l‘)

Check for
updates

Distributed Cube and Conquer with
Paracooba

Maximilian Heisinger, Mathias Fleury®)@®, and Armin Biere

Johannes Kepler University Linz, Linz, Austria
{maximilian.heisinger,mathias.fleury,armin.biere}@jku.at

Abstract. Cube and conquer is currently the most effective approach to
solve hard combinatorial problems in parallel. It organizes the search in
two phases. First, a look-ahead solver splits the problem into many sub-
problems, called cubes, which are then solved in parallel by incremental
CDCL solvers. In this tool paper we present the first fully integrated
and automatic distributed cube-and-conquer solver Paracooba targeting
cluster and cloud computing. Previous work was limited to multi-core
parallelism or relied on manual orchestration of the solving process. Our
approach uses one master per problem to initialize the solving process
and automatically discovers and releases compute nodes through elastic
resource usage. Multiple problems can be solved in parallel on shared
compute nodes, controlled by a custom peer-to-peer based load-balancing
protocol. Experiments show the scalability of our approach.

1 Introduction

SAT solvers have been successfully applied in many practical domains, includ-
ing cryptanalysis, hardware and software verification but also with increas-
ing interest have been used to solve hard mathematical problems [17,21,26].
Sequential state-of-the-art SAT solving combines the well-known conflict-driven-
clause-learning procedure (CDCL) [33,34] with sophisticated preprocessing tech-
niques [10,23] and other efficient heuristics for variable selection [6,28,30],
restarts [2,7,32], and clause database reduction [32]. While some authors argue
that there was “no major performance breakthrough in close to two decades”
[29], at the same time computers have become more and more powerful thanks
to the ubiquitous availability of multi-core processors and the increasing usage
of computers in the cloud. Thus improving the efficiency of parallel SAT solving
remains an important topic. Accordingly, beside the traditional parallel track,
the SAT Competition 2020 [19] features for the first time also a cloud track.

One approach to solve large problems in parallel consists in splitting the
problem into smaller, more manageable instances, for example, using cube and
conquer [16,20]. All these sub-problems are subsequently solved independently
in parallel. This method was used by Heule to settle some long-standing math-
ematical conjectures [17,21]. Splitting the problems was done automatically by
a tool, but then required to manually distribute instances for parallel solving.
© Springer Nature Switzerland AG 2020

L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 114-122, 2020.
https://doi.org/10.1007/978-3-030-51825-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_9&domain=pdf
http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0001-7170-9242
https://doi.org/10.1007/978-3-030-51825-7_9

Distributed Cube and Conquer with Paracooba 115

In this paper, we present PARACOOBA [15]. After splitting a problem with the
look-ahead solver MARCH, PARACOOBA transfers the sub-problems in an efficient
way to many nodes (including over network). It detects when new instances
become online and balances the work across all available nodes.

Other attempts for automatic and efficient distribution of problems exist,
but use divide and conquer: Problems are dynamically split when nodes are
underused (Sect.2). In contrast, PARACOOBA assumes the problem is already
split. Each node runs at least one instance of the SAT solver CADICAL [5]. The
sub-problems are solved incrementally to reuse information from the previous
solving. PARACOOBA relies on a custom protocol to automatically detect nodes
that are underused and balances work across all nodes, including newly joining
ones. It also supports disconnecting nodes by rebalancing the jobs (Sect. 3).

In the experiments, we focus on a single CNF cruxmiter, a miter for 32-bit
adder trees [25], which is considered a challenge for resolution-based solvers and
exemplary for the difficulties that arise in the verification of arithmetic circuits
(see also [24]). Such benchmarks were also used in the SAT Race 2019. Already
in the original work on cube and conquer similar multiplier equivalence checking
problems were shown to benefit from the cube-and-conquer approach. Our results
in Sect. 4 show that we get linear scaling with respect to the number of threads.

2 Preliminaries and Related Work

We use standard notations and refer the reader to the Handbook of Satisfiability
for an introduction to SAT [8] as well as to the chapter on parallel SAT solving [4]
in the Handbook of Parallel Constraint Reasoning [14].

One idea to improve solving of large instances is to distribute the work across
different machines, via either a diversification of the search or splitting of the
search space. In the first approach, several solvers are used as portfolio. By
changing some parameters used by SAT solvers, they heuristically search on
different parts of the search space and share some of the clauses they learned.
ManySAT [13] pioneered the approach, which is now used in various tools like
CRYPTOMINISAT [35], HORDESAT [3], PLINGELING [5], and SYRUP [1]. As soon
as any instance derives SAT or UNSAT, then the problem is solved.

We use another approach that divides the search space explicitly as pioneered
in [9,22,36] and refined in [16,20]. Solving the formula ¢ is equivalent to splitting
it into the two formulas p Az and p A—z and solving them. Unlike diversification,
the overall problem is only considered to be UNSAT if all sub-problems are. Still,
if any sub-problem is SAT, the overall problem is SAT, too. Splitting can be done
dynamically during solving whenever a problem is deemed too hard. This is used
for instance by PAINLESS [27] or MAPLEAMPHAROS [31]. These tools also share
clauses to get some of the benefits of portfolio solvers.

Splitting can also be done upfront by look-ahead. By splitting the formula
recursively, we obtain a formula of the form ¢ A ¢y, ..., ¢ A¢, where the conjunc-
tions ¢; are called cubes. We use MARCH [18] to split the problem: It produces
cubes, e.g., of the form LyLsL3, L1Ls—L3, ..., L1~ Ly—L3. The cubes can be

116 M. Heisinger et al.

represented as a binary tree, the cube tree, where cubes are a path to a leaf: At
each node, either the left (positive) or the right path (negative) is taken.

3 Architecture

PARACOOBA distinguishes between the masters that initiated work and workers
that do the actual solving. Each node can either explore the cube tree deeper by
sending work further (see Sect.3.1) or solve the problem itself if a leaf node of
the cube tree has been reached (Sect. 3.2). Nodes are also responsible for sending
the result SAT or UNSAT back. PARACOOBA supports joining of new nodes
dynamically, and the leaf nodes are able to wait for new tasks without consuming
resources or shut down automatically, which is important if PARACOOBA is run
in the cloud (Sect.3.3). Figure 1 gives an overview of the solving process.

3.1 Static Organization

To combine fast local solving with automatic distribution to networked compute
nodes, PARACOOBA sees tasks as paths in the cube tree. It distinguishes between
assigned tasks (path to leafs) that are waiting for an available local worker and
unassigned tasks. Only unassigned tasks are distributed further. A compute node
is mapped to one PARACOOBA process which contains a fixed-size thread pool of
local workers. Beside maintaining information on available nodes, every compute
node has a unique 64-bit ID.

Connections between compute nodes are established at any time either by
an integrated auto-discovery protocol or by providing a known peer at startup.
Once connected, each compute node receives the full formula sent by the master.
Then it announces that it is ready to receive tasks. Each compute node has a
solving context for every master with the problem and the cubes to solve, a
queue for unassigned tasks, and one for assigned tasks. Only paths in cube
trees are exchanged during solving and similar assigned tasks are solved by
the same solver. New contexts are created whenever a new master becomes
online, and old ones are deleted if its master becomes offline. By using low-level
socket functionality (UDP/TCP), PARACOOBA can be run without setting up a
specialized environment (as needed for MPT [12]).

New (unassigned) tasks received by a compute node are inserted into the
queue. When a compute node becomes idle, tasks with paths to leafs are instan-
tiated into assigned tasks to be solved locally, whereas shorter paths are split

PARACOOBA
PARACOOBA

y st~ Duamn
ARCH
CNF iCNF \\4’ paths iCNF YT CNF

Fig. 1. Workflow of PARACOOBA with two different daemons

Distributed Cube and Conquer with Paracooba 117

(by going deeper in the cube tree) into unassigned tasks that are distributed
further. The overall strategy is to solve tasks with longer paths locally (as we
are closer to leafs), while other tasks are distributed to further known compute
nodes.

The SAT solver CADICAL [5] solves the assigned tasks incrementally [11]. It
makes use of efficient preprocessing, including variable elimination and relying
on efficiently restoring preprocessing steps if necessary [11]. This also provides a
motivation for solving long paths locally: the cubes after a long shared path will
be similar, making it possible to reuse more information compared to solving
diverse cubes, where most of the preprocessing will have to be undone. If hard
sub-problems are clustered on a single compute node, some can be offloaded.

3.2 Solving

We use the look-ahead solver MARCH [18] to generate cubes. PARACOOBA takes
the output file containing the formula and the cubes as argument. This PARA-
COOBA instance is the master node. All compute nodes parse both formula and
cubes (reusing CADICAL’s parser). After parsing, the initial task consisting of
the empty path is created on the master compute node which will then branch
on the first variable of the cube tree and create new unassigned tasks. These are
either solved directly on the master or distributed to other compute nodes.

Paths in the cube tree are often transmitted across the network and should,
therefore, have a compact representation. We represent them as 64-bit unsigned
integers, where the first 58 bits describe the path in the binary tree and the
last 6 bits specify the length of the path. This representation entails a maxi-
mum tree height of 58, which limits the number of different tasks to 2°%. This
constraint is not an issue, since it is 11 orders of magnitude larger than the one
million cubes used for Heule’s proof for Pythagorean Triples [21] that already
created a 200TB proof. Communication between compute nodes is done using a
custom protocol, which defines messages sent over UDP and TCP. The former is
unreliable (packages can be dropped) and is used for non-critical messages, like
auto-discovery, while the (reliable) latter is used for transmission of formulas,
tasks, results, and status updates. Once a new compute node becomes known,
all other nodes establish a TCP connection to it, which is used for all remaining
transfers in order to circumvent UDP reliability issues in larger environments.

A sample interaction between a master and two daemon compute nodes is
given in Fig. 2. First, the master starts with a problem to solve. It broadcasts
an announcement request to all devices on the network. The daemons 1 and 2
answer the request and receive the formula in iCNF and a job initiator message.
After that, solving starts and a path is sent from master to daemon 1. Work is
rebalanced from daemon 1 to daemon 2. Once the problem is solved, the status
is bubbled up to master and each node is responsible for collecting the results
of offloaded jobs. Finally, master can conclude (UN)SAT.

Every daemon and every master sends a status message at every “tick”,
i.e., in configurable intervals with default 100 ms, to all compute nodes it knows.

118 M. Heisinger et al.

> Work
1 (TCP/UDP) Announcement Request

|
! (TCP/UDP) Online Announcement

-«

> >

|

|

|

|

|

: (TCP/UDP) Online Announcement :
< I
|

|

|

|

|

(TCP) CNF Formula in DIMACS

|
i
! !
| l
| |
' (TCP) Joblnitiatior |

(TCP) JobPath

t >

| |
<D Work < Work

|
|
|
! | (TCP) JobResult
|

|

Fig. 2. Interaction between master and two daemons, without status messages

|
|
[
(TCP) JobResult | :

These messages describe the current queue sizes and are used by the distribution
algorithm to decide whether and where tasks should be offloaded.

PARACOOBA allows an “m to n” relation between masters and daemons,
where daemons are used by different masters at the same time. Jobs are scheduled
based on path length, not on the identity of the master.

When distributing tasks to other compute nodes, the ID of the original mas-
ter, of the distribution target, and of the sender are always referenced, making
all PARACOOBA instances aware of senders and receivers of each task. For the
same reason, status messages of daemon compute nodes also contain a list of all
current contexts to announce the formulas for which they can solve tasks.

3.3 System Management

By automatically discovering compute nodes in the same network, PARACOOBA
can manage its overall resources automatically. Every daemon that is newly
discovered by a master gets the formula and the cubes and, once ready, can
receive tasks from all other connected compute nodes. Whenever a master node
goes offline, it sends an offline announcement, which removes its solving context
from all connected daemons, including all results and solver instances.

Compute nodes maintain a moving average of time between status messages
for all other connected nodes. If a remote compute node does not send a status
update early enough, it gets removed from the list of known nodes and all tasks
sent to that node get re-added to the local unassigned-task queue (and can, for
example, be offloaded again).

Distributed Cube and Conquer with Paracooba 119

To save compute resources, an auto-shutdown timer can be enabled to mea-
sure the time a compute node has been idle without active tasks to shut down
the compute node, if no new tasks are added before the timer runs out. Because
tasks get distributed to inactive nodes quickly, the timeout can be set to low
values (e.g., 3 s) to reduce cost, making PARACOOBA suited for cloud scenarios.

Table 1. Time to solve the cruxmiter depending on the number of threads.

Threads ¢ | Nodes n| Wall-Clock time T}* | Speedup T¢'/ T | Network speedup T¢'/ T4
1 1 23h 27 min 50s 1.00 0.05
2 1 9h 19min 40s 2.52 0.14
4 1 4h 57min 59s 4.72 0.25
8 1 2h 33 min 47s 9.15 0.49
16 1 1h 15min 38s 18.61 1.00
32 2 31min 51s 44.20 2.37
64 4 14 min 18s 98.45 5.29
128 8 7min 58s 176.72 9.49
256 16 5min 10s 272.48 14.64
512 32 3min 22s 418.17 22.47

4 Experiments

As motivated in the introduction, we tested our tool PARACOOBA on a 32-bit
cruxmiter problem [25], for which MARCH takes less than 10s to split the initial
problem into 52 520 cubes. We then run PARACOOBA on our compute cluster of 32
nodes connected through cheap commodity 1 Gbit ethernet cards. Each node con-
tains two 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode
disabled) and 128 GB main memory. Thus every node has 16 cores.

Table 1 shows the performance with respect to the number of threads.The
run-time distribution for solving cubes is heavily skewed. Most tasks need only
a few seconds, but some take more than a minute, limiting the performance
improvement that can be achieved by using more threads, as, following Amdahl’s
law, the possible speedup is limited by the time required to solve the slow-
est cube. After 2min, 5 instances of CADICAL are still running and it takes
another minute to solve those. PARACOOBA outperforms static scheduling done
by splitting the cubes upfront over 512 threads and solving each resulting iCNF
for each group of cubes incrementally by CADICAL (4 min 17 s wall-clock time).
We experimented with resplitting cubes, but could not improve solving time.

5 Conclusion

PARACOOBA is the first distributed cube-and-conquer solver. It relies on the
state-of-the-art look-ahead solver MARCH to split the problem and then effi-
ciently distributes the cubes over as many nodes as available. Our experiments

120 M. Heisinger et al.

reveal that the speedup is larger than the number of cores until saturation is
reached.

As future work, it would be interesting to support proof generation in the
nodes and store them in the master node.

Acknowledgment. This work is supported by the Austrian Science Fund (FWF),
NFN S11408-N23 (RiSE), the LIT project LOGTECHEDU, and the LIT AI Lab funded
by the State of Upper Austria. Daniela Kaufmann, Sibylle Mdhle, and the reviewers
suggested many textual improvements.

References

1. Audemard, G., Lagniez, J.-M., Szczepanski, N., Tabary, S.: A distributed version of
SYRUP. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 215-232.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3-14

2. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 118-126. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7_11

3. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156-172. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_12

4. Balyo, T., Sinz, C.: Parallel satisfiability. Handbook of Parallel Constraint Reason-
ing, pp. 3-29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-
3-1

5. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT Competition 2018. In: Heule, M., Jarvisalo, M., Suda, M. (eds.) Proceedings
of SAT Competition 2018 - Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2018-1, pp. 13-14. University of
Helsinki (2018)

6. Biere, A., Frohlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405-422. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24318-4_29

7. Biere, A., Frohlich, A.: Evaluating CDCL restart schemes. In: Berre, D.L.,
Jarvisalo, M. (eds.) POS 2015/POS 2018. EPiC Series in Computing, vol. 59,
pp. 1-17. EasyChair (2018). http://www.easychair.org/publications/paper/RdBL

8. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press

2009

9.](SIOCh)ingelr7 W., Sinz, C., Kiichlin, W.: Parallel propositional satisfiability check-
ing with distributed dynamic learning. Parallel Comput. 29(7), 969-994 (2003).
https://doi.org/10.1016/S0167-8191(03)00068-1

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61-75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

11. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, L. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136-154. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_9

12. Graham, R.L.: The MPI 2.2 standard and the emerging MPI 3 standard. In: Ropo,
M., Westerholm, J., Dongarra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, p.
2. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03770-2_2

https://doi.org/10.1007/978-3-319-66263-3_14
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1007/978-3-319-24318-4_29
http://www.easychair.org/publications/paper/RdBL
https://doi.org/10.1016/S0167-8191(03)00068-1
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-642-03770-2_2

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Distributed Cube and Conquer with Paracooba 121

Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4),
245-262 (2009)

Hamadi, Y., Sais, L. (eds.): Handbook of Parallel Constraint Reasoning. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-63516-3

Heisinger, M.: https://github.com/maximaximal/Paracooba.git. Accessed Feb
2020

Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourengo, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50-65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5_8

Heule, M.J.H.: Schur number five. In: Mcllraith, S.A., Weinberger, K.Q. (eds.)
AAAT 2018, pp. 6598-6606. AAAI Press (2018). https://www.aaai.org/ocs/index.
php/AAAI/AAATLS/paper/view/16952

Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: implement-
ing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345-359. Springer, Heidelberg
(2005). https://doi.org/10.1007/11527695-26

Heule, M.J.H., Jarvisalo, M., Suda, M., Iser, M., Balyo, T.: https://satcompetition.
github.io/2020/track_cloud.html. Accessed Feb 2020

Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. Hand-
book of Parallel Constraint Reasoning, pp. 31-59. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-63516-3_2

Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: cube-
and-conquer, a hybrid SAT solving method. In: Creignou, N., Berre, D.L. (eds.)
LJCAI 2017. LNCS, vol. 9710, pp. 228-245. IJCAI, August 2017. https://doi.org/
10.24963 /ijcai.2017/683

Hyvérinen, A.E.J., Junttila, T., Niemela, I.: A distribution method for solving SAT
in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430-435.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_39

Jarvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355-370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_-28

Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining
SAT and computer algebra. In: Barrett, C.W., Yang, J. (eds.) FMCAD 2019, pp.
28-36. IEEE (2019). https://doi.org/10.23919/FMCAD.2019.8894250

Kaufmann, D., Kauers, M., Biere, A., Cok, D.: Arithmetic verification problems
submitted to the SAT Race 2019. In: Heule, M., Jarvisalo, M., Suda, M. (eds.)
Proceedings of SAT Race 2019 - Solver and Benchmark Descriptions. Department
of Computer Science Series of Publications B, vol. B-2019-1, p. 49. University of
Helsinki (2019)

Konev, B., Lisitsa, A.: Computer-aided proof of Erdds discrepancy properties.
Artif. Intell. 224, 103-118 (2015). https://doi.org/10.1016/j.artint.2015.03.004
Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Modular and efficient divide-
and-conquer SAT solver on top of the painless framework. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 135-151. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0_8

Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123-140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2_9

https://doi.org/10.1007/978-3-319-63516-3
https://github.com/maximaximal/Paracooba.git
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1007/11527695_26
https://satcompetition.github.io/2020/track_cloud.html
https://satcompetition.github.io/2020/track_cloud.html
https://doi.org/10.1007/978-3-319-63516-3_2
https://doi.org/10.1007/978-3-319-63516-3_2
https://doi.org/10.24963/ijcai.2017/683
https://doi.org/10.24963/ijcai.2017/683
https://doi.org/10.1007/11814948_39
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.1016/j.artint.2015.03.004
https://doi.org/10.1007/978-3-030-17462-0_8
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9

122

29.

30.

31.

32.

33.

34.

35.

36.

M. Heisinger et al.

Marques-Silva, J.P.: SAT: Disruption, demise & resurgence (2019). pOS’2019.
http://www.pragmaticsofsat.org/2019/disruption.pdf

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC 2001, pp. 530-535. ACM (2001). https://doi.
org/10.1145/378239.379017

Nejati, S., et al.: A propagation rate based splitting heuristic for divide-and-conquer
solvers. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 251-260.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_16

Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307-323. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23

Silva, J.P.M., Lynce, 1., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131-153. I0S
Press (2009). https://doi.org/10.3233/978-1-58603-929-5-131

Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) ICCAD 1996, pp. 220-227. IEEE Com-
puter Society/ACM (1996). https://doi.org/10.1109/ICCAD.1996.569607

Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244-257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21(4), 543-560
(1996). https://doi.org/10.1006/jsco.1996.0030

http://www.pragmaticsofsat.org/2019/disruption.pdf
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-319-66263-3_16
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1006/jsco.1996.0030

	Distributed Cube and Conquer with Paracooba
	1 Introduction
	2 Preliminaries and Related Work
	3 Architecture
	3.1 Static Organization
	3.2 Solving
	3.3 System Management

	4 Experiments
	5 Conclusion
	References

