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Abstract. MaxSAT is a very popular language for discrete optimiza-
tion with many domains of application. While there has been a lot of
progress in MaxSAT solvers during the last decade, the theoretical anal-
ysis of MaxSAT inference has not followed the pace. Aiming at com-
pensating that lack of balance, in this paper we do a proof complexity
approach to MaxSAT resolution-based proof systems. First, we give some
basic definitions on completeness and show that refutational complete-
ness makes compleness redundant, as it happens in SAT. Then we take
three inference rules such that adding them sequentially allows us to nav-
igate from the weakest to the strongest resolution-based MaxSAT system
available (i.e., from standalone MaxSAT resolution to the recently pro-
posed ResE), each rule making the system stronger. Finally, we show
that the strongest system captures the recently proposed concept of Cir-
cular Proof while being conceptually simpler, since weights, which are
intrinsic in MaxSAT, naturally guarantee the flow condition required for
the SAT case.
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1 Introduction

Proof Complexity is the field aiming to understand the computational cost
required to prove or refute statements. Different proof systems may provide
different proofs for the same formula and some proof systems are provably more
efficient than others. When that happens, proof complexity cares about which
elements of the more powerful proof system really make the difference.

In propositional logic, proof systems that work with CNF formulas have
attracted the interest of researchers for several decades. One of the reasons is
that CNF is the working language of the extremely successful SAT solvers and
the search spaces that they traverse can be understood and analyzed as proofs [5].
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(Partial Weighted) MaxSAT is the optimization version of SAT. Although
discrete optimization problems can be modeled and solved with SAT solvers,
many of these problems are more naturally treated as MaxSAT. For this reason
the design of MaxSAT solvers has attracted the interest of researchers in the
last decade. Interestingly, while some of the first efficient MaxSAT solvers were
strongly influenced by MaxSAT inference [9], this influence has diminished along
time. The currently most efficient algorithms solve MaxSAT by sophisticated
sequences of calls to SAT solvers [1,4,11].

We think it is important to understand this scientific trend with a more
formal approach and such understanding must go through an analysis of the
possibilities and limitations of MaxSAT proof systems (how MaxSAT inference
compares with obtaining the same result with a sequence of SAT inferences?).
The purpose of this paper is to start contributing in that direction by improv-
ing the understanding of MaxSAT proof systems. With that aim we extend
some classic proof complexity concepts (i.e, entailment, completeness, etc) to
MaxSAT and analyze three proof systems of increasing complexity: from stand-
alone MaxSAT resolution (Res) [9] to the recently proposed resolution with
extension (ResE) [10]. For the sake of clarity, we break the extension rule of
ResE into two atomic rules: split and virtual ; and analyze their incremental
power. Our results show that each add-on makes a provable stronger system.
More precisely, we have observed that: Res is sound and refutationally complete.
Adding the split rule (ResS) we get completeness and (unlike what happens in
SAT) some exponential speed-up in certain refutations. Further adding the vir-
tual rule (ResSV), which allows to keep negative weights during proofs, we get
further speed-up by capturing the concept of circular proofs [3]. We also give
the interesting and somehow unexpected result that in some cases rephrasing a
MaxSAT refutation as a MaxSAT entailment may transform the problem from
exponentially hard to polynomial when using ResSV.

The structure of the paper is as follows. In Sects. 2 and 3 we provide prelim-
inaries on SAT and MaxSAT, respectively. In Sect. 4 we define some variations
of the Pigeon Hole Problem that we need for the proofs of the theorems. In
Sect. 5 we provide basic definition and properties on MaxSAT proof systems and
introduce and analyze the different systems addressed in the paper. In Sect. 6
we show how the strongest proof system ResSV captures the notion of Circular
Proof. Finally, in Sect. 7, we give some conclusions.

2 SAT Preliminaries

A boolean variable x takes values on the set {0, 1}. A literal is a variable x
(positive literal) or its negation x (negative literal). A clause is a disjunction of
literals. A clause C is satisfied by a truth assignment X if X contains at least
one of the literals in C. The empty clause is denoted � and cannot be satisfied.
The negation of a clause C = l1 ∨ l2 ∨ . . . ∨ lp is satisfied if all its literals are
falsified and this can be trivially expressed in CNF as the set of unit clause
{l1, l2, . . . , lp}.
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A CNF formula F is a set of clauses (understood as a conjunction). A truth
assignment satisfies a formula if it satisfies all its clauses. If such an assignment
exists, we say that the assignment is a model and the formula is satisfiable,
noted SAT (F). Determining whether a formula is satisfiable constitutes the
well-known SAT Problem.

We say that formula F entails formula G, noted F |= G, if every model of F
is also a model of G. Two formulas F and G are equivalent, noted F ≡ G, if they
entail each other.

An inference rule is given by a set of antecedent clauses and a set of con-
sequent clauses. In SAT, the intended meaning of an inference rule is that if
some clauses of a formula match the antecedents, the consequents can be added.
The rule is sound if every truth assignment that satisfies the antecedents also
satisfies the consequents. The process of applying an inference rule to a formula
F is noted F � F ′.

Consider the following two rules [3,12],

x ∨ A x ∨ B A
A ∨ B A ∨ x A ∨ x

(resolution) (split)

where A and B are arbitrary (possibly empty) disjunctions of literals and x is
an arbitrary variable. In propositional logic it is customary to define rules with
just one consequent because one rule with s consequents can be obtained from
s one-consequent rules. As we will see, this is not the case in MaxSAT. For this
reason, here we prefer to introduce the two-consequents split rule instead of the
equivalent weakening rule [3] to keep the parallelism with MaxSAT more evident.

A proof system Δ is a set of inference rules. A proof of length e under a
proof system Δ is a finite sequence F0 � F1 � . . . � Fe where F0 is the original
formula and each Fi is obtained by applying an inference rule from Δ. We will
use �∗ to denote an arbitrary number of inference steps. A short proof is a proof
whose length can be bounded by a polynomial on |F|. A refutation is a proof
such that � ∈ Fe. Refutations are important because they prove unsatisfiability.

A proof system is sound if all its rules are sound. All the SAT rules and proof
systems considered in this paper are sound. A proof system is complete if for
every F ,G such that F |= G, there is a proof F �∗ H with G ⊆ H. Although
completeness is a natural and elegant property, it has limited practical inter-
est. For that reason a weaker version of completeness has been defined. A proof
system is refutationally complete if for every unsatisfiable formula F there is a
refutation starting in F (i.e, completeness is required only for refutations). It is
usually believed that refutational completeness is enough for practical purposes.
The reason is that F |= G if and only if F ∪ G is unsatisfiable, so any implica-
tionally complete proof system can prove the entailment by deriving a refutation
from a CNF formula equivalent to F ∪ G.

It is well-known that the proof system made exclusively of resolution is refu-
tationally complete and adding the split rule makes the system complete. The
following property says that adding the split rule does not give any advantage
to resolution in terms of refutational power.
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Property 1 [(see Lemma 7 in [2]]. A proof system with resolution and split as
inference rules cannot make shorter refutations than a proof system with only
resolution.

3 MaxSAT Preliminaries

A weight w is a positive number or ∞ (i.e, w ∈ R
+ ∪{∞}). We extend sum and

substraction to weights defining ∞ + w = ∞ and ∞ − w = ∞ for all w. Note
that v − w is only defined when w ≤ v.

A weighted clause is a pair (C,w) where C is a clause and w is a weight
associated to its falsification. If w = ∞ we say that the clause is hard, else it
is soft. A weighted MaxSAT CNF formula is a set of weighted clauses F =
{(C1, w1), (C2, w2), . . . , (Cp, wp)}. If all the clauses are hard, we say that the
formula is hard. We say that G ⊆ F if for all (C,w) ∈ G there is a (C,w′) ∈ F
with w ≤ w′.

Given a formula F , we define the cost of a truth assignment X, noted F(X),
as the sum of weights over the clauses that are falsified by X. The MaxSAT
problem is to find the minimum cost over the set of all truth assignments,

MaxSAT (F) = min
X

F(X)

This definition of MaxSAT including weights and hard clauses is sometimes
referred to as Partial Weighted MaxSAT [11]. Note that any clause (C,w) can
be broken into two clauses (C, u), (C, v) as long as u + v = w. In the following
we will assume that clauses are separated and merged as needed.

We say that formula F entails formula G, noted F |= G, if G(X) is a lower
bound of F(X). That is, if for all X, F(X) ≥ G(X). We say that two formulas
F and G are equivalent, noted F ≡ G, if they entail each other. That is, if forall
X, F(X) = G(X).

In the following Sections we will find useful to deal with negated clauses.
Hence, the corresponding definitions and useful properties. Let A and B be
arbitrary disjunctions of literals. Let (A ∨ B,w) mean that falsifying A ∨ B
incurs a cost of w. Although A ∨ B is not a clause, the following property shows
that it can be efficiently transformed into a CNF equivalent,

Property 2. {(A ∨ l1 ∨ l2 ∨ . . . ∨ lp, w)} ≡ {(A ∨ l1, w), (A ∨ l1 ∨ l2, w), . . . , (A ∨
l1 ∨ . . . ∨ lp−1 ∨ lp, w)}.

Observe that if we restrict the MaxSAT language to hard formulas we have
standard SAT CNF formulas where ∞ corresponds to false and 0 corresponds
to true. Note that all the previous definitions naturally instantiate to their SAT
analogous.

4 Pigeon Hole Problem and Variations

We define the well-known Pigeon Hole Problem PHP and three MaxSAT versions
SPHP , SPHP0 and SPHP1, that we will be using in the proof of our results.
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In the Pigeon Hole Problem PHP the goal is to assign m + 1 pigeons to m
holes without any pair of pigeons sharing their hole. In the usual SAT encoding
there is a boolean variable xij (with 1 ≤ i ≤ m + 1, and 1 ≤ j ≤ m) which is
true if pigeon i is in hole j. There are two groups of clauses. For each pigeon i,
we have the clause,

Pi = {xi1 ∨ xi2 ∨ . . . ∨ xim}
indicating that pigeon i must be assigned to a hole. For each hole j we have the
set of clauses,

Hj = {xij ∨ xi′j | 1 ≤ i < i′ ≤ m + 1}
indicating that hole j is occupied by at most one pigeon. Let K be the union of
all these sets of clauses K = ∪1≤i≤m+1Pi ∪1≤j≤m Hj . It is obvious that K is an
unsatisfiable CNF formula. In MaxSAT notation the pigeon hole problem is,

PHP = {(C,∞) | C ∈ K}
and clearly MaxSAT (PHP) = ∞.

In the soft Pigeon Hole Problem SPHP the goal is to find the assignment
that falsifies the minimum number of clauses. In MaxSAT language it is encoded
as,

SPHP = {(C, 1) | C ∈ K}
and it is obvious that MaxSAT (SPHP) = 1.

The SPHP0 problem is like the soft pigeon hole problem but augmented
with one more clause (�,m2 + m) where m is the number of holes. Note that
MaxSAT (SPHP0 ) = m2 + m + 1.

Finally, the SPHP1 problem is like the soft pigeon hole problem but aug-
mented with a set of unit clauses {(xij , 1), (xij , 1)| 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}.
Note that MaxSAT (SPHP1 ) = m2 + m + 1.

5 MaxSAT Proof Systems

A MaxSAT inference rule is given by a set of antecedent clauses and a set of
consequent clause. In MaxSAT, the application of an inference rule is to replace
the antecedents by the consequents. The process of applying an inference rule to
a formula F is also noted F � F ′. The rule is sound if it preserves the equivalence
of the formula.

As in the SAT case, given a proof system Δ (namely, a set of rules) a proof
of length e is a sequence F0 � F1 � . . . � Fe where F0 is the original formula
and each Fi is obtained by applying an inference rule from Δ. If G ⊆ Fe, we say
that the proof is a proof of G from F .

A proof system is sound if all its rules are sound. In this paper all MaxSAT
rules and proof systems are sound. A proof system is complete if for every F , G
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such that F |= G, there is a proof of G from F . A refutation of F is a proof of
(�, k) from F with k = MaxSAT (F). A proof system is refutationally complete
if it can derive a refutation of every formula F .

Next we show that, similarly to what happens in SAT, refutationally com-
pleteness is sufficient for practical purposes. The reason is that it can also be
used to proof or disproof general entailment, making completeness somehow
redundant. We need first to define the maximum soft cost of a formula as
�(F) =

∑
(C,w)∈F |w �=∞ w and the negation of a MaxSAT formula as the nega-

tion of all its clauses F = {(C,w)| (C,w) ∈ F}. The following property tells the
effect of negating a formula without hard clauses,

Property 3. If F is a CNF MaxSAT formula without hard clauses, then

F(X) = �(F) − F(X)

Proof. Let X be a truth assignment, S be the set of clauses satisfied by X and U
be the set of clauses falsified by X. It is clear that F(X) =

∑
(Ci,wi)∈U wi while

F(X) =
∑

(Ci,wi)∈S wi. Since S ∩ U = ∅ and S ∪ U = F , then
∑

(Ci,wi)∈U wi +
∑

(Ci,wi)∈S wi = �(F). Therefore, F(X)+F(X) = �(F) and, as a consequence,
F(X) = �(F) − F(X).

We can now show that an entailment F |= G can be rephrased as a MaxSAT
problem,

Theorem 1. Let F and G be two MaxSAT formulas, possibly with hard clauses.
Then,

F |= G iff MaxSAT (F ∪ G′
) ≥ �(G′)

where G′ is a softened version of G in which infinity weights are replaced by
max{�(G),�(F)} + 1.

Proof. Let us prove the if direction. F |= G means that ∀X,F(X) ≥ G(X). Also,
by construction ∀X,G(X) ≥ G′(X). Therefore, ∀X,F(X) ≥ G(X). Because G′

does not contain hard clauses, G′(X) �= ∞, which means that, ∀X,F(X) −
G′(X) ≥ 0 Adding �(G′) to both sides of the disequality we get, ∀X,F(X) +
�(G′) − G′(X) ≥ �(G′). By Property 3, we have, ∀X,F(X) + G′

(X) ≥ �(G′)
which clearly means that, MaxSAT (F ∪ G′

) ≥ �(G′).
Let us proof the else if direction. maxSAT (F ∪ G′

) ≥ �(G′) implies that
∀X,F(X) + G′

(X) ≥ �(G′). Moreover, since G′
does not have hard clauses,

from Property 3 we know that, ∀X,F(X) + �(G′) − G′(X) ≥ �(G′) so we have,
∀X,F(X) ≥ G′(X) and we need to have, ∀X,F(X) ≥ G(X). We reason on cases
for truth assignment X:

1. If G′(X) <= �(G), by definition of G′, G′(X) = G(X) �= ∞. Therefore,
F(X) ≥ G′(X) = G(X), which proofs this case.
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2. If G′(X) > �(G), by definition of G′, G(X) = ∞. We show that in this case,
F(X) = ∞.

– if �(F) ≤ �(G) then F(X) ≥ G′(X) > �(G) ≥ �(F). We show that
F(X) > �(F) implies that F(X) = ∞. We proceed by contradiction.
Let us suppose that F(X) > �(F) and F(X) �= ∞. The latter means
that X satisfies all hard clauses. As a consequence, F(X) ≤ �(F), which
contradicts the hypothesis.

– if �(F) > �(G), then there are no X such that �(G) < G′(X) ≤ �(F).
By definition of G′, forall (Ci,∞) ∈ G, (Ci,�(F) + 1) ∈ G′. Therefore,
either X satisfies all hard clauses in G and then G′(X) ≤ �(G) or X
falsifies at least one hard clause in G and then G′(X) > �(F).

which proofs the theorem.

The application of the previous theorem to single clause entailment yields
the following corollary.

Corollary 1. Let F be a formula and (C,w) be a weighted clause. Then,

F |= (C,w) iff MaxSAT (F ∪ {(C, u)} ≥ u

where u =
{

w, if w �= ∞
�(F) + 1, if w = ∞

A useful application of this corollary will be shown in Sect. 5.3.
In the rest of the section we introduce and analyze the incremental impact

of the three inference rules.

5.1 Resolution

The MaxSAT resolution rule [8] is,

(x ∨ A, v) (x ∨ B,w)
(A ∨ B,m)

(x ∨ A, v − m) (x ∨ B,w − m)
(x ∨ A ∨ B,m) (x ∨ B ∨ A,m)

where A and B are arbitrary (possibly empty) disjunctions of literals and m =
min{v, w}. When A (resp. B) is empty, A (resp. B) is constant true, so x∨A∨B
(resp. x∨A∨B) is tautological. Note that MaxSAT resolution, when applied to
two hard clauses, corresponds to SAT resolution.

It is known that the proof system Res made exclusively of the resolution
rule is refutationally complete,

Theorem 2 [6,9]. Res is refutationally complete.

However, as we show next, it is not complete.
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Theorem 3. Res is not complete.

Proof. Consider formula F = {(x, 1), (y, 1)}. It is clear that F |= (x∨y, 1) which
cannot be derived with Res.

It is well-known that Res cannot compute short refutations for PHP [12] or
SPHP [6]. However, it can efficiently refute SPHP 1. We write it as a property
and sketch the proof (which is a direct adaptation of what was proved in [7] and
[10]) because it will be instrumental in the proof of several results in the rest of
this section,

Property 4. There is a short Res refutation of SPHP 1.

Proof. The proof is based on the fact that for each one of the m + 1 pigeons
there is a short refutation

{(xi1 ∨ xi2 ∨ . . . ∨ xim, 1)} ∪ {(xij , 1)| 1 ≤ j ≤ m} �∗ G ∪ (�, 1)

and for each one of the m holes there is a short refutation

{(xij ∨ xi′j , 1) | 1 ≤ i < i′ ≤ m + 1} ∪ {(xij , 1) | 1 ≤ i ≤ m + 1} �∗ G ∪ {(�,m)}
Because each derivation is independent of the other we can concatenate them
into,

SPHP1 �∗ G ∪ {(�,m2 + m + 1)}

which is a refutation of SPHP1.

5.2 Split

The split rule,

(A,w)
(A ∨ x,w) (A ∨ x,w)

is the natural extension of its SAT counterpart. Consider the proof system ResS,
made of resolution and split. We show that, as it happens in the SAT case, the
split rule brings completeness,

Theorem 4. ResS is complete.

Proof. The proof is based on the following facts:

1. For every formula F there is a proof F �∗ Fe where Fe is made exclusively
of splits in which all the clauses of F e contain all the variables in the formula
and there are no repeated clauses. Each clause (C,w) ∈ F can be expanded
to a new variable not in C using the split rule. This process can be repeated
until all clauses in the current formula contain all the variables in the formula.
Note that all clauses (C ′, u), (C ′, v) can be merged and, as a result, Fe does
not contain repeated clauses.
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2. If F �∗ Fe then Fe �∗ F . Let F = F0 � F1 � F2 � . . . � Fp = Fe be the
proof from F to Fe. Then, Fe = Fp � . . . � F2 � F1 � F0 = F is done
resolving the pairs of clauses in Fi that were splitted in the Fi−1 � Fi step.

3. If Fe(X) = w then there exists a unique clause (C,w) ∈ Fe which is falsified
by X

By fact (1), F �∗ Fe and G �∗ Ge. Because of soundness, �, ∀X,F(X) =
Fe(X) and ∀X,G(X) = Ge(X). Since F |= G, ∀X,F (X) ≥ G(X). Therefore,
∀X,F e(X) ≥ Ge(X) which, by fact (3), means that for each X there exists a
unique (C,F e(X)) ∈ Fe and (C,Ge(X)) which is falsified by X. Separating
all (C,Fe(X)) into (C,Ge(X)), (C,Fe(X) − Ge(X)) we have Fe = Ge ∪ He.
Therefore, F � Fe = Ge ∪ He. By fact (2), Ge ∪ He �∗ G ∪ He.

However, unlike what happens in the SAT case (see Property 1), ResS is
stronger than Res,

Theorem 5. ResS is stronger than Res.

Proof. On the one hand, it is clear that ResS can simulate any proof of Res
since it is a superset of Res. On the other hand, unlike Res, ResS can produce
short refutations for SPHP 0, as shown below.

First, let us proof that Res cannot produce short refutations for SPHP 0.
Since the resolution rule does not apply to the empty clause (�, w), if Res could
refute SPHP0 in polynomial time it would also refute SPHP in polynomial time,
which is impossible [6].

ResS can produce short refutations for SPHP 0 because it can transform
SPHP 0 into SPHP 1 and then apply Property 4. The transformation is done
by a sequence of splits,

(�, 1)
(xij , 1) (xij , 1)

that move one unit of weight from the empty clause to every variable in the
formula and its negation.

5.3 Virtual

In a recent paper [10] we proposed a proof system in which clauses with negative
weights can appear during the proof. This is equivalent to adding to ResS the
virtual rule,

(A,w) (A,−w)

which allows to introduce a fresh clause (A,w) into the formula. To preserve
soundness (i.e, cancel out the effect of the addition) it also adds (A,−w).

Let ResSV be the proof system made of resolution, split and virtual (note
that resolution and split are only defined for antecedents with positive weights).
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It has been shown that if F0 �∗ Fe is a ResSV proof and Fe does not contain
any negative weight, then for every G ⊆ Fe we have that F |= G.

The following theorem shows that the virtual rule adds further strength to
the proof system,

Theorem 6. ResSV is stronger than ResS.

Proof. On the one hand, it is clear that ResSV can simulate any proof of ResS
since it is a superset of ResS. On the other hand, ResSV can produce a short
refutation of SPHP and ResS cannot.

The short refutation of ResSV, as shown in [10], is obtained by first virtually
transforming SPHP into SPHP 1. Then, it uses Property 4 to derive (�,m2 +
m+1). Finally, it splits one unit of the empty clause cost to each pair xij , xij to
cancel out negative weights. At the end of the process all clauses have positive
weight while still having (�, 1).

It is clear that ResS cannot polynomially refute SPHP because otherwise
a SAT proof system with resolution and split rules would produce shorter
refutations than a SAT proof system with only resolution, which contradicts
Property 1.

We will finish this section showing that Theorem 1 has an unexpected applica-
tion in the context of ResSV. Consider the problem of proving PHP |= (�,∞).
This can be done with a refutation of PHP . Namely PHP �∗ (�,∞) ∪ F or
using Corollary 1, which tells that F |= (�,∞) if and only if MaxSAT (F) ≥ 1.
The following two theorems shows that ResSV cannot do efficiently the first
approach, but can do efficiently the second.

Theorem 7. There is no short ResSV refutation of PHP .

Proof. Virtual rule cannot introduce hard clauses and resolution and split rules
only produce a hard consequence if they have hard antecedents. As a conse-
quence, (�,∞) can only be obtained by resolving or splitting hard clauses in
PHP . If ResSV produce a short refutation for PHP , ResS and, as a conse-
quence Res, also produce the same short refutation for PHP , which contradicts
Property 1.

Theorem 8. There is a polynomial ResSV proof of (�, 1) from PHP .

Proof. We only need to apply the virtual rule,

(�,m2 + m) (�,−m2 − m)

and then split,

(�, 1)
(xij , 1) (xij , 1)

for each i, j. The resulting problem is similar to SPHP 1 but with hard clauses.
At this point and adapting the proof of 4 we can derive (�,m2 + m + 1) cancel
out the negative weight while still retaining (�, 1).
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6 MaxSAT Circular Proofs

In this section we study the relation between ResSV and the recently proposed
concept of circular proofs [3]. Circular proofs allows the addition of an arbitrary
set of clauses to the original formula. It can be seen that conclusions are sound
as long as the added clauses are re-derived as many times as they are used. In
the original paper this condition is characterized as the existence of a flow in
a graphical representation of the proof. Here we show that the ResSV proof
system naturally captures the same idea and extends it from SAT to MaxSAT
with an arguably simpler notation. In particular, the virtual rule guarantees the
existence of the flow.

6.1 SAT Circular Proofs

We start reviewing the SAT case, as defined in [3]. Given a CNF formula F a
circular pre-proof of Cr from F is a sequence,

Π = C1, C2, . . . , Cp, Cp+1, Cp+2, . . . , Cp+q, Cp+q+1, Cp+q+2, . . . , Cr

such that F = {C1, C2, . . . , Cp}, B = {Cp+1, Cp+2, . . . , Cp+q} is an arbitrary set
of clauses and each Ci (i > p + q) is obtained from previous clauses by applying
an inference rule in the proof system. Note that the same clause can be both
derived and used several times during the proof.

A circular pre-proof Π can be associated with a directed bi-partite graph
G(Π) = (I ∪ J,E) such that there is one node in J for each element of the
sequence (called clause nodes) and one node in I for each inference step (called
inference nodes). There is an arc from u ∈ J to v ∈ I if u is an antecedent
clause in the inference step of v. There is an arc from u ∈ I to v ∈ J if v is a
consequent clause in the inference step of u. The graph is compacted by merging
nodes whose associated clause is identical to one in B. Note that before the
compactation the graph is acyclic, but the compactation may introduce cycles.
The set of in-neighbors and out-neighbors of node C ∈ J are denoted N−(C)
and N+(C), respectively.

A flow assignment for a circular pre-proof is an assignment f : I −→ R
+ of

positive reals to inference nodes. The balance of node C ∈ J is the inflow minus
the outflow,

b(C) =
∑

R∈N−(C)

f(R) −
∑

R∈N+(C)

f(R)

Definition 1. A SAT circular proof of clause A from CNF formula F is a pre-
proof Π whose proof-graph G(Π) admits a flow in which all clauses not in F
have non-negative balance and A ∈ J has a strictly positive balance.

Theorem 9 (soundness). Assuming a sound SAT proof system, if there is a
SAT circular proof of A from formula F then F |= A.
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Property 5. Using the proof system with the following two rules,

x ∨ D x ∨ D D
D D ∨ x D ∨ x

(symmetric resolution) (split)

there is a short circular refutation of PHP .

6.2 ResSV and MaxSAT Circular Proofs

Now we show that the MaxSAT ResSV proof system is a true extension of
circular proofs from SAT to MaxSAT. The following two theorems show that,
when restricted to hard formulas, ResSV and SAT circular proofs can simulate
each other. Recall that specializing Corollary 1 to hard formulas, F |= (A,∞)
and MaxSAT (F ∪ {(A, 1)}) ≥ 1 is equivalent. Therefore, one can show F |=
(A,∞) with a proof F ∪ {(A, 1)} �∗ (�, 1) ∪ G.

Theorem 10. Let Π be a SAT circular proof of clause A from formula F =
{C1, . . . , Cp} using the proof system symmetric resolution and split. There is a
MaxSAT ResSV proof of (�, 1) from F ′ = {(C1,∞), . . . , (Cp,∞)} ∪ {(A, 1)}.
The length of the proof is O(|Π|).
Proof. Let G(Π) = (J ∪ I,A) be the proof graph and and f(·) the flow of Π.
By definition of SAT circular proof, A ∈ J and b(A) > 0.

The ResSV proof starts with F ′ = {(C1,∞), . . . , (Cp,∞)} ∪ {(A, 1)} and
consists in 3 phases. In the first phase, the virtual rule is applied for each C ∈ J
not in F , introducing {(C, o), (C,−o)} with o =

∑
R∈N−(C) f(R). In the second

phase, there is an inference step for each u ∈ I. If u is a SAT split, the infer-
ence step is a MaxSAT split generating two clauses with weight f(u). If u is a
SAT symmetric resolution, the inference step is a MaxSAT resolution generat-
ing one clause with weight f(u). Note that this phase never creates new clauses
because all of them have been virtually added at the first phase. It only moves
weights around the existing ones. Note as well that we guarantee by construc-
tion that at each step of the proof the antecedents are available no matter in
which order the proof is done because the first phase has given enough weight to
each added clause to guarantee it and original clauses are hard, so their weight
never decreases. At the end of the second phase we have F ∪ {(A, 1)} ∪ C with
C = {(C, b(C) | C ∈ J, b(C) > 0} with b(C) being the balance of C. Therefore
(A, b(A)) is in C. The third phase is a final sequence of q steps in which (�, 1) is
derived from {(A, 1), (A, b(A)} which completes the proof. Note that the size of
the proof is O(|J + I|) = O(|Π|).
Theorem 11. Consider a hard formula F = {(C1,∞), . . . , (Cp,∞)} and a
ResSV proof F ∪ {(A, 1)} �∗ F ∪ G ∪ {(�, 1)} with e inference steps. There
is a SAT circular proof Π of A from F ′ = {C1, . . . , Cp} with proof system sym-
metric resolution and split. Besides, |Π| = O(e).
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Proof. We need to build a graph G(Π) = (J ∪I, E) with F ′ ⊂ J and A ∈ J , and
a flow f(·) that satisfies the balance conditions and with which A has strictly
positive balance.

Because the virtual rule does not have antecedents all its applications can
be done at the beginning of the proof and all the cancellation of all the virtual
clauses can be done at the end. Therefore, we can omit all those inference steps
and assume without loss of generality that the proof is a ResS (that is, without
virtual),

F ∪ {(A, 1)} ∪ B � F1 � F2 � . . . � Fe = F ∪ G ∪ {(�, 1)} ∪ B
where B is the set of virtually added clauses. Note as well that any application of
MaxSAT resolution between x∨A and x∨B can be simulated by a short sequence
of splits to both clauses until their scope is the same and then one resolution
step between x ∨ A ∨ B and x ∨ A ∨ B. So, again without loss of generality we
can assume that the proof only contains splits and symmetric resolutions.

Our proof contains three phases. First, we are going to build an acyclic graph
G′(Π) which is an unfolded version of G(Π) and a flow function f ′(·) that may
have ∞ flows. Second we will compute f(·) traversing the graph G′(Π) bottom-
up and replacing any infinite flow in f ′(·) by a finite one that still guarantees the
flow condition. In the third and final phase, we will compact the graph which
will constitute the circular proof.
Phase 1:

We build G′(Π) = (J ′ ∪ I ′, E′) by following the proof step by step. Let
G′

i = (J ′
i ∪ I ′

i, E
′
i) be the graph associated to proof step i. We define the front of

Gi as the set of clause nodes in J ′
i with strictly positive balance. By construction

of G′
i we will guarantee a connection between the current formula Fi and the

front of the current graph G′
i

Fi = {(C, b(C)) | C ∈ J ′
i , b(C) =

∑

R∈N−(C)

f ′(R) −
∑

R∈N+(C)

f ′(R)}

where we define ∞ − ∞ = ∞.
G′

1 contains one clause node for each clause in F , {(A, 1)} and B, respectively.
For each clause node there is one dummy inference node pointing to it. The flow
f ′(·) of the inference node is the weight of the clause it points to. This set of
dummy inference nodes will be removed at step three. Then we proceed through
the proof. At inference step i, we add a new inference node i to I. Its in-neighbors
will be nodes from the front (that must exist because of the invariant) and its out-
neighbors will be newly added clause nodes. Its flow f ′(i) is the weight moved
by the inference rule (which may be infinite). If the inference rule is split we
add two clause nodes, one for each consequent and add the corresponding arcs.
If the inference rule is a resolution we add one clause node for its consequent
and add the corresponding arcs. Note that, the out-neighbors of node i have a
positive balance and in-neighbors of i have their out-flow decreased, but cannot
turn negative. Finally, we merge any pair of nodes in the front of G′

i whose
associated clause is the same (which preserves the property of balances being
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non-negative). Graph G′ is obtained after processing the last inference step. Note
that the invariant guarantees that � is in G′ and its balance is 1.
Phase 2:

Now we traverse the inference nodes of G′ in the reverse order of how they
were added transforming infinite flows into finite. When considering node i,
because of the traversing order, we know that every C ∈ N+(i) has finite out-
going flow. We compute the flow value f(i) as follows: if f ′(i) is finite, then
f(i) = f ′(i), else f(i) is the minimum value that guarantees that the balance of
every C ∈ N+(i) is non-negative.
Phase 3:

We obtain G by doing some final arrangements to G′. First, we remove
dummy inference nodes pointing to clauses in F , (A, 1) and B added in Phase
1. As a result, the balance of these nodes is negative. In particular, the balance
of nodes representing A and B is its negative weight.

Since B ⊆ Fe, we know that all nodes representing B are included in the
front of G′ with balance greater than or equal to its weight. We compact these
nodes with the ones in G′

1 and, as a result, its balance is positive.
Finally, we add some split nodes with flow 1 from node � (recall that b(�) =

1) in order to generate A and A, and we compact the latter ones with the ones
in G′

1. As a result, the balance of A is 1 and the balance of A nodes is positive.

7 Conclusions

This paper constitutes a first attempt towards MaxSAT resolution-based proof
complexity analysis. We have provided some basic definitions and results empha-
sizing the similarities and differences with respect to SAT. In particular, we
have shown that MaxSAT entailment can be rephrased as a MaxSAT refutation
problem and, as a consequence, refutation completeness is sufficient for practi-
cal purposes. Interestingly, when such rephrasing is applied to hard formulas it
transforms a SAT query into a MaxSAT one, and such transformation turns out
to be relevant in our analysis of SAT circular proofs.

We have also provided three basic inference MaxSAT rules used in resolution-
based proof systems (e.g. resolution, split and virtual) and have analysed their
incremental effect in terms of refutation power. Finally, we have related ResSV,
the strongest of the proof systems considered, with the recently proposed concept
of circular proofs. We have shown that ResSV generalizes SAT circular proofs
as defined in [3].

An additional contribution of the paper is to put together under a formal
framework and common notation some ideas spread around in different recent
papers such as [3,7,10].
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