
SAT Heritage: A Community-Driven
Effort for Archiving, Building and

Running More Than Thousand SAT
Solvers

Gilles Audemard1(B), Löıc Paulevé2, and Laurent Simon2

1 CRIL, Artois University, Lens, France
audemard@cril.fr

2 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France
{loic.pauleve,lsimon}@labri.fr

Abstract. SAT research has a long history of source code and binary
releases, thanks to competitions organized every year. However, since
every cycle of competitions has its own set of rules and an adhoc way
of publishing source code and binaries, compiling or even running any
solver may be harder than what it seems. Moreover, there has been more
than a thousand solvers published so far, some of them released in the
early 90’s. If the SAT community wants to archive and be able to keep
track of all the solvers that made its history, it urgently needs to deploy
an important effort.

We propose to initiate a community-driven effort to archive and to
allow easy compilation and running of all SAT solvers that have been
released so far. We rely on the best tools for archiving and building
binaries (thanks to Docker, GitHub and Zenodo) and provide a consistent
and easy way for this. Thanks to our tool, building (or running) a solver
from its source (or from its binary) can be done in one line.

1 Introduction

As Donald Knuth wrote in [11], “The story of satisfiability is the tale of a tri-
umph of software engineering”. In this success story of computer science, the
availability of SAT solvers source code have been crucial. Archiving and main-
taining this important amount of knowledge may be as important as archiving
the scientific papers that made this domain. The release of the source code of
MiniSat [6] had, for instance, a dramatic impact on the field. However, nothing
has yet been done to ensure that source code and recipes to build SAT solvers
will be archived in the best possible way. This is a recent but important concern
in the more broadly field of computer science. The Software Heritage [3] initia-
tive is, for instance, a recent and strong initiative to handle this. In the domain
of SAT solvers, however, collecting and archiving may not be sufficient: we must
embed the recipe to build the code and to run it in the most efficient way. As
input format for SAT solvers remains the same since more than 25 years [4],
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 107–113, 2020.
https://doi.org/10.1007/978-3-030-51825-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_8

108 G. Audemard et al.

it is always possible to compare the performances of all existing solvers, given
a suitable way of compiling and running them. At that time, some code was
using EGCS, a fork of GCC 2.8 including more features. Facebook and Google
didn’t exist and Linux machines were running with kernels 1.X. Solvers were
distributed with source code to be compiled on Intel or SPARC computers. For-
tunately enough, binaries for Intel 386 machines distributed at that time are still
executable on recent computers, given the availability of compatible libraries.

Collecting and distributing SAT solvers source code is, luckily, not new. SAT
competitions, organized since the beginning of the 21st century, have almost
always forced the publication of the source code of submitted solvers. If source
code was not distributed, binaries were often available. However, since the first
competitions, the landscape of computer science has changed a lot. New tech-
nologies like Docker [5] are now available, changing the way tools are distributed.

We propose in this work to structure and bootstrap a collective effort to main-
tain a comprehensive and user-friendly library of all the solvers that shaped the
SAT world. We build our tool, called SAT Heritage, on top of other recent tools,
typically developed for archiving and distributing source code and applications,
like Docker [5], GitHub [8], Guix [9], Zenodo [22]. The community is invited to
contribute by archiving, from now on, all the solvers used in competitions (and
papers). We also expect authors of previous solvers to contribute by adding
informations about their solvers or special command lines not especially used
during competitive events. Our tool allows, for instance, to add a DOI (thanks
to Zenodo) to the exact version of any solver used in a paper, allowing simple
but powerful references to be used.

In summary, the goals of our open-source tool are to:

– Collect and archive all SAT solvers, binaries and sources,
– Easily retrieve a Docker image with the binary of any solver, directly from

the Docker Hub, or, when source code is available, by locally building the
image from the source code of the solver,

– Allow to easily run any SAT solver that have ever been available (typically
in the last 30 years), by a one line call (consistent over all solvers),

– Open an convenient solution for reproducibility (binaries, source code and
receipt to build binaries are archived in a consistent way), thanks to strong
connection with tools like Guix and Zenodo.

2 History of SAT Solvers Releases and Publications

The first SAT competitions happened in the 90’s [1,2]. Their goals were multiple:
collect and compare SAT solvers performances in the fairest possible way, collect
and distribute benchmarks, and also take a snapshot of the performances reached
so far. Table 1 reports the number of SAT solvers that took part in the different
competitions. We counted more than a thousand solvers, but even counting
them was not an easy task: one source code can hide a number of subversions
(with distinct parameters) and distinct tracks, and some information were only
partially available.

SAT Heritage 109

Table 1. Number of solvers to the different competitions. Note that some solvers may
be counted twice or more (some solvers did not change from year to the next or have
been included in a competition as reference). (*) binaries and sources are available, but
by navigating individually to each solver result. Different numbers indicate different
organizers and different way of distributing results, source code (s) and binaries (b).

Date #Solvers Collection Type Date #Solvers Collection Type

≤2000 24 Satex s/b 2011 104 Contest (2) s/b

2002 27 Contest (1) b 2012 65 Challenge -

2003 33 Contest (1) b 2013 140 Contest (3) s(*)/b(*)

2004 63 Contest (1) b 2014 150 Contest (3) s(*)/b(*)

2005 47 Contest (1) b 2015 31 Race (2) -

2006 16 Race (1) - 2016 32 Contest (4) s/b

2007 31 Contest (2) s/b 2017 71 Contest (4) s/b

2008 19 Race (1) - 2018 66 Contest (4) s/b

2009 64 Contest (2) s/b 2019 55 Race (3) s/b

2010 20 Race (1) - Total 1058

Following the ideas of these first competitions organized in the 90’s, and
thanks to the development of the web, the satex [17] website published solvers
and benchmarks gathered by the website maintainer. satex was running SAT
solvers on only one personal computer. Some solvers were modified to comply
with the input/output of the satex framework (like a normalized exit code
value). It was a personal initiative, made possible by the relatively few solvers
available (all solvers of the initial satex are available in our tool).

During the first cycle of competitions (numbered 1 in Table 1) [16], submitters
had to compile a static binary of their solver (to prevent library dependencies)
via remote access to the same computer. To ensure the deployment of their
solver, this computer had the exact same Linux version as the one deployed on
the cluster used to run the contest. Some solvers were coming from industry,
which explains why no open source code was mandatory: the priority was to
draw the most accurate picture of solvers performances. However, it was quickly
decided (competitions numbered 2 in the above table) that it was even more
important to require submitters to open their code. Binaries were then allowed
to enter the competition, but only in the demonstration category (no prizes).
More recently, thanks to the starexec environment [19], compilation of solvers
was somehow normalized (an image of a virtual Linux machine on which the
code would be built and run was distributed). With each cycle of competition or
race, came its own set of rules with an ad hoc way of publishing source code and
binaries, with a non uniform way of providing details on which parameters to
use. For example, since 2016, solvers must provide a certificate for unsatisfiable
instances [10,21]. One has thus to go through all the solvers to find the correct
parameters for running them without proof logging.

110 G. Audemard et al.

Thus, despite the increasing importance of software archiving [3], the way
SAT solvers are distributed had not really changed in the last 25 years. It is still
mainly done via personal websites, or SAT competitions and races websites, each
cycle of events defining its own rules for this. As a result, it is often unclear how
to recover any SAT solver (same code, same arguments) used in many papers,
old or recent. It is even more questionable whether, despite the importance of
SAT solvers source code, we are able to correctly archive and maintain them.

3 SAT Heritage Docker Images

The SAT Heritage project provides a centralized repository of instructions to
build and execute the SAT solvers involved in competitions since the early ages
of SAT. To that aim, it relies on Docker images which are self-contained Linux-
based environments to execute binaries. Docker allows to explicitly mention all
the packages needed to compile the source code and to build a temporary image
(the “builder”) for compiling the solver. Then, the compiled solver is embedded
in another, lighter, image which contains only the libraries required to execute it.
So, each version of each collected solver is made available in a dedicated Docker
image. Thanks to the layer structure of images, all solvers sharing the same
environment will share the major part of the image content, thus substantially
saving disk space. At the end, the Docker image will not be much heavier than
the binary of the solver.

Docker images can be executed on usual operating systems. On Linux,
Docker offers the same performance as native binaries: only filesystem and net-
work operations have a slight overhead due to the isolation [7], which is not of
concern for SAT solvers. On other systems, the images are executed within a vir-
tual machine, adding a noticeable performance overhead, although considerably
reduced on recent hardware [7].

3.1 Architecture

The instructions to build and run the collected solvers are hosted publicly on
GitHub [13], on which the community is invited to contribute.

The solvers are typically grouped by year of competition. Images are then
named as satex/<solver-name>:<year>.

The images are built by compiling solver sources whenever available. The
compiling environment matches with a Linux distribution of the time of the
competition. We selected the Debian GNU/Linux distribution which provides
Docker images for each of its version since 2000. For instance, the solvers from
the 2000 competition are built using the Debian “Potato” as it was back at
that time. In principle, each solver can have its own recipe and environment
for building and execution. Nevertheless, we managed to devise Docker recipes
compatible with several generations of competitions. The architecture of the
repository also allows custom sets of solvers. For example, the SAT Heritage
collection includes the different Knuth’s solvers or solvers with Java or Python.

SAT Heritage 111

The image building Docker recipes indicate where to download the sources
or the binaries whenever the former are not available. At the time of the writing
of this article, most recipes use URL from the website of the SAT competitions.
In order to provide as most as persistent locations as possible, we are regularly
moving more resources on Zenodo services to host sources and binaries in a near
future [15] (currently, only the binaries of the original satex and the 2002’s
competition are hosted on it).

The images can be built locally from the git repository, and are also available
for download from the main public Docker repository [14], that distributes “offi-
cial” binaries of solvers. This allows to directly run any collected (or compiled)
solver very quickly.

3.2 Running Solvers

We provide a Python script, called satex, which eases the execution and manage-
ment of available Docker images, although images can be directly run without
it. The script can be installed using pip utility: pip3 install -U satex.

The list of available solvers can be fetched using the command satex list.
We provide a generic wrapper in each image giving a unified mean to invoke

the solver: a DIMACS file (possibly gzipped) as first argument, and optionally
an output file for the proof:

run a solver on a cnf file

satex run cadical :2019 file.cnf

run and produce a proof

satex run glucose :2019 file.cnf proof

The satex info command gives, together with general information on the
solver and the image environment, the specific options used for the run. Alter-
natively, custom options can be used with the satex run-raw command. If the
image has not been built locally, it will attempt to fetch it from the online Docker
repository. See the satex -h for other available commands, such as extracting
binaries out of Docker images and invoking shells within a given image.

3.3 Building and Adding New Solvers

The building of images, which involve the compilation of the solvers when pos-
sible, also relies on Docker images, and thus only requires Docker and Python
for the satex command. The following command, executed at the root of the
sat-heritage/docker-images repository, will build the matching solvers with
their adequate recipe:

satex build ’*:2000’ # build all 2000 solvers

Sets of solvers are added by specifying which Docker recipes to use for build-
ing the images and how to invoke the individual solvers. Managing sets of solvers
allows sharing common configurations (such as linux distributions, compilers and
so on) for docker images. A complete and up-to-date documentation can be found
in the README file of the repository.

112 G. Audemard et al.

4 Ensuring Reproducibility

Reproducibility is a corner stone of science. In computer science, it recently
appealed for significant efforts by researchers, institutions and companies to
devise good practices and provide adequate infrastructures. Among the numer-
ous initiatives, Software Heritage [3,18] and Zenodo [12,22] are probably the
most important efforts for archiving source code, repositories, datasets, and
binaries, for which they provide persistent storage, URLs, and references (DOI).
Another example is the GitHub Archive Program, a repository on a 500-years
lifespan storage preserved in the Artic World Archive [20]. Created more recently,
the Guix [9] initiative aims at keeping the details of any Linux machine config-
uration, thanks to a declarative system configuration. External URL used for
building any image are also archived. Our tool produces Docker images that
can be easily frozen thanks to Guix, by building Guix images from the Dock-
erfile recipe. It is also worth mentioning that Guix has strong connections with
Software Heritage and GitHub.

If we look at reproducibility of SAT solvers experiments on a longer time
scale, we can expect that, some day, current binaries (for i386) will not genuinely
run on computers any more. We can expect, however, that there will be i386
emulators. Once such an emulator is set up, we can also expect Docker to be
available on it, and then all the images we built will be handled natively. If
not, as Docker recipes are plain text, it will be easy to convert them to another
framework.

Therefore, facilitating the accessibility of software in time now boils down
to simple habits, such as using source versioning platforms, taking advantage
of services like Zenodo or Software Heritage to freeze packages dependencies,
source code, binaries, and benchmarks, and provide Docker images to give both
environments and recipes to build and run your software.

5 Conclusion

We presented a tool for easily archiving and running all SAT solvers produced
so far. Such a tool is needed because of (1) source code and experiments are
crucial for the SAT community and (2) there are already too many SAT solvers
produced so far, with many different ways of publishing sources.

In order to complete our tool we think at further improvements, like includ-
ing Docker images for compiling SAT solvers for other architectures than i386
(ARM for instance), but also initiating another important effort for the com-
munity: including Docker images for benchmarks generations and maintenance.
Many benchmarks are combinatoric ones, typically generated by short programs.
These generators are generally not distributed by the different competitive events
and may contain a lot of information on the structure of the generated problems.
We also think that our tool could be very interesting for SAT solvers configura-
tions and easy cloud-deployment in a portfolio way. We also expect our work to
give the community the best possible habits for state of the art archiving and
reproducibility practices.

SAT Heritage 113

References

1. Buro, M., Buning, H.K.: Report on a SAT competition. Technical report (1992)
2. Crawford, J.: International competition and symposium on satisfiability testing

(1996)
3. Di Cosmo, R., Zacchiroli, S.: Software heritage: why and how to preserve software

source code. In: International Conference on Digital Preservation, pp. 1–10 (2017)
4. Second challenge on satisfiability testing organized by the center for discrete math-

ematics and computer science of Rutgers University (1993)
5. https://www.docker.com
6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

7. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–
172 (2015)

8. https://www.github.com
9. https://guix.gnu.org

10. Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs.
In: Formal Methods in Computer-Aided Design, FMCAD, pp. 181–188 (2013)

11. Knuth, D.E.: The art of computer programming, vol. 4, p. iv, Fascicle 6 (2015)
12. Peters, I., Kraker, P., Lex, E., Gumpenberger, C., Gorraiz, J.I.: Zenodo in the

spotlight of traditional and new metrics. Front. Res. Metrics Anal. 2, 13 (2017)
13. https://github.com/sat-heritage/docker-images
14. https://hub.docker.com/u/satex
15. https://zenodo.org/communities/satex
16. Simon, L., Le Berre, D., Hirsch, E.A.: The SAT2002 competition report. Ann.

Math. Artif. Intell. 43(1), 207–342 (2005)
17. Simon, L., Chatalic, P.: SATEx: a web-based framework for SAT experimentation.

Electron. Notes Discret. Math. 9, 129–149 (2001)
18. https://www.softwareheritage.org
19. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure

for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6 28

20. Thorkildsen, M., Sjøvik, J.-F., Bryde, B.: Preserving irreplaceable national digital
cultural heritage in the arctic world archive. In: Archiving Conference, vol. 2019,
pp. 39–41. Society for Imaging Science and Technology (2019)

21. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

22. https://zenodo.org

https://www.docker.com
https://doi.org/10.1007/978-3-540-24605-3_37
https://www.github.com
https://guix.gnu.org
https://github.com/sat-heritage/docker-images
https://hub.docker.com/u/satex
https://zenodo.org/communities/satex
https://www.softwareheritage.org
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://zenodo.org

	SAT Heritage: A Community-Driven Effort for Archiving, Building and Running More Than Thousand SAT Solvers
	1 Introduction
	2 History of SAT Solvers Releases and Publications
	3 SAT Heritage Docker Images
	3.1 Architecture
	3.2 Running Solvers
	3.3 Building and Adding New Solvers

	4 Ensuring Reproducibility
	5 Conclusion
	References

