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Preface

The domain of eXplainable Artificial Intelligence (XAI) emerged to explain the
often-opaque decision mechanisms of machine learning algorithms and autonomous
systems. In particular, as intelligent agents and robots get more complex and more
involved in the daily lives of millions of users, making agents and robots
decision-making processes explainable is a chief priority to enhance their acceptability,
avoid failures, and comply with national and international relevant regulations.

The 2020 edition of the EXplainable TRansparent Autonomous Agents and
Multi-Agent Systems (EXTRAAMAS 2020) built on the successful track of workshops
initiated last year in 2019 in Montreal. In particular, EXTRAAMAS 2020 set the
following aims:

1. To strengthen the common ground for the study and development of explainable
and understandable autonomous agents, robots, and Multi-Agent Systems (MAS)

2. To investigate the potential of agent-based systems in the development of per-
sonalized user-aware explainable AI

3. To assess the impact of transparent and explained solutions on the user/agents
behaviors

4. To discuss motivating examples and concrete applications in which the lack of
explainability leads to problems, which would be resolved by explainability

5. To assess and discuss the first demonstrators and proof of concepts paving the way
for the next generation systems

EXTRAAMAS 2020 received 20 submissions. Each submission underwent a
rigorous peer-review process (at least three reviewers per paper). At the end of the
review process, nine papers were accepted (eight full papers and one demo) – contained
in this volume.

Unfortunately, due to COVID-19 travel restrictions, the workshop (and the
AAMAS1 conference) were held online, rather than in Auckland, New Zealand. For
each paper, the authors pre-recorded a video presentation, which is available on the
EXTRAAMAS website.2 Participants also had access to a Slack workspace, where
discussion took place. The keynote by Professor Miller was presented live using Zoom,
and a recording of the talk was subsequently made available online.

1 International Conference on Autonomous Agents and Multi-Agent Systems.
2 https://extraamas.ehealth.hevs.ch/program.html.

https://extraamas.ehealth.hevs.ch/program.html
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Agent-Based Explanations in AI: Towards
an Abstract Framework

Giovanni Ciatto1(B) , Michael I. Schumacher2 , Andrea Omicini1 ,
and Davide Calvaresi2

1 University of Bologna, 47521 Cesena, FC, Italy
{giovanni.ciatto,andrea.omicini}@unibo.it

2 HES-SO Valais, 3960 Sierre, Switzerland
{michael.schumacher,davide.calvaresi}@hevs.ch

Abstract. Recently, the eXplainable AI (XAI) research community has
focused on developing methods making Machine Learning (ML) predic-
tors more interpretable and explainable. Unfortunately, researchers are
struggling to converge towards an unambiguous definition of notions such
as interpretation, or, explanation—which are often (and mistakenly) used
interchangeably. Furthermore, despite the sound metaphors that Multi-
Agent System (MAS) could easily provide to address such a challenge,
and agent-oriented perspective on the topic is still missing. Thus, this
paper proposes an abstract and formal framework for XAI-based MAS,
reconciling notions, and results from the literature.

Keywords: Explainable artificial intelligence · Multi-agent systems ·
Understandability · Explainability · Interpretability

1 Introduction

The adoption of intelligent systems (IS) in modern society is booming: the trend
is mostly due to the recent momentum gained by Machine Learning (ML). In the
past decades, disruptive results from ML dictated several waves of temporary
yet massive adoption of AI systems, in both academia and industry. Therefore,
some authors refer to the current era as the third spring of AI—stressing that
AI has already lived two winters.

As in the previous springs of AI, the expectations are being inflated by the
promising predictive capabilities showed by ML-based IS. Besides the remarkable
computational capability characterising this era, the vast availability of data is
the second key aspect enabling the new spring. However, also modern researchers
and stakeholders are experiencing problems stemming from the opacity of ML-
based solutions.

The opacity of numeric predictors (i.e., the outcome of ML techniques applied
on data) is a broadly acknowledged issue, which has been studied even before

This paper is the full version of the extended abstract [9] soon to be appearing on the
AAMAS ’20 Proceedings.

c© Springer Nature Switzerland AG 2020
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the current spring of AI. However, mostly due to the unprecedented pace and
extent of ML adoption in several, often critical domains (e.g., finance, health-
care, and law), the need for addressing such opacity issues is more compelling
than ever [2].

The opaqueness of ML-based solutions is an unacceptable condition in a
world where ML is involved in many (safety-)critical activities. Indeed, perform-
ing automatic, good predictions (resp. provide useful decisions) is essential as
much as letting the humans involved in those contexts understand why and
how such predictions (resp. decisions) have been obtained. When humans can-
not understand the outcome or the behaviour of ML predictors involved in some
business processes, bad consequences can follow. This is because, in the current
society, the liability of decisions/actions is still mainly associated with human
beings (even if the outcomes have been obtained via IS). To make the picture
even more complicated, modern regulations recognise citizens right to receive
meaningful explanations when automatic decisions may affect their lives [12].
For all the above reasons, the problem of understanding ML results is rapidly
gaining momentum in recent AI research [5].

The topic of understandability in AI is nowadays the main concern of the
eXplainable AI community (XAI henceforth), whose name is due to a successful
project of DARPA [24]. There, the authors review the main approaches to make
AI more understandable to human beings. However, as further discussed in this
paper, we argue that studies in this field are flawed by a fundamental issue—
namely, they lack an unambiguous definition for the concept of explanation and,
consequently, a clear understanding of what X in XAI actually means. Indeed,
the notion of explanation is not clearly established in the literature, nor is there
a consensus on what the property named “explainability” should imply. This
is especially true for ML-based solutions, where knowledge is represented in a
sub-symbolic, unintelligible way.

Similar issues exist as far as the notion of interpretation is concerned. The
two terms are sometimes used interchangeably in the literature, whereas other
times they carry different meanings. To face such issues, we argue that since
multi-agent systems (MAS) offer a coherent yet expressive set of abstractions,
promoting conceptual integrity in the engineering of complex software systems
[18] – and of socio-technical systems (STS) in particular –, they can be exploited
to define a sound and unambiguous reference framework for XAI.

In this paper, we propose an abstract framework for XAI relying on notions
and results from the MAS literature. The framework is mostly targetting sub-
symbolic AI and ML-based intelligent systems. In particular, our framework
introduces a clear distinction among two orthogonal, yet interrelated, activities
– i.e., interpretation and explanation – which can be performed on sub-symbolic
predictors to make them more understandable in the eyes of human beings. Thus,
it provides a formal definition for such activities in the MAS perspective, thus
stressing the objective nature of explanation, other than the subjective nature of
interpretation.
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Accordingly, the paper is structured as follows. In Sect. 2 we provide an
overview of the XAI research domain. In Sect. 3 we present our abstract frame-
work. Then, Sect. 4 assesses our framework by showing how it can help in unam-
biguously defining the main problems in XAI. Conversely, Sect. 5 speculates on
some future directions. Finally, Sect. 6 concludes the paper.

2 Background

Most IS today leverage on sub-symbolic predictive models that are trained from
data through ML. The reason for such wide adoption is easy to understand. We
live in an era where the availability of data is unprecedented, and ML algorithms
make it possible to detect useful statistical information hidden into such data
semi-automatically. Information, in turn, supports decision making, monitoring,
planning, and forecasting in virtually any human activity where data is available.

However, ML is not the silver bullet. Despite the increased predictive power,
ML comes with some well-known drawbacks which make it perform poorly in
some use cases. One blatant example is algorithmic opacity—that is, essentially,
the difficulty of the human mind in understanding how ML-based IS function or
compute their outputs. This represents a serious issue in all those contexts where
human beings are liable for their decision, or, when they are expected to provide
some sort of explanation for it—even if the decision has been supported by some
IS. For instance, think about a doctor willing to motivate a serious, computer-
aided diagnosis, or, a bank employee in need of explaining to a customer why
his/her profile is inadequate for a loan. In all contexts, ML is at the same time
an enabling – as it aids the decision process by automating it – and a limiting
factor—as opacity prevents human awareness of how the decision process works.

Opacity is why ML predictors are also referred to as black boxes into the
literature. The “black box” expression refers to models where knowledge is not
explicitly represented [15]. The lack of some explicit, symbolic representation of
knowledge is what makes it hard for humans to understand the functioning of
black boxes, and why they led to suggest or undertake a given decision. Clearly,
troubles in understanding black-box content and functioning prevent people from
fully trusting – therefore accepting – them. To make the picture even more com-
plex, current regulations such as the GDPR [25] are starting to recognise the
citizens’ right to explanation [12]—which implicitly requires IS to eventually
become understandable. Indeed, understanding IS is essential to guarantee algo-
rithmic fairness, to identify potential bias/problems in the training data, and to
ensure that IS perform as designed and expected.

Unfortunately, the notion of understandability is neither standardised nor
systematically assessed, yet. At the same time, there is no consensus on what
exactly providing an explanation should mean when decisions are supported
by a black box. However, several authors agree that not all black boxes are
equally interpretable—meaning that some black boxes are more susceptible to
understand than others for our minds. For example, Fig. 1 is a common way to
illustrate the differences in black-box interpretability.
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Fig. 1. Interpretability/performance trade-off for some common sorts of black-box pre-
dictors

Even though informal – as pointed on in [22], given the lack of ways to
measure “interpretability” – Fig. 1 effectively expresses why more research is
need on understandability. In fact, the image essentially states how the better
performing black boxes are also the less interpretable ones. This is a problem in
practice since only rarely predictive performances can be sacrificed in favour of
a higher degree of interpretability.

To tackle such issues, the XAI research field has recently emerged. Among
the many authors and organisations involved in the topic, DARPA has proposed
a comprehensive research road map [24], which reviews the main approaches to
make black boxes more understandable. There, DARPA categorises the many
currently available techniques aimed at building meaningful interpretations or
explanations for black-box models, it summarises the open problems and chal-
lenges, and it provides a successful reference framework for the researchers inter-
ested in the field. Unfortunately, despite the great effort in defining terms,
objects, and methods for the research line, a clear definition of fundamental
notions such as interpretation and explanation is still missing.

2.1 Related Work

Notions such as explanation, interpretation, and transparency are mentioned,
introduced, or informally defined in several works. However, a coherent frame-
work has not yet emerged. This subsection recalls some significant contributions
from the literature discussing concepts of explanation and interpretation – or
any variant of theirs. Our goal here is to highlight the current lack of consensus
on the meaning of such terms, for which we propose a possible, unambiguous
alternative in the next sections.

Similarly to what we do here, Lipton [15] starts his discussion by recognising
how most definitions of ML interpretability are often inconsistent and underspec-
ified. In his clarification effort, Lipton essentially maps interpretability on the
notion of transparency, and explanation on the notion of post-hoc interpretation.
Then, he enumerates and describes the several possible variants of transparency,
that are (i) simulatability – i.e., the practical possibility, for a human being, to
“contemplate the entire model at once” and simulate its functioning on some
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data – which characterises, for instance, generalised linear models; (ii) decom-
posability – i.e., the possibility, for the model to be decomposed in elementary
parts whose functioning is intuitively understandable for humans and helpful
in understanding the whole model – which characterises, for instance, decision
trees; and (iii) algorithmic transparency – i.e., the possibility, for a human being,
to intuitively understand how a given learning algorithm, or the predictors it
produces, operate – which characterises, for instance, k-nearest-neighbors tech-
niques. Similarly, post-hoc interpretability is defined as an approach where some
information is extracted from a black box in order to ease its understanding.
Such information have not necessarily to expose the internal functioning of the
black box. As stated in the paper: “examples of post-hoc interpretations include
the verbal explanations produced by people or the saliency maps used to analyze
deep neural networks”.

Conversely, Besold et al. [3] discuss the notion of explanation at a funda-
mental level. There, the authors provide a philosophical overview on such topic,
concluding that “explanation is an epistemological activity and explanations are
an epistemological accomplishment—they satisfy a sort of epistemic longing, a
desire to know something more than we currently know. Besides satisfying this
desire to know, they also provide the explanation-seeker a direction of action that
they did not previously have”. Then they discuss the topic of explanation in AI
from a historical perspective. In particular, when focussing on ML, they intro-
duce the following classification of IS systems: (i) opaque systems – i.e., black
boxes acting as oracles where the logic behind predictions is not observable or
understandable –, (ii) interpretable systems – i.e., white boxes whose functioning
is understandable to humans, also thanks to the expertise, resources, or tools –,
and (iii) comprehensible systems—i.e., “systems which emit symbols along with
their outputs, allowing the user to relate properties of the input to the output”.
According to this classification, while interpretable systems can be inspected to
be understood – thus letting observer draw their explanations by themselves–
comprehensible systems must explicitly provide a symbolic explanation of their
functioning. The focus is thus on who produces explanations, rather than how.

In [10], the interpretability of ML systems is defined as “the ability to explain
or to present in understandable terms to a human”. Interpretations and expla-
nations are therefore collapsed in this work, as confirmed by the authors using
the two terms interchangeably. The remainder of that paper focuses (i) on iden-
tifying under which circumstances interpretability is needed in ML, and (ii) how
to assess the quality of some explanation.

The survey by Guidotti et al. [13] is a nice entry point to explainable ML. It
consists of an exhaustive and recent survey overviewing the main notions, goals,
problems, and (sub-)categories in this field, and it encompasses a taxonomy of
existing approaches for “opening the black box”—which may vary a lot depend-
ing on the sort of data and the family of predictors at hand. There, the authors
define the verb to interpret as the act of “providing some meaning of explain-
ing and presenting in understandable terms some concepts”, borrowing such
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a definition from the Merriam-Webster1 dictionary. Consequently, they define
interpretability as “the ability to explain or to provide the meaning in under-
standable terms to a human”— a definition they again borrow from [10]. So, in
this case as well the notions of interpretation and explanations are collapsed.

In [22], Rudin does not explicitly define explainability or interpretability, and
she refers to interpretable or explainable ML almost interchangeably. However,
she states some interesting properties of interpretability, which influenced our
work. In particular, she acknowledges that “interpretability is a domain-specific
notion”. Furthermore, she links interpretability of information with its complex-
ity – and, in particular, its sparsity –, as the amount of cognitive entities the
human mind can handle at once is minimal (∼7 ± 2 according to [16]). As far
as explainability is concerned, apparently, Rudin adopts a post-hoc perspective
similar to the one in [15], as she writes, “an explanation is a separate model
that is supposed to replicate most of the behaviour of a black box”. In the
remainder of that paper, the author argues how the path towards interpretable
ML steps through broader adoption of inherently interpretable predictors – such
as generalised linear models or decision trees – rather than relying on post-hoc
explanations which do not reveal what is inside black boxes—thus preventing
their full understanding.

Finally, the recent article by Rosenfeld et al. [21] is similar in its intents to
our current work. There, the authors attempt to formally define what explana-
tion and interpretation respectively are in the case of ML-based classification.
However, their work differs from ours in several ways. In particular, they define
interpretation and explanation differently from what we do. In fact, according
to the authors, “interpretation” is a function mapping data, data schemes, and
predictors to some representation of the predictors internal logic, whereas “expla-
nation” is defined as “the human-centric objective for the user to understand”
a predictor using the aforementioned interpretation function. Other notions are
formally defined into the paper, such as for instance, (i) explicitness, (ii) fair-
ness, (iii) faithfulness, (iv) justification, and (v) transparency. Such concepts are
formally defined in terms of the aforementioned interpretation and explanation
functions. The reminder of that paper then re-interprets the field of XAI in terms
of all the notions mentioned so far.

3 Explanation vs. Interpretation

This section introduces the preliminary notions, intuitions, and notations we
leverage upon in Sect. 3.1 and subsequent sections, in order to formalise our
abstract framework for agent-based explanations. We start by providing an intu-
ition for the notion of interpretation, and, consequently, for the act of interpret-
ing something. Accordingly, we provide an intuition for the property of “being
interpretable” as well, stressing its comparative nature. Analogously to what we
did with interpretation, we then provide intuitions for terms such as explanation
and its derivatives.
1 https://www.merriam-webster.com/dictionary/interpret.

https://www.merriam-webster.com/dictionary/interpret
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About Interpretation. Taking inspiration from the field of Logics, we define the
act of “interpreting” some object X as the activity performed by an agent A –
either human or software – assigning a subjective meaning to X. Such meaning
is what we call interpretation. Roughly speaking, an object X is said to be
interpretable for an agent A if it is easy for A to draw an interpretation for
X—where “easy” means A requires a low computational (or cognitive) effort
to understand X. For instance, consider the case of road signs, which contain
symbols instead of scripts to be easily, quickly, and intuitively interpretable.

We model such intuition through a function IA(X) �→ [0, 1] providing a degree
of interpretability – or simply interpretability, for short – for X, in the eyes of
A. The value IA(X) is not required to be directly observable or measurable
in practice, since agents’ mind may be inaccessible in most cases. This is far
from being an issue, since we are not actually interested in the absolute value of
IA(X), for some object X, but rather we are interested in being able to order
different objects w.r.t. their subjective interpretability. For instance, we write
IA(X) > IA(Y ), for two objects X and Y , meaning that the former is more
interpretable than the latter, according to A. For example, consider the case
of a neural network and a decision tree, both trained on the same examples
to solve the same problem with similar predictive performances. Both objects
may be represented as graphs. However, it is likely for a human observer to
see the decision tree as more interpretable—as their nodes bring semantically
meaningful, high-level information.

Summarising, we stress the subjective nature of interpretations, as agents
assign them to objects according to their State of Mind (SoM) [19] and back-
ground knowledge, and they need not be formally defined any further.

A

X'X

IA(X') > IA(X)

IA(X')IA(X)

X' = E(X)

Fig. 2. Explanation vs. Interpretation: a simple framework

About Explanation. We define “explaining” as the activity of producing a more
interpretable object X ′ out of a less interpretable one, namely X, performed by
agent A. More formally, we define explanation as a function E(X) �→ X ′ mapping
objects into other objects, possibly, in such a way that IA(X ′) > IA(X), for some
agent A. The simple framework described so far is summarised in Fig. 2.

Notice that human beings tend to collapse into the concept of “explanation”
the whole sequence of steps actually involving both explaining and interpreting,
according to our framework. This happens because, if the explained object X ′

is as interpretable for the listening agent B as it is for the explaining agent
A, then both A and B are likely to be satisfied with X ′. Conversely, it may
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also happen the explanation E adopted by A produces an object X ′, which is
more interpretable than X for A but not for B. Similarly to how two persons
would handle such an unpleasant situation, we envision that interaction and
communication may be adopted to break such impasses in multi-agent systems.

In the following sections, we develop such an idea, describing how our simple
framework could be extended to support ML-based intelligent systems.

3.1 A Conceptual Framework for XAI

In AI several tasks can be reduced to a functional model M : X → Y mapping
some input data X ⊆ X from an input domain X into some output data Y ⊆ Y
from an output domain Y.

In the following, we denote as M the set of all analogous models M ′ : X → Y,
which attempts to solve the same problem on the same input data—usually, in
(possibly slightly) different ways. For instance, according to this definition, a
decision tree and a neural network, both trained on the same data-set to solve
the same classification problem with similar accuracies, are analogous—even if
they belong to different families of predictors.

At a very high abstraction level, many tasks in AI may be devoted to com-
pute, for instance:

– the best M∗ ∈ M, given X ⊆ X and Y ⊆ Y (e.g. supervised ML),
– the best M∗ and Y , given X (e.g. unsupervised ML),
– the best Y ∗, given X and M (e.g. informed/uninformed search),
– the best X∗, given Y and M (e.g. abduction, most likely explanation), etc.

according to some goodness criterion which is specific for the task at hand.
In the reminder of this section, we discuss how explanation may be defined

as a function searching or building a – possibly more interpretable – model w.r.t.
the one to be explained. For this process to even make sense, of course, we require
the resulting model to be not only analogous to the original but also similar in
the way it behaves on the same data. We formalise such a concept through the
notion of fidelity.

Let M,M ′ ∈ M be two analogous models. We then say M has a locally
good fidelity w.r.t. M ′ and Z if and only if Δf(M(Z),M ′(Z)) < δ for some
arbitrarily small threshold δ ≥ 0 and for some subset of the input data Z ⊂ X.
There, Δf : 2Y × 2Y → R≥0 is a function measuring the performance difference
among two analogous models.

Local Interpretations. When an observer agent A is interpreting a model M
behaviour w.r.t. some input data Z ⊆ X, it is actually trying to assign a
subjective interpretability value IA(R) to some representation R = r(M,Z) of
choice, aimed at highlighting the behaviour of M w.r.t. the data in Z. There,
r : M × 2X → R is representation means, i.e., a function mapping models into
local representations w.r.t. a particular subset of the input domain, whereas R is
the set of model representations. For instance, in the case M is a classifier, R may



Agent-Based Explanations in AI: Towards an Abstract Framework 11

M(X) M'(Z)

R R'
A

IA(R') - IA(R) > ε

M' = E(M, Z)

∃ Z⊆X : Δf(M(Z), M'(Z)) < δ

R = r(M, X) R' = r'(M', Z)

IA(R')IA(R)

Fig. 3. Local explanation and interpretation of model M

be a graphical representation of (a portion of) the decision boundary/surface for
a couple of input features.

There may be more or less interpretable representations of a particular model
for the same observer A. Furthermore, representations may be either global or
local as well, depending on whether they represent the behaviour of the model
for the whole input space, or for just a portion of it. For example, consider the
case of a plot showing the decision boundary of a neural network classifier. This
representation is likely far more interpretable to the human observer than a
graph representation showing the network structure, as it synthesise the global
behaviour of the network concisely and intuitively. Similarly, saliency maps are
an interpretable way to locally represent the behaviour of a network w.r.t. some
particular input image. So, a way for easing interpretation for a given model
behaviour w.r.t. a particular sort of inputs is about looking for the right repre-
sentation in the eyes of the observer.

Local Explanations. Conversely, when an observer A is explaining a model M
w.r.t. some input data Z ⊆ X, it is actually trying to produce a model M ′ =
E(M,Z) through some function E : M × 2X → M. In this case, we say M ′ is
a local explanation for M w.r.t. to Z. We also say that M ′ is produced through
the explanation strategy E.

Furthermore, we define an explanation M ′ as admissible if it has a valid
fidelity w.r.t. the original model M and the data in Z—where Z is the same
subset of the input data used by the explanation strategy. More precisely, we
say M ′ is δ-admissible in Z w.r.t. M if Δf(M(Z),M ′(Z)) < δ.

Finally, we define an explanation M ′ as clear for A, in Z, and w.r.t. the
original model M , if there exists some representation R′ = r(M ′, Z) which is
more interpretable than the original model representation R. More precisely, we
say M ′ is ε-clear for A, in Z, and w.r.t M if IA(R′) − IA(R) > ε for some
arbitrarily big threshold ε > 0.

Several explanations may actually be produced for the same model M . For
each explanation, there may be again more or less interpretable representations.
Of course, explanations are useful if they ease the seek for more interpretable
representations. Thus, providing an explanation for a given model behaviour
w.r.t. a particular class of inputs is about creating ad-hoc metaphors aimed at
easing the observer’s understanding.
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M M'

A

IA(R') - IA(R) > ε
R R'

M' = E(M)

Δf(M, M') < δ

IA(R)

R = r(M) R' = r'(M')

IA(R')

Fig. 4. Global explanation and interpretation of model

Global/Local Explanations. The theoretical framework described so far – which
is graphically synthesised in Fig. 3 – is aimed at modelling local interpretations
and explanations, that are, the two means an explanator agent may exploit in
order to make AI tasks’ outcomes more understandable in the eyes of some
explanee.

Conversely, when the goal is not to understand some model outcome, but
the model itself, from a global perspective – or, equivalently, when the goal is
to understand the model outcome w.r.t the whole set of input data X –, the
theoretical framework described so far is simplified as shown in Fig. 4, where the
dependency on the input data is omitted from functions E, Δf , and r. This is
possible because we consider the global case as a particular case of the local one,
where Z ≡ X.

Finally, we remark that the case where a model M is to be understood on
a single input-output pair, say x and y = M(x), is simply captured by the
aforementioned local model, through the constraint Z = {x} and M(Z) = {y}.

3.2 Discussion

Our framework is deliberately abstract in order to capture a number of features
we believe to be essential in XAI. First of all, our framework acknowledges – and
properly captures – the orthogonality of interpretability w.r.t. explainability.
This is quite new, indeed, considering that most authors tend to use the two
concepts as if they were equivalent or interchangeable.

Furthermore, our framework explicitly recognises the subjective nature of
interpretation, as well as the subtly objective nature of explanation. Indeed,
interpretation is a subjective activity directly related to agents’ perception and
SoM, whereas explanation is an epistemic, computational action which aims at
producing a high-fidelity model. The last step is objective in the sense that it
does not depend on the agent’s perceptions and SoM, thus being reproducible
in principle. Of course, the effectives of an explanation is again a subjective
aspect. Indeed, a clear explanation (for some agent) is a more interpretable
variant of some given model—thus, the subjective activity of interpretation is
again implicitly involved.

The proposed framework also captures the importance of representations.
This is yet another degree of freedom that agents may exploit in their seek for



Agent-Based Explanations in AI: Towards an Abstract Framework 13

a wider understandability of a given model. While other frameworks consider
interpretability as an intrinsic property of AI models, we stress the fact that a
given model may be represented in several ways, and each representation may be
interpreted differently by different agents. As further discussed in the remainder
of this paper, this is far from being an issue. This subjectivity is deliberate, and
it is the starting point of some interesting discussions.

Finally, our framework acknowledges the global/local duality of both expla-
nation and interpretation, thus enabling AI models to be understood either gen-
eral or with respect to a particular input/output pair.

3.3 Practical Remarks

The ultimate goal of our framework is to provide a general, flexible, yet minimal
framework describing the many aspects concerning AI understandability in the
eyes of a single agent. We here illustrate several practical issues affecting our
framework in practice, and further constraining it.

According to our conceptual framework, a rational agent seeking to under-
stand some model M (or make it understandable) may either choose to elaborate
on the interpretation axis – thus looking for a (better) representation R of M
– or it can elaborate on the explainability axis—thus producing a novel, high
fidelity model M ′, coming with a representation R′ which is more interpretable
than the original one (i.e., R).

Notice that, in practice, the nature of the model constrains the set of admissi-
ble representations. This means that a rational agent is likely to exploit both the
explanation and interpretation axes in the general case—because novel represen-
tations may become available through an explanation. we argue and assume that
each family of AI models comes with just a few natural representations. Because
of this practical remark, we expect that, in real-world scenarios, an agent seek-
ing for understandability is likely to “work” on both the interpretation and the
explanation axes.

For instance, consider decision trees, which come with a natural represen-
tation as a tree of subsequent choices leading to a decision. Conversely, neu-
ral networks can either be represented as graphs or as algebraic combinations
of tensors. In any case, neural network models are commonly considered less
interpretable than other models. In such situation, a rational agent willing to
make a neural network more understandable may choose to combine decision
trees extraction (explanation) – possibly focusing on methods from the litera-
ture [1,4] – to produce a decision tree whose tree-like structure (representation)
could be presented to the human observer to ease his/her interpretation. The
decision-tree like representation is not ordinarily available for neural networks,
but it may become available provided that an explanation step is performed.

Another interesting trait of our framework concerns the semantics of clear
explanations. The current definition requires explanation strategies to consume a
model M with a given representation R and to produce a high-fidelity model M ′

for which a representation R′ exists, which is more interpretable than R. Several
semantics may fit this definition. This is deliberate, since different semantics may
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come with different computational requirements, properties, and guarantees. For
instance, one agent may be interested in finding the best explanation—that is,
the one for which each representation is more interpretable than the most inter-
pretable representation of the original model. Similarly, in some cases, it may be
sufficient – other than more feasible – to find an admissible explanation—that
is, a high-fidelity model for which some representation exists that is more inter-
pretable than some representation of the original model. However, the inspection
of the possible semantics and their properties falls outside the scope of this paper
and is going to be considered as a future research direction.

4 Assessment of the Framework

The abstraction level of the presented framework has also been conceived in
order to capture most of the current state of the art. Along this line, this section
aims at validating the fitting of the existing contributions w.r.t. the framework
presented in Sect. 3.1: if our framework is expressive enough, it should allow most
(if not all) existing approaches to be uniformly framed, to be easily understood
and compared. To this end, we leverage on the work by Guidotti et al. [13],
where the authors perform a detailed and extensive survey on the state-of-the-
art methods for XAI, by categorising the surveyed methods according to an
elegant taxonomy. Thus, hereafter, we adopt their taxonomy as a reference for
assessing our framework.

The taxonomy proposed by Guidotti et al. essentially discriminates among
two main categories of XAI methods. These are the “transparent box design”
and the “black-box explanation” categories. While the former category is not
further decomposed, the latter comes with three more sub-categories, such as
“model explanation”, the “outcome explanation”, and the “model inspection”.
Notice that, despite the authors’ definition of “explanation” does not precisely
match the one proposed in this paper, we maintained the original categorisation.

The remainder of this section navigates such a taxonomy accordingly, by
describing how each (sub-)category – along with the methods therein located –
fits our abstract framework.

4.1 Model Explanation

The mapping of the methods classified as part of the “model explanation” sub-
category into our framework is seamless. Hence, it can be defined as follows:

Let M be a sub-symbolic classifier whose internal functioning representation
R is poorly interpretable in the eyes of some explanee A, and let E(·) be some
global explanation strategy. Then, the model explanation problem consists of
computing some global explanation M ′ = E(M) which is δ-admissible and
ε-clear w.r.t. to A, for some δ, ε > 0.

For instance, according to Guidotti et al., possible sub-symbolic classifiers are
neural (possibly deep) networks, support vector machines, and random forests.
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Conversely, explanation strategies may consist of algorithms aimed at (i) extract-
ing decision trees/rules out of sub-symbolic predictors and the data they have
been trained upon, (ii) compute feature importance vectors, (iii) detecting
saliency masks, (iv) detecting partial dependency plots, etc.

In our framework, all the algorithms mentioned above can be described as
explanation strategies. Such mapping is plausible given their ability to compute
an admissible, and possibly more explicit models out of black boxes and the
data they have been trained upon. However, it is worth to highlight that the
clarity gain produced by such explanation strategies mostly relies on the implicit
assumption that their output models come with a natural representation which
is intuitively interpretable to the human mind.

4.2 Outcome Explanation

Methods classified as part of the “outcome explanation” sub-category can be
very naturally described in our framework as well. In fact, it can be defined as
follows:

Let M be some sub-symbolic classifier whose internal functioning represen-
tation R = r(M,Z) in some subset Z ⊂ X of the input domain is poorly
interpretable to some explanee A, and let E(·, ·) be some local explanation
strategy. Then, the outcome explanation problem consists of computing some
local explanation M ′ = E(M,Z) which is δ-admissible and ε-clear w.r.t. to
A, for some δ, ε > 0.

Summarising, while input black boxes may still be classifiers of any sort, explana-
tion, and explanation strategies differ from the “model explanation” case. In par-
ticular, explanation strategies in this sub-category may rely on techniques lever-
aging on attention models, decision trees/rules extraction, or well-established
algorithms such as LIME [20], and its extensions—which are essentially aimed
at estimating the contribution of every input feature of the input domain to the
particular outcome of the black box to be explained.

Notice that the explanation strategies in this category are only required to
be admissible and clear in the portion of the input space surrounding the input
data under study. Such a portion is implicitly assumed to be relatively small in
most cases. Furthermore, the explanation strategy is less constrained than in the
global case, as it is not required to produce explanations elsewhere.

4.3 Model Inspection

Methods classified as part of the “model inspection” sub-category can be natu-
rally defined as follows:

Let M be a sub-symbolic classifier whose available global representation R =
r(M) is poorly interpretable to some explanee A, and let r(·), r′(·) be two
different representation means. Then, the model inspection problem consists
of computing some representation R′ = r′(M) such that IA(R′) > IA(R).
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Of course, solutions to the model inspection problem vary a lot depending on
which specific representation means r(·) is exploited by the explanator, other
than the nature of the data the black box is trained upon. Guidotti et al. also
provide a nice overview of the several sorts of representations means which may
be useful to tackle the model inspection problem, like, for instance, sensitivity
analysis, partial dependency plots, activation maximization images, tree visual-
isation, etc.

It is worth pointing out the capability of our framework to reveal the actual
nature of the inspection problem. Indeed, it clearly shows how this is the first
problem among the ones presented so far, which only relies on the interpretation
axis alone to provide understandability.

4.4 Transparent Box Design

Finally, methods classified as part of the “transparent box design” sub-category
can be naturally defined as follows:

Let X ⊆ X be a dataset from some input domain X , let r(·) be a representa-
tion means, and let A be the explanee agent. Then the transparent box design
problem consists of computing a classifier M for which a global representation
R = r(M,X) exists such that IA(R) > 1 − δ, for some δ > 0.

Although very simple, the transparent-box design is of paramount importance
in XAI systems as it is the basic brick of most general explanation strategies.
Indeed, it may be implicit in the functioning of some explanation strategy E to
be adopted in some other model or outcome explanation problem.

For instance, consider the case of a local explanation strategy E(M,X) �→
M ′. In the general case, to compute M ′, it relies on some input data X and the
internal of the to-be-explained model M . However, there may be cases where the
actual internal of M are not considered by the particular logic adopted by E.
Instead, in such cases, E may only rely on X and the outcomes of M , which are
Y = M(X). In this case, the explanation strategy E is said pedagogical—whereas
in the general case it is said decompositional (cf. [1]).

In other words, as made evident by our framework, the pedagogical methods
exploited to deal with the model or outcome explanation problems must inter-
nally solve the transparent box design problem, as they must build an inter-
pretable model out of some sampled data-set and nothing more.

5 Towards the Social Dimension of Explainability

In previous sections, we mostly focus on understandability from the single-agent
perspective. Conversely, in this section we move from the intra-agent perspective
– relying on the framework presented in Sect. 3.1 – to the inter -agent one—where
two or more interacting agents are involved [8].

Our discussion stems from the observation that the agent extracting/eliciting
information In other words, no agent explains something to itself. Furthermore,
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in a multi-agent setup, it is plausible to have agents characterised by heteroge-
neous (potentially exclusive) capabilities and knowledge bases. In this situation,
transferring knowledge and demanding for explanations may not even be possible
without a social connotation. Indeed, the social, interactive dimension of under-
standability is well recognised (e.g., in the social sciences), and some authors are
already suggesting the XAI research community should take it into account [17].
Accordingly, we argue that our framework should be extended in this direction.

In particular, we envision two main actors

explanator—formulating and sharing an explanation, and the
explanee—consuming and possibly demanding the explanation

needing to establish a mutual-understanding. The explanator and the explanee
can be a software agent, a human, or a grouped combination of them.

The possible social scenarios to share explanations can be generalised in 1-to-
1, 1-to-n, and m-to-n. Thus, the framework presented in Sect. 3.1 – which mostly
focuses on the single-agent perspective – needs further extensions to tackle the
challenge of understandability in a multi-agent scenario.

Mutual understanding is not just an algorithm, nor is it some cognitive activ-
ity that an agent can perform by itself; it is instead a formalised protocol involv-
ing two or more parties. Therefore, aiming at scaling our framework to the MAS
setup, we envision the following behaviours to be modelled.

As the interpretation function is subjective by construction, a piece of given
information can be considered interpretable by agent A but not by another agent
B. Consequently, if agent A is willing to make a model X understandable by
another agent B, a joint agreement about the representation of the explanation
has to be established. We define mutual understanding as a request-response
protocol involving at least one agent acting as explanator and one agent acting
as explanee—both either virtual or humans. Such an agreement may involve the
establishment of a common taxonomy and knowledge reconciliation [14,23].

The protocol can begin with the explanator taking the initiative to share
an explanation or with an explainee requiring it. The object of the explanation
is the desire to understand the behaviour of a given model M w.r.t some data
X—which is naturally represented through R = r(M,X). Assuming that the
explanator can rely on a wider dataset X ′ ⊇ X than the one the explanee is
relying upon (i.e., X), it may respond in several ways:

– it may produce an alternative representation R′ = r′(M,X ′) of M on some
data X ′ ⊇ X, expecting that R′ may result more interpretable than R in the
eyes of the explanee

– it may produce an explanation for M in X ′ by leveraging on some internal
strategy E, hoping that the natural representation R′′ = r′′(E(M),X ′) of
E(M) in X ′ may result more interpretable than R in the eyes of the explanee

In turn, the explanee may provide feedback based on its subjective interpreta-
tion of the proposed representation. The protocol may thus go through one or
more request-response rounds. The object of the further iteration(s) can be (i)
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a specific component of the explanation – possibly demanding for a new level of
granularity of the explanation – or (ii) the entire explanation that might need
a complete rehearsal to be eventually understood. To prevent possible endless
(diverging) explanations, we have to discriminate their underlying scenario. E.g.:

1-to-1—Once reached the most granular representation of an information, the
agent say “no more additional information are available” concluding the iter-
ations and declaring the failure of the explanation;

1-to-n—In case of misalignment on the understanding of a given explanation,
techniques from defeasible reasoning [11] might be exploited to avoid the
failure of the explanation;

m-to-n—Likewise the previous scenario, it is envisioned to possibly implement
defeasible reasoning. Moreover, mechanisms enabling explanation-support
among the n explanator might be developed to overcome the failure for lack
of specification.

Another factor raising the complexity of the mutual-understanding is the possible
heterogeneous composition of the explanator(s) or explanee(s) (e.g., a composi-
tion of both virtual and humans actors). A possible solution might be to generate
clusters (e.g., sub-pools of explanators and explainees) and generate reconciled
and personalised explanations. Including the human factor in the social explain-
ability demands to consider elements such as expectations, trust, State of Mind
(SoM), emotions and multi-modal formats of the explanation (e.g., natural lan-
guage and graphical).

Finally, it is worth to be mentioned that the idea of leveraging on interaction
to reach mutual understanding shares some similarities with several works from
the planning literature, such as [6,7], For instance, in [7], agents support humans’
understanding via model reconciliation, that is, a corpus of methods aimed at
letting a human receive explanations w.r.t. the sequence of actions computed
by a planning agent. In particular, such methods (i) define explanation in a
planning-specific way, and (ii) involve interaction among the human (explanee)
and the agent (explanator). However, despite some common insights, we argue
our framework is original w.r.t the area of explainable planning. Indeed, whereas
works in this area mostly focus on planning – which is an important subset of
symbolic AI – our work mostly focuses on sub-symbolic AI—a difference which
heavily affects how understandability is defined and pursued. Furthermore, while
other works target scenarios involving both humans and software agents, we
explicitly target both this case and the agents-only one.

6 Conclusion

Despite the many efforts of the XAI community in addressing opacity issues
in ML-based intelligent systems, most works in this area still rely on natural-
language-based definitions of fundamental concepts such as explanation and
interpretation. Accordingly, in this work, we firstly explore the inconsistencies
still affecting the definitions of interpretability and explainability in some recent
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impactful papers. Then, to overcome the limitations of natural language defi-
nitions, we propose an abstract framework for XAI deeply rooted in the MAS
mindset—which is the main contribution of this paper. To assess the proposed
framework, we compare it against existing studies in the field of XAI, showing
how it can naturally and unambiguously provide clear definitions for the main
sorts of tasks laying under the XAI umbrella. Finally, we propose some ways
to scale the intra-agent to the inter-agent explainability and elaborate on the
potential social implications characterising the dynamics among the agents.
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2019. LNCS (LNAI), vol. 11763. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30391-4

6. Chakraborti, T., Sreedharan, S., Kambhampati, S.: Balancing explicability and
explanation in human-aware planning (2017). https://arxiv.org/abs/1708.00543

7. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations
as model reconciliation: moving beyond explanation as soliloquy. In: 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 156–163. AAAI
Press, Melbourne (2017). https://doi.org/10.24963/ijcai.2017/23

8. Ciatto, G., Calegari, R., Omicini, A., Calvaresi, D.: Towards XMAS: eXplainability
through multi-agent systems. In: Savaglio, C., Fortino, G., Ciatto, G., Omicini, A.
(eds.) AI&IoT 2019 - Artificial Intelligence and Internet of Things 2019. CEUR
Workshop Proceedings, vol. 2502, pp. 40–53. Sun SITE Central Europe, RWTH
Aachen University, November 2019

9. Ciatto, G., Calvaresi, D., Schumacher, M.I., Omicini, A.: An abstract framework for
agent-based explanations in AI. In: 19th Interational Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2020). IFAAMAS, Auckland (2020)

10. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. CoRR abs/1702.08608 (2017)
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Abstract. Online social networks are known to lack adequate multi-
user privacy support. In this paper we present EXPRI, an agent archi-
tecture that aims to assist users in managing multi-user privacy conflicts.
By considering the personal utility of sharing content and the individu-
ally preferred moral values of each user involved in the conflict, EXPRI
identifies the best collaborative solution by applying practical reasoning
techniques. Such techniques provide the agent with the cognitive process
that is necessary for explainability. Furthermore, the knowledge gath-
ered during the practical reasoning process allows EXPRI to engage in
contrastive explanations.

Keywords: Multi-user privacy · Practical reasoning · Explainable AI

1 “EXPRI, Agent EXPRI”: Introduction

Online collaborative platforms have recently generated an increasing concern for
individual privacy. One specific privacy problem is that, whenever the content to
be shared involves more than a person, the privacy policies should be understood
and approved by all the users involved. If this does not happen, a multi-user
privacy conflict (MPC) is likely to occur. Among other platforms, online social
networks (OSNs) have proved to be particularly unsuitable to manage access
control in a satisfying way for the users [6,12,36]. A common example of MPC
in the literature is the case of a picture representing a group of friends, where
each of them would assign different degrees of publicity/privacy to the picture
on the OSN. Currently, most platforms lack built-in mechanisms that allow the
users to discuss and agree on a policy in advance [42], and the responsibility
of selecting a policy is generally left solely to the uploader. The other involved
users, if unhappy with the uploader’s choice, can only resort to unsatisfying
reparative solutions, such as untagging or asking for the content to be removed.

MPCs happen frequently, with a majority of users having experienced at
least one MPC [37]. However, generally users have collaborative attitudes, e.g.
in a recent study [37] most uploaders wished to have known in advance the
consequences of their decisions in order to tackle the conflicts before they occurr.

Previously, in [21], we have outlined an agent architecture to assist users
during MPCs. In this paper we define further this agent architecture, that we
now name EXPRI, especially in regard of its explainable component. EXPRI is
c© Springer Nature Switzerland AG 2020
D. Calvaresi et al. (Eds.): EXTRAAMAS 2020, LNAI 12175, pp. 21–38, 2020.
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an agent that aims to help users solve MPCs in OSNs by computing the optimal
sharing policy for all the involved users. Optimality is considered in terms of
(i) the utility that each user gains from sharing the content with a particular
audience, and (ii) the promotion of moral values, i.e. the degree of coherency
with the individual morality of choosing each possible policy. Several previous
studies pointed out the necessity for autonomous systems to fully support users
in privacy decisions (and not only), they need to be transparent and explainable
[23,34]. We show how EXPRI, which follows practical reasoning techniques to
identify the optimal action, is fully equipped with the necessary information to
provide a justification for the optimal action to the end-user; then we present a
collection of starting points to inspire the development of the social process of
EXPRI, e.g. how to best convey a justification to the end-user.

2 “For Your Eyes only”: Related Work in Privacy

In recent years, models for better supporting users to collaboratively deal with
MPCs have been proposed in the related literature. We refer the interested reader
to more comprehensive surveys like [12,23,36] for further details on multiuser
privacy management. Researchers focused on the achievement of desirable prop-
erties [21], such as role-agnosticism, adaptability, explainability, and value- and
utility-orientation. Given the aim of this paper, we particularly focus on what
previous works have achieved in terms of explainability.

The ability of a system to be able to explain itself and justify its outputs is
generally considered crucial for fostering the users’ trust towards autonomous
systems [23,34]. Of course, this is also valid in the context of multiuser privacy.
The running hypothesis is that, by interacting with explainable systems, users
will find it easier to understand the received recommendations and, consequently,
to endorse them, notably reducing the occurrence of MPCs.

The approaches suggested for this type of application range from game the-
oretical solutions [27,32], to agent-based ones [22,35,38], to learning models
[10,40], and more technical, fine-grained systems [13]. Despite the abundance
of efforts, none of these approaches can be considered fully explainable. How-
ever, some solution-concepts, like argumentation-based models, make it easier
than others to meet the explainability requirement. In [14] each user of the OSN
is represented by an agent that captures its user’s privacy constraints through
ontologies and semantic rules. When MPCs occur, the agents interact in per-
suasion dialogues to defend their privacy preferences. The arguments generated
in the dialogue can be reported to the users as a justification of the output,
even though the best way to do so is not investigated by the authors. In [9], the
authors design a recommendation system, where the prediction of the optimal
collective sharing policy is based on the scenario’s context, the users’ preferences,
and their arguments about those preferences. A limited set of arguments is con-
sidered, leaving unclear their efficacy in convincing the users, but providing the
first steps towards an explanation of the system’s decision.

Our work differs from the literature because it presents a design that is
explicitly oriented towards the provision of an explanation. We consider the
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transparency of the process as the main feature of our model, where the provided
explanation is crucial and not just an accessory of the model.

3 “A View to an EXPRI”: The Agent Architecture

In this section we detail the components of our agent architecture, EXPRI. We
instantiate an agent EXPRI for each user registered to the OSN: each agent
supports a user while taking decisions on multiuser privacy. In order to do so,
the agent needs to be aligned with the user’s preference, in terms of (i) utility and
(ii) moral values. In fact, users are reported to share content online for personal
advantage [15], but they may also consider the consequences of their decisions
and transcend their own benefit to accommodate others’ preferences [37].

3.1 Utility-Driven Component of EXPRI

We represent a OSN as a graph G = (Ag,R), where Ag is the set of all the
registered agents/users ak, and R is the set of all their relationships (ak, aj , ikj),
with ikj being the intimacy of the relationship between the users ak and aj . We
consider intimacy as defined in [11], where the authors present also a way to
elicit it automatically.

We assume that every user has an individual preference in terms of public-
ity/privacy for sharing content, that can be elicited automatically for each item
or a collection of them [20,33]. We define the concepts below for each individual
content x, even though for simplifying the notation we do not always report x.

Definition 1. The user ak defines the sharing policy spk = 〈d, i〉 for the item
x, meaning that ak wants to allow access to x to any other user who is distant
at most d and intimate at least i.

Definition 2. The individual audience for the user ak is the set audsp,k of
users who satisfy the conditions set by a sharing policy sp for the content x.

Definition 3. The collective audience is the set audsp =
⋂

k∈Ag audsp,k, that
is the intersection of the individual audiences of all the involved users generated
by the sharing policy sp for the content x.

A multi-user privacy conflict (MPC) occurs whenever two or more users, who
are involved in the same content, have contrasting preferred sharing policies, i.e.
their preferred individual audiences do not coincide.

As discussed in [15], we believe that users perceive some type of benefit when
sharing an appealing photo online, but they can also experience some discomfort
whenever a picture is seen by undesired people. We refer to this advantage and
disadvantage in terms of gain or loss of utility. Furthermore, in order to find
a compromise to solve the MPC, users may be more inclined to overshare or
undershare, that is to make the content available to a broader or smaller audience
than the preferred one.
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Definition 4. The function appreciation determines whether the user prefers
to overshare (appk(x) = 1) or undershare (appk(x) = −1) the item x.

Definition 5. Given the preferred audience audk and a sharing policy sp, if
sharing with the collective audience audsp, the individual utility of user ak varies
according to:

uaudsp,k =
∑

j∈allDesAud

ij
dj

−
∑

j∈excDesAud

ij
dj

+ appk(x)
∑

j∈allExtAud

ij
dj

, (1)

where allDesAud (allowed desired audience) is the set of users who ak desires
to grant access to x and that are part of audsp; excDesAud (excluded desired
audience) is the set of users who ak desires to grant access to but that are excluded
by audsp; allExtAud (allowed extra audience) is the set of users who ak desires
to forbid access from but that are part of audsp.

Users perceive a gain in utility whenever approved people access the content,
but they can lose utility if undesired people access the content (if appreciation
is negative) or desired people are excluded. Also, these effects get amplified with
people that are closer and more intimate, as reported in recent user studies [37].

Example. Let us consider the simplified OSN in Fig. 1. Alice, Bob and Charlie
appear together in the picture x. Their preferred sharing policies are respec-
tively spA = 〈2, 2〉, spB = 〈1, 3〉 and spC = 〈3, 4〉, and generate the follow-
ing preferred individual audiences: audA = {A,B,C,D,E, F,G, I, L}, audB =
{A,B,C,D,G} and audC = {A,B,C,G, I}. A conflict occurs, because the
three preferred individual audiences do not coincide. The collective audiences
resulting from the intersection of the individual ones generated by each pol-
icy are audspA

= {A,B,C,D,E,G, I, L}, audspB
= {A,B,C} and audspC

=
{A,B,C,G, I}. Furthermore, Alice and Bob have a positive appreciation for x
(appA(x) = appB(x) = 1), while for Charlie it is negative (appC(x) = −1).

Let us consider sp′ = 〈2, 3〉 as a possible sharing policy for x: the collective
audience generated by sp′ is audsp′ = {A,B,C,D,G, I} (that we rename as aud′
for brevity). Then, Alice, Bob and Charlie would perceive the following variation
in utility:

uaud′,A =
∑

j∈{B,C,D,G,I}

ij
dj

−
∑

j∈{E,F,L}

ij
dj

=
5

1
+

4

1
+

3

1
+

10

2
+

9

2
− 2

1
− 6

2
− 2

1
= 14.5

uaud′,B =
∑

j∈{A,C,D,G}

ij
dj

+
∑

j∈{I}

ij
dj

=
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1
+

3

1
+

3

1
+

5

1
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8

2
= 20

uaud′,C =
∑

j∈{A,B,G,I}

ij
dj

− 1 ·
∑

j∈{D}

ij
dj

=
4

1
+

3

1
+

8

2
+

5

1
− 7

2
= 12.5
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Fig. 1. The simplified online social network discussed in the example.

Table 1. Interpretation of the Schwartz values in the multi-user application and details
of their promotion and demotion for a user, comparing different sharing options with
own preference.

Value Interpretation Condition

OTC Appreciate compromises
which differ from anyone’s
initial preference

+ If sharing with no one’s initial preference

− If sharing with another user’s preference

CO Preserve individual and
social security

+ If sharing with a smaller audience

− If sharing with a bigger audience

ST Do what is good for the other
people

+ If sharing with the other’s preference

+ If compromising with the other user

− If ignoring the other user’s preference

− If rejecting an offer

SE Maintain or increase one’s
own utility

+ If sharing with own preference

+ If gaining a better utility

− If gaining a worse utility

3.2 Value-Aligned Component of EXPRI

We base the moral component of EXPRI on the Schwartz Theory of Basic Values
[30]. This is the most well-known and established theory of human values and
combines a complete theoretical architecture with a strong empirical validation.

Values are socially desirable concepts representing the mental goals which drive
human behaviour [30], influencing any decision. In particular, the Schwartz theory
presents ten main values, organised along four directions (which we refer to as V)
that pull apart. On one axis, openness to change (OTC) is opposed to conserva-
tion (CO), representing dynamic and independent ways of acting versus conser-
vatory and self-restraining attitudes. On the other axis, self-transcendence (ST)
reflects tolerant and altruistic behaviours in opposition to self-enhancement (SE),
which characterises authoritarian and image-conscious conducts. The individual
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preference over these values, which is considered relatively stable over time [5], can
be elicited from the users through validated questionnaires [30].

Given the MPC application, we interpret the Schwartz value-directions as
described in Table 1, where we also report how the user’s behaviour can promote
or demote the values. However, this is just for illustrative purpose, because our
agent architecture for solving conflicts can be adapted to any other value theory
or application. We believe that the agent can suggest solutions to the MPC that
are more compatible with the user’s morale if it is informed about the user’s
preferred order over the values. Hence, while reasoning about possible solutions
to the conflict, EXPRI considers the value promotion of a sharing policy.

Definition 6. Given a user ak and her preferred order ok over V, the value
promotion of an audience aud for the user ak is given by

vaud,k =

|V|∑

i=1

(I − i) · promaud(oi), (2)

where I = |V| + 1, and prom(oi) = 1 if the i-th preferred value is promoted
by selecting aud, prom(oi) = −1 if the i-th preferred value is demoted, and
prom(oi) = 0 otherwise.

Running Example. Alice, Bob and Charlie’s preferred orders over the values V
are, respectively:

OTC ≺A SE ≺A CO ≺A ST

CO ≺B OTC ≺B ST ≺B SE

ST ≺C CO ≺C OTC ≺C SE

The selection of aud′ = audsp′ = {A,B,C,D,G, I} generates the following indi-
vidual value promotions:

vaud′,A = + 4 − 3 + 2 + 1 = 4

vaud′,B = − 4 + 3 + 2 + 1 = 2

vaud′,C = + 4 − 3 + 2 − 1 = 2

Alice promotes every value but SE, Bob promotes every value but CO, and
Charlie promotes only ST and OTC.

3.3 Resolution of MPCs

Each EXPRI agent can cover two roles in the resolution of a MPC: uploader,
when the user wants to share some content online, and co-owner, when the
user is involved in some content that another user wants to share. Let us recall
that we consider a non-adversarial setting: therefore, we assume that the agents
cooperate in order to identify a collectively satisfying solution to the MPC. In
fact, empirical studies showed how users are frequently willing to find acceptable
compromises; in particular, uploaders reported to wish to have known in advance
the preferences of the co-owners, to avoid conflicts before their occurrence [37].
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For each conflict involving n users, a set A of at most n + 1 audiences are
considered as possible solutions: the collective audiences audspk

generated by
each individually preferred sharing policy spk, and aud′, generated in such a
way that aud′ �= audspk

∀k.
Independently of the role, all agents compute an individual score for each

possible solution, expressing their appreciation of the option in terms of both
utility and value promotion:

saud,k =

{
+|uaud,k| · |vaud,k| if uaud,k > 0 ∧ vaud,k > 0,

−|uaud,k| · |vaud,k| otherwise.
(3)

Then, each EXPRI-coowner shares with EXPRI-uploader its individual scores: in
this way, each agent collaborates without directly disclosing its potential gain in
terms of neither utility nor value promotion. Then, EXPRI-uploader aggregates
all the individual scores into a collective score for each possible solution:

saud =
∑

k∈Ag

sk,aud. (4)

Finally, EXPRI-uploader identifies the most desirable solution, through the pro-
cess we describe in the next section, and suggests it to the EXPRI-coowners. The
EXPRI-coowners also perform a similar reasoning process to decide whether to
accept or reject the offer. At the end of the deliberations, the outcomes can be
reported to the users: we discuss possible guidelines to do this in Sect. 5.

Running Example. Table 2 reports the individual utilities and value promotions
for each agent and each possible audience. The details of the computations are
reported, for instance regarding the utilities and the value promotions for sp′,
in the previous examples.

Table 2. Individual and collective metrics for the scenario in the example.

Agents audspA audspB audspC audsp′

u v s u v s u v s u v s

A 22.5 0 0 −10.5 −4 −42 8.5 −4 −34 14.5 +4 58

B 27 −4 −108 0 0 0 14 −4 −56 20 +2 40

C 6.5 −2 −13 2 +4 8 16 −5 −64 12.5 +2 25

Collective −121 −34 −154 123

4 “From Practical Reasoning with Love”: Design of the
Cognitive Process

As Miller discusses in [19], an explanation is composed by a cognitive process,
i.e. the process of abductive inference determining the causal attribution for



28 F. Mosca et al.

a given event, and a social process, i.e. the interactive process of transferring
knowledge between the explainer and the explainee. In this section we describe
how techniques from computational argumentation can be applied in order to
provide EXPRI with a cognitive process that allows the agent to gather the
necessary information in order to justify to the user the selection of the optimal
solution to the MPC.

We start by considering that an argument scheme (AS) and its associated
critical questions can enable an agent to propose, attack and defend justifications
for a given action [3]. In the following we adapt the AS, that was introduced by
Atkinson, to EXPRI-uploader (AS-U) and EXPRI-coowners (AS-C). For AS-
U, this would take the form of “Given the current conflict, I should offer the
audience aud, that will be accepted by the co-owners and therefore will solve
the conflict, that will provide the score saud and that will promote my values
V”. Symmetrically, AS-C results to be: “Given the current conflict, I should
accept the audience aud and solve the conflict, to get the score saud and to pro-
mote my values V”1. An agent who does not accept this presumptive argument,
can challenge it by presenting critical questions (CQs), formally described in
[3]. Unfavourable answers to the CQs provide attacks to the original argument.
Attacks can be directed to different elements of the argument, i.e. to the different
stages of the practical reasoning (PR) which led to such conclusion. In line with
[2,3], in the remaining part of this section we present the three stages of the
practical reasoning (PR) process for the agent EXPRI, namely (i) the problem
formulation, (ii) the epistemic stage, and (iii) the choice of action.

Table 3. Detail of the joint actions JAg, for each audi ∈ A, and the partial transition
function τ when n = 3 in a MPC scenario.

JAg τ

j1−4 = 〈offeraudi , reject2,audi , reject3,audi〉 τ(conflict, j1−4) = conflict

j5−8 = 〈offeraudi , accept2,audi , reject3,audi〉 τ(conflict, j5−8) = conflict

j9−12 = 〈offeraudi , reject2,audi , accept3,audi〉 τ(conflict, j9−12) = conflict

j13−16 = 〈offeraudi , accept2,audi , accept3,audi〉 τ(conflict, j13−16) = agreementaudi

4.1 Problem Formulation

The first step of PR consists of representing the relevant elements of the situation
(i.e. conflict occurrence, possible solutions, involved users’ preferences, etc.). We
perform this task by building an Action-Based Alternating Transition Systems
with Values (AATS+V) [3]. This structure provides the underlying semantics
that we use to describe the world and formulate the arguments about action,
in particular when the outcome of an individual action (e.g. for the uploader to

1 Note that the definition of “values” in [3] is based on [26], which is different from
that of Schwartz [31] that we use in this paper.
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offer some particular solution) depends on what the other agents decide to do
(e.g. whether the co-owners accept or reject the uploader’s offer). We refer to
this case as joint actions (JAg), i.e. actions that are performed at the same time2

by a set of agents. For clarity, in Table 3 we show the possible joint actions in
the MPC scenario with n = 3 agents involved: we reported all the combinations
of individual actions that are available to each agent, i.e. offeraudi

for the
uploader, and acceptaudi

and rejectaudi
for the co-owners, referring to all the

possible audiences audi ∈ A. We adapt for the MPC scenario the definition of
AATS+V given in [3].

Definition 7. In the context of a MPC among n users, an AATS+V is a
2n + 8 tuple Σ = 〈Q, q0, Ag,Ac1, ..., Acn, ρ, τ, S,V, Av1, ..., Avn, δ〉, where:

– Q = {conflict, agreementaud ∀aud ∈ A} is a finite, non-empty set of states;
– q0 = conflict is the initial state;
– Ag = {up1, co2, ..., con} is the set of agents involved in the MPC, with the

roles of uploader or co-owners;
– Ac1 = {offeraud ∀aud ∈ A} are the actions available to the agent up1;
– Ack = {acceptk,aud, rejectk,aud ∀aud ∈ A} are the actions available to the

agent cok, for k = 2...n;
– ρ : AcAg → 2Q is the action-precondition function, which defines the set

of states from which an action ac ∈ AcAg can be executed: ρ(offeraud) =
ρ(acceptaud) = ρ(rejectaud) = conflict;

– τ : Q×JAg → Q is the partial system transition function, which defines what
state results from performing the joint action j in the state q, where possible
(see the case with n = 3 in Table 3);

– S = {0, saud ∀aud ∈ A} is the set of collective scores characterising each
state, where sconflict = 0;

– V = {SE, ST,CO,OTC} is the set of values considered by each agent;
– Avk = ok(V) is the preferred total order of the agent Agk over the values V;
– δ : Q × Q × AvAg → {+,−,=} is the valuation function, which defines the

effect of a transition over each value of each agent (see Table 1).

Running Example. Considering the scenario described in the previous examples
and Table 3, the first step of the reasoning process for EXPRI-uploader, that
represents Alice, consists of the problem formulation given by the AATS+V
in Fig. 2. Note that each agent knows only its own value preference (therefore
the evaluation of δ); however, in the figure we represent all the promoted and
demoted values for completeness: δA is in red, δB in blue, and δC in green.

4.2 Epistemic Stage

The epistemic stage consists of determining what the agent believes about the
current situation, given the previous problem formulation. Let us recall our

2 Similarly to [4], we assume the offer and the response to be a “simultaneous” action,
despite its sequentiality.
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Fig. 2. Problem formulation through AATS+V for the scenario in example. (Color
figure online)

assumption, based on empirical evidence [37], that the EXPRI agents have a
collaborative and non-adversarial behaviour. From this underlying assumption
we can further imply other two fundamental epistemic assumptions:

– EA1 (for all the agents): all agents interpret the world in a similar manner:
hence, all the agents have the same knowledge regarding all the components
of the AATS+V, the only exception being Avk. In fact, in order to preserve
even further the privacy of the users involved in the MPC, we assume that
each agent k only knows its own preferred order Avk over the values and is
uninformed about any other Avj for j �= k.

– EA2 (for EXPRI-uploader): the co-owners are believed to accept an offer
in two situations, i.e. when the offered audience guarantees either (i) the
maximum score for the co-owner itself (sk,aud′ = maxA sk,aud), or (ii) the
maximum collective score (saud′ = maxA saud).

With reference to the CQs in [3], because of EA1, we are not interested in
the CQs that are related to the problem formulation (CQ2-4 and CQ12-16) and
its truthfulness (CQ1). Because of EA2, we are able to evaluate appropriately
CQ17 when instantiated for each possible argument.

4.3 Choice of Action

The last step of the PR is the choice of action, that is the development of a
value-based argumentation framework (VAF), which instantiates an appropriate
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argumentation scheme, and the consequent evaluation of the arguments accord-
ing to the preference of values.

We focus in particular on AS-U and AS-C, and the critical questions which
contest the optimality of the identified action, i.e. to offer aud for the EXPRI-
uploader, and to accept or reject aud for the EXPRI-coowners. We refer to
the questions CQ5-CQ11 from [3]: CQ5, CQ6 and CQ7 offer alternative actions
that realise the same consequence, goal and value promotion; CQ8, CQ9 and
CQ10 consider unacknowledged side effects, such as demotion of desired values
or promotion of other values; and, finally, CQ11 wonders whether there is any
other action that is more desirable in terms of values promotion.

The collection of negative answers to these CQs provides the justification for
action. We argue that this abductive reasoning is sufficient to define the causal
attribution of the recommended event and, therefore, the practical reasoning
process can be equivalent to the cognitive process required for providing an
explanation.

Running Example. Let us analyse the process of choosing an action for the
agent EXPRI acting on behalf of Alice, the uploader. Given the assumption of
cooperative behaviour and the common goal of solving the MPC by reaching
an agreement, EXPRI-uploader discards immediately the joint actions j1−12:
in fact, if at least one of the co-owners does not accept the offer, the conflict
is guaranteed to persist. The uploader needs to identify the optimal audience
to offer, i.e. the one that, if accepted by the co-owners like in j13−16 provides
the best agreement. In order to do this, with reference to Fig. 2, the uploader
examines one by one its possibilities and checks whether they get challenged by
any CQ. Note that we do not report a graphical representation of the VAF that
would be generated in this process because of the high number of considered
arguments; however, we detail the main arguments and all the attacks provided
by the CQs (we leave implicit any supporting relationship).

– AS-U for j13: “Given the current conflict, I should offer audspA , that will be
accepted by the co-owners, to solve the conflict, to obtain the score sA,audspA
and to promote SE and CO.”

• obj13.1: a better score can be achieved by performing alternative actions
(CQ5): successful, e.g. in j14 and j16;

• obj13.2: the agreement is reached also with alternative actions (CQ6): success-
ful, e.g. in j14, j15 and j16;

• obj13.3: CO is promoted also with alternative actions (CQ7): successful, e.g.
in j14, j15 and j16;

• obj13.4: ST is demoted (CQ9): rejected, because Alice cares more about SE
and CO (here promoted) than ST;

• obj13.5: OTC is demoted (CQ9): successful, OTC is the most preferred value
for Alice;

• obj13.6: other values can be promoted by performing alternative actions
(CQ11): successful, e.g. +OTC in j16, which Alice prefers to SE and CO;

• obj13.7: EXPRI-Bob will not accept the offer (CQ17): successful, because
sB,audspA

�= maxA sB,aud and saudspA �= maxA saud;
• obj13.8: EXPRI-Charlie will not accept the offer (CQ17): successful, because

sC,audspA
�= maxA sC,aud and saudspA �= maxA saud.
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– AS-U for j14: “Given the current conflict, I should offer audspB , that will be
accepted by the co-owners, to solve the conflict, to obtain the score sA,audspB
and to promote ST and CO.”

• obj14.1: a better score can be achieved by performing alternative actions
(CQ5): successful, e.g. j16;

• obj14.2: the agreement is reached also with alternative actions (CQ6): success-
ful, e.g. in j13, j15 and j16;

• obj14.3: CO is promoted also with alternative actions (CQ7): successful, e.g.
in j13, j15 and j16;

• obj14.4: ST is promoted also with alternative actions (CQ7): successful, e.g.
in j15 and j16;

• obj14.5: SE is demoted (CQ9): successful, SE is the second most preferred
value for Alice;

• obj14.6: OTC is demoted (CQ9): successful, OTC is the most preferred value
for Alice;

• obj14.7: other values can be promoted by performing alternative actions
(CQ11): successful, e.g. +OTC in j16, which Alice prefers to ST and CO;

• obj14.8: EXPRI-Bob will not accept the offer (CQ17): successful, because
sB,audspB

�= maxA sB,aud and saudspB �= maxA saud;
• obj14.9: EXPRI-Charlie will not accept the offer (CQ17): successful, because

sC,audspB
�= maxA sC,aud and saudspB �= maxA saud.

– AS-U for j15: “Given the current conflict, I should offer audspC , that will be
accepted by the co-owners, to solve the conflict, to obtain the score sA,audspC
and to promote ST and CO.”

• obj15.1: a better score can be achieved by performing alternative actions
(CQ5): successful, e.g. j16;

• obj15.2: the agreement is reached also with alternative actions (CQ6): success-
ful, e.g. in j13, j14 and j16;

• obj15.3: CO is promoted also with alternative actions (CQ7): successful, e.g.
in j13, j14 and j16;

• obj15.4: ST is promoted also with alternative actions (CQ7): successful, e.g.
in j14 and j16;

• obj15.5: SE is demoted (CQ9): successful, SE is the second most preferred
value for Alice;

• obj15.6: OTC is demoted (CQ9): successful, OTC is the most preferred value
for Alice;

• obj15.7: other values can be promoted by performing alternative actions
(CQ11): successful, e.g. +OTC in j16, which Alice prefers to ST and CO;

• obj15.8: EXPRI-Bob will not accept the offer (CQ17): successful, because
sB,audspC

�= maxA sB,aud and saudspC �= maxA saud;
• obj15.9: EXPRI-Charlie will not accept the offer (CQ17): successful, because

sC,audspC
�= maxA sC,aud and saudspC �= maxA saud.

– AS-U for j16: “Given the current conflict, I should offer audsp′ , that will be accepted
by the co-owners, to solve the conflict, to obtain the score sA,audsp′ and to promote
ST, OTC and CO.”

• obj16.1: the agreement is reached also with alternative actions (CQ6): success-
ful, e.g. in j13, j14 and j15;

• obj16.2: CO is promoted also with alternative actions (CQ7): successful, e.g.
in j13, j14 and j15;
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• obj16.3: ST is promoted also with alternative actions (CQ7): successful, e.g.
in j14 and j15;

• obj16.4: SE is demoted (CQ9): rejected, because Alice cares more about OTC
(here promoted) than SE;

• obj16.5: other values can be promoted by performing alternative actions
(CQ11): rejected, because SE (promoted in j13) is less important to Alice than
OTC, here promoted;

• obj16.6: EXPRI-Bob will not accept the offer (CQ17): rejected, because
sB,audsp′ = maxA sB,aud and saudsp′ = maxA saud;

• obj16.7: EXPRI-Charlie will not accept the offer (CQ17): rejected, because
sC,audsp′ = maxA sC,aud and saudsp′ = maxA saud.

AS-U for j13 is rejected, because all the attacks provided by the CQs are
successful (note that obj13.4 is considered irrelevant because of Alice’s values
preference); similarly, the arguments for j14 and j15 are rejected. Regarding AS-U
for j16, we reject in a subsequent moment obj16.1, obj16.2 and obj16.3, because
the suggested alternative actions are proved not to be as desirable as the current
action (all their objections are successful).

In conclusion, EXPRI-uploader identifies j16 as the most desirable joint
action and therefore suggests Alice to offer audsp′ . The EXPRI-coowners go
through a similar reasoning process, which we do not report in detail for lack of
space, to identify the best individual action upon the uploader’s offer.

5 “The Cognitive Process Is Not Enough”: Challenges
for Designing the Social Process

So far we have showed how EXPRI is able to solve an MPC by identifying
through practical reasoning the optimal solution for an MPC in OSNs. According
to [25], abductive reasoning provides the best explanation given all available
information. This means that, EXPRI’s practical reasoning being an abductive
form of reasoning, by reporting it, the agent can provide the best explanation
for the given recommended action.

However, considering the social nature of explanations in AI [19], we have
to address the very important distinction between explainable AI and self-
explainable AI. An artificial agent can be explainable in the sense that humans
can follow and understand its cognitive process, and by following this process,
humans are able to explain why the agent is doing what it is doing. A self-
explainable artificial agent, on the other hand, is a socially aware agent which
has the capability of communicating explanations to the human that it interacts
with. For reasons of trustworthiness [41], accountability [7], and responsibility
[8], that have been mentioned in the literature, it is desirable for an agent to be
self-explainable.

Both [19] and [16] propose that social awareness is necessary for explainable
agency. They suggest that a social agent must be able to transfer knowledge from
itself (the explainer) to a user (the explainee) in such a way as to give the user
the necessary information to understand the causes of its recommendation. This



34 F. Mosca et al.

can happen when the agent is able (i) to engage in counterfactual explanations,
e.g. justifying the rejection of possible alternative actions; and (ii) to tailor the
explanation according to the individual user’s needs. In the following, we outline
how EXPRI may be able to meet these requirements.

Contrastive Explanations. In [19], Miller clearly summarises the importance of
providing contrastive explanations. Research shows that people are in general
not as interested in the causes of an event per se, as they are in the relation
of that event to some other event that did not occur. For instance, a user may
wonder why EXPRI suggested action x rather than action y. An answer to
this question might provide a more convincing explanation for the user than the
simple motivation to choose x. As we detailed earlier, EXPRI’s cognitive process
comprises of practical reasoning about alternative options through the discussion
of critical questions. The process of accepting or rejecting each objection that
arises from the CQs provides EXPRI with the necessary knowledge to justify why
the action it suggests is the optimal one and why the alternatives are not as good
as the optimal one. It follows that EXPRI is able to answer any interrogation
that the user may conduct in terms of contrasting and comparing the other
possible options.

Tailored Explanations. We are planning to give EXPRI the capability of provid-
ing explanations that are generated by taking into account the perspective of the
interlocutor and/or interlocutors. Continuing on the path of using practical rea-
soning, it could be feasible to use AATS+V to reason about which is the optimal
explanation depending on the social context in which the interaction between
EXPRI and the given user takes place. To be able to do this, EXPRI could build
an AATS+V taking into account the values and beliefs of the user, in order to
be able to reason from the perspective of the user. This additional AATS+V is
similar to a Theory-of-Mind (ToM) of the user [1]. However, the formation of
this additional AATS+V that is to be used for finding the optimal explanation
in social interactions is not as straightforward: the joint actions are not sets of
uploader’s offers and co-owners’ responses anymore, but they represent subsets
of dialogues. That is, EXPRI needs to be able to reason about elements such as
speech acts, their implicatures, and how these elements change the beliefs and
update the knowledge of the interlocutor during a dialogue. Similarly to [4], the
epistemic stage now involves uncertainty, because EXPRI does not know what
the user’s reaction to its explanation may be. Argumentation Dialogue Games
(ADGs) [18] provide an elegant way to address this issue. ADGs have recently
been used for the formation and use of ToM through speech acts to reach states
of shared beliefs with other agents [24], even under conditions of uncertainty [29],
for dynamic story generation in interrogation games [28], as well as for providing
protocols of interactive explanations to users [17]. Therefore, EXPRI could use
ADGs to reason about how and what it communicates to the interlocutor in
order to see what kind of explanation might emerge from a hypothetical inter-
action. Ideally, after going through various alternative dialogues, it would be
able to select the dialogue it intends to have with the interlocutor, that will lead
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to the optimal explanation. EXPRI could also use ADGs to reason about what
it tells the interlocutor and what the interlocutor understands in real time, by
updating its ToM of the interlocutor based on what the interlocutor tells or asks
EXPRI.

Explaining Conflicts. Conflict management literature makes the distinction
between three main components of a conflict in multi-agent systems, namely
conflict detection, conflict representation, and conflict resolution [39]. Perhaps,
in most cases it would be useful to give users a general overview of the context
evolution of the MPC, explaining why and how a solution has been found or not.
From a causal attribution perspective, it seems reasonable that conflict detection
represents the cause of whose effect is represented by the conflict’s resolution.
Therefore, in the case of an MPC, it would be desirable to have an explanation
that not only guides the user from cause to effect, but also that describes to the
user the cause and the effect [19]. In this way, the user can assess whether the
agent that is providing the explanation has understood the context and has thus
grounded the explanation in a realistic representation. Such a causal explanation
guides the user from commonly established premises that describe the conflict’s
detection, to a valid conclusion that represents the solution, or lack thereof.

In conclusion, the explanation for the user should describe the conflict detec-
tion and the conflict resolution. On the other hand, the conflict representation,
e.g. using AATS+V, does not need to be explicitly included in the explanation,
as it is the representation itself that allows the agent to generate explanations.
We argue that if the conflict representation is accurate, then the explanation
that is generated from it using PR will consist of a valid and sound argument.

Running Example. EXPRI-uploader needs to communicate to Alice the optimal
output, i.e. to offer audsp′ . There are several possibilities to do so. For illustrative
purposes, we report a hypothetical dialogue that may happen between EXPRI-
uploader (EU) and Alice (A), to show how EXPRI can provide contrastive and
tailored explanations.

EU(1): Given the disagreement with Bob and Charlie about how to share your
picture, to offer audsp′ is your most convenient action, because it would allow
you to compromise with your friends (remember that openness-to-change is your
most preferred value).
A: Why shouldn’t I offer audspA instead?
EU(2): Because you could get a better score than the one guaranteed by audspA

(obj13.1), openness-to-change would be demoted (obj13.5), and because Bob
and Charlie would most likely reject your offer (obj13.7 and obj13.8).

Note that EU(1) is a tailored explanation, because openness-to-change is a very
important value to Alice and to highlight its promotion would not necessarily be
as efficacious when interacting with a different user. Also, EU(2) is a contrastive
explanation, that provides justification for the optimal action by reporting the
objections to the alternative action that Alice asked about.
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6 “Tomorrow Never Dies”: Discussion and Future Work

In this paper we have presented EXPRI, an agent architecture that aims to
assist users for managing multiuser privacy in online social networks. EXPRI
identifies for each user, that is involved in a privacy conflict, the best action
to collaboratively solve it, by considering both the utility they would gain by
sharing the content online and the personal moral values they would promote by
compromising with the other users. EXPRI identifies the most desirable solution
by applying practical reasoning techniques. This abductive reasoning allows the
agent to gather all the necessary knowledge to justify to the user the selection
or the rejection of any particular action. To be able to do so is crucial for an
agent to be considered explainable. However, in order for the agent to be self-
explainable, EXPRI also requires social awareness, i.e. the ability of efficiently
communicating explanations to the user, for instance by providing contrastive
and tailored explanations. We hypothesise that, by using a practical reasoning
process, EXPRI is already able to engage in dialogues with the user to provide
contrastive explanations. Further theoretical and empirical research will allow
us to develop the social component of EXPRI, by enabling it to also provide
fully customised explanations.
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Abstract. In the race for automation, distributed systems are required
to perform increasingly complex reasoning to deal with dynamic tasks,
often not controlled by humans. On the one hand, systems dealing with
strict-timing constraints in safety-critical applications mainly focused on
predictability, leaving little room for complex planning and decision-
making processes. Indeed, real-time techniques are very efficient in prede-
termined, constrained, and controlled scenarios. Nevertheless, they lack
the necessary flexibility to operate in evolving settings, where the soft-
ware needs to adapt to the changes of the environment. On the other
hand, Intelligent Systems (IS) increasingly adopted Machine Learning
(ML) techniques (e.g., subsymbolic predictors such as Neural Networks).
The seminal application of those IS started in zero-risk domains produc-
ing revolutionary results. However, the ever-increasing exploitation of
ML-based approaches generated opaque systems, which are nowadays
no longer socially acceptable—calling for eXplainable AI (XAI). Such
a problem is exacerbated when IS tend to approach safety-critical sce-
narios. This paper highlights the need for on-time explainability. In par-
ticular, it proposes to embrace the Real-Time Beliefs Desires Intentions
(RT-BDI) framework as an enabler of eXplainable Multi-Agent Systems
(XMAS) in time-critical XAI.

Keywords: eXplainable BDI model · Real-Time Systems ·
Multi-Agent Systems · eXplainable autonomous agents

1 Introduction

The recent advancements in the field of artificial intelligence (AI) are fostering
the development of autonomous decision-making processes in systems operating
in the real-world. In particular, nowadays, the majority of AI-based systems rely
on Machine Learning (ML) approaches.
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However, ML-based systems must face the problem of the opacity of sub-
symbolic predictors (e.g., neural networks) [6,27], which is no longer acceptable.
Hence, current regulations acknowledge the right for meaningful explanations
when automated decisions affect humans’ lives [17,23]. This originated a fer-
vent effort in the so-called eXplainable AI (XAI) community, whose priority is
to tackle the opacity of behaviors and results stemming from ML-based sys-
tems [1,4,20,24,35].

Recent studies advocated that multi-agent systems (MAS) offer a coherent
yet expressive set of abstractions, promoting conceptual integrity in the engi-
neering of complex software systems and serving the purpose of social XAI—
constituiting the so-called XMAS [17,20,32].

Nevertheless, there is a worrying lack of consideration for the production
and delivery time of the explanation. For example, considering devices oper-
ating in the real world such as autonomous cars [5], Unmanned Aerial Vehi-
cles (UAVs) [17,29], and traffic control networks, they are required to deal
with a multitude of inputs and variables in highly-dynamic and unpredictable
environments—while obliged to comply with Real-Time (RT) constraints. There-
fore ensuring the on-time production and delivery of an explanation is crucial.

Real-Time Systems (RTS) are characterized by a plethora of algorithms
ensuring compliance with strict-timing constraints [11]. Nevertheless, they
require that both the environment and the possible system’s interactions with
it are predetermined (or predictable) [11]. If the environment is too complex
to be thoroughly analyzed, or if it changes considerably, an RTS is not able
to autonomously adapt to the new scenario—neither oracle nor one-size-fits-all
approaches are possible.

For example, in self-driving cars, reacting in real-time to an unexpected event
by promptly braking is necessary but not sufficient. The car should be able
to analyze the surrounding environment and evaluate the consequences of its
actions. If a deer crosses the road, the possible choice of the car to swerve in
a ravine should be a decision taken on the base of a well-defined reasoning
process, rather than being merely the result of reactive behavior that aims to
avoid the animal. Therefore, there is a need for realizing systems able to base
their decisions on their (evolving) knowledge of the world within given temporal
bounds.

Calvaresi et al. [14] proposed a solution to enable the real-time compliance
of MAS revising their pillars. Nevertheless, to mimic the cognitive behavior of
humans using regular MAS is burdensome.

Being inspired by Bratman’s theory of human practical reasoning [8], the
Belief-Desire-Intention (BDI) model [34] represents one of the most recognized
approaches to integrate the desired cognitive abilities in autonomous agents [28].
Furthermore, since the BDI agents’ behavior is knowledge-driven – being deter-
mined by deliberation over well-structured concepts such as beliefs, goals, and
intentions –, the cause-effect relationship that brought to the intended means
can be depicted clearly. This paper presents and discusses the still unexplored
challenges of designing and developing Real-Time eXplainable BDI Multi-Agent
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Systems (RTX-BDI-MAS), eliciting goals, challenges, opportunities, possible
application scenarios, and a road map to achieve such a result. Figure 1 schemat-
ically represents the view calling for RTX-BDI-MAS.

Opaque sub-symbolic 
Predictors call for XAIneed for TRANSPARENCY XMAS

Social explainability

Multi-Party exlainability

RTS for SC-scenarios RT-MAS
need for INTELLIGENCE

Time?

RTX-BDI-MAS

Fig. 1. Needs for RTX-BDI-MAS schematization.

The remainder of the paper is organized as follows. Section 3 analyzes the
current challenges in designing Real-Time eXplainable BDI Multi-Agent Systems
(RTX-BDI-MAS). Section 4 discusses the main advantages of developing RTX-
BDI agents. Section 5 elaborates on possible application scenarios that would
benefit from the employment of such agents. Section 6 proposes a road map to
design a model for the development of RTX-BDI-MAS. Finally, Sect. 7 concludes
the paper.

2 Background

XAI – Nowadays, most intelligent systems (IS) leverage on subsymbolic pre-
dictive models. Such a wide adoption is mainly due to the unprecedented data
availability, enabling to detect useful statistical information hidden into such
data semi-automatically. Nevertheless, most of the ML techniques carry well-
known drawbacks. For example, the algorithmic opacity – the difficulty for the
humans to understand how ML-based IS (also referred to as black boxes) operate
or compute their outputs—is a serious issue if decisions’ liability is needed [27].
Current regulations such as the GDPR [38] recognize the citizens’ right to
explanation [23]—implicitly requiring understandable IS. Moreover, having an
understandable system can boost people’s trust and acceptability—otherwise
harmed. To cope with such issues and the normative requirements, the XAI
research field has recently emerged, particularly tackling interpretability and
explainability [25].

XMAS – Current XAI solutions are mostly use-case-specific and they help the
interpretation of single ML-based algorithms [1]. However, standalone explain-
able approaches do not satisfy the needs of distributed and inter-connected IS.
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For example, IoT systems are characterized by heterogeneous inputs, devices,
and data-types concurring in the composition of complex information struc-
tures [20]. Hence, in [17], the MAS paradigm has been identified as potential
means to (i) dynamically provide interpretations and explanations for opaque
systems, (ii) ease the integration among different solutions/components for sim-
ilar tasks or predictors, (iii) increase the degree of automation characterizing
the development of intelligent systems, (iv) support AI and ML-based systems
in distributed and decentralized contexts, where data cannot be moved due to
technical or legal reasons, and (v) introduce and contribute to the social dimen-
sion of explainability.

RTS – Computing systems whose behavior correctness depends not only on the
value of the computation but also on the time at which the results are produced
– providing soft and/or hard timing guarantees – are known as RTS [36]. In RTS,
the tasks models are periodic, aperiodic or sporadic, depending on the regularity
of the tasks’ activation (i.e., periodic - potentially infinite regular activations,
aperiodic - irregularly interleaved, and sporadic - consecutive jobs are separated
by minimum and maximum inter-arrival time) [11].

RT-MAS – A Real-Time Agent (RTA) extends and embodies a real-time process.
Similarly to the RTS, the RTA correctness depends on both soundness and deliv-
ery time of its outcomes [21]. Enriching the conventional MAS with concepts such
as deadlines, precedence, priority, and constrained resources, and mechanisms to
handle them result in the so-called RT-MAS [12]. RTAs are intended to operate
in highly dynamic environments. Thus, they adopt the Earliest Deadline First
(EDF) mechanism [11] as the local scheduler. Nevertheless, EDF can only han-
dle periodic tasks. Hence, to execute also aperiodic tasks (e.g., in charge of the
message exchange), an RTA should combine EDF with a bandwidth reservation
mechanism—i.e., the Constant Bandwidth Server (CBS) mechanism [12].

In the context of RT-MAS (similarly to RTS), missing “soft” deadlines may
cause performance degradation, and missing “hard” deadlines entails a failure
and possibly severe consequences.

Finally, MAS can be considered real-time compliant only if all the agents and
their mechanisms (interactions included) operate accordingly [16].

BDI Agents – BDI-based agents are characterized by beliefs, goals, and plans.
Beliefs represent the agent’s knowledge about itself and the surrounding environ-
ment. Goals represent states of the world the agent wants to bring about. Plans
are the means by which the agent can act to achieve its goals. BDI agents are
well suited in unpredictable scenarios requiring dynamic decision-making due to
their ability to choose the best plan to achieve a goal, given their current beliefs.
In most BDI-based approaches, the process of repeatedly choosing and executing
plans is called the agent’s reasoning cycle [7].
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3 Challenges

AI/ML-based systems are progressively pervading safety-critical application sce-
narios. Therefore, the needs for explainability and time-predictable behaviors
blend in demanding real-time production and delivery of the explanations.

RTS and RT-MAS are able to comply with strict timing constraints. Yet, RTS
show only predetermined behaviors—limitation overcome by RT-MAS. Never-
theless, since both RTS and RT-MAS (as-is) are incapable of performing “explicit
reasoning” to explain their conduct, they cannot be considered XAI-compliant.
BDI agents and XMAS can both make autonomous decisions dynamically. In
BDI, the agent’s reasoning cycle offers intrinsically a cause-effect explanation
regarding its decisions, while XAMS can explain ML-based system (i.e., gen-
erate a symbolic representation of subsymbolic knowledge). Nevertheless, both
BDI and XMAS lack the main property of RTS and RT-MAS: make decisions,
and therefore act, in time.

Therefore, none of the existing approaches taken individually allows to pro-
duce explanations complying with time constraints and dynamically adapting
to the environment in which they operate. Despite several studies attempted to
combine the RTS and MAS [19,37] and other made their way through [12], to
the best of our knowledge no previous attempt of providing in time explanations
can be mentioned.

Moving towards the definition of a model that integrates RT-MAS and XMAS
properties and capabilities, requires to address several questions. In particular:

What is the impact of RT-compliance on XMAS?
Depending on the application domain, the consequences generated by a given
explanation can vary significantly. Thus, having a predictable delivery time of
the explanation will play a crucial role. Such a requirement entails the develop-
ment of mechanisms ruling all the behaviors (including the ones generating the
explanations) in a real-time manner. Considering the social dimension of explain-
ability (i.e., goal-driven XAI [17,20]), the whole process might require several
interactions between explainer and explainee. Current approaches neglect the
converging time of conveying an explanation—condition unacceptable under RT
assumptions. To overcome such a limitation is crucial. Hence, the agent should
be aware of the costs of generating an explanation (both resources and time-
wise) and act accordingly—even if it will come on the expenses of performance,
explanation’s granularity, or quality.

In particular, a first step for metrics and mechanisms-revision in BDI agents
should involve inevitably a structural revision of the architecture. Thus, the
notion of time itself can also play a direct role within a given explanation (e.g.,
impossible to complete safely plan-A, so emergency switch to plan-B)—clearly
performed in time.

Which Architecture should be adopted?
The architecture of a software agent identifies the fundamental components that
allow the agent to make decisions (henceforth producing explanations) taking
into account the temporal constraints typical of RTS. In literature, there are
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two approaches: layered and integrated architectures. In layered architectures,
the real-time and the cognitive functionalities are separated, acting on differ-
ent layers, and each one relies and depends on the behavior of the other. This
approach involves two loosely coupled sub-systems, so it allows an easier design.
However, since the deliberative layer does not act in real-time, such a system
cannot guarantee compliance with hard real-time constraints. Concerning inte-
grated architectures, instead, Musliner et al. [31] claim that a hybrid system
can be obtained by embedding either AI into a real-time system or real-time
reactions into an AI system. In the former case, AI computations are forced to
meet deadlines like any other real-time task, while in the latter the delibera-
tion techniques will be short-circuited in favor of a real-time reflexive action.
An eXplainable system should always provide at least a basic motivation for its
decisions, so an RTX-BDI architecture should integrate AI processes (including
explanations) into an RTS. By doing so, the level of detail of the explanation
can depend on the time the agent has to provide it.

Which Algorithms have to regulate the behavior of the agent?
A crucial point consists in the definition of the algorithms and techniques that
enable the scheduling of the agent’s activities and comply with strict timing-
constraints. As discussed previously, due to the diversity of their original pur-
poses, MAS, XMAS, and RTS rely upon significantly different mechanisms that
need to be revised and modified to allow them to cooperate. For instance, while
the concept of a real-time task can easily be mapped with a BDI action, problems
arise when the BDI agent should manage the different types of tasks (periodic,
aperiodic, and sporadic) typical of RTS [11]. Indeed, such a characterization is
neither considered in the agent-oriented paradigm, nor in the current state of
the art of XAI [1], preventing the use of pure real-time theories and their appli-
cation in the context of XAI and MAS with a 1-to-1 mapping. Therefore, when
designing an RTX-BDI agent, a revision of actions and plans becomes necessary
to take these diversities into consideration. A similar analysis has been done by
Calvaresi et al. in [16], which suggests that a mapping between Jade’s behaviours
and the real-time task models is possible. Nevertheless, the BDI model has higher
abstraction levels, thus requiring a more complex mapping.

Another challenge concerns the scheduler employed by the agent. Indeed,
most of the state-of-the-art agent platforms adopt best-effort approaches that
are not able to handle the system behavior in worst-case scenarios [16]. In such
approaches, computational times and deadlines do not have a role in deciding
about the execution of the next task. This prevents the agent from controlling the
generation and communication of explanations and the interleaving with poten-
tially non-time-critical tasks. To realize real-time explainable agents is essential
that they rely on a real-time compliant local scheduler [15].

However, there are no real-time schedulers suitable to be implemented, as
they are, in agents running in an open environment (hence flexible enough to
deal with sudden changes in priorities). Indeed, some additional mechanisms
must be implemented to allow the agent to manage the dynamic activation of
tasks having arrival times unknown a-priori. An agent acting in real-time must
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be able to establish which goals to prioritize when it cannot achieve all of them,
a common situation when considering time as a limited resource. While the
concept of priority is central in RTS, in agent-based systems it is often neglected,
assuming that all goals will be eventually reached by the agent.

Similarly, the problem of choosing among plans designed to achieve the same
goal must be addressed. Indeed, in a real-case scenario, to adapt to different cir-
cumstances agents usually have different ways to achieve their goals. Then, the
agents should be able to elaborate trade-offs by selecting plans that allow them
to balance between the number of goals achieved and the efforts or resources
required to achieve them. A very delicate and critical challenge that charac-
terizes XMAS – worsened by the introduction of real-time – concerns how the
agent should/must behave when the execution of an intention fails (e.g., generat-
ing or communicating an explanation do not converge before a critical deadline
occurs). The strict schedule typical of RTS leaves little room for the execution
of unforeseen, unboundable, and alternative tasks, which are needed to perform
backtracking or to try a different way to achieve the goal. In a multi-agent
system, the agents have to exchange information among them, negotiate, and
cooperate. Therefore, it is necessary to define interaction techniques that allow
real-time communication and cooperation between agents.

How should the system be Validated?
Once such a system is designed and implemented, the problem regarding how it
should be validated arises. Indeed, in literature few studies tried to achieve the
same goal [1,12], hence there are no significant results to compare with. How-
ever, interesting insights can be obtained by evaluating particular properties:
for instance, comparing performances time-wise respect to state-of-the-art MAS
(and XMAS if any) frameworks, or measuring flexibility by analyzing the behav-
iors of such a system and real-time ones in unpredictable scenarios. Moreover,
implementing explainable mechanism will already play a crucial role within the
validation stage itself. In particular, such a mechanism can enable meaningful
and more understandable debugging phases eliciting values, roles, and dynamics
of internal (possibly hidden/opaque) parameters.

Figure 2 summarizes the components entangled with each of the challenges
discussed above: architecture (AR), algorithms (AL), and validation (VA).

Fig. 2. Graphical representation of the components and the respective challenges. The
dashed lines represent the information exchange between entities.



46 F. Alzetta et al.

4 Opportunities

Realizing the RTX-BDI-MAS model allows to merge the properties and advan-
tages of classical RTS (i.e., systems characterized by bounded response times
and no deadline miss) and XMAS (i.e., systems able to generate symbolic repre-
sentations of subsymbolic information) and extend them with the BDI systems’
capability of making decisions and adopting dynamic behaviors in response to
the changes in the environment in which they operate.

RTX-BDI-MAS can be particularly useful in safety-critical and unpredictable
domains, such as autonomous driving, telerehabilitation, personal coaching, and
air traffic control. In these scenarios, the systems involved need to adopt algo-
rithms that allow them to behave correctly (and in time) in case an unforeseen
event occurs. Moreover, due to their safety-related requirements, the use of sym-
bolic AI in the reasoning process is mandatory, as the uncertainty given by
statistical AI and ML-based systems – which can still be used to solve specific
sub-problems – may lead to catastrophic consequences. Furthermore, in the last
decade, safety-critical systems are increasingly composed of different (possibly
distributed) components interacting with one another—strengthening the choice
of MAS as underlying paradigm.

On Explainability – Transparency and understandability are broadly known to
be the main factors calling for XAI [1]. Nevertheless, enabling explicit reasoning
about and in time can be a key enabler for crucial desiderata such as express-
ing systems, agents, and robots’ reasons, capabilities, and limits to their end-
user [26]. Hence, time can play a prominent role in the decision-making process,
whether a plan is chosen or dropped. The claimed system accountability [2] can-
not be achieved regardless of transparency and time. Conversely, a system is not
able to perform in real -world application scenarios predictably (or properly at
all)—since the humans’ interactions are inherently entangled with the concept
of time. Finally, RTX-BDI-MAS can facilitate the tuning of the explanation’s
granularity, enhancing the efficiency and the response time of the system.

On Time-awareness – To reason about and in time, RTX-BDI-agents have to
embody a real-time scheduler. Thus, it is possible to ensure that every decision-
making-process is executed respecting the time constraints, while the integration
of temporal concepts in the BDI model, such as computational time and deadline,
allows the agent to make these decisions considering also the time as a finite
resource. Since the agents are able to take their decisions on the base of the time
required to execute an intention, designers can also tune the agents to prioritize
optimal solutions time-wise or output-wise, or to identify a feasible balance of the
two. Such a tuning allows the designers to specify the desired Quality of Service
(QoS), configuring the agent to be more reactive or more reflective, depending
on the desired behavior. It is worth noticing that this only affects the choices
made by the agent (i.e., which goals they commit to and which intentions they
execute), without breaking any real-time boundary.
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On Ease of design – Compared to distributed RTS and XMAS, RTX-BDI-
MAS provides a more natural design phase. Indeed, the developer has to design
the single components (beliefs, desires, plans, and tasks) without the burden
of establishing the rules and behaviors that operate the run-time execution of
the device. Since the BDI model is based on the human practical reasoning
theory, the design of such components is very intuitive. The reasoning cycle of a
BDI agent, indeed, is similar to our way of thinking: we perceive a change in the
environment (change in agent’s beliefs) which can make us desire to achieve some
goals (instantiation of agent’s desires), and we reason about the actions to take
to satisfy those desires (generation of intentions through means-end reasoning).

On Robustness – With respect to RTS, RTX-BDI-MAS grant more robustness
in open environments, allowing real-time software to promptly and adequately
deal with system failures. Indeed, since RTS are designed to work in controlled
and predefined environments, the possibility of having system failures is excluded
a-priori (unless hardware failures handled with devices redundancy). In general,
RTS only manage overloads, i.e., the system can lower the band to fit the tasks,
if this does not cause losing deadlines or important information [11]. Conversely,
when feasible, RTX-BDI-MAS allows the re-planning and rearrangements on-
the-fly by reconsidering their goals and intentions.

5 Application Scenarios

In general, an RTX-BDI architecture allows us to build systems able to perform
autonomous actions in time, reasoning not only in a self-interested way but
coordinating with all the other agents, possibly leveraging on symbolic reason-
ing. This is particularly valuable for systems in which decision-making processes
are needed, but reducing at the minimum the human error and increasing the
acceptance and understanding of the system’s behaviors are the cornerstones.

Summarizing, the possible scenarios in which a system operates can be clas-
sified in general-purpose or non-safety-critical (NSC), XAI-critical and non-
safety-critical (XNSC), safety-critical (SC), dynamic safety-critical (DSC), and
dynamic XAI and safety-critical (XDSC). Figure 3 organize the types of system
per the most appropriate scenario, highlighting the evolution of the efficiency
(according to the resources allocated), predictability, and the capability of pro-
ducing explanations of opaque subsymbolic predictors.

Besides the expected lack of efficiency (given the resources allocated and
the need for ensuring timing guarantees) RTX-BDI agents are envisioned to be
equipped with both XAI and RTS capabilities, while keeping unaltered the social
abilities typical of MAS.

To highlight the relevance of RTX-BDI-MAS in XDSC, we briefly elaborate
on two envisioned scenarios.

Telerehabilitation – Most of the telerehabilitation systems are expected to be
used without the direct supervision of any medical staff. The majority of the
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Fig. 3. Systems classification per efficiency, predictability, explainability, resources allo-
cated, scenarios and criticality.

proposed systems leverage on wearable distributed sensing [9,14]. Such systems
provide real-time monitoring and feedback, storing the data generated during
the therapy sessions for the (long-term) trend-analysis. For simple exercises,
such approaches are effective. Nevertheless, depending on the joint(s) to reha-
bilitate, the therapy might be more complex (from both physical and cogni-
tive viewpoints). A first step to enable telerehabilitation for more demanding
therapies is presented in [13], where the authors developed a semantic model
for RT-MAS enabling more elaborated – yet real-time compliant– interactions
among the wearable sensors. Along this path, we envision that RTX-BDI-MAS
can empower the telerehabilitation systems by providing not only real-time mon-
itoring and feedback but also providing in-time explanations. In particular, it
would enrich the coaching capability of the system and provide better (possibly
more understandable) support to the patients dealing with complex exercises,
which have higher chances of causing late or wrong movements—thus hurting
the patient and jeopardizing the beneficial effects of the therapy.

Autonomous vehicle and robots – In the case of fully autonomous multi-vehicles
or robots, the compliance with strict-timing constraints is imperative (e.g., to
avoid collisions). However, complex interactions (e.g., negotiations) are increas-
ingly pervading the robotic and autonomous vehicles worlds. In our vision, estab-
lishing an agreement might soon leverage on the explanation of ML-based pre-
dictors or of complex behaviors intertwined with subsymbolic information. In the
case of semi-autonomous vehicles [5], the system might be required to present
timely explanations to the driver to undertake a given (possibly time-critical)
decision, which requires the human’s approval. Finally, in UAVs search and res-
cue scenarios [30], UAV teams need to cooperate to achieve common goals. In
such a case, identifying the responsibility of each UAV is crucial. Hence, it can
enable to ensure efficient collaboration or, in a case of failure, to trace the under-
lying reasons and assign responsibilities—both to improve the future system’s
performance and to held involved parties accountable. Once again, employing
RTX-BDI-MAS would bridge the advantages of the two worlds (i.e., XMAS and
RT-MAS).
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6 Road Map

This section presents the four phases need to formalize an RTX-BDI-MAS model.

PH1: First formalization of the RTX-BDI model
To guarantee the properties of RTS, the BDI structure needs to be revised to con-
sider the necessary real-time notions, such as priority, deadline, and worst-case
execution time. Redesigning desires, plans, intentions, and actions by involving
such elements would allow the integration of a real-time scheduler in the reason-
ing cycle of the agent, providing real-time guarantees in both the deliberative and
executive processes. Moreover, it is necessary to identify the tasks model and the
dynamics necessary to perform predictably the intra-agent explainability [20].

PH2: Definition of policies to handle plan failures
Plan failure management, as discussed in Sect. 3, is probably one of the most
challenging problems to be solved in real-time compliant MAS. Indeed, due to
the high dynamism of the scenarios in which XMAS are expected to operate, the
robustness typically obtained by RTS is very difficult to be achieved. Moreover,
if the system is composed by a growing number of elements, also the possible
failures of other agents must be taken into consideration and managed. The
robustness of the system can be further improved by developing a real-time
compliant selection function able to avoid conflicts between intentions, similarly
to what is done in [39]. Such a work, by performing pseudo-random simulations
of different interleavings of the plans, looks for an optimal interleaving of the
actions that will allow the agent to achieve the largest number of goals. This
approach helps in minimizing the possibility of plan failures, but to be applicable
in RTX-BDI-MAS it has to be redesigned to consider real-time compliance.
Finally, besides the effects that it might imply, the failure of an explanations
might entail several factors (e.g., lack of a common ontology, unknown state
of mind of the explainee, and possible lack of time to complete the interaction
necessary for the entire knowledge-transfer). To avoid, or understand, the reasons
standing behind a failure, specific mechanisms need to be developed to setup
effective “possibly personalized” explanations.

PH3: The definition of the interaction techniques
PH1 and PH2 allow the development of single RTX-BDI agents. When the system
scales from single to multi-agent settings, interaction techniques and protocols
are required to allow the agents of the RTX-BDI-MAS to communicate (hence-
forth explain), negotiate, and cooperate. Although a standard for MAS com-
munication already exists (i.e., FIPA Agent Communication Language (ACL)
[22]), it lacks of several fundamental mechanisms crucial to handle multi-step
explanations and RT-compliance. Indeed, FIPA ACL does not provide a way to
manage either the network load and messages status (e.g., bounding congestion
and delivering times is not possible), nor the in/out message queues. Further-
more, broadcasting (particularly useful when the information of a sensor should
be exploited by many components) is difficult to be achieved. To overcome such
limitations, a communication middleware able to guarantee bounded-time delays
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must be employed. In [18], the authors identify the Real-Time Publish-Subscribe
(RTPS) as viable technology (already adopted by the Data Distribution Service
(DDS) systems in aerospace domains [33]).

PH4: The implementation of a prototype for verification and validation
The last phase regards the development of an RTX-BDI-MAS prototype, which
must be used to verify and validate the model. The evaluation can be done in
a simulated or real environment. The implementation of a simulator allows a
better, safer, and cheaper analysis of the systems’ behavior—since it acts in a
controlled environment. However, deploying the system in real-world devices rep-
resents a more significant validation. Indeed, in real-world scenarios, the adapt-
ability of the system is stressed.

To enable deployment and testing of the RT-BDI MAS, a framework
equipped with an intuitive graphical user interface and comprehensive analy-
sis tools is needed. Extending any of the most recognized and supported agents
frameworks in the literature, such as JACK [10], JADE [3], and Jason [7] is not
feasible nor effective. Indeed, among the main limitations hampering such a way
it is possible to mention (i) they are based on Java, thus incapable of guar-
anteeing any real-time compliance and (ii) they rely on general-purpose algo-
rithms (e.g., round-robin and first-come-first-served) neglecting elements such as
time, utilization, and deadlines core of any real-time compliant algorithm [12,15],
and (iii) lack of means to extract symbolic knowledge from subsymbolic data.
Coupling explainability and visualization would boost the user’s understanding
of the underlying system. Furthermore, in case explainability provides a deep
view of the inner-mechanism, it allows the user/developer to predict the out-
comes demonstrated by the system when the input parameters change. Thus,
the system can be validated under different settings, always allowing clear system
assessment and understanding.

7 Conclusion

This paper discussed challenges and opportunities of modeling and developing
explainable and RT compliant MAS based on the BDI cognitive architecture.
This preliminary analysis shows that such a system can enhance the reasoning
and decision-making processes of applications that have to comply with strict
real-time constraints, while providing transparency, and promoting trust. More
precisely, it allows us to exploit the structure of BDI to easily design explain-
able RTS able to dynamically adapt to the uncertainties that characterize open
environments. Moreover, using BDI fosters adaptive and user-friendly explain-
ability, which enables end-users (or other agents in the system) to understand
the system behavior and modify it in case a need arises. Nevertheless, several
complex challenges must be faced. The main ones concern the system’s type of
architecture, its mechanisms, and behavior policies.
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Abstract. Explainability has been a core research topic in AI for
decades and therefore it is surprising that the current concept of Explain-
able AI (XAI) seems to have been launched as late as 2016. This is a
problem with current XAI research because it tends to ignore existing
knowledge and wisdom gathered over decades or even centuries by other
relevant domains. This paper presents the notion of Contextual Impor-
tance and Utility (CIU), which is based on known notions and methods
of Decision Theory. CIU extends the notions of importance and utility
for the non-linear models of AI systems and notably those produced by
Machine Learning methods. CIU provides a universal and model-agnostic
foundation for XAI.

Keywords: Explainable AI · Decision Theory · Contextual
Importance and Utility · Multiple Criteria Decision Making

1 Introduction

It seems like the term Explainable AI (XAI) dates back to a presentation by
David Gunning in 2016 [13] and much recent work tends not to look at or cite
research papers that are older than so. It has also been pointed out that XAI as
a domain currently tends to propose methods that mainly can help experts to
validate that an AI system built using Machine Learning (ML) makes sense to
some extent [6]. It is rare to see methods and results that are meant to explain
and justify results and actions of ML models to ‘real’ end users, such as the
pedestrians who might be hit by an autonomous vehicle or the applicant of a
mortgage whose request is refused by an AI system. As pointed out e.g. by Miller
[20] and others [33], it is fair to say that most XAI work uses only the researchers’
intuition of what constitutes a ‘good’ explanation, while ignoring the vast and
valuable bodies of research in philosophy, psychology, and cognitive science of
how people define, generate, select, evaluate, and present explanations.

One truly relevant domain that seems to have been neglected in current
XAI work is Decision Theory and related sub-domains such as Multiple Criteria
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Decision Making (MCDM). The Merriam-Webster dictionary defines Decision
Theory as ‘a branch of statistical theory concerned with quantifying the process
of making choices between alternatives’. However, Decision Theory is also by
definition tightly connected with the domains mentioned above (philosophy, psy-
chology, and cognitive science) because methods of Decision Theory are intended
to produce Decision Support Systems (DSS) that are understood and used by
humans when taking decisions. Decision Theory and MCDM provide clear def-
initions of what is meant by the importance of an input, as well as what is the
utility of a given input value towards the outcome of a DSS. A simple linear DSS
model is the weighted sum, where a numerical weight expresses the importance
of an input and a numerical score expresses the utility of the current value of
that input.

This paper extends the linear definition of importance and util-
ity towards non-linear models such as those produced by typical ML
methods. This non-linear extension is called Contextual Importance and
Utility (CIU)1 because in many (or most) real-life situations the importance
of an input and the utility of different input values changes depending on values
of other inputs. For instance, the outdoor temperature has a great importance
on a person’s comfort level as long as the person is outdoors. When the person
goes inside, the situation (context) changes and the outdoor temperature may
then have a very small importance for the comfort level. Similarly, both a very
cold and a very warm outdoor temperature might have a low utility for a per-
son’s comfort level but the level of utility can be modified by adding or removing
clothes.

After this Introduction, Sect. 2 builds up the theoretical background as a
combination of Decision Theory and XAI. Section 3 presents the background
and definition of CIU, supported by examples and an experiment using the Iris
data set, followed by conclusions in Sect. 4.

Source files for producing the results and Figures of this paper can be found
at https://github.com/KaryFramling/EXTRAAMAS 2020.

2 Background

The rationality of human decisions (or lack of it) might be one of the oldest
challenges addressed by philosophers. For instance, Socrates’ method for solving
a problem in a rational way consisted in braking the problem down into a series
of questions, the answers to which gradually distill the answer a person would
seek. This can be thought of as ‘solve a problem by explaining your reasoning to
yourself and/or someone else by starting from a high abstraction level and brake
it into smaller sub-problems’. The concept of bounded rationality as proposed
by Herbert Simon [28,29] can be considered a cornerstone regarding modern
theories of human decision making. The fundamental concepts and methods of
Decision Theory are much older than Simon’s work. But Simon’s work can be

1 https://github.com/KaryFramling/ciu.

https://github.com/KaryFramling/EXTRAAMAS_2020
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considered to be based on Decision Theory and provides a connection from there
to Artificial Intelligence and, by consequence, to Explainable AI.

2.1 Decision Theory

Decision Theory as a domain is too vast for the purposes of this article. Excel-
lent introductions to the domain can be found for instance in [14,18,24] and
[32], which notably focus on the sub-domain of Multiple Criteria Decision Mak-
ing (MCDM). The Analytic Hierarchy Process (AHP) [26] that was originally
developed in the 1970’s seems to have become the most popular MCDM method
in research and practice [16,17].

AHP is essentially based on a weighted sum, where the main selection task
can be broken into sub-tasks in a hierarchical manner. The weights are typically
acquired from experts using a pair-wise comparison procedure that produces
a comparison matrix, which is then transformed into weights by a normalized
principal Eigen vector. The utility (how good or favorable a value is for the
selection) of the possible values for each leaf of the hierarchy is specified and
calculated using the same principle.

MCDM problems require finding a model of the decision maker’s preferences,
which may be called his or her preference function. However, the decision maker
is quite often a group of people or an abstract person (society, nature, economy,
...). This makes it difficult to explicitly express the preference function, which is
the reason for using machine learning methods instead. If a training set exists
with labeled data on correct decisions, then it is possible to learn the prefer-
ence function, no matter if the output of the model is a numerical score or a
probability for one or many possible classes. A true preference function is usu-
ally non-linear and continuous, which makes its mathematical expression quite
complex. Such non-linear and continuous models are mainly studied in the ML
domain, which would be attractive also for MCDM if those ML methods would
provide sufficient explainability.

In MCDM methods, the importances of the selection criteria are expressed by
weights, while the transformation of the values of the criteria into utility values
is done with utility functions. For a car selection problem, these concepts may be
used for giving explanations such as ‘The car is good because it has a good size,
decent performances and a reasonable price, which are very important criteria’,
where words indicating utilities are underlined and only the most important
criteria are presented. The fact of using a linear model makes the definition of
importance and utility quite easy. However, when using non-linear models like
neural nets, the task becomes challenging.

Rule-based expert systems (including fuzzy or rough rules) are a way of
overcoming the linearity limitation. However, then we encounter the challenges
of explainability that are known in the AI domain since its very beginnings.
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2.2 Explainable Artificial Intelligence

Contrary to what many papers seem to claim, the need for explainability in Arti-
ficial Intelligence (AI) and Machine Learning (ML) has been known for about
as long as AI has existed, even though the term Explainable AI (XAI) seems
to have been launched only in 2016 [13]. For instance, Shortliffe et al. point out
already in 1975 that ‘It is our belief, therefore, that a consultation program will
gain acceptance only if it serves to augment rather than replace the physician’s
own decision making processes. Gorry has reached a similar conclusion stating
that one reason for the limited acceptance of Bayesian inference programs has
been their inability to explain the reasoning behind their decisions’ [27]. The sys-
tem described in that paper was MYCIN, an expert system that was capable of
advising physicians who request advice regarding selection of appropriate antimi-
crobial therapy for hospital patients with bacterial infections. Great emphasis
was put into the interaction with the end-user, in this case a skilled physician.

As pointed out by Shortliffe et al. in 1975, it is even more challenging to
explain and understand the reasoning of numerical models, such as Bayesian
inference programs. When numerical ML methods such as neural networks
gained in popularity in the end of the 1980’s due to significant technological
progress (e.g. in [25] and [15]), the explainability challenge was immediately
identified. During the 1990’s there was extensive activity around how to make
results of neural networks explainable. However, a vast majority of the work per-
formed then was focusing on so-called intrinsic interpretability or interpretable
model extraction [6], i.e. extract rules or other interpretable forms of knowledge
from the trained neural network and then use that representation for explain-
ability [2,5,30,31].

Post-hoc interpretability was actually proposed as early as in 1995 [9]. How-
ever, the utility of post-hoc interpretability was not recognized by the AI com-
munity back then, as shown by the reactions of the audience at the International
Conference on Artificial Neural Networks in 1995. Post-hoc interpretability was
neglected to the extent that most XAI survey articles erroneously date the first
post-hoc explanations much later, such as output explanation in 2006 and model
inspection approach in 2002 [12]. Another example that presents outcome expla-
nation and the use of counterfactual explanations is the article from 2002 in the
Neural Networks journal [11] that is currently only cited 128 times according to
Google Scholar. However, the objective of this paper is not to provide a com-
plete overview of the history of XAI. A comprehensive survey on current trends
in XAI is provided for instance in [4].

The Local Interpretable Model-agnostic Explanations (LIME) method pre-
sented in 2016 [22] might be considered a cornerstone regarding post-hoc inter-
pretability. It emphasizes the need for outcome explanations in many real-world
situations and shows good results also when applied to image recognition by
deep neural networks. LIME implementations are available in several differ-
ent programming languages, which has certainly increased its popularity. LIME
belongs to the family of additive feature attribution methods [19] that are based
on the assumption that a locally linear model around the current context is suf-
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ficient for explanation purposes. As shown in the following Section, even though
such methods allow producing outcome explanations (but not model inspection
explanations), they are not theoretically correct when studied from a Decision
Theory point of view.

3 Contextual Importance and Utility (CIU)

Contextual Importance and Utility (CIU) were initially developed during Kary
Främling’s PhD thesis [8]. The thesis is written in French but the method is also
described in [9] and [7]. After the PhD thesis was finished, the topic was dropped
for professional reasons. The popularity of neural networks and the question
about their explainability also started declining at the same time. However, the
recent rise in popularity of AI and the re-emergence of XAI as a research area
are the reasons for the recent re-launch of the work on CIU.

The work on CIU started by a practical problem that consisted in selecting
a waste disposal site for ultimate industrial waste in the region of Rhône-Alpes,
France [10]. Fifteen selection criteria had been specified by experts and regional
decision makers, which characterized the sites from geological, financial, social,
ecological and logistic points of view. Over 3000 potential sites had been iden-
tified, together with their respective values for the 15 criteria. Tens of decision
makers involved in the selection process all had their own opinions on how impor-
tant different criteria are. What comes to the utility functions, there are many
subjective opinions, such as how to assess recreational impact and when such an
impact should be ‘too big’, ‘acceptable’, ‘negligible’ or something else.

Three methods were applied in parallel: AHP, Electre I [23] and a rule-based
expert system using the tool Nexpert Object v.2.0. The weights of the 15 criteria
were identified as a group work using the AHP pair-wise comparison function-
ality mentioned in Sect. 2.1. The same weights and utility functions were used
for AHP and Electre I. For the rule-based system, the problem was divided into
sub-categories, i.e. ‘Global geology’, ‘Hydrology’, ‘Access’, ‘Nuisance to popu-
lation’, ‘Aesthetic values’ and ‘Agricultural value’. Explainability functionality
was developed that was specific for each of the three methods, where the men-
tioned sub-categories were used for providing explanations with a higher level
of abstraction than using the 15 selection criteria directly. Explainability of the
results was a core criterion for the decision makers when they took their deci-
sion on which method to choose for taking the decision2. Since the output of
all the three methods was a numeric score per potential site, what needed to
be explained was why every individual site had been selected (high score) or
rejected (lower score).

The waste disposal site selection problem reveals many crucial challenges
related both to MCDM and XAI, such as:

– It is challenging even for one person to specify what is the importance of
different selection criteria (inputs of the model) and how favorable (or not)
the values of different criteria are, i.e. their utility.

2 Electre I was the selected method.
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– It it difficult to choose what MCDM method to use and what that choice
means in practice regarding results and explainability.

– The choice of MCDM model and parameters remains subjective. It would be
preferable if a ML model could learn the ‘correct’ model based on data from
existing sites.

– Since explainability is a key requirement, a typical ML black-box approach is
not acceptable.

– ML models, such as the ones learned by neural networks can not be supposed
to be linear.

Three different kinds of MCDM models are illustrated in Fig. 1:

1. Figure 1a shows the function z = 0.3x + 0.7y. This is a weighted sum model
with weights (importances) 0.3 and 0.7.

2. Figure 1b shows the result of several if-then rules that determine the z-value
as a function of x- and y-values. This kind of a model is highly non-linear and
is not differentiable.

3. Figure 1c shows the function z = (x0.5 + y2)/2. This is a simple non-linear
model that could have been learned by a neural net.
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Fig. 1. Examples of linear, rule-based (crisp rules, not fuzzy rules or rules involving
certainty factors) and non-linear MCDM models. (Color figure online)

For the weighted sum in Fig. 1a it is obvious that the importance of each
criterion is directly expressed by the corresponding weight and the utility of x
and y equals their value. If such a linear model would have been learned by a
ML black-box, then additive feature attribution methods should give these exact
importances 0.3 and 0.7 for any point z = f(x, y) because the locally linear
model corresponds to the global model. Additive feature attribution methods
only speak about feature importance, whereas they do not have any notion of
utility.

For a stepwise model such as the one in Fig. 1b it does not make sense to apply
a locally linear approximation, for two reasons: 1) the model is not differentiable
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and 2) the model is non-monotonic, so a local gradient does not say much about
the actual importance of a feature.

The non-linear model in Fig. 1c is the most interesting to study further in
the context of XAI because the main reason for using neural networks and sim-
ilar ML models is to deal with non-linear but differentiable models. The next
section formally describes Contextual Importance and Utility and provides the
justification for why they are theoretically valid concepts for XAI. It also shows
why methods based on locally linear models are not sufficiently expressive for
many XAI requirements, nor theoretically sound compared to CIU.

3.1 CIU of One Input

CIU is inspired from trying to analyze how humans explain their decisions and
reasoning to each other. After all, the human brain is probably the most complex
black-box model on earth. But humans are still usually capable to retrospectively
produce an explanation for their decisions and behaviour, even though humans
do suffer from the limitations of so-called bounded rationality [29]. Bounded
rationality is the idea that rationality of human individuals is limited when mak-
ing decisions, by the tractability of the decision problem, the cognitive limitations
of the mind, and the time available to make the decision. Humans also tend to
take into account the reactions, background etc. of the audience of the explana-
tion3. Humans would typically identify which features were the most salient for
taking a decision and start the explanation with those features. In addition to
explaining why a decision was taken, humans may also be asked to explain why
another decision was not taken, both independently and in comparison with
each other. Counterfactual “what-if” explanations are frequent when humans
justify their decisions. Depending on the reactions of the audience, humans can
also change the vocabulary that is used, the level of abstraction and the kind of
interaction (for instance create a drawing if verbal explanation is not sufficient).

Many of these explanation capabilities are contextual . One feature might
be important for taking a decision in one situation but irrelevant in another
situation, as illustrated by the example mentioned in the Introduction, where
the importance of the outdoor temperature depends on whether the black box
(human brain and body) is indoors or outdoors.

In this paper, we will not attempt to provide a new definition of context. One
definition is e.g. “Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user
and the applications themselves” [1]. The same source defines context-awareness
as follows: “A system is context-aware if it uses context to provide relevant infor-
mation and/or services to the user, where relevancy depends on the user’s task”
[1]. Similar definitions are provided elsewhere, as in [21]. In general, context adds

3 Human interaction and social life of course also involves intentional lying, desires to
please or hurt the target of the explanation, to impress other humans etc. However,
those considerations go beyond the scope of CIU and this paper.
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knowledge about what inputs/features/characteristics of a situation are impor-
tant for the concerned entity, which in our example would be the person who is
indoors or outdoors.

In order to specify Contextual Importance (CI) and Contextual Utility (CU)
formally, we will study the non-linear model in Fig. 1c further. The red dot in
Fig. 1c is located at (x, y) = (0.1, 0.2), which gives a result value z = 0.178. Here
the context is specified by the input values (x, y) = (0.1, 0.2), which we denote
#»

C . What we want to find out is the contextual importance CIj(
#»

C, {i}) of a given
set of inputs {i} for a specific output j in the context

#»

C . The definition of CI is

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i})
absmaxj − absminj

(1)

where absmaxj is the maximal possible value for output j and absminj is
the minimal possible value for output j. Cmaxj(

#»

C, {i}) is the maximal value of
output j observed when modifying the values of inputs {i} and keeping the values
of the other inputs at those specified by

#»

C . Correspondingly, Cminj(
#»

C, {i}) is
the minimal value of output j observed.

The estimation of Cmaxj(
#»

C, {i}) and Cminj(
#»

C, {i}) is done for limited
value ranges of inputs {i}. The value range to be used can be defined by the
task parameters or by the input values present in the training set. The ‘safest’
option is typically to use input value ranges that are defined by the minimal
and maximal values found in the training set because the behaviour of many
ML models outside of that range tends to be unpredictable. It is also worth
mentioning that the ‘valid’ input ranges may depend on the context C. The
current implementation for estimating Cmaxj(

#»

C, {i}) and Cminj(
#»

C, {i}) uses
Monte-Carlo simulation with uniformly distributed, randomly generated values
within the provided value ranges of inputs {i}. More efficient methods probably
exist for estimating Cmaxj(

#»

C, {i}) and Cminj(
#»

C, {i}) if information about the
black-box model or the learned function is available.

The definition of CU is

CUj(
#»

C, {i}) =
outj(

#»

C) − Cminj(
#»

C, {i})
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i}) (2)

where outj(
#»

C) is the value of the output j for the context
#»

C .
The calculations of CI and CU are illustrated in Fig. 2 for the non-linear func-

tion in Fig. 1c. The values are absmin = 0, absmax = 1, Cmin1(
#»

C, {1}) = 0.02,
Cmax1(

#»

C, {1}) = 0.52, Cmin1(
#»

C, {2}) = 0.158, Cmax1(
#»

C, {2}) = 0.658,
out1(

#»

C) = 0.178, when inputs and outputs are numbered from one upwards. This
gives CI1(

#»

C, {1}) = 0.5 and 1(
#»

C, {2}) = 0.5, which signifies that both inputs are
exactly as important for the output value. For the utilities,CU1(

#»

C, {1}) = 0, 316...
and CU1(

#»

C, {2}) = 0.04, so even though the y value is higher than the x value,
the utility of the x value is higher than the utility of the y value for the result z.

It is worth pointing out that an additive feature attribution method such as
LIME would presumably correspond to the partial derivative, which would give
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Fig. 2. Illustration of calculations of CI and CU for simple non-linear model.

importances of 0.8 and 0.24. Importances of 0.8 and 0.2 are radically different
from CI = 0.5 and illustrates to what extent CIU differs from additive feature
attribution methods in the case of non-linear models. A locally linear model
will provide an estimate of how much small changes in an input value affect the
output value but they will not take into account what happens when modifying
the input value even slightly more. Finally, additive feature attribution methods
do not provide any utility concept. Such methods might produce an explanation
such as ‘z has a bad value (0.18 of one), mainly because of input x (importance
0.8), whereas input y has much less importance (0.2)’.

Based on CIU values, the explanation could be of the kind ‘z has a bad value
(0.18 of one), where input x and input y are both quite important (0.5). The x
value of 0.1 is relatively bad (CU = 0.32), while the y value is extremely bad (CU
= 0.04). As a conclusion, the main reason for the bad output value is that the y
value is bad ’. This kind of verbal explanations are relatively straightforward to
produce programmatically by dividing the maximal CI interval [0, 1] into labeled
intervals with labels such as ‘insignificant’, ‘not important’, ‘some importance’,
etc. The same can be done for the the maximal CU interval [0, 1]. Different inter-
vals and vocabularies can and should be used depending on the application area
and on the actual semantics and meaning for the different inputs and outputs of
the black box. Examples of such programmatically generated explanations can
be found in [7–9] and [3]. R and Python implementations of CIU5 also produce
graphical plots as explanations, such as the one in Fig. 6 for the Iris classification
task described in Sect. 3.2.

In most existing XAI literature, the focus seems to be on answering questions
such as ‘why is this a cat?’ or ‘why is this a good choice?’ but rarely answering
questions such as ‘why is this not a tomato?’ or ‘why is this a bad choice?’.

4 Partial derivative for x is 0.25/
√
x and for y it is y.

5 https://github.com/KaryFramling/ciu, https://github.com/TimKam/py-ciu.
A Matlab implementation also exists at https://github.com/shulemsi/CIU.

https://github.com/KaryFramling/ciu
https://github.com/TimKam/py-ciu
https://github.com/shulemsi/CIU
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Classification tasks with one black-box output per possible class seem to be
the most commonly used architecture in literature. However, as pointed out
earlier, humans do not only explain why they choose one option. Humans are also
often asked to explain why they do not choose other options. Additive feature
attribution methods do not make any conceptual difference between ‘good’ and
‘bad’, so the explanations would presumably be quite similar no matter if they
are for answering the question ‘why?’ or for answering the question ‘why not?’.
With CIU, ‘why?’ and ‘why not?’ explanations can be quite different because
the utility concept (CU) identifies which features are favorable or not for each
class.

Figure 3 shows what non-linear classification models could look like for an
‘AND’/‘not AND’ classifier, with two inputs x, y and two outputs. The first
output corresponds to the class ‘not AND’ and the second output corresponds
to the class ‘AND’. The red dot in Fig. 3 shows the context to be studied, i.e.

#»

C =
(x, y) = (0.5, 0.1). It is easy to see from Fig. 3 that modifying x will not affect
the result z much and the CI of x is indeed only 0.07 for both classes, whereas
the CU of x is 0.50 for both classes, which is expected. However, modifying y
will modify the result z much more, which is also reflected by a CI of y of 0.50
for both classes. The CU of y is 0.93 for the class ‘not AND’ and 0.07 for the
class ‘AND’, which is also expected.

A simple explanation to the question ‘Why is this “not AND”?’ based on
CIU would be something like ‘It is a “not AND” mainly because y is important
(CI = 0.5) and has an excellent value (CU = 0.93). x is not important (CI = 0.07)
but has an average value (CU = 0.5)’.

An explanation to the question ‘Why is this NOT “AND”?’ based on CIU
would be something like ‘It is NOT “AND” mainly because y is important
(CI = 0.5) and has an very bad value (CU = 0.07). x is not important (CI = 0.07)
but has an average value (CU = 0.5)’.

This simple classification example is mainly intended to illustrate how CIU is
used for classification tasks. However, the semantics of the ‘not AND’, ‘AND’, not
‘AND’ and not ‘not AND’ might not be the easiest ones to follow. Furthermore,
it might be more interesting to study the joint behaviour of x and y. But since
there are only two inputs in this case, the CI of both would be one because
modifying both simultaneously would produce all possible z-values in the range
[0, 1]. It is indeed useful to study the behaviour of the black-box also by getting
CIU for all inputs at a time. However, for XAI purposes it might be more useful
to calculate CIU for more than one input, as shown in the next Section.

3.2 CIU of More Than One Inputs

The definition of CI and CU is not restricted to one input. They can be calculated
(or at least estimated) for any combination of inputs, as well as for all inputs
simultaneously. This is useful for XAI purposes because it makes it possible
to provide explanations at any level of abstraction. In a car selection case, for
instance, the concept ‘Performances’ could be used to group together basic input
features such as ‘Maximum power’, ‘Weight’, ‘Top speed’ and ‘Acceleration’ as
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Fig. 3. Classification model learned by neural network, first output is ‘not AND’,
second is ‘AND’. (Color figure online)

in [7]. Any number of such intermediate concepts can be specified and used for
explanation purposes depending on who the explanation is intended for or what
level of detail is needed. There could even be different explanation vocabularies
that target different audiences, such as a domain expert versus a domain novice6.

CIU for more than one input will here be studied using the simple and well-
known Iris data set. The Iris set contains 150 Iris flowers, where there is 50
samples of the three different Iris species Setosa, Versicolor and Virginica. Four
values are indicated for each flower: Sepal length, Sepal width, Petal length and
Petal width, all measured in centimeters.

The neural network classifier used is an INKA (Interpolating, Normalising
and Kernel Allocating) network [8]. INKA is a Radial Basis Function (RBF)
network that is used here mainly because it tends to converge towards the average
output value when extrapolating towards infinity, which can be an advantage
for CIU calculations. However, since CIU is completely model-agnostic, it does
not really matter what is ‘inside’ the black-box being studied. INKA also has
excellent training results with the Iris data set.

For studying CIU, we will use a flower Iristest that is not included in the Iris
data set but that is quite a typical Virginica, so we have

#»

C = (7, 3.2, 6, 1.8) as
input values. The trained INKA network gives us out(

#»

C = (0.022, 0.117, 0.861)
for the three outputs (classes), so it is clearly a Virginica.

Figure 4 shows how the three outputs change as a function of each input.
Table 1 shows the corresponding CI and CU values. It is clear that the flower C is
very far from being a Setosa and modifying any single input will not change that
classification. Figure 4 shows that the Petal length is the most important feature

6 It is uncertain whether additive feature attribution methods could allow for inter-
mediate concepts. Partial derivatives are usually calculated only for one variable.
However, the author does not know if partial derivatives (and gradients) could also
be calculated for arbitrary combinations of variables.
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and that the value 6 cm makes this flower a typical Virginica (but definitely not
a Versicolor). The CI and CU values in Table 1 express the same, so it is easy to
provide an explanation that is clear and that corresponds exactly to the learned
model7.

Table 1. CIU values for Iris classes versus input.

Input feature Setosa Versicolor Virginica

Sepal length 0.0425279 0.2085747 0.2384596 CI

Sepal width 0.03972771 0.17254086 0.21204752

Petal length 0.3124243 0.7169677 0.7113022

Petal width 0.04344366 0.24595074 0.28744096

Sepal length 0.1171743 0.3690032 0.6596097 CU

Sepal width 0.0640272 0.0644939 0.9365688

Petal length 0.0456506224 0.0006167944 0.9995161501

Petal width 0.01707707 0.26574443 0.77682899

Table 2. CIU values for combined concepts.

Input feature Setosa Versicolor Virginica

Sepal size and shape 0.07172334 0.30947848 0.36959064 CI

Petal size and shape 0.3916285 0.9102021 0.9205347

All input features 0.8240611 1.1038175 1.1122128

Sepal size and shape 0.1415141 0.4294574 0.6130286 CU

Petal size and shape 0.04523376 0.15602016 0.82909669

All input features 0.02717686 0.24984699 0.73618267

Table 2 shows CI and CU for the intermediate concepts ‘Sepal size and shape’
(inputs one and two) and ‘Petal size and shape’ (inputs three and four), as well
as CI and CU when calculated for all inputs. The CI values in Table 2 clearly
show that ‘Petal size and shape’ is the most important concept for the flower
studied. CI is about the same (0.91 and 0.92) for both Versicolor and Virginica
but the CU values in Table 2 say that the Petal values are clearly favorable for
Virginica but not favorable for Versicolor (and even less for Setosa). Figure 5
shows the probability of Virginica and Versicolor as a joint function of ‘Sepal
size and shape’ and ‘Petal size and shape’.
7 See [3] for examples of verbal explanations. In that paper, a deep neural network

and a CIU implementation in Matlab was used. The calculations, visualisations etc.
in this paper have been implemented in “R”.
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Fig. 4. CIU as a function of the four inputs for all classes.
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Sepal Length

5 6 7

Se
pa

l w
id

th

2.0

2.5

3.0

3.5

4.0

O
utput value

0.0

0.2

0.4

0.6

0.8

1.0

Versicolor

Petal Length

1 2 3 4 5 6

Pe
ta

l w
id

th

0.5

1.0

1.5

2.0
2.5

O
utput value

0.0

0.2

0.4

0.6

0.8

1.0

Versicolor

Sepal Length

5 6 7

Se
pa

l w
id

th

2.0

2.5

3.0

3.5

4.0

O
utput value

0.0

0.2

0.4

0.6

0.8

1.0

Virginica

Petal Length

1 2 3 4 5 6

Pe
ta

l w
id

th

0.5

1.0

1.5

2.0
2.5

O
utput value

0.0

0.2

0.4

0.6

0.8

1.0

Virginica

Fig. 5. CIU as a function of the intermediate concepts ‘Sepal size and shape’ and ‘Petal
size and shape’ for classes Versicolor and Virginica and Iristest.

When calculating CI for all input features combined, it should logically be
one. The CI values in Table 2 are ‘sufficiently’ close to one in the sense that the
Monte-Carlo simulation with 1000 samples for estimating Cmaxj(

#»

C, {i}) and
Cminj(

#»

C(C, {i}) only provide an estimation of the true values. However, CI for
all inputs can also be used as an indicator of how reliable the learned model
is. A small CI might be an indication that there are areas in the input feature
space that lack in training data. A CI value over one would typically indicate
that there are areas of the input space where the model is overshooting and/or
undershooting so that Cmaxj(

#»

C(C, {i}) > absmaxj and/or Cminj(
#»

C(C, {i}) <
absminj .
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Fig. 6. Bar plot visualisation of CIU for Iris classes. Bar length corresponds to CI
value. CU values below 0.5 give red colour, otherwise green. The further away from 0.5
CU is, the darker the colour. (Color figure online)

On the other hand, CU for all input features combined should give a
result that is similar to the different output values. In this case, out(

#»

C =
(0.022, 0.117, 0.861), which is well in line with CUall = (0.027, 0.250, 0.736).

Despite the solid theoretical foundations of CIU and the consistent results
presented here, there are also some challenges and topics for future research.
For instance, it will take more testing and experience to learn when it might be
better to use somehow normalised CI values rather than the absolute values. For
instance, when dealing with saliency maps as in [22] the CI values of individual
pixels will be very small so then it is only CI of each pixel relative to the other
pixels that counts.

Another challenge is if the input space is not sufficiently well covered by the
training set. Then the estimation of Cmax(C, {i}, j) and Cmin(C, {i}, j) might
go into areas of the input space where the black-box model can be completely
erroneous. Many neural networks have a tendency to go into extreme oscilla-
tions when extrapolating even slightly. However, such conditions can at least be
detected using CI for all input features.

Future topics of research include detecting challenges with stability, reliabil-
ity, robustness and lack of ‘self-insight’ about how certain the results of the black
box are. The current CIU-based explanation features address these challenges
only partially but might open new possibilities. Finally, as proposed in [8], CIU
plots such as those in Fig. 4 could also be used by human experts for correct-
ing erroneous models by augmenting the training set with pseudo-examples that
would correct obvious errors in the trained model.

As CIU is applied to an increasing number of data sets and applications, it
is expected that more insight will be gained into properties of the method that
still tend to be intuitive. For instance, does a CU value of 0.9 for an input value
indeed signify that the value is ‘as good’ as a CU value of 0.9 for an output, or
for an intermediate concept? Intuition says that it should be so but it remains
a topic for further research.
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4 Conclusions

Despite all research efforts on explainability of AI systems since decades, the
emergence of a new name (XAI) for the domain as recently as 2016 is an indica-
tion that XAI is still quite immature. Current XAI research notably on outcome
explanation also seems to ignore the wealth of knowledge accumulated also by
closely related domains for decades. This paper proposes extending the tradi-
tional MCDM concepts of importance and utility from the linear models towards
the non-linear models produced by ML techniques. That extension is called Con-
textual Importance and Utility (CIU).

This paper provides the mathematical definition of CIU and shows how CIU
is used in practice for XAI. An experiment with the Iris data set validates the
approach for real-world data. The Iris data has mainly been chosen for simplicity
of presentation and understanding the basics of CIU. Work is ongoing for more
complex data and use cases in order to show how CIU can be used for explaining
diagnostics in healthcare and machine failures, AI-performed credit assessments,
control actions taken by autonomous vehicles, . . . .

Theoretical and practical examples were provided for showing why methods
based on local linearity are not universally applicable for XAI. CIU provides the
kind of universal base for XAI that is needed in the future. However, more exper-
imental work is still needed for understanding all the possibilities, challenges and
limitations of CIU.
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Abstract. Theory of Mind is commonly defined as the ability to
attribute mental states (e.g., beliefs, goals) to oneself, and to others.
A large body of previous work—from the social sciences to artificial
intelligence—has observed that Theory of Mind capabilities are central
to providing an explanation to another agent or when explaining that
agent’s behaviour. In this paper, we build and expand upon previous
work by providing an account of explanation in terms of the beliefs of
agents and the mechanism by which agents revise their beliefs given pos-
sible explanations. We further identify a set of desiderata for explanations
that utilize Theory of Mind. These desiderata inform our belief-based
account of explanation.

1 Introduction

Following Premack and Woodru [38], an agent exercises Theory of Mind if it
imputes mental states to itself and others. Here we explore the role of Theory of
Mind in explanation. Consider the following narrative by way of illustration.

Mary, Bob and Tom are housemates sharing a house. While Tom was
away on a business trip, Mary and Bob noticed a hole in the roof of their
house and called a handyman to fix it. Before the handyman could come,
however, it rained during the night and the floor got wet. Bob, who sleeps
in a windowless room, did not notice the rain. Tom, who just got back from
his trip that day, noticed the rain but did not know about the hole in the
roof. Mary saw Tom return to the house at night and so knew that Tom
knew that it had rained. In the morning, when trying to explain the wet
floor to Bob, Mary tells him that it had rained during the night and when
explaining to Tom she tells him that she and Bob had discovered a hole in
the roof (adding that the handyman will arrive the next day).

Clearly, Mary tailored her explanations to each of her housemates, believing
the information she was providing to them was sufficient to explain the wet
floor in their respective mental states. Her ability to do this stems from her
Theory of Mind - her ability to attribute mental states (e.g., beliefs) to herself
and to others. In humans, the use of Theory of Mind in explanation has been
c© Springer Nature Switzerland AG 2020
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demonstrated empirically by Slugoski et al. [44] via a set of experiments where
human participants gave different explanations to different explainees (i.e., the
recipient of an explanation), based on the beliefs of the explainers about the
beliefs of the explainees1. Of course Mary’s explanations are only as good as her
ability to model the mental states of her housemates and how they will alter
their mental states in light of her explanation. Mary’s beliefs about Bob and
Tom’s beliefs, or her belief about how each of them revises their beliefs, may
well be wrong, in which case her explanations to them may fail to explain why
the floor is wet.

Explanation has been studied in a diversity of disciplines. Miller [30] pro-
vides an extensive survey of explanation in artificial intelligence that includes
a selection of historical works in philosophy (e.g., Hempel and Oppenheim [21];
Peirce [34]; Harman [19]), arguing for the important role of philosophy and the
social sciences in future work on explanation. Within AI, early work on explana-
tion included a variety of logic-based and probabilistic approaches to abductive
inference or so-called inference to the best explanation including the early works
of Pople [37], Charniak and McDermott [10], Poole [35], and Levesque [26]. In
the mid 1980s, explanation was popularized in the context of expert systems
where explanations were often generated by backward chaining over a set of
symbolic inference steps (e.g., [20,43]). Following that time, explanation was a
common element in a diversity of applications of symbolic AI reasoning (e.g.,
[3,28,45]). The recent resurgence of interest in explanation is largely in the guise
of so-called Explainable AI (XAI), which is motivated by the need to provide
human-interpretable explanations for decision making in black-box classification
and decision-making systems based on machine and deep learning (e.g., Samek
et al. [41]; Gunning et al. [16]).

Numerous researchers have acknowledged the importance of Theory of Mind
in explanation. In the 80s and 90s, formal accounts of explanation such as those
proposed by Gärdenfors [12] and Chajewska and Halpern [7] observed that an
explanation for one agent may not serve as an explanation for another, and the
explainer must therefore tailor an explanation to an explainee given the latter’s
beliefs. Within the space of user modelling and dialogue, and also set in the
80s and 90s, Weiner’s [49] BLAH system and Cawsey’s [6] EDGE system both
tailor explanations to the presumed user model. More recently, researchers have
leveraged belief-desire-intention (BDI) architectures as a natural framework for
explanations reflecting Theory of Mind. Such software architectures can enable
an explainer to explicitly represent its own beliefs, desires, and intentions, as well
as those of an explainee, and to relate explanations to its own beliefs and goals
or those of the explainee (e.g., Harbers et al. [18]; Kaptein et al. [24]). Most
recently, Westberg et al. [50] has posited that incorporating various points of
view on Theory of Mind from the cognitive sciences will facilitate the creation of
agents better suited to communicate and explain themselves to the humans with
whom they are interacting. Additionally, Miller [30] has surveyed this body of

1 We henceforth use explainer and explainee in reference to the provider and recipient
of the explanation, and explanandum in reference to the thing to be explained.
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work and has also emphasized the importance of the explainer’s ability to tailor
an explanation to the explainee, using its understanding of the latter’s mind.
Finally, within the subfield of XAI known as XAI Planning (XAIP) Chakraborti
et al. [8] have implemented XAIP in human-agent teaming settings, such as
search & rescue, where a robot equipped with Theory of Mind capabilities could
explain its actions to its human teammate by taking into account the latter’s
mental state.

In this paper we build on the shoulders of previous scholarly work to explore
the role of Theory of Mind in explanation with a view to addressing the diverse
needs of explanation in AI, and XAI in particular. To this end, in Sect. 2 we
identify a set of desiderata for explanations that utilize Theory of Mind. These
desiderata inform a set of design choices for a belief-based account of explanation
which we present in Sect. 3. Of course not all explanations are created equal, and
in Sect. 4 we discuss the criteria by which the quality of an explanation can be
evaluated. In Sect. 5 we demonstrate how, in the absence of an explicit prompt to
be explained, our account allows the explainer to simulate the explainee’s men-
tal state and identify discrepancies that warrant explanation. Explanations are
limited by the coverage and accuracy of the explainer’s beliefs as well as its rea-
soning capacity. In Sect. 6, we show how our account allows for the modelling of
the ignorance and misconceptions of an explainer pertaining to the mental state
of an explainee and how these may affect the quality of explanation. We conclude
with a discussion of related work and possible computational realizations of our
general account.

2 Desiderata for Theory of Mind in Explanation

We begin our investigation by reflecting on the key components that support an
agent in imputing mental states to itself and others, reasoning about how the
provision of new information is assimilated into an agent’s existing set of beliefs,
and the circumstances underwhich such information constitutes an explanation
for the explainee. To this end, we identify a set of desiderata that inform our
account of explanation in the sections to follow.

multi-agent: the account must be conceived in a multi-agent setting to support
representation of the beliefs of one or more explainer and explainee.

agent-type agnostic: the account must support a myriad of different agent
types whose beliefs may be internally represented, inspectable, and revisable
in diverse ways. For example, the agent’s beliefs may be stored in a human
brain or in, for instance, the parameters of a neural network or formulae in a
knowledge base.

belief based: the account must model the possibly false or simply incomplete
beliefs of explainers and explainees.

reason about the beliefs of others: the account must allow an explainer to
reason about the explainee’s beliefs when providing the latter with an expla-
nation since, due to their possibly differing beliefs, an explanation for the
explainer may not be an explanation for the explainee.
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support belief revision: the account must enable the explainer to consider
how an explanation is assimilated by the explainee, and in particular how
the latter revises their beliefs given potential explanations which may be
inconsistent with their current beliefs.

explanations can refer to beliefs: the account must allow for explanations
that themselves refer to beliefs. To illustrate why this is useful, consider that
the explainer might explain their having not told the explainee the location
of a party by saying that the explainer believed that the explainee knew the
location.

While previous work has addressed some of these desiderata, in this paper
we propose a belief-based account of explanation in terms of epistemic states of
agents that satisfies all of the aforementioned desiderata by employing a number
of crucial building blocks relating to these desiderata.

3 A Belief-Based Account of Explanation

We appeal to logics of belief to provide a belief-based account of explanation in
the context of Theory of Mind.

Many logical accounts of explanation assume the existence of a knowledge
base—a logical axiomatization of the domain in terms of a set of formulae (e.g.,
[5]). With such a knowledge base in hand, a popular logic-based characterization
of explanation is in terms of abduction as follows.

Definition 1 (Abductive Explanation (after [36])). Given a logical theory,
T , and an explanandum O, E explains O given a theory T if T ∪ E |= O and
T ∪ E is consistent.

Here we make no such commitment to the representation of beliefs in terms of
a set of logical formulae. Rather, in order to capture the diversity of human and
machine explainers and explainees, our account finds its origins in works that
attributed agents with mental states in the form of epistemic states (with seminal
work by Gärdenfors [12] and later notable work by Levesque [26]; Boutilier and
Becher [4]; Chajewska and Halpern [7]; and Halpern and Pearl [17]).

3.1 Mental States as Epistemic States

We employ the notion of an epistemic state, e, or in the case of multiple agents,
a collection of epistemic states, �e, to capture the beliefs of agents. These are used
to provide the semantics for the language below.

We will suppose that we have a finite set of agents, A = {1, 2, . . . , n}, and a
set of propositional symbols P . We define a language

ϕ ::= p |¬ϕ | (ϕ ∧ ϕ) | Biϕ | [ϕ]iϕ (1)

where p ∈ P and i ∈ A. We introduce ⊥ as an abbreviation for (p ∧ ¬p) for an
arbitrary p ∈ P .
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The intended meaning of Biϕ is that agent i believes ϕ, and the intended
meaning of [α]iϕ is that after agent i revises their beliefs by α, ϕ is true.

We assume that our epistemic states are such that we can say that a formula ϕ
is true at e when ϕ is believed. To be clear, although we use formulas to describe
what is believed, an epistemic state is not in general defined as a set of formulas,
nor required to be represented internally as one. For a conventional example, e
might be a set of possible worlds with accessibility relations and so on. However,
we also allow for epistemic states to take very different forms. For example, one
might want to model limited reasoning capabilities in some manner to avoid
the so-called problem of logical omniscience [48], in which agents unrealistically
believe all the deductive consequences of their beliefs. We might also wish for
our epistemic states to be realized in terms of a computer program, such as a
neural network, or via a human brain.

Furthermore, we assume we have a revision operator ∗ so that e ∗ α is another
epistemic state, the result of revising by α. We will use * in defining the semantics
for the [α]i operator. Much as we have not committed to a particular structure
for epistemic states, we will not commit to a particular revision operator. A large
body of work has studied belief change in agents where belief revision typically
concerns belief change in a static environment, possibly in the presence of incor-
rect and partial beliefs. Amongst the most popular guidelines for belief revision
are the AGM postulates [1], and the DP postulates [11] (for iterated revision).
We will not require that our ∗ satisfies these properties except where noted.
Similarly to the situation with our epistemic states, we might want our revision
operator to be realized in terms of a computer program or human reasoning.

While epistemic states assign a truth value to any formula in our language
– the language given by the grammar in (1) – that value indicates whether the
formula is believed by the agent in question, not whether it’s actually true. From
an objective point of view, the formulas whose truth values we can determine
are from the subset of the language consisting of formulas which are concerned
only with beliefs. We define this subset of formulas below:

Definition 2 (Agent Formula). An agent formula is one in which no atomic
symbol appears outside the scope of a belief operator, i.e., a formula φ of the
form

φ ::= Biϕ | ¬φ | (φ ∧ φ) | [ϕ]iφ (2)

where ϕ is any (possibly non-agent) formula.

We assign truth values to agent formulas with a collection of epistemic states �e =
e1, . . . , en (corresponding to the different agents) according to the satisfaction
relation |= below.

– �e |= Biϕ iff ϕ is true at ei
– �e |= ¬φ iff �e �|= φ
– �e |= (φ ∧ ψ) iff �e |= φ and �e |= ψ
– �e |= [α]iφ iff 〈e1, . . . , (ei ∗ α), . . . , en〉 |= φ
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Note that the semantics of the [α]i operator is defined using the revision operator.
Give this abstract framework for talking about beliefs, we can define expla-

nations. The lack of commitment to the form of the epistemic state and revision
operator is important because it affords us the ability to model a diversity of
agents. In so doing, for the definitions of explanation that follow, the explainer
will have beliefs about the other agents’ beliefs and about their revision oper-
ators, and the effectiveness of the explainer’s explanations for any particular
agent will rely on the fidelity of those beliefs.

3.2 Characterizing Explanations

Definition 3 (Explanation). Given epistemic states �e, we say that α explains
β for agent i if �e |= [α]i(Biβ ∧ ¬Bi⊥).

Notation: For notational convenience, we define Expl(i, α, β) as an abbreviation
for [α]i(Biβ ∧ ¬Bi⊥).

That is, α explains β if revising by α makes agent i believe β while still having
consistent beliefs.2 Note that (with respect to revising by non-modal formulas) if
revision of agent i’s epistemic state satisfies the AGM postulates, then the result
of revision will be inconsistent only if either the agent initially had inconsistent
beliefs, or if α itself is inconsistent.

Intuitively, our definition of explanation allows for more explanations than
the traditional account in Definition 1. For one thing, we allow explanations to
refer to modal operators. Even without that, though, an important difference is
that our definition is in terms of belief revision and so allows for an explanation
that isn’t consistent with the agent’s initial beliefs. Our account builds upon
prior accounts of explanation defined relative to belief revision such as Boutilier
and Becher [4] and Nepomuceno-Fernández et al. [32].

To make the comparison more explicit, consider defining an epistemic state
ei as a propositional theory T , as in the following theorem.

Theorem 1. Suppose that ei is defined as being a propositional theory T , and
that the formulas ei makes true are defined to be the logical consequences of T
(note that these are restricted to the non-modal subset of our language). Suppose
furthermore that the revision operator ∗ on ei satisfies the AGM postulates (w.r.t.
non-modal formulas). Then for non-modal formulas α and β, �e |= Expl(i, α, β)
if T ∪ {α} is consistent and T ∪ {α} |= β.

Proof. Because T ∪ {α} is consistent, by the AGM “vacuity” postulate, T ∗ α
is equal to the expansion of T by α, that is, the closure of T ∪ {α}. Therefore,
T ∗ α |= β.

2 If agent i is not logically omniscient, requiring i to not believe ⊥ may not prevent
i’s beliefs from being inconsistent in some subtler way. For example, i might both
believe p and believe ¬p, even though it does not believe (p ∧ ¬p).
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However, we may also get further explanations. In the circumstances described
by Theorem 1, if T ∪ {β} is inconsistent, then Definition 1 would say there are
no explanations of β given the theory T , while there may be formulas that agent
with epistemic state T can revise by that would make them believe β.

It is also possible to talk in the language about agents’ beliefs about
Expl(i, α, β), i.e. about whether α explains β for agent i.

Definition 4 (Subjective Explanation). Given epistemic states �e, we say
that α explains β for agent j from agent i’s perspective, if �e |= BiExpl(j, α, β).

Example 1. We formalize our example from Sect. 1. We assume that Mary,
Bob and Tom all believe (and believe that the other agents believe) rain ∧
holeInRoof → wetF loor.

A = {Mary,Bob,Tom}
�e |= BMarywetF loor ∧ BMaryholeInRoof ∧ BMaryrain
�e |= BMaryBBob¬wetF loor ∧ BMaryBBob¬rain ∧ BMaryBBobholeInRoof
�e |= BMaryBTom¬wetF loor ∧ BMaryBTomrain ∧ BMaryBTom¬holeInRoof
�e |= BMaryExpl(Bob, rain,wetF loor)
�e |= BMaryExpl(Tom, holeInRoof,wetF loor)

We also assume that the agents are able to draw at least simple inferences
(and each knows that the others will) and their belief revision operators behave
in a sensible way (and each knows that the others’ operators do so).

We define a relation ≈ that can be understood intuitively as equating two
epistemic states, ei and ej . For ei ≈ ej to hold, the internal structures of the
states ei and ej need not be the same, but they must support the same beliefs as
each other, and must continue to do so after any sequence of revisions. Formally,
we say that ei ≈ ej if

– �e |= Biϕ iff �e |= Bjϕ
– and for any sequence of formulas α1, . . . , αk, we have that �e |=

[α1]i · · · [αk]iBiϕ iff �e |= [α1]j · · · [αk]jBjϕ

Theorem 2. Given epistemic states �e and explanandum β, if ei ≈ ej it then
follows that for all α, �e |= Expl(i, α, β) iff �e |= Expl(j, α, β).

Proof. Note that �e |= Expl(i, α, β) iff �e |= [α]iBiβ and �e |= [α]i¬Bi⊥, and
similarly for agent j. The result follows from the definition of ≈.

That is, when ei ≈ ej , an objective explanation for the former is also an
objective explanation for the latter. Therefore, agent i, acting as the explainer,
need not employ its Theory of Mind and reason about agent j’s beliefs in order
to generate explanations for the latter. However, the fact that ei ≈ ej does
not mean that ei holds accurate beliefs pertaining to how ej revises its beliefs.
Thus, while any α that explains β may be an objective explanation for both
agents i and j, agent i need not necessarily believe that α is an explanation for
j. Nonetheless, ei ≈ ej is quite strong, as illustrated by the following theorem.
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Theorem 3. Suppose ej supports positive and negative introspection – i.e., �e |=
(Bjϕ ≡ BjBjϕ) ∧ (¬Bjϕ ≡ Bj¬Bjϕ). Then if ei ≈ ej, agent i will have correct
beliefs about j’s beliefs, i.e., �e |= (Bjϕ ≡ BiBjϕ) ∧ (¬Bjϕ ≡ Bi¬Bjϕ).

Proof. If agent j believes ϕ, then we’ll have that �e |= BjBjϕ (by positive intro-
spection) and then �e |= BiBjϕ (because i ≈ j). Similarly, if agent j disbelieves
ϕ, then �e |= Bj¬Bjϕ (by negative introspection) and so �e |= Bi¬Bjϕ.

In some cases, an explanation need not cause the explanandum to be entailed
by the epistemic state, but rather cause it to be possible in the epistemic state.
This type of explanation is similar to Boutilier and Becher’s might explanation.

Definition 5 (Inconsistency-resolving Explanation). Given epistemic
states �e, we say that α explains the possibility of β for agent i if �e |= [α]i¬Bi¬β.

This is a weaker form of explanation but important in various settings such as
when an agent is attempting to find an explanation that will allow the behavior of
another agent or in consistency-based diagnosis, where the agent is attempting
to identify the abnormal components in a system that allow for the observed
behavior of the system.

Theorem 4. Given epistemic states �e and explanandum β, then for all α, if
�e |= Expl(i, α, β) it then follows that α is an inconsistency-resolving explanation
for β for agent i, assuming that �e |= [α]i

(
(Biβ ∧ Bi¬β) → Bi⊥

)
, i.e., that the

agent can perform enough reasoning to notice the inconsistency in believing both
β and ¬β.

This follows straightforwardly from Definitions 3 and 5.

Explanations Involving Agent Beliefs
Importantly, an explainer can utilize its Theory of Mind to generate explanations
pertaining to the mental states of other agents, such as their beliefs or goals.

Example 2. Let us reconsider our example where this time, after Mary explains
wetF loor to Bob, he asks her why Tom doesn’t know wetF loor. That
is, the explanandum β is ¬BTomwetF loor. A possible explanation is then
BTom¬holeInRoof , assuming Bob believes BTomrain.

3.3 Explanations Involving Multiple Agents

An interesting setting that is straightforwardly captured by our framework is one
in which an explainer (or explainers) is attempting to explain multiple (possibly
disparate) explanandums to multiple explainees.

Definition 6. Given epistemic states �e and explanandums βj, βk, . . .βl, we
say that α explains βj, βk, . . .βl from agent i’s perspective for agents j, k, . . . l,
respectively, if �e |= BiExpl(j, α, βj) ∧ BiExpl(k, α, βk) ∧ . . . ∧ BiExpl(l, α, βl).
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Consider a collaborative card game (e.g., Hanabi [2]) where a certain player
is attempting to make different players (each with a unique epistemic state)
understand different things with a single piece of information about another
player’s cards, publicly announced to all players. The explaining player should
therefore find an α that explains different explanandums for the different players,
given the explaining player’s beliefs about the other players’ beliefs.

Example 3. In a simpler setting such as our running example, if Mary is trying to
explain wetF loor to Bob and Tom at the same time, the explanation α could be
rain∧holeInRoof , where the explanandum for both Bob and Tom is wetF loor.

Privacy. Our framework can also capture a notion of privacy. For example, the
explainer (agent i) may want to generate an explanation α that explains the
explanandum β to some agents (agent j) but not to others (agent k):

�e |= BiExpl(j, α, β) ∧ Bi¬(Expl(k, α, β))

Example 4. If Mary, for some reason, wants only Bob to entail wetF loor, the
explanation α could be rain in which case Bob will entail wetF loor but Tom
will not. One can imagine parent #1 wanting to explain something to parent #2
such that their child does not understand.

Multiple Explainers and ‘Nested’ Explanations. In some cases, there may
be multiple explainers trying to explain an explanandum β to an explainee. For
example, agents i and j may want to find an α that explains β for agent k:

�e |= BiExpl(k, α, β) ∧ BjExpl(k, α, β)

Definition 6 can be straightforwardly extended to capture this setting.
Finally, agent i may want to find an α that he believes that agent j believes
is an explanation for agent k:

�e |= BiBjExpl(k, α, β)

4 “Best” Explanations for Whom?

An explanadum can typically be explained by a variety of different explanations,
but it is often the case that an agent prefers one explanation to another rela-
tive to some set of criteria. Indeed, there is a large body of previous work (e.g.,
[4,26,27]) that outlines criteria for defining preference orderings over explana-
tions. In the context of a multiple agents, we have seen that what constitutes an
explanation for one agent, may not constitute an explanation for another. This
observation extends to the notion of preferred explanations—what’s good in the
eyes of the explainer may not be good for the explainee, or for all explainees. We
explore the issue of preferred explanations briefly here in the context of Theory
of Mind.

For each agent in the set of agents A, we define a binary preference relation
≺ over explanations such that ≺i is the preference relation for agent i.
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Definition 7 (Preferred Explanation). Given epistemic states �e and
explanandum β, if α and α′ both explain β for agent i and α �i α′, we say
that α is at least as preferred as α′ for agent i. α ≺i α′ denotes that α is strictly
preferred to α′ for agent i.

Similarly, we use α �i,j α′ to denote that agent i believes that α is at least
as preferred as α′ for agent j.

Definition 8 (Optimal Explanation). Given epistemic states �e and
explanandum β, α is an optimal explanation for β wrt ≺i iff α explains β for
agent i and there does not exist an explanation α′ for β for agent i such that α′

≺i α.

Hilton [22] posits that an explanation given by one agent to another is a
form of conversation and should therefore adhere to Grice’s [15] maxims which
he proposed as part of a model for effective cooperative conversation. In what
follows, we discuss a number of criteria for preferred explanations and relate
them to Grice’s maxims.

Truthfulness: Grice’s first maxim is the quality maxim, according to which
one must not provide information (e.g., to the explainee) that she believes to be
false.

Definition 9 (Subjectively Truthful Explanation). Given epistemic states
�e and an explanandum β, α is a subjectively truthful explanation for agent j from
the perspective of agent i iff �e |= BiExpl(j, α, β) ∧ Biα.

Example 5. In our example, Mary may tell Bob that Tom poured water all over
the floor, thereby explaining wetFloor. However, since Mary does not believe
that Tom did such a thing, it would not be a subjectively truthful explanation
explanation from Mary’s perspective.

Minimality: According to Grice’s quantity and relation maxims, one must
provide information that is relevant, sufficiently informative, and no more infor-
mative than needed. In a Theory of Mind context, the sufficiency of information
is defined relative to the explainer’s beliefs about the explainee’s epistemic state
and the explainer should therefore find the minimal explanation relative to the
explainee’s epistemic state. A large body of work concerned with explanation has
discussed a minimality property which an explanation should satisfy. For exam-
ple, Levesque [26] defines a syntactic simplicity relation between explanations
wherein an explanation is simpler than another if it contains fewer propositional
letters. Minimal explanations in the semantic sense may be defined relative to a
set of possible explanations as those that are implied by all other explanations.
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Plausibility: Grice’s quality maxim also dictates that one should not provide
information that is not supported by evidence. When applying this maxim to
the beliefs of the explainee, an explainer may wish to consider how likely an
explanation is from the point of view of the former. For instance, in our example
it is more likely that Bob will accept rain as an explanation over the highly
unlikely explanation according to which Alan Turing came to visit in the middle
of the night and accidentally poured water all over the floor. Therefore, the
likelihood of an explanation is an important preference criterion when explaining
to ourselves and to others. In the quantitative case, Pearl [33] defines a most
probable explanation while in a qualitative setting the plausibility of explanations
may be defined where the most plausible explanations are those that require the
‘least’ change in the explainee’s epistemic state (e.g., [4,39]), which could be
defined in various ways, including the degree of held beliefs (e.g., [23]).

5 Explainer-Explainee Discrepancies

To this point our account of explanation has assumed the existence of an
explanandum, β, that is in need of explanation for a particular agent. How-
ever, in the absence of such a prompt, the explainer may use her Theory of
Mind to put herself in the explainee’s shoes, so to speak, and to identify discrep-
ancies between the beliefs of the explainee and those of the explainer, or perhaps
in the case of multiple agents, to identify discrepancies between the beliefs of
two agents that the explainer can resolve via an explanation. Discrepancies can
also arise from inconsistencies between an agent’s beliefs and observations in the
world. Such discrepancies are common prompts for explanation in the case of
diagnosis (e.g., [4,40]).

Definition 10 (Discrepancy). Given epistemic states �e, β is a discrepancy
between ei and ej iff �e |= Biβ ∧ Bj¬β.

That is, agent i believes β while agent j believes ¬β. The beliefs of agents
pertaining to discrepancies can also be represented in our framework.

Definition 11 (Subjective Discrepancy). Given epistemic states �e, β is a
discrepancy between ei and ej from the perspective of agent i iff �e |= Bi(Biβ ∧
Bj¬β).

Example 6. In our example, while Mary believes wetFloor, she believes that
Bob believes that the floor is not wet (i.e., �e |= BMary(BMarywetF loor ∧
BBob¬wetF loor). Thus, wetF loor is a discrepancy between Bob and Mary’s
respective epistemic states from Mary’s perspective.

Definition 12 (Subjective Discrepancy-resolving Explanation). Given
epistemic states �e and a discrepancy β between ei and ej from the perspective of
agent i, we say that α is a discrepancy-resolving explanation for agent j for β
from agent i’s perspective if �e |= Bi[α]j¬Bj¬β.
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Example 7. A discrepancy-resolving explanation for wetF loor for Bob from
Mary’s perspective is rain.

Note that Definition 12 appeals to the weaker inconsistency-resolving expla-
nation defined in Definition 5. Thus, the explainer need not find an α that it
believes will allow the explainee to entail the discrepancy. Rather, α should
resolve the discrepancy by explaining its possibility.

We cast agent i as the explainer and agent j as the explainee, and distin-
guish between two types of subjective discrepancies: (1) where β is a discrepancy
between ei and ej from the explainer’s perspective; and (2) where β is a discrep-
ancy between ei and ej from the explainee’s perspective. In (1), as discussed,
the explainer (e.g., Mary) may provide a discrepancy-resolving explanation for
β (e.g., rain). However, for (2), in order to provide such as explanation the
explainer must believe that the explainee believes that there exists a discrep-
ancy between ei and ej . If the explainer’s beliefs about the explainee’s beliefs
are incomplete or incorrect, the former may not recognize that such a discrep-
ancy exists.

Explainer as Mediator. Definition 11 can be straightforwardly generalized to
capture a setting where agent i believes that there exists a discrepancy between
ej and ek:

�e |= Bi(Bjβ ∧ Bk¬β)

Agent i may also believe that agent j believes that α is an explanation for
β for agent k, while also believing that α is not in fact a valid explanation for
agent k due to the discrepancy between the epistemic states of agents j and k:

�e |= Bi(BjExpl(k, α, β) ∧ ¬Expl(k, α, β))

Using Definition 6, agent i may explain the discrepancy to agents j and
k. Note that the notion of discrepancy discussed here can easily be extended
to encode other, possibly richer notions of discrepancy including the degree to
which the epistemic states of two agents are discrepant.

6 The (In)Adequacy of the Explainer’s Beliefs

The explainer is limited by the accuracy of its beliefs about the explainee’s
beliefs and reasoning capabilities. Specifically, the explainer’s beliefs about the
explainee’s beliefs and reasoning capabilities must be accurate ‘enough’ – ade-
quate – for the explainer to generate ‘good’ explanations wrt the explainee.

Definition 13 (Adequacy). Given epistemic states �e and explanandum β, we
say that agent i’s epistemic state ei is adequate wrt agent j iff for all α, �e |=
BiExpl(j, α, β) iff �e |= Expl(j, α, β).
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That is, if agent i’s epistemic state is adequate wrt agent j and β, then it
can generate all explanations (for β) for agent j that are also explanations for
agent j in its actual epistemic state, ej .

Theorem 5. Given epistemic states �e, explanandum β and �i,j ,�j, agent i’s
perspective of agent j’s preference relation and agent j’s actual preference rela-
tion, respectively, if �i,j =�j and ei is adequate wrt agent j and β, then for all
α, α is an optimal explanation for agent j from agent i’s perspective wrt �i,j iff
α is an optimal explanation for agent j wrt �j.

That is, when ei is adequate wrt agent j and when agent i’s beliefs about
agent j’s preference relation are correct, the optimal explanation for agent j from
the perspective of agent i is also the optimal objective explanation for agent j.
The proof follows straightforwardly from Definitions 8 and 13.

6.1 Sources of (In)Adequacy

Since most agents do not have a perfect image of another agent’s mental state, an
agent’s beliefs about another agent may be inadequate for a myriad of reasons,
including the inaccuracy of an agent’s beliefs about the beliefs of other agents and
about the way in which other agents revise their beliefs and perform entailment.
In what follows, we focus on a setting where an agent holds inadequate beliefs
about another agent’s beliefs and illustrate using our running example.

Example 8. Returning to our example, assume that Mary forgot that Bob found
the hole with her and so she now falsely believes that Bob believes that there
is no hole in the roof (i.e., �e |= BMaryBBob¬holeInRoof). Mary will therefore
believe that rain ∧ holeInRoof is the minimal explanation for Bob (relative to
an intuitive measure of minimality). Notice, however, that in her explanation,
Mary is conveying more information than is needed for Bob to entail wetFloor
(thereby violating Grice’s quantity maxim).

Example 9. Now consider that Mary falsely believes that Bob believes that it
had rained and that there is no hole in the roof (perhaps she confused him
with Tom!). Mary will therefore believe that holeInRoof is an explanation for
Bob. However, �e �|= Expl(Bob, holeInRoof, wetF loor) since Bob does not believe
rain. This time, Mary has violated the quantity maxim by not providing enough
information for Bob to entail wetFloor.

Example 10. Mary now falsely believes that Bob believes wetFloor (i.e., �e |=
BMaryBBobwetF loor) and so does not provide him with an explanation, believ-
ing he does not require one. In this case, while wetFloor is an objective dis-
crepancy between Bob and Mary’s epistemic states, it is not a discrepancy from
Mary’s perspective due to her false beliefs.
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Addressing Inadequacy
It is possible to mitigate for the inadequacy of the explainer’s beliefs in a vari-
ety of ways. For example, it may be beneficial for the explainer to attempt
to refine its beliefs about the beliefs of the explainee when explanations are not
understood by the explainee. To this end, the explainer could try to gather addi-
tional pertinent information by acting in the world (e.g., querying the explainee).
Additionally, Sreedharan et al. [47] propose a learning technique which enables
an explainer to learn a simple model of an explainee and decide, based on the
learned model, what information would constitute a good explanation. Further,
Sreedharan et al. [46] show how an explainer may generate explanations that are
applicable to a set of possible explainee models which arise as the consequence
of explainer uncertainty pertaining to the explainee’s model.

Finally, while we emphasized the importance of the explainer modelling
the beliefs of the explainee, our general account could in theory support the
explainee, perhaps compensating for the explainer’s inadequate beliefs, reasoning
about the beliefs of the explainer to understand a given explanation that might
otherwise be construed as inadequate. For example, consider Chandrasekaran
et al.’s [9] discussion of a Theory of AI’s Mind where a human attempting to
better understand a black-box decision making system can do so by familiarizing
themselves with the system’s capabilities, peculiarities, and shortcomings.

7 Related Work

As previously discussed, we are not the first to propose an account of explanation
in terms of the epistemic state of an agent.Levesque presents a knowledge-level
account of abduction based on the epistemic state of an agent [26]. He provides a
generic definition of explanation that does not commit to a specific type of agent
belief. Then, building on his seminal work on a logic of implicit and explicit
belief [25], he shows how such different formal models of belief lead to different
forms of abductive inference and resultant explanations. Boutilier and Becher
[4] similarly appeal to epistemic states to characterize the beliefs of an agent,
employing belief revision to allow for explanations that are inconsistent with the
epistemic state of the explainee. Prior to the works of Levesque and Boutilier
and Becher, Gärdenfors [12] proposed a model of explanation where explana-
tions are defined relative to the epistemic states of agents. While Gärdenfors’s
account is probabilistic, the models proposed by Levesque and Boutilier and
Becher are qualitative. We share the use of epistemic states with all three works,
the appeal to qualitative criteria with Levesque and Boutilier and Becher, and
the recognition of the importance of belief revision with Boutilier and Becher.
Nevertheless, these works all characterize explanation with respect to a single
agent providing no account of the distinct beliefs of the explainee and explainer,
nor do they capture their Theory of Mind.

Nepomuceno-Fernández et al. [32] propose an account of explanation that
also recognizes the importance of a revision operator and the use of epistemic
states. However, while their Dynamic Epistemic Logic (DEL) based framework
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can capture multiple agents, their focus remains on an agent’s task of obtaining
an abductive explanation for itself, rather than for other agents.

Halpern and Pearl [17] proposed a structural model of explanation selection
based on the epistemic state of the explainee. In their work, the explainee’s
epistemic state comprises a set of situations the explainee considers possible
and an explanation is then meant to remove some of these possible situations
such that the cause of some explanandum may be uniquely identified. Miller
extends Halpern and Pearl’s approach to include contrastive explanations which
are given relative to some counterfactual (e.g, in response to the question ‘Why
P rather than Q? ’) [29]. Halpern and Pearl, however, do not discuss some of
the necessary elements of Theory of Mind in explanation, such as the notions of
explainer-explainee discrepancies and the adequacy of the explainer’s beliefs.

In the context of XAIP, Sreedharan et al. [47] demonstrate how the model
reconciliation paradigm, proposed by Chakraborti et al. [8], can be generalized
to address the important case where the explainee’s model of the explainer’s
planning model is not explicitly known or not provided in a declarative form.
Our work captures some of the insights in Sreedharan et al.’s work, in addition
to incorporating the notions of epistemic states and belief revision, which in turn
allows us to draw inspiration from the rich body of previous work in the field
where these ideas originated.

The vast body of work on Theory of Mind proposes two accounts of the way
in which agents attribute mental states to other agents: Theory-Theory of Mind
[13] (where an agent pre-assigns beliefs to other agents) and Simulation Theory of
Mind [14] (where an agent simulates other agents’ beliefs and the mechanisms by
which those beliefs change). Related work in XAI has highlighted the interesting
distinctions between the two as well as the implications for explanation [50].
Further, Sarkadi et al. [42] combine the two approaches by allowing an agent to
both assign beliefs to another agent and update its beliefs about the beliefs of
the other agent’s beliefs by employing Simulation Theory of Mind. We similarly
combine the two approaches.

We have focused discussion on the subset of work that is most closely related
to the contributions of the paper. For a comprehensive survey of research on
explanation, the reader is directed to [30].

8 Concluding Remarks

The use of Theory of Mind in explanation holds the promise of producing high-
quality explanations that are tailored to the beliefs of the explainee, in the
context of the beliefs (and ignorance) of the explainer. In this paper, we identified
a set of desiderata for explanation that utilizes Theory of Mind. These desiderata
informed our proposed belief-based account of explanation. Key features of this
account are the appeal to epistemic states to capture the mental states of both
the explainer and explainee, and the use of the explainee’s belief revision to
assimilate explanations. Further, we formalized and discussed the notion of a
discrepancy as a property that allows the explainer to anticipate and provide
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explanations without prompting. We also presented properties relating to the
adequacy of the explainer’s beliefs with respect to providing an explanation.

This paper has provided a general characterization of explanation without
focusing on its computational realization. This was done by design to allow for a
diversity of explanation scenarios and agent types, including human, black-box
decision maker, or knowledge-based system. Nevertheless in the simplest case if
the beliefs of the explainer are represented as formulae (logical or probabilistic)
then, as observed by Levesque [26] and Boutilier and Becher [4], our notion of
explanation may be realized via an augmentation of existing abductive reasoning
systems such as Theorist Poole [35], for example.

Further, in much of this paper we have been relating our Theory of Mind
characterization of explanation in the context of English-like statements (e.g.,
Mary telling Bob that it had rained last night). However, if we turn to the broad
endeavour of XAI that helped motivate our account, we note that an explanation
can take on many different forms other than human-interpretable language (e.g.,
a set of weights in a neural network, select pixels, a gesture, a heightening of
intensity in a region of an image). At its core, an explanation is something that
is conveyed by the explainer to the explainee (e.g., by telling, demonstrating,
visualizing, etc.) in order to justify the latter’s belief in some explanandum. For
example, by constructing a heat-map from a medical image, an otherwise black-
box decision-making algorithm can highlight for the explainee the pixels that
have most strongly supported its classification decision [31], thereby allowing the
explainee to assimiliate this explanation into their beliefs and better interpret
the system’s decision. As has been argued in this paper, the decision-making
system, acting as an explainer, should possess the ability to take the epistemic
state of the explainee into account, tease apart the salient features required for
the explainee to justify its belief in the explanandum, and present those to the
explainee as an explanation. Some of these insights pertaining to explanations
for black-box solvers are similarly echoed by Sreedharan et al. in the context
of their model reconciliation paradigm [47] (Section 2). Our general account is
intended to provide building blocks towards this broader XAI objective.

There are several take-aways from this paper that are worth highlighting.
Explanations need not be consistent with an agent’s beliefs. As such, contrary to
most logical treatments of explanation, characterizations of explanation should
involve a belief revision component, and not just the expansion of existing beliefs
to include an explanation. Further, by providing a belief-based account of expla-
nation that characterizes mental states in terms of epistemic states, and by
allowing for epistemic states and revision operators to be realized in a diversity
of forms from standard logical accounts, to computer programs, neural networks
or human brains, we can capture the mental states of a myriad of different types
of agents. Finally, by characterizing explanations in terms of the explainer’s
beliefs about the explainee’s beliefs and revision operator, we can capture the
role of Theory of Mind in explanation for a myriad of different types of agents.
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Abstract. Recent advances in artificial intelligence (AI) have drawn
attention to the need for AI systems to be understandable to human
users. The explainable AI (XAI) literature aims to enhance human under-
standing and human-AI team performance by providing users with neces-
sary information about AI system behavior. Simultaneously, the human
factors literature has long addressed important considerations that con-
tribute to human performance, including how to determine human infor-
mational needs. Drawing from the human factors literature, we propose
a three-level framework for the development and evaluation of explana-
tions about AI system behavior. Our proposed levels of XAI are based
on the informational needs of human users, which can be determined
using the levels of situation awareness (SA) framework from the human
factors literature. Based on our levels of XAI framework, we also propose
a method for assessing the effectiveness of XAI systems.

Keywords: Explainable AI · Human-AI collaboration ·
Interpretability

1 Introduction

With the recent focus on explainable artificial intelligence (XAI) in the AI lit-
erature, defining which information XAI systems should communicate and how
to measure their effectiveness is increasingly important. Gunning and Aha [21]
define XAI as “AI systems that can explain their rationale to a human user,
characterize their strengths and weaknesses, and convey an understanding of how
they will behave in the future.” We adopt this definition of XAI and define expla-
nations as the information necessary to support human inference of the above
details about AI systems, including information about their inputs, models, and
outputs. The motivation for development of XAI techniques is often stated as
the need for transparency within increasingly complex AI systems [20,31] and
the need to engender user trust in increasingly opaque systems [6,20,31]. Both
increasing AI system transparency and accounting for human trust in these
systems contribute to improved human-AI team performance; thus, supporting
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human-AI team performance is one of the primary aims of XAI. Some literature
argues that there is a performance-explainability trade off in that more explain-
able AI systems sacrifice algorithmic performance in some way [21,31]. However,
if a lack of system explainability inhibits overall team performance, benefits pro-
vided by improved algorithmic performance might be lost. Therefore, we view
optimization of human-AI team performance, enabled by explanations about the
system’s behavior, as the primary goal of XAI.

There exists a rich literature in human factors that explores scenarios in
which humans interact with automated systems, as well as the various factors
that influence human performance during task execution. The concept of situa-
tion awareness (SA), which has been studied within the field of human factors
and in the context of human-automation teams [9,13], defines the informational
needs for humans operating in any scenario [13]. XAI systems, as systems that
provide information about AI behavior, can contribute to the subset of a human
user’s SA that is related to AI behavior. Human-AI team performance can be
improved through information provided by XAI systems that support SA; how-
ever, overall SA, in addition to the subset of SA supported by XAI, are necessary
for but not solely sufficient to support team performance [13].

The human factors literature has additionally introduced methods and met-
rics for assessment of a human’s SA [37]. Just as SA supports but is not equivalent
to performance, high-quality explanations provided by XAI systems support but
are not equivalent to SA. Assessing XAI systems based on methods related to
SA can contribute to an understanding of whether the provided explanations
achieve the ultimate goal of enhancing human-AI team performance. Measuring
SA as an intermediate aim of XAI can provide clarity as to the potential con-
founds that exist in performance assessment. The XAI literature currently lacks
a comprehensive set of suitable methods and metrics for assessing explanation
quality. While it may not be possible to explicitly and independently define an
explanation’s quality, explanations are only “good” insofar as they contribute to
intermediate goals, such as SA, and the ultimate goal of improved performance.
In this paper, we discuss how a human factors-based SA assessment method can
be useful for evaluating XAI systems.

The remainder of the paper is organized as follows: in Sect. 2, we discuss the
relevant situation awareness literature as it relates to XAI. In Sect. 3, we pro-
pose a framework for design and evaluation of XAI systems in light of findings
within the human factors community. In this framework, we propose levels of
XAI that define which information about AI algorithms and processes should be
supported by XAI systems; these levels map closely to those of SA as proposed
by Endsley [13] (discussed in Sect. 2). Our framework applies to XAI generally,
including explainable machine learning (ML), explainable agents/robots, and
multi-agent/multi-human teams. There exist other frameworks in the XAI liter-
ature that are primarily agent-centric in that they categorize systems based on
agent attributes, such as stages of explanations [3,36], types of errors [42,43], or
agent internal cognitive states [23]. The framework we propose is complemen-
tary to these in that ours is human-centric and focuses on human informational
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needs. Other frameworks propose human-centric approaches [38,40], but these
are largely human role-based, and our framework applies more generally and is
role-agnostic. One other framework focuses on the theory of mind (ToM) of the
robot and human [26]. The authors of that work discuss the need to define which
information a robot should communicate, which our framework addresses.

In Sect. 4 we provide a non-comprehensive set of examples of how a set of
existing XAI techniques fit into our framework in order to clarify how our frame-
work might be applied. Section 5 discusses how to determine human informa-
tional needs at each of the three levels proposed in our framework. In Sect. 6, we
discuss how methods used to evaluate existing XAI techniques map to assess-
ments of SA from the human factors literature, and we propose one key SA-
related method for the assessment of XAI systems. Section 7 provides a motivat-
ing example, which we use to clarify our discussion of the levels of XAI and the
suggested SA-related assessment method. Finally, Sect. 8 suggests future direc-
tions for XAI research, and Sect. 9 concludes the paper.

2 Situation Awareness in the Human Factors Literature

The concept of situation awareness has been widely studied in the human fac-
tors literature, especially in the context of human-automation teams operating
in complex environments [13]. The concept originally received attention in the
study of aviation systems, particularly with the rise of cockpit automation and
the need to support pilot awareness of aircraft behavior [46]. However, its appli-
cability extends to any complex scenario in which humans have informational
needs for achieving the tasks they are performing. Accordingly, it has addition-
ally been studied in the context of many other domains including air traffic
control, emergency management, health care, and space, among others [15].

Different definitions of situation awareness and corresponding frameworks
have been proposed in the literature [5,13,44]. We adopt the three-level defini-
tion from Endsley [13]: “the perception of elements in the environment within
a volume of time and space (level 1), the comprehension of their meaning (level
2), and the projection of their status in the near future (level 3).” This defini-
tion is the most widely cited and applied of the existing definitions [47]. It has
direct value for designers of complex systems due to its relative simplicity and
its division into three levels, which allow for easy definition of SA requirements
for different scenarios and for effective measurement of a person’s SA [41]. The
SA construct has been empirically validated in various contexts [16,47], and con-
nections between SA and other task-related measures such as performance and
error frequency have been demonstrated in the literature [15]. SA has also been
used to define a framework for agent transparency [9], which focuses primarily
on information that interfaces should display about agent behavior. We apply a
similar approach to that of Chen et al. [9], but we focus on XAI specifically and
define our framework based on AI system behavior more generally.

Endsley [13] further defines an assessment technique for measuring a person’s
SA: the Situation Awareness Global Assessment Technique (SAGAT). Since SA
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Fig. 1. Levels of XAI framework

represents the “diagnosis of the continuous state of a dynamic world”, there
exists a “ground truth” against which a person’s SA can be measured [37]. The
SAGAT test aims to measure the discrepancies between a human user’s SA, or
their knowledge of the state of the world, and this “ground truth” state of the
world. We detail SAGAT and its applicability to XAI further in Sect. 6.4.

SA is relevant to the XAI community since it contributes to defining human
informational needs, and XAI aims to meet them. In particular, XAI provides
human users with the subset of their SA that relates to AI behavior. It is not
equally valuable to provide just any information to human users via XAI, but
only information that is relevant to them given their respective tasks and con-
texts. In fact, providing excessive or irrelevant information can be detrimental
to human-AI team performance by causing confusion or unnecessarily increasing
workload [37]. Therefore, it is important for XAI practitioners to consider which
information is relevant to users and then to measure whether users have received
and understood that information. Our proposed framework provides a guideline
for determining which information XAI systems should communicate about AI
system behavior, and our suggested use of the SAGAT method provides a way
to measure how effectively this information is delivered.

3 Situation Awareness-Based Levels of XAI Framework

As AI systems become increasingly ubiquitous and humans interact with more
complex AI systems, XAI support of adequate SA can benefit human-AI team
performance. According to the definition of SA provided by Endsley [13], an
individual working towards a goal requires all three levels of SA to support
their decision-making processes, which can in turn improve performance of goal-
oriented tasks. It is important to note the distinction between general SA (related
to the situation as a whole) and SA related specifically to AI behavior: the latter
is a subset of the former and is the focus of this paper. SA, in the most general
sense, comprises user awareness of the environment, other situational factors, and
other human teammates in addition to information about the AI’s behavior.

The informational needs defined by SA can serve to dictate the information
XAI systems should provide about AI behavior. For many scenarios in which
XAI systems are useful and relevant, humans in the loop must know what the
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AI system did or what decision it made (perception), understand why the system
took the action or made the decision it did and how this relates to the AI’s own
sense of its goals (comprehension), and predict what the system might do next
or in a similar scenario (projection). Thus, just as SA is divided into three levels,
we introduce three levels of XAI systems. Our proposed framework is shown in
Fig. 1. The three levels of XAI in our framework are defined as follows:

1. Level 1: XAI for Perception - explanations of what an AI system did or is
doing and the decisions made by the system

2. Level 2: XAI for Comprehension - explanations of why an AI system acted in
a certain way or made a particular decision and what this means in terms of
the system’s goals

3. Level 3: XAI for Projection - explanations of what an AI system will do next,
what it would do in a similar scenario, or what would be required for an
alternate outcome

Our framework generalizes to cover both explainable ML and explainable
agents/robots. It can also be applied for both “black box” AI systems that are
fundamentally uninterpretable to human users and high-complexity systems that
may or may not be inherently interpretable/“white box” but that human users
cannot grasp due to their complexity. Note that our focus is on the informational
content of explanations rather than explanation modality (natural language,
communicative actions, etc.), which is a separate but important consideration.
The following sections further detail each of the levels of XAI in our framework.

3.1 Level 1: XAI for Perception

Level 1 XAI includes explanations about what an AI system did or is doing as
well as the decisions made by the system. It covers information about both AI
system inputs and outputs and aims to answer “what” questions as they are
defined by Miller [34]. In the context of explainable ML, level 1 information
might include inputted data or outputted classification, regression, or cluster
information, for example. For explainable agents and robots, level 1 information
could include inputted state information, a particular decision or action taken
by the system, an outputted plan/schedule (sequence of decisions/actions) from
a planning agent, a particular resource allocation, and others. While level 1 XAI
might seem straightforward in many applications since it is simply information
about a system’s inputs or outputs, providing this information might be challeng-
ing when explaining a complex model that makes decisions over many different
input factors and produces numerous outputs, only a subset of which are rele-
vant to the user. The primary technical challenge for level 1 XAI is determining
which specific information is relevant to users of complex systems.

3.2 Level 2: XAI for Comprehension

Level 2 XAI includes explanations about why an AI system acted in a particular
way or made a certain decision and what this means in terms of the system’s
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goals. The primary aim of level 2 XAI is to provide information about causality
in AI systems [22] as it relates to a specific instance or decision made by the
system. Level 2 XAI answers “why” questions (as defined by Miller [34]) and typ-
ically provides information about a system’s model. In the context of explainable
ML, level 2 information might relate to sensitivities to inputs, semantic feature
information, simplified feature or model representations, cluster information, or
abstracted representations of model details. For explainable agents and robots,
level 2 information could include details about system goals, objectives, con-
straints, pre-/post-conditions, rules, policies, costs, or rewards.

In identifying level 2 XAI informational requirements, it is important to iden-
tify which causal information is most relevant to a user attempting to under-
stand the system. Miller [34] states that explanations are fundamentally con-
trastive and that when humans seek explanations, they often have a particular
“foil” (defined by the author as a counterfactual case) in mind. Reasoning about
the most likely foils users have in mind when interacting with a system can help
determine which causal information to provide. Note that by our definition, level
2 XAI provides answers to “why” questions for specific instances or in relation to
specific foils and might only involve some limited information about a system’s
model. Therefore, level 2 explanations alone do not necessarily enable users to
make all necessary predictions; as such, information beyond level 2 XAI may be
required for projection (level 3). We detail this distinction further in Sect. 3.3.

3.3 Level 3: XAI for Projection

Level 3 XAI includes explanations about what an AI system will nominally do
next or would do in a different circumstance or context. Level 3 XAI provides
answers to “what if”/“how” questions as they are defined by Miller [34]. It aims
to explain what would happen if certain system inputs or parameters changed or
what the system would do if human users took particular actions. Level 3 XAI
incorporates counterfactual or other simulated information in order to provide
explanations about a system’s future behavior in the presence of changes to
either inputs or system parameters, which might occur due to human actions.

While level 2 XAI provides information about why a decision was made
based on model-related factors, level 3 XAI provides insight as to what degree of
change to inputs, model parameters, or constraints would yield a different out-
come. Further, while level 2 explanations provide information about a decision
made in a specific instance, level 3 information helps users to reason about what
will happen in different contexts and what exactly would need to change about
the given circumstance in order to alter the system’s output. In the context of
explainable ML, level 3 information could include information about what effect
a changed input would have on the output, which changes in the input would
be required to achieve a given output, or what would change about the output
if the model changed in some way. Similarly, for explainable agents and robots,
level 3 information would provide information about changed inputs and out-
puts, changed models (such as the addition/removal of constraints or differently
weighted objectives), or the nominal continued course of action.
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We define two types of prediction that can be supported with level 3 expla-
nations. First, backward reasoning helps a user start with a desired outcome and
work backwards to determine what would be necessary to achieve that outcome.
For example, consider a situation in which a user interacting with a neural net-
work hopes to understand what type of input would be required for a particular
classification. In such a case, successful level 3 XAI would help the user under-
stand the ranges of inputs to the neural network that would result in the desired
classification. Second, forward simulation helps a user understand what will hap-
pen given any changes in the inputs or model that occur. An example of forward
simulation in a robot planning scenario might involve a user who hopes to add
a constraint to the planning problem based on their own preferences about the
robot’s actions. Successful level 3 XAI would help such a user to understand the
effect the new constraint would have on the outputted plan.

4 Example Approaches Achieving the Levels of XAI from
the XAI Literature

The following sections discuss how a limited, non-comprehensive set of example
XAI techniques fit into our framework.

4.1 Example Approaches Achieving Level 1 XAI

Level 1 XAI relates to AI system inputs and outputs. Whether a system has pro-
vided adequate level 1 explanations depends on whether a human user has suffi-
cient information about these things. Many explainable ML techniques provide
level 1 XAI implicitly through their inputs and outputted results. For example,
Kim et al. [30] and Ribeiro et al. [39] provide users with the system’s outputted
classification (level 1) in addition to explanations about the reasons behind the
outputs (level 2). In these cases, the entire system output is captured by a single
or small number of classifications, and the human user can easily understand the
entire set of outputs. In other cases, such as with some clustering techniques, the
entire set of outputs (i.e. features that represent a cluster) contains extraneous
information in addition to information that is directly relevant to the human
user’s understanding of the outputted clusters. Kim et al. [29] designate a set of
clusters in a feature space, find the most quintessential prototype of each, and,
for each prototype, down-select to a subset of features to present to the user.

In the explainable agents and robots literature, explainable Belief-Desire-
Intention (BDI) agents explain their actions (intentions) based on their goals
(desires) and their observations (beliefs) [7,23,24]. Belief-based explanations are
level 1 explanations, since they provide information about inputs that agents
use in their decision-making processes. Harbers et al. [24] implement a BDI
agent that produces explanations of both its observations (inputs) and actions
(outputs), which both constitute level 1. Beyond BDI agents, Floyd and Aha [19]
implement an agent that explains when it changes its behavior (output) in order
to increase transparency. Lomas et al. [32] propose a framework for explainable
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robots which includes explanations about which actions a robot took (outputs)
and what information it had about the world at the time (inputs). Finally,
AI planning systems that provide users with a partial or entire plan [6,8,45]
implicitly provide level 1 XAI through their outputted plans.

4.2 Example Approaches Achieving Level 2 XAI

Level 2 XAI is fundamentally related to supporting user comprehension of a
system’s behavior through the understanding of its model, including reasoning
about objectives, constraints, features, or other model aspects. Successful level 2
XAI adequately explains the relevant aspects of why a system behaved the way
it did. Much of the current XAI literature falls into the category of level 2 XAI.

Various XAI techniques for ML models aim to explain which features, parts of
the model, or other feature abstractions have the greatest bearing on a system’s
decision making. Ribeiro et al. [39] introduce the LIME technique, which learns
an approximation of a complex classifier over a human-understandable set of
features in order to explain which of these features were most important in
generating a classification for a given input. Kim et al. [30] propose a technique
that allows users to define abstract concepts (which may be distinct from the
original set of features used for classification) and learn about the significance
of a concept’s contribution to a given classification. Other approaches, such as
saliency maps, highlight important aspects of inputs [1].

In the explainable agent and robot literature, explainable BDI agents that
explain their actions based on their goals (desires) [7,23,24] contribute to level
2 XAI. The agent proposed by Floyd and Aha [19] provides explanations about
why it changes its behavior (level 2) based on user feedback. Hayes and Shah
[25] propose a policy explanation technique that can answer questions about why
an agent did not take a given action by reasoning about predicates that consti-
tute its state. The technique proposed by Dannenhauer et al. [10] explains agent
behavior based on the agent’s rationale and goal. Dragan et al. [12] discuss the
distinction between legible and predictable robot motions. By their definition,
legible robot motions support human inference of the robot’s goal and would
therefore be considered level 2 XAI. Work related to explainable planning has
proposed explanations according to human-understandable aspects of AI models,
such as predicates or system objectives. Sreedharan et al. [45] introduce a tech-
nique that explains model predicates to a user in order to fill perceived gaps in
the user’s understanding of the model based on foils they suggest. Finally, Borgo
et al. [6] propose a set of techniques that explain system decisions by incorporat-
ing user-produced foils into planning and demonstrating that the modified plans
are sub-optimal or infeasible.

4.3 Example Approaches Achieving Level 3 XAI

Fundamentally, level 3 XAI is about supporting user prediction of AI behavior
through enabling understanding of what a system would do if its inputs changed
or if the model were to change in any way. Successful level 3 XAI helps users to
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predict what a system will do next or what it would do in a different context
and answers “what if” questions about system behavior.

In the explainable ML literature, some approaches provide users with pre-
dictions of contexts in which an AI system will fail [4] or predictions of which
changes in inputs would be required to amend misclassified examples [33]. Others
that provide level 2 information could be extended to support level 3. For exam-
ple, the SP-LIME algorithm [39] chooses a subset of local model approximations
produced by the LIME algorithm (discussed in Sect. 4.2) in order to provide a
more “global” explanation of the interpretable features that impact classification
in different scenarios. Ideally, if these examples are chosen according to human
informational needs for prediction, the human user would be able to predict the
outcome of a new example. However, with very complex systems, adequately
providing information in this manner might be intractable, and other ways of
providing level 3 explanations might be necessary. Other methods, such as the
one described by Kim et al. [30] (discussed in Sect. 4.2), could be augmented
to provide combinations of relevant “concepts” or could be complemented with
other contextual information in order to support prediction more fully.

In the explainable agent and robot literature, Amir and Amir [2] provide
explanations of global agent behavior by selecting “important” states in the
state space and providing traces of subsequent states and actions (determined
by the agent’s policy). These state-action pairs support human user prediction
of future agent behavior. The policy explanation technique proposed by Hayes
and Shah [25] can support both backward reasoning by answering questions
about when (from which states) it will take certain actions and forward reason-
ing by answering questions about what the agent will do given different states.
Some explainable agents provide more direct prediction-related information by
explaining their next action(s), such as explainable BDI agents that provide
sequence-based explanations [7,23] and others that provide their plans [19]. Note
that providing users with plans that agents are executing online is level 3 XAI,
while providing users with plans outputted by a planning agent is level 1 XAI.
Finally, in the discussion of legibility versus predictability [12], predictability is
related to human inference of a robot’s actions based on a known goal, so we
categorize predictable robot motions as level 3 XAI. As with explainable ML,
information provided by level 2 XAI techniques can be combined and amended
in order to produce level 3 XAI to support prediction of future robot or agent
actions.

5 Determining Human Informational Needs

In designing XAI systems and measuring their effectiveness, defining human
informational requirements according to the above framework is of value. This
information depends upon the overall goal of the human-AI team and the indi-
vidual roles of the autonomous agent(s) and human(s) within that team. Endsley
[16] describes a process called goal-directed task analysis (GDTA) for determin-
ing SA requirements for a given context, both for individuals and for those oper-
ating in larger teams. In this process, the major goals of each human teammate’s
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task are identified along with their associated sub-goals. Then, required decisions
associated with each sub-goal are enumerated. Finally, SA requirements at all
three levels are defined for each of these decisions (i.e. the information required
to support human decision-making). The GDTA process is detailed at length
in [16] and can be applied by XAI practitioners to define which information
human users need about AI system behavior in order to achieve their respective
goals. The definition of informational requirements with GDTA also informs the
assessment of XAI systems, which will be discussed further in Sect. 6.

In many scenarios, users do not require information about all of a system’s
behavior but only the aspects that are relevant to their specific tasks. Often,
a human cannot possess information about the entirety of a complex system’s
behavior; therefore, defining the specific information that users require (through
GDTA or a similar process) in order to support human-AI team goals is critical.
This is especially relevant when considering teams of humans, who each have
their own roles and corresponding goals. Informational requirements in these
cases are user-specific, and consequently, XAI systems might need to be able
to adapt to users playing different roles in the team, providing each with the
specific information relevant to his or her own task and potentially at different
levels of abstraction. An extended discussion of the definition and support of
team SA is provided by Endsley and Jones [18].

One important aspect of team SA is the interdependence of individual team
members. Johnson et al. [28] detail an “interdependence analysis” process for
assessing individual team members’ needs given different possible team config-
urations. This process results in the definition of observability (level 1) and
predictability (level 3) requirements for each teammate in the context of their
interdependence on each other. Since it defines information-sharing requirements
in the team, it can also be useful for defining information requirements for XAI
systems given different possible team configurations. We recommend using a
modified version of this process that includes the definition of “comprehensibil-
ity” requirements (level 2) in order to define which role an XAI system should
play in the context of a team. Once informational needs are identified, appropri-
ate XAI techniques can be chosen to provide necessary information.

6 Evaluating Explanation Quality: A Method
for Situation Awareness-Based XAI Assessment

In the following sections, we discuss a selection of existing human-based metrics
for XAI from the literature. We then suggest the use of the SAGAT method
from human factors for the assessment of the effectiveness of XAI systems.

6.1 Existing Level 1 XAI Methods and Metrics

Since providing a user with a system’s outputs is inherent to many existing XAI
techniques, most literature does not aim to assess whether the human properly
understood these outputs upon receiving them. Kim et al. [29] do this in part by
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assessing whether users are able to appropriately assign outputted prototypes
to clusters based on the subset of features presented. As the XAI community
moves towards explaining higher-complexity systems with multiple inputs and
outputs, it will be increasingly important to measure whether users understand
the correct inputs/outputs in the contexts of their intended goals. Section 6.4
outlines one approach that could be applied for such assessments.

6.2 Existing Level 2 XAI Methods and Metrics

Metrics for level 2 explanations should indicate whether users understand the
meaning of a given system’s actions or decisions and what these actions or deci-
sions imply in terms of progress towards team goals. Some of the literature has
proposed survey-like questions for assessing explanation quality as it relates to
user understanding. For example, Hoffman et al. [27] propose a “goodness” scale
that includes a question about whether the user understands how the given algo-
rithm works. They also detail a set of questions related to the perceived under-
standability of a system from the Madesen-Gregor scale for trust. Doshi-Velez
and Kim [11] suggest human experiments requiring users to choose which of two
possible system outputs is of higher quality, which necessitates understanding of
the system. While these questions and metrics represent a step towards measur-
ing whether adequate level 2 explanations have been provided to users, a more
comprehensive way of defining comprehension-related informational needs and
assessing whether they have been met through XAI is needed. As mentioned
previously, we outline one possible approach to this in Sect. 6.4.

6.3 Existing Level 3 XAI Methods and Metrics

Metrics for level 3 explanations should indicate whether human users can predict
what a system will do next or what it would do given an alternate context or
input. To this end, Doshi-Velez and Kim [11] suggest running human experiments
in which human users perform forward simulation, prediction, and counterfactual
simulation of system behavior given different inputs for XAI assessment. Hoffman
et al. [27] discuss the use of prediction tasks to measure explanation quality
and further detail a Likert-scale survey for trust measurement that includes a
question about predictability of system actions. Questions and experiments such
as these can be used to assess the quality of level 3 explanations provided by XAI
systems. Beyond these assessment techniques, a comprehensive way of assessing
whether level 3 informational needs are met is discussed in Sect. 6.4.

6.4 The SAGAT Test and Its Applicability for Assessment of XAI

In assessing the quality of XAI techniques, it is important to determine whether
human users receive the information they need in order to perform their roles.
Miller et al. [35], in particular, stress the need for human evaluations of XAI
systems. As discussed in Sects. 6.1–6.3, existing XAI literature includes some
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human-based evaluation metrics; however, to our knowledge, none have compre-
hensively assessed whether human informational needs are met by XAI systems.

Endsley [14] proposes the situation awareness-based global assessment tech-
nique (SAGAT) for SA measurement. SAGAT is a widely-used objective measure
of SA that has been empirically shown to have a high degree of sensitivity, reli-
ability, and validity in terms of predicting human performance [16]. It has been
applied for measurement of SA in a variety of domains [16], has been extensively
used to measure team SA [17], and has been shown to outperform other SA mea-
sures in terms of sensitivity, intrusivity, and bias, among other factors [17]. In the
SAGAT test, simulations of representative tasks are frozen at randomly selected
times, and users are asked questions about their current perceptions of the sit-
uation [17]. The questions asked are based directly on the human informational
needs defined according to a process such as GDTA (discussed in Sect. 5) and
therefore directly measure whether humans have the information required. More
complete discussions of SAGAT are provided in [13,14,16], and implementation
recommendations for the test are discussed by Endsley [16].

Since the SAGAT test measures whether human informational needs are met,
we propose that a SAGAT-like test can be applied to assess XAI systems. Situ-
ational information needs related to AI behavior should be thoroughly defined,
and in the assessment of an XAI system, user knowledge of this information
can be evaluated through a SAGAT-like test focused on information related to
specifically AI behavior. Such a test could more adequately determine whether
XAI systems achieve the purpose of communicating relevant information about
system behavior to human users than current assessment techniques allow.

7 Example Application of the Framework

Here we introduce a simple planetary rover example to demonstrate the appli-
cation of our framework and the use of the SAGAT test for assessment. The
example touches on aspects of explainable ML, explainable agents/robots, and
XAI for human teams. In our example, a rover on another planet is execut-
ing a learned exploration policy. Its objective is to search for water, which is
more likely to be found in areas with certain types of rocks. There are costs
associated with navigation time and science task duration, and there are differ-
ing rewards associated with performing science tasks on the different types of
rocks, some of which are more valuable. The rover has a camera onboard and
an ML-based image processing system that allows it to classify rocks. There are
constraints associated with the rover power requirements, and some terrain is
not traversable. Human users include one engineer who monitors rover health
and one scientist who monitors science activities. The scientist and engineer can
also request new rover actions during the mission. Below are examples of infor-
mation constituting levels 1–3 XAI for the engineer and scientist and the types
of information they represent (in parentheses).
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– Level 1 XAI:
Engineer - terrain information, current battery level (inputs); current
path plan and next stopping point/time (plan); next science action (deci-
sion/action)
Scientist - next science action (action/decision); inputted image of rock for
science analysis (input); rock classification (output)

– Level 2 XAI:
Engineer - terrain map with rover path costs including untraverseable areas
with infinite cost (policy information - costs); battery usage for current path
(constraints); list of possible science actions and associated rewards (policy
information - rewards); battery usage for each science action (constraints)
Scientist - list of possible science actions and associated rewards (policy
information - rewards); list of semantic features, such as color, contributing
to the rock classification (feature information); sensitivity to light given inputs
(sensitivity information)

– Level 3 XAI:
Engineer - map of maximum traverseable distance given current battery
level (continued action); remaining battery level after each possible science
activity (continued action)
Scientist - predicted rock classification under different lighting conditions
(changed inputs)

The scientist and engineer have individual informational requirements in addi-
tion to some shared requirements, such as which science activities are planned.
Each is only provided with necessary information in order to avoid a cognitive over-
load from excess information, which poses a risk to task performance.

Measuring SA Through SAGAT. In order to apply SAGAT to this exam-
ple, specific informational requirements can be enumerated from the high-level
informational needs listed above. A list of questions regarding this specific infor-
mation at all three levels can be specified, and a simulated mission can be run
with the scientist and engineer. At various randomly-selected points during the
simulated mission, the experiment should be frozen, and the scientist and engi-
neer would then be asked a subset of the specified questions for each level. For
example, the following questions might be asked of the engineer regarding the
battery during rover traversal between two science activity locations: What is
the current battery level of the rover? (Level 1); How much power is required to
get to the next location? (Level 2); Does the rover have enough battery to get
to the next location and perform the science task? (Level 3).

8 Future Directions

One natural future direction for this work would be to implement a system that
addresses the three levels of XAI in a goal- or performance-oriented context
and to perform human experiments to assess whether improved SA, enabled
through XAI, correlates with improved performance of the human-AI team.
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Such a system could be a combination of existing techniques addressing each
of the three levels or a single system that can address all three levels of XAI. To
our knowledge, no system exists that can, on its own, address all three levels.
While explainable BDI agents have addressed aspects of each of the three lev-
els [7,23], additional techniques beyond these solutions will be needed to fully
address levels 2 and 3 XAI. In general, development of an XAI system that can
independently address all three levels of XAI would be a valuable next direction.
Such a system will also require the development of techniques that provide user-
tailored explanations in a way that goes beyond what exists in the literature.
While there is some existing literature that considers user needs or context in a
limited way [8,19,45], producing explanations that fully consider user contexts
and tasks remains an understudied area. To this end, another possible future
direction would be to perform inference of human models in order to inform
explanation generation.

9 Conclusion

In this paper, we propose a three-level framework for the design of XAI sys-
tems based on human user informational needs. This framework is based on
the situation awareness framework in the human factors literature, which has
been studied in relation to performance of human-autonomy teams. We further
propose a method for assessment of explanations with respect to the three lev-
els of information that XAI systems should provide. Finally, we propose future
directions for XAI research.
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Abstract. The literature provides evidence for the importance of non-
verbal cues when it comes to persuading other people and developing per-
suasive robots. Mostly, people use these non-verbal cues subconsciously
and, more importantly, are not aware of the subliminal impact of them.
To raise awareness of subliminal persuasion and to explore a way for
investigating persuasive cues for the development of persuasive robots
and agents, we have analyzed videos of political public speeches and
trained a neural network capable of predicting the degree of perceived
convincingness based on visual input only. We then created visualizations
of the predictions by making use of the explainable artificial intelligence
methods Grad-CAM and layer-wise relevance propagation that highlight
the most relevant image sections and markers. Our results show that the
neural network learned to focus on the person, more specifically their
posture and contours, as well as on their hands and face. These results
are in line with existing literature and, thus, show the practical potential
of our approach.

Keywords: Subliminal persuasion · Persuasive markers · XAI

1 Introduction

In the process of changing opinions or attitudes, people use far more than logi-
cal and rational aspects. There is evidence from the literature that the persua-
sive power of arguments largely depends on appropriate body language. Con-
sequently, if arguments that are content-wise identical are presented differently,
i.e. with different non-verbal behaviors, the persuasive power of an argument
can be different.
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There is significant evidence from the literature that body language and the
type of gestures used influence how a person is perceived, and several stud-
ies showed that body language and verbal aspects significantly influence per-
ceived persuasiveness [5,9,14]. These body-language-based cues, however, are
often unconsciously observed by people, and it seems that people are not aware
of this kind of subliminal persuasion.

Understanding these cues bears two advantages: 1) It can help people behave
differently, i.e., more persuasive, in debates, speeches or job interviews, and 2)
a deeper understanding of these persuasive cues can help researchers develop
persuasive robots and agents in human-robot interactions more easily [9,14].

In this paper, we explore an approach employing explainable artificial intelli-
gence techniques to make persuasive cues visible to demonstrate the importance
of the persuasive power of body-language-based argumentation and to investi-
gate a different approach to developing persuasive agents and robots.

First, we trained a model to predict perceived convincingness based on an
annotated political public speech using a convolutional neural network utiliz-
ing the visual (image) channel only (i.e., without the audio channel). We then
employed explainable artificial intelligence (XAI) visualization techniques to
uncover what parts of the image were the most relevant ones for predicting
the degree of perceived convincingness.

Our post-hoc analysis reveals that our neural network has learned to focus
on the person speaking and (mostly) ignore the background of the image. The
observations of our visualizations indicate that the network primarily localizes
hand and face positions on the image, which demonstrates, in line with existing
literature, the importance of subliminal persuasive cues.

The structure of the paper is as follows. Section 2 gives an overview of persua-
sion theory and XAI visualization techniques, Sect. 3 describes the overall app-
roach, including the data annotation process and the architecture of the trained
model. Section 4 highlights what the network has learned employing Grad-CAM
and Layer-wise Relevance Propagation (LRP). Finally, Sect. 5 concludes with a
brief discussion of results, limitations of our approach, and future work.

2 Related Work

Related work of this research can be divided into two parts: (1) The effect of non-
verbal cues in persuasive messages and (2) Explainable Artificial Intelligence.

2.1 The Effect of Non-verbal Cues in Persuasive Messages

The theory of persuasion goes back to Aristotle. He identified three means of
persuasion, namely logos, pathos, and ethos. Logos defines the logical and ratio-
nal aspects, i.e., the content of the argument, pathos the emotional engagement
between the speaker and the listener, while ethos describes the personality of the
speaker, their character, and how the speaker is perceived by the audience [20].
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According to psychological models, there are two cognitive routes (central
and peripheral), through which a persuasive message can be processed. Petty and
Cacioppo [26] developed the Elaboration Likelihood Model (ELM) describing
the influence of information processing on the result of a persuasive message
depending on the listeners “need for cognition” (NFC). If the listener’s NFC is
low, then a message is more likely processed via the peripheral route otherwise
central processing takes place. Chaiken et al. [8] extended this model (Heuristic-
Systematic Model – HSM) claiming that people do not process information in
isolation via one of the two routes. Instead, peripheral processing always takes
place, to which central processing is added when an elaboration threshold is
reached (depending on the listener’s need for cognition).

Consequently, researchers have investigated the effect of non-verbal cues on
the perceived persuasiveness. DeSteno et al. [10] showed that persuasive messages
are more successful if they are framed with emotional overtones that correspond
to the emotional state of the recipient. Wang et al. [33] showed that perceived
persuasiveness of emotions depends on the level of power of the speaker and the
listener. Further, Van Kleef et al. [18,32] showed that people use the source’s
emotions as information channel when they form their attitudes.

In addition to that, researchers have investigated the effect of gestures and
gaze. Maricchiolo et al. [22] investigated the effect of hand gestures concerning
the speaker’s perceived persuasiveness revealing that hand gestures affect the
evaluation of a message’s persuasiveness, the speaker’s style effectiveness, and
their composure and competence. Poggi et al. [27] further investigated the use
of gestures and gaze in political discourse concerning their persuasive import.

In short, there is a lot of evidence that persuasiveness largely depends on
body-language-based argumentation and persuasive cues. Thus, by taking away
the audio channel, a neural network should be able to learn these cues to predict
perceived persuasiveness successfully . Hence, in this paper, we investigate 1)
whether or not a neural network can “understand” and learn these subliminal
cues and 2) whether or not the network learns to focus on the sections containing
these subliminal cues instead of focusing on the image as a whole.

2.2 Explainable Artificial Intelligence

Since artificial intelligent systems are becoming more and more complex, there is
an increasing need to increase the explainability of these systems. Understanding
how a system works is crucial for working with and building trust in artificial,
intelligent systems.

XAI is especially important when the system is inferring personality traits
of humans, such as persuasiveness, which is a highly subjective task that might
include biases. For this reason, earlier works used XAI on several subjective
tasks. Escalante et al. [12], for example, developed a challenge to test different
explainable systems that are used for first impression analysis in the context of
job applications. Weitz et al. [34] investigated different XAI methods on facial
pain and emotion recognition models. However, to the best of our knowledge, this
is the first work on explainable systems that predict the degree persuasiveness of
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humans. In the context of persuasion and XAI, recent work mainly investigated
explainable recommendation systems persuading humans [11,36].

XAI is often split into several subcategories. In this work, we do not, for
example, deal with the development of more interpretable model architectures.
Instead, we focus on post hoc explanations that are created after the model was
trained [23]. Furthermore, we focus on local explanations that analyze single
predictions of a system instead of global explanations that try to shed light on
the general behavior of a system. For neural networks, the most common local
post-hoc explanation method is the generation of saliency maps [1]. Saliency
maps are heat-maps that highlight areas of the input that were relevant for the
decision of a system in a certain way.

One of the first kinds of saliency maps were based on the gradient. Simonyan
et al. [30] used backpropagation to calculate the gradient with respect to each
input unit to measure how much a small change in this input affects the pre-
diction. Selvaraju et al. [29] made this approach more class discriminatory by
stopping the backpropagation after the fully connected layers and using the gra-
dient with respect to the output of the last convolutional layer.

A different kind of saliency map estimates how much each input attributed
to the final decision of a neural network. Lapushkin et al. [6,21] introduced layer-
wise relevance propagation (LRP) that assigns a relevance value to each neuron
in a neural network, measuring how relevant this neuron was for a particular
prediction. For this assignment, they defined different rules, all of which are
based on the intermediate outputs of the neural network during the forward
pass. One of those rules introduced by Huber et al. [15] tries to create more
selective saliency maps by only propagating the relevance to the neuron with
the highest activation in the preceding layer. Montavon et al. [24] put the LRP
concept into the theoretical framework of the Taylor decomposition.

Another take on saliency maps comes with occlusion or perturbation based
visualizations. Zeiler et al. [35] zero out windows inside the input and measure
how much the prediction changes. The more the output changes, the more rel-
evant was this window for this particular prediction. Greydanus et al. [13] uses
a similar approach but perturbs the windows with noise to see how much the
introduced uncertainty affects the prediction. The LIME framework from [28]
first separates the input picture into super-pixels by a segmentation algorithm.
Afterwards, a more interpretable model is trained to estimate which super-pixels
are the most relevant for a given decision. One of the advantages of those meth-
ods is that they are not dependant on the structure of the model, but this comes
with the drawback of not being as precise as some model-specific methods.

Recently, Adebayo et al. [2] introduced a sanity check that showed that some
gradient-based saliency maps were not analyzing the learned weights of a neural
network. The original saliency maps from [30] and the Grad-CAM maps both
passed the test. This year, Sixt et al. [31] tested different LRP variants more in
depth. They concluded that most LRP variants lose a lot of information about
the last fully connected layers of the network. Instead, they mainly analyze
the convolutional layers at the beginning of the network. Therefore we chose a
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combination of class discriminatory Grad-CAM saliency maps and fine granular
LRP saliency maps to get a good understanding of the end and the beginning
parts of our model respectively.

3 Data Annotations and Model

In this Section, we describe the data annotation process and the model archi-
tecture, including the training process of the neural network in detail.

3.1 Corpus and Annotation Process

The training corpus consists of a public speech by Donald J. Trump, which was
held in 2019 with an approximate length of 50 min.1 The data were annotated
using NOVA [7], an annotation tool for annotating and analyzing behavior in
social interactions. The NOVA user interface has been designed with a particular
focus on the annotation of continuous recordings involving multiple modalities
and subjects. It supports several techniques from the latest developments from
contemporary research fields such as Cooperative Machine Learning and XAI to

Fig. 1. Screenshot of the NOVA tool depicting the video at the top and four annotation
streams below (3 annotators + merged gold standard for the training process).

1 https://www.youtube.com/watch?v=DU6BnuyjJqI.

https://www.youtube.com/watch?v=DU6BnuyjJqI
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enhance the standard annotation process. We had the corpus continuously anno-
tated by three experienced labelers with a sample rate of 25 Hz. They were asked
to rate how convincing the speaker appeared distinguishing between five differ-
ent levels (ranging from not convincing at all to very convincing). The anno-
tators achieved an inter-rater agreement of 0.77 (Cronbach’s α), which seems
sufficient for our purpose considering the high subjectivity of perceived persua-
siveness [16,25]. The final annotations have been merged (see Fig. 1) to obtain
a gold standard annotation stream with more than 50,000 sample images. Due
to the nature of the video, the lowest two classes were barely annotated.

3.2 Model Architecture and Training

Figure 2 sketches the architecture of our employed convolutional neural network
consisting of three subsequent convolutional layers. The last two layers are fol-
lowed by batch normalization and max-pooling layers. The output of the last
convolutional layer is flattened and then fed into a five-way softmax function to
get the predictions of all five classes.

We first extracted the video frames with a sample rate of 25 Hz and down-
sampled them to 160× 90 RGB-Images. The first convolutional layer expands
the RGB-channel of the input image to 32 channels. The idea behind this is that
we allow the network to define colors for different pixel combinations similar to
how humans see, for example, a combination of yellow and blue as green. The
network outputs a five-dimensional vector describing the probability of each
class. A ReLU activation is used in each layer apart from the output layer, in
which a softmax function is applied. As optimizer we use Adamax (β1 = 9,
β2 = 0.999) [17].

To tackle overfitting, we use batch normalization as well as L2-regularization.
Batch normalization is applied after the second and third convolutional layer,
followed by pooling layers. L2-regularization (regularization factor 0.01), on the
other hand, is applied to each convolutional layer in the network.

Conv2D

filters = 32
kernel_size = 1, 1

Conv2D

filters = 16
kernel_size = 3, 3
activation = relu

BatchNormalization MaxPooling2D

Conv2D

filters = 32
kernel_size = 3, 3
activation = relu

BatchNormalization MaxPooling2D Flatten
Dense

units = 5
activation = softmax

input_1

Output

?x90x160x3 ?x90x160x32 ?x88x158x16

?x44x79x16

?x42x77x32 ?x21x38x32 ?x5?x25536

Fig. 2. An illustration of the network architecture. The network consists of three con-
volutions, which learn to focus on body parts important for predicting convincingness.
The first layer expands the 3-channel RGB to 32 channel before being fed into the last
two convolutions layers, after each of which batch normalization and max-pooling are
applied. The network outputs a 5-vector estimating the probability of each class.
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Accuracy on training setValidation loss

Fig. 3. Validation loss and training accuracy over all epochs.

The model was trained for 100 epochs using a batch size of 32 and with the
dataset split into training and validation data by a ratio of 4:1.

Figure 3 summarizes the learning process showing that the neural network
was able to predict classes reliably after only 20 epochs with an accuracy of
>98% on the training set. Since the validation loss shows slight overfitting after
20 epochs, the network explored in this work was only trained for 20 epoch.

To validate the performance of the network, we computed the confusion
matrix on the training data set as visualized in Fig. 4.

Neutral

Moderately
Convincing

Very
Convincing

Neutral Moderately
Convincing

Very
Convincing

Fig. 4. Confusion matrix computed on the training data set to ensure that our network
is sufficiently accurate on the learned samples.



120 K. Weber et al.

Note that we have not trained a general predictor for persuasiveness as we
only intend to explore what our network looks at when learning perceived per-
suasiveness. Therefore, we evaluated our model on the training data set only to
ensure that our network is sufficiently accurate on the learned samples. Since the
lowest two classes were not annotated at the current stage, they are not listed
in the matrix.

We verified the performance of our model by computing the F1-scores indi-
cating that our model performs very well on the learned samples (Table 1).

Table 1. Precision, Recall and F1-Score for different classes.

Measure Class

Neutral Moderately convincing Very convincing

Precision 0.93 0.93 0.77

Recall 0.94 0.86 0.88

F1-Score 0.93 0.89 0.82

4 Highlighting the Cues: Visualising the Network’s Eyes

Since we trained the network on images only, it seems that it was able to learn
features that describe the perceived convincingness of a person. The interesting
question is, which sections were the most relevant for making a (correct) pre-
diction and if there are features that are in line with existing literature, i.e.,
did the network learn to focus on image excerpts that are evidenced indicators
for perceived convincingness? To investigate this, we applied two different XAI
techniques: (1) Grad-CAM and (2) Layer-wise Relevance Propagation.

4.1 Grad-CAM

To explain the predictions, we first analyzed the last layer of our network employ-
ing Grad-CAM [29] using keras-vis [19], a high-level toolkit for visualizing trained
neural network models. For better visualizations, we created edge images of the
input images and placed the network’s visualization maps over them.

Several example visualizations of different classes are depicted in Fig. 5. They
show that the network has learned to focus on the person, more specifically, their
posture and contours. The background is mostly ignored and not relevant for the
prediction (apart from a little background noise). More specifically, the network
follows the hands and face of the speaker, which is in line with existing literature
strengthening the validity of our approach since literature states that gestures,
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gaze, and hand movements are important indicators for perceived persuasiveness.
It is worth noting that when predicting the neutral class, the network seems to
look at every object on the image (unlike the other two classes where the network
follows explicitly the person’s arms and hands of the person). This is probably
since the network cannot find any convincing markers at all, so every part of the
image is observed. These visualizations inherently reveal the existence of a link
between the visual channel and subliminal persuasion as well as the ability of
neural networks to learn this connection demonstrating the importance of the
persuasive power of non-verbal cues.

Fig. 5. Example visualization - (FLTR): Neutral - Moderately Convincing - Very Con-
vincing. The visualization shows that the neural network has learned to focus on the
posture, hands, and contours of the speaker to make its prediction. Due to the nature of
our training data, the network hardly learned the person’s features for barely annotated
classes.
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To examine the generalization of the network (despite being trained on one
person only), we also tested the prediction on several images of other politi-
cians, namely American senator Bernie Sanders2, President of France Emmanuel
Macron3 and Chancellor of Germany Angela Merkel4. The visualizations are
depicted in Fig. 6.

Fig. 6. Example visualizations of several other politicians with varying degrees of con-
vincingness. (FLTR): Bernie Sanders (predicted class: very convincing) - Emmanuel
Macron (predicted class: very convincing) - Angela Merkel (predicted class: moderately
convincing).

Despite the speakers and the camera angle being different, the network still
focuses on hands and the general face area. Taking a closer look at the picture
of Emmanuel Macron reveals that the network seems to have learned to locate
areas with skin-related colors to make its decision, even though the network does
not always locate all image parts with skin-related color.

4.2 Layer-Wise Relevance Propagation

Next to Grad-CAM, we used LRP to analyze further the first convolutional
layers of the network and what patterns they learned. LRP assigns a relevance
value Rk to each neuron in a neural network. Let ak be the activation of the k-th

2 Modification of ‘Election 2016: Bernie Sanders NYC Fundraiser Draws
Campaign Supporters Who Are ‘Feelin’ The Bern’ by Michael Vadon:
https://flickr.com/people/80038275@N00/, licensed under a Creative Commons
License: https://creativecommons.org/licenses/by-sa/2.0/.

3 Modification of ‘Conferencia de Prensa - Presidente Emmanuel Macron - Dı́a 2’
by G20 Argentina: https://www.flickr.com/photos/g20argentina/, licensed under a
Creative Commons License: https://creativecommons.org/licenses/by/2.0/.

4 Modification of ‘Rede der Bundeskanzlerin Angela Merkel zum Abschluss des CDU-
Parteitages’ by CDU/CSU Bundestagsfraktion, licensed under a Creative Commons
License: https://creativecommons.org/licenses/by-sa/3.0/deed.en.

https://flickr.com/people/80038275@N00/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/photos/g20argentina/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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neuron during the forward pass and let wjk be the weight that connects neuron
j and neuron k. After the forward pass, the relevance propagation starts in the
output layer. Here, the activation responsible for the prediction gets assigned its
activation as relevance and every other neuron gets set to zero. That is

Rk =

{
ak if k = argmax{ak}
0 if not.

(1)

Beginning from there the relevance gets propagated to each preceding layer
according to different rules (see Fig. 7). In our experiments we used the z+-
or α1β0-rule:

Rj =
∑
k

(ajwjk)+∑
j(ajwjk)+

Rk, (2)

where (ajwjk)+ is defined as max(ajwjk, 0).

aj ak
wjk

Rj Rk

Rj =
∑

k

(ajwjk)
+

∑
j(ajwjk)

+Rk

Fig. 7. Relevance propagation using the z+-Rule (Eq. 2).

To create the LRP saliency maps for our model, we used iNNvestigate [3], a
library that provides out-of-the-box implementations of many analysis methods,
including LRP. Example visualizations can be seen in Fig. 8. LRP visualizations
show similar results as Grad-CAM. As before, we can see that the network seems
to have learned the spatial features of the person, namely facial features, hand
gestures, and the contour of the person. This again demonstrates the importance
of subliminal persuasive cues in line with the literature and shows that neural
networks are able to learn them.

5 Discussion and Limitations

In the beginning, we have argued that people are often persuaded by subliminal
cues and that mostly they are not aware of them. To raise awareness of the exis-
tence of this subliminal persuasion, we have analyzed original political speeches
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Fig. 8. Example LRP Visualizations (z+-rule) - (FLTR): Neutral - Moderately Con-
vincing - Very Convincing.

and had annotators label them regarding their perceived convincingness by both
listening and watching the video. We then trained a convolutional neural net-
work on visual input only to predict the degree of convincingness and used XAI
techniques, more specifically Grad-CAM and Layer-wise Relevance Propagation
to highlight the most relevant sections. The results are fascinating, revealing
that the network has not only learned to focus on the person and their contours
but also the face and hands. The latter one is especially interesting as it shows,
in line with existing literature, the importance of hand movements and, thus,
demonstrates the importance of these subliminal persuasive cues. These results
are, therefore, interesting for human-robot-interactions as they enable a different
approach to investigating what makes humans persuasive and how to replicate
these results in robots.

Apart from these preliminary results, our approach still faces some limitations
that should not be neglected.

Limited Training Corpus. Our corpus consisted of only 50,000 samples of the
same person; thus, it is unlikely that the network has learned a generalization
for predicting the general degree of perceived persuasiveness, even though it
also worked on some example images that the network has not seen before.
We pointed out that we only tested the model on the training data set since
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the purpose of the model was to explore what parts of the image the network
focuses on when learning perceived persuasiveness. In this regard, the results of
the model training should be interpreted with some care, and it should not be
considered a general predictor for perceived persuasiveness.

Even though our visualizations have shown that the network has learned to
focus on hand and face positions, mainly by focusing on sections with skin-related
colors. It is therefore questionable how well the current, trained model works
on images with very light, skin-colored backgrounds. Since our network has also
been trained on white skin color, the network would probably not work on people
with other skin colors yet. Therefore, our data set needs several extensions,
that are 1) adding data from different people with different skin colors and 2)
adding data with different backgrounds to force the network to learn better
generalization of convincing indicators.

No Sequential Persuasive Indicators can be Learned. The current app-
roach uses a convolutional neural network for predicting the perceived persua-
siveness based on a single input image only. However, there may be many persua-
siveness indicators, such as the speed of hand movements which also influence
perceived persuasiveness which cannot be learned with the current approach
at present. Thus, in future work, we will further explore how we can highlight
sequential types of persuasive markers using XAI techniques, such as LRP sim-
ilar to Anders et al. [4].

Distribution of the Annotation Data and Annotation Process. Our
annotated data consisted of only three classes: neutral, moderately convincing,
and very convincing. Therefore, the network has not learned any characteristics
yet about what not convincing people look like. Using only one video, this is
expected, because from a common-sense perspective individuals may generally
perceive another person as either more convincing or less convincing (exclusive-
or). Also, the whole annotation process is subject to the annotator’s own opinion
as persuasiveness, in general, is highly subjective. Therefore, it remains unclear,
whether or not the annotators have annotated the perceived persuasiveness in
general or just the intensity of the body language movement, which may also
have an impact on the perceived persuasiveness. This limitation requires further
analysis and will be addressed further in our future work. Also, we will explicitly
include samples of the missing classes (i.e., different videos of other people) to
obtain more detailed training results and to compare the markers of a convincing
and not convincing appearance of people.

Nevertheless, our first results have shown the feasibility and practical poten-
tial of highlighting persuasive cues and indicators for persuasiveness employing
explainable AI techniques.

6 Conclusion

In this paper, we explored an approach that highlights persuasive indicators
of public speeches using explainable artificial intelligence techniques. There is
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a lot of evidence from the literature that bodily cues play an important role
in persuading people. However, since people often seem not to be aware of the
importance of body-language-based argumentation, we trained a convolutional
neural network, which can predict perceived persuasiveness solely based on visual
input. We then applied explainable AI techniques, namely Grad-CAM and Layer-
wise Relevance Propagation in order to highlight relevant areas of the image that
were used by the network for predicting the degree of persuasiveness to raise
awareness of the stated importance of subliminal persuasive cues. Further we aim
to explore an effective way for investigating persuasive cues for the development
of persuasive agents and robots. Our results show that our network has learned
to focus on the person, their contours, face, and hands proving that our network
is able to look for parts on the image that are important indicators for a person’s
persuasiveness according to existing literature. We have described the limitations
of our approach in detail, especially concerning our used training data set, which
only consisted of one speech of a single person. In our future work, we will
address the limitations mentioned above and extend our corpus5 with additional
speeches and look for suitable existing corpora to generalize our approach. We
will then explore if our network can learn generalized as well as more fine-grained
persuasive indicators, such as making a fist as well as sequential persuasive
markers and if we can highlight such persuasive markers. Additionally, we will
make use of other explainable AI techniques to get a deeper understanding of
the impact of persuasive markers.

Acknowledgments. This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG) within the project “How to Win Arguments - Empowering Virtual Agents
to Improve their Persuasiveness”, Grant Number 376696351, as part of the Priority
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Abstract. As autonomous agents become more self-governing, ubiq-
uitous and sophisticated, it is vital that humans should have effective
interactions with them. Agents often use Machine Learning (ML) for
acquiring expertise, but traditional ML methods produce opaque results
which are difficult to interpret. Hence, these autonomous agents should
be able to explain their behaviour and decisions before they can be
trusted by humans. This paper focuses on analyzing the human under-
standing of the explainable agents behaviour. It conducts a preliminary
human-agent interaction study to investigate the effect of explanations
on the introduced bias in human-agent decision making for the human
participants. We test the hypothesis where different explanation types
are used to detect the bias introduced in the autonomous agents deci-
sions. We present three user groups: Agents without explanation, and
explainable agents using two different algorithms which automatically
generate different explanations for agent actions. Quantitative analysis
of three user groups (n = 20, 25, 20) in which users detect the bias in
agents’ decisions for each explanation type for 15 test data cases is con-
ducted for three different explanations types. Although the interaction
study does not give significant findings, but it shows the notable dif-
ferences between the explanation based recommendations and non-XAI
recommendations in human-agent decision making.

Keywords: Explainable agents · Explanation type · Human-agent
interaction · Human-agent decision making

1 Introduction

For the machine learning experts to rely upon the model’s recommendations,
explainability is an issue. It is easy for the decision makers to rely on a statistical
tool which is easy to understand and convince the analytical results which is not
possible for the machine learning models. Hence, the requirement is to find the
methods by which the computational system can be explained to the decision
maker for the complete understanding of the whole system. Explainable Artificial
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Intelligence (XAI) shows up as a new branch of AI to benefit any intelligent agent
or machine to explain their predictions. For instance, it is vital for an intelligent
agent to explain its behaviour to the end user to make them more trustworthy.
These type of explanations builds the trust in the classifier decisions even if the
class is predicted wrongly as it explains for its unexpected behavior.

Recently, Explainable Artificial Intelligence (XAI), and explainable machine
learning in particular, has gained increased attention in the research community.
The main facilitation behind XAI is that although the machine learning models
have gained attention is last few years, they are not interpretable from the human
perspective. To address this shortcoming, researchers have developed algorithms
that facilitate post-hoc explainability of machine learning-based classifications.
While a range of such algorithms exists, the line of research that evaluates these
algorithms from a Human-Computer Interaction (HCI) perspective is still in its
infancy. The research questions addressed in the article are: (i) If an AI sys-
tem is presented to a user, how will the developer know that the explanation
is working correctly and the user is able to understand the machine learning
decisions completely? (ii) How good the explanations are? (iii) How can we mea-
sure the goodness of explanations. (iv) Are users satisfied with the explanations
provided? (v) If the end-user’s trust and dependence on AI is enough? (vi) how
the human-agent system behaves?

In this work, we advance the state of art of the HCI perspective by evaluating
how two different post-hoc explanation algorithms–SHAP and LIME–influence
bias in human decision-making. For this, we generate a (synthetic) data set of
loan application decisions. The loan applications largely follow a set of simple
decision rules, but are biased against women. We then train a machine learn-
ing model (neural network) on this dataset. In a user study, we then assess
how decision support provided by the model is affected in regards to bias when
explanation with LIME and SHAP are added.

2 Background

Despite plenty of research on transparent and interpretable machine learning
models, providing explanations to technical users is an imperative area of study.
The comprehensive surveys on explainable artificial intelligence [2,4] provide
an insight into the machine learning, data analytics and visualization, chal-
lenges and future research directions for explainable deep learning. The research
[15] uses two approaches for image classification using explainable deep learn-
ing where first explains sensitivity with respect to changes in input and sec-
ond decomposes decision for its important input variables. Further, an inter-
esting study on XAI understanding in a comprehensive form [10] can be gen-
erally grouped into three classes for understanding, diagnosing and refining. It
also presents applicable examples relating to the prevailing state-of-the-art with
upcoming future possibilities. The DARPA project [8] provides literature related
to motivation and state of the work related to the examples for basic concept
and application in the areas of legal advices, finance military, transportation,
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medicine and security for instance. The machine learning explainable system
has been studied for various applications, for example in plant stress phenotyp-
ing [7] and heat recycler fault detection in air handling unit [11]. The authors
also applied the same technique for providing explanations in medical images col-
lected for capsule Gastroenterology [12]. However there are unprecedented obsta-
cles with the current efforts made by researchers since the traditional machine
learning models are less interpretable and more complex with AI used for major-
ity of the tasks. Further, AI is used more for making autonomous decisions than
ever by introducing the agents. Hence there is no doubt that the agent autonomy
will continue rising in eminence with more exciting work in the future [3].

The ability of an agent to plan and act effectively on its own towards a goal is
determined by the agent’s actions, when it can perform actions and the outcomes
of these actions. The progress is defined by an explainable agent which is able
to learn the preconditions related to action and then perform preparatory plan-
ning process. Hence an agent performs both exploratory as well as goal-directed
actions which opens up the research questions related to controlling actions of
exploratory and goal planning and the explanation of agent’s behaviour to any
technical user [5]. The virtual agents’ impact in the area of XAI is examined
based on the trust in the autonomous intelligent systems [16].

For assessing the practicality of the trust in autonomous agents, a user study
is conducted based on simple bank loan application. As a consequence of this
study, we came to a significant evidence indicating that an interactive design of
application by integrating the virtual agents with XAI, the trust of the user in
the autonomous intelligent agents increase. The objectives of explanation com-
prises of investigating the questions such as, “How does the system work?”; how
easy is it to understand?; What does it do?; Is the user able to trust the system?;
and “Is the system able to justify user for its decisions?”. The proposed work
tries to address the following question: Suppose an AI system which explains its
working is presented to a user, what are the ways to measure if it works or not,
how accurately it performs, is the user able to have the practical understanding
about the system. The aim of the paper is to measure the end-user confidence in
understanding the machine learning recommendations with and without expla-
nations, and how well the bias can be reduced with the help of human-agent
decision making.

3 Explainable Artificial Intelligence

The machine learning black box models excel in their task of decision making
but precisely do not permit to make human understandable decisions. An orga-
nization at the forefront of XAI research is the United States’ Defense Advanced
Research Projects Agency (DARPA). DARPA report defines XAI as: XAI allows
an “end user who depends on decisions, recommendations, or actions produced
by an AI system [...] to understand the rationale for the system’s decisions” [1].
According to a survey conducted by Miller [13], the major findings regarding the
properties of explanations in human-like interactions are:
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– Explanations are contrastive: People have the tendency of not asking
why something happened but instead why something happened instead of
something else. They try to create the reference between their expectations
and the reality.

– Explanations are Selected: People rarely expect any explanation covering
all aspects of reasoning.

– Probabilities don’t matter: People consider casual explanations more rel-
evant that pure correlations.

– Explanations are social: Explanations are considered as transfer of knowl-
edge as part of interaction which also involves queries as well as preferences.

The behavioural and social challenges should also be taken into consideration
for better design decisions while developing the explainable agents. A black box
model decisions are sometimes too complex for a human to understand, or it
is a model that is challenging to troubleshoot. The explanations need to be
considered as a separate tool for replicating the black box behaviour. Most of
the recent works on transparent and interpretable machine learning decisions
only focus on the technical users. End user explanations are overlooked in many
useful and practical applications. Unless humans understand the model’s reason
of assessment, they can not trust them [9].

SHAP value is a united approach for explaining any machine learning model’s
output. It has the following characteristics: (i) global interpretability – how much
each predictor contributes to the target variable, either positively or negatively.
(ii) local interpretability – SHAP values are calculated for each instance which
greatly increases its transparency. It helps in explaining the prediction of a case
and the major contributors in decision. (iii) the SHAP values can be computed
for any model which is tree based.

Local Interpretable Model-agnostic Explanations (LIME) is another expla-
nation tool for providing the explanations for the predictions using the most
important contributors. It helps the decision makers in justifying the model
behaviour with respect to the important input parameters. The overall purpose
of LIME is to identify an interpretable model over the interpretable representa-
tion which can fit the classifier locally. The underlying model’s approximation by
interpretable model is used to generate the explanations by learning the original
instance’s disruptions. LIME is a simple tool which approximates the black box
locally compared to approximation on a global scale. The original instance is
weighted by similarity to the instance which we wish to explain. LIME provides
the model agnostic explanations which makes it easier to use LIME to explain
innumerable classifiers (such as Random Forests, Support Vector Machines and
Neural Networks) Because our goal should be to have model-agnostic model,
using textual or image data [14].

3.1 Challenges of Explainable Machine Learning

There are significant misconceptions related to the current work on explainability
which can effect negatively on its wider social acceptance.
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1. Trade-off between interpretability and accuracy: It is believed that the com-
plex models present more accurate results which implies that best predictive
results can only be obtained by a complex black-box model which is not
interpretable at all. The fact is that interpretibility can be imbibed perfectly
with the deep learning applications without affecting the performance of the
system.

2. Explainable Machine learning methods provides unfaithful explanations: It is
common belief that if the explanation is exactly what the original model com-
puted, then we do not need the original model at first place. It leads to the sit-
uation where it is considered that explanations are the original model’s inac-
curate representation in parts of the feature space. The explanations methods
actually compute the summary of the prediction results of the model instead
of exact explanations.

3. Incomplete explanations: Sometimes, the explanation may not give complete
information that the meaning becomes unclear. It might impart a false con-
fidence in the black box explanation method.

4. Non-compatibility of the black box models to assess risk: Some machine learn-
ing decisions can increase of decrease the estimated risk. The additional infor-
mation provided by black box model may increase or decrease the level of risk
assessment.

Fig. 1. Test setup and architecture
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4 Human-Agent Interaction Method

This section provides an overview of the methodology used to evaluate the impact
of explanations on the bias introduced in the models in the human decision mak-
ing (Fig. 1). We want to emphasize that by agents, we refer to the AI systems
which are capable of decision making by themselves. We design an application
which is responsible for recommending the decisions to the users. We generate
synthetic data, a machine learning model predictions, and post-hoc explana-
tions that allow for the evaluation of the ability of the post-hoc explanation
techniques Local Interpretable Model-agnostic Explanations (LIME) and SHap-
ley Additive exPlanations (SHAP) to avoid biased decision making in humans.
For this, firstly we generate a (synthetic) data set of loan application decisions.
The loan applications largely follow a set of simple decision rules, but are biased
against women. The potential biases which can be introduced in the dataset are
due to gender and age. The potential features which can be used in the dataset
are listed below:

– Gender
– Age
– Income
– Unpaid debt
– Wealth
– Educational background/profile: ties to the place/country
– Other liabilities
– Credit history
– Job stability

The general architecture for human agent interaction1 has been explained in the
Fig. 1 where labelled training data generated synthetically is used for training a
machine learning model. The explainable recommender agent gives the decision of
the model and also explains the decision using various XAI based methods such
as LIME, SHAP etc. The recommendations and explanations provided by the
machine are evaluated by designing an appropriate user interface for a test user.

4.1 Generate Test Data

We generate a data set of loan applications and their decisions. Each loan appli-
cation has the following parameters:

1. Age (age) of the applicant in years;
2. Income (income) of the applicant in e;
3. Debt/assets (assets) of the applicant in e;
4. Employment type (employment) of the applicant (fixed-term, permanent);
5. Gender (gender) of the applicant (female, other, male);
6. Loan size (loan) in e.

1 https://colab.research.google.com/drive/1-iq1xZhYuKZgH5NgYUBETYmun9yo
KMdC.

https://colab.research.google.com/drive/1-iq1xZhYuKZgH5NgYUBETYmun9yoKMdC
https://colab.research.google.com/drive/1-iq1xZhYuKZgH5NgYUBETYmun9yoKMdC
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Table 1. Decision rules for test data

If age < 18: reject

Else if income < 20000 and loan > 10000: reject

Else if assets < 20000 and loan > 10000: reject

Else if assets < 0: reject

Else if employment != permanent and loan > 400000: reject

Else if loan > 500000: reject

Else: accept

Table 2. Bias added

If Gender == ‘female’ or ‘other’: reject with probability of 80%

Else: call the first set of rules

The basis for classifications in the test data set are the decision rules given in
Table 1. In addition, we induce the rule given in Table 2 that adds bias to the
classifications. For loan application data, we create a data set with a size of
10000 entries with the properties given in Table 3.

With the exception of gender, all parameters are approximately uniformly
distributed, i.e. we use Python’s random.uniform() function to assign any of
the possible values. Note that for the scope of the study, it is not necessary to
create a representative data set; instead, it is important to have a data set that
contains a large amount of entries that will be affected by the gender-biased
decision rules. Gender is distributed approximately as follows: 10% other, 50%
female, 40% male.

4.2 Training of Model

We then train a machine learning model (Random Forest with gradient boosted
trees) on this dataset. The model is trained with 80% of the data and 20% is used
for testing the data. The trained data is biased with gender as explained in an
earlier section. The model is then tested with rest of the 20% of the data which
provides the recommendation for the loan application in the form of approve
or reject. In a user study, we then assess how decision support provided by the
model is affected in regards to bias when explanation with LIME and SHAP are
added.

4.3 Explanation Types

Out of the XAI approaches previously discussed in Sect. 3, we used LIME and
SHAP to explain the decisions of our Test use case: bank loan approval. We used
the following methods of providing explanations for the explanation agents:
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Table 3. Dataset variables

Age 17–70 years;

Income 0–200000e;

Assets 100000–1000000e;

Employment type Fixed-term or permanent;

Gender Female, male or other;

Loan amount 5000–520000e

Table 4. Sample data for generating explanations

Income 68100

Gender Male

Employment Fixed

Loan 479000

Assets 271900

Age 54

No Explanation. The agent does not provide any form of explanation for
recommendations made. The black-box XAI acts as a baseline for our empirical
assessment.

Explanation I: LIME. The agent explicitly states the explanation of the
decision providing post-hoc explainability of the model decision. The model rec-
ommendation provided is complemented with the explanations to justify the
machine recommendations. The explanations are used to test the bias-preventing
effects of XAI. We use Local Interpretable Model-agnostic Explanations (LIME)
as our first post-hoc explainability algorithm and generate the explanations
that will be used in the human-computer interaction study. The explanations
provided for a particular test case (Table 4) are depicted in Fig. 2 with Reject
recommendation.

Explanation II: SHAP. We use SHapley Additive exPlanations (SHAP) as
our second post-hoc explainability algorithm for generating the explanations to
be used in the human-computer interaction study. Figure 3 where the recom-
mendation provided by machine learning model is Reject.

5 Empirical Assessment

To investigate the effect of explainable agents, we conducted a human-computer
interaction study as a foremost step for providing an empirical assessment of the
proposed concept.
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Fig. 2. Lime explanations with recommendation

Fig. 3. Shap explanations

5.1 Study Description

The aim of this study is to gather preliminary facts for the explanation of the
bias-preventing effects of XAI methods: LIME, SHAP with respect to the black-
box as baseline with no XAI. The study is conducted with 65 participants with
20 for black-box XAI, 25 for LIME and 20 for SHAP. Fifteen different case
data for loan application are generated and the recommendations are provided
to approve or reject the loan application. The user has to select if he approves
or rejects the loan application based on the recommendation provided. Three
different interactive applications were generated as:

– Black-box based recommendation for loan application without XAI.
– XAI based recommendation for the loan application with visual explanations

using XAI tool LIME.
– XAI based recommendation for the loan application with visual explanations

using XAI tool SHAP.

Hypotheses. The aim of the study is to evaluate the following hypothesis:

1. Ha: Number of “overridden” recommendations that are biased is higher for
SHAP then without explanations (true positive).

2. Hb: Number of “overridden” recommendations that are not biased is lower
for SHAP then without explanations (false positive).
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3. Hc: Number of “overridden” recommendations that are biased is higher for
LIME then without explanations (true positive).

4. Hd: Number of “overridden” recommendations that are not biased is lower
for LIME then without explanations (false positive).

5. He: Number of “overridden” recommendations that are biased is higher for
LIME then for SHAP (true positive).

6. Hf : Number of “overridden” recommendations that are not biased is lower
for LIME then for SHAP (false positive).

The study introduces the bias in four out of fifteen test cases and our hypothesis
aims at evaluating whether the humans are able to detect the bias in agent
supported recommendations or not. We are testing whether we can reject the
null hypothesis (Ha0, Hb0, Hc0, Hd0, He0, Hf0) being the negations of our six
hypotheses.

5.2 Data Collection

Study Protocol. For this user-centric study, we got the participants from the
University’s environment which means most of the participants have a technical
university degree.

1. Initially, the study participant is introduced to the user study. The study
instructions are given to participant by a facilitator in the form of written
instructions. The bias introduced was not disclosed until the end of the study.

2. After providing the instructions, the study is carried out under the supervision
of one researcher who helps in controlling the experiments as planned.

3. The study participant is asked to give the recommendation if he accepts or
rejects the loan application based on the case data provided for any of the
above 3 applications discussed.

4. The process is iterated for 15 rounds of different case data.
5. After all the fifteen rounds of the application are completed, the participant

is guided through the questionnaire. Since these questions could potentially
affect the respondent’s assessment about the process, so these questions are
asked at last after the application assessment has been carried out and could
not be accessed by the participant beforehand.

Questionnaire Design. Initially the users are asked to interact with the appli-
cation and provide the data, Q0: Received the user responses in the form of
approve or reject. We asked the users to provide the following demographic data
Q1: Age (number); Q2: Gender (Selection: male, female, other); Q3: Highest
educational degree (Selection: Pre-high school, High school, Bachelor, Master,
Ph.D. or higher); Q4: Background in science, technology, engineering, or math-
ematics (STEM) [Boolean]; To evaluate the interactions between study partici-
pants, the following data was taken regarding their performance:

– Were they able to understand the (explanations of the) recommendations
provided by application [Boolean];
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– To rate their satisfaction level of (explanations of the) recommendations on
a scale of 0-5;

– Which parameters they consider important in deciding if to approve or reject
the loan application (multiple selections from income, gender, employment,
loan, assets, age);

– To rate the user interface of the application on a scale of 0–5;

There were few different questions for the questionnaire generated for the study
without explanations2 and with explanations3. The following additional ques-
tions were designed for the study without explanations apart from the above
defined questions:

– Do the users see themselves trusting the recommendation without an appro-
priate reason for its decision [boolean];

– If the decisions would be more satisfying with explanations along with rec-
ommendations;

– What kind of explanations the users expect to support the recommendations;

The following additional questions were designed for the both studies with expla-
nations:

– If they heard about explainable machine learning before [boolean];
– If the user answers yes to the above question, then describe their knowledge

about explainable machine learning in few words;
– Do they consider the parameters analysed by application as important

[boolean];
– Do they think provided explanation is good enough to let them trust or not

the recommendations provided;
– Describe possible improvements of the explanations to improve understand-

ability;
– Describe interaction experience with application.
– Describe possible improvements of the user interface in terms of design;
– Can the users see themselves using the decision making application with given

explanation;

Analysis Methods. In order to investigate the effect of explanations provided
by the autonomous agents on the human participants we performed a comparison
between three different user groups: Agents without explanation, and explain-
able agents using two different algorithms (LIME and SHAP) which automati-
cally generate different explanations for agent actions. We analysed the results
using Excel XLMiner Data analysis ToolPak to run hypothesis tests as well as
exploratory statistics. Firstly, we determined the differences between means and
medians of human decision making in different settings. For each hypothesis, we
2 https://docs.google.com/forms/d/1nxJpzdo8y5QiCFeHo6LY8M86u6istdAmau67pU

dDZ1g/viewform.
3 https://docs.google.com/forms/d/1CTatrqSgjX PUYxxRGjktOdHaPepaKA1clgL4

1io3t4/viewform.

https://docs.google.com/forms/d/1nxJpzdo8y5QiCFeHo6LY8M86u6istdAmau67pUdDZ1g/viewform
https://docs.google.com/forms/d/1nxJpzdo8y5QiCFeHo6LY8M86u6istdAmau67pUdDZ1g/viewform
https://docs.google.com/forms/d/1CTatrqSgjX_PUYxxRGjktOdHaPepaKA1clgL41io3t4/viewform
https://docs.google.com/forms/d/1CTatrqSgjX_PUYxxRGjktOdHaPepaKA1clgL41io3t4/viewform
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Table 5. Demographics of study participants for noEXP, LIME, SHAP

Methods Total Gender Highest degree STEM background Age

(years)

Male Female OTH Ph.D.

(or

higher)

Master Bachelor High

school

Yes No

noEXP 20 10 9 0 1 5 7 6 13 7 21 (2), 23,

24 (2),

26(2),

27(2),

28(3),

30(3),

31(2), 34,

50, 57

LIME 25 18 5 1 4 12 6 2 24 1 20, 24(3),

25(2), 28,

29(4),

30(4),

32(3),

33(2),

37(2), 38,

51, 53

SHAP 20 11 7 1 7 9 3 1 18 2 21, 23, 24,

25(2), 26,

27(3), 28,

29, 32,

33(2), 34,

35, 36(2),

38, 41

tested the difference between distribution of decisions using two-Sample t-Test
assuming equal variances with significance level of α set to 0.05. The correlation
is calculated using Pearson correlation coefficient between demographic values
and count of the right decisions (the decision overriding biased recommendation
and approving non biased recommendations) by study participants.

65 people participated in the study (n = 65) out of which 20 were given no
explanation during application interaction, 25 were given the explanations given
by LIME and 20 by SHAP. When performing the correlation analysis we excluded
two of the participants identified as other in terms of gender. The demographics
of the participants are shown in Table 5. The study participants were predomi-
nantly male and predominantly had high education and background in science
and technology. Majority is in their twenties or thirties with few outlining cases.

5.3 Result Analysis

Quantitative Analysis. The analysis starts with calculation of true positives,
false positives, true negatives and false negatives which signify the following with
respect to our evaluation criteria:

True Positive =Overrides biased recommendation
False Positive =Overrides non biased recommendation
True Negative =Supports not biased recommendation
False Negative =Supports biased recommendation
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Table 6. Mean and median measures

Measures noEXP LIME SHAP

False negative Count 32 37 23

Mean 4.05 3.48 3.05

Median 2 1 1

False positive Count 81 87 61

Mean 1.6 1.48 1.15

Median 3 3 3

True negative Count 139 188 159

Mean 6.95 7.52 7.95

Median 8 8 8

True positive Count 48 63 57

Mean 2.4 2.52 2.85

Median 2 3 3

Table 7. Hypothesis analysis

t-test Hypothesis p-value (two-tailed) p-value (one-tailed)

1 true positive (SHAP, noEXP) Ha0 0.18 0.09

2 false positive (SHAP, noEXP) Hb0 0.13 0.06

3 true positive (LIME, noEXP) Hc0 0.71 0.35

4 false positive (LIME, noEXP) Hd0 0.35 0.17

5 true positive (LIME, SHAP) He0 0.36 0.18

6 false positive (LIME, SHAP) Hf0 0.39 0.19

Table 8. t-Test: two-sample assuming equal variances (true positives)

noEXP LIME noEXP SHAP LIME SHAP

Mean 2.4 2.52 2.4 2.85 2.52 2.85

Variance 0.7789473684 1.426666667 0.7789473684 1.397368421 1.426666667 1.397368421

Observations 20 25 20 20 25 20

P(T<=t) one-tail 0.3549150958 0.09027080274 0.180026242

P(T<=t) two-tail 0.7098301915 0.1805416055 0.3600524839

Table 9. t-Test: two-sample assuming equal variances (true negatives)

noEXP LIME noEXP SHAP LIME SHAP

Mean 6.95 7.52 6.95 7.95 7.52 7.95

Variance 5.628947368 2.76 5.628947368 2.681578947 2.76 2.681578947

Observations 20 25 20 20 25 20

P(T<=t) one-tail 0.1745331086 0.06455759198 0.1950434934

P(T<=t) two-tail 0.3490662172 0.129115184 0.3900869869

The count, mean and median for each of the above type of recommendation
for each of the three user study groups is calculated as shown in Table 6. It
depicts that there are notable differences in means aligned with the assumption
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Table 10. t-Test: two-sample assuming equal variances (false positives)

noEXP LIME noEXP SHAP LIME SHAP

Mean 4.05 3.48 4.05 3.05 3.48 3.05

Variance 5.628947368 2.76 5.628947368 2.681578947 2.76 2.681578947

Observations 20 25 20 20 25 20

P(T<=t) one-tail 0.1745331086 0.06455759198 0.1950434934

P(T<=t) two-tail 0.3490662172 0.129115184 0.3900869869

Table 11. t-Test: two-sample assuming equal variances (false negatives)

noEXP LIME noEXP SHAP LIME SHAP

Mean 1.6 1.48 1.6 1.15 1.48 1.15

Variance 0.7789473684 1.426666667 0.7789473684 1.397368421 1.426666667 1.397368421

Observations 20 25 20 20 25 20

P(T<=t) one-tail 0.3549150958 0.09027080274 0.180026242

P(T<=t) two-tail 0.7098301915 0.1805416055 0.3600524839

Table 12. Correlation between demographics and decision making

Demographics no EXP

(correlation)

no EXP

(p-value)

LIME

(correlation)

LIME

(p-value)

SHAP

(correlation)

SHAP

(p-value)

Age −0.3943338142 0.08534479016 −0.21225918020.3083793126 −0.27359188950.2431317331

Gender −0.01899685628 0.9366405456 −0.21451473390.314135297 0.08552499375 0.7277463724

Education −0.1699636098 0.4737466067 0.01314368012 0.9502790615 −0.12096074940.6114580972

STEM

background

−0.05775093751 0.80890297 0.09386465089 0.6553926784 −0.14336088820.5465249821

that motivate our first five hypothesis regarding the differences between modes
with explanation versus modes without explanation. However the differences are
statistically not significant.

Our hypotheses are applicable for only true positives and false positives and
the Table 7 gives the calculated p-values for two-tailed as well as one-tailed tests
to test our null hypothesis (negations of our hypotheses). There are not observed
significant differences but the notable differences can be seen for overriding the
bias based recommendations higher for LIME than no explanation. There are
also notable differences for overriding non-biased recommendations lower for
SHAP than no explanation. Hence, the results supports our hypotheses Hb, Hc

to a little extent. However the results are not in favour of our last sixth hypothesis
since number of overridden recommendations that are not biased is not lower
for LIME than for SHAP. Considering the small sample size, the results can not
be generalized. Tables 8, 9, 10 and 11 are showing the means, variances, number
of observations and p-values (both one and two tailed) which indicate whether
there were observed differences between different groups of participants.

Further we performed the correlation analyses using Pearson coefficient
between the complete count of the right decisions (true negative and true positive
decisions) made by participants and the demographic variables. Table 12 is show-
ing values of Pearson correlation coefficient for all conditions - no explanation,
LIME and SHAP - and the p-values which depict if the computed coefficients
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are showing statistical significant correlations between demographic variables
and the right decisions (true negative and true positive) of the participants. We
did not find a significant correlation, although the correlation between age and
count of the right decision in group without explanation seems plausible which
may be indicating that the lower age was somehow predicting the higher number
of right decisions.

Qualitative Analysis Interaction Experience. In a group without provided
explanation, participants generally considered income as the most important
parameter when deciding for approving or rejecting the loan whereas the gender
was noted as the least important and majority was satisfied with the user inter-
face of the application. Participants in group with given explanations (SHAP and
LIME) similarly rated income as the most important parameter when deciding
for approving or rejecting the loan whereas the gender was noted as the least
important and majority perceived the user interface of application as good.

Explanation Evaluation. Most of the participants in group without provided
explanation, answered that they did not understand recommendations provided
by application and that they can not see themselves trusting the recommenda-
tions provided by the given application without the provided explanation. They
were mostly satisfied with the given recommendations but also noted that they
would like to have an explanation added in the application. In groups with pro-
vided explanations (SHAP and LIME) participants mainly answered that they
understood the explanations of the recommendations provided by application
and were satisfied with the explanations provided. About half of the participant
answered that the given explanation was good enough in order to let them judge
when they should trust or not trust provided explanations and they could also
see themselves using the application with the given explanation. By analyzing
the participants’ free-form feedback, we additionally found that:

– End-users want additional linguistic explanations along with visual based
explanations.

– End users want explanations to be suitable for intuitive comparisons.
– End users want to interact with agent for more information.

6 Discussion and Perspectives

From observed results comparing human decisions from different groups of par-
ticipants (two with explanations versus no explanation group), we observed
notable differences between groups in mean/median of their decisions. Those
differences may reflect the initial assumptions stating that both SHAP and
LIME explanation will cause less overriding of non biased recommendations and
more overriding of biased recommendations than having no explanation at all.
However, as our hypothesis testing showed these differences are statistically not
significant, and we therefore can not draw empirically valid inferences. Our ini-
tial assumption that participants with LIME will perform better in overriding
more biased recommendations than participants with SHAP explanation, was
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also to some extent supported by our results, however participants having LIME
explanation did not perform better in overriding less non-biased recommenda-
tions than those with SHAP. This could indicate that participants with SHAP
explanation to some extent engaged in more understanding of the explanation
since SHAP explanation has higher complexity compared to LIME which can
also be concluded from the participants comments from their interaction with
application.

Our results also give insight into the initial research questions. The user
study and interaction with no explanation and explanation study depicts that
users are able to understand the explainable AI systems more profoundly and
are comfortable in the recommendations provided by these systems compared
to the noEXP systems. This imbibes more confidence in the developers to have
more explainable systems which will instill more confidence in users to trust such
systems. The two explanation types have been used to understand the goodness
of the explanations and the parameters which users consider as important in
regard with explanations provided. Thus, the study provided a deep insight into
the details of these systems from the perspective of users which can be used as
positive feedback for the design of such AI systems.

6.1 Limitations

The paper provides human-agent interaction study to reduce the bias in human
decision making with the help of explanations provided with recommendations.
The interaction study has a set of limitations, the most important of which are
listed below:

– The scope is limited to only two explanation tools: The current app-
roach focuses only on two explanation tools, LIME and SHAP which can
further be validated with other more sophisticated tools such as CIU [6].

– The time for a decision is not taken into account: The user time for
making a decision in the study is not considered which may effect the empir-
ical validation of the study. It would be, for example, interesting to know
if people presented with SHAP explanation took longer time in deciding to
approve or not to approve loan in each case. Because the provided results are
not showing significant differences in results between groups without explana-
tion and groups with explanations for decision making which could indicate
the presence of human bias.

– Human bias in decision making: The paper provides simplistic scenario
of the loan application data which neglects the human related biases. It means
that human participants possibly ignored the given recommendations, or did
not pay that much attention to it as expected and/or that they ignored the
explanations of recommendations by focusing more on their own assumptions.

– The scope is limited to a synthetically generated data: For facilitation
of real life applicability, it is necessary to use the real application data in the
context of real world situations in the actual real-life settings. The sample
should be more diversified and it would be good to control the demographics
as well.
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6.2 Future Work

The following future research directions can be considered to address the limi-
tations discussed in previous subsection:

– To scale the study to other XAI tools: We present the study with LIME
and SHAP as explanation tools, it will be good to test the concept on a more
wider perspective with other explainable artificial intelligence tools as well
such as CIU, ELI5 etc.

– Evaluate the study applicability with domain experts: While we have
provided a prototype that shows the applicability in the generated dataset,
its exact usability can be validated with the domain experts.

– Extend the scope to real-life case study: It will be interesting to explore
the actual case study with real life complexities to show that the agents act
more rationally in real life applications.

7 Conclusion

We try to explain the behaviour of the autonomous agents to humans by con-
ducting a preliminary human-agent interaction study to investigate the effect
of explanations provided by agents to lower the biased based recommendations.
In this paper, we explored the potential of the bias based recommendations in
human decisions for three different groups of participants, 2 groups with expla-
nations provided and 1 group without explanations. The results of our study
show the improved trend of user’s perceived trust in explanation based rec-
ommendations compared to the ones with no explanation for the less bias in
agent supported human decision making. The results of our study are inline
with our initial assumption that end-users experience could benefit from expla-
nation based recommendations to reduce the bias in human decision making. The
presented agent-supported interaction study for enabling human-agent decision
making pave the way for exhaustive evaluations for the effectiveness of the agent
supported decisions.

Current user study for supporting agent-human decision making concerns
the integration of a system able to detect user’s approval or rejection for the
machine recommendations; further development of interaction strategies such as
management of socio-emotional factors and the decision time in human agent
interaction. We expect that such integrations will contribute in providing realistic
interactions and improved results.
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11. Madhikermi, M., Malhi, A.K., Främling, K.: Explainable artificial intelligence
based heat recycler fault detection in air handling unit. In: Calvaresi, D., Naj-
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Abstract. Motivated by the apparent societal need to design complex
autonomous systems whose decisions and actions are humanly intelligi-
ble, the study of explainable artificial intelligence, and with it, research
on explainable autonomous agents has gained increased attention from
the research community. One important objective of research on explain-
able agents is the evaluation of explanation approaches in human-
computer interaction studies. In this demonstration paper, we present
a way to facilitate such studies by implementing explainable agents and
multi-agent systems that i) can be deployed as static files, not requiring
the execution of server-side code, which minimizes administration and
operation overhead, and ii) can be embedded into web front ends and
other JavaScript-enabled user interfaces, hence increasing the ability to
reach a broad range of users. We then demonstrate the approach with the
help of an application that was designed to assess the effect of different
explainability approaches on the human intelligibility of an unmanned
aerial vehicle simulation.

Keywords: eXplainable Artificial Intelligence · Engineering
multi-agent systems · Human-Computer Interaction

1 Introduction

Since the lack of interpretability of both black-box machine learning models and
complex rule-based systems is a generally-acknowledged socio-technical prob-
lem, the research domain of eXplainable Artificial Intelligence (XAI) is gaining
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increased attention from researchers of various disciplines. A particularly moti-
vating factor is that emerging laws and regulations, most notably the European
Union’s GDPR, require that certain decisions of information systems must be
humanly interpretable [3]. Recent works in the literature highlighted explainabil-
ity as one of the cornerstones for building trustworthy responsible AI systems
[11,12]. In this context, an obvious research frontier for the autonomous agents
and Multi-Agent Systems (MAS) community is the design of explainable intelli-
gent agents [8]. This frontier is explained by the fact that while intelligent agents
have been established as a suitable technique for implementing autonomous high-
level control and decision-making in complex AI systems [13], there is still a need
for these systems to be understood and trusted by the human users.

Considering that the growth of research on explainable agents is accelerating,
contributions that empirically evaluate the proposed explainability approaches
are still scarce [2,6]. In this regard, Agent-based Simulation (ABS) fits the
requirements to implement such empirical evaluations. ABS is a set of interacting
intelligent entities that models and executes, within an artificial environment,
the real-world autonomous agents, their relationships, and interactions with the
environment [13]. Consequently, ABS can be considered as a natural step forward
towards better managing and evaluating the proposed explainability approaches
in Human-Computer Interaction (HCI) empirical user studies.

To facilitate more research and bridge the gap between the theoretical pro-
posed explainability approaches on the one hand, and the practical evaluation
of such approaches on the other hand, this demonstration paper presents an
ABS approach to engineer explainable agents and MAS prototypes for the spe-
cific purpose of empirical evaluation in HCI studies. The approach makes use of
light-weight web technologies that facilitate rapid prototyping and allow for the
deployment of agents and MAS as static web pages.

2 Explainable Agents as Static Web Pages

2.1 Motivation

The proposed approach to explainable agent prototyping and simulation devel-
opment is to implement ABS as static web front ends. These web pages can be
easily deployed to any device that serve or render web pages, and shared with
a broad audience, for example as web links. From a technology perspective, the
approach makes use of the JS-son library [5], which allows the creation of Belief-
Desire-Intention (BDI) agents, as well as agents with other reasoning loops and
MAS in a higher-level programming language with little learning and technology
overhead. We argue that the proposed approach has the following advantages:

Ease of deployment. Because the program code consists only of static files
that are to be provided by a web server, it can be deployed in a straightfor-
ward manner, without the need of a complicated installation routine or the
requirement to have extensive permissions on the target server. In particu-
lar, the program files can be moved to traditional static file servers (e.g., via
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FTP upload or via the upload feature of a content management system), or
integrated into light-weight developer operations-oriented tools and services
(e.g., continuous deployment to GitHub pages on push to a git repository’s
master branch).

Reach. The explainable ABS can be easily shared with any potential human user
who can access the Internet with a recent web browser. While for running HCI
studies, oftentimes video vignettes are created to allow for easier sharing [1],
using such vignettes i) severely limits interactive features and ii) does not
allow for convenient updates (minor changes, for example to the user interface,
require re-recording the video(s)).

Scalability. Because all program code is executed by the client, in particular
by the browser of the corresponding end-user, applications developed with
the proposed approach scale well; the server merely needs to provide (by
all practical means: small) static files, which means researchers can host the
applications essentially free of costs.

2.2 Architecture

The proposed approach is based on the following architecture design (depicted
in Fig. 1). A MAS (or, in simple scenarios, a single agent) is engineered to run
encapsulated in a web page. Note that single-user interactions/human-in-the-
loop approaches are possible, and even multi-user interactions can be realized
with light-weight real-time communication technologies such as Web Real-Time
Communications (webRTC) [4], albeit with a minimally invasive integration of
server-side technologies. The state of the environment and all agents it contains
is exposed to a User Interface (UI) manager component that processes the state
and makes it available to the following components:

– A grid world displays the “physical state” of the environment, i.e. the posi-
tion of agents and artifacts.

– A state table or tree-like structure provides an overview of relevant infor-
mation that is not obvious from the grid world representation, i.e., hidden
properties like goals and internal states of agents.

– A notification system informs users about important events, e.g., when
agents diverge from their expected behavior. Notifications are displayed as
visually invasive alerts that overly the rest of the user interface.

– Interaction controls (only in non-study mode, to not distract study partic-
ipants) allow users to switch between different simulation modes and adjust
simulation parameters.

3 UAV Simulation Example

The use of ABS for Unmanned Aerial Vehicles (UAVs) is gaining more interest
in complex civil application scenarios where coordination and cooperation are
necessary [7]. To provide a running example, let us describe how the approach we
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Fig. 1. Explainable Agent-based Simulation architecture

introduce in this paper can be used in a UAVs simulation scenario1. The study
evaluates how different explainability approaches affect human intelligibility of
a UAV delivery simulation. The simulation is provided in three modes, which
represent different paths through the explanation generation process.

Basic mode. It displays the current state of all agents, including their cur-
rent goal (target destination and mission type) in a table-like overview that
updates in real-time.

Adaptive filter mode. It aggregates the most important information across
agents; i.e., users do not need to scan the table for relevant information, but
can see at a glance which agents perform missions according to their expec-
tations, and which agents are in possibly problematic states (“stranded”,
uncoordinated). When an agent enters such a state, an alert with the agent’s
ID and goal information is generated.

Contrastive mode. Alerts are constructed using an implicitly counterfactual
explanation scheme, following the structure Agent A is doing P [instead
of Q] because of C, where P is the current behavior, Q is the presumably
expected behavior, and C is the execution condition. This means [instead
of Q] is implied by the alert and hence dropped from the text.

1 The developed application has been used for a follow-up of the explainable agents
HCI study presented by Mualla et al. [9,10].
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Figure 2 displays the simulation in an interactive test mode that allows for the
manipulation of simulation parameters through the user interface2. (In the study
application, UI controls where hidden and simulation parameters were set via
the simulation’s URL parameters to avoid end-user distraction and interference).

After all agents’ states have been collected, explanations, i.e summaries
that give an overview of the agents’ beliefs, are generated. For this, the chosen
modes (Basic, adaptive filter, or contrastive) will determine the processes to be
executed.

Fig. 2. Explainable UAV simulation with UI controls.

4 Conclusion

In this demonstration paper, we have shown how explainable agent simulations
can be deployed as static web pages. The presented approach serves as an exam-
ple of how light-weight tools with a small development, deployment, and oper-
ations footprint can be utilized to: i) rapidly develop agent/ABS prototypes in
a widely-used higher-level programming language and ii) roll-out these proto-
types and simulations at scale to large and diverse user groups, in particular
for the purpose of empirical validation. As future research, from an engineer-
ing perspective, it can be considered as valuable to extend the JS-son library,
which forms the foundation of this demonstration, with additional, generically
useful abstractions for implementing explainable reasoning-loop agents. For this,
components that this work implement can be extracted and merged into JS-son.
From HCI and XAI perspectives, it can be considered as interesting to extend

2 The source code of the simulation is available at https://github.com/TimKam/uav-
xai-simulation/. A running simulation system (with UI controls activated) is avail-
able at http://s.cs.umu.se/51x65y.

https://github.com/TimKam/uav-xai-simulation/
https://github.com/TimKam/uav-xai-simulation/
http://s.cs.umu.se/51x65y
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the simulation to allow for human-in-the-loop feedback that helps improve the
explanations over time.
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