
Automatic Decomposition of Petri Nets
into Automata Networks – A Synthetic

Account

Pierre Bouvier1(B), Hubert Garavel1(B), and Hernán Ponce-de-León2(B)

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{pierre.bouvier,hubert.garavel}@inria.fr

2 Research Institute CODE, Bundeswehr University Munich, Munich, Germany
hernan.ponce@unibw.de

Abstract. This article revisits the problem of decomposing a Petri net
into a network of automata, a problem that has been around since the
early 70s. We reformulate this problem as the transformation of an ordi-
nary, one-safe Petri net into a flat, unit-safe NUPN (Nested-Unit Petri
Net) and define a quality criterion based on the number of bits required
for the structural encoding of markings. We propose various transforma-
tion methods, all of which we implemented in a tool chain that combines
NUPN tools with third-party software, such as SAT solvers, SMT solvers,
and tools for graph colouring and finding maximal cliques. We perform
an extensive evaluation of these methods on a collection of more than
12,000 nets from diverse sources, including nets whose marking graph is
too large for being explored exhaustively.

1 Introduction

The present article addresses the decomposition problem for Petri nets. Precisely,
we study the automatic transformation of a (low-level) Petri net into an automata
network, i.e., a set of sequential components (such as finite-state machines) that
execute asynchronously, synchronize with each other, and exhibit the same global
behaviour as the original Petri net. This problem is of practical interest for at
least two reasons: (i) Petri nets are expressive, but poorly structured; decompo-
sition is a means to restructure them automatically, making them more modular
and, hopefully, easier to understand and reason about; (ii) automata networks
contain structural information that formal verification algorithms may exploit to
increase efficiency using, e.g., logarithmic encodings of reachable markings, easier
detection of independent transitions for partial-order and stubborn-set reduction
methods, and divide-and-conquer strategies for compositional verification.

To a large extent, we reformulate the decomposition problem in terms of
Nested-Unit Petri Nets (NUPNs) [8], a modern extension of Petri nets, in which
places can be grouped into units that express sequential components. Units
can be recursively nested to reflect both the concurrent and the hierarchical
nature of complex systems. This model of computation, originally developed
c© Springer Nature Switzerland AG 2020
R. Janicki et al. (Eds.): PETRI NETS 2020, LNCS 12152, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-51831-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51831-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-51831-8_1


4 P. Bouvier et al.

for translating process calculi to Petri nets, increases the efficiency of formal
verification [1,8, Sect. 6]. It has been so far implemented in thirteen software
tools [8, Sect. 7] and adopted for the benchmarks of the Model Checking Contest
and the parallel problems of the Rigorous Examination of Reactive Systems.
Notice that certain NUPN features, such as the hierarchical nesting of units to
an arbitrary depth, are not exploited in the present article.

Related Work. The decomposition of a Petri net into sequential processes has
been studied since the early 70s at least [12], and gave rise to a significant body of
academic literature. On the theoretical side, one can mention the decomposition
of elementary nets into a set of concurrent communicating sequential components
[23, Sect. 4.3–4.4], the decomposition of live and bounded free–choice nets into S-
components or T-components [6, Chap. 5], and the distribution of a Petri net to
geographical locations [5,11]. On the algorithmic side, one can mention decom-
position methods that compute a coverage of a net by strongly connected state
machines, e.g., [12], approaches based on invariants and semiflows, e.g., [3,21,24],
and approaches based on reachability analysis, some using concurrency graphs
on which decomposition can be expressed as a graph colouring algorithm [27],
others using hypergraphs, which seem more compact that concurrency graphs
[28]. On the software implementation side, one can mention the Diane tool [19],
which seems no longer accessible today, and the Hippo tool, which is developed
at the University of Zielona Góra (Poland) and available on-line through a ded-
icated web portal1. Further references to related work are given throughout the
next sections.

Outline. The present paper describes a state-of-the-art approach based on (par-
tial) reachability analysis for translating ordinary, safe Petri nets into automata
networks. This approach has been fully implemented in a software tool chain,
and successfully applied to thousands of examples. The remainder of this article
is organized as follows. Section 2 states the decomposition problem by precisely
defining which kind of Petri nets are taken as input, which kind of automata
networks are produced as output, and which quality criterion should guide
the decomposition. Section 3 defines some key concepts used for decomposition,
namely the concurrency relation, the concurrency matrix, and the concurrency
graph. Section 4 provides means to efficiently search for solutions. The four next
sections present various decomposition approaches based on graph colouring
(Sect. 5), maximal-clique algorithms (Sect. 6), SAT solving (Sect. 7), and SMT
solving (Sect. 8). Section 9 discusses the experimental results obtained by these
various approaches and draws a comparison with the Hippo tool. Finally, Sect. 10
concludes the article.

1 http://www.hippo.iee.uz.zgora.pl.

http://www.hippo.iee.uz.zgora.pl


Automatic Decomposition of Petri Nets into Automata Networks 5

2 Problem Statement

2.1 Basic Definitions

We briefly recall the usual definitions of Petri nets and refer the reader to classical
surveys for a more detailed presentation of Petri nets.

Definition 1. A (marked) Petri Net is a 4-tuple (P, T, F,M0) where:

1. P is a finite, non-empty set; the elements of P are called places.
2. T is a finite set such that P ∩T = ∅; the elements of T are called transitions.
3. F is a subset of (P × T ) ∪ (T × P ); the elements of F are called arcs.
4. M0 is a non-empty subset of P ; M0 is called the initial marking.

Notice that the above definition only covers ordinary nets (i.e., it assumes all
arc weights are equal to one). Also, it only considers safe nets (i.e., each place
contains at most one token), which enables the initial marking to be defined as
a subset of P , rather than a function P → N as in the usual definition of P/T
nets. We now recall the classical firing rules for ordinary safe nets.

Definition 2. Let (P, T, F,M0) be a Petri Net.

– A marking M is defined as a set of places (M ⊆ P ). Each place belonging to
a marking M is said to be marked or, also, to possess a token.

– The pre-set of a transition t is the set of places •t def= {p ∈ P | (p, t) ∈ F}.
– The post-set of a transition t is the set of places t• def= {p ∈ P | (t, p) ∈ F}.
– A transition t is enabled in some marking M iff •t ⊆ M .
– A transition t can fire from some marking M1 to another marking M2 iff t is

enabled in M1 and M2 = (M1 \ •t) ∪ t•, which we note M1
t−→ M2.

– A marking M is reachable from the initial marking M0 iff M = M0 or there
exist n ≥ 1 transitions t1, t2, ..., tn and (n − 1) markings M1,M2, ...,Mn−1

such that M0
t1−→ M1

t2−→ M2 ... Mn−1
tn−→ M .

– A place p is dead if it exists no reachable marking containing p.
– A transition t is dead if it exists no reachable marking in which t is enabled.

We now recall the basic definition of a NUPN, referring the interested reader to
[8] for a complete presentation of this model of computation.

Definition 3. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple
(P, T, F,M0, U, u0,�, unit ) where (P, T, F,M0) is a Petri net, and where:

5. U is a finite, non-empty set such that U ∩ T = U ∩ P = ∅; the elements of
U are called units.

6. u0 is an element of U ; u0 is called the root unit.
7. � is a binary relation over U such that (U,	) is a tree with a single root u0,

where (∀u1, u2 ∈ U) u1 	 u2
def= u2 � u1; intuitively2, u1 � u2 expresses that

unit u1 is transitively nested in or equal to unit u2.
2 � is reflexive, antisymmetric, transitive, and u0 is the greatest element of U for �.



6 P. Bouvier et al.

8. unit is a function P → U such that (∀u ∈ U \ {u0}) (∃p ∈ P ) unit (p) = u;
intuitively, unit (p) = u expresses that unit u directly contains place p.

Because NUPNs merely extend Petri nets by grouping places into units, they
do not modify the Petri-net firing rules for transitions: all the concepts of Def-
inition 2 for Petri nets also apply to NUPNs, so that Petri-net properties are
preserved when NUPN information is added. Finally, we recall a few NUPN
concepts to be used throughout this article; additional information can be found
in [8], where such concepts (especially, unit safeness) are defined in a more gen-
eral manner.

Definition 4. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN.

– The local places of a unit u are the set: places (u) def= {p ∈ P | unit (p) = u}.
– A void unit is a unit having no local place.3
– A leaf unit is a minimal element of (U,�), i.e., a unit having no nested unit.
– The height of N is the length of the longest chain un � ... � u1 � u0 of

nested units, not counting the root unit u0 if it is void.
– The width of N is the number of its leaf units.
– A flat NUPN is such that its height is equal to one.
– A trivial NUPN is such that its width is equal to the number of places.4
– A flat NUPN is unit-safe iff any reachable marking contains at most one local

place of each unit.

2.2 Input Formalism

From Definition 1 and 2, the Petri nets accepted as input by our methods must
be ordinary, safe, and have at least one initially marked place5. Such restrictions
are quite natural, given that our goal is the translation of a Petri net to a network
of automata, which are also ordinary and safe by essence (this will be further
discussed in Sect. 2.3). Unlike, e.g., [21], we do not handle bounded nets that
are not safe, given that any bounded net can be converted to a safe net by
duplicating (triplicating, etc.) some of its places.

Contrary to other approaches, we do not lay down additional restrictions on
the Petri nets accepted as input. For instance:

– We do not require them to be free choice and well formed (i.e., live and safe)
as in [12], nor free choice, live, and bounded as in [18].

– We do not require them to be state machine coverable [26, Def. 16.2.2 (180)],
state machine decomposable [12, Chap. 5], nor state machine allocatable [13]
(see [4, Sect. 7.1] for a discussion of the two latter concepts).

– We do not require them to be pure (i.e., free from self-loop transitions) as
in [27], where Petri nets are represented using their incidence matrix, a data
structure that cannot describe those transitions t such that •t ∩ t• �= ∅.

– We do not require them to be connected or strongly connected, and accept
the presence of dead places and/or dead transitions.

3 From item 8 of Definition 3, only the root unit u0 may be void.
4 Each unit has a single local place, except the root unit, which has either zero or one.
5 However, they can have no transition.



Automatic Decomposition of Petri Nets into Automata Networks 7

Implementation and Experimentation. Our tool chain accepts as input a “.pnml”
file containing a Petri net represented in the PNML standard format [14]. This
file is then converted to a “.nupn” file, written in a concise and human-readable
textual format6 [8, Annex A] for storing NUPNs. This conversion is performed
using PNML2NUPN7, a translator developed at LIP6 (Paris, France), which
discards those PNML features that are irrelevant to our problem (e.g., colored,
timed, or graphical attributes,) to produce a P/T net. All NUPNs generated
by PNML2NUPN are trivial, meaning that the translator follows the scheme
given in [8, proof of Prop. 11] by putting each place in a separate unit; thus, the
translator makes no attempt at discovering concurrency in PNML models.

Our tool chain also accepts a file directly written in the “.nupn” format,
rather than being generated from PNML. Such a NUPN model may be trivial
or already have a decomposition, either as a network of automata (in the case of
flat non-trivial models) or as a hierarchy of nested concurrent units (in the case
of non-flat models). We treat non-trivial models like trivial ones by purposely
ignoring (most of) the information about the structure of non-trivial models.

The next step is to make sure that each NUPN model to be decomposed
is safe. Many NUPN models generated from higher-level specification languages
are unit safe by construction, and thus safe, which is indicated by a pragma
“!unit safe” present in the “.nupn” file. In absence of this pragma, one must
check whether the underlying Petri net is safe, which is a PSPACE-complete
problem. Various tools that can handle “.nupn” files are available for such pur-
pose, e.g., CÆSAR.BDD8 or CÆSAR.SDD9.

To perform experiments, we used a collection of 12,728 models in “.nupn”
format. This collection, which has been patiently built at INRIA Grenoble since
2013, gathers models derived from “realistic” specifications (i.e., written in high-
level languages by humans rather than randomly generated, many of which
developed for industrial problems). It also contains all ordinary, safe models
from the former PetriWeb collection10 and from the Model Checking Context
benchmarks11. To our knowledge, our collection is the largest ever reported in
the scientific literature on Petri nets.

A statistical survey confirms the diversity of our collection of models. Table 1
gives the percentage of models that satisfy or not some usual (structural and
behavioural) properties of Petri nets, as well as topological properties of NUPNs;
the answer is unknown for some large models that CÆSAR.BDD (with option
“-mcc”) could not process entirely. Table 2 gives numerical information about

6 http://cadp.inria.fr/man/nupn.html.
7 http://pnml.lip6.fr/pnml2nupn.
8 http://cadp.inria.fr/man/caesar.bdd.html (see option “-check”).
9 http://github.com/ahamez/caesar.sdd (see option “--check”).

10 http://pnrepository.lip6.fr/pweb/models/all/browser.html.
11 http://mcc.lip6.fr/models.php.

http://cadp.inria.fr/man/nupn.html
http://pnml.lip6.fr/pnml2nupn
http://cadp.inria.fr/man/caesar.bdd.html
http://github.com/ahamez/caesar.sdd
http://pnrepository.lip6.fr/pweb/models/all/browser.html
http://mcc.lip6.fr/models.php


8 P. Bouvier et al.

Table 1. Structural, behavioural, and topological properties of our collection

Property Yes No Unknown Property Yes No Unknown

Pure 62.5% 37.4% 0.1% Conservative 16.7% 83.3%

Free-choice 42.4% 57.6% Sub-conservative 29.8% 70.2%

Extended free-choice 43.9% 56.0% 0.1% Dead places 15.7% 80.0% 4.3%

Marked graph 3.6% 96.4% Dead transitions 15.8% 80.7% 3.5%

State machine 12.5% 87.5% Trivial 11.3% 88.7%
Connected 94.1% 5.9% Flat, Non trivial 25.0% 75.0%

Strongly connected 13.9% 86.1% Non flat 63.7% 36.3%

Table 2. Numerical properties of our collection

Feature Min value Max value Average Median Std deviation

#places 1 131,216 221.1 14 2,389

#transitions 0 16,967,720 9,399.5 19 274,364

#arcs 0 146,528,584 74,627.1 50 2,173,948

Arc density 0% 100% 14.9% 9.7% 0.2

#units 1 50,001 86.7 6 1,125

Height 1 2,891 4.1 2 43

Width 1 50,000 82.3 4 1,122

the size of the Petri nets (number of places, transitions, and arcs, as well as arc
density12) and the size of the NUPNs (number of units, height, and width).

2.3 Output Formalism

Our goal is to translate ordinary, safe Petri nets into automata networks; how-
ever, many automata-based formalisms have been proposed in the literature,
most of which are candidate targets for our translation, but differ in subtle
details. A thorough survey was given in [4], yet newer proposals have been made
since then. In this subsection, we address this issue by precisely stating which
constraints a suitable output formalism should satisfy.

Our first constraint is that each automaton should be sequential (contrary
to, e.g., [5], where concurrent transitions can be assigned to the same loca-
tion), that our automata networks should be flat (contrary to, e.g., [7,16] and
[20], where Petri nets are translated to hierarchical models in which processes
can have nested sub-processes), and that the semantics of automata networks
should be aligned with the usual interpretation of Petri nets, i.e., the states
of each automaton should reflect Petri net places, and the global state of the

12 We define arc density as the number of arcs divided by twice the product of the
number of places and the number of transitions, i.e., the amount of memory needed
to store the arc relation as a pair of place×transition matrices.



Automatic Decomposition of Petri Nets into Automata Networks 9

automata network should be the union of all the local states of its component
automata. The transitions of each automaton should also behave as Petri net
transitions, meaning that synchronization between several automata should be
achieved using the Petri-net firing rules (see Definition 2) rather than alterna-
tive mechanisms, such as synchronization states in synchronized automata [22],
asynchronous message passing in reactive automata [2], or FIFO buffers in com-
municating automata [10].

Our second constraint goes further by requiring a one-to-one mapping
between the places of the Petri net and the states of the automata network, and
between each transition of the Petri net and the corresponding (possibly syn-
chronized) transition(s) of the automata network. Consequently, all structural
and behavioural properties of the Petri net should be preserved by decomposi-
tion; in particular, the graph of reachable markings for the Petri net should be
isomorphic (modulo some renaming of places and transitions) to the global state
space of the automata network.

Our third constraint demands that the sets of local states of all automata in
a network are pairwise disjoint, thus forbidding the possibility of having shared
states between two or more automata. Such a criterion draws a clear separation
line between the various models proposed in the literature. For instance, open
nets [19] rely on shared places for input/output communications between compo-
nents. Also, among the models surveyed in [4, Sect. 6–7], six models (synchronized
state machines, state machine decomposable nets, state machine allocatable nets,
proper nets, strict free choice nets, and medium composable nets) allow shared
states, while two models (superposed automata nets and basic modular Petri
nets) forbid shared states. We opt for the latter approach, which provides a
sound model of concurrency (concurrent automata are likely to be executed on
different processors and, thus, should not have shared states) and which is math-
ematically simpler (the local states of all automata form a partition of the set
of states). It is worth mentioning that the decomposition approach described
in [27] first generates a decomposition with shared states, but later gets rid of
these by introducing auxiliary states (noted “NOP”); while we agree with the
goal of having pairwise disjoint local state sets, we cannot reuse the same app-
roach, as the addition of extra states in the automata network would violate the
one-to-one mapping required by our second constraint.

Our fourth constraint is that a suitable output formalism should be gen-
eral enough to support, without undue restrictions, all input Petri nets that are
ordinary and safe. For instance, among the eight aforementioned models of [4,
Sect. 6–7], three models (state machine decomposable nets, state machine allo-
catable nets, and strict free choice nets) require each automaton to be strongly
connected; such a restriction obviously hinders decomposition, as a very simple
net with two places and a transition between these places cannot be expressed
using a single strongly connected automaton. Another frequent, yet question-
able, restriction is the requirement that automata should be state machines, i.e.,
always have a token in any global state; all the eight aforementioned models of
[4, Sect. 6–7] have this restriction, which, we believe, is unsuitable: a very sim-



10 P. Bouvier et al.

ple net with a single place and a transition going out of this place cannot be
represented as a state machine, unless an extra state is added to the post-set
of the transition, thus violating our second constraint; more generally, decom-
position into state machines assumes that the input Petri net is conservative
(i.e., each transition has the same number of input and output places), where
Table 1 indicates that only 16.7% of models satisfy this condition in practice; one
must therefore consider a more flexible model, in which automata can be started
and halted dynamically, meaning that each automaton does not necessary have
a token in the initial state, and that it may lose its token in the course of its
execution.

Eventually, the suitable output formalism that matches the four above con-
straints turns out to be a flat, unit-safe NUPN, i.e., nothing else than the input
Petri net model augmented with a partition of the set of places into units, each
featuring an automaton, such that, in any reachable marking, at most one place
of each unit has a token. If there is more than one unit, an additional (root) unit
will be created, which is void and encapsulates all other (leaf) units.

A key advantage of this output formalism is that decomposition can be seen as
an operation within the NUPN domain, taking as input a trivial, unit-safe NUPN
and producing as output a flat, unit-safe NUPN. This makes definitions simpler,
as all places, transitions, and arcs of the initial Petri net are kept unchanged,
and all structural and behavioural properties are preserved by the translation. In
this article, we have so far carefully avoided the term of “state machines”, which
implies conservativeness, preferring the more vague term “automata network”. In
the sequel, we switch to the precise NUPN terminology, referring to “automata”
as “(leaf) units” and “local states” as “places”.

Implementation and Experimentation. Concretely, our tool chain produces as
output a “.nupn” file containing the result of the decomposition. To a large
extent, this file is identical to the input “.nupn” file, but contains new infor-
mation about units. Finally, the output “.nupn” file can easily be translated to
standard PNML format using the CÆSAR.BDD tool (with option “-pnml”); the
information about units produced by the decomposition is retained and stored
in the “.pnml” file using a “toolspecific” section13 [8, Annex B].

2.4 Existence and Multiplicity of Solutions

Our decomposition problem, as stated above, consists in finding an appropriate
set of units (namely, a partition of the set of places) to convert an ordinary, safe
Petri net into an “isomorphic” flat, unit-safe NUPN.

Contrary to other decomposition approaches (starting from [12]) that may
have no solution for certain classes of input nets, our problem always has at
least one solution: the trivial NUPN corresponding to the input Petri net (see
[8, proof of Prop. 11] for a formal definition) is flat (because its height is one)
and it is unit-safe (because its underlying Petri net is safe [8, Prop. 7]).

13 http://mcc.lip6.fr/nupn.php.

http://mcc.lip6.fr/nupn.php


Automatic Decomposition of Petri Nets into Automata Networks 11

There may exist several solutions for the decomposition problem. For
instance, given a valid solution containing a unit with several places, splitting
this unit into two separate units also produces a valid solution; also, if this unit
contains a dead place, moving this dead place to any other leaf unit also pro-
duces a valid solution. In any valid solution, the number of leaf units belongs to
an interval [Min,Max ], where:

– Min is the largest value, for any reachable marking M , of card (M), i.e.,
the number of tokens in M . For instance, if the initial marking M0 contains
n places, then any valid solution must have at least n leaf units. A valid
solution may have more leaf units than Min; by example, a net with 4 places
p0, ..., p3 (only p0 is marked initially) and 3 transitions t1, ..., t3 such that
•t1 = •t2 = •t3 = {p0}, t1

• = {p2, p3}, t2
• = {p1, p3}, and t3

• = {p1, p2} has
at most 2 tokens but at least 3 leaf units in any valid decomposition.

– Max is the number of places (this follows from item 8 of Definition 3). The
upper bound Max is reached by, and only by, the trivial solution. Approaches
to obtain an upper bound smaller than Max are discussed in Sect. 4 below.

Implementation and Experimentation. The CÆSAR.BDD tool (with option
“-min-concurrency”) can quickly compute (an under-approximation of) the
value of Min without exploring the reachable marking graph entirely.

2.5 Criteria for Optimal Solutions

Since the decomposition problem usually admits multiple solutions, the next
question is to select an “optimal” solution. For instance, the trivial solution is
valid, but uninteresting. Various criteria can be used to compare solutions. From
a theoretical point of view, and especially for the purpose of formal verification,
a suitable criterion is to minimize the number of bits needed to represent any
reachable marking. There are different ways of encoding the reachable markings
of a safe Petri net. The least compact encoding consists in having one bit per
place. The most compact encoding consists in first exploring all reachable mark-
ings, then encoding them using 
log2 n� bits, where n is the number of reachable
markings; of course, this encoding is unrealistic, since exploration cannot be
done without already having an encoding.

Between these two extremes, one should select an encoding that can be com-
puted without exploring reachable markings and faithfully measures the com-
pactness of each solution. For such purpose, [8, Sect. 6] lists five encodings for
unit-safe NUPNs and evaluates their compactness. We base our approach on the
most compact encoding of [8], noted (b), which we further enhance by detecting
those units that never get a token or never lose their token.

Definition 5. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN.

– Let the projection of a marking M on a unit u be: M �u
def= M ∩ places (u).

– A unit u is idle if has no token in the initial marking and no transition puts
a token in this unit, i.e., (M0�u = ∅) ∧ (∀t ∈ T ) (t•�u �= ∅ ⇒ •t�u �= ∅).



12 P. Bouvier et al.

– A unit u is permanent if has a token in the initial marking and no transition
takes the token away from this unit, i.e., (M0 �u �= ∅) ∧ (∀t ∈ T ) (•t�u �=
∅ ⇒ t•�u �= ∅).

Notice that, in a flat NUPN, the root unit is always idle, since it is void. Using
the encoding (b) of [8, Sect. 6], the state of each unit having n local places can
be encoded using 
log2(n + 1)� bits. This number of bits can be further reduced
if the unit is idle or permanent.

Definition 6. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. The number
of bits needed to represent the markings of N is defined as Σu∈U ν(u), where
ν(u) = 0 if u is idle, ν(u) = 
log2(card (places (u)))� if u is permanent, or
ν(u) = 
log2(card (places (u)) + 1)� otherwise.

We finally base our comparison criterion upon Definition 6: the smaller the
number of bits, the better the decomposition.

Implementation and Experimentation. Given a NUPN obtained by decomposi-
tion, its number of bits can be computed using CÆSAR.BDD (option “-bits”).
The determination of idle and permanent units is done in linear time, with a
simple iteration that examines the pre-set and post-set of each transition.

3 Concurrent Places

3.1 Concurrency Relation

All the decomposition methods presented in this article are based on a concur-
rency relation defined over places, which appears in many scientific publications
under various names: coexistency defined by markings [15, Sect. 9], concurrency
graph [27], or concurrency relation [9,17,18,25], etc. Mostly identical, these def-
initions sometimes differ in details, such as the kind of Petri nets considered, or
the handling of reflexivity, i.e., whether a place is concurrent with itself or not.
We adopt the following definition:

Definition 7. Let N = (P, T, F,M0) be a Petri net. Two places p1 and p2 are
concurrent, noted “ p1‖ p2”, iff there exists a reachable marking M such that
p1 ∈ M and p2 ∈ M .

This relation is most relevant to the decomposition problem, as it generates
weak positive constraints (if two places are not concurrent, they may belong the
same unit in the output NUPN) and strong negative constraints (if two places
are concurrent, they must not belong to the same unit, i.e., (p1 �= p2)∧(p1‖ p2) ⇒
unit (p1) �= unit (p2)—otherwise, the output NUPN would not be unit safe).

For certain classes of Petri nets (namely, extended free choice nets that are
bounded and live), there exists a polynomial algorithm for computing the con-
currency relation [18]. We have not used this algorithm so far, since, in our
collection (see Table 1), less than a half of the models are extended free choice,
and most models are not strongly connected, thus not live.



Automatic Decomposition of Petri Nets into Automata Networks 13

3.2 Concurrency Matrix

We concretely represent the concurrency relation as a matrix indexed by places.
The cells of this matrix are equal to “1” if the corresponding two places are
concurrent, or to “0” if they are not. The matrix is computed using reachability
analysis, but the set of reachable markings may be too large to be explored
entirely. In such case, certain cells of the matrix may be undefined, a situation
we record by giving them an unknown value noted “.”. A matrix will be said to
be incomplete if it contains at least one unknown value, or complete otherwise.

Implementation and Experimentation. In our tool chain for decomposition, the
computation of the concurrent matrix is performed by CÆSAR.BDD (with
option “-concurrent-places”). Several practical issues are faced.

For a large input model, the matrix can get huge (e.g., several gigabytes).
This problem is addressed in two ways: (i) since the concurrency relation is
symmetric, only the lower half of the matrix is represented; (ii) each line of the
matrix is compacted using a run-length compression algorithm.

To fight algorithmic complexity when generating the matrix of a large input
model, CÆSAR.BDD combines various techniques. Initially, the entire matrix
is initialized to unknown values. Then, a symbolic exploration (using BDDs)
of the reachable markings is undertaken, possibly with a user-specified timeout
limitation; during this exploration, all the places reached and all the transitions
fired are marked as not dead. If the exploration terminates within the allowed
time, then all markings are known, so that the matrix is complete. Otherwise,
only a subset of all markings is known, which enables one to write “1” in all
the matrix cells corresponding to places found present together in some reached
marking; then, various techniques are used to decrease the remaining number of
unknown values, stopping as soon as this number drops to zero:

– If the input model is non-trivial and contains the pragma “!unit safe”, than
all pairs of places in the same unit (resp., in two transitively nested units)
are declared to be non-concurrent.

– If the diagonal of the matrix contains unknown values, an auxiliary explicit-
state algorithm that computes a subset of dead places is run.

– If a place is dead, then it is not concurrent with any other place.
– If a transition t (dead or not) has a single input place p, then p is not con-

current with any output place of t different from p (otherwise, the net would
not be safe).

Although the generation of concurrency matrices is a CPU-intensive operation,
we found it to succeed for most models of our collection: 99.9% of all the matrices
have been generated; the 12 matrices that could not be generated correspond
to large NUPNs, all of which have more than 5556 places, 7868 transitions, and
18,200 arcs. Moreover, 97.3 of all the matrices are complete; the 350 incomplete
matrices correspond to large NUPNs, all of which have more than 120 places,
144 transitions, and 720 arcs.



14 P. Bouvier et al.

In the sequel, we proceed with the concurrency matrix, which we abstract
away by replacing all unknown values by the value “1”, thus assuming that,
by default (i.e., in absence of positive information), individual places are live
and pairs of places are concurrent. Such pessimistic assumptions are essential to
the correctness of our decomposition methods: if the matrix is incomplete, the
decomposed NUPN will still be unit-safe, although perhaps suboptimal.

3.3 Concurrency and Sequentiality Graphs

Derived from the (abstracted) concurrency matrix, we introduce two definitions,
which have been already given by other authors, e.g., [25,27], etc.

Definition 8. Given a net and its concurrency matrix, the concurrency graph is
an undirected graph, whose vertices correspond to the places of the net, and such
that it exists an edge between two different vertices iff the value of the matrix
cell for the corresponding places is equal to “1”. There are no self-loops in the
concurrency graph.

The decomposition problem can be formulated as a graph colouring problem
on the concurrency graph, where leaf units play the role of colours. To ensure unit
safeness, any two concurrent places must be put into different units; this amounts
to the problem of assigning different colors to any two vertices connected by an
edge in the concurrency graph. Then, for each colour, a unit is created, which
contains all the vertices (i.e., places) having the same colour.

The concurrency graph is derived from the relation “‖ ”; one can also consider
its complement graph (up to self-loops), which is derived from the relation “� ‖ ”:

Definition 9. Given a net and its concurrency matrix, the sequentiality graph
is an undirected graph, whose vertices correspond to the places of the net, and
such that it exists an edge between two different vertices iff the value of the matrix
cell for the corresponding places is equal to “0”. There are no self-loops in the
sequentiality graph.

4 Solution Search

Bits vs Units. In Sect. 2.5, we have selected the number of bits for encoding
reachable markings (see Definition 6) as the most sensible criterion to finely
measure the quality of a decomposition. However, this criterion is not easy to
express in methods based on graph theory or SAT/SMT solving, because it
involves the transcendental function “log2” and the continuous-discrete conver-
sion function “
.�”. For this reason, our approaches do not directly focus on
reducing the number of bits specified in Definition 6, but target instead another
goal that is much simpler to implement: reducing the number of units in the
output NUPN. Unfortunately, reducing the number of units does not always
coincide with reducing the number of bits. Consider a network with 10 places:
a decomposition in 2 permanent units with 5 places each will require 6 bits,



Automatic Decomposition of Petri Nets into Automata Networks 15

whereas another decomposition in 3 permanent units with, respectively, 2, 2,
and 6 places will require 5 bits only14. However, a statistical analysis and our
experiments show that a search oriented towards reducing the number of units
also reduces, on average, the number of bits for encoding reachable markings.

Dichotomy vs Linear Search. We have seen above in Sect. 2.4 that all the solu-
tions of the decomposition problem have their number of leaf units n within
an interval [Min,Max ]. Having implemented dichotomy, ascending linear search
(i.e., starting from Min and incrementing n until a solution is found), and
descending linear search (starting from Max and decrementing n until no solution
is found), we observed that the latter is usually more efficient. A key advantage of
the latter approach is that it always produces a valid (yet perhaps sub-optimal)
solution, even if the search is halted due to some user-specified timeout limi-
tation. Whenever possible, we accelerate the convergence by asking the solver
whether it exists a solution having at most n leaf units (rather than a solution
having exactly n leaf units). If the solver finds a solution having m leaf units,
with m < n − 1, the next iteration will use m rather than n − 1.

Upper Bound Reduction. Having opted for descending linear search, we now
present three approaches for reducing the value of the upper bound Max (i.e.,
the number of places). This boosts efficiency by restricting the search space,
without excluding relevant solutions (the lower bound Min defined in Sect. 2.4
is kept unchanged):

1. As mentioned in Sect. 2.4, dead places, if present, can be put into any leaf
unit of the output NUPN, still preserving the unit-safeness property. With
respect to our quality criterion based on the number of bits, it would not be
wise to create one extra unit to contain all the dead places nor, even worse,
one extra unit per dead place. Instead, our approach is to put dead places
into “normal” units, taking advantage of free slots, i.e., unused bit values
in logarithmic encoding. For instance, if a non-permanent unit has n places,
there are m = 
log2(n+1)�−(n+1) free slots, meaning, if m is not zero, that
m dead places can be added to this unit without increasing its cost in bits.
If there are less free slots than dead places, then we augment the number
of free slots by adding one bit (or even more) to the unit having already
the largest number of places. Thus, in presence of D dead places, we start
by putting these places apart, discarding from the concurrency matrix the
corresponding lines and columns, all of which contain only cells equal to “0”.
We then perform a descending linear search starting from Max − D rather
than Max . Finally, we distribute the dead places into the resulting units as
explained above.

2. After discarding dead places, one can still start the descending linear search
from a lower value than Max − D. Let Sump be the sum, in the concurrency

14 The same observation holds for non-permanent units, e.g., 4 + 5 vs 7 + 1 + 1 places.



16 P. Bouvier et al.

matrix15, of all cell values on the line16 corresponding to place p. Let Sum
be the maximum, for all places p, of Sump. Clearly, Min ≤ Sum ≤ Max − D.
One can start the search from Sum (rather than Max − D) since no solution
has more than Sum leaf units. Indeed, Sum is equal to Δ + 1, where Δ is
the maximum degree of the concurrency graph17 (the increment “+1” cor-
responds to the diagonal cell, whose value is always “1”) and, from Brooks’
theorem (extended to possibly non-connected graphs), the number of colours
needed for the concurrency graph is at most Δ + 1, so there exists at least
one solution having at most Sum leaf units.

3. If the concurrency matrix was initially complete, and if the input NUPN
contains the “!unit safe” pragma, let W be the width of the input NUPN.
If this NUPN is not flat, one can modify it by keeping only its root unit and
leaf units, and by moving, for each non-leaf unit u, the local places of u into
any leaf unit nested in u; clearly, the modified NUPN is flat, unit safe18, and
has also width W . So, there exists at least one solution with W leaf units.
Thus, the descending linear search can be started from min(W,Sum − D)
rather than Sum − D, excluding the potential solutions having more leaf
units than the input NUPN.

5 Methods Based on Graph Colouring

As stated in Sect. 3.3, the decomposition problem can be expressed as a colouring
problem on the concurrency graph (see Definition 8). Thus, the simplest method
to perform decomposition is to invoke a graph coloring tool, keeping in mind
that graph colouring is an NP-complete problem. Moreover, if the concurrency
matrix was initially complete, the minimal number of colours (i.e., the chromatic
number of the graph) gives a decomposition with the smallest number of leaf
units.

Implementation and Experimentation. We decided to use the Color6 software19,
which is developed at Université de Picardie Jules Verne (France) and is one of
the most recent tools for graph colouring. Since Color6 does not necessarily com-
pute an optimal solution (i.e., with the chromatic number) but instead returns
a solution having at most a number of colors specified by the user, the tool must
be invoked repeatedly, using the linear decreasing search strategy described in 4.

We developed Bourne-shell and Awk scripts that convert the concurrency
graph into standard DIMACS format, invoke Color6 iteratively using descending
linear search, parse the output of Color6, and finally assign places to units upon

15 With or without dead places—this does not change the result since, given that
M0 �= ∅, there is always at least one place that is not dead.

16 Or column, since the concurrency matrix is symmetric.
17 With or without dead places.
18 Based upon the general definition of unit safeness [8, Sect. 3] for non-flat NUPNs.
19 https://home.mis.u-picardie.fr/∼cli/EnglishPage.html.

https://home.mis.u-picardie.fr/~cli/EnglishPage.html


Automatic Decomposition of Petri Nets into Automata Networks 17

completion of the iterations. The results obtained are presented, as for all other
decomposition methods, in Sect. 9.

We also experimented with dichotomy and ascending linear search, which we
found, on average, 8% and 18% slower than descending linear search; indeed,
Color6 often takes much more time to conclude there is no solution (i.e., when
given a number of colors smaller than the chromatic number) than to find a
solution when it exists.

6 Methods Based on Maximal Cliques

There is another (and, up to our knowledge, novel) approach to the decompo-
sition problem. In the sequentiality graph (see Definition 9), a clique is a set of
vertices that are pairwise connected (i.e., a complete subgraph), meaning that
a clique corresponds to a potential unit, i.e., a set of places having at most one
token in any reachable marking.

Colouring the concurrency graph is equivalent to finding, in the sequentiality
graph, a minimal set of cliques that covers all vertices. Instead, we use a software
tool that computes a maximal clique, i.e., one single clique containing as many
vertices as possible. Although this problem is also NP-complete, it is usually
faster to solve in practice than graph colouring.

The tool is invoked repeatedly: at each iteration, a maximal clique is found,
from which, a unit is created; the sequentiality graph is then simplified by remov-
ing the vertices and edges of the clique, and the next iteration takes place until
the sequentiality graph becomes empty. Hence, neither dichotomy nor linear
searches apply to the approach described in the present section.

Implementation and Experimentation. We experimented with four maximum-
clique tools: MaxCliqueDyn20, BBMC21, MaxCliquePara22—all developed at
Institut Jožef Stefan in Ljubljana (Slovenia), and MoMC23 developed at Univer-
sité de Picardie Jules Verne (France). We developed Bourne shell and Awk scripts
that generate sequentiality graphs in the DIMACS format, remove cliques from
these graphs, invoke the tools, and extract maximal cliques from their output.

7 Methods Based on SAT Solving

We now present methods that encode the constraints of the concurrency matrix
as propositional logic formulas passed to a SAT solver, contrary to the meth-
ods of Sect. 5 and 6, in which these constraints are expressed using graphs. We
believe that the use of SAT solving for the decomposition problem is a novel app-
roach. For efficiency, we generate formulas in Conjunctive Normal Form (CNF),
a restriction (natively accepted by most SAT-solvers) of propositional logic.
20 http://insilab.org/maxclique/.
21 http://commsys.ijs.si/∼matjaz/maxclique/BBMC.
22 http://commsys.ijs.si/∼matjaz/maxclique/MaxCliquePara.
23 https://home.mis.u-picardie.fr/∼cli/EnglishPage.html.

http://insilab.org/maxclique/
http://commsys.ijs.si/~matjaz/maxclique/BBMC
http://commsys.ijs.si/~matjaz/maxclique/MaxCliquePara
https://home.mis.u-picardie.fr/~cli/EnglishPage.html


18 P. Bouvier et al.

When applying decreasing linear search (see Sect. 4), one must produce a
formula asking whether it exists a decomposition having at most n units. For
each place p and each unit u, we create a propositional variable xpu that is true
iff place p belongs to unit u. We then add constraints over these variables: (i) For
each unit u and each two places p and p′ such that #p < #p′, where #p is a
bijection from places names to the interval [1, card (P )], if the cell (p, p′) of the
concurrency matrix contains the value “1”, we add the constraint ¬xpu ∨ ¬xp′u
to express that two concurrent places cannot be in the same unit; (ii) For each
place p, we could add the constraint

∨
u xpu to express that p belongs to at least

one unit, but this constraint is too loose and allows n! similar solutions, just by
permuting unit names; we thus replace the previous constraint by a stricter one
that breaks the symmetry between units: for each place p, we add the refined
constraint

∨
1≤#u≤min(#p,n) xpu, where #u is a bijection from unit names to the

interval [1, n].
Notice that no constraint requires that each place belongs to one single unit,

as such a constraint would generate large formulas (quadratic in the number of
units) when using the CNF fragment only. Thus, the SAT solver may compute
an overly general answer, which includes invalid decompositions in which a place
belongs to several units. We then refine this answer by assigning each of these
places to a single unit, also trying to minimize the number of bits corresponding
to the chosen valid decomposition. Our approach takes inspiration from the
first-fit-decreasing bin-packing algorithm: places are first sorted by increasing
numbers of units to which they can belong according to the SAT-solver; then,
each place is put into the unit having the most free slots (see Sect. 4) and, in
case of equality, the most local places.

Implementation and Experimentation. We experimented with two SAT solvers:
MiniSat, which was chosen for its popularity, and CaDiCaL, which solved the
most problems during the SAT Race 2019 competition. We developed Python
scripts that generate formulas in the DIMACS-CNF format, invoke a SAT solver,
parse its outputs, and assign places to units.

8 Methods Based on SMT Solving

We also considered SMT solvers, which accept formulas in richer logics than SAT
solvers, namely (fragments of) first-order logic. We encoded the decomposition
problem into five (quantifier-free) logic fragments: BV, DT, UFDT, IDL, and
UFIDL, which we define below. As in Sect. 7, we perform descending linear
search, generating formulas from the concurrency matrix for a given number n
of units.

BV corresponds to quantifier-free bit-vector logic, which supports fixed-size
boolean vectors and logical, relational, and arithmetical operators on these vec-
tors. Our encoding creates, for each place p, a bit vector bp of length n such
that bp[u] is true iff place p can belong to unit u. Constraints are then added in
the same way as for SAT solving, shifting from a quadratic set of propositional
variables to a linear set of bit vectors.



Automatic Decomposition of Petri Nets into Automata Networks 19

DT corresponds to quantifier-free data-type logic, which supports the defi-
nition of algebraic data types. Our encoding defines an enumerated type Unit,
which contains one value per unit; it creates also, for each place p, one variable
xp of type Unit. Then, constraints are added in the same way as for SAT solv-
ing, replacing each propositional variable xpu by the predicate xp = u, with the
difference that our encoding implicitly warrants that each place is assigned to
one, and only one, unit.

UFDT corresponds to quantifier-free uninterpreted-function data-type logic.
Our encoding is based on that of DT but, instead of the xp variables, defines
both an enumerated type Place, which contains one value per place, and an
uninterpreted function u : Place → Unit , each occurrence of xp being replaced
with u(p) in the constraints.

IDL corresponds to quantifier-free integer-difference logic, which supports
integer variables and arithmetic constraints on the difference between two vari-
ables. Our encoding is based on that of DT but declares the variables xp with
the integer type instead of Unit. Since integers are unbounded, each variable
xp whose place number #p is greater or equal than n must be constrained by
adding xp ∈ {1, ..., n}, since xp is not subject to a symmetry-break constraint.

UFIDL corresponds to quantifier-free uninterpreted-function integer-
difference logic. Our encoding is based on that of IDL, with the same changes
as for evolving from DT to UFDT. The additional constraint for each place p
not subject to symmetry breaking is u(xp) ∈ {1, ..., n}.

Implementation and Experimentation. We experimented with four SMT solvers:
Z3 and CVC4, which are general enough to support all the aforementioned logic
fragments, as well as Boolector and Yices, which support fewer fragments but
were among the two fastest solvers in their respective “single query tracks” of
the SMT-COMP 2019 competition. We developed Python scripts to generate
formulas in the standard SMT-LIB 2 format, invoke the SMT solvers, analyze
their output, and produce the decomposition.

We have 14 combinations (logic fragment, solver), to which we add a 15th
combination by processing the IDL fragment with the linear-optimization capa-
bilities of Z3: this is done by enriching the IDL formula with a (Z3-specific)
directive “min” that asks Z3 to compute a solution with the smallest number of
units; thus, no iteration is required for this approach, which we note “z3opt”.

9 Experiment Results

Validation of Results. We checked each output NUPN systematically to ensure
that: (i) it is syntactically and semantically correct, by running CÆSAR.BDD
(with option “-check”); (ii) it is presumably unit safe, by checking that none
of its units contains two places declared to be concurrent in the concurrency
matrix; if the concurrency matrix was initially complete, this guarantees unit
safeness; (iii) if the concurrency matrix was initially incomplete, we also check
that the output NUPN is presumably unit safe, by exploring (part of) its marking



20 P. Bouvier et al.

Table 3. Comparative results of our 22 decomposition methods

Decompos. method Success Failures Timeouts Total time Bit ratio Unit ratio

(HH:MM:SS) Total Mean Total Mean

col-color6 97.8% 13 338 14:20:01 76.4% 60.0% 71.9% 28.3%

clq-bbmc 99.1% 15 170 17:48:34 66.2% 57.7% 61.7% 27.8%

clq-maxcl 99.2% 15 157 17:11:48 68.1% 57.8% 63.5% 28.1%

clq-mcqd 99.1% 15 178 18:26:56 69.9% 57.8% 65.5% 27.9%

clq-momc 98.7% 16 213 19:00:01 73.7% 58.3% 69.0% 28.5%

sat-cadical 96.2% 12 697 26:57:30 73.1% 59.9% 69.4% 29.5%

sat-minisat 95.5% 12 795 31:59:00 77.9% 61.1% 74.3% 30.1%

smt-bv-boolector 95.1% 12 728 29:34:34 77.4% 60.5% 74.0% 30.4%

smt-bv-cvc4 94.2% 12 855 35:04:50 78.7% 61.4% 75.5% 31.3%

smt-bv-yices 95.4% 12 685 26:05:16 73.7% 61.3% 70.0% 30.1%

smt-bv-z3 94.0% 12 881 37:19:22 78.3% 61.7% 75.1% 31.4%

smt-dt-cvc4 92.9% 12 1104 48:50:21 81.9% 62.7% 79.0% 32.4%

smt-dt-z3 92.7% 12 1100 41:12:21 83.3% 62.4% 80.6% 32.7%

smt-idl-cvc4 92.5% 12 1220 47:59:45 84.6% 63.6% 81.7% 33.5%

smt-idl-yices 93.2% 12 1082 40:52:12 83.7% 63.0% 80.7% 32.2%

smt-idl-z3 95.0% 12 848 33:30:06 80.0% 61.3% 76.5% 30.6%

smt-idl-z3opt 87.3% 12 1921 73:01:03 87.2% 65.9% 85.1% 37.2%

smt-ufdt-cvc4 92.4% 12 1167 44:39:34 84.2% 63.5% 81.5% 33.1%

smt-ufdt-z3 92.9% 12 1078 40:36:39 82.9% 62.4% 80.2% 32.6%

smt-ufidl-cvc4 90.8% 12 1468 57:03:43 85.7% 64.7% 83.1% 34.6%

smt-ufidl-yices 94.9% 12 823 30:41:15 77.5% 60.9% 74.1% 30.6%

smt-ufidl-z3 94.0% 12 952 36:46:32 80.7% 61.8% 77.5% 31.4%

graph, still using CÆSAR.BDD with option “-check”, setting a timeout of one
minute for this exploration; (iv) the input and the output NUPNs have the same
structural and behavioural properties, including those of Table 1 and 2, but the
three last lines devoted to units in both tables; this is done by comparing the
outputs of CÆSAR.BDD (with option “-mcc”) under a timeout of one minute.

Presentation of Results. Table 3 summarize the experimental results for all our
decomposition methods listed in column 1 of this table. All the methods use the
concurrency matrices, which have been pre-computed (when possible) for each
input NUPN model of our collection. Each method was tried on each model, with
a timeout of two minutes per model. If a method failed (because, e.g., a model
was too large, its concurrency matrix absent, the constraints too complex for the
solver, etc.), the trivial solution was taken as the result. If a timeout occurred for
a method using descending linear search, the last computed intermediate solution
was retained. We produced a large number of output NUPNs (potentially 12,728
input NUPNs × 22 decomposition methods, actually 265,121 output NUPNs).
Column 2 (successes) gives the percentage of models decomposed by the corre-



Automatic Decomposition of Petri Nets into Automata Networks 21

sponding method, whether a timeout occurred or not. Column 3 (failures) gives
the number of models that the method failed to decompose, without occurrence
of a timeout. Column 4 (timeouts) give the number of models for which a time-
out occurred. Column 5 (total time) gives the time spent by the method on all
models, excluding matrix pre-computation and validation of results. Column 6
(bit ratio) measures the quality of the decomposition by giving the quotient of
the number of bits in the decomposed model divided by the number of bits in
the input model24; the “total” sub-column gives the quotient between the sums
of bits for all models, while the “mean” sub-column gives the average of the quo-
tients obtained for each model. Column 7 (unit ratio) does the same as Column 6
for the number of (leaf) units instead of bits.

Many observations can be drawn from Table 3. In a nutshell, the maximal-
cliques methods perform best: they are among the fastest approaches, with
the fewest timeouts, and produce the most compact decompositions—possibly
because they manage to handle large models for which the potential gains in bits
and units are the most important. Interestingly, our results contradict the claim
that BDD size is smaller when units have a balanced number of places [25]; one
rather observes that the most compact encodings are achieved using maximal
cliques, which produce fundamentally imbalanced decompositions by computing
very large cliques during the first iterations and very small ones at the end.

Comparison with Hippo. We compared our methods with the three decomposi-
tion methods (“comparability graphs”, “heuristic invariants”, and “hypergraph
colouring”) of Hippo, on all the 223 safe Petri nets available (after removing
duplicates) from the Hippo web portal. Our tool chain revealed that several of
these nets were incorrect and that the two latter decomposition methods could
produce invalid results; we reported these issues, later solved by the Hippo team.

Pursuing our assessment, we measured that the three methods of Hippo took,
respectively, 65 seconds, 25 min, and 1 hour 53 min to process the collection
of benchmarks. The Hippo portal uses a timeout of nearly 22-minutes, since,
for five of the models, [28] reports that decomposition using hypergraphs takes
more than one hour. Actually, the three methods could process, respectively,
70.5%, 92.5%, and 91.1% of the collection. In contrast, our tool chain took only
16 seconds to process 100% of the collection, using the Color6 tool on a 9-year
old laptop. The decomposed models produced by our tool chain are also more
compact, with an average bit ratio of 60.6%, compared to 80.6%, 92.2%, and
76.21% for the three methods of Hippo, respectively.

10 Conclusion

For the decomposition problem, which is nearly 50-year old, we presented various
methods to automatically translate an ordinary, safe Petri net into a flat NUPN
preserving all the structural and behavioural properties of the input model. For

24 If an input model is non-trivial, it is replaced by the equivalent trivial NUPN.



22 P. Bouvier et al.

such purpose, the concepts and results of the NUPN theory [8] have been found
remarkably well-adapted.

Our methods have been implemented in a complete tool chain that accepts
and produces models in standard PNML format. The tool chain takes advantage
of recent advances in graph algorithms and SAT/SMT solvers, and is modular,
allowing certain components to be replaced by more efficient ones. The tool chain
is helpful to automatically restructure “legacy” Petri nets and “upgrade” them
to NUPNs by inferring their (hidden or lost) concurrent structure.

Decomposition is a difficult problem, and several steps in our tool chain are
NP-complete or PSPACE-complete; thus, there will always exist arbitrarily large
Petri nets that cannot be decomposed. Yet, this is asymptotic complexity, which
does not infirm the high success rate (from 87.3% to 99.2%) of our methods
assessed on a large collection of 12,728 models from multiple, diverse origins.

References

1. Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering of
decision diagrams for systems with structural units. In: D’Souza, D., Narayan
Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 184–200. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68167-2 13

2. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002)

3. Balaguer, S., Chatain, T., Haar, S.: A concurrency-preserving translation from
time Petri nets to networks of timed automata. Formal Methods Syst. Des. 40(3),
330–355 (2012)

4. Bernardinello, L., De Cindio, F.: A survey of basic net models and modular net
classes. In: Rozenberg, G. (ed.) Advances in Petri Nets 1992. LNCS, vol. 609, pp.
304–351. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55610-9 177

5. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

6. Desel, J., Esparza, J.: Free Choice Petri nets. Cambridge University Press, Cam-
bridge (1995)

7. Eshuis, R.: Translating safe Petri nets to statecharts in a structure-preserving way.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 239–255.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 16

8. Garavel, H.: Nested-unit Petri nets. J. Log. Algebraic Method Program. 104, 60–85
(2019)

9. Garavel, H., Serwe, W.: State space reduction for process algebra specifications.
Theor. Comput. Sci. 351(2), 131–145 (2006)

10. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1–3), 147–167 (2007)

11. van Glabbeek, R., Goltz, U., Schicke-Uffmann, J.-W.: On distributability of Petri
nets. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 331–345. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 22

12. Hack, M.: Analysis of Production Schemata by Petri Nets, Master thesis (computer
science), MIT, Cambridge, MA, USA (1972)

https://doi.org/10.1007/978-3-319-68167-2_13
https://doi.org/10.1007/3-540-55610-9_177
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1007/978-3-642-05089-3_16
https://doi.org/10.1007/978-3-642-28729-9_22


Automatic Decomposition of Petri Nets into Automata Networks 23

13. Hack, M.: Extended State-Machine Allocatable Nets (ESMA), an Extension of Free
Choice Petri Net Results. Technical report, 78–1, MIT (1974)

14. ISO/IEC: High-level Petri Nets - Part 2: Transfer Format. IS 15909–2:2011 (2011)
15. Janicki, R.: Nets, Sequential components and concurrency relations. Theor. Com-

put. Sci. 29, 87–121 (1984)
16. Karatkevich, A., Andrzejewski, G.: Hierarchical decomposition of Petri nets for

digital microsystems design. In: Modern Problems of Radio Engineering, Telecom-
munications, and Computer Science, pp. 518–521. IEEE (2006)

17. Kovalyov, A.V.: Concurrency relations and the safety problem for Petri nets. In:
Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 299–309. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55676-1 17

18. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency
relation of free-choice signal transition graphs. In: Workshop on Discrete Event
Systems, pp. 1–6 (1996)

19. Mennicke, S., Oanea, O., Wolf, K.: Decomposition into open nets. In: Algorithmen
und Werkzeuge für Petrinetze, pp. 29–34. CEUR-WS.org (2009)

20. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical conformance
checking of process models based on event logs. In: Colom, J.-M., Desel, J. (eds.)
PETRI NETS 2013. LNCS, vol. 7927, pp. 291–310. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38697-8 16

21. Pastor, E., Cortadella, J., Peña, M.A.: Structural methods to improve the symbolic
analysis of Petri nets. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS,
vol. 1639, pp. 26–45. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48745-X 3

22. Petit, A.: Distribution and synchronized automata. Theor. Comput. Sci. 76(2–3),
285–308 (1990)

23. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 14

24. Schmidt, K.: Using Petri net invariants in state space construction. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 473–488. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 35

25. Semenov, A., Yakovlev, A.: Combining partial orders and symbolic traversal for
efficient verification of asynchronous circuits. In: CHDL. IEEE (1995)

26. Starke, P.H.: Analyse von Petri-Netz-Modellen. Teubner, Leitfäden und Monogra-
phien der Informatik (1990)

27. Wísniewski, R., Karatkevich, A., Adamski, M., Costa, A., Gomes, L.: Prototyping
of concurrent control systems with application of Petri nets and comparability
graphs. IEEE Trans. Control Syst. Technol. 26(2), 575–586 (2018)

28. Wísniewski, R., Wísniewska, M., Jarnut, M.: C-exact hypergraphs in concurrency
and sequentiality analyses of cyber-physical systems specified by safe Petri nets.
IEEE Access 7, 13510–13522 (2019)

https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1007/978-3-642-38697-8_16
https://doi.org/10.1007/3-540-48745-X_3
https://doi.org/10.1007/3-540-48745-X_3
https://doi.org/10.1007/3-540-65306-6_14
https://doi.org/10.1007/3-540-36577-X_35

	Automatic Decomposition of Petri Nets into Automata Networks – A Synthetic Account
	1 Introduction
	2 Problem Statement
	2.1 Basic Definitions
	2.2 Input Formalism
	2.3 Output Formalism
	2.4 Existence and Multiplicity of Solutions
	2.5 Criteria for Optimal Solutions

	3 Concurrent Places
	3.1 Concurrency Relation
	3.2 Concurrency Matrix
	3.3 Concurrency and Sequentiality Graphs

	4 Solution Search
	5 Methods Based on Graph Colouring
	6 Methods Based on Maximal Cliques
	7 Methods Based on SAT Solving
	8 Methods Based on SMT Solving
	9 Experiment Results
	10 Conclusion
	References




