
Chapter 2
Computational Tools for Comparing
Gene Coexpression Networks

Vinícius Carvalho Jardim, Camila Castro Moreno, and André Fujita

Abstract The comparison of biological networks is a crucial step to better under-
standing the underlying mechanisms involved in specific experimental conditions,
such as those of health and disease or high and low concentrations of an environ-
mental element. To this end, several tools have been developed to compare whether
network structures are “equal” (in some sense) across conditions. Some examples
of computational methods include DCGL, EBcoexpress, DiffCorr, CoDiNA, Diff-
CoEx, coXpress, DINGO, DECODE, dCoxS, GSCA, GSNCA, CoGA, GANOVA,
and BioNetStat. We will briefly describe these algorithms and their advantages and
disadvantages.

Keywords Network science · Differential network analysis · Coexpression
network · Systems biology · Network theory

2.1 Introduction

To understand complex systems, we need to consider the interactions between their
elements. A graph is a useful tool for studying these systems due to the plasticity of
networkmodels for interpreting biological problems. In a biological context, network
vertices can represent system elements such as proteins, metabolites, genes, among
other examples. In coexpression networks, vertices represent genes, while edges
represent coexpression between gene pairs.
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We define coexpression as the statistical dependence (correlation) between the
expression values of two genes. Correlation measures how coordinated the variation
of expression values of two genes are in same condition samples (obtained from
microarray or RNA-seq analysis). In this chapter, we use the terms Conditions or
experimental conditions as synonyms of experimental treatments, such as of high,
mean, and low temperatures or clinical status, such as healthy versus cancer tis-
sues. Usually, correlation allows us to infer whether two genes belong to the same
metabolic pathway or biological process. However, it does not imply that one vari-
able influences another. Therefore, the edges that represent the correlations have no
direction, constructing undirected networks.

Changes in correlations (edges) between conditions are of interest to many stud-
ies. In some cases, the aim is to verify whether the environment or genome variations
affect the relationship between genes. Considering that each network represents an
experimental condition, to achieve this goal, we need effective means to compare
these networks. The scientific community has developed several strategies to accom-
plish this task, with approaches ranging from verifying the edge’s existence in dif-
fering conditions to network model comparisons.

Themost used correlationmeasure in coexpression network studies is the Pearson
correlation. However, the non-parametric Spearman correlation is also frequently
used since it does not demand the assumption of normality and is not limited to
only detecting linear correlations. Other strategies use mutual entropy and Bayesian
inference to define coexpression between genes [1].

Beyond the choice of correlation methods, it is also vital to select the threshold
for a given correlation to become an edge. In this sense, we commonly use two main
kinds of techniques. The most used is the hard threshold. It works as a cut-off value
to remove correlations that are below a defined value (correlation threshold) or with
a predetermined level of significance (p-value threshold). Another strategy is the soft
threshold proposed in WCGA paper [2]. The soft threshold ponders (or rescales) the
correlation values according to a power value β. This threshold technique works by
powering the correlation to a β value: the higher values increase and the lower ones
decrease, therefore highlighting the most relevant correlations. At the soft threshold,
the network remains complete without edge removal. Once parameters for construct-
ing networks are defined, those such as coexpression criteria and threshold technique,
we can compare the resulting networks in many ways.

2.2 Network Comparison Methods

Many studies apply network analysis to compare different experimental conditions.
One way is to quantify and compare the structural features of networks such as
presence or absence of edges or the number of connections of a vertex [3, 4]. Other
strategies look for edges that are exclusive of a condition [5] or identify a differential
network resulting from the combination of differential expression analysis (DE) and
differential coexpression (DC) [6]. Despite these methods being useful, they do not
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take into account the intrinsic fluctuations of data to compare the networks, leading
to erroneous conclusions about differences between experimental conditions.

Some statistical techniques give reliability to significant differences in network
comparison [7]. For instance, data permutation and resampling techniques allow the
association of a p-value (probability of significance) to each pair of genes [7] or to
compare entire networks [8]. Many tools approach the need to compare networks
between different conditions. Here, we present and discuss some of these differential
network analysis tools. All the tools presented in this chapter are summarized in
Fig. 2.1.

2.2.1 Edge Comparison

Some tools test whether edges (or a group of them) are statistically different between
two or more conditions. They usually return, as a result, a list of differentially
coexpressed edges. Sometimes, these methods also return a list of enriched vertices
belonging to these edges.

Fig. 2.1 Decision tree of differential coexpression analysis tools. Each tool answers a specific
question about the data set. Then, the user has to follow the questions to choose the ideal method.
The methods that have a Graphical User Interface (GUI) to perform the analyses are outlined with
a dark blue square. The red color indicates that the method compares more than two networks.
The blue background color indicates the edge comparison tools; the yellow background indicates
the untargeted vertex comparison tools and the green background indicates the targeted vertex
comparison tools
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2.2.1.1 Diffcorr

To compare two biological conditions, Fukushima (2013) checks whether each edge
occurs under both conditions [9].Diffcorr applies a direct and straightforward strat-
egy to define differentially coexpressed edges based on correlations transformed by
the Fisher Z-scores method [10]. An advantage of Diffcorr is that it is possible to
test each correlation, allowing the user to examine in detail the changes between
conditions. One disadvantage is the high number of tests performed, incurring the
problem of multiple tests. This method is implemented in the R language and is
available in the SourceForge platform (https://sourceforge.net/projects/diffcorr/).

2.2.1.2 DCGL

Liu et al. [11] proposed a method to verify which edges are distinct between two con-
ditions after checking the vertices associated with them.DCGL performs the Differ-
ential Coexpression Enrichment (DCe) analysis, which applies the limit fold change
(LFC) model over each pair of edges in both conditions. This method returns a list
of differential coexpression links (DCLs). Moreover, based on DCLs and a binomial
model, DCGL selects a set of differentially coexpressed genes (DCGs). According to
Yu et al. [12], DCGL considers two important issues to compare networks: the gene
neighbor information and the quantitative coexpression change information. How-
ever, the comparisons are limited to two networks only. We present DCGL methods
based on vertices in Sect. 2.2.2.2. This tool is implemented in R code and is available
in cran DCGL (https://cran.r-project.org/package=DCGL).

2.2.1.3 Ebcoexpress

Based on Bayesian statistics, Ebcoexpress [13] infers whether edges are signifi-
cantly changed. This tool uses empirical Bayesian inference and a nested expectation-
maximization (NEM) algorithm to estimate the posterior probability of differential
correlation between gene pairs. The advantage of EBcoexpress is that it compares
more than two conditions and to provide a false discovery rate (FDR) controlled list of
significant DC gene pairs minimizing the loss of power. Regarding the algorithm’s
run-time, there is a restriction on the number of genes that can be analyzed. The
authors recommend 10,000 genes as a limit. Besides, it must be verified if genes have
high correlations among themand remove these highly correlated genes pairs to avoid
false-positive detections. EBcoexpress is implemented in R code and is available in
the Bioconductor repository (https://bioconductor.org/packages/EBcoexpress/).

https://sourceforge.net/projects/diffcorr/
https://cran.r-project.org/package=DCGL
https://bioconductor.org/packages/EBcoexpress/
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2.2.1.4 Discordant

Similar to Ebcoexpress (Sect. 2.2.1.3), the Discordant tool [14] also uses empiri-
cal Bayesian inference and the expectation-maximization technique to estimate the
posterior probability and identify differential coexpression of gene pairs. Accord-
ing to Siska et al. [14], Discordant fits a mixture distribution model based on
Z-scores of correlations. This technique allows Discordant to detect more types
of differential coexpression scenarios than EBcoexpress. It also outperforms the
Ebcoexpress method in computational time and accuracy [15]. To reduce the com-
putational time, it assumes that the expression levels of gene pairs are independent
and bivariate distributed. However, this assumption is not biologically probable.
Discordant is implemented in R and is available in the Bioconductor repository
(http://bioconductor.org/packages/discordant/).

2.2.1.5 DGCA

DGCA [16] identifies sets of genes as differentially correlated. It classifies differen-
tial correlation into nine possible scenarios. As does Diffcorr, DGCA also applies the
transformed correlations by the Fisher Z-scores method [10]. However, DGCA dif-
fers from the existing differential correlation approaches since it calculates the FDR
of differential correlation using nonparametric sample permutation and calculates
the average difference in correlation between one gene and a gene set across two
conditions. The permutation tests also minimize parametric assumptions. One dis-
advantage of the DGCA methodology is that it can compare only two experimental
conditions at a time. DGCA is implemented in R code and is available in the CRAN
repository (https://cran.r-project.org/package=DGCA).

2.2.1.6 DINGO

The last edge comparison tool detects differentially coexpressed edges by the use of
a Gaussian Graphical Model (GGM). DINGO [17] calculates a global component
(graph), composed of common edges between two conditions. Based on this global
component, the algorithmdetermines specific local components for each condition. It
attributes a score to each edge, determining how altered they are between conditions.
Then, DINGO selects the edges that have significantly altered scores. Finally, the
tool returns a single network that has significantly altered edges between the studied
conditions. DINGO estimates conditional dependencies for each group. The newer
version ofDINGO, iDINGO, is anR package and is available in theCRAN repository
(https://cran.r-project.org/web/packages/iDINGO/).

http://bioconductor.org/packages/discordant/
https://cran.r-project.org/package=DGCA
https://cran.r-project.org/web/packages/iDINGO/
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2.2.2 Untargeted Vertex Comparison

Instead of comparing edges among conditions, other tools look for subsets of genes
that are differentially coexpressed between different conditions. It is possible to
classify vertex comparison methods into two subgroups according to the applied
strategy: untargeted and targeted (adapted from [18]). Untargeted approaches search
for non-predefined gene sets. This strategy is based on grouping genes into modules
according to their coexpression status under the compared conditions. We present
targeted approaches in Sect. 2.2.3.

2.2.2.1 coXpress

The first untargeted method presented here is coXpress [19]. This methodology
detects a gene set that is highly correlated in one condition and tests whether the
other condition maintains the same genes in the strongly connected group. Based
on hierarchical clustering, it groups the vertices in one condition and calculates a
t-statistic for this group. A gene set is differentially coexpressed between two con-
ditions when t is statistically significant in one condition, but not in the other. It also
detects which gene pairs changed their correlation among networks and can com-
pare more than two experimental conditions. The t-statistic allows coXpress to state
whether the formation of a group is a random process. However, it considers that each
gene belongs to only one group, as opposed to what actually occurs in biological sys-
tems, where genes generally participate in more than one process. The R package for
this method is available at the coXpress website (http://coxpress.sourceforge.net/).

2.2.2.2 DCGL

The method proposed by Liu et al. [11] identifies differentially coexpressed genes
using the differential coexpression profile (DCp) method [12]. Unlike the DCe
method presented in Sect. 2.2.1.2, DCp is based on the coexpression profile of each
vertex with all other vertices. It measures whether the average coexpression of a
gene with its neighbors changes between conditions. Besides DCp and DCe, the
authors implemented three other methods of gene connectivity measures to perform
differential coexpression analysis: log-ratio of connections (LRC), average specific
connection (ASC), and weighted gene coexpression network analysis (WGCNA).
According to the authors, DCp and DCe detect if the coexpression of genes pairs
changes from a positive to a negative sign, while other methods are focused on gene
connectivity. All five comparison algorithms mentioned are limited to comparing
two networks. This method is implemented as an R package available in the CRAN
repository (http://cran.r-project.org/web/packages/DCGL/index.html).

http://coxpress.sourceforge.net/
http://cran.r-project.org/web/packages/DCGL/index.html
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2.2.2.3 DiffCoEx

Tesson et al. [18] proposed a method based on the dissimilarity matrix between two
correlation matrices of each experimental condition. DiffCoEx performs the Topo-
logical Overlap Method (TOM) [2] on the dissimilarity matrix resulting in a list
of altered genes. Then, it enriches this list according to biological pathways. Fur-
thermore, DiffCoEx does not need to detect a coexpressed module in one condition
to verify if this module is coherent in another; instead, it determines the differen-
tial coexpression based only on the dissimilarity matrix. Aside from this, DiffCoEx
also has a similar algorithm (based on the dissimilaritymatrix) that allows comparing
more than two networks. Thismethod is implemented inR and is available on theDif-
fCoEx website (https://rdrr.io/github/ddeweerd/MODifieRDev/man/diffcoex.html).

2.2.2.4 DICER

Amar et al. [20] state that the main differences among biological conditions occur
more frequently betweenmodules of genes thanwithin them.Thus,DICER [20] clas-
sifies a set of genes as differentially coexpressed (DC) if its set of altered correlations
fits in at least one of the following two scenarios: the DC cluster and Meta-module.
The DC cluster is a gene set in which genes correlations are statistically different
between experimental conditions. Meta-modules are the pairs of gene sets that are
highly correlated within the gene sets and have high dissimilarity between them
comparing two experimental conditions. The differentiation of these two scenarios
allows the user to know which kinds of differences (DC cluster or Meta-module) the
system has between conditions. DICER is implemented in Java code and is freely
available for download at the DICER website (http://acgt.cs.tau.ac.il/dicer/).

2.2.2.5 DCloc and DCglob

Bockymayr et al. [21] developed two untargeted algorithms, DCloc and DCglob,
that identify differential correlation patterns by comparing the local or global
structure of correlation networks. The construction of networks from correla-
tion structures requires fixing a correlation threshold. Instead of a single cut-
off, the algorithms systematically investigate a series of correlation thresholds
and permit the detection of different kinds of correlation changes at the same
level of significance: great changes of a few genes and moderate changes of
many genes. Using random subsampling and cross-validation methods, DCloc and
DCglob identify accurate lists of differentially correlated genes. The codes to run
each function are in R code and are available in additional files of the article
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848818/).

https://rdrr.io/github/ddeweerd/MODifieRDev/man/diffcoex.html
http://acgt.cs.tau.ac.il/dicer/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848818/
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2.2.2.6 BFDCA

BFDCA (Bayes Factor Approach for Differential Coexpression Analysis) [22] aims
to detect gene sets that possess different distributions of gene coexpression profiles
between two different conditions. It first estimates the differential coexpression of
gene pairs based on Bayes factors. Then, it infers DC modules with higher Bayes
factor edges and selects significant DC gene pairs based on the vertex and edge
importance. BFDCA provides a relatively small number of gene pairs, which can
lead to a high-accuracy classifier [22]. One limitation of BFDCA is the small sample
problem: themethodneeds enough samples to estimate the hyperparameters.BFDCA
is implemented in a comprehensive R package freely available for download at this
website (http://dx.doi.org/10.17632/jdz4vtvnm3.1).

2.2.2.7 ROS-DET

Kayano et al. [23] consider that other approaches have problems under three real
cases regarding experimental data: 1) when there are outliers, 2) when there are
expression values with a tiny range and 3) when there is a small number of samples.
The authors proposed the ROS-DET (RObust Switching mechanisms DETector), a
detector of switching mechanisms. This switch is the alteration of the correlation
signal between two conditions. The ROS-DET overcomes these three problems
while keeping the computational complexity of current approaches. ROS-DET is
implemented in shell script and is available on this website (https://www.bic.kyoto-
u.ac.jp/pathway/kayano/ros-det.htm).

2.2.2.8 DECODE

Lui et al. [24] proposed to combine differential expression (DE) and coexpression
(DC) analysis. DECODE identifies characteristics not detected through DC or DE
approaches alone. This tool combines both strategies and performs a Z-test to select
significant differences in coexpression between two conditions [24]. Themain advan-
tage of DECODE is that it combines both strategies, which allows it to detect dif-
ferential coexpression scenarios not detected by other methods. DECODE is imple-
mented in R code and is available in the CRAN repository (http://cran.r-project.org/
web/packages/decode/index.html.).

2.2.3 Targeted Vertex Comparison

Following the classification cited in Sect. 2.2.2 (adapted from [18]), targeted
approaches compare predefined genes modules according to previous knowledge
about the studied system.

http://dx.doi.org/10.17632/jdz4vtvnm3.1
https://www.bic.kyoto-u.ac.jp/pathway/kayano/ros-det.htm
https://www.bic.kyoto-u.ac.jp/pathway/kayano/ros-det.htm
http://cran.r-project.org/web/packages/decode/index.html.
http://cran.r-project.org/web/packages/decode/index.html.
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2.2.3.1 dCoxS

dCoxS is a targeted strategy because it compares and tests whether predefined gene
sets are differentially coexpressed between experimental conditions [25]. It verifies
if the Interaction Score (IS) between two gene groups changes among conditions.
dCoxS calculates the relative entropy amonggenes to build the coexpression network.
Considering that adjacency matrices represent the networks, the distance between
them is measured by the correlation method. dCoxS is unique in that it applies
entropy as coexpression measure and correlation as a distance measure between two
adjacency matrices. It is implemented in R and is available on this website (http://
www.snubi.org/publication/dCoxS/index.html.).

2.2.3.2 GSCA

Choi et al. [26] proposed a method to perform a network comparison based on the
distance between adjacency matrices. GSCA constructs the adjacency matrices by
calculating the correlation measure and compares them using Euclidean distances. If
the distance is statistically significant, tested by the permutation samples technique,
the two networks are classified as differentially coexpressed. Besides this, the GSCA
method has a generalization for more than two conditions: for this, GSCA calculates
the average of pairwise distances between correlation matrices. As GSCA does not
correct the comparisons for multiple tests, comparing many experimental conditions
could lead to false-positive results. The GSCA package is implemented in R and is
available on the GSCA website (https://www.biostat.wisc.edu/ kendzior/GSCA/).

2.2.3.3 GSNCA

The comparison of network structures is a strategy employedby this and the following
three tools. Rahmatallah et al. [27] state that the significant changes in a system occur
at the most critical vertices of the network. Based on this statement, the GSNCA
tool tests whether there are differences between the vertex’s weight vectors given
by the eigenvector centrality. Centrality is the weight of a vertex according to its
position in a network. The eigenvector centrality determines a vertex centrality by
the centralities of its neighbors pondered by the strength of the connections [28].
In other words, the method tests whether the most critical vertices of the network
(higher eigenvector centralities) change between conditions. However, this method
only compares two experimental conditions. The GSNCA implementation in R is
available upon request from the authors.

http://www.snubi.org/publication/dCoxS/index.html.
http://www.snubi.org/publication/dCoxS/index.html.
https://www.biostat.wisc.edu/~kendzior/GSCA/


28 V. C. Jardim et al.

2.2.3.4 CoGA

Santos et al. (2015) [29] proposed a statistical method to compare the graph spec-
trum of correlation networks. The spectrum of a graph is the probability distribution
of eigenvalues of the adjacency matrix, which represents the network, also called
spectral distribution. Based on this measure,CoGA (Coexpression Graph Analyzer)
tests the equality between the spectral distributions of two networks. CoGA also
compares two networks by other structural measures, such as spectral entropy (the
entropy of spectral distribution), centralities, clustering coefficient, and distribution
of vertex degrees. However, as GSNCA, this method is also restricted to the com-
parison of only two conditions. CoGA was implemented in R code. It is available
on the CoGA website (https://www.ime.usp.br/ suzana/coga/) and can be used with
graphical interface features to perform the analysis easily.

2.2.3.5 ANOGVA

To solve the problem of being limited to comparing only two experimental condi-
tions, Fujita et al. [30] generalized CoGA statistics (Sect. 2.2.3.4). The ANOGVA
(ANalysis Of Graph VAriability) compares graph populations through spectral dis-
tributions using the Kullback-Leibler divergence, much like an ANOVA method for
graphs. This tool is useful for comparing two or more sets of networks, such as
functional brain networks, where each sample has one network and, consequently,
each experimental condition has many networks. However, this method does not
compare experimental conditions that have only one coexpression network each.
ANOGVA is implemented in R code and is available in the package statGraph
(http://www.ime.usp.br/ fujita/software.html).

2.2.3.6 BioNetStat

Finally, BioNetStat [31] generalizes the graph spectrum comparison performed by
CoGA (Sect. 2.2.3.4),without the necessity of graph populations, asANOGVA.Also,
it compares networks by spectral entropy, vertex centralities, clustering coefficient,
and degree distribution. BioNetStat also performs statistical tests for each vertex
(centralities and clustering coefficient), highlighting which vertices differ among
networks. As we have other methods that compare the spectral distribution of net-
works (CoGA Sect. 2.2.3.4 and ANOGVASect. 2.2.3.5), BioNetStat has a restriction
for the number of genes. A high number of genes—over 5,000—slows the algorithm
since it has to find the eigenvalues of the adjacency matrix, which is time-consuming
for larger data sets. BioNetStat is an R package and is available in the Bioconduc-
tor repository (https://bioconductor.org/packages/BioNetStat/). It is also possible to
perform this analysis behind a Graphical User Interface.

https://www.ime.usp.br/~suzana/coga/
http://www.ime.usp.br/~fujita/software.html
https://bioconductor.org/packages/BioNetStat/
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2.3 Conclusion

Aswas shown, there aremanymethods based on awide range of strategies to compare
coexpression networks. Beyond just coexpression, it is also possible to determine
the correlation betweenmetabolites and protein concentrations, applying all method-
ologies mentioned above to metabolites or protein networks. Unfortunately, most of
these methods are only readily usable for those who have some prior knowledge in
programming, specifically in the R language. For this reason, researchers and devel-
opers should provide a graphical user interface for their methods, both improving
the reach of these tools and increasing the number of data analysis tools available
for nonprogramming scientists.
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