
On Weakening Strategies for PB Solvers

Daniel Le Berre1, Pierre Marquis1,2, and Romain Wallon1(B)

1 CRIL, Univ Artois & CNRS, Lens, France
{leberre,marquis,wallon}@cril.fr

2 Institut Universitaire de France, Paris, France

Abstract. Current pseudo-Boolean solvers implement different variants
of the cutting planes proof system to infer new constraints during con-
flict analysis. One of these variants is generalized resolution, which allows
to infer strong constraints, but suffers from the growth of coefficients
it generates while combining pseudo-Boolean constraints. Another vari-
ant consists in using weakening and division, which is more efficient in
practice but may infer weaker constraints. In both cases, weakening is
mandatory to derive conflicting constraints. However, its impact on the
performance of pseudo-Boolean solvers has not been assessed so far. In
this paper, new application strategies for this rule are studied, aiming to
infer strong constraints with small coefficients. We implemented them in
Sat4j and observed that each of them improves the runtime of the solver.
While none of them performs better than the others on all benchmarks,
applying weakening on the conflict side has surprising good performance,
whereas applying partial weakening and division on both the conflict and
the reason sides provides the best results overall.

Keywords: PB constraint · Constraint learning · Cutting planes

1 Introduction

The last decades have seen many improvements in SAT solving that are at the
root of the success of modern SAT solvers [5,13,15]. Despite their practical effi-
ciency on many real-world instances, these solvers suffer from the weakness of
the resolution proof system they use in their conflict analyses. Specifically, when
proving the unsatisfiability of an input formula requires an exponential number of
resolution steps – as for pigeonhole-principle formulae [9] – a SAT solver cannot
find a refutation proof efficiently. This motivated the development of pseudo-
Boolean (PB) solvers [17], which take as input conjunctions of PB constraints
(linear inequations over Boolean variables) and apply cutting planes based infer-
ence to derive inconsistency [8,10,16]. This inference system is stronger than the
resolution proof system, as it p-simulates the latter: any resolution proof can be
translated into a cutting planes proof of polynomial size [2]. Using such a proof
system may, in theory, make solvers more efficient: for instance, a pigeonhole
principle formula may be refuted with a linear number of cutting planes steps.
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However, in practice, PB solvers fail to keep the promises of the theory. In
particular, they only implement subsets of the cutting planes proof system, which
degenerate to resolution when given a CNF formula as input: they do not exploit
the full power of the cutting planes proof system [20]. One of these subsets is
generalized resolution [10], which is implemented in many PB solvers [1,4,11,19].
It consists in using the cancellation rule to combine constraints so as to resolve
away literals during conflict analysis, as SAT solvers do with the resolution rule.
Another approach has been introduced by RoundingSat [7], which relies on the
weakening and division rules to infer constraints having smaller coefficients to
be more efficient in practice. These proof systems are described in Sect. 2.

This paper follows the direction initiated by RoundingSat and investigates to
what extent applying the weakening rule may have an impact on the performance
of PB solvers. First, we show that applying a partial weakening instead of an
aggressive weakening as proposed in [7] allows to infer stronger constraints while
preserving the nice properties of RoundingSat. Second, we show that weakening
operations can be extended to certain literals that are falsified by the current
partial assignment to derive shorter constraints. Finally, we introduce a trade-
off strategy, trying to get the best of both worlds. These new approaches are
described in Sect. 3, and empirically evaluated in Sect. 4.

2 Pseudo-Boolean Solving

We consider a propositional setting defined on a finite set of classically inter-
preted propositional variables V . A literal l is a variable v ∈ V or its negation v̄.
Boolean values are represented by the integers 1 (true) and 0 (false), so that
v̄ = 1 − v. A PB constraint is an integral linear equation or inequation over
Boolean variables. Such constraints are supposed, w.l.o.g., to be in the normal-
ized form

∑n
i=1 αili ≥ δ, where αi (the coefficients or weights) and δ (the degree)

are positive integers and li are literals. A cardinality constraint is a PB constraint
with its weights equal to 1 and a clause is a cardinality constraint of degree 1.

Several approaches have been designed for solving PB problems. One of them
consists in encoding the input into a CNF formula and let a SAT solver decide
its satisfiability [6,14,18], while another one relies on lazily translating PB con-
straints into clauses during conflict analysis [21]. However, such solvers are based
on the resolution proof system, which is somewhat weak : instances that are hard
for resolution are out of reach of SAT solvers. In the following, we consider instead
solvers based on the cutting planes proof system, the PB counterpart of the res-
olution proof system. Such solvers handle PB constraints natively, and are based
on one of the two main subsets of cutting planes rules described below.

2.1 Generalized Resolution Based Solvers

Following the CDCL algorithm of SAT solvers, PB solvers based on generalized
resolution [10] make decisions on variables, which force other literals to be sat-
isfied. These propagated literals are detected using the slack of each constraint.
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Definition 1 (slack). Given a partial assignment ρ, the slack of a constraint∑n
i=1 αili ≥ δ is the value

∑n
i=1,ρ(li) �=0 αi − δ.

Observation 1. Let s be the slack of the constraint
∑n

i=1 αili ≥ δ under some
partial assignment. If s < 0, the constraint is currently falsified. Otherwise, the
constraint requires all unassigned literals having a weight α > s to be satisfied.

Example 1. Let ρ be the partial assignement such that ρ(a) = 1, ρ(c) = ρ(d) =
ρ(e) = 0 (all other variables are unassigned). Under ρ, the constraint 6b̄ + 6c +
4e+f +g+h ≥ 7 has slack 2. As b̄ is unassigned and has weight 6 > 2, this literal
is propagated (the constraint is the reason for b̄). This propagation falsifies the
constraint 5a + 4b + c + d ≥ 6, which now has slack −1 (this is a conflict).

When a conflict occurs, the solver analyzes this conflict to derive an assertive
constraint, i.e., a constraint propagating some of its literals. To do so, it applies
successively the cancellation rule between the conflict and the reason for the
propagation of one of its literals (“LCM” denotes the least common multiple):

αl +
∑n

i=1 αili ≥ δ βl̄ +
∑n

i=1 βili ≥ δ′ μα = νβ = LCM(α, β)
(canc.)∑n

i=1(μαi + νβi)li ≥ μδ + νδ′ − μα

To make sure that an assertive constraint will be eventually derived, the con-
straint produced by this operation has to be conflictual, which is not guaranteed
by the cancellation rule. To preserve the conflict, one can take advantage of the
fact that the slack is subadditive: the slack of the constraint obtained by apply-
ing the cancellation between two constraints is at most equal to the sum of the
slacks of these constraints. Whenever the sum of both slacks is not negative, the
constraint may not be conflictual, and the weakening and saturation rules are
applied until the slack of the reason becomes low enough to ensure the conflict
to be preserved (only literals that are not falsified may be weakened away).

αl +
∑n

i=1 αili ≥ δ
(weakening)∑n

i=1 αili ≥ δ − α

∑n
i=1 αili ≥ δ

(saturation)∑n
i=1 min(δ, αi)li ≥ δ

Example 2 (Example 1 cont’d). As 5a + 4b + c + d ≥ 6 is conflicting and b̄ was
propagated by 6b̄+6c+4e+f +g +h ≥ 7, the cancellation rule must be applied
between these two constraints to eliminate b. To do so, the conflict side (i.e., the
first constraint) has to be multiplied by 3 and the reason side (i.e., the second
constraint) by 2, giving slack −3 and 4, respectively. As the sum of these values
is equal to 1, the resulting constraint is not guaranteed to be conflicting. Thus,
the reason is weakened on g and h and saturated to get 5b̄ + 5c + 4e + f ≥ 5,
which has slack 1. To cancel b out, this constraint is multiplied by 4 and the
conflict by 5, giving 25a + 25c + 16e + 5d + 4f ≥ 30, which has slack −1.
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This approach has several drawbacks. Observe in Example 2 the growth of the
coefficients in just one derivation step. In practice, there are many such steps dur-
ing conflict analysis, and the learned constraints will be reused later on, so that
coefficients will continue to grow, requiring the use of arbitrary precision arith-
metic. Moreover, after each weakening operation, the LCM of the coefficients
must be recomputed to estimate the slack, and other literals to be weakened
must be found. The cost of these operations motivated the development of alter-
native proof systems, such as those weakening the derived constraints to infer
only cardinality constraints [1], or those based on the division rule.

2.2 Division Based Solvers

To limit the growth of the coefficients during conflict analysis, RoundingSat [7]
introduced an aggressive use of the weakening and division rules.

∑n
i=1 αili ≥ δ r > 0

(division)∑n
i=1�αi

r �li ≥ � δ
r �

When a conflict occurs, both the conflict and the reason are weakened so as to
remove all literals not falsified by the current assignment and having a coefficient
not divisible by the weight of the literal used as pivot for the cancellation, before
being divided by this weight. This ensures that the pivot has a weight equal to 1,
which guarantees that the result of the cancellation will be conflictual [3].

Example 3 (Example 2 cont’d). The weakening operation is applied on both the
conflict 5a + 4b + c + d ≥ 6 and the reason 6b̄ + 6c + 4e + f + g + h ≥ 7, yielding
4b + c + d ≥ 1 and 6b̄ + 6c + 4e ≥ 4, respectively. Both constraints are then
divided by the coefficient of the pivot (4 and 6, respectively), giving b+c+d ≥ 1
and b̄ + c + e ≥ 1. Applying the cancellation rule on these two constraints gives
2c + d + e ≥ 1, which is equivalent to the clause c + d + e ≥ 1.

The RoundingSat approach succeeds in keeping coefficients small, and its
aggressive weakening allows to find the literals to remove efficiently. However,
some constraints inferred by this solver may be weaker than those inferred with
generalized resolution (compare the constraints derived in Examples 2 and 3).

3 Weakening Strategies

As explained before, the weakening rule is mandatory in PB solvers to main-
tain the inferred constraints conflictual. In the following, we introduce different
strategies for applying this rule in PB solvers, designed towards finding a tradeoff
between the strength of the inferred constraints and their size.
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3.1 Weakening Ineffective Literals for Shorter Constraints

Within CDCL solvers, one captures the reason for a conflict being encountered.
A conflict occurs when a variable is propagated to both 0 and 1. Intuitively,
understanding why such a conflict occurred amounts to understanding why these
values have been propagated. In the PB case, a constraint may be conflicting
(resp. propagate literals) even if it contains literals that are unassigned or already
satisfied (see Example 1). However, conflicts (resp. propagations) depend only on
falsified literals (the slack of a constraint changes only when one of its literals is
falsified). Literals that are not falsified are thus ineffective: they do not play a
role in the conflict (resp. propagation), and may thus be weakened away. We can
go even further: when most literals are falsified, weakening some of them may
still preserve the conflict (resp. propagation), as shown in the following example.

Example 4. Let ρ be the partial assignment such that ρ(a) = ρ(c) = ρ(f) = 0 (all
other variables are unassigned). Under ρ, 3ā+3b̄+c+d+e ≥ 6 has slack 2, so that
literal b̄ is propagated to 1. This propagation still holds after weakening away
ā, d and e, giving after saturation b̄ + c ≥ 1. Similarly, consider the conflicting
constraint 2a+b+c+f ≥ 2. After the propagation of b̄, weakening the constraint
on c and applying saturation produces a + b + f ≥ 1, which is still conflicting.
In both cases, the slack allows to detect whether a literal can be weakened.

Observe that the constraints obtained are shorter, but are always clauses.
This guarantees that the resulting constraint will be conflictual, but, if this
operation is performed on both sides, only clauses can be inferred, and the proof
system boils down to resolution, as in SATIRE [21] or Sat4j-Resolution [11].

Example 5 (Example 4 cont’d). If a resolution step is performed between the
weaker constraints b̄ + c ≥ 1 and a + b + f ≥ 1, the clause a + c + f ≥ 1 is
inferred. However, if only one side is weakened, for example the conflict side, the
cancellation between 3ā + 3b̄ + c + d + e ≥ 6 and a + b + f ≥ 1 produces the
constraint 3f + c + d + e ≥ 3. Observe that, when the weakening operation is
applied at the next step, the stronger clause c+f ≥ 1 is inferred after saturation.

3.2 Partial Weakening for Stronger Constraints

To avoid the inference of constraints that are too weak to preserve the strength
of the proof system, an interesting option is to use partial weakening. Indeed,
the weakening rule, as described above, can be generalized as follows.

αl +
∑n

i=1 αili ≥ δ ε ∈ N 0 < ε ≤ α
(partial weakening)

(α − ε)l +
∑n

i=1 αili ≥ δ − ε

This rule is rarely used in practice by PB solvers, and the weakening rule
(i.e., the case when ε = α) is often preferred. However, partial weakening gives
more freedom when it comes to inferring new constraints, and allows to infer
stronger constraints. We implemented a variant of RoundingSat which uses this
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rule as follows. Before cancelling a literal out during conflict analysis, all literals
that are not currently falsified and have a coefficient not divisible by the weight
of the pivot are partially weakened (instead of simply weakened). This operation
is applied so that the resulting coefficient becomes a multiple of the weight of
the pivot. This approach preserves the nice properties of RoundingSat (see [7,
Proposition 3.1 and Corollary 3.2]), and in particular the fact that the produced
constraint will be conflictual (the coefficient of the pivot will be equal to 1). It
also allows to infer stronger constraints, as illustrated by the following example.

Example 6. Let ρ be the partial assignment defined by ρ(a) = 1 and ρ(b) =
ρ(c) = ρ(d) = ρ(e) = 0 (all other variables are unassigned). Consider the (con-
flicting) constraint 8a + 7b + 7c + 2d + 2e + f ≥ 11, where b is the literal to be
cancelled out. The above rule yields 7a + 7b + 7c + 2d + 2e ≥ 9 which, divided
by 7, gives a + b + c + d + e ≥ 2. This constraint is stronger than the clause
b + c + d + e ≥ 1 inferred by RoundingSat, which weakens away the literal a.

This variant has several advantages. First, its cost is comparable to that of
RoundingSat : checking whether a coefficient is divisible by the weight of the
pivot is computed with the remainder of the division of the former by the latter,
which is the amount by which the literal must be partially weakened. Second, the
constraints it infers may be stronger than that of RoundingSat. Yet, this strategy
does not reduce the size of the constraints as much as the weakening of ineffective
literals. To get the best of both worlds, we introduce tradeoff strategies.

3.3 Towards a Tradeoff

The previous sections showed that the weakening operation may help finding
short explanations for conflicts, but may also infer weaker constraints. Several
observations may guide us towards tradeoff applications of the weakening rule.

First, the key property motivating RoundingSat to round the coefficient of
the pivot to 1 does not require it to be equal to 1 on both sides of the cancellation:
actually, having a coefficient equal to 1 on only one side is enough to guarantee
the resulting constraint to be conflicting [3]. Weakening only the reason or the
conflict is thus enough to preserve this property, while maintaining coefficients
low enough, as only one side of the cancellation may need to be multiplied.

Second, one may apply the weakening rule in a different manner to keep
coefficients small so as to speed up arithmetic operations. A possible approach
is the following, that we call Multiply and Weaken. Let r be the coefficient of the
pivot used in the cancellation appearing in the reason and c that in the conflict.
Find two values μ and ν such that (ν − 1) · r < μ · c ≤ ν · r (which can be done
using Euclidean division). Then, multiply the reason by ν, and apply weakening
operations on this constraint so as to reduce the coefficient of the pivot to μ · c.
Note that, in order to preserve the propagation, this coefficient cannot be weak-
ened directly. Instead, ineffective literals (as described above) are successively
weakened away so that the saturation rule produces the expected reduction on
the coefficient. Since this operation does not guarantee to preserve the conflict,



328 D. Le Berre et al.

an additional weakening operation has to be performed, as for generalized reso-
lution. Note that this approach may also derive clauses, even though this is not
always the case, as shown in the following example.

Example 7. Let ρ be the partial assignment such that ρ(a) = ρ(d) = 0 and
ρ(e) = 1 (all other variables are unassigned). Under ρ the constraint 5a + 5b +
3c + 2d + e ≥ 6 propagates b. The constraint 3b̄ + 2a + 2d + ē ≥ 5 becomes
thus falsified. Instead of using the LCM of 3 and 5 (i.e., 15), the reason of b is
weakened on e and partially on c to get, after saturation, 3a + 3b + 2d + c ≥ 3.
The cancellation produces then 5a + 4d + c + ē ≥ 5.

4 Experimental Results

This section presents an empirical evaluation of the various strategies introduced
in this paper. To make sure that their comparison only takes care of the under-
lying proof systems, and not of implementation details, we integrated all of them
in Sat4j [11] (including RoundingSat proof system). The source code is available
on Sat4j repository1.

All experiments presented in this section have been run on a cluster equiped
with quadcore bi-processors Intel XEON E5-5637 v4 (3.5 GHz) and 128 GB of
memory. The time limit was set to 1200 seconds and the memory limit to 32 GB.
The whole set of decision benchmarks containing “small” integers used in the
PB competitions since the first edition [12] was considered as input.
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Fig. 1. Cactus plot of the different strategies implemented in Sat4j. For more readabil-
ity, the first 3,500 easy instances are cut out.

As shown by Fig. 1, strategies applying heavily the weakening rule perform
better than generalized resolution. Yet, among these strategies, none of them
is strictly better than the others. In particular, the Virtual Best Solver (VBS),

1 https://gitlab.ow2.org/sat4j/sat4j/tree/weakening-investigations.

https://gitlab.ow2.org/sat4j/sat4j/tree/weakening-investigations
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obtained by choosing the best solver for each of the instances, performs clearly
better than any individual strategy. Each of these individual strategies does not
have an important contribution to the VBS, since the both, conflict and reason
variants are very similar. However, if we consider the VBS of the different “main”
strategies, and in particular that of RS, Partial RS and Weaken Ineffective (also
represented on the cactus plot), their contributions become clearer: Generalized
Resolution contributes to 6 instances, RS to 13 instances, Partial RS to 16
instances, and Weaken Ineffective to 83 instances. Even though Multiply and
Weaken does not solve instances that are not solved by any other solver, it
solves 13 instances more than 1 second faster than any other approach (5 among
them are faster solved by more than 1 min). This suggests that choosing the
right weakening strategy plays a key role in the performance of the solver.

The strategies showing the best and most robust performance are those
applying the RoundingSat (RS ) approach on both sides of the cancellation rule,
as they widely take advantage of the inference power of the division rule. How-
ever, applying partial weakening instead of weakening gives better results, thanks
to the stronger constraints it infers. In particular, RS (both) solves 3895 instances
and Partial RS (both) solves 3903 instances (with 3845 common instances). The
performance of Partial RS (both) is evidenced on the tsp family, especially on
satisfiable instances: it solves 22 more such instances than RS (both), i.e., 35
instances. For unsatisfiable instances, no common instances are solved: Partial
RS (both) solves 7 instances, while RS (both) solves 5 distinct instances. In both
cases, Partial RS (both) performs much more assignments per second than RS
(both), allowing it to go further in the search space within the time limit.

Surprisingly, another strategy exhibiting good performance consists in weak-
ening ineffective literals on the conflict side at each cancellation (it contributes
to 18 instances in the VBS). Similarly, RoundingSat strategies perform better
when applied on the conflict side rather than the reason side. Since the early
development of cutting planes based solvers, weakening has only been applied on
the reason side (except for RoundingSat [7], which applies it on both sides). Our
experiments show that it may be preferable to apply it only on the conflict side:
literals introduced there when cancelling may still be weakened away later on.

The gain we observe between the different strategies has several plausible
explanations. First, the solver does not explore the same search space from one
strategy to another, and it may thus learn completely different constraints. In
particular, they may be stronger or weaker, and this impacts the size of the proof
built by the solver. Second, these constraints may be based on distinct literals,
which may have side effects on the VSIDS heuristic [15]: different literals will be
“bumped” during conflict analysis. Such side effects are hard to assess, due to
the tight link between the heuristic and the other components of the solver.

5 Conclusion

In this paper, we introduced various strategies for applying the weakening rule in
PB solvers. We showed that each of them may improve the runtime of the solver,
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but not on all benchmarks. Contrary to the approaches implemented in most
PB solvers, the strategies consisting in applying an aggressive weakening only on
the conflict side provide surprisingly good results. However, approaches based on
RoundingSat perform better, but our experiments showed that partial weakening
is preferable in this context. This suggests that weakening operations should be
guided by the strength of the constraints to infer. To do so, a perspective for
further research consists in searching for better tradeoffs in this direction.
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