
Chapter 1
A Comprehensive Introduction to
Photometric 3D-Reconstruction

Jean-Denis Durou, Maurizio Falcone, Yvain Quéau, and Silvia Tozza

Abstract Photometric 3D-reconstruction techniques aim at inferring the geometry
of a scene from one or several images, by inverting a physical model describing the
image formation. This chapter presents an introductory overview of the main pho-
tometric 3D-reconstruction techniques which are shape-from-shading, photometric
stereo and shape-from-polarisation.

1.1 Introduction

Inferring the 3D-shape of a scene is necessary in many applications such as quality
control, augmented reality or medical diagnosis. Depending upon the requirements
of the application, 3D-estimation can be carried out using a variety of technological
solutions, from coordinate measuring machines to X-ray scanners. Over the last
decades, digital cameras have become a reliable alternative to such sensors, as they
represent a reasonable compromise between resolution and affordability. Given one
or several 2D-images of a scene capturedby adigital camera, the process of estimating
its 3D-shape is called 3D-reconstruction. It is a classic inverse problem in computer
vision, which has been addressed in several ways.
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Table 1.1 Main shape-from-X techniques. Geometric techniques aim at identifying and analysing
features. This presentation rather focuses on photometric techniques, which aim at inverting a
physics-based image formation model

Geometric techniques Photometric techniques

Single image Structured light [39] Shape-from-shading (SfS) [48]

Shape-from-shadows [105]

Shape-from-contours [15]

Shape-from-texture [125]

Shape-from-template [10]

Multi-images Structure-from-motion [78] Photometric stereo (PS) [129]

Stereopsis [43] Shape-from-polarisation (SfP) [96]

Shape-from-silhouettes [44]

Shape-from-focus [81]

A 3D-model consists of a set of geometric (position, orientation, etc.) and photo-
metric (color, texture, etc.) information. Knowing both these pieces of information
allows to render synthetic images, by simulating the trajectory of the light rays from
the sources to the camera, after reflection on the surface of the scene. 3D-scanning
is the dual of rendering: one aims at a geometric and photometric characterisation of
the scene’s surface by reversing the trajectory of the light rays. In fact, 3D-scanning
includes both the subproblems of 3D-reconstruction (estimating the scene’s geome-
try) and appearance estimation (estimating its photometric properties).

The various 3D-reconstruction techniques from digital cameras are grouped under
the generic terminology shape-from-X, X indicating that shape estimation can be
based on various clues (shadows, contours, etc.). The main shape-from-X techniques
are presented in Table 1.1. In this table, they are classified according to the clue they
are based on (photometric or geometric) and the number of images they require.

Geometric shape-from-X techniques are built upon the identification of features
in the image(s). On the other hand, photometric shape-from-X techniques are based
on the analysis of the quantity of light received in each photosite of the camera’s
sensor. Photometric 3D-reconstruction techniques indeed rely on a physics-based
forward image formation model describing the interactions between light, matter
and the camera, and aim at inverting this model in order to infer the geometry of the
scene and, possibly, its photometric properties.

There exist out-of-the box solutions for geometric 3D-reconstruction, e.g.
Microsoft Kinect (based on stereopsis or structured light, depending on the version),
or the CMPMVS [54] or AliceVision [2] projects (based on structure-from-motion
and stereopsis). On the contrary, there is a lack of such solutions for photomet-
ric techniques, which are usually rather viewed as “lab” reconstruction techniques
because they rely on several assumptions on the acquisition setup. Still, they bear
great promises in terms of level of geometric details which can be recovered, and of
applicability to a wide range of materials.
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The aim of this chapter is to present an overview of the three main photometric
shape-from-X techniques: shape-from-shading, photometric stereo and shape-from-
polarisation. We first review in Sect. 1.2 the shape-from-shading problem, which is
a computer vision technique consisting in inferring geometry from a single image.
Then, we discuss two techniques where multiple images are analysed under con-
trolled incident or reflected lighting. In photometric stereo (Sect. 1.3), a series of
images are acquired under varying incident lighting, which permits to estimate both
the shape and the reflectance of the pictured surface. In shape-from-polarisation
(Sect. 1.4), it is the state of polarisation of the reflected light which is analysed, by
considering a series of images acquired with a controllable polarising filter attached
to the camera. Section 1.5 eventually concludes this study by presenting the subse-
quent chapters of this volume.

1.2 Shape-from-Shading

Inferring 3D-geometry from a single image of a shaded surface is a problem known
as shape-from-shading. This technique was first developed in the seventies at MIT,
under the impulse of Horn [48].

1.2.1 Non-differential SfS Models

Let us briefly outline the problem, attaching to the camera a 3D-coordinate system
Oxyz, such that Oxy coincides with the image plane and Oz with the optical axis.
Assuming orthographic projection, the visible part of the scene is, up to a scale
factor, a graph z = u(x), where x = [x, y]� is an image point. The SfS problem can
be modelled by the image irradiance equation [49]:

I (x) = R(n(x)), (1.1)

where I (x) is the graylevel at point x (in fact, I (x) is the irradiance at point x, but both
quantities are proportional), and the radiance R(n(x)) gives the value of the light
re-emitted by the surface as a function of its orientation, i.e. of the unit normal n(x)
to the surface at the 3D-point [x, y, u(x)]� conjugate with x (cf. Fig. 1.1). Assuming
that, besides I , the radiance function R is also known, then solving Eq. (1.1) is a
non-differential model of SfS, in which the unknown is the normal n(x).

Let us assume there is a unique light source at infinity, whose direction is charac-
terised by the unit vectorω = [ω1, ω2, ω3]� ∈ R

3, and whose intensity is denoted by
ψ(x). Let us also assume for simplicity that the surface is Lambertian, i.e. an ideal
diffuse reflecting surface for which the apparent brightness is independent from the
viewing angle. Then, R is written in such a way that Eq. (1.1) becomes
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Fig. 1.1 The surface is represented as a graph z = u(x), where x = [x, y]� is an image point in the
reconstruction domain �. The normal at the surface point [x, y, u(x)]� conjugate with x is denoted
by n(x), and the incident light direction by ω

I (x) = r(x) ψ(x)ω�n(x). (1.2)

In Eq. (1.2), r(x) is the reflectance (or albedo), and the scalar product ψ(x)ω�n(x)
is called shading. This is another example of non-differential SfS model.

Equation (1.2) is fundamentally ill-posed, according to the trompe-l’œil princi-
ple, which is well illustrated by Adelson and Pentland’s “workshop metaphor” [1]
(cf. Fig. 1.2). If a painter, a light designer and a sculptor are asked to design an
artwork explaining a given image I (x), they may propose very different, but plau-
sible, solutions. The painter will assume a planar surface and a uniform lighting,
the changes in intensity being explained by changes in reflectance r(x). The light
designer may propose a sophisticated lighting configuration ψ(x) placed in front
of a planar surface with uniform reflectance. Eventually, the sculptor will assume
lighting and reflectance are uniform and explain the changes in intensity solely by
the shading, which results from variations in the local orientation n(x) of the surface.

This last explanation, which comes down to inverting Eq. (1.2) in order to infer
a 3D-shape, assuming everything is known but n(x), is precisely the shape-from-
shading problem. So it is assumed that the reflectance is known, which is usually
written r(x) ≡ 1, and that the lighting is uniform, i.e. ψ(x) ≡ 1.
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Fig. 1.2 Adelson and Pentland’s “workshop metaphor” [1]. To explain an image a in terms of
reflectance, lighting and shape, b a painter, c a light designer and d a sculptor will design three
different, but plausible, solutions. Inferring the shape d from a single image is the shape-from-
shading problem

1.2.2 Differential SfS Models

Let us now turn to differential SfSmodels. Under orthographic projection, the normal
is easily expressed as

n(x) = 1
√
1 + p(x)2 + q(x)2

[−p(x),−q(x), 1]�, (1.3)

where

p := ∂u

∂x
and q := ∂u

∂y
, (1.4)

so that∇u(x) = [p(x), q(x)]�. It is easily deduced from Eqs. (1.2) and (1.3), assum-
ing r(x) ≡ 1 and ψ(x) ≡ 1, that the following equation holds true for a general
parallel lighting whose direction is characterised by ω = [ω1, ω2, ω3]�:

I (x)
√
1 + |∇u(x)|2 + [ω1, ω2] ∇u(x) − ω3 = 0. (1.5)

This is a first-order nonlinear partial differential equation (PDE) of Hamilton–Jacobi
type, which constitutes an example of differential SfS model, in which the unknown
is now the function u, called the height map. This equation has to be solved on a
compact domain � ⊂ R

2, called the reconstruction domain.
The PDE which appears in most of the papers on SfS corresponds to a frontal

lighting, i.e. ω = [0, 0, 1]�. This assumption leads to the eikonal equation, which is
a particular case arising from the differential SfS model (1.5):

|∇u(x)| = f (x) :=
√

1

I (x)2
− 1, (1.6)
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where the graylevel function I , which typically takes integer values between 0
and 255, is implicitly resampled to take real values in the range [0, 1].

Note that even in the most simple case (the eikonal equation) we get a nonlinear
PDEof thefirst order, and the solutions are a priori non-differentiable andnon-unique,
even if we complement Eq. (1.6) with a Dirichlet boundary condition, i.e. u = g on
the boundary ∂� of �. Moreover, the right-hand side of the eikonal equation is
not always defined because I (x) can vanish at some points. A simple example is the
hemisphere z = √

1 − x2 − y2 under a parallel frontal lighting. In this case, I (x) = 0
at the equator. However, in that simple situation the boundary condition u = 0 can
help to solve the problem.

Under oblique light direction the same example becomes more difficult because
there will be a black shadow region �s ⊂ � where I (x) ≡ 0, and in that region the
model has no information to reconstruct the surface. The boundary of�s , which is not
known a priori, is a curve where it would be difficult to impose boundary conditions
in the numerical approximation. In general, the curve separating the region �s will
depend on the shape of the surface and on the light source direction ω. Note that in
case of black shadows, the model is clearly unable to produce a reasonable surface
approximation, because the information is missing. In this situation, one can follow
a global approach avoiding to impose boundary conditions on ∂�s . This leads to the
concept of maximal solution, where we solve the PDE on the whole domain with
the standard Dirichlet boundary condition on ∂� (not on ∂�s), and recover a linear
reconstruction on �s (we refer to [17, 34, 35] for more details).

1.2.3 Ill-Posedness of the SfS Models

The “workshopmetaphor” illustrated in Fig. 1.2 is representative of the ill-posedness
of SfS, because a posteriori estimating 3D-geometry from a single image is possible
only if reflectance and lighting are known a priori. The reliability of these priors is
of fundamental importance to guarantee that the solution of SfS is meaningful.

This is illustrated in Fig. 1.3, which shows how the assumptions leading to
Eq. (1.6), i.e. a uniform reflectance (r(x) ≡ 1) and a parallel uniform lighting
(ψ(x) ≡ 1 and ω = [0, 0, 1]�), which is just a rough approximation in the case of
Fig. 1.3a, yield the erroneous interpretation of the 3D-shape shown in Fig. 1.3b. How-
ever, this solution is an exact solution of Eq. (1.6), as shown by frontally relighting
this uniformly white 3D-shape (cf. Fig. 1.3c).

Even when reflectance and lighting are known, i.e. when r(x) ≡ 1 and ψ(x) ≡ 1,
the non-differential model (1.2) of SfS remains ill-posed:

I (x) = ω�n(x). (1.7)

Except for some sparse singular points, where n(x) points in the same direction ofω,
there exists an infinity of surface normals explaining the graylevel in one pixel. It
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Fig. 1.3 Illustration of the importance of reflectance and lighting priors on the solution of SfS [25].
a A well-known graylevel image I (x). b 3D-shape estimated by solving the SfS model (1.6), by
(wrongly) assuming uniform reflectance r(x) ≡ 1, and uniform frontal lighting, i.e. ψ(x) ≡ 1 and
ω = [0, 0, 1]�. The 3D-reconstruction largely departs from the true geometry. Yet, by taking from
above a picture of the uniformly white 3D-shape b, using the camera’s flash as single light source,
one gets image c, which resembles a. 3D-shape b is thus a plausible explanation of a: the bias
comes from the inappropriate reflectance and lighting priors

comes down from Eq. (1.7) that these normals n(x) form a revolution cone around
the lighting direction ω. It is thus very difficult to locally solve SfS.

A simple example in dimension 1 is given by the surface z = u1(x) = 1 − x2

in the interval (−1, 1) (cf. Fig. 1.4a), under vertical lighting ω = [0, 1]�, which
satisfies an equation of the form (1.6) and the homogeneous boundary condition
u1(1) = u1(−1) = 0. However, the function u2(x) = −u1(x) in the same interval
still satisfies this equation, since |∇u(x)| is the same and the same boundary condition
holds. This example is an illustration of the famous concave/convex ambiguity of SfS.

Note that u1 and u2 are two differentiable solutions to the same problem. If we
decide to accept also solutions which are differentiable only almost everywhere (a
very natural choice in view of real applications), we suddenly have an infinite number
of solutions which can be obtained just considering all the possible reflections of
one of those solutions, e.g. u1, with respect to a horizontal axis located at the height
z = h, where h ∈ (0, 1). This is illustrated in Fig. 1.4b,where three such solutions are
exhibited. If one fixes the height at the singular point, then only one of these solutions
can be accepted (we refer to [64] for this result), but such an additional knowledge
is clearly not very realistic. A general theory for weak solutions of Hamilton–Jacobi
equations (that includes the eikonal equation) has been developed in the last 20 years
starting from the seminal paper by Crandall and Lions [24]. We refer the interested
reader to the book [8] and the references therein.

Practical ways to reduce this ambiguity include resorting to more realistic mod-
els such as perspective camera [117] or near-lighting [89]. However, it has been
shown that this remains insufficient to ensure well-posedness [16]. Recently, the
introduction of an attenuation factor in the brightness equations relative to various
perspective SfS models allowed to make the corresponding differential problems
well-posed. In [18], a unified approach based on the theory of viscosity solutions has
been proposed, showing that the brightness equations coming from different non-



8 J.-D. Durou et al.

(a) (b)

Fig. 1.4 a Example of the 1D-surface z = u1(x) = 1 − x2. b Under vertical lighting, three other
solutions (amongst an infinity), which are differentiable almost everywhere, satisfy the same eikonal
equation as u1

Lambertian reflectance models with the attenuation term admit a unique viscosity
solution.

1.2.4 Numerical Approximation

An important step towards the numerical solving of SfS was achieved when inverse
problems in computer vision caught the attention of mathematicians [64]. Efficient
numerical approaches were suggested to solve the eikonal equation (1.6), which
is the SfS fundamental differential model relating the surface slope to the image
graylevel. By construction, this equation can only be solved globally, therefore,
SfS ambiguities are reduced, in comparison with local approaches. They are not
eliminated yet, because the concave/convex ambiguity remains.

An overview of the numerical methods for solving SfS can be found in [31, 134].
PDE-based methods (e.g. [34]) find a viscosity solution to the eikonal equation.
Just to give an example let us consider the basic eikonal equation (1.6). A typical
technique to solve it is using a finite difference scheme. One example is the following
iterative Lax–Friedrichs scheme which, in its simplest form, can be written as

u(k+1)
i, j = u(k)

i−1, j + u(k)
i+1, j + u(k)

i, j−1 + u(k)
i, j+1

4
(1.8)

−1

2

⎛

⎜
⎝

√√√√
(
u(k)
i+1, j − u(k)

i−1, j

2

)2

+
(
u(k)
i, j+1 − u(k)

i, j−1

2

)2

− fi, j

⎞

⎟
⎠ ,

where fi, j is the right-hand side of the eikonal equation (1.6) at the pixel (i, j),
ui, j is the height at this pixel, and the index k is the number of the iteration of the
iterative scheme. The values {u0i, j } represent an initial guess for the height, typically
a constant value. Let us briefly explain the meaning of the iterative scheme: the
first term is an average of four values around the pixel (i, j), and inside the square
root there are the centered finite difference approximations of the partial derivatives
∂u/∂x and ∂u/∂y. In practice, several approximation schemes are available, e.g.
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finite difference as illustrated in [86, 103], semi-Lagrangian schemes [32, 33]. Most
of the efficient schemes use upwind approximations of the derivatives and additional
terms to control the diffusion in the scheme. Let us also mention that a fast-marching
version for these methods allows to drastically reduce the CPU time for this type of
algorithms [26, 103] and has been extensively applied in the area of image processing.
Another delicate point is that the graylevel function I is typically a discontinuous
function, so the approximation scheme should take into account this lack of regularity
(a result in this direction is in [36]).

On the other hand, many optimisation-based methods have been proposed to
compute the normal field n. Under orthographic projection, (1.3) shows that n just
depends on p and q as defined in (1.4). Therefore, there exists a function R such
thatR(p(x), q(x)) := R(n(x)). From this and Eq. (1.1), the following least-squares
variational model of SfS is derived (robust estimators have also been used [130]):

min
p,q: �→R

∫

�

∣∣∣I (x) − R(p(x), q(x))
∣∣∣
2
dx. (1.9)

As already said in the previous subsection, this problem is clearly ill-posed. Nev-
ertheless, if u is of class C2, p and q are two non-independent functions since,
according to Schwarz’s theorem, ∂p/∂y = ∂q/∂x . For numerical reasons [49], this
hard constraint is usually replaced by a quadratic regularisation term weighted by a
hyper-parameter λ > 0, which gives the following better-posed problem than (1.9):

min
p,q: �→R

∫

�

∣∣∣I (x) − R(p(x), q(x))
∣∣∣
2
dx + λ

∫

�

∣∣∣
∂p

∂y
(x) − ∂q

∂x
(x)
∣∣∣
2
dx. (1.10)

Another regularisation term has been extensively used, since it is easier to discre-
tise [62]:

min
p,q: �→R

∫

�

∣∣∣I (x) − R(p(x), q(x))
∣∣∣
2
dx + λ

∫

�

[
|∇ p(x)|2 + |∇q(x)|2

]
dx.

(1.11)
Typical optimisation methods are descent methods. For instance, the Euler–

Lagrange equations derived from (1.11) are written (dependencies on x are omitted):

[
I − R(p, q)

] ∂R
∂p

(p, q) + λ �p = 0 and
[
I − R(p, q)

] ∂R
∂q

(p, q) + λ �q = 0.

(1.12)
Using the classical discrete approximation of the Laplacian �p at pixel (i, j):

�pi, j ≈ pi+1, j + pi−1, j + pi, j+1 + pi, j−1

4
− pi, j , (1.13)

the following iterative scheme for solving (1.11) comes down from (1.12) and (1.13)
[53]:
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⎧
⎪⎪⎨

⎪⎪⎩

p(k+1)
i, j = p(k)

i, j + 1

λ

[
Ii, j − R(p(k)

i, j , q
(k)
i, j

)] ∂R
∂p

(
p(k)
i, j , q

(k)
i, j

)
,

q(k+1)
i, j = q(k)

i, j + 1

λ

[
Ii, j − R(p(k)

i, j , q
(k)
i, j

)] ∂R
∂q

(
p(k)
i, j , q

(k)
i, j

)
,

(1.14)

where p denotes the local average of p, p(0) and q(0) are given initial conditions, and
the index k is the number of the iteration.

To avoid divergence for such schemes [30], it has been proposed to directly min-
imise the functional in (1.11), using conjugate gradient descent [62, 115] or line
search [29], but the approximate solution is typically a local minimum. A way to
overcome this limitation is to use a global optimisation, e.g. simulated annealing [27].
Finally, to decrease the CPU time, it has been dealt with multi-resolution [115].

Even if some optimisation-based methods aim to directly solve the SfS problem
in the height u, as for instance [23] where a parametric model with few parameters
is used, most of them first compute a normal field n. Once the components p and q
of the normal (cf. Eq. (1.4)) have been computed, it remains to integrate them into a
height map. Several methods can be used for this task, depending on the application’s
requirements in terms of speed, robustness to noise in the estimated normal field and
preservation of discontinuities [95]. For instance, a standard solution for the recovery
of a smooth height map consists in considering the quadratic variational problem:

min
u:�→R

∫

�

∣∣∣∣∇u(x) −
[
p(x)
q(x)

] ∣∣∣∣

2

dx, (1.15)

which can be solved, e.g. using Fourier analysis [37], discrete sine or cosine trans-
form [109] or iterative methods [7], depending upon the shape of� and the boundary
conditions.

1.2.5 Applications of SfS

Thenatural application of SfS is the 3D-reconstruction of a scene froma single image.
However, in real-world settings the assumptions formulated above on reflectance and
lighting are too restrictive. Therefore, efforts have recently been devoted to move
beyond the assumptions of Lambertian reflectance [56, 118, 119] and controlled
illumination [55, 92]. In such works, reflectance and lighting are allowed to take
a more general form, yet they still must be calibrated. To remove this limitation,
additional priors must be introduced, as it is common in the field of intrinsic image
decomposition where the reflectance is often assumed to be piecewise smooth [9].
Alternatively, deep learning techniques can be employed to simultaneously estimate
shape, reflectance and lighting, provided that the object to reconstruct resembles those
in the learning database [102]. In the absence of suchpriors, SfS canbe combinedwith
another 3D-reconstruction technique: the latter provides a coarse prior on geometry,
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whose details are then refined using SfS. In this view, SfS has been combined with
shape-from-texture [123], structure-from-motion [38],multi-view stereopsis [61, 68,
72] or depth sensors [41, 85].

An alternative strategy to resolve the ambiguities of SfS consists in using addi-
tional images taken under varying lighting. This approach, which is called photo-
metric stereo, will be discussed in the next section.

1.3 Photometric Stereo

The photometric stereo technique, first developed byWoodham [129], is an extension
of SfS which considers several images acquired under the same viewing angle, but
various lighting conditions.

1.3.1 Well-Posedness of PS

Onemay reasonably hope that shape inference by PSwill be better-posed, in compar-
ison with the single-image case of SfS. Indeed, 3D-shape and Lambertian reflectance
can be exactly and uniquely determined from a set of three images taken under non-
coplanar, uniform, calibrated directional lighting. This is easily shownby considering
a system ofm ≥ 3 image irradiance equations such as (1.2), obtained under illumina-
tion with uniform intensity ψ(x) ≡ 1, but varying direction characterised by vectors
ωi , i ∈ {1, . . . ,m}:

Ii (x) = r(x)ω�
i n(x), i ∈ {1, . . . ,m}. (1.16)

This system of equations comes down to a linear system of m equations inm(x) :=
r(x)n(x). Provided that m = 3 and the three illumination vectors ωi , i ∈ {1, 2, 3},
are non-coplanar, there exists a unique solutionm(x) of this system, from which the
albedo can be extracted as r(x) = |m(x)| and the surface normal as n(x) = m(x)

|m(x)| .
When m > 3, an approximate solution of the system can be estimated as long as the
m illumination vectors remain non-coplanar. An example of result obtained with this
approach on a banknote is presented in Fig. 1.5. It illustrates well the unique ability
of PS both to estimate fine-scale geometric details, and to estimate the reflectance.

PS can however be ill-posed in two particular scenarios. Firstly, when lighting
is unknown (uncalibrated PS), the local estimation of surface normals is under-
constrained. As in SfS, the problem must be reformulated globally, and the integra-
bility constraint must be imposed [133]. But even then, a low-frequency ambiguity
known as the generalised bas-relief ambiguity remains [12]: it is necessary to intro-
duce additional priors, see [107] for an overview of existing uncalibrated photometric
stereo approaches, and [19] for a modern solution based on deep learning. Another
situation where PS is ill-posed is when only two images are considered [91]: in each
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Fig. 1.5 Photometric stereo-based 3D-reconstruction of a 10 euro banknote. From a set of images
captured under varying lighting (left), PS infers both the surface geometry (top-right, we show the
RGB-coded estimated normals and the 3D-shape obtained by integration of the normals), as well
as its reflectance (bottom-right, we show the estimated albedo)

pixel there exist two possible normals explaining the pair of graylevels, even with
known reflectance and lighting. Again, integrability must be imposed in order to
limit the ambiguities [84].

1.3.2 Numerical Solving of PS

In the previous subsection, we described a simple strategy to estimate the surface
normals by photometric stereo. The knowledge of surface normals is however not
sufficient to fully characterise the geometry of the pictured scene. To obtain a com-
plete 3D-representation, the normals must then be integrated into a height map. We
have already discussed this integration problem in Sect. 1.2.4, and we refer the reader
to [95] for a comprehensive overview.

With this pipeline, one first estimates the surface normals, and then integrates
them into a height map. This strategy is however suboptimal, since any error in the
normal estimation step will propagate during the subsequent normal integration one.
An alternative strategy is to reformulate (1.16) as a system of partial differential
equations in the unknown height map u, and directly estimate u. For instance, one
may consider the ratio of two equations such as (1.16), for i 
= j , while replacing
the surface normal n(x) by its definition (1.3). This yields the following PDE:

[
Ii (x)ω j − I j (x)ωi

]�
[−∇u(x)

1

]
= 0, ∀x ∈ �, (1.17)
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which is linear in∇u, and is independent from the reflectance r . It can be solved, e.g.
using a finite difference upwind scheme or semi-Lagrangian methods [69]. When
more than a single pair of images is considered, the joint approximate solving of the
system of equations such as (1.17), obtained for every pair {i, j}, can be formulated
as a variational problem:

min
u:�→R

∑∑

i< j

∫

�

∣∣∣∣
[
Ii (x)ω j − I j (x)ωi

]�
[−∇u(x)

1

] ∣∣∣∣

2

dx. (1.18)

Such an approach, initially proposed in [90, 110], also easily extends to more elab-
orate camera or reflectance models [71].

Nevertheless, this ratio-based approachdoes not provide the reflectance, contrarily
to the simple pipeline presented in the previous subsection. Moreover, solving the
linearised partial differential equations (1.17) is not equivalent to solving the original
Eqs. (1.16): for instance, Gaussian noise on the images turns into Cauchy noise on
the ratios, making least-squares inference suboptimal. Thus, the joint recovery of
height and reflectance by variational inversion of the image irradiance Eqs. (1.16)
has also been explored. For example, plugging the definition (1.3) of n(x) into (1.16),
the joint estimation of height and reflectance in a least-squares sense leads to

min
u,r :�→R

m∑

i=1

∫

�

∣∣∣∣Ii (x) − r(x)ω�
i

[−∇u(x)/
√
1 + |∇u(x)|2

1/
√
1 + |∇u(x)|2

] ∣∣∣∣

2

dx, (1.19)

which can be solved, e.g. using alternating reweighted least-squares [93].

1.3.3 PS with Non-trivial Reflectance or Lighting

The surface has been assumed Lambertian in our models, and lighting has been
assumed directional but those assumptions are difficult to satisfy in real-world sce-
narios. An important feature of PS, in comparison with SfS, is that the redundancy
provided by themultiple images enables relaxing such assumptions. Indeed, shadows
or off-Lambertian effects such as specularities can be coped with by solving PS in a
robustmanner, for instance, by resorting to sparse regressionwhich treats such effects
as outliers to the Lambertian model [52, 93]. Other ways to deal with off-Lambertian
effects include inverting a reflectance model which is more sophisticated than Lam-
bert’s [71, 106] or pre-processing the images according to a low-rank prior [131]. Let
us also mention data-driven methods, which either compare the intensity variations
with those observed on a reference object with known shape [46] or resort to a deep
neural network trained or large dataset [98].

Another direction of research on PS is the study of more realistic lighting models,
in order to simplify the acquisition of data. For instance, some methods have been
developed to handle images acquired under nearby point light illumination [70],



14 J.-D. Durou et al.

which finds a natural application in LED-based photometric stereo [94]. This permits
to build a simple acquisition setup based on cheap hardware. Extended light sources
have also been considered, which permits for instance to use the screen of a LCD
display as light source [21]. Eventually, other approaches have considered the case
of natural illumination in order to bring PS outdoor [11], and numerical solving
methods based on variational principles [42] or deep learning [47] have recently
been suggested.

1.3.4 Combining PS and Other 3D-Reconstruction Methods

A criticism which is frequently formulated against PS is that it excels with the
recovery of high-frequency geometric details, yet it is prone to a low-frequency bias
which may distort the global geometry [82]. In fact, such a bias usually comes from
a contradiction between the assumptions behind the image formation model and the
actual experiments, e.g. assuming a directional light source instead of a nearby point
light one. Therefore, the methods discussed in the previous subsection provide a
remedy to such a bias.

On the other hand, it is sometimes simpler from a practical perspective to stick to
the simplest assumptions, and rather remove the low-frequency bias by coupling PS
with another 3D-reconstruction method such as shape-from-silhouette [122], multi-
view stereopsis [63] or depth sensing [87]. In such works, PS provides the fine-scale
geometric details, which are combined with the gross geometry provided by the
alternative technique.

Another interesting application of PS is 3D-reconstruction from a single shot,
which can be achieved by using a multichannel camera coupled with monochromatic
coloured light sources which are simultaneously turned on: each channel can then be
viewed as a graylevel image obtained under a single light source. This idea, which
dates back from the nineties [60], has more recently been applied to the real-time
3D-reconstruction of deformable surfaces by combining PS with optical flow [44]
or scene flow [40].

1.3.5 Applications of PS

The ability of PS to estimate both the fine-scale geometric details and the reflectance
of the surface has proven useful inmany applications. Here, we briefly highlight a few
of them. For instance, PS can be used to infer 3D-models for augmented reality,which
can be very helpful for computer-aided surgery using laparoscopy [22]. Another
medical application of PS is the characterisation of the melanoma’s shape and color,
as proposed in [114]. Besides medical applications, PS has been extensively used in
thefield of quality control, e.g. for the inspection of defects onmetallic surfaces [113].
Also, let us mention Reflectance Transform Imaging (RTI) techniques, which are
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based on PS principles, and allow one to interactively relight the pictured surfaces.
Such an approach finds a natural application in the field of cultural heritage, see the
recent survey [88] for an overview. Finally, Chap. 7 in the present volume addresses
a novel application, which is the estimation of facial aging.

1.4 Shape-from-Polarisation

Another problem belonging to the shape-from-X class is the shape-from-polarisation
one. The goal is the same, i.e. recover the 3D-shape of the object, but starting from
a different input data, given by polarisation information.

1.4.1 Description and Generation of a Polarisation Image

When unpolarised light is reflected by a surface, it becomes partially polarised [128].
This applies to both specular [96] and diffuse [4] reflections caused by subsurface
scattering. Using a linear polarising filter placed in front of a camera, a sequence of
m ≥ 3 images (cf. Fig. 1.6a) is captured by rotating the filter under varying polariser
angle ϑ j , j ∈ {1, . . . ,m}. The measured brightness at each pixel x varies in accor-
dance to the transmitted radiance sinusoid corresponding to

iϑ j (x) = Imax(x) + Imin(x)
2

+ Imax(x) − Imin(x)
2

cos[2ϑ j − 2φ(x)], (1.20)

where φ(x) is the phase angle, Imax the maximum measured pixel brightness and
Imin the minimum one.

A polarisation image (cf. Fig. 1.6b–d), i.e. the full set of polarisation data for a
given object or scene, can be obtained by decomposing the sinusoid at every pixel into
three separate components [127]: the phase angle, φ(x), the unpolarised intensity,
iun(x) and the degree of polarisation, ρ(x), where

iun(x) = Imax(x) + Imin(x)
2

and ρ(x) = Imax(x) − Imin(x)
Imax(x) + Imin(x)

. (1.21)

The phase angle φ(x) is directly related to the angle of the linearly polarised compo-
nent of the reflected light and can be defined as the angle of maximum or minimum
transmission. Since polarisers cannot distinguish between two angles separated by
π radians, the range of initially acquired phase measurements is [0, π). Therefore,
there is aπ ambiguity, since twomaxima in pixel brightness are found as the polariser
is rotated through 2π . The unpolarised image iun(x) is simply the image that would
be obtained using a standard camera. The degree of polarisation ρ(x) can be defined
in terms of refractive index and zenith angle of the surface normal [128], but the

http://dx.doi.org/10.1007/978-3-030-51866-0_7
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Fig. 1.6 a Polarimetric capture, and b–d decomposition into polarisation images, from captured
data of a piece of fruit. Pictures taken and adapted from [112]

explicit formula is different depending on the polarisation model used, as we will
see in Sect. 1.4.2 below.

These quantities can be estimated from the captured image sequence using dif-
ferent methods, e.g. the Levenberg–Marquardt nonlinear curve fitting algorithm [4],
linear methods [50] or following the procedure suggested by Wolff in [127] for the
specific case of m = 3, ϑ ∈ {0, π

4 , π
2 }.

1.4.2 Diffuse and Specular Polarisation Models

A polarisation image provides information on the azimuth and zenith angles of the
normal, and, hence, a constraint on the surface normal direction at each pixel. The
exact nature of the constraint depends on the polarisation model used.

Using a diffuse polarisation model, the phase angle φ(x) is the polariser angle
ϑ j at which Imax is observed. It determines the azimuth angle α(x) ∈ [0, 2π [ of
the surface normal up to a π ambiguity: α(x) = φ(x) or φ(x) + π . The degree of
polarisation ρd(x), on the other hand, is related to the zenith angle θ(x) ∈ [0, π

2 ] of
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the normal in viewer-centered coordinates (i.e. the angle between the normal and
viewer) as follows:

ρd(x) = sin2 θ(x)
(
η − 1

η

)2

4 cos θ(x)
√

η2 − sin2 θ(x) − sin2 θ(x)
(
η + 1

η

)2 + 2 η2 + 2
, (1.22)

where η is the refractive index (in general, η is unknown, but for most dielectrics
typical values range between 1.4 and 1.6, hence an accurate estimate of geometry
can be obtained without a precise estimate of η [4]).

Instead, using a specular polarisation model, the azimuth angle of the surface
normal is perpendicular to the phase of the specular polarisation [97] leading to a
π
2 shift, so that the azimuth angle corresponds to polariser angle ϑ j at which Imin is
observed: α(x) = φ(x) ± π

2 . Regarding the degree of polarisation ρs(x), it relates to
the zenith angle according to

ρs(x) = 2 sin2 θ(x) cos θ(x)
√

η2 − sin2 θ(x)

η2 − sin2 θ(x) − η2 sin2 θ(x) + 2 sin4 θ(x)
, (1.23)

and in that case the dependency of the degree of polarisation ρs on η is weaker than
in the diffuse case.

1.4.3 3D-Shape Recovery Using Polarisation Information

The phase angle φ(x) (cf. Fig. 1.6b) and the degree of polarisation ρ(x) (cf. Fig. 1.6d)
of reflected light convey information about the surface orientation through informa-
tion on zenith and azimuth angles and, therefore, provide a cue for 3D-shape recovery.

There are nice and attractive properties to the SfP cue: it requires only a sin-
gle viewpoint and a single illumination condition, it is invariant to illumination
direction and surface albedo, and it provides information about both the zenith and
azimuth angle of the surface normal. Unfortunately, the polarisation information
alone restricts the surface normal at each pixel to two possible directions, providing
in such a way only ambiguous estimates of the surface orientation.

SfP methods can be categorised into three groups:

1. Methods which use only polarisation information (cf. Sect. 1.4.3.1). They are
passive since, typically, a polarisation image is obtained by capturing a sequence
of images in which a linear polarising filter is rotated in front of the camera
(possibly with unknown rotation angles [100]). These methods can be considered
“single shot” methods by using custom CCD cameras configured for polarisation
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imaging1 or by mounting the polarisation filter on a CMOS sensor in order to
acquire polarisation information in real time2).

2. Methods which combine polarisation with shading cues (cf. Sect. 1.4.3.2).
3. Methods which combine a polarisation image with an additional cue (cf. Sect.

1.4.3.3) such as stereo, multispectral measurements, an RGBD sensor or active
polarised illumination.

SfP methods can also be classified according to the polarisation model (dielectric
versus metal, diffuse [4, 50, 77], specular [79] or hybrid models [116]) and whether
they compute shape in the surface normal or surface height domain.

1.4.3.1 Resolution Using Only Polarisation Information

The earliestwork focused on capture, decomposition and visualisation of polarisation
images was by Wolff in the nineties [127], even if older works on shape recovery by
polarisation information exist since 1962 [108]. Both Atkinson and Hancock [4] and
Miyazaki et al. [77] disambiguated the polarisation normals via propagation from
the boundary under an assumption of global convexity. Huynh et al. [50] also dis-
ambiguated polarisation normals with a global convexity assumption, estimating the
refractive index in addition. These works used a diffuse polarisation model whereas
Morel et al. [79] used a specular polarisation model for metals. Recently, Taamazyan
et al. [116] introduced a mixed diffuse/specular polarisation model. All of these
methods estimate surface normals which must then be integrated into a height map.
Moreover, since they rely entirely on the weak shape cue provided by polarisation
and do not enforce integrability, the results are extremely sensitive to noise.

1.4.3.2 Polarisation and Shading Cues

A polarisation image also contains an unpolarised intensity channel (cf. Fig. 1.6c),
which provides a shading cue. Mahmoud et al. [67] used a shape-from-shading cue
assuming known light source direction, known albedo and Lambertian reflectance, in
order to disambiguate the polarisation normals. Atkinson and Hancock [6] used cali-
brated, three-source Lambertian photometric stereo for disambiguation but avoiding
an assumption of known albedo. Smith et al. [111] showed how to express polarisa-
tion and shading constraints directly in terms of surface height, leading to a robust
and efficient linear least-squares solution. They also showed how to estimate the
illumination, up to a binary ambiguity, making the method uncalibrated. However,
they require known or uniform albedo. This requirement was afterwards relaxed
in [112], where spatially varying albedo was estimated from a single polarisation
image, assuming known illumination and strong smoothness assumptions. In [120]

1http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter.
2https://www.ricoh.com/technology/tech/051_polarization.

http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter
https://www.ricoh.com/technology/tech/051_polarization
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variants of the aforementioned method have been exploited by introducing addi-
tional constraints which arise when a second light source is considered, allowing
to relax the uniform albedo assumption even under unknown lighting. In this work,
albedo-invariant or phase-invariant formulations were proposed. Another differential
approach has been proposed in [65], where the geometry of the object is described
through its level-sets for both diffuse and specular reflections. Ngo et al. [83] derived
constraints which allowed surface normals, light directions and refractive index to be
estimated from polarisation images under varying lighting. However, this approach
requires at least four light sources.

1.4.3.3 Combining Polarisation with Other Cues

In order to solve the ambiguities generated by models using only polarisation infor-
mation, some attempts have been done combining SfP with other cues. In addition to
photometric cues (from SfS or PS), auxiliary geometric information can be consid-
ered. Stereo cues has been combined with polarisation to obtain surface orientation
information since the nineties [126]. Rahmann et al. [96] proposed to reconstruct
specular surfaces taking polarisation images from multiple views. The reconstruc-
tion problem is solved by an optimisation scheme where the surface geometry is
modelled by a set of hierarchical basis functions. Atkinson et al. [3, 5] refined esti-
mates of the surface normal to establish correspondences between two views of an
object, extracting surface patches from each view. Multi-View Stereo (MVS) and
polarisation have also been adopted for transparent and specular objects [73, 76],
and a polarimetricMVSmethod applied to objects with mixed polarisation models is
proposed in [28]. With respect to this last paper, which is offline and needs a manual
preparation, Yang et al. proposed in [132] a fully automatic approach to produce a
height map in real time using two views. More than two views have been used in
[20]. Space carving [75, 76] or RGBD sensors [57, 58] have been employed to obtain
initial 3D-shape, from which the ambiguities in SfP are resolved. Zhu et al. [135]
used polarisation and an RGBD stereo pair to disambiguate the polarisation surface
normal estimates using a higher order graphical model. Cameras with multiple spec-
tral bands [51, 74] could be useful for disambiguating and estimating the refractive
index of the surface.

1.4.4 An Example of Numerical Resolution for Shape
Recovery

In this section,wewant to give an example of numerical resolutionof theSfPproblem,
either by following a non-differential approach, which considers as unknowns the
partial derivatives p and q as defined in Eq. (1.4), or by solving a linear differential
system directly in the height u.

We assume orthographic projection and directional illumination. We consider
only the diffuse polarisation model, hence, the degree of polarisation is defined as
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in (1.22), and the object we want to recover is composed by dielectric (i.e. non
metallic) materials. Moreover, the refractive index η is supposed to be a known
constant, and interreflections are neglected. In order to estimate the phase angle φ(x)
and the degree of diffuse polarisation ρd(x) at each point, we fit the data to the
transmitted radiance sinusoid (1.20) following one of the aforementioned methods,
e.g. the idea by Wolff [127]. The zenith angle θ(x) of the surface normal can be
obtained from Eq. (1.22) arriving to

cos θ(x) = n(x) · v = f (ρ(x), η) = (1.24)
√
2 ρ + 2 η2 ρ − 2 η2 + η4 + ρ2 + 4 η2 ρ2 − η4 ρ2 − 4 η3 ρ

√− (ρ − 1) (ρ + 1) + 1

η4 ρ2 + 2 η4 ρ + η4 + 6 η2 ρ2 + 4 η2 ρ − 2 η2 + ρ2 + 2 ρ + 1
,

where we have denoted ρd simply by ρ and we have dropped the dependency of ρ

on x for readability. The normal vector defined in (1.3) can be written in terms of
azimuth and zenith angles as

n(x) =
⎡

⎣
cosα(x) sin θ(x)
sin α(x) sin θ(x)

cos θ(x)

⎤

⎦ . (1.25)

Remembering that the phase angle φ(x) determines the azimuth angle α(x) of the
normal up to a π ambiguity (α(x) = φ(x) or α = φ(x) + π ), the normal vector
can be estimated up to an ambiguity. Several attempts have been done in order
to disambiguate the azimuth angle, as explained in Sect. 1.4.3.1. Once the surface
normal has been estimated, by integrationwe can recover the height, which is our real
and final unknown to be found. Again, we refer the interested reader to Sect. 1.2.4
and the survey [95] for some discussion on the integration problem.

As an alternative, we can solve the problem directly in the unknown height follow-
ing a differential approach, starting again from a single polarisation image, but using
also the unpolarised intensity quantity, which is the image obtained using a standard
camera for the SfS problem. For example, let us assume Lambertian reflectance,
known illumination and uniform albedo that is factored into the light source vec-
tor ω. The shading constraint coming from the unpolarised intensity channel of a
polarisation image reads as (cf. Eq. (1.5)):

iun(x) = −ω1 p(x) − ω2 q(x) + ω3√
1 + p(x)2 + q(x)2

. (1.26)

Since we are working in a viewer-centered coordinate system, with the viewer v =
[0, 0, 1]�, Eq. (1.24) simplifies to n3(x) = f (ρ(x), η), which can be expressed in
terms of the surface gradient as

f (ρ(x), η) = 1
√
1 + p(x)2 + q(x)2

. (1.27)



1 A Comprehensive Introduction to Photometric 3D-Reconstruction 21

Now, by using the image ratio technique commonly applied also in PS-SfS prob-
lems [119], taking a ratio between (1.26) and (1.27), the nonlinear normalisation
factor vanishes, yielding the following linear equation in the surface gradient:

iun(x)
f (ρ(x), η)

= −ω1 p(x) − ω2 q(x) + ω3. (1.28)

Instead of disambiguating the polarisation normals at each pixel locally, as illustrated
before following a non-differential approach, here we express the azimuth ambiguity
as a collinearity condition which is satisfied by either of the two possible azimuth
angles. In this way, we postpone resolution of the ambiguity until surface height is
computed, solving the azimuthal ambiguities in a globally optimal way.

More in detail, for the diffuse case we require that the projection of the surface
normal into the image plane Oxy, [n1(x), n2(x)]�, is collinear with a vector pointing
in the phase angle direction, [sin φ(x), cosφ(x)]�. This requirement translates into
the following condition:

n(x)�[cosφ(x),− sin φ(x), 0]� = 0. (1.29)

By rewriting n(x) in terms of the surface gradient, noting that the nonlinear normal-
isation term is always non-null, we obtain from Eq. (1.29) a second linear equation
in the surface gradient:

− p(x) cosφ(x) + q(x) sin φ(x) = 0. (1.30)

At this point, after approximating the surface gradient, e.g. by using finite differ-
ences, we arrive to a linear system of equations in terms of the unknown surface
height, which can be solved using linear least-squares. For stability reasons, priors
on convexity and smoothness can be added to the linear system. For more informa-
tion on this idea and for details on the implementation, we refer the interested reader
to [111, 112].

1.4.5 Applications

The polarisation state of light reflected by a surface provides a cue on the material
properties of the surface and, via a relationship with surface orientation, the 3D-
shape. Polarisation has been used for several applications since the nineties, including
early work on material segmentation [128] and diffuse/specular reflectance separa-
tion [80]. In recent years, there has been an increasing interest in using polarisation
information for 3D-shape estimation [57, 83, 111, 116]. Nice applications include
polarised laparoscopy [45] or in general biomedical applications [121]. In addition
to the use of polarisation information for 3D-reconstruction, recently several other
applications are using polarisation for different tasks. For example, for image seg-
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mentation [104], robot dynamic navigation [13, 14], image enhancement [99, 100]
and reflection separation by a deep learning approach [66], which simplifies previ-
ous works requiring three images from different polariser angles [59, 101, 124]. For
more details on possible applications, we refer the interested reader to Chap.6 of this
volume.

1.5 A Short Presentation of This Volume

As we said in the introduction, the volume contains several contributions which
represent recent trends in 3D-reconstruction via photometric techniques. Here is an
overview of the chapters.

In Chap.2, Breuss and Yarahmadi focus on a more realistic shape-from-shading
model than that we described in Sect. 1.2, where perspective projection is considered.
A comprehensive state of the art of perspective SfS (PSfS) is carried out. The case of
a Lambertian surface illuminated either by a parallel and uniform luminous flux, or
by a nearby point light source, is more specifically addressed. Finally, a comparative
study is carried out between two methods of resolution of the PSfS problem under
directional lighting, both of which are based on the fast-marching algorithm.

In Chap.3, Or-El et al. tackle the problem of refining the depth map provided by
RGBD sensors, by applying shape-from-shading techniques. The authors propose
three ways to solve this problem. First, by a model-based approach effective for
Lambertian surfaces, which refines the depth map by a SfS strategy applied to the
RGB image. Then, they extend this approach to specular objects, using a Phong-type
model and the InfraRed image with the attached (near) light source. Lastly, a deep
learning-based solution is proposed.

In Chap.4, Gallardo et al. tackle the problem of the 3D-reconstruction of
deformable surfaces using non-rigid structure-from-motion and shading. The authors
propose an optimisation-based strategy, which aims at finding the geometry (param-
eterised by vertices) and reflectance (parameterised by a finite set of albedo val-
ues) which minimise a cost function combining a shape-from-shading term and a
structure-from-motion one. Additional terms are also included in the cost function:
a contour boundary one, a smoothness one and a quasi-isometry one. The resulting
non-convex optimisation problem is addressed by a careful heuristical initialisa-
tion followed by an iterative, Gauss–Newton-based refinement over all variables in a
multi-scale fashion. The proposition is evaluated both qualitatively and quantitatively
against the state of the art.

In Chap.5, Brahimi et al. present a theoretical contribution on the well-posedness
of uncalibrated photometric stereo under general illumination. In particular, they
prove that there is no ambiguity for the perspective model if lighting is represented
by first-order spherical harmonics. In the process of establishing their main result
they also provide a comprehensive survey of the available results regarding the well-
posedness of several photometric stereo problems and they examine in detail the case
of the orthographic projection. For this problem they prove that, even in the case of

http://dx.doi.org/10.1007/978-3-030-51866-0_6
http://dx.doi.org/10.1007/978-3-030-51866-0_2
http://dx.doi.org/10.1007/978-3-030-51866-0_3
http://dx.doi.org/10.1007/978-3-030-51866-0_4
http://dx.doi.org/10.1007/978-3-030-51866-0_5
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spherical harmonics, the concave/convex ambiguity still persists. They concludewith
some numerical experiments.

Chapter6, authored by Shi et al., represents a concise survey on SfP. After an
introduction, the authors briefly recall the Fresnel theory, which is the theoretical
basis of polarisation imaging. The process for the formation of a polarisation image
is described, giving also details on the data acquisition. The authors discuss the
estimation of azimuth and zenith angles of the normal for surfaces with different
reflectance properties (specular, diffuse, and mixed polarisation). Then, the combi-
nation of SfP with auxiliary information is explored, e.g. geometric cues, spectral
cues, photometric cues and deep learning. Moreover, applications which can benefit
from polarisation information, in addition to the 3D-shape recovery, are presented.
The chapter ends with a discussion on problems still open.

Finally, Chap. 7 by Dahlan et al. addresses the problem of facial aging estimation,
using light scattering photometry. It is shown that the roughness parameter of several
BRDF models is correlated with the age. Therefore, facial aging estimation can be
carried out by fitting a BRDF model to an input image. In this work, geometry
estimation is carried out using photometric stereo, by resorting to an illumination
dome. Then, given the estimated normals, an image with frontal lighting is used to
infer the BRDF parameters. Various experiments are carried out to study whether
these estimated parameters correlate with age and it is shown that this is the case for
the roughness parameter. Several tests on real images are illustrated and analysed.

References

1. Adelson EH, Pentland AP (1996) The perception of shading and reflectance. In: Perception
as Bayesian inference. Cambridge University Press, Cambridge, pp 409–423

2. AliceVision. https://alicevision.org/
3. Atkinson GA, Hancock ER (2005) Multi-view surface reconstruction using polarization. In:

Proceedings of the IEEE international conference on computer vision 1:309–316
4. Atkinson GA, Hancock ER (2006) Recovery of surface orientation from diffuse polarization.

IEEE Trans Image Process 15(6):1653–1664
5. Atkinson GA, Hancock ER (2007) Shape estimation using polarization and shading from two

views. IEEE Trans Pattern Anal Mach Intell 29(11):2001–2017
6. Atkinson GA, Hancock ER (2007) Surface reconstruction using polarization and photometric

stereo. In: Proceedings of the international conference on computer analysis of images and
patterns, pp 466–473

7. Bähr M, Breuß M, Quéau Y, Boroujerdi AS, Durou J-D (2017) Fast and accurate surface
normal integration on non-rectangular domains. Comput Vis Media 3(2):107–129

8. Barles G (1994) Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques et
Applications, vol 17. Springer, Berlin

9. Barron JT, Malik J (2015) Shape, illumination, and reflectance from shading. IEEE Trans
Pattern Anal Mach Intell 37(8):1670–1687

10. Bartoli A, Gérard Y, Chadebecq F, Collins T, Pizarro D (2015) Shape-from-template. IEEE
Trans Pattern Anal Mach Intell 37(10):2099–2118

11. Basri R, Jacobs D, Kemelmacher I (2007) Photometric stereo with general, unknown lighting.
Int J Comput Vis 72(3):239–257

http://dx.doi.org/10.1007/978-3-030-51866-0_6
http://dx.doi.org/10.1007/978-3-030-51866-0_7
https://alicevision.org/


24 J.-D. Durou et al.

12. Belhumeur PN, Kriegman DJ, Yuille AL (1999) The Bas-relief ambiguity. Int J Comput Vis
35(1):33–44

13. Berger K, Voorhies R,Matthies L (2016) Incorporating polarization in stereo vision-based 3D
perception of non-Lambertian scenes. In: Unmanned systems technology XVIII. Proceedings
of the SPIE, vol 9837, p. 98370P

14. Berger K, Voorhies R, Matthies LH (2017) Depth from stereo polarization in specular scenes
for urban robotics. In: Proceedings of the international conference on robotics and automation,
pp 1966–1973

15. Brady M, Yuille AL (1984) An extremum principle for shape from contour. IEEE Trans
Pattern Anal Mach Intell 6(3):288–301

16. BreußM, Cristiani E, Durou J-D, FalconeM, Vogel O (2012) Perspective shape from shading:
ambiguity analysis and numerical approximations. SIAM J Imaging Sci 5(1):311–342

17. Camilli F, Grüne L (2000) Numerical approximation of the maximal solutions for a class of
degenerate Hamilton-Jacobi equations. SIAM J Numer Anal 38(5):1540–1560

18. Camilli F, Tozza S (2017) A unified approach to the well-posedness of some non-Lambertian
models in shape-from-shading theory. SIAM J Imaging Sci 10(1):26–46

19. Chen G, Han K, Shi B, Matsushita Y, Wong K-YK (2019) Self-calibrating deep photometric
stereo networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 8739–8747

20. Chen L, Zheng Y, Subpa-Asa A, Sato I (2018) Polarimetric three-view geometry. In: Proceed-
ings of the European conference on computer vision, pp 20–36

21. Clark JJ (2010) Photometric stereo using LCD displays. Image Vis Comput 28(4):704–714
22. Collins T, Bartoli A (2012) 3D-reconstruction in laparoscopy with close-range photomet-

ric stereo. In: International conference on medical image computing and computer-assisted
intervention. Lecture notes in computer science, vol 7511, pp 634–642

23. Courteille F, Durou J-D, Morin G (2006) A global solution to the SFS problem using B-spline
surface and simulated annealing. In: Proceedings of the international conference on pattern
recognition (volume II), pp 332–335

24. Crandall MG, Lions P-L (1983) Viscosity solutions of Hamilton-Jacobi equations. Trans Am
Math Soc 277(1):1–42

25. Cristiani E (2014) 3D printers: a new challenge for mathematical modeling. arXiv:1409.1714
26. Cristiani E, Falcone M (2007) Fast semi-Lagrangian schemes for the eikonal equation and

applications. SIAM J Numer Anal 45(5):1979–2011
27. Crouzil A, Descombes X, Durou J-D (2003) A multiresolution approach for shape from

shading coupling deterministic and stochastic optimization. IEEE Trans Pattern Anal Mach
Intell 25(11):1416–1421

28. Cui Z, Gu J, Shi B, Tan P, Kautz J (2017) Polarimetric multi-view stereo. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 1558–1567

29. Daniel P, Durou J-D (2000) From deterministic to stochastic methods for shape from shading.
In: Proceedings of the Asian conference on computer vision, pp 187–192

30. Durou J-D, Maître H (1996) On convergence in the methods of Strat and of Smith for shape
from shading. Int J Comput Vis 17(3):273–289

31. Durou J-D, Falcone M, Sagona M (2008) Numerical methods for shape-from-shading: a new
survey with benchmarks. Comput Vis Image Underst 109(1):22–43

32. Falcone M, Ferretti R (2014) Semi-Lagrangian approximation schemes for linear and
Hamilton-Jacobi equations, 1st edn. Society for Industrial andAppliedMathematics, Philadel-
phia

33. Falcone M, Ferretti R (2016) Numerical methods for Hamilton-Jacobi type equations. In:
Handbook of numerical methods for hyperbolic problems. Handbook of numerical analysis,
vol 17. Elsevier, Amsterdam, pp 603–626

34. Falcone M, Sagona M (1997) An algorithm for the global solution of the shape-from-shading
model. In: International conference on image analysis and processing. Lecture notes in com-
puter science, vol 1310, pp 596–603

http://arxiv.org/abs/1409.1714


1 A Comprehensive Introduction to Photometric 3D-Reconstruction 25

35. Falcone M, Sagona M (2003) A scheme for the shape-from-shading model with “black shad-
ows”. In: Numerical mathematics and advanced applications. Springer, Berlin, pp 503–512

36. Festa A, Falcone M (2014) An approximation scheme for an Eikonal equation with discon-
tinuous coefficient. SIAM J Numer Anal 52(1):236–257

37. Frankot RT, Chellappa R (1988) A method for enforcing integrability in shape from shading
algorithms. IEEE Trans Pattern Anal Mach Intell 10(4):439–451

38. Gallardo M, Collins T, Bartoli A (2017) Dense non-rigid structure-from-motion and shading
with unknown albedos. In: Proceedings of the IEEE international conference on computer
vision, pp 3884–3892

39. Geng J (2011) Structured-light 3D surface imaging: a tutorial. Adv Opt Photonics 3(2):128–
160

40. Gotardo PFU, Simon T, Sheikh Y, Matthews I (2015) Photogeometric scene flow for high-
detail dynamic 3D reconstruction. In: Proceedings of the IEEE international conference on
computer vision, pp 846–854

41. Haefner B, Quéau Y, Möllenhoff T, Cremers D (2018) Fight ill-posedness with ill-posedness:
single-shot variational depth super-resolution from shading. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 164–174

42. Haefner B, Ye Z, Gao M, Wu T, Quéau Y, Cremers D (2019) Variational uncalibrated photo-
metric stereo under general lighting. In: Proceedings of the IEEE international conference on
computer vision, pp 8539–8548

43. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cam-
bridge University Press, Cambridge

44. Hernández C (2004) Stereo and silhouette fusion for 3D object modeling from uncalibrated
images under circular motion. Thèse de doctorat, École Nationale Supérieure des Télécom-
munications

45. Herrera SEM, Malti A, Morel O, Bartoli A (2013) Shape-from-polarization in laparoscopy.
In: Proceedings of the international symposium on biomedical imaging, pp 1412–1415

46. Hertzmann A, Seitz SM (2005) Example-based photometric stereo: shape reconstruction with
general, varying BRDFs. IEEE Trans Pattern Anal Mach Intell 27(8):1254–1264

47. Hold-GeoffroyY, Gotardo P, Lalonde J-F (2019) Single day outdoor photometric stereo. IEEE
Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2962693

48. Horn BKP (1970) Shape from shading: a method for obtaining the shape of a smooth opaque
object from one view. PhD thesis, MIT

49. Horn BKP, Brooks MJ (1986) The variational approach to shape from shading. Comput Vis
Graph Image Process 33(2):174–208

50. Huynh CP, Robles-Kelly A, Hancock ER (2010) Shape and refractive index recovery from
single-view polarisation images. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 1229–1236

51. Huynh CP, Robles-Kelly A, Hancock ER (2013) Shape and refractive index from single-view
spectro-polarimetric images. Int J Comput Vis 101(1):64–94

52. Ikehata S, Wipf D, Matsushita Y, Aizawa K (2012) Robust photometric stereo using sparse
regression. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp 318–325

53. Ikeuchi K, Horn BKP (1981) Numerical shape from shading and occluding boundaries. Artif
Intell 17(1–3):141–184

54. Jancosek M, Pajdla T (2011) Multi-view reconstruction preserving weakly-supported sur-
faces. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 3121–3128

55. Johnson MK, Adelson EH (2011) Shape estimation in natural illumination. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 2553–2560

56. Ju Y-C, Tozza S, Breuß M, Bruhn A, Kleefeld A (2013) Generalised perspective shape from
shading with Oren-Nayar reflectance. In: Proceedings of the British machine vision confer-
ence, pp 42.1–42.11

https://doi.org/10.1109/TPAMI.2019.2962693


26 J.-D. Durou et al.

57. Kadambi A, Taamazyan V, Shi B, Raskar R (2015) Polarized 3D: high-quality depth sensing
with polarization cues. In: Proceedings of the IEEE international conference on computer
vision, pp 3370–3378

58. Kadambi A, Taamazyan V, Shi B, Raskar R (2017) Depth sensing using geometrically con-
strained polarization normals. Int J Comput Vis 125:34–51

59. Kong N, Tai Y-W, Shin JS (2013) A physically-based approach to reflection separation:
from physical modeling to constrained optimization. IEEE Trans Pattern Anal Mach Intell
36(2):209–221

60. Kontsevich LL, Petrov AP, Vergelskaya IS (1994) Reconstruction of shape from shading in
color images. J Opt Soc Am A 11(3):1047–1052

61. Langguth F, Sunkavalli K, Hadap S, Goesele M (2016) Shading-aware multi-view stereo. In:
Proceedings of the European conference on computer vision, pp 469–485

62. LeclercYG,BobickAF (1991)Thedirect computationof height fromshading. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 552–558

63. Li M, Zhou Z, Wu Z, Shi B, Diao C, Tan P (2020) Multi-view photometric stereo: a robust
solution and benchmark dataset for spatially varying isotropic materials. IEEE Trans Image
Process pp 4159–4173

64. Lions P-L, Rouy E, Tourin A (1993) Shape-from-shading, viscosity solutions and edges.
Numer Math 64(1):323–353

65. Logothetis F, Mecca R, Sgallari F, Cipolla R (2019) A differential approach to shape from
polarisation: a level-set characterisation. Int J Comput Vis 127(11–12):1680–1693

66. LyuY, Cui Z, Li S, PollefeysM, Shi B (2019) Reflection separation using a pair of unpolarized
and polarized images. In: Advances in Neural Information Processing Systems 32, Curran
Associates, Inc., pp 14559–14569

67. Mahmoud AH, El-Melegy MT, Farag AA (2012) Direct method for shape recovery from
polarization and shading. In: Proceedings of the IEEE international conference on image
processing, pp 1769–1772

68. Maurer D, Ju Y-C, Breuß M, Bruhn A (2018) Combining shape from shading and stereo:
a joint variational method for estimating depth, illumination and albedo. Int J Comput Vis
126(12):1342–1366

69. Mecca R, Falcone M (2013) Uniqueness and approximation of a photometric shape-from-
shading model. SIAM J Imaging Sci 6(1):616–659

70. Mecca R, Wetzler A, Bruckstein A, Kimmel R (2014) Near field photometric stereo with
point light sources. SIAM J Imaging Sci 7(4):2732–2770

71. Mecca R, Quéau Y, Logothetis F, Cipolla R (2016) A single-lobe photometric stereo approach
for heterogeneous material. SIAM J Imaging Sci 9(4):1858–1888

72. Mélou J, Quéau Y, Castan F, Durou J-D (2019) A splitting-based algorithm for multi-view
stereopsis of textureless objects. In: Proceedings of the international conference on scale space
and variational methods in computer vision, pp 51–63

73. Miyazaki D, Kagesawa M, Ikeuchi K (2004) Transparent surface modeling from a pair of
polarization images. IEEE Trans Pattern Anal Mach Intell 26(1):73–82

74. MiyazakiD, SaitoM,SatoY, IkeuchiK (2002)Determining surface orientations of transparent
objects based on polarization degrees in visible and infrared wavelengths. J Opt Soc Am A
19(4):687–694

75. Miyazaki D, Shigetomi T, Baba M, Furukawa R, Hiura S, Asada N (2012) Polarization-based
surface normal estimation of black specular objects from multiple viewpoints. In: Proceed-
ings of the international conference on 3D imaging, modeling, processing, visualization and
transmission, pp 104–111

76. Miyazaki D, Shigetomi T, BabaM, FurukawaR,Hiura S, AsadaN (2016) Surface normal esti-
mation of black specular objects from multiview polarization images. Opt Eng 56(4):041303

77. Miyazaki D, Tan RT, Hara K, Ikeuchi K (2003) Polarization-based inverse rendering from
a single view. In: Proceedings of the IEEE international conference on computer vision, pp
982–987



1 A Comprehensive Introduction to Photometric 3D-Reconstruction 27

78. Moons T, Van Gool L, Vergauwen M (2008) 3D reconstruction from multiple images, part 1:
principles. Found Trends Comput Graph Vis 4(4):287–404

79. Morel O, Meriaudeau F, Stolz C, Gorria P (2005) Polarization imaging applied to 3D recon-
struction of specularmetallic surfaces. In:Machine vision applications in industrial inspection
XIII. Proceedings of the SPIE, vol 5679, pp 178–186

80. Nayar S, Fang X, Boult T (1997) Separation of reflection components using color and polar-
ization. Int J Comput Vis 21(3):163–186

81. Nayar SK, Nakagawa Y (1994) Shape from focus. IEEE Trans Pattern Anal Mach Intell
16(8):824–831

82. Nehab D, Rusinkiewicz S, Davis J, Ramamoorthi R (2005) Efficiently combining positions
and normals for precise 3D geometry. ACM Trans Graph 24(3):536–543

83. Ngo TT, Nagahara H, Taniguchi R (2015) Shape and light directions from shading and polar-
ization. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 2310–2318

84. Onn R, Bruckstein AM (1990) Integrability disambiguates surface recovery in two-image
photometric stereo. Int J Comput Vis 5(1):105–113

85. Or-El R, Rosman G, Wetzler A, Kimmel R, Bruckstein A (2015) RGBD-fusion: real-time
high precision depth recovery. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 5407–5416

86. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In: Applied
mathematical sciences, vol 153. Springer, Berlin

87. Peng S, Haefner B, Quéau Y, Cremers D (2017) Depth super-resolution meets uncalibrated
photometric stereo. In: Proceedings of the IEEE international conference on computer vision
workshops, pp 2961–2968

88. Pintus R, Dulecha TG, Ciortan I, Gobbetti E, Giachetti A (2019) State-of-the-art in multi-light
image collections for surface visualization and analysis. ComputGraph Forum38(3):909–934

89. Prados E, Faugeras O (2005) Shape from shading: a well-posed problem? Proceedings of the
IEEE conference on computer vision and pattern recognition 2:870–877

90. Quéau Y, Mecca R, Durou J-D (2016) Unbiased photometric stereo for colored surfaces: a
variational approach. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 4359–4368

91. QuéauY,MeccaR,Durou J-D,DescombesX (2017) Photometric stereowith only two images:
a theoretical study and numerical resolution. Image Vis Comput 57:175–191

92. Quéau Y, Mélou J, Castan F, Cremers D, Durou J-D (2017) A variational approach to shape-
from-shading under natural illumination. In: Proceedings of the international workshop on
energy minimization methods in computer vision and pattern recognition, pp 342–357

93. Quéau Y, Wu T, Lauze F, Durou J-D, Cremers D (2017) A non-convex variational approach
to photometric stereo under inaccurate lighting. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 99–108

94. Quéau Y, Durix B, Wu T, Cremers D, Lauze F, Durou J-D (2018) LED-based photometric
stereo: modeling, calibration and numerical solution. J Math Imaging Vis 60(3):313–340

95. Quéau Y, Durou J-D, Aujol J-F (2018) Normal integration: a survey. J Math Imaging Vis
60(4):576–593

96. Rahmann S, Canterakis N (2001) Reconstruction of specular surfaces using polarization
imaging. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
vol 1

97. Robles-Kelly A, Huynh CP (2013) Imaging spectroscopy for scene analysis. Springer, Berlin
98. Santo H, Samejima M, Sugano Y, Shi B, Matsushita Y (2017) Deep photometric stereo

network. In: Proceedings of the IEEE international conference on computer visionworkshops,
pp 501–509

99. Schechner YY (2011) Inversion by P4: polarization-picture post-processing. Philos Trans R
Soc B: Biol Sci 366(1565):638–648

100. Schechner YY (2015) Self-calibrating imaging polarimetry. In: Proceedings of the IEEE
international conference on computational photography



28 J.-D. Durou et al.

101. Schechner YY, Shamir J, Kiryati N (2000) Polarization and statistical analysis of scenes
containing a semireflector. J Opt Soc Am A 17(2):276–284

102. Sengupta S, KanazawaA, Castillo CD, Jacobs DW (2018) SfSNet: learning shape, reflectance
and illuminance of faces in the wild. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 6296–6305

103. Sethian JA (1999) Level set methods and fast marching methods. Cambridge monographs
on applied and computational mathematics, vol 3, 2nd edn. Cambridge University Press,
Cambridge

104. Shabayek AER, Demonceaux C, Morel O, Fofi D (2012) Vision based UAV attitude estima-
tion: progress and insights. J Intell Robot Syst 65(1–4):295–308

105. Shafer SA, Kanade T (1983) Using shadows in finding surface orientations. Comput Vis
Graph Image Process 22(1):145–176

106. Shi B, Tan P, Matsushita Y, Ikeuchi K (2013) Bi-polynomial modeling of low-frequency
reflectances. IEEE Trans Pattern Anal Mach Intell 36(6):1078–1091

107. Shi B, Mo Z, Wu Z, Duan D, Yeung S, Tan P (2019) A benchmark dataset and evaluation for
non-Lambertian and uncalibrated photometric stereo. IEEE Trans Pattern Anal Mach Intell
41(2):271–284

108. Shurcliff WA (1962) Polarized light, production and use. Harvard University Press, Harvard
109. Simchony T, Chellappa R, Shao M (1990) Direct analytical methods for solving Poisson

equations in computer vision problems. IEEE Trans Pattern Anal Mach Intell 12(5):435–446
110. Smith WAP, Fang F (2016) Height from photometric ratio with model-based light source

selection. Comput Vis Image Underst 145:128–138
111. Smith WAP, Ramamoorthi R, Tozza S (2016) Linear depth estimation from an uncalibrated,

monocular polarisation image. In: European conference on computer vision. Lecture notes in
computer science, vol 9912, pp 109–125

112. SmithWAP,Ramamoorthi R, Tozza S (2019)Height-from-polarisationwith unknown lighting
or albedo. IEEE Trans Pattern Anal Mach Intell 41(12):2875–2888

113. Soukup D, Huber-Mörk R (2014) Convolutional neural networks for steel surface defect
detection from photometric stereo images. In: International symposium on visual computing.
Lecture notes in computer science, vol 8887, pp 668–677

114. Sun J, Smith M, Smith L, Coutts L, Dabis R, Harland C, Bamber J (2008) Reflectance of
human skin using colour photometric stereo: with particular application to pigmented lesion
analysis. Skin Res Technol 14(2):173–179

115. Szeliski R (1991) Fast shape from shading. Comput Vis Graph Image Process: Image Underst
53(2):129–153

116. Taamazyan V, Kadambi A, Raskar R (2016) Shape from mixed polarization.
arXiv:1605.02066

117. Tankus A, Sochen N, Yeshurun Y (2003) A new perspective [on] shape-from-shading. In:
Proceedings of the IEEE international conference on computer vision 2:862–869

118. Tozza S, Falcone M (2016) Analysis and approximation of some shape-from-shading models
for non-Lambertian surfaces. J Math Imaging Vis 55(2):153–178

119. Tozza S, Mecca R, Duocastella M, Del Bue A (2016) Direct differential photometric stereo
shape recovery of diffuse and specular surfaces. J Math Imaging Vis 56(1):57–76

120. Tozza S, Smith WAP, Zhu D, Ramamoorthi R, Hancock ER (2017) Linear differential con-
straints for photo-polarimetric height estimation. In: Proceedings of the IEEE international
conference on computer vision, pp 2298–2306

121. Tuchin VV, Wang L, Zimnyakov DA (2006) Optical polarization in biomedical applications.
Springer Science & Business Media, New York

122. Vogiatzis G, Hernández C, Cipolla R (2006) Reconstruction in the round using photometric
normals and silhouettes. In: Proceedings of the IEEE conference on computer vision and
pattern recognition 2:1847–1854

123. White R, Forsyth D (2006) Combining cues: shape from shading and texture. In: Proceedings
of the IEEE conference on computer vision and pattern recognition 2:1809–1816

http://arxiv.org/abs/1605.02066


1 A Comprehensive Introduction to Photometric 3D-Reconstruction 29

124. Wieschollek P, Gallo O, Gu J, Kautz J (2018) Separating reflection and transmission images
in the wild. In: Proceedings of the European conference on computer vision, pp 89–104

125. Witkin AP (1981) Recovering surface shape and orientation from texture. Artif Intell 17(1–
3):17–45

126. Wolff LB (1990) Surface orientation from two camera stereo with polarizers. In: Optics,
illumination, and image sensing for machine vision IV. Proceedings of the SPIE, vol 1194,
pp 287–298

127. Wolff LB (1997) Polarization vision: a new sensory approach to image understanding. Image
Vis Comput 15(2):81–93

128. Wolff LB, Boult TE (1991) Constraining object features using a polarization reflectance
model. IEEE Trans Pattern Anal Mach Intell 13(7):635–657

129. Woodham RJ (1980) Photometric method for determining surface orientation from multiple
images. Opt Eng 19(1):134–144

130. Worthington PL, Hancock ER (1999) Needle map recovery using robust regularizers. Image
Vis Comput 17(8):545–557

131. Wu L, Ganesh A, Shi B, Matsushita Y, Wang Y, Ma Y (2010) Robust photometric stereo
via low-rank matrix completion and recovery. In: Proceedings of the Asian conference on
computer vision, pp 703–717

132. Yang L, Tan F, Li A, Cui Z, Furukawa Y, Tan P (2018) Polarimetric dense monocular SLAM.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3857–
3866

133. Yuille AL, Snow D, Epstein R, Belhumeur PN (1999) Determining generative models of
objects under varying illumination: shape and albedo from multiple images using SVD and
integrability. Int J Comput Vis 35(3):203–222

134. Zhang R, Tsai P-S, Cryer JE, Shah M (1999) Shape-from-shading: a survey. IEEE Trans
Pattern Anal Mach Intell 21(8):690–706

135. Zhu D, Smith WAP (2019) Depth from a polarisation + RGB stereo pair. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 7586–7595


	1 A Comprehensive Introduction to Photometric 3D-Reconstruction
	1.1 Introduction
	1.2 Shape-from-Shading
	1.2.1 Non-differential SfS Models
	1.2.2 Differential SfS Models
	1.2.3 Ill-Posedness of the SfS Models
	1.2.4 Numerical Approximation
	1.2.5 Applications of SfS

	1.3 Photometric Stereo
	1.3.1 Well-Posedness of PS
	1.3.2 Numerical Solving of PS
	1.3.3 PS with Non-trivial Reflectance or Lighting
	1.3.4 Combining PS and Other 3D-Reconstruction Methods
	1.3.5 Applications of PS

	1.4 Shape-from-Polarisation
	1.4.1 Description and Generation of a Polarisation Image
	1.4.2 Diffuse and Specular Polarisation Models
	1.4.3 3D-Shape Recovery Using Polarisation Information
	1.4.4 An Example of Numerical Resolution for Shape Recovery
	1.4.5 Applications

	1.5 A Short Presentation of This Volume
	References




