®

Check for
updates

MaxSAT Resolution and Subcube Sums

Yuval Filmus!, Meena Mahajan?®) Gaurav Sood?, and Marc Vinyals!

! Technion — Israel Institute of Technology, Haifa, Israel
{yuvalfi,marcviny}@cs.technion.ac.il
2 The Institute of Mathematical Sciences (HBNT), Chennai, India
{meena,gauravs}@imsc.res.in

Abstract. We study the MaxRes rule in the context of certifying unsat-
isfiability. We show that it can be exponentially more powerful than
tree-like resolution, and when augmented with weakening (the system
MaxResW), p-simulates tree-like resolution. In devising a lower bound
technique specific to MaxRes (and not merely inheriting lower bounds
from Res), we define a new semialgebraic proof system called the Sub-
CubeSums proof system. This system, which p-simulates MaxResW, is
a special case of the Sherali-Adams proof system. In expressivity, it is
the integral restriction of conical juntas studied in the contexts of com-
munication complexity and extension complexity. We show that it is not
simulated by Res. Using a proof technique qualitatively different from
the lower bounds that MaxResW inherits from Res, we show that Tseitin
contradictions on expander graphs are hard to refute in SubCubeSums.
We also establish a lower bound technique via lifting: for formulas requir-
ing large degree in SubCubeSums, their XOR-ification requires large size
in SubCubeSums.

Keywords: Proof complexity + MaxSAT resolution - Subcube
complexity * Sherali—-Adams proofs - Conical juntas

1 Introduction

The most well-studied propositional proof system is Resolution (Res), [5,22]. It
is a refutational line-based system that operates on clauses, successively inferring
newer clauses until the empty clause is derived, indicating that the initial set
of clauses is unsatisfiable. It has just one satisfiability-preserving rule: if clauses
AV x and BV —x have been inferred, then the clause A V B can be inferred.
Sometimes it is convenient, though not necessary in terms of efficiency, to also
allow a weakening rule: from clause A, a clause A V z can be inferred. While
there are several lower bounds known for this system, it is still very useful in
practice and underlies many current SAT solvers.

While deciding satisfiability of a propositional formula is NP-complete, the
MaxSAT question is an optimization question, and deciding whether its value is
as given (i.e. deciding, given a formula and a number &, whether the maximum
number of clauses simultaneously satisfiable is exactly k) is potentially harder
© Springer Nature Switzerland AG 2020

L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 295-311, 2020.
https://doi.org/10.1007/978-3-030-51825-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_21

296 Y. Filmus et al.

since it is hard for both NP and coNP. A proof system for MaxSAT was proposed
in [7,14]. This system, denoted MaxSAT Resolution or more briefly MaxRes,
operates on multi-sets of clauses. At each step, two clauses from the multi-set
are resolved and removed. The resolvent, as well as certain “disjoint” weakenings
of the two clauses, are added to the multiset. The invariant maintained is that for
each assignment p, the number of clauses in the multi-set falsified by p remains
unchanged. The process stops when the multi-set has a satisfiable instance along
with k copies of the empty clause; k is exactly the minimum number of clauses
of the initial multi-set that must be falsified by every assignment.

Since MaxRes maintains multi-sets of clauses and replaces used clauses, this
suggests a “read-once”-like constraint. However, this is not the case; read-once
resolution is not even complete [13], whereas MaxRes is a complete system for
certifying the MaxSAT value (and in particular, for certifying unsatisfiability).
One could use the MaxRes system to certify unsatisfiability, by stopping the
derivation as soon as one empty clause is produced. Such a proof of unsatisfiabil-
ity, by the very definition of the system, can be p-simulated by Resolution. (The
MaxRes proof is itself a proof with resolution and weakening, and weakening can
be eliminated at no cost.) Thus, lower bounds for Resolution automatically apply
to MaxRes and to MaxResW (the augmenting of MaxRes with an appropriate
weakening rule) as well. However, since MaxRes needs to maintain a stronger
invariant than merely satisfiability, it seems reasonable that for certifying unsatis-
fiability, MaxRes is weaker than Resolution. (This would explain why, in practice,
MaxSAT solvers do not seem to use MaxRes — possibly with the exception of
[20], but they instead directly call SAT solvers, which use standard resolution.)
Proving this would require a lower bound technique specific to MaxRes.

Associating with each clause the subcube (conjunction of literals) of assign-
ments that falsify it, each MaxRes step manipulates and rearranges multi-sets
of subcubes. This naturally leads us to the formulation of a static semi-algebraic
proof system that we call the SubCubeSums proof system. This system, by its
very definition, p-simulates MaxResW and is a special case of the Sherali~Adams
proof system. Given this position in the ecosystem of simple proof systems, under-
standing its capabilities and limitations seems an interesting question.

Our Contributions and Techniques

1. We observe that for certifying unsatisfiability, the proof system MaxResW
p-simulates the tree-like fragment of Res, TreeRes (Lemma1). This simula-
tion seems to make essential use of the weakening rule. On the other hand,
we show that even MaxRes without weakening is not simulated by TreeRes
(Theorem 1). We exhibit a formula, which is a variant of the pebbling contra-
diction [4] on a pyramid graph, with short refutations in MaxRes (Lemma 2),
and show that it requires exponential size in TreeRes (Lemma 7).

2. We initiate a formal study of the newly-defined semialgebraic proof system
SubCubeSums, which is a natural restriction of the Sherali~Adams proof
system. We show that this system is not simulated by Res (Theorem 2).

MaxSAT Resolution and Subcube Sums 297

3. We show that the Tseitin contradiction on an odd-charged expander graph
is hard for SubCubeSums (Theorem 3) and hence also hard for MaxResW.
While this already follows from the fact that these formulas are hard for
Sherali-Adams [1], our lower-bound technique is qualitatively different; it
crucially uses the fact that a stricter invariant is maintained in MaxResW
and SubCubeSums refutations.

4. Abstracting the ideas from the lower bound for Tseitin contradictions, we
devise a lower-bound technique for SubCubeSums based on lifting (Theo-
rem4). Namely, we show that if every SubCubeSums refutation of a formula
F must have at least one wide clause, then every SubCubeSums refutation
of the formula F' o & must have many cubes. We illustrate how the Tseitin
contradiction lower bound can be recovered in this way.

The relations among these proof systems are summarized in the figure below,
which also includes two proof systems discussed in Related Work.

MaxResE < ------ -+ Sherali-Adams
\ 3 — A—B denotes that A
DRMaxSAT ; simulates B and B does
l ¥ not simulate A.
Res s > SubCubeSums — A--»B denotes that A
Tl / simulates B.
I\;IaxResW - A-»B d.enotes that A
/ S does not simulate B.
TreeRes -+ orrereeerermmmmnnns » MaxRes

Related Work

One reason why studying MaxRes is interesting is that it displays unexpected
power after some preprocessing. As described in [12] (see also [18]), the PHP
formulas that are hard for Resolution can be encoded into MaxHornSAT, and
then polynomially many MaxRes steps suffice to expose the contradiction. The
underlying proof system, DRMaxSAT, has been studied further in [6], where
it is shown to p-simulate general Resolution. While DRMaxSAT gains power
from the encoding, the basic steps are MaxRes steps. Thus, to understand how
DRMaxSAT operates, a better understanding of MaxRes could be quite useful.

A very recent paper [15] studies a proof system MaxResE where MaxRes
is augmented with an extension rule. The extension rule generalises a weighted
version of MaxRes; as defined, it eliminates the non-negativity constraint inher-
ent in MaxResW and SubCubeSums. This system happens to be equivalent to
Circular Resolution [16], which in turn is equivalent to Sherali-Adams [2]. It is
also worth mentioning that MaxResW appears in [16] as MaxRes with a split
rule, or ResS.

In the setting of communication complexity and of extension complexity of
polytopes, non-negative rank is an important and useful measure. As discussed

298 Y. Filmus et al.

n [11], the query-complexity analogue is conical juntas; these are non-negative
combinations of subcubes. Our SubCubeSums refutations are a restriction of
conical juntas to non-negative integral combinations. Not surprisingly, our lower
bound for Tseitin contradictions is similar to the conical junta degree lower
bound established in [10].

Organisation of the Paper

We define the proof systems MaxRes, MaxResW, and SubCubeSums in Sect. 2.
In Sect. 3 we relate them to TreeRes. In Sect. 4, we focus on the SubCubeSums
proof system, showing the separation from Res (Sect.4.1), the lower bound for
SubCubeSums (Sect. 4.2), and the lifting technique (Sect. 4.3).

2 Defining the Proof Systems

For set X of variables, let (X) denote the set of all total assignments to variables
in X. For a (multi-) set of F clauses, violp: (X) — {0} UN is the function
mapping « to the number of clauses in F' (counted with multiplicity) falsified by
a. A (sub)cube is the set of assignments falsifying a clause, or equivalently, the
set of assignments satisfying a conjunction of literals.

The proof system Res has the resolution rule inferring C' vV D from C'V x and
D Vv 7, and optionally the weakening rule inferring C' vV x from C if 7 ¢ C. A
refutation of a CNF formula F' is a sequence of clauses C1, ..., C; where each C;
is either in F' or is obtained from some j, k < ¢ using resolution or weakening, and
where C} is the empty clause. The underlying graph of such a refutation has the
clauses as nodes, and directed edge from C' to D if C is used in the step deriving
D. The proof system TreeRes is the fragment of Res where only refutations in
which the underlying graph is a tree are permitted. A proof system P simulates
(p-simulates) another proof system P’ if proofs in P can be transformed into
proofs in P’ with polynomial blow-up (in time polynomial in the size of the
proof). See, for instance, [3], for more details.

The MaxRes and MaxResW Proof Systems

The MaxRes proof system operates on sets of clauses, and uses the MaxSAT
resolution rule [7], defined as follows:

xVarV...Vas (xVvA)

FVDhV...Vh (ZV B)

a1 V...VasVb V...Vb (the “standard resolvent”)
(weakenings of z v A) (weakenings of T V B)
TV AV ZVBVa

xV AVDb Vb TV BVaiVas

TVAVDLV...Vb_1Vb TVBVarV...Vas_1Vas

MaxSAT Resolution and Subcube Sums 299

The weakening rule for MaxSAT resolution replaces a clause A by the two clauses
AVzx and AVZ. While applying either of these rules, the antecedents are removed
from the multi-set and the non-tautologous consequents are added. If F’ is
obtained from F' by applying these rules, then violp and violg: are the same
function.

In the proof system MaxRes, a refutation of F is a sequence F =
Fy, Fy, ..., Fs where each F; is a multi-set of clauses, each F; is obtained from
F;_1 by an application of the MaxSAT resolution rule, and F contains the empty
clause . In the proof system MaxResW, F; may also be obtained from F;_;
by using the weakening rule. The size of the proof is the number of steps, s. In
[7,14], MaxRes is shown to be complete for MaxSAT, hence also for unsatisfia-
bility. Since the proof system MaxRes we consider here is a refutation system
rather than a system for MaxSAT, we can stop as soon as a single [J is derived.

The SubCubeSums Proof System

The SubCubeSums proof system is a static proof system. For an unsatisfiable
CNF formula F, a SubCubeSums proof is a multi-set G of sub-cubes (or terms,
or conjunctions of literals) satisfying violp = 1 + violg.

We can view SubCubeSums as a subsystem of the semialgebraic Sherali-
Adams proof system as follows. Let F' be a CNF formula with m clauses in
variables z1,...,x,. Each clause C;, i € [m], is translated into a polynomial
equation f; = 0; a Boolean assignment satisfies clause C; iff it satisfies equation
fi = 0. Boolean values are forced through the axioms z? — z; =0 for j € [n]. A
Sherali-Adams proof is a sequence of polynomials g;, i € [m]; g;, j € [n]; and a

J
polynomial pgy of the form

= 2 oas][[I0-

A,BC[n] JEA JjEB

where each a4, > 0, such that

(Z gifi)‘i‘(z: Qj(l'?—xj)) +po+1=0

i€[m] j€[n]

The degree or rank of the proof is the maximum degree of g; f;, g; (xf —Z;),Po-
The polynomials f; corresponding to the clauses, as well as the terms in pg,
are conjunctions of literals, thus special kinds of d-juntas (Boolean functions
depending on at most d variables). So pg is a non-negative linear combination
of non-negative juntas, that is, in the nomenclature of [11], a conical junta.
The Sherali-Adams system is sound and complete, and verifiable in random-
ized polynomial time; see for instance [9].
Consider the following restriction of Sherali-Adams:

1. Each g; = —1.
2. Each as p € Z=2°, (non-negative integers), and aq 5 >0 = AN B = .

300 Y. Filmus et al.

This implies each g; must be 0, since the rest of the expression is multilinear.
Hence, for some non-negative integral a4 g,

Z OéABHl"]H +1—Zfz

A,BC[n]:ANB=0 JEA jJEB i€[m]

This is exactly the SubCubeSums proof system: the terms in pg are subcubes,
and the right-hand-side is violg. For each disjoint pair A, B, the SubCubeSums
proof has a4 p copies of the corresponding sub-cube. The degree of a SubCube-
Sums proof is the maximum number of literals appearing in a conjunction. The
size of a SubCubeSums proof is the number of subcubes, that is, Y, g4 B.
The constraint g; = 1 means that for bounded CNF formulas, the degfee of a
SubCubeSums proof is essentially the degree of pg, i.e. the degree of the juntas.
The following proposition shows why this restriction remains complete.

Proposition 1. SubCubeSums p-simulates MazResW.

Proof. If an unsatisfiable CNF formula F with m clauses and n > 3 variables
has a MaxResW refutation with s steps, then this derivation produces {0} UG
where the number of clauses in G is at most m+ (n—2)s — 1. (A weakening step
increases the number of clauses by 1. A MaxRes step increases it by at most
n — 2.) The subcubes falsifying the clauses in G give a SubCubeSums proof. O

In fact, SubCubeSums is also implicationally complete in the following sense.
We say that f > g if for every Boolean z, f(z) > g(x).

Proposition 2. If f and g are polynomials with f > g, then there are subcubes
h;j and non-negative numbers c; such that on the Boolean hypercube, f —g =
Zj cjhj. Further, if f, g are integral on the Boolean hypercube, so are the c;.

3 MaxRes, MaxResW, and TreeRes

Since TreeRes allows reuse only of input clauses, while MaxRes does not allow
any reuse of clauses but produces multiple clauses at each step, the relative power
of these fragments of Res is intriguing. In this section, we show that MaxRes with
the weakening rule, MaxResW, p-simulates TreeRes, is exponentially separated
from it, and even MaxRes (without weakening) is not simulated by TreeRes.

Lemma 1. For every unsatisfiable CNF F, size(F tprazresw O) < 2size
(F I_TreeRes D)

Proof. Let T be a tree-like derivation of O from F of size s. Without loss of
generality, we may assume that 7" is regular; no variable is used as pivot twice
on the same path.

Since a MaxSAT resolution step always adds the standard resolvent, each
step in a tree-like resolution proof can be performed in MaxResW as well, pro-
vided the antecedents are available. However, a tree-like proof may use an axiom

MaxSAT Resolution and Subcube Sums 301

(a clause in F') multiple times, whereas after it is used once in MaxResW it is
no longer available, although some weakenings are available. So we need to work
with weaker antecedents. We describe below how to obtain sufficient weakenings.

For each axiom A € F, consider the subtree T4 of T defined by retaining
only the paths from leaves labeled A to the final empty clause. We will produce
multiple disjoint weakenings of A, one for each leaf labelled A. Start with A at
the final node (where T4 has the empty clause) and walk up the tree T4 towards
the leaves. If we reach a branching node v with clause A’, and the pivot at v is
z, weaken A’ to A’V x and A’ V. Proceed along the edge contributing x with
A’V z, and along the other edge with A’V Z. Since T is regular, no tautologies
are created in this process, which ends with multiple “disjoint” weakenings of A.

After doing this for each axiom, we have as many clauses as leaves in 7. Now
we simply perform all the steps in T'.

Since each weakening step increases the number of clauses by one, and since
we finally produce at most s clauses for the leaves, the number of weakening
steps required is at most s. O

We now show that even without weakening, MaxRes has short proofs of
formulas exponentially hard for TreeRes. The formulas that exhibit the sepa-
ration are composed formulas of the form F o g, where F' is a CNF formula,
g: {0,1}* — {0,1} is a Boolean function, there are £ new variables x1, ...,z for
each original variable z of F', and there is a block of clauses C' o g, a CNF expan-
sion of the expression \/ .o [g(1,...x¢) = b], for each original clause C' € F.
We use the pebbling formulas on single-sink directed acyclic graphs: there is a
variable for each node, variables at sources must be true, the variable at the sink
must be false, and at each node v, if variables at origins of incoming edges are
true, then the variable at v must also be true.

We denote by PebHint(G) the standard pebbling formula with additional
hints u Vv for each pair of siblings (u, v)—that is, two incomparable vertices with
a common predecessor—, and we prove the separation for PebHint(G) composed
with the OR function. More formally, if G is a DAG with a single sink z, we
define PebHint(G) o OR as follows. For each vertex v € G there are variables vy
and vy. The clauses are

— For each source v, the clause v1 V vs.

— For each internal vertex w with predecessors u, v, the expression ((u1 V ug) A
(v1 Vv9)) — (w1 V ws), expanded into 4 clauses.

— The clauses z7 and Z3 for the sink z.

— For each pair of siblings (u,v), the clause u; V us V vy V vs.

Note that the first three types of clauses are also present in standard composed
pebbling formulas, while the last type are the hints.

We prove a MaxRes upper bound for the particular case of pyramid graphs.
Let Py, be a pyramid graph of height h and n = O(h?) vertices.

Lemma 2. The PebHint(P;,)oOR formulas have ©(n) size MaxRes refutations.

302 Y. Filmus et al.

Proof. We derive the clause s1 V sy for each vertex s € P, in layered order, and
left-to-right within one layer. If s is a source, then s; V s9 is readily available as
an axiom. Otherwise assume that for a vertex s with predecessors u and v and
siblings r and t — in this order — we have clauses u; V us V s1 V s3 and vy V va,
and let us see how to derive sV s9. (Except at the boundary, we don’t have the
clause uy V ug itself, since it has been used to obtain the sibling r and doesn’t
exist anymore.) We also make sure that the clause v; V va V #1 V t2 becomes
available to be used in the next step.

In the following derivation we skip V symbols, and we colour-code clauses so
that green clauses are available by induction, axioms are blue, and red clauses,
on the right side in steps with multiple consequents, are additional clauses that
are obtained by the MaxRes rule but not with the usual resolution rule.

U1V1S81S2 ULTU2S1S2

U2V1 5152 UIU2V1S1S2 UTV2S182
U2V1V25182 U2V25152
U20V18182 V1028152 V1V
V18182 V18182 U1U281 V1V28182 S1S2tito
$182 V1V281t112

U1U2t1t2

The case where some of the siblings are missing is similar: if 7 is missing
then we use the axiom uq V ug instead of the clause u; V ug V 81 V so that would
be available by induction, and if ¢ is missing then we skip the steps that use
s1V sy V tl \ t2 and lead to deriving v1 VeV tl vV tz.

Finally, once we derive the clause z1 V 2o for the sink, we resolve it with axiom
clauses z7 and Zz3 to obtain a contradiction.

A constant number of steps suffice for each vertex, for a total of O(n). a

We can prove a tree-like lower bound along the lines of [3], but with some
extra care to respect the hints. As in [3] we use the pebble game, a game where
the single player starts with a DAG and a set of pebbles, the allowed moves are
to place a pebble on a vertex if all its predecessors have pebbles or to remove a
pebble at any time, and the goal is to place a pebble on the sink using the
minimum number of pebbles. Denote by bpeb(P — w) the cost of placing
a pebble on a vertex w assuming there are free pebbles on a set of vertices
P C V — in other words, the number of pebbles used outside of P when the
starting position has pebbles in P. For a DAG G with a single sink z, bpeb(G)
denotes bpeb() — z). For U C V and v € V, the subgraph of v modulo U is the
set of vertices u such that there exists a path from u to v avoiding U.

Lemma 3 ([8]). bpeb(P) =h+ 1.
Lemma 4 ([3]). For all P,v,w, we have

bpeb(P — v) < max(bpeb(P — w),bpeb(P U {w} — v) + 1).

MaxSAT Resolution and Subcube Sums 303

The canonical search problem of a formula F is the relation Search(F') where
inputs are variable assignments a € {0,1}"™ and the valid outputs for « are the
clauses C € F' that « falsifies. Given a relation f, we denote by DTy (f) the 1-
query complexity of f [17], that is the minimum over all decision trees computing
f of the maximum of 1-answers that the decision tree receives.

Lemma 5. For all G we have DT (Search(PebHint(G))) > bpeb(G) — 1.

Proof. We give an adversarial strategy. Let R; be the set of variables that are
assigned to 1 at round ¢. We initially set wy = 2, and maintain the invariant
that

1. there is a distinguished variable w; and a path 7; from w; to the sink z such
that a queried variable v is 0 iff v € 7;; and
2. after each query the number of 1 answers so far is at least bpeb(G) —

Assume that a variable v is queried. If v is not in the subgraph of w; modulo
R; then we answer 0 if v € m; and 1 otherwise. Otherwise we consider pg =
bpeb(R; — v) and p; = bpeb(R; U {v} — w;). By Lemmad4, bpeb(R; — w;) <
max(po,p1 + 1). If pg > p1 then we answer 0, set w; 1 = v, and extend 7; with
a path from w;y; to w; that does not contain any 1 variables (which exists by
definition of subgraph modulo R;). This preserves item 1 of the invariant, and
since pg > bpeb(R; — w;), item 2 is also preserved. Otherwise we answer 1 and
since p; > bpeb(R; — w;) — 1 the invariant is also preserved.

This strategy does not falsify any hint clause, because all 0 variables lie on
a path, or the sink axiom, because the sink is assigned 0 if at all. Therefore the
decision tree ends at a vertex w; that is set to 0 and all its predecessors are set
to 1, hence bpeb(R; — w;) = 1. By item 2 of the invariant the number of 1
answers is at least bpeb(G) — 1. O

To complete the lower bound we use the Pudlak—Impagliazzo Prover—Delayer
game [21] where Prover points to a variable, Delayer may answer 0, 1, or #, in
which case Delayer obtains a point in exchange for letting Prover choose the
answer, and the game ends when a clause is falsified.

Lemma 6 ([21]). If Delayer can win p points, then all TreeRes proofs require
size at least 2P.

Lemma 7. FoOR requires size exp(£2(DTy(Search(F)))) in tree-like resolution.

Proof. We use a strategy for the l-query game of Search(F) to ensure that
Delayer gets DT, (F) points in the Prover—Delayer game. If Prover queries a
variable x; then

— If x is already queried we answer accordingly.
— Otherwise we query x. If the answer is 0 we answer 0, otherwise we answer .

304 Y. Filmus et al.

Our strategy ensures that if both z; and x, are assigned then z; V x5 = =.
Therefore the game only finishes at a leaf of the decision tree, at which point
Delayer earns as many points as 1s are present in the path leading to the leaf.
The lemma follows by Lemma 6. O

The formulas PebHint(P,) o OR are easy to refute in MaxRes (Lemma2),
but from Lemmas 3,5, and 7, they are exponentially hard for TreeRes. Hence,

Theorem 1. TreeRes does not simulate MaxResW and MaxRes.

4 The SubCubeSums Proof System

In this section, we explore the power and limitations of the SubCubeSums proof
system. On the one hand we show (Theorem 2) that it has short proofs of the
subset cardinality formulas, known to be hard for resolution but easy for Sherali—
Adams. On the other hand we show a lower bound for SubCubeSums for the
Tseitin formulas on odd-charged expander graphs (Theorem 3). Finally, we estab-
lish a technique for obtaining lower bounds on SubCubeSums size: a degree lower
bound in SubCubeSums for F' translates to a size lower bound in SubCubeSums
for F o ® (Theorem4).

4.1 Res Does Not Simulate SubCubeSums
We now show that Res does not simulate SubCubeSums.

Theorem 2. There are formulas that have SubCubeSums proofs of size O(n)
but require resolution length exp(£2(n)).

The separation is achieved using subset cardinality formulas [19,23,25]. These
are defined as follows: we have a bipartite graph G(U UV, E), with |U| = |V| =
n. The degree of G is 4, except for two vertices that have degree 5. There is
one variable for each edge. For each left vertex u € U we have a constraint
Y esuTe > [d(w)/2], while for each right vertex v € V' we have a constraint
Y es0 Te < [d(v)/2], both expressed as a CNF. In other words, for each vertex
u € U we have the clauses \/;,.; z; for I € (Ld(f)(/g)jﬂ
ser Ti for I € (Ld(zﬁ(/g)J—&-l)'

The lower bound requires G to be an expander, and is proven in [19, Theo-
rem 6]. The upper bound is the following lemma.

), while for each vertex

v € V we have the clauses \/

Lemma 8. Subset cardinality formulas have SubCubeSums proofs of size O(n).

Proof. Our plan is to reconstruct each constraint independently, so that for each
vertex we obtain the original constraints) . x. > [d(u)/2] and) 5, Ze >
[d(v)/2], and then add all of these constraints together.

MaxSAT Resolution and Subcube Sums 305

Formally, if F;, is the set of polynomials that encode the constraint corre-
sponding to vertex u, we want to write the equations

zi- (Fatwy/21 - S)Zh 1)

and

S 1= (1021 -) = S ewin ®

feF, edv

with ¢y j,co,; > 0 and 37, cy,; = O(1), so that with ¢; =37 iy o, We get

P EDIDIEEDIDIF|

feF uelU feF, veV feF,
:Z([)/2] — er—l—ch)
uel evu
+ 3 (1o ZerZ
:Z[d(u)/2 +Z v) Zme+xe +ZCJ
uel veV e€E
- <1+u€z;2> + <1+1§2) eezElJchj

=@2n+1)+@2n+1) = (@n+1)+ > cihj =1+ c;h;

Hence we can write » ;.o f —1= >, ¢;h; with 3, c; = O(n) and each ¢; > 0.

It remains to show how to derive Egs. (1) and (2). The easiest way is to
appeal to the implicational completeness of SubCubeSums, Proposition2. We
continue deriving Eq. (1), assuming for simplicity a vertex of degree d and inci-

dent edges [d]. Let 7 = [[,; Ti, and let {:TI I e (dJZLl)} represent a con-

straint Zie[d] x; > k. Let f = Zle(dj‘;lﬂ)xi] and g = k — Zie[d} z;. For each

point z € {0,1}¢ we have that either x satisfies the constraint, in which case
f(x) > 0 > g(x), or it falsifies it, in which case we have on the one hand

g(z) = s > 0, and on the other hand f(z) = (Z:Zii) = % > s.
We proved that f > g, therefore by Proposition2 we can write f — g as a
sum of subcubes of size at most 2¢ = O(1).

Equation (2) can be derived analogously, completing the proof. a

4.2 A Lower Bound for SubCubeSums

Fix any graph G with n nodes and m edges, and let I be the node-edge incidence
matrix. Assign a variable z. for each edge e. Let b be a vector in {0,1}" with

306 Y. Filmus et al.

>;bi = 1 mod 2. The Tseitin contradiction asserts that the system /X = b has
a solution over Fo. The CNF formulation has, for each vertex u in G, with degree
dy, a set S, of 24~! clauses expressing that the parity of the set of variables
{z, | € is incident on u} equals b,.

These formulas are exponentially hard for Res [24], and hence are also hard
for MaxResW. We now show that they are also hard for SubCubeSums. By
Theorem 2, this lower bound cannot be inferred from hardness for Res.

We will use some standard facts: For connected graph G, over Fs, if). b; =
1 mod 2, then the equations /X = b have no solution, and if), b; = 0 mod 2,
then IX = b has exactly 2 "t solutions. Furthermore, for any assignment a,
and any vertex u, a falsifies at most one clause in S,,.

A graph is a c-expander if for all V' C V with |V’ < |V|/2, |6(V")| > ¢|V’|,
where §(V') ={(u,v) e E|ue V', ve V\V'}L

Theorem 3. Tseitin contradictions on odd-charged expanders require exponen-
tial size SubCubeSums refutations.

Proof. Fix a graph G that is a d-regular c-expander on n vertices, where n is
odd; m = dn/2. Let b be the all-1s vector. The Tseitin contradiction F has n29~1
clauses. By the facts mentioned above, for all a € {0,1}™, violp(a) is odd. So
violg partitions {0,1}™ into X1, X3,..., Xn_1, where X; = ViOl;l(i).

Let C be a SubCubeSums refutation of F', that is, violg = violg — 1 = g, say.
For a cube C, define N;(C) = |C' N X;|. Then for all C' € C, N1(C) = 0, and so
C' is partitioned by X;, i > 3. Let C’ be those cubes of C that have a non-empty
part in X3. We will show that C’ is large. In fact, we will show that for a suitable
S, the set C” C C’ of cubes with |C'N X5| < S|C' N X3 is large.

Defining the probability distribution p on C’ as

W0 = 1Ol Ny(©)
Yopee 1PN X3l Y pee N3(D) 7
| 1 ||CnXs| C A Xs|
C = — | > — | — < S| Pr|—=<S5 3
¢ c@u[mm}—o@#[u(m O Xs| =] J[cnxgr ®)
A B

We want to choose a good value for S so that A is very large, and B is ©(1). To
[CNXs|
‘CﬂXal
and then use Markov’s inequality. For this, we should understand the sets X3,

X5 better. These set sizes are known precisely: for each odd i, | X;| = (7;) gm—ntl

Now let us consider C N X3 and C N X5 for some C € C'. We rewrite the
system IX = b as I'X’' + IcXc = b, where X¢ are the variables fixed in cube
C (to ac, say). So I' X! = b+ Icac. An assignment a is in C'N X, iff it is of the
form d’ac, and o' falsifies exactly r equations in I' X’ = b/ where i/ = b+ Icac.
This is a system for the subgraph G¢ where the edges in X have been deleted.
This subgraph may not be connected, so we cannot use our size expressions
directly. Consider the vertex sets V1, V5, . .. of the components of G¢. The system
I'X" =¥ can be broken up into independent systems; I’ (i) X’ (i) = b'(i) for the

see what will be a good value for S, we estimate the expected value of

MaxSAT Resolution and Subcube Sums 307

ith connected component. Say a component is odd if Zjevi b'(i); = 1 mod 2,
even otherwise. Let |V;| = n; and |E;| = m;. Any o’ falsifies an odd/even number
of equations in an odd/even component.

For o’ € CNXa3, it must falsify three equations overall, so G¢ must have either
one or three odd components. If it has only one odd component, then there is
another assignment in C' falsifying just one equation (from this odd component),
so C' N X1 # 0, a contradiction. Hence G¢ has exactly three odd components,
with vertex sets Vi, Vo, V3, and overall k£ > 3 components. An a € CN X3 falsifies
exactly one equation in I(1), 1(2),(3). We thus arrive at the expression

3
|CNXs| = <H niQmi"”’H> (H 2mi”i+1> = nyngng2™—w(C) -tk
i=1

i>4

Similarly, an o’ € C N X5 must falsify five equations overall. One each must
be from Vi, Vs, V5. The remaining 2 must be from the same component. Hence

3 k
n;\ 1 n;
cn = LI v 2m—w(C)—n+k
| Xs| n1n2n3<g (3>m‘+§ <2>>

)

k
X 1 i— 1
Hence we have, for C € C’, Ig;XZ: > 3 i; (n 5)

We can deduce more by using the definition of yu, and the following fact: Since
g = violg — 1, an assignment in X3 belongs to exactly two cubes in C, and by
definition these cubes are in C’. Similarly, an assignment in X5 belongs to exactly
four cubes in C, not all of which may be in C’. Hence

k
1
> 2m—w(C)—n+k -
Z Ninan3 3 E -

1=

n n cNX
> enxal=2xl =2(3)2 o) = 1G5
cec’ 3 2| X

> lCNnX;| <4IX5| = 4(751) gm—ntl,
cec’
Now we can estimate the average:

|CﬂX5|] |C'N X5 CNXs| _ 4Xs| _ n?
E|ltoa=s] = Clig—=o7= < < —

cec’

At S =n?/9, by Markov’s inequality, B = Pr

‘OOX5| ’/l2
m

— 2 < S=—|>1/10.
N Xy = 9}— /
‘Cng)l

I 1 .
Now we show that conditioned on [CAX,] < S, the average value of ey 18 large.

n — n\ow(C —k w —n
Ll e a@ee@nt guom
u(C) |CNXs

ningng2m—w(C)—n+k NniNans - 3

308 Y. Filmus et al.

So we must show that w(C') must be large. Each literal in C' removes one
edge from G while constructing G¢. Counting the sizes of the cuts that isolate
components of G¢, we count each deleted edge twice. So

k
2w(C) =Y _[6(Vi, VAV = D [8(Vi, VAVI)[+ Y [8(Vi, V\ V)
i=1 im;<n/2 Q1 in; >n/2 Q2

By the c-expansion property of G, Q1 > cn;.
If n; > n/2, it still cannot be too large because of the conditioning. Recall
k
n? _ |CNXs| 1 ni—1
S=—> -

52 ienx 25 (s
So each n; < 5n/6. Thus even when n; > n/2, we can conclude that n;/5 <
n/6 <n —mn; < n/2. By expansion of V' \ V;, we have Q2 > ¢(n — n;) > cn; /5.

w(C)= > (Vi VA\V)[+ > |6(%,V\W)|Z%

in;<n/2 Q1 in;>n/2 Q2

Choose c-expanders where ¢ ensures w(C) + 1 —n = 2(n). (Any constant
¢ > 10.) Going back to our calculation of A from Eq. 3),

w(C)+1—n
_ [1 |C’ﬁX5\S }Z E {2 |C’0X5|§S]20(n)
Crp) |CﬂX3‘ Crp 3 |C’ﬂX3|
for suitable ¢ > 10. Thus |C| > |C'| > A- B > 27" . (1/10) . O

4.3 Lifting Degree Lower Bounds to Size

We describe a general technique to lift lower bounds on conical junta degree to
size lower bounds for SubCubeSums.

Theorem 4. Let d be the minimum degree of a SubCubeSums refutation of an
unsatisfiable CNF formula F. Then every SubCubeSums refutation of F o ® has
size exp(2(d)).

Before proving this theorem, we establish two lemmas. For a function h:
{0,1}" — R, define the function h o @&: {0,1}*" — R as (h o @)(a1,az) =
h(ay ® as), where aq, as € {0,1}" and the @ in a; @ ay is taken bitwise.

Lemma 9. violp(a; ® az) = violpeg (a1, a2).

Proof. Fix assignments oy, as and let a = a3 @& as. We claim that for each
clause C' € F falsified by « there is exactly one clause D € F o @ that is falsified
by ajas. Indeed, by the definition of composed formula the assignment ajas
falsifies C' o &, hence the assignment falsifies some clause D € C o ®. However,
the clauses in the CNF expansion of C o @ have disjoint subcubes, hence a;aq
falsifies at most one clause from the same block. Observing that if o does not
falsify C, then ajas does not falsify any clause in C' o @ completes the proof. O

MaxSAT Resolution and Subcube Sums 309

Corollary 1. violpog — 1 = ((violg) o @) — 1 = (violp — 1) o @.

Lemma 10. If f o ©2 has a (integral) conical junta of size s, then f has a
(integral) conical junta of degree d = O(log s).

Proof. Let J be a conical junta of size s that computes f o 5. Let p be the
following random restriction: for each variable = of f, pick ¢ € {0,1} and b €
{0,1} uniformly and set x; = b. Consider a term C of J of degree at least d >
log, /3 s. The probability that C' is not zeroed out by p is at most (3/4)¢ < 1/s,
hence the probability that the junta J[, has degree larger than d is at most
s+ (3/4)% < 1. Hence there is a restriction p such that J|, is a junta of degree
at most d, although not one that computes f. Since for each original variable
x, p sets exactly one of the variables xg, z1, flipping the appropriate surviving
variables—those where z; is set to 1—gives a junta of degree at most d for f. O

Proof (of Theorem 4). We prove the contrapositive. Assume F' o @ has a Sub-
CubeSums proof of size s. Let H be the collection of s cubes in this proof.
So violpog — 1 = violy. By Corollary 1, there is an integral conical junta for
(violp — 1) o @ of size s. By Lemma 10 there is an integral conical junta for
violp — 1 of degree O(log s). O

Recovering the Tseitin lower bound: This theorem, along with the £2(n) conical
junta degree lower bound of [10], yields an exponential lower bound for the
SubCubeSums and MaxResW refutation size for Tseitin contradictions.

A candidate for separating Res from SubCubeSums: We conjecture that the Sub-
CubeSums degree of the pebbling contradiction on the pyramid graph, or on
a minor modification of it (a stack of butterfly networks, say, at the base of a
pyramid), is n?(1). This, with Theorem 4, would imply that F o is hard for Sub-
CubeSums, thereby separating it from Res. We have not yet been able to prove
the desired degree lower bound. We do know that SubCubeSums degree is not
exactly the same as Res width — for small examples, a brute-force computation
has shown SubCubeSums degree to be strictly larger than Res width.

5 Discussion

We placed MaxRes(W) in a propositional proof complexity frame and compared
it to more standard proof systems, showing that MaxResW is between tree-like
resolution (strictly) and resolution. With the goal of also separating MaxRes and
resolution we devised a new lower bound technique, captured by SubCubeSums,
and proved lower bounds for MaxRes without relying on Res lower bounds.

Perhaps the most conspicuous open problem is whether our conjecture that
pebbling contradictions composed with XOR, separate Res and SubCubeSums
holds. It also remains open to show that MaxRes simulates TreeRes — or even
MaxResW — or that they are incomparable instead.

310 Y. Filmus et al.

Acknowledgments. Part of this work was done when the last author was at TIFR,
Mumbai, India. Some of this work was done in the conducive academic environs of
the Chennai Mathematical Institute (during the CAALM workshop of CNRS UMI
ReLaX, 2019), Banff International Research Station BIRS (seminar 20w5144) and
Schloss Dagstuhl Leibniz Centre for Informatics (seminar 20061). The authors thank
Susanna de Rezende, Tuomas Hakoniemi, and Aaron Potechin for useful discussions.

References

1. Atserias, A., Hakoniemi, T.: Size-degree trade-offs for sums-of-squares and Posi-
tivstellensatz proofs. In: Proceedings of the 34th Computational Complexity Con-
ference (CCC 2019), pp. 24:1-24:20, July 2019

2. Atserias, A., Lauria, M.: Circular (yet sound) proofs. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 1-18. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-24258-9_1

3. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-
like and general resolution. Combinatorica 24(4), 585-603 (2004)

4. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow-resolution made simple.
J. ACM 48(2), 149-169 (2001). Preliminary version in STOC 1999

5. Blake, A.: Canonical expressions in boolean algebra. Ph.D. thesis, University of
Chicago (1937)

6. Bonet, M.L., Buss, S., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT res-
olution with the dual rail encoding. In: Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, (AAAT 2018), pp. 6565-6572 (2018)

7. Bonet, M.L., Levy, J., Manya, F.: Resolution for Max-SAT. Artif. Intell. 171(8),
606-618 (2007)

8. Cook, S.A.: An observation on time-storage trade off. J. Comput. Syst. Sci. 9(3),
308-316 (1974). Preliminary version in STOC 1973

9. Fleming, N., Kothari, P., Pitassi, T.: Semialgebraic proofs and efficient algorithm
design. Found. Trends Theor. Comput. Sci. 14(1-2), 1-221 (2019)

10. Goos, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes.
STAM J. Comput. 47(1), 241-269 (2018)

11. Goos, M., Lovett, S., Meka, R., Watson, T., Zuckerman, D.: Rectangles are non-
negative juntas. SIAM J. Comput. 45(5), 1835-1869 (2016). Preliminary version
in STOC 2015

12. Ignatiev, A., Morgado, A., Marques-Silva, J.: On tackling the limits of resolution
in SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
164-183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_11

13. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Structure in
Complexity Theory Conference, pp. 29-36. IEEE Computer Society (1995)

14. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving.
Artif. Intell. 172(2-3), 204233 (2008)

15. Larrosa, J., Rollon, E.: Augmenting the power of (partial) MaxSAT resolution with
extension. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence
(2020)

16. Larrosa, J., Rollon, E.: Towards a better understanding of (partial weighted)
MaxSAT proof systems. Technical report. 2003.02718. arXiv.org (2020)

17. Loft, B., Mukhopadhyay, S.: Lifting theorems for equality. In: Proceedings of the
36th Symposium on Theoretical Aspects of Computer Science (STACS 2019), pp.
50:1-50:19, March 2019

https://doi.org/10.1007/978-3-030-24258-9_1
https://doi.org/10.1007/978-3-030-24258-9_1
https://doi.org/10.1007/978-3-319-66263-3_11
http://arxiv.org/abs/org

18.

19.

20.

21.

22.

23.

24.
25.

MaxSAT Resolution and Subcube Sums 311

Marques-Silva, J., Ignatiev, A., Morgado, A.: Horn maximum satisfiability: reduc-
tions, algorithms and applications. In: Oliveira, E., Gama, J., Vale, Z., Lopes Car-
doso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 681-694. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65340-2_56

Miksa, M., Nordstrom, J.: Long proofs of (seemingly) simple formulas. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 121-137. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3_10

Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence,
pp. 2717-2723 (2014)

Pudlék, P., Impagliazzo, R.: A lower bound for DLL algorithms for k-SAT (pre-
liminary version). In: Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2000), pp. 128-136, January 2000

Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12, 23-41 (1965)

Spence, I.: sgenl: a generator of small but difficult satisfiability benchmarks. J.
Exp. Algorithmics 15, 1.2:1-1.2:15 (2010)

Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209-219 (1987)

Van Gelder, A., Spence, 1.: Zero-one designs produce small hard SAT instances. In:
Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 388-397. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_37

https://doi.org/10.1007/978-3-319-65340-2_56
https://doi.org/10.1007/978-3-319-09284-3_10
https://doi.org/10.1007/978-3-642-14186-7_37

	MaxSAT Resolution and Subcube Sums
	1 Introduction
	2 Defining the Proof Systems
	3 MaxRes, MaxResW, and TreeRes
	4 The SubCubeSums Proof System
	4.1 Res Does Not Simulate SubCubeSums
	4.2 A Lower Bound for SubCubeSums
	4.3 Lifting Degree Lower Bounds to Size

	5 Discussion
	References

