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Preface

The Shape-from-X class of problems is related to the 3D-reconstruction of the shape
of objects, an issue largely investigated by the computer vision and applied math-
ematics communities. The X represents a bunch of information that can be used to
reconstruct the shape, e.g. from shading, from texture, and from polarization.

To this class belongs the classic Shape-from-Shading (SfS) problem, where the
datum is a single 2D gray-level image of the object we want to reconstruct. This
approach dates back to the pioneering work of Horn in the seventies. Usually, all
these 3D-reconstruction problems can be formulated via partial differential equa-
tions and/or via variational methods, giving rise to a variety of nonlinear systems
that have been analyzed by many authors. A typical feature is that all the methods
require advanced techniques for the analysis and for the numerical approximation
since 3D-reconstruction is a typically ill-posed problem that, in general, does not
admit a unique solution. Moreover, for real applications we need to reconstruct
objects of different materials and shapes having different reflection properties and
corresponding to non-regular surfaces. To this end, various models have been
proposed and some of them are assuming known position of light sources (cali-
brated model), whereas others are not (uncalibrated models). Clearly, real-world
applications need the analysis of uncalibrated models.

The ingredients that play a role in this context are essentially three: the camera
model, the reflectance model, and the lighting model. The most simple and common
setup found in the literature is the Lambertian model under orthographic projection,
but perspective models and non-Lambertian surfaces have also been studied. In
order to solve the under-determination, one can couple the basic model with other
information as, for example, using more images of the same object. For instance, in
the photometric stereo technique, one uses several images taken from the same
point of view under different lighting conditions, whereas with a stereovision
technique the images are obtained while moving the viewpoint (camera) under the
same light configuration.

This volume is devoted to photometric 3D-reconstruction techniques
(shape-from-shading, photometric stereo, and shape-from-polarization), and our
goal is to present recent advances in the area. Some contributions will focus on
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theoretical results which are necessary to develop real-world applications, a field
that is growing in recent years, thanks to the advances on effective numerical
techniques. However, the features listed above imply serious difficulties at a
numerical level, for both accuracy and complexity, and further research activity is
needed to make a step forward in their application.

Our aim is to give an overview of photometric techniques that can be useful by
researchers, engineers, practitioners, and graduate students involved in computer
vision. Also researchers in optimization and numerical analysis can find this volume
interesting to approach the field.

The papers presented in this volume give only an idea of the different research
directions discussed during the Workshop “Recent Trends in Photometric
3D-Reconstruction” held in Bologna within the SIAM Conference on Imaging
Science in June 2018. A detailed description of the papers is presented at the end
of the first chapter.

We take this opportunity to thank all the speakers of that workshop and those
who contributed to this volume. We hope that it will attract more researchers in this
challenging area.

Toulouse, France Jean-Denis Durou
Rome, Italy Maurizio Falcone
Caen, France Yvain Quéau
Naples, Italy
April 2020

Silvia Tozza
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Chapter 1
A Comprehensive Introduction to
Photometric 3D-Reconstruction

Jean-Denis Durou, Maurizio Falcone, Yvain Quéau, and Silvia Tozza

Abstract Photometric 3D-reconstruction techniques aim at inferring the geometry
of a scene from one or several images, by inverting a physical model describing the
image formation. This chapter presents an introductory overview of the main pho-
tometric 3D-reconstruction techniques which are shape-from-shading, photometric
stereo and shape-from-polarisation.

1.1 Introduction

Inferring the 3D-shape of a scene is necessary in many applications such as quality
control, augmented reality or medical diagnosis. Depending upon the requirements
of the application, 3D-estimation can be carried out using a variety of technological
solutions, from coordinate measuring machines to X-ray scanners. Over the last
decades, digital cameras have become a reliable alternative to such sensors, as they
represent a reasonable compromise between resolution and affordability. Given one
or several 2D-images of a scene capturedby adigital camera, the process of estimating
its 3D-shape is called 3D-reconstruction. It is a classic inverse problem in computer
vision, which has been addressed in several ways.
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2 J.-D. Durou et al.

Table 1.1 Main shape-from-X techniques. Geometric techniques aim at identifying and analysing
features. This presentation rather focuses on photometric techniques, which aim at inverting a
physics-based image formation model

Geometric techniques Photometric techniques

Single image Structured light [39] Shape-from-shading (SfS) [48]

Shape-from-shadows [105]

Shape-from-contours [15]

Shape-from-texture [125]

Shape-from-template [10]

Multi-images Structure-from-motion [78] Photometric stereo (PS) [129]

Stereopsis [43] Shape-from-polarisation (SfP) [96]

Shape-from-silhouettes [44]

Shape-from-focus [81]

A 3D-model consists of a set of geometric (position, orientation, etc.) and photo-
metric (color, texture, etc.) information. Knowing both these pieces of information
allows to render synthetic images, by simulating the trajectory of the light rays from
the sources to the camera, after reflection on the surface of the scene. 3D-scanning
is the dual of rendering: one aims at a geometric and photometric characterisation of
the scene’s surface by reversing the trajectory of the light rays. In fact, 3D-scanning
includes both the subproblems of 3D-reconstruction (estimating the scene’s geome-
try) and appearance estimation (estimating its photometric properties).

The various 3D-reconstruction techniques from digital cameras are grouped under
the generic terminology shape-from-X, X indicating that shape estimation can be
based on various clues (shadows, contours, etc.). The main shape-from-X techniques
are presented in Table 1.1. In this table, they are classified according to the clue they
are based on (photometric or geometric) and the number of images they require.

Geometric shape-from-X techniques are built upon the identification of features
in the image(s). On the other hand, photometric shape-from-X techniques are based
on the analysis of the quantity of light received in each photosite of the camera’s
sensor. Photometric 3D-reconstruction techniques indeed rely on a physics-based
forward image formation model describing the interactions between light, matter
and the camera, and aim at inverting this model in order to infer the geometry of the
scene and, possibly, its photometric properties.

There exist out-of-the box solutions for geometric 3D-reconstruction, e.g.
Microsoft Kinect (based on stereopsis or structured light, depending on the version),
or the CMPMVS [54] or AliceVision [2] projects (based on structure-from-motion
and stereopsis). On the contrary, there is a lack of such solutions for photomet-
ric techniques, which are usually rather viewed as “lab” reconstruction techniques
because they rely on several assumptions on the acquisition setup. Still, they bear
great promises in terms of level of geometric details which can be recovered, and of
applicability to a wide range of materials.



1 A Comprehensive Introduction to Photometric 3D-Reconstruction 3

The aim of this chapter is to present an overview of the three main photometric
shape-from-X techniques: shape-from-shading, photometric stereo and shape-from-
polarisation. We first review in Sect. 1.2 the shape-from-shading problem, which is
a computer vision technique consisting in inferring geometry from a single image.
Then, we discuss two techniques where multiple images are analysed under con-
trolled incident or reflected lighting. In photometric stereo (Sect. 1.3), a series of
images are acquired under varying incident lighting, which permits to estimate both
the shape and the reflectance of the pictured surface. In shape-from-polarisation
(Sect. 1.4), it is the state of polarisation of the reflected light which is analysed, by
considering a series of images acquired with a controllable polarising filter attached
to the camera. Section 1.5 eventually concludes this study by presenting the subse-
quent chapters of this volume.

1.2 Shape-from-Shading

Inferring 3D-geometry from a single image of a shaded surface is a problem known
as shape-from-shading. This technique was first developed in the seventies at MIT,
under the impulse of Horn [48].

1.2.1 Non-differential SfS Models

Let us briefly outline the problem, attaching to the camera a 3D-coordinate system
Oxyz, such that Oxy coincides with the image plane and Oz with the optical axis.
Assuming orthographic projection, the visible part of the scene is, up to a scale
factor, a graph z = u(x), where x = [x, y]� is an image point. The SfS problem can
be modelled by the image irradiance equation [49]:

I (x) = R(n(x)), (1.1)

where I (x) is the graylevel at point x (in fact, I (x) is the irradiance at point x, but both
quantities are proportional), and the radiance R(n(x)) gives the value of the light
re-emitted by the surface as a function of its orientation, i.e. of the unit normal n(x)
to the surface at the 3D-point [x, y, u(x)]� conjugate with x (cf. Fig. 1.1). Assuming
that, besides I , the radiance function R is also known, then solving Eq. (1.1) is a
non-differential model of SfS, in which the unknown is the normal n(x).

Let us assume there is a unique light source at infinity, whose direction is charac-
terised by the unit vectorω = [ω1, ω2, ω3]� ∈ R

3, and whose intensity is denoted by
ψ(x). Let us also assume for simplicity that the surface is Lambertian, i.e. an ideal
diffuse reflecting surface for which the apparent brightness is independent from the
viewing angle. Then, R is written in such a way that Eq. (1.1) becomes
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Fig. 1.1 The surface is represented as a graph z = u(x), where x = [x, y]� is an image point in the
reconstruction domain �. The normal at the surface point [x, y, u(x)]� conjugate with x is denoted
by n(x), and the incident light direction by ω

I (x) = r(x) ψ(x)ω�n(x). (1.2)

In Eq. (1.2), r(x) is the reflectance (or albedo), and the scalar product ψ(x)ω�n(x)
is called shading. This is another example of non-differential SfS model.

Equation (1.2) is fundamentally ill-posed, according to the trompe-l’œil princi-
ple, which is well illustrated by Adelson and Pentland’s “workshop metaphor” [1]
(cf. Fig. 1.2). If a painter, a light designer and a sculptor are asked to design an
artwork explaining a given image I (x), they may propose very different, but plau-
sible, solutions. The painter will assume a planar surface and a uniform lighting,
the changes in intensity being explained by changes in reflectance r(x). The light
designer may propose a sophisticated lighting configuration ψ(x) placed in front
of a planar surface with uniform reflectance. Eventually, the sculptor will assume
lighting and reflectance are uniform and explain the changes in intensity solely by
the shading, which results from variations in the local orientation n(x) of the surface.

This last explanation, which comes down to inverting Eq. (1.2) in order to infer
a 3D-shape, assuming everything is known but n(x), is precisely the shape-from-
shading problem. So it is assumed that the reflectance is known, which is usually
written r(x) ≡ 1, and that the lighting is uniform, i.e. ψ(x) ≡ 1.
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Fig. 1.2 Adelson and Pentland’s “workshop metaphor” [1]. To explain an image a in terms of
reflectance, lighting and shape, b a painter, c a light designer and d a sculptor will design three
different, but plausible, solutions. Inferring the shape d from a single image is the shape-from-
shading problem

1.2.2 Differential SfS Models

Let us now turn to differential SfSmodels. Under orthographic projection, the normal
is easily expressed as

n(x) = 1
√
1 + p(x)2 + q(x)2

[−p(x),−q(x), 1]�, (1.3)

where

p := ∂u

∂x
and q := ∂u

∂y
, (1.4)

so that∇u(x) = [p(x), q(x)]�. It is easily deduced from Eqs. (1.2) and (1.3), assum-
ing r(x) ≡ 1 and ψ(x) ≡ 1, that the following equation holds true for a general
parallel lighting whose direction is characterised by ω = [ω1, ω2, ω3]�:

I (x)
√
1 + |∇u(x)|2 + [ω1, ω2] ∇u(x) − ω3 = 0. (1.5)

This is a first-order nonlinear partial differential equation (PDE) of Hamilton–Jacobi
type, which constitutes an example of differential SfS model, in which the unknown
is now the function u, called the height map. This equation has to be solved on a
compact domain � ⊂ R

2, called the reconstruction domain.
The PDE which appears in most of the papers on SfS corresponds to a frontal

lighting, i.e. ω = [0, 0, 1]�. This assumption leads to the eikonal equation, which is
a particular case arising from the differential SfS model (1.5):

|∇u(x)| = f (x) :=
√

1

I (x)2
− 1, (1.6)
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where the graylevel function I , which typically takes integer values between 0
and 255, is implicitly resampled to take real values in the range [0, 1].

Note that even in the most simple case (the eikonal equation) we get a nonlinear
PDEof thefirst order, and the solutions are a priori non-differentiable andnon-unique,
even if we complement Eq. (1.6) with a Dirichlet boundary condition, i.e. u = g on
the boundary ∂� of �. Moreover, the right-hand side of the eikonal equation is
not always defined because I (x) can vanish at some points. A simple example is the
hemisphere z = √

1 − x2 − y2 under a parallel frontal lighting. In this case, I (x) = 0
at the equator. However, in that simple situation the boundary condition u = 0 can
help to solve the problem.

Under oblique light direction the same example becomes more difficult because
there will be a black shadow region �s ⊂ � where I (x) ≡ 0, and in that region the
model has no information to reconstruct the surface. The boundary of�s , which is not
known a priori, is a curve where it would be difficult to impose boundary conditions
in the numerical approximation. In general, the curve separating the region �s will
depend on the shape of the surface and on the light source direction ω. Note that in
case of black shadows, the model is clearly unable to produce a reasonable surface
approximation, because the information is missing. In this situation, one can follow
a global approach avoiding to impose boundary conditions on ∂�s . This leads to the
concept of maximal solution, where we solve the PDE on the whole domain with
the standard Dirichlet boundary condition on ∂� (not on ∂�s), and recover a linear
reconstruction on �s (we refer to [17, 34, 35] for more details).

1.2.3 Ill-Posedness of the SfS Models

The “workshopmetaphor” illustrated in Fig. 1.2 is representative of the ill-posedness
of SfS, because a posteriori estimating 3D-geometry from a single image is possible
only if reflectance and lighting are known a priori. The reliability of these priors is
of fundamental importance to guarantee that the solution of SfS is meaningful.

This is illustrated in Fig. 1.3, which shows how the assumptions leading to
Eq. (1.6), i.e. a uniform reflectance (r(x) ≡ 1) and a parallel uniform lighting
(ψ(x) ≡ 1 and ω = [0, 0, 1]�), which is just a rough approximation in the case of
Fig. 1.3a, yield the erroneous interpretation of the 3D-shape shown in Fig. 1.3b. How-
ever, this solution is an exact solution of Eq. (1.6), as shown by frontally relighting
this uniformly white 3D-shape (cf. Fig. 1.3c).

Even when reflectance and lighting are known, i.e. when r(x) ≡ 1 and ψ(x) ≡ 1,
the non-differential model (1.2) of SfS remains ill-posed:

I (x) = ω�n(x). (1.7)

Except for some sparse singular points, where n(x) points in the same direction ofω,
there exists an infinity of surface normals explaining the graylevel in one pixel. It
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Fig. 1.3 Illustration of the importance of reflectance and lighting priors on the solution of SfS [25].
a A well-known graylevel image I (x). b 3D-shape estimated by solving the SfS model (1.6), by
(wrongly) assuming uniform reflectance r(x) ≡ 1, and uniform frontal lighting, i.e. ψ(x) ≡ 1 and
ω = [0, 0, 1]�. The 3D-reconstruction largely departs from the true geometry. Yet, by taking from
above a picture of the uniformly white 3D-shape b, using the camera’s flash as single light source,
one gets image c, which resembles a. 3D-shape b is thus a plausible explanation of a: the bias
comes from the inappropriate reflectance and lighting priors

comes down from Eq. (1.7) that these normals n(x) form a revolution cone around
the lighting direction ω. It is thus very difficult to locally solve SfS.

A simple example in dimension 1 is given by the surface z = u1(x) = 1 − x2

in the interval (−1, 1) (cf. Fig. 1.4a), under vertical lighting ω = [0, 1]�, which
satisfies an equation of the form (1.6) and the homogeneous boundary condition
u1(1) = u1(−1) = 0. However, the function u2(x) = −u1(x) in the same interval
still satisfies this equation, since |∇u(x)| is the same and the same boundary condition
holds. This example is an illustration of the famous concave/convex ambiguity of SfS.

Note that u1 and u2 are two differentiable solutions to the same problem. If we
decide to accept also solutions which are differentiable only almost everywhere (a
very natural choice in view of real applications), we suddenly have an infinite number
of solutions which can be obtained just considering all the possible reflections of
one of those solutions, e.g. u1, with respect to a horizontal axis located at the height
z = h, where h ∈ (0, 1). This is illustrated in Fig. 1.4b,where three such solutions are
exhibited. If one fixes the height at the singular point, then only one of these solutions
can be accepted (we refer to [64] for this result), but such an additional knowledge
is clearly not very realistic. A general theory for weak solutions of Hamilton–Jacobi
equations (that includes the eikonal equation) has been developed in the last 20 years
starting from the seminal paper by Crandall and Lions [24]. We refer the interested
reader to the book [8] and the references therein.

Practical ways to reduce this ambiguity include resorting to more realistic mod-
els such as perspective camera [117] or near-lighting [89]. However, it has been
shown that this remains insufficient to ensure well-posedness [16]. Recently, the
introduction of an attenuation factor in the brightness equations relative to various
perspective SfS models allowed to make the corresponding differential problems
well-posed. In [18], a unified approach based on the theory of viscosity solutions has
been proposed, showing that the brightness equations coming from different non-
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(a) (b)

Fig. 1.4 a Example of the 1D-surface z = u1(x) = 1 − x2. b Under vertical lighting, three other
solutions (amongst an infinity), which are differentiable almost everywhere, satisfy the same eikonal
equation as u1

Lambertian reflectance models with the attenuation term admit a unique viscosity
solution.

1.2.4 Numerical Approximation

An important step towards the numerical solving of SfS was achieved when inverse
problems in computer vision caught the attention of mathematicians [64]. Efficient
numerical approaches were suggested to solve the eikonal equation (1.6), which
is the SfS fundamental differential model relating the surface slope to the image
graylevel. By construction, this equation can only be solved globally, therefore,
SfS ambiguities are reduced, in comparison with local approaches. They are not
eliminated yet, because the concave/convex ambiguity remains.

An overview of the numerical methods for solving SfS can be found in [31, 134].
PDE-based methods (e.g. [34]) find a viscosity solution to the eikonal equation.
Just to give an example let us consider the basic eikonal equation (1.6). A typical
technique to solve it is using a finite difference scheme. One example is the following
iterative Lax–Friedrichs scheme which, in its simplest form, can be written as

u(k+1)
i, j = u(k)

i−1, j + u(k)
i+1, j + u(k)

i, j−1 + u(k)
i, j+1

4
(1.8)

−1

2

⎛

⎜
⎝

√√√√
(
u(k)
i+1, j − u(k)

i−1, j

2

)2

+
(
u(k)
i, j+1 − u(k)

i, j−1

2

)2

− fi, j

⎞

⎟
⎠ ,

where fi, j is the right-hand side of the eikonal equation (1.6) at the pixel (i, j),
ui, j is the height at this pixel, and the index k is the number of the iteration of the
iterative scheme. The values {u0i, j } represent an initial guess for the height, typically
a constant value. Let us briefly explain the meaning of the iterative scheme: the
first term is an average of four values around the pixel (i, j), and inside the square
root there are the centered finite difference approximations of the partial derivatives
∂u/∂x and ∂u/∂y. In practice, several approximation schemes are available, e.g.
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finite difference as illustrated in [86, 103], semi-Lagrangian schemes [32, 33]. Most
of the efficient schemes use upwind approximations of the derivatives and additional
terms to control the diffusion in the scheme. Let us also mention that a fast-marching
version for these methods allows to drastically reduce the CPU time for this type of
algorithms [26, 103] and has been extensively applied in the area of image processing.
Another delicate point is that the graylevel function I is typically a discontinuous
function, so the approximation scheme should take into account this lack of regularity
(a result in this direction is in [36]).

On the other hand, many optimisation-based methods have been proposed to
compute the normal field n. Under orthographic projection, (1.3) shows that n just
depends on p and q as defined in (1.4). Therefore, there exists a function R such
thatR(p(x), q(x)) := R(n(x)). From this and Eq. (1.1), the following least-squares
variational model of SfS is derived (robust estimators have also been used [130]):

min
p,q: �→R

∫

�

∣∣∣I (x) − R(p(x), q(x))
∣∣∣
2
dx. (1.9)

As already said in the previous subsection, this problem is clearly ill-posed. Nev-
ertheless, if u is of class C2, p and q are two non-independent functions since,
according to Schwarz’s theorem, ∂p/∂y = ∂q/∂x . For numerical reasons [49], this
hard constraint is usually replaced by a quadratic regularisation term weighted by a
hyper-parameter λ > 0, which gives the following better-posed problem than (1.9):

min
p,q: �→R

∫

�

∣∣∣I (x) − R(p(x), q(x))
∣∣∣
2
dx + λ

∫

�

∣∣∣
∂p

∂y
(x) − ∂q

∂x
(x)
∣∣∣
2
dx. (1.10)

Another regularisation term has been extensively used, since it is easier to discre-
tise [62]:

min
p,q: �→R

∫

�

∣∣∣I (x) − R(p(x), q(x))
∣∣∣
2
dx + λ

∫

�

[
|∇ p(x)|2 + |∇q(x)|2

]
dx.

(1.11)
Typical optimisation methods are descent methods. For instance, the Euler–

Lagrange equations derived from (1.11) are written (dependencies on x are omitted):

[
I − R(p, q)

] ∂R
∂p

(p, q) + λ �p = 0 and
[
I − R(p, q)

] ∂R
∂q

(p, q) + λ �q = 0.

(1.12)
Using the classical discrete approximation of the Laplacian �p at pixel (i, j):

�pi, j ≈ pi+1, j + pi−1, j + pi, j+1 + pi, j−1

4
− pi, j , (1.13)

the following iterative scheme for solving (1.11) comes down from (1.12) and (1.13)
[53]:
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⎧
⎪⎪⎨

⎪⎪⎩

p(k+1)
i, j = p(k)

i, j + 1

λ

[
Ii, j − R(p(k)

i, j , q
(k)
i, j

)] ∂R
∂p

(
p(k)
i, j , q

(k)
i, j

)
,

q(k+1)
i, j = q(k)

i, j + 1

λ

[
Ii, j − R(p(k)

i, j , q
(k)
i, j

)] ∂R
∂q

(
p(k)
i, j , q

(k)
i, j

)
,

(1.14)

where p denotes the local average of p, p(0) and q(0) are given initial conditions, and
the index k is the number of the iteration.

To avoid divergence for such schemes [30], it has been proposed to directly min-
imise the functional in (1.11), using conjugate gradient descent [62, 115] or line
search [29], but the approximate solution is typically a local minimum. A way to
overcome this limitation is to use a global optimisation, e.g. simulated annealing [27].
Finally, to decrease the CPU time, it has been dealt with multi-resolution [115].

Even if some optimisation-based methods aim to directly solve the SfS problem
in the height u, as for instance [23] where a parametric model with few parameters
is used, most of them first compute a normal field n. Once the components p and q
of the normal (cf. Eq. (1.4)) have been computed, it remains to integrate them into a
height map. Several methods can be used for this task, depending on the application’s
requirements in terms of speed, robustness to noise in the estimated normal field and
preservation of discontinuities [95]. For instance, a standard solution for the recovery
of a smooth height map consists in considering the quadratic variational problem:

min
u:�→R

∫

�

∣∣∣∣∇u(x) −
[
p(x)
q(x)

] ∣∣∣∣

2

dx, (1.15)

which can be solved, e.g. using Fourier analysis [37], discrete sine or cosine trans-
form [109] or iterative methods [7], depending upon the shape of� and the boundary
conditions.

1.2.5 Applications of SfS

Thenatural application of SfS is the 3D-reconstruction of a scene froma single image.
However, in real-world settings the assumptions formulated above on reflectance and
lighting are too restrictive. Therefore, efforts have recently been devoted to move
beyond the assumptions of Lambertian reflectance [56, 118, 119] and controlled
illumination [55, 92]. In such works, reflectance and lighting are allowed to take
a more general form, yet they still must be calibrated. To remove this limitation,
additional priors must be introduced, as it is common in the field of intrinsic image
decomposition where the reflectance is often assumed to be piecewise smooth [9].
Alternatively, deep learning techniques can be employed to simultaneously estimate
shape, reflectance and lighting, provided that the object to reconstruct resembles those
in the learning database [102]. In the absence of suchpriors, SfS canbe combinedwith
another 3D-reconstruction technique: the latter provides a coarse prior on geometry,
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whose details are then refined using SfS. In this view, SfS has been combined with
shape-from-texture [123], structure-from-motion [38],multi-view stereopsis [61, 68,
72] or depth sensors [41, 85].

An alternative strategy to resolve the ambiguities of SfS consists in using addi-
tional images taken under varying lighting. This approach, which is called photo-
metric stereo, will be discussed in the next section.

1.3 Photometric Stereo

The photometric stereo technique, first developed byWoodham [129], is an extension
of SfS which considers several images acquired under the same viewing angle, but
various lighting conditions.

1.3.1 Well-Posedness of PS

Onemay reasonably hope that shape inference by PSwill be better-posed, in compar-
ison with the single-image case of SfS. Indeed, 3D-shape and Lambertian reflectance
can be exactly and uniquely determined from a set of three images taken under non-
coplanar, uniform, calibrated directional lighting. This is easily shownby considering
a system ofm ≥ 3 image irradiance equations such as (1.2), obtained under illumina-
tion with uniform intensity ψ(x) ≡ 1, but varying direction characterised by vectors
ωi , i ∈ {1, . . . ,m}:

Ii (x) = r(x)ω�
i n(x), i ∈ {1, . . . ,m}. (1.16)

This system of equations comes down to a linear system of m equations inm(x) :=
r(x)n(x). Provided that m = 3 and the three illumination vectors ωi , i ∈ {1, 2, 3},
are non-coplanar, there exists a unique solutionm(x) of this system, from which the
albedo can be extracted as r(x) = |m(x)| and the surface normal as n(x) = m(x)

|m(x)| .
When m > 3, an approximate solution of the system can be estimated as long as the
m illumination vectors remain non-coplanar. An example of result obtained with this
approach on a banknote is presented in Fig. 1.5. It illustrates well the unique ability
of PS both to estimate fine-scale geometric details, and to estimate the reflectance.

PS can however be ill-posed in two particular scenarios. Firstly, when lighting
is unknown (uncalibrated PS), the local estimation of surface normals is under-
constrained. As in SfS, the problem must be reformulated globally, and the integra-
bility constraint must be imposed [133]. But even then, a low-frequency ambiguity
known as the generalised bas-relief ambiguity remains [12]: it is necessary to intro-
duce additional priors, see [107] for an overview of existing uncalibrated photometric
stereo approaches, and [19] for a modern solution based on deep learning. Another
situation where PS is ill-posed is when only two images are considered [91]: in each
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Fig. 1.5 Photometric stereo-based 3D-reconstruction of a 10 euro banknote. From a set of images
captured under varying lighting (left), PS infers both the surface geometry (top-right, we show the
RGB-coded estimated normals and the 3D-shape obtained by integration of the normals), as well
as its reflectance (bottom-right, we show the estimated albedo)

pixel there exist two possible normals explaining the pair of graylevels, even with
known reflectance and lighting. Again, integrability must be imposed in order to
limit the ambiguities [84].

1.3.2 Numerical Solving of PS

In the previous subsection, we described a simple strategy to estimate the surface
normals by photometric stereo. The knowledge of surface normals is however not
sufficient to fully characterise the geometry of the pictured scene. To obtain a com-
plete 3D-representation, the normals must then be integrated into a height map. We
have already discussed this integration problem in Sect. 1.2.4, and we refer the reader
to [95] for a comprehensive overview.

With this pipeline, one first estimates the surface normals, and then integrates
them into a height map. This strategy is however suboptimal, since any error in the
normal estimation step will propagate during the subsequent normal integration one.
An alternative strategy is to reformulate (1.16) as a system of partial differential
equations in the unknown height map u, and directly estimate u. For instance, one
may consider the ratio of two equations such as (1.16), for i 
= j , while replacing
the surface normal n(x) by its definition (1.3). This yields the following PDE:

[
Ii (x)ω j − I j (x)ωi

]�
[−∇u(x)

1

]
= 0, ∀x ∈ �, (1.17)
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which is linear in∇u, and is independent from the reflectance r . It can be solved, e.g.
using a finite difference upwind scheme or semi-Lagrangian methods [69]. When
more than a single pair of images is considered, the joint approximate solving of the
system of equations such as (1.17), obtained for every pair {i, j}, can be formulated
as a variational problem:

min
u:�→R

∑∑

i< j

∫

�

∣∣∣∣
[
Ii (x)ω j − I j (x)ωi

]�
[−∇u(x)

1

] ∣∣∣∣

2

dx. (1.18)

Such an approach, initially proposed in [90, 110], also easily extends to more elab-
orate camera or reflectance models [71].

Nevertheless, this ratio-based approachdoes not provide the reflectance, contrarily
to the simple pipeline presented in the previous subsection. Moreover, solving the
linearised partial differential equations (1.17) is not equivalent to solving the original
Eqs. (1.16): for instance, Gaussian noise on the images turns into Cauchy noise on
the ratios, making least-squares inference suboptimal. Thus, the joint recovery of
height and reflectance by variational inversion of the image irradiance Eqs. (1.16)
has also been explored. For example, plugging the definition (1.3) of n(x) into (1.16),
the joint estimation of height and reflectance in a least-squares sense leads to

min
u,r :�→R

m∑

i=1

∫

�

∣∣∣∣Ii (x) − r(x)ω�
i

[−∇u(x)/
√
1 + |∇u(x)|2

1/
√
1 + |∇u(x)|2

] ∣∣∣∣

2

dx, (1.19)

which can be solved, e.g. using alternating reweighted least-squares [93].

1.3.3 PS with Non-trivial Reflectance or Lighting

The surface has been assumed Lambertian in our models, and lighting has been
assumed directional but those assumptions are difficult to satisfy in real-world sce-
narios. An important feature of PS, in comparison with SfS, is that the redundancy
provided by themultiple images enables relaxing such assumptions. Indeed, shadows
or off-Lambertian effects such as specularities can be coped with by solving PS in a
robustmanner, for instance, by resorting to sparse regressionwhich treats such effects
as outliers to the Lambertian model [52, 93]. Other ways to deal with off-Lambertian
effects include inverting a reflectance model which is more sophisticated than Lam-
bert’s [71, 106] or pre-processing the images according to a low-rank prior [131]. Let
us also mention data-driven methods, which either compare the intensity variations
with those observed on a reference object with known shape [46] or resort to a deep
neural network trained or large dataset [98].

Another direction of research on PS is the study of more realistic lighting models,
in order to simplify the acquisition of data. For instance, some methods have been
developed to handle images acquired under nearby point light illumination [70],
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which finds a natural application in LED-based photometric stereo [94]. This permits
to build a simple acquisition setup based on cheap hardware. Extended light sources
have also been considered, which permits for instance to use the screen of a LCD
display as light source [21]. Eventually, other approaches have considered the case
of natural illumination in order to bring PS outdoor [11], and numerical solving
methods based on variational principles [42] or deep learning [47] have recently
been suggested.

1.3.4 Combining PS and Other 3D-Reconstruction Methods

A criticism which is frequently formulated against PS is that it excels with the
recovery of high-frequency geometric details, yet it is prone to a low-frequency bias
which may distort the global geometry [82]. In fact, such a bias usually comes from
a contradiction between the assumptions behind the image formation model and the
actual experiments, e.g. assuming a directional light source instead of a nearby point
light one. Therefore, the methods discussed in the previous subsection provide a
remedy to such a bias.

On the other hand, it is sometimes simpler from a practical perspective to stick to
the simplest assumptions, and rather remove the low-frequency bias by coupling PS
with another 3D-reconstruction method such as shape-from-silhouette [122], multi-
view stereopsis [63] or depth sensing [87]. In such works, PS provides the fine-scale
geometric details, which are combined with the gross geometry provided by the
alternative technique.

Another interesting application of PS is 3D-reconstruction from a single shot,
which can be achieved by using a multichannel camera coupled with monochromatic
coloured light sources which are simultaneously turned on: each channel can then be
viewed as a graylevel image obtained under a single light source. This idea, which
dates back from the nineties [60], has more recently been applied to the real-time
3D-reconstruction of deformable surfaces by combining PS with optical flow [44]
or scene flow [40].

1.3.5 Applications of PS

The ability of PS to estimate both the fine-scale geometric details and the reflectance
of the surface has proven useful inmany applications. Here, we briefly highlight a few
of them. For instance, PS can be used to infer 3D-models for augmented reality,which
can be very helpful for computer-aided surgery using laparoscopy [22]. Another
medical application of PS is the characterisation of the melanoma’s shape and color,
as proposed in [114]. Besides medical applications, PS has been extensively used in
thefield of quality control, e.g. for the inspection of defects onmetallic surfaces [113].
Also, let us mention Reflectance Transform Imaging (RTI) techniques, which are
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based on PS principles, and allow one to interactively relight the pictured surfaces.
Such an approach finds a natural application in the field of cultural heritage, see the
recent survey [88] for an overview. Finally, Chap. 7 in the present volume addresses
a novel application, which is the estimation of facial aging.

1.4 Shape-from-Polarisation

Another problem belonging to the shape-from-X class is the shape-from-polarisation
one. The goal is the same, i.e. recover the 3D-shape of the object, but starting from
a different input data, given by polarisation information.

1.4.1 Description and Generation of a Polarisation Image

When unpolarised light is reflected by a surface, it becomes partially polarised [128].
This applies to both specular [96] and diffuse [4] reflections caused by subsurface
scattering. Using a linear polarising filter placed in front of a camera, a sequence of
m ≥ 3 images (cf. Fig. 1.6a) is captured by rotating the filter under varying polariser
angle ϑ j , j ∈ {1, . . . ,m}. The measured brightness at each pixel x varies in accor-
dance to the transmitted radiance sinusoid corresponding to

iϑ j (x) = Imax(x) + Imin(x)
2

+ Imax(x) − Imin(x)
2

cos[2ϑ j − 2φ(x)], (1.20)

where φ(x) is the phase angle, Imax the maximum measured pixel brightness and
Imin the minimum one.

A polarisation image (cf. Fig. 1.6b–d), i.e. the full set of polarisation data for a
given object or scene, can be obtained by decomposing the sinusoid at every pixel into
three separate components [127]: the phase angle, φ(x), the unpolarised intensity,
iun(x) and the degree of polarisation, ρ(x), where

iun(x) = Imax(x) + Imin(x)
2

and ρ(x) = Imax(x) − Imin(x)
Imax(x) + Imin(x)

. (1.21)

The phase angle φ(x) is directly related to the angle of the linearly polarised compo-
nent of the reflected light and can be defined as the angle of maximum or minimum
transmission. Since polarisers cannot distinguish between two angles separated by
π radians, the range of initially acquired phase measurements is [0, π). Therefore,
there is aπ ambiguity, since twomaxima in pixel brightness are found as the polariser
is rotated through 2π . The unpolarised image iun(x) is simply the image that would
be obtained using a standard camera. The degree of polarisation ρ(x) can be defined
in terms of refractive index and zenith angle of the surface normal [128], but the

http://dx.doi.org/10.1007/978-3-030-51866-0_7
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elgnaesahP)b(tupnideriuqcA)a(

(c) Unpolarised intensity (d) Degree of polarisation

Fig. 1.6 a Polarimetric capture, and b–d decomposition into polarisation images, from captured
data of a piece of fruit. Pictures taken and adapted from [112]

explicit formula is different depending on the polarisation model used, as we will
see in Sect. 1.4.2 below.

These quantities can be estimated from the captured image sequence using dif-
ferent methods, e.g. the Levenberg–Marquardt nonlinear curve fitting algorithm [4],
linear methods [50] or following the procedure suggested by Wolff in [127] for the
specific case of m = 3, ϑ ∈ {0, π

4 , π
2 }.

1.4.2 Diffuse and Specular Polarisation Models

A polarisation image provides information on the azimuth and zenith angles of the
normal, and, hence, a constraint on the surface normal direction at each pixel. The
exact nature of the constraint depends on the polarisation model used.

Using a diffuse polarisation model, the phase angle φ(x) is the polariser angle
ϑ j at which Imax is observed. It determines the azimuth angle α(x) ∈ [0, 2π [ of
the surface normal up to a π ambiguity: α(x) = φ(x) or φ(x) + π . The degree of
polarisation ρd(x), on the other hand, is related to the zenith angle θ(x) ∈ [0, π

2 ] of
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the normal in viewer-centered coordinates (i.e. the angle between the normal and
viewer) as follows:

ρd(x) = sin2 θ(x)
(
η − 1

η

)2

4 cos θ(x)
√

η2 − sin2 θ(x) − sin2 θ(x)
(
η + 1

η

)2 + 2 η2 + 2
, (1.22)

where η is the refractive index (in general, η is unknown, but for most dielectrics
typical values range between 1.4 and 1.6, hence an accurate estimate of geometry
can be obtained without a precise estimate of η [4]).

Instead, using a specular polarisation model, the azimuth angle of the surface
normal is perpendicular to the phase of the specular polarisation [97] leading to a
π
2 shift, so that the azimuth angle corresponds to polariser angle ϑ j at which Imin is
observed: α(x) = φ(x) ± π

2 . Regarding the degree of polarisation ρs(x), it relates to
the zenith angle according to

ρs(x) = 2 sin2 θ(x) cos θ(x)
√

η2 − sin2 θ(x)

η2 − sin2 θ(x) − η2 sin2 θ(x) + 2 sin4 θ(x)
, (1.23)

and in that case the dependency of the degree of polarisation ρs on η is weaker than
in the diffuse case.

1.4.3 3D-Shape Recovery Using Polarisation Information

The phase angle φ(x) (cf. Fig. 1.6b) and the degree of polarisation ρ(x) (cf. Fig. 1.6d)
of reflected light convey information about the surface orientation through informa-
tion on zenith and azimuth angles and, therefore, provide a cue for 3D-shape recovery.

There are nice and attractive properties to the SfP cue: it requires only a sin-
gle viewpoint and a single illumination condition, it is invariant to illumination
direction and surface albedo, and it provides information about both the zenith and
azimuth angle of the surface normal. Unfortunately, the polarisation information
alone restricts the surface normal at each pixel to two possible directions, providing
in such a way only ambiguous estimates of the surface orientation.

SfP methods can be categorised into three groups:

1. Methods which use only polarisation information (cf. Sect. 1.4.3.1). They are
passive since, typically, a polarisation image is obtained by capturing a sequence
of images in which a linear polarising filter is rotated in front of the camera
(possibly with unknown rotation angles [100]). These methods can be considered
“single shot” methods by using custom CCD cameras configured for polarisation



18 J.-D. Durou et al.

imaging1 or by mounting the polarisation filter on a CMOS sensor in order to
acquire polarisation information in real time2).

2. Methods which combine polarisation with shading cues (cf. Sect. 1.4.3.2).
3. Methods which combine a polarisation image with an additional cue (cf. Sect.

1.4.3.3) such as stereo, multispectral measurements, an RGBD sensor or active
polarised illumination.

SfP methods can also be classified according to the polarisation model (dielectric
versus metal, diffuse [4, 50, 77], specular [79] or hybrid models [116]) and whether
they compute shape in the surface normal or surface height domain.

1.4.3.1 Resolution Using Only Polarisation Information

The earliestwork focused on capture, decomposition and visualisation of polarisation
images was by Wolff in the nineties [127], even if older works on shape recovery by
polarisation information exist since 1962 [108]. Both Atkinson and Hancock [4] and
Miyazaki et al. [77] disambiguated the polarisation normals via propagation from
the boundary under an assumption of global convexity. Huynh et al. [50] also dis-
ambiguated polarisation normals with a global convexity assumption, estimating the
refractive index in addition. These works used a diffuse polarisation model whereas
Morel et al. [79] used a specular polarisation model for metals. Recently, Taamazyan
et al. [116] introduced a mixed diffuse/specular polarisation model. All of these
methods estimate surface normals which must then be integrated into a height map.
Moreover, since they rely entirely on the weak shape cue provided by polarisation
and do not enforce integrability, the results are extremely sensitive to noise.

1.4.3.2 Polarisation and Shading Cues

A polarisation image also contains an unpolarised intensity channel (cf. Fig. 1.6c),
which provides a shading cue. Mahmoud et al. [67] used a shape-from-shading cue
assuming known light source direction, known albedo and Lambertian reflectance, in
order to disambiguate the polarisation normals. Atkinson and Hancock [6] used cali-
brated, three-source Lambertian photometric stereo for disambiguation but avoiding
an assumption of known albedo. Smith et al. [111] showed how to express polarisa-
tion and shading constraints directly in terms of surface height, leading to a robust
and efficient linear least-squares solution. They also showed how to estimate the
illumination, up to a binary ambiguity, making the method uncalibrated. However,
they require known or uniform albedo. This requirement was afterwards relaxed
in [112], where spatially varying albedo was estimated from a single polarisation
image, assuming known illumination and strong smoothness assumptions. In [120]

1http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter.
2https://www.ricoh.com/technology/tech/051_polarization.

http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter
https://www.ricoh.com/technology/tech/051_polarization
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variants of the aforementioned method have been exploited by introducing addi-
tional constraints which arise when a second light source is considered, allowing
to relax the uniform albedo assumption even under unknown lighting. In this work,
albedo-invariant or phase-invariant formulations were proposed. Another differential
approach has been proposed in [65], where the geometry of the object is described
through its level-sets for both diffuse and specular reflections. Ngo et al. [83] derived
constraints which allowed surface normals, light directions and refractive index to be
estimated from polarisation images under varying lighting. However, this approach
requires at least four light sources.

1.4.3.3 Combining Polarisation with Other Cues

In order to solve the ambiguities generated by models using only polarisation infor-
mation, some attempts have been done combining SfP with other cues. In addition to
photometric cues (from SfS or PS), auxiliary geometric information can be consid-
ered. Stereo cues has been combined with polarisation to obtain surface orientation
information since the nineties [126]. Rahmann et al. [96] proposed to reconstruct
specular surfaces taking polarisation images from multiple views. The reconstruc-
tion problem is solved by an optimisation scheme where the surface geometry is
modelled by a set of hierarchical basis functions. Atkinson et al. [3, 5] refined esti-
mates of the surface normal to establish correspondences between two views of an
object, extracting surface patches from each view. Multi-View Stereo (MVS) and
polarisation have also been adopted for transparent and specular objects [73, 76],
and a polarimetricMVSmethod applied to objects with mixed polarisation models is
proposed in [28]. With respect to this last paper, which is offline and needs a manual
preparation, Yang et al. proposed in [132] a fully automatic approach to produce a
height map in real time using two views. More than two views have been used in
[20]. Space carving [75, 76] or RGBD sensors [57, 58] have been employed to obtain
initial 3D-shape, from which the ambiguities in SfP are resolved. Zhu et al. [135]
used polarisation and an RGBD stereo pair to disambiguate the polarisation surface
normal estimates using a higher order graphical model. Cameras with multiple spec-
tral bands [51, 74] could be useful for disambiguating and estimating the refractive
index of the surface.

1.4.4 An Example of Numerical Resolution for Shape
Recovery

In this section,wewant to give an example of numerical resolutionof theSfPproblem,
either by following a non-differential approach, which considers as unknowns the
partial derivatives p and q as defined in Eq. (1.4), or by solving a linear differential
system directly in the height u.

We assume orthographic projection and directional illumination. We consider
only the diffuse polarisation model, hence, the degree of polarisation is defined as
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in (1.22), and the object we want to recover is composed by dielectric (i.e. non
metallic) materials. Moreover, the refractive index η is supposed to be a known
constant, and interreflections are neglected. In order to estimate the phase angle φ(x)
and the degree of diffuse polarisation ρd(x) at each point, we fit the data to the
transmitted radiance sinusoid (1.20) following one of the aforementioned methods,
e.g. the idea by Wolff [127]. The zenith angle θ(x) of the surface normal can be
obtained from Eq. (1.22) arriving to

cos θ(x) = n(x) · v = f (ρ(x), η) = (1.24)
√
2 ρ + 2 η2 ρ − 2 η2 + η4 + ρ2 + 4 η2 ρ2 − η4 ρ2 − 4 η3 ρ

√− (ρ − 1) (ρ + 1) + 1

η4 ρ2 + 2 η4 ρ + η4 + 6 η2 ρ2 + 4 η2 ρ − 2 η2 + ρ2 + 2 ρ + 1
,

where we have denoted ρd simply by ρ and we have dropped the dependency of ρ

on x for readability. The normal vector defined in (1.3) can be written in terms of
azimuth and zenith angles as

n(x) =
⎡

⎣
cosα(x) sin θ(x)
sin α(x) sin θ(x)

cos θ(x)

⎤

⎦ . (1.25)

Remembering that the phase angle φ(x) determines the azimuth angle α(x) of the
normal up to a π ambiguity (α(x) = φ(x) or α = φ(x) + π ), the normal vector
can be estimated up to an ambiguity. Several attempts have been done in order
to disambiguate the azimuth angle, as explained in Sect. 1.4.3.1. Once the surface
normal has been estimated, by integrationwe can recover the height, which is our real
and final unknown to be found. Again, we refer the interested reader to Sect. 1.2.4
and the survey [95] for some discussion on the integration problem.

As an alternative, we can solve the problem directly in the unknown height follow-
ing a differential approach, starting again from a single polarisation image, but using
also the unpolarised intensity quantity, which is the image obtained using a standard
camera for the SfS problem. For example, let us assume Lambertian reflectance,
known illumination and uniform albedo that is factored into the light source vec-
tor ω. The shading constraint coming from the unpolarised intensity channel of a
polarisation image reads as (cf. Eq. (1.5)):

iun(x) = −ω1 p(x) − ω2 q(x) + ω3√
1 + p(x)2 + q(x)2

. (1.26)

Since we are working in a viewer-centered coordinate system, with the viewer v =
[0, 0, 1]�, Eq. (1.24) simplifies to n3(x) = f (ρ(x), η), which can be expressed in
terms of the surface gradient as

f (ρ(x), η) = 1
√
1 + p(x)2 + q(x)2

. (1.27)
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Now, by using the image ratio technique commonly applied also in PS-SfS prob-
lems [119], taking a ratio between (1.26) and (1.27), the nonlinear normalisation
factor vanishes, yielding the following linear equation in the surface gradient:

iun(x)
f (ρ(x), η)

= −ω1 p(x) − ω2 q(x) + ω3. (1.28)

Instead of disambiguating the polarisation normals at each pixel locally, as illustrated
before following a non-differential approach, here we express the azimuth ambiguity
as a collinearity condition which is satisfied by either of the two possible azimuth
angles. In this way, we postpone resolution of the ambiguity until surface height is
computed, solving the azimuthal ambiguities in a globally optimal way.

More in detail, for the diffuse case we require that the projection of the surface
normal into the image plane Oxy, [n1(x), n2(x)]�, is collinear with a vector pointing
in the phase angle direction, [sin φ(x), cosφ(x)]�. This requirement translates into
the following condition:

n(x)�[cosφ(x),− sin φ(x), 0]� = 0. (1.29)

By rewriting n(x) in terms of the surface gradient, noting that the nonlinear normal-
isation term is always non-null, we obtain from Eq. (1.29) a second linear equation
in the surface gradient:

− p(x) cosφ(x) + q(x) sin φ(x) = 0. (1.30)

At this point, after approximating the surface gradient, e.g. by using finite differ-
ences, we arrive to a linear system of equations in terms of the unknown surface
height, which can be solved using linear least-squares. For stability reasons, priors
on convexity and smoothness can be added to the linear system. For more informa-
tion on this idea and for details on the implementation, we refer the interested reader
to [111, 112].

1.4.5 Applications

The polarisation state of light reflected by a surface provides a cue on the material
properties of the surface and, via a relationship with surface orientation, the 3D-
shape. Polarisation has been used for several applications since the nineties, including
early work on material segmentation [128] and diffuse/specular reflectance separa-
tion [80]. In recent years, there has been an increasing interest in using polarisation
information for 3D-shape estimation [57, 83, 111, 116]. Nice applications include
polarised laparoscopy [45] or in general biomedical applications [121]. In addition
to the use of polarisation information for 3D-reconstruction, recently several other
applications are using polarisation for different tasks. For example, for image seg-
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mentation [104], robot dynamic navigation [13, 14], image enhancement [99, 100]
and reflection separation by a deep learning approach [66], which simplifies previ-
ous works requiring three images from different polariser angles [59, 101, 124]. For
more details on possible applications, we refer the interested reader to Chap.6 of this
volume.

1.5 A Short Presentation of This Volume

As we said in the introduction, the volume contains several contributions which
represent recent trends in 3D-reconstruction via photometric techniques. Here is an
overview of the chapters.

In Chap.2, Breuss and Yarahmadi focus on a more realistic shape-from-shading
model than that we described in Sect. 1.2, where perspective projection is considered.
A comprehensive state of the art of perspective SfS (PSfS) is carried out. The case of
a Lambertian surface illuminated either by a parallel and uniform luminous flux, or
by a nearby point light source, is more specifically addressed. Finally, a comparative
study is carried out between two methods of resolution of the PSfS problem under
directional lighting, both of which are based on the fast-marching algorithm.

In Chap.3, Or-El et al. tackle the problem of refining the depth map provided by
RGBD sensors, by applying shape-from-shading techniques. The authors propose
three ways to solve this problem. First, by a model-based approach effective for
Lambertian surfaces, which refines the depth map by a SfS strategy applied to the
RGB image. Then, they extend this approach to specular objects, using a Phong-type
model and the InfraRed image with the attached (near) light source. Lastly, a deep
learning-based solution is proposed.

In Chap.4, Gallardo et al. tackle the problem of the 3D-reconstruction of
deformable surfaces using non-rigid structure-from-motion and shading. The authors
propose an optimisation-based strategy, which aims at finding the geometry (param-
eterised by vertices) and reflectance (parameterised by a finite set of albedo val-
ues) which minimise a cost function combining a shape-from-shading term and a
structure-from-motion one. Additional terms are also included in the cost function:
a contour boundary one, a smoothness one and a quasi-isometry one. The resulting
non-convex optimisation problem is addressed by a careful heuristical initialisa-
tion followed by an iterative, Gauss–Newton-based refinement over all variables in a
multi-scale fashion. The proposition is evaluated both qualitatively and quantitatively
against the state of the art.

In Chap.5, Brahimi et al. present a theoretical contribution on the well-posedness
of uncalibrated photometric stereo under general illumination. In particular, they
prove that there is no ambiguity for the perspective model if lighting is represented
by first-order spherical harmonics. In the process of establishing their main result
they also provide a comprehensive survey of the available results regarding the well-
posedness of several photometric stereo problems and they examine in detail the case
of the orthographic projection. For this problem they prove that, even in the case of

http://dx.doi.org/10.1007/978-3-030-51866-0_6
http://dx.doi.org/10.1007/978-3-030-51866-0_2
http://dx.doi.org/10.1007/978-3-030-51866-0_3
http://dx.doi.org/10.1007/978-3-030-51866-0_4
http://dx.doi.org/10.1007/978-3-030-51866-0_5


1 A Comprehensive Introduction to Photometric 3D-Reconstruction 23

spherical harmonics, the concave/convex ambiguity still persists. They concludewith
some numerical experiments.

Chapter6, authored by Shi et al., represents a concise survey on SfP. After an
introduction, the authors briefly recall the Fresnel theory, which is the theoretical
basis of polarisation imaging. The process for the formation of a polarisation image
is described, giving also details on the data acquisition. The authors discuss the
estimation of azimuth and zenith angles of the normal for surfaces with different
reflectance properties (specular, diffuse, and mixed polarisation). Then, the combi-
nation of SfP with auxiliary information is explored, e.g. geometric cues, spectral
cues, photometric cues and deep learning. Moreover, applications which can benefit
from polarisation information, in addition to the 3D-shape recovery, are presented.
The chapter ends with a discussion on problems still open.

Finally, Chap. 7 by Dahlan et al. addresses the problem of facial aging estimation,
using light scattering photometry. It is shown that the roughness parameter of several
BRDF models is correlated with the age. Therefore, facial aging estimation can be
carried out by fitting a BRDF model to an input image. In this work, geometry
estimation is carried out using photometric stereo, by resorting to an illumination
dome. Then, given the estimated normals, an image with frontal lighting is used to
infer the BRDF parameters. Various experiments are carried out to study whether
these estimated parameters correlate with age and it is shown that this is the case for
the roughness parameter. Several tests on real images are illustrated and analysed.
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Chapter 2
Perspective Shape from Shading

An Exposition on Recent Works with New Experiments

Michael Breuß and Ashkan Mansouri Yarahmadi

Abstract Shape from Shading (SFS) is a fundamental task in computer vision. By
given information about the reflectance of an object’s surface and the position of the
light source, the SFS problem is to reconstruct the 3Ddepth of the object from a single
grayscale 2D input image. A modern class of SFS models relies on the property that
the camera performs a perspective projection. The corresponding perspective SFS
methods have been the subject of many investigations within the last years. The goal
of this chapter is to give an overview of these developments. In our discussion, we
focus on important model aspects, and we investigate some prominent algorithms
appearing in the literature in more detail than it was done in previous works.

Keywords Shape from Shading · Perspective projection · Hamilton Jacobi
equations · Numerical methods · Fast marching method

2.1 Introduction

A fundamental task in computer vision with many important applications is to com-
pute the three-dimensional (3D) shape of one or more objects depicted in a pho-
tographed scene. Since an image is a projected 2D representation of the 3D world,
the information on the 3D geometry is lost during the image acquisition process.
Therefore, when given only one input image, the shape reconstruction task amounts
to solving a difficult inverse problem.
Shape from Shading (SFS).Shape fromShading is a classic example of techniques for
monocular 3D reconstruction.Given a single grayscale input image, the process relies
on the shading, i.e. on the variation of gray values that appears when light is reflected

M. Breuß · A. Mansouri Yarahmadi (B)
Applied Mathematics Group, Institute for Mathematics, BTU Cottbus-Senftenberg, Platz der
Deutschen Einheit 1, HG 2.51, 03046 Cottbus, Germany
e-mail: Yarahmadi@b-tu.de

M. Breuß
e-mail: Breuss@b-tu.de

© Springer Nature Switzerland AG 2020
J.-D. Durou et al. (eds.), Advances in Photometric 3D-Reconstruction,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-51866-0_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51866-0_2&domain=pdf
mailto:Yarahmadi@b-tu.de
mailto:Breuss@b-tu.de
https://doi.org/10.1007/978-3-030-51866-0_2


32 M. Breuß and A. Mansouri Yarahmadi

at a smooth object surfacewith uniform reflectance properties. By the latter, SFSmay
only be applied in the context of non-textured objects since the presence of texture
is equivalent to variable reflectance. Therefore, SFS is conceptually orthogonal to
Shape from Texture [16, 17, 19, 45] which is also a single-view method.

Since shading is related to the perceived brightness, it is called a photometric cue.
The first attempts to gain information on the 3D shape of a surface by such a cue
dealt with an astronomical application, namely the reconstruction of the surface of the
moon [46, 57]. Then in the PhD thesis of Horn [24]; the problem was investigated
systematically and the name SFS was coined. Moreover, SFS was formulated for
the first time in terms of a partial differential equation (PDE). The classic PDE-
based SFS model of Horn and related techniques have been the subject of extensive
investigation during the last decades, see, e.g. [13, 23, 26, 67] for discussions.

Besides being a key problem of theoretical interest in computer vision, SFS has
many possible applications. Among them are classical fields such as astronomy
[46, 59] or terrain reconstruction [5], and they range more recently from medical
applications as, for instance, in dentistry [1, 64] or endoscopy [34, 54, 61] over the
digitization of documents [9, 10] in order to enable digital content access to other
computer vision tasks like face recognition [51] or facial gender classification [62].
As an example for the use of SFS as a building block for computer visionmethods, let
usmention photometric stereo [60]wheremultiple input images taken under different
lighting conditions are combined by deriving from corresponding SFS equations a
system of equations. Furthermore, SFS may be used with a benefit in combination
with different computer vision techniques, see, e.g. [33] for a recent approach fusing
SFS with stereo vision in a variational framework.
Modeling of Shape from Shading. Since much information is discarded when cap-
turing the 3D world in a grayscale 2D image, the gap in information is filled by
imposing modeling assumptions. Standard assumptions are concerned with (i) the
illumination in the photographed scene, (ii) the light reflectance surface properties
and (iii) the projection that is performed by the camera. In the context of this work,
some aspects of the illumination are important, and we will stick to the relatively
modern assumption of a perspective camera projection. These components will be
combined here with classic Lambertian surface reflectance.

Let us first comment on the reflectance aspect of the modeling process in more
detail. The Lambertian surface model goes back to the work Photometria by Johann
Heinrich Lambert in 1760 [29]. It is the most simple model for surface reflectance
and corresponds to the appearance of a very matte surface without shiny highlights.
Because of its simplicity, it is a useful tool for the derivation of mathematical models
for SFS, and thus it is used in the classic PDE-based model of Horn as well as in
many modern approaches. One may also argue that a wide range of surfaces are in
practice fairly close to being Lambertian [14]. However, following the argumentation
that the model is too simple for some applications [44], also non-Lambertian surface
reflection approaches for SFS have been proposed and analyzed in the literature, see,
e.g. [2, 4, 8, 31, 55, 58].

Let us turn to the illumination model. In the classic approach of Horn and many of
his successors, it is assumed that the light falls from one and the same direction onto
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the whole scene. This means that the light vectors that point from any location on an
object’s surface to the light source are all parallel. The corresponding idealization is
that there is a point light source at infinity which is, e.g. an adequate model for the
light from the sun in an application concerned with reconstructing lunar surfaces, cf.
[59]. In this work, we mainly consider this setting but we will also briefly discuss the
setup employed, among others, by Prados and his co-authors [39–43] in which the
light source is located at the optical center of the camera. This may be considered as
an idealization of taking photographs using a camera with photoflash.

As indicated, a key issue in the context of this chapter is the camera projection
model. As summarized, for instance, in [23, 67], the classic assumption is that the
camera performs an orthographic projection, i.e. an orthogonal projection of the
third spatial dimension onto the image plane. This is completely adequate if the
photographed object is far away from the camera as it is, for instance, the case
in the first applications of SFS concerned with astronomical images. However, if
the object of interest is relatively close to the camera as may be the case, e.g. in
many applications in optical quality assessment, perspective effects may grow to
be important. In such a situation, the use of an orthographic projection will cause
significant systematic errors as shown, e.g. in [52]; see also the earlier discussion in
[3]. In order to tackle this issue, the orthographic camera model should be substituted
employing instead a perspective projection.
Contents of This Chapter. In this paper, we give an overview of the classic and recent
literature concerned with the use of a perspective projection for SFS. By elaborat-
ing on these perspective SFS (PSFS) methods, we also highlight some important
properties of corresponding models. Let us emphasize that this part of our work is
supposed to be potentially useful as an introduction into this special SFS topic so
that the exposition is relatively detailed.

Furthermore, we discuss in depth two important variants of PSFS that are often
cited in the corresponding literature but have to our best knowledge not been com-
pared rigorously, namely themethods of Tankus et al. [54] andYuen et al. [66]. These
methods are of importance as they represent two technically different approaches to
a classic PSFS model setting—employing Lambertian surface reflectance together
with parallel lighting—that nevertheless relies on the same numerical resolution
principle, namely the fast marching method. By performing the comparison of these
methods, we close a systematic gap in the literature. Let us note that this gapmay have
arisen as especially the implementation of the method of Yuen and his co-workers is
not trivial. A technical contribution of this work is that we give a tractable account
of a working algorithm for the latter method that can be found in the appendix. Fur-
thermore, we show how to apply Lambertian PSFS methods as discussed here for
real-world images by proposing a working pipeline that takes into account typical
difficulties of such input images. Since many interesting SFS models are still con-
cerned with the Lambertian setting, we think that this exposition helps to foster their
applicability.
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2.2 On the History of Perspective Shape from Shading

The first evidence of the use of a perspective projection for SFS is to our best knowl-
edge given in the classic work [25], however, it is of a theoretical nature. Horn
describes a perspective projection model together with a nearby light source and
an arbitrary reflectivity function. In this setup, a general image brightness equation
is derived which is solved under more specific assumptions—notably including a
simplification to orthographic projection—by the characteristic strip method using
the equivalent system of ordinary differential equations (ODEs).

While the perspective projection is common in geometric approaches in computer
vision [20] that rely on multiple views on a scene, it has re-entered the SFS literature
relatively late.

Penna [37, 38] proposed a local PSFS method for specific surfaces, i.e. a smooth
object and an opaque polyhedron, respectively. He considers systems of algebraic
equations that describe the local surface geometry and solves them by an iterative
minimization approach.

Lee and Kuo [30] formulate an image irradiance equation for PSFS with Lam-
bertian surfaces and a nearby light source. In order to simplify the proceeding, they
consider the resulting image formation over triangular surface patches, and for com-
putations they also employ a linear approximation of the Lambertian reflectance map
based on the perspective projection. The resulting algorithm is a relatively complex,
iterative variational method minimizing the sum of the squared brightness error.

Okatani andDeguchi [34] employ a perspective projection for SFS for endoscopic
images. They do not derive a PDE in terms of an image irradiance equation but
introduce an evolution equation for equal-range contours so that they can apply an
extension of the Kimmel–Bruckstein algorithm [28].

Cho et al. [9] employ a perspective projection in SFS, but in the specific framework
employed in the context of their application concerned with document digitization;
they assume that distance variations between camera and surface can be ignored,
separating perspective and shading effects.

Hasegawa and Tozzi [21] as well as Yamany et al. [63, 64] consider the simultane-
ous procedure of camera calibration and PSFS in multi-image settings which results
in specific, iterative frameworks. Let us note that these approaches rely on lineariza-
tions of the SFS model since, otherwise, computations are too cumbersome and the
complete models would be highly complex. Also, SFS for one input image alone is
not sufficient to provide both the depth and the camera parameters. Therefore, some
additional technical step is required as, for example, realized by a learning algorithm
using neural networks [64].

Samaras and Metaxas [47] consider a deformable shape model that results in a
highly sophisticated framework for SFS together with illumination direction estima-
tion which allows incorporating a perspective projection.

Based on the general, well-known format of the Lambertian image irradiance
equation, Yuen et al. [65, 66] describe an efficient algorithm for PSFS. In contrast
to later works on PSFS, they derive the formula of their algorithm in a completely
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discrete setting by employing simple finite difference expressions based on point
coordinates under perspective projection. A more detailed version of this work is
given in [66]. We will give a detailed account of this method later.

Nearly simultaneous and independent from each other, three different groups
introduced general PSFS models formulated explicitly by PDEs equivalent to the
corresponding image irradiance equation [11, 12, 41, 53]. These relatively influential
models in the field have as the main ingredients the perspective camera projection,
Lambertian surface reflectance and parallel lighting from infinity. In our exposition,
we will focus on the method of Tankus and co-authors [53, 54] as a representative
of the PDE-based approach.

As a further important step in the development of PSFS, Prados and Faugeras
considered a point light source in the finite range of the photographed scene and
introduced a light attenuation factor that takes the form of an inverse square law in
the distance of a surface point to the point light source position. This enabled some
degree of well-posedness as discussed in [6, 39, 40].We also briefly recall this model
here.

In the context of some of thementionedmodern works, interestingly alreadyHorn
noted in [25] that both the constant lighting direction as well as an inverse square law
are possible variations with his perspective approach. Thus the ideational origin of
corresponding elements of these works should be credited in the conceptual literature
more clearly to Horn.

2.3 Derivation of the Perspective Image Irradiance
Equation

In this section, we recall the model for PSFS as introduced in [24, 34] and the
constituting image irradiance equation as derived—in various formats—in [11, 12,
41, 53]. In order to emphasize on an introductory value of the chapter, we perform
the derivation in some detail.

2.3.1 Mathematical Setup

Let (x, y) ∈ R
2 be in the image domain Ω which is part of the retinal plane, where

Ω is an open set. Furthermore,

– u = u(x, y) denotes the unknown, sought depth map, as specified below.
– I = I (x, y) is the normalized brightness function. It is sometimes written as I =

E(x,y)

σ
,where E ∈ [0, 255] is the graylevel of the given image andσ is the product of

the surface albedo—i.e. the degree bywhich the surface reflects light—and the light
source intensity. Since many physical assumptions on lighting and simplifications
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with respect to. the lens system of the camera are underlying the complete process,
cf. [26], I is usually normalized to be in [0, 1].
Let us note that when considering the whole image formation process, it is some-
times recommended to distinguish carefully between the irradiance, i.e. the amount
of light falling on a surface, and the radiance, i.e. the amount of light radiated from
a surface. Because it is possible to argue that these quantities are proportional and
since a normalization is involved as discussed, in practice, we usually identify
these quantities and consider I as the normalized input image. In other words, I
contains the given data. See, e.g. [26] for a detailed discussion of the fundamentals.

– f is the focal length, i.e. the distance between the optical center C of the camera
and the 2D plane to which the scene of interest is mapped. In SFS, it is usually
assumed as a given parameter; we also assume this here.

Let M be a generic point on an object’s surface Σ . The unknown of the problem is
the function u : Ω → R such that

M = M(x, y) = u(x, y) m ′ (2.1)

where

m ′ = f
√

x2 + y2 + f2
m and m = (x, y,−f)� , (2.2)

with their geometrical representations shown in Fig. 2.1. Verbalizing these defini-
tions, when considering the position vectors of the points on the ball with radius
f around C , then u(x, y) describes pixelwise a factor by which the position vector
pointing to (x, y,−f) is stretched in order to give M . Note in this context that u > 0
holds as the depicted scene is in front of the camera, and that u(x, y) is measured in
terms of multiples of f. Concluding this paragraph, let us note that there is implicitly
an important modeling step that has taken place, namely that the origin of the coor-
dinate system is identified with the camera position. This is not self-evident, and also
other choices may make sense depending on the experimental setting, see, e.g. [15,
27].

Fig. 2.1 A schematic 2D
view of a 3D scene
containing a Lambertian
surface parametrized by
Prados and Faugeras [41]
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2.3.2 On the Image Irradiance Equation

The PDEs associated with this PSFS model are derived using the image irradiance
equation, cf. [26]:

R(n̂(x, y)) = I (x, y). (2.3)

The reflectance function R yields the value of the light reflection on the surface in
dependence on the normal n̂ of the unknown object surface.

When defining the reflectance function, it is in SFS usually assumed that the
illumination is already given. As indicated, we will consider for the systematic dis-
cussion two types of illumination, namely parallel lighting as by a point light source
at infinity (which will also be the setting of our main experiments) and a point light
source nearby the photographed scene. This yields two reflectance functions Rp and
Rn depending on the setting. In order to define these functions, we make use of the
light vector ω and the distance function r , respectively.

Taking at this point additionally the assumption of a Lambertian surface into
account, the function Rp for parallel lighting is defined as

Rp(n̂(x, y)) = ω · n̂(x, y) (2.4)

where ω is a constant unit vector pointing from the scene to the light source. Since it
is for all points on an object surface the same ω, this gives a bundle of parallel light
vectors.

Let us consider now an aspect of the distance function r which is also discussed,
e.g. in [34]. If the light source is assumed as above to be distant from the object
surface, the distance r between a surface point and the light source turns out to
be approximately a constant for any of those points. This situation changes if the
light source is assumed to be close to the object surface. In a physically motivated
modeling of the latter situation, this implies that an additional factor 1/(4πr2) should
be taken into account. This term represents the solid angle that corresponds to the
unit area on the sphere of radius r centered at the point light source, which means
that the incident light reaching an area on the surface decreases by the inverse square
law 1/r2. See, e.g. [26] for a detailed description of the concept of the solid angle.

Furthermore, in the direction of defining the reflectance function Rn to be used
with a nearby light source, the light vector ω now depends on x and y since the
lighting direction is different for distinct points on a lighted object surface. Taking
then again the assumption of a Lambertian surface into account, the function Rn for
a nearby point light source is defined as

Rn(n̂(x, y)) = ω(x, y) · n̂(x, y)

r2(x, y)
. (2.5)

Note that this way of writing down the reflectance function as in (2.4) and (2.5)
implies a previous proper normalization as indicated above.



38 M. Breuß and A. Mansouri Yarahmadi

2.3.3 How the Perspective Projection Enters the Model

While we will consider the light vector ω as given, the question we deal with now is
how to compute the unknown surface normal vector n̂ in (2.4) and (2.5), respectively.

To tackle this question, we recall the mathematical setup and note that we have
already parametrized the unknown object surface Σ by Eq. (2.1) in a perspective
coordinate system:

Σ := Σ(x, y) = u(x, y)m ′ = u(x, y)f
√

x2 + y2 + f2

⎛

⎝
x
y
−f

⎞

⎠ . (2.6)

Employing this perspective parameterization, we consider now the following proce-
dure. Taking directional derivatives in x- and y-directions of Σ , we obtain at any
surface point M(x, y), two vectors tangential to Σ . That means, these two vectors
Σx and Σy span the tangential plane at Σ(x, y). By means of the cross product
Σx × Σy , we then obtain a normal vector n of the surface Σ at the point M(x, y).
Normalization of n gives the sought unit normal vector to the surface.

Employing for abbreviation

ζ := ζ(x, y) := 1/
√

x2 + y2 + f2 (2.7)

for the normalization factor incorporated in (2.6), a simple computation yields

Σx = fζ

⎡

⎣
u + xux − x2ζ2u

yux − xyζ2u
−fux + fxζ2u

⎤

⎦ and Σy = fζ

⎡

⎣
xuy − xyζ2u

yuy + u − x2ζ2u
−fuy + fyζ2u

⎤

⎦ . (2.8)

Evaluating as indicated, the cross product yields

n = Σx × Σy =
⎡

⎣
fux

fuy

xux + yuy

⎤

⎦− fζ2

⎡

⎣
xu
yu
−fu

⎤

⎦ . (2.9)

For further use, we slightly summarize the terms in (2.9) writing equivalently

n = (
f∇u − ufζ2(x, y)�,∇u · (x, y)� + f2ζ2u

)�
. (2.10)

Furthermore, one can compute the Euclidean length of n as

|n| =
√

f2 |∇u|2 + (∇u · (x, y)�
)2 + u2f2ζ2. (2.11)

At this point we choose not to perform the normalization as required for writing down
n̂ = n/ |n| completely and postpone this step to the next two paragraphs, respectively.
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2.3.4 Perspective SFS with Parallel Light from Infinity

Let us now elaborate in more detail on the case of a constant light vector ω written
as

ω := (l, γ)� with l := (α,β)� (2.12)

where we assume that ω is normalized. Evaluating then the scalar product (2.4) and
using (2.3), we obtain the constituting PDEof PSFS for a point light source at infinity:

I = l · (f∇u − ufζ2(x, y)�
)+ γ∇u · (x, y)� + γf2ζ2u

√
f2 |∇u|2 + (∇u · (x, y)�

)2 + u2f2ζ2
. (2.13)

It is worth mentioning as noted already in [12, 41, 53] that the solution of the PSFS
process—as determined by the PDE (2.13) or any of its equivalent representations—
provides the shape of an object up to a multiplicative scaling factor. This becomes
evident when substituting the unknown u in (2.13) by Cu, C a constant.

The equation in (2.13) represents apart from using a different notation exactly the
model as derived in [52, 53] by Tankus et al., in [11] by Courteille et al. and in [41]
by Prados and Faugeras, respectively.

As proposed for the corresponding model in [42, 52], we perform the change of
variable v = ln(u) using the property u > 0. Dividing by u in both nominator and
denominator of Eq. (2.13) and using ∇v = (1/u)∇u, we obtain

I = l · (f∇v − fζ2(x, y)�
)+ γ∇v · (x, y)� + γf2ζ2

√
f2 |∇v|2 + (∇v · (x, y)�

)2 + f2ζ2
(2.14)

simplifying the PDE.
When referring to theworks [12, 41, 53], let us note that there are a fewdifferences

in the technical details, so that the PDE above does not appear in exactly the format
(2.14) as a result of the derivations there. We consider here writing the setup in the
style as employed by Prados and Faugeras, e.g. in [42, 43], there in the context of
positioning the light source at the optical center of the camera, since this helps to
unify the presentation.

In the work [41], the retinal plane and the unknown surface are parameterized at
the positive z-domain in 3D space, not as part of the negative z-domain as here, cf.
Fig. 2.1. Furthermore, the unknown u is defined there as a factor stretching the vector
(x, y, f)� and not its corresponding normalized version m ′, see (2.2), as here.

Regarding the PSFS model of Tankus et al. [52–54], as in [41], the positive z-
domain is used for defining the model, but they make use of the classical pinhole
camera model where the retinal plane is located behind the camera. Employing then
a different style in deriving their PDE, Tankus et al. rely in a very clean way on the
use of perspective projection equations relating a real-world Cartesian coordinate
system centered at the camera and coordinates on the retinal plane. However, as
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perceivable especially in the proof of Theorem 1 in the appendix of [52], finally the
same surface parameterization as in [41] is employed.

Courteille et al. [11, 12] make use of the central perspective projection in the style
of Tankus et al. but where the retinal plane is between the camera and object surface
as in the current work, and they reformulate their PDE so that it closely resembles the
eikonal equation. It is the specific contribution of their work to explore benefits of
that format for the application of removing geometric defects in scans of documents.

2.3.5 Perspective SFS with Nearby Point Light Source at
Optical Center

We now consider PSFS for a nearby point light source, specifying ingredients in
(2.5). As indicated before, we will not consider this model again in experiments; our
main purpose in the presentation is the attempt to give a complete discussion of the
modeling basis and to show the different versions of PDEs that may arise.

The most simple choice in the case considered here is to locate the light source at
the optical center of the camera which models the situation of having a camera with
a photoflash. This assumption implies that there can be no shadows of photographed
objects in an image which cannot be modeled by SFS. Moreover, we will obtain a
relatively simple PDE. It is of course possible to put the light source elsewhere but
this issue involves further considerations, cf. [15].

If the point light source is given as indicated, one can directly write down the light
vector ω(x, y) for any point on the surface Σ(x, y) by

ω(x, y) = (−x,−y, f)�
√

x2 + y2 + f2
(2.15)

since the corresponding vector simply points to the origin. Evaluating the inner
product n̂(x, y) · ω(x, y) using (2.15) together with (2.10) and (2.11) gives after
some computations

n̂(x, y) · ω(x, y) = fζu(x, y)

|n| . (2.16)

Since the distance function r to be used in this setting is given by r = fu, cf. (2.5),
we obtain by (2.3)

I
√

f2 |∇u|2 + (∇u · (x, y)�
)2 + u2f2ζ2 = ζ

fu(x, y)
. (2.17)

As proposed in [42, 52], we perform the change of variable v = ln(u) using the
property u > 0. Dividing by u on both sides of Eq. (2.17) and using ∇v = (1/u)∇u,
we obtain
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I
√

f2 |∇v|2 + (∇v · (x, y)�
)2 + f2ζ2 = ζ

f
e−2v. (2.18)

This is exactly the PDE as derived by Prados and Faugeras in [43].
Let us note that in a development step documented in [42], Prados and Faugeras

proposed the above simplification of putting the light source at the optical center
but did not incorporate the light attenuation term 1/r2. However, the idea of putting
the light source to the image projection center in combination with using the light
attenuation term is not new and was proposed by Okatani and Deguchi [34] while
they did not write their model in terms of a PDE.

2.3.6 A Discrete PSFS Model Based on the Fast Marching
Scheme

Slightly earlier than the models presented above, a related PSFS method has been
presented by Yuen, Tsui, Leung and Chen in [66]. Besides the model that we will
briefly discuss, an important point in that work is the use of the fast marching (FM)
method. In order to introduce the scheme of Yuen et al., we briefly elaborate on the
FMmethod first, anticipating in this point the following section on PSFS algorithms.

2.3.6.1 Fast Marching

The idea as it can be understood in the context of SFS is to advance a front from
the foreground of the depicted object to the background. Associating thereby each
pixel of the input image with a 3D depth value, pixels are distinguished by the labels
known, trial and far, respectively. For initialization, all pixels are labeled as far
defining their depth values as infinity. This has to be understood as a preliminary
value useful for computation when thinking especially of the foreground pixels.

Since the FM method propagates information from the foreground to the back-
ground, the scheme relies on depth values being supplied in pixels that are themost in
the foreground, i.e. pixels with (locally) minimum depth. The corresponding points
are given by the local brightness maxima in the input image and are called singular
points; see, e.g. the discussion in [35]. Such singular points aremarked as trial, which
concludes the initialization of the method.

The trial candidate with the smallest computed depth is in the next step marked
as known. This involves fixing the depth there for the complete computation since a
known pixel is not revisited during the computation. The pixels in terms of the finite
difference stencil to the new set of known points are updated with respect to their
label, marking them as trial. This process is repeated until all image pixels have the
label known. The described procedure involves solving a nonlinear equation in each
pixel, for which purpose, e.g. the regula falsi can be employed conveniently.
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The concept of the FM method has been brought up by Tsitsiklis in 1995 [56] for
the computation of optimal trajectories as solutions of Hamilton–Jacobi equations.
The same concept has also been developed by Helmsen et al. [22] and Sethian
[48, 50] in 1996. In contrast to Tsitsiklis’ method, the latter two schemes were
proposed for solving the eikonal equation, and they rely on the idea of using upwind
discretizations, i.e. one-sided finite differences oriented in accordance with wave
propagation direction.

While the three methods have been developed apparently independently of each
other, it was Sethian who coined the name fast marching. The FMmethod is compu-
tationally very efficient since it is a single-pass method, i.e. as indicated each pixel
is visited only once during the computation. Therefore, given n pixels in an image,
it has complexity O(n log n) where the log n arises since the computed depth values
of the trial pixels have to be sorted in each step of the method; a canonical choice for
doing this is the heap sort algorithm. As a general reference on FM, let us mention
[49] while we refer to [7] for a recent discussion of FM methods.

Let us note that a crucial step of the FM method is to provide a suitable initial
depth value at singular points. Since the corresponding procedure differs depending
on the model, we choose to discuss that issue in the algorithmic section.

2.3.6.2 Discrete FM-Based Model for PSFS

In this subsection, we review two methods, namely Yuen et al. [66] and Tankus et al.
[54], that adopt fast marching [49] for the perspective SFS scenario.

Let us start with a review of the model assumptions used by Yuen et al. [66], and
later we refer to the other method.

The sought surface in [66] is assumed to be Lambertian illuminated by a far away
light source. A camera is located at the center of a reference Cartesian coordinate
system and projects a perspective image of the surface to the retinal plane that is
placed at the negative side of the z-axis. The camera has a focal length of f . These
sets of assumptions draw an analogousmodeling process compared to that considered
by Tankus et al. [52–54] which is the main motivation for us to evaluate them against
each other.

We proceed to show the derivation of the normal vectors. Yuen et al. [66] take a
central surface point P0 (x0, y0, z0) along with its four neighbors P1, P2, P3 and P4

(see Fig. 2.2) and their corresponding 2D perspective points projected on a uniform
grid

P0
(
x0, y0, z0

) =
(

u0
f z0,

v0
f z0, z0

)� :=
(

u
f zu,v,

v
f zu,v, zu,v

)�
,

P1
(
x1, y1, z1

) =
(

u1
f z1,

v1
f z1, z1

)� :=
(

u−1
f zu−1,v,

v
f zu−1,v, zu−1,v

)�
,

P2
(
x2, y2, z2

) =
(

u2
f z2,

v2
f z2, z2

)� :=
(

u
f zu,v−1,

v−1
f zu,v−1, zu,v−1

)�
,
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f

C

z

x

y

p (u, v − 1)

P0

p (u − 1, v)

P1

p (u + 1, v)

P2

p (u, v + 1)

P3

p (u, v − 1)

P4

p (u, v)

Image plane

Fig. 2.2 The image coordinate system used by Yuen et al. [66] with its origin at the center of
the perspective projection C . The neighbor points P0, P1, P2, P3 and P4 located on a Lambertian
surface are mapped to their corresponding points on image plane using (2.19)

P3
(
x3, y3, z3

) =
(

u3
f z3,

v3
f z3, z3

)� :=
(

u+1
f zu+1,v,

v
f zu+1,v, zu+1,v

)�
,

P4
(
x4, y4, z4

) =
(

u4
f z4,

v4
f z4, z4

)� :=
(

u
f zu,v+1,

v+1
f zu,v+1, zu,v+1

)�
(2.19)

and generalize them in the form of

Pa :=
(

ua za
f , va za

f , za

)�
with a ∈ {1, 3} (2.20)

and

Pb :=
(

ubzb
f , vbzb

f , zb

)�
with b ∈ {2, 4} . (2.21)

Note that the sought depth in (2.19) is z0 := zu,v , and we make use the notion of
z0 while discussing the model proposed by Yuen et al. [66] in coming paragraphs.
Let us emphasize here that we employ the notation z0 only in order to simplify the
presentation, i.e. in order to avoid a lot of double indices that may arise. The index
of z0 should just indicate that the center of the computational stencil is considered.
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Based on (2.20) and (2.21), the generic form of the outward normal vector at the
surface point P0 and corresponding to the image point p0 (u, v, f ) is obtained in
[66] as

N = (Pa − P0
)× (Pb − P0

)

=
⎛

⎝

ua za−u0z0
f

va za−v0z0
f

za − z0

⎞

⎠×
⎛

⎝

ubzb−u0z0
f

vbzb−v0z0
f

zb − z0

⎞

⎠

that leads after a few steps of calculations to

N = 1

f

(
z0 A1 + B1, z0 A2 + B2, z0 A3 + B3

)�
(2.22)

by having
A1 := za ((v0 − va) − zb (v0 − vb)) ,

A2 := zb ((u0 − ub) − za (u0 − ua)) ,

A3 := zb

f
((ubv0 − u0vb) + za (u0va − uav0)) ,

and
B1 := zazb (va − vb) ,

B2 := zazb (ub − ua) ,

B3 := zazb

f
(vbua − ubva) .

To this end, by substituting the derived normal (2.22) and the vertical light source
direction (0, 0, 1) into the image irradiance equation (2.4), Yuen et al. [66] derive
the image irradiance equation as

I0 = |z0 A3 + B3|√
(z0 A1 + B1)

2 + (z0 A2 + B2)
2 + (z0 A3 + B3)

2
. (2.23)

Yuen et al. [66] proceed by solving (2.23) in the form of quadratic equations (2.48)
and (2.57) from which the unknown depth z0 is found as explained in Algorithms1,
2 and 3 and their corresponding Appendices1–3.

Let us now turn for comparison to the method of Tankus et al. [54] by following
the setup shown in Fig. 2.3. Here, a surface S located at the positive side of the z-
axis is projected to an image plane uv. The uv plane is located at the distance f
from the xy plane and at the negative side of the z-axis. The surface itself is defined
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C

z

y

x

−f

C1 (s)
C2 (s)

•
Q (x, y, ẑ (x, y))�

L (−ps,−qs, 1)�

v

u

u0

v0

•(u0, v0,−f)�
c2 (s)

c1 (s)

Fig. 2.3 The perspective scenario proposed by Tankus et al. [54], where a surface point
Q
(
x, y, ẑ (x, y)

)
is projected to P (u0, v0,− f ) on image plane uv. Two curves C1 (u) and C2 (v)

on surface S passing through Q are projected to their counterparts c1 (s) and c2 (s) inside the uv

plane. The variable s acts here as a free parameter we use for curve parameterization

as S = {(x, y, ẑ (x, y)
)� | (x, y) ∈ Ωscene}, where Ωscene is an open domain. It is

further assumed that the surface S is differentiable with respect to both (x, y) and
(u, v). Based on the perspective projection, one could write the surface as

S =
{(−uz

f
,
−vz

f
, z (u, v)

)�
| (u, v) ∈ Ωimage

}

. (2.24)

It is assumed that ẑ (x, y) = z (u, v). In what follows, Tankus et al. [54] proceed with
two major assumptions before starting to derive their model in form of a PDE :
– Surface S is Lambertian and visible from all points ofΩimage under the perspective
projection.

– A point light source located at infinity illuminates the scene from the direction
(−ps,−qs, 1)

�.

To start, a parametric curve c (s) with parameter s is defined over the uv plane

c (s) := (u (s) , v (s) ,− f )� (2.25)

that is considered to be the result of perspective projection of another curve located
on surface S

C (s) =
(−u (s) z (s)

f
,
−v (s) z (s)

f
, z (s)

)�
= z (s)

f
(−u,−v, f )� (2.26)

whose tangent is derived to be

d

ds
C (s) = 1

f
(−us (s) z (s) − u (s) zs (s) ,−vs (s) z (s) − v (s) zs (s) , f zs (s))� .

(2.27)
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To simplify the scenario, Tankus et al. [54] take a projected point P = (u0, v0,− f )

on uv plane and define two curves c1 and c2 passing through it such that the latter
one is parallel to v-axis and the former one to be parallel to u-axis (see Fig. 2.3) :

c1 (u) = (u, v0,− f )� , (2.28)

and
c2 (v) = (u0, v, − f

)�
. (2.29)

Referring to Fig. 2.3, let us note that we just specified here the free parameter s as
it can be identified in accordance with the axes. One writes the corresponding 3D
curves C1 and C2 to those 2D counterparts c1 and c2 as

C1 (u) =
(−uz

f
,
−v0z

f
, z

)�
= z

f
(−u,−v0, f )� , (2.30)

and

C2 (v) =
(−u0z

f
,
−vz

f
, z

)�
= z

f
(−u0,−v, f )� . (2.31)

Note again, C1 and C2 are now parameterized based on u and v, and not s anymore.
Adopting (2.27), the tangents to both curves (2.30) and (2.31) are written as

d

du
C1 (u) = d

du

(
1

f
(−uz,−v0z, f z)

)�

= 1

f
(−z − uzu,−v0zu, f zu)

� ,

(2.32)

and
d

dv
C2 (v) = d

dv

(
1

f
(−u0z,−vz, f z)

)�

= 1

f
(−u0zv,−z − vzv, f zv)

� ,

(2.33)

and finally the normal vector n and its unit form n̂ to the surface S are derived, based
on (2.32) and (2.33), as presented in Appendix4.

Finally, by considering (2.4) and the light source L (−ps,−qs, 1)
�, one computes

the irradiance image proposed by Tankus et al. [54] as

I = L · n̂

= (−ps,−qs, 1)
� · ( f zu, f zv, z + vzv + uzu)

�
√

p2
s + q2

s + 1
︸ ︷︷ ︸

‖L‖

√
f 2
(
z2u + z2v

)+ (z + vzv + uzu)
2
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= (u − f ps) zu + (v − f qs) zv + z

‖L‖
√

f 2
(
z2u + z2v

)+ (z + vzv + uzu)
2
. (2.34)

Here, z (u, v) := ẑ (x, y) with (u, v) is located on the image plane to be the perspec-
tive projection of the scene point

(
x, y, ẑ (x, y)

)
.

One may argue at this point that the model described in (2.34) may appear as a
standard equation in the area of SFS. However, as we aimed to clarify already via
some remarks, many models that rely on a similar set of model assumptions differ
in the details, for example, by employing specific coordinate systems. The setup as
described above now leads in further steps to the approach of Tankus and co-authors,
which makes the complete method unique and specific. In particular, as shown by
them it is possible to derive a closed-form solution for the slopes of an unknown
surface that can be employed for defining an efficient algorithm. The model (2.34) is
also in the sense specific that it relies on a PDE, which is not self-evident in the field
of SFS where many constructions have been proposed that make not explicit use of
a PDE, compare the classic review paper [67].

We proceed by noting that (2.34) shows a direct dependence of I on z, zu and
zv . By assuming z (u, v) > 0 as the depth of the image point with coordinate (u, v),
to be always positive, and further replacing the depth z (u, v) with ln z (u, v), below
definitions are provided:

∂ (ln z (u, v))

∂u
= zu (u, v)

z (u, v)
= zu

z
:= p, (2.35)

and
∂ (ln z (u, v))

∂v
= zv (u, v)

z (u, v)
= zv

z
:= q, (2.36)

which leads by substituting in (2.34) to

I = (u − f ps) p + (v − f qs) q + 1

‖L‖
√

f 2
(

p2 + q2
)+ (up + vq + 1)2

. (2.37)

Note that steps needed to derive (2.37) based on (2.34), (2.35) and (2.36) are further
shown in Appendix5.

In (2.37), one observes that the dependency on z (u, v) is eliminated, and the only
dependency is on p and q that are the partial derivatives of ln z (u, v). Consequently,
the problem of obtaining the depth z (u, v) from image irradiance equation (2.34) is
now reduced to the problem of deriving ln z (u, v) from (2.37). Asmentioned by [54],
the bijective property of the natural logarithm along with the condition z (u, v) > 0
makes it possible to recover z (u, v) = eln z(u,v).

We proceed with a simplified form of (2.37), derived with a few steps shown in
Appendix6, and which can be written as



48 M. Breuß and A. Mansouri Yarahmadi

α1 + α2 + α3 = 0, (2.38)

with
α1 := I 2‖L‖2 f 2

(
p2 + q2

)
, α2 := I 2‖L‖2 (up + vq + 1)2

and
α3 := − ((u − f ps) p + (v − f qs) q + 1)2 .

To obtain the PDE of Tankus et al. [54], the expanded forms of the α1, α2 and α3 (see
Appendix7) are factorized (see Appendix8) by their common terms p2, q2, 2pq, 2p
and 2q. This leads by rearrangement of (2.38) to

p2 A + q2B + 2pqC + 2pD + 2q E + F = 0, (2.39)

where p and q, defined as (2.35) and (2.36), are the only unknowns of it. By observing
p2 and q2 in (2.39) to be always positive values, Tankus et al. [54] separate their
corresponding coefficients A and B into

A1 := I 2‖L‖2 (u2 + f 2
)

, A2 := − (u − f ps)

and
B1 := I 2‖L‖2 (v2 + f 2

)
, B2 := − (v − f qs)

2

such that A1 and B1 are always non-negative (2.39) so that one may write

p2 A1 + q2B1 = F̂ with F̂ := −p2 A2 − q2B2 − 2pqC − 2pD − 2q E − F
(2.40)

that may be interpreted as a form of an eikonal equation. The algorithmic form of the
method of Tankus et al. [54] adopting the perspective fast marching to solve (2.40)
can be found in the form of Algorithm4 with needed supplementary explanations in
the form of Appendices4–8.

2.4 Computational Results

In this section, we compare reconstruction results as created via the algorithms con-
structed byTankus et al. [54] andYuen et al. [66]. The commonmodeling assumption,
namely a far away light source and a sought surface with a Lambertian reflectance
property, provides the possibility of this comparison.

In order to illustrate a realistic use of SFS methods, we give here a novel experi-
ment concerned with a real-world input image. The computer vision pipeline that is
helpful to be employed in such a setting, andwhichmay also be applied in related cir-
cumstances, especially includes a preprocessing step that modifies non-Lambertian
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reflectance components in an input image in the way that one may safely employ
Lambertian methods, as in this chapter.

Our sought surface candidate is that of a Buddha bust having a matte appearance
that we capture in a darkened room and by a PiAEK endoscopic camera equipped
with 8 high-brightness light LEDs integrated in the endoscope. Let us stress that this
choice also addresses one of the areas of application of SFS methods, namely related
to an endoscopic setting applied on our Buddha bust. The camera has a small focal
length of approximately 4 millimeter and suits mostly those models [34, 41–43]
that assume the point light source and the camera lens center to be concentric. Our
intention to use the lighting fitted to an endoscopic camera may look as not to be the
right choice while comparing to the models [54, 66] which have as a basic common
assumption a far away light source. To resolve this limitation, we follow the same
strategy used in [54] and capture

– only the limited face area of the bust, and while
– the bust distance to the camera is below 5cm.

The above constraints (i) allow the face area to be illuminated with a very limited
range of the light beams emanating from the camera, and (ii) reduce the decay of the
illumination strength at different parts of the face area. In this way, the emanating
light beams from the camera LEDs show a close resemblance to a far away light
source that could have illuminated our bust as parallel light beams coming from
infinity. The Buddha bust is shown in Fig. 2.4.

To summarize, if the camera and a connected light source close to the optical
center are very close to an object of interest, then the photographed part of an object’s
surface is very small. Moreover, even the inverse square law that one could employ
does not give a meaningful contribution in this setting. In total, such a situation is
equally well modeled by employing just parallel lighting and no inverse square law.

Let us emphasize that one cannot expect that the light reflectance at the Buddha
bust is correctly described by the Lambertian model. Therefore, in order to employ a
Lambertian SFSmodel for reconstruction, we need to consider a projection that takes
the non-Lambertian input image and gives it an adequate Lambertian appearance.
Since we know that the Buddha bust shows a matte surface, it is reasonable to
think of a non-Lambertian model describing matte surfaces and which could help in
constructing a Lambertian version of it. To this end, it appears reasonable that the
Lambertian irradiance image I could be approximated based on the irradiance values
IO-N obtained from the Oren–Nayar reflectance model [36] as this is an adequate
model for matte surfaces. In more general reflectance situations, it may be possible
to make use in an analogous way as below, to recompute a Lambertian version of the
input image, possibly by learning amore general inverse mapping for the reflectance;
see, e.g. [18, 32] for such approaches.
Preprocessing Based on Oren–Nayar Reflectance.TheOren–Nayarmodel is designed
to handle rough and matte objects by modeling their surfaces as an aggregation of
many infinitesimally small Lambertian patches called facets. We show a schematic
side view of a small area dε corresponding to a rough surface made from a few facets
as Fig. 2.5.
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Fig. 2.4 The Buddha bust with a matte surface being captured by an endoscopic camera PiAEK
equipped with 8 high-brightness light LEDs integrated with the endoscope. The camera has a small
focal length of approximately 4 millimeter. The bust was located at a distance less than 5cm while
being captured in an intentionally darkened room. The motivation to capture the bust in a very short
distance was to make it reasonable to employ the perspective projection

dε

Facets

Fig. 2.5 A schematic side view of a small area dε corresponding to a rough surface aggregating
a set of facets. Each facet behaves as a Lambertian surface. The roughness parameter σ ∈ [0, π

2

]

of the surface is assumed to follow a Gaussian distribution of the whole facet slopes. Based on the
Oren and Nayar model, each facet contributes to the irradiance value of the surface as shown in
(2.41). Note that, in case of σ = 0, the surface follows the Lambertian model

The slope values of all such facets comprising thewhole rough surface are assumed
to follow a Gaussian distribution with a standard deviation σ ∈ [0, π

2

]
also called

roughness parameter of the surface. The main idea proposed by Oren and Nayar
is that each facet contributes to the modeled irradiance value IO-N of the surface
computed as

IO-N = ρ

π
Li cos (θi ) (ν1 + ν2 sin (α) tan (β)max (0, cos (Φr − Φi ))) (2.41)
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CameraPoint light Surface normal

Reference direction on the surface

dε

θr
θi

−Φi

Φr

Fig. 2.6 Illustration of the Oren–Nayar model for proposing the reflectance value of a facet being
illuminated by a point light source and captured by a camera. The directions in which the facet is
captured and illuminated establishes two angles θr and θi with the normal to the facet, respectively.
In addition, the reference direction on the surface establishes two anglesΦr andΦi with the camera
and the illumination directions. Note that we could not visualize a particular facet because of its
comparatively small size to the small area dε

with the terms ν1 and ν2 defined based on the roughness parameter σ as

ν1 = 1 − 0.5
σ2

σ2 + 0.33
and ν2 = 0.45

σ2

σ2 + 0.09
. (2.42)

As one observes in Fig. 2.6, a few further parameters of (2.41) are denoted as ρ
to represent the surface albedo, Li as the intensity of the point light source, θi to
represent the angle between the surface normal and the light source and θr to stand
for the angle between the surface normal and the camera direction. In addition, two
parameters α = max (θi , θr ) and β = min (θi , θr ) represent the maximum and the
minimum values of the θi and θr angles, respectively. Finally, Φi and Φr denote the
angles between the light source and the camera direction each with the reference
direction on the surface as shown in Fig. 2.6.

Next we let the point light source to be located at the optical center of the camera
and assume the constant coefficient ρ

π
Li in (2.41) to be equal to one, because of its

dependence only on the light source intensity, surface albedo and the parameters of
the imaging system such as the lens diameter and the focal length as mentioned by
[2]. This makes us simplify (2.41) to

IO-N = ν1 cos (θ) + ν2 sin
2 (θ), (2.43)
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Fig. 2.7 The irradiance image I ∈ [0, 1] approximated based on (2.44) corresponded to the Buddha
bust made from matte materials shown in Fig. 2.4. The maximum irradiance value appears almost
on the tip of the nose and is used as the boundary point to both methods Tankus et al. [54] and Yuen
et al. [66] and in the direction of reconstructing a 3D model of the bust

while the light source and viewing directions are considered to be pointing in the
same direction, resulting in θi = θr = θ and Φi = Φr , with cos (Φr − Φi ) = 1 and
α = β = θ.

Now, one clearly observes that the irradiance values IO-N of our matte Buddha
bust, extracted based on the Oren and Nayar model, consist of two components,
namely ν1 cos (θ) as the Lambertian one and ν2 sin2 (θ)which is the non-Lambertian
component that takes on its maximum value where θ = π

2 , i.e. close to the occluding
boundary.

In proceeding with the actual preprocessing, we follow the work by [44] to solve
(2.43) for cos (θ) based on the approximated intensity IO-N as

cos (θ) =
ν1 ±

√
ν2
1 − 4ν2 (IO-N − ν2)

2ν2
(2.44)

while taking the solutions associated with the minus sign as motivated in [44].
The corrected irradiance image shown as Fig. 2.7 which may be considered as

Lambertian is obtained as I := ν1 cos (θ) from Eq. (2.44). It is used as the input to
both models of Tankus and Yuen and respective co-authors while considering the tip
of the nose with the highest irradiance value as the boundary point to the perspective
fast marching solver tailored by either of the methods [54, 66].

Let us note at this point explicitly that the FM solver is designed to solve boundary
value problems of eikonal type. In our application, we have to give an initial depth
value which serves as the boundary value. The tip of the nose is the brightest point
in the input image and by this, it is a candidate for the smallest depth value as seen
from the camera. The FM method then computes subsequently larger depth values
starting from the given boundary value. The tip of the nose is identical to a singular
point as discussed before in this chapter.
Discussion of Results. The method of Tankus et al. [54] iteratively improves the
constructed 3D perspective model of the Buddha face while starting initially from
an orthographically created surface of it. We decided to cut the final reconstructed
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Fig. 2.8 The profile views obtained by cutting the reconstructed 3D surfaces based on Tankus et al.
[54] and Yuen et al. [66]. Note that we let the Tankus model iterate 4 times. The cuts are performed
horizontally and in the direction of the line passing through the tip of the nose. The point with the
minimum depth corresponds to the nose tip. The situation exactly at the nose tip is supposed to be
orthographic, so that the method of Tankus et al. shows the correct behavior around it

surface by Tankus in the direction of a horizontal line passing through the tip of
the nose and compare it to the same cut taken from the orthographic surface from
which the Tankus model starts its evolution. Figure2.8 shows such horizontal cuts,
one taken from the final reconstructed surface after 4 iterations and the other from
the orthographic initial state.

Let us stress that now, we first look at a relatively small portion of the image
just around the nose tip, so that the presented cut represents a close to orthographic
scenario within the experiment. What we expect in just this part of the image is that a
correctly working SFSmethod shall give a solution close to an orthographic method.
Any perspective effect may show itself in the final reconstructed profilewhenmoving
away from the vicinity of the nose tip, which acts as a common boundary value for all
the methods. We observe a correct, close to orthographic behavior of the method of
Tankus et al. in Fig. 2.8 as well as some first instances of perspective reconstruction
when going away from the nose (but not very strongly). However, the reconstructed
profile by Yuen et al. [66], shown also in Fig. 2.8, is observed to have a quite different
geometry compared to the other two profiles. This is due to an underlying problem
in the method of Yuen et al., which appears when working with a small focal length.

Additionally to the profile views shown in Fig. 2.8, we visualize the reconstructed
3D frontal models of the whole face area with respect to both models of Tankus and
Yuen and co-authors as Figs. 2.9 and 2.10, respectively.

As one observes in Fig. 2.9, the point light source of our used endoscopic camera
has no negative consequences on the construction of the final model, though Tankus
et al. [54] assumes a far away light source and not a point light source in their
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Fig. 2.9 The resultant depth map of Buddha face created by adopting Tankus et al. [54]. Though
we have adopted an endoscopic camera with a set of LEDs almost concentric with the camera lens
center, the far away light source as one of the main assumptions in Tankus et al. [54] is not being
negated. Note that the focal length as one of the parameters in Tankus model is set to the focal
length of our adopted camera while inferring the depth

Fig. 2.10 The depth map obtained from the face area of the Buddha bust by adopting Yuen et
al. [66]. To infer the depth values, we had to choose the focal length which is one of the model
parameters of the method of Yuen et al. [66] as a large number, which means that our endoscopic
camera acts as an orthographic one. The proposed model by Yuen et al. [66] may not suit PSFS in
endoscopic applications

proposed model. The reason to still have a final smooth surface is the resemblance
of the illuminated light by our camera to a typical far away source of light because
of locating the Buddha bust at a close vicinity of the camera while capturing it, as
already indicated. Let us stress that we used the focal length of our camera while
reconstructing the surface shown in Fig. 2.9.

It is noteworthy that, to obtain a complete reconstruction of the Buddha bust based
on the proposed method by Yuen et al. [66], which is shown in Fig. 2.10, we had to
choose the focal length, which is one of the model parameters, as a large number.
This would lead the endoscopic camera model to resemble an orthographic camera
that may not fulfill our initial aim to create a perspective model of the Buddha bust.
We also aimed to use the real focal length of our camera as the parameter input
of the Yuen model, but no model could be created as the final result. The unstable
computation reveals the fact that the Yuen model may not be suitable for PSFS while
adopting an endoscopic camera with a small focal length and small sensor size.
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As indicated by making use of the profile cuts, the perspective effect is supposed
to be mainly visible away from the center of a given input image, basically toward
the outer parts of a reconstructed geometry. We expect to observe this effect in the
now presented synthetic and quantitatively evaluated experiment. By performing
this experiment, complementary to the presentation of the profile cuts, we confirm
that the method of Tankus et al. is not only in a near-orthographic but also in the
truly perspective setting a very robust and trustworthy method from the literature,
as proposed of course already in the original papers but here evaluated with the
emphasis on the interplay of an orthographic and perspective situation. The latter
aspect has been to our impression not investigated in too much detail in the previous
literature.

As another experiment, we take the hemisphere shown in Fig. 2.11, also used
in [66, 67], as our baseline geometry while being illuminated by the light source at
infinity. It is rendered as a Lambertian surface, and we investigate how the approxi-
mations obtained by Tankus and Yuen methods deviate from it in terms of l2 and l∞
measures. In addition, we aim to vary the focal length of the camera to see which
model may be more robust. Starting the detailed discussion and in the direction of
making the comparison results simpler to observe, we just cut the baseline geometry
and the approximated hemispheres such that the cut passes through the zenith and is
vertical to the xy plane.

Now, let us start the experiment with a relatively high focal length of 64, shown
as the rightmost graph in the first row of Fig. 2.11, and compare the cut obtained
from the baseline geometry shown in red color to the green and the blue cuts taken
from the Yuen and the Tankus models. This case looks to be an ideal observation,
since both methods have their cuts nearly approximating the baseline cut with a
good accuracy. In terms of l2 and l∞ measures, we observed the values of 36.97 and
3.82 corresponding to the Tankus model and 13.90 and 0.32 with respect to Yuen’s
approach.

Next, we reduced the focal length, initially to the value of 32 and later to 16. The
corresponding cuts are shown as the middle and the left graph appearing as the first
row of Fig. 2.11, respectively. The reduction of focal length clearly indicates the poor
performance of the Yuen model in this regime. We observed the same effect while
producing the Buddha bust using the Yuen model, that leads us to increase the focal
length so the approximation as shown in Fig. 2.10 is produced. In this experiment, the
focal length reduction had almost no effect on the model produced by Tankus et al.,
since the corresponding l2 and l∞ measures stay in the vicinity of the already related
mentioned values. Note that, in this experiment, we kept the number of iterations
taken by the Tankus approach to be equal to 4 again. In the context of the previous
experiment with the Buddha bust, let us stress that we observe the validity of the
perspective effect away from the image center.
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Fig. 2.11 The sought surface of interest, namely a hemisphere, shown as the bottom and used
in [66, 67] as the baseline geometry. The rightmost graph in the first row can be considered as an
ideal case compared to two other graphs since both the methods [54, 66] approximate acceptable
hemispheres compared to the baseline. One observes the blue and the green cuts in the rightmost
graph which are verymuch close to the cut obtained from the baseline in red. In this case, the camera
focal length was chosen in both of the methods [54, 66] to be 64. As the middle and the left graphs
show, reduction of focal length to 32 and 16, respectively, reduces the accuracy of [66], namely the
perspective geometry of the green cut gets far from the cut representing the baseline model

2.5 Summary and Conclusion

We reviewed perspective SFS techniques and recalled corresponding modeling
assumptions. In addition, the FM algorithm as a computationally effective method
was discussed in the context of a classic PSFS approach [66]. We compared the
latter method with the approach of Tankus et al. [54] which is supposed to rely on
the same modeling assumptions but which features a different implementation of the
FM strategy by construction.

We could verify that the computational approach of Tankus and co-authors shows
a stable and reliable behavior, especially for varying focal lengths and regimes that
are perspective and close to the orthographic case. In contrast, we proposed a tractable
algorithm for the method of Yuen and co-authors, which in general appears to give
reasonable results, yet which has to be handled carefully if the input features a small
focal length.

It appears at first glance a bit surprising that twomethods that should be very close
by the underlying model as well as by the underlying algorithm give very different
results in some settings as one could observe by our study in this chapter. This shows
once more, that in the field of SFS, one needs to be very careful in the design of
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models and algorithms. Moreover, a clean modeling by making use of a PDE, which
is the basis of the model of Tankus et al., seems to bear not only theoretical but also
practical advantages, as there are no hidden assumptions or parameters in this setting

Appendices

Appendix 1

The irradiance equation

I0 = |z0 A3 + B3|√
(z0 A1 + B1)

2 + (z0 A2 + B2)
2 + (z0 A3 + B3)

2

is reformulated as

I 20
(
(z0 A1 + B1)

2 + (z0 A2 + B2)
2 + (z0 A3 + B3)

2
) = (z0 A3 + B3)

2

and further simplified as

I 20 ( · · ·
(
z20 A2

1 + B2
1 + 2z0 A1B1

)+
(
z20 A2

2 + B2
2 + 2z0 A2B2

)+
(
z20 A2

3 + B2
3 + 2z0 A3B3

)

· · · ) = z20 A2
3 + B2

3 + 2z0 A3B3. (2.45)

By distributing the I 20 , on rewrites (2.45) as

z20 A2
1 I 20 + B2

1 I 20 + 2z0 A1B1 I 20 +
z20 A2

2 I 20 + B2
2 I 20 + 2z0 A2B2 I 20 +

z20 A2
3 I 20 + B2

3 I 20 + 2z0 A3B3 I 20 −
z20 A2

3 + B2
3 + 2z0 A3B3 = 0. (2.46)

Rearranging (2.46) while factoring out z20 and z0 results it to be written as

C1︷ ︸︸ ︷(
I 20
(

A2
1 + A2

2 + A2
3

)− A2
3

)
z20+

C2︷ ︸︸ ︷(
2I 20 (A1B1 + A2B2 + A3B3) − 2A3B3

)
z0+
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C3︷ ︸︸ ︷(
I 20
(
B2
1 + B2

" + B2
3

)− B2
3

) = 0, (2.47)

and finally the image irradiance equation is reformulated in the form of the quadratic
equation

C1z20 + C2z0 + C3 = 0. (2.48)

Appendix 2

In this case, the term (Pa − P0)
� is redefined as

Pa − P0 =
⎛

⎝
vbzb − v0z0

− (ubzb − u0z0)
0

⎞

⎠ (2.49)

restricting the wave-front to only propagate from the direction of Pb, namely
(Pa − P0) · (Pb − P0) = 0, leading the derivation of the normal N to proceed as

N = (Pa − P0)
� × (Pb − P0)

� =
⎛

⎝
vbzb − v0z0

− (ubzb − u0z0)
0

⎞

⎠×
⎛

⎝

ubzb−u0z0
f

vbzb−v0z0
f

zb − z0

⎞

⎠ . (2.50)

Now by letting

xb := (ubzb − u0z0) and yb := vbzb − v0z0

one writes (2.50) as

N = (Pa − P0)
� × (Pb − P0)

�

=
⎛

⎝
yb

−xb

0

⎞

⎠×
⎛

⎝
xb/f

yb/f

zb − z0

⎞

⎠

=
⎛

⎜
⎝

−xb (zb − z0)
−yb (zb − z0)

x2
b +y2b

f

⎞

⎟
⎠ (2.51)

as the normal vector to the surface point P0 in case of the degenerated case η1 = +∞.
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Appendix 3

Because (ub, vb) is a neighbor of (u0, v0), one can write xb and yb as

xb = u0 (zb − z0) + Δ1zb (2.52)

and
yb = v0 (zb − z0) + Δ2zb (2.53)

with (Δ1,Δ2) ∈ {(0,±1) , (±1, 0)}, and substitute them into the numerator of the
irradiance image

I0 = x2
b + y2b√

f 2x2
b (zb − z0)

2 + f 2y2b (zb − z0)
2 + (x2

b + y2b
)2

to get

I0 =

x2
b︷ ︸︸ ︷

(u0 (zb − z0) + Δ1zb)
2 +

y2b︷ ︸︸ ︷
(v0 (zb − z0) + Δ2zb)

2

√
f 2x2

b (zb − z0)
2 + f 2y2b (zb − z0)

2 + (x2
b + y2b

)2

that is expanded as

I0 =

{
u2
0 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0)Δ1zb + · · ·

v2
0 (zb − z0)

2 + Δ2
2z2b + 2v0 (zb − z0) Δ2zb

}

√
f 2x2

b (zb − z0)
2 + f 2y2b (zb − z0)

2 + (x2
b + y2b

)2
. (2.54)

In addition, by factoring f 2 (zb − z0) from the first two terms of the (2.54) denomi-
nator, we have

I0 =

{
u2
0 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0)Δ1zb + · · ·

v2
0 (zb − z0)

2 + Δ2
2z2b + 2v0 (zb − z0)Δ2zb

}

√
f 2 (zb − z0)

2
(
x2

b + y2b
)+ (x2

b + y2b
)2

that is more simplified in its denominator as

I0 =

{
u2
0 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0)Δ1zb + · · ·

v2
0 (zb − z0)

2 + Δ2
2z2b + 2v0 (zb − z0) Δ2zb yb

}

√(
x2

b + y2b
) (

f 2 (zb − z0)
2 + (x2

b + y2b
)) . (2.55)
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Taking both sides of (2.55) to the power of 2, we are lead to

I 20 =

{
u2
0 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0) Δ1zb + · · ·

v2
0 (zb − z0)

2 + Δ2
2z2b + 2v0 (zb − z0)Δ2zb

}2

≡ (x2
b + y2b

)2

(
x2

b + y2b
) (

f 2 (zb − z0)
2 + (x2

b + y2b
))

letting us to have the image irradiance equation as

I 20 =

{
u2
0 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0) Δ1zb + · · ·

v2
0 (zb − z0)

2 + Δ2
2z2b + 2v0 (zb − z0)Δ2zb

}

f 2 (zb − z0)
2 + (x2

b + y2b
) .

Now, all terms are taken to the same side

⎧
⎪⎨

⎪⎩

u2
0 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0)Δ1zb + · · ·

v2
0 (zb − z0)

2 + Δ2
2z2b + 2v0 (zb − z0)Δ2zb − · · ·

I 20 f 2 (zb − z0)
2 − I 20

(
x2

b + y2b
)

⎫
⎪⎬

⎪⎭
= 0

and further simplified based on the common factor (zb − z0) as

⎧
⎪⎨

⎪⎩

(
u2
0 + v2

0 − I 20 f 2
)
(zb − z0)

2 + · · ·
(2u0Δ1zb + 2v0Δ2zb) (zb − z0) + · · ·
Δ2

1z2b + Δ2
2z2b − I 20

(
x2

b + y2b
)

⎫
⎪⎬

⎪⎭
= 0. (2.56)

To this end, once again the terms xb and yb in (2.56) need to be replaced by (2.52)
and (2.53) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
u20 + v20 − I 20 f 2

)
(zb − z0)

2 + · · ·
(2u0Δ1zb + 2v0Δ2zb) (zb − z0) + · · ·

Δ2
1z2b + Δ2

2z2b − I 20

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2b
︷ ︸︸ ︷
u20 (zb − z0)

2 + Δ2
1z2b + 2u0 (zb − z0) Δ1zb + · · ·

v20 (zb − z0)
2 + Δ2

2z2b + 2v0 (zb − z0) Δ2zb
︸ ︷︷ ︸

y2b

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0

and once again rearranged based on (zb − z0) and (zb − z0)
2 as

⎧
⎪⎨

⎪⎩

((
u2
0 + v2

0 − I 20 f 2
)− I 20

(
u2
0 + v2

0

))
(zb − z0)

2 + · · ·
(
2u0Δ1zb + 2v0Δ2zb − I 20 2u0Δ1zb − I 20 2v0Δ2zb

)
(zb − z0) + · · ·

Δ2
1z2b + Δ2

2z2b − I 20 Δ2
1z2b − I 20 Δ2

2z2b

⎫
⎪⎬

⎪⎭
= 0



2 Perspective Shape from Shading 61

or ⎧
⎪⎨

⎪⎩

((
u2
0 + v2

0 − I 20 f 2
)− I 20

(
u2
0 + v2

0

))
(zb − z0)

2 + · · ·
(
2u0Δ1zb

(
1 − I 20

)+ 2v0Δ2zb
(
1 − I 20

))
(zb − z0) + · · ·

Δ2
1z2b
(
1 − I 20

)+ Δ2
2z2b
(
1 − I 20

)

⎫
⎪⎬

⎪⎭
= 0

that leads to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1︷ ︸︸ ︷((
u2
0 + v2

0 − I 20 f 2
)− I 20

(
u2
0 + v2

0

))
(zb − z0)

2 + · · ·
D2︷ ︸︸ ︷(

(2u0Δ1zb + 2v0Δ2zb)
(
1 − I 20

))
(zb − z0) + · · ·

D3︷ ︸︸ ︷(
Δ2

1z2b + Δ2
2z2b
) (
1 − I 20

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0

and finally written as a quadratic equation

D1 (zb − z0)
2 + D2 (zb − z0) + D3 = 0 (2.57)

with below coefficients :

D1 := (u2
0 + v2

0

)− I 20
(

f 2 + u2
0 + v2

0

)
, D2 := 2zb (u0Δ1 + v0Δ2)

(
1 − I 20

)
,

D3 := (Δ2
1z2b + Δ2

2z2b
) (
1 − I 20

)
.

Appendix 4

Steps in the direction of normal vector derivation by Tankus et al. [54] :

n =
(

d

du
C1 (u)

)
×
(

d

dv
C2 (v)

)

= 1

f

⎛

⎝
−z − uzu

−v0zu

f zu

⎞

⎠× 1

f

⎛

⎝
−u0zv

−z − vzv

f zv

⎞

⎠

= 1

f 2

⎛

⎝
−z − uzu

−v0zu

f zu

⎞

⎠×
⎛

⎝
−u0zv

−z − vzv

f zv

⎞

⎠

= 1

f 2

⎛

⎝
−vzu · f zv + f zu (z + vzv)

− f zu · uzv + (z + uzu) f zv

(z + uzu) (z + vzv) − vzu · uzv

⎞

⎠



62 M. Breuß and A. Mansouri Yarahmadi

= 1

f 2

⎛

⎝
− f vzuzv + f zzu + f vzuzv

− f uzuzv + f zzv + f uzuzv

z2 + vzzv + uzzu + uvzuzv − uvzuzv

⎞

⎠

= 1

f 2

⎛

⎝
f zzu

f zzv

z2 + vzzv + uzzu

⎞

⎠

= 1

f 2

⎛

⎝
f zzu

f zzv

z2 + z (vzv + uzu)

⎞

⎠

= z

f 2

⎛

⎝
f zu

f zv

z + vzv + uzu

⎞

⎠ . (2.58)

Based on (2.58), the unit normal vector is found as

n̂ = n
‖n‖

=
z
f 2 ( f zu, f zv, z + vzv + uzu)

√
f 2z2u

z2
f 4 + f 2z2v

z2
f 4 + (z + vzv + uzu)

2 z2
f 4

=
z
f 2 ( f zu, f zv, z + vzv + uzu)

z
f 2

√
f 2z2u + f 2z2v + (z + vzv + uzu)

2

= ( f zu, f zv, z + vzv + uzu)√
f 2
(
z2u + z2v

)+ (z + vzv + uzu)
2
. (2.59)

Appendix 5

Steps to derive the image irradiance equation (2.37) proposed by Tankus et al. [54]
and based on (2.34), (2.35) and (2.36).

I = (u − f ps) zu + (v − f qs) zv + z

‖L‖
√

f 2
(
z2u + z2v

)+ (z + vzv + uzu)
2

= (u − f ps) pz + (v − f qs) qz + z

‖L‖

√√√√√√ f 2

⎛

⎜
⎝(pz)2︸ ︷︷ ︸

z2u

+ (qz)2︸ ︷︷ ︸
z2v

⎞

⎟
⎠+ (z + vqz + upz)2
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= (u − f ps) pz + (v − f qs) qz + z

‖L‖
√

f 2
(

p2z2 + q2z2
)

︸ ︷︷ ︸
β

+ (z + vqz + upz)2

= (u − f ps) pz + (v − f qs) qz + z

‖L‖
√

f 2z2
(

p2 + q2
)

︸ ︷︷ ︸
β

+ (z + vqz + upz)2

= (u − f ps) pz + (v − f qs) qz + z

‖L‖
√

f 2z2β + (z + vqz + upz)2

= (u − f ps) pz + (v − f qs) qz + z

‖L‖
√

f 2z2β + (z2 + v2q2z2 + u2 p2z2 + 2vqz2 + 2upz2 + 2uvpqz2
)

= (u − f ps) pz + (v − f qs) qz + z

‖L‖
√

f 2z2β + z2
(
1 + v2q2 + u2 p2 + 2vq + 2up + 2uvpq

)

= (u − f ps) pz + (v − f qs) qz + z

‖L‖
√

f 2z2β + z2 (up + vq + 1)2

= z ((u − f ps) p + (v − f qs) q + 1)

z‖L‖
√

f 2β + (up + vq + 1)2

= (u − f ps) p + (v − f qs) q + 1

‖L‖
√

f 2β + (up + vq + 1)2

= (u − f ps) p + (v − f qs) q + 1

‖L‖
√

f 2
(

p2 + q2
)+ (up + vq + 1)2

= (u − f ps) p + (v − f qs) q + 1

‖L‖
√

f 2
(

p2 + q2
)+ (up + vq + 1)2

.

Appendix 6

Steps to further simplify the image irradiance equation (2.37) of Tankus et al. [54]
to the form shown in (2.38) proceeds by letting both sides of (2.37) to the power of
2 as

I 2 = ((u − f ps) p + (v − f qs) q + 1)2
(
‖L‖

√
f 2
(

p2 + q2
)+ (up + vq + 1)2

)2
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and rearranging it as

I 2
(

‖L‖
√

f 2
(

p2 + q2
)+ (up + vq + 1)2

)2

= ((u − f ps) p + (v − f qs) q + 1)2 .

Taking all the terms to the left side

I 2
(

‖L‖
√

f 2
(

p2 + q2
)+ (up + vq + 1)2

)2

− ((u − f ps) p + (v − f qs) q + 1)2 = 0,

that simplifies to

(
I 2‖L‖2

(
f 2
(

p2 + q2
)

+ (up + vq + 1)2
))

− ((u − f ps) p + (v − f qs) q + 1)2 = 0,

by canceling the square root and finally appears as

⎛

⎜⎜
⎝I 2‖L‖2 f 2

(
p2 + q2

)

︸ ︷︷ ︸
α1

+ I 2‖L‖2 (up + vq + 1)2
︸ ︷︷ ︸

α2

⎞

⎟⎟
⎠− ((u − f ps) p + (v − f qs) q + 1)2

︸ ︷︷ ︸
α3

= 0.

Appendix 7

The expanded forms of α1, α2 and α3 are provided as :
– α1 :

α1 = I 2‖L‖2 f 2
(

p2 + q2
)

= I 2‖L‖2 f 2 p2 + I 2‖L‖2 f 2q2

– α2 :
α2 =I 2‖L‖2 (up + vq + 1)2

=I 2‖L‖2 (u2 p2 + v2q2 + 1 + 2pquv + 2up + 2vq
)

=I 2‖L‖2u2 p2 + I 2‖L‖2v2q2 + I 2‖L‖2 + · · ·
2I 2‖L‖2 pquv + 2I 2‖L‖2up + 2I 2‖L‖2vq

– α3 :

α3 = − ((u − f ps) p + (v − f qs) q + 1)2

= − (u − f ps)
2 p2 − (v − f qs)

2 q2 − 1 − · · ·
− 2pq (u − f ps) (v − f qs) − 2p (u − f ps) − 2q (v − f qs)

.
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Appendix 8

To derive (2.39), let us start from (2.38) and proceed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

I 2‖L‖2 f 2
(

p2 + q2
)

︸ ︷︷ ︸
α1

+ · · ·

I 2‖L‖2 (up + vq + 1)2︸ ︷︷ ︸
α2

− · · ·

((u − f ps) p + (v − f qs) q + 1)2︸ ︷︷ ︸
α3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0.

Now, those components have the terms of interest p2, q2, 2pq, 2p and 2q in common
which are marked as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�����I 2‖L‖2 f 2 p2 +�����
I 2‖L‖2 f 2q2 + · · ·

�����I 2‖L‖2u2 p2 +�����
I 2‖L‖2v2q2 + I 2‖L‖2 +������������2I 2‖L‖2 pquv + 2I 2‖L‖2up + 2I 2‖L‖2vq/////////////////

· · · −�����(u − f ps )
2 p2 −�����

(v − f qs )
2 q2 − 1

· · · −������������������2pq (u − f ps ) (v − f qs ) − 2p (u − f ps ) − 2q (v − f qs )///////////////////

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= 0,

that leads to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2

:=A
︷ ︸︸ ︷(
I 2‖L‖2 ( f 2 + u2

)− (u − f ps)
2
)+ · · ·

q2

:=B
︷ ︸︸ ︷(
I 2‖L‖2 ( f 2 + v2

)− (v − f qs)
2
)+ · · ·

2pq

:=C
︷ ︸︸ ︷(
I 2‖L‖2uv − (u − f ps) (v − f qs)

)+ · · ·

2p

:=D
︷ ︸︸ ︷(
I 2‖L‖2u − (u − f ps)

)+ · · ·

2q

:=E
︷ ︸︸ ︷(
I 2‖L‖2v − (v − f qs)

)+ · · ·
:=F

︷ ︸︸ ︷
I 2‖L‖2 − 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0,

and finally to
p2 A + q2B + 2pqC + 2pD + 2q E + F = 0.
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Algorithm 1 : Perspective fast marching, Yuen et al. [66].

Initialization

0. Create the depth map ζ, assign all of its node values to +∞ and all of their labels far.
1. Locate the nodes in depth map corresponding to the boundary areas ∂ I , label them as known
and set their depth values to minimum depth value.

2. For each grid point ζu,v belonging to the depth map, define the neighbor sets

Nh = {ζu−1,v, ζu+1,v
}

and Nv = {ζu,v−1, ζu,v+1
}
.

3. Define the narrow band as the nodes belonging to Nh (∂ I ) ∪ Nv (∂ I ).

Update cycle

4. Take the node in narrow band with minimum depth value, call it κ, label it as known and remove
it from the narrow band.

5. Look for all neighbors Nh (κ) ∪ Nv (κ). If they are not known label them as trial else if their
labels are far, add them to the narrow band.

6. Find η1 and η2 such that

η1 = min {Nh (κ)} and η2 = min {Nv (κ)} .

7. Compute ζκ based on η1 and η2 as

if (η1 = +∞ ∨ η2 = +∞) then
if (η1 = +∞) then
Call Algorithm (Degenerated horizontal case, Yuen et al. [66])

else {(η2 = +∞)}
Call Algorithm (Degenerated vertical case, Yuen et al. [66])

end if
else {(η1 �= +∞ ∧ η2 �= +∞)}
Call Algorithm (Main Case, Yuen et al. [66])

end if

8. Stop if the narrow band is empty, else go to step 4.
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Algorithm 2 : Degenerated (horizontal/vertical) cases, Yuen et al. [66].
Note : In the vertical case, the subscripts a and b are interchanged while deriving the
normal vector (2.60) in Appendix2. Later, (2.61)–(2.63) are adjusted according to
the subscript change and toward computation of the sought depth z0.

0. Compute the normal N to the surface point Pκ as

N =
(
−xb (zb − zκ) ,−yb (zb − zκ) ,

x2b +y2b
f

)�
(2.60)

See Appendix2 for details.

1. Rewrite the image irradiance equation (2.23) by adopting the normal N derived in (2.60) as

Iκ = x2b + y2b√
f 2x2b (zb − zκ)2 + f 2y2b (zb − zκ)2 + (x2b + y2b

)2
. (2.61)

2. Rewrite the image irradiance equation (2.61) as quadratic equation

D1 (zb − zκ)2 + D2 (zb − zκ) + D3 = 0. (2.62)

See Appendix3 for details.

3. Obtain the depth ζκ as one of the following cases:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζu,v := zκ = zb +
(
(

−D2 +
√

D2
2 − 4D1 D3

)
/2D1

)
, D ≥ 0

ζu,v := zκ = zb +
(
(

−D2 −
√

D2
2 − 4D1 D3

)
/2D1

)
, D1 < 0 ∧ D2 < 0 ∧ D4 ≥ 0

ζu,v := zκ = +∞, D1 < 0 ∧ D2 ≥ 0 ∧ D4 ≥ 0

ζu,v := zκ = +∞, D4 < 0

. (2.63)
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Algorithm 3 : Main case, Yuen et al. [66].

0. Rewrite the irradiance image Equation (2.23) in the form of a quadratic equation

C1z2κ + C2zκ + C3 = 0 with C4 := C2
2 − 4C1C3.

See Appendix1 for details.

1. Let
Z− := min (− C2 ±√C4/2C1) and Z+ := max ( − C2 ±√C4/2C1).

2. Obtain the depth ζκ as one of the following cases:

if (C4 < 0 ∨ Z+ = max (η1, η2)) then
ζi = +∞ with ζi := argmax (η1, η2)
if η1 = +∞ then
Call Algorithm (Degenerated horizontal case, Yuen et al. [66])

else {η2 = +∞}
Call Algorithm (Degenerated vertical case, Yuen et al. [66])

end if
else

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζκ = Z−, Z− ≥ max (η1, η2)

ζκ = Z+, Z+ ≥ max (η1, η2) > Z−
ζκ = Z+, Z− < max (η1, η2)

ζκ = Z−, otherwise

end if
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Algorithm 4 : Perspective fast marching, Tankus et al. [54].

Initialization

0. Create the depth map ζ, assign all of its node values to +∞ and all of their labels far.

1. Locate the nodes in depth map corresponding to the boundary areas ∂ I , label them as known
and set their depth values to minimum depth value.

2. For each grid point Zu,v belonging to the depth map, define the neighbor sets

Nh = {ζu−1,v, ζu+1,v
}

and Nv = {ζu,v−1, ζu,v+1
}
.

3. Define the narrow band as the nodes belonging to Nh (∂ I ) ∪ Nv (∂ I ).

Update cycle

4. Take the node in narrow band with minimum depth value, call it κ, label it as known and remove
it from the narrow band.

5. Look for all neighbors Nh (κ) ∪ Nv (κ). If they are not known label them as trial else if their
labels are far, add them to the narrow band.

6. Find η1 and η2 such that

η1 = min {Nh (κ)} and η2 = min {Nv (κ)} .

7. Compute the ζκ based on η1 and η2 as

if
(
η2 − η1 >

√
Fκ/A1

)
then

ζκ = η1 + √
Fκ/A1

else {η1 − η2 >
√

Fκ/B1}
ζκ = η2 + √

Fκ/B1

else {η2 − η1 ≤ √
Fκ/A1 ∧ η1 − η2 ≤ √

Fκ/B1}

ζκ = A1η1+B1η2±
√

(A1+B1)F̂A−A1B1(η1−η2)
2

A1+B1
end if

8. Stop if the narrow band is empty, else go to step 4.
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Chapter 3
RGBD-Fusion: Depth Refinement
for Diffuse and Specular Objects

Roy Or-El, Elad Richardson, Matan Sela, Rom Hershkovitz, Aaron Wetzler,
Guy Rosman, Alfred M. Bruckstein, and Ron Kimmel

Abstract The popularity of low-cost RGB-D scanners is increasing on a daily basis
and has set off a major boost in 3D computer vision research. Nevertheless, commod-
ity scanners often cannot capture subtle details in the environment. In other words,
the precision of existing depth scanners is often not accurate enough to recover fine
details of scanned objects. In this chapter, we review recent axiomatic methods to
enhance the depthmapby fusing the intensity and depth information to create detailed
range profiles. We present a novel shape-from-shading framework that enhances the
quality of recovery of diffuse and specular objects’ depth profiles. The first shading-
based depth refinement method we review is designed to work well with Lambertian
objects, however, it breaks down in the presence of specularities. To that end, we
propose a secondmethod, which utilizes the properties of the built-inmonochromatic
IR projector and the acquired IR images of common RGB-D scanners and propose
a lighting model that accounts for the specular regions in the input image. In the
methods suggested above, the detailed geometry is calculated without the need to
explicitly find and integrate surface normals, this allows the numerical implementa-
tions to work in real-time. Finally, we also show how we can leverage deep learning
to refine depth details. We present a neural network that is trained with the above
models and can be naturally integrated as part of a larger network architecture. Both
quantitative tests and visual evaluations prove that the suggested methods produce
state-of-the-art depth reconstruction results.
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3.1 Introduction

The availability of affordable depth scanners has sparked a revolution in many appli-
cations of computer vision, such as robotics, human motion capture, and scene mod-
eling and analysis. The increased availability of such scanners naturally raises the
question of whether it is possible to exploit the combined intensity and InfraRed (IR)
images to overcome their lack of accuracy. It is clear that to obtain fine details such
as fine facial features, one must compensate for the measurement errors inherent in
modern depth scanners.

Our goal is to fuse the captured data from the RGB-D scanner in order to enhance
the accuracy of the acquired depth maps. For this purpose, we should precisely align
and combine both depth and scene color or intensity cues. Assuming that the scanner
is stationary and its calibration parameters are known, aligning the intensity and
depth data is a relatively straightforward task. Recently, scanners that allow access
to both infrared scene illumination and depth maps, have become available enabling
the possibility of even richer RGB-D-I fusion.

Reconstructing a shape from color or intensity images, a task known as shape-
from-shading [1–3], is a well-addressed area in computer vision. These shape esti-
mation solutions often suffer from ambiguities since there can be several possible
surfaces that can explain a given image. Recently, attempts have been made to elimi-
nate some of these ambiguities by usingmore elaborated lightingmodels, with richer,
natural illumination environments [4, 5]. Moreover, it was observed that data from
depth sensors combined with shape-from-shading methods can be used to eliminate
ambiguities and improve the reconstructed depth maps [6–8].

Here, we discuss two recent real-time methods to directly enhance surface recov-
ery that achieve state-of-the-art accuracy. The first approach applies a lighting model
that uses normals estimated from the depth profile and eliminates the need for cali-
bration of the scene lighting. The lighting model accounts for distant light sources,
multiple albedos, and some local lighting effects. The result is a depth recovery
method that works well with Lambertian surfaces. However, most surfaces are not
purely Lambertian and exhibit specular reflections whichmay affect the depth refine-
ment result. To that end, we adopt a second approach that uses the IR image supplied
by modern depth scanners to deal with specular reflections. The narrow-band nature
of the IR projector and IR camera provides a controlled lighting environment. We
then exploit this friendly environment to introduce a new depth refinement process
based on a lighting model that accounts for specular reflections as well as multiple
albedos.

Assuming that the lighting model explains the smooth nature of the intensity
image, and that high frequency data in the image is related to the surface geometry,
we reconstruct a high quality surface without explicitly finding and integrating its
normals. Instead, we use the relation between the surface gradient, its normals, and a
smoothedversionof the input depthmap todefine a surface dependent cost functional.
In order to achieve fast convergence, we iteratively linearize the variational problem.
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Additionally, we also discuss FineNet, a CNN architecture for accurate surface
recovery. As the methods above, this network takes an intensity image and an initial
depth profile as inputs and fuses shading cues from the input image to generate an
enhanced depth map containing subtle details. This network is trained in an unsu-
pervised manner using a loss function inspired by the above methods.

This chapter combines and streamlines the methods described in [9, 10], with the
FineNet framework presented in [11]. The main topics addressed in this chapter are

1. Presenting a novel and robust depth enhancement method that operates under
natural illumination and handles multiple albedos and specular objects.

2. Showing that depth accuracy can be improved in a real-time system by efficiently
fusing the RGB-D/IR-D inputs.

3. Demonstrating that improved depth maps can be acquired directly using shape-
from-shading technique that avoids the need to first find the surface normals and
then integrate them.

4. Introducing an unsupervised CNN framework for depth enhancement, based on
the presented axiomatic SfS model.

The chapter outline is as follows:weoverviewprevious and related efforts inSect. 3.2.
The proposed algorithms are presented in Sects. 3.3, 3.4 and 3.5. Results are shown
in Sect. 3.6, with discussions in Sect. 3.7.

3.2 Related Work

We first briefly review some of the research done in depth enhancement and shape-
from-shading. We refer to just a few representative papers that capture the major
development and the state-of-the-art in these fields.

3.2.1 Depth Enhancement

Depth enhancement algorithms mostly rely on one of the following strategies: using
multiple depth maps, employing pre-learned depth priors and combining depth and
intensity maps.

Multiple depth maps. Chen and Medioni, laid the foundation to this paradigm
in [12] by registering overlapping depth maps to create an accurate and complete
3D models of objects. Digne et al. [13] decomposed laser scans to low and high
frequency components using the intrinsic heat equation. They fuse together the low
frequency components of the scans and keep the high frequency data untouched to
produce a higher resolution model of an object. Merrel et al. [14] generated depth
images from intensity videos which were later fused to create a high resolution 3D
model of objects. Schuon et al. [15] aligned multiple slightly translated depth maps
to enhance depth resolution. They later extended this in [16] to shape reconstruction
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from the global alignment of several super-resolved depth maps. Tong et al. [17]
used a nonrigid registration technique to combine depth videos from three Kinects
to produce a high resolution scan of a human body. Probably the most popular effort
in this area is the KinectFusion algorithm [18], in which a real-time depth stream is
fused on the GPU into a truncated signed distance function to accurately describe a
3D model of a scanned volume. In [19] Maier et al. extend the KinectFusion model
and jointly optimize the SDF along with shading cues from the RGB images. Zou
et al. [20] refine the object’s depth by exploiting the lighting variations from casual
movement to calculate photometric stereo under natural illumination. Sang et al. [21]
propose to attach an LED light to an RGB-D scanner and reconstruct the surface from
multiple viewpoints where the motion is unknown.

Pre-learned depth priors. Oisin et al. [22] use a dictionary of synthetic depth
patches to build a high resolution depth map. Hornáček et al. [23] extended to 3D
both the self similarity method introduced in [24] and the PatchMatch algorithm by
Barnes et al. [25] and showed how they can be coupled to increase spatial and depth
resolution. Li et al. [26] extract features from a training set of high resolution color
image and low resolution depth map patches, then, they learn a mapping function
between the color and low resolution depth patches to the high resolution depth
patches. Finally, depth resolution is enhanced by a sparse coding algorithm. In the
context of 3D scanning,Rosman et al. [27] demonstrated the use of a sparse dictionary
for range images for 3D structured-light reconstruction.

Depth and intensity maps. The basic assumption behind these methods is that
depth discontinuities are strongly related to intensity discontinuities. In [28, 29], a
joint bilateral upsampling of intensity images was used to enhance the depth res-
olution. Park et al. [30] combined a nonlocal means regularization term with an
edge weighting neighborhood smoothness term and a data fidelity term to define an
energy function whose minimization recovers a high quality depth map. In a more
recent paper, Lee and Lee [31], used an optical flow like algorithm to simultaneously
increase the resolution of both intensity and depth images. This was achieved using a
single depth image and multiple intensity images from a video camera. Lu et al. [32]
assemble similar RGBD patches into a matrix and use its low-rank estimation to
enhance the depth map.

3.2.2 Shape-from-Shading

Classical Shape-from-shading. The shape-from-shadingproblemunder the assump-
tion of a Lambertian surface and uniform illumination was first introduced by Horn
in [1]. The surface is recovered using the characteristic strip expansion method. In
1986, Horn and Brooks [33], explored variational approaches for solving the shape-
from-shading problem. Later, Bruckstein [2], developed a direct method of recover-
ing the surface by level sets evolution assuming that the light source is directly above
the surface. This method was later generalized by Kimmel and Bruckstein [34], to
handle general cases of uniform lighting from any direction. In [3], Kimmel and
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Sethian show that a fast solution to the shape from shading problem can be obtained
from a modification to the fast marching algorithm. The works of Mecca et al. [35,
36], has recently resulted in a PDE formulation for direct surface reconstruction using
photometric stereo. Two surveys in [37, 38], comprehensively cover the shape-from-
shading problem as studied over the last few decades.

Recently, attempts were made to solve the shape-from-shading problem under
uncalibrated natural illumination. Forsyth [39] modeled the shading by using a spa-
tially varying light source to reconstruct the surface. Huang and Smith [4] use first-
order spherical harmonics to approximate the surface reflectance map. The shape
is then recovered by using an edge preserving smoothing constraint and by min-
imizing the local brightness error. Johnson and Adelson [5] modeled the shading
as a quadratic function of the surface normals. They showed, counter-intuitively,
that natural illumination reduces the surface normals ambiguity, and thus, makes the
shape-from-shading problem simpler to solve. Queau et al. [40] propose a new PDE-
basedmodel for shape-from-shading, which handles various illumination and camera
models. They also introduce a new variational scheme for solving the PDE-based
model.

The main practical drawback about classical shape-from-shading is that although
a diffusive single albedo setup can be easily designed in a laboratory, it can rarely
be found in more realistic environments. As such, modern SfS approaches attempt
to reconstruct the surface without any assumptions about the scene lighting and/or
the object albedos. In order to account for the unknown scene conditions, these
algorithms either use learning techniques to construct priors for the shape and scene
parameters, or acquire a rough depth map from a 3D scanner to initialize the surface.

Learning-based methods. Barron and Malik [41] constructed priors from sta-
tistical data of multiple images to recover the shape, albedo and illumination of a
given input image. Kar et al. [42] learn 3D deformable models from 2D annota-
tions in order to recover detailed shapes. Richter and Roth [43] extract color, textons
and silhouette features from a test image to estimate a reflectance map from which
patches of objects from a database are rendered and used in a learning framework for
regression of surface normals. Although these methods produce excellent results,
they depend on the quality and size of their training data, whereas the proposed
axiomatic approach does not require a training stage and is therefore applicable in
more general settings.

Depth map-based methods. Bohme et al. [44] find a MAP estimate of an
enhanced range map by imposing a shading constraint on a probabilistic image
formation model. Zhang et al. [6] fuse depth maps and color images captured under
different illumination conditions and use photometric stereo to improve the shape
quality. Yu et al. [7] use mean shift clustering and second-order spherical harmonics
to estimate the depth map scene albedos and lighting from a color image. These esti-
mations are then combined together to improve the given depth map accuracy. Han et
al. [45] propose a quadratic global lighting model along with a spatially varying local
lighting model to enhance the quality of the depth profile. Kadambi et al. [46] fuse
normals obtained from polarization cues with rough depth maps to obtain accurate
reconstructions. Even though this method can handle specular surfaces, it requires at
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least three photos to reconstruct the normals and it does not run in real-time. Several
IR-based methods were introduced in [8, 47–49]. The authors of [8, 48] suggest a
multi-shot photometric stereo approach to reconstruct the object normals. Choe et
al. [47] refine 3D meshes from Kinect Fusion [18] using IR images captured during
the fusion pipeline. Although this method can handle uncalibrated lighting, it is nei-
ther one-shot nor real-time since a mesh must first be acquired before the refinement
process begins. Ti et al. [49] propose a simultaneous time-of-flight and photometric
stereo algorithm that utilizes several light sources to produce accurate surface and
surface normals. Although this method can be implemented in real time, it requires
four shots per frame for reconstruction as opposed to our single-shot approach. More
inline with our approach, Wu et al. [50] use second order spherical harmonics to esti-
mate the global scene lighting, which is then followed by an efficient scheme to
reconstruct the object. In [51], Haefner et al. use shape-from-shading to alleviate
the ill-posedness of a single image super resolution and vice versa to enhance the
resolution of a given depth map. A similar solution using an RGBD sequence and
photometric stereo is proposed in [52]. While some shape-from-shading methods
directly optimize for depth, many methods recover normals first, and then integrate
them. The survey [53] summarizes recent advances in this field.

Multi-view Reconstruction. A recent approach in computer vision is to com-
bine shape-from-shading with multi-view stereo to enhance the overall reconstruc-
tion quality. Langguth et al. [54] use the magnitude of image gradients to balance
between a geometric and shading energy terms to reconstruct a surface givenmultiple
views.Wu et al. [55] design a generative adversarial network that transformsmultiple
views of specular objects to diffuse ones, thus, enablingmore accurate reconstruction
by downstream shading-based algorithms. Guo et al. [56] propose a shading-based
scheme that uses 3D data to estimatemotion between twoRGB-D frames. The recov-
ered motion along with a volumetric albedo fusing scheme then used for refining the
3D geometry. Alternating between these two schemes yields a detailed 3D-shape,
albedo and motion. Queau et al. [57] couple PDE-based shape-from-shading solu-
tions for single image across multiple images and multiple color channels by means
of a variational formulation to reconstruct a 3D shape given multiple views. In [58],
Liu et al. propose a unified framework accounting for shape, shading and specu-
larities for nonrigid 3D reconstruction given sequential RGB frames from a single
camera.

3.3 Diffuse Shape Refinement

We next introduce a framework for depth refinement of diffuse objects. The input is a
depth map and a corresponding intensity image. We assume that the input depth and
intensity images were taken from a fixed calibrated system. The intrinsic matrices
and the extrinsic parameters of the depth and color sensors are assumed to be known.
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We first wish to obtain a rough version of the input surface. However, due to mea-
surement inaccuracies, the given depth profile is fairly noisy. For a smooth estimate,
we apply a bilateral filter on the input depth map.

Next, we estimate initial surface normals corresponding to the smoothed surface.
A lighting model can now be evaluated. We start by recovering the shading from the
initial normals and the intensity. The subsequent step accounts for different albedos
and shadows. Finally, the last step estimates spatially varying illumination that better
explains local lighting effects which only affect portions of the image. Once the
lighting model is determined, we move on to enhance the surface. Like modern
shape-from-shading methods, we take advantage of the fact that an initial depth map
is given. With a depth map input, a high quality surface can be directly reconstructed
without first refining the estimated normals. This is done by a variational process
designed to minimize a depth-based cost functional. Finally, we show how to speed
up the reconstruction process.

3.3.1 Lighting Estimation

The shading function relates a surface geometry to its intensity image. The image is
taken under natural illumination where there is no single point light source. Thus, the
correct scene lighting cannot be recovered with a directional lighting model. A more
complex lighting model is needed. Grosse et al. [59] introduced an extended intrin-
sic image decomposition model that has been widely used for recovering intrinsic
images. We show how we can efficiently incorporate this model for our problem in
order to get state of the art surface reconstruction. Define,

L(i, j, �n) = ρ(i, j)S(�n) + β(i, j), (3.1)

where L(i, j, �n) is the image irradiance at each pixel, S(�n) is the shading, ρ(i, j)
accounts for multiple scene albedos and shadowed areas since it adjusts the shading
intensity. β(i, j) is added as an independent, spatially varying light source, that
accounts for local lighting variations such as interreflections and specularities. We
note that the (i, j) indexing is sometimes omitted for convenience throughout the
paper.

Clearly, since we only have a single input image, without any prior knowledge,
recovering S, ρ and β for each pixel is an ill-posed problem. However, the given
depth map helps us recover all three components for each pixel.

3.3.1.1 Shading Computation

First, we assume a Lambertian scene and a single directional light source and recover
the shading S, associated with light sources that have a uniform effect on the image.
Once the shading is computed, we move on to find ρ and β, to better explain the
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intensity image given the object geometry. During the shading recovery process, we
set ρ to 1 and β to 0.

Basri and Jacobs [60] and Ramamoorthi and Hanrahan [61] found that the irra-
diance of diffuse objects in natural illumination scenes can be well described by
low order spherical harmonics components. Thus, a smooth function is sufficient to
recover the shading image. For the sake of simple and efficient modeling, we opt
to use zero and first-order spherical harmonics, which are a linear polynomial of
the surface normals and are independent on the pixel’s location. Therefore, they are
given by

S(�n) = �mT ñ, (3.2)

where �n is the surface normal, S(�n) is the shading function, �m is a vector of the four
first-order spherical harmonics coefficients, and ñ = (�n, 1)T .

Every valid pixel in the aligned intensity image I can be used to recover the shad-
ing. Hence, we have an overdetermined least squares parameter estimation problem

argmin
�m

‖ �mT ñ − I‖22. (3.3)

The rough normals we obtained from the initial depth map eliminate the need for
assumptions and constraints on the shape or using several images. This produces
a straightforward parameter fitting problem unlike the classical shape-from-shading
and photometric stereo approaches. Despite having only the normals of the smoothed
surface we can still obtain an accurate shading model since the least square process
is not sensitive to high frequency changes and subtle shape details. In addition, the
estimated surface normals eliminate the need for pre-calibrating the system lighting
and we can handle dynamic lighting environments.

Background normals obviously affect the shading model outcome since they are
related to different materials with different albedos, hence, their irradiance is differ-
ent. Nonetheless, unlike similar methods, our method is robust to such outliers as
our lighting model and surface refinement scheme was designed to handle precisely
that case.

3.3.1.2 Multiple Albedo Recovery

The shading alone gives us only a rough assessment of the lighting, as it explains
mostly distant and ambient light sources and only holds for diffuse surfaces with
uniform albedo. Specularities, shadows and nearby light sources remain unaccounted
for. In addition, multiple scene albedos, unbalanced lighting or shadowed areas affect
the shading model by biasing its parameters. An additional cause for the errors is the
rough geometry used to recover the shading model in (3.2). In order to handle these
problems, ρ and β should be computed.
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Finding ρ and β is essential to enhance the surface geometry, without them, light-
ing variations will be incorrectly compensated for by adjusting the shape structure.
Since we now have the shading S, we can move on to recover ρ.

Now, we freeze S to the shading imagewe just found and optimize ρ to distinguish
between the scene albedos and account for shadows (β is still set to 0). We set a
fidelity term to minimize the �2 error between the proposed model and the input
image. However, without regularization, ρ(i, j) is prone to overfitting since one can
simply set ρ = I/S and get an exact explanation for the image pixels. To avoid
overfitting, a prior term that prevents ρ from changing rapidly is used. Thereby,
the model explains only lighting changes and not geometry changes. We follow the
retinex theory [62], and like other intrinsic images recovery algorithms, we assume
that the albedo map is piecewise smooth and that there is a low number of albedos
in the image. Unlike many intrinsic image recovery frameworks like [63, 64], who
use a Gaussian mixture model for albedo recovery we use a weighted Laplacian to
distinguish betweenmaterials and albedos on the scenewhilemaintaining the smooth
changing nature of light. This penalty term is defined as

∥
∥
∥
∥
∥

∑

k∈N
ωc
kω

d
k (ρ − ρk)

∥
∥
∥
∥
∥

2

2

, (3.4)

whereN is the neighborhood of the pixel.ωc
k is an intensityweighting term suggested

in Eq. (6), in [45]

ωc
k =

{

0, ‖Ik − I‖22 > τ

exp
(

−‖Ik−I (i, j)‖22
2σ2

c

)

, otherwise,
(3.5)

and ωd
k is the following depth weighting term

ωd
k = exp

(

−‖zk − z(i, j)‖22
2σ2

d

)

. (3.6)

Here, σd is a parameter responsible for the allowed depth discontinuity and z(i, j)
represents the depth value of the respected pixel. This regularization term basically
performs a three dimensional segmentation of the scene, dividing it into piecewise
smooth parts. Therefore, material and albedo changes are accounted for but subtle
changes in the surface are smoothed. To summarize, we have the following regular-
ized linear least squares problem with respect to ρ

min
ρ

‖ρS(�n) − I‖22 + λρ‖
∑

k∈N
ωc
kω

d
k (ρ − ρk)‖22. (3.7)
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3.3.1.3 Lighting Variations Recovery

Finally, after ρ(i, j) is found we move on to finding β(i, j). A similar functional to
the one used for ρ(i, j) can also be used to recover β(i, j), since specularities still
maintain smooth variations. Despite that, we need to keep in mind the observation
of [60, 61], first order spherical harmonics account for 87.5% of the scene lighting.
Hence, we also limit the energy of β(i, j) in order to be consistent with the shading
model. Therefore, β(i, j) is found by solving

min
β

‖β − (I − ρS(�n))‖22 + λ1
β‖

∑

k∈N
ωc
kω

d
k (β − βk)‖22 + λ2

β‖β‖22. (3.8)

3.3.2 Refining the Surface

At this point, our complete lighting model is set to explain the scene’s lighting. Now,
in order to complete the recovery process, fine geometry details need to be restored.
A typical SFS method would now adjust the surface normals, trying to minimize

‖L(i, j, �n) − I‖22 (3.9)

along with some regularization terms or constraints. The resulting cost function will
usually be minimized in the (p − q) gradient space.

However, according to [39], in order to minimize (3.9) schemes that use the
(p − q) gradient space can yield surfaces that tilt away from the viewing direction.
Moreover, an error in the lighting model which can be caused by normal outliers
such as background normals would aggravate this artifact. Therefore, to avoid these
phenomena, we take further advantage of the given depth map.We write the problem
as a functional of z, and force the surface to change only in the viewing direction,
limiting the surface distortion and increasing the robustness of the method to lighting
model errors.

We use the geometric relation between surface normals and the surface gradient
given by

�n = (zx , zy,−1)
√

1 + ‖∇z‖2 , (3.10)

where

zx = dz

dx
, zy = dz

dy
, (3.11)

to directly enhance the depth map. The surface gradient, represented as a function of
z, connects between the intensity image and the lighting model. Therefore, by fixing
the lightingmodel parameters and allowing the surface gradient to vary, subtle details
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Algorithm 1: Accelerated Surface Enhancement
Input: z0, �m, ρ,β—initial surface, lighting parameters

1 while f (zk−1) − f (zk) > 0 do
2 Update ñk = (�nk , 1)T
3 Update L(∇zk) = ρ( �mT ñk) + β

4 Update zk to be the minimizer of f (zk)
5 end

in the surface geometry can be recovered by minimizing the difference between the
measured intensity image and our shading model,

‖L(∇z) − I‖22. (3.12)

Formulating the shape-from-shading term as function of z simplifies the numerical
scheme and reduces ambiguities. Since we already have the rough surface geometry,
only simple fidelity and smoothness terms are needed to regularize the shading.
Therefore, our objective function for surface refinement is

f (z) = ‖L(∇z) − I‖22 + λ1
z‖z − z0‖22 + λ2

z‖Δz‖22, (3.13)

where z0 is the initial depth map andΔ represents the Laplacian of the surface. Using
a depth based numerical scheme instead of (p − q) gradient space scheme, makes
our algorithm less sensitive to noise and more robust to lighting model errors caused
by normal outliers. This has a great implication in handling real-world scenarios
where the desired shape cannot be easily distinguished from its background.

The functional introduced is nonlinear due to the shading term since the depen-
dency between the surface normals and its gradient requires geometric normalization.
A solution to (3.13) can be found using the Levenberg–Marquardt algorithm or var-
ious Trust-Region methods, however, their convergence is slow and not suitable for
real-time applications.

In order to accelerate the performance of the algorithm, we reformulate the prob-
lem in a similar way to IRLS optimization scheme. We do so by freezing nonlinear
terms inside the shading model. This allows us to solve a linear system at each iter-
ation, and update the nonlinear terms at the end of each iteration. First, we recall
Eq. (3.10) and eliminate the denumerator using the auxiliary variables

�nk = wk(zkx , z
k
y,−1)T , (3.14)

wk = (1 + ‖∇zk−1‖2)− 1
2

The new lighting linearized model reads

L(i, j,∇z) = ρ(i, j) · ( �mT ñk) + β(i, j). (3.15)
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This results in updated shading term. Now, at each iteration we need to solve the
following functional for zk ,

f (zk) =‖ρ( �mT ñk) − (I − β)‖22
+ λ1

z‖zk − z0‖22 + λ2
z‖Δzk‖22.

(3.16)

This process is repeated as long as the objective function f (z) decreases. A detailed
explanation of the update rule is displayed in Algorithm 1.

While the scheme is very efficient, it may fail to converge on some degenerate
cases, for instance, for frontal lighting, when l = (0, 0,−1). However, in natural
illumination scenarios, such cases are very unlikely to occur. To guarantee conver-
gence, one can use a Taylor approximation of the nonlinear terms at each iteration.
Such a scheme is proposed in Sect. 3.4.3.

3.4 From Diffuse to Specular Surfaces

Shape-from-Shading (SfS) tries to relate an object’s geometry to its image irradiance.
Like many other inverse problems, SfS is also an ill-posed one because the per-pixel
image intensity is determined by several elements: the surface geometry, its albedo,
scene lighting, the camera parameters and the viewing direction.

When using depth maps from RGB-D scanners one could recover the camera
parameters and viewing direction, yet, in order to obtain the correct surface, we first
need to account for the scene lighting and the surface albedos. Failing to do so would
cause the algorithm to change the surface geometry and introduce undesired defor-
mations. Using cues from an RGB image under uncalibrated illumination like [9, 45,
50] requires an estimation of global lighting parameters. Although such estimations
work well for diffuse objects, they usually fail when dealing with specular ones and
result in a distorted geometry. The reason is that specularities are sparse outliers
that are not accounted for by classical lighting models. Furthermore, trying to use
estimated lighting directions to model specularities is prone to fail when there are
multiple light sources in the scene.

In our scenario, the main lighting in the IR image comes from the scanner’s
projector, which can be treated as a point light source. Observe that in this setting,
we do not need to estimate a global lighting direction, instead, we use a near light
field model to describe the per-pixel lighting direction. Subsequently, we can also
account for specularities and nonuniform albedo map. Note that unlike the distant
light model assumed in the previous section, point source near field light model
requires a perspective camera model.

Recall that, an initial depth estimation is given by the scanner.We avoid the process
of computing a refined normal field and then fusing depth with normal estimates,
which is common to SfS methods, and solve directly for the depth. This eliminates
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the need to enforce integrability and reduces the problem size by half. We deal with
the nonlinear part by calculating a first-order approximation of the cost functional
and thereby achieve real-time performance.

3.4.1 Specular Shape Refinement

A novel IR-based real-time framework for depth enhancement is proposed. The
suggested algorithm requires a depth map and an IR image as inputs. We assume
that the IR camera and the depth camera have the same intrinsic parameters, as is
usually the case with common depth scanners. In addition, we also assume that the
whole system is calibrated and that the translation vector between the scanner’s IR
projector and IR camera is known.

Unfortunately, the raw depth map is usually quantized and the surface geometry
is highly distorted. Therefore, we first smooth the raw depth map and estimate the
surface normals. We then move on to recover the scene lighting using a near-field
lighting model which explicitly accounts for object albedos and specularities.

After we find the scene lighting along with albedo and specular maps, we can
directly update the surface geometry by designing a cost functional that relates the
depth and IR intensity values at each pixel. We also show how the reconstruction
process can be accelerated in order to obtain real-time performance. Figure3.1 shows
a flowchart of the proposed algorithm.

Fig. 3.1 Algorithm’s flowchart
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3.4.2 Near Field Lighting Model

Using an IR image as an input provides several advantages to the reconstruction
process. Unlike other methods which require alignment between RGB and depth
images, in our case, the depth map and IR image are already aligned as they were
captured by the same camera. Moreover, the narrow-band nature of the IR camera
means that themain light source in the image is the scanner’s own IR projector whose
location relative to the camera is known. Therefore, we can model the IR projector
as a point light source and use a near field lighting model to describe the given IR
image intensity at each pixel,

I = aρd

d2
p

Sdiff + ρd Samb + aρs

d2
p

Sspec. (3.17)

Here, a is the projector intensity which is assumed to be constant throughout the
image. dp is the distance of the surface point from the projector. ρd and ρs are the
diffuse and specular albedos. Samb is the ambient lighting in the scene, which is also
assumed to be constant over the image. Sdiff is the diffuse shading function of the
image which is given by the Lambertian reflectance model

Sdiff = �n · �l p. (3.18)

The specular shading function Sspec is set according to the Phong reflectance model

Sspec =
((

2(�l p · �n)�n − �l p
)

· �lc
)α

, (3.19)

where �n is the surface normal, �l p, �lc are the directions from the surface point to the
projector and camera respectively and α is the shininess constant which we set to
α = 2. Figure3.2 describes the scene lighting model. For ease of notation, we define

S̃diff = a

d2
p

Sdiff, S̃spec = a

d2
p

Sspec. (3.20)

The intrinsic cameramatrix and the relative locationof the projectorwith respect to
the camera are known. In addition, the initial surface normals can be easily calculated
from the given rough surface. Therefore, �lc, �l p, dp, Sdiff and Sspec can be found directly
whereas a, Samb, ρd and ρs need to be recovered. Althoughwe are using a rough depth
normal field to compute �lc, �l p, dp, Sdiff and Sspec we still get accurate shading maps
since the lighting is not sensitive to minor changes in the depth or normal field as
shown in [60, 61]. Decomposing the IR image into its Lambertian and Specular
lighting components along with their respective albedo maps has no unique solution.
To achieve accurate results while maintaining real-time performance we choose a
greedy approach which first assumes Lambertian lighting and gradually accounts for
the lighting model from Eq. 3.17. Every pixel in the IR image which has an assigned
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Fig. 3.2 Scene lighting model

normal can be used to recover a and Samb. Generally, most of the light reflected back
to the camera is related to the diffuse component of the objectwhereas highly specular
areas usually have a more sparse nature. Thus, the specular areas can be treated as
outliers in a parameter fitting scheme as they have minimal effect on the outcome.
This allows us to assume that the object is fully Lambertian (i.e ρd = 1, ρs = 0),
which in turn, gives us the following overdetermined linear system for n valid pixels
(n � 2),

⎛

⎜
⎜
⎜
⎝

S1diff
(d1

p)
2 1

...
...

Sndiff
(dn

p)
2 1

⎞

⎟
⎟
⎟
⎠

(

a
Samb

)

=
⎛

⎜
⎝

I1
...

In

⎞

⎟
⎠ . (3.21)

3.4.2.1 Specular Albedo Map

The specular shading map is important since it reveals the object areas which are
likely to produce specular reflections in the IR image. Without it, bright diffuse
objects can be mistaken for specularities. Yet, since S̃spec was calculated as if the
object is purely specular, using it by itself will fail to correctly represent the specular
irradiance, as it would falsely brighten non-specular areas. In order to obtain an
accurate representation of the specularities it is essential to find the specular albedo
map to attenuate the non-specular areas of S̃spec.
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Fig. 3.3 a Simulated IR image of the Armadillo mesh. b Recovered image of the diffuse and
ambient shading S̃diff + Samb. c Residual image for specular albedo estimation I sres. dGround Truth
specularity map of (a). Note that specularities in (d) are basically the sparse representation of the
residual image (c)

We now show how we can take advantage of the sparse nature of the specularities
to recover ρs and get the correct specular scene lighting. We will define a residual
image I sres as being a difference between the original image I and our current diffuse
approximation together with the ambient lighting. Formally, we write this as

I sres = I − (S̃diff + Samb). (3.22)

As can be seen in Fig. 3.3c, the sparse bright areas of I sres are attributable to the true
specularities in I . Specular areas have finite local support, therefore we choose to
model the residual image I sres as ρs S̃spec such that ρs will be a sparse specular albedo
map. This will yield an image that contains just the bright areas of I sres. In addition,
in order to preserve the smooth nature of specularities we add a smoothness term
that minimizes the L1 Total-Variation of ρs . To summarize, the energy minimization
problem to estimate ρs can be written as

min
ρs

λs
1‖ρs S̃spec − I sres‖22 + λs

2‖ρs‖1 + λs
3‖∇ρs‖1, (3.23)

where λs
1,λ

s
2,λ

s
3 are weighting terms for the fidelity, sparsity and smoothness terms,

respectively. To minimize the cost functional, we use a variation of the Augmented
Lagrangian method suggested in [65] where we substitute the frequency domain
solution with a Gauss–Seidel scheme on the GPU. We refer the reader to the above
paper for additional details on the optimization procedure.

3.4.2.2 Recovering the Diffuse Albedo

As was the case with specular shading, the diffuse shading map alone does not
sufficiently explain the diffuse lighting. This is due to the fact that the diffuse shading
is calculated as if there was only a single object with uniform albedo. In reality,
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however, most objects are composed of multiple different materials with different
reflectance properties that need to be accounted for.

Using the estimated specular lighting from Sect. 3.4.2.1 we can now compute a
residual image between the original image I and the specular scene lighting which
we write as

I dres = I − ρs S̃spec. (3.24)

I dres should now contain only the diffuse and ambient irradiance of the original image
I . This can be used in a data fidelity term for a cost functional designed to find the
diffuse albedo map ρd .

We also wish to preserve the piecewise smoothness of the diffuse albedo map.
Otherwise, geometry distortions will be mistaken for albedos and we will not be able
to recover the correct surface. The IR image and the rough depth map provide us
several cues that will help us to enforce piecewise smoothness. Sharp changes in the
intensity of the IR image imply a change in the material reflectance. Moreover, depth
discontinuities can also signal possible changes in the albedo.

We now wish to fuse the cues from the initial depth profile and the IR image
togetherwith the piecewise smooth albedo requirement. Past papers [9, 45] have used
bilateral smoothing. Here, instead, we base our scheme on the geometric Beltrami
framework such as in [66–68] which has the advantage of promoting alignment of
the embedding space channels. Let,

M(x, y) = {x, y,βI I
d
res(x, y),βz z(x, y),βρρd(x, y)} (3.25)

be a two-dimensional manifold embedded in a 5D space with the metric

G =
(〈Mx ,Mx 〉 〈Mx ,My〉

〈Mx ,My〉 〈My,My〉
)

. (3.26)

The gradient of ρd with respect to the 5D manifold is

∇Gρd = G−1 · ∇ρd , (3.27)

By choosing large enough values of βI ,βz and βρ and minimizing the L1 Total-
Variation of ρd with respect to the manifold metric, we basically perform selec-
tive smoothing according to the “feature” space (I dres, z, ρd). For instance, if βI �
βz,βρ, 1, the manifold gradient would get small values when sharp edges are present
in I dres since G

−1 would decrease the weight of the gradient at such locations.
To conclude, theminimization problemwe should solve in order to find the diffuse

albedo map is

min
ρd

λd
1

∥
∥
∥ρd

(

S̃diff + Samb
)

− I dres

∥
∥
∥

2

2
+ λd

2‖∇Gρd‖1. (3.28)
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Here, λd
1 ,λ

d
2 are weighting terms for the fidelity and piecewise smooth penalties.

We can minimize this functional using the Augmented Lagrangian method proposed
in [69]. The metric is calculated separately for each pixel, therefore, it can be imple-
mented very efficiently on a GPU with limited effect on the algorithm’s runtime.

3.4.3 Surface Reconstruction

Once we account for the scene lighting, any differences between the IR image and
the image rendered with our lighting model are attributed to geometry errors of
the depth profile. Usually, shading-based reconstruction algorithms opt to use the
dual stage process of finding the correct surface normals and then integrating them
in order to obtain the refined depth. Although this approach is widely used, it has
some significant shortcomings. Calculating the normal field is an ill-posed problem
with 2n unknowns if n is the number of pixels. The abundance of variables can
result in distorted surfaces that are tilted away from the camera. In addition, since
the normal field is an implicit surface representation, further regularization such
as the integrability constraint is needed to ensure that the resulting normals would
represent a valid surface. This additional energy minimization functional can impact
the performance of the algorithm.

Instead, we use the strategy suggested in [9, 50], and take advantage of the rough
depth profile acquired by the scanner. Using the explicit depth values forces the
surface tomove only in the direction of the camera rays, avoids unwanted distortions,
eliminates the need to use an integrability constraint and saves computation time and
memory by reducing the number of variables.

In order to directly refine the surface, we relate the depth values to the image
intensity through the surface normals. Assuming that the perspective camera intrinsic
parameters are known, the 3D position P(i, j) of each pixel is given by

P (z(i, j)) =
(
j − cx
fx

z(i, j),
i − cy
fy

z(i, j), z(i, j)

)T

, (3.29)

where fx , fy are the focal lengths of the camera and (cx , cy) is the camera’s principal
point. The surface normal �n at each 3D point is then calculated by

�n (z(i, j)) = Px × Py

‖Px × Py‖ . (3.30)

We can use Eqs. (3.17), (3.18) and (3.30) to write down a depth based shading term
written directly in terms of z,

Esh(z) =
∥
∥
∥
∥
∥

aρd

d2
p

(�n(z) · �l p) + ρd Samb + ρs S̃spec − I

∥
∥
∥
∥
∥

2

2

. (3.31)
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This allows us to refine z by penalizing shading mismatch with the original image
I . We also use a fidelity term that penalizes the distance from the initial 3D points

E f (z) = ‖w(z − z0)‖22,

w =
√

1 +
(
j − cx
fx

)2

+
(
i − cy
fy

)2

,
(3.32)

and a smoothness term that minimizes the second order TV-L1 of the surface

Esm(z) = ‖Hz‖1, H =
(

Dxx

Dyy

)

. (3.33)

Here, Dxx , Dyy are the second derivatives of the surface.
Combining Eqs. (3.31), (3.32) and (3.33) into a cost functional results in a non-

linear optimization problem

min
z

λz
1Esh(z) + λz

2E f (z) + λz
3Esm(z), (3.34)

where λz
1,λ

z
2,λ

z
3 are the weights for the shading, fidelity and smoothness terms,

respectively. Although there are several possible methods to solve this problem, a
fast scheme is required for real-time performance. To accurately and efficiently refine
the surfacewe base our approach on the iterative scheme suggested in [70]. Rewriting
Eq. (3.31) as a function of the discrete depth map z, and using forward derivatives
we have

Ii, j − ρd Samb − ρs S̃spec = aρd

d2
p

(�n(z) · �l p)

= f (zi, j , zi+1, j , zi, j+1).

(3.35)

At each iteration k we can approximate f using the first-order Taylor expansion
about (zk−1

i, j , zk−1
i+1, j , z

k−1
i, j+1), such that

Ii, j − ρd Samb − ρs S̃spec = f (zki, j , z
k
i+1, j , z

k
i, j+1)

≈ f (zk−1
i, j , zk−1

i+1, j , z
k−1
i, j+1) + ∂ f

∂zk−1
i, j

(zki, j − zk−1
i, j )

+ ∂ f

∂zk−1
i+1, j

(zki+1, j − zk−1
i+1, j ) + ∂ f

∂zk−1
i, j+1

(zki, j+1 − zk−1
i, j+1).

(3.36)

Rearranging terms to isolate terms including z from the current iteration, we can
define
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I z
k

res = Ii, j − ρd Samb − ρs S̃spec

− f (zk−1
i, j , zk−1

i+1, j , z
k−1
i, j+1) + ∂ f

∂zk−1
i, j

zk−1
i, j

+ ∂ f

∂zk−1
i+1, j

zk−1
i+1, j + ∂ f

∂zk−1
i, j+1

zk−1
i, j+1

, (3.37)

and therefore minimize

min
zk

λz
1‖Azk − I z

k

res‖22 + λz
2‖w(zk − z0)‖22 + λz

3‖Hzk‖1 (3.38)

at each iteration with the Augmented Lagrangian method of [65]. Here, A is a matrix
that represents the linear operations performed on the vector zk . Finally, we note
that this pipeline was implemented on an Intel i7 3.4GHz processor with 16GB of
RAM and an NVIDIA GeForce GTX690 GPU. The runtime for a 640 × 480 image
is approximately 25 milliseconds.

3.5 Shape Refinement Learning

Traditionally, shape-from-shading is used in an online optimization frameworkwhere
the shading term is minimized with respect to a given intensity image and, in our
case, initial depth map. In some cases, the initial depth map can be directly inferred
from the input image. For instance, Richardson et al. [71], used CoarseNet, a CNN
architecture that iteratively regress facial 3DMorphable Model (3DMM) parameters
from a single input image [72]. Unfortunately, this model cannot recover subtle facial
features such as wrinkles that are not captured by a 3DMMmodel. One optional way
to overcome this is to use the algorithm proposed in Sect. 3.3 as a post-processing step
with the regressed face as the depth input as done in [71]. While the above pipeline
produces compelling results this process can be streamlined by learning the entire
shape-from-shading process. To that end, we propose FineNet, a CNN architecture
for enhancing fine depth details. We note that FineNet is presented in the context
of 3D face reconstruction but it can be used as a general platform for other depth
enhancement applications.

3.5.1 FineNet Architecture

FineNet is based on the hypercolumn architecture suggested in [73]. The architec-
ture’s core idea is generating a featuremap for each pixel that contains both structural
and semantic data. This is done by concatenating the output responses from multiple
layer outputs of the network. Due to pooling layers, the output maps size of inner
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Fig. 3.4 FineNet architecture

layers is smaller than the size of the input image, therefore, we upscale them back to
the original size, in order to create a dense volume of features of a size of the input
image. This volume is then processed by several 1 × 1 convolution layers.

We use the VGG-Face [74] as a base for our hypercolumn network since it was
pretrained on a domain of faces. Instead of directly upsampling each feature map
to the original size using bilinear interpolation like in [73], we use cascaded 2-
strided 2 × 2 transposed convolution layers. This results in improved features, as
the interpolation is now also part of the learning process. Since refining the facial
features is a relatively local problem, we truncate the VGG-Face network before
the third pooling layer and form a 200 × 200 × 450 hypercolumn feature volume.
This volume is then processed by a set of 1 × 1 convolutional layers used as a
linear regressor to create the final depth prediction. Note, that this fully convolutional
framework allows us to use any size of input images. Figure3.4 describes the FineNet
architecture.

3.5.2 FineNet Unsupervised Loss

To train FineNet a loss function is required. One possible solution would be to sim-
ply use an MSE criterion between the network output and a high quality ground
truth depth map. This would allow the network to implicitly learn how to reconstruct
detailed faces from a single image. Unfortunately, a large dataset of detailed facial
geometries with their corresponding 2D images is currently unavailable. Further-
more, a synthetic dataset for this task cannot be generated using morphable models
as there is no knownmodel that captures the diversity of fine facial details. Instead,we
propose an unsupervised learning process where the loss criterion is determined by
an axiomatic model. To achieve that, we need yet again to find a measure that relates
the output depth map to the 2D image. To that end, we resort to Shape-from-Shading
(SfS).
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As shown in Sects. 3.3 and 3.4, when given an initial rough surface, subtle geome-
try details can be accurately recovered under various lighting conditions andmultiple
surface albedos. This is achieved by optimizing an objective function which ties the
geometry to the input image. In this case, an initial surface is produced by CoarseNet
and its depth map representation is fed into FineNet along with the input image. We
then formulate an unsupervised loss criterion based on the SfS objective function,
transforming the problem from an online optimization problem to a regression one.

3.5.2.1 From SfS Objective to Unsupervised Loss

We formulate our unsupervised loss criterion in the spirit of Sect. 3.3. The main term
loss function is an image formation term, which models the connection between the
network’s output depth map and the input image. That term drives the network to
recover the fine geometry details. It is defined as

Esh =
∥
∥
∥ρ

〈�l, �Y (ẑ)
〉

− I
∥
∥
∥

2

2
, (3.39)

where ẑ is the reconstructed depth map, I is the input intensity image, ρ is the albedo
image, and �l are the first-order spherical harmonics coefficients. Y (ẑ) represents the
matching spherical harmonics basis,

Y (ẑ) = (

1, nx (ẑ), ny(ẑ), nz(ẑ)
)

, (3.40)

(nx (ẑ), ny(ẑ), nz(ẑ)) denote the normal vector, expressed as a function of the depth.
Notice that the scene lighting �l and albedo map ρ are unknown. Usually, recovering
both lighting and albedo causes ambiguity in SfS problems. In our case, we utilize
the fact that our problem is constrained to human faces. This limits the space of
possible albedo solutions to a subspace of low dimensional 3DMM texture.

ρ ≈ T = μT + ATαT . (3.41)

where μT is the average face texture, AT is a principal component basis and αT is the
corresponding coefficients vector. We used 10 coefficients in our implementation.

As shown in [75], by assuming the average facial albedo ρ̂ = μT , the global
lighting can be correctly recovered using the coarse depth map, z0, as follows:

�l∗ = argmin
�l

∥
∥
∥ρ̂

〈�l, �Y (z0)
〉

− I
∥
∥
∥

2

2
. (3.42)

Since this is an over determined linear problem, we can easily find the lighting
coefficients using least squares. Using the solution for the lighting, the albedo can
also be easily recovered as
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Fig. 3.5 Light and albedo recovery. Images are presented next to the recovered albedo, rendered
with the recovered lighting

α∗
T = argmin

αT

∥
∥
∥(μT + ATαT )

〈�l∗, �Y (z0)
〉

− I
∥
∥
∥

2

2
. (3.43)

Like Eq. (3.42), this over determined linear problem that can also be solved with least
squares. Once the albedo and lighting coefficients are found, we can calculate Esh

and its gradient with respect to ẑ. A few recovery samples are presented in Fig. 3.5.
We add fidelity and smoothness terms to regularize the solution of FineNet.

Namely,

E f = ‖ẑ − z0‖22,
Esm = ‖Δẑ‖1, (3.44)

where Δ is the discrete Laplacian operator. These regularizing terms guarantee the
solution’s smoothness and that it would not deviate from the prediction of CoarseNet.
The overall loss function is

L(ẑ, z0, I ) = λsh Esh(ẑ, I ) + λ f E f (ẑ, z0) + λsm Esm(ẑ). (3.45)

where the λ’s determine the balance between the terms and in our experiments were
set to λsh = 1, λ f = 5e−3, λsm = 1. The gradient of L with respect to ẑ is then
calculated and used for back-propagation.

3.5.2.2 Unsupervised Loss—a Discussion

Applying the unsupervised criterion has some desired benefits. It eliminates the
need for an annotated dataset and also ensures that the network is not limited by
the performance of any algorithm or the quality of the dataset. This is because the
loss function is only dependent on the input, in contrast to supervised learning SfS
schemes such as [76–78], where the data is generated by either photometric stereo,
raw Kinect scans, or synthetic 3DMM models, respectively. In addition, since the
albedo and lighting coefficients are calculated only as part of the loss function, the
network is capable of producing accurate results directly from the intensity and depth
inputs. Unlike traditional SfS algorithms, there is no need to explicitly calculate the
albedo and lighting information. Although we can generate the lighting and albedo
parameters as outputs of CoarseNet, we chose not to include them in the pipeline
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Fig. 3.6 Criterion flow.
Gradients from both loss
criteria are propagated back
to CoarseNet

CoarseNet

Fidelity 
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FineNet

for two reasons. First, the lighting and albedo are only needed for the training stage
and have no use during testing. Second, both (3.42) and (3.43) are overdetermined
systems which can be solved efficiently with least squares, thus, using a network for
this task would be redundant.

3.5.3 End-to-End Network Training

Our CoarseNet was pre-trained on synthetic data to reconstruct the geometry cap-
tured by the 3DMM. Then, we connect the SfS FineNet to the CoarseNet through a
differential rendering component, and train the network as a whole using the crite-
rion presented in Sect. 3.5.2 as the loss. Figure3.6 describes the end-to-end training
scheme. Images from the VGG face dataset [74], were used for the end-to-end train-
ing. We refer the reader to [11, 71], for details about CoarseNet, the rendering layer,
and the face reconstruction problem.

3.6 Results

3.6.1 Diffuse Shape Refinement

In order to test the proposed algorithm, we performed a series of experiments to
validate its efficiency and accuracy. We show that our results are quantitatively and
visually state-of-the-art, using both synthetic and real data. In addition, we display
the ability of our algorithm to avoid texture copy artifacts, handle multiple albedo
objects, demonstrate the robustness of our algorithm to background normals outliers,
and present a runtime profile of the proposed method.

First, we start by performing a quantitative comparison between our method and
our implementation of the methods proposed by [45, 50], which will be referred to
as HLK andWZNSIT, respectively. In this experiment we use synthetic data in order
to have a reference model. We took objects from the Stanford 3D repository [79] and
the Smithsonian 3D archive and simulated a complex lighting environment using
Blender. In addition, we also used complete 3D models and scenes from the public
Blendswap repository. Each model is used to test a different scenario, “Thai Statue”1

tests a Lambertian object in a three-point lighting environment with minimal shad-

1http://graphics.stanford.edu/data/3Dscanrep.

http://graphics.stanford.edu/data/3Dscanrep
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Table 3.1 Quantitative comparison of depth accuracy on simulated models

Median 90th%

Initial Han
et al.

Wu et al. Proposed Initial Han
et al.

Wu et al. Proposed

Thai Statue 1.014 0.506 0.341 0.291 2.463 2.298 1.831 1.585

Lincoln 1.012 0.386 0.198 0.195 2.461 1.430 0.873 0.866

Coffee 1.013 0.470 0.268 0.253 2.473 2.681 2.454 1.309

C-3PO 1.013 0.344 0.164 0.199 2.474 1.314 0.899 0.923

Cheeseburger 1.014 0.283 0.189 0.208 2.466 1.561 1.160 1.147

ows. “Lincoln”2 tests a Lambertian object in a complex lighting environment with
multiple casted shadows. “Coffee”3 involves a complex scene with a coffee mug
and splashed liquid. “C3PO”4 is a non-Lambertian object with a point light source.
“Cheeseburger”5 is a non-Lambertian, multiple albedo object with three-point light-
ing.

All models were rendered with Cycles renderer of Blender.6 We added Gaussian
noise with zero mean and standard deviation of 1.5 to the depth maps to simulate a
depth sensor noise. The algorithm parameters were set to λρ = 0.1, λ1

β = 1, λ2
β =

1, τ = 0.05, σc = √
0.05, σd = √

50, λ1
z = 0.004, λ2

z = 0.0075, these values were
carried throughout all our experiments. We evaluate the performance of each method
by measuring the median of the depth error, and the 90th percentile of the depth error
compared to the ground truth. The results are summarized in Table 3.1. An example
of the accuracy improvement of our method can be easily seen in Fig. 3.7, which
compares between the Thai Statue input errors and the output errors with respect to
the ground truth.

Wenowshow thequalitative results of the proposed framework fromreal data, cap-
tured by Intel’s Real-Sense RGB-D sensor. First, we show how the proposed method
handles texture, which usually leads to artifacts in shape-from-shading methods. In
our experiment, we printed a text on a white page and captured it with our RGB-
D scanner. Figure3.8 shows how the texture copy artifact is mitigated by correctly
modeling the scene albedos using λρ.

Figure3.9 compares between the reconstruction results of WZNSIT and the pro-
posed framework in a real-world scenario of a mannequin captured under natural
lighting. The proposed reconstruction procedure better captures the fine details.

Figure3.10 illustrates how our algorithm handles real-world shapes with multiple
albedos. The algorithm successfully reveals the letters and eagle on the shirt along
with the “SF” logo, “champions” and even the stitches on the baseball cap. One

2http://3d.si.edu/downloads/27.
3http://www.blendswap.com/blends/view/56136.
4http://www.blendswap.com/blends/view/48372.
5http://www.blendswap.com/blends/view/68651.
6www.blender.org.

http://3d.si.edu/downloads/27
http://www.blendswap.com/blends/view/56136
http://www.blendswap.com/blends/view/48372
http://www.blendswap.com/blends/view/68651
www.blender.org
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Fig. 3.7 Thai Statue error analysis. From left to right: Input color image. Error image of the raw
depth map. Error image of the final result. Note how our diffuse shape refinement model reduces
the initial surface errors

(a) (b) λρ = 0.1 (c) λρ = 1 (d) λρ = 10

Fig. 3.8 Texture copy. A correct albedo recovery model b mitigates texture copy artifact which
the input figure (a) is prone to. The implications of poorly chosen albedo model can be easily seen
in reconstructions (c) and (d). We note that λρ = 0.1 was used throughout Sect. 3.6.1

should also notice that the algorithm was slightly confused by the grey “N” which
is printed on the cap but do not stick out of it like the rest of the writing. We expect
such results to be improved with stronger priors, however, incorporating such priors
into real-time systems is beyond the scope of this paper.

Next, we show the robustness of our method to normal outliers. Such robustness is
important for real-time performance, where segmenting the shape may cost precious
time. In turn, background normals distort the shading recovery process, which might
degrade the surface reconstruction. In this experiment, we run the method using the
normals of the entire depth map. Thus, we deliberately distort the shading estimation
process and examine how it affects the algorithm output. We ran this test on our
method and on HLK. The results are presented in Fig. 3.11. We see that the proposed
framework can gracefully handle a large amount of normal outliers, hence, it can be
used in real-time scenarios with no need to separate the object from its background.
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Fig. 3.9 Mannequin. a Upper Left: Color Image. Upper Right: Raw Depth. Bottom Left: Result
of Wu et al. Bottom Right: Our diffuse shape refinement model Result. b, c Magnifications of
the mannequin eye. The mannequin’s hair and facial features can be easily recognized in our
reconstruction

(a) Shirt

(b) Baseball Cap

Fig. 3.10 Results of shape enhancement of real-world multiple albedo objects. Left to right:
Color Image, Raw Depth, Bilateral Filtering, and the proposed diffuse shape refinement model.
Note how surface wrinkles and small surface protrusions are now visible
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Fig. 3.11 Robustness to normal outliers: Left to right: HLK reconstruction with the entire depth
map normals (a). Our method reconstruction with the entire depth map normals (b). Magnification
of the results is presented in (c). The proposed diffuse shape refinement model yields accurate
reconstruction despite the distorted shading

In Fig. 3.12, we can see how our method produces high quality reconstruction of a
multiple albedo object without any prior knowledge of the shape or albedos. This is
also a crucial aspect of real-time performance and everyday use in dynamic scenes.

An implementation of the algorithm was tested on an Intel i7 3.4GHz processor
with 16GB RAM and an NVIDIA GeForce GTX690 GPU. The entire process runs
at about 25 fps for a 640×480 depth profiles.

3.6.2 Specular Shape Refinement

We performed several tests in order to evaluate the quality and accuracy of the
proposed algorithm. We show the algorithm’s accuracy in recovering the specular
lighting of the scene and why it is vital to use an IR image instead of an RGB image.
In addition, we demonstrate that the proposed framework is state-of-the-art, both
visually and qualitatively.
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Fig. 3.12 Handling a multiple albedo object. a Color Image. bHLKReconstruction. cWZNSIT
Reconstruction. dOur diffuse shape refinement model Reconstruction. e–gMagnifications of HLK,
WZNSIT, and Our Method, respectively. Note how the proposed framework sharply distinguish
albedo changes

In order to test the specular lighting framework, we took 3D objects from the
Stanford 3D,7 123D Gallery8 and Blendswap9 repositories. For each model, we
assigned a mix of diffuse and specular shaders and rendered them under an IR
lighting scenario described in Sect. 3.4.2 (single light source) and natural lighting
scenarios (multiple light sources) using the Cycles renderer in Blender.

To get a ground truth specularity map for each lighting scenario, we also captured
each model without its specular shaders and subtracted the resulting images. We
tested the accuracy of our model in recovering specularities for each lighting setup.
We used Eqs. (3.18) and (3.21), to get the diffuse and ambient shading maps under
IR lighting. For natural lighting, the diffuse and ambient shading were recovered
using first and second-order spherical harmonics in order to have two models for
comparison. In both lighting scenarios, the surface normals were calculated from the
ground truth depth map.

The specular lighting is recovered using Eqs. (3.19) and (3.23), where the IR
lighting direction �l p is calculated using the camera-projector calibration parameters.
In the natural lighting scene, we use the relevant normalized coefficients of the
first and second-order spherical harmonics in order to compute the general lighting
direction.

7http://graphics.stanford.edu/data/3Dscanrep/.
8http://www.123dapp.com/Gallery/content/all.
9http://www.blendswap.com/.

http://graphics.stanford.edu/data/3Dscanrep/
http://www.123dapp.com/Gallery/content/all
http://www.blendswap.com/
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Table 3.2 Quantitative comparison of RMSE of the specular lighting estimation in IR and natural
lighting scenarios. IR refers to the lighting scenario described in Sect. 3.4.2, NL-SH1/2 represents
a natural lighting scenario with first/second order spherical harmonics used to recover the diffuse
and ambient shading, as well as �l p . All values are in gray intensity units [0, 255]
Model IR NL-SH1 NL-SH2

Armadillo 2.018 12.813 11.631

Dragon 3.569 10.422 10.660

Greek Statue 2.960 7.241 9.067

Stone Lion 4.428 7.8294 8.640

Cheeseburger 9.517 17.881 19.346

Pumpkin 10.006 13.716 16.088

From the results in Table 3.2 we can infer that the specular irradiance can be
accurately estimated in our proposed lightingmodel as opposed to the natural lighting
(NL SH1/2) where estimation errors aremuch larger. The reason for large differences
is that, as opposed to our lighting model, under natural illumination there are usually
multiple light sources that cause specularities whose directions cannot be recovered
accurately. An example of this can be seen in Fig. 3.13.

To measure the depth reconstruction accuracy of the proposed method we per-
formed experiments using both synthetic and real data. In the first experiment, we
used the 3D models with mixed diffuse and specular shaders and rendered their IR
image and ground truth depth maps in Blender. We then quantized the ground truth
depthmap to 1.5mm units in order to simulate the noise of a depth sensor.We applied
our method to the data and defined the reconstruction error as the absolute difference
between the result and the ground truth depth maps. We compared our method’s
performance with the method proposed in [9, 50], as well as our diffuse refinement
pipeline. The comparisons were performed in the specular regions of the objects
according to the ground truth specularity maps. The results are shown in Table 3.3.
A qualitative evaluation of the accuracy when the method is applied to the synthetic
data is shown in Figs. 3.14 and 3.15.

In the second experiment, we tested our method under laboratory conditions
using a structured-light 3D scanner to capture the depth of several objects. The
camera-projector system was calibrated according to the method suggested in [80].
We reduced the number of projected patterns in order to obtain a noisy depth profile.
To approximate an IR lighting scenario, we used a monochromatic projector and
camera with dim ambient illumination. We also tested the algorithm with an Intel
Real-Sense depth scanner, using the IR image and depth map as inputs. The camera-
projector calibration parameters were acquired from the Real-Sense SDK platform.
Although no accurate ground truth data was available for these experiments, we
note that while all methods exhibit sufficient accuracy in diffuse areas, the proposed
method is the only one that performs qualitatively well in highly specular areas as
can be seen in Figs. 3.16 and 3.17.
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Fig. 3.13 Greek Statue: a Single light source IR image. b Ground truth specular irradiance map
for (a). c Specular irradiance estimation error map. This is the absolute difference map between our
predicted specular irradiance and the ground truth. d Multiple light source natural lighting (NL)
image. e Specular lighting ground truth of (d). f, g Specular irradiance error maps of (d) as estimated
using first (SH1) and second (SH2) order spherical harmonics respectively. Note the reduced errors
when using a single known light source (c) as opposed to estimatingmultiple unknown light sources
using spherical harmonics lighting models (f, g)

Table 3.3 Quantitative comparison of depth accuracy in specular areas. All values are in millime-
ters. Diffuse and specular are our diffuse framework and specular framework, respectively

Model Median Error (mm) 90th % (mm)

Wu et al. Diffuse Specular Wu et al. Diffuse Specular

Armadillo 0.335 0.318 0.294 1.005 0.821 0.655

Dragon 0.337 0.344 0.324 0.971 0.917 0.870

Greek Statue 0.306 0.281 0.265 0.988 0.806 0.737

Stone Lion 0.375 0.376 0.355 0.874 0.966 0.949

Cheeseburger 0.191 0.186 0.168 0.894 0.756 0.783

Pumpkin 0.299 0.272 0.242 0.942 0.700 0.671
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Fig. 3.14 Results for the simulated Armadillo scene, a Input IR image. b Ground truth model. c
Initial Depth. d–f Results of Wu et al., the diffuse framework and the specular model respectively.
g–i Magnifications of a specular area. Note how our surface is free from distortions in specular
areas unlike the other methods

3.6.3 Learned Shape Refinement

The strength of the proposed method is demonstrated both qualitatively and quanti-
tatively on 3D facial datasets and in the wild inputs We compare our results with the
template-based method of [75], the 3DMM based method introduced as part of [82]
and with the learning-based method of [71]. Unlike our method, all other methods
require manual alignment as a preprocessing step. The state-of-the-art alignment
framework of [83] is used to provide input for these algorithms.
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Fig. 3.15 Results for the simulated Pumpkin scene, a Input IR image. b Ground truth model. c
Initial Depth. d–f Reconstructions of Wu et al., the diffuse framework and the specular model,
respectively. g–i Magnifications of a specular area. Note the lack of hallucinated features in our
method

In Fig. 3.18, we compare our reconstructions with a state-of-the-art method for
reconstruction frommultiple images [81]. The results show that our method is able to
produce a comparable high quality geometry from only a single image. Figure3.19
shows the robustness of our method to different poses. Finally, as described in
Sect. 3.5.1, the FineNet framework can handle inputs with varying sizes. This is
a vital property, as it allows the network to extract additional details as the quality of
input image increases. Figure3.20 shows how FineNet can gracefully scales up for
400 × 400 inputs although it was trained only on 200 × 200 images.
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Fig. 3.16 Results for the lab conditions experiment, a Input IR image. b Initial Depth. c Result
after bilateral smoothing. d–f Reconstructions of Wu et al., the diffuse framework and the specular
model, respectively. g–i Magnifications of a specular region

We used the Face Recognition Grand Challenge dataset V2 [84] for a quantitative
analysis of our results. This dataset has approximately two thousand color facial
images with aligned ground truth depth. Each method provided an estimated depth
image and a binary mask representing the valid pixels. For fair judgment, only pixels
which were valid in all of the methods’ outputs were used in the evaluation. Table 3.4
shows that our method produces the lowest depth error among the tested methods.

Finally, we show our qualitative results on 400 × 400 in-the-wild images of faces.
As can be seen in Fig. 3.21, our method exposes the fine facial details as opposed
to [71, 82] and is more robust to expressions and different poses than [75].
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Fig. 3.17 Results from Intel’s Real-Sense depth scanner, a Input IR image. b Initial Depth. cResult
after bilateral smoothing. d–f Reconstructions of Wu et al., the diffuse framework and the specular
model, respectively. g–i Magnifications of a specular region

Fig. 3.18 a and c are two input images, b and d are their 3D reconstruction via the proposed CNN
architecture. e is a reconstruction of the same subject, based on 100 different images recovered with
the method proposed in [81]
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Fig. 3.19 Method robustness. Our CNN architecture shows some robustness to extreme orienta-
tions, even in nearly 90◦ angles

Fig. 3.20 Input scaling. a Is the input image and b is the coarse depth map from CoarseNet. In c
the output of FineNet for a 200 × 200 input is presented, while in d a 400 × 400 input is used

Table 3.4 Quantitative comparison. We compare the depth estimation errors of the different meth-
ods vs. our CNN architecture

Method Ave. Depth Err. (mm) 90% Depth Err. (mm)

Ours 3.22 6.69

Ref. [75] 3.33 7.02

Ref. [71] 4.11 8.70

Ref. [82] 3.46 7.36

3.7 Conclusions

We discussed two computational approaches, as well as a learning-based approach,
for recovering surface details from a noisy depth map. The first framework handles
diffuse objects using an intensity image, while the second framework refines the
depth of specular objects based on shading cues from an IR image. These methods
were thefirst to reconstruct explicitly the surface profileswithout integrating normals.
To the best of our knowledge, the method for specular surfaces was the first depth
refinement framework that explicitly accounts for specularities. Furthermore, thanks
to efficient optimization schemes both methods can run in real-time while achieving
state-of-the-art accuracy. The FineNet CNN architecture can directly enhance depth
details without any optimization process due to our efficient shape-from-shading
based unsupervised training regime.
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Input Ours [75] [71] [82] Ours [75] [71] [82]

Fig. 3.21 Qualitative results. Input images are presented alongside the reconstruction results of
different methods from two different viewpoints. Note that unlike the other methods, the proposed
CNN architecture is robust to pose and expression variations, while still capturing subtle facial
details

Acknowledgements We thank David Dovrat for his help with the implementation and Alon Zvirin
for his help with the experiments. This research was partially supported by the Israel Ministry of
Science and Technology grant number 3-14719 and the Technion Hiroshi Fujiwara Cyber Security
Research Center and the Israel Cyber Directorate.

References

1. Horn BK (1970) Shape from shading: a method for obtaining the shape of a smooth opaque
object from one view. PhD thesis, MIT

2. Bruckstein AM (1988) On shape from shading. Com Vis Graph Image Process 44(2):139–154
3. Kimmel R, Sethian JA (2001) Optimal algorithm for shape from shading and path planning. J

Math Imaging Vis 14(3):237–244
4. Huang R, Smith WA (2011) Shape-from-shading under complex natural illumination. In: 18th

IEEE international conference on image processing, 2011, pp 13–16
5. JohnsonMK,AdelsonEH (2011) Shape estimation in natural illumination. In: IEEE conference

on computer vision and pattern recognition, 2011, pp 2553–2560
6. Zhang Q, Ye M, Yang R, Matsushita Y, Wilburn B, Yu H (2012) Edge-preserving photometric

stereo via depth fusion. In: IEEE conference on computer vision and pattern recognition, pp
2472–2479

7. Yu LF, Yeung SK, Tai YW, Lin S (2013) Shading-based shape refinement of RGB-D images.
In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1415–1422

8. Haque S, Chatterjee A, Govindu VM (2014) High quality photometric reconstruction using a
depth camera. In: IEEE conference on computer vision and pattern recognition (CVPR), pp
2283–2290



110 R. Or-El et al.

9. Or El R, Rosman G, Wetzler A, Kimmel R, Bruckstein AM (2015) RGBD-fusion: real-time
high precision depth recovery. In: IEEE conference on computer vision and pattern recognition
(CVPR), pp 5407–5416

10. Or-El R, Hershkovitz R, Wetzler A, Rosman G, Bruckstein AM, Kimmel R (2016) Real-time
depth refinement for specular objects. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 4378–4386

11. Richardson E, Sela M, Or-El R, Kimmel R (2017) Learning detailed face reconstruction from
a single image. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp 1259–1268

12. Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image
Vis Comput 10(3):145–155

13. Digne J, Morel JM, Audfray N, Lartigue C (2010) High fidelity scan merging. In: Computer
graphics forum, vol 29. Wiley Online Library, pp 1643–1651

14. Merrell P, Akbarzadeh A, Wang L, Mordohai P, Frahm JM, Yang R, Nistér D, Pollefeys M
(2007) Real-time visibility-based fusion of depth maps. In: IEEE 11th international conference
on, computer vision, pp 1–8

15. Schuon S, Theobalt C, Davis J, Thrun S (2009) Lidarboost: Depth superresolution for tof 3D
shape scanning. In: IEEE conference on computer vision and pattern recognition (CVPR), pp
343–350

16. Cui Y, Schuon S, Chan D, Thrun S, Theobalt C (2010) 3D shape scanning with a time-of-flight
camera. In: IEEE conference on computer vision and pattern recognition, pp 1173–1180

17. Tong J, Zhou J, Liu L, Pan Z, Yan H (2012) Scanning 3D full human bodies using kinects.
IEEE Trans Visual Comput Graph 18(4):643–650

18. Newcombe RA, Davison AJ, Izadi S, Kohli P, Hilliges O, Shotton J, Molyneaux D, Hodges S,
Kim D, Fitzgibbon A (2011) KinectFusion: real-time dense surface mapping and tracking. In:
IEEE international symposium on Mixed and augmented reality, pp 127–136

19. Maier R, Kim K, Cremers D, Kautz J, Nießner M (2017) Intrinsic3d: high-quality 3d recon-
struction by joint appearance and geometry optimization with spatially-varying lighting. In:
Proceedings of the IEEE international conference on computer vision, pp 3114–3122

20. Zuo X, Wang S, Zheng J, Yang R (2017) Detailed surface geometry and albedo recovery from
RGB-D video under natural illumination. In: Proceedings of the IEEE international conference
on computer vision, pp 3133–3142

21. Sang L, Haefner B, Cremers D (2020) Inferring super-resolution depth from a moving light-
source enhanced RGB-D sensor: a variational approach. In: The IEEE winter conference on
applications of computer vision, pp 1–10

22. Mac Aodha O, Campbell ND, Nair A, Brostow GJ (2012) Patch based synthesis for single
depth image super-resolution. In: European conference on computer vision, 2012. Springer, pp
71–84
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Chapter 4
Non-Rigid Structure-from-Motion
and Shading

Mathias Gallardo, Toby Collins, and Adrien Bartoli

Abstract Weshowhowphotometric andmotion-based approaches can be combined
to reconstruct the 3D shape of deformable objects from monocular images. We start
by motivating the problem using real-world applications. We give a comprehensive
overview of the state-of-the-art approaches and discuss their limitations for practical
use in these applications. We then introduce the problem of Non-Rigid Structure-
from-Motion and Shading (NRSfMS),where photometric and geometric information
is used for reconstruction, without prior knowledge about the shape of the deformable
object. We present in detail the first technical solution to NRSfMS and close the
chapter with the main remaining open problems.

4.1 Introduction

Deformable 3D reconstruction aims to recover the 3D shape of deformable objects
from one or more 2D images. While 3D reconstruction of rigid objects is well under-
stood with robust methods and commercial products [1, 2], deformable 3D recon-
struction is still an open challenge. Taking up these challenges is important because
many objects of interest are deformable, including faces, bodies, organs, clothes, and
fabrics. Furthermore, 2D cameras are by far the most common types of imaging sen-
sors in use today, yielding a broad range of useful applications for passive methods,
as discussed in the next section.
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Along with passive methods which only use 2D images, active methods with
depth sensors have also tackled this problem. This has been done for instance using
stereo-cameras [79], infrared projectors or time-of-light systems with Kinect [40,
55] and more elaborated systems such as color photometric stereo techniques [12,
31]. Despite their impressive results, active depth sensors suffer from inherent lim-
itations: some have a restricted range (they cannot sense depth when the object is
too far from or too close to the sensors), others have a significantly higher power
consumption than RGB cameras, and some others are often strongly affected by
outdoor illumination conditions. There may also be physical restrictions, such as in
endoscopic applications, where it is not possible to use bulky active vision sensors.
Finally, there are billions of monocular cameras used every day on mobile devices,
which yields a huge potential for usage and commercialization and underlines the
need for solving the problem of monocular deformable 3D reconstruction.

Four main paradigms have emerged to tackle deformable reconstruction with
monocular cameras: Shape-from-Template (SfT),Non-Rigid Structure-from-Motion
(NRSfM), Shape-from-Shading (SfS) and neural network-based reconstruction
(NNR). We now briefly summarize them. SfT uses a known template of the object
and at least one image of the object being deformed. It works by registering the
object to the input image and deforming the template of the object accordingly in
3D [6, 71]. NRSfM uses multiple monocular images and recovers the 3D shape of
the deforming object in each image [11]. This paradigm is much harder to solve
than SfT because no template is available and consequently, the physical structure
of the object is unknown a priori. Figure4.2 illustrates both paradigms. SfS only
uses a single image and recovers the depth or surface normal at each pixel. SfS
works exclusively with shading information which links surface geometry, surface
reflectance, scene illumination, pixel intensity, and camera response function [37].
SfS is often very difficult to use in practice, mainly because it is generally ill-posed,
requires a complete photometric calibration of the scene a priori and suffers discrete
convex/concave ambiguities. NNR approaches predict the 3D shape of an object or
the depth-map of a scene from a single image using a trained neural network.Most of
these methods pose the problem as a supervised learning task. It works well for com-
mon object classes with very large datasets available, such as man-made objects [65]
and faces [67] using specific low-dimensional deformation models. This category
has not shown to enable 3D reconstruction of objects under very high dimensional
deformations, which notably limits its applicability. Two other shortcomings are the
need for large amounts of annotated training data, comprising images and known 3D
deformation pairs, which are hard to obtain with real data, and the need for a training
phase which may not be practical in several real applications, when the template is
acquired at run-time. For these reasons, the most practical paradigms are currently
SfT and NRSfM. Nevertheless, neural networks can be used in conjunction with SfT
and NRSfM to provide state-of-the-art solutions to intermediate problems, such as
motion estimation and feature extraction.

Most SfT and NRSfM methods use the apparent motion of the object’s surface,
also called motion cue. That is, by knowing the relative movement between the
surface template and the image, or between images, they infer the 3D deformation.
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However, the motion cue is often insufficient to infer the 3D shape of a deforming
object, becausemotion can be explained by possibly infinitelymany 3Ddeformations
(the so-called depth ambiguity). To fix this, SfT and NRSfM methods, as with other
deformable 3D reconstruction approaches, use deformation priors, which we discuss
in detail in Sect. 4.3.1.1. Despite the inclusion of deformation priors, SfT andNRSfM
methods generally fail in two cases: when the object is poorly-textured or when it
deforms non-smoothly. Figures4.6 and 4.7 illustrate this with some reconstructions
from state-of-the-art NRSfM methods [14, 60]. At poorly-textured regions, motion
information is sparse and accurate reconstruction becomes difficult. In the last years,
to overcome these limitations, somemethods proposed to complement themotion cue
with the shading cue. Unlike motion, shading can be used to reconstruct textureless
surfaces, as it is considered the most important visual cue for inferring shape details
at textureless regions [61].

Contributions
Wepropose to combine shadingwithNRSfM in order to reconstruct densely-textured
and poorly-textured surfaces under non-smooth deformations. We refer to this prob-
lem as NRSfMS (Non-Rigid Structure-from-Motion and Shading). We are specifi-
cally interested in solving this problem for objects with unknown spatially-varying
albedo, which is the situation in most practical cases. However, we must know albe-
dos in order to apply shading constraints. Therefore, our problem is to simultane-
ously and densely estimate non-rigid 3D deformation from each image together with
spatially-varying surface albedo.We assume deformation is either piecewise or glob-
ally smooth, which allows us to reconstruct creasing orwrinkled surfaces.We assume
that the albedo is piecewise smooth, which is very common for man-made objects.
Furthermore, this assumption on albedo reduces the potential ambiguity between
smooth albedo changes and smooth surface orientation changes. This problem has
not been tackled before. It is a crucial missing component for densely reconstructing
images in unconstrained settings and may then enlarge the spectrum of deformations
and surfaces for more real-world applications.

4.2 Applications of Monocular Deformable 3D
Reconstruction

Research on monocular deformable 3D reconstruction has raised considerable inter-
est in its applications in many domains including medical image processing, spe-
cial effects, data-driven simulation, Augmented Reality (AR) games, and soft body
mechanics. Some examples are shown in Fig. 4.1.

There are many important applications in medical AR with Minimally Invasive
Surgery (MIS) and more precisely with laparoscopic surgery. This advanced surgery
technique is performed by inserting, through small incisions, small surgical instru-
ments and a laparoscope,which is a thin, tube-like instrumentwith a light and a digital
camera. The surgeon uses the live video from the camera to perform the surgery. This
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Fig. 4.1 Applications of monocular deformable 3D reconstruction: a medical imaging [44], b
post-production movie editing [77] and c AR gaming [50]

reduces the patient’s trauma and shortens the recovery time, compared to open surg-
eries. However, during MIS, surgeons face three main problems: the viewpoint is
limited, the localization in 3D and the perception of depth become harder, and they
cannot see the locations of important subsurface structures such as a tumor or major
vessels. AR appears to be a very suitable way to give a real-time feedback during
MIS. This is done by augmenting the live video with a deformable model of the
organ, including its surface and internal structures. The deformable model can be
constructed from a preoperative medical image, such as MRI or CT, and the task
of registering the organ model to the laparoscopic video is an SfT problem. Using
a monocular laparoscope, a deformable registration of a preoperative template of a
liver (obtained from CT) was presented in [44]. This permits one to register at the
same time the tumor (in green) and the internal structures of the liver such as veins
(in blue).

Another application area is video post-production.Video editors are often required
to modify videos after the recording, by removing, introducing or modifying content.
When the content is deformable, this can be highly labor intensive. Most videos
are not recorded with depth sensors, which makes monocular methods extremely
valuable. A real-time technique of facial performance capture and editing on 2D
videos was proposed in [77]. It works by reconstructing the 3D faces of a source
actor and of a target actor, and transfer the facial expression of the source actor to
the target actor.

Another large application domain is AR gaming. The idea is to offer players
new gameplay experiences and a different game environment that combine virtual
content with the real-world environment. Nearly all AR games assume the scene to be
rigid. Recently new games have been presented, enabled by SfT. For instance, an AR
coloring book application is presented in [50]. The idea is for a player to interactively
color a virtual 3D character by coloring a 2D sketch of the character printed in a book,
using color pencils. An SfT algorithm is used to register a template of each book
page and estimate the deformation of the visible page. This allows registration of
the colored page with the virtual character, which then allows the transfer of pencil
colors to the virtual character and visualization in real-time.
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4.3 Background on Deformable Monocular 3D
Reconstruction and Shading

Since the first works on deformable monocular 3D reconstruction [11, 32], many
technical and theoretical aspects have been explored in both NRSfM and SfT. The
main ones are (i) shape and deformationmodeling, (ii) data constraints extracted from
the input images, (iii) 3D shape inference and (iv) the use of temporal coherence.
As our main contribution relates to NRSfM, we thoroughly review NRSfM and each
of the above directions. We then propose an overview of 3D reconstruction using
shading and especially focus on some works which integrate shading with SfT. This
is motivated by the fact that SfT and NRSfM are closely related.

4.3.1 Non-Rigid Structure-from-Motion

The goal of NRSfM is to recover a deformable object’s shape from a set of unorga-
nized images or a video, as depicted in Fig. 4.2.

Fig. 4.2 Illustration of the problems of NRSfM and SfT
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4.3.1.1 Deformation Priors in NRSfM

Deformation priors are required to make NSRfMwell-posed. Three classes of defor-
mation priors have emerged: statistical priors, physics-based priors and temporal
smoothness priors.

Statistical priors have been formulated in two main ways: low-rank shape bases
and low-rank trajectory bases. Both ways use a reduced space of modes to model
the shapes, which are learned during the reconstruction, ı.e., which is thus the joint
estimation of the model modes, weights, and the camera poses. These modes are
usually constrained to lie in a linear space spanned by a small number of an unknown
3D shape bases [11], or of unknown 3D trajectory bases [4, 18]. Both approaches
reduce the problemdimensionality, however, they present three limitations. They tend
to require a large number of images and short-baseline data to achieve good results,
and they lose the ability to model high-frequency deformations, ı.e., discontinuities,
such as creases.

Physics-based deformation priors operate very differently to statistical models,
and restrict the space of possible deformations according to physical properties of
the object’s material. The most common physics-based priors is isometry or quasi-
isometry [14, 15, 60, 81, 83, 85]. It enforces the geodesic distancebetween twopoints
on the surface to be preserved by deformation. When imposed exactly, no stretching
or shrinking is permitted. When imposed inexactly, it is called quasi-isometry and
penalizes solutions with increased stretching or shrinking using a penalty function.
Isometry and quasi-isometry have been used extensively because they dramatically
restrict the solution space, and are applicable for many object classes such as those
made of thick rubber, tightly-woven fabrics, paper, cardboard, and plastics such as
the ones shown in Figs. 4.6 and 4.7.

It appears that NRSfM with the isometric prior can be solved up to discrete,
spatially localized two-fold ambiguities if motion can be estimated densely across
the object’s surface [14, 60, 81]. The main difficulty with isometry is that it is a
non-convex constraint. The inextensibility prior relaxes isometry in order to form
a convex constraint. It prevents the Euclidean distance between two neighboring
surface points from exceeding their geodesic distance. However, it is too weak to
reconstruct geometry accurately and must be combined with additional constraints.
This has been done using the so-called Maximum Depth Heuristic (MDH), where a
depth maximization constraint is imposed to prevent the reconstructed surface from
shrinking arbitrarily. The inextensibility prior has been first proposed for SfT [13, 63,
70], but it has been adapted for NRSfM [16]. The MDH has been shown to produce
very good reconstructions when the perspective effects of the camera are strong.

Temporal smoothness priors assume that the object deforms smoothly over time.
These priors have been mainly used through two approaches: (i) using temporal
smoothing constraint [4, 29] and (ii) initializing the shape of an input image using
the one of the previous input image [85]. One important advantage of the approach
(ii) is that the problem is more constrained. This may then provide more accurate
reconstructions since it optimizes an initial solution. However, this can turn as a
shortcoming. The solution can be stuck in a local minimum if the solution from
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the previous frame is wrong, because of tracking loss which may happen in case of
sudden illumination changes or occlusions. Temporal smoothness can also be used to
assist correspondence estimation generally using optical flow approaches to obtain
dense correspondences [29, 85].

4.3.1.2 Data Constraints in NRSfM

NRSfMmethods rely fundamentally on motion constraints, and these can be divided
into two types: correspondence constraints, which assume the correspondences are
computed a priori [14, 15, 29, 30, 60, 81, 83], and direct constraints those which
compute correspondence jointly to deformation inference using brightness con-
stancy [85]. By far, the most common constraints are motion constraints, however,
contour constraints have been also used in NRSfM [85].

Correspondence constraints force 3D points on the surface to project at their cor-
responding 2D points in each input image. The points used by these constraints are
usually obtained bymatching features [49], or tracking points [29, 74], in the images.
Correspondence constraints have fourmain limitations. First, feature-basedmatching
methods may fail to establish correspondences without errors. Second, the computa-
tional time to extract features, compute descriptors, and perform the matching can be
long without high performance GPUs. Third, tracking-based methods require short-
baseline input images. Fourth, they work well only for densely-textured objects with
discriminative texture, which are not common in most real practical applications,
particularly with man-made objects and many natural objects.

Direct constraints work by maximizing the photometric agreement, ı.e., bright-
ness constancy, between the input images [85]. Their main advantage is to provide
denser motion constraints than correspondence constraints. They have, however,
three main limitations. First, they are highly non-convex and they require iterative
optimization. Because of non-convexity, they are usually applied in a frame-to-frame
tracking setup. Second, direct constraints are sensitive to strong photometric changes
which may be induced by complex deformations or complex illuminations. Third,
direct constraints may require reasoning about surface visibility (they should be
deactivated at surface regions that are occluded).

Contour constraints force the object’s occluding contours to align with the cor-
responding contours in the images [85]. Contour constraints are interesting because
they do not depend on the surface’s texture, and therefore, are applicable for poorly-
textured and even non-textured surfaces. There exist two types of contour constraints:
silhouette contour constraints and boundary contour constraints. Silhouette contour
constraints work by forcing the object’s silhouette to align with silhouette contours
detected in the input image and can be used for surfaces and volumes. These con-
straints have not been used in NRSfM yet, mainly because they are very difficult to
use without any prior on the object’s shape. Boundary contour constraints are appli-
cable for open surface templates such as a piece of paper. They work by enforcing
the boundary contour projects to image edges [85]. Similarly, to direct constraints,
contour constraints are highly non-convex, usually enforced iteratively, and require



122 M. Gallardo et al.

a good initial estimate. However, they are also difficult to apply robustly, particularly
with strong background clutter.

4.3.1.3 Local and Global Methods to NRSfM

Another important way to characterize NRSfM methods is whether they reconstruct
a surface using local surface regions (usually called local methods), or whether they
reconstruct the whole surface at once (usually called global methods). Local methods
work by dividing the surface into local regions, reconstructing each region individ-
ually, and then reconstructing the full surface using surface continuity. Most local
methods assume isometric deformations. They mainly differ by the way they locally
model the surface: piecewise planes [76, 81], quadrics [23], or Partial Differential
Equations (PDEs) [14, 60]. Their advantages are that they can be fast and can provide
closed-form solutions. However, they also produce sub-optimal results, because they
do not enforce the physical prior globally over the whole surface, and they may be
unstable and present ambiguities.Global methods use instead constraints acting over
the whole surface. These methods produce large, non-convex optimization problems
that cannot lead to closed-form solutions. They generally use energy minimization
frameworks for optimization. This allows them to handle more complex deforma-
tions and to use more complex constraints, leading to potentially more accurate
reconstructions. However, they generally require high computation time and a good
initial solution, and they are often difficult to optimize and not easily parallelizable.

4.3.1.4 Unorganized Image Sets Versus Video Inputs

A final way to categorize NRSfMmethods is if they operate with unorganized image
sets [14, 60, 81] or videos [4, 16, 23, 29, 76, 83] as inputs. A fundamental difference
between these two settings is that temporal continuity can be exploited in the latter
setting but not in the former setting. Typically for video inputs, methods work in
an incremental style where new frames are added to the optimization process while
fixing unknowns in past frames [4, 23, 29]. This strategy is used to manage the
growing number of unknowns with video inputs, allowing it to scale well for long
videos.

4.3.2 3D Reconstruction Using Shading

Shading relies on the photometric relationship between surface geometry, surface
reflectance, illumination, the camera response, and pixel intensity. This relationship,
also called the shading equation, provides one constraint on the surface normal at any
given pixel. Shading is a powerful visual cue because, unlike motion, it can constrain
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3D shape at poorly-textured surface regions and recover complex deformations in
such surfaces [62]. Shading has been first used alone in the paradigm of SfS and then
in other 3D reconstruction problems and in SfT.

4.3.2.1 Shape-from-Shading

SfS consists in using shading to recover the 3D shape of an object from a single
image. Precisely, it recovers the surface normal at each pixel of the image. SfS has
been intensively studied in the last decades and the SfS literature can be explored
through four main components: (a) the camera projection model, (b) the illumination
model, (c) the surface reflectance model, and (d) the 3D shape inference algorithm.
For (a), SfS has been first studied with the orthographic camera [37, 61] and then
the perspective camera model [64, 75]. For (b), most of the existing methods assume
a distant light source, but more complex illumination models are also used, such as
the near-point lighting with fall-off [58, 64]. Most SfS methods also assume known
illumination. For (c), a very common assumption of reflectance is the Lambertian
model [21, 37, 39, 43, 47, 58, 61, 64, 68, 69, 78, 88]. The Lambertian model
assumes a diffuse reflection of the surface, ı.e., the surface luminance is independent
from the viewing angle. Non-Lambertian reflectance models are also studied [3, 46],
such as the Oren-Nayar and Ward models which, respectively, take into account the
micro-facets reflections and specular reflections. Nearly all methods assume either
constant and fixed albedo or known albedo. This is because SfS is fundamentally
an ill-posed problem with unknown varying albedo. Some works, however, propose
solutions to handle multi-albedo surfaces. To handle multiple albedos, [5] forms a
complex energy function which simultaneously solves several problems related to
the photometric formation of the image, namely SfS, intrinsic images decomposition,
color constancy and illumination estimation. For (d), SfS methods can be divided in
six subcategories: (i) propagation approaches [64], (ii) local approaches [61], (iii)
linear approaches [78], (iv) convex minimization approaches [21], (v) non-convex
minimization approaches [5], and (vi) learning-based approaches [68].

Despite the great interest drawn by SfS and the diversity of the proposed
approaches, almost all of the existing SfS methods share the same shortcomings.
First, they assume the albedo values and the scene illumination to be known, ı.e., they
require a complete photometric calibration, as the survey [20] shows. Second, they
suffer from convex/concave ambiguities [9, 38]. Third, they cannot handle depth
discontinuities and provide a surface solution up to a global scale factor.

4.3.2.2 Extending SfS to Multiple Images

Shading has been used previously in several other 3D reconstruction problems. These
include photometric stereo [12, 31, 91], multi-view SfS [41, 86], multi-view recon-
struction [8, 42, 45, 79, 87], SfM and SfS [42]. Their main limitations are that they
work for rigid objects or/and use impractical setups.
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Photometric stereo is the extension of SfS usingmultiple light sources. The images
taken under different illumination contain no motion. This is one big difference
between photometric stereo and the other extensions of SfS. It has shown great
success for reconstructing high-accuracy surface details with unknown albedo such
as [12, 31, 91]. However, it requires a special hardware setup where the scene is
illuminated by a sequence of lights placed at different points in the scene. This setup
is not applicable in many situations. Another limitation is that the scene is assumed
to be rigid during the acquisition [12, 91]. [31] proposes, however, a photometric
stereo technique which works for deforming surfaces.

Multi-image SfS methods, such as [41, 86], have shown that using shading and a
collection of images, from monocular [41] or several tracked cameras [86], provide
reasonably good reconstructions of poorly-textured surfaces such as statues or bones.
Multi-view reconstruction methods, such as [8, 45, 79, 87], have shown that shading
reveals fine details for e.g., clothes or faces. However, these methods assume rigid
objects, use two or more cameras and require a special design of the scene, which
may not be practical.

Shading has also been used in rigid SfM [42], which usesmultiple images showing
a rigid object. This approach initializes the surface using motion through SfM and
MVS and then refines it by combining motion with shading information. Unlike the
other extensions of SfS, this approach requires to solve a registration problem, to
link pixel information across different images. One limitation may come from the
difficulty of establishing correspondences accurately. However, because of the MVS
constraints, this approach may achieve higher accuracy than photometric stereo at
both textured and textureless regions.

4.3.2.3 Existing Methods to Solve SfT with Shading

Webriefly present the principle of SfT regarding the directions (i) shape and deforma-
tion model, (ii) image data constraint, and (iii) 3D shape inference. We then describe
how shading has been used in SfT. We refer the readers to [25], for more details on
SfT.

Shape-from-Template
The goal of SfT is to register and reconstruct the 3D shape of a deforming object from
a single input image, using a template of the object. This is illustrated in Fig. 4.2. The
template is a textured 3D model of the surface in a rest position and the problem is
solved by determining the 3D deformation that transforms the template into camera
coordinates. The main difference between SfT and NRSfM is that in NRSfM the
object’s template is not provided a priori, and this makes it a considerably harder
problem.

The template brings strong object-specific prior knowledge to the problem. It
comprises a shape model, an appearance model and a deformation model. The shape
model represents the object’s 3D shape in a fixed reference position. The appearance
model is used to describe the photometric appearance of the object. The deformation



4 Non-Rigid Structure-from-Motion and Shading 125

model is used to define the transformation of the template’s reference shape and the
space of possible deformations. For this, most methods use dimensionality reduction
through smooth parameterizations, explicit smoothing priors or physics-based priors.
Smooth parameterizations have included thin-plate splines andB-splines, and reduce
dimensionality bymodeling deformation with a discrete set of control points [56, 71,
73]. Smooth parameterizations reduce in general the cost of optimization, however,
they lose the ability to model high-frequency deformations, ı.e., discontinuities, such
as creases. Explicit smoothing priors penalize non-smooth deformations explicitly.
They use a smoothing termwithin an energy-based optimization, usually using the �2
norm [7, 13]. This norm strongly penalizes non-smooth deformations and provides
strong problem regularization, but can prevent the formation of discontinuities such
as creases.Physics-based priors in SfTwork in a very similarmanner than inNRSfM.
The most commonly used is the isometry prior [6, 15, 48, 71], however, other priors
have been studied: inextensibility [13, 63, 70], conformal (angle preservation) [6,
51] and elasticity [35, 53, 59].

Data constraints must be extracted from the input image in order to match the
template’s shape with the object’s true shape. Similar to NRSfM, the most common
data constraints are motion constraints [6, 13, 17, 52, 56, 57, 71, 89], but some
methods also rely on contour [72, 84] and shading constraints.

Combining Motion and Shading in SfT
Shading has been also used as a complementary visual cue in SfT [27, 48, 51,
54, 82]. These methods differ in the way the problem is modeled and optimized.
[54, 82] use motion and shading information sequentially, and not in an integrated
manner. We refer to these as non-integrated approaches. The proposed approaches
are difficult to use in practice because of several significant drawbacks. [82] requires
a full photometric calibration a priori and the illumination to be the same at training
and test time. [54] requires to know the reflectance of the template and only works
for smooth deformations.

By contrast, in [27, 48, 51], shading,motion, and deformation priors are integrated
together into a single non-convex energy function which is minimized through iter-
ative refinement. We refer to these as integrated approaches. Their advantage is
that they combine constraints from multiple cues simultaneously, to improve recon-
struction accuracy, which is not possible with non-integrated approaches. [48, 51]
simplify the problem by assuming a rigid observation video is available prior to
deformable reconstruction. This is a video of the object taken from different view-
points before any deformation occurs and is used for reconstructing the template.
Reconstruction then proceeds with an SfT-based approach. The main limitation of
this is that it requires control of the environment to ensure the object does not deform
during the observation video. This is not often possible in real applications. Further-
more, such methods assume the scene illumination is constant and fixed during the
rigid observation video, which is not always possible to achieve.

Current Limitations
As Figs. 4.6 and 4.7 illustrate, poorly-textured surfaces present an important limita-
tions of nearly all state-of-the-art NRSfMand SfTmethods, particularlywith creases.
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The reason is that motion information, which is the most used data constraint, is fun-
damentally insufficient to reconstruct textureless surface regions undergoing non-
smooth deformations. As mentioned in Sect. 4.3.2.1, shading works on textureless
regions and can be used also to infer fine surface details. The integrated methods in
SfT [27, 48, 51] show that it is possible to combine motion (from textured regions)
and shading (from poorly-textured regions) constraints with the physical constraints
from the template in order to reconstruct densely at textured and poorly-textured
regions. However, since NRSfM does not assume the object’s template to be given,
combining shading and NRSfM appears to be a much more difficult problem.

4.4 Proposed Solution to NRSfMS

We now focus on the problem of Non-Rigid Structure-from-Motion and Shading
(NRSfMS) and we present the first integrated solution. We show in detail how
combining motion and shading allows reconstructing creasable, poorly, and well-
textured surfaces. The challenge we face is to simultaneously and densely estimate
non-smooth, nonrigid shape from each image together with unknown and spatially-
varying surface albedo.We solve this with a cascaded initialization and a non-convex
refinement that combines a physical, discontinuity-preserving deformation priorwith
motion, shading, and boundary contour information. Our approach works on both
unorganized and organized small-sized image sets, and has been empirically vali-
dated on six real-world datasets for which all state-of-the-art approaches fail.

In Sect. 4.4.1, we present our modeling of the problem and our motion and
shading-based cost function. In Sect. 4.4.2, we present our optimization framework
and in Sect. 4.4.3, we study the basin of convergence of our method and validate it
with high-accuracy ground-truth datasets. In Sect. 4.4.4, we provide our conclusions
and some research axes of future work.

4.4.1 Problem Modeling

4.4.1.1 Overview

There are many possible ways to define an NRSfMS problem, and many poten-
tial choices that must be made regarding scene assumptions, models, unknown, and
known terms, etc. We present a rigorous definition of NRSfMS through eight funda-
mental components. To define an NRSfMS problem, we must define or instantiate
each component. In the following, we describe each component and an instantiation
justified by practical considerations for real-world application.

(a) Models (shape, reflectance, illumination, camera response, and camera pro-
jection). We use a high-resolution thin-shell 3D mesh to model the object’s 3D
shape, and a barycentric interpolation to describe deformations across the surface.
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This allows us to model complex deformations using high-resolution meshes. Defor-
mation is modeled quasi-isometrically and creases are modeled with a novel implicit
energy term as described in Sect. 4.4.1.4. Surface reflectance is modeled using the
Lambertian model with piecewise-constant albedo, which has been also used by [5].
This gives a good approximation of many man-made objects such as clothes, fabrics,
and cardboards. Scene illumination is assumed to be constant over time and fixed in
camera coordinates. In practice, this can be assumed if we have a camera-light rig
setup such as an endoscope or camera with flash, or a non-rig where the light and a
camera are not physically connected but do not move relative to each other during
image acquisition. We use the first-order spherical harmonic model, however, the
second-order model can be also used in our proposed solution to increase modeling
accuracy. Spherical harmonics are very commonly used in SfS [5, 66] and photometic
stereo [34]. We assume the perspective camera model [36], which handles well most
real-world cameras, and we assume the camera intrinsics are known a priori using a
standard calibration process with, e.g., OpenCV. The camera response model maps
the irradiance image, ı.e., the image which stores the light striking the image plane
at each pixel, to the intensity image, which is the grayscale image outputted by the
camera, before that the camera nonlinearities, such as gamma mapping, vignetting,
and digitization, are introduced. For the camera response, we assume that it is linear,
which is a valid assumption for many CCD cameras. We assume that it can change
over time in order to handle changes due to camera shutter speed and/or exposure. (b)
Known and unknown model parameters.Most of the above mentioned models have
parameters that must be set. The NRSfMS problem changes dramatically according
to which model parameters are known a priori. We consider the unknowns are as
follows: The surface albedo, which, due to the assumption of piecewise-constant
albedo, corresponds to an albedo-map segmentation and segment values. The mesh
vertex positions in camera coordinates, which provide the 3D shape of the surface
in each image. The illumination, the camera responses, and the camera intrinsics
are assumed known. These assumptions are reasonable for two reasons. First, the
illumination and the camera can be calibrated a priori using standard techniques and
the camera responses can be obtained from the camera or computed using, e.g., the
background. Second, it is unrealistic to know a priori the reflectance model of a
surface as the object is a priori unknown, contrary to SfT. Secondly, as this is the
first solution to NRSfMS, our goal is to show that it can be solved in simplified
conditions, and in the future, we can investigate releasing the assumption of known
illumination, camera response, and intrinsics. (c) Visual cues. The visual cues deter-
mine which visual information is used to constrain the problem. We use motion,
boundary contour, and shading. Motion is used to constrain textured regions of the
surface and boundary contours to constrain the perimeter of the surface.We use shad-
ing constraint to densely reconstruct surfaces and reveal creases in poorly-textured
regions. (d) Number of required images.We require at least 5 images. We discuss the
implications of using smaller numbers of images in the conclusion Sect. 4.4.3.5. (e)
Expected types of deformations. We assume quasi-isometric and piecewise-smooth
deformations and no tearing. Tearing implies the surface mesh topology must adapt
during reconstruction and this adds considerable complexity to the problem. Here it
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is sufficient to show that non-torn surfaces can be reconstructed. (f) Scene geometry.
We assume the surface to be reconstructed has no self or external occlusions, but
there can be background clutter. These are typical assumptions in NRSfM state-of-
the-art, and the assumption of no occlusions is used to simplify data association (ı.e.,
knowing which regions of the images correspond to which regions of the surface).
We also assume there is a reference imagewithin the image set. The reference image
is one of the input images that we use to construct the surface’s mesh model. We can
use any image as the reference image, however, in practice, we obtain better recon-
structions using a reference image where the surface is smooth. (g) Requirement
for putative correspondences. Putative correspondences are points in the reference
image whose positions are known in the other images. We assume to know a priori a
set of putative 2D correspondences computed using standard methods such as SIFT.
We assume there may be a small proportion of mismatches, e.g.,<20%, which is the
case in real applications. (h) Surface texture characteristics. We assume the surface
presents a combination of both well and poorly-textured regions.

4.4.1.2 Shape, Deformation, Reflectance, Illumination, and Camera
Modeling

We define � as the segmented region of the object of interest in the reference image.
We build the shape model by meshing � using a regular 2D triangular mesh, with
M vertices and M on the order of 104. We denote the mesh’s edges as E , where NE

is the number of edges. Our task is to determine, for each mesh vertex i , its position
vit ∈ R

3 in 3Dcamera coordinates for each image t ∈ [1, N ].WeuseVt = {vit }i∈[1,M]
to denote the vertices in 3Dcamera coordinates for image t .Without loss of generality
we assume the reference image is the first image. We then parameterize V1 along
lines-of-sight. Specifically, let ui ∈ R

2 denote the 2D position of the i th vertex in
the image, defined in normalized pixel coordinates. Its corresponding position in 3D
camera coordinates at t = 1 is v1i = di [u�

i , 1]�, where di is its unknown depth. We
collect these unknowndepths into the setD = {d1, . . . , dM }. The full set of unknowns
that specify the object’s shape in all images is, therefore, {D,V2, . . . ,VN }, which
corresponds to 3M(N − 1) + M real-valued unknowns.

The deformation model transforms each vertex to 3D camera coordinates: we
model the position of each vertex i ∈ {1, . . . , M} in camera coordinates by vit ∈ R

3,
where t denotes time. We transform a point u ∈ � to camera coordinates according
toVt with a barycentric interpolation, which is a linear interpolation of the positions
of the three vertices surrounding u. This barycentric interpolation, therefore, defines
a piecewise-linear embedding function from � to 3D, parameterized by the vertex
positionsVt . We denote ϕ this barycentric interpolation and n(u;Vt ) : R3×M → S3

its unit surface normal.
For the surface reflectance model, we define an albedo-map A(u) : � → R

+ as
the function that gives the unknown albedo for a pixel u ∈ �. From the piecewise-
constant assumption, we can write this as A(u) : � → A whereA = {α1, . . . , αK }
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denotes a discrete set of K unknown albedos with αk ∈ R
+. We discuss how A is

built in Sect. 4.4.2.
The illuminationmodel gives the power and spatial distribution of light.Wedenote

the unknown illumination coefficients by l. This shading equation predicts the inten-
sity of a pixel given the models of illumination, surface shape, surface reflectance,
camera projection, and camera response. This starts with the surface irradiance
which is the amount of light received by the surface. We use the function r to denote
the surface irradiance for a normal vector n according to l. Then, the amount of
light reflected by the surface and striking the camera forms the irradiance image.
This image contains the photometric variations caused by shading in particular. At
any time t , we denote the irradiance image by Rt and the intensity image by Lt . We
denote the camera response function by gt : R → Rwhich transforms the irradiance
image Rt into the intensity image Lt .

As we use the first-order spherical harmonic model, the illumination model is
a combination of a light source at infinity and an ambient term. Note that, as l
is represented by spherical harmonics, the surface irradiance r is linear in l. As we
assume the Lambertian reflectancemodel, we have r(n, l) = (n�, 1) l. Aswe assume
gt is linear, we have Lt = βt Rt with βt ∈ R

+.

4.4.1.3 Inputs and Outputs

Our inputs are as follows. (i) a set of N input RGB images {It }t∈[1,N ], It : R2 →
[0, 255]3 with a deforming object and the corresponding intensity images {Lt }t∈[1,N ],
Lt : R2 → R

+. In practice, the intensity image Lt is obtained by calibrating radio-
metrically the camera or by selecting the second component of the projection of the
input RGB image It in the CIE XYZ color space, which is done for our experiments.
(ii) the camera intrinsics of all perspective projection functions �t . (iii) a segmenta-
tion of the object of interest in the reference image, denoted by the region � ⊂ R

2.
(iv) the scene illumination coefficients l ∈ R

4. (v) the camera response functions gt .
(vi) N sets St of matched putative 2D correspondences from � to each input image
It . We denote it by St = {(u j ,p

j
t )} where u j denotes the j th 2D point in � and p j

t

denotes its corresponding position in the t th input image It . The number of corre-
spondences for each image t is denoted by st . Details for how this is done for our
experimental datasets are given in Sect. 4.4.3.1.

The outputs of our solution to NRSfMS are: (i) the verticesVt of the shape model
in the camera coordinates for all input images and (ii) the segmented albedo-map A
with its K segments and values {α1, . . . , αK }.

4.4.1.4 Problem Modeling with an Integrated Cost Function

The cost function combinesphysical deformationpriors (quasi-isometry and smooth-
ing constraints) with shading, motion and boundary constraints extracted from all
images. The objective function Ctotal has the following form:
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Ctotal(V1, . . . ,VN , α1, . . . , αK ) �
N∑

t=1

(
Cshade(Vt , α1, . . . , αK )+ (4.1)

λmotionCmotion(Vt ) + λcontourCcontour (Vt )+
λisoCiso(V1,Vt ) + λsmoothCsmooth(Vt )

)
.

The termsCshade,Cmotion andCcontour are the shading, motion and boundary contour
data constraints respectively. The termsCsmooth andCiso are the physical deformation
prior constraints. The factors λmotion , λcontour , λiso and λsmooth are positive weights
and are the method’s tuning parameters.

The shading constraint.This robustly encodes theLambertian relationshipbetween
surface, albedo, surface irradiance, pixel intensity, and camera response. We use the
piecewise-constant albedo model given earlier, and we decide to not optimize all
albedo segments. There are two reasons. First, there is a potential difficultywith using
shading at textured regions. This comes from the fact that the mis-registration errors
at textured regions may imply mis-registration of the albedo-map over the surface.
This then may lead to large errors in albedo estimation and surface reconstruction
because of the linear dependency of the shading constraint in albedo values. Second,
textured regions are very informative for motion constraints. The shading constraint
is then less useful or even not useful at textured regions. Therefore, we propose to
not use shading in textured regions. For this, we use the fact that textured regions can
be detected as small albedo segments. We propose to exclude from the optimization
albedo segments which are smaller in area than the threshold TA (in % of the number
of pixels contained in the image). In practice, we found that using TA = 0.022%
allows to reduce reconstruction errors at textured regions. We give details about how
this is integrated to our proposed algorithm in stage 3 in Sect. 4.4.2. We remind that
ϕ is the piecewise-linear embedding function from � to 3D, parameterized by the
vertex positions, and we form every constraint using this function. We evaluate the
shading constraint at each pixel of albedo segments larger than TA, which gives

Cshade (Vt , α1, . . . , αK ) � 1

|�|
∑

u∈�

ρ0

(
A(u) r (n(u;Vt ); l) − Lt �t

(
ϕ(u;Vt )

))
,

(4.2)

with ρ0(x) =
{

x2

2 , if |x | ≤ k
k

(|x | − k
2

)
, if |x | ≥ k,

(4.3)

which is the Huber M-estimator. For the experiments, we found that the Huber
hyperparameter set to k = 0.005 gives the best results. The function ρ is used to
enforce similarity between the modeled and measured intensity, while also allowing
for some points to violate the model (caused by specular reflection, small shadows,
and other unmodeled factors). When the residual of such points is not too high, we
find that a robust estimator based on anM-estimator is very effective to handle them.
In order to reduce computation time, pixels from � are downsampled by a factor
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of X , by taking one pixel every X pixels from �. In practice, we found that using
X = 2 gives good reconstructions.

The motion constraint.We recall that the set St holds st putative correspondences
between � and image t ∈ [1, N ]. The constraint robustly enforces each point u j to
transform to its corresponding point p j

t , and is given by

Cmotion(Vt ) �
∑

(u j ,p
j
t )∈St

ρ1

( ∥∥∥�t ◦ ϕ(u j ;Vt ) − p j
t

∥∥∥
2

)
, (4.4)

where ρ1 is the parameter-free (�1-�2) M-estimator

ρ1(x) = 2

(√
1 + x2

2
− 1

)
. (4.5)

This constraint encourages the function ϕ to project each point u j onto the input
image at the correspondence position p j

t .
The boundary contour constraint. We discretize the boundary of � to obtain a

set of boundary pixels B � {uk∈[1,NB]}, with NB the number of boundary pixels. We
then compute a boundariness-map for each image Bt : R2 → R

+ where high values
of Bt (p) correspond to a high likelihood of pixel p being on the boundary contour.
The constraint is evaluated as

Ccontour (Vt ) � 1

NB

∑

uk∈B
ρ1

(
Bt

(
�t ◦ ϕ(uk;Vt ); It

) )
. (4.6)

From the input image It , we build Bt using an edge response filter that is modulated
to suppress false positives according to one or more segmentation cues. We use two
different segmentation cues: the projection-based and the color-distribution segmen-
tation cues. An illustration of a boundariness-map in given in Fig. 4.4b. The exact
choice for computing Bt for each tested dataset in reported in [25].

The quasi-isometry constraint. We enforce quasi-isometry using mesh edge-
length constancy. Specifically, we measure the constancy with respect to the mesh
edges in the reference image. This is defined as follows:

Ciso(V1,Vt ) � 1

|E |
∑

(i, j)∈E

(
1 − ‖vi1 − v j

1‖−2
2 ‖vit − v j

t ‖22
)2

. (4.7)

This penalizes a change in edge length relative to the mesh in the reference image,
and unlike many other ways to impose isometry, is invariant to a global scaling of
the reconstruction.

The crease-preserving smoothing constraint. We propose to use from [26], the
smoothing constraint based on M-estimators [90]. This will lead to a discontinuity-
preserving smoother which automatically deactivates smoothing, where needed at
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creased regions. Precisely, this constraint penalizes the surface curvature change
using a robust bending energy as follows:

Csmooth(Vt ) � 1

|�|
∑

u j∈�

ρ1

(
∂2ϕ

∂u2
(u j ;Vt )

)
. (4.8)

In practice, for this constraint, we compute the curvature change in a discrete way.
This can be done analytically because position and gradient can be computed using
the barycentric coordinates, which is a linear operation in the unknowns, ı.e., the
vertices. The ability of this constraint to allow creases formation comes from the
behavior of the M-estimator for high residuals. Regarding our problem, high residu-
als in the regularizer correspond to high changes of curvature, which occur at creased
regions. Observing the behavior of several M-estimator functions reveal that they
grow sub-quadratically at high residuals. Therefore, the impact of high residuals on
the optimization of the regularizer will be much smaller when using an M-estimator
rather than the �2 norm, which is used bymost of the current methods for the smooth-
ing constraint. It is, however, important to consider that the creases formation is
encouraged by the data terms and allowed by the smoothing constraint.

Handling scale. In the cost function (4.1), the shading, the motion, the boundary
contour, and the quasi-isometry constraints are invariant to the scale of the recon-
struction, however, the smoothing constraint is not invariant. This is because a trivial
solution for the smoothing constraint is to put all vertices at the origin. Therefore, to
rule out the dependency on scale, we constrain the mean depth of the reconstruction
to a fixed positive value. Details are given in Sect. 4.4.3.2.

4.4.2 Optimization Strategy

Optimizing Eq. (4.1) is a nontrivial task because it is large-scale (typically O(105)
unknowns), is highly non-convex, and the shading constraint requires dense, pixel-
level registration. Recall that we do not assume that the images come from an unin-
terrupted video sequences, which makes dense registration much harder to achieve.
We propose a strategy in four stages, illustrated in Fig. 4.3.

Stage 1: We first achieve a rough initial estimate for the shape parameters
(D,V2, . . . ,VN ) (and hence an initial estimate for registration) using only motion
constraints from the point correspondences. We do this using the initialization-free
NRSfM method [14] which has publicly available code.1 Note that all existing
initialization-free surface-based methods assume that the object’s surface is smooth
in all views, thus the initial estimate will not normally be highly accurate. This pro-
vides a rough estimate of the reference image’s vertex depths D, which we use to
back-project the mesh vertices in the reference image to obtainV1.

1The code is available at http://igt.ip.uca.fr/~ab/code_and_datasets/index.php (Matlab SfT
Toolbox).

http://igt.ip.uca.fr/~ab/code_and_datasets/index.php
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Fig. 4.3 Schematic of our proposed solution to solve NRSfMS

Stage 2: We then use V1 as a template and perform the SfT method [26] inde-
pendently on eachVt . It introduces the boundary contour constraints and refines the
shape parameters by optimizing Eq. (4.1), with λshade = 0, using iterative numerical
minimization. [26] also uses two strategies to improve the convergence of the refine-
ment. The first is to refine only with the motion constraint as image data constraint,
then we add the boundary contour constraint. The second is to construct from each
input image It the boundariness-map Bt using an image pyramid, and sequentially
optimize with each pyramid level. We found that three octaves for the pyramid level
provide good convergence.

Stage 3: This consists of the segmentation of the reference image I1 in regions of
constant albedos and in the estimation of the albedos by inverting the shading equa-
tion. For this, we use an intrinsic image decomposition [10], on the reference image’s
intensity image and cluster the resulting “reflectance image” using [24], with a low
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Fig. 4.4 aVisualization of the correspondences of the input image n◦1 (zoom) of the paper fortune
teller dataset. b Boundariness-map (zoom) for the input image n◦1 of the paper fortune teller
dataset. c Albedo-map (zoom) estimated for the paper fortune teller dataset. d Numerical results
of convergence basin analysis for the paper fortune teller dataset

cluster tolerance (we use a default of 10). For each cluster k, we assign a correspond-
ing albedo αk : for each pixel u j in the cluster, we estimate its albedo by inverting the
shading equation: α ≈ Lt (�t ◦ ϕ(u;Vt )) r (n(u;Vt ); l)−1. We then initialize αk

as the median overall estimates within the cluster. This can be done because, at this
stage, we have estimated the scene illumination, the camera response for each image
and the shape parameters. We aim for an oversegmentation: neighboring segments
can share the same albedo but within each segment we assume the albedo constant.
The reason is that our method is not designed to recover from an under segmentation.
Even if oversegmentation requires more unknowns, under segmentation is a more
difficult problem since it may strongly impact the estimation of surface orientation
and illumination and requires then an automatic process to re-segment the albedo-
map when needed. The last step of the clustering is the thresholding of the pixels
number of each albedo segment to remove the ones which correspond to the textured
regions.

Figure4.4c shows an illustration of a segmented albedo-map: the black holes
visible on the surface corresponds to the textured regions whose area is smaller than
TA. The black holes visible on the surface in Fig. 4.4c corresponds to these textured
regions. If there are K segments, then the albedo set {α1, . . . , αK } has size K .

Stage 4: We refine alternately the shape parameters and the albedo values by
minimizing Eq. (4.1) using all constraints. This is achieved with Gauss-Newton iter-
ative optimization and backtracking line-search. Because of the very large number of
unknowns, at each iteration, we solve the normal equations using an iterative solver
(diagonally-preconditioned conjugate gradient), with a default iteration limit of 200.
Recall that there is a scale ambiguity (as in all NRSfM problems), because we cannot
differentiate a smaller surface viewed close to the camera from a large surface viewed
far away. We fix the scale ambiguity by scaling all vertices to have a mean depth
of 1 after each iteration. To achieve good convergence, we use the two strategies
of [27]. First, we use only the motion constraint as image data constraint to refine,
then we add the boundary contour constraint and end by refining the three image data
constraints. Second, we construct from each input image It the boundariness-map Bt

using an image pyramid, blur each Lt with a Gaussian blur pyramid, and sequentially
optimize with each pyramid level, with a default of three octaves. For the two first
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levels Gaussian blur pyramid, the kernel sizes, and standard-deviations are respec-
tively h1 = (10, 10) and σ1 = 5 and h2 = (5, 5) and σ2 = 2.5. At the finest level, we
do not apply any Gaussian blur. For the three pyramid levels, we run Gauss-Newton
until either convergence is reached (with the total cost difference between two con-
secutive iterations being strictly lower than 1e−4) or a fixed number of iterations
have passed (we use κ = 20 iterations).

4.4.3 Experimental Validation

We divide the experimental validation into two parts. First, we analyze the conver-
gence basin of our energy function through perturbation analysis. This is to under-
stand how sensitive our formulation is to the initial solution, and fundamentally,
whether the NRSfMS problem can be cast as an energy-based minimization with a
strong local minimum near the true solution. Second, we compare performance to
state-of-the-art NRSfM methods, using six datasets, all with ground-truth.

4.4.3.1 Methods Compared and Datasets

We compare with the following competitive NRSfM methods [14, 60, 81], denoted,
respectively, with Va09, Ch14, Pa16. We compare to these methods because they
reconstruct dense surfaces. To see the contribution of some constraints of Eq. (4.1),
we compare with four versions of our method,NoS, where shading is not used,NoB,
where the boundary constraint is not used in stages 2 and 4, NoI, where the quasi-
isometry constraint is not used in stages 2 and 4, and NoSm, where the smoothing
constraint is not used in stages 2 and 4.

We evaluated on six real-world datasets which mostly respect the Lambertian
assumption: floral paper and paper fortune teller from [27], creased paper, pillow
cover and hand bag from [28] and Kinect paper from [80]. Each dataset consists of
a disc-topology surface in 5 different deformed states, with one state per image. We
show them inFigs. 4.6 and4.7. Thefivefirst datasets have the following conditions: (i)
the object has a poorly-textured surface, (ii) several images show the surface creased,
(iii) a highly-accurate depth-map associated with each image, (iv) the illumination
vector is in 3D camera coordinates. These five datasets have been acquired with the
structured light system [19]. As the Kinect paper has no accompanying illumina-
tion parameters and no camera response function, these are computed prior to the
reconstruction. More details are given in [25]. Each dataset has a set of point corre-
spondences between the first and all other images. As all datasets, except the Kinect
paper dataset, are poorly-textured, the correspondences are sparse. We note that
manual correspondences are commonly used to evaluate NRSfM methods and this
is why the correspondences of our datasets were computed manually. These corre-
spondences are distinctive points such as the texture discontinuities along the printed
numbers of the paper fortune teller dataset, visible in Fig. 4.4a. The datasets floral
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paper, paper fortune teller, creased paper, pillow cover. and hand bag have, respec-
tively, 20, 24, 20, 69, and 155 correspondences and their image size is 1288 × 964
pixels. The Kinect paper dataset presents images with 640 × 480 pixels and 1503
correspondences computed by [29]. The datasets floral paper, paper fortune teller,
creased paper, pillow cover, and hand bag are publicly available.2

4.4.3.2 Implementation Details and Evaluation Metrics

We constructed, for all experiments, the reference meshes by laying a triangulated
100 × 100 vertex regular grid on the reference image which was then cropped to �.
We also discretized the boundary points of the texture-map to NB = 1000 uniformly
spaced points. For the compared methods, there is no way to automatically optimize
their hyperparameters. We then tried our best to do this by hand, to obtain the best
reconstruction accuracy on all datasets. For our method, all experiments were ran
using the same hyperparameters, which were manually set. In Appendix Sect. 4.5,
Tables4.1 and 4.2 give the weights of the different constraints and the hyperparam-
eters for our method and the compared methods.

Tomeasure reconstruction accuracy, we compared 3D distances and normals with
respect to ground-truth using, respectively, the Mean Shape Error (MSE) and the
MeanNormal Error (MNE). To investigate the contribution of the shading constraint,
this was done at two locations: (i) densely across the ground-truth surface, and (ii)
densely at creased regions, which are any points on the ground-truth surfaces that are
within 5 mm of a surface crease. Both grids were constructed by sampling uniformly
the respective locations. Because reconstruction is up to scale, we computed for each
method the best-fitting scale factor that aligns the predicted point correspondences
with their true locations in the �2 sense, then measured accuracy with the scale-
corrected reconstruction.

4.4.3.3 Convergence Basin Analysis

We performed this with perturbation analysis as follows. We started with an initial
reconstruction close to the ground-truth, then applied a low-pass filter (to smooth out
creases, as we do not expect them in the initial solution), and randomly perturbed
the vertex positions using smooth deformation functions. For each perturbation, we
optimized Eq. (4.1), by performing stages 3 and 4 in Sect. 4.4.2. The perturbation
was implemented using a 4 × 4 × 4 B-spline enclosing the reconstructed surfaces
and randomly perturbing the spline control points at 7 different noise levels, with 30
random perturbations per noise level. Figure4.4d reports results as box-plots for the
paper fortune teller dataset. The x-axis gives the average perturbation in % for each
noise level from the initial solution. The y-axis gives the dense surfaceMSE for each
random sample. Similar results are obtained for the floral paper and creased paper

2The datasets are available at http://igt.ip.uca.fr/~ab/code_and_datasets/index.php.

http://igt.ip.uca.fr/~ab/code_and_datasets/index.php
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datasets and are reported in [25]. For small noise levels (<5%), the box-plots are
very similar, which tells us our energy landscape has a strong local minimum close
to the ground-truth. This supports our claim that the NRSfMS problem can be cast
as an energy-based minimization (via Eq. (4.1)). For larger noise levels (>5%), we
can see a significant increase in error, indicating that the optimization now becomes
trapped more frequently in local minima.

4.4.3.4 Quantitative and Qualitative Results

We show in Figs. 4.6 and 4.7, the six datasets and their reconstructions from our
method and the best performing previous method (the one with lowest MSE with
respect to (ii) above). Visually, we can see that considerable surface detail is accu-
rately reconstructed by our method, as well as the global shape. In Fig. 4.5, we give
the reconstruction accuracy statistics across all test datasets and all compared meth-
ods. The Kinect paper dataset has no creases and the deformation is very smooth in
all images. We observe that, for all datasets other than Kinect paper, there is a good
improvement with respect to all error metrics compared to the other methods. For
the Kinect paper dataset, we see that our method does not obtain the highest accu-
racy across all error metrics. The reason is that it is a very smooth, densely-textured
surface, and shading is not needed to achieve an accurate reconstruction. However,
our method still obtains competitive results on this dataset. We observe that the use
of shading improves globally the shape of the reconstructions and that the boundary
contour constraint allows using shading better. The reduced performance withNoSm
confirms that the smoothing constraint acts as a regularizer. An observation of the
3D surfaces reconstructed without the smoothing constraint shows that the creases
cannot be formed and the surfaces are very smooth. Figure4.5 does not show the
results for NoI because, for every dataset, the surfaces collapse to the origin during
stage 2. This is consistent with the fact that isometry constraint makes the problem
well-posed as it has been mentioned in Sect. 4.3.1.1. In Appendix Sect. 4.5, Table4.3
gives the processing times for our method and the three compared methods with
respect to each dataset.

4.4.3.5 Limitations and Failure Modes

We discuss here the main limitations and the failure modes of our solution to
NRSfMS. Our method is limited by the assumptions made in Sect. 4.4.1. These are
that we have isometric deformations, piecewise-constant albedo, fixed and known
illumination vector, and known camera responses. One important limitation of our
solution is the parameter tuning since the parameters of our method are set man-
ually and may vary with the datasets. This is because we observe that we did not
find default parameters for all datasets yielding to the best reconstruction accuracy.
It would be interesting to investigate whether there exist fixed tuning parameters
which work well on all datasets, using, e.g., grid search. Our approach regarding
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Fig. 4.5 Reconstruction accuracy statistics across all test datasets and all compared methods. Also,
the Kinect paper dataset does not present any crease

the estimation of the albedo segments and their values present a drawback. Our
method uses a single image, the reference image, to estimate the albedo segments
and it cannot split or merge them during the following steps because of our modeling
given in Sect. 4.4.1.2. Particularly, this may be problematic when some deformations
occurring in the reference image lead the albedo initialization to merge two albedo
segments with significantly different values. The constraint on the fixed number of
albedo segments can be relaxed andmechanisms to automatically adjust them during
the refinement step can be studied, such as the cost term of [33] which encourages
piecewise-constant albedo segments by penalizing gradients on the albedo value
through a �0 norm. Another limitation is that we perform our experiments with
batches of 5 images and we have not performed a theoretical analysis to establish the
minimum number of images to solve NRSfMS. Some failure modes are caused by
the joint use of shading and motion visual cues. The first one is that, as in SfS, our
method may then suffer from localized convex/concave ambiguities, which tends to
worsen flawed initial solutions. The second failure mode is the under segmentation
of the albedo-map, which may lead to incorrect surface orientation. The third one is
the presence of some false positive creases, as Figs. 4.6 and 4.7, show. This failure
mode is linked to the first one, but is more general and can integrate other sources
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Fig. 4.6 Renderings for the floral paper, the paper fortune teller and creased paper datasets with
ground-truth. Here we show the images from each dataset, and sample reconstructions from one
of the images using our method and the best performing NRSfM method. We frame the reference
image in blue
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Fig. 4.7 Renderings for the hand bag, the pillow cover and Kinect paper datasets with ground-
truth. Here we show the images from each dataset, and sample reconstructions from one of the
images using our method and the best performing NRSfM method. We frame the reference image
in blue
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of errors such as misregistration or the robust estimator applied in the shading con-
straint. The last failure mode, which is not caused by the use of shading, is when the
initial solutions given by stage 1 are not reliable. Typically this occurs if there are
very few, poorly-distributed point correspondences. In these cases, it is difficult to
initialize dense shape with any current SfT method. For unorganized image sets, this
is a difficult problem to overcome. For video sequences, dense point correspondences
can usually be obtained by exploiting temporal continuity and dense frame-to-frame
tracking [17].

4.4.4 Conclusion and Open Problems

We have presented the first study of the NRSfMS problem as an illustration of the
combination of motion and shading visual cues to infer the 3D shape of deforming
objects from a single camera. NRSfMS does not assume the 3D geometry of the
surface is known prior to reconstruction, and solves the problem using only a set
of images and models pertaining to camera projection, scene illumination, surface
reflectance, and camera response. We have shown for the first time that it is possible
to solve NRSfMS when some of the model parameters are unknown (specifically
surface reflectance) and solve jointly with reconstruction. NRSfMS is a hard and
important vision problem, needed for high-accuracy dense reconstruction of poorly-
textured surfaces undergoing non-smooth deformation from 2D images. We have
proposed an energy-based solution and a cascaded numerical optimization strategy,
and have shown encouraging results on six real-world datasets, forwhich all competi-
tive NRSfMmethods fail. This marks the first time that strongly creased, deformable,
poorly-textured surfaces with unknown albedos have been densely reconstructed and
registered from 2D image sets without shape prior knowledge on the object.

There are many possible future directions for NRSfMS. These involve both theo-
retical analysis to understand the problemwell-posedness, and explorations to release
some of the practical limits of our approach as given in Sect. 4.4.3.5. Regarding the
former, NRSfM can be solved up to ambiguities with two images and SfS can be
solved with one image when the illumination and the surface reflectance are known.
At first sight, two images seem to be sufficient to solveNRSfMS, however, a thorough
theoretical study would be required for the version of NRSfMS presented in Sect. 4.4
and also for the other possible instantiations of NRSfMS.

Regarding the latter, we propose two main research directions. The first direction
is to consider more uncontrolled settings and examine other strategies to use motion
in order to improve the use of shading. Examples of these settings are when the scene
illumination is not known a priori or when the relative position between the camera
and the light source changes over time. This will require a careful theoretical study
of well-posedness, innovative initialization and optimization strategies. Our work
shows that motion can provide an accurate reconstruction of surface normals at well-
textured regions, and these regions can be used to estimate photometric parameters. It
may be possible to estimate other photometric parameters such as camera response,
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using data at the reconstructed textured regions. A second direction considers occlu-
sions and shadows. Some solutions have been proposed for handling occlusions in
SfT [17, 52, 57] and external occlusions in NRSfM [60], and for handling shadows
in SfS [22]. However, there is no attempt to reason simultaneously about occlusions
and shadows in NRSfMS, which is required to achieve robust reconstruction in the
wild. Reasoning first with the correspondence constraints, ı.e., features motion over
the surface may provide more robust initial solutions which can be then more easily
refined by reasoning with shading constraints.

4.5 Appendix

Tables4.1 and 4.2 give the hyperparameters which we used to produce the results on
the six datasets used in Sect. 4.4.3. We denote the SfT method [26], used in stage 2
of our NRSfMS method, with Ga16.

Table4.3 gives the average processing times for our NRSfMS method and the
compared methods for each dataset. We refer to Sect. 4.4.3.2 for the implementation
details and Sect. 4.4.3.1 for the dataset details.

Table 4.1 Hyperparameter values used to evaluate our NRSfMS method

floral
paper

paper
fortune
teller

creased
paper

pillow
cover

hand
bag

kinect
paper

Ga16 M 1e4

NB 1e3

λcontour 1e−5 4e−4 4e−4 4e−4 4e−4 0.04

λiso 4e−4 0.16 4e−3 4e−3 0.04 0.04

λsmooth 6e−15 2.4e−13 1.6e−14 1.6e−14 1.6e−14 4e−13

Ours M 1e4

NB 1e3

kshade 5e−3 5e−3 5e−3 5e−3 5e−3 5e−3

λmotion 0.088 0.154 1 10 10 10

λcontour 1.25e−4 0.011 0.01 1.67e−4 1.67e−4 1.67e−4

λiso 3.8e−3 0.025 0.167 0.167 0.167 0.5

λsmooth 2.5e−12 9.2e−12 3.33e−11 3.33e−11 3.33e−11 8.33e−10
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Table 4.2 Hyperparameter values used to evaluate all compared NRSfM methods
floral
paper

paper
fortune
teller

creased
paper

pillow
cover

hand
bag

kinect
paper

Va09 depth.nC 30 30 30 28 30 30

depth.er 6 0.06 0.2 8 0.2 6

embedding.nC 30

embedding.er 0.01 1e−6 1e−6 1e−4 1e−6 0.01

homographies.neigh 100

Ch14 depth.nC 28 30 28 16 28 30

depth.er 5 1 0.7 1 8 0.9

warps.nC 28 20 28 16 28 30

warps.er 0.01 1e−3 9e−4 1e−4 1e−3 0.01

homographies.neigh 40 40 40 80 40 40

Pa16 schwarzianParam 2e−5 1e−3

warps.nC 60

warps.er 1e−4

depth.nC 100

depth.er 1 10

Table 4.3 Processing time in minutes for our method and the three compared methods with respect
to each dataset. For the compared methods, we explain the differences in time for the Kinect paper
dataset because of the number of correspondences which is significantly larger than the other five
datasets

floral
paper

paper
fortune
teller

creased
paper

pillow
cover

hand
bag

kinect
paper

Ours 28’39 41’40 20’4 45’23 34’47 35’58

Va09 0’6 0’5 0’6 0’6 0’58 11’11

Ch14 0’18 0’15 0’14 0’8 0’29 1’33

Pa16 9’41 14’10 9’19 7’15 12’38 30’54
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Chapter 5
On the Well-Posedness of Uncalibrated
Photometric Stereo Under General
Lighting

Mohammed Brahimi, Yvain Quéau, Bjoern Haefner, and Daniel Cremers

Abstract Uncalibrated photometric stereo aims at estimating the 3D-shape of a
surface, given a set of images captured from the same viewing angle, but under
unknown, varying illumination. While the theoretical foundations of this inverse
problem under directional lighting are well-established, there is a lack of mathemat-
ical evidence for the uniqueness of a solution under general lighting. On the other
hand, stable and accurate heuristical solutions of uncalibrated photometric stereo
under such general lighting have recently been proposed. The quality of the results
demonstrated therein tends to indicate that the problem may actually be well-posed,
but this still has to be established. The present paper addresses this theoretical issue,
considering first-order spherical harmonics approximation of general lighting. Two
important theoretical results are established. First, the orthographic integrability con-
straint ensures uniqueness of a solution up to a global concave–convex ambiguity,
which had already been conjectured, yet not proven. Second, the perspective inte-
grability constraint makes the problem well-posed, which generalizes a previous
result limited to directional lighting. Eventually, a closed-form expression for the
unique least-squares solution of the problem under perspective projection is pro-
vided, allowing numerical simulations on synthetic data to empirically validate our
findings.
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5.1 Introduction

Among the many photographic techniques which can be considered for the 3D-
reconstruction of a still surface, photometric stereo [43] is often considered as a first
choice when it comes to the recovery of very thin geometric structures. Neverthe-
less, the classic formulation of photometric stereo requires illumination to be highly
controlled: each image must be captured under a single collimated light source at
infinity, and the direction and relative intensity of each source must be calibrated
beforehand. In practice, this restricts possible applications of the technique to lab-
oratory setups where collimation of light can be ensured and a (possibly tedious)
calibration procedure can be carried out.

Considering uncalibrated general lighting, i.e., lighting induced by unknown, non-
collimated sources and in the presence of ambient lighting, would both drastically
simplify the 3D-scanning process for nonexperts, and allow to bring photometric
stereo outside of the lab [37]. The theoretical foundations of the problem under uncal-
ibrated directional lighting are well-understood: the solution can be recovered only
up to a linear transformation [12].When integrability is enforced, this linear ambigu-
ity reduces to the generalized bas-relief one under orthographic projection [44], and
vanishes under perspective projection [25]. This work rather focuses on uncalibrated
general lighting represented using first-order spherical harmonics [2, 35], in which
case the solution can be recovered only up to a Lorentz transformation [3] and it has
been conjectured—but not proven yet, that additional constraints such as integrabil-
ity may reduce this ambiguity. One reason for thinking that this conjecture might
hold is that stable numerical implementations of uncalibrated photometric stereo
under general illumination have been proposed recently, under both orthographic [1,
23] and perspective [11] projections. Despite having no theoretical foundation, the
results provided therein do not exhibit a significant low-frequency bias which would
reveal an underlying ambiguity: empirically, the problem seems well-posed.

The objective of this paper is thus to establish the uniqueness of a solution to the
problem of uncalibrated photometric stereo under general illumination, represented
by first-order spherical harmonics. After discussing the classic case of directional
lighting in Sect. 5.2, we characterize in Sect. 5.3 the ambiguities arising in uncali-
brated photometric stereo under first-order spherical harmonics lighting. Then, we
show in Sect. 5.4 that imposing integrability of the sought normal field resolves
such ambiguities. In the orthographic case, only a global concave–convex ambiguity
remains, hence the ambiguity is characterized by a single binary degree of free-
dom. For comparison, in the directional case, there are three real degrees of freedom
characterizing the generalized bas-relief (GBR) ambiguity [4]. Moreover, under the
perspective projection the problem becomes completely well-posed, which general-
izes the result of [25] to more general lighting. In this case, the solution can even be
determined in closed form, as shown in Sect. 5.5. Section5.6 eventually recalls our
findings, and suggests future research directions.
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5.2 Preliminaries: Photometric Stereo Under Directional
Lighting

Assuming a Lambertian surface is observed from a still camera underm ≥ 1 different
directional lighting indexed by i ∈ {1, . . . ,m}, the graylevel in the i th image can be
modeled as follows:

I i (x) = ρ(x)n(x)� li , ∀x ∈ �, (5.1)

where � ⊂ R
2 is the reconstruction domain (projection of the 3D-surface onto the

image plane), ρ(x) > 0 is the albedo at the surface point conjugate to pixel x , n(x) ∈
S
2 ⊂ R

3 is the unit-length outward normal at this point, and li ∈ R
3 is a vector

oriented toward the light source, whose norm represents the relative intensity of
the source. Photometric stereo consists, given a set of graylevel observations I i , i ∈
{1, . . . ,m}, in estimating the shape (represented by the surface normal n) and the
reflectance (represented by the surface albedo ρ). Depending on whether the lighting
vectors li are known or not, the problem is called calibrated or uncalibrated.

5.2.1 Calibrated Photometric Stereo Under Directional
Lighting

Woodham showed in the late 70s [42] that m ≥ 3 images captured under non-
coplanar, known lighting vectors were sufficient to solve this problem. Indeed, defin-
ing for every x ∈ � the following observation vector i(x) ∈ R

m , lighting matrix
L ∈ R

m×3 and surface vector m(x) ∈ R
3:

i(x) =
⎡
⎢⎣
I 1(x)

...

I m(x)

⎤
⎥⎦ , L =

⎡
⎢⎣
l1�
...

lm�

⎤
⎥⎦ , m(x) = ρ(x)n(x), (5.2)

the set of Eqs. (5.1) can be rewritten as a linear system in m(x):

i(x) = Lm(x), ∀x ∈ �. (5.3)

Provided thatL is of rank three, (5.3) admits a unique least-squares solution inm(x),
from which the normal and albedo can be extracted according to

ρ(x) = |m(x)|, n(x) = m(x)

|m(x)| . (5.4)

Such a simple least-squares approach may be replaced by robust variational or
learning-based strategies to ensure robustness [13, 17, 31, 34]. There also exist
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numerical solutions for handling non-Lambertian reflectance models [7, 15, 22, 40],
non-distant light sources [18, 21, 30, 32], or the ill-posed cases where m = 2 [16,
20, 24, 29] or m = 1 [5, 8, 39, 45]. Such issues are not addressed in the present
paperwhich rather focuses on the theoretical foundations of uncalibrated photometric
stereo.

5.2.2 Uncalibrated Photometric Stereo Under Directional
Lighting

The previous strategy relies on the knowledge of the lighting matrix L, and it is not
straightforward to extend it to unknown lighting. Let us illustrate this in the discrete
setting, denoting the pixels as x j , j ∈ {1, . . . , n} where n = |�| is the number of
pixels, and stack all the observations in an observation matrix I ∈ R

m×n and all the
surface vectors in a surface matrixM ∈ R

3×n:

I = [
i(x1), . . . , i(xn)

]
, M = [

m(x1), . . . ,m(xn)
]
. (5.5)

Now, the set of n linear systems (5.3) can be represented compactly as:

I = LM (5.6)

where both the lighting matrix L and the surface matrix M are unknown. Since
we know that L should be of rank three, a joint least-squares solution in (L,M)

can be computed using truncated singular value decomposition [12]. Nevertheless,
such a solution is not unique, since given a possible solution (L,M), any couple
(LA−1,AM) with A ∈ GL(3,R) is another solution:

I = LM = (
LA−1

)
(AM) , ∀A ∈ GL(3,R), (5.7)

or equivalently, in the continuous setting:

i(x) = Lm(x) = (
LA−1

)
(Am(x)) , ∀(x,A) ∈ � × GL(3,R). (5.8)

However, not any surface matrix M (or m-field, in the continuous setting) is
acceptable as a solution. Indeed, this encodes the geometry of the surface, through
its normals. Assuming that the surface is regular, its normals should satisfy the
so-called integrability (or zero-curl) constraint. This constraint permits to reduce the
ambiguities of uncalibrated photometric stereo, as shown in the next two subsections.
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5.2.3 Integrability Under Orthographic Projection

Let us assume orthographic projection and denote n(x) := [n1(x), n2(x), n3(x)]
�

the surface normal at 3D-point conjugate to pixel x . Let us further represent the
surface as a Monge patch, i.e., a differentiable mapping X : � → R

3 of the form
X (x) = (x, z(x)), where z : � → R is a depth map. Let us assume this map z is
twice differentiable, and let ∇z(x) = [zu(x), zv(x)]

� ∈ R
2 be its gradient in some

orthonormal basis (u, v) of the image plane. The integrability constraint is essentially
a particular form of Schwarz’ theorem, which implies that

zuv = zvu over �. (5.9)

From the definition n(x) =
[
zu(x), zv(x), −1

]�
√
zu(x)2 + zv(x)2 + 1

of the surface normal, and since

m(x) = ρ(x)n(x), Eq. (5.9) can be rewritten as

(
m1

m3

)

v

=
(
m2

m3

)

u

over �. (5.10)

Now, let us assume that one has found an m-field solution of the left-hand side
of (5.8), which further satisfies the integrability constraint (5.10) (in the discrete
setting, this can be achieved using matrix factorization [44] or convex optimization
techniques [36]). It can be shown that not all transformationsA in the right-hand side
of (5.8) preserve this constraint. Indeed, the only ones which are acceptable are those
of the generalized bas-relief group. Such matrices define a subgroup of GL(3,R)

under the matrix product, and have the following form [4]:

G =
⎛
⎝

λ 0 −μ

0 λ −ν

0 0 1

⎞
⎠ , G−1 =

⎛
⎝
1 0 μ/λ

0 1 ν/λ

0 0 1

⎞
⎠ , (λ, μ, ν) ∈ R

3 and λ 	= 0. (5.11)

The three parametersμ, ν andλ characterize theGBRambiguity inherent to uncal-
ibrated photometric stereo under directional illumination and orthographic viewing.
Intuitively, they can be understood as follows: any set of photometric stereo images
can be reproduced by scaling the surface shape (this is the role of λ), adding a plane
to it (this is the role of μ and ν), and moving the lighting vectors accordingly. If one
is given a prior on the distribution of albedo values, on that of lighting vectors, or on
the surface shape, then the three parameters can be estimated, i.e., the ambiguity can
be resolved. The literature on that particular topic is extremely dense, see e.g., [38]
for an overview, [6] for amodern numerical solution based on deep learning, and [27]
for an application to RGB-D sensing. As we shall prove later in Sect. 5.4.1, in the
case of nondirectional lighting represented using first-order spherical harmonics, the
ambiguity is much simpler since it comes down to a global concave/convex one.
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5.2.4 Integrability Under Perspective Projection

To terminate this discussion on uncalibrated photometric stereo under directional
lighting, let us discuss the case of perspective projection, which was shown to be
well-posed by Papadhimitri and Favaro in [25]. In the following, x = (u, v) denotes
the pixel coordinates with respect to the principal point (which is the projection of the
camera center onto the image plane) and f > 0 denotes the focal length. The surface
is now represented as the set of 3D-points z(x) [u/ f, v/ f, 1]�. Now, let us examine
the perspective counterpart of the orthographic integrability constraint (5.10).

It is easy to show (see, e.g., [33]) that the surface normal is now defined as

n(x) = 1√
f 2|∇z(x)|2 + (−z(x) − [u, v]� ∇z(x)

)2
[

f ∇z(x)
−z(x) − [u, v]� ∇z(x)

]
.

(5.12)
If we define the log depth map as:

z̃ = log(z), (5.13)

and denote:

p = −n1
n3

, q = −n2
n3

, (5.14)

p̂ = p

f − up − vq
, q̂ = q

f − up − vq
, (5.15)

then it is straightforward to show that

∇ z̃ = [
p̂, q̂

]�
, (5.16)

and that Schwarz’ theorem (5.9) can be equivalently rewritten in terms of the gradient
of the log depth map:

z̃uv = z̃vu . (5.17)

This equation can be equivalently rewritten in terms of the coefficients ofm = ρ n,
just as we obtained (5.10) for the orthographic case. This rewriting is given by the
following proposition, whose proof can be found in Appendix 1:

Proposition 5.1 Let m = [m1,m2,m3]� : � → R
3 a field defined as m := ρ n,

with ρ : � → R an albedo map and n : � → S
2 ⊂ R

3 a normal field. The normal
field n is integrable iff the coefficients ofm satisfy the following relationship over �:

u(m1m2u − m1um2) + v(m1m2v − m1vm2)

+ f (m1m3v − m1vm3) + f (m2um3 − m2m3u) = 0. (5.18)



5 On the Well-Posedness of Uncalibrated Photometric Stereo … 153

The integrability constraint (5.18) is slightly more complicated than the ortho-
graphic one (5.10). Yet, this slight difference is of major importance, because the set
of linear transformations A in (5.8) which preserve this condition is restricted to the
identity matrix [25]. This means under perspective projection and directional light-
ing the uncalibrated photometric stereo problem is well-posed. As we shall prove
later in Sect. 5.4.2, such a result can actually be extended to more general lighting
represented using first-order spherical harmonics. Let us now elaborate on such a
modeling of general lighting, and characterize the ambiguities therein.

5.3 Characterizing the Ambiguities in Uncalibrated
Photometric Stereo Under General Lighting

The image formationmodel (5.1) is a simplifiedmodel, corresponding to the presence
of a single light source located at infinity. However, this assumption is difficult to
ensure in real-world experiments, and it would be more convenient to have at hand
an image formation model accounting for general lighting (to handle multiple light
sources, ambient lighting, etc.).

5.3.1 Spherical Harmonics Approximation of General
Lighting

The most general image formation model for Lambertian surfaces would integrate
the incident lighting received from all directions ul ∈ S

2:

I i (x) = ρ(x)
∫
S2
si (x,ul) max{n(x)�ul , 0} dul , ∀x ∈ �, (5.19)

where we denote si (x,ul) ∈ R the intensity of the light source in direction ul ∈ S
2

at the surface point conjugate to pixel x in the i th image. In (5.19), the max operator
encodes self-shadows: it ensures that the amount of reflected light does not take
negative values for surface elements not facing the light source.

Assuming a single light source illuminates the scene in the i th image, and neglect-
ing self-shadows, thenEq. (5.19) obviously comesdown to the simplifiedmodel (5.1).
However, there exist other simplifications of the integral model (5.19), which allow
to handlemore general illumination. Namely, the spherical harmonics approximation
which were introduced simultaneously in [2, 35]. In the present work, we focus on
first-order spherical harmonics approximation, which is known to capture approxi-
mately 87% of general lighting [10]. Using this approximation, (5.19) simplifies to
(see the aforementioned papers for technical details):
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I i (x) = ρ(x)

[
1

n(x)

]�
li , ∀x ∈ �, (5.20)

with li ∈ R
4 a vector representing the general illumination in the i th image. Denot-

ing L = [
l1, . . . , lm

]� ∈ R
m×4 the general lighting matrix, System (5.20) can be

rewritten in the same form as the directional one (5.6):

i(x) = Lm(x), ∀x ∈ �, (5.21)

with m(x) = ρ(x)

(
1

n(x)

)
. (5.22)

5.3.2 Uncalibrated Photometric Stereo Under First-Order
Spherical Harmonics Lighting

Uncalibrated photometric stereo under first-order spherical harmonics lighting comes
down to solving the set of linear systems (5.21) in terms of both the general light-
ing matrix L and the m-field (which encodes albedo and surface normals). In the
directional case discussed previously, this was possible only up to an invertible lin-
ear transformation, as shown by (5.8). Despite appearing more complicated at first
glance, the case of first-order spherical harmonics is actually slightly more favorable
than the directional one: not all such linear transformations are acceptable, because
they have to preserve the particular form of them-field, given in Eq. (5.22). That is to
say, given one m-field solution and another one m∗ = Am obtained by applying an
invertible linear transformationA ∈ GL(4,R), the entries c1, c2, c3, c4 ofm∗ should
respect the constraint c12 = c22 + c32 + c42 over� (cf. Eq. (5.22), remembering that
each surface normal has unit length).

As discussed in [3], thismeans that ambiguities in uncalibrated photometric stereo
under first-order spherical harmonics are characterized as follows:

i(x) = Lm(x) = (
LA−1

)
(Am(x)) , ∀(x,A) ∈ � × Ls, (5.23)

where Ls is the space of scaled Lorentz transformations defined by

Ls = {sA | s ∈ R\{0} and A ∈ L}, (5.24)

with L the Lorentz group [28] arising in Einstein’s theory of special relativity [9]:

L = {A ∈ GL(4,R) | ∀x ∈ R
4, l(Ax) = l(x)}, (5.25)

with l : (t, x, y, z) �→ x2 + y2 + z2 − t2. (5.26)
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In spite of the presence of the scaled Lorentz ambiguity in Eq. (5.23), several
heuristical approaches to solve uncalibrated photometric stereo under general light-
ing have been proposed lately. Let usmention the approaches based on hemispherical
embedding [1] and on equivalent directional lighting [23], which both deal with the
case of orthographic projection, and the variational approach in [11] for that of
perspective projection. The empirically observed stability of such implementations
tends to indicate that the problem might be better-posed than it seems, as already
conjectured in [3]. In order to prove this conjecture, we will show in Sect. 5.4 that
not all scaled Lorentz transformations preserve the integrability of surface normals.
To this end, we need to characterize algebraically a scaled Lorentz transformation.

5.3.3 Characterization of the Scaled Lorentz Transformation

We propose to characterize any ambiguity matrix A ∈ Ls in (5.23) by means of
a scale factor s 	= 0 (one degree of freedom), a vector inside the unit R3-ball v ∈
B(0, 1) (three degrees of freedom, where B(0, 1) = {

x ∈ R
3, |x | < 1

}
) and a 3D-

rotation matrix O ∈ SO(3,R) (three degrees of freedom, hence a total of seven).
More explicitly, any scaledLorentz transformation can be characterized algebraically
as follows:

Theorem 5.1 For any scaled Lorentz transformation A ∈ Ls, there exists a unique
triple (s, v,O) ∈ R\{0} × B(0, 1) × SO(3,R) such that

A = s

⎛
⎝

ε1(A) γ ε1(A) γ v�O

ε2(A) γ v ε2(A) (I3 + γ 2

1+γ
vv�)O

⎞
⎠ , (5.27)

with

γ = 1√
1 − |v|2 , (5.28)

ε1(A) =
{

1 if Po(A),

−1 else,
(5.29)

ε2(A) =
{−1 if (Pp(A) ∧ Po(A)) ∨ (Pp(A) ∧ Po(A)),

1 else,
(5.30)

and Pp(A) stands for “A is proper”, Po(A) for “A is orthochronous”,

where we recall that a Lorentz matrix A is “proper” iff it preserves the orientation of
the Minkowski spacetime, and it is “orthochronous” iff it preserves the direction of
the time, i.e.,
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A ∈ L is proper ⇐⇒ det(A) > 0, (5.31)

A ∈ L is orthochronous ⇐⇒ ∀x = [t, x, y, z]� ∈ R
4, sign(t) = sign(t ′),

where Ax = [
t ′, x ′, y′, z′]� . (5.32)

The opposites are improper and non-orthochronous, and we note L p
o , Li

o, L
p
n and Li

n
the sets ofLorentz transformationswhich are, respectively, proper andorthochronous,
improper and orthochronous, proper and non-orthochronous, and improper and
non-orthochronous. The Lorentz group is the union of all these spaces, i.e., L =
L p
o ∪ Li

o ∪ L p
n ∪ Li

n .
Using Theorem 5.1 (whose proof can be found in Appendix 2) to characterize the

underlying ambiguity of uncalibrated photometric stereo under general lighting, we
are ready to prove that imposing integrability disambiguates the problem.

5.4 Integrability Disambiguates Uncalibrated Photometric
Stereo Under General Lighting

As we have seen in the previous section, uncalibrated photometric stereo under
general lighting is ill-posed without further constraints, since it is prone to a scaled
Lorentz ambiguity, cf. Eq. (5.23). Now, let us prove that not all scaled Lorentz
transformations preserve the integrability of the underlying normal field.

We shall assume through the next two subsections that the pictured surface is twice
differentiable and non-degenerate, in a sense which will be clarified in Sect. 5.4.3.
Then, the only acceptableLorentz transformation is the onewhichglobally exchanges
concavities and convexities in the orthographic case, while it is the identity in the
perspective case. That is to say, the orthographic case suffers only from a global
concave/convex ambiguity, while the perspective one is well-posed.

5.4.1 Orthographic Case

First, let us prove that under orthographic projection and first-order spherical har-
monics lighting, there are only two integrable solutions to uncalibrated photometric
stereo, and they differ by a global concave/convex transformation.

To this end, we consider the genuine solution m(x) of (5.21) corresponding to
a normal field n(x) and albedo map ρ(x), and another possible solution m∗(x) =
Am(x), A ∈ Ls , with (ρ∗(x),n∗(x)) the corresponding albedo map and surface
normals. The pictured surface being twice differentiable, the genuine normal field
n is integrable by construction. We establish in this subsection that if the other
candidate normal field n∗ is assumed integrable as well, then both the genuine and
the alternative solutions differ according to
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ∗(x) = α ρ j (x)

n∗
1(x) = λ n1(x)

n∗
2(x) = λ n2(x)

n∗
3(x) = n3(x)

, ∀x ∈ �, (5.33)

where α > 0 and λ ∈ {−1, 1}. That is to say, all albedo values are globally scaled by
the same factor α, while the sign of the first two components of all normal vectors are
inverted, i.e., concavities are turned into convexities and vice-versa. The global scale
on the albedo should not be considered as an issue, since such values are relative to
the camera response function and the intensities of the light sources, and they can
be manually scaled back in a post-processing step if needed. However, the residual
global concave/convex ambiguity shows that shape inference remains ill-posed. Still,
the ill-posedness is characterized by a single binary degree of freedom, which is to be
compared with the three real degrees of freedom characterizing the GBR ambiguity
arising in the case of directional lighting [4].

More formally, this result can be stated as the following theorem, which charac-
terizes the scaled Lorentz transformations in (5.23) preserving the integrability of
the underlying normal field:

Theorem 5.2 Under orthographic projection, the only scaled Lorentz transforma-
tion A ∈ Ls which preserves integrability of normals is the following one, where
α > 0 and λ ∈ {−1, 1}:

A = α

⎡
⎢⎢⎣
1 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 1

⎤
⎥⎥⎦ . (5.34)

Proof Let m : � → R
4 a field with the form of Eq. (5.22), and let ρ and n the

corresponding albedo map and normal field, assumed integrable. The normal field n

being integrable, p = −n1
n3

and q = −n2
n3

satisfy the integrability constraint pv = qu

over �. Denoting by (c1, c2, c3, c4) the four components of the field m, and using
the expression (5.22) ofm, this implies

(
c2
c4

)

v

=
(
c3
c4

)

u

over �,

⇐⇒ c2vc4 − c2c4v
c42

= c3uc4 − c3c4u
c42

over �,

⇐⇒ (c2v − c3u)c4 + c4uc3 − c4vc2 = 0 over �. (5.35)

Let m∗ = Am, with A a scaled Lorentz transformation having the form given
by Theorem 5.1, and let ρ∗ and n∗ the corresponding albedo map and normal field,
assumed integrable. The same rationale as above on the alternative normal field n∗
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yields
(c∗

2v − c∗
3u)c

∗
4 + c∗

4uc
∗
3 − c∗

4vc
∗
2 = 0 over �. (5.36)

Since m∗ = Am, (5.36) writes as

(A21c1v + A22c2v + A23c3v + A24c4v − A31c1u − A32c2u
−A33c3u − A34c4u) (A41c1 + A42c2 + A43c3 + A44c4)

+ (A41c1u + A42c2u + A43c3u + A44c4u) (A31c1 + A32c2 + A33c3 + A34c4)

− (A41c1v + A42c2v + A43c3v + A44c4v) (A21c1 + A22c2 + A23c3 + A24c4)

= 0 over �. (5.37)

Let us introduce the following notation, 1 ≤ i < j ≤ 4, and k ∈ {u, v}:

ci, jk (x) = c j (x)cik(x) − ci (x)c jk(x), ∀x ∈ �, (5.38)

and denote as follows the minors of size two of matrix A:

Ai, j
k,l = Ai j Akl − Akj Ail , 1 ≤ i < k ≤ 4, 1 ≤ j < l ≤ 4. (5.39)

Then, factoring (5.37) firstly by the coefficients Ai j and after by ci, ju and ci, jv for
every (i, j) ∈ {1, 2, 3, 4} with i < j , we get

c1,2v A2,1
4,2 + c1,3v A2,1

4,3 + c1,4v A2,1
4,4 + c2,3v A2,2

4,3 + c2,4v A2,2
4,4 + c3,4v A2,3

4,4

− c1,2u A3,1
4,2 − c1,3u A3,1

4,3 − c1,4u A3,1
4,4 − c2,3u A3,2

4,3 − c2,4u A3,2
4,4 − c3,4u A3,3

4,4 = 0 over �.

(5.40)

In addition, (5.35) also writes as

c2,4v = c3,4u over �. (5.41)

Thus, substituting c2,4v by c3,4u , Eq. (5.40) can be rewritten as

io(x)�a = 0, ∀x ∈ �, (5.42)

where io(x) ∈ R
11 is the “orthographic integrability vector” containing factors ci, ju (x)

and ci, jv (x), and a ∈ R
11 contain the minors Ai, j

k,l of A appearing in (5.40).
Since the surface is assumed to be non-degenerate (cf. Sect. 5.4.3), there exist at

least 11 points x ∈ � such that a full-rank matrix can be formed by concatenating
the vectors io(x)� row-wise. We deduce that the only solution to (5.42) is a = 0,
which is equivalent to the following equations:
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⎧⎪⎪⎨
⎪⎪⎩

A3,2
4,3 = A3,2

4,4 = A2,3
4,4 = A2,2

4,3 = 0,

A3,3
4,4 = A2,2

4,4,

A2,1
4,2 = A3,1

4,2 = A2,1
4,3 = A3,1

4,3 = A2,1
4,4 = A3,1

4,4 = 0.

(5.43)

According toCorollary 5.1 provided inAppendix 3, this implies that the submatrix
ofA formed by its last three rows and columns is a scaled generalized bas-relief trans-
formation, i.e., there exists a unique quadruple (λ, μ, ν, β) ∈ R

4 with λ 	= 0, β 	= 0,
such that

A =

⎛
⎜⎜⎝
A11 A12 A13 A14

A21 βλ 0 −βμ

A31 0 βλ −βν

A41 0 0 β

⎞
⎟⎟⎠ . (5.44)

By taking into account the last equation of System (5.43), we get

A =

⎛
⎜⎜⎝
A11 A12 A13 A14

0 βλ 0 −βμ

0 0 βλ −βν

0 0 0 β

⎞
⎟⎟⎠ . (5.45)

Identifying (5.45) with the expression in Theorem 5.1, v = 0, γ = 1 and s ε2(A)

O = β

⎛
⎝

λ 0 −μ

0 λ −ν

0 0 1

⎞
⎠. In addition, O ∈ SO(3,R), which implies O�O = I3. Thus,

since ε2(A)2 = 1, we have (s ε2(A)O)� ε2(A)O) = s2 I3. Equivalently,

β

⎛
⎝

λ 0 0
0 λ 0

−μ −ν 1

⎞
⎠ β

⎛
⎝

λ 0 −μ

0 λ −ν

0 0 1

⎞
⎠ =

⎛
⎝
s2 0 0
0 s2 0
0 0 s2

⎞
⎠ ,

⇐⇒ β2

⎛
⎝

λ2 0 −μλ

0 λ2 −νλ

−μλ −νλ μ2 + ν2 + 1

⎞
⎠ =

⎛
⎝
s2 0 0
0 s2 0
0 0 s2

⎞
⎠ , (5.46)

which implies λ2 = 1, μ = 0, ν = 0, β2 = s2.
Finally, det(s ε2(A)O) = β λ2 β = ε2(A) s, thus according to (5.45)

A = s

⎛
⎜⎜⎝

ε1(A) 0 0 0
0 ε2(A)λ 0 0
0 0 ε2(A)λ 0
0 0 0 ε2(A)

⎞
⎟⎟⎠ . (5.47)

Plugging (5.47) into m∗ = Am, we obtain
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⎛
⎜⎜⎝

ρ∗(x)
ρ∗(x) n∗

1(x)
ρ∗(x) n∗

2(x)
ρ∗(x) n∗

3(x)

⎞
⎟⎟⎠ = s

⎛
⎜⎜⎝

ε1(A) ρ(x)
ε2(A) λ ρ(x) n1(x)
ε2(A) λ ρ(x) n2(x)
ε2(A) ρ(x) n3(x)

⎞
⎟⎟⎠ , ∀x ∈ �. (5.48)

Now, knowing that albedos ρ, ρ∗ � 0 (they represent the proportion of light which
is reflected by the surface), and that the last component of normals n3, n∗

3 ≤ 0 (the
normals point toward the camera), Eq. (5.48) implies that ε1(A) and ε2(A) have
exactly the same sign as s.

Two cases must be considered. If s > 0, then ε1(A) = ε2(A) = 1, and plugging
these values into (5.47) we obtain the expression provided in Theorem 5.2. If s < 0,
then ε1(A) = ε2(A) = −1, andwe again get the expression provided in Theorem 5.2.
�

From a practical point of view, once an integrable normal field candidate has
been found heuristically, using, e.g., hemispherical embedding [1] or an equivalent
directional lighting model [23], the residual ambiguity, i.e., the sign of λ, needs to
be set manually, as proposed for instance in [23]. As we shall see now, in the case
of perspective projection the problem becomes even completely well-posed, which
circumvents the need for any manual intervention.

5.4.2 Perspective Case

Now we will prove that uncalibrated photometric stereo under first-order spherical
harmonics lighting and perspective projection is well-posed. This means, imposing
integrability restricts the admissible ambiguity matrices A in (5.23) to the identity
matrix (up to a factor scaling all albedo values without affecting the geometry):

Theorem 5.3 Under perspective projection, the only scaled Lorentz transformation
A ∈ Ls which preserves integrability of normals is the identity matrix, up to a scale
factor α > 0:

A = αI4. (5.49)

Proof Let m : � → R
4 a field with the form of Eq. (5.22), whose normal field is

integrable. Let m∗ = Am another such field whose normal field is integrable, with
A ∈ Ls a scaled Lorentz transformation having the form given by Theorem 5.1.

Let us denote by (c1, c2, c3, c4) the four components of the field m, and by
(c∗

1, c
∗
2, c

∗
3, c

∗
4) those ofm

∗. According to Proposition 5.1, the integrability constraint
of the normal field associated withm∗ writes as follows:

u(c∗)2,3u + v(c∗)2,3v + f (c∗)2,4v − f (c∗)3,4u = 0 over �, (5.50)

with the same notations as in (5.38).
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As in the previous proof of Theorem 5.2, we substitute in the integrability con-
straint (5.50) the entries ofm∗ = Am with their expressions in terms of entries of A
andm. Then, by factoring firstly by the coefficients Ai j and then by c

i, j
u and ci, jv for

every (i, j) ∈ {1, 2, 3, 4} with i < j , we get

(
uc1,2u + vc1,2v

)
A2,1
3,2 + (

uc1,3u + vc1,3v

)
A2,1
3,3

+ (
uc1,4u + vc1,4v

)
A2,1
3,4 + (

uc2,3u + vc2,3v

)
A2,2
3,3

+ (
uc2,4u + vc2,4v

)
A2,2
3,4 + (

uc3,4u + vc3,4v

)
A2,3
3,4

+ f
(
c1,2v A2,1

4,2 + c1,3v A2,1
4,3 + c1,4v A2,1

4,4 + c2,3v A2,2
4,3 + c2,4v A2,2

4,4 + c3,4v A2,3
4,4

)

− f
(
c1,2u A3,1

4,2 + c1,3u A3,1
4,3 + c1,4u A3,1

4,4 + c2,3u A3,2
4,3 + c2,4u A3,2

4,4 + c3,4u A3,3
4,4

)

= 0 over �. (5.51)

By concatenating Eqs. (5.51) for all pixels x ∈ �, we get the following set of
linear systems:

ip(x)�w = 0, ∀x ∈ �, (5.52)

where w ∈ R
18 contains all the minors Ai, j

k,l of the ambiguity matrix A in Eq. (5.51),

and the “perspective integrability” vector ip(x) depends only on u, v, f , and ci, jk ,
i.e., known quantities. We will see later in Sect. 5.5, that numerically solving the set
of Eqs. (5.52) provides a simple way to numerically solve uncalibrated perspective
photometric stereo under first-order spherical harmonics lighting.

If in addition we use the fact that m fulfills the integrability constraint (5.50),
we can substitute (uc2,3u + vc2,3v ) by (− f c2,4v + f c3,4u ) in Eq. (5.51), and we get 17
summands instead of 18, turning (5.52) as follows:

c(x)�a = 0 over �, (5.53)

where c(x), a ∈ R
17.

Since the surface is assumed to be non-degenerate (cf. Sect. 5.4.3), there exist at
least 17 points x ∈ � such that a full-rank matrix can be formed by row-wise con-
catenation of vectors c(x)�, x ∈ �. We deduce that a = 0 and we get the following
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A3,2
4,3 = A3,2

4,4 = A2,3
4,4 = A2,2

4,3 = 0,
A2,2
3,3 = A3,3

4,4,

A2,2
3,3 = A2,2

4,4,

A2,1
3,2 = A2,1

3,3 = A2,1
3,4 = A2,2

3,4 = A2,3
3,4 = 0,

A2,1
4,2 = A2,1

4,3 = A2,1
4,4 = A2,2

4,3 = A2,3
4,4 = 0,

A3,2
4,3 = A3,2

4,4 = A3,1
4,2 = A3,1

4,3 = A3,1
4,4 = 0.

(5.54)

According to the first three equations of System (5.54), the submatrix ofA formed
by the last three rows and columns is a scaled generalized bas-relief transformation
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(see Corollary 5.1 in Appendix 3). That is to say, there exists a unique quadruple
(λ, μ, ν, α) ∈ R

4 with λ 	= 0, α 	= 0, such that

A =

⎛
⎜⎜⎝
A11 A12 A13 A14

A21 αλ 0 −αμ

A31 0 αλ −αν

A41 0 0 α

⎞
⎟⎟⎠ . (5.55)

Taking into account the other equations of system (5.54), we get λ = 1, μ = ν =
A21 = A31 = A41 = 0. Then, the same arguments as those used around Eq. (5.47)
yield A12 = A13 = A14 = 0, and the form (5.22) of m∗ = Am implies A11 = α,
which concludes the proof. �

Let us remark that such a particular form of a scaled Lorentz transformation only
scales all albedo values, leaving the geometry unchanged. From a practical point of
view, this means that once an integrable candidate has been found, it corresponds
to the genuine surface and there is no need to manually solve any ambiguity, unlike
in the orthographic case. In Sect. 5.5, we will see that such a candidate can be esti-
mated in closed form in the discrete setting. This will allow us to empirically verify
the validity of our theoretical results, through numerical experiments on simulated
images. Before that, let us briefly elaborate on degenerate surfaces, i.e., surfaces for
which the two theorems in the present section do not hold.

5.4.3 Degenerate Surfaces

The twoprevious theorems rely on the assumption that the surface is non-“degenerate”.
Although degenerate surfaces are rarely encountered in practice, this notion needs
to be clarified for the completeness of this study.

Degenerate surfaces are those having a particularly simple shape, which causes
the matrix formed by the concatenation of the integrability vectors (io(x) in the
orthographic case, cf. (5.42), or c(x) in the perspective case, cf. (5.53)) not to be full-
rank. Here we algebraically characterize such surfaces, for which the integrability
constraint is not enough to solve the Lorentz ambiguity.

5.4.3.1 Orthographic Case

Letm : � → R
4 be a field of the form of (5.22), and let ρ and n be the corresponding

albedo map and normal field, respectively. We denote by (c1, c2, c3, c4) the four
components of the field m, and use the definition (5.38) of the coefficients ci, jk ,
i, j ∈ {1, . . . , 4}, k ∈ {u, v}. Then, the surface defined by the field m is degenerate

iff the
(
ci, jk

)
(k,i, j)	=(v,2,4)

are linearly dependent, i.e., if there exists a nonzero vector
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(λ
i, j
k ) ∈ R

11\{0} such that for any pixel x ∈ �

∑
k∈{u,v}
1≤i< j≤4

(k,i, j)	=(v,2,4)

λ
i, j
k ci, jk (x) = 0. (5.56)

To illustrate this notion on some examples, let us remark that by definition of the

coefficients
(
ci, jk

)
:

ρ n × ρ nu =
⎛
⎝

−c3,4u
c2,4u

−c2,3u

⎞
⎠ , ρ n × ρ nv =

⎛
⎝

−c3,4v
c2,4v

−c2,3v

⎞
⎠ over �, (5.57)

where × denotes the cross-product.
Therefore, the following sufficient (but not necessary) conditions to be a degen-

erate surface can be formulated:

• nu = nv = 0: a planar surface.
• nu = 0 and nv 	= 0: a surface with vanishing curvature along u (see Fig. 5.1a);
• nu 	= 0 and nv = 0: a surface with vanishing curvature along v (see Fig. 5.1b);
• nu = nv: a surface with vanishing curvature along u = −v (see Fig. 5.1c);
• nu = −nv, a surface with vanishing curvature along u = v (see Fig. 5.1d).

5.4.3.2 Perspective Case

Analogously, a surface is degenerate under perspective projection iff there exists

a nonzero vector
(
(α

i, j
k ), (βi, j )(i, j)	=(2,3)

)
∈ R

17\{0} such that, for any pixel x =
(u, v) ∈ �:

⎡
⎣ ∑

k∈{u,v}

∑
1≤i< j≤4

(
α
i, j
k

)
f ci, jk (x)

⎤
⎦ +

∑
1≤i< j≤4
(i, j)	=(2,3)

βi, j
(
uci, ju (x) + vci, jv (x)

) = 0,

(5.58)
where f is the focal length.

The surfaces shown in Fig. 5.1 are examples of degenerate surfaces. There exist
other examples, yet it is not straightforward to characterize them in a simple way. On
the other hand, in practice if the surface was simple enough to yield degeneracy, one
would not resort to photometric stereo at all. In real-world problems, the geometry
of the pictured surface is rich enough, so degenerate surfaces rarely or never arise.
This means, it is possible to numerically solve equations such as (5.52) in a stable
manner. As shown in the next section, this provides a practical way to numerically
solve perspective uncalibrated photometric stereo under general lighting.



164 M. Brahimi et al.

Fig. 5.1 Examples of degenerate surfaces in the orthographic case

5.5 Numerical Solving of the Perspective Case

In this section, we derive a practical algorithm for solving perspective uncalibrated
photometric stereo under first-order spherical harmonics lighting. More specifically,
we provide a closed-form solution for an integrable normal field satisfying the image
formation model (5.21), provided that the perspective camera is calibrated (i.e., its
focal length and principal point are known).

5.5.1 Discrete Formulation

First, let us reformulate the problem in the discrete setting. Let us stack all the
observations I i (x), i ∈ {1, . . . ,m}, x ∈ �, in a matrix I ∈ R

m×n , with n = |�| the
number of pixels. Similarly to the directional lighting case represented by (5.6), the
set of linear systems (5.21) can be rewritten in matrix form as

I = LM, (5.59)
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whereL ∈ R
m×4 is the general lightingmatrix, andM ∈ R

4×n stacks all the unknown
m(x)-vectors columnwise (each column m j = m(x j ) has thus the form given in
Eq. (5.22)).

As shown in [3], a least-squares solution (L1,M1) of (5.59) satisfying the con-
straint (5.22) can be obtained by singular value decomposition of I. Since we know
that any other M-matrix solution of (5.59) differs from M1 according to a scaled
Lorentz transform, the genuine solution M∗ ∈ R

4×n is given by

M∗ = AM1, (5.60)

with A ∈ Ls an unknown scaled Lorentz transformation.
In the last section, we have seen that there exists a unique m-field which both

satisfies the image formation model and is integrable. This means, that if the pictured
surface is twice differentiable and non-degenerate, then matrix A in (5.60) is unique
(up to scale). In fact, we only need the last three rows of matrix A: left-multiplying
the last three rows of the initial guessM1 by this submatrix, we obtain amatrix of size
3 × n where the norm of the j th column is the albedo at the surface point conjugate
to pixel x j , and normalizing each column yields the surface normal at this point.

The problem thus comes down to estimating the last three rows of matrix A.
According to Proposition 5.8 in Appendix 3, these rows can be written in the form
(v | Q) ∈ R

3×4, where v ∈ R
3 and Q ∈ GL(3,R). Next we show how to estimate

v and Q in closed form, using a discrete analogous of the perspective integrability
constraint.

5.5.2 Closed-Form Solution Through Discrete Integrability
Enforcement

During the proof of Theorem 5.3, we showed that the integrability constraint yields
the set of linear systems (5.52) over �. In the discrete setting, this set of equations
can be written compactly as

Ipw = 0, (5.61)

where w ∈ R
18 contains several minors of size 2 denoted by

(
Ai, j
k,l

)
, and Ip ∈ R

n×18

is a “perspective integrabilitymatrix” depending only upon the known camera param-
eters and entries of M1.

Matrix Ip is in general full-rank. Thus, the least-squares solution (up to scale)
of (5.61) in terms of vectorw can be determined by singular value decomposition of
Ip: denoting by Ip = U�V� this decomposition, the solutionw is the last column of

V. We denote by
(
Ãi, j
k,l

)
=
(
λ Ai, j

k,l

)
its entries, where λ 	= 0 denotes the unknown

scale factor.
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Now, recall thatmatrixQ ∈ R
3×3 to be determined is the sub-matrix formed by the

last three rows and columns of A. It relates to the aforementioned minors according
to

Q−1 = 1

det(Q)
com(Q)� = 1

det(Q)

⎛
⎜⎜⎝

A3,3
4,4 −A2,3

4,4 A2,3
3,4

−A3,2
4,4 A2,2

4,4 −A2,2
3,4

A3,2
4,3 −A2,2

4,3 A2,2
3,3

⎞
⎟⎟⎠ , (5.62)

where com(Q) is the comatrix of Q. Thus,

λQ−1 = 1

det(Q)
�−1, where � =

⎛
⎜⎜⎝

Ã3,3
4,4 − Ã2,3

4,4 Ã2,3
3,4

− Ã3,2
4,4 Ã2,2

4,4 − Ã2,2
3,4

Ã3,2
4,3 − Ã2,2

4,3 Ã2,2
3,3

⎞
⎟⎟⎠

−1

. (5.63)

Hence, we can determine Q up to scale:

Q = (λ detQ)�. (5.64)

Next, we turn our attention to the estimation of vector v ∈ R
3 (recall that this

vector is formed by the first column and last three rows of A), up to scale. To this
end, we consider the last nine minors. For example, considering Ã2,1

3,2:

Ã2,1
3,2 = λ (A21A32 − A31A22) (5.65)

= λ (A21Q21 − A31Q11) (5.66)

=
(5.64)

(
λ2det(Q)A21

)

21 − (

λ2det(Q)A31
)

11. (5.67)

Let v̂ =
⎛
⎝
v̂1
v̂2
v̂3

⎞
⎠ = λ2 det(Q)

⎛
⎝
A21

A31

A41

⎞
⎠ = (λ2det(Q))v. Equation (5.67) can be written

as:

21v̂1 − 
11v̂2 = Â2,1

3,2. (5.68)

In the same manner, by using all the other minors which involve A21, A31 or A41, we
get the following over-constrained linear system:

Sv̂ = b, (5.69)

where S ∈ R
9×3 and b ∈ R

9. A least-squares solution for v̂ can be found using, e.g.,
the pseudo inverse:

v̂ = S†b. (5.70)

Besides,
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λ2det(Q)(v | Q) = (λ2det(Q)v | λ2det(Q)Q) (5.71)

= (v̂ | λ3det(Q)2�), (5.72)

and applying the determinant to both sides of Eq. (5.64) yields

λ3det(Q)2 = 1

det(�)
. (5.73)

Plugging (5.73) into (5.72), we eventually obtain the following closed-form
expression for (v | Q):

(v | Q) = 1

λ2det(Q)

(
v̂ |

1

det(�)
�

)
. (5.74)

Since λ and det(Q) in (5.74) are unknown, the solution (v | Q) is known only up
to scale. As already stated, the actual value of this scale factor is not important, since
it only scales all albedo values simultaneously without affecting the geometry. Let
us denote by M̃1 the submatrix formed by the last three rows of the initial guessM1.
Then, matrix M̃2 = (v | Q)M̃1 is a 3 × n matrix where each column corresponds
to one surface normal, scaled by the albedo. The norm of each column of M̃2 thus
provides the sought albedo (up to scale), and normalizing each column provides the
sought surface normal.

Therefore, we now have at hand a practical way to find an integrable normal
field solving uncalibrated photometric stereo under general lighting and perspective
projection. In the next subsection, we show on simulated data that such a solution
indeed corresponds to the genuine surface, which provides an empirical evidence for
the theoretical analysis conducted in the previous section.

5.5.3 Experiments

To empirically validate the well-posedness of perspective uncalibrated photometric
stereo under general lighting, we implemented the previous algorithm in MATLAB,
and evaluated it against 16 synthetic datasets. These datasets were created by con-
sidering four 3D-shapes (“Armadillo”, “Bunny”, “Joyful Yell”, and “Thai Statue”1)
and four different albedo maps (“White”, “Bars”, “Ebsd”, and “Voronoi”). Ground-
truth normals were deduced from the depth maps using (5.12), approximating partial
derivatives of the depth with first-order finite differences. Then, for each of the 16
combinations of 3D-shape and albedo, m = 21 images were simulated according
to (5.20), while varying the lighting coefficient, as illustrated in Fig. 5.2. Each image
is of size 1600 × 1200, and comes along with the ground-truth normals, reconstruc-

1Joyful Yell: https://www.thingiverse.com/thing:897412; other datasets: http://www-graphics.
stanford.edu/data/3dscanrep.

https://www.thingiverse.com/thing:897412
http://www-graphics.stanford.edu/data/3dscanrep
http://www-graphics.stanford.edu/data/3dscanrep
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Fig. 5.2 The four 3D-shapes and four albedo maps used to create 16 (3D-shape, albedo) datasets.
For each dataset, m = 21 images were rendered under varying first-order spherical harmonics
lighting. On the right, we show three images of the (“Armadillo”, “White”) dataset

Table 5.1 Mean angular error (in degrees), for each (3D-shape, albedo) combination. The error
remains below 10 degrees for each dataset. This indicates that the genuine geometry is recovered,
and empirically confirms the well-posedness of perspective uncalibrated photometric stereo under
first-order spherical harmonics lighting

3D-shape Albedo

White Bars Ebsd Voronoi

Armadillo 2.01 1.81 2.13 2.03

Bunny 1.42 1.38 1.63 1.42

Joyful Yell 5.13 5.35 5.46 5.28

Thai Statue 6.33 6.40 6.46 7.62

tion domain�, and intrinsic camera parameters (the focal length f , and the principal
point used as reference for pixel coordinates). For the evaluation, we measured the
mean angular error (in degrees) between the estimated and the ground-truth normals.

As can be seen inTable 5.1, themean angular error on the estimated normals is very
low (less than 10 degrees for all datasets). This confirms that the geometry of the scene
is unambiguously estimated. The images being synthesized without any additional
noise or outlier to the Lambertian model (e.g., shadows or specularities), one may,
however, be surprised that the mean angular error is nonzero. As suggested in [25],
the observed residual errors may be due to the finite differences approximation of
partial derivatives arising in the perspective integrability matrix (matrix Ip in (5.61),
which contains the partial derivatives of the entries of the initialm-field, cf. (5.51)).
In our implementation, we considered first-order finite differences: other choices of
finite differences might reduce the error, yet we leave this as a perspective.

Next, we evaluated the robustness of the proposed approach to an increasing
amount of zero-mean, Gaussian noise added to the images of the (Armadillo, White)
dataset. As can be seen in Table 5.2, the proposed method dramatically fails as soon
as the noise becomes really perceptible (here, failure is observed when standard
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Table 5.2 Mean angular error (in degrees) on the (Armadillo, White) dataset, with increasing
amount of zero-mean Gaussian noise added to the input images. When noise is negligible, the
proposed method largely outperforms the state-of-the-art method from [11]. However, it should be
discarded in the presence of strong noise

Method Standard deviation σ (in percents of the maximum intensity)

0.00 0.01 0.02 0.04 0.1 0.2 0.3 0.4 0.5

Reference
[11]

18.19 18.19 18.19 18.19 18.19 18.19 18.19 18.20 18.20

Ours 2.01 2.07 2.12 2.33 2.90 4.43 6.56 9.14 113.38

deviation σ > 0.5%). For comparison, we also provide the results obtained with
the state-of-the-art method [11], which is based on heuristical shape initialization
followed by regularized nonconvex refinement. The heuristical nature of the initial-
ization induces a non-negligible bias in shape estimation, which is clearly visible on
noise-free data. However, this alternative is much more robust to noise.

This is not really surprising, since the proposed method is spectral, and the alter-
native one is based on evolved nonconvex optimization. In general, the former is
faster (in our implementation on a recent computer, our results were obtained in less
than 10 s, and the alternative ones in around 30min.), but the latter is more robust.
Similar observations have been made in other computer vision communities, e.g.,
pose estimation: the 8-point algorithm [19] is usually replaced by bundle adjust-
ment techniques [41] in order to handle the unavoidable noise arising in real-world
data. Overall, the proposed algorithm should be considered only as a way to empiri-
cally confirm the well-posedness of the problem, yet on real-world data the existing
numerical implementations should be preferred.

5.6 Conclusion and Perspectives

Wehave studied thewell-posedness of uncalibrated photometric stereo under general
illumination, represented by first-order spherical harmonics. We have established
that integrability reduces the scaled Lorentz ambiguity to a global concave/convex
ambiguity in the orthographic case, and resolves it in the perspective one.AsTable 5.3
summarizes, this generalizes previous results which were restricted to the directional
lighting model. Still, open questions remain concerning further generalization of
these results to even more evolved lighting models. For instance, future research on
the topic may consider the case of unknown second-order spherical harmonics [3],
or that of unknown nearby point light sources [26]. Such generalizations would
be of interest from a practical perspective, because the former represents natural
illuminationvery accurately [10], and the latter allowsusing inexpensive light sources
such as LEDs [32].
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Table 5.3 State-of-the-art of theoretical results concerning the well-posedness of uncalibrated
photometric stereo under different lighting models (directional, spherical harmonics of order 1
and 2, or nearby point sources). We indicate the number of degrees of freedoms (dof) of the
underlying ambiguity, and how imposing integrability reduces this number under both orthographic
and perspective projection. The bold results refer to the findings in the present paper, and the question
marks to remaining open problems

Lighting model Underlying ambiguity Effect of imposing integrability

Orthographic Perspective

Directional 9-dof (linear) [12] 3-dof (GBR) [44] Well-posed [25]

SH1 6-dof (scaled
Lorentz) [3]

1-dof
(concave/convex)

Well-posed

SH2 9-dof (linear) [3] ? ?

Nearby point 4-dof (rotation and
scale) [26]

? ?

Appendix 1: Proof of Proposition 5.1

Proposition 5.1 characterizes the integrability of a normal field in terms of the coeffi-
cients m1, m2 and m3 ofm := ρn. The following proof of this proposition is largely
inspired by [25].

Proof According to Eqs. (5.15)–(5.17), integrability of the normal field under per-
spective projection can be written as:

p̂v = q̂u over �,

⇐⇒
(

p

f − up − vq

)

v

=
(

q

f − up − vq

)

u

over �,

⇐⇒ f pv − vqpv + v pqv − f qu + upqu − uqpu = 0 over �,

⇐⇒
⎛
⎝
pv
qv
0

⎞
⎠

� ⎛
⎝

0
− f
v

⎞
⎠ ×

⎛
⎝

p
q

−1

⎞
⎠ +

⎛
⎝
pu
qu
0

⎞
⎠

� ⎛
⎝

− f
0
u

⎞
⎠ ×

⎛
⎝

p
q

−1

⎞
⎠ = 0 over �,

(5.75)

where × denotes the cross-product.

Besides, − m
m3

=
⎛
⎝

p
q

−1

⎞
⎠ according to (5.14). If we denote w1 = [0,− f, v]� and

w2 = [− f, 0, u]�, then (5.75) yields the following equation over �:
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(−m
m3

)�

v
w1 ×

(−m
m3

)
+
(−m

m3

)�

u
w2 ×

(−m
m3

)
= 0,

⇐⇒
(

−m3mv − m3vm

m3
2

)�
w1 ×

(−m
m3

)
+
(

−m3mu − m3um

m3
2

)�
w2 ×

(−m
m3

)
= 0. (5.76)

Multiplying Eq. (5.76) by m3
3:

(m3mv − m3vm)�w1 × m + (m3mu − m3um)�w2 × m = 0 over �. (5.77)

In addition, (w1 × m) ⊥ m and (w2 × m) ⊥ m, thus the following relationship
holds over �:

m3m�
v (w1 × m) + m3m�

u (w2 × m) = 0,

⇐⇒ m�
v (w1 × m) + m�

u (w2 × m) = 0,

⇐⇒ u(m1um2 − m1m2u) + v(m1vm2 − m1m2v)

+ f (m1vm3 − m1m3v) − f (m2um3 − m2m3u) = 0. (5.78)

which concludes the proof. �

Appendix 2: Proof of Theorem 5.1

Theorem 5.1 characterizes scaled Lorentz transformations. Its proof relies on the
following Propositions 5.2–5.4 from Lorentz’ group theory (proofs of these propo-
sitions can be found in [14]).

Proposition 5.2 For any proper and orthochronous Lorentz transformationA ∈ L p
o ,

there exists a unique couple (v,O) ∈ B(0, 1) × SO(3,R) such that

A = S(v)R(O) =

⎛
⎜⎜⎝

γ γ v�O

γ v (I3 + γ 2

1+γ
vv�)O

⎞
⎟⎟⎠ , (5.79)

where γ = 1√
1−‖v‖2

, and

S(v) =

⎛
⎜⎜⎝

γ γ v�

γ v I3 + γ 2

1+γ
vv�

⎞
⎟⎟⎠ , R(O) =

⎛
⎜⎜⎝
1 0 0 0
0
0 O
0

⎞
⎟⎟⎠ . (5.80)



172 M. Brahimi et al.

Proposition 5.3 The product of two proper/improper transformations is a proper
one, and the product of a proper and improper transformation is an improper one.
The same for the orthochronous property.

Proposition 5.4 MatrixT =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ is improper and non-orthochronous, and

matrix P =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ is improper and orthochronous.

Using these already known results, we propose the following characterization of
Lorentz transformations:

Proposition 5.5 For any Lorentz transformationA ∈ L, there exists a unique couple
(v,O) ∈ B(0, 1) × SO(3,R) such that

A =
⎛
⎝

ε1(A) γ ε1(A) γ v�O

ε2(A) γ v ε2(A)(I3 + γ 2

1+γ
vv�)O

⎞
⎠ . (5.81)

Proof We first assume that A ∈ Li
n .

According to Proposition 5.4, T ∈ Li
n . Thus using Proposition 5.3: TA ∈ L p

o .
Therefore, according to Proposition 5.2, there exists a unique couple (v,O) ∈
B(0, 1) × SO(3,R) such that TA = S(v)R(O). Since TT = I4, this implies that
A = TS(v)R(O). In addition, ε1(A) = −1 and ε2(A) = 1, hence:

A =
(

ε1(A)γ ε1(A)γ v�O
ε2(A)γ v ε2(A)(I3 + γ 2

1+γ
vv�)O

)
. (5.82)

With the same reasoning, we get the result for all the other transformations. �

Combining Proposition 5.5 and the definition (5.24) of scaled Lorentz transfor-
mations, we get Theorem 5.1.

Appendix 3: Some Useful Results on GBR and Lorentz
Matrices, and Corollary 5.1

The aim of this section is to prove Corollary 5.1, which was used in the proofs of
Theorems 5.2 and 5.3. Its proof relies on a few results on GBR and Lorentz matrices,
which we provide in the following.
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Let us denote by G the group of GBR transformations, and by Gs that of scaled
GBR transformations defined by

Gs = {sA | s ∈ R\{0} and A ∈ G}. (5.83)

Both are subgroups of GL(3,R) under the matrix product. For all B = sA ∈ Gs , we
call s the scale part of B, and A its GBR part.

Let C ∈ R
n×n with n > 1 and Ci j its entries. We will use the following notation

for a minor of size two:
Ci, j
k,l = Ci jCkl − CkjCil, (5.84)

where 1 ≤ i < k ≤ n and 1 ≤ j < l ≤ n.
Such minors allow to characterize scaled GBR matrices:

Proposition 5.6 LetA ∈ R
3×3, Ai j the entries ofA. Then,A is a scaled GBR trans-

formation iff A is invertible and fulfills the following equations:

{
A2,1
3,2 = A2,1

3,3 = A1,2
3,3 = A1,1

3,2 = 0,
A2,2
3,3 = A1,1

3,3.
(5.85)

Proof See [4]. �
Proposition 5.7 Let v ∈ B0(1), γ = 1√

1−‖v‖2
, then C = I3 + γ 2

1+γ
vv� is positive

definite.

Proof Let B = γ 2

1+γ
vv�. We note Eλ(B) the eigenspace associated to the eigenvalue

λ of B. B is symmetric, thus according to the spectral theorem, all the eigenvalues of

B are real, andR3 =
r⊕

i=1
Eλi (B)with r ≤ 3 the number of eigenvalues, and {λi }i=1...r

the eigenvalues of B. Hence: dim(R3) =
r∑

i=1
dim(Eλi (B)). According to the rank-

nullity theorem, dim(Ker(B)) + rank(B) = 3, and by definition rank(B) = 1, thus
dim(Ker(B)) = dim(E0(B)) = 2. We deduce that there exists a unique nonzero
eigenvalue λ ∈ R\{0} such that R3 = E0(B)

⊕
Eλ(B) with dim(Eλ(B)) = 1.

Let �v the orthogonal projection onto span{v}, and let x ∈ R
3 : �v(x) =

vv�
‖v‖2 x and �v(v) = v. We have: B = γ 2

1+γ
‖v‖2 �v and Bv = (

γ 2

1+γ
‖v‖2)v. Thus,

γ 2

1+γ
‖v‖2 is an eigenvalue ofB andλ = γ 2

1+γ
‖v‖2 . Besides, λ

γ−1 = γ 2

(γ−1)(γ+1) ‖v‖2 =
γ 2

γ 2−1 ‖v‖2 = 1
1− 1

γ 2
‖v‖2 = 1

1−(1−‖v‖2) ‖v‖2 = 1. Therefore, λ = γ − 1 and the eigen-

values of B are 0 and (γ − 1). Let α ∈ {0, γ − 1} and u ∈ Eα(B). We have:

Bu = αu ⇐⇒ u + Bu = u + αu ⇐⇒ Cu = (α + 1)u. (5.86)

Thus, 1 > 0 and γ > 0 are the eigenvalues of C with E1(C) = E0(B) and Eγ (C) =
Eγ−1(B). Consequently, C is positive definite. �
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Proposition 5.8 Let As ∈ Ls a scaled Lorentz transformation. The submatrix B
formed by the last 3 rows and 3 columns of As is invertible.

Proof By definition of As , there exists a unique couple (s, Ã) ∈ R\{0} × L such
that As = sÃ. Hence, from Proposition 5.5, there exists a unique couple (v,O) ∈
B(0, 1) × SO(3,R) such that B = sε2(Ã)(I3 + γ 2

1+γ
vv�)O. Since O ∈ SO(3,R),

det(O) = 1. In addition, Proposition 5.7 implies det(I3 + γ 2

1+γ
vv�)>0, thus

det(B) 	= 0. �

Corollary 5.1 Let As ∈ Ls a scaled Lorentz transformation. If its entries Ai j fulfill

{
A3,2
4,3 = A3,2

4,4 = A2,3
4,4 = A2,2

4,3 = 0,
A3,3
4,4 = A2,2

4,4,
(5.87)

then the submatrix B ofAs formed by the last 3 rows and 3 columns is a scaled GBR,
i.e., there exists a unique quadruple (λ, μ, ν, β) ∈ R

4 with λ 	= 0, β 	= 0 such that

As =

⎛
⎜⎜⎝
A11 A12 A13 A14

A21 βλ 0 −βμ

A31 0 βλ −βν

A41 0 0 β

⎞
⎟⎟⎠ . (5.88)

Proof According to Proposition 5.8, B is invertible. Besides, As fulfill Eqs. (5.87)
iff B fulfill Eqs. (5.85), thus according to Proposition 5.6, B ∈ Gs . �
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Chapter 6
Recent Progress in Shape from
Polarization

Boxin Shi, Jinfa Yang, Jinwei Chen, Ruihua Zhang, and Rui Chen

Abstract Photometric cues play an important role in recovering per-pixel 3D infor-
mation from images. Shape from shading and photometric stereo are popular pho-
tometric 3D reconstruction approaches, which rely on inversely analyzing an image
formation model of the surface normal, reflectance, and lighting. Similarly, shape
from polarization explores radiance variation under different polarizer angles to esti-
mate the surface normal, which does not require an active light source and has
less restricted assumptions on reflectance and lighting. This chapter reviews basic
principles of shape from polarization and its image formation model for surfaces of
different reflection properties.We then survey recent progress in shape frompolariza-
tion combined with different auxiliary information such as geometric cues, spectral
cues, photometric cues, and deep learning, and further introduce how polarization
imaging benefits other vision tasks in addition to shape recovery.
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6.1 Introduction

3D sensing and reconstruction is an important research topic in computer vision.
Depending on the key constraint where 3D information is obtained, 3D reconstruc-
tion approaches can be divided into two categories according to the shape estima-
tion cues they exploit. Generally speaking, the geometric approach (e.g., multi-view
stereo (MVS) [21, 22]) extracts corresponding points across images from different
viewpoints to reconstruct the 3D surface using triangulation; the reconstructed sur-
face may not contain accurate 3D information when the correspondence is unreliably
detected in regions with few textures. In contrast, the photometric approach (e.g.,
shape from shading (SfS) [26], photometric stereo (PS) [35, 58]) infers the per-pixel
surface normal by analyzing the radiance variation in different lighting conditions;
the recovered surface normal map is dense and contains rich and detailed geomet-
ric information even if in textureless regions, but further integration is required to
reconstruct the surface. This chapter will mainly discuss photometric approaches.

Analysis of how the light interacts with surface geometry is the key to photo-
metric 3D reconstruction. The classic SfS or PS inversely resolves the rendering
equation with a shading term (dot product of surface normal and lighting) scaled
by a reflectance term (Lambertian albedo) using single or multiple images under
calibrated distant light sources. Recent research on SfS or PS focuses on how to gen-
eralize reflectance and/or lighting assumptions to extend their practicability on real
scenarios. According to a recent survey on photometric stereo [58], around one hun-
dred images illuminated by different distant light sources with calibrated intensity
and direction are required for a reliable estimation of the surface normal of objects
with general isotropic reflectance.

The polarization information of the reflected light also contains useful information
about the surface normal of an object. The method of shape recovery by polariza-
tion information (Shape-from-Polarization, SfP) was first proposed by Shurcliff in
1962 [12, 59]. Intuitively speaking, the unpolarized light reflected from a surface
point becomes partially polarized, and the observed scene radiance varieswith chang-
ing the polarizer angle, which encodes some relationship with the surface normal.
Therefore, by analyzing such relationship at each surface point, SfP recovers per-
pixel surface normal with as high resolution as a modern 2D image sensor, which is
similar to SfS and PS. Compared to SfS or PS, SfP has the following advantages [30,
31]:

• Suitable for materials with different reflection properties: Polarization information
is widely observed in a broad category of materials, including dielectrics, metals,
and even transparent objects.

• Weak assumption on light sources: As long as the incident light is unpolarized and
becomes partially polarized after reflecting over the surface, useful cues for 3D
reconstruction would be observed.

• Passive acquisition: A typical SfP approach captures the radiance variation under
different polarizations by rotating a polarizer in front of the lens under natural
light.
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The first and second advantages above complement the major challenges about
strict reflection and lighting assumptions when applying SfS or PS. The third advan-
tage shows the great potential of designing a high-resolution 3D camera without
relying on active light sources (like active stereo or structured light). Despite the
advantages listed above, the mapping from radiance variation to surface normal is
not one to one. Hence, to obtain the correct surface normal we have to solve the
ambiguity [43] by exploring additional constraints from various aspects. Since sur-
face normal is the only output for most of the SfP approaches, auxiliary information
from geometric prior is particularly helpful in guiding the surface from gradient
recovery which is also a challenge for SfS and PS. In this chapter, we first review the
principles of polarization images (Sect. 6.2) and how classic SfP works for surfaces
with different types of reflection properties (Sect. 6.3). We then discuss the recent
progress in SfP based on the additional information from four different sources
(Sect. 6.4):

• SfP + geometric cues: The auxiliary geometric information can be used to reduce
the ambiguity of SfP and guide the surface normal integration. Such information
can be obtained from MVS [5, 17, 43, 44, 46, 72] or depth sensors [30, 31, 75].

• SfP + spectral cues: Cameras with multiple spectral bands provide additional
information of the scene, which can be utilized by SfP for disambiguation and
estimating the refractive index of the surface [27, 28, 45, 62, 70, 71].

• SfP + photometric cues: The normal estimates from SfS [7, 49, 67] or PS [4, 8]
have different ambiguities or no ambiguity, which can complement SfP normal
estimates, or directly estimate surface height by solving a linear system [60, 61,
67, 73].

• SfP + deep learning: Comprehensive priors learned from a data-driven approach
using deep neural networks also enables SfP [9] to deal with real-world scenarios,
which deviate from ideal physics models.

We further introduce various applications of polarization imaging to other vision
tasks in addition to 3D shape recoveries, such as image segmentation, robot navi-
gation, image enhancement, and reflection separation (Sect. 6.5) before concluding
this chapter (Sect. 6.6) with discussions on open problems.

6.2 Principles of Polarization Imaging

This chapter beginswith a brief introduction of the principles of polarization imaging,
with a special focus on image formation models used for SfP. The symbols and their
corresponding physical meanings used in this chapter are summarized in Table 6.1.
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Table 6.1 Symbols and notations used in this chapter

Symbol Physical meaning

λ Wavelength

u Pixel location u(x, y)

R⊥ and R‖ Fresnel reflection coefficient

T⊥ and T‖ Fresnel refraction coefficient

S0, S1, S2 Stokes component

ϑpol Polarizer angle

ηi and ηt Refractive index of the original medium and the refracted medium

n(u) Normal vector n at pixel u

ρ and φ degree of polarization and polarization phase angle

α(u) and θ(u) Azimuth and zenith angles of surface normal at pixel u

6.2.1 Principles of Fresnel Reflection

Fresnel theory describes the radiance of incident light on the surface, reflected light,
and refracted light. It is the theoretical basis for studying SfP and other vision
problems using polarization imaging. For most commercial cameras, the recorded
scene radiance is nonlinearly mapped to the pixel value according to the radiomet-
ric response function. Throughout this chapter, we assume the camera has a linear
radiometric response function (or it is radiometrically calibrated), and use intensity
for brevity.

The light wave is a transverse wave, and vibration direction of the transverse wave
is perpendicular to the propagation direction. As shown in Fig. 6.1, when a light wave
travels from medium 1 to a uniform smooth medium 2, some of the light penetrates
the surface and gets refracted. At the same time, affected by the light wave electric
field inside the medium, the electrons in the reflecting medium at the surface will
vibrate, form a dipole, and radiate outward, generating reflected light. The intensity
of the reflected light depends on the intensity of the electron vibration perpendicular
to the direction along with the reflected light travels.

The plane where the incident light, the refracted light, and the reflected light
are defined as the incident plane. Light vectors that vibrate in any direction can
be decomposed into two mutually perpendicular components [36, 59]. The energy
radiance of the incident light wave can be decomposed into two parts, a component
perpendicular to the incident plane Eis and a component parallel to the incident
plane Eip. Similarly, reflected light and refracted light can be decomposed into Ers,
Erp, Ets, and Etp, as shown in Fig. 6.1. For parallel components, the direction of
vibration of the induced dipole is generally not orthogonal to the reflected light,
directly leading to energy attenuation. The dipole vibration direction of the vertical
component is always orthogonal to the reflected light, so there is no attenuation. The
two orthogonal components of the reflected light Ers and Erp have different values
of amplitude. For these reasons, when the incident light is unpolarized, the reflected
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Fig. 6.1 Illustration of Fresnel reflection (rearranged based on Fig. 2 in [7]). From medium 1 to
medium 2, θi, θr, and θt represent angle of incidence, angle of reflection, and angle of refraction,
respectively. Similarly, θ

′
i , θ

′
r , and θ

′
t are the corresponding angles from medium 2 to medium 1.

Please refer to Table 6.1 for the definitions of notations

light will become partially polarized, i.e., the superposition of the unpolarized part
and the completely polarized part.

The following equation holds when light is refracted in two media with refractive
indices of ηi and ηt, respectively:

ηi sin θi = ηt sin θt. (6.1)

This equation is called the refraction law of light, also known as Snell’s Law.
At the interface of the medium, the components of the electric field and the

magnetic field in the tangential direction are continuously distributed, so that the
amplitudes of the incident light and the reflected light in medium 1 and the amplitude
of the refracted light in medium 2 are equal in the same direction. According to this
principle, the reflection process shown in Fig. 6.1, i.e., the amplitude of reflection
coefficient perpendicular to the direction of the incident plane, can be defined as

rs(ηi, ηt, μi, μt, θi ) ≡ Ers

Eis
=

ηi
μi
cos θi − ηt

μt
cos θt

ηi
μi
cos θi + ηt

μt
cos θt

, (6.2)

where μi and μt are the magnetic permeability of the two mediums, respectively. To
simplify the problem, we can assume μi = μt = μ0 (μ0 is vacuum permeability). θi
is the angle of incidence, and θt is the angle of refraction. Therefore, Eq. (6.2) can be
simplified into

rs(ηi, ηt, μi, μt, θi) ≡ Ers

Eis
= ηi cos θi − ηt cos θt

ηi cos θi + ηt cos θt
. (6.3)

Similarly, the amplitude of reflection coefficient parallel to the incident plane can be
expressed as follows:
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rp(ηi, ηt, μi, μt, θi) ≡ Erp

Eip
= ηt cos θi − ηi cos θt

ηt cos θi + ηi cos θt
. (6.4)

Equations (6.3) and (6.4) are called Fresnel equations.
Usually, the intensity received by the imaging sensor is not the amplitude of the

light wave, and the intensity is proportional to the square of the amplitude. Therefore,
the Fresnel reflection coefficient is defined as R⊥ = r2s and R‖ = r2p . Accordingly,
the transmission coefficient is T⊥ = 1 − R⊥ and T‖ = 1 − R‖, as can be seen from
the above discussion, the Fresnel coefficient is related to the incident angle of light.

6.2.2 Polarization Image Formation Model

The previous section discusses the Fresnel principle on which the polarization appli-
cation is based. We will now explain how to apply the above theory to polarization
images. After the unpolarized light is reflected by the surface of an object, there are
two types of reflection: specular reflection and diffuse reflection. The polarization
information can be defined by using three physical quantities: the light intensity
I , polarization phase angle φ, and degree of polarization ρ, which represents the
proportion of polarized light in the reflected light (Wolff [69] considered partially
polarized light as the sum of fully polarized and unpolarized light).

The polarization information of the incident light reflected by the object can be
captured by using a polarization filter (a.k.a. polarizer). A linear polarizer can be
placed in front of the camera and rotated to different angles to obtain polarization
images at different angles. When rotating the polarizer, the intensity of each pixel on
the acquired image will also change, as shown in Fig. 6.2.

Fig. 6.2 Transmitted
radiance sinusoid (TRS). For
two pixels (A and B) with
different surface normals, the
observed intensities under
varying polarizer angles form
different sinusoid curves
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Specifically, the intensity of each pixel will show a sinusoidal variation with
rotation angle of the polarizer, which is called Transmitted Radiance Sinusoid (TRS)
curve [52, 65]. If we denote the change of brightness value with polarizer angle as
Iϑpol , TRS can be expressed as

Iϑpol = Imax + Imin

2
+ Imax − Imin

2
cos(2ϑpol − 2φ), (6.5)

where Imax and Imin represent themaximumandminimumbrightness values observed
during the rotation of the polarizer, respectively. The reference direction of the rota-
tion of the polarizer is defined on a situational basis. For example, when the rotation
angle is the same as the polarization phase angle, themaximumbrightness is obtained,
I (ϑpol = φ) = Imax; then theminimum value is taken by rotating the polarizer by 90◦
w.r.t. the maximum angle, I (ϑpol = φ ± 90◦) = Imin. Since the cosine function has
a period of 2π , Eq. (6.5) always holds for different phase angles φ with a difference
of 180◦. This is also called π -ambiguity as mentioned in [17].

The degree of polarization (DoP) is defined as

ρ = Imax − Imin

Imax + Imin
. (6.6)

By taking a sequence of polarization images, the parameters in TRS can be deter-
mined by solving optimization problems [6, 27, 69]. For example, Wolff et al. [69]
used three images I0, I45, and I90, which are captured by rotating the polarizer to
0◦, 45◦, and 90◦, respectively. Atkinson et al. [4] introduced to use four polariza-
tion images I0, I45, I90, and I135 to estimate the Stokes parameters, expressed as a
4-vector S = [S0, S1, S2, S3]T , where S0 is the power of the incident beam, S1 and
S2 represent the power of 0◦ and 45◦ linear polarization, and S3 is the power of right
circular polarization. For unpolarized natural light, the value of S3 is small and is
often ignored. The Stokes parameters can be obtained by rotating the polarizer to
multiple polarization angles to obtain a set of images:

S0 = I0 + I45 + I90 + I135
2

S1 = I0 − I90
S2 = I45 − I135,

(6.7)

and then fit the solution of the polarization parameters as

I = S0

φ = 1

2
arctan2(S2, S1)

ρ =
√
S21 + S22

S0
,

(6.8)
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a b c

Fig. 6.3 a One of the input images. b Polarization phase angle. c Degree of polarization

where arctan2 is the four-quadrant arctangent operator [14].
An example of visualization for polarization parameters obtained from a sequence

of polarization images is shown in Fig. 6.3. The target object is a white ceramic owl.

6.2.3 Polarization Data Acquisition

The most straightforward way to capture polarization images is to add a rotatable
linear polarizer in front of the lens of an ordinary camera. The illustration of such
a capturing system can be found in Fig. 6.4a. The approaches using a rotating filter
are “division of time” and they can use the full resolution of the sensor but trade-off
against acquisition time.

Wolff et al. [69] used liquid crystal polarization cameras instead of ordinary
cameras to capture a complete set of polarization data, including information such
as the degree of polarization at each pixel location at the frame rate of about one
frame per second, which makes it possible to apply polarization capture for moving
targets. More recently, it becomes possible to capture a set of polarization images
using a single shot [1, 19, 39]. These cameras have an array of micro-polarizers in
front of the CCD or using multiple CCDs behind several polarizers with a shared
lens to simultaneously capture images under different polarizer angles, as shown in
Fig. 6.4b. Other polarization cameras follow a similar way of data acquisition [50,
51], and these cameras usually provide corresponding data display and analysis
software to visualize and process the captured polarization data (such as DoP) for
various applications. Embedding micro-polarizers in front of the imaging sensor is
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a b

Fig. 6.4 Two typical ways of capturing polarization images: a an ordinary camera (Point Gray
CM3-U3-50S5C-CS) with a linear polarizer being put in front of the lens (“division of time”).
b The polarization camera (Lucid Vision PHX050S-PC) with micro-polarizers in front of the imag-
ing sensor (“division of focal plane”)

“division of focal plane” that allows instantaneous capture, but such an approach
sacrifices the spatial resolution of the imaging sensor.

6.3 Shape from Polarization for Surfaces of Different
Reflection Properties

After polarization information (the intensity, polarization phase angle, degree of
polarization, etc.) is captured by using the devices and methods mentioned above,
the goal of SfP is to estimate the surface normal (azimuth angle and zenith angle)
by analyzing the relationship between the polarization image formation model and
normal. The coordinate system used in polarization imaging usually aligns the Z -axis
direction with the reflected light entering the camera direction. The normal vector
can be represented by its azimuth and zenith angle in a spherical coordinate system.
The azimuth angle α (0◦ ≤ α ≤ 360◦) of normal is defined as the angle between the
projection of the incident plane on the X -Y imaging plane and the X -axis. The zenith
angle θ (0◦ ≤ θ ≤ 90◦) of normal is defined as the angle between the observation
and the surface normal direction. Given the azimuth and zenith angles, the normal
vector at any point on the surface can be expressed as

n(u) = [nx(u), ny(u), nz(u)]�
= [sin α(u) sin θ(u), cosα(u) sin θ(u), cos θ(u)]�.

(6.9)
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Denoting z(u) to represent a surface, Eq. (6.9) can also be written in the form of
surface gradient as

n(u) = 1√
p(u)2 + q(u)2 + 1

[−p(u)2 − q(u)2 1]�, (6.10)

where p(u) = ∂zx(u), q(u) = ∂zy(u), i.e., ∇z(u) = [p(u) q(u)]�.
After obtaining the surface normal map, the surface can be reconstructed by inte-

grating the surface normal map represented as a two-dimensional second-order con-
tinuous differential function [20], i.e., combination of partial derivatives independent
of order of differential variables, ∂2 f (x,y)

∂x∂y = ∂2 f (x,y)
∂y∂x . There are many sophisticated

approaches [2, 3, 20, 34, 48] for solving the “gradient to surface” problem, however,
a detailed survey of integrating normal to surface is beyond the scope of this chapter.
Note that most SfP methods only produce the surface normal map as output. But
when a coarse geometry is provided like “SfP + Geometric Cues” [30, 31] intro-
duced later or a partial differential formulation is applied [37, 60, 61, 73], the output
becomes height map.

6.3.1 Shape from Specular Polarization

The specular reflection is the mirror-like reflection behavior caused by the body
reflection on top of the surface, as shown in Fig. 6.1. It provides useful information
about the surface geometry as indicated by 3D reconstruction approaches analyzing
themirror-like reflection behaviorwithout considering the polarization property [29].
If the polarization property of reflected light is taken into consideration, the relation-
ship between the Fresnel coefficient and specular angle of incidence can be plotted
as shown in Fig. 6.5. When the reflected light is polarized in the direction parallel to
the incident plane, its attenuation will be greater, which can be denoted as R⊥ > R‖.
Therefore, when the polarizer is placed perpendicular to the azimuth angle of the
surface, the strongest reflected light can be obtained (we assume that the image is
captured under orthographic projection). At this point, the azimuth angle of normal
α could take the value of either φ + π

2 or φ + 3π
2 .

The value of zenith angle of normal can be inferred by looking at the degree
of polarization. According to Eq. (6.6), the degree of polarization can be directly
determined by Imax and Imin. According to Fig. 6.5a,

Imax = R⊥
R⊥ + R‖

Is, Imin = R‖
R⊥ + R‖

Is, (6.11)

where Is is the specular reflection intensity (assuming there is no diffuse reflec-
tion). Combining Eq. (6.6) with Eq. (6.11) gives the degree of specular polarization
expressed by the Fresnel coefficient:
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(a) (b)

Fig. 6.5 The relationship between Fresnel coefficient and angle of incidence for dielectric object
(left) and metallic object (right, η = 0.8, k = 6) [12]. Note the difference of Fresnel coefficients
between diffuse (related to T ) and specular reflection (related to R) results in different formula of
degree of polarization

ρs = R⊥(η, θi) − R‖(η, θi)

R⊥(η, θi) + R‖(η, θi)
. (6.12)

By further combining Eq. (6.3) with Eq. (6.4), the degree of polarization expressed
by the refractive index η and the zenith angle θ are finally obtained as

ρs = 2 sin2 θ cos θ
√

η2 − sin2 θ

η2 − sin2 θ − η2 sin2 θ + 2 sin4 θ
. (6.13)

So far, the zenith angle of normal for specular surface can be calculated by Eq. (6.13)
with an analytical solution provided in [30].

The specular reflection theory for polarization can be further extended to the sur-
face reconstruction of metallic objects [47]. However, the metal properties are differ-
ent from those of the dielectric, as shown in Fig. 6.5b, mainly because the refractive
index of metal is more complicated. The metal refractive index η̂ can be defined
as η̂ = η(1 + iκ), where κ is the attenuation coefficient. To reduce computational
complexity, the following approximation is usually made

|η̂|2 = η2(1 + κ2) 
 1. (6.14)

Similarly, according to the approximation of the metal refractive index, the relation-
ship between the degree of polarization of the metal surface and the zenith angle is
as

ρ(θ) = 2η · tan θ sin θ

tan2 θ sin2 θ + |η̂|2 . (6.15)
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Related studies of specular reflection can be extended to the study of transpar-
ent objects, such as [44, 53]; besides, studies on specular reflection roughness and
anisotropy can be found in [23, 24];more recent research based on specular reflection
shows the application of SfP to black specular surface [46].

6.3.2 Shape from Diffuse Polarization

As shown in Fig. 6.1, except for specular reflection on top of the surface body, a
portion of the light enters the interior of the object, gets refracted during the process
and becomes partially polarized [70].According to Fig. 6.5a, the polarized light being
parallel to the incident plane has themaximum transmission coefficient, which can be
denoted as T‖ > T⊥. Therefore, when the polarizer is placed parallel to the incident
plane, the maximum reflected light intensity can be observed. This is exactly the
opposite case of the specular reflection for dielectric surface (see Fig. 6.5a). Finally,
the azimuth angle of normal α can take the value of either φ or φ ± π .

The scattering of light inside the object is irregular, so the light coming out of
the object becomes polarized light with intensity attenuation. Similar to the process
of light entering the medium from the air, when the light goes back to the air from
the medium (see Fig. 6.1), its relative refractive index becomes 1/η instead of η

(refractive index for air is 1). The refraction angle of the refracted ray corresponding
to the incident light at any angle can be solved by Snell’s law. Further, the Fresnel
transmission coefficient for a given transmission angle can be obtained fromFig. 6.5a.

It should be noted that the calculation of the degree of polarization for diffuse
reflection is based on the transmission coefficient (T‖ and T⊥) (light transmitted
from interior of the object medium then to the air medium), rather than the reflection
coefficient (R‖ and R⊥) (light from the air medium refraction then to the air medium).
According to Eq. (6.6), we have

ρd = T‖(1/η, θ ′
i ) − T⊥(1/η, θ ′)

T‖(1/η, θ ′
i ) + T⊥(1/η, θ ′)

= R⊥(1/η, θ ′
i ) − R‖(1/η, θ ′

i )

2 − R⊥(1/η, θ ′
i ) − R‖(1/η, θ ′

i )
.

(6.16)

Substituting Eqs. (6.3) and (6.4) into Eq. (6.16), the DoP of diffuse surface becomes

ρd = (η − 1/η)2 sin2 θ

2 + 2η2 − (η + 1/η)2 sin2 θ + 4 cos θ
√

η2 − sin2 θ
. (6.17)

From the equation above, the zenith angle of normal can be calculated in an analytic
form [6].
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6.3.3 Shape from Mixed Polarization

The study of specular and diffuse polarization above considers their characteristics
separately. Compared with specular reflection, diffuse reflection has a lower signal-
to-noise ratio thus ismore difficult tomeasure useful information. Besides, according
to Fig. 6.6, the influence of the refractive index of specular reflection is less than that
of diffuse reflection. However, diffuse reflection also has its unique advantages. For
example, the relationship between the degree of polarization and zenith angle is
monotonic for diffuse reflection, which is not the same case for specular reflection,
as shown in Fig. 6.6. Since specular polarized reflection is usually observed for
material with strong specular reflectance property, when the surface normal bisects
the viewing and lighting directions. It is not easy to find a dielectric object that only
contains strong specular reflectance, while a diffuse reflectance usually exists and is
more widely observed.

In a real-world scenario, the surface reflectance usually contains mixture
reflectance of diffuse and specular components. The dichromatic reflectionmodel can
be adapted to modeling such mixture reflectance by assuming a linear superposition
of specular and diffuse reflections [25, 41, 66], i.e., “Diffuse +Specular” (D+S). SfP
approach usually assumes that either diffuse or specular component is dominant and
then uses the conclusion in Sects. 6.3.1 and 6.3.2 to solve the problem [30]. By further
assuming that for a pixel u it either belongs to the specular reflection point set S, or
belongs to the diffuse reflection point setD (the complete point set is F = D ∪ S),
Taamazyan et al. [63] proposed an SfP solution for mixed polarization. The specular
information and the polarization information can be simultaneously separated from
the specular and diffuse reflection, and at the same time, the refractive index of the

(a) (b)

Fig. 6.6 Relationship between the specular angle of incidence/emittance angle and degree of polar-
ization. The left figure shows the specular case: the sameDoP corresponds to two angles of incidence
and influence of the index of refraction is not obvious. The right figure shows the diffuse case: DoP
corresponds to emittance angle in a one-to-one mapping and influence of the index of refraction is
stronger than that of specular case
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object can be recovered. Cui [17] derived an interesting proposition: Under themixed
polarization, no matter which kind of polarized light dominates, the light intensity
information measured at any point on the surface is always sinusoidal, i.e., Eq. (6.5)
is independent of the proportion of specular or diffuse reflection in the reflected light.
Based on this proposition, Cui et al. [17] obtained a high-precision 3D surface for
mixed polarization surfaces, assisted by rough geometry estimated from multi-view
images.

6.4 Shape from Polarization + “X”

According to the analysis in Sects. 6.2 and 6.3, we can tell that by only using images
and polarization information, it is difficult to obtain unique solution for surface nor-
mal estimates. For zenith angle, if there is specular component in surface reflectance,
its solution will be not unique (see Fig. 6.6). For azimuth angle, its estimation con-
tains different ambiguities for diffuse and specular surfaces w.r.t. polarization phase
angle φ: (1) For diffuse reflection, the relationship is φ or φ + π ; (2) for specular
reflection, the relationship is φ + π

2 or
(
φ + π

2

) + π , i.e., there is a π
2 offset from the

diffuse case, which is called π
2 -ambiguity in [16, 17].

In addition to the inherent π/2 and π azimuthal ambiguity, SfP using only polar-
ization images also suffer from other limitations as summarized in [6, 30, 31]:

• Refractive distortion: Obtaining zenith component of the surface normal requires
knowledge of the refractive index of the object, which is usually unknown.

• Fronto-parallel surfaces: When the zenith angle is close to zero, the degree of
polarization is small and the estimated normals are noisy in these regions due to
low SNR.

• Depth discontinuities: Even if the normals are obtained correctly, integrating
normal to surface is a nontrivial problem, especially for discontinuous depth.

• Relative depth: Integrating surface normals only obtains relative 3D shape, up to
unknown offset and scaling constants.

To resolve these inherent problems and make the solution from SfP unique and
useful, additional constraints from various aspects (denoted as “X”) could be inte-
grated. Table 6.2 provides a brief summary of their input, output and how different
“X” completes SfP. In the following subsections, we will show examples of typ-
ical methodologies and representative results from state-of-the-art SfP algorithms
combined with different “X”.
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Table 6.2 Comparison of different “SfP + X” methods

Method Input Output How to complement
SfP

SfP + Geometric Cues
[5, 17, 30, 31, 43, 44,
46, 72, 75]

Pol. images from
multiple viewpoints

Normal + depth Shape ambiguity,
normal integration

SfP + Spectral Cues
[27, 28, 45, 62, 70,
71]

Pol. images from a
multi-spectral camera

Normal Shape ambiguity,
Refractive index

SfP + Photometric
Cues [4, 7, 8, 49, 60,
61, 67, 73]

Pol. images under
varying lightings

Normal (+ depth [60,
61])

Shape ambiguity

SfP + Deep Learning
[9]

Pol. images Normal Shape ambiguity

6.4.1 Shape from Polarization + Geometric Cues

Ambiguities in SfP can be corrected if an initially obtained geometric information
is provided (this geometry could be rough), which could be obtained by multi-view
stereo methods or low-cost depth sensors.

Multiview stereo: Atkinson et al. [5] used a binocular stereo setup to get polar-
ization images and geometric cues. Miyazaki et al. [43, 44, 46] took polarization
images from multiple (more than three) viewpoints and combine specular SfP to
model transparent surfaces. Cui et al. [17] combined SfP with MVS. The ambiguous
azimuth angle from SfP was used to improve MVS for textureless regions during an
iso-depth contour tracing process which naturally bypassed the π -ambiguity. Yang
et al. [72] further extended [17] by capturing data using a single-shot polarization
camera and replacing MVS with monocular SLAM, so that real-time 3D recon-
struction using polarization became possible. A more recent combination of SfP and
three-view geometry is introduced in [16].

Depth sensor: Kadambi et al. [30, 31] used a Kinect camera to obtain a rough
depth map for removing the ambiguity in azimuth angle, and guided the normal to
surface reconstruction operation. Zhu et al. [75] used an RGB camera to estimate the
albedo map and a stereo camera to obtain geometry cues.

We take [30, 31] as an example for further explanation, whose pipeline is shown
in Fig. 6.7.

The Kinect sensor is first used to obtain a rough depth map D ∈ R
M×N . Note the

initial depth is severely quantified and containsmuch noise. Such an initial depthmap
is then converted to surface normal domain as N depth ∈ R

M×N×3. A baseline SfP
method is applied to images taken with different polarizer angles, which contains the
π -ambiguity in azimuth angle (assuming the surface reflectance is diffuse dominant).
The normal calculated from the initial depthmap can be used to correct the ambiguity.
Defining a binary linear operatorA ∈ {0, 1}, the relationship between the two normal
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Fig. 6.7 Pipeline of the “SfP + Geometric Cues” method in [30]. a The rough depth of an object
is captured by Kinect and b three photos are captured by rotating a polarizer in front of the camera.
c Integration of surface normals obtained from Fresnel equations (baseline SfP). Note the π -
ambiguity (observed as a flip in the shape) and distortion of the zenith angle (observed as flat
regions in the middle of the cup). d Integration of surface normals after correcting the π -ambiguity
removes the flip (note the details in shape brought by high-resolution surface normal estimates from
SfP). The final result is shown in e after correcting for zenith distortion and guiding the integration
using the rough depth in a

Fig. 6.8 Example result of the “SfP + Geometric Cues” method in [30]

maps can be formulated as the following optimization problem:

Â = argmin
A

∥∥Ndepth − A (
Npolar

)∥∥2

2 + γ ‖∇A‖1, (6.18)

where ‖∇A‖1 is the smoothing constraint added to the total variation problem, γ

controls the smoothing effect of the solution pixel by pixel. Then the optimal operator
Â is obtained by using the graph cut method, and is applied to the normal from
baseline SfP N corr = Â (

N polar
)
for disambiguation. Given the optimized surface

normal, the surface D̂ ∈ R
M×N is reconstructed by using a spanning tree constrained

integration, which fuses the normal (high-frequency pixel-wise details) and depth
(low-frequency geometric positions).

An example result from this method is shown in Fig. 6.8. The left example is
taken under the unknown environment lighting, while the right example is a specular
object containing spatially varying specular reflectance. Such lighting and reflectance
bring difficulty in applying SfS or PS, but SfP guided by a rough depth successfully
estimates 3D information with rich details.
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Fig. 6.9 Pipeline of the “SfP + Spectral Cues” method in [28] (rearranged)

6.4.2 Shape from Polarization + Spectral Cues

The spectral information captured by a multi-band camera contains useful cues
related to material properties of the object. Such information can not only assist
in disambiguation for SfP, but also help to estimate the refractive index of the surface
(note that to use Eqs. (6.13), (6.15), and (6.17), the refractive index of the object
needs to be known). The pipeline of [28] can be seen in Fig. 6.9.

Wolff et al. [70, 71] analyzed different kinds of rough and smooth dielectric
surfaces and provided some speculation on how to combine these diffuse reflectance
models. Miyazaki et al. [45] used visible and far-infrared polarization information
for obtaining surface orientations of transparent surfaces. The degree of polarization
in the far-infrared wavelength was used for resolving the ambiguity in the visible
wavelength. Huynh et al. [27, 28] proposed a method for estimating the zenith angle
and surface refractive index directly from the spectral variation of the polarization
information. Stolz et al. [62] solved ambiguity in zenith angle with wavelengths of
472 and 655 nm.

To further understand how “SfP + Spectral Cues” works, we take the method
proposed in [27, 28] as an example to explain in detail. In order to constrain the
change of the refractive index in the wavelength domain, the Cauchy dispersion
Eq. [13] was used. The relationship between the refractive index and the spectral
band is described by

η(u, λ) =
M∑
k=1

Ck(u)λ−2(k−1), (6.19)

where u represents each pixel in the image, λ represents the wavelength, and M
represents the total number of coefficients. It can be seen from Eq. (6.19) that the
refractive index η is only related to the bandwavelength λ and the dispersion equation
coefficient Ck(u). The refractive index can be expressed as a polynomial function
of the band. Then the problem of solving the refractive index becomes solving the
coefficient of the Cauchy dispersion equation.



194 B. Shi et al.

Fig. 6.10 Example result of the “SfP + Spectral Cues” method in [28]

The maximum and minimum intensity values at each pixel of the polarization
image with the band wavelength λ can be obtained, and with the Fresnel Equa-
tion (6.2) we can obtain the following equation:

Imin

Imax
= 1 − R⊥(u, λ)

1 − R‖(u, λ)
=

[
cos θd(u)

√
η(u, λ)2 − sin2 θd(u) + sin2 θd(u)

η(u, λ)

]2

,

(6.20)
where θd(u) represents the zenith angle of normal at pixel u; η(u, λ) represents
the refractive index at the corresponding pixel point; R⊥(u, λ) represents the ver-
tical reflection coefficient in the Fresnel equation; R‖(u, λ) represents the parallel
reflection coefficient in the Fresnel equation.

Solving Eq. (6.20) can be formulated as a least-squares problem, whose loss func-
tion is defined as

E(u) =
N∑
i=1

[
cos θd(u)

√
η(u, λ)2 − sin2 θd(u) + sin2 θd(u)

η(u, λ)
− r (u, λi)

]2

,

(6.21)
where N is the number of bands. The Cauchy dispersion equation is added as the
refractive index constraint in this equation. With this constraint, the above loss func-
tion becomes an equation with M + 1 variables, and the unknowns to be solved are
θd(u) and Ck(u), k = 1, . . . , M . When the number of coefficients of the dispersion
equation M satisfies M + 1 ≤ N , the above nonlinear least-squares problem can
be solved by linear search or confidence interval method. After the zenith angle is
obtained, shape of the object is obtained by integrating the estimated surface normal.
The refractive index η can also be obtained by using the coefficient Ck(u) of Cauchy
dispersion equation.

An example result from this method is shown in Fig. 6.10. Images of Bear and
Statue are the 45◦ polarization images. Needle maps reveal the normal orientation
along shading contours, and note that the depth maps and the refractive index of
objects are simultaneously recovered by this method.
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6.4.3 Shape from Polarization + Photometric Cues

Photometric 3D reconstruction approaches such as SfS and PS also estimate the sur-
face normal. The former is a highly ill-posedproblemwhich containsmuch ambiguity
in the estimated surface normal, while the latter also provides ambiguous solutions
when the lighting condition is uncalibrated. Fortunately, the ambiguity spaces of
SfS, PS, and SfP are not completely overlapped, thus can complement each other in
obtaining unique surface normal estimates.

Atkinson et al. [4, 7, 8] used three different known light positions for photometric
stereo, and disambiguated the normals given by SfP. Ngo et al. [49] took shading as a
constraint to recover the shape of a smooth dielectric object. The shading constraint
came from two light directions at the same polarizer angle and polarization constraint
came from two different polarizer angles of the same light direction. Tozza et al. [67]
described the shading information and polarization information by using partial dif-
ferential equations and solved the linear differential problem to get object surface
height without computing surface normals independently. Yu et al. [73] minimized
the sum of squared residuals between predicted and observed intensities over all pix-
els and polarizer angles, which was solved by nonlinear least-squares optimization.
The object albedo and lighting condition were required for initialization. Smith et
al. [60, 61] used a large, sparse system of linear equations to solve for surface height
directly. The unpolarized intensity provided shading information and served as an
additional constraint on the surface normal direction via an appropriate reflectance
model.

We take the method in [60, 61] as an example to expand its details, whose pipeline
is shown in Fig. 6.11. They assume a diffuse surface followed the Lambertian model
with uniform albedo. Then the unpolarized intensity is related to the surface normal
by

u ∈ D ⇒ iun(u) = cos (θi(u)) = n(u) · s, (6.22)

where θi(u) is the angle between lighting and normal directions, s is the light source
vector. In terms of the surface gradient, this equation can be written as

iun(u) = −p(u)sx − q(u)sy + sz√
p(u)2 + q(u)2 + 1

, (6.23)

This method formulates the polarization constraints as linear equations. For a
diffuse object, the collinearity condition is used as the constraint for azimuth angle
f (ρ(u), η). This condition satisfies either of the two possible azimuth angles implied
by the polarization phase angle measurement. Then the linear equation is obtained
in the surface gradient with nonlinear normalization factor canceled as

iun(u)

f (ρ(u), η)
= −p(u)sx − q(u)sy + sz . (6.24)
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Fig. 6.11 Pipeline of the “SfP + Photometric Cues” method in [61]. From a single polarization
image under unknown illumination, the lighting information is estimated and the surface height is
directly calculated by combining SfP and the photometric image formation model

Fig. 6.12 Example result of the “SfP + Photometric Cues” method in [61]

In order to combine the shading constraints and polarization constraints, a least-
squares solution over all observed pixels is used, and the optimized results with
minimal residual is chosen as the solution. A global optimization is used to find
results from random initialization.

An example result from this method is shown in Fig. 6.12. The left shows the
estimated height and normals given a texture-mapped object with varying albedo,
while the right is the result for an indoors object with point light source and uniform
albedo. Note that all results come directly from a single polarization image after
solving the linear system.

6.4.4 Shape from Polarization + Deep Learning

Many physics-based vision problems like SfS and PS also get great improvement
when combining with deep learning [15]. It will be quite interesting to see how
SfP benefits from combining with deep learning. Most of the existing SfP solutions
purely rely on the physics-based image formationmodel (under certain assumptions),
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Fig. 6.13 Pipeline of the “SfP + Deep Learning” method in [9]. Features from polarization images
and ambiguous surface normals are mutually interacted and refined in an encoder–decoder process-
ing, which are all in a fully convolutional manner

the performance drop becomes significant if real-world conditions deviate from the
ideally physics-based model. At present, there are few published results in this field.
We mainly introduce the research work of Ba et al. [9], which is the first trial to use
deep learning techniques for solving SfP problem as shown in Fig. 6.13

For training a deep neural network for solving SfP, the datasets are crucial. Ba et
al.’s method in [9] is also the first attempt to build a real-world dataset training and
testing deep SfP networks. They use a polarization camera to capture the polarization
images (with polarizer angles in {0◦, 45◦, 90◦, 135◦}) and a laser scanner to obtain
the “ground truth” normal being aligned to the image coordinate system (similar to
the PS dataset in [58]). Such data are fed into a physics-inspired neural network for
regressing the surface normal as

N̂ = f
(
Iφ1 , Iφ2 , . . . , IφM , Ndiff, Nspec1, Nspec2

)
, (6.25)

where f (·) is the predictionmodel,
{
Iφ1 , Iφ2 , . . . , IφM

}
is a set of polarization images,

and N̂ is the estimated surface normals. Ndiff and Nspec are surface normals calculated
by applying diffuse and specular SfP solutions, respectively. Then a tensor with
dimensionality defined as 4 × H × W is used to describe the polarization images
(note the training data captured by a polarization camera uses 4 images as a set),
where H × W is the spatial resolution of images. The loss function for surface
normal regression is defined as

Lcosine = 1

W × H

W∑
i

H∑
J

(
1 −

〈
N̂u, Nu

〉)
, (6.26)

where 〈·, ·〉 denotes the dot product, N̂u is the estimated surface normal at pixel loca-
tion u (i, j), and Nu is the corresponding ground truth of surface normal. The loss
is minimized when N̂u and Nu have identical orientation. The network is designed
according to the encoder–decoder architecture in a fully convolutional manner. Due
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Fig. 6.14 Example result of the “SfP + Deep Learning” method in [9]

to the difficulty of capturing large-scale real-world training data, the proposedmethod
does not completely rely on learning from polarization images (upper branch),
instead, it also learned from physics-based solutions from non-learning methods
(lower branch) to assist the data-driven solution for achieving reliable estimation on
complicated real scenarios.

An example result from this method is shown in Fig. 6.14. The physics-inspired
deep learningmethod shows great performance on a shiny object with strong specular
reflectance. But as the authors commented, this method still failed on an object with
mixed polarization. This could be an interesting open research topic on how to
combine SfP and deep learning in a more comprehensive manner.

6.5 Other Applications of Polarization Imaging

The RGB images from an ordinary camera cannot capture the polarization infor-
mation, i.e., the different distributions for the direction of light fluctuation is not
recorded. Analyzing polarization images allows us to explore additional information
in light transport, therefore it supports various applications that are not feasible by
using only RGB images. In addition to SfP + “X” for high-resolution and precision
3D reconstruction, several applications using other aspects of polarization images
will be briefly discussed below.

Image segmentation. It is necessary to use the dividing line of the sky and
the ground as a reference to achieve dynamic positioning of a UAV during flight.
Traditional methods use color information or edge detection and extraction methods,
while Shabayek et al. [57] proposed to use natural polarized light information for this
task. This method is less influenced by the very strong sunlight in images thanks to
the availability of polarization information, thus achieves more robust segmentation.

Robot navigation. Polarization information can also be combined with binocular
stereo for depth estimation of a highly specular scene, which can be applied to robot
dynamic navigation [10, 11]. A single-shot polarization camera is required to achieve
real-time 3D sensing for robot motion planning and navigation.

Image enhancement. Underwater images usually contain complex reflection,
which reduces the visibility of the target object. Schechner et al. [54, 55] proposed the
concept of P4 (Polarization-picture post-processing) to analyze the inverse process
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of underwater physical image formationmodel, which relies on different polarization
components.

Reflection separation.The reflections causedbycommonsemi-reflectors, such as
glass windows, not only affect the image quality but also downgrade the performance
of machine vision algorithms. The polarizer is a commonly adopted filter to perform
reflection and transmission layer separation if the semi-reflector is a planer and
the polarizer is rotated to an angle that maximally suppresses the reflections (a.k.a.
Brewster angle). Lyu et al. [40] proposed a deep learning approach to separate these
two layers with a pair of unpolarized and polarized images, which simplifies the
previous approach that requires three images from different polarizer angles [33, 56,
68].

6.6 Discussion on Open Problems

The research on SfP is still an active area today. For example, in the year of 2019
when this chapter has been finished from submission through revision, there are
many papers using polarization imaging being published, to name a few [9, 18, 37,
38, 40, 42, 64, 75], spanning frommathematical analysis to image-based SfP [37] to
novel “SfP + X” solution with a pair of stereo image [75]. We conclude this chapter
by pointing out some open problems and summarizing several aspects from which
future SfP solutions could probably be benefited.

Physics. The complicated light transport property with polarization being con-
sidered is one of the biggest challenges in developing purely physics-based SfP
solution. Although interesting ratio-invariant property about mixed polarization has
been analyzed [17], it is still difficult to analytically derive a parametric image for-
mation model for SfP with mixed polarization. A unified forward representation
that explores the explicit relationship between diffuse and specular polarizations is
desired for developing physics-based inverse problems of surface normal estimation
from polarization.

Learning. Deep learning for SfP is still a less explored area. Part of the reason is
that a ray tracer supports complete polarization properties is not publicly available and
capturing sufficiently large-scale real data is challenging as well. The first trial in [9]
shows the great potential of data-driven SfP solution in filling in the blank of physics.
However, it also heavily relies on physics-based solution as initialization. We hope
future learning-based SfP could take a better trade-off between physics (as guidance
to ensure correctness of physics) and learning (as prior to increase robustness in
the wild), not only for SfP from polarization images, but also to improve “SfP +
X” methods by integrating successful experiences in learning-based photometric
stereo [15, 74] or multi-view stereo solutions [32].

Fusion. The “SfP + X” analysis in Sect. 6.4 of this chapter reveals that the SfP
mutually benefits other 3D reconstruction such as shape from shading/photometric
stereo [4, 7, 8, 60, 61, 73] and SfM [17, 72]. Table 6.2 also shows that different 3D
reconstruction approaches complement SfP from different aspects. Thus, a truly all-
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powerful 3D reconstruction approach for arbitrary scenes does not exist. To achieve
more accurate and reliable 3D reconstruction, future works should pay attention to
fusion-based solutions that combine photometric and geometric, active and passive,
depth and normal, as well as physics and learning, to achieve joint improvement.

Sensor.The popularity of polarization cameras in recent years also provide a great
possibility for putting SfP into practice. Without a polarization camera for efficient
data capture, it is impossible to achieve polarization-based SLAM in real time [72] or
capturing plenty of real data for training a deepneural network for SfP [9]. The camera
manufactures are also actively working on narrowing the gap between polarization
images and ordinary RGB images, e.g., by enabling color capture in polarization
imaging with a single shot [39]. We believe in the near future there could be novel
types of polarization camera with higher resolution, better SNR, or more different
polarizer angles. The emergence of such sensors will definitely push forward the
research on SfP in terms of both efficiency and accuracy.

Like other physics-based 3D modeling approaches such as photometric stereo,
SfP produces less reliable accuracy if properties of real object reflectance and envi-
ronment lighting do not fit the theoreticalmodelwell. Therefore, it is still not straight-
forward to apply conventional SfP for 3D reconstruction in the wild, such as directly
applying it to a mobile phone. However, the unique properties of polarization, such
as the DoP is of high sensitivity to transparent surface [43–45], make it ready to be
deployed on visual part inspection or product quality assurance system for special
materials.

Despite the physical restrictions inherent in SfP (e.g., unpolarized light source
assumption, difficulties in handling mixture polarization, and so on) and the shape
estimation ambiguity caused, the development of “SfP + X” and learning-based
solution significantly reduces the ambiguity and relaxes the reliance on strict physics
assumptions. With more researchers draw their attention to this area, we believe SfP
in the wild will finally be realized in the future, probably in a form (but not restricted
to it) like the camera on a mobile phone that is able to capture both near and far scene
for its high-resolution 3D information in a single shot.
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Chapter 7
Estimating Facial Aging Using Light
Scattering Photometry

Hadi A. Dahlan and Edwin R. Hancock

Abstract Facial aging is a complex process, and the changes in the inner layers of the
skinwill affect how the light scatters from the skin. To observewhether a light scatter-
ingmodel parameter is suitable to be used for age classification/estimation, this study
investigated and analyzed the relationship between the parameter of an analytical-
based light scatteringmodel and skins of various ages usingphotometrymethod.Mul-
tiple models are used to investigate and compare the relationship between the model
parameters and the subject’s age. The results show that all of the models’ roughness
parameter representation has a significant positive correlation with age (p < 0.05),
making it a suitable choice to bemade as a feature for estimating/classifying age. This
study proves that the parameter(s) for an analytical-based light scattering model can
be used as an alternative method for estimating/classifying a person’s age, provided
that we know the light incidence and reflectance angles. In the future, this method
can be used to work with other age extractors/estimators/classifiers, for the purpose
of designing a more robust age estimation/classification method.

Keywords Age classification · Light scattering model parameter · Photometry ·
Data analysis · Pattern recognition

7.1 Introduction

Facial aging is an interesting topic that has been studied by various authors from
multiple fields. The knowledge gleaned from the studies can be used in numerous
real-world settings, such as in plastic surgeries, biometrics, criminology, and even
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animation. Nevertheless, there is still more that we need to learn because facial aging
is a very complex process. In most cases, age can be estimated by just observing the
changes in face shape and texture [1–3]. However, how does this change affect the
skin light scattering? Researchers have discovered that the inner characteristics of
the skin, such as the dermis and the epidermis layers, will change with age [4–7],
which means that the light scattering on the skin may also change in some way. Can
this change be modeled with a light scattering model? And can the model be used as
an alternative method to estimate/classify the age?

The aim of this study is to investigate and analyze the light scattering behavior
of the facial skin for subjects of different ages, using a light scattering model. This
will allow us to explore an alternative method of classifying a person’s age using
the model parameters and photometry technique. Moreover, to further understand
how the aging of the skin affects the light scattering, the model parameters are used
as features for age classification. If the study improves further in the future, we
possibly can estimate the person’s age using the subject’s skin reflectance taken
from any distance. Moreover, since different ethnicities have a different skin color,
we can also further our understanding of the skin aging of different skin colors. The
study we are doing here is mainly experimental and also to give some references for
the modified light scattering models that we will be using here. Nevertheless, the
information obtained from this study regarding model parameters relation with skin
aging can be beneficial not only in the computer vision but also in other fields as
well, such as pattern recognition, skin optic, or dermatology.

Section7.2 first explores some facial aging, reflectance and scattering model liter-
ature from multiple fields. In Sect. 7.3, the selected models and setup are introduced.
Afterward, Sect. 7.4 will be the parameter-age experiments, which are the correlation
test between the subject age and the interest parameters, and also the age classifica-
tion test using the chosen parameters. The Conclusion will be mentioned in the final
section.

7.2 Field Survey and Review

7.2.1 Face Aging Research

The innate ability of humans to estimate a person’s age based on observations of
the facial appearance is impressive. Assigning this ability into a machine capable
of learning and applying it to a wide variety of fields, such as in law enforcement,
security control, soft-biometric access system, and even in the entertainment indus-
try, has been an interesting and important development. Over the years, multiple
facial traits that help to determine a person’s age have been identified, including the
shape of the face, skin texture, skin features, and skin color contrast [3, 6]. The two
predetermined features are: (1) The face shape changing, in particular, the cranium
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Fig. 7.1 The facial aging in terms of shape or craniofacial growth (left) and texture (right). Images
were taken from [1, 6, 8]

bones grow as time passes. This occurs predominately during the transition from
childhood to the adult stage, and; (2) The face develops wrinkles (or face texture), as
facial muscle wastes due to decreasing elasticity. This occurs during the transition
from adulthood to the senior stage [1, 6, 8, 9]. Figure7.1 shows both of these facial
aging features.

As light shines upon the skin, reflectance can be viewed as a result of the combined
effect of the optical phenomena induced by the physio-anatomical components of all
the skin layers, with each component emitting a specific optical effect [10–12]. As
a person grows older, internal and external forces act upon the outer and inner skin
causing some level of damage, which later changes the appearance of the skin and its
light scattering. This is demonstrated in [4, 5], wherein the young skin was perceived
to have a different color contrast and luminosity than the older skin. Healthy, young
skin has a smooth, uniformly fine texture that reflects light evenly. It is also plumper
and emits radiant color. Meanwhile, aged skin tends to be rough and dry, with more
wrinkles, freckles, and age spots, and tends to emit dull color [4–7]. Figure7.2 for
the simple depiction of the young skin layer and the old skin layer.

These discoverieswere later applied in the construction of the face aging system in
the Computer Vision and Pattern Recognition fields. There are two uses for common
facial aging research in the field of computer vision and pattern recognition. They
are: (1) face age synthesis [2, 13–17] and (2) face age estimation/classification [1,
8, 18–22]. However, most of these authors did not specifically analyze the light
reflectance behavior of facial skin of various ages or thoroughly analyze the effect
of aging on the light reflectance/scattering.
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Fig. 7.2 Diagram of light scattering on the skin

7.2.2 Reflectance and Scattering Model

Reflection is a process during which an electromagnetic power flux travels inci-
dentally toward a point of a surface and leaves that point without any change in
frequency. The function that is used to model this phenomenon is called the Bidi-
rectional Reflectance Distribution Function (BDRF) [23–25]. The function defines
the model that demonstrates how reflected radiance is distributed in terms of the
distribution of incident radiance. The light reflection depends on the characteristics
of the light, the composition of the material, and its physical traits.

To create the appearance of the skin, the authors introduced the skin light scattering
models that account for the layers of the skin [26–30]. Most of these models rely on
biophysical parameters frommedical and optical tissue literature. Some authors such
as Weyrich et al. [31] developed a skin reflectance model wherein the parameters
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were estimated using multiple measurements that they captured using custom-built
devices. While some modeled human skin as a layered component with biophysical-
based user parameters and intuitive behavior, such as themelanin and the hemoglobin
fraction [32, 33].

Literature in themedical, human perception and skin optical fields havementioned
that the skin characteristics change as the age increases. However, none of the current
papers on reflectance/scattering models have thoroughly analyzed how aging affects
the reflectance/scattering model predictions or its parameter estimation. We thought
it would be interesting if we can study the inner working of the skin in terms of
a model-based that can obtain multiple parameter values that have meaning (e.g.,
the surface roughness and light absorption) and study its relation to the process of
aging using both the light scattering model and photometry. So, this paper aims to
investigate whether the light scattering model parameters change together with the
aging skin, and if so, whether the parameters of a model can be used as a feature for
estimating/classifying age.

7.3 Methodology

The main objective of this study is to analyze whether the parameters of statistic-
based Bidirectional Reflectance Distribution Function (BRDF) models can be used
to distinguish between the skin of differing ages. This is done by first capturing the
subject’s radiance measurements using a photometry technique. Then, the models
are fit to the measurements by varying the model parameters to minimize the root-
mean-squared error. Next, correlation is calculated between the parameters and the
ages of the subjects to investigate which model parameters are strongly affected by
facial aging. Finally, an age classification test is conducted to see how effective the
parameters are when used as features for age classification. This section provides
details regarding the selected models, how the data was collected and organized, and
the methodology of the experiment.

7.3.1 Chosen Models for the Test

When conducting the aging experiment, the face geometry is first estimated using
photometric stereo. This is done by acquiring the normal map using the Ma et al.
spherical gradient illumination method [34] (more detail on acquisition setup in
Sect. 7.3.2). Then a single image is used to estimate the reflectance parameters by
fitting a BRDF model to a single input image, knowing the geometry. However, the
choice of light scattering model needs to be addressed. The light scattering model
parameters must be able to model the characteristics of the skin. These parameters
are later estimated using the captured radiance data of the subject’s face, provided
that we know the four angles, namely, the incident zenith angle θi , the scattering
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zenith angle θs , the incident azimuth angle φi , and the scattering azimuth angle φs .
To estimate the parameter(s), the selectedmodels are fit to the captured radiance data.
This was done by varying the model parameters to minimize the root-mean-square
error ΔRMS . The RMS fitting error is given by

ΔRMS = 100× 1
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(7.1)

where LD
O is the captured radiance data, LP

O is the radiance from themodel prediction,
paramc is the model parameter, c is the number of parameters the model has, and k
runs over the index number of the BRDF measurements used (K ).

For this test, 6 different models were used; two variants of R–H models [35], two
variants of A–L models [36], Oren–Nayar model [37], and Jensen model [38]. Each
model is having some parameters which can be compared with one another. In this
test, we did not include any specular model components.

7.3.1.1 Ragheb–Hancock Model Variants

The first two models are the Ragheb and Hancock (R–H) light scattering model [35].
It is a detailed diffuse light scattering model using the wave scattering theory. The
model assumes that the diffuse radiance is scattered from bi-layered rough surfaces,
consisting of an opaque subsurface layer below a transparent one. Here, the authors
used Vernold and Harvey’s version of the Beckmann model for both the surface and
subsurface rough scattering effects, while, the Fresnel theory and the Snell’s law
are used for modeling the attenuation factor and the light transmission. Both of the
outgoing radiance components (surface and subsurface) are considered identical by
the authors. The total outgoing radiance is the linear combination of both components
with β as its relative balance control. The R–H model is given as

Lo = βLsb
o + (1 − β)Ls f

o (7.2)

The notations for the R–H model are summarized in Table7.1.
The R–H model also has two different models Lo−RH variants, which are (i) the

Gaussian (LG−RH ) and (ii) the exponential (LE−RH ), in which both refers to the
nature of the correlation function for the surface and subsurface roughness. From
[35], the scattered surface radiance when the correlation function is Gaussian is given
by
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Table 7.1 The R–H model formula notation

Notation Description

Li Incident radiance

LG or LE Total scattered radiance (either Gaussian or exponential)

Ls f
G Surface scattered radiance with Gaussian correlation function

Lsb
G Subsurface scattered radiance with Gaussian correlation function

Ls f
E Surface scatter radiance with exponential correlation function

Lsb
E Subsurface scattered radiance with exponential correlation function

θi Surface incident zenith angle

θs Surface scattering zenith angle

θ′
i Subsurface incident zenith angle

θ′
s Subsurface scattering zenith angle

φs Scattered azimuth angle

σ/T Surface Root-Mean-Square (RMS) slope

σ′/T ′ Subsurface Root-Mean-Square (RMS) slope

KG or KE Coefficients for the surface equations of Gaussian and exponential, respectively

dω′ Solid angle under mean surface level

n Standard refractive index

β Balance parameter

Ls f
G−RH (θi , θs,φs,σ/T ) =

KG

[
cos(θi )

v2
z (θi , θs)

]
× exp

[−T 2v2
xy(θi , θs,φs)

4σ2v2
z (θi , θs)

]
(7.3)

and when surface correlation function is exponential:

Ls f
E−RH (θi , θs,φs,σ/T ) =

KE

[
cos(θi )

v2
z (θi , θs)

]
×

(
1 +

[
T 2v2

xy(θi , θs,φs)

σ2v2
z (θi , θs)

])− 3
2

(7.4)

where v2
xy(θi , θs,φs) = [k(sin(θi ) − sin(θs) cos(φs))]2 + [−k(sin(θs) sin(φs))]2;

vz(θi , θs) = −k(cos(θi ) − cos(θs)); and k = 2π/λ. The coefficients KG and KE are
both proportional to (σ/T )2 and can be normalized. Meanwhile, the subsurface scat-
tered radiance when the correlation function is Gaussian is given by:

Lsb
G−RH (θi ,θs,φs,σ

′/T ′, n) =
Ls f
G−RH (θ′

i , θ
′
s,φs,σ

′/T ′) × [1 − f (θi , n)][1 − f (θ′
s, 1/n)]dω′ (7.5)

and when the subsurface correlation function is exponential:
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Lsb
E−RH (θi ,θs,φs,σ

′/T ′, n) =
Ls f
E−RH (θ′

i , θ
′
s,φs,σ

′/T ′) × [1 − f (θi , n)][1 − f (θ′
s, 1/n)]dω′ (7.6)

where the subsurface solid angle and the Fresnel coefficient definition can be referred
to from [35]. From this model, the parameters which we are interested in the model
are the σ/T and β. For comparison with other model surface roughness parameters,
the R–H model RMS slope for the surface and the subsurface are made identical
σ/T = σ′/T ′.

7.3.1.2 Absorption–Light Model Variants

Thenext twomodels are the absorption light (A–L) scatteringmodel [36],which is the
modified version of theR–Hmodel. TheR–Hmodel is detailed but it does not account
for light absorption. The A–Lmodel extends the R–Hmodel by adding an absorption
term Ab in the subsurface layer; defining it using the conservation of energy for light
transmission, reflectance, and absorption. The A–L surface scattering component is
similar to those of the R–H surface scattering component for both variants (Ls f

G−AL =
Ls f
G−RH and Ls f

E−AL = Ls f
E−RH ). However, A–L subsurface scattering component is

different, where

Lsb
G−AL(θi , θs,φs,σ

′/T ′, n) = Ls f
G−AL(θ

′
i , θ

′
s,φs,σ

′/T ′)
×[1 − f (θi , n) − Ab(a, θi )][1 − f (θ′

s, 1/n) − Ab(a, θs2)]dω′ (7.7)

Lsb
E−AL(θi , θs,φs,σ

′/T ′, n) = Ls f
E−AL(θ

′
i , θ

′
s,φs,σ

′/T ′)
×[1 − f (θi , n) − Ab(a, θi )][1 − f (θ′

s, 1/n) − Ab(a, θs2)]dω′ (7.8)

where

θs2 = sin−1

[
sin(θ′

s))

1/n

]
(7.9)

where a is the fractional absorption parameter, used to control how strongly light
is absorbed. A more detailed description of the model can be referred to [36]. The
parameters which we are interested in for these models are the σ/T , a, and β.
Similarly, this model RMS slope for the surface and the subsurface are also made
identical σ/T = σ′/T ′. Meanwhile, n is the refractive index for the models. The
refractive index n was not included as the chosen parameter because when initially
tested on the model parameter estimation range (more in Sect. 7.4), the n estimated
value of the samples tend to highly deviate from the reference values of skin (n = 1.37
[35]). Hence, for this experiment, the n for the models were fixed to 1.37.
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7.3.1.3 Oren–Nayar Model

The fifth model is the Oren–Nayar model, which is a comprehensive model for
surfaces withmacroscopic roughness. It was initially derived for anisotropic surfaces
that have one slope facets and later used for developing amodel for isotropic surfaces
with Gaussian slope-area distribution. The equation for this model was based on [37]
equation derivation, which includes both the direct illumination component and the
inter-reflections component. The model radiance equation is

LON1(θi , θs,φs − φi ,m) = ρON/πE0 cos θi [C1(m)

+ cos(φs − φi )C2(νmax ; νmin;φs − φi ;m) tan(νmin)

+(1 − | cos(φs − φi )|)C3(νmax ; νmin;m) tan

(
νmax + νmin

2

)]
(7.10)

LON2 = 0.17ρ2ONm
2

π(m2 + 0.13)
E0 cos θi

[
1 − | cos(φs − φi )

(
2νmin

π

)2
]

(7.11)

where ρON is the model albedo, E0 cos θi is the irradiance where it is assumed here
E0 = 1,m is the model surface roughness measured in degrees, νmax = max[θs, θi ],
and νmin = min[θs, θi ]. The coefficients of the model are

C1 = 1 − 0.5
m2

m2 + 0.33
(7.12)

C2 =
{
0.45 m2

m2+0.09 sin νmax i f cos(φs − φi ) ≥ 0,

0.45 m2

m2+0.09 (sin νmax − ( 2νmin
π

)3) otherwise
(7.13)

C3 = 0.125
m2

m2 + 0.09

(
4νmaxνmin

π2

)2

(7.14)

The total radiance for the Oren–Nayar is

LON = (LON1 + LON2)kd (7.15)

where kd is the diffuse component. The Oren–Nayar model has only one parameter
that we interest in, which is the roughness parameter m.

7.3.1.4 Jensen Model

The final model selection is the Jensen model [38]. It is a model that combines a
dipole diffusion approximation with single scattering computation. The intention of
themodel creationwas to create aBRDFmodel that considers subsurface scattering in
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translucent materials. In this experiment, we used Jensen’s BSSRDF approximation
total diffuse reflectance equation, which is given by

L J = α′

2π

(
1 + exp− 4

3
1+Fr
1−Fr

√
3(1−α′)

)
exp−√

3(1−α′) (7.16)

where Fr is the Fresnel formula andα′ is the apparent albedo, given byα′ = σs/σs +
σa . Here, σs and σa are both scattering and absorption coefficient, which are both
the parameters we are interested in. In the parameter-age test, the parameters that we
are interested in will be estimated in a specific range. More explanation on this will
be mentioned in Sect. 7.4.

7.3.2 The Data Acquisition and Organization

In this experiment, two measurements were taken from the subject; the normal map
and the subject’s radiance, both captured in a frontal position. The normals are used
for deducing the zenithal and azimuthal angles, while the radiance image is used as
a reference image for the model fitting. The normal map was acquired using the Ma
et al. spherical gradient illumination method [34] using a geodesic dome light stage
with a diameter of 1.58m, with 40 filtered LEDs located at each geodesic vertex
[39]. Linear polarization filters were positioned in front of each of the LEDs and
also in front of the lens of the Nikon D200 camera. The light stage is controlled
using an mbed NXP LPC1768 microcontroller development board. This controls
the brightness of the LEDs and the camera shutter. The camera was placed at the
periphery of the light stage and was manually focused. A single-camera flash lamp
(Nikon Speed-light SB-600) was positioned slightly above the camera, having a
flash output level of 1/64 and a zoom head position value configured to 24mm.
The subjects in this experiment were volunteers, all of whom had freely provided
their consent. The candidates were categorized based on their skin types using the
Fitzpatrick labeling method, which is a skin classification based on the amount of
melanin pigment in the skin [40]. Some volunteers were wearing makeup (or facial
cream) when the image of them was captured. It should be noted that cosmetics do
likely affect the light scatter on the skin. More than half of the women in the dataset
were wearing cosmetics when the image of them was captured. In the experiment,
these volunteers are included in the test to observe how would the cosmetics affect
the estimation value of the model parameter(s). Table7.2 shows the candidate pool
grouped based on their gender and skin type.

Figure7.3 shows the geodesic light stage used for this experiment and its diagram.
A single diffuse reflectance image of the face was captured in a frontal position using
a single-flash camera fitted with a cross-polarizer filter. The images were captured in
the .tiff format with the size being 3900 × 2616, however, for processing, the images
were resized to 1/4 (or 975 × 654) of its original size using the bicubic interpolation
method. The scaled-down image reduces the time required for the image alignment
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Table 7.2 The candidates used for the parameter-age test

Group by gender

Age group 19–29 30–39 40–49 50> Total

All male 9 7 1 6 23

All female 14 6 4 1 25

Overall total 48

Group by skin type (using the Fitzpatrick labeling method [40])

Skin type Male Male with
cream

Female Female with
makeup/cream

Total

2 4 0 2 3 9

3 9 1 3 5 18

4 6 0 6 6 18

5 2 1 0 0 3

Overall total 48

Fig. 7.3 The geodesic dome light stage used in the experiment

process. The authors have noted that reducing the image size will degrade the image
quality to some extent due to the down-sampling process, which will affect the
appearance quality of the aging features that are on the facial image. Figure7.4
shows some of the volunteers captured using the camera flash fitted with a linear
polarization filter. The details for the setup image processing can be referred to
in [41].
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Fig. 7.4 Several images of volunteers used in this experiment

7.4 The Parameter-Age Tests and Results

Due to the small data available, the images that had been captured, which is the
radiance image of the subject, are cropped into four different sections, namely, the
forehead, the left cheek, the right cheek, and the nose. Since the different facial
sections have different facial structures and skin properties that produce differing
radiance intensities, cropping each subject images into 4 different sections helps
increase the overall data count (meaning four times more data). In this experiment,
the radiance from each section area was averaged across the angles.

The parameters that are selected for this test are all the parameters that should
appear as parameters to the radiance functions from their respectivemodels.Meaning
that the σ/T and β are both referring to the R–H and A–L models parameters in
Eqs. 7.5, 7.6, 7.7, and 7.8; the A–Lmodel parameter a in Eqs. 7.7, and 7.8; the Oren–
Nayar model parameter m in their radiance function equation (referred Eqs. 7.10–
7.15); and finally the Jensen’s model parameters σs and σa in Eq.7.16. To estimate
the parameter(s), the selected models are fit to the captured radiance data. This
was done by varying the model parameters to minimize the root-mean-square error,
ΔRMS (see Eq.7.1). For the A–L model variants (exponential and Gaussian), the
initial estimation range for its RMS slope σ/T is between (0.01 and 2.00), while
the absorption a—range between (0 and 1). Meanwhile, for the Ragheb–Hancock
(R–H) models, σ/T is between (0.01 and 4.00). The balance parameter β for both
the A–L and R–H models is made within the range of (0.01 and 1.00). It should be
noted that in this test, for both of these models, the RMS slope for the surface and
the subsurface are made identical σ/T = σ′/T ′. As for the Oren–Nayar model, the
roughness parameterm is measured in degrees, so the range of estimation is between
(0◦ and 180◦); while the albedo ρON is within (0–1). The BSSRDF model scattering
σs and absorption σa coefficients were also estimated to be between (0 and 1). Each
model has a coefficient kd diffuse component, in which the range for them being
between (0 and 1).
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Fig. 7.5 The root-mean-square error RMSΔ histogram for the models using all samples (including
all facial region)

The estimations are completed using 1000 selected sample points, using MAT-
LAB’s least-squared function. After the initial fitting process, the samples are fitted
to the model again, but with smaller and more specific estimation ranges for the
parameters. This is done to decrease large variations within the initial estimation.
The process is completed several times until it reaches the least total ΔRMS and the
least possible variation. To demonstrate the accuracy of the models, Fig. 7.5 shows
the ΔRMS histogram of all the data, including all of the color channels and all of
the face sections for all six different models. The subjects used in this experiment
possessed a wide variety of facial features as a result of varying gender, skin type,
cosmetic use, and facial structure.

To initially determine which of the models investigated perform the best fitting
with the data measurements, we use scatter plots to observe how closely the data
prediction of the model to that of the data measurement. Figure7.6 illustrates the
scatter plot for normalized radiance measurements against the data prediction from
six different models done on one subject and for each RGB channel. From the plot,
the better the data is clustered around the diagonal straight line, the better the agree-
ment between experiment and theory. It was observed that the A–L model for the
exponential variant gives the radiance prediction closest to that of the data measure-
ment for all color channels. Meanwhile, Figs. 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12 show
the plots for the subject age against the estimated parameters for each of the six
models, on each RGB channel. The experiment used all the subjects; including all
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Fig. 7.6 Normalized datameasurements against the normalized radiance prediction (Subject:Male,
Age: 35, Skin Type: 2, Face Section: Forehead, Cosmetic: None)
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Fig. 7.7 The estimated parameter plots for the A–L exponential model done using all subjects;
including all facial sections. The top of each plot shows its correlation coefficient

facial sections, giving a total of 192 samples. The points in the plots are the estimated
model parameters. The dotted line is the regression line. Next, Tables7.3, 7.4, and 7.5
show the two-tailed correlation coefficient results between each model parameters
and the subject age.

7.4.1 The Parameter-Age Correlation Test Results, Analysis,
and Discussion

In, the search for the best-fit parameters, the A–L model exponential has the lowest
ΔRMS , followed by the A–L model Gaussian. The BSSRDF exhibited the overall
highest error, followed by theOren–Nayarmodel (see Fig. 7.5). TheBSSRDF and the
Oren–Nayar models were both designed to model large diffuse radiance, so, in this
test, they failed to properly fit to sample radiances that are less diffuse. Meanwhile,
the σ/T and β estimated values for the A–L models are lower than the R–H model
counterpart (Fig. 7.7, 7.8, 7.9 and 7.10). This is due to the parameter a increasing
the flexibility of the A–L model. Moreover from the graphs Figs. 7.7, 7.8, 7.9, and
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Fig. 7.8 The estimated parameter plots for the A–L Gaussian model done using all subjects;
including all facial sections. The top of each plot shows its correlation coefficient

7.10, saturation to 0 or 1 can be seen. Due to the small data, it is difficult to consider
them as outliers. These data are still included in the graph because they represent the
undersampled part of the data (subjects ≥ 40 old) and removing them will cause the
model only represents part of the real data and cannot predict a significant portion
of reality.

7.4.1.1 Results Analysis and Discussion

To recall the definition of the p-value in statistics; the p-value is the evidence against a
null hypothesis (randomness). In other words, the smaller the p-value (e.g., p < 0.1),
the smaller chance your results could be random or happened by chance. Looking at
the parameter-age test results. An interesting pattern emerged from the correlation
results when all samples were considered (Tables7.3, 7.4, and 7.5). The roughness
parameters for the A–L, R–H, Oren-Nayar, and BSSRDF models (e.g., σ/T , m, and
σs) suggest that a significant positive correlation with age exists (p < 0.05). This is
true for both male and female subjects, including the subjects that wear makeup or
facial cream. These results support the literature regarding skin roughness. However,
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Fig. 7.9 The estimated parameter plots for the R–H exponential model done using all subjects;
including all facial sections. The top of each plot shows its correlation coefficient

the β, a, and σa parameters show no strong pattern or relation with age. This is
because these parameters are more affected by skin type and condition. The A–
L model exponential parameters have more variation for the a parameter than the
Gaussian version. However, the Gaussian version has a higher error count than the
exponential one. The regression line is fitted on the estimated parameter to observe
the relation between the age and the parameters. The chi-square for fit calculated was
≈ 1.008 for all the plots (see Figs. 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12). Meanwhile, the
Oren–Nayar and BSSRDF model parameters have outliers that affect the regression
line placement (see Figs. 7.11 and 7.12).

7.4.2 The Roughness Parameter-Age Correlation Test for a
Specific Category

Multiple studies have suggested that factors like gender, ethnicity, and cosmetic use
do result in differences in appearances as people age chronologically [4, 5, 42–48].
As a result of this, we have undertaken some additional parameter-age tests based
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Fig. 7.10 The estimated parameter plots for the R–H Gaussian model done using all subjects;
including all facial sections. The top of each plot shows its correlation coefficient

Fig. 7.11 The estimated parameter plot for theOren–Nayarmodel done using all subjects; including
all facial sections. The top of each plot shows its correlation coefficient
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Fig. 7.12 The estimated parameter plots for the BSSRDF done using all subjects; including all
facial sections. The top of each plot shows its correlation coefficient

Table 7.3 Correlation coefficients between the parameter and the subject age for the A–L model
using all samples. (White cell p < 0.05; Gray cell: p > 0.2)

Model Parameter R G B
σ/T 0.2146 0.2309 0.1555
β 0.0044 -0.0785 -0.0724A–L Exponential
a 0.1924 0.2781 0.1758

σ/T 0.2405 0.2434 0.1662
β 0.2637 0.3083 0.2231A–L Gaussian
a 0.0651 -0.0494 0.0379

Table 7.4 Correlation coefficients between the parameter and the subject age for the R–H model
using all samples. (White cell p < 0.05; Gray cell: 0.1 < p < 0.2)

Model Parameter R G B
σ/T 0.3948 0.3518 0.3010R–H Exponential
β 0.2575 0.2365 0.2695

σ/T 0.3156 0.3104 0.2489R–H Gaussian
β 0.1405 0.1558 0.1201
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Table 7.5 Correlation coefficients between the parameter and the subject age for the Oren–Nayar
and BSSRDF models using all samples. (White cell p < 0.05; Gray cell: 0.1 < p < 0.2)

Model Parameter R G B
Oren–Nayar m 0.2578 0.2977 0.1936

σs 0.1718 0.1633 0.1320BSSRDF
σa -0.1718 -0.1634 -0.1320

on specific factors. The purpose of these tests is to observe whether there is any sig-
nificant result when only the subjects with the specific category are used. It should
be noted that, for these tests, we only considered the correlation between the rough-
ness parameter and the age of the subject. These categories are (1) Gender (Male or
Female); (2) Face section (Forehead, Left Cheek, Right Cheek, Both Cheeks, Nose,
or All sections); (3) Fitzpatrick Skin Type (2, 3, 4, 5, or all); and (4) Cosmetics (With,
Without or include both with and without). As mentioned before in Sect. 7.3.2, sub-
jects with cosmetics are included in the experiment to observe how would cosmetics
affect the estimation value of the model parameter(s). The methodology for these
parameter-age tests is the same as above, except that the subject in the dataset that
fits with one of the chosen categories was selected for the experiment. For example,
if the chosen category was to use only the male subjects, then only the male subjects
were used for the parameter-age test, regardless of their skin type, face section, and
whether they wore cosmetics or not. We only highlighted and discussed results from
the categories which have the most significant correlation that appears on most of
the models. These highlighted categories are the gender (male and female) and face
sections (forehead and both left and right cheek). Other results may be mentioned in
the circumstance where they warrant attention.

7.4.2.1 The Roughness Parameter-Age Results, Analysis, and
Discussion

Tables7.6 and 7.7 show the roughness parameters and age correlation results within
the model for males and females in each gender category. Comparing the two tables
(all male versus all female), the results show that most of the light scattering mod-
els obtained a positive significant correlation only when the female subjects were
used. This result seems to imply that the age of the female candidates is able to be
distinguished more easily than that of the males and that the results from the female
candidates can be more easily compared when the model roughness parameter is
used for the age estimation. However, half of the female candidates wore cosmetics,
and, as outline above, cosmetics tend to affect the light scattering, which will likely
affect their overall skin light scattering. The purpose of makeup or facial cream is
to make skin scatter light evenly [4–7]. However, interestingly enough, since most
females in the samples across the age groups wore makeup, the results still show
that the older female has rougher skin than the younger ones. This indicates that the
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Table 7.6 Correlation coefficients between the roughness parameter and the subject age for all
models using just the male candidates. (Gray cell p < 0.05; White cell: 0.1 < p < 0.2)

Model Roughness
Parameter R G B

A-L Exponential σ/T 0.2204 0.2345 0.1756
A-L Gaussian σ/T -0.0096 0.05847 -0.0585

R-H Exponential σ/T 0.3516 0.2852 0.2374
R-H Gaussian σ/T 0.1944 0.2016 0.1476
Oren-Nayar m 0.1730 0.2426 0.1107
BSSRDF σs 0.0217 0.0155 0.0023

Table 7.7 Correlation coefficients between the roughness parameter and the subject age for all
models using just the female candidates. (Grey cell p < 0.05; White cell: 0.1 < p < 0.2)

Model Roughness
Parameter R G B

A-L Exponential σ/T 0.1087 0.1492 0.0730
A-L Gaussian σ/T 0.3767 0.32354 0.2743

R-H Exponential σ/T 0.3347 0.3188 0.2731
R-H Gaussian σ/T 0.3682 0.3481 0.2832
Oren-Nayar m 0.3124 0.3013 0.2702
BSSRDF σs 0.3779 0.3514 0.3167

older they are, the more makeup (or cream) they apply on their face, hence, the more
light scatters due to the multiple layers of makeup they have.

Meanwhile, Tables7.8 and 7.9 show the correlation results between the model
roughness parameters and age for the Forehead section and Both Cheek sections
in the face section category. Given that most of the models with strong positive
correlations occur within these sections, it may be implied that these sections are
the best sections for estimating age using the roughness parameter. Meanwhile, the
correlation between the skin type and age, and the correlation between the cosmetics
categories (With,Without, or include both with andwithout) and age was observed to
have mostly weak correlation results; very few models are shown to have significant
correlation results. This is because when the dataset samples are divided based on
these categories, the distribution of the subjects across the various ages becomes
uneven, which may, in turn, affect the correlation process. Lastly, even though there
are some correlation results in Tables7.6, 7.7, 7.8, and 7.9 having (0.1 < p < 0.2),
the conclusion on the roughness parameter strong relation with skin aging was based
on the majority of the results having significant correlation results (p < 0.05).
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Table 7.8 Correlation coefficients between the roughness parameter and the subject age for all
models using just the forehead section of all candidates. (Gray cell p < 0.05; White cell: 0.1 <

p < 0.2)

Model Roughness
Parameter R G B

A-L Exponential σ/T 0.3178 0.4057 0.3649
A-L Gaussian σ/T 0.3967 0.5033 0.4154

R-H Exponential σ/T 0.5502 0.5651 0.5658
R-H Gaussian σ/T 0.4698 0.5430 0.5379
Oren-Nayar m 0.3688 0.4847 0.3702
BSSRDF σs 0.1700 0.2276 0.1431

Table 7.9 Correlation coefficients between the roughness parameter and the subject age for all
models using both left and right cheek sections of all candidates. (Gray cell p < 0.05; White cell:
0.1 < p < 0.2)

Model Roughness
Parameter R G B

A-L Exponential σ/T 0.2554 0.2291 0.0631
A-L Gaussian σ/T 0.2627 0.2239 0.1195

R-H Exponential σ/T 0.4313 0.3650 0.2887
R-H Gaussian σ/T 0.3510 0.3304 0.2335
Oren-Nayar m 0.3256 0.3528 0.2287
BSSRDF σs 0.2385 0.2016 0.1732

7.4.3 Age Classification Using the Model Parameters

To test how the parameter fare when using as an aging feature, an age classification
experiment was conducted using all the subjects, which include all gender, skin type,
and face sections, giving a total of 192 samples overall. The method for classifica-
tion was done using the support vector machine (SVM) [49], which is a supervised
machine learning algorithm that can analyze data to be used for classification.

The experiment is done by first selecting a parameter as the aging feature (i.e.,
roughness), then hold-out 10% of the samples to be used as testing samples, while
the rest as training samples. The tests are done for each model parameter. In this
experiment, the samples are group into their specific age groups: (1) Subjects below
age 30 as age group 20, (2) Subjects age between 30 and 39 as age group 30, (3)
Subjects age between 40 and 49 as age group 40, and (4) Subjects above age 49 as
age group 50. The experiment is done on different color channels to observe if there
any difference in accuracy between channels. Here, the age classification is done by
classifying the test subjects between two different age groups; for example, classify
subjects between age group 20 versus 30; 20 versus 40; 20 versus 50; 30 versus 40;
30 versus 50; and 40 versus 50. The average accuracy is calculated based on the
correct classification of the subject with its true age.
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Table 7.10 The age estimation accuracy for all samples (gender, skin types, and face sections)
using the model roughness parameters as the aging feature. This table for the A–L models (both
exponential and Gaussian variants)

Parameter
(Rough-
ness)

A–L exponential ( σ
T ) A–L Gaussian ( σ

T )

R G B R G B

Accuracy
(%)

70.13 69.24 69.24 69.67 69.67 68.48

Total
average
accuracy
(%)

69.54 69.28

Table 7.11 The age estimation accuracy for all samples (gender, skin types, and face sections)
using the model roughness parameters as the aging feature. This table for the R–H model (both
exponential and Gaussian variants)

Parameter
(roughness)

R–H exponential ( σ
T ) R–H Gaussian ( σ

T )

R G B R G B

Accuracy
(%)

66.9 67.24 69.08 67.59 68.63 68.48

Total
average
accuracy
(%)

67.74 68.24

Tables7.10, 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 show the age classification
accuracy results for each of the different model parameters used as the aging feature.
From the results, it can be seen that all of the model parameters give a classification
accuracy of ≈70%, but among all of the models, the parameters estimated using the
A–L exponential model are the parameters that can give the best age classification
when used as the aging feature. However, when classifying age, the classification
must be based on the confirmation that the chosen parameter has a strong relation
with skin age progression. Among the selection of parameters available (e.g.,σ/T ,β,
a, m, sigmaa , and sigmas), the roughness parameter was previously shown to have
the strongest relation with skin aging (the previous correlation tests on parameters).
Hence, if biology skin aging progression is considered for future age classification,
then it is best to use the model’s roughness parameter.

Regarding the test on color channels. Literature in skin optic and computer graphic
[30, 50]mentioned that the blue light (wavelength≈450−485nm) and the green light
(wavelength≈500−565nm) aremostly absorbed by the inner skinwhile the red light
(wavelength ≈625−740nm) is mostly reflected. When the subject becomes older,
the skin tends to become less effective in absorbing all three of the color lights (e.g.,
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Table 7.12 The age estimation accuracy for all samples (gender, skin types, and face sections)
using the model roughness parameters as the aging feature. This table is for the Oren–Nayar model
and the BSSRDF model

Parameter
(roughness)

Oren–Nayar (m) BSSRDF (σs )

R G B R G B

Accuracy
(%)

68.04 68.63 65.81 67.89 67.29 66.25

Total
average
accuracy
(%)

67.5 67.14

Table 7.13 The age estimation accuracy for all samples (gender, skin types, and face sections)
using the model balance parameters as the aging feature. This table for the A–L models (both
exponential and Gaussian variants)

Parameter
(balance
parameter)

A–L exponential (β) A–L Gaussian (β)

R G B R G B

Accuracy
(%)

69.74 71.33 69.24 67.20 67.94 67.16

Total
average
accuracy
(%)

69.94 67.43

Table 7.14 The age estimation accuracy for all samples (gender, skin types, and face sections) using
the model balance parameters as the aging feature. This table for the R–H model (both exponential
and Gaussian variants)

Parameter
(balance
parameter)

R–H exponential (β) R–H Gaussian (β)

R G B R G B

Accuracy
(%)

67.16 67.16 69.84 67.16 69.24 68.65

Total
average
accuracy
(%)

68.05 68.35
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Table 7.15 The age estimation accuracy for all samples (gender, skin types, and face sections)
using the model absorption parameters as the aging feature. This table for the A–L models (both
exponential and Gaussian variants)

Parameter
(absorption)

A–L exponential (a) A–L Gaussian (a)

R G B R G B

Accuracy
(%)

69.24 69.24 69.24 69.24 67.71 67.16

Total
average
accuracy
(%)

69.24 68.03

Table 7.16 The age estimation accuracy for all samples (gender, skin types, and face sections)
using the model absorption parameters as the aging feature. This table is for the BSSRDF model

Parameter (absorption) BSSRDF (σa)

R G B

Accuracy (%) 67.89 67.29 66.25

Total average accuracy
(%)

67.14

older skin reflected more red, green, and blue light than the younger skin). In the test
results between the three color channels (RGB), the total average accuracy for each
channel are Red = 68.30%, Green = 68.51%, and Red = 68.07%. These results
seem to imply that the age classification is best done on the green channel. However,
from these results, it is still difficult to confirm which color light (RGB) is the most
affected by the skin condition. Meanwhile, in this age classification experiment,
there is a problem classifying the subjects that are above age group 20 into their
corrected age group (not shown here). This may be due to the uneven distribution of
subjects between age groups, where, subjects in the age group 20 having more than
the other age groups. To solve this problem in the future, adding more subjects with
age above 30 years old may improve the SVM training process of this experiment.
Another alternative is by solving the uneven data distribution problemusingweighted
examples.

7.4.4 Limitations and Future Studies

The idea of using the light scattering of the skin to estimate age is a novel idea.
However, when conducting the experiments, there were some limitations encoun-
tered. The first main limitation is the limited subjects (or volunteers) collected for the
main parameter-age test. If there were more subjects, especially for subjects aging
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above 30 years old, the test results will be more concrete. Older candidates exhibited
difficulty entering the light stage since the light stage has no proper door through
which they could enter. The physical condition and comfort of the volunteers should
be considered more carefully in the future. The authors will also take note of the
importance of consent, especially female subjects when requiring them to remove
their makeup in the future. The second main limitation is that there are no real mea-
surements for the estimated parameters to compare with. The estimated parameters
were assumed to be true based on the model fitting to the subject’s radiance image.
More specialized tools are required for this kind of problem; collaboration with the
researcher in the field of skin optic may also be needed. Finally, this study focused
on estimating age using the radiance from the facial skin. This study may also work
if another skin area is used instead, such as the radiance from the subject’s hand.
However, the facial skin area was chosen because it is the skin area that has the most
consistent exposure to the sun (photoaging) for most people compared to other skin
areas. Nevertheless, the idea of doing this experiment using other skin areas beside
the face, such as the hand, is untried yet and conducting it in the future study may
give us a new discovery.

7.5 Conclusion

Wehave provided details regarding an experiment designed to determine whether the
light scattering models estimated parameters correlate with the age of various sub-
jects. The behavior of the roughness parameters (σ/T ,m, and σs) and the parameters
of all models are in line with the skin optic and computer vision literature; that is to
say that the roughness parameter (or skin surface/subsurface roughness) increases
with age. The results in this chapter suggest that the selected light scattering mod-
els, especially the A–L models (exponential and Gaussian variants), can be used to
approximately determine the age of a subject. This is proven in the age classification
experiment (in Sect. 7.4.3) where the model parameters are used as the aging feature
for training and testing; while the support vector machine is used as the classifier.
Meanwhile, light scatter differs across age are more apparent on the forehead section
and both the left and right cheeks (when included together). This is understandable
since those sections are where aging features tend to appear. However, it should be
noted that the confirmation of the results of the experiment regarding the relation-
ship between the model parameter and the subject age would be much stronger if a
dataset that featured similar subjects captured as they age progressively was consid-
ered, instead of using different subjects with different ages. Nevertheless, this study
suggests that while using photometry, the parameters of an analytical-based light
scattering model can be used to estimate a person’s age. Moreover, it is possible
to use this alternative method in conjunction with another age extractor/estimator
method to increase the accuracy of the estimate.
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