
73© Springer Nature Switzerland AG 2020
A. Nazha (ed.), Diagnosis and Management of Myelodysplastic Syndromes, 
https://doi.org/10.1007/978-3-030-51878-3_5

Chapter 5
Molecular Landscape of MDS

Torsten Haferlach and Ines Schmidts

�Introduction

In the last decade, the advance of next-generation sequencing (NGS) has greatly 
expanded our insight into the underlying pathobiology of myelodysplastic syn-
dromes (MDS). The contribution of cytogenetic aberrations to MDS was realized 
early on and has been implemented into classification, prognostication, and treat-
ment planning [1–3]. However, only approximately half of MDS patients have a 
detectable cytogenetic aberration [4–8]. On the other hand, large-scale studies iden-
tified molecular genetic abnormalities in up to 80–90% of patients with de novo 
MDS [9, 10]. Mutations recurrent in MDS can also be found in other myeloid or – to 
a lesser extent – lymphoid neoplasms, albeit at varying frequencies [11].

Categorized according to their biological function, mutations can be assigned to 
one of seven major classes (compare Table 5.1).
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Table 5.1  Overview of dysregulated pathways and biological processes in MDS

Class Affected pathway Effect

DNA methylation Epigenetic regulation Transcriptional dysregulation
Histone modification
Transcription factors Transcription
Cohesin components DNA looping
Splicing factors Splicing Post-transcriptional dysregulation
Signaling factors Signaling Aberrant proliferation
p53 pathway factors p53 pathway Genetic instability

Aberrant activation of DNA damage response
Disruption of cell cycle control

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51878-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-51878-3_5#DOI
mailto:torsten.haferlach@mll.com


74

�Recurrently Mutated Genes in MDS

Figure 5.1 gives an overview of frequently mutated genes in MDS. Molecular aber-
rations with mutation frequencies ≥5% will be discussed in greater detail below.

�Molecular Aberrations Contributing to Transcriptional 
Dysregulation in MDS

�Epigenetic Regulation

Epigenetics is a major contributor to the regulation of gene expression. Based on the 
signature of epigenetic marks, which in human cells comprise DNA methylation 
and histone modifications, genes are either in a repressed or active state. However, 
this is no binary phenomenon, and the expression strength of active genes is tightly 
regulated. Setting epigenetic marks is an adaptive and reversible process and 
requires “writers” and “erasers.” The epigenetic signature is recognized by “read-
ers,” which directly or indirectly mediate the biological outcome of the respective 
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Fig. 5.1  Recurrently mutated genes in MDS, categorized according to biological function and 
mutation frequency. Circle size correlates with mutation frequency, light colored halos indicate the 
upper limit of frequency. Genes are mutated at frequencies ≥5% according to [12]. Genes mutated 
in less than 5% of cases are listed as bullet points, selection according to [9, 10]. Mutations that 
confer an IPSS-R-independent negative effect are colored in red/light red, mutations with no clear 
independent effect are displayed as gray/light gray circles. Only SF3B1 mutations are associated 
with a favorable prognosis (light blue). Prognostic relevance according to [13]
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epigenetic signature [14]. Epigenetic dysregulation is a hallmark of cancer since it 
allows tumor cells to silence tumor suppressor genes, activate or overexpress onco-
genes, and to reset or halt cell differentiation [15, 16].

�DNA Methylation

DNA methyltransferases (DNMT) can transfer a methyl group to the 5′ carbon of 
cytosine in CpG dinucleotides and thus belong to the class of epigenetic writers 
[17]. Erasure of DNA methylation is initiated by ten-eleven-translocation 2 (TET2), 
a methylcytosine dioxygenase. TET2 is thought to catalyze the first demethylation 
step, that is, the conversion of 5-methylcytosine to 5-hydroxymethylcytosine [18] 
(see Fig. 5.2). Both hypomethylation and hypermethylation phenotypes can contrib-
ute to pathobiology [17], the latter, however, can be pharmacologically antagonized 
with hypomethylating agents (HMA). The extensive methylation of promotor 
regions is strongly associated with gene silencing and malignant cells exploit this 
property to silence (putative) tumor suppressor genes, especially in high-risk 
MDS. The therapeutic effect of HMA appears to be greatly attributed to the re-
activation of these genes [16].

DNMT3A  DNMT3A mutations can be found in ~10% of MDS patients [12], how-
ever, they also represent the single most frequent aberration associated with age-
related clonal hematopoiesis of indeterminate potential (CHIP) [19–21]. DNMT3A 
mutations themselves are not considered sufficient to drive MDS pathogenesis, but 
they contribute to gene expression deregulation by aberrant DNA methylation. Up 

Fig. 5.2  Recurrent mutations in DNMT3A, TET2, and IDH1/2 in MDS affect DNA methylation 
and contribute to an aberrant epigenome by causing a hypo- or a hypermethylation phenotype

5  Molecular Landscape of MDS



76

to ~50% of DNMT3A mutations in MDS affect the arginine at position 882 [22–25]. 
A DNMT3A-R882H mutation leads to a loss-of-function phenotype and a decrease 
of catalytic activity by 80% [26]. Moreover DNMT3A-R882H exerts a dominant 
negative effect on wildtype DNMT3A, which adds to the loss-of-function pheno-
type [26]. DNMT3A mutations in MDS are associated with inferior overall survival 
and higher risk of transformation in many but not all studies [22–25, 27–30].

TET2  In accordance with the role of wildtype TET2 as eraser of DNA methylation, 
loss-of-function mutations of the TET2 gene result in aberrant DNA hypermethyl-
ation [16, 31]. In MDS, up to 30% of patients have a detectable TET2 mutation [12]. 
TET2 mutations are also recurrently detected in other myeloid neoplasms as well as 
in CHIP, where the mutation frequency is approximately 10% [19–21]. While found 
associated with favorable outcome in one study [32], several other studies could not 
establish any influence of TET2 mutations on prognosis [33–35].

IDH1/2  Isocitrate dehydrogenases IDH1 and IDH2 are predominantly known for 
their role in the tricarboxylic acid cycle, where they catalyze the oxidative decar-
boxylation of isocitrate to 2-oxoglutarate. Mutations of IDH1 exclusively affect the 
arginine (R) at position 132, and in IDH2 either codon R140 or R172 is found 
mutated [16]. Mutations in IDH1/2 lead to a gain-of-function phenotype, since iso-
citrate is converted to 2-hydroxygluturate, instead of 2-oxoglutarate [36]. This aber-
rant metabolite competitively inhibits 2-oxoglutarate-dependent enzymes, including 
TET2 [16, 37, 38] (see Fig. 5.2). Accordingly, IDH1/2 mutations are associated with 
a DNA hypermethylation phenotype [39]. The prognostic importance of IDH1/2 
mutations in MDS is unclear due to contradicting data [40, 41].

�Histone Modifications

Histones, once thought of as merely “packaging material” for DNA, provide a ver-
satile and highly dynamic platform for a myriad of different post-transcriptional 
modifications that fine-tune gene expression [15]. The concrete effect of histone 
modifications on transcription depends not only on the individual type of modifica-
tion (e.g., acetylation, methylation, and ubiquitination) but also on the number and 
specific position of histone marks and the combinatorics of histone modifications 
(known as histone code) [15, 42]. Histone methylation, which can take the form of 
mono-, di-, and trimethylation, can represent either a repressive or an activating 
epigenetic mark. Here, a variety of “readers” are dedicated to interpret the respec-
tive methylation mark. For example, trimethylation of histone 3 lysine 4 is an 
“active” mark, while trimethylation of histone 3 lysine 27 (H3K27me3) is an “inac-
tive/suppressive” epigenetic mark [15, 43].

H3K27me3 and its downstream effects are recurrently dysregulated in 
MDS.  Under physiological conditions, H3K27me3 is “written” by the polycomb 
repressive complex 2 (PRC2), whose catalytic subunit is EZH2. Polycomb repressive 
complex 1 (PRC1) is both “reader” and “writer” at the same time. Upon recruitment 
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to H3K27me3, PRC1 marks histone H2A at lysine 119 with an ubiquitin molecule, 
and H2AK119 monoubiquitination (H2AK119ub1) results in further chromatin 
compaction and transcriptional silencing [43, 44]. The H2AK119ub1 mark can be 
erased by the polycomb repressive deubiquitinase (PR-DUB) complex [43, 44], in 
which ASXL1 functions as a chromatin binding subunit [45] (see Fig. 5.3).

EZH2  Mutations in the histone methyltransferase enhancer of zeste 2 (EZH2) gene 
lead to loss of function by abrogating or strongly diminishing EZH2 catalytic activ-
ity and thus to impaired silencing by the PRC2 complex [46, 47]. Patients with 
EZH2 mutations have a poor prognosis [13, 47], independent from IPSS-R [13].

ASXL1  Wildtype additional sex combs-like 1 (ASXL1) interacts with a variety of 
proteins; among other functions, it facilitates recruitment of PRC2 to target loci by 
protein–protein interactions with PRC2 subunits [48]. As mentioned above, ASXL1 
is also part of the PR-DUB complex. The nonsense or frameshift mutations 
observed in myeloid neoplasms lead to truncated ASXL1 protein, which is thought 
to gain in function. Truncated ASXL1 hyperactivates the PR-DUB complex [49, 
50], and in contrast to wildtype ASXL1 it interacts with BRD4, an epigenetic 
reader, which promotes transcriptional activation [51, 52]. Ultimately, mutations in 
ASXL1 cause aberrant gene expression. ASXL1 mutations are associated with a 
IPSS-R-independent poor prognosis [13, 53]. They are also found in ~9% of indi-
viduals with CHIP [19–21].

BCOR  Aside to its name giving function as BCL6 corepressor (BCOR), BCOR is 
a subunit of a variant polycomb repressive complex 1, called PRC1.1. In contrast to 
the “canonical” PRC1 complex, PRC1.1 ubiquitinates loci independent from pre-
set H3K27me3 marks [54]. The physiological function of the PRC1.1 complex 
appears to be the maintenance of a pluripotent state in stem cells. Mutations in 
BCOR thus lead to differentiation dysregulation and contribute to pathobiology [54, 
55]. BCOR mutations are associated with a poor prognosis [56].
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Fig. 5.3  Polycomb repressive complexes (PRC) contribute to transcriptional gene silencing by 
establishing the repressive epigenetic marks H3K27me3 (by PRC2) and H2K119ub1 (by PRC1). 
The PR-DUB complex can antagonize the action of PRC1. Mutations in EZH2 and in ASXL1 are 
found recurrently in MDS and result in an aberrant histone code
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�DNA Looping

Cohesins are named for their essential function in sister chromatid cohesion. A mul-
tiprotein ring-shaped complex consisting of STAG2, RAD21, SMC3, and SMC1A 
stabilizes the sister chromatids during metaphase and prevents replication fork col-
lapse [11]. Moreover, the cohesin complex is now known to mediate interaction 
between distant genomic loci (e.g., promoter and its distant enhancer) by stabiliza-
tion of DNA loops [57] (compare Fig. 5.4). It appears that dysregulation of cohesin-
mediated DNA looping contributes to MDS pathogenesis through alteration of gene 
expression, since cohesin mutations in MDS are not associated with chromosomal 
aberrations [58]. In MDS, stromal antigen 2 (STAG2) is the most frequently mutated 
cohesin [9, 10], and represents a poor prognostic marker [10, 58, 59].

�Transcription Factors (TF)

Transcription is a well-orchestrated cellular process in which general transcription 
factors enable transcription and specific transcription factors regulate gene expres-
sion. Specific transcription factors themselves are tightly regulated by expression in 
a cell-type specific and/or temporal manner. Moreover, they are dedicated to the 
regulation of a specific set of target genes [60]. The core binding factor (CBF) fam-
ily of proteins, for example, are master regulators of hematopoietic ontogeny and 
differentiation [61]. Runt-related transcription factor 1 (RUNX1), which encodes 
the DNA-binding α-subunit of the heterodimeric CBF, is the most frequently 
mutated TF gene in MDS. RUNX1 mutations are associated with a poor prognosis 
[10, 13, 62], independent from IPSS-R [13]. Moreover, individuals with a RUNX1 
germline mutation have an increased risk of developing myeloid neoplasms. This 
also holds true for germline mutations of the TF genes CEBPA, ETV6, and GATA2, 
which all define “myeloid neoplasms with germline predisposition” in the WHO 
classification [12]. Somatic mutations of CEBPA, ETV6, and GATA2 are also found 
in MDS with mutation frequencies <5% [10].
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Fig. 5.4  Transcriptional dysregulation in MDS can result from abnormalities in cohesin complex-
mediated DNA looping, which allows to bring distant gene regulatory elements (such as enhancer 
and promoter) into spatial proximity. Among the cohesins, STAG2 is the most frequently mutated 
gene (gray). Transcription by RNA polymerase requires general transcription factors and is regu-
lated by specific transcription factors that bind to regulatory elements (e.g., enhancer and pro-
moter). Transcription factor (TF) mutations in MDS are found recurrently (gray) in master 
regulators of the hematopoietic cell differentiation program, for example, in the RUNX1 gene
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�Molecular Aberrations Contributing to Dysregulation 
of Splicing

Following transcription, pre-mRNAs undergo a number of maturation steps, among 
them is splicing, that is, the removal of non-coding “intronic” sequences. The mod-
ular structure of metazoan pre-mRNAs, consisting of coding (exonic) and non-
coding (intronic) sequences, is the prerequisite for alternative splicing, i.e., the 
selective inclusion or exclusion of a given exon. Due to alternative splicing, several 
protein isoforms can be generated from the same gene sequence, resulting in a com-
plex proteome.

Splicing is a well-orchestrated, multi-step process catalyzed by the spliceosome, 
whose composition changes during the splicing process, making different sub-
complexes distinguishable. Up to 60% of MDS patients carry a mutation in a splic-
ing factor [63–66]. Most interestingly, splicing mutations in MDS mainly affect 
early spliceosome assembly at the 3′ splice site [11], see also Fig. 5.5.

Spliceosome formation is promoted by SR proteins, which are named after a 
protein domain that is enriched in serine (S) and arginine (R) and binds to exonic 
splicing enhancers. In MDS, SRSF2, which encodes such an SR protein, is found 
recurrently mutated [12, 67].
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Fig. 5.5  Early spliceosome assembly is promoted by recognition of exonic splicing enhancers 
(ESE) by SR proteins. Correct positioning of splicing factors at regulatory intronic and exonic 
sequences is integral to the splicing process. U1 snRNP is required for the recognition of the 5′ 
splice site, while the 3′ spliceosome is composed of multiple factors. In complex E (commitment 
complex) splicing factor 1 (SF1) binds to the branch point region. The U2 auxiliary complex, 
comprised of U2AF1 and U2AF2, recognizes the 3′ splice site and the polypyrimidine tract, 
respectively (Y  =  pyrimidine). The transition to complex A (pre-spliceosome) is an energy-
dependent step and leads to displacement of SF1 and the recognition of the branch point region by 
the U2 snRNP through its RNA binding subunit SF3B1. Factors found recurrently mutated in 
MDS are color-coded. Gray: factors without an independent prognostic value; red: U2AF1 muta-
tions are associated with a poor prognosis, independent from IPSS-R; light blue: mutations in 
SF3B1 confer a favorable prognosis. Prognostic relevance according to [13]
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Correct splicing requires precise definition of exon-intron boundaries, which is 
facilitated by recognition of specific intronic and exonic sequences by dedicated 
factors (compare Table 5.2).

Mutations in SF3B1, SRSF2, and U2AF1 alter the binding preferences of the 
respective encoded splicing factor, while mutations in ZRSR2 result in complete 
loss of activity [67].

SF3B1  Mutations in splicing factor 3b subunit 1 (SF3B1) are strongly associated 
with a ring sideroblast (RS) phenotype, caused by aberrant accumulation of iron in 
mitochondria. The majority of MDS-RS patients carry a SF3B1 mutation [63, 64, 
68]. The SF3B1 mutational status influences classification according to WHO 
(2017): in cases with wildtype SF3B1, ≥15% ring sideroblasts (as percentage of 
bone marrow erythroid elements) are required for the diagnosis of MDS-RS, how-
ever, if SF3B1 is mutated, ring sideroblasts between 5% and 14% are sufficient [12]. 
Among splicing factors, it is also the only mutation that is associated with a favor-
able prognosis [13, 63, 68, 69].

SRSF2  Mutations in the serine- and arginine-rich splicing factor 2 (SRSF2) gene 
are associated with a poor prognosis [70]. As is the case for SF3B1 and U2AF1 
mutations, SRSF2 mutations are heterozygous missense mutations and occur in dis-
tinct hotspots [11, 67, 71]. As a consequence, the binding preference of SRSF2 is 
altered, leading to an aberrant exonic enhancer site-binding pattern [67]. By this 
mechanism, mutations in SRSF2 cause e.g. mis-splicing and aberrant degradation of 
EZH2 transcripts, indirectly contributing to an aberrant epigenome [72].

U2AF1  U2 small nuclear RNA auxiliary factor 1 (U2AF1) mutations confer an 
inferior prognosis independent from IPSS-R [13]. Given the importance of U2AF1 
for the recognition of intron-exon boundaries, mutations that affect binding prefer-
ences result in increased exon skipping [11, 67].

Table 5.2  Interplay between cis (i.e., sequence) elements and trans (i.e., protein) factors to enable 
precise recognition and definition of exon-intron boundaries

Sequence Recognized by

Complex E (commitment complex)

5′ splice site U1 snRNP
Branch point region Splicing factor 1 (SF1)
Polypyrimidine tract U2 auxiliary factor 2 (U2AF2)
3′ splice site U2 auxiliary factor 1 (U2AF1)
Complex A (pre-spliceosome)

5′ splice site U1 snRNP
Branch point region SF3B1 (as RNA binding subunit of U2 snRNP)
Polypyrimidine tract U2 auxiliary factor 2 (U2AF2)
3′ splice site U2 auxiliary factor 1 (U2AF1)
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ZRSR2  In “constitutive” splicing by the major spliceosome, ZRSR2 (zinc finger 
CCCH-type, RNA binding motif, and serine/arginine rich 2) interacts with the 
U2AF complex and stabilizes the formation of complex A [73]. However, a subset 
of transcripts of 700 to 800 genes are spliced by the “minor” spliceosome, in which 
ZRSR2 assumes the functional role of the U2AF complex [73–75]. ZRSR2 muta-
tions are thought to contribute to MDS disease biology by aberrant intron retention 
and mis-splicing in minor spliceosome-dependent transcripts [76]. In contrast to 
other splicing factors, mutations in ZRSR2 do not occur in distinct hotspots [71]. 
The outcome and clinical course of patients with ZRSR2 mutations is strongly 
dependent on TET2 mutational status. Cases with mutated ZRSR2 and wildtype 
TET2 were observed to have a high AML transformation rate and a poor progno-
sis [71].

�Molecular Aberrations Contributing to Dysregulation 
of Signaling

In comparison to other myeloid neoplasms, mutations in signaling factors are less 
common in MDS. Signaling factor mutations in AML are considered to represent 
late events and as such are often associated with progressive disease when found in 
MDS.  Most frequently, the MAP kinase pathway is affected in ~10% of MDS 
patients [9–11]. NRAS (neuroblastoma RAS viral oncogene homolog), which 
encodes one factor of this pathway, is found mutated in ~5% of MDS patients [12]. 
Mutations in CBL (casitas B-lineage lymphoma), which are also detected in ~5% of 
MDS patients [12], are more prevalent in chronic myelomonocytic leukemia 
(CMML). Both gene mutations are linked to an inferior prognosis [9, 13, 53, 77–
79], in case of CBL independent of IPSS-R [13]. Moreover, mutations in CBL are 
associated with aberrantly prolonged activation of other signaling factors, for exam-
ple, FLT3 [80]. Mutations in the FLT3 gene rarely occur in MDS; however, if pres-
ent, they are associated with a very poor prognosis and progression to secondary 
AML [81–83].

�Molecular Aberrations Contributing to Dysregulation 
of the p53 Pathway

Aberrations that affect the tumor protein p53, also often referred to as “guardian of 
the genome” are recurrently found in every cancer type. Its physiological function 
is to halt the cell cycle in case of cellular stresses or DNA damage and to promote, 
if necessary, apoptosis [11, 84]. Alterations in TP53, the gene encoding p53, are 
caused by deletion or gene mutation. TP53 deletion is frequent among cases with 
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deletion of chromosome arm 17q and is commonly accompanied by TP53 mutation 
of the other allele [85, 86], resulting in biallelic inactivation and a particularly infe-
rior outcome [87]. TP53 aberrations are associated with several predictors of poor 
clinical outcome, such as low platelet count, high blast count, high-risk disease, 
complex karyotype, and resistance to therapy [53, 88, 89]. The presence of TP53 
aberrations is a negative prognostic factor, independent from IPSS-R [13]. The neg-
ative prognostic impact is retained also in the setting of allogeneic stem cell trans-
plantation [11, 29, 90].

In de novo MDS cases, TP53 alterations are detected in ~5% of patients [12]. In 
the context of therapy-associated MDS, TP53 aberrations are found in up to 33% 
[11, 91]. TP53 and PPM1D, which encodes a phosphatase that negatively regulates 
p53, have been found mutated in CHIP, with frequencies of ~4% [20, 21]. This find-
ing provides one possible explanation for the development of therapy-associated 
neoplasms (t-MN). Under the selective pressure of cytotoxic therapy, clones carry-
ing aberrations of TP53 and/or PPM1D gain selective advantage and can undergo 
clonal expansion. Screening patients for TP53 and PPM1D aberrations prior to 
cytotoxic therapy could help identify individuals at risk to develop t-MN [92–95].

�The Clinical Value of Molecular Genetic 
Characterization in MDS

Currently, only SF3B1 mutations are considered as a diagnostic criterion in the 
WHO classification [12]. Given the diagnostic challenge of cytomorphological 
evaluation of (subtle) dysplastic features and the low reproducibility of blast count 
determination, it is likely that molecular genetics will gain in importance in classi-
fication in the future. Today, molecular characterization already plays a crucial role 
in state-of-the-art prognostic evaluation and therapeutic decision making.

Prognosis  None of the prognostic models in MDS, discussed in depth in Chap. 7, 
takes molecular aberrations into account. However, mutations in several genes have 
been shown to have prognostic power independent from the revised IPSS score 
(IPSS-R). Aberrations of ASXL1, CBL, EZH2, RUNX1, TP53, and U2AF1 have all 
been associated with significantly shortened overall survival in a study with >3000 
MDS patients. Detection of a mutation in one of the six genes should warrant plac-
ing a case in the next unfavorable IPSS-R risk group [13].

Therapy Decisions  The response to hypomethylating agents is strongly influenced 
by a patient’s mutational landscape, especially in genes encoding epigenetic factors. 
Azacitidine resistance has been observed in the context of DNMT3A-R882 muta-
tions as well as for mutations that affect the SKI domain of SETBP1, which also 
encodes an epigenetic regulator [96]. Another study found that mutations in ASXL1 
and ETV6 are associated with short response duration [97]. In contrast, patients with 
TET2 mutation (in the absence of a concomitant ASXL1 mutation) showed a particu-
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larly high sensitivity to azacitidine [34, 98–100]. However, there were no significant 
differences in overall survival and response duration between patients with mutated 
and wildtype TET2 under azacitidine treatment [98, 100].

The mutation status of TP53 should play a role in therapy planning in several 
respects. In general, patients with isolated 5q deletion benefit from treatment with 
lenalidomide. However, the presence of a concomitant TP53 mutation poses the risk 
of faster disease progression [101], therefore TP53 mutational status should be 
determined prior to lenalidomide therapy [102]. Moreover, AML and MDS patients 
with TP53 mutation have been found to show a better initial response to a 10-day 
decitabine protocol than to conventional chemotherapy [103]; however, remission 
was eventually lost in all TP53 mutated cases, including the nine MDS patients car-
rying TP53 mutations. Although patients with TP53 abnormalities should be con-
sidered for allogeneic stem cell transplantation [104], the negative prognostic effect 
persists post-transplant [11, 29, 90]. In patients eligible for allogeneic transplanta-
tion, the TP53 mutation status should be taken into account for the selection of the 
conditioning scheme, since patients with TP53 mutation do not benefit from mye-
loablative conditioning [105]. Therefore, whenever possible, alternative condition-
ing regimen should be considered for this patient group, possibly within a study 
setting [104].

�From Clonal Hematopoiesis to Secondary AML – A  
Disease Continuum?

The advance of NGS led to the coincidental finding of leukemia-associated gene 
mutations as drivers of clonal hematopoiesis in the absence of hematological dis-
ease. CHIP is now known to be an age-related phenomenon [19–21, 106], whose 
clinical implications remain subject to discussion and research. Only 0.5–1% of 
individuals with CHIP develop myeloid neoplasms later on [19, 21]. As described 
above, mutations in three genes are strongly associated with CHIP: DNMT3A, 
TET2, and ASXL1.

Clonality has also been demonstrated in a major subset of patients with unex-
plained cytopenia [107, 108]. The presence of gene mutations as clonal drivers was 
associated with ~14-fold higher risk of progression to myeloid neoplasms compared 
to cases with idiopathic cytopenia [107]. Accordingly, clonal cytopenia of undeter-
mined significance (CCUS) has been introduced as a pre-malignant condition 
[107–109].

The recognition of CHIP and CCUS as well as insight into the genetic landscape 
of MDS validates the multi-hit hypothesis in MDS pathogenesis (compare Fig. 5.6). 
In MDS, 3 mutations were detectable in the median [0–12 mutations] [10]. Mutations 
affecting DNA methylation and splicing factors show a higher mutational load than 
mutations in histone modifiers and signaling factors, which makes early and late 
mutational events in MDS pathogenesis distinguishable [9, 10].

5  Molecular Landscape of MDS
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Progression of MDS to secondary AML is associated with abrogation of hema-
topoietic differentiation and/or uncontrolled proliferation [11]. Mutations in tran-
scription factor genes such as RUNX1, CEBPA, and GATA2 often herald disease 
progression [11, 110]. Same holds true for mutations affecting signaling, especially 
mutations of RAS pathway factors or FLT3 are linked to progression to AML [11, 
110, 111]. It is of clinical importance to distinguish between cases with sAML and 
de novo AML, since patients with sAML have an inferior prognosis and often are 
refractory to chemotherapy [11, 110].

In conclusion, NGS-based panel testing has paved the way for a comprehensive 
description of the molecular landscape in MDS within just a decade. Panel testing 
in MDS is increasingly used to support or exclude a diagnosis of MDS in cases of 
unclear cytopenia(s) and/or dysplasia. Several publications have demonstrated the 
clinical utility of NGS screening using a panel of genes whose mutation status can 
inform differential diagnostics, classification, and prognosis [104, 107, 112]. 
Particularly in light of the recently described pre-malignant conditions CHIP, ICUS, 
and CCUS, there is a need to further investigate the molecular landscape in 
MDS. Due to new technological advances, that is, whole exome sequencing (WES), 
whole genome sequencing (WGS), and whole transcriptome sequencing (WTS), it 
is now possible to gain a genome-wide molecular insight that not only tracks the 
mutational status but also measures gene expression and detects cytogenetic aberra-
tions. In MDS, the implementation of gene mutations into the IPSS-M (molecular) 
represents the next step; this is currently underway driven by efforts of the 
International Working Group for Prognosis in MDS (IWG-PM). Since the clinical 
course in MDS is quite heterogeneous, the definition of “best treatment” and goals 
for outcome would most likely benefit from incorporation of cytogenetic and 
molecular genetic findings.
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(CHIP/CCUS)

Normal

Phenotype Time and/or cellular stress

Splicing
DNA methylation

Histone modification

MDS associated mutations

Transformation drivers

CHIP associated mutations

Signaling
Transcription

DNMT3A
TET2
ASXL1

Fig. 5.6  Multi-hit hypothesis in the pathogenesis of myeloid neoplasms. Mutations found associ-
ated with CHIP and CCUS are not sufficient for MDS pathogenesis, however, they lay the founda-
tion. Acquisition of additional mutations and/or selective pressure can cause clonal evolution and 
ultimately lead to the development of myeloid neoplasms
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