
A Lower Bound on DNNF Encodings
of Pseudo-Boolean Constraints

Alexis de Colnet(B)

CRIL, CNRS & Univ Artois, Lens, France
decolnet@cril.fr

Abstract. Two major considerations when encoding pseudo-Boolean
(PB) constraints into SAT are the size of the encoding and its prop-
agation strength, that is, the guarantee that it has a good behaviour
under unit propagation. Several encodings with propagation strength
guarantees rely upon prior compilation of the constraints into DNNF
(decomposable negation normal form), BDD (binary decision diagram),
or some other sub-variants. However it has been shown that there exist
PB-constraints whose ordered BDD (OBDD) representations, and thus
the inferred CNF encodings, all have exponential size. Since DNNFs are
more succinct than OBDDs, preferring encodings via DNNF to avoid size
explosion seems a legitimate choice. Yet in this paper, we prove the exis-
tence of PB-constraints whose DNNFs all require exponential size.

Keywords: PB constraints · Knowledge compilation · DNNF

1 Introduction

Pseudo-Boolean (PB) constraints are Boolean functions over 0/1 Boolean vari-
ables x1, . . . , xn of the form

∑n
i=1 wixi ‘op’ θ where the wi are integer weights, θ

is an integer threshold and ‘op’ is a comparison operator <,≤, > or ≥. PB-
constraints have been studied extensively under different names (e.g. threshold
functions [14], Knapsack constraints [13]) due to their omnipresence in many
domains of AI and their wide range of practical applications [3,7,9,15,21].

One way to handle PB-constraints in a constraint satisfaction problem is to
translate them into a CNF formula and feed it to a SAT solver. The general idea is
to generate aCNF, possibly introducing auxiliary Boolean variables, whose restric-
tion to variables of the constraint is equivalent to the constraint. Two major con-
siderations here are the size of the CNF encoding and its propagation strength.
One wants, on the one hand, to avoid the size of the encoding to explode, and on
the other hand, to guarantee a good behaviour of the SAT instance under unit
propagation – a technique at the very core of SAT solving. Desired propagation
strength properties are, for instance, generalized arc consistency (GAC) [4] or
propagation completeness (PC) [6]. Several encodings to CNF follow the same two-
steps method: first, each constraint is represented in a compact form such as BDD
(Binary Decision Diagram) or DNNF (Decomposable Negation Normal Form).
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 312–321, 2020.
https://doi.org/10.1007/978-3-030-51825-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_22

A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints 313

Second, the compact forms are turned into CNFs using Tseitin or other transfor-
mations. The SAT instance is the conjunction of all obtained CNFs. It is worth
mentioning that there are GAC encodings of PB-constraints into polynomial size
CNFs that do not follow this two-steps method [5]. However no similar result is
known for PC encodings. PC encodings are more restrictive that GAC encodings
and may be obtained via techniques requiring compilation toDNNF [17]. Thus the
first step is a knowledge compilation task.

Knowledge compilation studies different representations for knowledge [10,
19] under the general idea that some representations are more suitable than
others when solving specific reasoning problems. One observation that has been
made is that the more reasoning tasks can be solved efficiently with particular
representations, the larger these representations get in size. In the context of
constraint encodings to SAT, the conversion of compiled forms to CNFs does not
reduce the size of the SAT instance, therefore it is essential to control the size
of the representations obtained by knowledge compilation.

Several representations have been studied with respect to different encoding
techniques with the purpose of determining which properties of representations
are sufficient to ensure propagation strength [1,2,11,12,16,17]. Popular represen-
tations in this context are DNNF and BDD and their many variants: deterministic
DNNF, smooth DNNF, OBDD. . . As mentioned above, a problem occurring when
compiling a constraint into such representations is that exponential space may
be required. Most notably, it has been shown in [2,14] that some PB-constraints
can only be represented by OBDDs whose size is exponential in

√
n, where n is

the number of variables. Our contribution is the proof of the following theorem
where we lift the statement from OBDD to DNNF.

Theorem 1. There is a class of PB-constraints F such that for any constraint
f ∈ F on n2 variables, any DNNF representation of f has size 2Ω(n).

Since DNNFs are exponentially more succinct than OBDDs [10], our result is a
generalisation of the result in [2,14]. The class F is similar to that used in [2,14],
actually the only difference is the choice of the threshold for the PB-constraints.
Yet, adapting proofs given in [2,14] for OBDD to DNNF is not straightforward,
thus our proof of Theorem1 bears very little resemblance.

It has been shown in [18] that there exist sets of PB-constraints such that the
whole set (so a conjunction of PB-constraints) requires exponential size DNNF
to represent. Our result is a generalisation to single PB-constraints.

2 Preliminaries

Conventions of Notation. Boolean variables are seen as variables over {0, 1},
where 0 and 1 represent false and true respectively. Via this 0/1 representation,
Boolean variables can be used in arithmetic expressions over Z. For notational
convenience, we keep the usual operators ¬, ∨ and ∧ to denote, respectively, the
negation, disjunction and conjunction of Boolean variables or functions. Given
X a set of n Boolean variables, assignments to X are seen as vectors in {0, 1}n.

314 A. de Colnet

Single Boolean variables are written in plain text (x) while assignments to several
variables are written in bold (x). We write x ≤ y when the vector y dominates
x element-wise. We write x < y when x ≤ y and x �= y. In this framework, a
Boolean function f over X is a mapping from {0, 1}n to {0, 1}. f is said to accept
an assignment x when f(x) = 1, then x is called a model of f . The function is
monotone if for any model x of f , all y ≥ x are models of f as well. The set of
models of f is denoted f -1(1). Given f and g two Boolean functions over X, we
write f ≤ g when f -1(1) ⊆ g -1(1). We write f < g when the inclusion is strict.

Pseudo-Boolean Constraints. Pseudo-Boolean (PB) constraints are inequal-
ities the form

∑n
i=1 wixi ‘op’ θ where the xi are 0/1 Boolean variables, the wi

and θ are integers, and ‘op’ is one of the comparison operator <, ≤, > or ≥. A
PB-constraint is associated with a Boolean function whose models are exactly
the assignments to {x1, . . . , xn} that satisfy the inequality. For simplicity we
directly consider PB-constraints as Boolean functions – although the same func-
tion may represent different constraints – while keeping the term “constraints”
when referring to them. In this paper, we restrict our attention to PB-constraints
where ‘op’ is ≥ and all weights are positive integers. Note that such PB-
constraints are monotone Boolean functions. Given a sequence of positive integer
weights W = (w1, . . . , wn) and an integer threshold θ, we define the function
w : {0, 1}n → N that maps any assignment to its weight by w(x) =

∑n
i=1 wixi.

With these notations, a PB-constraint over X for a given pair (W, θ) is a Boolean
function whose models are exactly the x such that w(x) ≥ θ.

Example 1. Let n = 5, W = (1, 2, 3, 4, 5) and θ = 9. The PB-constraint for
(W, θ) is the Boolean function whose models are the assignments such that
∑5

i=1 ixi ≥ 9. E.g. x = (0, 1, 1, 0, 1) is a model of weight w(x) = 10.

For notational clarity, given any subset Y ⊆ X and denoting x|Y the restriction
of x to variables of Y , we overload w so that w(x|Y) is the sum of weights
activated by variables of Y set to 1 in x.

Decomposable NNF. A circuit in negation normal form (NNF) is a single out-
put Boolean circuit whose inputs are Boolean variables and their complements,
and whose gates are fanin-2 AND and OR gates. The size of the circuit is the
number of its gates. We say that an NNF is decomposable (DNNF) if for any
AND gate, the two sub-circuits rooted at that gate share no input variable, i.e.,
if x or ¬x is an input of the circuit rooted at the left input of the AND gate,
then neither x nor ¬x is an input of the circuit rooted at the right input, and
vice versa. A Boolean function f is encoded by a DNNF D if the assignments of
variables for which the output of D is 1 (true) are exactly the models of f .

Rectangle Covers. Let X be a finite set of Boolean variables and let Π =
(X1,X2) be a partition of X (i.e., X1 ∪X2 = X and X1 ∩X2 = ∅). A rectangle r
with respect to Π is a Boolean function over X defined as the conjunction of two
functions ρ1 and ρ2 over X1 and X2 respectively. Π is called the partition of r.
We say that the partition and the rectangle are balanced when |X|

3 ≤ |X1| ≤ 2|X|
3

(thus the same holds for X2). Whenever considering a partition (X1,X2), we use

A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints 315

for any assignment x to X the notations x1 := x|X1 and x2 := x|X2 . And for any
two assignments x1 and x2 to X1 and X2, we note (x1,x2) the assignment to X
whose restrictions to X1 and X2 are x1 and x2. Given f a Boolean function over
X, a rectangle cover of f is a disjunction of rectangles over X, possibly with
different partitions, equivalent to f . The size of a rectangle cover is the number
of its rectangles. A cover is called balanced if all its rectangles are balanced.

Example 2. Going back to Example 1, consider the partition X1 := {x1, x3, x4},
X2 := {x2, x5} and define ρ1 := x3 ∧ x4 and ρ2 := x2 ∨ x5. Then r := ρ1 ∧ ρ2 is
a rectangle w.r.t. this partition that accepts only models of the PB-constraint
from Example 1. Thus it can be part of a rectangle cover for this constraint.

Any function f has at least one balanced rectangle cover as one can create a
balanced rectangle accepting exactly one chosen model of f . We denote by C(f)
the size of the smallest balanced rectangle cover of f . The following result from
[8] links C(f) to the size of any DNNF encoding f .

Theorem 2. Let D be a DNNF encoding a Boolean function f . Then f has a
balanced rectangle cover of size at most the size of D.

Theorem 2 reduces the problem of finding lower bounds on the size of DNNFs
encoding f to that of finding lower bounds on C(f).

3 Restriction to Threshold Models of PB-Constraints

The strategy to prove Theorem 1 is to find a PB-constraint f over n variables
such that C(f) is exponential in

√
n and then use Theorem 2. We first show that

we can restrict our attention to covering particular models of f with rectangles
rather than the whole function. In this section X is a set of n Boolean variables
and f is a PB-constraint over X. Recall that we only consider constraints of the
form

∑n
i=1 wixi ≥ θ where the wi and θ are positive integers.

Definition 1. The threshold models of f are the models x such that w(x) = θ.

Threshold models should not be confused with minimal models (or minimals).

Definition 2. A minimal of f is a model x such that no y < x is a model of f .

For a monotone PB-constraint, a minimal model is such that its sum of weights
drops below the threshold if we remove any element from it. Any threshold
model is minimal, but not all minimals are threshold models. There even exist
constraints with no threshold models (e.g. take even weights and an odd thresh-
old) while there always are minimals for satisfiable constraints.

Example 3. The minimals of the PB-constraint from Example 1 are (0, 0, 0, 1, 1),
(0, 1, 1, 1, 0), (1, 0, 1, 0, 1) and (0, 1, 1, 0, 1). The first three are threshold models.

Let f∗ be the Boolean function whose models are exactly the threshold models
of f . In the next lemma, we prove that the smallest rectangle cover of f∗ has
size at most C(f). Thus, lower bounds on C(f∗) are also lower bounds on C(f).

316 A. de Colnet

Lemma 1. Let f∗ be the Boolean function whose models are exactly the thresh-
old models of f . Then C(f) ≥ C(f∗).

Proof. Let r := ρ1 ∧ρ2 be a balanced rectangle with r ≤ f and assume r accepts
some threshold models. Let Π := (X1,X2) be the partition of r. We claim that
there exist two integers θ1 and θ2 such that θ1 + θ2 = θ and, for any threshold
model x accepted by r, there is w(x1) = θ1 and w(x2) = θ2. To see this, assume
by contradiction that there exists another partition θ = θ′

1 + θ′
2 of θ such that

some other threshold model y with w(y1) = θ′
1 and w(y2) = θ′

2 is accepted
by r. Then either w(x1) + w(y2) < θ or w(y1) + w(x2) < θ, but since (x1,y2)
and (y1,x2) are also models of r, r would accept a non-model of f , which is
forbidden. Now let ρ∗

1 (resp. ρ∗
2) be the function whose models are exactly the

models of ρ1 (resp. ρ2) of weight θ1 (resp. θ2). Then r∗ := ρ∗
1 ∧ ρ∗

2 is a balanced
rectangle whose models are exactly the threshold models accepted by r.

Now consider a balanced rectangle cover of f of size C(f). For each rect-
angle r of the cover, if r accepts no threshold model then discard it, otherwise
construct r∗. The disjunction of these new rectangles is a balanced rectangle
cover of f∗ of size at most C(f). Therefore C(f) ≥ C(f∗). ��

4 Reduction to Covering Maximal Matchings of Kn,n

We define the class of hard PB-constraints for Theorem1 in this section. Recall
that for a hard constraint f , our aim is to find an exponential lower bound
on C(f). We will show, using Lemma 1, that the problem can be reduced to
that of covering all maximal matchings of the complete n × n bipartite graph
Kn,n with rectangles. In this section, X is a set of n2 Boolean variables. For
presentability reasons, assignments to X are written as n × n matrices. Each
variable xi,j has the weight wi,j := (2i + 2j+n)/2. Define the matrix of weights
W := (wi,j : 1 ≤ i, j ≤ n) and the threshold θ := 22n − 1. The PB-constraint f
for the pair (W, θ) is such that f(x) = 1 if and only if x satisfies

∑

1≤i,j≤n

(
2i + 2j+n

2

)

xi,j ≥ 22n − 1 . (1)

Constraints of this form constitute the class of hard constraints of Theorem1.
One may find it easier to picture f writing the weights and threshold as binary
numbers of 2n bits. Bits of indices 1 to n form the lower part of the number and
those of indices n + 1 to 2n form the upper part. The weight wi,j is the binary
number where the only bits set to 1 are the ith bit of the lower part and the jth
bit of the upper part. Thus when a variable xi,j is set to 1, exactly one bit of
value 1 is added to each part of the binary number of the sum.

Assignments to X uniquely encode subgraphs of Kn,n. We denote U =
{u1, . . . , un} the nodes of the left side and V = {v1, . . . , vn} those of the right
side of Kn,n. The bipartite graph encoded by x is such that there is an edge
between the ui and vj if and only if xi,j is set to 1 in x.

A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints 317

Example 4. Take n = 4. The assignment x =

⎛

⎜
⎝

1 1 0 1
0 0 0 0
0 1 0 0
0 1 0 0

⎞

⎟
⎠ encodes

u1

u2

u3

u4

v1
v2
v3
v4

Definition 3. A maximal matching assignment (or maximal matching model)
is an assignment x to X such that

• for any i ∈ [n], there is exactly one k such that xi,k is set to 1 in x,
• for any j ∈ [n], there is exactly one k such that xk,j is set to 1 in x.

As the name suggests, the maximal matching assignments are those encoding
graphs whose edges form a maximal matching of Kn,n (i.e., a maximum cardi-
nality matching). One can also see them as encodings for permutations of [n].

Example 5. The maximal matching model x =

⎛

⎜
⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟
⎠ encodes

u1

u2

u3

u4

v1
v2
v3
v4

For a given x, define vark (x) by vark (x) := {j | xk,j is set to 1 in x} when
1 ≤ k ≤ n and by vark (x) := {i | xi,k−n is set to 1 in x} when n + 1 ≤ k ≤ 2n.
vark (x) stores the index of variables in x that directly add 1 to the kth bit
of w(x). Note that a maximal matching model is an assignment x such that
|vark (x) | = 1 for all k. It is easy to see that maximal matching models are
threshold models of f : seeing weights as binary numbers of 2n bits, for every
bit of the sum the value 1 is added exactly once, so exactly the first 2n bits of
the sum are set to 1, which gives us θ. Note that not all threshold models of f
are maximal matching models, for instance the assignment from Example 4 does
not encode a maximal matching but one can verify that it is a threshold model.
Recall that f∗ is the function whose models are the threshold models of f . In the
next lemmas, we prove that lower bounds on the size of rectangle covers of the
maximal matching models are lower bounds on C(f∗), and a fortiori on C(f).

Lemma 2. Let Π := (X1,X2) be a partition of X. Let x := (x1,x2) and y :=
(y1,y2) be maximal matching assignments. If (x1,y2) and (y1,x2) both have
weight θ := 22n − 1 then both are maximal matching assignments.

Proof. It is sufficient to show that |vark (x1,y2) | = 1 and |vark (y1,x2) | = 1 for
all 1 ≤ k ≤ 2n. We prove it for (x1,y2) by induction on k. First observe that
since |vark (x) | = 1 and |vark (y) | = 1 for all 1 ≤ k ≤ 2n, the only possibilities
for |vark (x1,y2) | are 0, 1 or 2.

• For the base case k = 1, if |var1 (x1,y2) | is even then the first bit of w(x1) +
w(y2) is 0 and the weight of (x1,y2) is not θ. So |var1 (x1,y2) | = 1.

• For the general case 1 < k ≤ 2n, assume that |var1 (x1,y2) | = · · · =
|vark−1 (x1,y2) | = 1. So the kth bit of w(x1) + w(y2) depends only on the
parity of |vark (x1,y2) |: the kth bit is 0 if |vark (x1,y2) | is even and 1 other-
wise. (x1,y2) has weight θ so |vark (x1,y2) | = 1.

The argument applies to (y1,x2) analogously. ��

318 A. de Colnet

Lemma 3. Let f be the PB-constraint (1) and let f̂ be the function whose mod-
els are exactly the maximal matching assignments. Then C(f) ≥ C(f̂).

Proof. By Lemma 1, it is sufficient to prove that C(f∗) ≥ C(f̂). We already know
that f̂ ≤ f∗. Let r := ρ1 ∧ ρ2 be a balanced rectangle of partition Π := (X1,X2)
with r ≤ f∗, and assume r accepts some maximal matching assignment. Let ρ̂1
(resp. ρ̂2) be the Boolean function over X1 (resp. X2) whose models are the x1

(resp. x2) such that there is a maximal matching assignment (x1,x2) accepted
by r. We claim that the balanced rectangle r̂ := ρ̂1 ∧ ρ̂2 accepts exactly the
maximal matching models of r. On the one hand, it is clear that all maximal
matching models of r are models of r̂. On the other hand, all models of r̂ are
threshold models of the form (x1,y2), where (x1,x2) and (y1,y2) encode maxi-
mal matchings, so by Lemma 2, r̂ accepts only maximal matching models of r.

Now consider a balanced rectangle cover of f∗ of size C(f∗). For each rect-
angle r of the cover, if r accepts no maximal matching assignment then discard
it, otherwise construct r̂. The disjunction of these new rectangles is a balanced
rectangle cover of f̂ of size at most C(f∗). Therefore C(f∗) ≥ C(f̂). ��

5 Proof of Theorem 1

Theorem 1. There is a class of PB-constraints F such that for any constraint
f ∈ F on n2 variables, any DNNF encoding f has size 2Ω(n).

F is the class of constraints defined in (1). Thanks to Theorem 2 and Lemma 3,
the proof boils down to finding exponential lower bounds on C(f̂), where f̂ is
the Boolean function on n2 variables whose models encode exactly the maximal
matchings of Kn,n (or equivalently, the permutations of [n]). f̂ has n! models.
The idea is now to prove that rectangles covering f̂ must be relatively small, so
that covering the whole function requires many of them.

Lemma 4. Let Π = (X1,X2) be a balanced partition of X. Let r be a rectangle
with respect to Π with r ≤ f̂ . Then |r -1(1)| ≤ n!/

(n

n
√

2/3

)
.

The function f̂ has already been studied extensively in the literature, often
under the name PERMn (for permutations on [n]), see for instance Chap. 4 of
[22] or Sect. 6.2 of [20] where a statement similar to Lemma 4 is established. With
Lemma 4 we can give the proof of Theorem 1.

Proof (Theorem 1). Let
∨C(f̂)

k=1 rk be a balanced rectangle cover of f̂ . We have
∑C(f̂)

k=1 |r -1
k (1)| ≥ |f̂ -1(1)| = n!. Lemma 4 gives us (C(f̂)n!)/

(n

n
√

2/3

) ≥ n!, thus

C(f̂) ≥
(

n

n
√

2/3

)

≥
(

n

n
√

2/3

)n
√

2/3

=
(

3
2

)n

√
2/3
2

≥ 2n

√
2/3
4 = 2Ω(n)

where we have used
(
a
b

) ≥ (a/b)b and 3/2 ≥ √
2. Using Lemma 3 we get that

C(f) ≥ C(f̂) ≥ 2Ω(n). Theorem 2 allows us to conclude. ��

A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints 319

Fig. 1. Partition of maximal matching

All that is left is to prove Lemma 4.

Proof (Lemma 4).
Let r := ρ1 ∧ ρ2 and Π := (X1,X2). Recall that U := {u1, . . . , un} and V :=

{v1, . . . , vn} are the nodes from the left and right part of Kn,n respectively. Define
U1 := {ui | there exists xi,l ∈ X1 such that a model of ρ1 has xi,l set to 1} and
V1 := {vj | there exists xl,j ∈ X1 such that a model of ρ1 has xl,j set to 1}.
Define U2 and V2 analogously (this time using X2 and ρ2). Figure 1 illustrates
the construction of these sets: Fig. 1a shows a partition Π of the edges of K4,4

(full edges in X1, dotted edges in X2) and Fig. 1b shows the contribution of a
model of r to U1, V1, U2, and V2 after partition according to Π.

Models of ρ1 are clearly matchings of Kn,n. Actually they are matchings
between U1 and V1 by construction of these sets. We claim that they are maximal.
To verify this, observe that U1 ∩ U2 = ∅ and V1 ∩ V2 = ∅ since otherwise r
has a model that is not a matching. Thus if ρ1 were to accept a non-maximal
matching between U1 and V1 then r would accept a non-maximal matching
between U and V . So ρ1 accepts only maximal matchings between U1 and V1,
consequently |U1| = |V1|. The argument applies symmetrically for V2 and U2.
We note k := |U1|. It stands that U1 ∪ U2 = U and V1 ∪ V2 = V as otherwise r
accepts matchings that are not maximal. So |U2| = |V2| = n − k. We now have
|ρ -1

1 (1)| ≤ k! and |ρ -1
2 (1)| ≤ (n − k)!, leading to |r -1(1)| ≤ k!(n − k)! = n!/

(
n
k

)
.

Up to k2 edges may be used to build matchings between U1 and V1. Since r
is balanced we obtain k2 ≤ 2n2/3. Applying the same argument to U2 and V2

gives us (n − k)2 ≤ 2n2/3, so n(1 − √
2/3) ≤ k ≤ n

√
2/3. Finally, the function

k �→ n!/
(
n
k

)
, when restricted to some interval [[n(1−α), αn]], reaches its maximum

at k = αn, hence the upper bound |r -1(1)| ≤ n!/
(n

n
√

2/3

)
. ��

Acknowledgments. This work has been partly supported by the PING/ACK project
of the French National Agency for Research (ANR-18-CE40-0011).

320 A. de Colnet

References

1. Ab́ıo, I., Gange, G., Mayer-Eichberger, V., Stuckey, P.J.: On CNF encodings of
decision diagrams. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp.
1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2 1

2. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-Eichberger,
V.: A new look at BDDs for pseudo-boolean constraints. J. Artif. Intell. Res. 45,
443–480 (2012). https://doi.org/10.1613/jair.3653

3. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus special-
ized 0–1 ILP: an update. In: IEEE/ACM International Conference on Computer-
aided Design, ICCAD, pp. 450–457 (2002). https://doi.org/10.1145/774572.774638

4. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 133–147. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 12

5. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 19

6. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In:
Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOF-
SEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27660-6 50

7. Boros, E., Hammer, P.L., Minoux, M., Rader, D.J.: Optimal cell flipping to
minimize channel density in VLSI design and pseudo-boolean optimization.
Discrete Appl. Math. 90(1–3), 69–88 (1999). https://doi.org/10.1016/S0166-
218X(98)00114-0

8. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets com-
munication complexity. In: International Joint Conference on Artificial Intelligence,
IJCAI, pp. 1008–1014 (2016). http://www.ijcai.org/Abstract/16/147

9. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Deciding CLU logic formulas via boolean
and pseudo-boolean encodings. In: International Workshop on Constraints in For-
mal Verification, CFV (2002)

10. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002). https://doi.org/10.1613/jair.989

11. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Sat-
isf. Boolean Model. Comput. 2(1–4), 1–26 (2006). https://satassociation.org/jsat/
index.php/jsat/article/view/18

12. Gange, G., Stuckey, P.J.: Explaining propagators for s-DNNF circuits. In:
Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp.
195–210. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-
8 13

13. Gopalan, P., Klivans, A.R., Meka, R., Štefankovič, D., Vempala, S.S., Vigoda, E.:
An FPTAS for #Knapsack and related counting problems. In: IEEE Symposium
on Foundations of Computer Science, FOCS, pp. 817–826 (2011). https://doi.org/
10.1109/FOCS.2011.32

14. Hosaka, K., Takenaga, Y., Kaneda, T., Yajima, S.: Size of ordered binary decision
diagrams representing threshold functions. Theor. Comput. Sci. 180(1–2), 47–60
(1997). https://doi.org/10.1016/S0304-3975(97)83807-8

15. Ivănescu, P.L.: Some network flow problems solved with pseudo-boolean program-
ming. Oper. Res. 13(3), 388–399 (1965)

https://doi.org/10.1007/978-3-319-33954-2_1
https://doi.org/10.1613/jair.3653
https://doi.org/10.1145/774572.774638
https://doi.org/10.1007/978-3-540-74970-7_12
https://doi.org/10.1007/978-3-540-74970-7_12
https://doi.org/10.1007/978-3-642-02777-2_19
https://doi.org/10.1007/978-3-642-27660-6_50
https://doi.org/10.1007/978-3-642-27660-6_50
https://doi.org/10.1016/S0166-218X(98)00114-0
https://doi.org/10.1016/S0166-218X(98)00114-0
http://www.ijcai.org/Abstract/16/147
https://doi.org/10.1613/jair.989
https://satassociation.org/jsat/index.php/jsat/article/view/18
https://satassociation.org/jsat/index.php/jsat/article/view/18
https://doi.org/10.1007/978-3-642-29828-8_13
https://doi.org/10.1007/978-3-642-29828-8_13
https://doi.org/10.1109/FOCS.2011.32
https://doi.org/10.1109/FOCS.2011.32
https://doi.org/10.1016/S0304-3975(97)83807-8

A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints 321

16. Jung, J.C., Barahona, P., Katsirelos, G., Walsh, T.: Two encodings of DNNF the-
ories. In: ECAI Workshop on Inference Methods Based on Graphical Structures of
Knowledge (2008)

17. Kučera, P., Savický, P.: Propagation complete encodings of smooth DNNF theories.
CoRR abs/1909.06673 (2019). http://arxiv.org/abs/1909.06673

18. Le Berre, D., Marquis, P., Mengel, S., Wallon, R.: Pseudo-boolean constraints
from a knowledge representation perspective. In: International Joint Conference
on Artificial Intelligence, IJCAI, pp. 1891–1897 (2018). https://doi.org/10.24963/
ijcai.2018/261

19. Marquis, P.: Compile! In: AAAI Conference on Artificial Intelligence, AAAI, pp.
4112–4118 (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/9596

20. Mengel, S., Wallon, R.: Revisiting graph width measures for CNF-encodings. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 222–238. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 16

21. Papaioannou, S.G.: Optimal test generation in combinational networks by pseudo-
boolean programming. IEEE Trans. Comput. 26(6), 553–560 (1977). https://doi.
org/10.1109/TC.1977.1674880

22. Wegener, I.: Branching programs and binary decision diagrams. SIAM (2000).
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/

http://arxiv.org/abs/1909.06673
https://doi.org/10.24963/ijcai.2018/261
https://doi.org/10.24963/ijcai.2018/261
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9596
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9596
https://doi.org/10.1007/978-3-030-24258-9_16
https://doi.org/10.1109/TC.1977.1674880
https://doi.org/10.1109/TC.1977.1674880
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/

	A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints
	1 Introduction
	2 Preliminaries
	3 Restriction to Threshold Models of PB-Constraints
	4 Reduction to Covering Maximal Matchings of Kn,n
	5 Proof of Theorem 1
	References

