi ∈ Z, then output pi, qi.
22: else Algorithm fails or ⊥.
23: end for

5 Comparative Analysis

In this section, we compare our findings against previous findings with respect
to the form of the modified key equations and their conditions. The comparisons
are illustrated in Table 1.

Attacking RSA Using an Arbitrary Parameter 397

Table 1. Comparison of Our Methods Against Previous Findings

Findings Manipulated equation Conditions

Blömer and May [3] ex − yφ(N) = z x < 1
3 N1/4

and |z| < exN−3/4

Hinek [8] eid − kiφ(Ni) = 1 d < Nδ

with δ = k
2(k+1) − ε

where ε depending on N

Nitaj et al. (Theorem 5 in [15]) eix − yiφ(Ni) = zi N = mini Ni, x < Nδ ,

yi < Nδ ,

|zi| <
pi−qi

3(pi+qi)
yiN1/4

where δ = k
2(k+1)

Nitaj et al. (Theorem 6 in [15]) eixi − yφ(Ni) = zi N = mini Ni, mini ei = Nα,

xi < Nδ, y < Nδ ,

|zi| <
pi−qi

3(pi+qi)
yN1/4

where δ =
(2α−1)k
2(k+1)

Ariffin et al. (Theorem 13 in [1]) ed − kφ(N) = 1 |b2p − a2q| < Nγ

(a2(b4+1)p−b2(a4+1)q)(b2p−a2q) > 0

d <
√

3√
2

N
3
4 γ

Our method: Theorem 4 eX − uY = Z − φb 1 ≤ Y < X < u
2(φ(N)−φb)

,

φ(N) + p−q
p+q

N1/4 < N − 2N1/2,

|Z − φ(N)| < p−q
p+q

N1/4

Our method: Theorem 6 eiX − Yiui = Zi − φbi
N = mini Ni,

X < Nδ , Yi < Nδ ,

|Zi − φ(Ni)| <
pi−qi
pi+qi

N1/4

|Zi − φbi
| < λN

δ+1
4

where λ < 3
2

(
2

k+5
4 − 3

)

and δ = k
2(k+1)

From Table 1, based on the references given, we can see that all earlier first
5 findings from Blömer and May [3] till Ariffin et al. [1] type of attacks zoomed
into the RSA diophantine equation either in its original or generalized form. The
first 5 findings had to dictate conditions upon the decryption exponent d or its
corresponding generalized parameter.

In retrospect, our equation did not utilize the RSA diophantine equation
either in its original or generalized form. As a result, our strategy enables us to
factor N = pq for a set of weak keys with d ≈ N . This is a new and important
result. The conditions upon our parameters cannot not be compared to condi-
tions upon parameters of earlier results. This is due do the fact that there is no
relation between our parameters X and Y and the parameters d and φ(N).

6 Conclusion

We have formulated two new attacks on RSA using a method derived from past
literature regarding attacks on the RSA key equation. In our method, we uti-
lized an equation that does not represent the RSA key equation, which under our
defined conditions can be utilized to factor N in polynomial time. The strategy

398 M. R. K. Ariffin et al.

uses a combination of continued fractions and Coppersmith’s methods. Implic-
itly, the insertion of u into the equation will render a particular (N, e) to be a
weak RSA public key pair. We also estimate the number of e’s that satisfying our
theorem is at least N

1
2−ε. Finally, we have presented a case where given k weak

RSA public key pairs, we can find the prime factors of each N simultaneously
in polynomial time.

References

1. Ariffin, M.R.K., Abubakar, S.I., Yunos, F., Asbullah, M.A.: New cryptanalytic
attack on RSA modulus N = pq using small prime difference method. Cryptogra-
phy 3(1), 2 (2019)

2. Asbullah, M., Ariffin, M.: New attacks on RSA with modulus N = p2q using
continued fractions. J. Phy. Conf. Ser. 622, 012019 (2015)

3. Blömer, J., May, A.: A generalized wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24632-9 1

4. Buhler, J.P., Lenstra, H.W., Pomerance, C.: Factoring integers with the number
field sieve. In: Lenstra, A.K., Lenstra, H.W. (eds.) The Development of the Number
Field Sieve. LNM, vol. 1554, pp. 50–94. Springer, Heidelberg (1993). https://doi.
org/10.1007/BFb0091539

5. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9 16

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

7. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, Oxford (1979)

8. Hinek, M.J.: On the security of some variants of RSA. Ph.D. thesis, University of
Waterloo (2007)

9. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673
(1987)

10. Maitra, S., Santanu, S.: Revisiting Wiener’s attack - new weak keys in RSA. In:
Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
228–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-
7 16

11. Nitaj, A.: Cryptanalysis of RSA using the ratio of the primes. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 98–115. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 7

12. Nitaj, A.: A new vulnerable class of exponents in RSA. JP J. Algebra Number
Theory Appl. 21(2), 203–220 (2011)

13. Nitaj, A.: New weak RSA keys. JP J. Algebra Number Theory Appl. 23(2), 131–
148 (2011)

14. Nitaj, A.: Diophantine and lattice cryptanalysis of the RSA cryptosystem. In:
Yang, X.S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuris-
tics. Studies in Computational Intelligence, vol. 427, pp. 139–168. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-29694-9 7

https://doi.org/10.1007/978-3-540-24632-9_1
https://doi.org/10.1007/BFb0091539
https://doi.org/10.1007/BFb0091539
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/978-3-540-85886-7_16
https://doi.org/10.1007/978-3-540-85886-7_16
https://doi.org/10.1007/978-3-642-02384-2_7
https://doi.org/10.1007/978-3-642-29694-9_7

Attacking RSA Using an Arbitrary Parameter 399

15. Nitaj, A., Ariffin, M.R.K., Nassr, D.I., Bahig, H.M.: New attacks on the RSA cryp-
tosystem. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS,
vol. 8469, pp. 178–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06734-6 12

16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

17. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. The-
ory 36(3), 553–558 (1990)

https://doi.org/10.1007/978-3-319-06734-6_12
https://doi.org/10.1007/978-3-319-06734-6_12

New Algorithms and Schemes

A New Encoding Algorithm for a
Multidimensional Version of the

Montgomery Ladder

Aaron Hutchinson1(B) and Koray Karabina2,3

1 University of Waterloo, Waterloo, Canada
a5hutchinson@uwaterloo.ca

2 Florida Atlantic University, Boca Raton, USA
kkarabina@fau.edu

3 National Research Council Canada, Ottawa, Canada
koray.karabina@nrc-cnrc.gc.ca

Abstract. We propose a new encoding algorithm for the simultane-
ous differential multidimensional scalar point multiplication algorithm
d-MUL. Previous encoding algorithms are known to have major draw-
backs in their efficient and secure implementation. Some of these draw-
backs have been avoided in a recent paper in 2018 at a cost of los-
ing the general functionality of the point multiplication algorithm. In
this paper, we address these issues. Our new encoding algorithm takes
the binary representations of scalars as input, and constructs a com-
pact binary sequence and a permutation, which explicitly determines a
regular sequence of group operations to be performed in d-MUL. Our
algorithm simply slides windows of size two over the scalars and it is
very efficient. As a result, while preserving the full generality of d-MUL,
we successfully eliminate the recursive integer matrix computations in
the originally proposed encoding algorithms. We also expect that our
new encoding algorithm will make it easier to implement d-MUL in con-
stant time. Our results can be seen as the efficient and full generalization
of the one dimensional Montgomery ladder to arbitrary dimension.

Keywords: d-MUL · Scalar multiplication algorithm · Scalar
encoding · Montgomery ladder

MSC: 94A60 · 11Y16

1 Introduction

Efficient and secure scalar multiplication algorithms are essential in modern cryp-
tography. A (single dimensional) scalar multiplication algorithm for a group G is
one which takes an integer α and group element P ∈ G as input and produces the
element αP as output. Such an algorithm is required in numerous protocols such
as Diffie-Hellman key exchange, and digital signature generation and verification.
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 403–422, 2020.
https://doi.org/10.1007/978-3-030-51938-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_20

404 A. Hutchinson and K. Karabina

In such group based cryptographic schemes, scalar multiplication dominate the
run time of the system, and therefore it is crucial to minimize its cost. Some cryp-
tographic applications can further make use of multidimensional scalar multipli-
cation algorithms, which take vectors (α1, . . . , αd) of integers and (P1, . . . , Pd) of
group elements as input and produces the element α1P1 + · · · + αdPd as output.
For example, verifying a signature in the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) requires computing a point uP +vQ, where P and Q are public
parameters and u and v are derived from the given signature. Multidimensional
scalar multiplication can also speed up single scalar multiplication with a fixed
base P . For λ = �|G|1/d� and λi = λi−1, one can write α =

∑d
i=1 αiλi for

0 ≤ αi < λ, precompute Pi = λiP , and compute

αP = (
d∑

i=1

αiλi)P =
d∑

i=1

αiPi

through multiscalar multiplication with input αi, Pi, i = 1, ..., d. If the group
G is equipped with efficiently computable endomorphisms, one can use similar
techniques to speed up single scalar multiplication with variable base P because
the cost of precomputating Pi becomes negligible compared to the overall cost;
see [3,4].

Scalar multiplication algorithms have been studied heavily in the past. One
very interesting single dimensional algorithm is the Montgomery ladder [7]. A
key difference between the Montgomery ladder and the double-and-add algo-
rithm is that the Montgomery ladder is regular in the sense that every iteration
of the main loop performs the same operations. It is known that irregularity
of algorithms can be exploited through side-channel analysis and underlying
scalars may be recovered by attackers; see [9]. Therefore, regularity is essential
for security when the scalar α must be kept secret, such as in Diffie-Hellman
public key derivation. Another interesting key feature of the Montgomery ladder
is that it allows the use of differential point addition (P,Q, P − Q �→ P + Q),
where the knowledge of the difference of the points helps to write more efficient
formulas [8]. As an example, 73P can be computed in seven steps by setting
[T,B] = [0, P], tracing the bits bi of 73 from left to right, updating

[T,B] ← [2T, T + B] if bi = 0,

[T,B] ← [T + B, 2B] if bi = 1,

and so performing one addition and one doubling at each step; see Table 1. Note
that the difference of the points to be added is always known (0 or P).

Bernstein [1] proposed a regular two dimensional differential addition chain
(the DJB algorithm). The DJB algorithm computes α1P1+α2P2 for �-bit scalars
in � steps, performing two additions and one doubling at each step. In particular,
the DJB algorithm initiates T [1] ← 0, T [2] ← P1, T [3] ← P2, and at each step,
[T [1], T [2], T [3]] is updated by doubling one T [i] and adding two distinct pairs of
points. Given the bit sequence of α1 and α2, a recursive formula was presented
in [1] to encode a sequence for the update rules. Table 2 shows an example for

A New Encoding Algorithm 405

Table 1. Montgomery ladder for α = 73

i 1 2 3 4 5 6 7

bi 1 0 0 1 0 0 1

T 0 P 2P 4P 9P 18P 36P 73P

B P 2P 3P 5P 10P 19P 37P 74P

Table 2. The DJB algorithm for computing 73P + 59Q

i 1 2 3 4 5 6 7

T [1] 0 P +Q 3P +Q 5P + 3Q 9P + 7Q 19P + 15Q 37P + 29Q 73P + 59Q

T [2] P 2P 2P + 2Q 4P + 4Q 10P + 8Q 18P + 14Q 36P + 30Q 74P + 58Q

T [3] Q 2P +Q 3P + 2Q 5P + 4Q 9P + 8Q 18P + 15Q 37P + 30Q 74P + 59Q

computing 73P +59Q in seven steps, performing 1 doubling and 2 additions per
step. Note that the difference of the points to be added is always known (0, P ,
Q, or P ± Q).

In 2017, a generalization of the Montgomery ladder to d dimensions was made
in [6] by means of an algorithm called d-MUL, originally based on an algorithm
of Brown from 2006 in [2]. d-MUL uses a sequence of state matrices (defined
in Sect. 2.1) to derive an encoding of the scalar vector (α1, . . . , αd), which is
used to perform the scalar multiplication. For �-bit scalars αi, the encoding
algorithm in [6] requires dealing with (d + 1) × d integer matrices with �-bit
integers. Even though the underlying matrix arithmetic is simple, it introduces
non-trivial overhead cost, and makes it harder to resist against side-channel
attacks. For example, a constant time implementation of d-MUL at the 128-
bit security level in [5] reported about 10, 000 cycle counts for the encoding
phase. After encoding, d-MUL loops through � steps, where one doubling and d
(differential) addition are performed per step in a regular fashion.

A second paper [5] further explored d-MUL. The motivation in [5] is to bypass
the encoding step, and immediately start scalar multiplication by a carefully
chosen sequence of group operations: d additions and 1 doubling per step, for a
total number of � steps. In particular, a bijection was established between 2�dd!
different choices of (r, σ), where r is a length-�d bitstring and σ is a permutation
on {1, 2, ..., d}, and the set of all state matrices containing (at most) �-bit odd
scalars [α1, ..., αd]. In short, by sampling r and σ at random, one can compute
a point α1P1 + · · · + αdPd, for some αi sampled at random among �-bit odd
integers without explicitly constructing αi, or their binary representation.

When d = 1 and d = 2, the algorithms in [5], which we call randomized
d-MUL, greatly simplify. When d = 1, there is only one choice of σ = [1], and
given r, the scalar multiplication algorithm starts with

T [1] ← 0, T [2] ← P ;

406 A. Hutchinson and K. Karabina

bits ri of r are traced from left to right, and T [1] and T [2] are updated as follows

[T [1], T [2]] ← [2T [ri + 1], T [1] + T [2]].

Table 3 gives an example with r = [1 1 0 1 1 0 1], which in the end computes
73P . Note that the relation between the scalar and the r-sequence is not obvious.
This may be compared to the Montgomery ladder computation in Table 1.

Table 3. Randomized d-MUL with r = [1 1 0 1 1 0 1]

i 1 2 3 4 5 6 7

ri 1 1 0 1 1 0 1

T [1] 0 2P 2P 4P 10P 18P 36P 74P

T [2] P P 3P 5P 9P 19P 37P 73P

When d = 2, there are two choices of σ ∈ {[1, 2], [2, 1]}, and given r, the
scalar multiplication algorithm starts with

T [1] ← 0, T [2] ← P, T [3] ← P + Q, if σ = [1, 2],
T [1] ← 0, T [2] ← Q, T [3] ← P + Q, if σ = [2, 1];

bits ri of r are traced from left to right, and T [1] and T [2] are updated such that

[T [1], T [2], T [3]] ← [2T [r2i−1 + r2i + 1], T [r2i + 1] + T [r2i + 2], T [1] + T [3]].

Table 4 gives an example with σ = [1, 2] and r = [01 11 00 10 11 01 01], which in
the end computes 73P + 59Q. As in the case of d = 1, the relation between the
scalars and the r-sequence is not obvious. One may compare this computation
to the DJB algorithm example in Table 2.

Table 4. Randomized d-MUL with σ = [1, 2] and r = [01 11 00 10 11 01 01]

i 1 2 3 4 5 6 7

r2i−1r2i 01 11 00 10 11 01 01

T [1] 0 2P 2P + 2Q 4P + 4Q 10P + 8Q 18P + 14Q 36P + 30Q 74P + 60Q

T [2] P 2P +Q 3P + 2Q 5P + 4Q 9P + 8Q 18P + 15Q 37P + 30Q 74P + 59Q

T [3] P +Q P +Q 3P + 3Q 5P + 3Q 9P + 7Q 19P + 15Q 37P + 29Q 73P + 59Q

The randomized d-MUL method [5] may be useful for some applications
where one is interested in computing

∑
αiPi for some random scalars αi, but not

for some specific (priori-fixed) values αi. Therefore, applications of this method
are limited despite it being very efficient. Deriving αi from a given (r, σ) was
made explicit but the connection between (r, σ) and the corresponding αi in the
other direction was not entirely clear in [5]. In particular, it is not known how to
derive (r, σ) from given αi other than running the original d-MUL encoding as
mentioned before, which has its own efficiency and potential security drawbacks.

A New Encoding Algorithm 407

2 Preliminaries and Our Contributions

In this paper, we derive many theoretical results which explore the connection
between (r, σ) and the scalars (α1, . . . , αd) appearing in the output of the d-
MUL algorithm from [5]. We use these theoretical results to derive an efficient
and compact encoding of an integer vector (α1, . . . , αd) as a bitstring, which we
use to build a regular scalar multiplication algorithm similar to that of [5]. In
particular, our new encoding algorithm takes the bitstring representations of αi’s
and constructs a pair (r, σ) by simply sliding windows of size two from right to
left. As a result, while preserving the full generality of d-MUL, we successfully
eliminate the recursive integer matrix computations in the original encoding
algorithm as proposed in [6]. Therefore, we expect significant time and memory
savings in the encoding phase of d-MUL. We also expect that our new encoding
algorithm will make it easier to implement d-MUL in constant time.

When αi are �-bit odd positive integers for i = 1, ..., d, our encoding algo-
rithm simplifies to Algorithm 1. Note that Algorithm 1 processes two bits at a
time and uses small tables, large integer matrices are not required, and there
is no if/else branch in the algorithm. These are some desired features for an
efficient and secure implementation of an algorithm. As an example, running
Algorithm 1 with α = 73 yields the r-sequence as in Table 3, and running it
with [α1, α2] = [73, 59] yields the r-sequence as in Table 4 and the permutation
σ = [1, 2]. We should emphasize again that previous encoding algorithms do not
offer such an efficient algorithm to construct the r-sequence from a given scalar
sequence for general d ≥ 1. Given the r-sequence and σ, point multiplication
can be performed using the same rules as described above, or more generally, as
described in [5]. Our algorithm in its full generalization to �-bit scalars, including
the point multiplication part, is presented later in this paper in Algorithm 4.

Below we give some preliminaries before formally stating the contributions
and organization of this paper in Subsect. 2.2.

2.1 Preliminaries

In this subsection we summarize some key definitions and results from [6] and [5]
as points of reference. Details can be found in the respective papers. We point
out that d-dimensional scalar multiplication algorithms in a group G correspond
to those in Z

d by identifying combinations α1P1 + · · · + αdPd with the vector
(α1, . . . , αd); this identification is a group isomorphism modulo the order of Pi

in component i, and so we restrict to studying algorithms in Z
d.

Notation. Throughout this paper, we will write (b1b2 · · · bn)2 for the binary
representation of an integer, where b1 is the most significant digit and bn is the
parity digit. For binary strings r1 and r2 we use r1||r2 to denote their concate-
nation. As usual for a matrix A, we write Ai for the ith row of A, and Ai,j for
the entry in the ith row and jth column. Matrix indices always begin at 1. We
use ej to denote the unit basis row vector with a 1 in the jth column and 0 s
elsewhere.

The primary structure that the d-MUL algorithm is built on is a state matrix.

408 A. Hutchinson and K. Karabina

Algorithm 1: New Encoding for d-MUL

Input: Odd integers α1, . . . , αd ∈ [0, 2�), points P1, . . . , Pd ∈ G, G abelian
Output: A binary sequence r of length �d bits and a permutation σ on {1, ..., d}

1 Let B[i] be the binary representation of αi, with extra leading 0.
2 σ ← [d − i : i = 0, ..., (d − 1)]
3 r ← []
4 for k = � down to 1 do
5 t ← [], rt ← []
6 for i = 1 to d do
7 t[i] ← (B[i][k] + B[i][k + 1]) mod 2
8 end
9

10 h ← 0
11 for i = 1 to d do
12 rt[i] ← t[σ[i]]
13 h ← h + rt[i]

14 end
15

16 r ← rt||r
17 L ← [], c0 ← 0, c1 ← 0
18 for i = 1 to d do
19 w0 ← (1 − rt[i]), c0 ← c0 + w0

20 w1 ← rt[i], c1 ← c1 + w1

21 sgn ← (1 − 2rt[i])
22 L[h + sgn · (w0 · c0 + w1 · (c1 − 1))] ← σ[i]

23 end
24 σ ← L

25 end
26 return r, σ

Definition 1. A (d + 1) × d state matrix A is integer-valued and satisfies:

1. each row Ai has i − 1 odd entries.
2. for 1 ≤ i ≤ d, we have Ai+1 − Ai ∈ {ej ,−ej} for some 1 ≤ j ≤ d.

The difference vector for A is cA := Ad+1 − A1. We define a bijection σA :
{2, . . . , d + 1} → {1, . . . , d}, called the column sequence of A, by letting σA(i)
be the position in which Ai − Ai−1 is nonzero. The magnitude of A is defined
as |A| = max

i,j
{|Aij |}.

By “matrix” we will always mean a state matrix unless otherwise stated. All
state matrices considered in this paper will have a common size of (d + 1) × d
for some dimension d; we will never consider matrices of different sizes simul-
taneously. We mostly consider matrices with non-negative values. Our interest
will lie in pairs of state matrices having special properties, which we introduce
shortly in Definition 3. We first state a few necessary results which were proved
in [5].

A New Encoding Algorithm 409

Lemma 1. For a state matrix A, the row sum Am +An has |m−n| odd entries.

Corollary 1. Let A and B be state matrices such that every row in A is the
sum of two rows from B. Then for every k there is some m such that Ak =
Bm +Bm+k−1. In particular, A1 = 2Bh+1, where h is the number of odd entries
in the integer row vector 1

2A1.

Theorem 1. For a state matrix A, there is a unique state matrix B such that
every row in A is the sum of two rows from B.

Definition 2. Let A and B be state matrices such that every row in A is the
sum of two rows from B. The addition sequence {ak}d+1

k=1 for A corresponding
to B is defined to be ak = (xk, yk), where xk and yk are the unique row indices
for which Ak = Bxk

+ Byk

As it turns out, there are exactly 2d many addition sequences corresponding
to a (d + 1) × d matrix B which each yield a different matrix A. The following
definition gives a bijection between binary strings and additions sequences, which
we use to encode the sequence as a binary string.

Definition 3. Let B be a (d+1)×d state matrix and r a binary string of length
d. Let h be the number of 1’s in r. Define a recursive sequence ak = (xk, yk) of
ordered pairs by x1 = y1 = h + 1 and

ak =
{

(xk−1, yk−1 + 1) if rk−1 = 0
(xk−1 − 1, yk−1) if rk−1 = 1

for 2 ≤ k ≤ d + 1. The extension matrix of B corresponding to r is the (d +
1) × d state matrix A having addition sequence ak with respect to the matrix B.

Figure 1 gives an example of an extension matrix. Iterating the construction
in Definition 3 allows us to built a sequence of matrices given a long binary
string.

Definition 4. Let B be a (d + 1) × d state matrix. Let r1, . . . , r� be binary
strings of length d, and r = r1|| · · · ||r�. The extension sequence with base B
corresponding to r is a sequence {A(i)}�+1

i=1 of (d + 1) × d state matrices defined
recursively by A(1) = B, and A(i+1) is the extension matrix of A(i) corresponding
to ri.

This definition gives us a way of encoding an entire sequence of matrices
{A(i)}�+1

i=1 as a simple pair (B, r). Note also that by Theorem 1 the entire sequence
is uniquely determined by the final matrix A�. The idea of the randomized d-
MUL algorithm in [5] is to randomly choose a {0, 1}-valued state matrix B
and binary string of length �d, and output the last row of the last matrix of
the corresponding extension sequence. The group version of the algorithm can
these operations without constructing the matrix sequence explicitly by using
the encoding given in Definition 4.

410 A. Hutchinson and K. Karabina

AB

2 4 2 2

2 4 2 3

3 4 2 3

3 3 2 3

3 3 3 3

6 8 4 6

5 8 4 6

5 7 4 6

5 7 5 6

5 7 5 5

σB : (4123) σA : (1234)

cB = (1,−1, 1, 1) cA = (−1,−1, 1,−1)

Fig. 1. Two state matrices A and B of dimension d = 4, along with their column
sequences and difference vectors. A is the extension matrix of B corresponding to the
bitstring r = 1001.

2.2 Contributions and Organization

The main contributions of this paper are:

1. We derive many theoretical results on state matrices and extension sequences.
In particular, we determine the exact relationship between the pair (B, r)
and the last row of the last matrix of the corresponding extension sequence
{A(i)}. This relationship is stated precisely in Theorem 4, which details how
the sequence of matrices built in the algorithm of [6] can be modeled and
encoded using the efficient framework of [5].

2. Using the results of Theorem 4 we detail a new version of d-MUL, a d-
dimensional scalar multiplication algorithm which is a full generalization of
the Montgomery ladder to d dimensions. This version of d-MUL recodes the
�-bit input scalars (α1, . . . , αd) very efficiently into a �d-length bitstring r, a
process only involving permuting the XOR of consecutive bits of the αi. After
recoding the scalars, we use the algorithm of [5] to perform the scalar multi-
plication with the careful choice of the bitstring r. In particular, this version
retains the pattern of 1 point doubling D and d point additions A for each
bit of the input scalars, giving an operation cost of �D + �dA for the point
addition stage. Furthermore, every addition can be performed as a differential
addition. Our algorithm does not require storage of any precomputed points,
unless differential additions are employed.

In Sect. 3 we state and prove many theoretical results on extension sequences
of state matrices with the aim of optimizing the d-MUL algorithm. In Sect. 4 we
apply the results of Sect. 3 to construct a new version of the d-MUL algorithm.

A New Encoding Algorithm 411

3 Theoretical Results

In this section we solve the following two problems:

1. Let {A(k)}�
k=1 be an extension sequence with |A(1)| = 1. Given only the

binary representation of the entries in the row vector A
(�)
1 + A

(�)
d+1, find a

simple expression giving the binary representations of the entries in A
(k)
1 for

all k = 1, . . . , �.
2. Let A be an extension matrix of B corresponding to the bitstring r, and let

σA and σB be the column sequences for A and B, respectively. Find a simple
method for determining (σB , r) given only (A1, σA).

We make use of the solution to these two problems in the following manner. For a
vector (α1, . . . , αd) of positive odd � bit integers, choose a matrix A(�) such that
A

(�)
1 + A

(�)
d+1 =

[
α1 · · · αd

]
and let {A(k)}�

k=1 be the derived extension sequence.

Then using the solution to (1) we can determine A
(k)
1 for every k, and by iterating

the solution to (2) we can determine all column sequences σk for each matrix
A(k) as well as the bitstring r for the entire sequence {A(k)}�

k=1. This allows us
to determine (r, σ1) without ever having to construct any matrices. Furthermore
A(1) is completely determined by σ1 since |A(1)| = 1. This entire process can then
be turned into a method for constructing an efficient addition chain algorithm
which uses only the bits of the αi and the initial choice of column sequence σ�,
and which has very small storage costs and encoding phase.

This section will solve problems (1) and (2) above, whose solutions yield The-
orem 4 giving an equivalence of two extension sequence constructions. Section 4
will use the solutions to these problems to detail an efficient scalar multiplication
algorithm similar to the original d-MUL algorithm of [6].

3.1 Determining the Bits of an Extension Sequence

The output of the addition chain constructed in Theorem 4 of [5] is always
determined by the last row of the final matrix, and so it makes sense to analyze
how these final rows change throughout the sequence of state matrices. Our first
result of this section finds the connection between the last rows of successive
matrices.

Theorem 2. Let A be an extension matrix of B. Let Bd+1,i = B1,i + ci and
B1,i + Bd+1,i = (b1b2 · · · bn−11)2. If A1 = 2Bh+1, then

A1,i + Ad+1,i =

⎧
⎪⎪⎨

⎪⎪⎩

(b1b2 · · · bn−111)2 if (Bh+1,i is even and ci = −1)
or (Bh+1,i is odd and ci = 1)

(b1b2 · · · bn−101)2 if (Bh+1,i is even and ci = 1)
or (Bh+1,i is odd and ci = −1)

Proof. We consider two cases.

412 A. Hutchinson and K. Karabina

1. Suppose Bh+1,i is even. Then

A1,i + Ad+1,i = 2Bh+1,i + (B1,i + Bd+1,i)
= 2B1,i + (B1,i + Bd+1,i) since Bh+1,i is even
= B1,i + Bd+1,i − ci + (B1,i + Bd+1,i)
= 2 · (b1b2 · · · bn−11)2 − ci

= (b1b2 · · · bn−110)2 − ci

2. Suppose Bh+1,i is odd. Then

A1,i + Ad+1,i = 2Bh+1,i + (B1,i + Bd+1,i)
= 2Bd+1,i + (B1,i + Bd+1,i) since Bh+1,i is odd
= B1,i + Bd+1,i + ci + (B1,i + Bd+1,i)
= 2 · (b1b2 · · · bn−11)2 + ci

= (b1b2 · · · bn−110)2 + ci

The result follows when considering ci = 1 and ci = −1 in both cases.

With this theorem we can relate the top and bottom rows in a sequence of
matrices with the bits of the final matrix, as described in the following corollary.

Corollary 2. Let {A(i)}�
i=1 be an extension sequence such that |A(1)| = 1. Let

A
(�)
1,i + A

(�)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)�−11)2. Then for 1 ≤ k ≤ �,

(1) A
(k)
1,i + A

(k)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)k−11)2,

(2) A
(k)
1,i = (b(i)1 b

(i)
2 · · · b(i)k−1)2 + b

(i)
k−1,

(3) A
(k)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)k−1)2 + 1 − b

(i)
k−1.

with b
(i)
0 := 0.

Proof. Note that (2) and (3) follow immediately from (1) since any odd integer
a with binary representation (b1b2 · · · bk−11)2 can be written as a = t + (t +
1) for some unique integer t, with the even integer in {t, t + 1} expressible as
(b1b2 · · · bk−1)2+bk−1 and the odd integer expressible as (b1b2 · · · bk−1)2+1−bk−1.

To prove (1), we use backwards induction on k. The base case k = � is given
by assumption. Assume that A

(k+1)
1,i +A

(k+1)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)k 1)2 for some k. By

Theorem 2 the binary expansion of A
(k+1)
1,i +A

(k+1)
d+1,i is exactly that of A

(k)
1,i +A

(k)
d+1,i

with a single bit inserted between the final two bits, and so A
(k)
1,i + A

(k)
d+1,i =

(b(i)1 b
(i)
2 · · · b(i)k−11)2.

The above corollary solves problem (1) posed at the beginning of this section.

A New Encoding Algorithm 413

3.2 Determining the Column Sequence and Bitstring
from an Extension Matrix

In this subsection we solve problem (2) detailed at the introduction to this
section. The following theorem provides an alternative method for describing
the addition sequence for a given extension matrix, which will be needed in the
results to come.

Theorem 3. Let A be an extension matrix of B. Let A1 =
[
2α1 2α2 · · · 2αd

]
, let

σA be the column sequence for A, and let ak = (xk, yk) be the addition sequence
for A corresponding to B. Then for k ≥ 1 we have

ak+1 =
{

(xk − 1, yk) if ασA(k+1) is odd
(xk, yk + 1) if ασA(k+1) is even

Proof. Fix k ≥ 1. Then

2ασA(k+1) = Bxk,σA(k+1) + Byk,σA(k+1) = Ak,σA(k+1) ≡ 0 mod 2

and

Bxk+1,σA(k+1) + Byk+1,σA(k+1) = Ak+1,σA(k+1) ≡ 1 mod 2

and so we have

ak+1 = (xk − 1, yk)
⇐⇒ Bxk,σA(k+1) ≡ 1 mod 2 and Bxk+1,σA(k+1) ≡ 0 mod 2

(since xk+1 < xk)
⇐⇒ ασA(k+1) is odd

and similarly

ak+1 = (xk, yk + 1)
⇐⇒ Byk,σA(k+1) ≡ 0 mod 2 and Byk+1,σA(k+1) ≡ 1 mod 2

(since yk+1 > yk)
⇐⇒ ασA(k+1) is even.

We can now derive an expression for the binary string giving the addition
sequence for two state matrices A and B using only the column sequence for A
and the row which was doubled from B.

Corollary 3. Let A be an extension matrix of B. Let A1 =
[
2α1 2α2 · · · 2αd

]

and let σA be the column sequence for A. Then

r = (ασA(2) mod 2)|| · · · ||(ασA(d+1) mod 2)

is the binary string giving the addition sequence for A corresponding to B, where
|| denotes concatenation of bits.

414 A. Hutchinson and K. Karabina

Proof. Let ak = (xk, yk) be the addition sequence for A corresponding to B, and
let âk = (x̂k, ŷk) be the recursive sequence obtained from r using Definition 3.
We show that ak = âk for every k by induction on k. For k = 1, we have
A1 =

[
2α1 2α2 · · · 2αd

]
= 2Bh+1 by Corollary 1, where h is the number of odds

in
[
α1 α2 · · · αd

]
, and so a1 = (h + 1, h + 1). By the definition of an extension

matrix, we have x̂1 = ŷ1 = 1+
d∑

i=1

(ασA(i+1) mod 2) = 1+
d∑

i=1

(αi mod 2) = 1+h

since σ is a bijection. Therefore a1 = â1.
Let ri be the ith bit in r. If k ≥ 1, we have

âk+1 =
{

(x̂k − 1, ŷk) if rk = 1
(x̂k, ŷk + 1) if rk = 0

=
{

(x̂k − 1, ŷk) if ασA(k+1) is odd
(x̂k, ŷk + 1) if ασA(k+1) is even by definition of r

=
{

(xk − 1, yk) if ασA(k+1) is odd
(xk, yk + 1) if ασA(k+1) is even by inductive hypothesis

= ak+1 by Theorem 3.

We can now relate the column sequences of the two state matrices A and
B through the following definition. Lemma 2 to follow shows this relationship
explicitly.

Definition 5. Let σ: {2, 3, . . . , d + 1} → {1, 2, . . . , d} be a bijection and let
b1, . . . , bd be bits. Define the bijection τ : {2, 3, . . . , d + 1} → {1, 2, . . . , d} as
follows:

1. Initialize two empty lists L0 and L1.
2. For i = 1 to d, append σ(i + 1) to the end of Lbi

.
3. Let L = reverse(L1)||L0, where || denotes concatenation.
4. Define τ(i + 1) = L(i) for 1 ≤ i ≤ d.

Define Ψ as the function giving τ from σ and b1, . . . , bd; that is,

Ψ(σ, (b1, . . . , bd)) = τ.

When given a list as input, the function reverse returns the list in
reverse order. Note that τ is a bijection since L contains each of the values
σ(2), σ(3), . . . , σ(d + 1) exactly once.

Lemma 2. Let A be an extension matrix of B. Let σA and σB be the column
sequences for A and B, respectively, and let A1 =

[
2α1 · · · 2αd

]
. Then

σB = Ψ
(
σA, (ασA(2) mod 2, . . . , ασA(d+1) mod 2)

)
.

Proof. Let τ = Ψ
(
σA, (ασA(2) mod 2, . . . , ασA(d+1) mod 2)

)
. We begin by noting

that at step 3 in defining τ we have that the size of L1 is |{i : αi = 1 mod 2}| = h.
Let 1 ≤ k ≤ d. We examine two cases.

A New Encoding Algorithm 415

Suppose ασA(k+1) is odd. Then

Ak+1 = Ak + cA
σA(k+1)eσA(k+1) = Bxk

+ Byk
+ cA

σA(k+1)eσA(k+1)

and by Theorem 3 we have ak+1 = (xk+1, yk+1) = (xk − 1, yk) and

Ak+1 = Bxk+1 + Byk+1 = Bxk−1 + Byk
= Bxk

− cB
σB(xk)

eσB(xk) + Byk

Equating these two expressions for Ak+1 gives σB(xk) = σA(k + 1). We point
out that |{ασA(i) : 2 ≤ i ≤ k + 1, ασA(i) odd}| = h + 1 − xk+1 since x1 = h + 1
and xi decreases exactly when an odd αj is found. In defining τ , step 2 would
put σA(k + 1) into LασA(k+1) mod 2 = L1 and we would have L1(h + 1 − xk+1) =
σA(k+1). Since the order of L1 is reversed to form L, we have τ(xk) = L(xk−1) =
L(xk+1) = L1(h + 1 − xk+1) = σA(k + 1) = σB(xk).

Suppose now ασA(k+1) is even. Then Ak+1 = Bxk
+ Byk

+ cA
σA(k+1)eσA(k+1)

as before, and by Theorem 3 we have ak+1 = (xk+1, yk+1) = (xk, yk + 1) and so

Ak+1 = Bxk+1 + Byk+1 = Bxk
+ Byk+1 = Bxk

+ Byk
+ cB

σB(yk+1)eσB(yk+1)

Equating these two expressions for Ak+1 gives σB(yk +1) = σA(k+1). Similarly
to the first case we have |{ασA(i) : 2 ≤ i ≤ k + 1, ασA(i) even}| = yk+1 − (h + 1)
since y1 = h + 1 and yi increases exactly when an even αj is found. Step 2 in
τ ’s definition would put σA(k + 1) into LασA(k+1) mod 2 = L0 and we would have
L0(yk+1 − (h + 1)) = σA(k + 1). Since L0 is concatenated to the end of L1 when
forming L, we have τ(yk + 1) = L(yk) = L0(yk − h) = L0(yk+1 − (h + 1)) =
σA(k + 1) = σB(yk + 1).

Since the sequence {xi}d+1
i=1 takes on every value in {1, 2, . . . , h + 1} and

{yi}d+1
i=1 takes on every value in {h + 1, h + 2, . . . , d + 1}, we have that σB = τ .

This concludes the proof.

With Corollary 3 and Lemma 2, we have solved problem (2).

3.3 Alternative Construction of an Extension Sequence

We now arrive at our primary result of this section, which uses the results from
the previous subsections to directly construct the binary string for an extension
sequence yielding a given d-tuple.

Theorem 4. Suppose the following are given:

– (α1, α2, . . . , αd), where each αi is an odd positive integer with � bits or less
– σ� : {2, 3, . . . , d + 1} → {1, 2, . . . , d} a bijection.

From this information, let αi = (b(i)1 b
(i)
2 · · · b(i)�−11)2 and:

1. Let A(�) be the state matrix having
i) A

(�)
1,i = (b(i)1 b

(i)
2 · · · b(i)�−1)2 + b

(i)
�−1,

ii) A
(�)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)�−1)2 + 1 − b

(i)
�−1,

416 A. Hutchinson and K. Karabina

iii) column sequence σ�.
Let {A(i)}�

i=1 be the unique (Theorem 1) sequence of state matrices such that
every row from A(i) is the sum of two rows from A(i−1) for 1 < i ≤ �, and let
σi be the column sequence for A(i).

2. Define a recursive sequence by σ̂� = σ� and

σ̂k = Ψ
(
σ̂k+1, ((b

(σ̂k+1(2))
k−1 ⊕ b

(σ̂k+1(2))
k), . . . , (b(σ̂k+1(d+1))

k−1 ⊕ b
(σ̂k+1(d+1))
k))

)

for 1 ≤ k < �, where b
(i)
0 := 0 and “⊕”es of this difference vecto denotes XOR

of bits. Let

r(k) = (b(σ̂k+1(2))
k−1 ⊕ b

(σ̂k+1(2))
k)|| · · · ||(b(σ̂k+1(d+1))

k−1 ⊕ b
(σ̂k+1(d+1))
k)

for 1 ≤ k < �, where || denotes concatenation.

Then σk = σ̂k for 1 ≤ k ≤ � and {A(i)}�
i=1 is the extension sequence corre-

sponding to r = r(1)||r(2)|| · · · ||r(�−1) and having a base given by a matrix having
magnitude 1 and column sequence σ̂1.

Proof. We first note that for any 0 ≤ k < � and 1 ≤ i ≤ d, Corollary 2 gives
A

(k+1)
1,i = (b(i)1 b

(i)
2 · · · b(i)k−1b

(i)
k)2 + b

(i)
k . In both cases that b

(i)
k = 0 or b

(i)
k = 1, we

see that 1
2A

(k+1)
1,i mod 2 = b

(i)
k−1 ⊕ b

(i)
k , where b

(i)
j := 0 for j < 1.

We show σk = σ̂k for all k by backwards induction on k. When k = � we have
σ� = σ̂� by definition. Suppose σk+1 = σ̂k+1 for some k. Taking A = A(k+1) and
B = A(k) in the supposition of Lemma 2, we conclude that

σk = Ψ
(
σk+1, (12A

(k+1)
1,σk+1(2)

mod 2, . . . , 1
2A

(k+1)
1,σk+1(d+1) mod 2)

)

= Ψ
(
σk+1, (b

(σk+1(2))
k−1 ⊕ b

(σk+1(2))
k , . . . , b

(σk+1(d+1))
k−1 ⊕ b

(σk+1(d+1))
k)

)

= σ̂k

since σk+1 = σ̂k+1.
Now we show that A(k+1) is the extension matrix of A(k) corresponding to

r(k) for a fixed k. Taking A = A(k+1) and B = A(k) in the supposition of
Corollary 3, we have that the binary string giving the addition sequence for
A(k+1) corresponding to A(k) is

(12A
(k+1)
1,σk+1(2)

mod 2)|| · · · ||(12A
(k+1)
1,σk+1(d+1) mod 2)

= (b(σk+1(2))
k−1 ⊕ b

(σk+1(2))
k)|| · · · ||(b(σk+1(d+1))

k−1 ⊕ b
(σk+1(d+1))
k)

= r(k)

since we’ve already shown σk = σ̂k for all k.
By definition we now have that {A(i)}�

i=1 is the extension sequence with base
A(1) corresponding to r. By Theorem 4.4 of [6], A(1) has magnitude 1 and by
definition has column sequence σ1 = σ̂1. This concludes the proof of the theorem.

A New Encoding Algorithm 417

In the context of Theorem 4, note that

A
(�)
1,i + A

(�)
d+1,i =

[
(b(i)1 b

(i)
2 · · · b(i)�−1)2 + b

(i)
�−1

]
+

[
(b(i)1 b

(i)
2 · · · b(i)�−1)2 + 1 − b

(i)
�−1

]

= 2 · (b(i)1 b
(i)
2 · · · b(i)�−1)2 + 1 = (b(i)1 b

(i)
2 · · · b(i)�−11)2 = αi.

The significance of Theorem 4 is the following. The d-MUL algorithm, Algo-
rithm 3 in [6], is performed using the method of item (1) in Theorem 4; that is,
it computes the sequence {A(i)}�

i=1 explicitly and stores the addition sequence
information for each matrix. This is a very costly operation in terms of clock
cycles and storage. Theorem 4 shows that the algorithm can be performed instead
using item (2) by only computing the sequence {σi}�

i=1 (given by Ψ) and the bit
string r, therefore bypassing any matrix or integer arithmetic and allowing us to
begin computing points immediately after r has been constructed. An algorithm
similar to that of Algorithm 2 of [5] can then be used to compute the same
output as running the original d-MUL with the input (a1, . . . , ad) and a choice
for σ�.

4 Optimized d-MUL

In this section we present Algorithm 4, which is essentially Algorithm 3.2 of
[5] in which the bitstring r is constructed through the method of item (2) in
Theorem 4 to give a desired set of output scalars. This is in contrast to choosing
r uniformly at random as in [5].

In addition to using the alternative method of computation given by
Theorem 4, we address a potential security issue when formulating Algorithm
4. The algorithm in [5] and many of the results in this paper have produced
an integer vector with odd entries, and with the intention of subtracting off a
binary vector v to yield an output vector with entries of arbitrary parity. How
exactly the point corresponding to this vector v is subtracted off has not yet
been discussed.

Let Pi be the points of a desired linear combination. If all 3d elements of the
set {c1P1 + · · · + cdPd : ci ∈ {0, 1}} are stored, such as when using differential
additions, then the point corresponding to the binary vector v is one such point;
this point may then be looked up and a single addition can be performed to
complete the scalar multiplication.

If these 3d points are not stored, then more care should be taken. If each Pi

satisfying vi = 1 is to be subtracted off from the output in succession, then this
may leak information about the scalars of the desired linear combination (or at
the very least the number of even scalars). One solution is to simply not perform
the subtraction by v at all and settle for an output in which all scalars are odd.
This would cut down the size of the output space by a factor of 2d. This may or
may not be acceptable for a given application of the algorithm.

We give an alternative solution to this problem now, which essentially just
adds another iteration in the state matrix sequence. That is, we make the sacri-
fice of an additional d additions and 1 doubling for added security and a uniform

418 A. Hutchinson and K. Karabina

output. Suppose we wish to compute the point α1P1 + · · · + αdPd for arbitrary
�-bit αi (not necessarily odd or positive). If any αi is negative, we may negate
αi and Pi and treat αiPi as (−αi)(−Pi). With negligible preprocessing we may
therefore assume every αi is positive. Let (b(i)1 b

(i)
2 · · · b(i)�)2 be the binary repre-

sentation of αi, and define α̂i as (b(i)1 b
(i)
2 · · · b(i)�)2+b

(i)
� −1. Then αi − α̂i ∈ {0, 1},

and 2α̂i +1 has �+1 bits. We then apply Theorem 4 to the odd integers 2α̂i +1
for 1 ≤ i ≤ d and some column sequence σ. By item (1) of the same theorem,
we get a state matrix A(�+1) satisfying:

1. A
(�+1)
1,i = (b(i)1 b

(i)
2 · · · b(i)�)2 + b

(i)
� ,

2. A
(�+1)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)�)2 + 1 − b

(i)
� ,

3. A(�+1) has column sequence σ.

The matrix A(�+1) therefore contains all of the original values α1, . . . , αd. If σ is
chosen carefully, then this matrix will contain the row

[
α1 α2 · · · αd

]
. Specifically,

we may choose σ as any bijection in which the indices for all odd αi come
before those which are even. The index corresponding to this row will be exactly
h := 1 +

∑
(αi mod 2).

We note that Theorem 4 doesn’t use the last parity bits of the αi, but in
this context we are applying the theorem to the integers 2α̂i + 1. Therefore the
final “1” bit of 2α̂i + 1 will be ignored, but the rest will be used to construct
a bitstring r of length �d. That is, we use exactly the bits of α̂i with an extra
leading “0” bit.

Details of Algorithm 4: Here we give some details regarding Algorithm 4.
The notation Ai(j) refers to line j of Algorithm i.

1. To simplify the presentation we deal with negative integer inputs by calling
Algorithm 3, Sanitize, using the method described at the beginning of this
section. This is, if αi is negative we replace αi by −αi and Pi by −Pi. If
working in a setting such as a Montgomery curve using XZ-coordinates, this
step isn’t necessary since Pi is identified with −Pi.

2. Similarly, we separate the process of choosing an initial column sequence σ
into a different algorithm, Algorithm 2: ChooseSeq. We choose any permu-
tation for which the indices of the odd αi are placed before the indices for the
even αi. The RandomPermutation function seen in Algorithm 2 returns a
permutation of the input set chosen uniformly at random, represented in list
form. The lists σE and σO are concatenated to form a single permutation.

3. The binary representation in line Algorithm 4(4) is computed with the most
significant bit of α̂i being b

(i)
2 and the parity bit being b

(i)
�+1.

4. The loop Algorithm 4(6) follows Definition 5 while also constructing the bit-
string r simultaneously.

5. The loop Algorithm 4(14) is essentially the same as that seen in the Randomized
d-MUL algorithm of [5]. The conditional seen in [5] has been replaced in favor
of a much simpler, compact, and equivalent assignment for both x and y.

A New Encoding Algorithm 419

Algorithm 2: ChooseSeq

Input: Integers α1, . . . , αd

Output: Permutation on {1, 2, . . . , d}
1 Evens ← {i : αi ≡ 0 mod 2}
2 Odds ← {i : αi ≡ 1 mod 2}
3 σE ← RandomPermutation(Evens)
4 σO ← RandomPermutation(Odds)
5 return σO||σE

Algorithm 3: Sanitize

Input: Integers α1, . . . , αd, points P1, . . . , Pd ∈ G, G abelian
Output: Positive integers α1, . . . , αd, points P1, . . . , Pd ∈ G, G abelian

1 for i = 1 to d do
2 if αi < 0 then
3 αi ← −αi

4 Pi ← −Pi

5 end

6 end
7 return α, P

A special case is when all scalars αi are positive and odd. In this case, the
Sanitize step has no effect, and ChooseSeq amounts to choosing any permuta-
tion on d elements. Furthermore, the α̂i calculated in Algorithm 4 are equal to the
input αi. This special case leads to an encoding given by the implementation-
oriented Algorithm 1, where we skip sanitization and always make the same
choice of initial σ. In addition, the construction of the array L is done without
an if/else branch for side-channel resistance.

A basic Magma implementation of Algorithm 4 can be found here:

https://github.com/AaronHutchinson/d-MUL-Optimized-2020-

4.1 Differential Additions

This subsection aims to outline an alternate version of Algorithm 4 which utilizes
differential additions. Our only sacrifice to gain knowledge of point differences is
storing each column sequence σ generated in the loop on line 6 of Algorithm4.
We can compute point differences using the following theorem.

Theorem 5. Let A be an extension matrix of B with addition sequence {ak}d+1
k=1.

If σ is the column sequence for B and c is the difference vector for B, then
By1 − Bx1 is the zero row matrix and for 2 ≤ k ≤ d + 1 we have

Byk
− Bxk

=
yk∑

i=xk+1

cσ(i)eσ(i).

https://github.com/AaronHutchinson/d-MUL-Optimized-2020-

420 A. Hutchinson and K. Karabina

Proof. We use induction on k. When k = 1 we have x1 = y1 by definition of
an addition sequence, and so By1 − Bx1 is zero. Assume that Byk

− Bxk
=∑yk

i=xk+1 cσ(i)eσ(i) for some k with 1 ≤ k ≤ d. We have either that ak+1 =
(xk − 1, yk) or ak+1 = (xk, yk + 1).

Suppose that ak+1 = (xk −1, yk) so that yk+1 = yk and xk+1 = xk −1. Then

Byk+1 − Bxk+1 = Byk
− Bxk−1 = Byk

− (Bxk
− cσ(xk)eσ(xk))

= (Byk
− Bxk

) + cσ(xk)eσ(xk) =
yk∑

i=xk+1

cσ(i)eσ(i) + cσ(xk)eσ(xk)

=
yk∑

i=xk

cσ(i)eσ(i) =
yk+1∑

i=xk+1+1

cσ(i)eσ(i).

If ak+1 = (xk, yk + 1) then yk+1 = yk + 1 and xk+1 = xk, and so

Byk+1 − Bxk+1 = Byk+1 − Bxk
= (Byk

+ cσ(yk+1)eσ(yk+1)) − Bxk

= (Byk
− Bxk

) + cσ(yk+1)eσ(yk+1)

=

(
yk∑

i=xk+1

cσ(i)eσ(i)

)

+ cσ(yk+1)eσ(yk+1)

=
yk+1∑

i=xk+1

cσ(i)eσ(i) =
yk+1∑

i=xk+1+1

cσ(i)eσ(i).

This concludes the proof.

Suppose that all rows in the set S = {[t1, . . . , td] : ti ∈ {0, 1,−1}} are stored.
Then the above theorem tells us exactly how to find the proper element of S for
the difference which corresponds to a sum Bi +Bj . The only knowledge required
to compute this row is the column sequence σ and the difference vector c. We
will now show that only a slight modification of Algorithm 4 will allow us to
perform differential additions.

Let αi and α̂i for i = 1, . . . , d be as in Sect. 4, and let σ be any column
sequence. Again by Theorem 4 we may derive a sequence {A(k)}�+1

k=1 of state
matrices where each row in A(k+1) is the sum of two rows from A(k) and the
final matrix A(�+1) satisfies:
1. A

(�+1)
1,i = (b(i)1 b

(i)
2 · · · b(i)�)2 + b

(i)
� ,

2. A
(�+1)
d+1,i = (b(i)1 b

(i)
2 · · · b(i)�)2 + 1 − b

(i)
� ,

3. A(�+1) has column sequence σ

where (b(i)1 b
(i)
2 · · · b(i)�)2 is the binary representation of αi. We recall that the

difference vector c for any state matrix A is defined to be Ad+1 − A1. Applying
Corollary 2 to our current scenario, we find that the ith entry of the difference
vector for A(k) is exactly

A
(k)
d+1,i − A

(k)
1,i =

(
(b(i)1 b

(i)
2 · · · b(i)k−1)2 + 1 − b

(i)
k−1

)
−

(
(b(i)1 b

(i)
2 · · · b(i)k−1)2 + b

(i)
k−1

)

= 1 − 2b
(i)
k−1

A New Encoding Algorithm 421

Algorithm 4: Optimized d-MUL

Input: Integers α1, . . . , αd ∈ (−2�, 2�), points P1, . . . , Pd ∈ G, G abelian
Output: Group element α1P1 + · · · + αdPd

1 α, P ← Sanitize(α, P).
2 σ ← ChooseSeq(α).
3 α̂ ← (α1 + (α1 mod 2) − 1, . . . , αd + (αd mod 2) − 1)

4 Let (0 b
(i)
2 b

(i)
3 · · · b(i)� b

(i)
�+1)2 be the binary form of α̂i, with extra leading 0.

5 Initialize an empty binary array r of length �d.
6 for k = � down to 1 do

7 For i = 1 to d, assign r(k−1)d+i ← b
(σ(i))
k ⊕ b

(σ(i))
k+1 .

8 Initialize empty lists L0 and L1 of length d.
9 For i = 1 to d, append σ(i) to the end of L

b
(σ(i))
k

⊕b
(σ(i))
k+1

.

10 Overwrite σ ← Reverse(L1)||L0, where || denotes concatenation.

11 end
12 Initialize group elements Q1, . . . , Qd+1, R1, . . . Rd+1 as id(G).
13 For i = 1 to d, assign Qi+1 ← Qi + Pσ(i).
14 for k = 1 to � do
15 h, x, y ← r(k−1)d+1 + · · · + rkd + 1
16 R1 ← 2Qh

17 for i = 1 to d do
18 x ← x − r(k−1)d+i, y ← y + 1 − r(k−1)d+i

19 Ri+1 ← Qx + Qy

20 end
21 Q ← R

22 end
23 h ← (α1 mod 2) + · · · + (αd mod 2) + 1
24 return Qh

Therefore the entries of this difference vector are given “for free”, as they only
depend on the bits in position k − 1 of the αi.

With this discussion in mind, Algorithm 4 may be altered so that each σ
derived in the loop beginning on line 6 is saved in a table so that the column
sequence for matrix A(i) is stored as σi. One may then use Theorem 5 to find
the difference corresponding to each sum; it is exactly

A(i)
yk

− A(i)
xk

=
yk∑

i=xk+1

(1 − 2b
(σi(k))
i−1)eσi(k).

5 Conclusions

There are now three versions of the d-MUL algorithm: Original d-MUL (Algo-
rithm 3 of [6]), Randomized d-MUL (Algorithm 2 of [5]), and Optimized d-MUL
(Algorithm 4 in this paper). Optimized d-MUL seems to be a direct improve-
ment over Original d-MUL, since the storage of two (d + 1) × d matrices with

422 A. Hutchinson and K. Karabina

large entries, � many arrays D, and large integer arithmetic is exchanged for
the storage of a single �d length bitstring and the computation of � many simple
permutations. We therefore see no reason to use Original d-MUL over Optimized
d-MUL.

We believe that Randomized d-MUL may still be preferable over Optimized
d-MUL in certain special situations. If a given application only calls for a random
linear combination, then it would be more efficient to employ Randomized d-
MUL over Optimized d-MUL since in the former case we need only generate a
random bit string rather than derive it from random scalars as in the latter case.
The efficiency gain is slightly more dramatic when the scalars of the combination
need not be known, since the derivation of the scalars in Randomized d-MUL is
split off into an independent algorithm. On the other hand, if the setting calls for
a specific linear combination to be computed from given points, we see no way
to use Randomized d-MUL in such a setting and so Optimized d-MUL seems to
be the best option out of these three algorithms.

Acknowledgment. This research has been partially supported by the U.S. Army
Research Office (ARO) under the award number W911NF-17-1-0311. The content is
solely the responsibility of the authors and does not necessarily represent the official
views of the ARO. The authors thank reviewers for their comments.

References

1. Bernstein, D.: Differential addition chains. Technical report (2006). http://cr.yp.to/
ecdh/diffchain-20060219.pdf

2. Brown, D.: Multi-dimensional montgomery ladders for elliptic curves. ePrint
Archive: Report 2006/220. http://eprint.iacr.org/2006/220

3. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptol. 24(3), 446–469 (2010). https://doi.
org/10.1007/s00145-010-9065-y

4. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 11

5. Hisil, H., Hutchinson, A., Karabina, K.: d-MUL: optimizing and implementing a
multidimensional scalar multiplication algorithm over elliptic curves. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 198–217.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 12

6. Hutchinson, A., Karabina, K.: Constructing multidimensional differential addition
chains and their applications. J. Cryptogr. Eng. 9(1), 1–19 (2017). https://doi.org/
10.1007/s13389-017-0177-2

7. Montgomery, P.L.: Evaluating Recurrences of the Form Xm+n = f(Xm, Xn, Xm−n)
via Lucas Chains (1983). https://cr.yp.to/bib/1992/montgomery-lucas.ps

8. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25

http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://eprint.iacr.org/2006/220
https://doi.org/10.1007/s00145-010-9065-y
https://doi.org/10.1007/s00145-010-9065-y
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/978-3-030-05072-6_12
https://doi.org/10.1007/s13389-017-0177-2
https://doi.org/10.1007/s13389-017-0177-2
https://cr.yp.to/bib/1992/montgomery-lucas.ps
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25

New Ideas to Build Noise-Free
Homomorphic Cryptosystems

Gerald Gavin1(B) and Sandrine Tainturier2

1 Laboratory ERIC - University of Lyon, Lyon, France
gerald.gavin@univ-lyon1.fr
2 Adecco, Geneva, Switzerland

sandrine-tainturier@orange.fr

Abstract. We design a very simple private-key encryption scheme
whose decryption function is a rational function. This scheme is not
born naturally homomorphic. To get homomorphic properties, a nonlin-
ear additive homomorphic operator is specifically developed. The secu-
rity analysis is based on symmetry considerations and we prove some
formal results under the factoring assumption. In particular, we prove
IND-CPA security in the generic ring model. Even if our security proof
is not complete, we think that it is convincing and that the technical
tools considered in this paper are interesting by themselves. Moreover,
the factoring assumption is just needed to ensure that solving nonlinear
equations or finding non-null polynomials with many roots is difficult.
Consequently, the ideas behind our construction could be re-used in rings
satisfying these properties. As motivating perspectives, we then propose
to develop a simple multiplicative operator. To achieve this, random-
ness is added in our construction giving hope to remove the factoring
assumption in order to get a pure multivariate encryption scheme.

Keywords: Homomorphic cryptosystem · Multivariate encryption
scheme · Generic ring model

1 Introduction

The prospect of outsourcing an increasing amount of data storage and manage-
ment to cloud services raises many new privacy concerns for individuals and
businesses alike. The privacy concerns can be satisfactorily addressed if users
encrypt the data they send to the cloud. If the encryption scheme is homomor-
phic, the cloud can still perform meaningful computations on the data, even
though it is encrypted.

The theoretical problem of constructing a fully homomorphic encryption
scheme (FHE) supporting arbitrary functions f , was only recently solved by
the breakthrough work of Gentry [9]. More recently, further fully homomor-
phic schemes were presented [5,10,12,20,21] following Gentry’s framework.
The underlying tool behind all these schemes is the use of Euclidean lattices,
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 423–451, 2020.
https://doi.org/10.1007/978-3-030-51938-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_21

424 G. Gavin and S. Tainturier

which have previously proved powerful for devising many cryptographic prim-
itives. A central aspect of Gentry’s fully homomorphic scheme (and the sub-
sequent schemes) is the ciphertext refreshing Recrypt operation. Even if many
improvements have been made in one decade, this operation remains very costly
[4,6,11,15]. Indeed, bootstrapped bit operations are still about one billion times
slower than their plaintext equivalents (see [4]).

In this paper, we adopt another approach where a ciphertext is a vector c
over Zn, n being an RSA modulus chosen at random. Given a secret multivari-
ate rational function Φ0/Φ′

0, an encryption of x ∈ Zn is a vector c chosen at
random ensuring that Φ0/Φ′

0(c) = x. Clearly, the expanded representations of
Φ0, Φ

′
0 should not be polynomial-size (otherwise the CPA attacker could recover

them by solving a polynomial-size linear system). In order to get polynomial-
time encryptions and decryptions, Φ0/Φ′

0 should be written in a compact form,
e.g. a factored or semi-factored form. By construction, the generic cryptosystem
described above is not homomorphic in the sense that the vector sum is not a
homomorphic operator. This is a sine qua non condition for overcoming Gentry’s
machinery. Indeed, as a ciphertext c is a vector, it is always possible to write
it as a linear combination of other known ciphertexts. Thus, if the vector sum
were a homomorphic operator, the cryptosystem would not be secure at all. This
simple remark suffices to prove the weakness of the homomorphic cryptosystems
presented in [14,22]. In order to use the vector sum as a homomorphic opera-
tor, noise should be injected into the encryptions as done in all existing FHE
[2,5,9,10,20,21]. To get homomorphic properties, we develop ad hoc a nonlin-
ear additively homomorphic operator Add and we obtain a noise-free additive
encryption scheme.

The factoring assumption restricts the adversary’s power providing hope to
base the security of our scheme on this assumption. We prove a result based
on symmetry (see Lemma 1) encapsulating the idea that it is not possible to
extract roots of polynomials in Zn intuitively meaning that a CPA attacker can
only solve linear equations. For concreteness, Lemma 1 ensures that it cannot
recover non-symmetric values only given symmetric values. By construction the
CPA attacker has only access to symmetric values. Thus, it suffices to prove
that breaking semantic security requires to recover non-symmetric values. Com-
pact representations of Φ0 or Φ′

0 deal with non-symmetric values implying that
they cannot be recovered according to Lemma 1. However, Φ0(c) = 0 provided
c encrypts 0 implying that the expanded representation of Φ0 could be recov-
ered by solving a linear system. This kind of attacks will be called attacks by
linearization. This attack fails by adjusting the parameters in order that Φ0 has
an exponential number of monomials. Nevertheless, the introduction of homo-
morphic operators may introduce new attacks by linearization. In Sect. 5.3, we
propose to formally define this class of attacks and we prove that such attacks
do not exist against our scheme.

In Sect. 5.4, we propose a security analysis in the generic ring model [1,13].
In this model, the power of the CPA attacker is restricted in the sense that it
can only perform arithmetic operations. Recently, some results were shown in

New Ideas to Build Noise-Free Homomorphic Cryptosystems 425

the generic ring model. For instance, it was shown that breaking the security
of RSA in the generic ring model is as difficult as factoring [1]. An emblematic
counterexample against security analysis in the generic ring model deals with
Jacobi’s symbol Jn. For concreteness, it was shown in [13] that computing Jn

is difficult in the generic ring model while it is not in general. However, this
result is neither surprising nor relevant because Jn is not a rational function1.
Indeed, we can even show that Φ(x) = Jn(x) with probability smaller than 1/2
provided Φ is a rational function and x uniform over Z

∗
n. As far as we know,

there does not exist any rational function provably difficult to compute in the
generic ring model but not in general. While the analysis in the generic ring
model excludes lattice-based attacks (working outside Zn), all the considered
random variables are uniform over Zn contrarily to noise values considered in
lattice-based cryptosystems.

We propose a general result reducing the generic IND-CPA security to alge-
braic conditions (Proposition 7). These results essentially come from a funda-
mental result (see Theorem 1) shown in [1] claiming that, under the factoring
assumption, it is difficult to recover non-null polynomials having many roots.
We then prove generic IND-CPA security (see Proposition 8).

Although we prove some results suggesting the security of our scheme, the
security proof is not complete. Moreover the performance of our scheme is not
competitive with respect to other existing additively homomorphic schemes (e.g.
Paillier [16], El Gamal [7], Castagnos et al. [3]). So it is legitimate to question the
usefulness of this paper. In our opinion, the underlying ideas of this paper are
very promising and the proposed construction can be seen as a feasibility study.
We see at least two motivating perspectives from this work. The principal one
would be to build a multiplicative homomorphic operator. In Sect. 6, we propose
a noise-free compact-FHE. The algebraic condition proposed for the homomor-
phic additive encryption remains valid. This condition could be exploited to get
a formal security proof at least in the generic ring model. We propose a very
short security analysis at least showing that our construction has a chance to
be secure. A second motivating perspective would be to remove the factoring
assumption to obtain a pure multivariate encryption scheme (such a scheme
is proposed in Appendix B). This assumption is required to get formal results
(Proposition 1, Lemma 1 and Proposition 4) but the function Decrypt does not
require the factorization of n. This gives hope to remove this assumption: this
basically consists of considering Schwartz-Zippel’s lemma [19] instead of Propo-
sition 1 and adding randomness to the construction in order to maintain the
truth of the formal results proved under the factoring assumption.

Notation. We use standard Landau notations. Throughout this paper, we let
λ denote the security parameter: all known attacks against the cryptographic
scheme under scope should require 2Ω(λ) bit operations to mount. Let κ ≥ 2 be an
integer and let n = pq be a randomly chosen RSA modulus. All the computations
considered in this paper will be done in Zn.
1 It comes from the fact that Jn(x) mod p (resp. Jn(x) mod q) is not a function of

x mod p (resp. x mod q).

426 G. Gavin and S. Tainturier

– Δκ is the set of permutations over {1, . . . , κ}
– Σκ = {σ1, . . . , σκ} ⊂ Δκ defined by σi(j) = (i + j − 2 mod κ) + 1, i.e.

σi(1) = i;σi(2) = i + 1; . . . ;σi(κ) = i − 1.
– The cardinality of a set S will be denoted by #S.
– ‘Choose at random x ∈ X’ will systematically mean that x is chosen according

to uniform probability distribution over X.
– ‘An algorithm A outputs a polynomial p’ will systematically mean that A

outputs a {+,−,×}-circuit representing p.
– The inner product of two vectors v and v′ is denoted by 〈v,v′〉.
– The set of all square t − by − t matrices over Zn is denoted by Z

t×t
n .

Remark 1. The number M(m, d) of m-variate monomials of degree d is equal to(
d + m − 1

d

)
. In particular, M(2κ, κ) ≈ (27/4)κ.

2 Overview

In this section, we propose a high-level description of the main ideas of this
paper. All the computations will be done in Zn, n ≥ 3.

First Encryption Scheme. The secret key K contains 2κ randomly chosen
secret vectors s1, . . . , s2κ belonging to Z

2κ
n .

Encrypting x ∈ Zn simply consists of randomly choosing c ∈ Z
2κ
n satisfying

〈s1, c〉
〈s2, c〉 + · · · +

〈s2κ−1, c〉
〈s2κ, c〉 = x (1)

In other words, by considering the 2κ − by − 2κ matrix S whose ith row is si

(assuming S invertible)

c = S−1

⎛
⎜⎜⎜⎜⎝

r1x1

r1
· · ·
rκxκ

rκ

⎞
⎟⎟⎟⎟⎠

where (xi, ri)i=1,...,κ is randomly chosen in (Zn × Z
∗
n)κ s.t. x1 + · · · + xκ = x.

Security Analysis. By multiplying each side of (1) by Φ′
0(c) =

∏κ
i=1〈s2i, c〉, we

get a degree-κ polynomial equation in the form

Φ0(c) − xΦ′
0(c) = Φx(c) =

∑
t1+···+t2κ=κ

αt1,...,t2κ
ct1
1 · · · ct2κ

2κ = 0

where the coefficients αt1,...,t2κ
are evaluations of degree-κ polynomials over S, x.

As Φx(c) = 0 if and only if c is an encryption of x, the knowledge of Φx is
sufficient to break IND-CPA security. Moreover, by sampling sufficiently many
encryptions of x, the monomials of Φx can be recovered by solving a linear

New Ideas to Build Noise-Free Homomorphic Cryptosystems 427

system. However, by choosing κ = Θ(λ), the number of monomials is exponential
(see Remark 1), making this attack fail.

Homomorphic Properties. The vector sum is not an additive homomorphic oper-
ator. But, contrarily to what we may intuitively think, this scheme has some
homomorphic capabilities coming from the following observation:

〈s1, c〉〈s2, c
′〉 + 〈s2, c〉〈s1, c

′〉
〈s2, c〉〈s2, c′〉 + · · ·

· · · +
〈s2κ−1, c〉〈s2κ, c′〉 + 〈s2κ, c〉〈s2κ−1, c

′〉
〈s2κ, c〉〈s2κ, c′〉 = x + x′

where c and c′ are encryptions of respectively x and x′. This will be used to
develop an additive homomorphic operator.

Second Encryption Scheme. This second encryption scheme is essentially
the same as the first one except that we consider an operator Add achieving
homomorphic additions. Given two encryptions c and c′ of x and x′, Add(c, c′)
returns an encryption c′′ defined by

c′′ = S−1

⎛
⎜⎜⎜⎜⎝

r1r
′
1(x1 + x′

1)
r1r

′
1

· · ·
rκr′

κ(xκ + x′
κ)

rκr′
κ

⎞
⎟⎟⎟⎟⎠

where c = S−1(r1x1, r1, . . . , rκxκ, rκ) and c′ = S−1(r′
1x

′
1, r

′
1, . . . , r

′
κx′

κ, r′
κ).

Security Analysis. Unfortunately, the adjunction of Add brings weaknesses.
Indeed, we can mount what we will call an attack by linearization. For con-
creteness, the CPA attacker can efficiently build the vector c̃ defined by

c̃ = S−1

⎛
⎜⎜⎜⎜⎜⎝

r
φ(n)
1 φ(n)x1

r
φ(n)
1

· · ·
r

φ(n)
κ φ(n)xκ

r
φ(n)
κ

⎞
⎟⎟⎟⎟⎟⎠

= S−1

⎛
⎜⎜⎜⎜⎝

φ(n)x1

1
· · ·
φ(n)xκ

1

⎞
⎟⎟⎟⎟⎠

by recursively applying Add over c. We let see the reader see for themselves how
to use it to totally break our scheme2. To overcome this, the factoring assumption
2 By considering 2κ randomly chosen encryptions c1, . . . c2κ of arbitrarily chosen plain-

texts x1, . . . , x2κ, the vectors c̃1, . . . c̃2κ can be generated as explained above. For any
i = 1, . . . , 2κ, it is ensured that 〈v, c̃i〉 = xi, with v = (s1 + s3 + · · · + s2κ−1)/φ(n).
Hence, by solving this linear system (where the variables are the components of v),
v can be recovered. This is sufficient to break the IND-CPA security of our scheme.
Indeed, given a challenge encryption c, the encrypted value x can be recovered, i.e.
x = 〈v, c̃〉.

428 G. Gavin and S. Tainturier

should be introduced by choosing n as a RSA modulus. In this paper, we will
show how to efficiently implement Add and we will prove IND-CPA security in
the generic ring model under the factoring assumption assuming κ = Θ(λ). This
represents the main result of this paper.

Removing the Factoring Assumption? There are many other ways to define
an additive homomorphic operator. For instance, randomness can be introduced
in Add to get an operator Addrand by defining c′′ = Addrand(c, c′) by

c′′ = S−1

⎛
⎜⎜⎜⎜⎜⎝

ρ1(c, c′)rσ(1)r
′
σ′(1)(xσ(1) + x′

σ′(1))
ρ1(c, c′)rσ(1)r

′
σ′(1)

· · ·
ρκ(c, c′)rσ(κ)r

′
σ′(κ)(xσ(κ) + x′

σ′(κ))
ρκ(c, c′)rσ(κ)r

′
σ′(κ)

⎞
⎟⎟⎟⎟⎟⎠

where σ, σ′ are randomly (and secretely) chosen permutations of {1, . . . , κ} and
ρ1, . . . , ρκ are randomly (and secretely) chosen (e.g. quadratic) polynomials. By
doing this, the above attack does not work anymore and the factoring assump-
tion could be hopefully removed. We let it as a perspective (an example of
implementation is proposed in Appendix B).

Perspective of FHEs. By the same way, one can efficiently implement oper-
ators O computing c′′ = O(c, c′) defined by

c′′ = S−1

⎛
⎜⎜⎜⎜⎜⎝

ρ1(c, c′)rσ(1)r
′
σ′(1)xσ(1)x

′
σ′(1)

ρ1(c, c′)rσ(1)r
′
σ′(1)

· · ·
ρκ(c, c′)rσ(κ)r

′
σ′(κ)xσ(κ)x

′
σ′(κ)

ρκ(c, c′)rσ(κ)r
′
σ′(κ)

⎞
⎟⎟⎟⎟⎟⎠

Roughly speaking, c′′ stores κ products xixj . By combining several such well-
chosen operators (at least κ) and the additive homomorphic operator, one
can build a multiplicative homomorphic operator (using the equality xx′ =∑

ij xix
′
j).

Discussion. The first encryption scheme can be straightforwardly turned into a
new noise-free cryptographic problem. The search version of this problem would
consist of recovering the secret matrix S given sufficiently many encryptions of
0 and the decisional version would consist of distinguishing between encryptions
of 0 and randomly chosen vectors. We believe this problem hard for any n ≥ 3
assuming κ = Θ(λ). In our opinion, this problem could be fruitful in cryptogra-
phy and could merit to be independently studied. We briefly saw natural ways to
build homomorphic operators. We think that many other relevant constructions
can be achieved.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 429

3 Some Security Results Under the Factoring Assumption

Throughout this section, n denotes a randomly chosen RSA-modulus. Given a
function φ : Z

r
n → Zn, zφ

def= #{x ∈ Z
r
n|φ(x) = 0}/nr. Classically a polyno-

mial will be said null (or identically null) if each coefficient of its expanded
representation is equal to 0.

3.1 Roots of Polynomials

The following result proved in [1] establishes that it is difficult to output a
polynomial φ such that zφ is non-negligible without knowing the factorization of
n. The security of RSA in the generic ring model can be quite straightforwardly
derived from this result (see [1]).

Theorem 1 (Lemma 4 of [1]). Assuming factoring is hard, there is no p.p.t-
algorithm A which inputs n and which outputs3 a {+,−,×}-circuit representing
a non-null polynomial φ ∈ Zn[X] such that zφ is non-negligible.

Thanks to this lemma, showing that two polynomials (built without knowing
the factorization of n) are equal with non-negligible probability becomes an
algebraic problem: it suffices to prove that they are identically equal. This lemma
is a very powerful tool which is at the heart of the security proofs proposed in
this paper. We extend this result to the multivariate case.

Proposition 1. Assuming factoring is hard, there is no p.p.t algorithm A which
inputs n and which outputs (see footnote 3) a {+,−,×}-circuit representing a
non-null polynomial φ ∈ Zn[X1, . . . , Xr] such that zφ is non-negligible.

Proof. See Appendix C. �

3.2 Symmetry

Let κ ≥ 2 and t ≥ 1 be positive integers with polynomial size in λ. Recall that
Δκ denotes the set of the permutations over {1, . . . , κ}. Throughout this section,
we will consider an arbitrary subset Σ ⊆ Δκ. Let y1, y2 be randomly chosen in
Zn. It is well-known that recovering y1 with non-negligible probability given only
S = y1 + y2 or P = y1y2 is difficult assuming the hardness of factoring (y1, y2
are the roots of the polynomial y2 − Sy + P). In this section, we propose to
extend this. The following definition naturally extends the classical definition of
symmetric polynomials.

Definition 1. Consider the tuples of indeterminate (Y� = (X�1, . . . , X�t))�=1,...,κ.
A polynomial φ ∈ Zn[Y1, . . . , Yκ] is Σ-symmetric if for any permutation σ ∈ Σ,

φ(Y1, . . . , Yκ) = φ(Yσ(1), . . . , Yσ(κ))

3 With non-negligible probability (the coin toss being the choice of n and the internal
randomness of A).

430 G. Gavin and S. Tainturier

Let P be an arbitrary p.p.t algorithm which inputs n and outputs m
Σ-symmetric polynomials s1, . . . , sm and a non Σ-symmetric polynomial π. We
show that evaluating π only given evaluations of s1, . . . , sm is difficult.

Lemma 1. Let n be a randomly chosen RSA modulus and (s1, . . . , sm, π) ←
P(n). Assuming the hardness of factoring, there is no p.p.t algorithm which
outputs π(y) given only s1(y), . . . , sm(y) with non-negligible probability over the

choice of n, y
$← Z

κt
n .

Proof. See Appendix D. �

4 An Additively Homomorphic Private-Key Encryption
Scheme

We first propose a private-key encryption scheme. The homomorphic operator
will be developed later.

Definition 2. Let λ be a security parameter. The functions KeyGen, Encrypt,
Decrypt are defined as follows:

– KeyGen(λ). Let η, κ be positive integers indexed by λ, let n be an η-bit
RSA modulus chosen at random. Choose at random an invertible matrix
S ∈ Z

2κ×2κ
n and let T = S−1. The ith row of S is denoted by si and Li

denotes the linear function defined by Li(v) = 〈si,v〉. Output

K = {S} ; pp = {n, κ}
– Encrypt(K, pp, x ∈ Zn). Choose at random r1, . . . , rκ in Z

∗
n and x1, . . . , xκ in

Zn s.t. x1 + · · · + xκ = x. Output

c = T

⎛
⎜⎜⎜⎜⎝

r1x1

r1
· · ·
rκxκ

rκ

⎞
⎟⎟⎟⎟⎠

– Decrypt(K, pp, c ∈ Z
2κ
n). Output x =

∑κ
�=1 L2�−1(c)/L2�(c).

Throughout this paper, pp = {n, κ} will be assumed to be public. The homo-
morphic operator(s), developed later, will be included in pp. Proving correct-
ness is straightforward by using the relation x = r1x1/r1 + . . . + rκxκ/rκ. The
function Decrypt can be represented as the ratio of two degree-κ polynomials
Φ0, Φ

′
0 ∈ Zn[X1, · · · ,X2κ] defined by

Φ0 =
κ∑

�=1

L2�−1

∏
�′ �=�

L2�′ ; Φ′
0 =

κ∏
�=1

L2� (2)

New Ideas to Build Noise-Free Homomorphic Cryptosystems 431

i.e.
Decrypt(K, pp, c) = Φ0(c)/Φ′

0(c)

At this step, our scheme is not homomorphic in the sense that the vector sum
is not an homomorphic operator. Indeed, c and a · c encrypt the same message
for any a ∈ Z

∗
n.

4.1 Externalizing the Generation of n

To clearly understand the role of the factoring assumption in our security proof,
it is important to notice that the factorization of n is not used in KeyGen. Con-
sequently, the generation of n could be externalized (for instance generated by
an oracle) ensuring that its factorization was forgotten just after its genera-
tion. In other words, n could be a public input of KeyGen. This means that all
the polynomials considered in our security analysis are built without using the
factorization of n implying that they are equal to 0 with negligible probability
provided they are not null (according to Proposition 1).

4.2 A Basic Attack

We present here the most natural attack consisting of solving a linear system.
Let c ← Encrypt(K, pp, 0) be an encryption of 0. By definition, Φ0 (see (2))
satisfies Φ0(c) =

∏κ
�=1 r� · ∑κ

�=1 x� = 0 ensuring that Φ0(c) = 0. By considering
several encryptions c1, . . . , ct of 0, we get the system of equations Φ0(c1) =
0, . . . , Φ0(ct) = 0.

The expanded representation of Φ0 could be thus recovered4 by solving
a linear system whose variables are its monomial coefficients. However, this
attack fails provided κ = Θ(λ) because the expanded representation of Φ0 is
exponential-size in this case (see Remark 1). For instance, by choosing κ = 13,
the attack consists of solving a linear system with approximatively 5 · 109 vari-
ables.

It should be noticed that the previous equation system can be seen as a
nonlinear system whose variables are the coefficients of S. Proposition 4 will
ensure that this system cannot be solved assuming the hardness of factoring.

4.3 The Additive Operator

Let S ← KeyGen(λ). In this section, we will consider the quadratic polynomials
Lij ∈ Zn[U1, . . . , U2κ, V1, . . . , V2κ] defined by Lij(u,v) = Li(u)Lj(v).

Definition 3. AddGen(S) outputs the expanded representation of the polynomi-
als q1, . . . , q2κ defined by

4 Up to a multiplicative factor.

432 G. Gavin and S. Tainturier

⎛
⎝ q1

· · ·
q2κ

⎞
⎠ = T

⎛
⎜⎜⎜⎜⎝

L12 + L21

L22

· · ·
L2κ−1,2κ + L2κ,2κ−1

L2κ,2κ

⎞
⎟⎟⎟⎟⎠

As each quadratic polynomial qi has O(κ2) monomials, the running time of
AddGen is O(κ4) (2κ sums of 2κ quadratic polynomials). The operator Add ←
AddGen(S) consists of evaluating the polynomials q1, . . . , q2κ, i.e. Add(u,v) =
(q1(u,v), . . . , q2κ(u,v)), leading to a running time in O(κ3). See Appendix A
for a toy implementation of Add.

Proposition 2. Add ← AddGen(S) is a valid additive homomorphic operator.

Proof. Straightforward (see Fig. 1). �

Add T

r1x1

r1
· · ·
rκxκ

rκ

, T

r′
1x

′
1

r′
1

· · ·
r′

κx
′
κ

r′
κ

= T

r1r
′
1(x1 + x′

1)
r1r

′
1

· · ·
rκr

′
κ(xκ + x′

κ)
rκr

′
κ

Fig. 1. Description of the additive operator Add ← AddGen(S) showing that
Decrypt(K, pp,Add(c, c′)) = Decrypt(K, pp, c) + Decrypt(K, pp, c′).

For sake of simplicity, Add(c, c′) will be sometimes denoted by c ⊕ c′. One
easily checks that this operator is commutative and associative legitimating the
notation

a · c
def= c ⊕ c ⊕ · · · ⊕ c︸ ︷︷ ︸

a times
As seen in Sect. 2, the operator Add introduces weaknesses provided the factor-
ization of n is known.

Proposition 3. IND-CPA security ⇒ hardness of factoring.

4.4 Efficiency

Encrypting/Decrypting/Add requires respectively O(κ2/κ2/κ3) modular multipli-
cations. A ciphertext is a 2κ-vector in Zn, implying that the ratio of ciphertext
size to plaintext size is 2κ. In terms of storage, Add contains 4κ3 + 6κ2 elements
of Zn, which leads to a space complexity in O(|n|κ3).

By considering κ = 13 as done in Sect. 4.2, evaluating Add requires around
10500 modular multiplications vs only one for Paillier’s cryptosystem. Efficiency
could be improved by choosing n as a prime (large or not) in constructions not
requiring the factoring assumption. We propose an example of such a construc-
tion in Appendix B.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 433

4.5 Discussion

The private-key encryption scheme is very simple. Many cryptographic construc-
tions based on this scheme can be imagined by adding auxiliary information, e.g.
the operator Add. For these reasons, we think that the security of this scheme
can be seen as a new cryptographic problem and its security can be studied
independently of related constructions.

The classic way (see [18]) to transform a private-key cryptosystem into
a public-key cryptosystem consists of publicizing encryptions c1, . . . , ct of
known values x1, . . . , xt and using the homomorphic operators to encrypt x.
Let Encrypt1 denote this new encryption function. Assuming the IND-CPA
security of the private-key cryptosystem, it suffices that Encrypt1(pk, x) and
Encrypt(K, pp, x) are computationally indistinguishable to ensure the IND-CPA
security of the public-key cryptosystem.

In our case, a function Encrypt1(pk, x) statistically indistinguishable from
Encrypt(K, pp, x) can be naturally built provided t = Θ(κ). To encrypt x, ran-
domly choose a1, . . . , at ∈ Zn at random s.t. a1x1 + · · · + atxt = x and then
output (see notation of Sect. 4.3)

c = a1 · c1 ⊕ · · · ⊕ at · ct

5 Security Analysis

Notation. Let Y = ((Xi�, Ri�)i=0,...,t, (S2�−1,i, S2�,i)i=1,...,2κ)�=1,...,κ be a tuple
of indeterminate used throughout this section. Typically, a polynomial α ∈ Zn[Y]
will be evaluated over θn, θn containing the randomness used to build the knowl-
edge of the CPA attacker (see Definition 4) and α(θn) being a value known by
the CPA attacker.

Breaking IND-CPA security consists of recovering a p.p.t. algorithm A distin-
guishing encryptions of 0 from ones of 1, i.e. satisfying

|Pr(A(Encrypt(K, pp, 1)) = 0) − Pr(A(Encrypt(K, pp, 0)) = 0)| > ν(λ) (3)

where ν(λ) is a non-negligible quantity. Throughout our security analysis, it will
be assumed that

κ = Θ(λ)

5.1 Knowledge of the CPA Attacker

For technical reasons, we propose a slight modification in Definitions 2, 3 by
setting T = det2 S · S−1 (instead of T = S−1): each coefficient of T can be thus
expressed as a polynomial defined over S keeping true some symmetry properties
encapsulated in Lemma 2. It is straightforward to show that the decrypting
function and the operator Add remain correct.

434 G. Gavin and S. Tainturier

There are classically two sources of randomness behind the knowledge of
the CPA attacker. The first source of randomness is the internal random-
ness of KeyGen, i.e. the choice of K = {S}. The second source of random-
ness comes from the encryption oracle. After receiving the challenge encryption
c0 ← Encrypt(K, pp, x0), the CPA attacker requests the encryption oracle to
get encryptions c1, . . . , ct of chosen plaintexts x1, . . . , xt ∈ Zn. Without loss of
generality, we will here assume that the encryptions are random meaning that
the encryption oracle randomly chooses plaintexts x1, . . . , xt itself and returns
these values and their encryptions c1, . . . , ct (drawn according to Encrypt). This
assumption can be done because the CPA attacker can use the operator Add,
after receiving c1, . . . , ct, x1, . . . , xt, to get encryptions of chosen plaintexts sta-
tistically indistinguishable from encryptions output by Encrypt. Clearly, it suf-
fices to consider t = O(κ) to ensure this. All the randomness can be encapsulated
in the vector θn defined as follows.

Definition 4. Let S ← KeyGen(λ), let (xi1, ri1, . . . , xiκ, riκ) be the values (ran-
domly) chosen by the encryption oracle to produce5 ci. For any � ∈ {1, . . . , κ},
the random vector θ� ∈ Z

4κ+2(t+1)
n is defined by

θ� = ((xi�, ri�)i=0,...,t, (s2�−1,i, s2�,i)i=1,...,2κ)

The random vector (θ1, . . . , θκ) is denoted by θn if x0 = x01+· · ·+x0κ is uniform
over Zn and θ

[x]
n if x0 = x.

It should be noticed that θn is drawn according to a probability statistically
indistinguishable from the uniform distribution over Z

κγ
n . The knowledge of the

CPA attacker can be represented as a vector α ∈ Z
γ′
n , with γ′ = O(κ3) provided

t = Θ(κ).

Definition 5. The CPA attacker’s knowledge (c0, . . . , ct, x1, . . . , xt,Add) can be
represented by a vector α ∈ Z

γ′
n , the ith component of α being the evaluation of a

polynomial (see footnote 8) αi ∈ Zn[Y] over θn, i.e. α = (α1(θn), . . . , αγ′(θn)) def=
α(θn).

The polynomials αi are implicitly described in previous sections. Nevertheless,
we do not need to precisely define them. We will only exploit their symmetry
properties. For instance, Add is not impacted by switching the two first rows of
S with the two last ones. The following result generalizes it.

Lemma 2. Each polynomial αi is Δκ-symmetric (see Definition 1).

Proof. See Appendix E. �

5 ci = T (ri1xi1, ri1, . . . , riκxiκ, riκ).

New Ideas to Build Noise-Free Homomorphic Cryptosystems 435

5.2 A Fundamental Result Based on Symmetry

By exploiting intrinsic symmetry properties of our scheme, one can show that S
cannot be recovered. Worse, non Δκ-symmetric polynomials cannot be evaluated
over the secret matrix S.

Proposition 4. Let (see footnote 8) π ∈ Zn[Y] be a non Δκ-symmetric poly-
nomial chosen by the CPA attacker A. Assuming the hardness of factoring, A
cannot recover π(θn) with non-negligible probability over the choice of θn, n.

Proof. A direct consequence of Lemma 1 and Lemma 2. �

Corollary 1. Assume the hardness of factoring.

1. The secret key S cannot be recovered.
2. Any product of strictly less than κ coefficients of S cannot be recovered.
3. The polynomials Li1 × · · ·×Lit

cannot be evaluated (thus recovered) provided
t < κ.

This result is not sufficient to ensure that Φ0 =
∑κ

�=1 L2�−1

∏
�′ �=� L2�′ cannot

be recovered. Indeed, each monomial coefficient of Φ0 is Δκ-symmetric (and
thus could be recovered). However, the expanded representation of Φ0 (or its
multiples) is exponential-size provided κ = Θ(λ) and thus cannot be recovered.

By construction, Φ0 (or its multiples) could nevertheless be efficiently repre-
sented with the linear functions Li (or O(1)-products of these linear functions).
However, these compact semi-factored representations do not deal with Δκ-
symmetric quantities and they cannot be recovered according to Proposition 4.
However, maybe other efficient representations of Φ0 can exist only dealing with
Δκ-symmetric values. We will show that it is not the case in the generic ring
model (see Proposition 8) which is sufficient to prove generic IND-CPA security
(see Proposition 7).

5.3 Attacks by Linearization

Proposition 4 intuitively justifies that our security analysis can be restricted to
a natural class of attacks, called attacks by linearization, generalizing the attacks
described in Sects. 2 and 4.2. For concreteness, the CPA attacker A can generate
new vectors v1, . . . ,vr by recursively applying the homomorphic operator Add on
the challenge encryption c0 and c1, . . . , ct in the hope that there exists a small
polynomial ϕ s.t. Φ(c0) = ϕ(v1, . . . ,vr) distinguishes between encryptions of 0
and encryptions of 1. For instance, v1 = c0 ⊕ c0, v2 = v1 ⊕ c0, v3 = v2 ⊕ c1, etc.
The procedure (chosen by the attacker) which outputs (v1, . . . ,vr) is denoted by
GenVec, i.e. Φ(c0) = ϕ◦GenVec(c0, c1, . . . , ct). If the expanded representation of ϕ
is small enough then the CPA attacker could recover it by solving a linear system.

Proposition 5. Assuming the hardness of factoring, the CPA attacker cannot
find6 a procedure GenVec and a polynomial-size polynomial7 ϕ ∈ Zn[X1, . . . , X2κr]
6 With non-negligible probability.
7 Polynomial-size expanded representation. Note that degree-κ polynomials have an

exponential number of monomials (see Remark 1) provided κ = Θ(λ).

436 G. Gavin and S. Tainturier

s.t. ϕ ◦ GenVec satisfies

|Prc0←Encrypt(K,pp,1)(ϕ ◦ GenVec(c0, c1, . . . , ct) = 0)
− Prc0←Encrypt(K,pp,0)(ϕ ◦ GenVec(c0, c1, . . . , ct) = 0)| > ν(λ)

with non-negligible probability over the choice of (ci ← Encrypt(K, pp, xi))i=1,...,t

Proof. See Appendix F. �

5.4 Generic IND-CPA Security

Roughly speaking, a Generic Ring Algorithm (GRA) defined over a ring R (here
R = Zn) is an algorithm where only arithmetic operations +,−,×, / and equality
tests are allowed (see [1]). In the special case of R = Zn where n is a randomly
chosen RSA modulus, equality tests are not needed. This is implicitly shown in [1]
as a straightforward consequence of Theorem 1. Indeed, this result ensures that
two polynomials are either identically equal or equal with negligible probability.
We say that our scheme is secure in the generic ring model if the CPA cannot
find any distinguishing rational function.

Definition 6. Our encryption scheme is generically IND-CPA secure if the
CPA attacker cannot recover a {+,−,×, /}-circuit representing a (rational)
function φ satisfying∣∣∣Pr(φ ◦ α(θ[1]n) = 0

)
− Pr

(
φ ◦ α(θ[0]n) = 0

)∣∣∣ > ν(λ) (4)

where ν(λ) is a non-negligible quantity.

This definition can be restricted to polynomials.

Proposition 6. Our encryption scheme is generically IND-CPA secure if the
CPA attacker cannot recover a (polynomial-size) {+,−,×}-circuit representing
a polynomial φ satisfying (4).

Proof. See Appendix G.1 �

To prove generic security, we will prove that the CPA attacker cannot output a
non-null polynomial φ such that φ ◦ α(θ[x]n) = 0 with non-negligible probability.
Without loss of generality, we will focus on the case x = 0. In this case, the
polynomial φ0 defined as follows plays a central role in our analysis.

Definition 7. Let us consider the polynomials8 Lt(Y, V) =
∑2κ

k=1 St,k · Vk with
V = (V1, . . . , V2κ). The polynomial φ0 ∈ Zn[Y, V] is defined by

φ0 =
κ∑

�=1

L2�−1

∏
�′ �=�

L2�′

8 Recall that Y = ((Xi�, Ri�)i=0,...,t, (S2�−1,i, S2�,i)i=1,...,2κ)�=1,...,κ.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 437

By construction, the polynomial φ0 satisfies φ0(θn,v) = Φ0(v). The following
proposition states that our scheme is generically IND-CPA secure if the CPA
attacker cannot represent any non-null multiple of φ0 from its knowledge. To
simplify notation, we redefine α by α(θn,v) = (α1(θn), . . . , αγ′(θn),v).

Proposition 7. Assuming the hardness of factoring, our scheme is generically
IND-CPA secure if there does not exist any polynomial-size {+,−,×}-circuit
representing a polynomial φ s.t. φ ◦ α is a non-null multiple of φ0 (see Defini-
tion 7).

Proof. See Appendix G.2. �

Consequently, generic IND-CPA security can be reduced to an algebraic prob-
lem. Indeed, it suffices to prove the non-existence of polynomials φ satisfying
requirements of Proposition 7. The proof is based on the Δκ-symmetry of CPA
attacker’s knowledge (see Lemma 2).

Proposition 8. Our scheme is generically IND-CPA secure assuming the hard-
ness of factoring.

Proof. See Appendix G.3. �

This result holds as long as Lemma 2 holds. It means in particular that IND-
CPA security is ensured even if other evaluations of Δκ-symmetric polynomials
are given to the CPA attacker.

6 Perspectives

A first motivating perspective would consist of removing the factoring assump-
tion required to prove formal results (Theorem 1, Lemma 1 and Proposition 4).
This assumption defeats the whole “post-quantum” purpose of multivariate cryp-
tography [17]. While decrypting does not require the factorization of n, this
assumption allows us to prove some formal impossibility results. Randomness
might be introduced in order to get a pure multivariate encryption scheme. In
our opinion, the additional randomness introduced to develop the multiplicative
operator (in the following of this section) could be sufficient to achieve this (such
randomness should also be introduced in Add).

6.1 A Naive/Toy Construction of Mult

We here consider the case κ = 2 where S is a 4 × 4 matrix. Let us consider the
two following quadratic operators O1,O2 defined by (see Sect. 4.3 for notation):

O1 = T

⎛
⎜⎜⎝

L11

L22

L33

L44

⎞
⎟⎟⎠ ;O2 = T

⎛
⎜⎜⎝

L13

L24

L31

L42

⎞
⎟⎟⎠

438 G. Gavin and S. Tainturier

Given two encryptions c, c′ of x, x′, we have

O1(c, c′) = T

⎛
⎜⎜⎝

r1r
′
1x1x

′
1

r1r
′
1

r2r
′
2x2x

′
2

r2r
′
2

⎞
⎟⎟⎠ ;O2(c, c′) = T

⎛
⎜⎜⎝

r1r
′
2x1x

′
2

r1r
′
2

r2r
′
1x2x

′
1

r2r
′
1

⎞
⎟⎟⎠

implying that c′′ = Mult(c, c′) def= Add(O1(c, c′),O2(c, c′)) is a valid encryption
of xx′. Indeed,

c′′ = T

⎛
⎜⎜⎝

r21r
′
1r

′
2(x1x

′
1 + x1x

′
2)

r21r
′
1r

′
2

r22r
′
1r

′
2(x2x

′
1 + x2x

′
2)

r22r
′
1r

′
2

⎞
⎟⎟⎠

and Decrypt(K, pp, c′′) = (x′
1 + x′

2)x1 + (x′
1 + x′

2)x2 = (x′
1 + x′

2)(x1 + x2) = xx′.
Roughly speaking, the κ2 = 4 products xix

′
j are stored in two intermediate

vectors output by O1,O2. While there are many others ways to define these
operators, let us assume that their description is public9 (or guessed by the
CPA attacker). This choice of O1,O2 leads to an attack by linearization more
efficient than the basic attack presented in Sect. 4.2.

Example of attack by linearization. Assume that c′ is an encryption of 0, i.e.
x′ = x′

1 + x′
2 = 0. In this case10,

Mult(c, c′) ∼ T

⎛
⎜⎜⎝

0
r21
0
r22

⎞
⎟⎟⎠

It follows that a linear combination of L1,L3 can be recovered by solving a small
linear system, i.e. smaller than the one involved in the basic attack. allowing the
CPA attacker to distinguish the case x′ = 0 from the case x′ �= 0. In order to
remove such weaknesses, we will introduce randomness in our construction, i.e.
the coefficients τijk and the polynomials ρijk.

6.2 Overview

A multiplicative operator Mult should be developed to get an FHE. Let c, c′ be
two encryptions of x, x′. The operator Mult developed in this section will output
an encryption c′′ = Mult(c, c′) satisfying

c′′ = T

⎛
⎜⎜⎜⎜⎝

R1(c, c′) · ∑
ij τij1xix

′
j

R1(c, c′)
· · ·

Rκ(c, c′) · ∑
ij τijκxix

′
j

Rκ(c, c′)

⎞
⎟⎟⎟⎟⎠

9 While the operators are public, their description could be not divulged.
10 ∼ meaning “equal up to a multiplicative constant”.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 439

where τijk are randomly chosen over Zn s.t.
∑κ

k=1 τijk = 1 for any (i, j) ∈
{1, . . . , κ}2 and R1, . . . , Rκ are randomly chosen polynomials. Clearly,

Decrypt(K, pp, c′′) =
∑

k

∑
ij

τijkxix
′
j =

∑
ij

xix
′
j = xx′

Unfortunately, unlike Add, this operator Mult cannot be efficiently represented
with Δκ-symmetric values. We propose to represent it by using weaker symmetry
properties.

The implementation of Mult is less straightforward than the one of Add. It
cannot be achieved using only one quadratic operator. Indeed, it exploits the
equality xx′ =

∑κ
i=1

∑κ
j=1 xix

′
j and several operators are necessary to store all

the products xix
′
j in some intermediate vectors. The price to pay is to degrade

symmetry properties. Nevertheless, we propose a construction partially keeping
them.

6.3 Our Proposal

Notation. Let Iκ = {1, . . . , κ} and let Γκ be the set of quadratic homogeneous
polynomials ρ ∈ Zn[X1, . . . , X2κ, Y1, . . . , Y2κ] s.t. ρ(X,Y) =

∑
i,j aijXiYj.

Given two permutations σ, σ′ ∈ Δκ, a family of polynomials ρ ∈ Γκ and a
vector τ ∈ Z

κ
n, the function OGen(S, σ, σ′, ρ, τ) outputs11 the degree-4 operator

O defined by

O = T

⎛
⎜⎜⎜⎜⎝

τ1 ρ1L2σ(1)−1,2σ′(1)−1

ρ1L2σ(1),2σ′(1)
· · ·

τκ ρκL2σ(κ)−1,2σ′(κ)−1

ρκL2σ(κ),2σ′(κ)

⎞
⎟⎟⎟⎟⎠

By construction,

Decrypt(sk,O(c, c′)) = τ1xσ(1)xσ′(1)′ + · · · + τκxσ(κ)xσ′(κ)′

We note that Decrypt(sk,O(c, c′)) does not depend on the polynomials ρi. These
polynomials will be chosen at random in Mult. Roughly speaking, the vector
O(c, c′) stores κ (additive shares of) products xixj . By considering several such
operators (at least κ), all the products can be stored. It then suffices to homo-
morphically add these vectors (by using the operator Add) to get an encryption
of xx′. This is detailed below.

Mult. Let τ = (τijk)(i,j,k)∈I3
κ

be randomly chosen such that
∑κ

k=1 τijk = 1 for
any (i, j) ∈ I2κ. To build the operator Mult, it suffices to invoke κ2 times the
function OGen in order to generate and publicize

Oij ← OGen
(
S, σi, σj , ρij , (τσi(k),σj(k),k)k=1,...,κ

)
11 The expanded representation of the 2κ degree-4 polynomials q1, . . . , q2κ satisfying

(q1(u, v), . . . , q2κ(u, v)) = O(u, v).

440 G. Gavin and S. Tainturier

for any (i, j) ∈ I2κ where ρij is randomly chosen over Γκ and σi, σj ∈ Σκ
12.

To homomorphically multiply c and c′, it suffices to homomorphically add the
vectors Oij(c, c′), i.e.

Mult(c, c′) def=
⊕

(i,j)∈I2
κ

Oij(c, c′)

where ⊕ refers to the operator Add, i.e. u ⊕ v = Add(u,v). As evaluating
Oij(c, c′) can be done in O(κ5), the running time of Mult is O(κ7).

Example. Description of the operators O11, O12, O12, O22 and Mult in the case
κ = 2.

O11(c, c′) = T

⎛
⎜⎜⎝

ρ111(c, c′)r1r′
1τ111x1x′

1

ρ111(c, c′)r1r′
1

ρ112(c, c′)r2r′
2τ222x2x′

2

ρ112(c, c′)r2r′
2

⎞
⎟⎟⎠ ; O12(c, c′) = T

⎛
⎜⎜⎝

ρ121(c, c′)r1r′
2τ121x1x′

2

ρ121(c, c′)r1r′
2

ρ122(c, c′)r2r′
1τ212x2x′

1

ρ122(c, c′)r2r′
1

⎞
⎟⎟⎠

O21(c, c′) = T

⎛
⎜⎜⎝

ρ211(c, c′)r1r′
2τ211x2x′

1

ρ211(c, c′)r1r′
2

ρ212(c, c′)r2r′
1τ122x1x′

2

ρ212(c, c′)r2r′
1

⎞
⎟⎟⎠ ; O22(c, c′) = T

⎛
⎜⎜⎝

ρ221(c, c′)r2r′
2τ221x2x′

2

ρ221(c, c′)r2r′
2

ρ222(c, c′)r1r′
1τ112x1x′

1

ρ222(c, c′)r1r′
1

⎞
⎟⎟⎠

Mult(c, c′) ∼ T

⎛
⎜⎜⎝

∏
(i,j)∈{1,2}2 ρij1(c, c′)

∑
(i,j)∈{1,2}2 τij1xix

′
j∏

(i,j)∈{1,2}2 ρij1(c, c′)∏
(i,j)∈{1,2}2 ρij2(c, c′)

∑
(i,j)∈{1,2}2 τij2xix

′
j∏

(i,j)∈{1,2}2 ρij2(c, c′)

⎞
⎟⎟⎠

6.4 Security Analysis

Randomness θn (see Definition 4) can be easily adapted in order to integrate
the polynomials ρijk and the values τijk used in our construction. Each value
known by the CPA attacker can be still written as the evaluation of a polyno-
mial αi (see Definition 5) over θn. In this context, Proposition 7 remains true.
Unfortunately, Proposition 8 cannot be naturally extended because its proof is
based on the fact that the polynomials αi are Δκ-symmetric. Even if Lemma 2
is not true anymore, the polynomials αi keep symmetry properties: they are
just Σκ-symmetric instead of being Δκ-symmetric. Proposition 4 can be easily
adapted.

12 Recall that σi ∈ Σκ refers to the permutation over {1, . . . , κ} defined by σi(1) =
i; σi(2) = i + 1; . . . ; σi(κ) = i − 1.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 441

Proposition 9. Let π be a non Σκ-symmetric polynomial chosen by the CPA
attacker A. Assuming the hardness of factoring, A cannot recover π(θn) with
non-negligible probability over the choice of θn, n.

Proof. In order to take into account (symmetric) constraints over the coefficients
τijk, a slight extension of Lemma 1, i.e. Lemma 3, should be used to prove this
result. �

It follows that Corollary 1 still holds. However, the proof of Proposition 8 intrin-
sically exploits Δκ-symmetry properties and cannot be easily adapted. While we
are convinced that the introduction of the polynomials ρijk and the coefficients
τijk protect our scheme against attacks by linearization, we did not manage to
formally prove it.

Assume nevertheless that the multiplicative operator Mult can be replaced by
an oracle O in the security analysis. In this case, the proof of Proposition 5 can
be easily adapted to show the non-existence of efficient attacks by linearization.

Mult can be Replaced by an Oracle O? We propose two (informal) rea-
sons/modifications suggesting this.

– The operators Oij play a symmetric role and there is no reason to publicize
the permutations σi, σj involved in these operators. We can speculate on the
fact that the CPA attacker cannot recover them or equivalently that it cannot
distinguish between Oij and Oi′j′ .

– The operators Oij output vectors relevant under the secret key S. However,
nothing justifies it and one can imagine that Oij output vectors relevant under
randomly chosen keys Sij . It suffices then to generate new operators Add
(adapted to these new keys) in order to (homomorphically) add these vectors.
Roughly speaking, the operators Oij and the (new) operators Add involved
in Mult become chained making non-specified uses irrelevant. This also could
lead to significative improvements by replacing each degree-4 operators by
two quadratic operators.

Acknowledgment. The authors would like to thank the anonymous referees for their
helpful comments.

A Implementation of Add in the Case κ = 1

In this section, we provide an example of the implementation of the homomorphic
scheme for κ = 1. Let S = [sij] ∈ Z

2×2
n and Δ = s11s22 − s12s21.

Add = (q1, q2) ← AddGen(S) is defined by

Δ · q1(u,v) =(2s22s11s21 − s12s
2
21)u1v1

+s222s11(u1v2 + u2v1)

+s12s
2
22u2v2

442 G. Gavin and S. Tainturier

Δ · q2(u,v) = − s11s
2
21u1v1

−s221s12(u1v2 + u2v1)

+(s11s222 − 2s21s12s22)u2v2

B Removing the Factoring Assumption?

We propose to implement the randomized operator Addrand considered in Sect. 2
(with σ = σ′ = Id). This operator can be implemented with degree-4 polynomials
(provided the polynomials ρi are quadratic). To improve efficiency, we propose
to split it into two quadratic operators Add′ and Rand, i.e.

Addrand(c, c′) = Rand(Add′(c, c′))

– Add’ exactly follows Add except that c′′ = Add′(c, c′) is not relevant under S
but relevant under a randomly chosen S′.

– Rand randomizes c′′ with polynomials ρi.

Let S′ ∈ Z
2κ×2κ
n be a randomly chosen invertible matrix, T ′ = S′−1 its inverse

and L′
i the linear application defined by L′

i(u) = 〈s′
i,u〉 where s′

i is the ith row
of S′.

Add’. It suffices now to define Add’ as Add except that T is replaced by T ′ in
Definition 3. In other words,

Add′(c, c′) = T ′ · S · Add(c, c′)

Rand. Let ρ1, . . . , ρκ be randomly chosen degree-1 polynomials.

Rand(u) = T

⎛
⎜⎜⎜⎜⎝

ρ1(u)L′
1(u)

ρ1(u)L′
2(u)

· · ·
ρκ(u)L′

2κ−1(u)
ρκ(u)L′

2κ(u)

⎞
⎟⎟⎟⎟⎠

It is straightforward to see that this new operator Addrand is correct

Security Analysis. As symmetry properties are preserved, all the results proved
previously still hold under the factoring assumption. Let us now assume that
n is a prime (instead of a RSA modulus). Note first that n should be a large
prime, i.e. n ≈ 2λ, to avoid that ρi(u) = 0 with non-negligible probability.
Clearly, the attack by linearization exhibited in Sect. 2 is not relevant anymore.
However, as the factorization of n is known, nonlinear univariate equations can be
solved. Hence, our construction becomes potentially vulnerable to attacks based
on Groëbner bases. We carry out some experiments on SageMath platform using
variable elimination algorithms. It appears that computational-time required
by these attacks is prohibitive even for very small values of κ, e.g κ = 2. We
did not exhibit any attack working faster than the basic attack (see Sect. 4.2).
Obviously further investigations should be done. In our opinion this is a nice
challenge whose formulation is relatively simple.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 443

C Proof of Proposition 1

This result can be shown by induction over r. By Lemma 1, the result is true
for r = 1. Let us assume the result true for any r < t and let us show it for
r = t. We can identify Zn[X1, . . . , Xt] to R[Xt] with R = Zn[X1, . . . , Xt−1]. Let
φ be a a non-null polynomial φ ∈ Zn[X1, . . . , Xt] output by a p.p.t. algorithm
A, i.e. φ ← A(n). φ can be identified by a non-null polynomial φ′ ∈ R[X1].
Thus, by fixing X2, . . . , Xt to randomly chosen values x2, . . . , xt ∈ Zn , the
polynomial φx2,...,xt

defined by φx2,...,xt
(x1) = φ(x1, . . . , xt) is not (identically)

null with overwhelming probability over the choice of n, x2, . . . , xt according to
the induction hypothesis. Moreover, provided φx2,...,xt

is not null, φx2,...,xt
(x1) =

0 with negligible probability other choice of n, x1 according to the induction
hypothesis. This proves φ(x1, . . . , xt) = 0 with negligible over the choice of
n, x1, . . . , xt. �

D Proof of Lemma 1

D.1 The Proof

Let D be the uniform probability distribution of over Z
κt
n The proof consists of

building a polynomial factoring algorithm A by using a solver B of our problem as
subroutine (B is assumed to solve our problem if it outputsπ(y)with non-negligible
probability). Let us consider the following polynomial-time algorithm A:

Input: n = pq

(s1, . . . , sm, π) ← P(n)

Repeat

1. Let y = (y1, . . . , yκ) ← D
2. Compute sj = sj(y) for all j = 1, . . . , m.
3. Compute Π = π(y)
4. Apply B on the inputs s1, . . . , sm, i.e. ΠB ← B(s1, . . . , sm)

until gcd(Π − ΠB, n) �= 1

output gcd(Π − ΠB, n)
By construction, this algorithm is correct. Let us show that it terminates

in polynomial-time. First, each step of A can be computed in polynomial-time
implying that A is polynomial if the expectation of the number of steps of A is
polynomial (or equivalently, if the probability to get gcd(Π − ΠB, n) �= 1 is not
negligible).

As π is not Σ-symmetric, there exists σ∗ ∈ Σ s.t. π − πσ∗ is not null, where
πσ∗ is the polynomial defined by πσ∗(y) = π(yσ∗(1), . . . , yσ∗(κ)). Thus, according
to Proposition 1, π(y) �= πσ∗(y) with overwhelming probability. It follows that
π(y) �≡ πσ∗(y) mod p or π(y) �≡ πσ∗(y) mod q with overwhelming probability.
Without loss of generality, we assume that

π(y) �≡ πσ∗(y) mod q (5)

444 G. Gavin and S. Tainturier

with overwhelming probability. Let us consider the function h : (Zt
n)κ → (Zt

n)κ

such that (y′
1, . . . , y

′
κ) = h(y1, . . . , yκ) is defined by

– y′
�i ≡ y�i mod p for any (�, i) ∈ {1, . . . , κ} × {1, . . . , t}

– y′
�i ≡ yσ∗(�),i mod q for any (�, i) ∈ {1, . . . , κ} × {1, . . . , t}.

Clearly, y′ = (y′
1, . . . , y

′
κ) and y have the same probability over D, i.e.

PrD(y) = PrD(y′)

Let Π ′ = π(y′). As the functions sj are Σ-symmetric polynomials, we get
sj(y′) = sj(y) for all j = 1, . . . , m. It follows that

PrD(ΠB = Π) = PrD(ΠB = Π ′)

As B is assumed to solve our problem, PrD(ΠB = Π) is non-negligible implying
that PrD(ΠB = Π ′) is non-negligible.

By construction Π ≡ Π ′ mod p. Since Π ′ ≡ πσ∗(y) mod q, Eq. (5)
implies that Π �≡ Π ′ mod q with overwhelming probability. It follows that
p = gcd(n,Π − Π ′) with overwhelming probability. Consequently, A terminates
(when ΠB = Π ′) in polynomial-time. �

D.2 Extension

We now propose to extend this result when y is drawn under symmetric con-
straints. Let assume that P(n) outputs:

– Σ-symmetric polynomials s1, . . . , sm ∈ Zn[((Xij , Zij)j=1,...,t)i=1,...,κ]

– polynomials p1, . . . , pγ ∈ Zn[((Zij)j=1,...,t)i=1,...,κ]

– a non Σ-symmetric polynomial π ∈ Zn[((Xij)j=1,...,t)i=1,...,κ].

We consider the probability distribution Dp1,...,pγ ,Σ uniform over the set
(assumed to be not empty)

{((x1, z1), . . . , (xκ, zκ)) ∈ Z
(t+r)κ
n |pi(zσ(1), . . . , zσ(κ)) = 0

for any (i, σ) ∈ {1, . . . , γ} × Σ}

We will assume that Dp1,...,pγ ,Σ is sampleable meaning there exists a p.p.t. algo-
rithm D s.t. D(n) outputs a vector drawn according to a probability distribution
statistically close to Dp1,...,pγ ,Σ .

Lemma 3. Let (s1, . . . , sm, p1, . . . , pγ , π) ← P(n). There is no p.p.t algorithm
which outputs π(x1, . . . , xκ) given only s1(y), . . . , sm(y) with non-negligible prob-
ability over the choice of n, y = ((x1, z1), . . . , (xκ, zκ)) ← Dp1,...,pγ ,Σ assuming
the hardness of factoring.

Proof. Exactly follows the proof of Lemma 1. �

New Ideas to Build Noise-Free Homomorphic Cryptosystems 445

E Proof of Lemma 2

Recall that we set T = det2 S · S−1 in order to ensure that value known by the
CPA attacker can be written as the evaluation of a polynomial over θ. It remains
to prove that these polynomials are Δκ-symmetric. First, it should be noticed
that, contrarily to detS, det2 S can be written as a Δκ-symmetric polynomial
defined over s = (s1, . . . , s2κ) and thus θn = (θ1, . . . , θκ). The values xi =
xi1 + · · · + xiκ are also evaluations of Δκ-polynomials.

By construction, each component of ci is the evaluation over θn of a Δκ-
symmetric polynomial. Indeed, ci is the unique vector satisfying the following
system

for any � = 1, . . . , κ

{ 〈s2�−1, ci〉 = (det S)2 · ri�xi�

〈s2�, ci〉 = (det S)2 · ri�

stable by permutating the tuples (θ1, . . . , θκ).
Let (q1, . . . , q2κ) ← AddGen(S). The coefficient of uivj in qk(u, v) is denoted by
akij . By construction, the vector aij = (a1ij , . . . , a2κ,ij) is the unique solution of
the following linear system (the variables being akij)

for any � = 1, . . . , κ

{ 〈s2�−1, aij〉 = (det S)2 · s2�−1,is2�,j + s2�,is2�−1,j

〈s2�, aij〉 = (det S)2 · s2�,is2�,j

stable by permutating the tuples (θ1, . . . , θκ). It follows that akij is the evaluation
over θn of a Δκ-symmetric polynomial. �

F Proof of Proposition 5

Lemma 4. Let φ ∈ Zn[X1, . . . , Xκ, Y1, . . . , Yκ] be a non-null polynomial such
that each monomial Xe1

1 · · · Xeκ
κ Y

e′
1

1 · · · Y e′
κ

κ satisfies

– ∃i ∈ {1, . . . , κ}, ei = e′
i = 0

– ∀i ∈ {1, . . . , κ}, ei = 0 ⇒ e′
i = 0

For any α ∈ Zn, the polynomial φα = φ(X1, . . . , Xκ, Y1, . . . , Yκ−1, α − Y1 − . . . −
Yκ−1) is not null.

Proof. Let φ =
∑ρ

i=1 aiMi where Mi = Xei1
1 · · · Xei,κ

κ Y
e′

i1
1 · · · Y e′

i,κ
κ and ai ∈ Z

∗
n,

let m = maxi e′
i,κ.

If m = 0 then the result is trivially true. Thus, one can assume that m > 0.
We have

φα =
ρ∑

i=0

ai(α − Y1 − . . . − Yκ−1)e′
i,κM ′

i

where M ′
i = X

ei,1
1 · · · Xei,κ

κ Y
e′

i,1
1 · · · Y e′

i,κ−1
κ−1 .

446 G. Gavin and S. Tainturier

Given an arbitrary monomial M = Xe1
1 · · · Xeκ

κ Y
e′
1

1 · · · Y e′
κ

κ , the set {j ∈
{1, . . . , κ}|ej �= 0} is denoted by E(M). Let i0 s.t. e′

i0,κ = m. As ∃j ∈ {1, . . . , κ}
s.t. eij = ei′j = 0, one can assume that 1 �∈ E(M ′

i0
). Let us show that the

monomial Y m
1 M ′

i0
belongs to φα (implying that φα is not null). To achieve

this, it suffices to show that this monomial does not belong to any polynomial
(α − Y1 − . . . − Yκ−1)e′

i,κM ′
i with i �= i0.

Suppose that there exists i1 �= i0 s.t. Y m
1 M ′

i0
belongs to (α − Y1 − . . . −

Yκ−1)e′
i1,κM ′

i1
. Clearly, 1 �∈ E(M ′

i0
) implies that 1 �∈ E(M ′

i1
) and e′

i1,κ ≥ m
(because the constraint ei = 0 ⇒ e′

i = 0 implies that the exponent of Y1 in
M ′

i1
is equal to 0). By definition of m, it follows that e′

i1,κ = m implying that
M ′

i0
�= M ′

i1
(because Mi0 = Mi1 otherwise). Thus, Y m

1 M ′
i0

does not belong to
(α − Y1 − . . . − Yκ−1)e′

i1,κ=mM ′
i1

. This concludes the proof. �
Let us assume that the CPA attacker can recover a procedure GenVec and a poly-
nomial ϕ of Zn[X1, . . . , X2κr] such that deg ϕ < κ satisfying the requirements of
the proposition. Let c∗

1, . . . , c
∗
t be encryptions such that

|Prc0←Encrypt(K,pp,1)(ϕ ◦ GenVec(c0, c∗
1, . . . , c

∗
t) = 0)

− Prc0←Encrypt(K,pp,0)(ϕ ◦ GenVec(c0, c∗
1, . . . , c

∗
t) = 0)| > ν(λ)

It follows that the polynomial ϕ ◦ GenVec ∈ Zn[R1, . . . , Rκ,X1, . . . , Xκ] defined
by

ϕ ◦ GenVec(R1, . . . , Rκ,X1, . . . , Xκ) = ϕ ◦ GenVec(Y, c∗
1, . . . , c

∗
t)

where13 Y = T (R1X1, R1, . . . , RκXκ, Rκ) is not null. By construction of GenVec,
each vector v output by ϕ ◦ GenVec(Y, c∗

1, . . . , c
∗
t) is in the form

v = T (p1(R1X1,X1), p′
1(R1X1, R1), . . . , pκ(RκXκ, Rκ), p′

κ(RκXκ, Rκ))

where pi, p
′
i are polynomials.

Consequently, as deg ϕ < κ, each monomial Re1
1 · · · Reκ

κ X
e′
1

1 · · · Xe′
κ

κ of
ϕ ◦ GenVec satisfies

– ∃i ∈ {1, . . . , κ} s.t. ei = e′
i = 0

– ∀i ∈ {1, . . . , κ}, ei = 0 ⇒ e′
i = 0.

Let x ∈ Zn be arbitrarily chosen. By fixing X1+· · ·+Xκ = x, we consider the
polynomial ϕ ◦ GenVecx ∈ Zn[R1, . . . , Rκ,X1, . . . , Xκ−1] equal to the polynomial
ϕ ◦ GenVec(R1, . . . , Rκ,X1, . . . , Xκ−1, x − Xκ−1 − . . . − X1). By Lemma 4, this
polynomial is not null. Hence, according to Proposition 1,

ϕ ◦ GenVecx(r1, . . . , rκ, x1, . . . , xκ−1) = 0

with negligible probability over the choice of r1, . . . , rκ ∈ Z
∗
n and x1, . . . , xκ−1 ∈

Zn assuming factoring is hard. Thus, for any x ∈ Zn,

Prc0←Encrypt(K,pp,x)(ϕ ◦ GenVec(c0, c∗
1, . . . , c

∗
t) = 0)

is negligible leading to a contradiction implying that deg ϕ ≥ κ. �
13 T = det2 S · S−1.

New Ideas to Build Noise-Free Homomorphic Cryptosystems 447

G Proofs of Sect. 5.4

Lemma 5. There do not exist any polynomial q ∈ Zn[X1, . . . , Xt] and symmet-
ric polynomials π1, . . . , πt ∈ Zn[X1, . . . , Xκ] satisfying q(π1, . . . , πt) = X1 · · · Xκ

provided deg πi < κ.

Proof. It straightforwardly comes from the fundamental theorem of symmetric
polynomials. �

G.1 Proof of Proposition 6

Given C be a polynomial-size {+,−,×, /}-circuit, we denote by φC the (rational)
function computed by C. In [1], by induction on the gates of C, it is shown that
there exists a p.p.t. algorithm A such that A(C) outputs two polynomial-size
{+,−,×}-circuits C′, C′′ satisfying φC = φC′/φC′′ . Let us assume that φC satisfies
(4). According to Proposition 1, if φC′′ ◦ α(θ[x]n) is not null then it is equal to 0
with negligible probability. Firstly, φC′′ ◦α(θ[0]n) and φC′′ ◦α(θ[1]n) cannot be both
null because φC satisfies (4). If φC′′ ◦ α(θ[1]n) is null but not φC′′ ◦ α(θ[0]n) (or the
converse) then φC′′ satisfies (4). Finally, if φC′′ ◦α(θ[1]n) and φC′′ ◦α(θ[0]n) are both
not null then φC′ satisfies (4). This proves that the CPA attacker can recover a
polynomial satisfying (4). �

G.2 Proof of Proposition 7

We propose here a sketch of the proof. Details can be found in [8].
Recall that θn = ((xi�, ri�)i=1,...,r, s2�−1, s2�)�=1,...,κ is drawn according to a

probability distribution over Z
γ
n (with γ = 4κ2 + 2(t + 1)κ) statistically close to

the uniform one. Consider the following tuples of indeterminate:

– V = (Vi)i∈{1,...,2κ},
– Y = ((Xi�, Ri�)i=0,...,t, (S2�−1,i, S2�,i)i=1,...,2κ)�=1,...,κ,
– Z = (X1, . . . , Xκ−1, R1, . . . , Rκ).

Let T = [tij] = (det S)S−1. The degree-(2κ − 1) polynomial computing tij is
(abusively) denoted by tij , i.e. tij(Y) = tij .

Let assume that the CPA attacker can recover a non-null polynomial φ ∈
Zn[X1, . . . , Xγ′+2κ] such that

φ ◦ α(θn, c) = 0

with non-negligible probability over θn, c ← Encrypt(K, pp, 0). Let
ψ,ψ′, ε1, . . . , ε2κ be polynomials defined by

– ψ(Y, V) = φ ◦ α(Y, V)
– ε�(Y,Z) = t�,1(Y)R1X1 + t�,2(Y)R2 + t�,3(Y)R2X2 + t�,4(Y)R2 + . . . +

t�,2κ−1(Y)Rκ(−X1 − . . . − Xκ−1) + t�,2κ(Y)Rκ.
– ψ′(Y,Z) = ψ(Y, ε1(Y,Z), . . . , ε2κ(Y,Z))

448 G. Gavin and S. Tainturier

Obviously, ψ is not null. By construction, ψ′(θn, x1 . . . , xκ−1, r1, . . . , rκ) is null
with non-negligible probability. It follows that it is null according to Proposi-
tion 1. The set of polynomials ψ ensuring that ψ′ is null is an ideal. To conclude,
it suffices to check that this ideal is generated by φ0 (see [8] for details) implying
that φ ◦ α is a non-null multiple of φ0. �

G.3 Proof of Proposition 8

We here enhance the power of the attacker by letting it choose the Δκ-symmetric
polynomials α1, . . . , αγ′ . Without loss of generality, we prove here that there
does not exist any polynomial-size {+,−,×}-circuit representing a polynomial
φ satisfying φ ◦α = φ0. The extension to multiples of φ0 is not difficult (but not
straightforward). It should be noticed that this result is a pure algebraic result
which does not rely on the factoring assumption, i.e. n could be prime.

According to notation of Definition 7, we consider the tuples V =
(V1, . . . , V2κ) and Y = ((Xi�, Ri�)i=1,...,t, (S2�−1,i, S2�,i)i=1,...,2κ)�=1,...,κ.

As φ◦α(Y) = φ0(Y), the equality also holds by setting Xi� = Ri� = 1 for any
i = 1, . . . , t and S2�−1,i = S2�,i for any i, �. We then consider the polynomials
ν1, . . . , νγ and ψ defined over V, S = ((S�,i)i=1,...,2κ)�=1,...,κ by

νi(S) = αi

(
(1, . . . , 1, (S2�,i, S2�,i)i=1,...,2κ)�=1,...,κ

)

ψ(S, V) =
1
κ

φ0

(
(1, . . . , 1, (S2�,i, S2�,i)i=1,...,2κ)�=1,...,κ , V

)

=
∏

�=1,...,κ

(
2κ∑
i=1

S2�,iVi

)

Similarly to the definition of α, we consider the function

ν(S, V) = (ν1(S), . . . , νγ′(S), V)

To establish our result, it suffices to show that there does not exist any
(polynomial-size) polynomial φ such that φ ◦ ν = ψ. To achieve it, we first
notice that the polynomials νi remain Δκ-symmetric. Without loss of generality,
we will assume that the polynomials νi are homogeneous (otherwise we split
them into homogeneous polynomials). Moreover, as deg ψ = κ, one can assume
that deg νi ≤ κ. Consider the two sets I1, I2 defined by

– I1 = {i ∈ {1, . . . , γ′}|deg νi < κ},
– I2 = {i ∈ {1, . . . , γ′}|deg νi = κ}

Let
Vκ

def= {v ∈ {0, 1}2κ|v1 + · · · + v2κ = κ}
For a given v ∈ Z

2κ
n , the polynomial ψv is defined by,

ψv=(v1,...,v2κ)(S) = ψ(S,v) = ·
∏

�=1,...,κ

(
2κ∑
i=1

viS2�,i

)

New Ideas to Build Noise-Free Homomorphic Cryptosystems 449

Lemma 6. Let v1, . . . ,vr ∈ Vκ and a1, . . . , ar ∈ Zn \ {0}. The polynomial
a1ψv1 + . . . + arψvr

cannot be written as a polynomial p((νi)i∈I1).

Proof. By Lemma 5, one can straightforwardly show that ψ(1,0,...,0)

(ψ(1,0,...,0)(S) = s2,1s4,1 · · · s2κ,1) cannot be written as a polynomial p((νi)i∈I1).
Given τ ∈ Z

2κ
n , we denote by ντ

1 , . . . , ντ
γ′ the polynomials ν1, . . . , νγ′ where the

variables s2�,i are substituted by τis2�,1 for any 1 ≤ i ≤ 2κ and ϕi denotes the
polynomial ψvi

by doing the same substitution. It is important to notice that
ντ
1 , . . . , ντ

γ′ are symmetric polynomials defined over s2,1, s4,1, · · · , s2κ,1. Moreover,

ϕi(τ, s2,1, s4,1, · · · , s2κ,1) = qi(τ)s2,1s4,1 · · · s2κ,1

where qi is a degree-κ polynomial. It follows that

r∑
i=1

aiϕi(τ, s2,1, s4,1, · · · , s2κ,1) = q(τ)s2,1s4,1 · · · s2κ,1

where q =
∑r

i=1 aiqi is a degree-κ polynomial. By definition of Vκ, each qi

contains at least one monomial which does not belong to the other polynomials
qj �=i. It follows that q is not null.

Thus, according to the famous lemma of Schwartz and Zippel [19], q(τ) = 0
with negligible probability over the choice of τ . Let τ∗ such that q(τ∗) �= 0. The
equality p((νi)i∈I1) = a1ψv1 + . . . + arψvr

implies that

p((ντ∗
i)i∈I1) = C · s2,1 · · · s2κ,1

with C �= 0 contradicting Lemma 5. �

The result is a direct consequence of this lemma. Given a polynomial φ, we
consider the polynomial φv defined by φv (ν1(S), . . . , νγ′(S)) = φ ◦ ν(S,v). Let
us assume that φ ◦ ν = ψ implying that for each v ∈ Vκ, ψv = φv .

Because deg ψ = κ, we can write φv (ν1, . . . , νt) = φ′
v (νi∈I1) + φ′′

v (νi∈I2) with
deg φ′′

v = 1. As |I2| ≤ γ′ is polynomial but not #Vκ, there exist v1, . . . ,vr ∈ Vκ

s.t. the linear functions φ′′
v1

, . . . , φ′′
vr

are linearly dependant. It follows that there
exist a1, . . . , ar ∈ Zn \ {0} such that

a1φ
′′
v1

(νi∈I2) + . . . + arφ
′′
vr

(νi∈I2) = 0

It implies that a1φ
′
v1

(νi∈I1) + · · · + arφ
′
vr

(νi∈I1) = a1ψv1 + . . . + arψvr
contra-

dicting Lemma 6. �

References

1. Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to factoring.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 36–53. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 2

https://doi.org/10.1007/978-3-642-01001-9_2

450 G. Gavin and S. Tainturier

2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011). http://
eprint.iacr.org/

3. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

4. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-
morphic encryption over the torus. IACR Cryptology ePrint Archive, 2018:421
(2018)

5. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 27

6. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 24

7. Elgamal, T.: A public key cryptosystem and a signature sheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

8. Gavin, G., Tainturier, S.: New ideas to build noise-free homomorphic cryptosys-
tems. Cryptology ePrint Archive, Report 2019/1375 (2019). https://eprint.iacr.
org/2019/1375

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

10. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

13. Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in the generic
ring model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 399–416.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 24

14. Kipnis, A., Hibshoosh, E.: Efficient methods for practical fully homomorphic
symmetric-key encrypton, randomization and verification. Cryptology ePrint
Archive, Report 2012/637 (2012). http://eprint.iacr.org/

15. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? IACR Cryptology ePrint Archive, 2011:405 (2011)

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

17. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-642-29011-4_27
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2019/1375
https://eprint.iacr.org/2019/1375
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-10366-7_24
http://eprint.iacr.org/
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4

New Ideas to Build Noise-Free Homomorphic Cryptosystems 451

18. Rothblum, R.: Homomorphic encryption: from private-key to public-key. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 14

19. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

20. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 22

21. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

22. Xiao, L., Bastani, O., Yen, I.-L.: An efficient homomorphic encryption protocol for
multi-user systems. IACR Cryptology ePrint Archive, 2012:193 (2012)

https://doi.org/10.1007/978-3-642-19571-6_14
https://doi.org/10.1007/978-3-642-17373-8_22
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Author Index

Aaron Gulliver, T. 239
AlTawy, Riham 239
An, Xin 114
Ariffin, Muhammad Rezal Kamel 382
Armendariz, Igor 337
Asbullah, Muhammad Asyraf 382

Baghery, Karim 24
Basso, Andrea 195
Batina, Lejla 323, 337
Biasse, Jean-François 45

Campos, Fabio 258

Daemen, Joan 323
Damodaran, Aditya 66
De Micheli, Gabrielle 361
de Weger, Benne 301
Dequen, Gilles 214
Doulgerakis, Emmanouil 301
Dutta, Avijit 172
Dutta, Ratna 281

ElSheikh, Muhammad 91

Gavin, Gerald 423
Ghafar, Amir Hamzah Abd 382
González, Alonso 24

Hu, Kai 114
Hutchinson, Aaron 403

Ionica, Sorina 214

Kansal, Meenakshi 281
Karabina, Koray 403
Kohlstadt, Tim 258
Kutas, Péter 195

Laarhoven, Thijs 301

Merz, Simon-Philipp 195
Micheli, Giacomo 45

Nandi, Mridul 172

Paul, Goutam 152
Persichetti, Edoardo 45
Petit, Christophe 195
Piau, Rémi 361
Pierrot, Cécile 361
Pindado, Zaira 24

Ràfols, Carla 3, 24
Rahman, Mostafizar 152
Reith, Steffen 258
Rial, Alfredo 66
Rioja, Unai 337
Roelofs, Niels 323

Sachan, Satyam 132
Saha, Dhiman 132, 152
Samwel, Niels 323
Santini, Paolo 45
Silva, Javier 3
Stöttinger, Marc 258
Suryawanshi, Sahiba 132

Tainturier, Sandrine 423
Tolba, Mohamed 91
Trimoska, Monika 214

Wang, Meiqin 114
Weitkämper, Charlotte 195

Yehia, Mahmoud 239
Youssef, Amr M. 91

	Preface
	Organization
	Contents
	Zero Knowledge
	QA-NIZK Arguments of Same Opening for Bilateral Commitments
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Quasi-Adaptive Non-interactive Zero-Knowledge Proofs
	2.2 Assumptions

	3 Linear Relations in a Bilinear Group
	3.1 Algebraic Commitment Schemes
	3.2 Linear Equations in a Bilinear Group

	4 Non-aggregated Scheme
	5 Aggregated Scheme
	6 Optimality of Our Constructions
	References

	Signatures of Knowledge for Boolean Circuits Under Standard Assumptions
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Definitions
	2.2 Boolean Circuits
	2.3 Aggregated Proofs of Quadratic Equations
	2.4 Aggregated Proofs of Linear Equations

	3 SE NIZK Argument for Boolean CircuitSat
	3.1 Concrete USES QA-NIZK for Boolean CircuitSat
	3.2 Universally Composable Signature of Knowledge

	4 USS QA-NIZK Arguments of Knowledge Transfer for Linear Spaces
	4.1 USS LinDk Argument
	4.2 USS BLinDk Argument

	References

	LESS is More: Code-Based Signatures Without Syndromes
	1 Introduction
	2 Preliminaries
	2.1 Coding Theory
	2.2 Identification Schemes and Zero-Knowledge Protocols

	3 The Code Equivalence Problem
	3.1 Hardness

	4 Protocol Description
	5 Security Analysis
	5.1 Leon's Algorithm
	5.2 The Support Splitting Algorithm
	5.3 Application to Linear Code Equivalence

	6 Quantum Attacks on the Code Equivalence Problem
	7 Signature Scheme
	8 Concrete Instances
	8.1 Choice of Parameters
	8.2 Performance and Comparison

	9 Conclusion
	References

	UC Updatable Databases and Applications
	1 Introduction
	2 Modular Design and FNIC
	3 Functionality FUD
	4 Construction UD
	4.1 Building Blocks
	4.2 Description of UD

	5 Instantiation and Efficiency Analysis
	5.1 UC ZK Proof for Relation R
	5.2 Efficiency Analysis
	5.3 Implementation and Efficiency Measurements

	6 Modular Design with FUD and Applications
	7 Related Work
	8 Conclusion and Future Work
	References

	Symmetric Key Cryptography
	Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE
	1 Introduction
	2 Specifications of T-TWINE
	3 An Impossible Differential Distinguisher of T-TWINE
	3.1 Observations

	4 Impossible Differential Key-Recovery Attack on 27-Round T-TWINE-128
	5 Impossible Differential Key-Recovery Attack on 25-Round T-TWINE-80
	6 Conclusion
	A 18-round Impossible Differential Characteristic as Depicted in Figure8 of ch510.1007sps978sps3sps030sps26834sps3sps8
	References

	MixColumns Coefficient Property and Security of the AES with A Secret S-Box
	1 Introduction
	1.1 Our Contribution

	2 Preliminary
	2.1 Description of the AES
	2.2 Notations
	2.3 Exchange Attack

	3 Improved Key-Recovery Attack Based on Property 1
	4 Improved Key-Recovery Attack Based on Property 2
	5 Conclusion
	References

	New Results on the SymSum Distinguisher on Round-Reduced SHA3
	1 Introduction
	2 Preliminaries
	2.1 The Keccak Hash Function
	2.2 SymSum Distinguishers on SHA3
	2.3 Linear Structures

	3 Investigating Effect of Linear Structures on SymSum
	4 Augmenting the SymSum Distinguisher
	4.1 Extending SymSum Using 1-Round Linearization and -1 Trick
	4.2 Extension of SymSum Distinguisher up to 3 Rounds:

	5 Experimental Validation
	6 Discussion
	7 Conclusion
	References

	Cryptanalysis of
	1 Introduction
	2 Preliminaries
	2.1 Internal keyed Permutation PFk
	2.2 Yoyo Game

	3 Iterated Truncated Differential Attacks on PFk
	3.1 One Round Probabilistic Iterated Truncated Differential
	3.2 Key Recovery Using Iterated Truncated Differential
	3.3 Complexity Evaluation
	3.4 Experimental Verification

	4 Yoyo Attacks on PFk
	4.1
	4.2 Deterministic Distinguisher for r-round Flex-x
	4.3 Key Recovery for (r+1)-round Flex-x

	5 Success Probability of Distinguishing Attacks
	6 Forgery Attacks on
	6.1 Differential Characteristics in Sequence Generation

	7 Conclusion
	References

	BBB Secure Nonce Based MAC Using Public Permutations
	1 Introduction
	1.1 Permutation Based Cryptography

	2 Preliminaries
	2.1 Public Permutation Based Nonce Based MAC
	2.2 Almost Xor Universal and Almost Regular Hash Function
	2.3 Expectation Method
	2.4 Sum-Capture Lemma

	3 Solving a System of Affine (Non)-equations
	4 Security of nEHtM in Public Permutation Model
	4.1 Security of nEHtMp
	4.2 Matching Attack on nEHtMp

	5 Proof of Theorem 2: MAC Security of nEHtMp
	5.1 Definition and Probability of Bad Transcripts
	5.2 Analysis of Good Transcripts

	6 Proof of Lemma 2
	References

	Elliptic Curves
	On Adaptive Attacks Against Jao-Urbanik's Isogeny-Based Protocol
	1 Introduction
	2 Preliminaries
	2.1 Isogenies
	2.2 SIDH
	2.3 k-SIDH
	2.4 The GPST Attack on Static SIDH

	3 The DGLTZ Attack
	4 The Jao-Urbanik Protocol
	4.1 Parameter Selection
	4.2 Current Impact of DGLTZ on Jao-Urbanik Protocol

	5 Adaptive Attack Against the Jao-Urbanik Scheme
	5.1 Attack Model: A New Oracle
	5.2 Exploiting the Additional Structure: First Step
	5.3 Intermediate Bit and Pullback Computation
	5.4 Attack Costs for General
	5.5 Comparison of k'-SIDH and Jao-Urbanik's Protocol

	6 Conclusion
	A Querying with EB
	References

	A SAT-Based Approach for Index Calculus on Binary Elliptic Curves
	1 Introduction
	2 An Overview of Index Calculus
	2.1 Solving the Decomposition Problem Using SAT Solvers

	3 Model Description
	3.1 The Algebraic Model
	3.2 The CNF-XOR Model
	3.3 The CNF Model

	4 Breaking Symmetry
	5 Time Complexity Analysis
	6 Experimental Results
	7 Conclusions and Future Work
	A Appendix
	References

	Post Quantum Cryptography
	Hash-Based Signatures Revisited: A Dynamic FORS with Adaptive Chosen Message Security
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Hash to Obtain Random Subset (HORS) Few-Time Digital Signature Scheme

	3 FORS Security Analysis
	3.1 FORS in a Non-adaptive Setting
	3.2 Adaptive Chosen Message Attack Against FORS

	4 Dynamic Forest of Random Subsets (DFORS)
	4.1 DFORS Parameters
	4.2 Key Generation
	4.3 Signing and ORS Generation
	4.4 Signature Verification

	5 Security and Efficiency
	5.1 DFORS Security Analysis
	5.2 Theoretical Efficiency
	5.3 Comparison with HORS Variants

	6 Conclusion
	A HORS Specification
	B Adaptive Chosen Message Attack against HORS
	References

	LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4
	1 Introduction
	2 Hash-Based Signature Schemes
	2.1 One-Time Signature Schemes
	2.2 Many-Time Signature Schemes

	3 Comparison
	3.1 Prefixes and Bitmasks
	3.2 WOTS Public Key Compression

	4 LMS and XMSS on the Cortex-M4
	4.1 Implemented Hash Functions
	4.2 Speeding up XMSS

	5 Evaluation
	6 Conclusion
	A Further Results
	A.1 Speed and Stack Memory

	References

	Lattice Based Cryptography
	Round Optimal Secure Multisignature Schemes from Lattice with Public Key Aggregation and Signature Compression
	1 Introduction
	2 Preliminaries
	2.1 Multisignature - Syntax, Definition and Security Model

	3 The MS
	3.1 Security Proof

	4 Accountable Subgroup Multisignature
	4.1 The ASM

	References

	Sieve, Enumerate, Slice, and Lift:
	1 Introduction
	2 Preliminaries
	2.1 Lattice Problems
	2.2 Heuristic Assumptions
	2.3 Lattice Enumeration
	2.4 Lattice Sieving
	2.5 The Randomized Slicer
	2.6 Babai Lifting

	3 Sieve, Enumerate, Slice, and Lift!
	3.1 Hybrid 1: Sieve, Enumerate–and–Slice
	3.2 Hybrid 2: Sieve, Enumerate, Slice
	3.3 Hybrid 3: Sieve, Enumerate–and–Slice, Lift
	3.4 Hybrid 4: Sieve, Enumerate, Slice, Lift

	4 Sieve, Enumerate, Slice, Repeat!
	5 Experimental Results
	5.1 Verifying Assumption 4
	5.2 Assessing the Sieve, Enumerate–and–Slice Hybrid

	A Figures and Tables
	B The Number of Nodes in the Enumeration Tree
	C Asymptotics of the Hybrid Algorithms
	References

	Side Channel Attacks
	Online Template Attack on ECDSA:
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 ECDSA
	2.2 Double-and-Add
	2.3 Montgomery Ladder
	2.4 Online Template Attack

	3 Spotting the Attack Vector
	3.1 Finding the Similarity
	3.2 Preparing the Input

	4 Exploiting the Attack Vector
	4.1 Measurement Setup
	4.2 Bit Extraction
	4.3 Countermeasures

	5 Conclusion
	References

	When Similarities Among Devices are Taken for Granted: Another Look at Portability
	1 Introduction
	2 State of the Art
	2.1 Template Attacks
	2.2 Portability

	3 The Issue of Portability
	4 Similarity Assessment
	4.1 Dynamic Time Warping
	4.2 Similarity Assessment Technique

	5 Experimental Results
	5.1 Setup
	5.2 Use Case 1: Template Attack Using One Device in Profiling Phase
	5.3 Use Case 2: Template Attack Using Two Devices in Profiling Phase

	6 Conclusions
	References

	Cryptanalysis
	A Tale of Three Signatures: Practical Attack of ECDSA with wNAF
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves Digital Signature Algorithm
	2.2 WNAF Representation
	2.3 Lattice Reduction Algorithms

	3 Attacking ECDSA Using Lattices
	3.1 The Extended Hidden Number Problem
	3.2 Using EHNP to Attack ECDSA
	3.3 Constructing the Lattice

	4 Improving the Lattice Attack
	4.1 Reducing the Lattice Dimension: The Merging Technique
	4.2 Preprocessing the Traces

	5 Performance Analysis
	6 Error Resilience Analysis
	7 Conclusion and Countermeasures
	References

	Attacking RSA Using an Arbitrary Parameter
	1 Introduction
	2 Preliminaries
	3 The First Attack
	3.1 Estimating Numbers of (N,e)'s Satisfying eX - uY= Z-b

	4 The Second Attack
	5 Comparative Analysis
	6 Conclusion
	References

	New Algorithms and Schemes
	A New Encoding Algorithm for a Multidimensional Version of the Montgomery Ladder
	1 Introduction
	2 Preliminaries and Our Contributions
	2.1 Preliminaries
	2.2 Contributions and Organization

	3 Theoretical Results
	3.1 Determining the Bits of an Extension Sequence
	3.2 Determining the Column Sequence and Bitstring from an Extension Matrix
	3.3 Alternative Construction of an Extension Sequence

	4 Optimized d-MUL
	4.1 Differential Additions

	5 Conclusions
	References

	New Ideas to Build Noise-Free Homomorphic Cryptosystems
	1 Introduction
	2 Overview
	3 Some Security Results Under the Factoring Assumption
	3.1 Roots of Polynomials
	3.2 Symmetry

	4 An Additively Homomorphic Private-Key Encryption Scheme
	4.1 Externalizing the Generation of n
	4.2 A Basic Attack
	4.3 The Additive Operator
	4.4 Efficiency
	4.5 Discussion

	5 Security Analysis
	5.1 Knowledge of the CPA Attacker
	5.2 A Fundamental Result Based on Symmetry
	5.3 Attacks by Linearization
	5.4 Generic IND-CPA Security

	6 Perspectives
	6.1 A Naive/Toy Construction of Mult
	6.2 Overview
	6.3 Our Proposal
	6.4 Security Analysis

	A Implementation of Add in the Case =1
	B Removing the Factoring Assumption?
	C Proof of Proposition 1
	D Proof of Lemma 1
	D.1 The Proof
	D.2 Extension

	E Proof of Lemma 2
	F Proof of Proposition 5
	G Proofs of Sect.5.4
	G.1 Proof of Proposition 6
	G.2 Proof of Proposition 7
	G.3 Proof of Proposition 8

	References

	Author Index

