
Chapter 6
A Tutorial on Sobol’ Global Sensitivity
Analysis Applied to Biological Models
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Abstract Nowadays, in addition to traditional qualitative methods, quantitative
techniques are also a standard tool to describe biological systems behavior. An exam-
ple is the broad class of mathematical models, based on differential equations, used
in ecology, biochemical kinetics, epidemiology, gene regulatory networks, etc. Inde-
pendent of their simplicity or complexity, all thesemodels have in common (generally
unknown a priori) parameters that need to be identified from observations (data) of
the real system, usually available on the literature, obtained by specific assays or
surveyed by public health offices. Before using this data to calibrate the models,
a good practice is to judge the most influential parameters. That can be done with
aid of the Sobol’ indices, a variance-based statistical technique for global sensitivity
analysis, which measures the individual importance of each parameter, as well as
their joint-effect, on the model output (a.k.a. quantity of interest). These variance-
based indexes may be computed usingMonte Carlo simulation but, depending on the
model, this task can be very costly. An alternative approach for this scenario is the use
of surrogate models to speed-up the calculations. Using simple biological models,
from different areas, we develop a tutorial that illustrates how practitioners can use
Sobol’ indices to quantify, in a probabilistic manner, the relevance of the parameters
of their models. This tutorial describes a very robust framework to compute Sobol’
indices employing a polynomial chaos surrogate model constructed with the UQLab
package.
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6.1 Introduction

The progress that computer models have made over the past few decades in various
areas of biology is impressive, with an increasing demand for the use of these tools
in several scenarios that require quantitative predictions, such as infectious diseases
[1, 2], change in species dynamics due to climate change [3, 4], protein signaling in
cells [5, 6], etc. For instance, the recent pandemic of the Coronavirus SARS-CoV-
2, responsible for the disease COVID-19 [7, 8]. The rapid spread of the disease is
problematic because of the risk of death, and also for most of the health systems
are not prepared to receive so many sick people in hospitals [9]. This kind of emer-
gency scenario illustrates the importance of cooperation between researchers from
different areas to deal with these situations by creating some understanding about
the disease and propose strategies to slow down its reach, as fast as possible. The
use of mathematical models can be very useful in situations like this, as long as it
has the necessary ingredients to describe the basic aspects of the biological system
of interest, and it is well-calibrated with real data [10].

The utility of a model must precede a process of certification to guarantee its
match with reality [11]. During this process, it is useful to understand how certain
variations in a model input parameter can affect its outcome (response) [12]. This
knowledge allows one to detect which phenomena are more important in the real
system [13, 14]. For instance, in the Coronavirus example, the effect of the response
time to the outbreak by local governments and the various mitigation strategies has
been evaluated [9].

In this sense, the mathematical model parameters are the “fundamental blocks” of
the predictive tool and understand how each of these “pieces” affects the outcomes
related to the biological system of interest is a key point for proper use of this
quantitative arsenal. Global sensitivity analysis can be very useful to clarify this
understanding, once it can provide information about the dependence of the model
outcome with respect to each one of its input parameters [15]. Following that idea,
this chapter aims to present a tutorial that illustrates the process of global sensitivity
analysis in biological systems via Sobol’ indices [16].

In Sect. 6.2 we present the setting for the mathematical model representation.
Sobol’ indices method is described in the Sect. 6.3, where the sensitivity analysis
ideas and goals are also characterized. After that, Sect. 6.4 brings a brief overview of
surrogate models as a computationally efficient strategy to approximate the Sobol’
indices. With the theory detailed, Sect. 6.5 is responsible for presenting the Sobol
framework and developing three biological examples: the predator–prey model. an
NF-κB signaling pathway model and the SIR epidemiological model. All of them
reproducible by the reader applying the codes available in a public repository.
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6.2 Mathematical Modeling

Modeling is the process of creating a (simplified) representation of the real process
[17]. The objective is not being completely faithful to reality, but just being able
to present its main characteristics or facilitate the identification and understanding
of its mechanisms and processes [10]. To that goal, we can make several types of
models for a single reality. With a good model, you can analyze many things about
your problem to obtain more knowledge about it. Between the modeling objectives,
we can highlight the understanding of the mechanisms that govern the phenomena
of interest, prediction of the future or of some state that is currently unknown, and
control by constraining a system to produce a desirable condition [18]. Because of
this, mathematical modeling is often required to deal with biological processes.

The process ofmodeling involves some paradigms and steps but,more objectively,
any model is composed by three elements: (i) the input, that comes from the previous
useful information about the system state; (ii) the output, which is the information
about the real problem; and (iii) the model, which is the system representation that
maps input to the output [19].We canmake a parallel with amanufactured production
defining the raw material as the input, the processed product as the output, and the
machine responsible for transform one in another as the model. Intuitively, with a
more sophisticated machine, we can create a more elaborate object as well as with
a more detailed model we can obtain a better representation of the reality. However,
including further details is necessary for a more complex representation. Greater
complexity implies greater difficulty in analyzing all aspects of interest. Thereby,
the hypotheses must balance the most important elements of the phenomena and
a reasonable form of representing the relationship of these elements with what is
interesting to quantify or evaluate. The model itself is this relation [20]. For example,
the evolution of some animal species is related to the food resources available but also
with the topographic characteristics of the environment. Assuming the species has
lived in an environment for a long time, we can neglect then it and only take in count
the first one. Sure, the effect of this approximation must be tested to guarantee your
model is sufficiently compatible with reality. Additionally, the number of individuals
of the species will increases (or decreases) according to some units of time. The
change in a month is probably different than in a year. This time scale relation may
be relevant or not, depending on the process treated.

Technically we represent the important input components of a real system in the
model by parameters. In mathematical words, these parameters are quantities whose
values are dependent on specific aspects of the phenomena and that controls how
the model entails the desired predictions [10]. This prediction is called quantity (or
quantities if aremore than one) of interest (QoI). So,we can think of themathematical
model as a “machine” that uses the parameters as ingredients to obtain the QoIs.
Formally, the model is defined by a mathematical operator M, so that the QoIs are
given by

y = M(x), (6.1)
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Fig. 6.1 Schematic
representation of a general
computational model parameters
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where the vectorx ∈ R
m contains all themodel parameters and thenQoIs are reunited

in a vector y ∈ R
n . The structure of a general computational model is illustrated in

Fig. 6.1. If the model is time dependent, one can lump the QoI at the instants of
interest into a vector. To simplify the notation, the time dependence will be omitted
in the theoretical-based discussions.

6.3 Sensitivity Analysis

Sensitivity Analysis (SA) is a process in which the contribution of each input param-
eter of a mathematical model, to its response, is identified [21]. In particular, for
nonlinear systems, not only the parameters individually affect the QoIs, but also
the interactions between then. In this case, the joint-effect of parameter variation
must also be quantified. This feature makes difficult the process of SA for high-
dimensional systems because several orders of interactions must be computed, and
their influences are not trivial in general. Another important issue in the modeling
process is to take into account the underlying uncertainties. The lack of knowledge
about the real system and the natural variability of some parameters create some
difficulties in any attempt to understand a phenomenon, that can be compensated
by the use of a stochastic model [14, 19]. This is the domain of investigation of the
Uncertainty Quantification (UQ) theory.

UQ and SA areas gained greater notoriety in the last decades, where it was recog-
nized that is extremely important not only to deal with multiple sources of uncertain-
ties in a mathematical model but, in some contexts, also apply strategies to reduce
their effects, especially if their presence can be catastrophic for the system [22]. An
alternative approach is also possible, where one tries to take advantage of the uncer-
tainties to improve the performance of a given system.AlthoughUQandSA literature
are already considerable, it is common to find texts that confuse these two concepts
[13]. The first one deals with the quantitative evaluation of how the uncertainties
in the input variables are transported to the model response, which is done through
the calculation of the so-called uncertainty propagation process. On the other side,
the second concept is related to the quantitative evaluation of how uncertainty in the
input parameters contribute (individually or jointly) to change the model response.
In UQ it is mandatory to prescribe a characterization of the uncertainties so that after
the calculation of their propagation, one has a general overview of the uncertainty
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in the model’s response. In the SA perspective, the idea is to discover how a certain
parameter changes the system response when changed [23].

The SA methods can be distinguished in two large groups: The Local SA (LSA)
methods and the Global SA (GSA) methods [24]. From a general perspective, the
difference between them is how the parameter space is explored in each case. Local
methods are normally based in partial derivatives or gradients but are (totally) depen-
dent on the point of the parameter space for which themodel is evaluated. In this way,
the LSA results do not reflect the general dependency of model outcome concerning
the selected input parameter. Moreover, for nonlinear models, the interactions of the
parameters are very important for the response and local analysis can not capture
those effects. Differently, GSA methods explore screening or variance decompo-
sition to cover the local analysis limitations [23]. In this chapter the focus of our
interest in GSA, as a form to discover the most important parameters, that is, those
that contribute the most to the model response (factor prioritization) and those which
contribute very little and can potentially be fixed (factor fixing) [13].

6.3.1 Sobol’ Indices

There are several methods to perform SA present in scientific texts [13, 14]. But as
said in the previous section, here we have preference for global methods. For the
global sensitivity analysis framework to be robust and general, it makes sense to
select a method that is simple to implement and use. The Sobol’ indices [16] is a
variance-based method very popular in recent literature [12] after the dissemination
of surrogate model ideas, and very soon will be clear why.

In this framework, the system is analyzed from a probabilistic perspective that
considers the model input as a random vector X, characterized by a joint Probability
Density Function (PDF) fX with support IX. The stochastic version of the model is
represented as

Y = M(X), (6.2)

which has joint PDF fY that is unknown before the propagation of uncertainties [23].
Note that the notation with capital letters is chosen to describe random objects, and
the one with small letters still make sense for the deterministic case. Assuming for
simplicity that the QoI is a scalar value, with the random input parameters being
composed by independent and identically distributed (iid) uniform parameters Xi ,
scaled to have support [0, 1]m , the Hoeffding-Sobol decomposition is given by

Y = M0 +
n∑

i=1

Mi (Xi ) +
∑

1≤i< j≤n

Mi j (Xi , X j ) + · · · + M1...m(Xi , . . . , Xn), (6.3)

where
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M0 = E [Y ] ,

Mi (Xi ) = E [Y | Xi ] − M0 ,

Mi j (Xi , X j ) = E [Y | Xi , X j ] − M0 − Mi − M j ,

· · ·
(6.4)

that is,M0 is themean value, and the terms of increasing order are conditional expec-
tations defined in a recursive way, that characterize an unique orthogonal decompo-
sition of the model response [16, 21].

Following this idea, we can now decompose the total variance of the response as
follows

Var(Y ) =
∑

u

Var
(Mu(Xu)

)
, for ∅ �= u ⊂ {1, . . . , n} , (6.5)

where Var
(Mu(Xu)

)
expresses the conditional variance for the subvector Xu, con-

taining the variableswhich indices are indicated by the subsetu [21]. Thus, the Sobol’
index associated to the subset u is defined as the ratio between the contribution given
by the interaction among the components of u for the model variance, and the total
variance itself [14], i.e.,

Su = Var
(Mu(Xu)

)

Var (Y )
. (6.6)

As a result of this equation we can verify that, for u ⊂ {1, . . . , n}, u �= ∅,
∑

u

Su =
n∑

i=1

Si +
∑

1≤i< j≤n

Si j + · · · + S1...m = 1, (6.7)

that is, by construction the sum of all the Sobol’ indices must be equal to the unit.
The terms

Si = Var
(Mi (Xi )

)

Var(Y )
, i = 1, . . . , n (6.8)

are called the first-order Sobol’ indices for the single variable Xi and denote the
individual effect of Xi for the total model variate. Similarly,

Si j = Var
(Mi j (Xi j )

)

Var(Y )
, 1 ≤ i < j ≤ n (6.9)

are the second-order indices that contemplate the effect of the interaction between
the variables Xi and X j . Keep following we can construct the Sobol’ indices of all
orders until the mth order index, S1,...,m , which represents the contribution of the
interaction between all the variables in X [16].

Tomeasure the full contribution of the i th randomvariable Xi for the total variance
either by its single effect or by its interaction with others, we use the total Sobol’
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indices, which are defined by

STi =
∑

u⊂{1,...,n}
i∈u

Su i = 1, . . . , n. (6.10)

6.4 Surrogate Models

To compute Sobol’ indices, defined Sect. 6.3.1, it is necessary to calculate the under-
lying variances. Despite this task can be done withMonte Carlo (MC) simulation, the
associated computational cost can be high (infeasible for high-dimensional systems)
and subjected to numerical instabilities like cancelation errors. A very appealing
alternative, which allows circumventing these two problems, is the use of surrogate
models based on polynomial chaos expansions [15].

6.4.1 Polynomial Chaos Expansion

The Polynomial Chaos Expansion (PCE) of the computational model response is a
sum of orthogonal polynomials weighted by coefficients to be determined [22, 23,
25, 26], which reads as

Y = M(X) =
∞∑

α=0

yα�α(X) , (6.11)

where �α(X) are multivariate orthonormal polynomials, associated with the density
fX, and yα are the deterministic coefficients to be determined in order to construct
the expansion [22]. For computational implementation purposes, a truncated PCE is
considered

Y ≈ MPC(X) =
P∑

α=0

yα�α(X) , (6.12)

where P is the number of terms in the expansion, which depends on the number
of input random variables m and the maximum degree allowed for the polyno-
mial expansion p, according to the formula P + 1 = (m + p)!/(m!p!). Note the
quality of your PCE is directly dependent on the number of terms you have in the
expansion [27].

The family of orthonormal polynomials to be used is chosen according to the
model input distribution, in a sense that seeks to minimize the number of terms
needed in the expansion to build a good computational representation of the model.
Table6.1 summarizes a list of the most classical polynomial families and underlying
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Table 6.1 Correspondence between the random variable distribution and the optimal family of
orthonormal polynomials [22]

Type of variable Distribution Support Orthogonal
polynomials

Uniform 1]−1,1[(x)/2 [a, b] Legendre

Gaussian 1√
2π

e−x2/2 (−∞,∞) Hermite

Gamma xae−x1R+ (x) [0,∞) Laguerre

Beta 1]−1,1[(x) (1−x)a (1+x)b

B(a)B(b) [a, b] Jacobi

distributions. For further details about the construction of the polynomial basis see
[22, 23, 27].

6.4.2 Calculation of the Coefficients

Several strategies can be adopted to calculate the PCE coefficients. In this section,
we describe the basics of the calculation procedure based on a regression, employing
the Ordinary Least-Squares (OLS) method because of its simplicity and generality
[24]. The reader is encouraged to see further details about other methods for PCE
coefficients calculation in [22, 27].

From the moment that we use the truncated PCE from Eq. (6.11) for computer
simulations, there is an error that distances it from the “complete” PCE given by
Eq. (6.12), which can be rewritten as follows:

Y = M(X) =
P∑

α=0

yα�α(X) + εP = yT�(X) + εP , (6.13)

where εP is the truncation error, y = (
y0, . . . , yP

)T
is the vector of coefficients

and �(x) = {�0(x), . . . , �P(x)} is the matrix that assembles the values of all the
orthonormal polynomials in X [27]. Therefore, coefficients of the truncated PCE
are calculated in a way to reduce the truncation error [23]. For that we obtain via
MC method a “small” set of Ns samples of each random variable Xi , called the
experimental design

χ =
{
x(1), x(2), . . . , x(Ns )

}
(6.14)

and compute the model response for that samples
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y(1) = M(x(1)) , (6.15)

y(2) = M(x(1)) , (6.16)

... (6.17)

y(Ns ) = M(x(Ns )) . (6.18)

The key problem is calculate the PCE coefficients that force the PCE to better
fit the responses obtained from the computational model. This is the classic least-
squares regression problem

yT�(x) ≈ M(x), (6.19)

for which the general solution may be expressed as

y∗ = argmin
y

E

[(
yT�(x) − M(x)

)2
]

, (6.20)

where x values comes form the experimental design. Note that MC sampling can be
costly, so the idea is to choose Ns small enough to ensure accuracywithout increasing
computational cost.

6.4.3 Surrogate Error Estimation

The construction of a good surrogate requires a rigorous process of validation of the
response surface obtained. Use a good error metric is essential to characterize a good
approximation [15].

Considering the previous section, where PCE coefficients are computed via OLS
method, it is natural to evaluate the approximation error by the coefficient of determi-
nation [10]. In this case, we can calculate this quantity from the experimental design
used in the regression as follows

R2 = 1 −
1
Ns

∑Ns
i=1

(M(x(i)) − MPC(x(i))
)2

V̂ (Y )
, (6.21)

where V̂ (Y ) is the empirical variance of the model evaluations, given by

V̂ (Y ) = 1

Ns − 1

Ns∑

i=1

(
M(x(i)) − ȳ

)2
, (6.22)

with

ȳ = 1

Ns

Ns∑

i=1

M(x(i)) , (6.23)



102 M. Tosin et al.

and x(i) is the i th evaluation of the random input X. Another option to measure
the error is to apply the normalized empirical error [26]. Nevertheless, this measure
can be problematic in cases of over-fitting. Thus, if you are not sure about the size
of your experimental design, it is recommended to work with the Leave-One-Out
(LOO) cross-validation error [27, 28], calculated by

εLOO =

Ns∑

i=1

(
M(x(i)) − MPC\i (x(i))

)2

Ns∑

i=1

(
M(x(i)) − ȳ

)2
, (6.24)

where MPC\i notation indicates the i th metamodel built using the reduced experi-
mental design χ\x(i) = {x( j), j = 1, . . . , Ns, j �= i}.

6.4.4 PCE-Based Sobol’ Indices

Note that due the orthonormality of the surrogate PCE metamodel the model vari-
ances (partials and total) can be calculated only using the expansion coefficients. The
sum of the squared of all the PCE coefficients provides the variance of the model’s
response and subtracting those coefficients associated with certain indices, the con-
ditioned variances can be obtained [21, 29]. Therefore, an estimator for the Sobol’
index associated with the subset u is given by

Su =

∑

α∈u
y2α

P∑

α=1

y2α

, (6.25)

where u is a suitable subset of indices.
We observe that once the surrogate is already calculated, these indices can be

obtained with negligible computational cost, since in general, a single evaluation of
the model is much more expensive than the sums involved in Eq. (6.25) fraction.
In addition to the computational cost issue, the use of a surrogate PCE to calculate
Sobol’ indices also eliminates the possibility of numerical cancelation errors in the
variance calculation, since only sums of positive quantities are involved in the above
algorithm [15].
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Fig. 6.2 Schematic representation of the process of obtaining theSobol’ indices byusing a surrogate
model

6.5 A Practical Tutorial

6.5.1 Tutorial Description

Finished the presentation of the theoretical background, we nowmove to the practice,
after all, this is a tutorial goal. The computational methodology to compute Sobol’
indices is composed of three steps: (i) Characterization of the random input; (ii)
Construction of the PCE; and (iii) Calculation of the Sobol’ indices. The framework
of this process is illustrated in Fig. 6.2.

Here UQLab [30] library is explored to facilitate the implementation of a code
to compute the Sobol’ indices. We encourage the reader to look for more details in
the UQLab manual [30]. To describe the random input, it is necessary to define the
distribution for each random parameter as well as the respective hyperparameters and
support. In the second step, you have to define a computationalmodel to simulate your
computational experiment, themaximum degree of your polynomials expansion, and
the number of samples that will be used to generate the design set for the regression.
The PCE coefficients are calculated for each time of observation defined, and you
have everything you need to obtain the Sobol’ indices upto the desired order. Note
that you cannot select the maximum order for the Sobol’ indices higher than the
dimension of the random input vector. Further details about this construction can be
seen in UQLab manual for Global Sensitivity Analysis [29].

6.5.2 SoBioS: Sobol’ Indices for Biological Systems

To facilitate the manipulation of the UQLab packages, the authors developed a com-
putational library called SoBioS—Sobol’ indices for Biological Systems—focused
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on the simulation of the Sobol’ indices for biological systems with the UQLab tool.
This computational library is available in the following repository:

https://americocunhajr.github.io/SoBioS

The auxiliary routines used to create the following example results can be also
found there, but, in resume, you need two basic routines: The main file to define the
input details, to call the computational model, to perform the sensitivity analysis and
plot results, and a QoI file, to define your quantity of interest.

6.5.3 Example 1: Predator–Prey Dynamics

The first example is the classical Lotka–Volterra model. Better known as predator–
prey model, this is a dynamical system used to reproduce a simple predator–prey
relationship [18]. It is assumed that preys are capable of reproducing spontaneously
and the predators are only able to feed from the previous prey. The standard model
considers preys and predators’ reproduction, the natural death of the predator (inde-
pendent of the prey), and death of preys by hunting. So, the relation between the two
species is beneficial for the predator and harmful for the prey.

By assuming a simple representation of these mechanisms, we can construct the
following pair of equations:

dV

dt
= aV − bV P , (6.26)

dP

dt
= dV P − cP , (6.27)

where V and P represent the populations of prey and predator, respectively, and the
time is measured in years. In the first equation, we have the subtraction between the
birth termand thehunt term.Before the hunt is assumed that the predator increases in a
proportion of the energetic efficiency d times the number of preys and decreases with
a constant ratio. The model parameters as well as the other simulation parameters
are described in Table6.2. The model parameters’ intervals and initial conditions
were extracted from the UQLab Bayesian Calibration manual [31] and the other
simulation values were chosen by the authors. Numerical integration was performed
using the Dormand–Prince adaptive Runge–Kutta method, implemented in ode45,
and the response will be restricted to three times instants to simplify the visualization
of the results. Our interest can be for the prey or predator population depending on
the situation.

In this first example, we compare the results of sensitivity analysis by MC and
Surrogate approaches. Before that, it is necessary to analyze how much samples to
use for each one of those methods. Two different strategies are considered in order to
evaluate the reliability of the computed Sobol’ indices. For the MC method, the idea
is to execute hierarchical simulations increasing the number of samples, using only

https://americocunhajr.github.io/SoBioS
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Table 6.2 Parameters description and values used to simulate the Sobol’ indices for the predator–
prey model

Name Description Value

a Birth rate for preys [0.44,0.68] year−1

b Search rate [0.02,0.044] year−1

c Death rate for predators [0.71,1.15] year−1

d Energetic efficiency [0.0226,0.0354] year−1

V0 Initial quantity of preys 33 individuals

P0 Initial quantity of predators 6.2 individuals

tspan Time span [0,10] years
tQoI Time instants of interest {1, 6, 10} years
QoI V or P V (t) or P(t) individuals

Fig. 6.3 Comparison between MC-Sobol’ Total Order results using 25000 (left), 50000 (middle)
and 75000 (right) samples with 95% confidential intervals (red) calculated with Bootstrap method
considering both predators (yellow) and prey (blue) populations in the 10th year

one value of each QoI, and calculating 95% Confidence Intervals (CI) by Bootstrap
method [23]. ForPCE-Sobol the approach is to plot the validationgraphs and compare
the surrogate response with the full model one, to estimate also the ideal maximum
polynomial degree. Some results for each strategy can be observed in Figs. 6.3, 6.4,
6.5, respectively. We can see the convergence as we increase the number of samples
in MC because the CI amplitude decreases. On the validation plots of Figs. 6.4 and
6.5 we can observe the good match between the surrogate results and the response
for the original computational model in addition to the low order for the εLOO cross-
validation error. This comparison is done using 10000 samples. By these results, we
define a size of 75000 samples for MC simulations and 1000 for PCE simulations.
Additionally, the idealmaximumdegree for the surrogate approximationwas adopted
as 6.

Finally, Figs. 6.6 and 6.7 present the comparison of the MC and PCE results for
sensitivity analysis. In these graphs, we can observe that the results are pretty close.
However, the total order results forMCare slightly smaller. This is due to the negative
second-order indices obtained since it suffers from a cancelation error, something
to which the calculation via PCE is immune once it does not involve subtractions.
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Fig. 6.6 Comparison between MC-Sobol’ results (left) and PCE-Sobol results (right) for the prey
population of the Lotka–Volterra model. The simulation was perform with 75000 samples for the
MC and 1000 for the PCE

This fact has been omitted from the associated figures to avoid any confusion about
negative Sobol’ indices, which do not make sense.

Note that for this simple scenario the cancelation error is not that problematic but
wondering a situation of high order indices, the error propagation can affect your
results’ conclusions. The second advantage is, of course, in the time of simulation.
Even for this simple analysis, the difference is notable. Using an Intel Core i5-8250U
1.6Ghz× 8 (8GB of RAM), theMCmethod needed 2min, while the PCE performed
in 45s, even with the second one plotting more results due to the validation graphs.

Besides all that discussion about methods, the Sobol’ results reveal that, for this
parametric intervals and initial conditions, the parameter d is more important in the
first year, b in the sixth and a in the final one when analyzing the predator population.
For prey the results are completely different. The parameter a control the most part
of the variance in the first week but the c parameters assume the control after that.

The great difference of scenarios for each population can sound weird as well as
the change of the most important parameter during the passage of time. The truth is
that is not only possible but common. This detail for systems with time dependency
is essential for control measures. It will be necessary some adaptive strategy to affect
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Fig. 6.7 Comparison between MC-Sobol’ results (left) and PCE-Sobol results (right) for the prey
population of the Lotka–Volterra model. The simulation was perform with 75000 samples for the
MC and 1000 for the PCE

different parameters of phenomena at each step of implementing the measure. Also,
note that in this case the second-order interactions were not so much important for
the total order indices in case of prey but increase significantly the total indices for
predators.

6.5.4 Example 2: NF-κB Signaling Pathway

NF-κB is a family of Transcription Factors (TF) that takes part in the regulation
of several mammalian cellular processes, to mention some: cell division, apoptosis,
inflammation, immune response, and cancer disease [32]. The family consists of
five subunits (p50, p52, p65, c-Rel, and RelB), which associate to form functional
dimers. The NF-κB complex when bound to the IκB inhibitor protein is inactive
in the cytoplasm, being released after the phosphorylation of the IκB protein by
the IκB kinase (IKK) complex. This dissociation of the NF-κB:IκB complex also
promotes the IκB ubiquitination and than its degradation. At this moment, NF-κB
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is free to be translocated into the nucleus, where it activates gene transcription by
binding to specific DNA κB sites. Among the activated ones are the genes for IκB,
that is, IκB mRNA are transcripted and translated into new IκB proteins. Part of it
binds to the NF-κB in the cytoplasm, and part enters the nucleus where it binds to
nuclear NF-κB forming aNF-κB:IκB that is exported to the cytoplasm. In both cases,
the complex is again the target of the IκB kinase (IKK), characterizing a negative
feedback mechanism.

A mathematical model for the NF-κB pathway was introduced in 2002 by Hoff-
manet al. [5]. Theirmodel consists of 26molecular species (variables) and64 reaction
coefficients (parameters). Besides setting up the system of differential equations for
such a complex biological system, they studied the influence of the negative feed-
back on the sustained and on the damped oscillation of the NF-κB concentration
over time. An interesting follow up of their group’s work was presented in [6]. It is
clear from the references list how their mathematical model was influential and how
the NF-κB pathway model is a well succeed system biology example of the interplay
between mathematical modeling and experimental analyses.

Taking the bi-compartmental model of [5] as departure point, removing species
that have no feedback from NF-κB and removing slow reactions at the expense of
faster ones, Krishna et al. [33] were able to extract the core feedback loop of the
model, coming up with a reduced model constituted of 7 species (variables) and 12
reaction coefficients (parameters). The variables of the reduced model are: Nn and
N , the free nuclear and free cytoplasmic NF-κB concentration, respectively; In and
I , the free nuclear and free cytoplasmic IκB concentration, respectively; Im , the IκB
mRNA concentration; {N I }n and {N I }, the nuclear and cytoplasmic NF-κB:IκB
complex concentration, respectively; and I K K , the IκB kinase concentration. The
dynamics of the seven species are depicted in Fig. 6.8, resulting in the system of
equations

dNn

dt
= kNinN − k fn Nn In + kbn {N I }n ,

dN

dt
= −kNinN − k f N I + (kb + α){N I } ,

dIn
dt

= kIin I − kIout In − k fn Nn In + kbn {N I }n ,

dI

dt
= −kIin I + kIout In − k f N I + kb{N I } + ktl Im ,

d{N I }
dt

= kN Iout {N I }n + k f N I − (kb + α){N I } ,

d{N I }n
dt

= −kN Iout {N I }n + k fn Nn In − kbn {N I }n ,

dIm
dt

= kt N
2
n − km Im .

(6.28)
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Table 6.3 Parameters descriptions and nominal values of the seven species NF-κB model [33]

Parameter Values (Units) Description

kNin 5.4 min−1 NF-κB nuclear import rate

kIin 0.018 min−1 IκB nuclear import rate

kIout 0.012 min−1 IκB cytoplasm export rate

kN Iout 0.83 min−1 NF-κB:IκB cytoplasm export
rate

k f 30 µM · min−1 NF-κB:IκB cytoplasm
association rate

k fn 30 µM−1 · min−1 NF-κB:IκB nuclear
association rate

kb 0.03 min−1 NF-κB:IκB cytoplasm
dissociation rate

kbn 0.03 min−1 NF-κB:IκB nuclear
dissociation rate

ktl 0.24 min−1 IκB mRNA translation rate

kt 1.03 µM−1 · min−1 IκB mRNA transcription rate

km 0.017 min−1 mRNA degradation rate

α 1.05 × I K K min−1 IκB degradation rate (by
phosphorylation)

The description and the nominal values of the parameters are shown in Table6.3,
according to [33]. In the model, the NF-κB pathway is activated by an extracellular
stimuli, considered by a IκB kinase (IKK) input, incorporated in the parameter α

(top of Fig. 6.8).
Before proceeding we actually note that for IκB concentration is meant IκBα

concentration, since as elucidated in [5] is the IκBα isoform of the IκB protein
that enters in the negative feedback loop of the NF-κB pathway and generates
a sustained oscillation on the NF-κB concentration. The solution of the system
for the nominal values in Table6.3 is shown in Fig. 6.9, with initial conditions
(Nn, N , In, I, {N I }, {N I }n, Im)0 = (0, 1, 0, 0, 0, 0, 0) and I K K = 0.7, and it was
obtained by numerically integrating the system (6.28)with theODE solver,ode15s,
for stiff equations, where it is observed the spiky oscillation of the NF-κB concen-
tration in time. With further considerations on the NF-κB:IκB complex association
and dissociation reactions, they reduced the model even more, coming up with an
over reduced model constituted of 3 species: Nn, I, Im (the bold boxes in Fig. 6.8),
and 5 parameters (here they are not straight reaction coefficients as before, but com-
binations of those).

As pointed out in [33], the spiky type oscillations are robust with respect to the
I K K input variation and that the down-regulated genes by NF-κB have different
times of response, related to this oscillation, that is why the QoI for our sensitivity
analysiswas the peak duration, thatwas defined in [33] as the time theNF-κBconcen-
tration spends above its mean. For the solution in Fig. 6.9, the mean is represented by
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Fig. 6.8 Diagram representing the dynamics of the seven species NF-κB model [33]. The parame-
ters are described in Table6.3. The bold boxes are the species present on the reduced three species
model

a constant dashed (red) line in the last (bottom) subplot. To build the PCE surrogate
model 400 experimental design samples were taken with a maximum polynomial
degree of 12. The probabilistic input model consisted of independent uniform ran-
domvariables for each of the parameters, with lower and upper bounds given by 1.5%
of dispersion around the mean, taken as the nominal values considered at Table6.3.
The quality of the surrogate approximation is appreciated in Fig. 6.10, showing to
be reasonable to the purpose. According to the total indices, displayed in Fig. 6.11,
the most five influential parameters, in decreasing order, are kt , ktl , kIin , km, kNin . It
is interesting to note that these parameters are the ones that enter the over reduced
model composed of three species; this is because these parameters appear in the equa-
tions of (6.28) related to the species Nn, I, Im . The transcription and the translation
parameters of the IκBmRNA are very influential as can be noted from the first-order
indices, Fig. 6.12 and its degradation rate km does not have such a first order influence,
but km appears with significant coupling with five other species in the second-order
level, Fig. 6.13. Actually, the three highest second-order indices, namely, kNin − km ,
kt − km and kIin − km are coupled with it. Another parameter that has no first-order
influence, but appears coupled with five other species in the second-order level, is
the parameter kNin . That is why both km and kNin express themselves in the total order
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Fig. 6.9 Numerically integrated solution for the system (6.28), where it can be observed the spiky
oscillation of the NF-κB concentration in time. The constant dashed (red) line is Nn = const. =
mean(Nn)
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Fig. 6.10 Comparison PCE surrogate response and original computational model response for the
peak duration QoI

indices but not in the first-order ones. Finally, we need to mention that in Fig. 6.13,
we are showing only the second-order indices above the threshold value 10−4.
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Fig. 6.11 Total order Sobol’
indices for the peak duration
QoI

Fig. 6.12 First-order Sobol’
indices for the peak duration
QoI

Fig. 6.13 Second-order
Sobol’ indices for the peak
duration QoI

6.5.5 Example 3: The SIR Model

The famous SIR model is a classical tool to study epidemics [1]. Recently sev-
eral research groups are using variations of the SIR model in the new coronavirus
pandemic research [9]. Of course this model, as will show below, is not ideal to repro-
duces the Corona phenomena correctly, however, can be useful to test hypotheses
and analyze scenarios. The model is based on separating the host population from a
disease in three compartments: The Susceptible, S, is the population of individuals
able to become infected by the disease upon contact with the pathogen; Infected, I ,
indicates those who carry the pathogen and has the ability to infect the susceptible;
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S
Infection

I
Remotion

R

Fig. 6.14 Schematic representation of the SIR compartmental model’s mechanisms

Table 6.4 Parameters description and values used to simulate the Sobol’ indices for the SIR model

Name Description Value

b Transmission rate 0.37 days−1individuals−1

a Removal rate 0.15 days−1

N Total population 1000 individuals

R0 Initial number of removed 0 individuals

I0 Initial number of infected 200 individuals

S0 Initial number of susceptible (N − I0) individuals

tspan Time span [0,42] days
tQoI Time instants of interest {7, 14, . . . , 42} days
QoI I I (t) individuals

The Removed, R, reunites the individuals who recovered from the disease (gaining
immunity) or died from it [1]. The evolution between the compartments is represented
in Fig. 6.14 and mathematically formulated by the following set of equations:

dS

dt
= −bSI

N
, (6.29)

dI

dt
= bSI

N
− aI , (6.30)

dR

dt
= aI , (6.31)

where bSI/N is the infections rate term and aI indicates the removal rate. The
QoI in this model is the infected population I (t). The description and the values
of the simulation parameters are gathered in Table6.4. As in the previous example,
we have reference for the mean values of the random variables, and the dispersion
factor around the nominal values will be of 0.4 for each one. The parameter a can
be interpreted as the inverse of the infectious period. Thereby, we took the mean
value of 6.5 days estimated by the researchers of the Imperial College group (in their
9th Report) [9]. Besides that, in the same report it is estimated the basic number of
reproduction R0 = b/a for several countries. Using this equation of R0 for the SIR
model [34] and a = 1, we estimate a mean for the transmission rate.
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Fig. 6.15 Sobol’ indices for the infected population of the SIR model in the weeks of interest
simulated using 1000 samples

Different from the previous examples, now we will consider also an initial con-
dition as a random variable, to account for the uncertainty in the initial number of
infected individuals, that is not well known. If we assume that the host population is
constant, the initial number of susceptible is also a random variable, depending on
the initial number of infected. Finally, although our system is measured in days, we
will display results in weeks to facilitate visualization.

In Figs. 6.15 and 6.16, the reader can find the Sobol’ indices results and validation
plots, respectively. The maximum degree for the PCE was 10 and the experimental
designwas composed of 1000 samples. It can be noted a very goodmatch between the
computational response and the surrogate.Todifferentiate the previous twoexamples,
here we calculate the third-order Sobol’ index. In this scenario, this index does not
show so much information but reveals that the influence of this third-order term
maybe increases over time. The same seems to occur with the b importance while
the opposite can be observed for I0. So,maybe ifwe analyze a previous timewindows,
the initial number of infected individuals can be more influenced for the sensitivity
of the response. Similarly, for a posterior time window we could have a I0 not
important. Of course, new studies are needed to support these hypotheses but are quite
interesting to imagine these possibilities. Curiously, the removal rate had practically
zero importance. This is not intuitive because we expected some kind of influence
over time. But, it is important to be clear that this not mean that the a parameter
not change that response if it changes. This result showed that if the two parameters
and the initial number of infected individuals changes, b and I0 will domain how the
response will change.



116 M. Tosin et al.

 437.3  624.9  812.4  1000.0
computational model

 437.3

 624.9

 812.4

 1000.0

 256.1  503.9  751.8  999.7
computational model

 256.1

 503.9

 751.8

 999.7

 132.3  413.6  694.9  976.2
computational model

 132.3

 413.6

 694.9

 976.2
su

rro
ga

te
 m

od
el

 899.4  933.0  966.5  1000.0
computational model

 899.4

 933.0

 966.5

 1000.0

 798.4  865.6  932.8  1000.0
computational model

 798.4

 865.6

 932.8

 1000.0

 637.0  758.0  879.0  1000.0
computational model

 637.0

 758.0

 879.0

 1000.0

su
rro

ga
te

 m
od

el

εLOO ≈ 10−4εLOO ≈ 10−4εLOO ≈ 10−5

 0.000

 0.200

 0.400

 0.600

 0.800

 0.0  2.5  5.0  7.5  10.0
 0.000

 0.250

 0.500

 0.750

 1.000

 0.0  2.5  5.0  7.5  10.0
 0.000

 0.050

 0.100

 0.150

 0.200

er
ro

r

 0.0  2.5  5.0  7.5  10.0
simulations 10 3 simulations 10 3 simulations 10 3

simulations 10 3 simulations 10 3 simulations 10 3

 0.000

 0.100

 0.200

 0.300

 0.400

 0.0  2.5  5.0  7.5  10.0
 0.000

 0.075

 0.150

 0.225

 0.300

 0.0  2.5  5.0  7.5  10.0
 0.000

 0.250

 0.500

 0.750

 1.000

er
ro

r

 0.0  2.5  5.0  7.5  10.0

Week 1 Week 2 Week 3

Week 4 Week 5 Week 6

εLOO ≈ 10−6εLOO ≈ 10−6εLOO ≈ 10−7

Fig. 6.16 Comparison PCE surrogate response and original computational model response for
infected population in weeks of interest (red curves), and associated leave-one-out error (legends)
using 1000 samples as experimental design and 10000 as validation set

6.6 Final Remarks

This chapter presented the use of Sobol’ indices for global sensitivity analysis in bio-
logical systems. This type of formalism allows us to statistically measure how each
of the system’s parameters contributes to its response. This tool can be very useful
to identify which factors have a greater contribution in a certain quantity of interest
associated with the biological system, which can be interesting, for instance, in the
calibration process of a computational model concerning a certain set of observa-
tions (data). This analysis tool is presented in the form of a tutorial, with a simplistic
summary of the theory, without much mathematical formalism in favor of a better
understanding of the fundamental ideas, and application in three biological systems



6 A Tutorial on Sobol’ Global Sensitivity Analysis Applied to Biological Models 117

with different levels of complexity. A code in MATLAB was developed and is avail-
able in a public repository to facilitate the use of this tool in the most diverse types
of biological systems.
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