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Abstract

Oxidation resistant overlay coatings protect the underly-
ing superalloy component in industrial gas turbines from
oxidation attack. Rate of depletion of the Al-rich b-phase
in the bond coat governs the lifetime of these coatings.
The applicability of a computational method in acceler-
ating the development of corrosion resistant coatings and
significantly reducing the extensive experimental effort to
predict coating lifetimes and microstructural changes in
three-coated Ni-based superalloys for real operational
durations (20–40 kh) was undertaken in the present study.
Scanning electron microscopy (SEM), energy dispersive
X-ray spectroscopy (EDX), and electron microprobe
analysis (EPMA) were employed to characterize
MCrAlY-coated superalloy substrates (1483, 247 and
X4) after exposure at 900 °C in air + 10% H2O for up to
20,000 h. The model predicted the longest coating
lifetime for the coating on X4 substrate. Precipitation of
c′ in the coatings was correctly predicted for all three
coating systems. Additionally, the model was able to
predict the formation of topologically close packed
(TCP)-phases in the investigated coating systems.
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Introduction

Increasing the operating temperatures of gas turbines has
become an increasingly common and effective strategy for
improving engine efficiency and reducing fuel consumption.
Protective metallic coatings enhance the oxidation and
corrosion resistance of the underlying high temperature
materials employed in industrial gas turbines. Some of the
widely used types of coatings are MCrAlY (M = Ni, Co)
overlay coatings and nickel aluminide (NiAl) diffusion
coatings which ensure the growth of a slowly growing
adherent alumina scale and thus protect the underlying
substrate from rapid oxidation attack [1–3]. A suitable
reservoir of Al (about 8–12 wt%) ensures formation of a
protective alumina-based surface scale (thermally grown
oxide, TGO) during high temperature exposure [4, 5].
MCrAlY coatings typically consist of c-Ni and b-NiAl
phases but may contain other complex phases such as r-
(Cr, Co), c′-Ni3Al, and/or a-Cr phases in substantial
amounts depending on the coating composition and tem-
perature [6–8]. Al from the coating material is lost to the
external oxide layer on the surface and to the substrate by
interdiffusion resulting in dissolution of the b-NiAl phase in
the coating. Potentially detrimental precipitate phases may
form especially in the interdiffusion zone (IDZ) during high
temperature exposures which may significantly impact the
integrity of the coating and the substrate and lead to
unanticipated failures. Evaluation of the material’s high
temperature behavior and compatibility with a chosen
coating requires extensive experimental testing, but com-
putational methods can substantially reduce the extensive
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experimental efforts required for coating evaluation and
qualification.

In the current work, a coupled thermodynamic and kinetic
computational model was employed to predict the
microstructural evolution in overlay and nickel aluminide
(NiAl) diffusion coatings on various Ni-based superalloys
alloys during high temperature exposures in air. Similar
modeling approaches have been successfully employed for
multicomponent multiphase systems to describe the inter-
diffusion in MCrAlY coating systems [9–13]. The wider
applicability of the approach was further substantiated in
understanding interdiffusion processes in multilayered
coatings on Ni-based superalloys [8] and predicting the
coating microstructure during over-aluminizing of an
MCrAlY-coated Ni-based superalloy IN792 [14]. However,
validation of these modeling methods with experimental
observations has been reported for laboratory scale exposure
times. Expected operational durations for gas turbines are of
the order of 20–40 kh. In the present work, the results of the
modeling procedure were compared with long-term labora-
tory exposures for predicting:

1. lifetime of the coating in terms of the depletion of b-NiAl
phase which usually leads to formation of undesirable
oxides (due to critical depletion of Al)

2. formation of secondary phases in the coating, and
3. precipitation of potentially detrimental phases in the

substrate.

Experimental Procedure

Investigated Materials

Substrate specimens (2 mm thick, *16 mm diameter with
chamfered edges) were grit blasted with alumina and then
coated using a standard commercial-type, high velocity
oxygen fuel (HVOF) process. The measured composition of
the coating and substrates for all the investigated specimens
is given in Table 1. In all cases, the coated substrates were
annealed in a vacuum of 10−4 Pa (10−6 Torr) for 4 h at
1080 °C. All coatings were of the same NiCoCrAlY

composition. Coatings were nominally 200 µm thick on X4
and about 180 µm thick on 247 and 1483 substrates.

High Temperature Exposures

Coated specimens were placed in alumina boats, heated to
temperature to 900 °C for about 4 h in an alumina tube with
flowing argon and then held for 500 h in flowing air with
10 ± 1% H2O in a horizontal tube furnace. Carrier gas was
typically flowed at 500 ml/min with distilled water atomized
into the gas stream above its condensation temperature.
Injected water was measured to calibrate its concentration.
Mass change was measured every 500 h cycle using a
Mettler–Toledo model XP205 balance.

Microstructural Characterization

After desired exposure time was reached, specimens were
mounted in epoxy. The mounted samples were ground to
1200 grit with SiC grinding papers and subsequently pol-
ished with diamond pastes to 0.5 lm surface finish. The final
polishing step was made using colloidal SiO2 slurry. Spec-
imens were then examined by light microscopy. Electron
probe microanalysis (EPMA) was performed using a JEOL
model 8200 to obtain element concentrations and phase
distributions. The scanning electron microscopy studies
(SEM) were carried out using a TESCAN MIRA3 equipped
with an energy dispersive X-ray (EDX) analysis system by
EDAX Instruments. Phases were additionally identified by
electron backscatter diffraction (EBSD).

Image analysis was performed with the open source
software ImageJ [15] to measure the area fraction of the b-
NiAl phase for comparison with model predictions. Color
thresholding was employed on a selected region of interest
100 � 100 lm of optical microscopy images to differentiate
between the observed phases in the coating. Area fractions
were assumed to be equal to volume fractions. Additionally,
oxide thicknesses and widths of each reaction zone (e.g., b-
NiAl depletion zones, etc.) were measured from three loca-
tions (20 measurements per location) using image analysis
software ImageJ [15].

Table 1 Measured composition (inductively coupled plasma-optical emission spectroscopy) of the alloys in wt%

Alloy Ni Cr Al Co Hf Mo Re Ta Ti W Y Zr C

Coating 50.1 16.5 12.3 21.1 – – – – – – 0.7 – –

X4 60.83 6.4 5.8 9.47 0.08 0.59 2.9 6.49 0.96 6.39 – <0.01 0.004

1483 60.59 12.03 3.36 8.75 – 1.89 – 5.19 3.97 4.1 – – 0.075

247 Bal. 8 5.5 9 1.5 0.7 – 3 1 9.5 – 0.03 0.06
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The specimens were further etched with a 50 ml HCl +
2 ml H2O2 mixture for 5–10 s to impart suitable color
contrast between the c, c′, and b-NiAl phases in the micro-
graphs. The etched cross sections provided additional evi-
dence to identify the presence or absence of these phases.

Modeling Procedure

Homogenization Model

The coupled thermodynamic–kinetic approach to modeling
the simultaneously occurring oxidation, diffusion, and dis-
solution processes occurring in the substrate-coating system
has been described in detail elsewhere [13]. To enable
realistic computational times for simulation of exposure
duration of about 40 kh, the modeling procedure was mod-
ified further to allow calculations to be run on parallel
computing cores [16]. A brief summary of the procedure will
be mentioned here.

The procedure begins with the discretization of the
domain into a suitable number of volume elements or slices
of width Dzi, i being the slice number. The position of the
boundaries of these slices is marked as z j, where j = iþ 1.
The center of the slices is marked as li. Average mole
fractions Ni0

c for each constituent c are assigned to each slice
based on the initial composition of the system. Constant
molar volume Vm is assumed across the entire specimen.
Initial phase fractions fu, compositions, and chemical
potentials lic in each slice are defined by equilibrium cal-
culations based on local element concentrations, tempera-
ture, and pressure. This is followed by choosing a suitable
time step Dt for calculating diffusion of elements with the
modified flux equation of Larsson et al. [17] in the
lattice-fixed frame of reference. Efficient equilibration of
vacancies (DlvA = 0) was assumed. The flux of each con-
stituent in a slice Jic is evaluated as follows,

Jic ¼ � Mi;eff
c

Vm liþ 1 � lið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Niþ 1
c Ni

c

q

2 sinh
liþ 1
c � lic
2RT

� �

ð1Þ

where Mi;eff
c is the effective mobility of constituent c in slice

i, lic is the chemical potential of constituent c at location i, R
is the universal gas constant, and T is the temperature.
Various alternatives to evaluate the local effective kinetic
properties such as mobilities are documented in [18]. In this
work, the upper Wiener bounds or more generally termed the
“Rule of Mixtures” has been used with the phase fraction f ;

M;
c and mobility for the individual phase ; as follows,

Mi;eff
c ¼

X

;

;¼1

f ;M;
c : ð2Þ

Diffusion was considered to occur only in the c (disor-
dered face centered cubic, FCC), c′ (ordered FCC), b-NiAl
(ordered body centered cubic, BCC), and a-Cr (disordered
BCC) phases. Overall, the phases c-FCC, c′-FCC, b-BCC, a-
Cr, r, and l-phase were considered for the calculations.
Thermodynamic and kinetic data were taken from the
databases TCNi8 [19] and MobNi4 [20], respectively.

Numerical Parameters

A geometric mesh was generated with a finer mesh at the
alloy surface (left boundary\coating surface) and at the
coating\substrate interface. Cell size was gradually increased
toward the specimen center (right boundary). The mesh was
adapted at each time step to account for the
oxidation-induced metal loss (Al) at the coating surface. The
mesh adaption procedure was explained in an earlier work
[13]. The assumption of symmetry at the center of the
sample provided the second spatial boundary condition of
zero flux for all elements. Although formation of mixed
oxides on surface of MCrAlY coatings is usually observed, a
significant portion of the oxide scale is alumina. An outward
flux of Al was prescribed by fitting the measured oxidation
kinetics (not shown here) assuming exclusive formation of
an alumina scale, while the system was closed for all other
elements at the coating surface. The measured compositions
of the base alloy in the as-received state given in Table 1
were used as the initial composition at time t = 0. The model
provided average element concentrations and phase fractions
as a function of time and distance.

Results and Discussion

Coating Lifetime

Coating lifetime is usually evaluated in terms of depletion of
b-NiAl phase [9, 16]. The alloy composition strongly
influenced the rate of b-NiAl depletion as Fig. 1 shows.
Significant depletion of b-NiAl was observed in the coating
on 1483 and 247, while a significant fraction of b-NiAl is
still retained in the coating on X4. The fact that the coating
on X4 was thicker (about 20 lm) than on 1483 and hence
consisted of a larger b-NiAl reservoir cannot solely account
for the observed lesser depletion as compositional differ-
ences between the substrates play a larger role. This will be
discussed later in the text.

The calculated evolution of the average b-NiAl fraction in
the coating over time is shown in Fig. 2. The measured phase
fractions (from image analyses) are plotted in the same figure
for comparison. The calculated average fractions of b-NiAl in
the coating agree well with experimental observations.
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Furthermore, the model correctly predicted that the coating on
X4 will deplete much slower than on 1483. Coating on 1483
is predicted to completely deplete after about 21,500 h.
Almost a complete depletion of b-NiAl was observed in the
coating on 1483 after 20,000 h of exposure as is shown in
Fig. 2. A coating lifetime of over 40,000 h was expected for
X4. The reasons for this will be discussed now.

At 900 °C, coating depletion will mainly be governed by
interdiffusion processes since the oxidation-induced

depletion of Al is expected to be minimal. Interdiffusion
processes between the coating and substrate are driven by
gradients in chemical potentials (chemical activities) and
diffusional velocities of alloying elements. Given the similar
compositions of 1483 and 247, a detailed analysis will be
given here for 1483 and X4 to demonstrate the role of alloy
composition on coating lifetime.

The difference in the composition between 1483 and X4
reflects in the phase fractions of disordered c-FCC and

Fig. 1 Back scattered electron (BSE) images of metallographic cross sections of NiCoCrAlY coatings on the Ni-based superalloys a PWA1483,
b 247, and c X4 after exposure in air + 10% H2O for 20 cycles (10,000 h) at 900 °C [note the different scale bar on (c)]
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Fig. 2 a Calculated (lines) and measured (symbols, image analyses)
average phase fraction of b-NiAl in the coatings on 1483, 247 and X4
substrates during exposure in air + 10% H2O at 900 °C and b BSE

image of cross section of NiCoCrAlY coating on 1483 after 40 cycles
(20,000 h) in air + 10% H2O at 900 °C. Dotted line indicates initial
coating substrate interface
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ordered c′-FCC. X4 consists of a much higher c′ phase
fraction than 1483 (65 mol% compared to 45 mol% based
on thermodynamic calculations) at 900 °C due to its higher
Al and Ta content and the lower Cr content [21, 22]. Fig-
ure 3 shows the ratio of calculated chemical activities of
major alloying elements Cr, Al, Ni, and Co in the coating to
those in the 1483 and X4 substrates. A ratio greater than one
means that the alloying element will diffuse from the coating
to the substrate and from the substrate to the coating for
ratios less than one. It is evident from the figure that the
chemical activity gradient of Al is more than two times
higher in case of 1483 than X4. In contrast, the driving force
(gradient in chemical activities) for Cr to diffuse from the
coating to the substrate is marginally higher in case of X4.
The driving forces for diffusion of Co (coating to substrate)
and Ni (substrate to coating) are almost identical for both
substrates.

In addition to the chemical activity gradients, interdiffu-
sion processes are further facilitated by diffusional velocities
(mobilities in Eq. (2)) of alloying elements in the individual
phases (mainly b-NiAl, c, c′ in this case). Calculated

mobilities of Ni, Cr, Al, and Co in the coating (c–b) and
substrate (c–c′) at 900 °C are tabulated in Table 2.

It can be inferred from the table that the mobilities of Al
and Ti in the c-FCC phase are higher than those of Ni, Cr,
and Co. However, the mobilities of Ni, Cr, and Ti in b-NiAl
are almost 2–3 orders of magnitude higher than Co and Al.
The mobilities of all elements in c′-phase are 3–4 orders of
magnitudes slower than in c-FCC and b-NiAl.

Given these large differences in mobilities of Al in indi-
vidual phases and combined with the highest gradient in
chemical potentials for Al (Fig. 3), it is justified to assume
that coating depletion will mainly be governed by interdif-
fusion of Al and Ni. The role of high Ti mobility in b-NiAl
and hence in the coating strongly influences the phase
transformations in the coating. This will be discussed in the
next section. In addition to predicting the b-NiAl depletion
in NiCoCrAlY coatings on the Ni-based superalloys X4, 247
and PWA1483 for exposure in air at 900 °C (500 h cycles),
Table 3 shows that the measured and calculated widths of
the b-NiAl depletion zones at the coating\substrate interface
are in acceptable agreement.
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Fig. 3 Calculated ratio of a chemical activity in the coating to substrate (1483 and X4) and ratio of b effective mobilities of major alloying
elements in 1483 to X4 at 900 °C for the compositions in as-coated state

Table 2 Calculated mobilities
(mol m2 J−1 s−1) of major
alloying elements in the coating
(c–b) and 1483 and X4 substrate
phases (c–c′) at 900 °C

Ni Co Cr Al Ti

Coating c-FCC 1.9e−8 9.3e−9 1.8e−8 5.9e−8 2.3e−8

b-BCC 1.9e−6 6.6e−8 1.3e−6 1.1e−9 1.6e−6

1483 c-FCC 2e−9 9.3e−9 7.6e−9 2.6e−8 2.5e−8

c′-FCC 6.3e−11 2.9e−9 3e−9 9e−9 5e−10

X4 c-FCC 1e−9 6.2e−9 9e−9 3.3e−8 2.3e−8

c′-FCC 6.4e−11 2.5e−9 2.3e−9 6.7e−9 1.3e−10
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Microstructural Changes in the Coating

The presence of c′ was observed in the coating for all three
coating systems at the coating\substrate interface. This is
visible as a two-phase c–c′ region in Fig. 4 showing the
region at the coating\substrate interface for the three
Ni-based superalloys after exposure in air + 10% H2O at
900 °C for 10,000 h. This two-phase region is thinnest in
case of the X4 substrate. Interestingly, etched metallographic
cross sections and elemental maps indicate that c’ is also
present at the interface between the b-NiAl depletion zone
(oxide\coating interface) and the two-phase c–b-NiAl coat-
ing. A similar effect has been reported to occur in overlay
coatings on Ti, Ta-containing substrates [23].

Figure 5 shows the etched cross sections of the coating
on 247 substrate at the oxide\coating (Fig. 5a) and coating
\substrate (Fig. 5b) interfaces. Figure 6 shows the element
distribution maps for Al and Ti at the phase interface in the
coating, and it is evident that c′ is enriched at this location.
The phases were further confirmed by measuring the phase
compositions and were accordingly marked in Fig. 6. The
calculated phase distribution (Fig. 7) after a 10,000 h
exposure for the coating on 1483 correctly predicted the
enrichment of c′ at the phase interfaces in the coating as
observed in Fig. 5. The measured width of the zone with
residual b-NiAl was 78 ± 6 lm compared to a calculated
width of about 65 lm. The two-phase c + c′ region in the
coating at the coating\substrate interface was measured to be
52 ± 5 lm which agrees well with the predicted value of
60 lm. A comparison between the measured (EDS) and
calculated phase compositions is given in Table 4. Except

for a few deviations in the composition of the b-BCC phase
which have been reported before [24, 25], the calculated
phase compositions agree well with the measurements.

It is well known that Ti is a strong c′ stabilizer [26] and
precipitation of c′ in the coatings investigated in the present
work is mainly governed by the diffusion of Ti from the
substrate to the coating. The combination of higher Ti
content in 1483, relatively high mobility of Ti in b-NiAl
(Table 2), relatively higher effective Ni mobility (Fig. 3) and
diffusion of Al from the coating to the substrate supports
formation of c′ in the coating. The reason for c′ enrichment
at the phase interfaces mentioned above is most likely due to
the significant differences in the mobilities of Al and Ti in
individual phases. The mobility values in Table 2 suggest
that at the interface between c–b and c–c′ phase regions, Ti
would diffuse much faster away toward the interface into the
c–b region compared to Al into the c–c′ substrate which
would support formation of c′ at this interface.

Microstructural Changes in the Substrate

The interdiffusion processes resulted in enrichment of c′ in
the substrate at the coating\substrate interface, typically
observed after high temperature exposures of overlay
NiCoCrAlY-type coatings [13, 27]. Furthermore, formation
of TCP phases was observed in all three substrates after
10,000 h at 900 °C.

The predicted c′-enrichment zone in the substrate was
more pronounced in X4 comparison with 1483 and 247 (not
shown here). As discussed before, X4 is expected to consist

Table 3 Comparison between
the measured and calculated
widths of the b–NiAl depletion
zones at the coating\substrate
interface

Alloy Measured b–NiAl depletion
zone (lm)/time (h)

Calculated b–NiAl depletion
zone (lm)/time (h)

Predicted time to complete
b–NiAl depletion (h)

X4 80 ± 10/20,000 100/20,000 >40,000

247 70 ± 5/10,000 65/10,000 30,000

1483 120 ± 10/20,000 140/20,000 21,500

The predicted time to complete depletion of b–NiAl phase is also shown

Fig. 4 BSE images of metallographic cross sections of NiCoCrAlY coatings on the Ni-based superalloys a PWA1483, b 247, and c X4 after
exposure in air + 10% H2O for 20 cycles (10,000 h) at 900 °C. Dotted line indicates initial coating substrate interface
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of the highest fraction of c′ among all alloys due to the
higher Al and Ta contents. The diffusion of Al from the
coating to the substrate during high temperature exposures
further stabilizes c′ at the coating\substrate interface.

Element distribution maps of major elements in the TCP
phase observed in X4 indicate this phase to be rich in Cr, Re,
and W (Fig. 8). The calculations predicted formation of a r-
phase in the X4 substrate. The reasoning for the formation of
TCP phases in a NiCoCrAlY-coated X4 substrate has been
provided in a previous work [13]. Diffusion of Al and Cr
from the coating increases their activities at the coating
substrate interface. The much lower mobilities of refractory
elements such as Mo, Re and W result in an enrichment of
these elements at the interface. This simultaneous increase of
chemical activities of Al and Cr and Mo, Re, W concen-
trations results in the formation of TCP phases. The

correlation between Cr activity and precipitation of r-phase
has been reported before [28].

Interestingly, the model predicted formation of a l-phase
in the 1483 substrate after 10,000 h (Fig. 7) and 20,000 h of
exposure. However, EBSD phase analyses results shown in
Fig. 9 indicate the presence of both r and l-phases in the
1483 substrate. It must be mentioned though that an
unequivocal identification of phases could not be ensured
due to the extremely small size of these precipitates. An
evaluation of the available thermodynamic data for TCP
phases using the TCNI8 database does seem to partly sup-
port the notion that r-phase would be the only TCP phase to
precipitate in X4 under these conditions. Figure 10 shows
the calculated ternary Ni-Cr-Re section of the
Ni-Al-Cr-Co-Mo-Ta-Ti-W phase diagram at constant con-
centrations for Al, Co, Mo, Ta, Ti, and W corresponding to

Fig. 6 Element distribution maps (EDS) of cross section of NiCo-
CrAlY coating on the Ni-based superalloy 1483 at the interface
between the b–NiAl depletion zone (oxide\coating interface) and the

two-phase c–b–NiAl coating after exposure in air + 10% H2O for 40
cycles (10,000 h) at 900 °C

Fig. 5 Light microscopy images of etched cross sections of NiCoCrAlY coating on the Ni-based superalloy 247 at the a oxide\coating and
b coating\substrate interface after exposure in air + 10% H2O for 20 cycles (10,000 h) at 900 °C
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Fig. 7 a Back scattered electron (BSE) image of cross section of
NiCoCrAlY coating on the Ni-based superalloy 1483 after exposure in
air + 10% H2O for 20 cycles (10,000 h) at 900° C (dotted line indicates

initial coating substrate interface) and b corresponding calculated phase
distribution

Table 4 Comparison between the measured and calculated phase compositions for the NiCoCrAlY coating on the Ni-based superalloy 1483 after
exposure in air + 10% H2O for 40 cycles (20,000 h) at 900 °C at the locations marked in Fig. 6

Phase Ni Al Ti Cr Co

b Measured 47.97 34.46 0.22 4.51 8.28

Calculated 43.92 27.71 0.43 11.41 16.74

c′ Measured 57.24 18.25 1.37 7.09 11

Calculated 61.23 19.27 2.81 4.78 11.72

c Measured 34.09 6.11 0.18 29.84 26.70

Calculated 42.49 6.72 0.14 26.74 23.91

Fig. 8 Element distribution maps (EDS) for Cr, Re, and W of cross section of NiCoCrAlY coating on the Ni-based superalloy X4 after exposure
in air + 10% H2O for 20 cycles (10,000 h) at 900° C
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their average calculated values in the c′ enrichment zone on
the substrate side at the coating\substrate interface after
20,000 h exposure at 900 °C. Although interdiffusion pro-
cesses change the local concentrations for Cr and Re, this
diagram aims to demonstrate solely the effect of Re on sta-
bility of TCP phases.

Solid symbol marks a non-Re containing 1483 compo-
sition, while the hollow symbol corresponds to X4 (with 2.9
wt% Re). Two different compositions of l-phase are pre-
dicted in each case. Equilibrium calculations for 1483 (solid

symbol) indicate that only the l-phase is expected to pre-
cipitate in 1483, but for X4 (hollow symbol), r-phase will be
the major TCP phase which seems to indicate that Re is
stabilizing the r-phase in X4. The calculated phase com-
position for the r-phase was Cr34Co22W14Re12Ni18 at.%.
The measured (EDS) composition of this phase was
Cr43.8Co14.5W3.5Re4Ni27.3 at. %. The role of Re in sta-
bilizing TCP phases in Ni-based superalloys has been
investigated before [29, 30]. Since thermodynamic data for
TCP phases is sparse and assessment of relevant data is
based on high temperature data (>1000 °C), especially due
to a lack of experimental data for temperature and compo-
sition dependent stability of these phases, a perfectly correct
representation of the experimental observations and predic-
tion of their stability should not be expected.

Summary and Conclusions

The computational approach helped understand the mecha-
nisms of degradation of different oxidation resistant coatings
on Ni-based superalloys. The highest lifetime was predicted
for the coating on X4. Ti in the substrate material was
expected to result in the formation of c′ in the coatings at the
investigated temperature, and Re was expected to influence
the type of precipitated TCP phases in the substrate as a
result of interdiffusion processes. Such a strategy provides a
general approach in predicting the coating lifetime, extent of
microstructural changes in the coating and underlying sub-
strate as a function of alloy/coating composition, time, and
temperature. The validated model can greatly accelerate the
design and selection of coatings for numerous superalloy
applications.
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900 °C
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the BSE image for characterization of precipitates
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