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Preface

This volume contains the papers presented at the 23rd International Conference on
Theory and Applications of Satisfiability Testing (SAT 2020) held during July 3–10,
2020. Originally planned to be held in Alghero, Italy, it was not possible to have an
onsite event due to of COVID-19. Instead SAT went online and was organized as a
virtual event.

SAT is the premier annual meeting for researchers focusing on the theory and
applications of the propositional satisfiability problem, broadly construed. Aside from
plain propositional satisfiability, the scope of the meeting includes Boolean opti-
mization, including MaxSAT and pseudo-Boolean (PB) constraints, quantified Boolean
formulas (QBF), satisfiability modulo theories (SMT), and constraint programming
(CP) for problems with clear connections to Boolean reasoning. Many hard combi-
natorial problems can be tackled using SAT-based techniques, including problems that
arise in formal verification, artificial intelligence, operations research, computational
biology, cryptology, data mining, machine learning, mathematics, etc. Indeed, the
theoretical and practical advances in SAT research over the past 25 years have con-
tributed to making SAT technology an indispensable tool in a variety of domains. SAT
2020 welcomed scientific contributions addressing different aspects of SAT interpreted
in a broad sense, including (but not restricted to) theoretical advances (such as exact
algorithms, proof complexity, and other complexity issues), practical search algo-
rithms, knowledge compilation, implementation-level details of SAT solvers and
SAT-based systems, problem encodings and reformulations, applications (including
both novel application domains and improvements to existing approaches), as well as
case studies and reports on findings based on rigorous experimentation.

SAT 2020 received 69 submissions, comprising 52 long papers, 11 short papers, and
6 tool papers. Each submission was reviewed by at least three Program Committee
members. The reviewing process included an author response period, during which the
authors of the submitted papers were given the opportunity to respond to the initial
reviews for their submissions. To reach a final decision, a Program Committee dis-
cussion period followed the author response period. External reviewers supporting the
Program Committee were also invited to participate directly in the discussion for the
papers they reviewed. This year, most submissions received a meta-review, summa-
rizing the discussion that occurred after the author response and an explanation of the
final recommendation. In the end, the committee decided to accept a total of 36 papers;
25 long, 9 short, and 2 tool papers.

In addition to presentations on the accepted papers, the scientific program of SAT
announced two invited talks by:

– Georg Gottlob, Oxford University, UK, and TU Wien, Austria
– Aaarti Gupta, Princeton University, USA



SAT 2020 hosted various associated events coordinated by our workshop and
competition chair Florian Lonsing. This year, three workshops were affiliated with
SAT.

– Pragmatics of SAT Workshop, organized by Matti Järvisalo and Daniel Le Berre
– QBF Workshop, organized by Hubie Chen and Friedrich Slivovsky
– Model Counting Workshop, organized by Johannes Fichte and Markus Hecher

Also the workshops were organized as virtual events before or after the main
conference. The results of the following four competitive events were announced at
SAT:

– SAT Competition 2020, organized by Thomas Balyo, Marijn Heule, Markus Iser,
Matti Järvisalo, and Martin Suda

– MaxSAT Evaluation 2020, organized by Fahiem Bacchus, Jeremias Berg, Matti
Järvisalo, and Ruben Martins

– QBFEVAL 2020, organized by Luca Pulina, Martina Seidl, and Ankit Shukla
– Model Counting 2020, organized by Markus Hecher and Johannes K. Fichte

Last, but not least, we thank everyone who contributed to making SAT 2020 a
success. In particular, we thank our workshop chair Florian Lonsing and our publi-
cation chair Laura Pandolfo. We are indebted to the Program Committee members and
the external reviewers, who dedicated their time to review and evaluate the submissions
to the conference. We thank the authors of all submitted papers for their contributions,
the SAT association for their guidance and support in organizing the conference, and
the EasyChair conference management system for facilitating the submission and
selection of papers as well as the assembly of these proceedings. Last but not least we
thank Springer for supporting the Best Paper Awards.

May 2020 Luca Pulina
Martina Seidl
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Sorting Parity Encodings by Reusing Variables

Leroy Chew(B) and Marijn J. H. Heule

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
lchew@andrew.cmu.edu

Abstract. Parity reasoning is challenging for CDCL solvers: Refuting
a formula consisting of two contradictory, differently ordered parity con-
straints of modest size is hard. Two alternative methods can solve these
reordered parity formulas efficiently: binary decision diagrams and Gaus-
sian Elimination (which requires detection of the parity constraints). Yet,
implementations of these techniques either lack support of proof logging
or introduce many extension variables.

Thecompact,commonly-usedencodingofparityconstraintsusesTseitin
variables. We present a technique for short clausal proofs that exploits
these Tseitin variables to reorder the constraints within the DRAT sys-
tem. The size of our refutations of reordered parity formulas is O(n log n).

1 Introduction

Modern SAT solving technology is based on Conflict Driven Clause Learning
(CDCL) [12]. The resolution proof system [16] has a one-to-one correspon-
dence [15] with CDCL solving. In practice, however, the preprocessing techniques
used in modern solvers go beyond what can be succinctly represented in a res-
olution proof. As a consequence, when we need to present verifiable certificates
of unsatisfiable instances, resolution is not always sufficient. Extended Resolution
(ER) [20] is a strong proof system that can polynomially simulate CDCL and many
other techniques. However, ER is not necessarily the most useful system in prac-
tice, as we also want to minimise the degree of the polynomial simulation.

The DRAT proof system [7] is polynomially equivalent to ER [8]. Yet most
practitioners favour DRAT due to its ability to straightforwardly simulate known
preprocessing and inprocessing techniques. DRAT works by allowing inference
to go beyond preserving models and instead preserves only satisfiability.

In this paper, we demonstrate DRAT’s strengths on a particular kind of un-
satisfiable instances that involve parity constraints. Formulas with parity con-
straints have been benchmarks for SAT for decades. The Dubois family encodes
the refutation of two contradictory parity constraints over the same variables
using the same variable ordering. Urquhart formulas [21] encode a modulo two
sum of the degree of each vertex of a graph, the unsatisfiability comes from
an assertion that this sum is odd, a violation of the Handshake Lemma. The
Parity family from Crawford and Kearns [3] takes multiple parity instances on
a set of variables and combines them together. For these problems, practical
solutions have been studied using Gaussian elimination, equivalence reasoning,
binary decision diagrams and other approaches [5,6,9–11,13,18,19,22].
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 1–10, 2020.
https://doi.org/10.1007/978-3-030-51825-7_1
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2 L. Chew and M.J.H. Heule

Extracting checkable proofs in a universal format has been another mat-
ter entirely. While it is believed that polynomial size circuitry exists to solve
these problems, actually turning them into proofs could mean they may only
be “short” in a theoretical polynomial-size sense rather than a practical one.
Constructing a DRAT proof of parity reasoning has been investigated theoreti-
cally [14], but no implementation exists to actually produce them nor is it clear
whether the size is still reasonable to be useful in practice.

There has been some investigation into looking at DRAT without the use
of extension variables. DRAT−, which is DRAT without extension variables, is
somewhere in between resolution and ER in terms of power. Several simulation
results for DRAT− [2], show that it is a powerful system even without the sim-
ulation of ER. A key simulation technique was the elimination and reuse of a
variable, which we use to find short DRAT− proofs of a hard parity formula.

The structure of parity constraints can be manipulated by reusing variables
and we exploit the associativity and commutativity of the parity function. We
demonstrate this on formulas similar to the Dubois family except the variables
now appear in a random order in one parity constraint. We show how to obtain
DRAT proofs of size O(n log n) without using additional variables. Our method
can also be used to produce ER proofs of similar size with new variables.

2 Preliminaries

In propositional logic a literal is a variable x or its negation x, a clause is a
disjunction of literals and a Conjunctive Normal Form (CNF) is conjunction
of clauses. A unit clause is a clause containing a single literal. We denote the
negation of literal l as l (or ¬l). The variable corresponding to literal l is var(l).
If C is a clause, then C is the conjunction of the negation of the literals in C
each a unit clause. In this paper, we treat clauses/formulas as unordered and
not containing more than one copy of each literal/clause respectively.

Unit propagation simplifies a conjunctive normal form F by building a partial
assignment and applying it to F . It builds the assignment by satisfying any literal
that appears in a unit clause. Doing so may negate opposite literals in other
clauses and result in them effectively being removed from that clause. In this
way, unit propagation can create more unit clauses and can keep on propagating
until no more unit clauses remain or the empty clause is reached. We denote
that the empty clause can be derived by unit propagation applied to CNF F
by F �1 ⊥. Since unit propagation is an incomplete but sound form of logical
inference this is a sufficient condition to show that F is a logical contradiction.

The DRAT proof system. Below we define the rules of the DRAT proof sys-
tem. Each rule modifies a formula by either adding or removing a clause while
preserving satisfiability or unsatisfiability, respectively.

Definition 1 (Asymmetric Tautology (AT) [7]). Let F be a CNF formula.
A clause C is an asymmetric tautology w.r.t. F if and only if F ∧ C �1 ⊥.
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Asymmetric tautologies are also known as RUP (reverse unit propagation)
clauses. The rules ATA and ATE allow us to add and eliminate AT clauses. ATA
steps can simulate resolution steps and weakening steps.

F (ATA: C is AT w.r.t. F )
F ∧ C

F ∧ C (ATE: C is AT w.r.t. F )
F

Definition 2 (Resolution Asymmetric Tautology (RAT) [7]). Let F be a
CNF formula. A clause C is a resolution asymmetry tautology w.r.t. F if and
only if there exists a literal l ∈ C such that for every clause l ∨ D ∈ F it holds
that F ∧ D ∧ C �1 ⊥.

The rules RATA and RATE allow us to add and eliminate RAT clauses.
RATA can be used to add new variables that neither occur in F or anywhere
else. This can be used to simulate extension steps in ER.

F (RATA: C is RAT w.r.t. F )
F ∧ C

F ∧ C (RATE: C is RAT w.r.t. F )
F

3 A parity contradiction based on random orderings

In this section we will detail the main family of formulas investigated in this
work. These formulas will be contradictions expressing both the parity and non-
parity on a set of variables.

We define the parity of propositional literals a, b, c as follows

xor(a, b, c) := (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

Let X = {x1, . . . , xn}, and let σ be a bijection between literals on X, that
preserves negation (σ(¬l) = ¬σ(l)). Let e denote the identity permutation on
the literals of X. Let T = {t1, . . . , tn−3}. We define Parity(X,T, σ) as

xor(σ(x1), σ(x2), t1) ∧
n−4∧

j=1

xor(tj , σ(xj+2), tj+1) ∧ xor(tn−3, σ(xn−1), σ(xn))

This formula is satisfiable if and only if the total parity of {σ(xi) | xi ∈
X} is 1. The T variables act as Tseitin variables and whenever the formula is
satisfied ti+1 is the sum modulo two of σ(x1), . . . , σ(xi+2). The final clauses,
xor(tn−3, σ(xn−1), σ(xn)) thus are satisfied when the sum of tn−3, σ(xn−1) and
σ(xn) is 1 mod 2. Suppose we pick σ so that there is some i ∈ [n] such that
σ(xj) is a negative literal if and only if j = i. Let T ′ = {t′1, . . . , t′n−3} be
another set of Tseitin variables. Parity(X,T, σ)∧Parity(X,T ′, e) is false as it
states the parity of X is true but also states it false. However the permutation
σ obfuscates the similarities between the two Parity parts of the formula.

Were σ(xj) = xj for all j �= i and σ(xi) = −xi then these formulas would be
equivalent to the Dubois formulas and a linear proof could be made by induc-
tively deriving clauses that express t′j = tj for j < i − 1 and then t′j �= tj for
j ≥ i − 1. This will always allow us to derive a contradiction. While a linear
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ATA

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

RATE

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ q ∨ c

d p ∨ q ∨ c

d p ∨ q ∨ c

d p ∨ q ∨ c

RATA

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ q ∨ a

p ∨ q ∨ a

p ∨ q ∨ a

p ∨ q ∨ a

ATE

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

Fig. 1. DRAT steps required for Lemma 1, d denotes a deletion step.

resolution proof is known for the Dubois, it is unknown what the size of the
shortest resolution proof of Parity(X,T, σ)∧Parity(X,T ′, e) for a random σ.
While the Dubois family are a special case of these formulas, these formulas are
in turn a special case of the Tseitin graph formulas [20] where the vertex degree
is always 3.

When σ �= e we still have a contradiction due to the commutativity of the par-
ity function. However such a straightforward DRAT proof becomes obstructed
by the disarranged ordering. This permutation also makes these formulas hard
for CDCL solvers (see Section 4). We will show that Parity(X,T ′, e) can be
efficiently reordered. Afterwards a short resolution proof arises. This brings us
to our main theoretical result.

Theorem 1. Let X = {x1, . . . , xn}, T = {t1, . . . , tn}, T ′ = {t′1, . . . , t
′
n} and let

σ be a bijection between literals on X, that preserves negation. Suppose there is
some i ∈ [n] such that σ(xj) is a negative literal if and only if j = i. The 3-CNF
Parity(X,T, σ) ∧ Parity(X,T ′, e) has a proof of size O(n log n).

In the remainder of this section we will prove Theorem 1. We begin with
an essential lemma that uses the DRAT rules to perform elementary adjacent
swaps on literals in xor constraints.

Lemma 1. Suppose we have a CNF F and two sets of xor clauses xor(a, b, p)
and xor(p, c, q), where variable p appears nowhere in F . We can infer

F ∧ xor(a, b, p) ∧ xor(p, c, q)
F ∧ xor(b, c, p) ∧ xor(p, a, q)

in a constant number of DRAT steps without adding new variables.

Proof. The idea is to eliminate variable p so that we define q directly as the
parity of a, b, c using eight “ternary xor” clauses. Each of these clauses can
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be added directly via ATA. We can now remove (using RATE) all clauses that
contain variable p. These steps are equivalent to performing Davis-Putnam (DP)
resolution [4] on variable p.

What we are left with is that two levels of parity have been replaced with
one level of ternary parity. We can reverse the above steps to get us two levels of
parity yet again, but we can swap a and c (since they appear symmetrically in
our “ternary xor” clauses). We re-use the eliminated p to now mean the xor of b
and c using RATA. Finally, we remove the “ternary xor” clauses using ATE. 	


Note that here elimination is required only because we want to re-use the
variable p. We can also show a similar step in ER without the elimination steps,
introducing the “ternary xor” clauses immediately with resolution. We can in-
troduce the four xor(p′, b, c) extension clauses for p′, and by resolving them with
the ternary clauses on b we get eight intermediate clauses which can resolve with
each other on c to get the remaining four xor(p′, a, q) clauses. Without ATA and
RATA steps, this process involves 50% more addition steps, but since it contains
no deletion steps we have 25% fewer steps in total. ER proofs allow us to keep
lemmas without deletion so where we have more than two parity constraints we
may wish to reuse derived parity clauses. On the other hand DRAT− keeps the
number of variables and clauses fixed when searching when we do not know the
structure of formula and can stop the search size from growing.

Sorting the input literals. We can switch the two parity inputs using Lemma 1
in a constant number of proof steps. Furthermore the technique in DRAT does
not require any additional extension variables and since the number of addition
and deletion steps in Lemma 1 is the same, the working CNF does not change
in size. Sorting using adjacent variables requires Θ(n2) swaps.

Let us ignore the variables xn−1 and xn and the clauses that include them
as special cases. We can take xor(x1, x2, t1) ∧ ∧n−4

i=1 xor(ti, xi+2, ti+1) as the def-
inition of tn−3 in circuit form, using the X variables as input gates and the ti
variables as xor (⊕) gates. This circuit is a tree with linear depth. the distance
between two input nodes is linear in the worst-case, which is why we get Ω(n2)
many swaps. However Lemma 1 allows us even more flexibility, we can not only
rearrange the input variables but the Tseitin variables.

For example if we have xor(ti, xi+2, ti+1) and xor(ti−1, xi+1, ti) clauses we can
eliminate ti so that ti+1 is defined as the parity of xi+1, xi+2, and ti−1. However

3
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x1 x2

x3

x4

x5

x6

3

2 1

x1 x2x3x4

x5

x6

Fig. 2. Swapping the position of an internal node to balance the tree.
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Fig. 3. Moving two literals next to each other. Top: moving x2 up to the source of the
tree. Bottom: moving x2 down to swap with x7

we can now redefine ti as the xor of xi+1, xi+2 (using xor(ti, xi+1, xi+2)) and ti+1

as the xor of ti and ti−1 (using xor(ti+1, ti, ti−1)). See Figure 2 for an example
and notice how we change the topology of the tree.

In �n
2  many swaps we can change our linear depth tree into a tree that

consists of a two linear branches of depth at most �n
2 � joined at the top by an

xor. This means that using a divide and conquer approach, we can turn this tree
in a balanced binary tree of �log2 n� depth in O(n log n) many steps.

The purpose of a log depth tree structure is to allow leaf-to-leaf swapping
from both ends of the the tree without having to do a linear number of swaps,
in fact we can do arbitrary leaf swaps in O(�log n�) many individual steps. This
is done by pushing a variable up its branch to the source node of the tree and
pushing it back down another branch to its destination as in Figure 3. Then we
can reverse the steps with the variable being swapped out. The resulting tree
even retains the position of all other nodes.

Note that we also have the variables xn and xn−1 that only appear in the
clauses of xor(tn−3, xn−1, xn). Suppose the two children of tn−3 in its definition
circuit are a and b, in other words xor(tn−3, a, b) are the clauses currently defining
tn−3. Without loss of generality suppose we want to swap xn−1 with a.

The clauses of xor(tn−3, xn−1, xn) are exactly the same as the clauses of
xor(tn−3, xn−1, xn). Using Lemma 1 we can eliminate tn−3 and gain eight clauses
that represent that xn is the ternary xor of a, b and xn−1. Then we can reverse
the steps but instead swap the positions of xn−1 and a.
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In this way we can introduce xn−1 or xn into the tree and swap it with
any leaf. Once again we only require O(log n) many applications of Lemma 1 to
completely swap the position of xn−1 or xn with any leaf.

Arriving at the empty clause. The total number of leaf-to-leaf swaps we
are required to perform is bounded above linearly so we stay within O(n log n)
many steps. We can now undo the balanced tree into a linear tree in (we reverse
what we did to balance it) keeping within an O(n log n) upper bound.

Recall that we performed a sort on the variables in Parity(X,T ′, e) thereby
transforming it into Parity(X,T ′, σ′) with var(σ′(x)) = var(σ(x)), resulting
in the formula Parity(X,T, σ) ∧ Parity(X,T ′, σ′). Thus the final part of the
proof now involves refuting a formula equivalent to one of the Dubois formulas.

We create a proof that inductively shows equivalence or non-equivalence be-
tween variables tj ∈ T and the t′j ∈ T ′ starting from j = 1 to j = n − 3. If there
is an even number of instances i, 1 ≤ i ≤ j + 1 where σ′(xi) �= σ(xi) we derive
(t′j ∨ tj) and (t′j ∨ tj). If there are an odd number of instances i, 1 ≤ i ≤ j + 1
where σ′(xi) �= σ(xi) we instead derive (t′j ∨ tj) and (t′j ∨ tj).

Whichever case, we can increase j with the addition (ATA) of six clauses.
We can think of this as working via DP resolution in a careful order: σ(xj+1),
tj−1, t′j from j = 1 to n − 3 in increasing j (and treat σ(x1) as t0).

Finally, when j = n − 3, we have either already exceeded the single value
i such that σ′(xi) �= σ(xi), or it appears in n − 1 or n. Either way, we can
add the four clauses (σ(xn−1)∨σ(xn)), (¬σ(xn−1)∨σ(xn)), (σ(xn−1)∨¬σ(xn)),
(¬σ(xn−1)∨¬σ(xn)) then the two unit clauses (σ(xn)) and (¬σ(xn)) and finally
the empty clause. This final part of the refutation uses O(n) many ATA steps.

4 Evaluation

The formulas we ran experiments on are labelled rpar(n, g). Which represent
Parity(X,T, σ(n,g)) ∧ Parity(X,T ′, e) using the DIMACS format. The pa-
rameter n is the number of input variables and a random number genera-
tor g. The CNF uses variables X = {1, . . . , n}, T = {n + 1, . . . , 2n − 3},
T ′ = {2n − 2, . . . , 3n − 6}, e is the identity permutation, and σ(n,g) is a ran-
dom permutation based on g, where one random literal in,g is flipped by σ.

We ran a program rParSort that generated an instance rpar(n, rnds) based on
a seed s and also generated a DRAT proof based on Theorem 1. We compare the
size of our proofs by ones produced by the state-of-the-art SAT solver CaDiCaL [1]
(version 1.2.1) and the tool EBDDRES [17] (version 1.1). The latter solves the
instance using binary decision diagrams and turns the construction into an ER
proof. These ER proofs can easily be transformed into the DRAT format as
DRAT generalizes ER. Proof sizes (in the number of DRAT steps, i.e. lines in
the proof) are presented and compared in Figure 4.

rParSort proofs remained feasible for values as large as n = 4000 with proofs
only being 150MB due to the O(n log n) upper bound in proof lines. We believe
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n vars clauses lines size(KB)

10 24 64 1 681 25
20 54 144 7 469 115
50 144 384 30 657 481

101 297 792 77 971 1 426
250 744 1 984 253 777 4 810
500 1 494 3 984 583 885 11 176

1 000 2 994 7 984 1 344 837 29 278
2 000 5 994 15 984 3 023 541 67 405
3 000 8 994 23 984 4 778 373 107 276
4 000 11 994 31 984 6 668 629 150 181 34 36 38 40 42 44 46

104

105

106

107

108

n

EBDDRES
CaDiCaL
rParSort

Fig. 4. rParSort proof sizes for rpar(n, rnd53) formulas (left). Comparisons of average
(of 10) proof sizes on n ∈ {35, . . . , 45} (right).

leading coefficient is also kept small by number of factors such as the proof lines
being width 4 and only 16 being needed per swap step.

CaDiCaL showed difficulty for modest values of n. While proofs with less than
106 lines are common for n = 35, the size and running time grows exponentially
and by n = 41 proofs are larger than 107 lines. CaDiCaL times out using a 5000
seconds limit on some instances with n = 46 and on most instances with n ≥ 50.

The size of proofs produced by EBDDRES appears to grow slower compared
to CDCL, which is not surprising as BDDs can solve the formulas in polynomial
time. However, as can be observed in Figure 4, the ER proofs are actually bigger
for small n. The extracted DRAT proofs (converted from the ER proofs) are
large: the average proof with n ≥ 35 had more than 107 lines. This means that
this BDD-based approach is not practical to express parity reasoning in DRAT.

5 Conclusion

We have shown that through manipulating existing encoding variables DRAT
can take advantage of the commutativity of xor definitions via Lemma 1. Our
proof generator is capable of producing reasonable-sized proofs for instances with
tens of thousands of variables, while state-of-the-art SAT solvers without xor
detection and Gaussian elimination, such as CaDiCaL, can only solve instances
up to about 60 variables. Although these formulas are also doable for BDD-based
approaches, the resulting proofs are too big for practical purposes.

The DRAT proofs are in the fragment of DRAT−, where the number of
variables stays fixed, which is of potential benefit to the checker. If we are not
concerned with the introduction of new variables, our DRAT proofs can easily
be made into ER proofs with only a 50% increase in addition steps (and the
introduction of new variables). This is an alternative approach that may prove
useful in other settings where elimination of a variable is not so easy.
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Abstract. Modern parallel SAT solvers rely heavily on effective clause
sharing policies for their performance. The core problem being addressed
by these policies can be succinctly stated as “the problem of identifying
high-quality learnt clauses”. These clauses, when shared between the
worker nodes of parallel solvers, should lead to better performance. The
term “high-quality clauses” is often defined in terms of metrics that
solver designers have identified over years of empirical study. Some of
the more well-known metrics to identify high-quality clauses for sharing
include clause length, literal block distance (LBD), and clause usage in
propagation.

In this paper, we propose a new metric aimed at identifying high-
quality learnt clauses and a concomitant clause-sharing policy based on
a combination of LBD and community structure of Boolean formulas.
The concept of community structure has been proposed as a possible
explanation for the extraordinary performance of SAT solvers in indus-
trial instances. Hence, it is a natural candidate as a basis for a metric
to identify high-quality clauses. To be more precise, our metric identi-
fies clauses that have low LBD and low community number as ones that
are high-quality for applications such as verification and testing. The
community number of a clause C measures the number of different com-
munities of a formula that the variables in C span. We perform extensive
empirical analysis of our metric and clause-sharing policy, and show that
our method significantly outperforms state-of-the-art techniques on the
benchmark from the parallel track of the last four SAT competitions.

1 Introduction

The encoding of complex combinatorial problems as Boolean satisfiability (SAT)
instances has been widely used in industry and academy over the last few
decades. From AI planning [19] to cryptography [26], modern SAT solvers have
demonstrated their ability to tackle huge formulas with millions of variables
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and clauses. This is instinctively surprising since SAT is an NP-complete prob-
lem [12]. The high-level view of a SAT solver algorithm is the successive enu-
meration of all possible values for each variable of the problem until a solution is
found or the unsatisfiability of the formula is concluded. What makes SAT solv-
ing applicable to large real-world problems is the conflict-driven clause learning
(CDCL) paradigm [24].

During its search, a CDCL solver is able to learn new constraints, in the
form of new implied clauses added to the formula, which allows it to avoid the
exploration of large parts of the search space. In practice too many clauses are
learnt and a selection has to be done to avoid memory explosion. Many heuristics
have been proposed, in the sequential context, to reduce the database of learnt
clauses. Such methods of garbage collection are usually quite aggressive and are
based on measures, such as the literal block distance (LBD), whose aim is to
quantify the usefulness of clauses [4].

The omnipresence of many-core machines has led to considerable efforts in
parallel SAT solving research [7]. There exist two main classes of parallel SAT
strategies: a cooperative one called divide-and-conquer [32] and a competitive
one called portfolio [15]. Both rely on the use of underlying sequential worker
solvers that might share their respective learnt clauses. Each of these sequential
solvers has a copy of the formula and manages its own learnt clause database.
Hence, not all the learnt clauses can be shared and a careful selection must be
made in order for the solvers to be efficient. In state-of-the-art parallel solvers
this filtering is usually based on the LBD metric. The problem with LBD is its
locality, indeed a clause does not necessarily have the same LBD value within
the different sequential solvers’ context.

In this work we explore the use of a more global quality measure based on
the community structure of each instance. It is well-known that SAT instances
encoding real-world problems expose some form of modular structure which
is implicitly exploited by modern CDCL SAT solvers. A recurring property of
industrial instances (as opposed to randomly-generated ones) is that some vari-
ables are more constraint together (linked by more clauses). We say that a group
of variables that have strong link with each other and few links with the rest
of the problem form a community (a type of cluster over the variable-incidence
graph of Boolean formulas). A SAT instance may contain tens to thousand of
communities.

Contributions. The primary contributions of this paper are the following:

– Based on statistics gathered during sequential SAT solver’s executions on
the benchmark from the SAT competition 2018, we study the relationship
between LBD and community, and we analyse the efficacy of LBD and com-
munity as predictive metrics of the usefulness of newly learnt clauses.

– Based on this preliminary analysis, we propose to combine both metrics to
form a new one and to use it to implement a learnt clause sharing policy in
the parallel SAT solving context.
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– We implement our new sharing strategy in the solver (P-MCOMSPS [22]) winner
of the last parallel SAT competition in 2018, and evaluate our solver on the
benchmark from the SAT competition 2016, 2017, 2018, and 2019. We show
that our solver significantly outperforms competing solvers over this large and
comprehensive benchmark of industrial application instances.

Paper Structure. The remainder of the paper is structured as follows: we intro-
duce the basic concepts necessary to understand our work in Sect. 2. Section 3
presents preliminary analysis on LBD usage to provide intuition and motivate
our work. Section 4 explores combination of LBD and COM measures to detect
useful learnt clauses. Solvers and experimental results are presented in Sect. 5.
Section 6 surveys some related works and Sect. 7 concludes this paper.

2 Preliminaries

This section introduces useful definitions, notations, and concepts that will be
used in the remaining of the paper. It is worth noting that we consider the context
of complete SAT solving, and thus we focus on the well-known conflict-driven
clause learning (CDCL) algorithm [24]. For details on CDCL SAT algorithm we
refer the reader to [9].

2.1 Boolean Satisfiability Problem

A Boolean variable is a variable that has two possible values: true or false. A
literal is a Boolean variable or its negation (NOT). A clause is a finite disjunction
(OR) of literals. A conjunctive normal form (CNF) formula is a finite conjunction
(AND) of clauses. In the rest of the paper we use the term formula to refer to
CNF formula. Moreover, clauses are represented by the set of their literals, and
formulas by the set of their clauses.

For a given formula F , we define an assignment of variables of F as a function
A : V → {true, false}, where V is the set of variables appearing in F . A clause
is satisfied when at least one of its literals is evaluated to true. A formula is
satisfied if all its clauses are evaluated to true. A formula is said to be satisfiable
(sat) if there is at least one assignment that makes it true; it is reported unsat-
isfiable (unsat) otherwise. The Boolean satisfiability (SAT) problem consists in
determining if a given formula is sat or unsat.

2.2 Literal Block Distance

Literal block distance (LBD) [4] is a positive integer, that is used as a learnt
clause quality metric in almost all competitive sequential CDCL-like SAT solvers.
The LBD of a clause is the number of different decision levels on which variables
of the clause have been assigned. Hence, the LBD of a clause can change over
time and it can be (re)computed each time the clause is fully assigned.
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2.3 Community

It is well admitted that real-life SAT formulas exhibit notable “structures”,
explaining why some heuristics such as VSIDS [27] or phase saving [30], for
example, work well. One way to highlight such a structure is to represent the
formula as a graph and analyze its shape. A structure of interest in this paper
is the so-called community structure [1]. Let us have a closer look on this latter.

An undirected weighted graph (graph, for short) is a pair G = (N,w), where
N is the set of nodes of G, and w : N × N → R+ is the associated weight
function which should be commutative.

The variable incident graph (VIG) [1] of a formula F is a graph whose nodes
represent variables of F , and there exists an edge between two variables iff they
shared appearance in at least a clause. Hence, a clause C results in

(|C|
2

)
edges.

Thus, to give the same importance to each clause, edges have a weight: w(x, y) =∑
C∈F
x,y∈C

1/
(|C|

2

)
.

The community detection of a graph is usually captured using the modularity
metric [28]. The modularity function Q(G,P ) (see Eq. 1), takes a graph G and
a partition P = {P1, . . . , Pn} of nodes of G. It evaluates the density of the
connection of the nodes within a part relatively to the density of the entire graph
w.r.t. a random graph with the same number of nodes and the same degree.

Q(G,P ) =
∑

Pi∈P

∑
x,y∈Pi

w(x, y)
∑

x,y∈N w(x, y)
−

(∑
x∈Pi

deg(x)
∑

x∈N deg(x)

)2

(1)

The modularity of G is the maximal modularity, for any possible partition P
of its nodes: Q(G) = max{Q(G,P ) | P}, and ranges over [0, 1].

Computing the modularity of a graph is an NP-hard problem [11]. However,
there exists greedy and efficient algorithms, returning an approximated lower
bound for the modularity of a graph, such as the Louvain method [10].

In the remaining of the paper we use the Louvain method (with a precision
ε = 10−7) to compute communities. Graphs we consider are VIG of formulas
already simplified by the SatElite [13] preprocessor.

Community Value of a Clause. We call COM the number of communities
on which a clause span: we work on the VIG of the problem, so we consider com-
munities of variables. Each variable belongs to a unique community (determined
by the Louvain algorithm). To compute the COM of a clause, we consider the
variables corresponding to the literals of the clause and we count the number of
distinct communities represented by these variables.
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3 Measures and Intuition

Our main goal is to improve the overall performances of parallel SAT solving.
One way to do that is to study the quality/impact of shared information between
the underling SAT engines (sequential SAT solvers) in a parallel strategy.

Since determining, a priori, the usefulness of information is already a chal-
lenging task in a sequential context, we can easily imagine the hardness of this
guessing in the parallel setting.

In almost all competitive parallel SAT solvers, the sharing is limited to par-
ticular forms of learnt clauses (unit clauses, clauses with an LBD ≤ i [8,22],
double touched clauses [5]). We propose here to focus our study on LBD and
evaluate the impact of sharing clauses with particular values.

3.1 Sequential SAT Solving, Learnt Clauses and LBD

The starting point of our analysis is to evaluate the usage of learnt clauses in
the two main components of sequential solvers, namely, the unit propagation and
the conflict analysis procedures. Performing this analysis in a sequential setting
makes perfect sense since parallel solvers launch multiple sequential solvers.

To conduct this study, we run Maple-COMSPS [23] on the main track bench-
mark from the SAT competition in 20181 with a 5000 s timeout. Figure 1 depicts
our observations. The x-axis shows the percentage of the mean number of learnt
clauses (considering all learnt clauses of the whole benchmark). The y-axis corre-
sponds to the cumulative usage percentage. Hence, the curve with dots depicts,
for different LBDs (from 1 to 9), the usage of these clauses in unit propaga-
tion. The curve with triangles highlights the same information but for conflict
analysis.2

In both curves, the key observation concerns the inflection located around
LBD = 4. The impact of clauses with LBD ≤ 4 can be considered as very
positive: 60% of usage in unit propagation, and 40% in conflict analysis, while
representing only 3% of the total number of learnt clauses. Moreover, clauses
with an LBD > 4 do not bring a significant added value when considering their
quantities.

Based on these results, 4 appears to be a good LBD value for both limiting
the rate of shared clauses and maximizing the percentage of tracked events in a
parallel context.

3.2 A First Parallel Sharing Strategy

To assess our previous observation, we developed a strategy implementing an
LBD-based clauses sharing : clauses learnt with an LBD below a predetermined
threshold are shared. We then operated this strategy with LBD = 4, but also

1 http://sat2018.forsyte.tuwien.ac.at.
2 On the contrary of this qualitative clause study, benchmarks presented in Sects. 3.2

and 5.2 do not have any logs.

http://sat2018.forsyte.tuwien.ac.at
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Fig. 1. Usage of learnt clause considering LBD

with the surrounding values (LBD = 3 and LBD = 5). Our strategy has been
integrated into Painless [21]3 using Maple-COMSPS as a sequential solver engine
and a portfolio parallelization strategy. The different solvers we compare are:

– P-MCOMSPS, a portfolio SAT solver, winner of the parallel track of the SAT
competition 2018, is used as a reference. It implements a sharing strategy
based on incremental values for LBD [22].

– P-MCOMSPS-L〈n〉, our new portfolio solver, with LBD ≤ n.

All solvers were processed on a 12-core Intel Xeon CPU at 2.40 GHz and 62
GB of RAM running Linux 4.9. The solvers have been compiled with the version
9.2.1 of GCC. They have been launched with 12 threads, a 61 GB memory limit,
and a wall clock-time limit of 5000 s (as for the SAT competitions). Table 1
presents our measures on the SAT 2017, SAT 2018, and SAT 2019 competition
benchmarks.4 The shaded cells indicate which solver has the best results for a
given benchmark. It shows that the strategy based on an LBD ≤ 4 is not as
efficient as we could expect. In particular, we note a large instability depending
on the sets of instances to be treated.

3 A framework to implement parallel solvers, thus allowing a fair comparison between
strategies.

4 In Table 1, PAR-k is the penalized average runtime, counting each timeout as k times
the running time cutoff. The used value for k in the yearly SAT competition is 2.
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Table 1. Performances comparison for several values of LBD (3, 4, and 5). P-MCOMSPS
is used as a reference.

Solvers 2017 2018 2019

# solved # solved # solved

PAR-2 instances PAR-2 instances PAR-2 instances

P-MCOMSPS 355h42 237 430h13 258 380h03 273

P-MCOMSPS-L3 361h27 234 420h53 263 393h04 269

P-MCOMSPS-L4 356h44 237 411h14 265 391h38 269

P-MCOMSPS-L5 369h27 229 415h52 264 389h27 269

We believe these results are due to the fact that the LBD is too related to
the local state of the solver engines. The intuition we investigate in this paper
is that the LBD metrics must be strengthened with more global information.

4 Combining LBD and Community for Parallel SAT
Solving

As previously stated, we need a metric independent of the local state of a partic-
ular solver engine. Structural information about the instance to be solved can be
useful. For instance, in a portfolio solver, structural information can be shared
among the solvers working on the same formula.

In this paper, we focus on the community structure exhibited by (industrial)
SAT instances. The metrics (COM, defined in Sect. 2.3) derived from this struc-
ture has been proven to be linked with the LBD in [29]. Besides, it has been
used to improve the performances of sequential SAT solving via a preprocessing
approach in [2].

This section shows that communities are good candidates to provide the
needed global information. To do so, we use the same protocol as the one used
in the previous section: (i) studying data on sequential SAT solving to exhibit
good candidates for the parameter values, and then (ii) check its efficiency in
a parallel context. We completed the logs extracted from the sequential experi-
ments presented in Sect. 3 by information on communities and studied the whole
package as follows.

4.1 LBD Versus Communities

First, we studied the relationship between LBD and COM values thanks to
two heatmaps (see Fig. 2). The left part (Fig. 2a) shows, for each LBD value, the
distribution of COM values. The right part (Fig. 2b) shows, for each COM value,
the LBD values distribution. For example, in Fig. 2a, we observe that ≈ 65% of
the clauses with LBD = 1 span on one community (COM = 1), ≈ 20% of them
span on two communities (COM = 2), etc. From these figures, we can conclude
two important statements:
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Fig. 2. Heatmap showing the distribution between COM and LBD

– from Fig. 2a, warm zones on the diagonal for low LBD values indicate a sort of
correlation between the LBD and COM values (a result that has been already
presented in [29]). Looking closer, we observe that a significant part of the
clauses does not follow this correlation: the warm zones remain below 65%,
and mainly range below 25%. Hence, the COM metrics appears to be a good
candidate to refine the clauses already selected using LBD;

– from Fig. 2b, the COM values are almost uniformly distributed all over the
LBD values. We conclude that using COM as the only selecting metrics is
misleading (we assessed this with several experiments with parallel solvers
that are not presented in this paper).

4.2 Composing LBD and Communities

As previously stated, COM is a good additional criterion to LBD. We thus need
to discover the good couples of values that maximize the usage of shared clauses,
while maintaining a reasonable size.

First, we note from Fig. 1 that clauses with LBD ≤ 3 represent 1.1% of the
total clauses for a percentage of use rising up to 44.2%. Thus, there is no benefit
to further filter those clauses. Besides, this first set of clauses is not sufficient since
Table 1 reports that the parallel solver for LBD = 3 never wins (this is mainly
due to a lack of shared clauses). Therefore, we look for the set of clauses that can
be added to LBD ≤ 3 to improve performances. Based on the observations made
in Sect. 3, we believe the best candidate is a subset of LBD = 4 or LBD = 5.
To identify the good couple(s), we reused our previous experimentation protocol
and tracked data for both LBD and COM.
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Fig. 3. Efficiency of LBD and COM combination. The blue dotted line corresponds to
the average and the orange lines to the median. (Color figure online)

To capture the usefulness of learnt clauses, we define the usage ratio as
follows: the ratio of the percentage of use (propagation or conflict analysis) to
the percentage of learnt clauses (among those of a given formula). For instance,
in a given formula, a clause with a usage ratio of 10 is used 10 times more than
the average use of all learnt clauses. By extension, the usage ratio of a set of
clauses is the average of the usage ratio of all its clauses.

The resulting data is displayed as box-plot diagrams in Fig. 3. These diagrams
integrate the distribution of the usage ratio for all the formulas in the SAT
competition 2018. A box-plot denoted L〈x〉C〈y〉 corresponds to the set of clauses
with LBD = x and COM = y.

Our immediate observation (it confirms our intuition) is that, for a fixed
value of LBD, the usage ratio varies heavily considering different COM values.
Secondly, we discern that clauses with LBD = 4 have a global better usage
ratio than those with LBD = 5. The third, and critical, observation allows us
to extract the best promising configurations. Actually, L4C2 and L4C3 config-
urations have the most impressive usage ratio: in 25% (the 3rd quartile) of the
treated instances, clauses within these configurations have a usage ratio greater
than 50 in the unit propagation (Fig. 3a), 40 in the conflict analysis (Fig. 3b)
and extends to very high values (up to 150 in propagation and 130 in conflict
analysis). Moreover, the median of propagation usage ratio for L4C2 and L4C3
(6.0 and 6.5, respectively) are twice as big as the mean of the entire LBD = 4
and LBD = 5 boxes (equal to 2.9 and noted with a dashed line in both figures).

4.3 Community Based Filtering

From this study, we can conclude that we can use the community structure as a
filter for those clauses that have been already selected using an LBD threshold.

Practically, we propose the following strategy: sharing all the clauses with
an LBD ≤ 3 (without any community limit) as well as those with an LBD ≤ 4
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Fig. 4. Propagation usage of learnt clause considering LBD (Color figure online)

and a COM ≤ 3. Indeed, the former set of clauses is small while being very
useful. Whereas, to select the clauses with COM = 3 among the set of clauses
with LBD = 4 should allow a higher usage ratio while keeping the sharing at a
reasonable ratio.

To verify this assertion, and validating the effectiveness of the chosen filter
threshold (COM ≤ 3), we extend the study presented in Sect. 3.1. Thus, Fig. 4
and 5 take up the same points of Fig. 1, while separating propagation and conflict
analysis results (to increase readability). To those points, the new figure shows,
by triangles, the usage ratio for different filter values.

As expected, the point COM = 3 (green triangle) is at the inflection of the
curves. Consequently, selecting this set of clauses allows us to reach a better
usage ratio, close to the unfiltered LBD ≤ 4, while preserving a comparable
number of clauses with LBD ≤ 3. This convinces us that this metrics should
lead to increased performance in parallel SAT solving. The following section
verifies these measures in practice.

5 Derived Parallel Strategy and Experimental Results

This section first describes parallel SAT solvers we have designed to evaluate our
strategy, as well as the associated experimental protocol. It then presents and
discusses our experimental results.
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5.1 Solvers and Evaluation Protocol

As in Sect. 3.2, we use the solver P-MCOMSPS as a reference to validate our pro-
posal. The only difference between the original solver and the newly developed
resides in their sharing strategies. These are as follows:

– P-MCOMSPS: the same strategy, based on incremental values for LBD.
– P-MCOMSPS-L4C3: only learnt clauses with an LBD ≤ 3 or LBD = 4 and a

COM value ≤ 3 are shared.

In P-MCOMSPS-L4C3, a special component (called sp) is dedicated to com-
pute the community structure (using the Louvain algorithm). Meanwhile, the
remaining components execute the CDCL algorithm to solve the formula, and
share clauses with an LBD ≤ 3. As noted in Sect. 4.2, sharing all these clauses
should not alter performances. Once communities have been computed, sp starts
to operate the CDCL algorithm (as others), and the initial sharing strategy is
augmented by clauses characterized by an LBD = 4 and a COM ≤ 3. Prelim-
inary experiments showed that sp does not need more than a minute to finish
Louvain for almost all instances of all benchmarks. Therefore, the augmented
filter is activated early in the resolution of a formula.

Fig. 5. Conflict analysis usage of learnt clause considering LBD (Color figure online)
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For the evaluation, we used the main benchmark from SAT competitions
20165, 20176, 20187, and 20198. All solvers were launched on the same machines
and with the same configuration than Sect. 3.2. The results we observed are
discussed in the next section.

5.2 Results and Discussion

Table 2 presents the experimental results on the aforementioned benchmarks.
When considering the number of solved instances, we clearly observe that
the new sharing strategy outperforms the one used in P-MCOMSPS, on all the
SAT competition benchmarks. We add that P-MCOMSPS-L4C3 solves 29 new
instances compared to P-MCOMSPS and fails to solve 16 instances that the
latter solves.

Coming to the PAR-2 metrics, things seem to be more mitigated. We study
the sharing strategy of P-MCOMSPS to find an explanation: P-MCOMSPS starts the
resolution with a low LBD threshold and increments this threshold if it deems
that the shared clauses throughput is not sufficient. This incremental strategy
can help the solver to learn relevant information leading to the resolution of
some edge cases. On the contrary, our restrictive sharing strategy can miss those
relevant information for these particular cases.

Table 2. Evaluation of the performance of P-MCOMSPS-L4C3

Solvers PAR-2 # solved instances

2019 P-MCOMSPS-L4C3 386h14 274

P-MCOMSPS 380h03 273

2018 P-MCOMSPS-L4C3 408h01 268

P-MCOMSPS 430h13 258

2017 P-MCOMSPS-L4C3 352h31 238

P-MCOMSPS 355h42 237

2016 P-MCOMSPS-L4C3 355h08 183

P-MCOMSPS 354h39 182

All P-MCOMSPS-L4C3 1 501h54 963

together P-MCOMSPS 1 520h37 950

Finally, as our strategy is based on the study made on a sequential solver,
we want to verify the evolution of the usage ratio in the parallel context. Let us
conduct a new evaluation: using the same protocol as the one developed in the

5 https://baldur.iti.kit.edu/sat-competition-2016/downloads/app16.zip.
6 https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/Main.zip.
7 http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip.
8 http://satcompetition.org/sr2019benchmarks.zip.

https://baldur.iti.kit.edu/sat-competition-2016/downloads/app16.zip
https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/Main.zip
http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip
http://satcompetition.org/sr2019benchmarks.zip


Community and LBD-Based Clause Sharing Policy for Parallel SAT Solving 23

sequential setting of Sect. 4.2, we compute the clause usage ratio in propagation
and conflict analysis of our parallel solver P-MCOMSPS-L4C3. The resulting num-
ber is the sum of all underlying sequential CDCL engines. These logs concern
100 instances (randomly taken) from the benchmark of the SAT competition
2018.

The collected data are presented in the box-plots of Fig. 6 (the left pair
shows propagation and the right pair displays conflict analysis). Box-plots
noted S-L4C3 represent the usage ratio of the corresponding set of clauses in
Maple-COMSPS (the used sequential solver), while those noted P-L4C3 do the
same for P-MCOMSPS-L4C3. Note that a clause is imported with its original LBD
value. This is the LBD value reported in these figures.

Fig. 6. Efficiency of our proposed sharing strategy.

The shared clauses in P-MCOMSPS-L4C3, clearly have a positive impact on
the intrinsic behaviour of the underlying sequential engines. They bring new
useful information for both unit propagation and conflict analysis procedures.
For example, comparing the usage ratio in unit propagation of clauses in S-L4C3
and P-L4C3, we see that the ratio of these clauses goes beyond 50 in only ≈ 25%
of the problems for S-L4C3, reaching an upper bound of 130. In P-L4C3, this
ratio goes beyond 90 in ≈ 25% of the problems and reaches an upper bound
slightly greater than 200. The same observation holds for the conflict analysis
procedure. Besides, the medians for box-plots of the parallel approach are all
higher than the corresponding medians of the sequential ones.

6 Related Works

The notable community structure of industrial SAT formulas has been identified
in [1]. Newsham et al. think that such a structure is one main reason for the
noticeable performances of SAT solvers on industrial problems [29].
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Thus, several works exploit communities to improve solver performances. It
has been used to split formulas to divide the work. Ansótegui et al. developed
a pre-processor that solves community-based sub-formulas [2]. The aim is to
collect useful information used to solve the whole formula afterwards. Martins et
al. show that splitting the formula using communities helps for solving Max-SAT
problem in parallel [25]. Community structure has also been used to diversify
the decision order of workers in the context of parallel SAT portfolios [31].

It is also worth noting that another concept from the graph theory has been
successfully used within the SAT context, namely, the centrality. Katsirelos et
al. exhibited that variables selected for branching based on VSIDS are likely
to have high eigenvector centrality [18]. The betweenness centrality has been
incorporated successfully to CDCL: for branching, by using special bonus factors
while bumping VSIDS of highly central variables [16]; and for cleaning learnt
clauses database, by giving more chance to central clauses (the one with more
central variables) [17].

Besides, multiple works present metrics to improve clause sharing for parallel
SAT solving. Penelope [3] implements the progress saving based quality measure
(psm). The psm of a clause is the size of the intersection between the clause and
the phase saving of the solvers. The greater is the psm the more likely the clause
will be satisfied. While receiving learnt clauses, a worker can decide to keep them
or not. The drawback is that clauses are exchanged and then filtered which can
induce some overhead, and an a priori criteria such as LBD is often used as a
balance. In Syrup parallel solver [6], when a worker learns a clause, it waits for
the clause to be used at least once before sending it to the others. The idea
behind this is to send only clauses that seem to be useful because already used
locally.

While most of the approaches focus on limiting the number of exchanged
clauses, Lazaar et al. proposed to select workers allowed to communicate
together [20]. This selection is formalized as a multi-armed bandit problem and
several metrics are explored as gain functions: size, LBD, activity.

7 Conclusion and Future Works

Most of parallel SAT solvers use local quality metrics (the most relevant being
LBD) to select learnt clauses that should be shared. In this paper, we proposed
to combine this metric with a more global quality measure (COM) based on the
community structure of the input SAT formulas. The guiding principle is to use
the community criterion as a filter for set of clauses selected by LBD, in other
to increase the usage ratio of shared clauses.

We have designed a tool to track and report learnt clauses’ characteristics in a
sequential context. As a result of this analysis, we derived a learnt clause sharing
policy, which combines LBD and COM, in a parallel context. We attested this
strategy by implementing it in P-MCOMSPS, which outperforms the competing
solver on benchmarks from the SAT competition in 2016, 2017, 2018, and 2019.

We have in mind different ways to improve this work. First, we can look for a
more dynamic approach in our filtering method. This would allow to address the
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problem we mentioned in the analysis of the result in Sect. 5.2. We noted that
some instances benefit from an “unlimited” sharing of clauses: we believe that
we could use a delta around some threshold value for the LBD metrics, while
maintaining our threshold for the COM value. We could study the shared clauses
throughput required for different types of instances as well as the throughput
allowed by different types of hardware to increase or decrease the LBD accord-
ingly. It is worth noting that Hamadi et al. developed a similar idea but using
the size as a metric [14].

Second, we would like to study the effect of using communities as a metric for
garbage collection. This latter is one of the main components of a SAT solver,
as the solver can learn millions of clauses while exploring solutions: keeping all
these clauses slows down the propagation and leads to memory problems. This
is amplified in the parallel context where a sequential solver has its own set of
learnt clauses enriched by other solvers too. In P-MCOMSPS, clauses are deleted
depending on their LBD values. It makes sense to use a local metrics for the logic
of a local component. However, the encouraging results shown in this paper let us
think that extending the use of communities to garbage collection would improve
furthermore the sequential engines.
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2. Ansótegui, C., Giráldez-Cru, J., Levy, J., Simon, L.: Using community structure to
detect relevant learnt clauses. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS,
vol. 9340, pp. 238–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24318-4 18

3. Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C.: Revisiting
clause exchange in parallel SAT solving. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 200–213. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31612-8 16

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conferences on Artifical Intelligence
(IJCAI), pp. 399–404. AAAI Press (2009)

5. Audemard, G., Simon, L.: Glucose in the SAT 2014 competition. In: Proceedings
of SAT Competition 2014: Solver and Benchmark Descriptions, p. 31. Department
of Computer Science, University of Helsinki, Finland (2014)

6. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09284-3 15

7. Balyo, T., Sinz, C.: Parallel satisfiability. Handbook of Parallel Constraint Reason-
ing, pp. 3–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-
3 1

8. Biere, A.: Splatz, lingeling, plingeling, treengeling, yalsat entering the SAT com-
petition 2016. In: Proceedings of SAT Competition 2016: Solver and Benchmark
Descriptions, p. 44. Department of Computer Science, University of Helsinki, Fin-
land (2016)

https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.1007/978-3-319-24318-4_18
https://doi.org/10.1007/978-3-319-24318-4_18
https://doi.org/10.1007/978-3-642-31612-8_16
https://doi.org/10.1007/978-3-642-31612-8_16
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1007/978-3-319-63516-3_1


26 V. Vallade et al.

9. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press (2009)

10. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

11. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng.
20(2), 172–188 (2007)

12. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd ACM Symposium on Theory of Computing (STOC), pp. 151–158. ACM (1971)

13. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

14. Hamadi, Y., Jabbour, S., Sais, J.: Control-based clause sharing in parallel SAT
solving. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp.
245–267. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-
9 10

15. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisf.
Boolean Model. Comput. 6(4), 245–262 (2009)

16. Jamali, S., Mitchell, D.: Centrality-based improvements to CDCL heuristics. In:
Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 122–
131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 8

17. Jamali, S., Mitchell, D.: Simplifying CDCL clause database reduction. In: Janota,
M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 183–192. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24258-9 12

18. Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 348–356. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7 27

19. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: Proceedings of the
10th European Conference on Artificial Intelligence (ECAI), vol. 92, pp. 359–363
(1992)

20. Lazaar, N., Hamadi, Y., Jabbour, S., Sebag, M.: Cooperation control in parallel
SAT solving: a multi-armed bandit approach. Technical Report RR-8070, INRIA
(2012)

21. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel
SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
233–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 15

22. Le Frioux, L., Metin, H., Baarir, S., Colange, M., Sopena, J., Kordon, F.: Painless-
mcomsps and painless-mcomsps-sym. In: Proceedings of SAT Competition 2018:
Solver and Benchmark Descriptions, pp. 33–34. Department of Computer Science,
University of Helsinki, Finland (2018)

23. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: MapleCOMSPS,
mapleCOMSPS LRB, mapleCOMSPS CHB. In: Proceedings of SAT Competition
2016: Solver and Benchmark Descriptions, p. 52. Department of Computer Science,
University of Helsinki, Finland (2016)

24. Marques-Silva, J.P., Sakallah, K.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

25. Martins, R., Manquinho, V., Lynce, I.: Community-based partitioning for MaxSAT
solving. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp.
182–191. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-
5 14

https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-642-21434-9_10
https://doi.org/10.1007/978-3-642-21434-9_10
https://doi.org/10.1007/978-3-319-94144-8_8
https://doi.org/10.1007/978-3-030-24258-9_12
https://doi.org/10.1007/978-3-642-33558-7_27
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.1007/978-3-642-39071-5_14
https://doi.org/10.1007/978-3-642-39071-5_14


Community and LBD-Based Clause Sharing Policy for Parallel SAT Solving 27

26. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Automated
Reasoning 24(1), 165–203 (2000)

27. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC), pp. 530–535. ACM (2001)

28. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

29. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT
2014. LNCS, vol. 8561, pp. 252–268. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-09284-3 20

30. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

31. Sonobe, T., Kondoh, S., Inaba, M.: Community branching for parallel portfolio
SAT solvers. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 188–196.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 14

32. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21(4), 543–560
(1996)

https://doi.org/10.1007/978-3-319-09284-3_20
https://doi.org/10.1007/978-3-319-09284-3_20
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-319-09284-3_14


Clause Size Reduction with all-UIP
Learning

Nick Feng(B) and Fahiem Bacchus(B)

Department of Computer Science, University of Toronto, Toronto, Canada
{fengnick,fbacchus}@cs.toronto.edu

Abstract. Almost all CDCL SAT solvers use the 1-UIP clause learning
scheme for learning new clauses from conflicts, and our current under-
standing of SAT solving provides good reasons for using that scheme. In
particular, the 1-UIP scheme yields asserting clauses, and these assert-
ing clauses have minimum LBD among all possible asserting clauses. As
a result of these advantages, other clause learning schemes, like i-UIP
and all-UIP, that were proposed in early work are not used in modern
solvers. In this paper, we propose a new technique for exploiting the all-
UIP clause learning scheme. Our technique is to employ all-UIP learning
under the constraint that the learnt clause’s LBD does not increase (over
the minimum established by the 1-UIP clause). Our method can learn
clauses that are significantly smaller than the 1-UIP clause while preserv-
ing the minimum LBD. Unlike previous clause minimization methods,
our technique is not limited to learning a sub-clause of the 1-UIP clause.
We show empirically that our method can improve the performance of
state of the art solvers.

1 Introduction

Clause learning is an essential technique in SAT solvers. There is good evidence
to indicate that it is, in fact, the most important technique used in modern SAT
solvers [6]. In early SAT research a number of different clause learning techniques
were proposed [5,19,20,25]. However, following the revolutionary performance
improvements achieved by the Chaff SAT solver, the field has converged on using
the 1-UIP (first Unique Implication Point) scheme [25] employed in Chaff [13]
(as well as other techniques pioneered in the Chaff solver).1 Since then almost all
SAT solvers have employed the 1-UIP clause learning scheme, along with clause
minimization [21], as their primary method for learning new clauses.

However, other clause learning schemes can be used in SAT solvers without
changes to the main data structures. Furthermore, advances in our understand-
ing allow us to better understand the potential advantages and disadvantages of
these alternate schemes. In this paper we reexamine these previously proposed
schemes with a focus on the schemes described in [25]. Improved understanding
1 The idea of UIP clauses was first mentioned in [19], and 1-UIP clauses along with

other UIP clauses were learnt and used in the earlier GRASP SAT solver.
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of SAT solvers, obtained from the last decade of research, allows us to see that
in their original form these alternative clause learning schemes suffer significant
disadvantages over 1-UIP clause learning.

One of the previously proposed schemes was the all-UIP scheme [25]. In
this paper we propose a new way to exploit the main ideas of this scheme that
avoids its main disadvantage which is that it can learn clauses with higher LBD
scores. In particular, we propose to use a all-UIP like clause learning scheme
to generate smaller learnt clauses which retain the good properties of standard
1-UIP clauses. Our method is related to, but not the same as, various clause
minimization methods that try to remove redundant literals from the 1-UIP
clause yielding a clause that is a subset of the 1-UIP clause, e.g., [10,21,24]. Our
method is orthogonal to clause minimization. In particular, our approach can
learn a clause that is not a subset of the 1-UIP clause but which still serves all
of the same purposes as the 1-UIP clause. Clause minimization techniques can
be applied on top of our method to remove redundant literals.

We present various versions of our method and show that these variants are
often capable of learning shorter clauses than the 1-UIP scheme, and that this
can lead to useful performance gains in state of the art SAT solvers.

2 Clause Learning Framework

We first provide some background and a framework for understanding clause
learning as typically used in CDCL SAT solvers. A propositional formula F
expressed in Conjunctive Normal Form (CNF) contains a set of variables V . A
literal is a variable v ∈ V or its negation ¬v. For a literal � we let var(�) denote
its underlying variable. A CNF consists of a conjunction of clauses, each of which
is a disjunction of literals. We often view a clause as being a set of literals and
employ set notation, e.g., � ∈ C and C ′ ⊂ C.

Two clauses C1 and C2 can be resolved when they contain conflicting literals
� ∈ C1 and ¬� ∈ C2. Their resolvent C1 �� C2 is the new clause (C1∪C2)−{�,¬�}.
The resolvent will be a tautology (i.e., a clause containing a literal x and its
negation ¬x) if C1 and C2 contain more than one pair of conflicting literals.

We assume the reader is familiar with the operations of CDCL SAT solvers,
and the main data structures used in such solvers. A good source for this back-
ground is [18].

The Trail. CDCL SAT solvers maintain a trail, T , which is a non-contradictory,
non-redundant sequence of literals that have been assigned true by the solver;
i.e. � ∈ T → ¬� �∈ T , and T contains no duplicates. Newly assigned literals are
added to the end of the trail, and on backtrack literals are removed from the
end of the trail and unassigned. If literal � is on the trail let ι(�) denote its index
on the trail, i.e, T [ι(�)] = �. For convenience, we also let ι(�) = ι(¬�) = ι(var(�))
even though neither ¬� nor var(�) are actually on T . If x and y are both on the
trail and ι(x) < ι(y) we say that x appears before y on the trail.

Two types of true literals appear on the trail: decision literals that have been
assumed to be true by the solver, and unit propagated literals that are forced to
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be true because they are the sole remaining unfalsified literal of a clause. Each
literal � ∈ T has a decision level decLvl(�). Let k be the number of decision
literals appearing before � on the trail. When � is a unit propagated literal
decLvl(�) = k, and when � is a decision literal decLvl(�) = k + 1. For example,
decLvl(d) = 1 for the first decision literal d ∈ T , and decLvl(�) = 0 for all literals
� appearing before d on the trail. The set of literals on T that have the same
decision level forms a contiguous subsequence of T that starts with a decision
literal di and ends just before the next decision literal di+1. If decLvl(di) = i we
call this subsequence of T the i-th decision level.

Each literal � ∈ T also has a clausal reason reason(�). If � is a unit propagated
literal, reason(�) is a clause of the formula such that � ∈ reason(�) and ∀x ∈
reason(�). x �= � →

(
¬x ∈ T ∧ ι(¬x) < ι(�)

)
. That is, reason(�) is a clause that

has become unit implying � due to the literals on the trail above �. If � is a
decision literal then reason(�) = ∅.

In most SAT solvers, clause learning is initiated as soon as a clause is falsified
by T . In this paper we will be concerned with the subsequent clause learning
process which uses T to derive a new clause. We will try to make as few assump-
tions about how T is managed by the SAT solver as possible. One assumption
we will make is that T remains intact during clause learning and is only changed
after the new clause is learnt (by backtracking).

Say that T falsifies a clause CI , and that the last decision literal dk in T has
decision level k. Consider Tk−1 the prefix of T above the last decision level, i.e.,
the sequence of literals T [0]—T [ι(dk) − 1]. We will assume that Tk−1 is unit
propagation complete, although the full trail T might not be. This means
that (a) no clause was falsified by Tk−1. And (b) if Cu is a clause containing the
literal x and all literals in Cu except for x are falsified by Tk−1, then x ∈ Tk−1

and decLvl(x) ≤ max{decLvl(y)|y ∈ Cu ∧ y �= x}. This means that if x appears
in a clause made unit it must have been added to the trail, and added at or
before decision level the clause became unit. Note that more than one clause
might be made unit by T forcing x, or x might be set as a decision before being
forced. This condition ensures that x appears in T at or before the first decision
level it is forced by any clause.

Any clause falsified by T is called a conflict. When a conflict is found, the
final level of the trail, k, need not be unit propagation complete as the solver
typically stops propagation as soon as it finds a conflict. This means that (a)
other clauses might be falsified by T besides the conflict found, and (b) other
literals might be unit implied by T but not added to T .

Definition 1 (Trail Resolvent). A trail resolvent is a clause arising from
resolving a conflict against the reason clause of some literal � ∈ T . Every trail
resolvent is also a conflict.

The following things can be noted about trail resolvents: (1) trail resolvents
are never tautological, as the polarity of all literals in reason(�) other than �
must agree with the polarity of all literals in the conflict (they are all falsified by
T ); (2) one polarity of the variable var(�) resolved on must be a unit propagated
literal whose negation appears in the conflict; and (3) any variable in the conflict
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that is unit propagated in T can be resolved upon (the variable must appear in
different polarities in the conflict and in T ).

Definition 2 (Trail Resolution). A trail resolution is a sequence of trail resol-
vents applied to an initial conflict CI yielding a new conflict CL. A trail reso-
lution is ordered if the sequence of variables v1, . . . , vm resolved have strictly
decreasing trail indices: ι(vi+1) < ι(vi) (1 ≤ i < m). (Note that this implies that
no variable is resolved on more than once).

Ordered trail resolutions resolve unit propagated literals from the end of the
trail to the beginning. W.l.o.g we can require that all trail resolutions be ordered.

Observation 1. If the unordered trail resolution U yields the conflict clause CL

from an initial conflict CI , then there exists an ordered trail resolution O that
yields a conflict clause C ′

L such that C ′
L ⊆ CL.

Proof. Let U be the sequence of clauses CI = C0, C1, . . ., Cm = CL

obtained by resolving on the sequence of variables v1, . . ., vm whose corre-
sponding literals on T are l1, . . ., lm. Reordering these resolution steps so
that the variables are resolved in order of decreasing trail index and remov-
ing duplicates yields an ordered trail resolution O with the desired proper-
ties. Since no reason clause contains literals with higher trail indices, O must
be a valid trail resolution if U was, and furthermore O yields the clause
C ′

L =
⋃m

i=1 reason(li)−{l1,¬l1, . . . , lm,¬lm}. Since U resolves on the same vari-
ables (in a different order) using the same reason clauses we must have C ′

L ⊆ CL.
It can, however, be the case that C ′

L is proper subset of CL: if li is resolved away
it might be reintroduced when resolving on li+1 if ι(li+1) > ι(li). ��

The relevance of trail resolutions is that all proposed clause learning schemes
we are aware of use trail resolutions to produce learnt clauses. Furthermore, the
commonly used technique for clause minimization [21] is also equivalent to a
trail resolution that yields the minimized clause from the un-minimized clause.
Interestingly, it is standard in SAT solver implementations to perform resolution
going backwards along the trail. That is, these implementations are typically
using ordered trail resolutions. Observation 1 shows that this is correct.

Ordered trail resolutions are a special case of trivial resolutions [2]. Trail
resolutions are specific to the trail data structure typically used in SAT solvers.
If T falsifies a clause at its last decision level, then its associated implication
graph [20] contains a conflict node. Cuts in the implication graph that separate
the conflict from the rest of the graph correspond to conflict clauses [2]. It is not
difficult to see that the proof Proposition 4 of [2] applies also to trail resolutions.
This means that any conflict clause in the trail’s implication graph can be derived
using a trail resolution.

2.1 Some Alternate Clause Learning Schemes

A number of different clause learning schemes for generating a new learnt clause
from the initial conflict have been presented in prior work, e.g., [5,19,20,25].
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Fig. 1. Some different clause learning schemes. All use the current trail T and take as
input an initial clause CI falsified by T at its deepest level.

Figure 1 gives a specification of some of these methods: (a) the all-decision
scheme which resolves away all implied literals leaving a learnt clause over only
decision literals; (c) the 1-UIP scheme which resolves away literals from the
deepest decision level leaving a learnt clause with a single literal at the deep-
est level; (d) the all-UIP scheme which resolves away literals from each decision
level leaving a learnt clause with a single literal at each decision level; and (e)
the i-UIP scheme which resolves away literals from the i deepest decision levels
leaving a learnt clause with a single literal at its i deepest decision levels. It
should be noted that when resolving away literals at decision level i, new literals
at decision levels less than i might be introduced into the clause. Hence, it is
important in the i-UIP and all-UIP schemes to use ordered trail resolutions.

Both the all-decision and all-UIP schemes yield a clause with only one literal
at each decision level, and the all-UIP clause will be no larger that the all-
decision clause. Furthermore, it is known [20] that once we reduce the number of
literals at a decision level d to one, we could continue performing resolutions and
later achieve a different single literal at the level d. In particular, a decision level
might contain more than one unique implication point, and in some contexts the
term all-UIP is used to refer to all the unique implication points that exist in a
particular decision level [17] rather than the all-UIP clause learning scheme as is
used here. The algorithms given in Fig. 1 stop at the first UIP of a level, except
for the all-decision schemes with stops at the last UIP of each level.
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2.2 Asserting Clauses and LBD—Reasons to Prefer 1-UIP Clauses

An asserting clause [15] is a conflict clause CL that has exactly one literal � at
its deepest level, i.e., ∀x ∈ CL.decLvl(x) ≤ decLvl(�)∧(decLvl(x) = decLvl(�) →
x = �). All of the clause learning schemes in Fig. 1 produced learnt clauses that
are asserting.

The main advantage of asserting clauses is that they are 1-Empowering [15],
i.e., they allow unit propagation to derive a new forced literal. Hence, asserting
clauses can be used to guide backtracking—the solver can backtrack from the
current deepest level to the point the learnt clause first becomes unit, and then
use the learnt clause to add a new unit implicant to the trail. Since all but the
deepest level was unit propagation complete, this means that the asserting clause
must be a brand new clause; otherwise that unit implication would already have
been made. On the other hand, if the learnt clause CL is not asserting then it
could be that it is a duplicate of another clause already in the formula.

Example 1. Suppose that a is a unit propagated literal and d is a decision literal
with decLvl(d) > decLvl(a). Let the sequence of clauses watched by ¬d be (¬d, x,
¬a), (¬d, y, ¬x, ¬a), (¬d, ¬y, ¬x, ¬a), (¬d, ¬x, ¬a). When d is unit propagated
the clauses on ¬d’s watch list will be checked in this order.

Hence, unit propagation of d will extend the trail by first adding the unit
propagated literal x (with reason(x) = (x, ¬d, ¬a)) and then the unit propagated
literal y (with reason(y) = (y, ¬x, ¬a, ¬d)). Now the third clause on ¬d’s watch
list, (¬d, ¬y, ¬x, ¬a) is detected to be a conflict.

Clause learning can now be initiated from conflict CI = (¬d, ¬y, ¬x, ¬a).
This clause has 3 literals at level decLvl(d) = 10. If we stop clause learning
before reaching an asserting clause, then it is possible to simply resolve CI with
reason(y) to obtain the learnt clause CL = (¬d, ¬x, ¬a). However, this non-
asserting learnt clause is a duplicate of the fourth clause on ¬d’s watch list
which is already in the formula.2 This issue can arise whenever CL contains two
or more literals at the deepest level (i.e., whenever CL is not asserting). In such
cases CL might be a clause already in the formula with its two watches not yet
fully unit propagated (and thus CL is not detected by the SAT solver to be a
conflict) since propagation is typically stopped as soon as a conflict is detected.

The LBD of the learnt clause CL is the number of different decision levels
in it: LBD(CL) =

∣
∣{decLvl(l) | l ∈ CL

}∣
∣ [1]. Empirically LBD is a successful

predictor of clause usefulness: clauses with lower LBD tend to be more useful.
As noted in [1], from the initial falsified clause CI the 1-UIP scheme will produce
a clause CL whose LBD is minimum among all asserting clauses that can be
learnt from CI . If C ′ is a trail resolvent of C and a reason clause reason(l),
then LBD(C ′) ≥ LBD(C) since reason(l) must contain at least one other literal

2 In this example, the fourth clause on ¬d’s watch list subsumes the third clause. But
it is not difficult to construct more elaborate examples where there are no subsumed
clauses and we still obtain learnt clauses that are duplicates of clauses already in the
formula.
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with the same decision level as l and might contain literals with decision levels
not in C. That is, the each trail resolution step might increase the LBD of the
learnt clause and can never decrease the LBD. Hence, the 1-UIP scheme yields
an asserting clause with minimum LBD as it performs the minimum number of
trail resolutions required to generate an asserting clause.

The other schemes must perform more trail resolutions. In fact, all of these
schemes (all-decision, all-UIP, i-UIP) use trail resolutions in which the 1-UIP
clause appears. That is, they all must first generate the 1-UIP clause and
then continue with further trail resolution steps. These extra resolution steps
can introduce many addition decision levels into the final clause. Hence, these
schemes learn clauses with LBD at least as large as the 1-UIP clauses.

Putting these two observations together we see that the 1-UIP scheme pro-
duces asserting clauses with lowest possible LBD. This is a compelling reasons
for using this scheme. Hence, it is not surprising that modern SAT solvers almost
exclusively use 1-UIP clause learning.3

3 Using all-UIP Clause Learning

Although learning clauses with low LBD has been shown empirically to be more
important in SAT solving than learning short clauses [1], clause size is still
important. Smaller clauses consume less memory and help to decrease the size
of future learnt clauses. They are also semantically stronger than longer clauses.

The all-UIP scheme will tend to produce small clauses since the clauses con-
tain at most one literal per decision level. However, the all-UIP clause can have
much higher LBD. Since LBD is more important than size, our approach is to
use all-UIP learning when, and only when, it succeeds in reducing the size of the
clause without increasing its LBD. The all-UIP scheme first computes the 1-UIP
clause when it reduces the deepest level to a single UIP literal. It then proceeds
to reduce the shallower levels (see all-UIP’s for loop in Fig. 1). So our approach
will start with the 1-UIP clause and then try to apply all-UIP learning to reduce
other levels to single literals. As noted above, clause minimization is orthogonal
to our approach, so we also first apply standard clause minimization [21] to the
1-UIP clause. That is, our algorithm stable-alluip (Algorithm 1), starts with the
clause that most SAT solvers learn from a conflict, a minimized 1-UIP clause.

Algorithm 1 tries to compute a clause shorter than the inputted 1-UIP clause
C1. If a clause shorter than C1 cannot be computed the routine returns C1

unchanged. Line 2 uses the parameter tgap to predict if Algorithm 1 will be
successful in producing a shorter clause. This predication is described below. If
the prediction is negative C1 is immediately returned and Algorithm 1 is not
attempted. Otherwise, a copy of C1 is made in Ci and ntries , which counts the
number of times Algorithm 1 is attempted, is incremented.

3 Knuth in his sat13 CDCL solver [7] uses an all-decision clause when the 1-UIP clause
is too large. In this context an all-UIP clause could also be used as it would be no
larger than the all decision clause.
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Algorithm 1. stable-alluip
Require: C1 is minimized 1-UIP clause
Require: config a set of configuration parameters to give different versions stable-

alluip.
Require: tgap ≥ 0 is a global parameter, ntries and nsucc are used to dynamically

adjust tgap
1: stable-alluip(C1, T )
2: if (|C1| − LBD(C1) < tgap) return C1
3: ntries++
4: Ci ← C1
5: decLvls ← decision levels in C1 in descending order � These never change
6: for (i = 1; i < |decLvls|; i++) � skip the deepest level decLvls[0]
7: Ci ← try-uip-level (Ci, decLvls[i]) � Try to reduce this level to UIP
8: if

∣
∣{� | � ∈ Ci ∧ decLvl(�) ≥ decLvls[i]}

∣
∣ + (|decLvls| − (i + 1)) ≥ |C1|

9: return C1 � can’t generate smaller clause
10: if pure-alluip ∈ config
11: Ci ← minimize(Ci)

12: if
(
|Ci| < |C1| ∧ alluip-active ∈ config → (AvgVarAct(Ci) > AvgVarAct(C1))

13: nsucc++, return Ci � Ci is smaller than the input clause
14: else
15: return C1

16: try-uip-level(Ci, i) � Do not add new decision levels
17: Ctry = Ci

18: Li = {� |� ∈ Ctry ∧ decLvl(l) = i}
19: while |Li| > 1
20: p ← remove lit with the highest trail index from Li

21: if (∃q ∈ reason(¬p). decLvl(q) �∈ decLvls) � Would add new decision levels
22: if (pure-alluip ∈ config)
23: return Ci � Abort, can’t UIP this level
24: else if (min-alluip ∈ config)
25: continue � Don’t try to resolve away p

26: else
27: Ctry ← Ctry �� reason(¬p)
28: Li = Li ∪ {� | � ∈ reason(¬p) ∧ � �= ¬p ∧ decLvl(�) = i}
29: return Ctry

Then the decision levels of C1 are computed and stored in decLvls in order
from largest to lowest. The for loop of lines 6–9 is then executed for each decision
level decLvls[i]. In the loop the subroutine try-uip-level tries to reduce the set
of literals at decLvls[i] down to a single UIP literal using a sequence of trail
resolutions. Since C1 is a 1-UIP clause decLvls[0] (the deepest level) already
contains only one literal, so we can start at i = 1.

After the call to try-uip-level a check (line 8) is made to see if we can abort
further processing. At this point the algorithm has finished processing levels
decLvls[0]–decLvls [i] so the literals at those levels will not change. Furthermore,
we know that the best that can be done from this point on is to reduce the
remaining |decLvls| − (i + 1) levels down to a single literal each. Hence, adding
these two numbers gives a lower bound on the size of the final computed clause.
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If that lower bound is as large as the size of the initial 1-UIP clause we can
terminate and return the initial 1-UIP clause.

After processing all decision levels, if try-uip-level is using the pure-alluip
configuration, additional reduction in the clause size might be achieved by an
another round of clause minimization (line 11). Finally, if the newly computed
clause Ci is smaller that the input clause C1 it is returned. Otherwise the original
clause C1 is returned. Additionally, if the configuration alluip-active, described
in Sect. 3.1, is being used, then we also require that the average activity level of
the new clause Ci be larger than C1 before we can return the new clause Ci.

try-uip-level (Ci, i) attempts to resolve away the literals at decision level i in
the clause Ci, i.e., those in the set Li (line 18), in order of decreasing trail index,
until only one literal at level i remains. If the resolution step will not introduce
any new decision levels (line 26), it is performed updating Ctry . In addition, all
new literals added to Ctry at level i are added to Li.

On the other hand, if the resolution step would introduce new decision levels
(line 21) then there are two options. The first option we call pure-alluip. With
pure-alluip we abort our attempt to UIP this level and return the clause with
level i unchanged. In the second option, called min-alluip, we continue without
performing the resolution, keeping the current literal p in Ctry . min-alluip then
continues to try to resolve away the other literals in Li (note that p is no longer
in Li) until Li is reduced to a single literal. Hence, min-alluip can leave multiple
literals at level i—all of those with reasons containing new levels along with one
other.4 Observe that the number of literals at level i can not be increased after
processing it with pure-alluip. min-alluip can, however, potentially increase the
number of literals at level i. In resolving away a literal l at level i, more literals
might be introduced into level i, and some of these might not be removable by
min-alluip if their reasons contain new levels. However, both pure-alluip and
min-alluip can increase the number of literals at levels less that i as new literals
can be introduced into those levels when the literals at level i are resolved away.
These added literals at the lower levels might not be removable from the clause,
and thus both methods can yield a longer clause than the input 1-UIP clause.

After trying to UIP each level the clause Ci is obtained. If we were using
pure-alluip we can once again apply recursive clause minimization (line 11) [21],
but this would be useless when using min-alluip as all but one literal of each
level introduces a new level and thus cannot be recursively removed.5

tgap : stable-alluip can produce significantly smaller clauses. However, when it
does not yield a smaller clause, the cost of the additional resolution steps can
hurt the solver’s performance. Since resolution cannot reduce a clause’s LBD, the
maximum size reduction obtainable from stable-alluip is the difference between
the 1-UIP clause’s size and its LBD: gap(C1) = |C1| −LBD(C1). When gap(C1)

4 Since the sole remaining literal u ∈ Li is at a lower trail index than all of the other
literals there is no point in trying to resolve away u—either it will be the decision
literal for level i having no reason, or its reason will contain at least one other literal
at level i.

5 Other more powerful minimization techniques could still be applied.
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is small, applying stable-alluip is unlikely to be cost effective. Our approach is
to dynamically set a threshold on gap(C1), tgap , such that when gap(C1) < tgap
we do not attempt to reduce the clause (line 2). Initially, tgap = 0, and we count
the number of times stable-alluip is attempted (ntries) and the number of times
it successfully yields a shorter clause (nsucc) (line 3 and 13). On every restart if
the success rate since the last restart is greater than 80% (less than 80%), we
decrease (increase) tgap by one not allowing it to become negative.

Example 2. Consider the trail T = . . ., �1, a2, b2, c2,d2, . . ., . . ., e5, f5, g5, h6,
i6, j6, k6, . . ., m10, . . . where the subscript indicates the decision level of each
literal and the literals are in order of increasing trail index.

Ca = ∅ Cb = (b2, ¬�3, ¬a2) Cc = (c2, ¬a2, ¬b2)
Cd = (d2, ¬b2, ¬c2) C� = ∅ Ce = ∅

Cf = (f5, ¬e5, ¬�1) Cg = (g5, ¬a2, ¬f5) Ch = ∅

Ci = (i6, ¬e5, ¬h6) Cj = (j6, ¬f5, ¬i6) Ck = (k6, ¬f5, ¬j6)

Let the clauses Cx, show above, denote the reason clause for literal xi. Suppose
1-UIP learning yields the clause C1 = (¬m10, ¬k6, ¬j6, ¬i6, ¬h6, ¬g5, ¬d2, ¬c2)
where ¬m10 is the UIP from the conflicting level. stable-alluip first tries to find
the UIP for level 6 by resolving C1 with Ck, Cj and then Ci producing the clause
C∗ = (¬m10, ¬h6, ¬g5, ¬f5, ¬e5, ¬d2, ¬c2) where ¬h6 is the UIP for level 6.

stable-alluip then attempts to find the UIP for level 5 by resolving C∗ with
Cg and then Cf . However, resolving with Cf would introduce �1 and a new
decision level into C∗. pure-alluip thus leaves level 5 unchanged. min-alluip, on
the other hand, skips the resolution with Cf leaving f5 in C∗. Besides f5 only
one other literal at level 5 remains in the clause, e5, so min-alluip does not do
any further resolutions at this level. Hence, pure-alluip yields C∗ unchanged,
while min-alluip yields C∗

min = (¬m10, ¬h6, ¬f5, ¬e5, ¬d2, ¬c2,¬a2).
Finally, stable-alluip processes level 2. Resolving away d2 and then c2 will

lead to an attempt to resolve away b2. But again this would introduce a new
decision level with the literal �1. So pure-alluip will leave level 2 unchanged and
min-alluip will leave b2 unresolved. The final clauses produced by pure-alluip
would be (¬m10, ¬h6, ¬f5, ¬e5, ¬d2, ¬c2, ¬a2), a reduction of 1 over the 1-UIP
clause, and by min-alluip would be (¬m10, ¬h6, ¬f5, ¬e5, ¬b2, ¬a2), a reduction
of 2 over the 1-UIP clause. ��

3.1 Variants of stable-alluip

We also developed and experimented with a few variants of the stable-alluip
algorithm which we describe below.

alluip-active: Clauses with Active Variables. stable-alluip learning might
introduce literals with low variable activity into Ci. Low activity variables are
variables that have had low recent participation in clause learning. Hence, clauses
with variables of low activity might not be as currently useful to the solver. Our
variant alluip-active (line 12) in Algorithm 1) computes the average variable
activity of the newly produced all-UIP clause Ci and the original 1-UIP clause
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C1. The new clause Ci will be returned only if it is both smaller and has higher
average variable activity than the original 1-UIP clause. There are, of course,
generalizations of this approach where one has a weighted trade-off between
these factors that allows preferring the new clause when it has large gains in
one metric even though it has small losses in the other. We did not, however,
experiment with such generalizations.

Adjust Variable Activity. An alternative to filtering clauses with low average
variable (alluip-active) is to alter the way variable activities are updated to
account for our new clause learning method. The popular branching heuristics
VSIDS [13] and LBR [8] bump the variable activity for all literals appearing in
the learnt clause CL and all literals resolved away during the conflict analysis
that yielded CL from the initially detected conflict CI (all literals on the conflict
side).

We did not apply this approach to the stable-alluip clause, as we did not
want to bump the activity of the literals above the deepest decision level that
stable-alluip resolves away. Intuitively, these literals did not directly contribute
to generating the conflict. Instead, we tried two modifications to the variable
activity bumping schemes.

Let C1 be the 1-UIP learnt clause and Ci be the stable-alluip learnt clause.
First, we kept all of the variable activity bumps normally done by 1-UIP learn-
ing.6 Then, when the stable-alluip scheme was successful, i.e., Ci was to be used
as the new learnt clause, we perform further updates to the variable activities. In
the alluip-inclusive approach all variables variables appearing in Ci that are not
in C1 have their activities bumped. Intuitively, since the clause Ci is being added
to the clause database we want to increase the activity of all of its variables. On
the other hand, in the alluip-exclusive approach in addition to bumping the
activity of the new variables in Ci we also remove the activity bumps of those
variables in C1 that are no longer in Ci.

In sum, the two modified variable activity update schemes we experi-
mented with were (1) alluip-inclusive ≡ ∀l ∈ Ci − C1. bumpActivity(l)
and (2) alluip-exclusive ≡ ∀l ∈ Ci − C1. bumpActivity(l) ∧

(
∀l ∈ C1 −

Ci. unbumpActivity(l)
)
.

Chronological Backtracking. We tested our new clause learning schemes
on solvers that utilized Chronological Backtracking [12,14]. When chronologi-
cal backtracking is used, the literals on the trail might no longer be sorted by
decision level. So resolving literals in the conflict by highest trail index first no
longer works. However, we can define a new ordering on the literals to replace
the trail index ordering. Let l1 and l2 be two literals on the trail T . We say that
l1 >chron l2 if decLvl(l1) > decLvl(l2) ∨ (decLvl(l1) = decLvl(l2) ∧ ι(l1) > ι(l2)).
That is, literals with higher decision level come first, and if that is equal then
the literal with higher trail index comes first.

6 So extra techniques used by the underlying solver, like reason side rate and locality
[8], were kept intact.
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Exploiting the analysis of [12], it can be observed that all clause learning
schemes continue to work as long as literals are resolved away from the initial
conflict in decreasing >chron order. In our implementation we used a heap (pri-
ority queue) to achieve this ordering of the literal resolutions in order to add our
new schemes to those solvers using chronological backtracking.

4 Implementation and Experiments

We implemented stable-alluip learning schemes on MapleCOMSPS-LRB [9], the
winner of SAT Race 2016 application track. We then evaluated these schemes
and compare against the 1-UIP baseline on the full set of benchmarks from SAT
RACE 2019 main track which contains 400 instances. We ran our experiments
on 2.70 GHz XeonE5-2680 CPUs, allowing 5000 seconds per instance and a
maximum of 12 GB memory.

Fig. 2. Results of MapleCOMSPS-LRB with 1-UIP, pure-alluip, min-alluip,
alluip-active, alluip-inclusive, and alluip-exclusive on SAT2019 race main track.

Figure 2 shows each learning scheme’s solved instances count, PAR-2 score,
and average learnt clause size. We found that the stable-alluip learning schemes
improved solved instances, PAR-2 scores, and learnt clause size over 1-UIP. More
specifically, pure-alluip solved the most instances (+7 over 1-UIP) and the most
UNSAT instances (+4); alluip-inclusive solved the most SAT instances (+6);
and alluip-active yields the best PAR-2 score (−151 than 1-UIP). In all cases
the stable-alluip schemes learnt significantly smaller clauses on average.

Clause Reduction with stable-alluip. To precisely measure stable-alluip’s
clause reduction power, we compare each instance’s learnt clause size from
min-alluip and pure-alluip against 1-UIP. Figure 3 shows the probability den-
sity distribution (PDF) of the relative clause size of the stable-alluip learning
schemes (min-alluip in green and pure-alluip in red) for each instance. min-alluip
(pure-alluip resp.) produces shorter clauses for 88.5% (77.7%) of instances, and
the average relative reduction ratio over 1-UIP is 18.5% (9.6%). Figure 4 com-
pares the average learnt clause size of min-alluip, pure-alluip and 1-UIP per
instance. Both stable-alluip schemes generally yield smaller clauses, and the size
reduction is more significant for instances with larger 1-UIP clauses.
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Fig. 3. Relative clause size reduction
distribution. The X axis indicates the
relative size of difference between all-
UIP and 1-UIP clauses (calculated as
|C1| − |Ci|

|C1|
) for each instance, and the

Y axis shows the probability density.
(Color figure online)

Fig. 4. Average clause size comparison
plot. Each point in the plot represents
an instance. The X and Y axes shows
the clause length from stable-alluip and
1-UIP, respectively. Each green (red) dot
represents an compared instance between
MapleCOMSPS-LRB and Maple-min-
alluip (pure-alluip). (Color figure online)

The results in Fig. 2, 3 and 4 indicate min-alluip often achieves higher clause
reduction than pure-alluip. We also observed that min-alluip attempted algo-
rithm 1 more frequently than pure-alluip (28.8% vs 16.1%), and is more likely to
succeed (59.3% vs 43.4%). This observation agrees with our experiment results.

Reduced Proof Sizes with stable-alluip. A learning scheme that yields
smaller clauses (lemmas) might also construct smaller causal proofs. For 88
UNSAT instances solved mutually by pure-alluip, min-alluip and 1-UIP schemes,
we additionally compared the size of the optimized DRAT proof from the three
learning schemes. We used the DRAT-trim tool [23] with a 30000 second timeout
to check and optimize every DRAT proof once7.

The average optimized DRAT proof from min-alluip and pure-alluip are
556.6MB and 698.5MB, respectively. Both sizes are significantly smaller than
the average optimized proof size from 1-UIP, 824.9MB. The average proof size
reduction per instance for min-alluip and pure-alluip is 16.5% and 3.6% against
1-UIP, which roughly correlate with our clause size observation in Fig. 3.

stable-alluip in Modern SAT Solvers. To validate stable-alluip in mod-
ern SAT solvers, we implemented stable-alluip in the winners of 2017, 2018
and 2019 SAT Race [10,16,22] and in the expMaple-CM-GCBumpOnlyLRB
[11] (expMaple) and CaDiCaL [4] solvers. expMaple is a top ten solver from
2019 SAT race which uses random walk simulation to help branching. We chose
expMaple because the random walk simulation branching heuristic is different
from local branching heuristic (VSIDS and LRB) that we have considered in
7 Applying DRAT-trim multiple times can further reduce the proof size until a fix-

point. However, the full optimization is too time consuming for our experiments.
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Fig. 5. Benchmark results of 1-UIP, pure-alluip. min-alluip, alluip-active and
alluip-inclusive on SAT2019 race main track instances.

Fig. 6. Benchmark results of 1-UIP, pure-alluip. min-alluip, alluip-active and
alluip-inclusive on SAT2019 race main track instances.

alluip-active, alluip-inclusive, and alluip-exclusive. We chose CaDiCaL because
its default configuration (CaDiCaL-default) solved the most instances in the
2019 SAT Race (244). For this experiment, we used the latest available version
of CaDiCaL-default instead of the 2019 SAT Race version [3]. We compared
these solvers’ base 1-UIP learning scheme with pure-alluip, min-alluip and the
top two stable-alluip variants, alluip-active and alluip-inclusive, on the SAT Race
2019 main track benchmarks. We report solved instances, PAR-2 score and the
average clause size.
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Figures 5 and 6 show the results of the stable-alluip configurations in our suite
of modern solvers. Overall, we observed similar performance gain on all mod-
ern solvers as we have seen on MapleCOMSPS-LRB in Fig. 2. More specifically,
almost all configurations improved on solved instance (+3.9 instances in aver-
age) and PAR-2 score (−57.7 in average). The average clause size reduction is
consistent across all solvers. Each configuration also exhibits different strengths:
pure-alluip solved the most instances with the best PAR-2 score on two solvers,
min-alluip yields small clauses, alluip-inclusive solved the most SAT instances,
and alluip-active has stable performance.

On the SAT 2017 race winner MapleLCMDist, all four configurations of
stable-alluip solved more instances than 1-UIP learning. pure-alluip solved more
UNSAT and SAT instances while the other configurations improved on solv-
ing SAT instances. The clause size reduction of stable-alluip is more signifi-
cant on this solver than on MapleCOMSPS-LRB. The SAT 2018 race winner
MapleCB uses chronological backtracking (CB); three out of four configura-
tions outperformed 1-UIP. On the SAT 2019 race winner MapleCB-DL, all four
stable-alluip configurations solved more instances than 1-UIP. MapleCB-DL pri-
oritizes clauses that are learned multiple times. We observed that stable-alluip
clauses are less likely to be duplicated. As an example, min-alluip on average,
added 12% less duplicated clauses into the core clause database than 1-UIP.
This observation is surprising, and the cause is unclear.

On expMaple, three out of four stable-alluip configurations solved more
instances than 1-UIP learning. We noticed that both alluip-active and
alluip-inclusive show better performance than min-alluip and pure-alluip on this
solver. The random walk simulation branching heuristic, however, didn’t impact
the performance of stable-alluip schemes significantly.

CaDiCaL-default with 1-UIP solved 249 instances. Applying alluip-active and
alluip-inclusive helped the solver solve 3 and 2 more instances, respectively. The
1-UIP clauses in CaDiCaL-default were much larger than other solvers on average
(101 vs 60) but the stable-alluip configurations yielded similar clause sizes.

5 Conclusion

In this paper we introduced a new clause learning scheme, stable-alluip, that pre-
serves the strengths 1-UIP learning while learning shorter clauses. We provided
empirical evidence that using stable-alluip and its variants in modern CDCL
solvers achieves significant clause reduction and yields useful performance gains.

Our scheme extends 1-UIP learning by performing further resolution beyond
the deepest decision level in an attempt to find the UIP at each level in the learnt
clause. Since resolutions may increase the clause’s LBD by introducing literals
from new decision levels, we presented two methods to block such literals from
entering the clause. Although our learning scheme is conceptually simple, and we
presented optimizations to reduce and balance the learning cost. We additionally
presented variants of our schemes to account for features used in state of the art
solvers, e.g., local branching heuristics and chronological backtracking.
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Although the field of SAT solving has converged on using the 1-UIP learn-
ing scheme, we have shown the possibility of developing an effective alternative
through understanding the strengths and weaknesses of 1-UIP and clause learn-
ing schemes. Our learning scheme can be generalized and further improved by
exploring more fine-grained trade-offs between different clause quality metrics
beyond clause size and LBD. We also plan to study the interaction between
clause learning and variable branching. Since most of the branching heuristics
are tailored for 1-UIP scheme, their interactions with other learning schemes
requires further study.
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Abstract. A CDCL SAT solver can backtrack a large distance when it
learns a new clause, e.g, when the new learnt clause is a unit clause the
solver has to backtrack to level zero. When the length of the backtrack is
large, the solver can end up reproducing many of the same decisions
and propagations when it redescends the search tree. Different tech-
niques have been proposed to reduce this potential redundancy, e.g.,
partial/chronological backtracking and trail saving on restarts. In this
paper we present a new trail saving technique that is not restricted to
restarts, unlike prior trail saving methods. Our technique makes a copy of
the part of the trail that is backtracked over. This saved copy can then
be used to improve the efficiency of the solver’s subsequent redescent.
Furthermore, the saved trail also provides the solver with the ability to
look ahead along the previous trail which can be exploited to improve
its efficiency. Our new trail saving technique offers different tradeoffs
in comparison with chronological backtracking and often yields superior
performance. We also show that our technique is able to improve the
performance of state-of-the-art solvers.

1 Introduction

The vast majority of modern SAT solvers that are used to solve real-world prob-
lems are based on the conflict-driven clause learning (CDCL) algorithm. In a
CDCL SAT solver, backtracking occurs after every conflict, where all literals
from one or more decision levels become unassigned before the solver resumes
making decisions and performing unit propagations. Traditionally, CDCL solvers
would backtrack to the conflict level, which is the second highest decision level
remaining in the conflict clause after conflict analysis has resolved away all but
one literal from the current decision level [9]. Recently, however, it has been
shown that partial backtracking [6] or chronological backtracking, C-bt, (i.e.,
backtracking only to the previous level after conflict analysis) [8,11] can be effec-
tive on many instances. Partial backtracking has been used in the solvers that
won the last two SAT competitions. Although chronological backtracking breaks
some of the conventional invariants of CDCL solvers, it has been formalized and
proven correct [8] (also see related formalizations [10,12]).

The motivation for using C-bt is the observation that when a solver back-
tracks across many levels, many of the literals that are unassigned during the
backtrack might be re-assigned again in roughly the same order when the solver
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redescends. This observation was first made in the context of restarts by van der
Tak et al. [14]. Their technique backtracks to the minimum change level, i.e.,
the first level at which the solver’s trail can change on redescent. However, their
technique cannot be used when backtracking from a conflict: the solver’s trail is
going to be changed at the backtrack level so the minimum change level is the
same as the backtrack level.

Chronological backtracking or partial backtracking instead allows a reduction
in the length of the backtrack by placing literals on the trail out of decision level
order. By reducing the length of the backtrack the solver can keep more of its
assignment trail intact. This can save it from the work involved in reconstructing
a lot of its trail. Using C-bt is not a panacea however. Its application must be
limited for peak effectiveness. This indicates that it is sometimes beneficial for
the solver to backtrack fully and redo its trail, even if this takes more work. We
will expand on why this might be the case below.

In this paper we present a new trail saving method whereby we save the
backtracked part of the solver’s trail and attempt to use that information to
make the solver’s redescent more efficient. Unlike C-bt, our trail saving method
preserves the traditional invariants of the SAT solver and its basic version is
very simple to implement. It allows the search to retain complete control over
the order of decisions, but helps make propagation faster. We develop some
enhancements to make the idea more effective, and demonstrate experimentally
that it performs as well as and often better than chronological backtracking. We
also show that with our enhancements we are able to improve the performance
of state-of-the-art solvers.

2 Background

SAT solvers determine the satisfiability of a propositional formula F expressed
in Conjunctive Normal Form (CNF). F contains a set of variables V . A literal
is a variable v ∈ V or its negation ¬v, and for a literal l we let var(l) denote its
underlying variable. A CNF consists of a conjunction of clauses, each of which
is a disjunction of literals. We often view a clause as being a set of literals and
employ set notation, e.g., � ∈ C and C ′ ⊂ C. We will assume that the reader is
familiar with the basic operations of CDCL SAT solvers. A good source for this
background is [13].

Trails. CDCL SAT solvers maintain a trail which is the sequence of literals
that have currently been assigned true by the solver. During its operation
a SAT solver will add newly assigned literals to the end of the trail, and on
backtrack remove literals from the end of the trail. For convenience, we will
regard literals as having been assigned true if and only if they are on the trail.
So removing/adding a literal to the trail is equivalent to unassigning/assigning
the literal true.

A SAT solver’s trail satisfies a number of conditions. However, in this work
we will need some additional flexibility in our definitions, as we will sometimes
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be working with trails that would never be constructed by a SAT solver. Hence,
we define a trail to be a sequence of literals each of which is either a decision
literal or an implied literal, and each of which has a reason. These two types of
literals are distinguished by their reasons. Decision literals d have a null reason,
reason(d) = ∅. Implied literals l have as a reason a clause of the formula F ,
reason(l) = C ∈ F . (The clause reason(l) can be a learnt clause that has been
added to F).

If literal � is on the trail T let ιT (�) denote its index on the trail, i.e,
T [ιT (�)] = �. If x and y are both on the trail and ιT (x) < ιT (y) we say that x
appears before y on the trail. For convenience, when the trail being discussed is
clear from context we simply write ι instead of ιT .

Each literal � ∈ T has a decision level decLvl(�) which is equal to the num-
ber of decision literals appearing on the trail up to and including � ; hence,
decLvl(d) = 1 for the first decision literal d ∈ T . The set of literals on T that
have the same decision level forms a contiguous subsequence1 that starts with
a decision literal di and ends just before the next decision literal di+1. We will
often need to refer to different decision level subsequences of T . Hence, we let
T [[i]] denote the subsequence of literals at decision level i; and let T [[i . . . j]]
denote the subsequence of literals at decision levels k for i ≤ k ≤ j.

Definition 1. A clause C has been made unit by T implying l when l ∈
C ∧

(
∀x ∈ C.x �= l → ¬x ∈ T

)
. That is, all literals in C except l must have been

falsified by T

Now we define the following properties that a trail T can have.

non-contradictory: A variable cannot appear in both polarities in the trail:
l ∈ T → ¬l �∈ T .

non-redundant: A literal can only appear once on T .
reason-sound: For each implied literal l ∈ T we have that its reason clause

reason(l) = C has been made unit by T implying l, and for each x ∈ C with
x �= l we have that ¬x appears before l on T : ∀l ∈ T . reason(l) �= ∅ → l ∈
reason(l) ∧

(
∀x ∈ reason(l). x �= l → ¬x ∈ T ∧ ι(¬x) < ι(l)

)
.

propagation-complete: Unit propagation has been run to completion at
all decisions levels of T . This means that literals appear on T at the first
decision level they were unit implied. Formally, this can be captured by
the condition: ∀i ∈ {decLvl(l) | l ∈ T }.

(
∃C ∈ F .C is made unit by

T [[0 . . . i]] implying l
)

→ l ∈ T [[0 . . . i]]. Note that propagation complete-
ness implies that reason(l) �= ∅ must contain at least one other literal y �= l
with decLvl(y) = decLvl(l).

conflict-free: No clause of F is falsified by T . Clauses C ∈ F falsified by T are
typically called conflicts.

1 Our approach uses standard trails in which the decision levels are contiguous.
Chronological backtracking [6,8,11] generates trails with non-contiguous decision
levels.
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In CDCL solvers using standard conflict directed backtracking all properties
hold of the prefix of the solver’s trail consisting of all decisions levels but the
deepest. The full trail might, however, contain a conflict at its deepest level
so is not necessarily conflict-free. The full trail might also not be propagation-
complete, as unit propagation at the deepest level is typically terminated early
if a conflict is found. It can further be noted that the first four properties imply
that if a clause C is falsified at decision level k, then C must contain at least
two literals at level k (otherwise C would have become unit at a prior level and
then satisfied by making its last unfalsified literal true).

Standard Backtracking. In CDCL SAT solving the solver extends its trail by
adding new decision literals followed by finding and adding all unit implied
literals arising from that new decision. This continues until it reaches a decision
level Ldeep where a conflict C is found.

In standard backtracking, the solver then constructs a new 1-UIP clause by
resolving away all but one literal at level Ldeep from the conflict C using the
reason clauses of these literals. (As noted above C must contain at least two
literals at level Ldeep). Hence, the new clause C1-UIP will contain one literal
�deep at level Ldeep and have all of its other literals a levels less than Ldeep.
The solver then backtracks to Lback the second deepest level in C1-UIP. This
involves changing T to its prefix T [[0 . . . Lback]] (by our convention all literals
removed from T are now unassigned). The new clause C1-UIP is made unit
by T [[0 . . . Lback]] implying �deep, so the solver then adds �deep to the trail and
executes another round of unit propagation at level Lback, after which it continues
by once again growing the trail with new decisions and unit implied literals until
a new conflict or a satisfying assignment is found.

In standard backtracking, the difference between the backtrack level, Lback

and the current deepest level Ldeep can be very large. During its new descent
from Lback the solver can reproduce a large number of the same decisions and
unit propagations, essentially wasting work. This potential inefficiency has been
noted in prior work [6,8,11,14].

In [14] a technique for reducing the length of the backtrack during restarts
was presented. In restarts, the solver backtracks to level 0, and this technique
involves computing a new deeper backtrack level M > 0 for which it is known
that on redescent the first M + 1 levels of the trail will be unchanged (except
perhaps for the ordering of the literals). This technique removes the redundant
work of reproducing the first M trail levels. When backtracking from a conflict,
however, the trail will be changed at level Lback (�deep will be newly inserted
at this level). Hence this technique cannot reduce the length of the backtrack.
In this paper we will show that although we have to backtrack to Lback we can
make the subsequent redescent much more efficient.

Chronological Backtracking. Chronological backtracking (C-bt) and partial back-
tracking in the context of clause learning solvers are alternatives to standard
backtracking which allow the solver to execute a shorter backtrack. That is,
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with these techniques the solver can avoid having to go all the way back to the
second deepest level in the learnt clause, as in standard backtracking.

Formalisms for partial backtracking in clause learning solvers have been
presented in [10,12]. In [6] practical issues of implementation were addressed,
and experiments shown with a CDCL solver using partial backtracking. In [11]
improved and more efficient implementation techniques were developed which
allowed C-bt to make improvements to state-of-the-art SAT solvers, and [8] pre-
sented additional implementation ideas and details along with correctness results
for these methods.

The aim of partial backtracking is to reduce the redundant work that might
be done by the SAT solver on its redescent from the backtrack level Lback. The
technique allows the solver to backtrack to any level j in the range Lback ≤ j ≤
Ldeep−1 (where Ldeep is the level the conflict was discovered). Nadel and Ryvchin
[11] proposed to always backtrack chronologically to Ldeep−1 while Möhle and
Biere [8] returned to the proposal of [6] of flexibly backtracking to any level in
the allowed range. Note that the new learnt 1-UIP clause C1-UIP is made unit
at every level in this range. So after backtracking to level j the newly implied
literal �deep is added to the trail with reason(�deep) = C1-UIP, and decLvl(�deep)
is set to Lback (the second deepest level in C1-UIP).

This means that the decision levels on the trail are no longer contiguous,
as �deep has a different level than the other literals at level j (if j �= Lback).
This change has a number of consequences for the SAT solver’s operation, all
of which were described in [6]. Möhle and Biere [8] showed that despite these
consequences partial backtracking can be made to preserve the soundness of a
CDCL solver.

3 Chronological Backtracking Effects on Search

In this paper we present a new technique that allows the SAT solver to use stan-
dard backtracking, but also allows saving some redundant work on its redescent.
Our method has more overhead than C-bt so the first question that must be
addressed is why not just use chronological backtracking.

Although C-bt is able to avoid a lot of redundant work it also has other effects
on the SAT solver search. These effects are sometimes detrimental to the solver’s
performance and so it is not always beneficial to use C-bt. In fact, in both [11]
and [8] it was found that fairly limited application of C-bt performed best. In [11]
C-bt was applied only when the length of the standard backtrack, Lback − Ldeep

was greater than a given threshold T . In their experiments they found that
T = 100 was the best value, i.e., C-bt is done only on longer backtracks. In
practice, this meant that C-bt was relatively infrequent; in our measurements
with their solver only about 3% of the solver backtracks were C-bt backtracks. In
[8] the value T = 100 was also applied. However, they introduced an additional
technique to add some applications of C-bt when the length of the backtrack is
less than T . This allowed [8] to utilize C-bt in about 15% of the backtracks.

Although it is difficult to know precisely why C-bt is not always beneficial,
we can identify some different ways in which C-bt can affect the SAT solver’s
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search. With standard backtracking the literal �deep is placed on the trail at
the end of Lback and then unit propagated. This could impact the trail in at
least the following ways. First, some literals might become unit at earlier levels.
This could include decision literals becoming forced which might compress some
decision levels together. Second, different decisions might be made due to changes
in the variable scores arising from the newly learnt clause. And third, literals
might be unit implied with different reasons. C-bt can change all of these things,
each of which could have an impact on the future learnt clauses, and thus on the
solver’s overall efficiency.

The second impact, changing variable scores, is partially addressed in [8]
who utilize the ideas of [14] to backtrack to a level where the decisions would
be unchanged. However, if the length of the backtrack is greater than 100 there
could still be a divergence between the variable decisions generated in standard
backtracking and C-bt. An argument is also given in [14] that the third impact,
changing literal reasons, is not significant. However, the experiments in [14] were
run before good notions of clause quality were known [1]. Our empirical results
indicate that once clause quality is accounted for, changing the literal reasons
can have a significant impact.

The first impact is worth discussing since it was mentioned in [6] but not in
the subsequent works. This is the issue of changing the decision levels of literals
on the trail. C-bt computes the decision level of each implied literal based on
the decision levels of the literals in its reason, but it does not go backwards to
change the decisions levels of literals earlier on the trail.

Example 1. For example, suppose that (x,¬y) ∈ F , the literal x is a decision
literal on the trail with decLvl(x) = 2, and that the solver is currently at level
150 where it encounters a conflict. If this conflict yields the unit clause (y),
standard backtracking would backtrack to level 0, where x would be implied.
On redescent, x would no longer form a new decision level and it would not
appear in any new clauses (as it is entailed by F). C-bt, on the other hand,
would backtrack to level 149. On its trail x would still be at level 2. Until a
backtrack past level 2 occurs, learnt clauses might contain ¬x, and thus have
level 2 added to their set of levels (potentially changing their LBD score). Only
when backtrack past level 2 occurs would x be restored to its correct level 0, and
it would require inprocessing simplifications to remove x from the learnt clauses.

In sum, although these impacts of C-bt on the SAT solver’s search might
or might not be harmful to the SAT solver, they do exist. In fact, there are
two pieces of evidence that these impacts can sometimes be harmful. First, as
mentioned above, previous work found that it is best to only apply C-bt on large
backtracks where it has the potential to save the most work. If there were no
harmful effects it would always be effective to apply C-bt. And second, in our
empirical results below we show that our new trail saving technique, which always
uses standard backtracking, can often outperform C-bt. Although our technique
reduces the solver’s work on redescent it does not completely eliminate it like
C-bt does. Hence its superior performance can only occur if C-bt is sometimes
harmful.
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It is possible to combine C-bt with our trail saving technique to reduce
the amount of work required whenever the solver performs non-chronological
backtracking. However, C-bt greatly reduces the potential savings that could be
achieved by our method since most of its non-chronological backtracks are rela-
tively short (less than threshold T levels). In our preliminary experiments this
combination did not seem promising.

Nevertheless, there is good evidence that C-bt can improve SAT solver per-
formance.2 Hence, it should be that it is better to perform C-bt in some branches.
Hence, an interesting direction for future work would be to develop better heuris-
tics about when to use C-bt in a branch and when to use standard backtracking
augmented by our trail saving method.

4 Trail Saving

Our approach is to save the trail T on backtrack, and to use the saved trail
Tsave when the solver redescends to improve the efficiency of propagations with-
out affecting the decisions the solver wants to make. The saved trail Tsave also
provides a secondary “lookahead mechanism” that the SAT solver can exploit
as it redescends.

Suppose that the solver is at Ldeep where it has encountered a conflict. From
the 1-UIP clause it learns, C1-UIP, it now has to backtrack to Lback. This is
accomplished by calling backtrack(Lback), shown in Fig. 1, which saves the
backtracked portion of the trail.

Note that backtrack does not save the deepest level of T . The full T
contains a conflict (at its deepest level). Hence the solver will never reproduce
all the same levels, and it would be useless to save all of them. Note also that
in addition to saving the literals in Tsave we also save the clause reason of the
unit implied literals in a separate reasonsave vector. Finally, we see that after
backtrack the first literal on Tsave is a decision literal: it is the first literal of T
at decision level Lback+1. Literals will be removed from Tsave during its use, but
always in units of complete decision levels. So Tsave [0] will always be a (previous)
decision literal.

After backtrack the solver will add �deep to the end of the updated T with
reason(�deep) = C1-UIP and then invoke unit propagation. Tsave is exploited
during propagation by the version of propagate shown in Fig. 1, which will
initially be invoked with the argument ι(�deep) (i.e., the trail index of the newly
added implicant). The saved trail will be continually consulted during the solver’s
descent whenever unit propagation is performed. When backtrack occurs Tsave

will be overwritten to store the new backtracked portion of T .
Tsave is consulted in the procedure useSavedTrail (Fig. 1). This procedure

tries to add saved implied literals and their reasons to the solver’s trail, when
2 C-bt can also be extremely useful in contexts where each descent can be very expen-

sive, e.g., when doing theory propagation in SMT solving, or component analysis
in #SAT solving. In these cases, C-bt, by avoiding backtracking and subsequent
redescent, has considerable potential for improving solver performance.
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Fig. 1. Using Tsave in unit propagation and conflict detection

these implications are valid. We will show below that those implications that are
added are in fact valid. We do not interfere with the solver’s variable decisions.
Instead we opportunistically test to see if literals implied on Tsave are valid
implications for the solver given the solver’s current decisions.

Tsave [0] is always a (previous) decision literal d with reasonsave(d) = ∅. Note
that, since new literals (e.g., �deep) have been added to T , d might now be an
implied literal on T (i.e., reason(d) �= ∅) even though before the backtrack it
was previously a decision (i.e., reasonsave(d) = ∅). If d has not been assigned
true by the solver (i.e., ¬d ∈ T ), we cannot add any implied literals below it
on Tsave to T as these implied literals depend on d being assigned true. In this
case we stop looking for more literals to add to T (line 18).
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Fig. 2. Use of Tsave from Example 2. The literal’s decision level is indicated in its
superscript, and a ∗ superscript indicates that the literal is a decision.

On the other hand if d has been made true by the solver we can continue to
add all of the implied literals below it (up to but not including the next decision
literal on Tsave) to T (line 24), reusing their saved reasons. Any literals that
have already been made true by the solver can be skipped (line 20). Finally, if
we encounter a literal that has already been falsified by the solver, then its saved
reason clause must be falsified by the solver and we can return it as a conflict
(line 21). If a conflict is encountered we leave Tsave unchanged by resetting idx
to zero. Otherwise, idx will be the number of literals at the front of Tsave that
have been moved to T (or skipped over since they are already on T ). We then
remove the first idx literals from Tsave (line 27), and return the conflict (equal
to ∅ if no conflict was found).

Example 2. Figure 2 provides an example of how Tsave is used. Initially the lit-
erals l1 to l14 are on the solver’s T , and Tsave is empty. This is shown in the
first two lines of the figure. In the figure the superscript on the literals indicates
their decision level, and a superscripted ∗ indicates that the literal is a decision.
Hence l1∗

1 indicates that decLvl(l1) = 1 and that l1 is a decision.
Then a conflict is found at level 6 and the 1-UIP clause (¬l1,¬l3,¬l12) is

learnt. Thus the solver will backtrack to level 2, where it will add ¬l12 as a unit
implicant. The next two lines show T and Tsave right after the backtrack to level
2: the backtracked levels have been copied into Tsave omitting the conflict level 6.

The new unit ¬l12 is now added to T and unit propagation performed adding
l7 and l9 to level 2. Since the first literal on Tsave , l5, has reasonsave(l5 ) = ∅ (l5
was a decision on T at the time backtrack occurred) and is not yet true, Tsave

is not helpful at this stage. The status of T and Tsave at this point is shown in
the figure.

After unit propagation is finished the solver makes a new decision, which
happens to be (but is not forced to be) l5. Now Tsave can be used: l5 is true so
it is removed, l6 is unassigned so it is added to T , l7 is true and so removed,
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l8 is unassigned so it is added to T , l9 is true and removed, and finally l10 and
l11 are unassigned and so are added to T . In this example, Tsave is emptied, and
cannot contribute more to T .

All of these units are added to T before the solver starts to unit propagate
l5. Since, new literals have been added to T before l5 the solver must propagate
l5 and all of the literals that follow it before making its next decision.

As noted in the previous example unit propagation has to be rerun on all
saved literals added to T from Tsave . Thus our technique, unlike C-bt, does not
completely remove the overhead of reproducing the trail on the solver’s redes-
cent. Nevertheless, trail saving improves the efficiency of this redescent in three
different ways. First, by adding more forced literals to the trail before contin-
uing propagating the next literal, propagation can potentially gain a quadratic
speedup [2,5]. Second, propagation does not need to examine the reason clause
of the added literals. If these literals were not added by useSavedTrail, propa-
gation would have to traverse each of these reason clauses to determine that they
have in fact become unit. Third, when a conflict is returned by useSavedTrail

all further propagations can be halted. The added literals and their reasons will
be sufficient to perform clause learning from the conflict returned by useSaved-

Trail. Since trail saving can sometimes save hundreds or thousands of literals
at a time these savings can in sum be significant.

4.1 Correctness

Now we will prove that our use of Tsave preserves the SAT solver’s soundness.
In particular, Tsave is only used in the procedure useSavedTrail, in which it
either adds new literals to the solver’s trail, or returns conflict clauses to the
solver. Hence, we only need to show that these new literals are in fact unit
implied and the conflicts are in fact falsified by the solver’s trail. Since both
T and Tsave are sequences of literals (with associated reasons) we can consider
their concatenation denoted as T + Tsave .

Theorem 1. If T + Tsave is reason sound (Sect. 2) then the following holds.
If the first i literals on Tsave are all in T (∀j.0 ≤ j < i.Tsave [j] ∈ T ) and
Tsave [i] = l is an implied literal with reasonsave(l) = C, then C has been made
unit by T implying l.

Proof: Since T + Tsave is reason sound, every literal in C other than l appears
negated before l in the sequence T + Tsave . Thus for x ∈ C we have ¬x ∈ T or
¬x ∈ Tsave [0] . . . Tsave [i − 1]. But in the later case we also have ¬x ∈ T . ��

This theorem shows that useSavedTrail’s processing is sound. In this pro-
cedure, an implied literal from Tsave is added to T (line 24) only when all prior
literals on Tsave are already on T (i.e., previously on T or already added to T ).
Thus each new addition is sound given the inductive soundness of the previous
additions, with the base case covered by Theorem 1. If l is to be added, the
theorem shows that every other literal in reasonsave(l) has been falsified by T .
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Hence if l is also falsified by T then reasonsave(l) is a clause that is falsified by
T , thus it is a sound conflict for the solver.

Now we only have to show that T + Tsave is always reason sound during
the operation of the solver.

Proposition 1. If T +Tsave is reason sound then T ′ +T ′
save is reason sound in

all of the following cases.

1. Tsave [0] ∈ T , T ′ = T , and T ′
save = Tsave .removeFront().

2. T ′ = T + Tsave [0] and T ′
save = Tsave .removeFront().

3. T ′ = T + Tnew and T ′
save = T ′

save and T ′ is reason sound.
4. We also have that T is reason sound if T was generated by the solver.

Proof: (1) Tsave [0] already appears earlier in the T so it can be removed without
affecting the soundness of any reason following it. (2) is obvious as the sequence
is unchanged. (3) the reasons in T + Tnew are sound by assumption. Those in
Tsave remain sound as they depend only on the literals in T and prior literals
on Tsave , both of which are unchanged. (4) is obvious from the operation of unit
propagation in the solver. ��

Theorem 2. T +Tsave is always reason sound during the operation of the solver.

Proof: Tsave starts off being empty, so T + Tsave = T is reason sound as it was
generated by the solver (4). In procedure backtrack T + Tsave is set to a trail
that was previously generated by the solver (4). The solver can add to T by
decisions and propagations without using Tsave . In this case T ′ = T + Tnew ,
and T ′ is reason sound by (4), thus the new T ′ + Tsave is reason sound by (3).
Finally, in procedure useSavedTrail either (a) literals at the front of Tsave are
discarded since they already appear on T , or (b) literals are moved from Tsave

to T . Under both of these changes T + Tsave remains reason sound by (1) and
(2). ��

4.2 Enhancements

We developed three enhancements of the base trail saving method described
above. In this section we present these enhancements.

Saving the Trail over Multiple Backtracks. It can often be the case that when the
solver finds a conflict and backtracks to Lback it might immediately find a another
conflict at Lback causing a further backtrack. In the procedure backtrack every
backtrack causes Tsave to be overwritten. Hence, in these cases most of the trail
will not be saved—only the portion from the last backtrack. Our first extension
addresses this potential issue and also provides more general trail saving in other
contexts as well.

This extension is simply to add the latest backtrack to the front of Tsave

leaving all of the previous contents of Tsave intact. Specifically, we replace line 3
of backtrack by the new line:
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3. Tsave = T [[Lback+1 . . . Ldeep−1]] + Tsave

It is not difficult to show that this change preserves soundness. Only Theorem 2
is potentially affected. However, we know that Tsave is unchanged at the level at
which a conflict occurs: either the conflict is detected without consulting Tsave

or if the conflict comes from Tsave then useSavedTrail leaves Tsave unchanged
(line 21). Hence, at the level before the conflict occurred we have inductively
that T [[0 . . . Ldeep−1]]+Tsave was reason sound, and hence so is T ′ +T ′

save with
T ′ = T [[0 . . . Lback]] and T ′

save = T [[Lback+1 . . . Ldeep−1]] + Tsave .
When adding to the front of Tsave in this manner Tsave can grow indefinitely.

So we prune Tsave when it gets too large by (a) removing Tsave [i] if Tsave [i] =
Tsave [j] for some j < i (Tsave [i] is redundant), and (b) removing the suffix of
Tsave starting at Tsave [i] when Tsave [j] = ¬Tsave [i] for some j < i (Tsave [i] will
never be useful as its negation, Tsave [j], would have to be added to T first). In
this way Tsave need never become larger than the number of variables in F .

Lookahead for Conflicts. In useSavedTrail we stop adding literals from Tsave

to T once we reach a decision literal d on Tsave that is not yet on T (line 18 of
useSavedTrail). This is done so that the solver has full control over variable
decisions without interference from the trail saving mechanism (unlike the case
with C-bt). However, another option would be to force the solver to use d as its
next decision literal, which would then allow us to further add all of d’s implied
literals on Tsave onto T . This can be done for the first k decisions on Tsave for any
k. But in general, we do not want to remove the solver’s autonomy by forcing it
to make potentially different decisions than it might have wanted to.

However, if there is a literal l ∈ Tsave for which ¬l ∈ T , we can observe
that forcing the solver to make all of the decisions of Tsave that lie above l will
immediately generate a conflict in the solver: reasonsave(l) will be falsified. In
fact, in this situation we would not even need to perform unit propagation over
the literals added from Tsave ; the literals and their reasons obtained from Tsave

would be sufficient to perform 1-UIP learning from reasonsave(l).
We experimented with this “lookahead for conflicts” idea using various values

of k. We found that k = 2, i.e., forcing up to two decisions from Tsave to be made
by the solver if this yields a conflict, often enhanced the solver’s performance.
Limiting the lookahead to only one decision level of Tsave was not as good, and
looking ahead more than 2 decisions of Tsave also degraded performance. This
provides some evidence that taking too much control away from the solver and
forcing it to make too many decisions from Tsave can lead to conflicts that are
not as useful to the solver.

Reason Quality. The saved trail can be thought of as remembering the solver’s
recent trajectory. Sometimes we want to follow the past trajectory, but perhaps
sometimes we do not. In particular, when adding literals from Tsave to T we can
examine the quality of the saved reasons to see if they are worth using. Once we
encounter a literal with a low quality saved reason we stop adding literals from
Tsave to the solver’s trail. In particular, we can change lines 24–25 of useSaved-
Trail to the following:
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23.5 if (lowQuality(reasonsave(lsave))) break
24. T .addToEnd(lsave)
25. reason(lsave) ← reasonsave(lsave)

Note that the solver will still set the un-added literals as they are unit implied
by T , but it might be able to find better reasons for these implicants. There
is of course no guarantee that better reasons will be found, but our empirical
results show that sometimes this does happen. We experimented with two quality
metrics, clause size and clause LBD, obtaining positive results with both. These
results also provides evidence against the argument given in [14] that changing
literal reasons is not impactful. With an appropriate clause quality metric the
changing of literal reasons can have an impact.

5 Experiments and Results

We implemented our techniques in two different SAT solvers, MapleSAT and
Cadical,3 both of which have finished at or near the top of SAT competitions for
the past several years [3,4]. We then ran each solver on the 800 total benchmark
instances used in the main tracks of the 2018 SAT Competition and 2019 SAT
Race. The experiments were executed on a cluster of 2.7 GHz Intel cores with
5000 s CPU time and 7 GB memory limits for each instance. We chose not to
output or verify the proofs generated by any of the solvers. The Par-2 scores
obtained and total instances solved by each solver are reported in Figs. 3, 5, and
6. We also show the cactus plot of the new version of cadical in Fig. 4.

In Fig. 3 we used the newest version of cadical (downloaded as of January 1,
2020) as the baseline solver, in Fig. 5 we used the version of cadical published in
[8] as the baseline, and in Fig. 6 we used MapleLCMDist [7,15] as the baseline.
Each of the baselines were run with standard non-chronological backtracking. We
then refer to versions of each solver with additional features implemented on top
by adding suffixes. “-chrono” refers to the solver with C-bt enabled (using the
solver’s default settings), “-trail” refers to the baseline with plain trail saving
added (as described in Fig. 1), “-trail-multipleBT” refers to the baseline with
trail saving plus the first enhancement of saving over multiple backtracks, “-trail-
multipleBT-lookahead” also adds the enhancement of lookahead for conflicts by
2 decision levels, and “-trail-multipleBT-lookahead-reason” also adds the final
enhancement to cease trail saving once a reason of “low quality” is reached. For
more details on the enhancements, please see Sect. 4.2.

Interestingly, C-bt made the newest version of cadical perform worse than
the baseline (Fig. 3). This demonstrates that C-bt is not always beneficial. Trail
saving alone did not impact the performance of this solver significantly, but
adding all of the enhancements on top of trail saving resulted in solving six
more instances and yielding a better Par-2 score than the baseline. The key
enhancement for this solver seemed to be the last one where we stop using the
saved trail once we detect a reason of “low quality”. We tried both clause size
3 Our implementation is available at https://github.com/rgh000/cadical-trail.

https://github.com/rgh000/cadical-trail
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and lbd as the clause quality metric, and both yielded a positive gain, with clause
size being slightly more effective.

Fig. 3. Table of results for cadical, version pulled from github as of January 1, 2020.

Fig. 4. Cactus plot for the newest version of cadical comparing standard non-
chronological backtracking to C-bt and various configurations of trail saving. The first
400 problems were solved in less than 1200 s, so that part of the plot is truncated.

The version of cadical used in Fig. 5 did show benefits from C-bt in agreement
with previously published results [8]. Trail saving alone did not significantly
impact this solver, but adding all of the enhancements on top of trail saving
resulted in solving the same number of instances as the solver with C-bt did,
albeit with a slight increase in the Par-2 score.

MapleLCMDist (in Fig. 6) is another solver that benefited from C-bt. In this
solver trail saving alone solved two more instances than the solver with C-bt
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Fig. 5. Table of results for cadical or “chrono”, version published in [8].

did. Adding the first two enhancements on top of trail saving resulted in solving
only one more instance but yielded a better Par-2 score than the solver with
C-bt. Adding the last enhancement of ceasing trail saving on a “low quality”
reason made the performance worse, whether clause size or lbd was used as the
clause quality metric. This suggests that the enhancements to trail saving have
different impacts on different solvers.

Fig. 6. Table of results for MapleLCMDist.

6 Conclusion

We have shown that our trail saving technique can speed up two state-of-the-art
SAT solvers, cadical and MapleSAT, as or more effectively than chronological
backtracking can. We also introduced three enhancements one can implement
when using a saved trail and demonstrated experimentally that these enhance-
ments can sometimes improve a solver’s performance by a significant amount.
We have shown that trail saving and all enhancements we proposed are sound.

There are many avenues that can be pursued in future work, such as using
the saved trail to help make inprocessing techniques faster or using the saved
trail to learn multiple clauses from a single conflict. It is also possible to combine
trail saving with chronological backtracking, but it would require further work
to determine whether or not this would be useful and how to best approach it.
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8. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9 18

9. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 530–535. ACM
(2001). https://doi.org/10.1145/378239.379017

10. Nadel, A.: Understanding and improving a modern SAT solver. Ph.D. thesis, Tel
Aviv University (2009)

11. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 7

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859

13. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 131–153. IOS Press (2009). https://doi.org/10.
3233/978-1-58603-929-5-131

14. van der Tak, P., Ramos, A., Heule, M.: Reusing the assignment trail in CDCL
solvers. JSAT 7(4), 133–138 (2011). https://satassociation.org/jsat/index.php/
jsat/article/view/89

15. Xiao, F., Luo, M., Li, C.M., Manya, F., Lü, Z.: MapleLRB LCM, Maple LCM,
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Abstract. We present a novel approach for enumerating partial models
of a propositional formula, inspired by how theory solvers and the SAT
solver interact in lazy SMT. Using various forms of dual reasoning allows
our CDCL-based algorithm to enumerate partial models with no need
for exploring and shrinking full models. Our focus is on model enumer-
ation without repetition, with potential applications in weighted model
counting and weighted model integration for probabilistic inference over
Boolean and hybrid domains. Chronological backtracking renders the use
of blocking clauses obsolete. We provide a formalization and examples.
We further discuss important design choices for a future implementation
related to the strength of dual reasoning, including unit propagation,
using SAT or QBF oracles.

1 Introduction

Model enumeration is a key task in various activities, such as lazy Satisfiability
Modulo Theories [29], predicate abstraction [13], software product line engineer-
ing [7], model checking [2,18,31], and preimage computation [14,30].

Whereas in some applications enumerating models multiple times causes no
harm, in others avoiding repetitions is crucial. Examples are weighted model
counting (WMC) for probabilistic reasoning in Boolean domains and weighted
model integration (WMI), which generalizes WMC for hybrid domains [22,23].
There, the addends are partial satisfying assignments, i.e., some variables remain
unassigned. Each of these assignments represents a set of total assignments, and
consequently, the number of the addends is reduced. A formula might be rep-
resented in a concise manner by the disjunction of its pairwise contradicting
partial models, which is of interest in digital circuit synthesis [1]. Partial models
are relevant also in predicate abstraction [13], preimage computation [14,30],
and existential quantification [4]. They can be obtained by shrinking total mod-
els [32]. Alternatively, dual reasoning, where the formula is considered together
with its negation, allows for pruning the search space early and detecting partial
models. It is also applied in the context of model counting [3,19].

If only a subset X of the variables is significant, the models are projected onto
these relevant variables. We say that we existentially quantify the formula over
the irrelevant variables Y and write ∃Y [F (X,Y ) ], where F (X,Y ) is a formula
over variables X and Y such that X ∩ Y = ∅. Projected model enumeration
c© Springer Nature Switzerland AG 2020
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occurs in automotive configuration [34], existential quantifier elimination [4],
image computation [9,10], predicate abstraction [13], and bounded model check-
ing [31].

To avoid finding models multiple times, blocking clauses might be added to
the formula under consideration [11,18]. This method suffers from a potentially
exponential blowup of the formula and consequent slowdown of unit propagation.
Toda and Soh [33] address this issue by a variant of conflict analysis, which is
motivated by Gebser et al. [8] and is exempt from blocking clauses. Chronological
backtracking in Grumberg et al. [9] and our previous work [21] ensures that the
search space is traversed in a systematic manner, similarly to DPLL [5], and the
use of blocking clauses is avoided. Whenever a model is found, the last (relevant)
decision literal is flipped. No clause asserting this flipped decision is added, which
might cause problems during later conflict analysis. This problem is addressed
by modifying the implication graph [9] or by an alternative first UIP scheme [33].
Our contribution. We lift the way how theory and SAT solver interact in SMT
to propositional projected model enumeration without repetition. Based on the
notion of logical entailment, combined with dual reasoning, our algorithm detects
partial models in a forward manner, rendering model shrinking superfluous. The
test for entailment is crucial in our algorithm. Anticipating a future implementa-
tion, we present it in four flavors with different strengths together with examples.
The main enumeration engine uses chronological CDCL [25], is exempt from
blocking clauses, and thus does not suffer from a formula blowup. Its projection
capabilities make it suitable also for applications requiring model enumeration
with projection. We conclude our presentation by a formalization of our algo-
rithm and a discussion of the presented approach. Our work is motivated by
projected model counting and weighted model integration. We therefore focus on
(projected) model enumeration without repetition. Contrarily to Oztok and Dar-
wiche [26], we use an oracle and build a Disjoint Sum-of-Products (DSOP) [1].
The work by Lagniez and Marquis [12] is orthogonal to ours. It is led by a dis-
junctive decomposition of the formula under consideration after a full model is
found and also decomposes it into disjoint connected components.

2 Preliminaries

A literal � is a variable v or its negation ¬v. We denote by V (�) the variable
of � and extend this notation to sets and sequences of literals. We write � for
the complement of �, i.e., � = ¬�, defining ¬¬� = �. A formula in conjunctive
normal form (CNF) over variables V is defined as a conjunction of clauses, which
are disjunctions of literals with variable in V , whereas a formula in disjunctive
normal form (DNF) is a disjunction of cubes, which are conjunctions of literals.
We might interpret formulae, clauses, and cubes also as sets of clauses or cubes,
and literals and write C ∈ F for referring to a clause or cube C in a formula F
and � ∈ C where � is a literal in C. The empty CNF formula and the empty
cube are denoted by 1, the empty DNF formula and the empty clause by 0.
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A total assignment is a mapping from the set of variables V to the truth
values 1 (true) and 0 (false). A trail I = �1 . . . �n is a non-contradictory sequence
of literals, which might also be interpreted as a (possibly partial) assignment,
where I(�) = 1 if � ∈ I and I(�) = 0 if ¬� ∈ I. We denote the empty trail by ε
and the set of variables of the literals on I by V (I). Trails and literals might
be concatenated, written I = JK and I = J�, provided V (J) ∩ V (K) = ∅ and
V (J) ∩ V (�) = ∅. We interpret I also as a set of literals and write � ∈ I to
denote a literal � on I. The residual of a formula F under a trail I, written F |I ,
is obtained by replacing the literals � in F , where V (�) ∈ V (I), by their truth
value, and by recursively propagating truth values through Boolean connectives.
In particular, for a CNF formula this consists in removing satisfied clauses as
well as falsified literals. By “=” in F |I = 1 and F |I = 0, notably by omitting
quantifiers, we explicitly mean syntactical equality and consider the (possibly
partial) assignment represented by I, i.e., only the literals on I. The notion of
residual is extended similarly to clauses and literals. We denote by X − I the
unassigned variables in X. By π(I,X) we refer to the projection of I onto X
and extend this notation to sets of literals.

The decision level function δ : V �→ N ∪ {∞} returns the decision level of a
variable v. If v is unassigned, we have δ(v) = ∞, and δ is updated whenever v
is assigned or unassigned. We define δ(�) = δ(V (�)) for a literal �, δ(C) =
max{δ(�) | � ∈ C} for a clause C 
= 0, and δ(I) = max{δ(�) | � ∈ I} for
a sequence of literals I 
= ε. Further, δ(L) = max{δ(�) | � ∈ L} for a set of
literals L 
= ∅. We define δ(0) = δ(ε) = δ(∅) = 0. The updated function δ,
in which V (�) is assigned to decision level d, is denoted by δ[� �→ d]. If all
literals in V are unassigned, we write δ[V �→ ∞] or δ ≡ ∞. The function δ is
left-associative, i.e., δ[I �→ ∞][� �→ d] first unassigns all literals on I and then
assigns literal � to decision level d. We mark the decision literals on I by a
superscript, i.e., �d, and denote the set consisting of the decision literals on I by
decs(I) = {� | �d ∈ I}. Similarly, we denote the set of unit literals in F or its
residual under I by units(F ) or units(F |I). Trails are partitioned into decision
levels, and I�n is the subsequence of I consisting of all literals � where δ(�) � n.

Following Sebastiani [28], we say that a (partial) assignment I entails a
formula F , if all total extensions of I satisfy F . In this work it was noticed
that, if I entails F , we can not conclude that F |I = 1, but only that F |I is
valid. Consider as an example F = (x ∧ y) ∨ (x ∧ ¬y) over variables X = {x}
and Y = {y} and the trail I = x ranging over X ∪ Y . The possible extensions
of I are I ′ = xy and I ′′ = x¬y. We have F |I′ = F |I′′ = 1, therefore I entails F .
Notice that F |I = y ∨ ¬y is valid but it syntactically differs from 1.

3 Early Pruning for Projected Model Enumeration

Our approach is inspired by how theory solvers and the SAT solver interact in
lazy SMT. A general schema is described in Fig. 1. Let F (X,Y ) be a formula
over relevant variables X and irrelevant variables Y such that X ∩Y = ∅. A SAT
solver executes enumeration, either DPLL-based [5,6] or CDCL-based [17,24],
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Input: formula F (X, Y ) over variables X ∪ Y such that X ∩ Y = ∅,
trail I, decision level function δ

Output: DNF M consisting of models of F projected onto X

Enumerate (F )
1 I := ε // empty trail
2 δ := ∞ // unassign all variables
3 M := 0 // empty DNF
4 forever do
5 C := PropagateUnits (F , I, δ )
6 if C �= 0 then // conflict
7 c := δ(C) // conflict level
8 if c = 0 then
9 return M

10 AnalyzeConflict (F , I, C, c )
11 else if all variables in X ∪ Y are assigned then // I is total model
12 if V (decs(I)) ∩ X = ∅ then // no relevant decision left
13 return M ∨ π(I, X) // record I projected onto X
14 M := M ∨ π(I, X)
15 b := δ(decs(π(I, X))) // highest relevant decision level
16 Backtrack ( I, b − 1 ) // flip last relevant decision
17 else if Entails ( I, F ) then // I is partial model
18 if V (decs(I)) ∩ X = ∅ then // no relevant decision left
19 return M ∨ π(I, X) // record I projected onto X
20 M := M ∨ π(I, X)
21 b := δ(decs(π(I, X))) // highest relevant decision level
22 Backtrack ( I, b − 1 ) // flip last relevant decision
23 else
24 Decide ( I, δ )

Fig. 1. Early pruning for projected model enumeration. Lines 1–16 and 23–24 list
CDCL-based model enumeration with chronological backtracking. If after unit propa-
gation no conflict occurs and not all variables are assigned, an oracle might be called
to check whether I entails F (line 17). If Entails returns 1, the relevant decision literal
with highest decision level might be flipped. Otherwise, a decision is taken (line 24).
Notice that lines 12–16 and lines 18–22 are identical.

on F , maintaining a trail I over variables X ∪ Y . In lines 1–16 and 23–24, we
consider the CDCL-based enumeration engine with chronological backtracking
of our framework [21]. Now assume unit propagation has been carried out until
completion, no conflict occurred and there are still unassigned variables (line 17).
The trail I already might entail F , although F |I 
= 1. We can check whether I
entails F by an incremental call to an “oracle” [16] Entails on I and F . If Entails
returns 1, then the procedure does not need to test any total extension of I, since
all of them are models of F . It can proceed and flip the relevant decision literal
with highest decision level (line 21–22). If Entails returns 0, a decision needs to
be taken (line 24). Notice that lines 12–16 and lines 18–22 are identical. Our
method is based on chronological backtracking and follows the scheme in our
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framework [21], the functions PropagateUnits() and AnalyzeConflict() are taken
from our previous work [20]. Entails plays the role of an “early pruning call” to a
theory solver in SMT, and F plays the role of the theory [29]. Redundant work
is saved by applying unit propagation until completion before calling Entails.
Quantified Entailment Condition. We use quantifiers with QBF semantics, and
quantified formulae are always closed. A closed QBF formula evaluates to either 1
or 0. Consider ϕ = ∀X∀Y [F |I ], where F is a formula over variables X ∪ Y and
the trail I ranges over X ∪ Y . In ϕ, the remaining variables (X ∪ Y ) − I are
quantified. Accordingly, by ∀X∀Y [F |I ] = 1, we express that all possible total
extensions of I satisfy F , in contrast to F |I = 1, expressing syntactic equality
according to Sect. 2. The latter fact implies the former, but not vice versa.
Entailment Under Projection. If Entails implements the notion of entailment
described in Sect. 2, then by calling it on I and F , we check whether F |J = 1
for all total extensions J of I, i.e., whether ∀X∀Y [F |I ] = 1. However, since
we are interested in the models of F projected onto X, it suffices to check that
for each possible assignment JX to the unassigned variables in X, there exists
one assignment JY to the unassigned variables in Y such that F |I′ = 1 where
I ′ = I ∪JX ∪JY . In essence, we need to determine the truth of the QBF formula
∀X∃Y [F |I ], which, in general, might be expensive, computationally. In some
cases, however, a computationally cheaper (but weaker) test might be sufficient.
Entails in line 17 of Enumerate can be seen as a black box pooling four entailment
tests of different strengths, which we discuss in the next section.

4 Testing Entailment

Consider the original entailment condition, ∀X∀Y [F |I ] = 1. Now we have that
∀X∀Y [F |I ] = 1 ⇐⇒ ∃X∃Y [¬F |I ] = 0. Therefore, to check whether I
entails F , a SAT solver might be called to check whether ¬F ∧ I is unsatisfiable.
The SAT solver returns “unsat”, if and only if I entails F . This observation
motivates the use of dual reasoning for testing entailment in cases where cheaper
tests fail. We present four flavors of the entailment test and provide examples.

1) F |I = 1 (syntactic check). If F |I = 1, also ∀X∀Y [F |I ] = 1, and I entails F .
2) F |I ≈ 1 (incomplete check in P). Alternatively, if F |I differs from 1, an

incomplete algorithm might be used, to check whether ¬F ∧I is unsatisfiable,
by for instance executing only unit propagation or aborting after a predefined
number of decision levels.

3) F |I ≡ 1 (semantic check in coNP). A SAT oracle runs on ¬F ∧ I until
termination. Basically, it checks the unsatisfiability of ¬F ∧ I, i.e., whether
it holds that ∃X∃Y [¬F |I ] = 0. If it answers “unsat”, then I entails F .

4) ∀X∃Y [F |I ] = 1 (check in ΠP
2 ). A QBF oracle is called to check whether

the 2QBF formula ∀X∃Y [F |I ] is 1.

Modern SAT solvers mostly work on CNFs. Thus, following our dualiza-
tion approach [19], we may convert F (X,Y ) and ¬F (X,Y ) into CNF formu-
lae P (X,Y, S) and N(X,Y, T ), where S and T denote the variables introduced
by the CNF encoding. Notice that I∧¬F is unsatisfiable iff I∧N is unsatisfiable.
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Table 1. Examples of formulae F over relevant variables X and irrelevant variables Y .
For a concise representation of formulae, we represent conjunction by juxtaposition and
negation by overline. In all examples, I entails F projected onto X. The entailment
tests are listed from left to right in ascending order by their strength. Here, “�” denotes
the fact that I passes the test in the column, if applied to the formula in the row.

F X Y I = 1 ≈ 1 ≡ 1 2QBF

(x1 ∨ y ∨ x2) {x1, x2} {y} x1 � � � �
x1y ∨ yx2 {x1, x2} {y} x1x2 � � �
x1(x2 y ∨ x2y ∨ x2y ∨ x2y) {x1, x2} {y} x1 � �
x1(x2 ↔ y) {x1, x2} {y} x1 �

Table 1 lists four examples, which differ in the strength of the required entail-
ment test. The first column lists the formula F , the second and third column
show the definitions of X and Y . For a concise representation of formulae, we
represent conjunction by juxtaposition and negation by overline. The fourth col-
umn contains the current trail I. The fifth to eighth column denote the tests, in
ascending order by their strength: F |I = 1, F |I ≈ 1, F |I ≡ 1, ∀X∃Y [F |I ] = 1.
In all examples, I entails F , and “�” denotes the fact that I passes the test in
the column, if applied to the formula in the row.

Consider the first example, F = (x1 ∨ y ∨ x2) and I = x1. We have F |I = 1,
and I entails F , which is detected by the syntactic check. For the second example,
F = x1y ∨ yx2, we have F |I = y ∨ y, which is valid, but it syntactically differs
from 1. The SAT solver therefore calls Entails on ¬F ∧ I. For ¬F = (x1 ∨ y)(y ∨
x2), we find ¬F |I = (y)(y). After propagating y, a conflict at decision level
zero occurs, hence Entails returns 1, and an incomplete test is sufficient. In this
example, ¬F is already in CNF. The key idea conveyed by it can easily be lifted
to the case where additional variables are introduced by the CNF transformation
of ¬F . For the third example, F = x1(x2 y ∨x2y ∨x2y ∨x2y), both P |I and N |I
are undefined and contain no units. However, N |I is unsatisfiable, the SAT oracle
call on N ∧I terminates with “unsat”, and Entails returns 1. Hence, this example
requires at least a SAT oracle. For the last example, F = x1(x2 ↔ y), we define

P = (x1)(s1 ∨ s2)(s1 ∨ x2)(s1 ∨ y)(s2 ∨ x2)(s2 ∨ y) with S = {s1, s2} and
N = (x1 ∨ t1 ∨ t2)(t1 ∨ x2)(t1 ∨ y)(t2 ∨ x2)(t2 ∨ y) with T = {t1, t2}

We have P |I 
= 1. Neither P |I nor N |I contains a unit literal, hence the incom-
plete test is too weak. Assume a SAT solver is called to check unsatisfiability
of N ∧ I, and x2 is decided first. After propagating t2, t1 and y, a total model
of N is found. The SAT solver answers “sat”, and Entails returns 0. A QBF
solver checking ϕ = ∀X∃Y [x2y ∨ x2 y ] returns 1. In fact, ϕ is true for I = x2y
and I = x2 y, and Entails answers 1. Thus, at least a QBF oracle is needed.
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EndTrue: (F, I, M, δ) �EndTrue M ∨ m if V (decs(I)) ∩ X = ∅ and
m

def= π(I, X) and ∀X∃Y [F |I ] = 1
EndFalse: (F, I, M, δ) �EndFalse M if exists C ∈ F and C|I = 0 and

δ(C) = 0

Unit: (F, I, M, δ) �Unit (F, I�, M, δ[� �→ a]) if F |I �= 0 and
exists C ∈ F with {�} = C|I and a

def= δ(C \ {�})

BackTrue: (F, I, M, δ) �BackTrue (F, UK�, M ∨ m, δ[L ∞→� ][� �→ b]) if
UV

def= I and D
def= π(decs(I), X) and b + 1 def= δ(D) � δ(I) and

� ∈ D and b = δ(D \ {�}) = δ(U) and m
def= π(I, X) and

K
def= V�b and L

def= V>b and ∀X∃Y [F |I ] = 1
BackFalse: (F, I, M, δ) �BackFalse (F, UK�, M, δ[L ∞→� ][� �→ j]) if

exists C ∈ F and exists D with UV
def= I and C|I = 0 and

c
def= δ(C) = δ(D) > 0 such that � ∈ D and � ∈ decs(I) and

�|V = 0 and F ∧ M |= D and j
def= δ(D \ {�}) and

b
def= δ(U) = c − 1 and K

def= V�b and L
def= V>b

DecideX: (F, I, M, δ) �DecideX (F, I�d, M, δ[� �→ d]) if F |I �= 0 and
units(F |I) = ∅ and δ(�) = ∞ and d

def= δ(I) + 1 and V (�) ∈ X

DecideY: (F, I, M, δ) �DecideY (F, I�d, M, δ[� �→ d]) if F |I �= 0 and
units(F |I) = ∅ and δ(�) = ∞ and d

def= δ(I) + 1 and V (�) ∈ Y and
X − I = ∅

Fig. 2. Rules for Enumerate.

5 Formalization

The algorithm listed in Fig. 1 can be expressed by means of a formal calculus
(Fig. 2). It extends our previous calculus [21] by projection and by a general-
ized precondition modeling an incremental call to an oracle for checking entail-
ment (lines 17–22 in function Enumerate). Notably, in our work [21], only total
models are found, while entailment in our actual work enables the detection of
partial models. The variables in Y and S (from the CNF encoding) are treated
equally with respect to unit propagation and decision. We therefore merge those
two variable sets into Y to simplify the formalization. This does not affect the
outcome of the entailment test. In favor of a concise description of the rules, we
emphasize the differences to our previous framework [21] and refer to this work
for more details.

The procedure terminates as soon as either a conflict at decision level zero
occurs (rule EndFalse) or a possibly partial model is found and I contains no
relevant decision literal (rule EndTrue). Requiring that no relevant decision is
left on the trail prevents the recording of redundant models. The projection
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of I onto X is recorded. Rule Unit remains unchanged except for the missing
precondition F |I 
= 1. If I entails F and contains relevant decision literals, the
one at the highest decision level is flipped, and the projection of I onto X
is recorded (rule BackTrue). Requiring that the last relevant decision literal is
flipped prevents the recording of redundant models. Rule BackFalse remains
unchanged. A decision is taken whenever F |I 
= 0 and F |I contains no unit. Rel-
evant variables are prioritized (rule DecideX) over irrelevant ones (rule DecideY).

Although not mandatory for correctness, the applicability of rule Unit might
be restricted to the case where F |I 
= 1. Similarly, a decision might be taken
only if I does not entail F . Notice that in rules Unit, DecideX, and DecideY, the
precondition F |I 
= 0 can also be omitted.

6 Conclusion

In many applications (projected) partial models play a central role. For this
purpose, we have presented an algorithm and its formalization inspired by how
theory solvers and the SAT solver interact in SMT. The basic idea was to detect
partial assignments entailing the formula on-the-fly. We presented entailment
tests of different strength and computational cost and discussed examples.

The syntactic check “F |I = 1” is cheapest, using clause watches or counters
for keeping track of the number of satisfied clauses or alternatively the number
of assigned variables (line 11 in Fig. 1). It is also weakest, since F |I must syntac-
tically coincide with 1. The incomplete check, denoted by “F |I ≈ 1”, is slightly
more involved. It calls a SAT solver on the negation of the formula, restricted,
e.g., to unit propagation or a limited number of decision levels, and also might
return “unknown”. The SAT oracle executes an unsatisfiability check of ¬F ∧ I,
given a (partial) assignment I, which might be too restrictive. The QBF oracle is
the most powerful test, but also the most expensive one. It captures entailment
under projection in a precise manner expressed by ∀X∃Y [F |I ] = 1. Combining
dual reasoning with oracle calls allows to avoid shrinking of total models. Finally,
chronological CDCL renders the use of blocking clauses superfluous.

We claim that this is the first method combining dual reasoning and chrono-
logical CDCL for partial model detection. It is anticipated that applications with
short partial models benefit most, since oracle calls might be expensive. We plan
to implement our method and validate its competitiveness on applications from
weighted model integration and model counting with or without projection. We
also plan to investigate methods concerning the implementation of QBF ora-
cles required by flavour 4), e.g., dependency schemes introduced by Samer and
Szeider [27] or incremental QBF solving proposed by Lonsing and Egly [15].
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Abstract. CDCL-based SAT solvers have transformed the field of auto-
mated reasoning owing to their demonstrated efficiency at handling prob-
lems arising from diverse domains. The success of CDCL solvers is owed
to the design of clever heuristics that enable the tight coupling of differ-
ent components. One of the core components is phase selection, wherein
the solver, during branching, decides the polarity of the branch to be
explored for a given variable. Most of the state-of-the-art CDCL SAT
solvers employ phase-saving as a phase selection heuristic, which was pro-
posed to address the potential inefficiencies arising from far-backtracking.
In light of the emergence of chronological backtracking in CDCL solvers,
we re-examine the efficiency of phase saving. Our empirical evaluation
leads to a surprising conclusion: The usage of saved phase and random
selection of polarity for decisions following a chronological backtracking
leads to an indistinguishable runtime performance in terms of instances
solved and PAR-2 score.

We introduce Decaying Polarity Score (DPS) to capture the trend of
the polarities attained by the variable, and upon observing lack of perfor-
mance improvement due to DPS, we turn to a more sophisticated heuris-
tic seeking to capture the activity of literals and the trend of polarities:
Literal State Independent Decaying Sum (LSIDS). We find the 2019 win-
ning SAT solver, Maple LCM Dist ChronoBTv3, augmented with LSIDS
solves 6 more instances while achieving a reduction of over 125 seconds
in PAR-2 score, a significant improvement in the context of the SAT
competition.

1 Introduction

Given a Boolean formula F , the problem of Boolean Satisfiability (SAT) asks
whether there exists an assignment σ such that σ satisfies F . SAT is a funda-
mental problem in computer science with wide-ranging applications including
bioinformatics [24], AI planning [18], hardware and system verification [7,9],
spectrum allocation, and the like. The seminal work of Cook [10] showed that
SAT is NP-complete and the earliest algorithmic methods, mainly based on local
search and the DPLL paradigm [11], suffered from scalability in practice. The
arrival of Conflict Driven Clause Learning (CDCL) in the early ’90s [35] ushered

The full version of the paper is available at http://arxiv.org/abs/2005.04850.
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in an era of sustained interest from theoreticians and practitioners leading to a
medley of efficient heuristics that have allowed SAT solvers to scale to instances
involving millions of variables [25], a phenomenon often referred to as SAT rev-
olution [2,6,12,22,26–28,35].

The progress in modern CDCL SAT solving over the past two decades owes to
the design and the tight integration of the core components: branching [19,34],
phase selection [31], clause learning [3,23], restarts [4,14,16,21], and memory
management [5,30]. The progress has often been driven by the improvement
of the state of the art heuristics for the core components. The annual SAT
competition [17] is witness to the pattern where development of the heuristics
for one core component necessitates and encourages the design of new heuristics
for other components to ensure a tight integration.

The past two years have witnessed the (re-)emergence of chronological back-
tracking, a regular feature of DPLL techniques, after almost a quarter-century
since the introduction of non-chronological backtracking (NCB), thanks to Nadel
and Ryvchin [28]. The impact of chronological backtracking (CB) heuristics is
evident from its quick adoption by the community, and the CB-based solver,
Maple LCM Dist ChronoBT [32], winning the SAT Competition in 2018 and
a subsequent version, Maple LCM Dist ChronoBTv3, the SAT Race 2019 [15]
winner. The 2nd best solver at the SAT Race 2019, CaDiCaL, also implements
chronological backtracking. The emergence of chronological backtracking neces-
sitates re-evaluation of the heuristics for the other components of SAT solving.

We turn to one of the core heuristics whose origin traces to the efforts
to address the inefficiency arising due to loss of information caused by non-
chronological backtracking: the phase saving [31] heuristic in the phase selection
component. When the solver decides to branch on a variable v, the phase selec-
tion component seeks to identify the polarity of the branch to be explored by the
solver. The idea of phase-saving traces back to the field of constraint satisfaction
search [13] and SAT checkers [33], and was introduced in CDCL by Pipatsri-
sawat and Darwiche [31] in 2007. For a given variable v, phase saving returns
the polarity of v corresponding to the last time v was assigned (via decision
or propagation). The origin of phase saving traces to the observation by Pipat-
srisawat and Darwiche that for several problems, the solver may forget a valid
assignment to a subset of variables due to non-chronological backtracking and be
forced to re-discover the earlier assignment. In this paper, we focus on the ques-
tion: is phase saving helpful for solvers that employ chronological backtracking?
If not, can we design a new phase selection heuristic?

The primary contribution of this work is a rigorous evaluation process to
understand the efficacy of phase saving for all decisions following a chronological
backtracking and subsequent design of improved phase selection heuristic. In
particular,

1. We observe that in the context of 2019’s winning SAT solver Maple LCM Dist
ChronoBTv3 (referred to as mldc henceforth)1, phase saving heuristic for

1 Acronyms in sans serif font denote solvers or solvers with some specific configurations.
mldc is used as abbreviation for Maple LCM Dist ChronoBTv3.
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decisions following a chronological backtracking performs no better than the
random heuristic which assigns positive or negative polarity randomly with
probability 0.5.

2. To address the inefficacy of phase saving for decisions following a chronolog-
ical backtracking, we introduce a new metric, decaying polarity score (DPS),
and DPS-based phase selection heuristic. DPS seeks to capture the trend of
polarities assigned to variables with higher priority given to recent assign-
ments. We observe that augmenting mldc with DPS leads to almost the same
performance as the default mldc, which employs phase saving as the phase
selection heuristic.

3. To meet the dearth of performance gain by DPS, we introduce a sophisticated
variant of DPS called Literal State Independent Decaying Sum (LSIDS), which
performs additive bumping and multiplicative decay. While LSIDS is inspired
by VSIDS, there are crucial differences in computation of the corresponding
activity of literals that contribute significantly to the performance. Based on
empirical evaluation on SAT 2019 instances, mldc augmented with LSIDS,
called mldc-lsids-phase solves 6 more instances and achieves the PAR-2 score
of 4475 in comparison to 4607 seconds achieved by the default mldc.

4. To determine the generality of performance improvement of mldc-lsids-phase
over mldc; we perform an extensive case study on the benchmarks arising from
preimage attack on SHA-1 cryptographic hash function, a class of benchmarks
that achieves significant interest from the security community.

The rest of the paper is organized as follows. We discuss background about
the core components of the modern SAT solvers in Sect. 2. Section 3 presents an
empirical study to understand the efficacy of phase saving for decisions follow-
ing a chronological backtracking. We then present DPS-based phase selection
heuristic and the corresponding empirical study in Sect. 4. Section 5 presents the
LSIDS-based phase selection heuristic. We finally conclude in Sect. 6.

2 Background

A literal is a propositional variable v or its negation ¬v. A Boolean formula
F over the set of variables V is in Conjunctive Normal Form (CNF) if F is
expressed as conjunction of clauses wherein each clause is a disjunction over
a subset of literals. A truth assignment σ : V �→ {0, 1} maps every variable
to 0 (False) or 1 (True). An assignment σ is called satisfying assignment or
solution of F if F (σ) = 1. The problem of Boolean Satisfiability (SAT) seeks to
ask whether there exists a satisfying assignment of F . Given F , a SAT solver is
expected to return a satisfying assignment of F if there exists one, or a proof of
unsatisfiability [36].

2.1 CDCL Solver

The principal driving force behind the so-called SAT revolution has been the
advent of the Conflict Driven Clause Learning (CDCL) paradigm introduced
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by Marques-Silva and Sakallah [35], which shares syntactic similarities with the
DPLL paradigm [11] but is known to be exponentially more powerful in theory.
The power of CDCL over DPLL is not just restricted to theory, and its practical
impact is evident from the observation that all the winning SAT solvers in the
main track have been CDCL since the inception of SAT competition [17].

On a high-level, a CDCL-based solver proceeds with an empty set of assign-
ments and at every time step maintains a partial assignment. The solver itera-
tively assigns a subset of variables until the current partial assignment is deter-
mined not to satisfy the current formula, and the solver then backtracks while
learning the reason for the unsatisfiability expressed as a conflict clause. The
modern solvers perform frequent restarts wherein the partial assignment is set
to empty, but information from the run so far is often stored in form of different
statistical metrics. We now provide a brief overview of the core components of
a modern CDCL solver.

1. Decision. The decision component selects a variable v, called the decision
variable from the set of unassigned variables and assigns a truth value, called
the decision phase to it. Accordingly, a Decision heuristic is generally a com-
bination of two different heuristics – a branching heuristic decides the decision
variable and a phase selection heuristic selects the decision phase. A decision
level is associated with each of the decision variables while it gets assigned.
The count for decision level starts at 1 and keeps on incrementing with every
decision.

2. Propagation. The propagation procedure computes the direct implication
of the current partial assignment. For example, some clauses become unit (all
but one of the literals are False) with the decisions recently made by the
solver. The remaining unassigned literal of that clause is asserted and added
to the partial assignment by the propagation procedure. All variables that
get assigned as a consequence of the variable v get the same decision level
as v.

3. Conflict Analysis. Propagation may also reveal that the formula is not
satisfiable with the current partial assignment. The situation is called a con-
flict. The solver employs a conflict analysis subroutine to deduce the reason
for unsatisfiability, expressed as a subset of the current partial assignment.
Accordingly, the conflict analysis subroutine returns the negation of the lit-
erals from the subset as a clause c, called a learnt clause or conflict clause
which is added to the list of the existing clauses. The clauses in the given
CNF formula essentially imply the learnt clause.

4. Backtrack. In addition to leading a learnt clause, the solver then seeks to
undo a subset of the current partial assignment. To this end, the conflict anal-
ysis subroutine computes the backtrack decision level l, and then the solver
deletes assignment to all the variables with decision level greater than l. As
the backtrack intimates removing assignment of last decision level only, back-
tracking for more than one level is also called non-chronological backtracking
or, backjumping.
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The solver keeps on repeating the procedures as mentioned above until it
finds a satisfying assignment or finds a conflict without any assumption. The
ability of modern CDCL SAT solvers to solve real-world problems with millions
of variables depends on its highly sophisticated heuristics employed in different
components of the solver. Now we discuss some terms related to CDCL SAT
solving that we use extensively in the paper.

– Variable state independent decaying sum (VSIDS) introduced in Chaff [27]
refers to a branching heuristic, where a score called activity is maintained for
every variable. The variable with the highest activity is returned as the deci-
sion variable. Among different variations of VSIDS introduced later, the most
effective is Exponential VSIDS or, EVSIDS [8,20] appeared in MiniSat [12].
The EVSIDS score for variable v, activity[v], gets incremented additively by
a factor f every time v appears in a learnt clause. The factor f itself also gets
incremented multiplicatively after each conflict. A constant factor g = 1/f
periodically decrements the activity of all the variables. The act of increment
is called bump, and the decrement is called decay. The heuristic is called state
independent because the activity of a variable is not dependent of the current
state (e.g., current assumptions) of the solver.

– Phase saving [31] is a phase selection heuristic used by almost all solver mod-
ern solvers, with few exceptions such as the CaDiCaL solver in SAT Race
19 [15]. Every time the solver backtracks and erases the current truth assign-
ment, phase saving stores the erased assignment. For any variable, only the
last erased assignment is stored, and the assignment replaces the older stored
assignment. Whenever the branching heuristic chooses a variable v as the
decision variable and asks phase saving for the decision phase, phase saving
returns the saved assignment.

– Chronological backtracking. When a non-chronological solver faces a conflict,
it backtracks for multiple levels. Nadel et al. [28] suggested non-chronological
backtracking (NCB) might not always be helpful, and advocated backtracking
to the previous decision level. The modified heuristic is called chronological
backtracking (CB). We distinguish a decision based on whether the last back-
track was chronological or not. If the last backtrack is chronological, we say
the solver is in CB-state, otherwise the solver is in NCB-state.

2.2 Experimental Setup

In this work, our methodology for the design of heuristics has focused on the
implementation of heuristics on a base solver and conduction of an experimental
evaluation on a high-performance cluster for SAT 2019 benchmarks. We now
describe our experimental setup in detail. All the empirical evaluations in this
paper used this setup, unless mentioned otherwise.

1. Base Solver: We implemented the proposed heuristics on top of the
solver Maple LCM Dist ChronoBTv3 (mldc), which is the winning solver
for SAT Race 2019. Maple LCM Dist ChronoBTv3 is an modification of
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Maple LCM Dist ChronoBT (2018), which implements chronological back-
tracking on top of Maple LCM Dist (2017). Maple LCM Dist, in turn, evolved
from MiniSat (2006) through Glucose (2009) and MapleSAT (2016). The years
in parenthesis represent the year when the corresponding solver was pub-
lished.

2. Code Blocks: The writing style of this paper is heavily influenced from
the presentation of MiniSat by Eén and Sörensson [12]. Following Eén and
Sörensson, we seek to present implementation details as code blocks that are
intuitive yet detailed enough to allow the reader to implement our heuristics
in their own solver. Furthermore, we seek to present not only the final heuris-
tic that performed the best, but we also attempt to present closely related
alternatives and understand their performance.

3. Benchmarks: Our benchmark suite consisted of the entire suite, totaling
400 instances, from SAT Race ’19.

4. Experiments: We conducted all our experiments on a high-performance
computer cluster, with each node consists of E5-2690 v3 CPU with 24 cores
and 96 GB of RAM. We used 24 cores per node with memory limit set to 4 GB
per core, and all individual instances for each solver were executed on a single
core. Following the timeout used in SAT competitions, we put a timeout of
5000 seconds for all experiments, if not otherwise mentioned. In contrast to
SAT competition, the significant difference in specifications of the system lies
in the size of RAM: our setup allows 4 GB of RAM in comparison to 128 GB
of RAM allowed in SAT race ’19.
We computed the number of SAT and UNSAT instances the solver can solve
with each of the heuristics. We also calculated the PAR-2 score. The PAR-2
score, an acronym for penalized average runtime, used in SAT competitions
as a parameter to decide winners, assigns a runtime of two times the time
limit (instead of a “not solved” status) for each benchmark not solved by the
solver.2

3 Motivation

The impressive scalability of CDCL SAT solvers owes to the tight coupling among
different components of the SAT solvers wherein the design of heuristic is influ-
enced by its impact on other components. Consequently, the introduction of a
new heuristic for one particular component requires one to analyze the efficacy of
the existing heuristics in other components. To this end, we seek to examine the
efficacy of phase saving in the context of recently introduced heuristic, Chrono-
logical Backtracking (CB). As mentioned in Sect. 1, the leading SAT solvers have
incorporated CB and therefore, we seek to revisit the efficacy of other heuristics
in light of CB. As a first step, we focus on the evaluation of phase selection
heuristic.

2 All experimental data are available at https://doi.org/10.5281/zenodo.3817476.

https://doi.org/10.5281/zenodo.3817476


78 A. Shaw and K. S. Meel

Phase saving was introduced to tackle the loss of precious work due to far-
backtracking [31]. Interestingly, CB was introduced as an alternative to far-
bactracking, i.e., when the conflict analysis recommends that the solver should
backtrack to a level l̂ such that |l − l̂| is greater than a chosen threshold (say,
thresh), CB instead leads the solver to backtrack to the previous level. It is
worth noting that if the conflict analysis returns l̂ such that l − l̂ < thresh, then
the solver does backtrack to l̂. Returning to CB, since the solver in CB-state
does not perform far-backtracking, it is not clear if phase saving in CB-state
is advantageous. To analyze empirically, we conducted preliminary experiments
with mldc, varying the phase-selection heuristics while the solver is performing
CB. We fix the phase selection to phase saving whenever the solver performs
NCB and vary the different heuristics while the solver performs CB:

1. Phase-saving: Choose the saved phase as polarity, default in mldc.
2. Opposite of saved phase: Choose the negation of the saved phase for the

variable as polarity.
3. Always false: The phase is always set to False, a strategy that was originally

employed in MiniSat 1.0.
4. Random: Randomly choose between False and True.

Our choice of Random among the four heuristics was driven by our percep-
tion that a phase selection strategy should be expected to perform better than
Random. Furthermore, to put the empirical results in a broader context, we also
experimented with the random strategy for both NCB and CB. The performance
of different configurations is presented in Table 1, which shows a comparison in
terms of the number of SAT, UNSAT instances solved, and PAR-2 score.

Table 1. Performance of mldc on 400 SAT19 benchmarks while aided with differ-
ent phase selection heuristics. SAT, UNSAT, and total columns indicate the number of
SAT, UNSAT, and SAT+UNSAT instances solved by the solver when using the heuris-
tic. A lower PAR2 score indicates a lower average runtime, therefore better performance
of the solver.

Phase selection heuristic used

In NCB-state In CB-state SAT UNSAT Total PAR-2

Random Random 133 89 222 5040.59

Phase-saving Phase-saving 140 97 237 4607.61

Phase-saving Random 139 100 239 4537.65

Phase-saving Always false 139 98 237 4597.06

Phase-saving Opp. of saved phase 137 98 235 4649.13

We first observe that the mldc solves 237 instances and achieves a PAR-
2 score of 4607 – a statistic that will be the baseline throughout the rest of
the paper. Next, we observe that usage of random both in CB-state and NCB-
state leads to significant degradation of performance: 15 fewer instances solved
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with an increase of 440 s for PAR-2. Surprisingly, we observe that random phase
selection in CB-state while employing phase saving in NCB-state performs as
good as phase-saving for CB-state. Even more surprisingly, we do not notice a
significant performance decrease even when using Always false or Opposite of
saved phase. These results strongly indicate that phase saving is not efficient
when the solver is in CB-state, and motivate the need for a better heuristic. In
the rest of the paper, we undertake the task of the searching for a better phase
selection heuristic.

4 Decaying Polarity Score for Phase Selection

To address the ineffectiveness of phase saving in CB-state, we seek to design a
new phase selection heuristic while the solver is in CB-state. As a first step, we
view phase saving as remembering only the last assigned polarity and we intend
to explore heuristic design based on the recent history of polarities assigned to
the variable of interest. Informally, we would like to capture the weighted trend of
the polarities assigned to the variable with higher weight to the recently assigned
polarity. To this end, we maintain a score, represented as a floating-point number,
for every variable and referred to as decaying polarity score (DPS). Each time
the solver backtracks to level l, the assignments of all the variables with decision
level higher than l are removed from the partial assignment. We update the
respective decaying polarity score of all these variables, whose assignment gets
canceled, using the following formula:

dps[v] = pol(v) + dec × dps[v] (1)

where,

– dps[v] represent the decaying polarity score of the variable v.
– pol(v) is +1 if polarity was set to True at the last assignment of the variable,

−1 otherwise.
– The decay factor dec is chosen from (0, 1). The greater the value of dec is,

the more preference we put on polarities selected in older conflicts.

Whenever the branching heuristic picks a variable v to branch on, the DPS-
based phase selection heuristic returns positive polarity if dps[v] is positive;
otherwise, negative polarity is returned.

4.1 Experimental Results

To test the efficiency of DPS-based phase selection heuristic, we augmented3

our base solver, mldc, with DPS-based phase selection heuristic in CB-state.
We set the value of dec = 0.7. As discussed in Subsect. 2.2, we conducted our
empirical evaluation on SAT-19 benchmarks. Table 2 presents the comparison of
the number of instances solved and PAR-2 score. We first note that the usage
3 https://github.com/meelgroup/duriansat/tree/decay-pol.

https://github.com/meelgroup/duriansat/tree/decay-pol
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Table 2. Performance comparison of decaying polarity score with phase saving on
SAT19 instances. mldc-dec-phase represent the solver using DPS.

System SAT UNSAT Total PAR-2

mldc 140 97 237 4607.61

mldc-dec-phase 141 96 237 4604.66

of DPS did not result in a statistically significant change in the performance
of mldc. It is worth noting that there are significantly many instances where
mldc attains more than 20% improvement over mldc-dec-phase and vice-versa.
The interesting behavior demonstrated by heuristic indicates, while DPS-based
phase selection heuristic fails to attain such an objective, it is possible to design
heuristics that can accomplish performance improvement over phase saving. In
the next section, we design a more sophisticated scheme that seeks to achieve
the above goal.

5 LSIDS: A VSIDS Like Heuristic for Phase Selection

We now shift to a more sophisticated heuristic that attempts to not only remem-
ber the trend of activity but also aims to capture the activity of the corresponding
literal. To this end, we introduce a scoring scheme, called Literal State Indepen-
dent Decay Sum (LSIDS), that performs additive bumping and multiplicative
decay, à la VSIDS and EVISDS style. The primary contribution lies in the con-
struction of policies regarding literal bumping. We maintain activity for every
literal, and the activity is updated as follows:

1. Literal bumping refers to incrementing activity for a literal. With every
bump, the activity for a literal is incremented (additive) by inc ∗ mult, where
mult is a fixed constant while at every conflict, inc gets multiplied by some
factor g > 1. Literal bumping takes place in the following two different phases
of the solver.
Reason-based bumping

When a clause c is learnt, for all the literals li appearing in c, the activity
for li is bumped. For example, if we learn the clause that consists of
literals v5, ¬v6 and v3, then we bump the activity of literals v5, ¬v6 and
v3.

Assignment-based bumping
While an assignment for a variable v gets canceled during backtrack; if
the assignment was True, then the solver bumps activity for v, otherwise
the activity for ¬v is bumped.

2. Literal decaying denotes the incident of multiplying the parameter inc by a
factor >1 at every conflict. The multiplication of inc implies the next bumps
will be done by a higher inc. Therefore, the older bumps to activity will be
relative smaller than the newer bumps. The name decaying underscores the
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void litBumpActivity(Lit l, double mult)
activity[l] += inc ∗ mult
if (activity[l] > 1e100)
litRescore()

void litDecayActivity()
inc ∗= 1/decay

void litRescore()
for (int i = 0; i < nVars(); i++)
activity[i] ∗= 1e−100
activity[¬i] ∗= 1e−100
inc ∗= 1e−100

Fig. 1. Bump, Decay and Rescore procedures for LSIDS activity.

fact that the effect of increasing inc is equivalent to decreasing (or, decay-ing)
the activity of all literals.

3. Literal rescoring: As the activity gets incremented by a larger and larger
factor every time, the value for activity reaches the limit of a floating-point
number at some time. At this point the activity of all the literals are scaled
down.

When the branching component returns a variable v, the LSIDS-based phase
selection return positive if activity[v] > activity[¬v], and negative otherwise.
One can view the proposed scheme as an attempt to capture both the participa-
tion of literals in learnt clause generation, in spirit similar to VSIDS, and storing
the information about trend, à la phase saving/decay polarity score.

5.1 Implementation Details

Figure 1 shows the methods to bump and decay the LSIDS scores. Figure 2 shows
blocks of code from MiniSat, where the activity of literals is bumped. Figure 3
showcases the subroutine to pick the branching literal based on LSIDS. Of par-
ticular note is the setting of mult to 2 for assignment-based bumping while
setting mult to 0.5 for Reason-based bumping. In order to maintain consistency
with constants in EVSIDS, the constants in litRescore are the same as that of
EVSIDS employed in the context of branching in mldc.

5.2 Experimental Results

To test the efficiency of LSIDS as a phase selection heuristic, we implemented4

the heuristic on mldc, replacing the existing phase saving heuristic. We call the
mldc augmented with LSIDS phase selection heuristic as mldc-lsids-phase. Similar
4 https://github.com/meelgroup/duriansat/tree/lsids.

https://github.com/meelgroup/duriansat/tree/lsids
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Bump literal scores for literals in learnt clause

void Solver.analyze(Constr confl)
c : conflict clause
litDecayActivity()
for (int j = 0; j < c.size(); j++)
Lit q = c[j];
litBumpActivity(¬q, .5);

Bump literal scores when deleting assignment

void Solver.cancelUntil(int bLevel) � bLevel : backtrack level
- for all elements which are getting cancelled
for (int c = trail.size()−1; c >= trailLim[bLevel]; c−−)
Var x = var(trail[c])
Lit l = mkLit(x, polarity[x])
litBumpActivity(¬l, 2);

Fig. 2. Sections in MiniSat like code, where LSIDS score is bumped and decayed.

Lit pickBranchLit()
next : variable returned by branching heuristic
CBT : denotes whether the last backtrack was chronological

if (CBT)
bool pol = pickLsidsBasedPhase(next)
return mkLit(next, pol)

else
return mkLit(next, polarity[next])

bool pickLsidsBasedPhase(Var v)
if ( activity[posL] > activity[negL] )
return true

else
return false

Fig. 3. Method to choose branching literal

to the previous section; we tested the implementations on SAT19 benchmarks
using the setup mentioned in Subsect. 2.2.

Solved Instances and PAR-2 Score Comparison. Table 3 compares numbers of
instances solved by the solver mldc and mldc-lsids-phase. First, observe that mldc-
lsids-phase solves 243 instances in comparison to 237 instances solved by mldc,
which amounts to the improvement of 6 in the number of solved instances. On
a closer inspection, we discovered that mldc performs CB for at least 1% of
backtracks only in 103 instances out of 400 instances. Since mldc-lsids-phase is
identical to mldc for the cases when the solver does not perform chronologi-
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Table 3. Performance comparison of LSIDS based phase selection with phase saving
on 400 SAT19 instances.

System SAT UNSAT Total PAR-2

mldc 140 97 237 4607.61

mldc-lsids-phase 147 96 243 4475.22

Fig. 4. Performance comparison of mldc-lsids-phase vis-a-vis mldc

cal backtracking, the improvement of 6 instances is out of the set of roughly
100 instances. It perhaps fits the often quoted paraphrase by Audemard and
Simon [4]: solving 10 or more instances on a fixed set (of size nearly 400) of
instances from a competition by using a new technique, generally shows a criti-
cal feature. In this context, we would like to believe that the ability of LSIDS-
based phase selection to achieve improvement of 6 instances out of roughly 100
instances qualifies LSIDS-base phase saving to warrant serious attention by the
community.

Table 3 also exhibits enhancement in PAR-2 score due to LSIDS-based phase
selection. In particular, we observe mldc-lsids-phase achieved reduction 2.87% in
PAR-2 score over mldc, which is significant as per SAT competitions standards.
In particular, the difference among the winning solver and runner-up solver for
the main track in 2019 and 2018 was 1.27% and 0.81%, respectively. In Fig. 4,
we show the scatter plot comparing instance-wise runtime performance of mldc
vis-a-vis mldc-lsids-phase. While the plot shows that there are more instances for
which mldc-lsids-phase achieves speedup over mldc than vice-versa, the plot also
highlights the existence of several instances that time out due to the usage of
mldc-lsids-phase but could be solved by mldc.

Solving Time Comparison. Figure 5 shows a cactus plot comparing performance
of mldc and mldc-lsids-phase on SAT19 benchmarks. We present number of
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Fig. 5. Each of the curve corresponds to the performance of a solver, by means of
number of instances solved within a specific time. At a specific runtime t, a curve to
further right denotes the solver has solved more instances by time t.

instances on x-axis and the time taken on y-axis. A point (x, y) in the plot
denotes that a solver took less than or equal to y seconds to solve y benchmarks
out of the 400 benchmarks in SAT19. The curves for mldc and mldc-lsids-phase
indicate, for every given timeout, the number of instances solved by mldc-lsids-
phase is greater than or equal to mldc.

Percentage of Usage and Difference of Selected Phase. Among the instances
solved by mldc-lsids-phase, percentage of decisions taken with LSIDS phase selec-
tions is on average 3.17% over the entire data set. Among the decisions taken
with LSIDS phase selection, the average fraction of decisions where the selected
phase differs from that of phase saving is 4.67%; It is worth remarking that
maximum achieved is 88% while the minimum is 0%. Therefore, there are bench-
marks where LSIDS and phase selection are entirely the same while there are
benchmarks where they agree for only 12% of the cases. The numbers thereby
demonstrate that the LSIDS-based phase selection can not be simply simulated
by random or choosing phase opposite of phase selection.

Applicability of LSIDS in NCB-State. The performance improvements owing the
usage of LSIDS during CB-state raise the question of whether LSIDS is benefi-
cial in NCB-state as well. To this end, we augmented mldc-lsids-phase to employ
LSIDS-based phase selection during both NCB-state as well as CB-state. Inter-
estingly, the augmented mldc-lsids-phase solved 228 instances, nine less compared
to mldc, thereby providing evidence in support of our choice of usage of LSIDS
during CB-state only.

Deciding the Best Combination of CB and NCB. Nadel and Ryvchin [28] inferred
that SAT solvers benefit from an appropriate combination of CB and NCB rather
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Table 4. Performance comparison of LSIDS based phase selection with phase saving
on 400 SAT19 instances with different T and C.

T = 100 C = 4000

C = 2000 3000 4000 5000 T = 25 90 150 200

SAT
mldc 137 141 140 137 139 137 134 138

mldc-lsids-phase 143 139 147 139 142 141 139 142

UNSAT
mldc 98 96 97 97 98 97 95 97

mldc-lsids-phase 99 101 96 100 99 96 99 97

Total
mldc 235 237 237 234 237 233 229 235

mldc-lsids-phase 242 240 243 239 241 238 238 239

PAR-2
mldc 4663 4588 4607 4674 4609 4706 4773 4641

mldc-lsids-phase 4506 4558 4475 4575 4555 4556 4622 4583

than solely reliance on CB or NCB. To this end, they varied two parameters, T
and C according to the following rules to heuristically decide the best combina-
tion.

– If the difference between the current decision level and backtrack level
returned by conflict analysis procedure is more than T , then perform CB.

– For the first C conflicts, perform NCB. This rule supersedes the above one.

Following the process, we experimented with different sets of T and C to deter-
mine the best combination of T and C for mldc-lsids-phase. For each configu-
ration (T and C), we computed the performance of mldc too. The results are
summerized in Table 4. It turns out that T = 100, C = 4000 performs best in
mldc-lsids-phase. Interestingly, for most of the configurations, mldc-lsids-phase
performed better than mldc.

5.3 Case Study on Cryptographic Benchmarks

Following SAT-community traditions, we have concentrated on SAT-19 bench-
marks. But the complicated process of selection of benchmarks leads us to be
cautious about confidence in runtime performance improvement achieved by
LSIDS-based phase selection. Therefore, in a bid to further improve our con-
fidence in the proposed heuristic, we performed a case study on benchmarks
arising from security analysis of SHA-1 cryptographic hash functions, a class of
benchmarks of special interest to our industrial collaborators and to the secu-
rity community at large. For a message M, a cryptographic hash function F
creates a hash H = F (M). In a preimage attack, given a hash H of a message
M, we are interested to compute the original message M. In the benchmark
set generated, we considered SHA-1 with 80 rounds, 160 bits for hash are fixed,
and k bits out of 512 message bits are fixed, 485 < k < 500. The solution to
the preimage attack problem is to give the remaining (512 − k) bits. Therefore,
the brute complexity of these problems will range from O(212) to O(227). The
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Table 5. Performance comparison of LSIDS based phase selection with phase saving
on 512 cryptographic instances. Name of systems are same as Table 3.

System Total solved PAR-2

mldc 291 9939.91

mldc-lsids-phase 299 9710.42

CNF encoding of these problems was created using the SAT instance generator
for SHA-1 [29]. Note that by design, each of the instances is satisfiable. In our
empirical evaluation, we focused on a suite comprising of 512 instances5 and
every experiment consisted of running a given solver with 3 h of timeout on a
particular instance.

Table 5 presents the runtime performance comparison of mldc vis-a-vis mldc-
lsids-phase for our benchmark suite. First, we observe that mldc-lsids-phase solves
299 instances in comparison to 291 instances solved by mldc, demonstrating an
increase of 8 instances due to LSIDS-based phase selection. Furthermore, we
observe a decrease of 229 in PAR-2 score, corresponding to a relative improve-
ment of 2.30%, which is in the same ballpark as the improvement in PAR-2 score
observed in the context of SAT-19 instances.

6 Conclusion

In this paper, we evaluated the efficacy of phase saving in the context of the
recently emerged usage of chronological backtracking in CDCL solving. Upon
observing indistinguishability in the performance of phase saving vis-a-vis ran-
dom polarity selection, we propose a new score: Literal State Independent Decay
Sum (LSIDS) that seeks to capture both the activity of a literal arising during
clause learning and also the history of polarities assigned to the variable. We
observed that incorporating LSIDS to Maple LCM Dist ChronoBTv3 leads to 6
more solved benchmarks while attaining a decrease of 132 seconds in PAR-2
score. The design of a new phase selection heuristic due to the presence of CB
leads us to believe that the community needs to analyze the efficiency of heuris-
tics for other components in the presence of chronological backtracking.
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mization approach for CDCL SAT solvers. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pp. 703–711 (2017)

24. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: making the case with haplotype
inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–
141. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 16

25. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

26. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

27. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM (2001)

28. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 7

29. Nossum, V.: Instance generator for encoding preimage, second-preimage, and col-
lision attacks on SHA-1. In: Proceedings of the SAT Competition, pp. 119–120
(2013)

30. Oh, C.: Improving SAT solvers by exploiting empirical characteristics of CDCL.
Ph.D. thesis, New York University (2016)

31. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

32. Ryvchin, V., Nadel, A.: Maple LCM dist ChronoBT: featuring chronological back-
tracking. In: Proceedings of SAT Competition, p. 29 (2018)

33. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Hei-
delberg (2000). https://doi.org/10.1007/10722167 36

34. Silva, J.P.M., Sakallah, K.A.: Grasp—a new search algorithm for satisfiability. In:
Kuehlmann, A. (ed.) The Best of ICCAD, pp. 73–89. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-1-4615-0292-0 7

35. Silva, J.M., Sakallah, K.A.: Conflict analysis in search algorithms for satisfiability.
In: Proceedings Eighth IEEE International Conference on Tools with Artificial
Intelligence, pp. 467–469. IEEE (1996)

36. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical verification of SAT refutations
with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39634-2 18

https://doi.org/10.1007/978-3-319-94144-8_6
https://doi.org/10.1007/978-3-319-66263-3_8
https://doi.org/10.1007/978-3-319-66263-3_8
https://doi.org/10.1007/11814948_16
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/10722167_36
https://doi.org/10.1007/978-1-4615-0292-0_7
https://doi.org/10.1007/978-3-642-39634-2_18
https://doi.org/10.1007/978-3-642-39634-2_18


On the Effect of Learned Clauses on
Stochastic Local Search

Jan-Hendrik Lorenz(B) and Florian Wörz(B)

Institute of Theoretical Computer Science, Ulm University, 89069 Ulm, Germany
{jan-hendrik.lorenz,florian.woerz}@uni-ulm.de

Abstract. There are two competing paradigms in successful SAT
solvers: Conflict-driven clause learning (CDCL) and stochastic local
search (SLS). CDCL uses systematic exploration of the search space and
has the ability to learn new clauses. SLS examines the neighborhood of
the current complete assignment. Unlike CDCL, it lacks the ability to
learn from its mistakes. This work revolves around the question whether
it is beneficial for SLS to add new clauses to the original formula. We
experimentally demonstrate that clauses with a large number of correct
literals w. r. t. a fixed solution are beneficial to the runtime of SLS. We
call such clauses high-quality clauses.

Empirical evaluations show that short clauses learned by CDCL pos-
sess the high-quality attribute. We study several domains of randomly
generated instances and deduce the most beneficial strategies to add
high-quality clauses as a preprocessing step. The strategies are imple-
mented in an SLS solver, and it is shown that this considerably improves
the state-of-the-art on randomly generated instances. The results are
statistically significant.

Keywords: Stochastic Local Search · Conflict-Driven Clause
Learning · Learned clauses

1 Introduction

The satisfiability problem (SAT ) asks to determine if a given propositional for-
mula F has a satisfying assignment or not. Since Cook’s NP-completeness proof
of the problem [21], SAT is believed to be computationally intractable in the
worst case. However, in the field of applied SAT solving, there were enormous
improvements in the performance of SAT solvers in the last 20 years. Motivated
by these significant improvements, SAT solvers have been applied to an increas-
ing number of areas, including bounded model checking [15,19], cryptology [23],
or even bioinformatics [35], to name just a few. Two algorithmic paradigms
turned out to be especially promising to construct solvers. The first to mention
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is conflict-driven clause learning (CDCL) [13,36,39]. The CDCL procedure sys-
tematically explores the search space of all possible assignments for the formula F
in question, by constructing partial assignments in an exhaustive branching and
backtracking search. Whenever a conflict occurs, a reason (a conflict clause)
is learned and added to the original clause set [16,42]. The other successful
paradigm is stochastic local search (see [16, Chapter 6] for an overview). Start-
ing from a complete initial assignment for the formula, the neighborhood of this
assignment is explored by moving from assignment to assignment in the space of
solution candidates while trying to minimize the number of unsatisfied clauses by
the assignment (or some other criterion). This movement is usually performed
by flipping one variable of such a complete assignment. Both paradigms are
described in Sect. 2 in more detail.

Besides the difference in the completeness of assignments considered during a
run of those algorithms, another major difference between both paradigms is the
completeness and incompleteness of the solvers (i. e., being able to certify both
satisfiability and unsatisfiability, or not) [42]. CDCL solvers are complete, while
SLS algorithms are incomplete. More interestingly for practitioners, perhaps, is
the complimentary behavior these paradigms exhibit in terms of performance:
CDCL seems well suited for application instances, whereas SLS excels on ran-
dom formulas1. An interesting question thus is, if it is possible to combine the
strength of both solvers or to eliminate the weaknesses of one paradigm by an
oracle-assistance of the other. This challenge was posed by Selman et al. in [43,
Challenge 7] (and again later in [30]):

“Demonstrate the successful combination of stochastic search and system-
atic search techniques, by the creation of a new algorithm that outperforms
the best previous examples of both approaches.”

This easy to state question turns out to be surprisingly challenging. There have
been some advances towards this goal, as we survey below. However, the perfor-
mance of most algorithms that try to combine the strength of both paradigms,
so-called hybrid solvers, is far from those of CDCL solvers (or other non-hybrids),
especially on application instances [2] or even any wider range of benchmark
problems [30]. In [27], the DPLL algorithm Satz [34] was used to derive impli-
cation dependencies and equivalencies between literals in WalkSAT [37].

The effect of a restricted form of resolution to clause weighting solvers was
investigated in [1]. A similar approach was previously studied in [18], where new
resolvent clauses based on unsatisfied clauses at local minima and randomly
selected neighboring clauses are added.

Local Search over partial assignments instead of complete assignments
extended with constraint propagation was studied in [29]. In case of a conflict,
a conflict clause is learned, and local search is used to repair this conflict. A
similar approach to construct a hybrid solver using SLS as the main solver and a

1 It is, however, noteworthy that the winning solver in the random track of the SAT
Competition 2018 was Sparrow2Riss, a CDCL solver.
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complete CDCL solver as a sub-solver was also studied in [4,7], where the perfor-
mance of the solvers hybridGM, hybridGP, and hybridPP was empirically
analyzed. The idea of these solvers is to build a partial assignment around one
complete assignment from the search trajectory of the SLS solver. This partial
assignment can then be applied to the formula resulting in a simpler one, which
is solved by a complete CDCL solver.

A shared memory approach for multi-core processor architectures was pro-
posed in [32]. In this case, DPLL can provide guidance for an SLS solver, being
run simultaneously on a different core.

The solver hbisat, introduced in [24], uses the partial assignments calculated
by CDCL to initialize the SLS solver. The SLS solver sends unsatisfied clauses to
the CDCL solver to either identify an unsatisfiable subformula of those clauses
or satisfy them. This approach was later significantly improved by Letombe and
Marques-Silva in [33].

Audemard et al. [2] introduced SatHys, where both components cooperate
by alternating between them. E. g., when CDCL chooses a variable to branch,
its polarity is extracted from the best complete assignment found by the SLS
solver. On the other hand, CDCL helps SLS out of local minima (i. e., CDCL is
invoked conditionally in this solver).

Our Contribution. Our hybrid solver GapSAT differs from the approaches
described above in the sense that CDCL is used as a preprocessor for prob-

SAT [11] (an SLS solver), terraforming the landscape in advance. This approach
eliminates, in many cases, the possibility for probSAT to get stuck in local min-
ima, eliminating the necessity of further, more complicated interactions between
both paradigms.

We examine the question, whether it is beneficial for SLS to add new clauses
to the original formula in a preprocessing step, by invoking a complete CDCL
solver. As it turns out, not all additional clauses are created equal. Experi-
mentally, we demonstrate that adding clauses that contain a larger number of
correct literals w. r. t. a fixed solution, drastically improves the performance of
SLS solvers. However, clauses that only contain few correct literals w. r. t. the
fixed solution can be deceptive for SLS. This effect can exponentially increase
the runtime as measured in the number of flips of probSAT, a very simple SLS
solver. In practice, one has to resort to known complete algorithms or proof sys-
tems to generate helpful clauses. We, in particular, investigate the effect of new
clauses learned by CDCL and depth-limited resolution (Sect. 3). With the help
of experiments, we conclude that CDCL (or resolution limited to depth 2) pro-
duces distinctively more helpful clauses for probSAT than resolution limited to
depth 1, as was studied in the past [1]. We, therefore, focus our effort on CDCL
as a clause learning mechanism for probSAT.

Motivated by these insights, we study the quality CDCL-learned clauses have
for SLS in more detail. In training experiments that are described in Sect. 4, we
systematically deduce parameter settings by statistical analysis that increase
this quality. For example, shorter clauses learned by CDCL are more beneficial.
As it turns out, however, the specific width depends on the underlying formula.
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Another interesting observation is that the amount of added clauses has to be
carefully restricted. Again, the specific restriction to use depends on the under-
lying formula.

To finally test the concrete effect of these ideas, we compared the perfor-
mance of a newly designed solver with the winner of the 2018 random track
competition, Sparrow2Riss [10]. Our observations were implemented in Gap-

SAT, which forms a combination of Glucose and probSAT. A comprehensive
experimental evaluation on 255 instances provides statistical evidence that the
performance of our proposed solver GapSAT exceeds Sparrow2Riss’ substan-
tially. In particular, GapSAT was able to solve more instances in just 30 s than
Sparrow2Riss in 5000 s. We present a summary of our experimental evaluation
in Sect. 5.

2 Preliminaries

We briefly reiterate the notions necessary for this work. For a thorough intro-
duction to the field, we refer the reader to [42]. A literal over a Boolean variable
x is either x itself or its negation x. A clause C = a1 ∨ · · · ∨ a� is a (possibly
empty) disjunction of literals ai over pairwise disjoint variables. A CNF formula
F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. A CNF formula is a k-CNF if all
clauses in it have at most k variables. An assignment α for a CNF formula F is
a function that maps some subset of Vars(F ) to {0, 1}. Given a complete assign-
ment α, the act of changing the truth value of precisely one variable of α is called
a flip. Resolution is the proof system with the single derivation rule B∨x C∨x

B∨C ,
where B and C are clauses.

CDCL. CDCL solvers, introduced in [13,36,39], construct a partial assignment.
When some clause is falsified by the constructed assignment, the CDCL solver
adds a new clause to the original formula F . This clause is a logical consequence
of F . A more detailed description of CDCL can be found in [16,40,42]. Modern
SAT solvers are additionally equipped with incremental data structures, restart
policies [26], and activity-based variable selection heuristics (VSIDS) [39]. In this
work, we use the CDCL solver Glucose [3] (based on MiniSat [22]).

probSAT. Contrary to CDCL-like algorithms, algorithms based on stochas-
tic local search (SLS ) operate on complete assignments for a formula F . These
solvers are started with a randomly generated complete initial assignment α. If α
satisfies F , a solution is found. Otherwise, the SLS solver tries to find a solution
by repeatedly flipping the assignment of variables according to some underly-
ing heuristic. That is, they perform a random walk over the set of complete
assignments for the underlying formula.

In [11], the probSAT class of solvers was introduced. Over the last few years,
probSAT-based solvers performed excellently on random instances: probSAT
won the random track of the SAT competition 2013, dimetheus [9] in 2014
and 2016, YalSAT [14] won in 2017. Only recently, in 2018, other types of
solvers significantly exceeded probSAT based algorithms. This performance is
the reason for choosing probSAT in this study.
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The idea behind the solver is that a function f is used, which gives a high
probability to a variable if flipping this variable is deemed advantageous. A
description of probSAT is given in Algorithm 1. This class of solvers is related
to Schöning’s random walk algorithm introduced in [41].

Input: Formula F , maxFlips, function f
α := randomly generated complete assignment for F
for i = 1 to maxFlips do

if α satisfies F then return “satisfiable”
Choose a clause C = (u1 ∨ u2 ∨ · · · ∨ u�) that is falsified under α

Choose j ∈ {1, . . . , �} with probability
f(uj ,α)

∑
u∈C f(u,α)

Flip the assignment of the chosen variable uj and update α

Algorithm 1. probSAT without restarts.

In [11], the break-only-poly-algorithm with f(x, α) :=
(
ε + break(x, α)

)−b

was considered for 3-SAT, where break(x, α) is the number of clauses that are
satisfied under α but will be falsified when the assignment of x is flipped. For
k �= 3, the break-only-exp-algorithm f(x, α) := b− break(x,α) was studied. Balint
and Schöning [11] found good choices for the parameters of these two functions.
In this work, we have adopted these parameter settings.

3 The Quality of Learned Clauses

In this section, we investigate the effect logically equivalent formulas have on
the SLS solver probSAT. More precisely, we use a formula F as a base and add
a set of clauses S = {C1, . . . , Ct} to F to obtain a new formula G := F ∪ S. In
general, adding new clauses to a formula F does not yield a logically equivalent
new formula G.

Thus, we observe two artificial models related to the backbone (see, e. g., [31])
and consider the 3-CNF case in the following. The backbone B(F ) are the literals
appearing in all satisfying assignments of F . In the first model, each new clause
consists of one backbone literal x ∈ B(F ) and two literals y, z such that their
complements are backbone literals, i. e., y and z do not occur in any solution.
We call this the deceptive model . In the second model, each new clause has one
backbone literal and two randomly chosen literals. This is the general model .

Figure 1 displays the effect of both models on probSAT. On the left is the
deceptive model. Generally, a large number of deceptive clauses have a harmful
effect on the runtime of probSAT. That is, the average runtime of probSAT

increases exponentially with the number of added clauses.
The right-hand side of Fig. 1 shows the general model. Here, we can observe

a strong, positive effect on the behavior of probSAT. The average runtime of
probSAT improved by two orders of magnitude by adding 200 new clauses
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Fig. 1. On the left, the effect of deceptive clauses is displayed on an instance with
100 variables and 423 clauses. On the right, the effect of general clauses is displayed
on an instance with 500 variables and 2100 clauses. The x-axes denote the number of
additional clauses, and the y-axes denote the average runtime of 100 runs of probSAT
as measured in the number of flips. Both y-axes are scaled logarithmically.

generated by the general model. Even though Fig. 1 depicts the data of only one
instance, the general shape of the plot is similar on all tested instances.

Clauses generated by the deceptive model seem to give rise to new local
minima which are far away from the solutions. Once probSAT is stuck in such
a local minimum, the break-value makes it unlikely that probSAT escapes the
region of the local minimum. On the other hand, the prevalence of correct literals
in the general model seems to guide probSAT towards a solution. Due to this
interpretation, we call clauses that have a high number of correct literals w. r. t.
a fixed solution high-quality clauses. The view that clauses with few correct
literals have a detrimental effect on local search solvers is also supported by the
literature [28,42].

From the considerations described above, it should be evident that it is crucial
which clauses are added to the formula. Clearly, neither the deceptive nor the
general model can be applied to real instances: The solution space would have
to be known in advance to generate the clauses. In contrast, approaches like
resolution and CDCL can be applied to real instances. All clauses which can be
derived by resolution are already implied by the original formula. Accordingly,
adding such a clause to the original formula yields a logically equivalent formula.
Similarly, clauses learned by a CDCL algorithm can be added to obtain a logically
equivalent formula.

In the following, we compare two models based on resolution and one model
based on CDCL. In particular, let F be a formula and let B,C ∈ F be clauses
such that there is a resolvent R. We call R a level 1 resolvent. Secondly, let D,E
be clauses such that there is a resolvent S and let D or E (or both) be level 1
resolvents. We call S a level 2 resolvent. As a representative for CDCL solvers,
we use Glucose [3].



On the Effect of Learned Clauses on Stochastic Local Search 95

Let F be a 3-CNF formula with m clauses. New and logically equivalent
formulas F1, F2, and FC are obtained in the following manner.

F1 Randomly select at most m/10 level 1 resolvents of maximum width 4 and
add them to F .

F2 Randomly select at most m/10 level 2 resolvents of maximum width 4 and
add them to F .

FC Randomly select at most m/10 learned clauses with maximum width 4 from
Glucose (with a time limit of 300 s) and add them to F .

The average behavior of probSAT over 1000 runs per instance on the
instance types F1, F2, and FC is observed. We use a small testbed of 23 uniformly
generated 3-CNF instances with 5000 to 11 600 variables and a clause-to-variable
ratio of 4.267. The instances of type F1 were the most challenging for probSAT;
as a matter of fact, F1 instances were considerably harder to solve than the orig-
inal instances. On instances of type F2, probSAT performed better, and on FC ,
it was even more efficient. The t-test [44] confirms the observations: F2 instances
are easier on average than F1 instances (p < 0.01), and FC instances are easier
than F2 instances (p < 0.05). Sections 4 and 5 present an in-depth examination
of the effect clauses of type FC have on probSAT.

These results lead us to believe that level 1 clauses are of low quality while
level 2 and CDCL clauses are generally of higher quality. It is impractical to
confirm this suspicion on uniformly generated instances of the above-mentioned
size. Hence, we use randomly generated models with hidden solutions [12] and
judge the quality of learned clauses based on the hidden solution.

The SAT competition 2018 incorporated three types of models with hidden
solutions. All three types are generated in a similar manner; they just differ in
the choice of the parameters. Here, we compare the average quality of the new
clauses on each of the three models. For each instance, the set of all level 1,
level 2, and CDCL clauses is computed, and the quality is measured w. r. t. the
hidden solution.

For the most part, the results confirm the observations from the uniformly
generated instances: On all three models, level 2 clauses have a statistically
significantly higher quality than level 1 clauses (t-test, all p < 0.01). On two of
three domains, CDCL clauses have higher quality than level 2 clauses (t-test,
both p < 10−5), while level 2 clauses have higher quality on the remaining
domain (t-test, p < 10−8).

As a side note, CDCL is capable of learning unit and binary clauses. Never-
theless, this did not influence the quality of the clauses in any meaningful way:
In the 120 test instances, only a single binary and no unit clause was learned.

In conclusion, we conjecture that level 2 and CDCL clauses have higher
quality than level 1 clauses. On the uniform random testbed, CDCL performs
better than level 2 clauses; also, CDCL clauses have higher quality than level 2
clauses on two of the three hidden solution domains.
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4 Training Experiments

In the previous section, we argued that adding supplementary clauses to an
instance can have a positive effect on the behavior of probSAT. The focus of
this section lies on the question which clauses and how many should be added.

Especially for 3-SAT instances, an initial guess might be adding all clauses
acquirable by so-called ternary resolution [17]. Informally speaking, ternary res-
olution is the restriction of the resolution rule to ternary clauses such that the
resolvent is either a binary or ternary clause. Ternary resolution is performed
until saturation. In [8], the effect of (amongst other techniques) ternary resolu-
tion on another SLS solver, Sparrow (see [6]), is observed. They empirically
show that ternary resolution has a negative effect on the performance on sat-
isfiable hard combinatorial instances. Anbulagan et al. [1] study the effect of
ternary resolution on uniform random instances. They found that SLS solvers
do not benefit from ternary resolution. They even conjecture that ternary reso-
lution has a harmful impact on the runtime of SLS solvers on uniform instances.
We performed some experiments on our own and can confirm this suspicion
for probSAT. On medium-sized uniform instances, ternary resolution slowed
probSAT down by 0.5% on average. As a consequence, we focus on methods to
improve the runtime behavior of probSAT with clauses learned by Glucose

for the rest of this work.
The supplementary clauses are all learned by Glucose within a 300 second

time window; we only distinguish the learned clauses by their width. The number
of supplementary clauses is measured in percent of the number of original clauses.
To put it differently, we are interested in the maximal length of the new clauses
and what percentage of the modified formula should be new clauses. The results
of this section are used to configure GapSAT.

Description of Training Experiments

We split the experiments into two phases. In the preliminary phase, promising
intervals for the maximal width and the maximal percentage of new clauses are
obtained. In the subsequent phase, the most advantageous parameter combina-
tion is sought. Hereafter, we describe the setup of the experiments and their
results.

Training Data. We used a set of training instances C, which is assembled as
follows: All instances of the SAT Competitions random tracks2 2014 to 2017 were
gathered. We filtered these instances by proven satisfiability: An instance was
added to the training set C if and only if at least one participating solver showed
satisfiability. Since not enough uniform random 3-SAT instances of medium size
were in C, we added all instances of this kind from the SAT Competition 2013 as
well. In total, C consists of 377 instances which can be divided into the following
three domains:

2 See http://www.satcompetition.org/. In 2015 there was no random track.

http://www.satcompetition.org/
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– 120 randomly generated instances with a hidden solution [12],
– 149 uniformly generated random 3, 5, and 7-SAT instances of medium size.

The clause-to-variable ratio is close to the satisfiability threshold [38].
– 108 uniform random 3, 5, and 7-SAT instances of huge size, i. e., with over

50 000 variables. The clause-to-variable ratio of each instance is somewhat far
from the satisfiability threshold.

Training Setup. The experiments were performed on the bwUniCluster and
a local server. Sputnik [45] helped to parallelize the trials. The setup of the
computer systems is heterogeneous. Therefore, the runtimes are not directly
comparable to another. Consequently, we do not use the runtimes for these
experiments. Instead, the number of variable flips performed by probSAT is
used, which is a hardware-independent performance measure.

In this section, we use a timeout of 109 flips for 3-SAT instances (5-SAT:
5 · 108; 7-SAT: 2.5 · 108). This timeout corresponds to roughly 10 min runtime
on medium-sized instances on our hardware. Each instance from C is run 1000
times for each parameter combination. The primary performance indicator in
this section is the number of timeouts per instance. Furthermore, the average
par2 value is sometimes used as a secondary performance indicator. The par2
value is the number of flips if a solution was found or twice the timeout otherwise.
For the rest of this work, probSAT refers to probSAT version SC13 v2 [5].

Results of Training Experiments

We conducted a thorough statistical analysis of the data that was obtained in
the training experiments described above. We describe our findings in condensed
form below. The main part of the remainder of this section is concerned with
uniform, medium-sized instances. The results for uniform, huge instances, and
instances with a hidden solution are briefly discussed at the end of this section.

3-SAT. We found that adding all clauses up to width 4 that Glucose could
find within 300 s is the most beneficial configuration. Not limiting the number of
added clauses is in stark contrast to the 5-SAT and 7-SAT cases. For 3-SAT, the
relationship between the number of clauses and the performance is explored in
Fig. 2. Each blue dot corresponds to one medium-sized 3-SAT instance from C.
We compare the average par2 value on the original instance with the average
par2 value on the instance with all clauses up to width 4 added. Whenever the
blue dot lies below the zero-baseline, then the performance of probSAT on
the modified instance was better. The blue line is obtained by linear regression.
By its slope, we can tell that, on average, adding more clauses is beneficial.
The light blue area denotes the 95% confidence interval, which is calculated
by bootstrapping [25]. The confidence interval shows that this relationship is
unlikely to be due to chance. We conclude that the number of new clauses should
not be limited for 3-SAT instances. On the other hand, the maximal width of the
new clauses should be no more than four. Our experiments showed that adding
longer clauses deteriorates the performance of probSAT.
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Fig. 2. In this plot, probSAT is compared on the original 3-SAT instances and the
modified instances. The number of added clauses of the 3-SAT instances in % is on the
x-axis. The y-axis is the logarithm of par2(modified)/par2(orig). The blue line denotes
a linear regression fit, and the light blue area is the 95% confidence interval obtained
by 1000 bootstrapping steps [25]. (Color figure online)

The left-hand side of Fig. 3 shows the overall performance of probSAT on
instances with all clauses up to width 4. The y-axis denotes the difference of
timeouts between the modified instance with all width 4 clauses and the original
instance. Whenever the dot lies below the zero-baseline, the performance of
probSAT was better on the modified instance. The color of the dots stands
for the hardness as measured in the average par2 on the original instance. We
can see that adding additional clauses has a positive effect, especially on hard
instances with 4000 to 9000 variables. Nonetheless, the effect reverses for more
than 9000 variables. Overall the results on 3-SAT instances are not statistically
significant (t-test, p = 0.0595). However, we believe that the main reason for
this is the bad performance of probSAT on the modified instances with more
than 9000 variables. Furthermore, with a slightly larger sample size, the results
might turn out to be statistically significant. We have used these observations
in the configuration of GapSAT, as depicted in Fig. 5.

5-SAT. In preliminary experiments, we found that the maximal width of the new
clauses should be in the interval {7, 8, 9}, and the maximal number of new clauses
should be at most 15% of the original clauses. The effect of adding more clauses
is especially pronounced: Adding more than 15% of the clauses diminished the
performance of probSAT dramatically, in contrast to the 3-SAT case where
more clauses turned out to be beneficial.

In the detailed phase of the experiments, we found that the best configuration
is adding clauses up to width 8 and using a limit of at most 5% of the original
clauses. The results of this parameter configuration are shown on the right-hand
side of Fig. 3. Again, the performance of probSAT was better on the modified
instances if the dot lies below the zero-baseline. The color of the dots describes
the hardness of the instance. Overall, the modification has a favorable impact
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Fig. 3. Scatterplot of the number of variables of the 3-SAT (left) and 5-SAT (right)
instance against difference in timeouts between probSAT on the original instance and
the instance with the modified strategy. The color encodes the hardness of the original
instance as measured in the logarithmic average par2 on 1000 runs of probSAT on the
original instances. (Color figure online)

on the performance of probSAT over the full domain. The effect is statistically
significant (t-test, p = 0.0348). Also, it appears to be increasing as the number
of variables increase. However, we did not further investigate this relationship.

7-SAT. The preliminary experiments showed that the maximal width of the new
clauses should be in the interval {9, 10, 11}. Moreover, similarly to the 5-SAT
case, the number of new clauses should be limited. In the preliminary phase, we
found that at most 3% of the original clauses should be added, otherwise the
performance of probSAT decreases.

The detailed phase showed that clauses up to width 9 and a limit of at most
1% is the most advantageous combination. Figure 4 shows the results of this com-
bination. The modified strategy was better on average if the corresponding dot
lies below the zero-baseline. Again, we observe that the performance of prob-

SAT clearly benefits from the modified instances, especially on hard instances
(red dots). This observation is also confirmed by the t-test (p = 0.0062). Addi-
tionally, similar to 5-SAT instances, the effect seems to increase as the number
of variables increase.

Hidden Solution. In our training set C, all instances with a hidden solution
are 3-SAT instances with few variables (at most 540). The results are similar
in nature to those discussed in the paragraph about uniform medium 3-SAT
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Fig. 4. Scatterplot of the number of variables of the 7-SAT instances against difference
in timeouts between probSAT on the original instance and the instance with modified
strategy. The color encodes the hardness of the original instance as measured in the
logarithmic average par2 on 1000 runs of probSAT on the original instances. (Color
figure online)

instances. That is, the addition of new clauses of maximal width 4 and no limit
on the number of new clauses is generally beneficial.

Huge Instances. The huge instances in the training set C often have several
million original clauses. In contrast, only a few new clauses are learned during the
preprocessing time. Consequently, the effect of additional clauses is negligible.
The preprocessing step should, therefore, be avoided on these instances.

Description of GapSAT

The name GapSAT stands for Glucose assisted probSAT , hinting towards the
combination of probSAT as the core solver, that is being helped by a Glucose

preprocessing phase. The exact functioning principle of GapSAT is depicted in
the flowchart of Fig. 5.

As was noticeable in Fig. 3, if the 3-CNF formula contained more than approx.
9000 variables, the act of adding new clauses slows down probSAT. Further-
more, on huge instances, the preprocessing step yields no advantage. Thus, for
over 9000 variables, the strategy of GapSAT falls back to just probSAT on the
original formula. Otherwise, in each case, a short run of probSAT is used to
filter out very easy to solve instances. The runtime is limited by the number of
flips. If the instance could not be solved, we employ the strategy (depending on
the maximal clause width in the formula) that was deemed most promising in
the evaluations described in the previous subsection. That is, we first let Glu-

cose extract clauses. The runtime of glucose was limited by 300 s in all cases. In
the 5-SAT and 7-SAT case, Glucose could finish earlier, if the restrictions on
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Fig. 5. Flowchart description of GapSAT.

the number of added clauses were met. We again emphasize that Fig. 2 explains
the difference between the 3-SAT case when compared to the 5-SAT and 7-SAT
case. Not restricting the number of learned clauses in the 3-SAT case turned
out to be the superior strategy in our training experiments. One should fur-
ther observe that Glucose has the possibility to solve the instance during its
runtime. If this was not successful, probSAT is restarted on the formula, that
was modified by running Glucose and adding the clauses corresponding to the
strategy as developed in the previous subsection. It is noteworthy that GapSAT

does not use any additional preprocessing techniques. We refer to Sect. 6 for a
further discussion of that point.

5 Experimental Evaluation

In the following, the performance of GapSAT is evaluated. We compare Gap-

SAT with the winner of the random track at the SAT competition 2018, Spar-
row2Riss, and with the original version of probSAT.

All experiments were executed on a computer with 32 Intel Xeon E5-2698 v3
CPUs running at 2.30 GHz. We set the time limit to 5000 s and used no memory
limit. The benchmarks consist of all 255 instances of the random track at the
SAT competition 2018. Unlike the experiments in Sect. 4, the performance of
each solver is measured based on its par2 value w. r. t. the runtime in seconds.
In the following, the score denotes the sum of the par2 values over all instances.

Table 1. GapSAT, Sparrow2Riss, and probSAT are compared based on the number
of solved instances and the corresponding score.

# solved score

probSAT 133 1 234 986.01

Sparrow2Riss 189 672 335.89

GapSAT 223 347 156.40
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Fig. 6. Cactus plot comparing probSAT, Sparrow2Riss, and GapSAT on the
instances of the random track of the SAT competition 2018. On the left, the plot
is linearly-scaled; on the right, it is logarithmically-scaled.

As can be observed in Table 1, GapSAT solved substantially more instances
than probSAT and Sparrow2Riss. The score of GapSAT is nearly halved
compared to the score of Sparrow2Riss. Figure 6 demonstrates that GapSAT

is especially efficient within the first few seconds. GapSAT solved more instances
within 30 s than Sparrow2Riss solved within the standard timeout of 5000 s
is a case in point. This behavior can be observed in the logarithmically-scaled
part of Fig. 6. Furthermore, there are no instances that could be solved with
Sparrow2Riss, but not with GapSAT within 5000 s.

We used statistical testing to evaluate the performance of GapSAT com-
pared to Sparrow2Riss and probSAT. The t-test [44] shows that the score of
GapSAT is better than both other solvers. We also used the Wilcoxon signed-
rank test [46] to show that the median runtime of GapSAT is superior to Spar-

row2Riss and probSAT. All results are statistically significant, with p-values
less than 10−9. Cohen’s d value [20] is 0.39 for the comparison with Spar-

row2Riss and 0.73 for the comparison with probSAT.
The instances of the random track at the SAT competition 2018 can be

split into three domains. Some instances are generated uniformly at random
with a medium number of variables and a clause-to-variable ratio close to the
satisfiability threshold [38]. Similarly, there are uniform random instances with a
huge number of variables but with a clause-to-variable ratio not too close to the
phase transition. Finally, there are randomly generated instances with a hidden
solution [12]. Table 2 shows the performance of all three solvers on each domain.
GapSAT was the fastest solver on all three domains. It should be stated that the
performances of GapSAT and probSAT are interchangeable on huge, uniform
instances since the differences are just due to random noise on this domain.
Lastly, the average time needed to learn the new clauses was 103.17 s. That said,
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the actual time to perform the clause learning process is much shorter on most
instances: The median time is just 7.89 s.

Table 2. GapSAT, Sparrow2Riss, and probSAT are compared on three domains
based on the score.

Hidden Medium Huge

probSAT 872 938.74 137 396.83 224 650.43

Sparrow2Riss 8 589.12 171 492.91 492 253.86

GapSAT 851.36 127 982.19 218 322.85

We conclude that future generations of local search solvers should incorporate
some kind of clause learning mechanisms, for example, as a prepossessing step
as used by GapSAT.

6 Conclusion and Outlook

In this work, a novel combination of CDCL as a preprocessing step and local
search as the main solver is introduced. We empirically show on several domains
that short clauses learned by CDCL have a high number of correct literals
w. r. t. a fixed solution. Consequently, these new clauses guide local search solvers
towards a solution. Using this knowledge, we design a new SAT solver Gap-

SAT which uses the CDCL solver Glucose in a preprocessing step to find
new clauses. It then proceeds to use probSAT on the modified formula to find
a solution. We show that GapSAT improves the state-of-the-art on randomly
generated instances.

The GapSAT solver can be improved even further: Besides the techniques
described in this paper, no preprocessing steps are performed. We believe that
further, finely tuned preprocessing may help to increase the performance of Gap-

SAT on instances where it struggled to find a solution. When tuning GapSAT,
we used the original settings of probSAT (i. e., we use the parameters from [5]).
The only tuned parameters are the number of new clauses and their length. An
interesting direction for further research is to obtain even better performance by
simultaneously tuning these parameters together with the probSAT settings.
Furthermore, we argued that the clauses which are added to the formula have
a substantial effect on the performance of SLS algorithms. Even though clauses
learned by Glucose have good properties on average, it would be beneficial to
devise a clause selection heuristic for local search algorithms. If clauses having
a negative impact on local search can be avoided, then the overall performance
of solvers like GapSAT should improve significantly. Another general question
that could be investigated is about the clauses from MiniSAT, that is being
used in Glucose. Clauses learned by Glucose are generated by conflict anal-
ysis but may depend on clauses generated by the MiniSAT preprocessing. It
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may be the case that short clauses are missed because they are only considered
inside the solver, but never by the learning mechanism (when generated in the
preprocessing step).

Supplementary Material. The source code of GapSAT and all evalua-
tions are available under https://doi.org/10.5281/zenodo.3776052.
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22. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

23. Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In: Kleine
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Abstract. SAT research has a long history of source code and binary
releases, thanks to competitions organized every year. However, since
every cycle of competitions has its own set of rules and an adhoc way
of publishing source code and binaries, compiling or even running any
solver may be harder than what it seems. Moreover, there has been more
than a thousand solvers published so far, some of them released in the
early 90’s. If the SAT community wants to archive and be able to keep
track of all the solvers that made its history, it urgently needs to deploy
an important effort.

We propose to initiate a community-driven effort to archive and to
allow easy compilation and running of all SAT solvers that have been
released so far. We rely on the best tools for archiving and building
binaries (thanks to Docker, GitHub and Zenodo) and provide a consistent
and easy way for this. Thanks to our tool, building (or running) a solver
from its source (or from its binary) can be done in one line.

1 Introduction

As Donald Knuth wrote in [11], “The story of satisfiability is the tale of a tri-
umph of software engineering”. In this success story of computer science, the
availability of SAT solvers source code have been crucial. Archiving and main-
taining this important amount of knowledge may be as important as archiving
the scientific papers that made this domain. The release of the source code of
MiniSat [6] had, for instance, a dramatic impact on the field. However, nothing
has yet been done to ensure that source code and recipes to build SAT solvers
will be archived in the best possible way. This is a recent but important concern
in the more broadly field of computer science. The Software Heritage [3] initia-
tive is, for instance, a recent and strong initiative to handle this. In the domain
of SAT solvers, however, collecting and archiving may not be sufficient: we must
embed the recipe to build the code and to run it in the most efficient way. As
input format for SAT solvers remains the same since more than 25 years [4],
c© Springer Nature Switzerland AG 2020
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it is always possible to compare the performances of all existing solvers, given
a suitable way of compiling and running them. At that time, some code was
using EGCS, a fork of GCC 2.8 including more features. Facebook and Google
didn’t exist and Linux machines were running with kernels 1.X. Solvers were
distributed with source code to be compiled on Intel or SPARC computers. For-
tunately enough, binaries for Intel 386 machines distributed at that time are still
executable on recent computers, given the availability of compatible libraries.

Collecting and distributing SAT solvers source code is, luckily, not new. SAT
competitions, organized since the beginning of the 21st century, have almost
always forced the publication of the source code of submitted solvers. If source
code was not distributed, binaries were often available. However, since the first
competitions, the landscape of computer science has changed a lot. New tech-
nologies like Docker [5] are now available, changing the way tools are distributed.

We propose in this work to structure and bootstrap a collective effort to main-
tain a comprehensive and user-friendly library of all the solvers that shaped the
SAT world. We build our tool, called SAT Heritage, on top of other recent tools,
typically developed for archiving and distributing source code and applications,
like Docker [5], GitHub [8], Guix [9], Zenodo [22]. The community is invited to
contribute by archiving, from now on, all the solvers used in competitions (and
papers). We also expect authors of previous solvers to contribute by adding
informations about their solvers or special command lines not especially used
during competitive events. Our tool allows, for instance, to add a DOI (thanks
to Zenodo) to the exact version of any solver used in a paper, allowing simple
but powerful references to be used.

In summary, the goals of our open-source tool are to:

– Collect and archive all SAT solvers, binaries and sources,
– Easily retrieve a Docker image with the binary of any solver, directly from

the Docker Hub, or, when source code is available, by locally building the
image from the source code of the solver,

– Allow to easily run any SAT solver that have ever been available (typically
in the last 30 years), by a one line call (consistent over all solvers),

– Open an convenient solution for reproducibility (binaries, source code and
receipt to build binaries are archived in a consistent way), thanks to strong
connection with tools like Guix and Zenodo.

2 History of SAT Solvers Releases and Publications

The first SAT competitions happened in the 90’s [1,2]. Their goals were multiple:
collect and compare SAT solvers performances in the fairest possible way, collect
and distribute benchmarks, and also take a snapshot of the performances reached
so far. Table 1 reports the number of SAT solvers that took part in the different
competitions. We counted more than a thousand solvers, but even counting
them was not an easy task: one source code can hide a number of subversions
(with distinct parameters) and distinct tracks, and some information were only
partially available.
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Table 1. Number of solvers to the different competitions. Note that some solvers may
be counted twice or more (some solvers did not change from year to the next or have
been included in a competition as reference). (*) binaries and sources are available, but
by navigating individually to each solver result. Different numbers indicate different
organizers and different way of distributing results, source code (s) and binaries (b).

Date #Solvers Collection Type Date #Solvers Collection Type

≤2000 24 Satex s/b 2011 104 Contest (2) s/b

2002 27 Contest (1) b 2012 65 Challenge -

2003 33 Contest (1) b 2013 140 Contest (3) s(*)/b(*)

2004 63 Contest (1) b 2014 150 Contest (3) s(*)/b(*)

2005 47 Contest (1) b 2015 31 Race (2) -

2006 16 Race (1) - 2016 32 Contest (4) s/b

2007 31 Contest (2) s/b 2017 71 Contest (4) s/b

2008 19 Race (1) - 2018 66 Contest (4) s/b

2009 64 Contest (2) s/b 2019 55 Race (3) s/b

2010 20 Race (1) - Total 1058

Following the ideas of these first competitions organized in the 90’s, and
thanks to the development of the web, the satex [17] website published solvers
and benchmarks gathered by the website maintainer. satex was running SAT
solvers on only one personal computer. Some solvers were modified to comply
with the input/output of the satex framework (like a normalized exit code
value). It was a personal initiative, made possible by the relatively few solvers
available (all solvers of the initial satex are available in our tool).

During the first cycle of competitions (numbered 1 in Table 1) [16], submitters
had to compile a static binary of their solver (to prevent library dependencies)
via remote access to the same computer. To ensure the deployment of their
solver, this computer had the exact same Linux version as the one deployed on
the cluster used to run the contest. Some solvers were coming from industry,
which explains why no open source code was mandatory: the priority was to
draw the most accurate picture of solvers performances. However, it was quickly
decided (competitions numbered 2 in the above table) that it was even more
important to require submitters to open their code. Binaries were then allowed
to enter the competition, but only in the demonstration category (no prizes).
More recently, thanks to the starexec environment [19], compilation of solvers
was somehow normalized (an image of a virtual Linux machine on which the
code would be built and run was distributed). With each cycle of competition or
race, came its own set of rules with an ad hoc way of publishing source code and
binaries, with a non uniform way of providing details on which parameters to
use. For example, since 2016, solvers must provide a certificate for unsatisfiable
instances [10,21]. One has thus to go through all the solvers to find the correct
parameters for running them without proof logging.
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Thus, despite the increasing importance of software archiving [3], the way
SAT solvers are distributed had not really changed in the last 25 years. It is still
mainly done via personal websites, or SAT competitions and races websites, each
cycle of events defining its own rules for this. As a result, it is often unclear how
to recover any SAT solver (same code, same arguments) used in many papers,
old or recent. It is even more questionable whether, despite the importance of
SAT solvers source code, we are able to correctly archive and maintain them.

3 SAT Heritage Docker Images

The SAT Heritage project provides a centralized repository of instructions to
build and execute the SAT solvers involved in competitions since the early ages
of SAT. To that aim, it relies on Docker images which are self-contained Linux-
based environments to execute binaries. Docker allows to explicitly mention all
the packages needed to compile the source code and to build a temporary image
(the “builder”) for compiling the solver. Then, the compiled solver is embedded
in another, lighter, image which contains only the libraries required to execute it.
So, each version of each collected solver is made available in a dedicated Docker
image. Thanks to the layer structure of images, all solvers sharing the same
environment will share the major part of the image content, thus substantially
saving disk space. At the end, the Docker image will not be much heavier than
the binary of the solver.

Docker images can be executed on usual operating systems. On Linux,
Docker offers the same performance as native binaries: only filesystem and net-
work operations have a slight overhead due to the isolation [7], which is not of
concern for SAT solvers. On other systems, the images are executed within a vir-
tual machine, adding a noticeable performance overhead, although considerably
reduced on recent hardware [7].

3.1 Architecture

The instructions to build and run the collected solvers are hosted publicly on
GitHub [13], on which the community is invited to contribute.

The solvers are typically grouped by year of competition. Images are then
named as satex/<solver-name>:<year>.

The images are built by compiling solver sources whenever available. The
compiling environment matches with a Linux distribution of the time of the
competition. We selected the Debian GNU/Linux distribution which provides
Docker images for each of its version since 2000. For instance, the solvers from
the 2000 competition are built using the Debian “Potato” as it was back at
that time. In principle, each solver can have its own recipe and environment
for building and execution. Nevertheless, we managed to devise Docker recipes
compatible with several generations of competitions. The architecture of the
repository also allows custom sets of solvers. For example, the SAT Heritage
collection includes the different Knuth’s solvers or solvers with Java or Python.
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The image building Docker recipes indicate where to download the sources
or the binaries whenever the former are not available. At the time of the writing
of this article, most recipes use URL from the website of the SAT competitions.
In order to provide as most as persistent locations as possible, we are regularly
moving more resources on Zenodo services to host sources and binaries in a near
future [15] (currently, only the binaries of the original satex and the 2002’s
competition are hosted on it).

The images can be built locally from the git repository, and are also available
for download from the main public Docker repository [14], that distributes “offi-
cial” binaries of solvers. This allows to directly run any collected (or compiled)
solver very quickly.

3.2 Running Solvers

We provide a Python script, called satex, which eases the execution and manage-
ment of available Docker images, although images can be directly run without
it. The script can be installed using pip utility: pip3 install -U satex.

The list of available solvers can be fetched using the command satex list.
We provide a generic wrapper in each image giving a unified mean to invoke

the solver: a DIMACS file (possibly gzipped) as first argument, and optionally
an output file for the proof:

# run a solver on a cnf file

satex run cadical :2019 file.cnf

# run and produce a proof

satex run glucose :2019 file.cnf proof

The satex info command gives, together with general information on the
solver and the image environment, the specific options used for the run. Alter-
natively, custom options can be used with the satex run-raw command. If the
image has not been built locally, it will attempt to fetch it from the online Docker
repository. See the satex -h for other available commands, such as extracting
binaries out of Docker images and invoking shells within a given image.

3.3 Building and Adding New Solvers

The building of images, which involve the compilation of the solvers when pos-
sible, also relies on Docker images, and thus only requires Docker and Python
for the satex command. The following command, executed at the root of the
sat-heritage/docker-images repository, will build the matching solvers with
their adequate recipe:

satex build ’*:2000’ # build all 2000 solvers

Sets of solvers are added by specifying which Docker recipes to use for build-
ing the images and how to invoke the individual solvers. Managing sets of solvers
allows sharing common configurations (such as linux distributions, compilers and
so on) for docker images. A complete and up-to-date documentation can be found
in the README file of the repository.
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4 Ensuring Reproducibility

Reproducibility is a corner stone of science. In computer science, it recently
appealed for significant efforts by researchers, institutions and companies to
devise good practices and provide adequate infrastructures. Among the numer-
ous initiatives, Software Heritage [3,18] and Zenodo [12,22] are probably the
most important efforts for archiving source code, repositories, datasets, and
binaries, for which they provide persistent storage, URLs, and references (DOI).
Another example is the GitHub Archive Program, a repository on a 500-years
lifespan storage preserved in the Artic World Archive [20]. Created more recently,
the Guix [9] initiative aims at keeping the details of any Linux machine config-
uration, thanks to a declarative system configuration. External URL used for
building any image are also archived. Our tool produces Docker images that
can be easily frozen thanks to Guix, by building Guix images from the Dock-
erfile recipe. It is also worth mentioning that Guix has strong connections with
Software Heritage and GitHub.

If we look at reproducibility of SAT solvers experiments on a longer time
scale, we can expect that, some day, current binaries (for i386) will not genuinely
run on computers any more. We can expect, however, that there will be i386
emulators. Once such an emulator is set up, we can also expect Docker to be
available on it, and then all the images we built will be handled natively. If
not, as Docker recipes are plain text, it will be easy to convert them to another
framework.

Therefore, facilitating the accessibility of software in time now boils down
to simple habits, such as using source versioning platforms, taking advantage
of services like Zenodo or Software Heritage to freeze packages dependencies,
source code, binaries, and benchmarks, and provide Docker images to give both
environments and recipes to build and run your software.

5 Conclusion

We presented a tool for easily archiving and running all SAT solvers produced
so far. Such a tool is needed because of (1) source code and experiments are
crucial for the SAT community and (2) there are already too many SAT solvers
produced so far, with many different ways of publishing sources.

In order to complete our tool we think at further improvements, like includ-
ing Docker images for compiling SAT solvers for other architectures than i386
(ARM for instance), but also initiating another important effort for the com-
munity: including Docker images for benchmarks generations and maintenance.
Many benchmarks are combinatoric ones, typically generated by short programs.
These generators are generally not distributed by the different competitive events
and may contain a lot of information on the structure of the generated problems.
We also think that our tool could be very interesting for SAT solvers configura-
tions and easy cloud-deployment in a portfolio way. We also expect our work to
give the community the best possible habits for state of the art archiving and
reproducibility practices.
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Abstract. Cube and conquer is currently the most effective approach to
solve hard combinatorial problems in parallel. It organizes the search in
two phases. First, a look-ahead solver splits the problem into many sub-
problems, called cubes, which are then solved in parallel by incremental
CDCL solvers. In this tool paper we present the first fully integrated
and automatic distributed cube-and-conquer solver Paracooba targeting
cluster and cloud computing. Previous work was limited to multi-core
parallelism or relied on manual orchestration of the solving process. Our
approach uses one master per problem to initialize the solving process
and automatically discovers and releases compute nodes through elastic
resource usage. Multiple problems can be solved in parallel on shared
compute nodes, controlled by a custom peer-to-peer based load-balancing
protocol. Experiments show the scalability of our approach.

1 Introduction

SAT solvers have been successfully applied in many practical domains, includ-
ing cryptanalysis, hardware and software verification but also with increas-
ing interest have been used to solve hard mathematical problems [17,21,26].
Sequential state-of-the-art SAT solving combines the well-known conflict-driven-
clause-learning procedure (CDCL) [33,34] with sophisticated preprocessing tech-
niques [10,23] and other efficient heuristics for variable selection [6,28,30],
restarts [2,7,32], and clause database reduction [32]. While some authors argue
that there was “no major performance breakthrough in close to two decades”
[29], at the same time computers have become more and more powerful thanks
to the ubiquitous availability of multi-core processors and the increasing usage
of computers in the cloud. Thus improving the efficiency of parallel SAT solving
remains an important topic. Accordingly, beside the traditional parallel track,
the SAT Competition 2020 [19] features for the first time also a cloud track.

One approach to solve large problems in parallel consists in splitting the
problem into smaller, more manageable instances, for example, using cube and
conquer [16,20]. All these sub-problems are subsequently solved independently
in parallel. This method was used by Heule to settle some long-standing math-
ematical conjectures [17,21]. Splitting the problems was done automatically by
a tool, but then required to manually distribute instances for parallel solving.
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In this paper, we present Paracooba [15]. After splitting a problem with the
look-ahead solver March, Paracooba transfers the sub-problems in an efficient
way to many nodes (including over network). It detects when new instances
become online and balances the work across all available nodes.

Other attempts for automatic and efficient distribution of problems exist,
but use divide and conquer: Problems are dynamically split when nodes are
underused (Sect. 2). In contrast, Paracooba assumes the problem is already
split. Each node runs at least one instance of the SAT solver CaDiCaL [5]. The
sub-problems are solved incrementally to reuse information from the previous
solving. Paracooba relies on a custom protocol to automatically detect nodes
that are underused and balances work across all nodes, including newly joining
ones. It also supports disconnecting nodes by rebalancing the jobs (Sect. 3).

In the experiments, we focus on a single CNF cruxmiter, a miter for 32-bit
adder trees [25], which is considered a challenge for resolution-based solvers and
exemplary for the difficulties that arise in the verification of arithmetic circuits
(see also [24]). Such benchmarks were also used in the SAT Race 2019. Already
in the original work on cube and conquer similar multiplier equivalence checking
problems were shown to benefit from the cube-and-conquer approach. Our results
in Sect. 4 show that we get linear scaling with respect to the number of threads.

2 Preliminaries and Related Work

We use standard notations and refer the reader to the Handbook of Satisfiability
for an introduction to SAT [8] as well as to the chapter on parallel SAT solving [4]
in the Handbook of Parallel Constraint Reasoning [14].

One idea to improve solving of large instances is to distribute the work across
different machines, via either a diversification of the search or splitting of the
search space. In the first approach, several solvers are used as portfolio. By
changing some parameters used by SAT solvers, they heuristically search on
different parts of the search space and share some of the clauses they learned.
ManySAT [13] pioneered the approach, which is now used in various tools like
CryptoMiniSat [35], HordeSat [3], Plingeling [5], and Syrup [1]. As soon
as any instance derives SAT or UNSAT, then the problem is solved.

We use another approach that divides the search space explicitly as pioneered
in [9,22,36] and refined in [16,20]. Solving the formula ϕ is equivalent to splitting
it into the two formulas ϕ∧x and ϕ∧¬x and solving them. Unlike diversification,
the overall problem is only considered to be UNSAT if all sub-problems are. Still,
if any sub-problem is SAT, the overall problem is SAT, too. Splitting can be done
dynamically during solving whenever a problem is deemed too hard. This is used
for instance by Painless [27] or MapleAmpharos [31]. These tools also share
clauses to get some of the benefits of portfolio solvers.

Splitting can also be done upfront by look-ahead. By splitting the formula
recursively, we obtain a formula of the form ϕ∧ c1, ..., ϕ∧ cn where the conjunc-
tions ci are called cubes. We use March [18] to split the problem: It produces
cubes, e.g., of the form L1L2L3, L1L2¬L3, ..., ¬L1¬L2¬L3. The cubes can be
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represented as a binary tree, the cube tree, where cubes are a path to a leaf: At
each node, either the left (positive) or the right path (negative) is taken.

3 Architecture

Paracooba distinguishes between the masters that initiated work and workers
that do the actual solving. Each node can either explore the cube tree deeper by
sending work further (see Sect. 3.1) or solve the problem itself if a leaf node of
the cube tree has been reached (Sect. 3.2). Nodes are also responsible for sending
the result SAT or UNSAT back. Paracooba supports joining of new nodes
dynamically, and the leaf nodes are able to wait for new tasks without consuming
resources or shut down automatically, which is important if Paracooba is run
in the cloud (Sect. 3.3). Figure 1 gives an overview of the solving process.

3.1 Static Organization

To combine fast local solving with automatic distribution to networked compute
nodes, Paracooba sees tasks as paths in the cube tree. It distinguishes between
assigned tasks (path to leafs) that are waiting for an available local worker and
unassigned tasks. Only unassigned tasks are distributed further. A compute node
is mapped to one Paracooba process which contains a fixed-size thread pool of
local workers. Beside maintaining information on available nodes, every compute
node has a unique 64-bit ID.

Connections between compute nodes are established at any time either by
an integrated auto-discovery protocol or by providing a known peer at startup.
Once connected, each compute node receives the full formula sent by the master.
Then it announces that it is ready to receive tasks. Each compute node has a
solving context for every master with the problem and the cubes to solve, a
queue for unassigned tasks, and one for assigned tasks. Only paths in cube
trees are exchanged during solving and similar assigned tasks are solved by
the same solver. New contexts are created whenever a new master becomes
online, and old ones are deleted if its master becomes offline. By using low-level
socket functionality (UDP/TCP), Paracooba can be run without setting up a
specialized environment (as needed for MPI [12]).

New (unassigned) tasks received by a compute node are inserted into the
queue. When a compute node becomes idle, tasks with paths to leafs are instan-
tiated into assigned tasks to be solved locally, whereas shorter paths are split

CNF CNFiCNF iCNF

Daemon

Daemon

March

March

Paracooba
master

Paracooba
master

paths

Fig. 1. Workflow of Paracooba with two different daemons
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(by going deeper in the cube tree) into unassigned tasks that are distributed
further. The overall strategy is to solve tasks with longer paths locally (as we
are closer to leafs), while other tasks are distributed to further known compute
nodes.

The SAT solver CaDiCaL [5] solves the assigned tasks incrementally [11]. It
makes use of efficient preprocessing, including variable elimination and relying
on efficiently restoring preprocessing steps if necessary [11]. This also provides a
motivation for solving long paths locally: the cubes after a long shared path will
be similar, making it possible to reuse more information compared to solving
diverse cubes, where most of the preprocessing will have to be undone. If hard
sub-problems are clustered on a single compute node, some can be offloaded.

3.2 Solving

We use the look-ahead solver March [18] to generate cubes. Paracooba takes
the output file containing the formula and the cubes as argument. This Para-

cooba instance is the master node. All compute nodes parse both formula and
cubes (reusing CaDiCaL’s parser). After parsing, the initial task consisting of
the empty path is created on the master compute node which will then branch
on the first variable of the cube tree and create new unassigned tasks. These are
either solved directly on the master or distributed to other compute nodes.

Paths in the cube tree are often transmitted across the network and should,
therefore, have a compact representation. We represent them as 64-bit unsigned
integers, where the first 58 bits describe the path in the binary tree and the
last 6 bits specify the length of the path. This representation entails a maxi-
mum tree height of 58, which limits the number of different tasks to 258. This
constraint is not an issue, since it is 11 orders of magnitude larger than the one
million cubes used for Heule’s proof for Pythagorean Triples [21] that already
created a 200TB proof. Communication between compute nodes is done using a
custom protocol, which defines messages sent over UDP and TCP. The former is
unreliable (packages can be dropped) and is used for non-critical messages, like
auto-discovery, while the (reliable) latter is used for transmission of formulas,
tasks, results, and status updates. Once a new compute node becomes known,
all other nodes establish a TCP connection to it, which is used for all remaining
transfers in order to circumvent UDP reliability issues in larger environments.

A sample interaction between a master and two daemon compute nodes is
given in Fig. 2. First, the master starts with a problem to solve. It broadcasts
an announcement request to all devices on the network. The daemons 1 and 2
answer the request and receive the formula in iCNF and a job initiator message.
After that, solving starts and a path is sent from master to daemon 1. Work is
rebalanced from daemon 1 to daemon 2. Once the problem is solved, the status
is bubbled up to master and each node is responsible for collecting the results
of offloaded jobs. Finally, master can conclude (UN)SAT.

Every daemon and every master sends a status message at every “tick”,
i.e., in configurable intervals with default 100 ms, to all compute nodes it knows.
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Master Daemon 1 Daemon 2

Work
(TCP/UDP) Announcement Request

(TCP/UDP) Online Announcement

(TCP/UDP) Online Announcement

(TCP) CNF Formula in DIMACS

(TCP) JobInitiatior

(TCP) JobPath

Work Work
(TCP) JobResult

(TCP) JobResult

Master Daemon 1 Daemon 2

Fig. 2. Interaction between master and two daemons, without status messages

These messages describe the current queue sizes and are used by the distribution
algorithm to decide whether and where tasks should be offloaded.

Paracooba allows an “m to n” relation between masters and daemons,
where daemons are used by different masters at the same time. Jobs are scheduled
based on path length, not on the identity of the master.

When distributing tasks to other compute nodes, the ID of the original mas-
ter, of the distribution target, and of the sender are always referenced, making
all Paracooba instances aware of senders and receivers of each task. For the
same reason, status messages of daemon compute nodes also contain a list of all
current contexts to announce the formulas for which they can solve tasks.

3.3 System Management

By automatically discovering compute nodes in the same network, Paracooba
can manage its overall resources automatically. Every daemon that is newly
discovered by a master gets the formula and the cubes and, once ready, can
receive tasks from all other connected compute nodes. Whenever a master node
goes offline, it sends an offline announcement, which removes its solving context
from all connected daemons, including all results and solver instances.

Compute nodes maintain a moving average of time between status messages
for all other connected nodes. If a remote compute node does not send a status
update early enough, it gets removed from the list of known nodes and all tasks
sent to that node get re-added to the local unassigned-task queue (and can, for
example, be offloaded again).
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To save compute resources, an auto-shutdown timer can be enabled to mea-
sure the time a compute node has been idle without active tasks to shut down
the compute node, if no new tasks are added before the timer runs out. Because
tasks get distributed to inactive nodes quickly, the timeout can be set to low
values (e.g., 3 s) to reduce cost, making Paracooba suited for cloud scenarios.

Table 1. Time to solve the cruxmiter depending on the number of threads.

Threads t Nodes n Wall-Clock time Tn
t Speedup Tn

t /T1
1 Network speedup Tn

t /T1
16

1 1 23 h 27min 50 s 1.00 0.05

2 1 9 h 19min 40 s 2.52 0.14

4 1 4 h 57min 59 s 4.72 0.25

8 1 2 h 33min 47 s 9.15 0.49

16 1 1 h 15min 38 s 18.61 1.00

32 2 31min 51 s 44.20 2.37

64 4 14min 18 s 98.45 5.29

128 8 7min 58 s 176.72 9.49

256 16 5min 10 s 272.48 14.64

512 32 3min 22 s 418.17 22.47

4 Experiments

As motivated in the introduction, we tested our tool Paracooba on a 32-bit
cruxmiter problem [25], for which March takes less than 10 s to split the initial
problem into 52 520 cubes. We then run Paracooba on our compute cluster of 32
nodes connected through cheap commodity 1 Gbit ethernet cards. Each node con-
tains two 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode
disabled) and 128 GB main memory. Thus every node has 16 cores.

Table 1 shows the performance with respect to the number of threads.The
run-time distribution for solving cubes is heavily skewed. Most tasks need only
a few seconds, but some take more than a minute, limiting the performance
improvement that can be achieved by using more threads, as, following Amdahl’s
law, the possible speedup is limited by the time required to solve the slow-
est cube. After 2 min, 5 instances of CaDiCaL are still running and it takes
another minute to solve those. Paracooba outperforms static scheduling done
by splitting the cubes upfront over 512 threads and solving each resulting iCNF
for each group of cubes incrementally by CaDiCaL (4 min 17 s wall-clock time).
We experimented with resplitting cubes, but could not improve solving time.

5 Conclusion

Paracooba is the first distributed cube-and-conquer solver. It relies on the
state-of-the-art look-ahead solver March to split the problem and then effi-
ciently distributes the cubes over as many nodes as available. Our experiments
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reveal that the speedup is larger than the number of cores until saturation is
reached.

As future work, it would be interesting to support proof generation in the
nodes and store them in the master node.
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Abstract. In this paper, we propose a new reproducible and efficient
parallel SAT solving algorithm. Unlike sequential SAT solvers, most par-
allel solvers do not guarantee reproducible behavior due to maximizing
the performance. The unstable and non-deterministic behavior of parallel
SAT solvers hinders a wider adoption of parallel solvers to the practi-
cal applications. In order to achieve robust and efficient parallel SAT
solving, we propose two techniques to significantly reduce idle time in
deterministic parallel SAT solving: delayed clause exchange and accurate
estimation of execution time of clause exchange interval between solvers.
The experimental results show that our reproducible parallel SAT solver
has comparable performance to non-deterministic parallel SAT solvers
even in a many-core environment.

1 Introduction

Most modern computers have multiple cores, and the number of cores is increas-
ing. To exploit the performance of multi-core systems, parallel processing soft-
ware which efficiently utilizes each core is required. The same applies to SAT
solvers, and parallel SAT solving is an active area of research. The parallel track
of the SAT Competition is continuously held since 20111.

There are mainly two approaches of parallel SAT solving: portfolio and
divide-and-conquer approaches. The former approach launches multiple SAT
solvers with different search strategies in parallel, and each solver tries to solve
the same SAT instance competitively [1,2,4]. The latter approach divide a given
SAT instance in an attempt to distribute the total workload among computing
units, and then solve them in parallel [5–7,10,12,13]. In both approaches, clause
exchange techniques are combined into parallel systems in order to share the
pruning information of the search space between solvers [1,2,4,11,12].

Most of parallel SAT solvers do not provide reproducible behavior in both
runtime and found solutions due to maximizing the performance. Even for the
same instance and computational environment, the execution time often varies
for each run, and found models or unsatisfiability proofs may also differ. This is
1 http://www.satcompetition.org/.
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because there is no specific order in clause exchange between computing units.
The timing of sending and receiving clauses can change due to system workload,
cache misses and/or communication delays. The non-deterministic behavior of
parallel SAT solvers causes various difficulties. In model checking, one may find
different bugs (corresponding to satisfiable assignments) for each run. In the case
of scheduling, even if a good solution is found, it may not be reproduced next
time. If a bug occurs in software with an embedded non-deterministic SAT solver,
the bug may not be reproduced. Researchers of parallel SAT solvers should
have a number of experiments for stable evaluation of solvers. In contrast, most
sequential SAT solvers guarantee reproducible behavior. The above-mentioned
issues can be avoided if we use sequential SAT solvers. Reproducibility is thus
an important property that directly affects the usability of SAT solvers as tools.

ManySAT 2.0 [3] is the first parallel SAT solver that supports reproducible
behavior2. It is a portfolio parallel SAT solver for shared memory multi-core sys-
tems. To achieve deterministic behavior, it periodically synchronizes all threads,
each of which executes a SAT solver, before and after the clause exchange. After
the former synchronization, each solver exchanges clauses according to a specific
order of threads until the latter synchronization. In ManySAT, all threads need
to be synchronized periodically. Hence, waiting threads frequently occur as the
number of CPU cores increases. As a result, there is a performance gap between
deterministic and non-deterministic modes of ManySAT.

In this paper, we present two techniques to reduce the waiting time of threads:
(1) delayed clause exchange and (2) refining the interval of clause exchange.
The former suppresses the fluctuation of intervals between clause exchange, and
the latter enables accurate prediction of exchange timing. We demonstrate that
our approach significantly reduces the waiting time of threads and achieves the
comparable performance with non-deterministic parallel SAT solvers even in a
many-core environment3.

The outline of this paper is as follows. The next section experimentally
demonstrates the non-deterministic and unstable behavior of parallel SAT
solvers. Section 3 describes the mechanism of ManySAT to realize the repro-
ducibility and shows the experimental evaluation of the performance. In Sects. 4
and 5, we present two techniques in order to reduce the waiting time: delayed
clause exchange and refining the interval of clause exchange, respectively. Exper-
imental results are presented in Sect. 6. We conclude in Sect. 7.

2 Non-deterministic Behavior in Parallel SAT Solvers

In this section, we reexamine the unreproducible behavior of existing paral-
lel SAT solvers. Here we consider ManySAT and Glucose-syrup as such parallel
solvers developed for shared memory multi-core systems. ManySAT is the first
portfolio parallel SAT solver [4] developed as a non-deterministic parallel solver,
2 ManySAT 2.0 supports both deterministic and non-deterministic behavior.
3 The solver source code and experimental results (including colored graphs in this

paper) are available at http://www.kki.yamanashi.ac.jp/∼nabesima/sat2020/.
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Table 1. Solved instances on SAT Competition 2018 and SAT Race 2019 (800 instances
in total). “X (Y + Z)” denotes the number of solved instances (X), solved satisfiable
instances (Y) and solved unsatisfiable instances (Z), respectively. Non-deterministic
solvers (ManySAT with non-det and Glucose-syrup) were run three times, and the first
and last lines of the results denote the best and worst results, respectively.

Solver # of solved instances

4 threads 64 threads

ManySAT 2.0 with non-det 434 (265 + 169) 475 (292 + 183)

425 (265 + 160) 475 (294 + 181)

420 (257 + 163) 473 (288 + 185)

ManySAT 2.0 with det-static 414 (251 + 163) 457 (284 + 173)

ManySAT 2.0 with det-dynamic 418 (258 + 160) 448 (281 + 167)

Glucose-syrup 4.1 465 (263 + 202) 524 (301 + 223)

462 (263 + 199) 519 (295 + 224)

458 (255 + 203) 515 (293 + 222)

Fig. 1. Comparison of runtimes of the best and worst results of Glucose-syrup for each
instance. Satisfiable instances are denoted with ◦, unsatisfiable instances with ×. Points
on 5000 s mean that these instances are solved only by either the best or worst cases.

and ManySAT 2.0 supports both deterministic and non-deterministic strategies.
Glucose-syrup [1] is one of the state-of-the-art parallel portfolio solvers.

We have run ManySAT 2.0 and Glucose-syrup 4.1 on instances from SAT
Competition 2018 and SAT Race 2019, and show the experimental results as the
numbers of solved instances in Table 1. In this work, we conducted all experi-
ments on the following two computing environments: (1) a cluster equipped with
4-core Intel Core i5-6600 (3.3 GHz) machines using a memory limit of 8 GB, and
(2) a cluster equipped with 68-core Intel Xeon Phi KNL (1.4 GHz) machines
using a memory limit of 96 GB4. The time limit was set to 5000 s. We ran each

4 We used the supercomputer of ACCMS, Kyoto University.
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solver with 4 threads on the first environment and 64 threads on the second.
“ManySAT 2.0 with non-det” denotes the non-deterministic mode of ManySAT,
and “det-static” and “det-dynamic” mean the two deterministic modes described
in the next section.

The results of non-deterministic solvers show that different runs yield differ-
ent numbers of solved instances. For Glucose-syrup, the difference between the
best and worst results is 7 and 9 instances on the 4 and 64 threads environ-
ments, respectively. Figure 1 gives scatter plots comparing the runtimes for each
instance in which we compared the best and worst results of Glucose-syrup. The
runtimes of satisfiable instances vary greatly with runs. Unsatisfiable instances
have more stable results but there are some instances solved by either one. Such
behavior is typically encountered when using parallel SAT solvers.

Clause exchange is a cooperative and fundamental mechanism in parallel SAT
solvers in order to share the pruning information of the search space between
computing units. Typically, the timing of sending and receiving clauses is affected
by system workload, cache misses, and/or communication delays. However, most
of parallel SAT solvers do not have synchronization mechanism of the timing in
order to avoid the communication overhead and to maximize the performance.
This is the cause of unreproducible behavior of parallel SAT solvers.

3 A Deterministic Parallel SAT Solver

In this section, we describe the algorithm called deterministic parallel DPLL
((DP)2LL in short) proposed by [3] which is implemented in the first deter-
ministic parallel SAT solver ManySAT 2.0. The pseudo code is shown in
Algorithm 1. Let n be the number of solvers to be executed in parallel. Firstly,
n threads are launched to execute the function search() (lines 2 and 4). Each
thread is identified by an ID number t ∈ {1, . . . , n}. After all threads have fin-
ished (line 5), the algorithm outputs the solution obtained by the thread with
the lowest thread ID among all the threads which succeeded to decide the sat-
isfiability of the instance (line 6). The reason for choosing the lowest ID is to
avoid non-deterministic behavior if two or more threads find solutions at the
same time.

The function search() (lines 8–25) is the same as usual CDCL solvers, except
for sending and receiving clauses. Each thread periodically receives clauses
from the other threads. We call the reception interval a period. The func-
tion endOfPeriod() decides whether the current period has ended (line 10). In
ManySAT, it returns true when the number of conflicts in the period exceeds
a certain threshold. In that case, all threads are synchronized before and after
clause exchange by “< barrier >” instruction5 (lines 11 and 14). The former
barrier is necessary for each thread to start importing clauses simultaneously.
Suppose that a thread starts importing clauses at the end of period x. The latter
barrier prevents the thread importing a clause which is exported from another
thread at the next period x+1. In order to avoid deadlocks, when a thread finds
5 The barrier is implemented by #pragma omp barrier directive in OpenMP.
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Algorithm 1: Deterministic Parallel DPLL [3]
1 Function solve(n) // n is the number of threads
2 foreach t ∈ {1, · · · , n} do
3 anst ← unknown;
4 launch thread t which executes anst ← search(t);
5 wait for all threads to finish;
6 tmin ← min {t | anst �= unknown};
7 return anstmin ;

8 Function search(t)
9 loop

10 if endOfPeriod() = true then
11 nextPeriod: <barrier>;
12 if ∃i(ansi �= unknown) then return anst;
13 importExtraClauses(t);
14 <barrier>;
15 if propagate() = false then
16 if noDecision() = true then
17 anst = unsat ;
18 goto nextPeriod;
19 learnt ← analyze();
20 exportExtraClause(learnt);
21 backtrack();
22 else
23 if decide() = false then
24 anst = sat ;
25 goto nextPeriod;

26 Procedure importExtraClauses(t)
27 foreach i ∈ 〈1, · · · , t − 1, t + 1, · · · , n〉 do
28 import clauses from thread i;

a solution (lines 18 and 25), it needs to go to the first barrier on line 11 instead of
exiting immediately. This is because other threads that have not found a solution
are waiting there. After synchronization, each thread t exits with its own status
anst, if any thread finds a solution (line 12). The function importExtraClauses()
receives learnt clauses acquired by the other threads according to a fixed order of
the threads (line 27), because different ordering of clauses will trigger off different
ordering of unit propagations and consequently different behavior.

The rest of the search function follows CDCL algorithm. The propagate()
function (line 15) applies unit propagation (or Boolean constraint propagation)
and returns false if a conflict occurs, and true otherwise. In the former case, if
the conflict occurs without any decision (line 16), it means the unsatisfiability
is proved. Otherwise, a cause of the conflict is analyzed (line 19) and a clause is
learnt to prevent occurring the same conflict. If the learnt clause is eligible for
export (for example, the length is short), it is marked to export. These exported
clauses are periodically imported by the function importExtraClauses(). In the
latter case, the function decide() chooses an unassigned variable as the next
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Fig. 2. Waiting time ratio of ManySAT with static and dynamic periods. The ratio is
defined for each instance as the total waiting time of all threads divided by the total
solving time of all threads. Results are sorted by the ratio.

Table 2. Ratio of waiting time to the total solving time of all threads for all instances.

Solver 4 threads 64 threads

ManySAT 2.0 with det-static 23.0% 40.6%

ManySAT 2.0 with det-dynamic 34.5% 56.6%

decision and assigns it true or false (line 23). Otherwise it returns false as all
the variable are assigned, that is, a model is found.

This (DP)2LL algorithm periodically requires synchronization with all
threads. Runtime variation of periods on each thread causes idle time for each
synchronization, that is, each thread should wait the slowest threads. A simple
way to suppress the variation is to measure the execution time of threads and
synchronize based on the elapsed time. However, the measurement of CPU or
real time usually contains errors, so this approach is hard to hold reproducibil-
ity. In ManySAT, the length of a period is defined as the number of conflicts.
There are two kinds of definitions of the period: static and dynamic. The static
period is simply defined as a fixed number c of conflicts (c = 700 in default).
The dynamic period is intended to provide a better approximation of progression
speed of each solver. Let Lk

t denote the length of the k-th period of a thread t,
defined as Lk

t = c+ c(1 − rk−1
t ), where rk−1

t is the ratio of the number of learnt
clauses held by the thread t to the maximum number of learnt clauses among
all threads at the (k − 1)-th period. In this modeling, a thread with a large (or
small) number of learnt clauses (the ratio tending to 1 (or 0)) is considered to
be slow (or fast) and the length of period becomes shorter (or longer).

In Table 1, “det-static” and “det-dynamic” denote the results of the static and
dynamic periods, respectively. There is a performance gap between deterministic
and non-deterministic solvers. The cause is high waiting time ratio to the running
time. Figure 2 shows the waiting time ratio of ManySAT for each instance, and
the ratio on all instances is shown in Table 2. In our experiments, the waiting
time ratio of the static period is lower than dynamic, but it reaches 23% for 4
threads and 40% for 64 threads environments. These results indicate that it is
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difficult to realize efficient solving by synchronizing all threads in a many-core
environment.

4 Delayed Clause Exchange

In order to reduce the idle time in deterministic parallel SAT solvers, we pro-
pose a new clause exchange schema called delayed clause exchange (DCE).
Figure 3 shows the runtime distribution of the static periods in ManySAT for
two instances. These results indicate that the execution time of periods fluctu-
ates very frequently, but in the long term it seems to be stable (roughly, 0.005 s
for (a), 0.05 s for (b)). Other instances have a similar tendency. In order to
take advantage of this property and absorb frequent fluctuations, we consider
allowing clause reception to be delayed for a certain number of periods.

Fig. 3. Distribution of period execution time (up to 10000 periods) on two instances
by ManySAT 2.0 with det-static on the 4 threads environment. The results are sampled
to half. The x-axis and y-axis show the number of periods and the execution time of
the period, respectively. Each color represents different threads.

Let n be the number of threads, T = {1, . . . , n} the set of thread IDs, pt the
current period ID of a thread t ∈ T (pt ≥ 1), Ep

t a set of clauses exported by a
thread t at a period p and m an admissible delay, called margin, is denoted by
the number of periods (m ≥ 0). Algorithm 2 shows the pseudo code of (DP)2LL
with DCE. There are two differences from Algorithm 1. The first point is clause
reception. For each thread t, when the current period pt ends, then the thread
increments the current period ID (line 14) and imports clauses from the other
threads (line 15). If another thread i has not yet finished the period pt − m
(that is, pi < pt −m), then the thread t should wait for it to complete (line 25).
After that, the thread t imports Ept−m

i . The second point concerns termination
conditions. When multiple threads find solutions in DCE, to keep reproducibility,
the algorithm select a thread that found at the earliest period. In case of a tie,
the thread with the lowest ID is selected (line 7). Running threads that have
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Algorithm 2: (DP)2LL with Delayed Clause Exchange
1 Function solve(n) // n is the number of threads
2 ans ← unknown; pmin ← ∞; tmin ← ∞;
3 foreach t ∈ {1, · · · , n} do
4 pt ← 1 ; // pt is the number of periods in thread t
5 launch thread t which executes the followings:
6 anst ← search(t);
7 if anst �= unknown and (pt < pmin or (pt = pmin and t < tmin))

then ans ← anst; pmin ← pt; tmin ← t ;
8 wait for all threads to finish;
9 return ans;

10 Function search(t)
11 loop
12 if endOfPeriod() = true then
13 if ans �= unknown and pmin < pt then return unknown;
14 pt ← pt + 1;
15 importExtraClauses(t);
16 if propagate() = false then
17 if noDecision() = true then return unsat ;
18 learnt ← analyze();
19 exportExtraClause(learnt);
20 backtrack();
21 else
22 if decide() = false then return sat ;

23 Function importExtraClauses(t)
24 foreach i ∈ 〈1, · · · , t − 1, t + 1, · · · , n〉 do
25 wait until pi ≥ pt − m ; // synchronization between thread t and i

26 import clauses from Ept−m
i ;

not yet found a solution can be terminated if their periods exceed pmin (line 13).
Note that when m = 0, (DP)2LL with DCE is same as (DP)2LL.

DCE can reduce the total waiting time of threads. Firstly, we consider the
best case of DCE. At some point, if for any two threads i, j ∈ T (i �= j) the
difference pi − pj is less than or equal to m, then any thread can import clauses
immediately without waiting for other threads at the point. This is because a set
of clauses to be imported had already been exported by other threads. Secondly,
the worst case is that only one thread is extremely slow and all other threads are
ahead by m periods. In this case, the fast |T | − 1 threads must wait the slowest
thread until the difference less than or equal to m. In other cases, if there exists
two threads i, j ∈ T such that pi − pj > m, then the preceding thread i should
wait the postdating thread j until the difference less than or equal to m. The
execution time of periods fluctuates frequently, but if the total execution time
of m consecutive periods is almost the same for each thread, the DCE can be
expected to reduce the waiting time. The disadvantage of DCE is that the clause
reception is always delayed by m periods, even if there is no difference in the
period of each thread.
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5 Refining Periods

In ManySAT, the length of a period is defined as the number of conflicts. The
generation speed of conflicts is affected by the number and length of clauses. The
number of clauses varies during search by learning and reduction of clauses, and
the length of learnt clauses also changes sometimes significantly. As the result,
runtime of a period fluctuates frequently as shown in Fig. 3. Accurate estimation
of period execution time is important to reduce the waiting time. In this section,
we introduce two new definitions of a period based on reproducible properties.

5.1 Refinement Based on Literal Accesses

Most of the memory used by SAT solvers is occupied by literals in clauses. Access-
ing literals in memory is a fundamental operation and occurs very frequently in
unit propagation, conflict analysis, and so on. We consider defining the length of
a period as the number of accesses to literals. The speed of accessing literals can
be considered to be more stable than the generation speed of conflicts since it
is almost independent of the number and length of clauses. With this definition,
the function endOfPeriod() (line 12 in Algorithm 2) returns true if the number of
literal accesses in the period exceeds a certain threshold. In our implementation,
we count the number of accesses to literals in unit propagation, conflict analysis
and removal of clauses that are satisfied without any decision.

5.2 Refinement Based on Block Executions

In order to estimate the runtime of a period more accurately, we consider mea-
suring not only the number of literal accesses, but also the number of executions
of various operations performed by a SAT solver. It is similar to profiling a
program which measures the number of calls and runtime of each function to
detect performance bottlenecks. As a finer granularity than functions, we focus
on compound statements called blocks (statements enclosed in curly braces in
C++) and measure the number of the executions of each block during the search.
For example, the runtime of one call of propagate() (line 16 in Algorithm 2)
depends obviously on a given instance (proportional to the number of clauses).
Whereas propagate() has a loop block that checks the value of each literal in a
clause to determine whether the clause is unit or falsified. The time to execute
the block once can be considered almost constant. We apply linear regression
analysis to estimate the time required for one execution of each block.

Let n be the number of blocks to be measured, xi,j
k the number of executions

of a block k of a thread j in an instance i, dk the runtime to be required for
one execution of a block k, and yi,j the execution time of a thread j in an
instance i without waiting time. Each dk is non-negative. Hence, if a block k has
a nested block l, dk indicates the execution time of k excluding l. Then, yi,j can
be expressed as:

yi,j = d1x
i,j
1 + d2x

i,j
2 + · · · + dnx

i,j
n . (1)
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Fig. 4. Results of prediction of thread execution time on SAT Competition 2018. The
solid line denotes the observed execution time for each thread and each instance (sorted
by the execution time). Each point indicates the estimated execution time for each
thread, and each color represents different instances.

With this definition, the function endOfPeriod() returns true if the value of (1)
in a period exceeds a certain threshold.

Our developed deterministic parallel SAT solver (introduced in the next
section) counts the number of executions for 71 blocks that almost cover the
whole of operations performed by the solver. We used the application instances
of SAT Competition 2016 and 2017 (300 and 350 instances, respectively) as
training instances to estimate each dk. The evaluation was performed on the
64 threads environment with a time limit of 600 s. To avoid overfitting, we
manually selected 29 out of 71 blocks, which are mainly contained in unit prop-
agation, conflict analysis and search loop (corresponding to search() function in
Algorithm 2). Then, we estimated the regression coefficients dk from the results
using the Elastic Nets method [14]. The coefficient of determination (R2) was
0.94.

Figure 4 shows the results of prediction of thread execution time on SAT
Competition 2018 as testing instances. Most of estimated results are close to the
observed one. Some points are far from observations, but such points of the same
color are often equidistant from observations. This means that the difference
between the predicted and the observed time is approximately the same for each
thread that solves the same instance, and in such cases, synchronization between
threads can be expected to have less idle time.

6 Experimental Results

We have developed a new deterministic parallel SAT solver called ManyGlu-
cose based on Glucose-syrup 4.1, which implements the delayed clause exchange
and three types of periods (one is conflict based period used in ManySAT and the
others are described in the previous section). In this work, we set the margin to
a fixed value of 20 and adjust the length of the three types of periods. Suppose
that pconf , paccs and pexec denote the length of a period based on the number of
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Table 3. Results of three types of periods. In this evaluation, we executed ManyGlucose
with margin 20 for 400 instances used in SAT Competition 2018 for the 4 threads
environment. The best result of each column in (a) is typeset in boldface.

(a) The numbers of solved instances

pconf # of solved paccs # of solved pexec # of solved

50 231 (128 + 103) 1M 231 (126 + 105) 0.2 230 (125 + 105)

100 232 (128 + 104) 2M 236 (132 + 104) 0.3 232 (127 + 105)

200 229 (126 + 103) 4M 231 (128 + 103) 0.4 233 (129 + 104)

300 226 (121 + 105) 6M 225 (121 + 104) 0.5 236 (132 + 104)

400 225 (122 + 103) 8M 230 (126 + 104) 0.6 231 (126 + 105)

(b) The ratio of waiting time and average runtime per period

pconf Wait time

ratio

Avg

time/period

paccs Wait time

ratio

Avg

time/period

pexec Wait time

ratio

Avg

time/period

50 16.9% 0.044 1M 9.5% 0.029 0.2 6.0% 0.043

100 15.6% 0.087 2M 8.8% 0.056 0.3 5.6% 0.065

200 13.9% 0.172 4M 8.0% 0.112 0.4 5.3% 0.087

300 13.1% 0.263 6M 7.5% 0.167 0.5 5.1% 0.109

400 12.6% 0.350 8M 7.2% 0.219 0.6 4.8% 0.131

conflicts, literal accesses and block executions (corresponding to the threshold
in the function endOfPeriod()). We determine the appropriate length of each
period by preliminary experiments.

Table 3 shows the results of three types of periods. As the length of period
becomes longer, the waiting time is reduced since the number of clause exchanges
is diminished, but the number of solved instances also tends to decreases. There
is a trade-off between the number of clause exchanges and solved instances. From
these results, we determined the appropriate length for each period type to be
pconf = 100, paccs = 2M , and pexec = 0.5. Table 3 (b) denotes that the period
based on the block executions has the smallest waiting time ratio. The average
runtime of periods when pexec = 0.5 is 0.109 s. Hence, with this setting, time
delay to receive learnt clauses acquired by other threads is about 2 s (0.109∗20).

Figure 5 shows the runtime distribution of periods based on these thresholds
for some instances. These are results of unsolved instances by ManyGlucose with-
out DCE within a 1000 s time limit (that is, the right end of x-axis corresponds
to 1000 s). The execution time per period is normalized by the z-score to com-
pare three period types. These graphs show that the period based on conflicts
has large amplitude, and the block executions has small amplitude. For most
instances, the block executions shows the best results, but Fig. 5 (c) is an exam-
ple in which the literal access shows the best results.

We ran ManyGlucose configured with three types of periods and with and
without DCE for the application instances used in SAT Competition 2018 and
SAT Race 2019 in the 4 and 64 threads environments using the parameters
obtained in the preliminary experiment (that is, pconf = 100, paccs = 2M , and
pexec = 0.5). ManyGlucose with DCE and block executions were run three times
to show the robustness of our deterministic parallel SAT solver. Table 4 shows
the number of solved instances and waiting time ratio for each solver and Fig. 6
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Fig. 5. Distribution of period execution time on (a) mchess 18, (b) 58bits 13 and (c)
eqspwtcl14bpwtcl14 (from SAT Race 2019). The results are sampled to 10%. The
value at the bottom right of each graph shows the waiting time ratio.

and 7 are cactus plots of them. DCE can reduce the waiting time and increase the
number of solved instances. The effect is remarkable in the 64 threads environ-
ment. ManyGlucose with DCE can solve 50, 36 and 34 more instances in conflict,
literal access and block execution based periods than without DCE, respectively.
For the ratio of waiting time, DCE reduces approximately 24%, 32% and 35%
in conflict, literal access and block execution based periods than without DCE,
respectively. The ratio of waiting time in 64 threads is greater than in 4 threads.
When using block execution based period, it increases about 3.5 times without
DCE (12.5% to 44.0%), but 1.5 times with DCE (5.7% to 8.8%). This means
DCE is more effective in many-core systems. The regression coefficients of block
execution based period are estimated in the 64 threads environment. Figure 7(a)
shows that it is effective for reducing the waiting time even in the different envi-
ronment. The difference of average runtime per period between 4 and 64 threads
denotes the performance gap of sequential computation of each system. The 64
threads environment has a large number of CPU cores, although the sequential
computing performance is not high. In the 64 threads environment, time delay
to receive learnt clauses acquired by other threads is about 8 to 12 s.

Compared with Glucose-syrup, ManyGlucose shows the stable results due to
its determinism. In the results of running ManyGlucose with DCE and block
execution based period three times, the difference between the best and worst
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Table 4. Results of (a) solved instances and (b) waiting time ratio on SAT Competition
2018 and SAT Race 2019. Results of Glucose-syrup are same as Table 1. The best result
of each column in (a) is typeset in boldface. “confs”, “lit accs” and “blk execs” mean
the period type based on conflicts, literal accesses and block executions, respectively.

(a) The numbers of solved instances

Solver # of solved instances
4 threads 64 threads

Glucose-syrup 4.1 465 (263 + 202) 524 (301 + 223)
462 (263 + 199) 519 (295 + 224)
458 (255 + 203) 515 (293 + 222)

ManyGlucose + confs 445 (250 + 195) 444 (254 + 190)
ManyGlucose + DCE + confs 456 (262 + 194) 494 (283 + 211)

ManyGlucose + lit accs 447 (252 + 195) 476 (272 + 204)
ManyGlucose + DCE + lit accs 462 (265 + 197) 512 (291 + 221)

ManyGlucose + blk execs 456 (259 + 197) 487 (275 + 212)

ManyGlucose + DCE + blk execs 456 (258 + 198) 521 (293 + 228)
455 (258 + 197) 521 (293 + 228)
454 (258 + 196) 521 (293 + 228)

(b) The ratio of waiting time and average runtime per period

Solver 4 threads 64 threads
Waiting time ratio Avg time/period Waiting time ratio Avg time/period

ManyGlucose + confs 29.7% 0.099 58.3% 0.528
ManyGlucose + DCE + confs 14.8% 0.104 34.4% 0.392

ManyGlucose + lit accs 17.9% 0.058 51.8% 0.398
ManyGlucose + DCE + lit accs 8.9% 0.060 20.2% 0.366

ManyGlucose + blk execs 12.5% 0.122 44.0% 0.621

ManyGlucose + DCE + blk execs 5.7% 0.126 8.8% 0.594
5.6% 0.125 8.8% 0.593
5.6% 0.126 8.8% 0.594

Fig. 6. Cactus plot comparing total instances solved within a given time bound for
Glucose-syrup and ManyGlucose configured with three types of periods and with/without
DCE. MG means ManyGlucose. The best and worst results of MG-DCE-blk-execs are
almost overlapped.

results is 2 instances in the 4 threads and no difference in the 64 threads envi-
ronment. We have confirmed that ManyGlucose can find the same model for each
run for satisfiable instances. Our 4 threads environment is a cluster built on edu-
cational PCs and cannot be used exclusively, and the results fluctuate slightly. In
contrast, the results of 64 threads are very stable due to the exclusive use of the
system. Figure 8 shows comparisons of runtime of each instance in the best and
worst results. The results for 4 threads vary slightly over time, while the results
for 64 threads are almost completely distributed on the diagonal. In contrast to
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Fig. 7. Waiting time ratio of ManyGlucose. Results are sorted by the ratio.

Fig. 8. Comparison of runtimes of the best and worst results of ManyGlucose for each
instance.

Fig. 9. Waiting time and clause exchanging time of ManyGlucose.
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Fig. 1, this demonstrates the robustness of our deterministic parallel SAT solver.
The number of solved instances in the best case of ManyGlucose exceeds the
worst case of Glucose-syrup. This indicates that DCE and accurate period esti-
mation can achieve performance comparable to non-deterministic solvers while
holding deterministic behavior.

Figure 9 shows the time ratio required for clause exchange, which is very small
ratio compared to the solving and waiting time. In DCE, for each thread t and
each period p, there is a database Ep

t that stores clauses exported by the thread t
at the period p. If the current period of the thread t is greater than p, then write
access to Ep

t no longer exists, so any thread can read it without mutual exclusive
control. In contrast, shared clause databases in non-deterministic parallel SAT
solvers usually have a mixture of write access to add clauses and read access to
get clauses. Hence, the mutual exclusive control is required to access the clause
database. One of the advantages of DCE is that it does not require the cost of
mutual exclusive control to access clause databases.

7 Conclusion

The non-deterministic behavior of parallel SAT solvers is one of the obstacles
to the promotion of application and research of parallel SAT solvers. In this
paper, we have presented techniques to realize efficient and reproducible parallel
SAT solving. The main technique is the delayed clause exchange (DCE), which
absorbs fluctuations of intervals between clause exchanges. In order to enhance
the effect of DCE, it is important to estimate exchange intervals accurately based
on reproducible criterion. In this work, we presented two methods based on the
number of literal accesses and block executions. The experimental results show
that the combination of these techniques can achieve comparable performance
to non-deterministic parallel SAT solvers even in many-core environments. Our
approach can be applicable to deterministic parallel MaxSAT solving [9] which
is based on the synchronization mechanism used in ManySAT. As future work it
would be interesting to consider a general framework for building deterministic
parallel SAT solvers (like PaInleSS [8] for non-deterministic parallel SAT solvers)
in which state-of-the-art sequential solvers can easily participate.
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Abstract. The results of annual SAT competitions are often viewed as
the milestones showcasing the progress in SAT solvers. However, their
competitive nature leads to the situation when the majority of this year’s
solvers are based on previous year’s winner. And since the main focus is
always on novelty, it means that there are times when some implementa-
tion details have a potential for improvement, but they are just inherited
from solver to solver for several years in a row. In this study we propose
small modifications of implementations of existing heuristics in several
related SAT solvers. These modifications mostly consist in employing
a deterministic strategy for switching between branching heuristics and
in augmentations of the treatment of Tier2 and Core clauses. In our
experiments we show that the proposed changes have a positive effect
on solvers’ performance both individually and in combination with each
other.

Keywords: SAT · SAT solvers · Heuristics

1 Introduction

The Conflict-Driven Clause Learning (CDCL) solvers [13] form the core of the
algorithms for solving the Boolean satisfiability problem (SAT) [4]. Every year
the community proposes new heuristics aimed at improving their performance.
To test them in close to real-world conditions, the SAT competitions are held.
They evaluate the prospective solvers’ performance in the same computational
environment over the sets of test instances gathered from various areas where
the SAT solvers are applied.

To show that a new heuristic for SAT solving contributes to state of the art,
it is usually implemented on top of one of the well-known SAT-solvers such as
MiniSAT [5], glucose [1], CryptoMiniSat [20], Cadical [2] or, more often, the
most recent SAT competition(s) winner (e.g. [8,12,17]). The problem with the
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latter is that the solver with a new heuristic must be compared with the original
solver without modifications to show that the increase in performance is not
due to fixing some aspects of original solver’s implementation. This is not a bad
thing as it is, but it can lead to solvers accumulating undesired traits. One of
the examples of the latter is the non-deterministic switching between branching
heuristics, first introduced in MapleCOMSPS [9] which won in the main track of
SAT Competition 2016. This behavioral trait was inherited by the winners of
SAT Competitions 2017 and 2018, and many participants of the SAT Race 2019.

In the present paper we propose several changes to the common implemen-
tation aspects of the solvers that won at the main tracks of SAT Competitions
2017 to 2019. The main contributions are as follows:

1. We analyze possible variants of deterministic switching between branching
heuristics and show that some of them yield consistently better results com-
pared to the non-deterministic switching at 2500 s.

2. We adjust the treatment of the so-called Tier2 clauses and show that accu-
mulating them in a slightly different manner results in better overall perfor-
mance.

3. We show that contrary to the intuition provided in [18], it is better to some-
times purge some learnts from the Core tier in order to increase the propa-
gation speed and the effectiveness of a solver on hard instances.

We use the MapleLCMDistChronoBT solver as the main object for analysis and
experimentation. To evaluate improvements and modifications we use the set
of SAT instances from the SAT Race 2019. After having figured out the mod-
ifications that serve our goals best, we implement them in the winners of SAT
Competition 2017 and SAT Race 2019. Then we test the resulting six SAT solvers
on a wide range of benchmarks.

2 Background

The presentation of the details on implementation of heuristics in SAT solvers
implies that the reader is familiar with the architecture of CDCL SAT-solvers
in general and with key advancements in the area during the recent years.

The SAT competitions are annual competitive events aimed at the develop-
ment of SAT solving algorithms. In the course of the main track of the com-
petition, the solvers are launched on each test instance with the time limit of
5000 s. The performance is evaluated using two criteria: Solution-Count Ranking
(SCR) – the number of test instances successfully solved by an algorithm within
the time limit, and Penalized Average Runtime (PAR-2) computed as the sum
of solver runtimes on solved instances plus 2× the time limit for unsolved ones,
divided by the total number of tests.

In the paper we study the solvers MapleLCMDist, MapleLCMDistChronoBT
and MapleLCMDistChronoBT-DL-v3, which won at SAT Competitions 2017 to
2019. All three solvers are based on the MapleCOMSPS solver that won at SAT



Improving Implementation of SAT Competitions 2017–2019 Winners 141

Competition 2016 [8]. The latter uses the foundation of COMiniSatPS [18], which
combined the better traits of the well-known MiniSAT [5] and Glucose [1] solvers.

One of the main novelties of COMiniSatPS was the special treatment of learnt
clauses depending on their literal block distance value (lbd). The notion of lbd
was first proposed in [1] and is equal to the number of distinct decision levels
of the literals in a learnt clause. COMiniSatPS splits all learnt clauses into three
tiers: Core, Tier2 and Local and handles them differently. The second major
novel feature of COMiniSatPS was to use two sets of activity values for the
branching heuristic. In particular, the solver employed two sets of scores main-
tained via Variable State Independent Decaying Sum (VSIDS) [16]. They used
different VSIDS decay values, but what’s more important, their use was tied to
periodic switching between restart strategies. For years after the introduction of
Minisat [5], the SAT solvers mainly relied on luby restarts [11], but after the
triumphal appearance of Glucose [1], the CDCL solvers mostly switched to the
much faster glucose-restarts. COMiniSatPS combined both, and used one set of
VSIDS scores with luby restarts and another set with glucose restarts.

In 2016 the Learning Rate Branching (LRB) heuristic [8] was proposed as an
alternative to VSIDS. It was implemented in MapleCOMSPS as well as in several
other solvers [9]. MapleCOMSPS is based on COMiniSatPS and uses LRB branching
together with luby restarts and VSIDS-branching with glucose restarts. Unfortu-
nately, the solver did not inherit the deterministic switching strategy employed
by COMiniSatPS to combine different phases of solving. Instead, it relies on LRB
+ luby restarts for the first 2500 s of the search and VSIDS + glucose restarts
for its remainder, which results in a non-deterministic behaviour. Having real-
ized their oversight, the MapleCOMSPS’s authors submitted to SAT competitions
2017–2019 only the deterministic variants of their solvers.

The winner of the main track of the SAT Competition 2017, MapleLCMDist
introduced Learnt Clause Minimization [12] into MapleCOMSPS. It is an expensive
inprocessing method [6] periodically applied to learnt clauses from Tier2 and
Core with the goal to remove irrelevant literals from them. The main track
winner of SAT Competition 2018 called MapleLCMDistChronoBT had augmented
MapleLCMDist with chronological backtracking [17], which was later studied in
[15]. Finally, the winner of SAT Race 2019 was MapleLCMDistChronoBT-DL-v3,
which used the duplicate learnts (DL) heuristic [7], that tracks duplicate learnts
and sometimes adds them into Tier2 or Core.

3 Improving Implementation of MapleLCMDistChronoBT

In this section we describe the three-phase experiment aimed at improving
the implementation of MapleLCMDistChronoBT. The main question we strive
to answer is if it is possible to retain its good overall performance but make
the solver deterministic. In the first phase of experiments we implement several
deterministic strategies for switching between branching heuristics and evalu-
ate their performance. In the second phase we use the best-behaved switching
strategy from the first phase to check whether it is possible to forego one of the
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branching heuristics and let the solver work with a single one. In the third phase
we propose and implement a small change to handling Tier2 and Core learnt
clauses and see how it affects the general performance of a solver.

In all experiments we used a single node of the “Academician V.M. Matrosov”
computing cluster of Irkutsk Supercomputer Center [14]. It is equipped with two
18-core Intel Xeon E5-2695 CPUs and 128 GB DDR4 RAM. The solvers were
launched in 36 simultaneous threads.

3.1 On Switching Between Branching Heuristics

First we combed through the available deterministic implementations in the
solvers from recent SAT competitions and found several variants for switch-
ing between branching heuristics that are summed up in Table 1. All of them
assume that VSIDS is used with glucose restarts and LRB with luby restarts,
thus we refer to them as to VSIDS and LRB phases, respectively. The fcm
column corresponds to the implementation in COMiniSatPS. The variants f1
and f2 denote the implementations first appeared in MapleCOMSPS LRB [9] and
MapleCOMSPS LRB VSIDS 2 [10], respectively. The v3 variant employs the scheme
used in the MapleLCMDistChronoBT-DL-v3 solver [7], which uses propagations
to measure the phases’ sizes.

Table 1. The considered schemes for switching between branching heuristics

fcm f1 f2 v3

Initial phase allotment 100 conflicts 100 conflicts 10000 conflicts 30 M props

VSIDS multiplier 2 1 1 1

phase allotment multiplier 1.1/1 1.1/1 2/1 1.1/1.1

All variants in Table 1 use phase allotment variable to store the number of
conflicts (or propagations) allocated for the next phase. They all first launch the
LRB phase and then the VSIDS phase. Some of them allocate more resources to
the VSIDS phase, in that case the value in the VSIDS multiplier row of Table 1 is
different from 1. The value of phase allotment is multiplied by a constant after
each LRB/VSIDS phase and the cycle repeats anew. Actually, all strategies but
v3 only increase the value of phase allotment at the end of the VSIDS phase.

We implemented the strategies from Table 1 in MapleLCMDistChronoBT. The
performance of the resulting 4 solvers on the benchmarks from SAT Race 2019
is presented in form of a cactus plot in Fig. 1 with the corresponding detailed
statistics in Table 1. They are accompanied by the original solver and 5 other
solver variants, which will be described in detail below. Two of them (-LRB and
-VSIDS) employ only a single branching heuristic and the other three use different
combinations of augmented handling of Tier2 clauses (-t) and the procedures
for reducing Core database (-rc).
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Fig. 1. Cactus plots depicting the performance of MapleLCMDistChronoBT with altered
implementations of switching strategies between branching heuristics and of handling
learnt clauses over the SAT Race 2019 benchmarks.

Table 2. The detailed statistics on MapleLCMDistChronoBT with different variants of
switching between branching heuristics and heuristics for handling Tier2 and Core
learnts on SAT instances from SAT Race 2019

Solver SCR SAT UNSAT PAR-2

MapleLCMDistChronoBT 236 138 98 4799

MapleLCMDistChronoBT-f1 231 135 96 4882

MapleLCMDistChronoBT-f2 235 140 95 4716

MapleLCMDistChronoBT-v3 232 137 95 4787

MapleLCMDistChronoBT-fcm 228 133 95 4985

MapleLCMDistChronoBT-LRB-f2 223 134 89 4996

MapleLCMDistChronoBT-VSIDS-f2 203 115 88 5589

MapleLCMDistChronoBT-f2-t 236 139 97 4720

MapleLCMDistChronoBT-f2-rc 240 143 97 4631

MapleLCMDistChronoBT-f2-t-rc 242 143 99 4556

As it can be seen from both Table 2 and Fig. 1, the best deterministic variant
in the considered conditions is f2. Its distinctive feature is the phase allotment
multiplier equal to 2. Thus, the solver alternates between long phases of rapidly
increasing size in which it relies on a single heuristic. The similar behaviour is
achieved by the v3 scheme, where a large number of propagations is allocated
to phases. Compared to f2, v3 starts from longer phases, that grow in size
significantly slower.
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3.2 On the Importance of Separate Branching Strategies

It was first noted in [18] and later reaffirmed in [3] that it is beneficial to main-
tain different variable activity values for use with different restart strategies.
Also, in [18] it was pointed out that a strong correlation exists between the
effectiveness of glucose restarts for proving unsatisfiability and that of Luby
restarts for finding satisfying assignments. Based on the success of the solvers
that employ Luby restarts with LRB and glucose restarts with VSIDS it is easy
to make a conclusion that LRB shows better performance on SAT and VSIDS
on UNSAT instances. To evaluate at a glance the highlighted issues we imple-
mented two versions of the MapleLCMDistChronoBT-f2: one that uses only a
single set of LRB activity values, and one that relies only on VSIDS. They
both still switch between luby restarts and glucose restarts deterministically
after the f2 fashion. We denote them as MapleLCMDistChronoBT-LRB-f2 and
MapleLCMDistChronoBT-VSIDS-f2, respectively.

The results of these solvers are included in Fig. 1 and Table 2. They point at
the following two conclusions. First, that indeed two separate sets of activities
for branching during different restart strategies work better than a single set.
Second, that the relation between LRB, luby restarts and satisfiable instances,
and VSIDS, glucose restarts and unsatisfiable instances is more complex than it
might seem and warrants further investigation that goes out of the scope of the
present paper.

3.3 Improving the Handling of Core and Tier2 Learnts

Recall, that in [18,19], it was proposed to split learnt clauses into three tiers.
Core tier accumulates and indefinitely holds the clauses with lbd not exceeding
the value of the core lbd cut parameter, which is equal to 3 or 5 depending
on a SAT instance. Tier2 stores for a prolonged time period the clauses with
slightly higher lbd than necessary to be included into Core (with core lbd cut
<lbd ≤ 6). The remaining clauses are put into the frequently purged Local tier.

We investigated how many learnts were pushed into these tiers by the consid-
ered solver over a wide range of benchmarks. It turned out that for about 80%
instances from SAT Race 2019, MapleLCMDistChronoBT-f2 accumulates more
than 50 000 core learnts. The average sizes of Tier2 also vary quite significantly
since the distribution of lbd of conflict clauses is specific to each particular SAT
instance. E.g. the capacity of Tier2 can be as low as 200 learnts on average and
as high as 12 000 learnts. In [19] it was specifically noted that the number of
learnt clauses in Tier2 may vary depending on the restart strategy and other
factors and that it is perfectly normal. However, this observation did not take
into account the Learnt Clause Minimization (LCM) [12] which was proposed
in 2017 and is applied to Core and Tier2 in MapleLCMDistChronoBT. Thus the
instances with higher average lbd of learnt clauses do not benefit as much from
LCM compared to the others due to the fact that such clauses often do not
survive in Tier2 long enough to be minimized.
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These observations lead us to two small modifications in handling the Tier2
and Core learnt clauses. The first one consists in periodically reducing the Core
database. For this purpose as soon as the Core size exceeds a pre-specified limit
(in our implementation it is equal to 50000 and is multiplied by 1.1 each time the
procedure is invoked), we sort Core learnts in the ascending order based on their
lbd and the size for equal lbd. Then we move all the clauses from the second
half (with larger lbd and size), that did not participate in any of the most recent
100000 conflicts into Tier2.

The second improvement is to reorganize how the Tier2 is purged. In the
original implementation of MapleLCMDistChronoBT the Tier2 is reduced every
10000 conflicts and as a result all clauses that have not participated in the most
recent 30000 conflicts are moved to Local. We propose first to accumulate Tier2
learnts until a pre-specified size limit (7000), and second during the purge to
preserve only half of the clauses that participated in the most recent conflicts.

We implemented proposed modifications in MapleLCMDistChronoBT-f2. The
inclusion of the procedure for reducing Core is labelled as -rc and the modifi-
cation to handling of Tier2 learnts is labelled as -t. The results of the corre-
sponding variants are shown at Fig. 1 and in the lower part of Table 2. It is clear
that the combination of proposed heuristics improves the solver’s performance.

4 Experimental Evaluation

In the previous section we figured out the prospective deterministic configu-
ration of the MapleLCMDistChronoBT solver. Since the proposed implementa-
tion changes do not depend on anything specific to chronological backtracking,
we implemented the same changes into the winners of the SAT Competition
2017 and SAT Race 2019. We mark the improved variants of the solvers with
-f2-t-rc.

Fig. 2. Cactus plots showing the performance of improved implementations of SC2017-
SR2019 winners on the combined benchmark set from SC2017, SC2018 and SR2019.
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To evaluate the performance of constructed solvers we launched 3 original
ones and 3 modifications on all benchmarks from SAT Competitions 2017 and
2018, and that from SAT Race 2019. The cactus plot of the resulting experiment
is presented in Fig. 2. The detailed statistics is shown in Table 3. Here, MLCMD
stands for MapleLCMDist, MLCMDCh for MapleLCMDistChronoBT and MLCMDCh-DL
for MapleLCMDistChronoBT-DL-v3. An improved implementation of each solver
is marked with a star.

Table 3. Detailed statistics of improved implementations of the winners of SC2017-
SC2018-SR2019 on the instances from SC2017, SC2018 and SR2019. Each cell contains:
SCR: SAT: UNSAT: PAR-2 (in seconds).

SC2017 SC2018 SR2019 Total

MLCMD 206:100:106:4706 229:129:100:4718 225:128:97:4999 660:357:303:4812

MLCMD* 204: 99:105:4693 237:135:102:4541 242:144:98:4597 683:378:305:4607

MLCMDCh 208: 97:111:4659 235:133:102:4573 236:138:98:4799 679:368:311:4678

MLCMDCh* 217:103:114:4373 239:136:103:4490 242:143:99:4556 698:382:316:4477

MLCMDCh-DL 208: 99:109:4586 243:142:101:4402 237:141:96:4675 688:382:306:4553

MLCMDCh-DL* 204: 92:112:4707 242:139:103:4423 243:146:97:4547 689:377:312:4553

Observe that the new implementation improved the performance of all three
solvers. The least affected solver is the winner of SR2019: it already employs a
viable deterministic strategy for switching between branching heuristics. Also the
solver was tuned over benchmarks from SC2017 and SC2018. What is interesting
is that the modified solver tackled 6 more unsatisfiable problems than the origi-
nal, however at a cost of 5 satisfiable ones. This is the largest increase over three
solvers on unsatisfiable instances. The largest overall increase in performance
was achieved by MapleLCMDist. The improved implementation made it possible
to solve 23 more instances (21 SAT and 2 UNSAT) and decrease the PAR-2
by about 4%. The overall best performing solver is MapleLCMDistChronoBT. It
surpassed the closest competitor by 9 solved instances and solved the largest
number of UNSAT instances.

Informally, from all the plots and experiments it follows that a proper deter-
ministic strategy for switching between branching heuristics smooths a solver’s
performance. Observe the evident bump on the lines plotting the performance of
non-deterministic solvers near 2500 s mark in Fig. 2. Also, the improved imple-
mentations show a drastic performance difference for shorter time limits that
smooths out closer to 5000 s. The second modification, which mainly consists in
periodical purges of the Core database, helps the solver to increase its perfor-
mance for harder instances, when the amount of learnt clauses in Core starts
to hinder the rate at which all CDCL procedures operate. The improved imple-
mentation shows the increase in both UNSAT and SAT instances solved. There
are more SAT instances solved because the considered benchmarks contain more
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SAT tests (solvable by at least one participating solver) than UNSAT. All imple-
mentations and logs of the experiments are available online1.
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Abstract. We prove that CDCL SAT-solvers with the ordered decision
strategy and the DECISION learning scheme are equivalent to ordered
resolution. We also prove that, by replacing this learning scheme with its
opposite, which learns the first possible non-conflict clause, they become
equivalent to general resolution. In both results, we allow nondetermin-
ism in the solver’s ability to perform unit propagation, conflict analysis,
and restarts in a way that is similar to previous works in the litera-
ture. To aid the presentation of our results, and possibly future research,
we define a model and language for CDCL-based proof systems – par-
ticularly those with nonstandard features – that allow for succinct and
precise theorem statements.

1 Introduction

Since their conception, SAT-solvers have become significantly more efficient, but
they have also become significantly more complex. Consequently, there has been
increasing interest in understanding their theoretical limitations and strengths.
Much of the recent literature has focused on the relationship between CDCL
SAT-solvers1 and the resolution proof system. Beame et al. [5] were the first
to study this relationship and many followed suit (see [3,6,7,11,13–15,17–20]
among others). In particular, Pipatsrisawat and Darwiche [18] show that, under
a few assumptions, CDCL with the nondeterministic decision strategy (i.e., when
the solver has to choose a variable to assign, it chooses both the variable and
its assigned value nondeterministically) polynomially simulates resolution. An
obvious question arises from this result: how much does the theoretical effi-
ciency of CDCL depend on nondeterminism in the decision strategy? Along
these lines, Atserias et al. [3] (concurrently with [18]) show that CDCL with
the random decision strategy (i.e., both the variable and assigned value are cho-
sen uniformly at random) simulates bounded-width resolution, under essentially
1 In this paper, we focus solely on solvers which implement conflict-driven clause

learning (CDCL). We refer to such solvers as CDCL SAT-solvers, CDCL solvers, or
just CDCL for short.
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the same assumptions as those in [18]. More recently, Vinyals [20] has shown
that CDCL with the VSIDS decision strategy – among other common dynamic
decision strategies – does not simulate general resolution. We attempt to make
progress on this question by studying a simple decision strategy that we call the
ordered decision strategy. This strategy is identical to the one studied by Beame
et al. [4] in the context of DPLL without clause learning. It is defined natu-
rally: when the solver has to choose a variable to assign, it chooses the smallest
unassigned variable according to some fixed order and chooses its assigned value
nondeterministically. If unit propagation is used, the solver may assign variables
out of order; a unit clause does not necessarily correspond to the smallest unas-
signed variable. This possibility of “cutting the line” is precisely what makes
the situation more subtle and nontrivial. Thus, our motivating question is the
following:

Is there a family of contradictory CNFs {τn}∞
n=1 that possess polyno-

mial size resolution refutations but require superpolynomial time for CDCL
using the ordered decision strategy?

We also note in passing that this question may be motivated as a way of
understanding the strength of static decision strategies such as MINCE [1] and
FORCE [2].

Our Contributions. A proof system that captures any class of CDCL solvers
should be no stronger than general resolution, and if it captures solvers with
the ordered decision strategy, it should be reasonably expected to be at least as
strong as ordered resolution with respect to the same order. Our main results
show that, depending on the learning scheme employed, both of these extremes
are attained. More specifically, we prove

1. CDCL with the ordered decision strategy and a learning scheme we call
DECISION-L is equivalent to ordered resolution (Theorem1). In particular,
it does not simulate general resolution.

2. CDCL with the ordered decision strategy and a learning scheme we call
FIRST-L is equivalent to general resolution (Theorem 2).

Remark 1. As the name suggests, DECISION-L is the same as the so-called DECI-
SION learning scheme.2 FIRST-L is a learning scheme designed to directly simu-
late particular resolution steps in the presence of certain forms of nondetermin-
ism, and is similar to FirstNewCut [5]. In the full version of this paper [16], we
also prove linear width lower bounds which, combined with the second result,
create a sharp contrast with the size-width relationship for general resolution
proved by Ben-Sasson and Wigderson [8].

In these two results, the CDCL solver may arbitrarily choose the conflict/unit
clause if there are several, may elect not to do conflict analysis/unit propagations

2 The name DECISION-L better fits the naming conventions of our model.
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at all, and may restart at any time. This substantial amount of nondeterminism
allows us to identify two proof systems that are, more or less straightforwardly,
equivalent to the corresponding CDCL variant. Determining the exact power of
these systems constitutes our main technical contribution.

There are a couple points of interpretation to emphasize here. First, the
implicit separation between CDCL solvers and general resolution in the first
result applies to actual SAT-solver implementations, albeit with heuristics that
are not usually used in practice, and could, in principle, be demonstrated by
experiment. In contrast, the second result does not say anything substantial
about actual SAT-solver implementations. But we also note that this is not
unprecedented. The correspondence between proof systems and algorithms con-
sidered here is very similar to the correspondence between regWRTI and a vari-
ant of CDCL with similar features called DLL-LEARN, both introduced by Buss
et al. [11]; nonstandard sources of nondeterminism manifest themselves naturally
when translating CDCL into a proof system. Both lower and upper bounds on
these systems are valuable; even if upper bounds do not apply directly to prac-
tice, they demonstrate, often nontrivially, what convenient features of simple
proof systems must be dropped to potentially prove separations.

Finally, in order to aid the above work – and, perhaps, even facilitate further
research in the area – we present a model and language for studying CDCL-based
proof systems. This model is not meant to be novel, and is heavily influenced
by previous work [3,13,17]. However, the primary goal of our model is to high-
light possible nonstandard sources of nondeterminism in variants of CDCL, as
opposed to creating a model completely faithful to applications. Our second
result (Theorem 2) can be written in this language as:

For any order π, CDCL(FIRST-L, π-D) is polynomially equivalent to general
resolution.

Due to space limitations, not all proofs are provided and there may be excluded
details or remarks that, though not essential, are useful in understanding possible
subtleties in the constructions and arguments. After presenting the preliminary
material in Sect. 2, we give an nearly complete account of our first result men-
tioned above in Sect. 3, and reflect very briefly on our second result in Sect. 4.
We refer the reader to the full version of this paper [16] for complete proofs and
extended discussion.

2 Preliminaries

Throughout the paper, we assume that the set of propositional variables is fixed
as V

def= {x1, . . . , xn}. A literal is either a propositional variable or its negation.
We will sometimes use the abbreviation x0 for x̄ and x1 for x (so that the Boolean
assignment x = a satisfies the literal xa). A clause is a set of literals, thought
of as their disjunction, in which no variable appears together with its negation.
For a clause C, let Var(C) denote the set of variables appearing in C. A CNF is
a set of clauses thought of as their conjunction. For a CNF τ , let Var(τ) denote
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the set of variables appearing in τ , i.e., the union of Var(C) for all C ∈ τ . We
denote the empty clause by 0. The width of a clause is the number of literals
in it.

The resolution proof system is a Hilbert-style proof system whose lines are
clauses and that has only one resolution rule

C ∨ xa
i D ∨ x1−a

i

C ∨ D
, a ∈ {0, 1}. (1)

We will sometimes denote the result of resolving C∨xa
i and D∨x1−a

i by Res(C∨
xa

i ,D ∨ x1−a
i ).

The size of a resolution proof Π, denoted as |Π|, is the number of lines in
it. For a CNF τ and a clause C, let SR(τ � C) denote the minimal possible size
of a resolution proof of the clause C from clauses in τ (∞ if C is not implied by
τ). Likewise, let w(τ � C) denote the minimal possible width of such a proof,
defined as the maximal width of a clause in it. For a proof Π that derives C
from τ , the clauses in τ that appear in Π are called axioms, and if C = 0 then
Π is called a refutation. Let Var(Π) denote the set of variables appearing in Π,
i.e., the union of Var(C) for C appearing in Π.

Note that the weakening rule

C

C ∨ D

is not included by default. In the full system of resolution it is admissible in
the sense that SR(τ � 0) does not change if we allow it. But this will not be
the case for some of the CDCL-based fragments we will be considering below.
Despite this, it is often convenient in analysis to consider intermediate systems
that do allow the weakening rule. We make it clear when we do this by adding
the annotation ‘+ weakening’ to the system.

Resolution Graphs. Our results depend on the careful analysis of the structure
of resolution proofs. It will, for example, be useful for us to maintain structural
properties of the proof while changing the underlying clauses and derivations.

Definition 1. For a resolution + weakening proof Π, its resolution graph,
G(Π), is an acyclic directed graph representing Π in the natural way: each clause
in Π has a distinguished node, and for each node there are incoming edges from
the nodes corresponding to the clauses from which it is derived. The set of nodes
of G(Π) is denoted by V (Π), and the clause at v ∈ V (Π) is denoted by cΠ(v).3

In the following collection of definitions, let Π be an arbitrary resolution +
weakening proof and let S be an arbitrary subset of V (Π). A vertex u is above
a vertex v in G(Π), written u > v, if there is a directed path from v to u.
We also say v is below u. Moreover, v is a parent of u if (v, u) is an edge in

3 We do not assume that cΠ is injective; we allow the same clause to appear in the
proof several times.
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G(Π). S is independent if any two of its nodes are incomparable. The maximal
and minimal nodes of S are maxΠ S

def= {v ∈ S | ∀u ∈ S (¬(v < u))} and
minΠ S

def= {v ∈ S | ∀u ∈ S (¬(v > u))}, respectively. The upward closure and
downward closure of S in G(Π) are uclΠ(S) def= {v ∈ V (Π) | ∃w ∈ S (v ≥ w)}
and dclΠ(S) def= {v ∈ V (Π) | ∃w ∈ S (v ≤ w)}, respectively. S is parent-complete
if it contains either both parents or neither parent of each of its nodes. S is path-
complete if it contains all nodes along any path in G(Π) whose endpoints are
in S. A resolution graph is connected if |maxΠ V (Π)| = 1, i.e., it has a unique
sink. These definitions behave naturally, as demonstrated by the following useful
proposition, which is easily verified.

Proposition 1. Let S ⊆ V (Π) be a nonempty set of nodes that is both parent-
complete and path-complete. Then the induced subgraph of G(Π) on S is the
graph of a subproof in Π of maxΠ S from minΠ S.

Ordered Resolution. Fix now an order π ∈ Sn. For any literal xa
k, define

π(xa
k) def= π(k). For k ∈ [n], let Vark

π denote the k smallest variables according to
π. A clause C is k-small with respect to π if Var(C) ⊆ Vark

π.
The proof system π-ordered resolution is the subsystem of resolution defined

by imposing the following restriction on the resolution rule (1):

∀l ∈ C ∨ D (π(l) < π(xi)).

In the literature this system is usually defined differently, namely in a top-down
manner (see, e.g., [10]). It is easy to see, however, that our version is equivalent.

CDCL-Based Proof Systems. Our approach to modeling CDCL is, in a sense,
the opposite of what currently exists in the literature. Rather than attempting
to model CDCL solver implementations as closely as possible and allowing non-
determinism in various features, we rigorously describe a basic model that is
very liberal and nondeterministic and intends to approximate the union of most
conceivable features of CDCL solvers. Then models of actual interest will be
defined by their deviations from the basic model. Due to space limitations, we
present our model rather tersely (see the full version of this paper [16] for further
details).

A few more definitions are in order before proceeding. A unit clause is a clause
consisting of a single literal. An assignment is an expression of the form xi = a
where 1 ≤ i ≤ n and a ∈ {0, 1}. A restriction ρ is a set of assignments in which all
variables are pairwise distinct. Let Var(ρ) denote the set of all variables appear-
ing in ρ. Restrictions naturally act on clauses, CNFs, and resolution proofs; we
denote the result of this action by C|ρ, τ |ρ, and Π|ρ, respectively. An annotated
assignment is an expression of the form xi

∗= a where 1 ≤ i ≤ n, a ∈ {0, 1}, and
∗ ∈ {d, u}. See Definition 3 below for details about these annotations.

The underlying structure of our model is a labeled transition system whose
states represent data maintained by a CDCL solver during runtime and whose
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labeled transitions are possible actions taken by a solver during runtime. We
first define explicitly what constitutes a state.

Definition 2. A trail is an ordered list of annotated assignments in which all
variables are pairwise distinct. A trail acts on clauses, CNFs, and proofs just in
the same way as does the restriction obtained from it by disregarding the order
and the annotations on assignments. For a trail t and an annotated assignment
xi

∗= a such that xi does not appear in t, we denote by [t, xi
∗= a] the trail obtained

by appending xi
∗= a to its end. t[k] is the kth assignment of t. A prefix of a

trail t = [xi1
∗1= a1, . . . , xir

∗r= ar] is any trail of the form [xi1
∗1= a1, . . . , xis

∗s= as]
where 0 ≤ s ≤ r and is denoted by t[≤ s]. Λ is the empty trail.

A state is a pair (τ, t), where τ is a CNF and t is a trail. The state (τ, t) is
terminal if either C|t ≡ 1 for all C ∈ τ or τ contains 0. All other states are
nonterminal. We let Sn denote the set of all states (recall that n is reserved for
the number of variables), and let Son ⊆ Sn be the set of all nonterminal states.

We now describe the core of our (or, for that matter, any other) model, that
is, transition rules between states.

Definition 3. For a (nonterminal) state S = (τ, t) ∈ S
o
n, we define the finite

set Actions(S) and the function TransitionS : Actions(S) −→ Sn; the fact
TransitionS(A) = S′ will be usually abbreviated to S

A=⇒ S′. Those are described
as follows:

Actions(S) def= D(S)
.∪ U(S)

.∪ L(S),

where the letters D,U,L have the obvious meaning4.

– D(S) consists of all annotated assignments xi
d= a such that xi does not

appear in t and a ∈ {0, 1}. We naturally let

(τ, t) xi
d
=a=⇒ (τ, [t, xi

d= a]). (2)

– U(S) consists of all those assignments xi
u= a for which τ |t contains the unit

clause xa
i ; the transition function is given by the same formula (2) but with

a different annotation:

(τ, t) xi
u
=a=⇒ (τ, [t, xi

u= a]). (3)

– As should be expected, L(S) is the most sophisticated part of the definition
(cf. [3, Section 2.3.3]). Let t = [xi1

∗1= a1, . . . , xir

∗r= ar]. By reverse induction
on k = r + 1, . . . , 1 we define the set Ck(S) that, intuitively, is the set of
clauses that can be learned by backtracking up to the prefix t[≤ k]. We let

Cr+1(S) def= {D ∈ τ | D|t = 0}
4 Restarts will be treated as a part of the learning scheme.
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be the set of all conflict clauses.
For 1 ≤ k ≤ r, we do the following: if the kth assignment of t is of the form
xik

d= ak, then Ck(S) def= Ck+1(S). Otherwise, it is of the form xik

u= ak, and
we build up Ck(S) by processing every clause D ∈ Ck+1(S) as follows.

• If D does not contain the literal xak
ik

then we include D into Ck(S)
unchanged.

• If D contains xak
ik

, then we resolve D with all clauses C ∈ τ such that
C|t[≤k−1] = xak

ik
and include all the results in Ck(S). The clause D itself

is not included.

To make sure that this definition is sound, we have to guarantee that C and D are
actually resolvable (that is, they do not contain any other conflicting variables
but xik

). For that we need the following observation, easily proved by reverse
induction on k, simultaneously with the definition:

Claim. D|t = 0 for every D ∈ Ck(S).
Finally, we let

C(S) def=
r⋃

k=1

Ck(S),

L(S) def=

⎧
⎪⎨

⎪⎩

{(0, Λ)} 0 ∈ C(S)
{(C, t∗) |C ∈ (C(S) \ τ) and

t∗ is a prefix of t such that C|t∗ �= 0} otherwise

(4)

and

(τ, t)
(C,t∗)
=⇒ (τ ∪ {C}, t∗).

This completes the description of the basic model.

The transition graph Γn is the directed graph on Sn defined by erasing
the information about actions; thus (S, S′) ∈ E(Γn) if and only if S′ ∈
im(TransitionS). It is easy to see (by double induction on (|τ |, n − |t|)) that
Γn is acyclic. Moreover, both the set {(S,A) | A ∈ Actions(S)} and the function
(S,A) �→ TransitionS(A) are polynomial-time5 computable. These observations
motivate the following definition.

Definition 4. Given a CNF τ , a partial run on τ from the state S to the state
T is a sequence

S = S0
A0=⇒ S1

A1=⇒ . . . SL−1
AL−1=⇒ SL = T, (5)

where Ak ∈ Actions(Sk). In other words, a partial run is a labeled path in Γn.
A successful run is a partial run from (τ, Λ) to a terminal state. A CDCL

5 That is, polynomial in the size of the state S, not in n.
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solver is a partial function6 μ on S
o
n such that μ(S) ∈ Actions(S) whenever μ(S)

is defined. The above remarks imply that when we repeatedly apply a CDCL solver
μ starting at any initial state (τ, Λ), it will always result in a finite sequence like
(5), with T being a terminal state (successful run) or such that μ(T ) is undefined
(failure).

Theoretical analysis usually deals with classes (i.e., sets) of individual solvers
rather than with individual implementations. We define such classes by priori-
tizing and restricting various actions.

Definition 5. A local class of CDCL solvers is described by a collection of
subsets AllowedActions(S) ⊆ Actions(S) where S ∈ S

o
n. It consists of all those

solvers μ for which μ(S) ∈ AllowedActions(S), whenever μ(S) is defined.

We will describe local classes of solvers in terms of amendments pre-
scribing what actions should be removed from the set Actions(S) to form
AllowedActions(S). The examples presented below illustrate how familiar
restrictions look in this language. Throughout their description, we fix a nonter-
minal state S = (τ, t).

ALWAYS-C If τ |t contains the empty clause, then D(S) and U(S) are removed
from Actions(S). In other words, this amendment requires the solver to per-
form conflict analysis if it can do so.

ALWAYS-U If τ |t contains a unit clause, then D(S) is removed from Actions(S).
This amendment insists on unit propagation, but leaves to nondeterminism
the choice of the unit to propagate if there are several choices. Note that as
defined, ALWAYS-U is a lower priority amendment than ALWAYS-C: if both
a conflict and a unit clause are present, the solver must do conflict analysis.

DECISION-L In the definition (4), we shrink C(S) \ τ to C1(S) \ τ .
FIRST-L In the definition (4), we shrink C(S)\τ to those clauses that are obtained

by resolving a conflict clause with one other clause in τ . Such clauses are the
first learnable clauses encountered in the process from Definition 3.

π-D, where π ∈ Sn is an order on the variables We keep in D(S) only
the two assignments xi

d= 0, xi
d= 1, where xi is the smallest variable with

respect to π that does not appear in t. Note that this amendment does not
have any effect on U(S), and our main technical contributions can be phrased
as answering under which circumstances this “loophole” can circumvent the
severe restriction placed on the set D(S).

NEVER-R In the definition (4), we require that t∗ is the longest prefix of t satis-
fying C|t∗ �= 0 (in which case C|t∗ is necessarily a unit clause). As described,
this amendment does not model nonchronological backtracking or require that
the last assignment in the trail is a decision. However, this version is easier to
state and it is not difficult to modify it to have the aforementioned properties.

WIDTH-w, where w is an integer In the definition (4), we keep in C(S) \ C

only clauses of width ≤ w. Note that this amendment still allows us to use
wide clauses as intermediate results within a single clauses learning step.

6 It is possible for Actions(S) to be empty.
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Thus, our preferred way to specify local classes of solvers and the correspond-
ing proof systems is by listing one or more amendments, with the convention that
their effect is cumulative: an action is removed from Actions(S) if and only if it
should be removed according to at least one of the amendments present. More
formally,

Definition 6. For a finite set A1, . . . ,Ar of polynomial-time computable7

amendments, we let CDCL(A1, . . . ,Ar) be the (possibly incomplete) proof sys-
tem whose proofs are those successful runs in which none of the actions Ai is
affected by any of the amendments A1, . . . ,Ar.

Using this language, the main result from [18] can be very roughly summa-
rized as

CDCL(DECISION-L, ALWAYS-C, ALWAYS-U) is polynomially equivalent to
general resolution.

The open question asked in [3, Section 2.3.4] can be reasonably interpreted as
whether CDCL(ALWAYS-C, ALWAYS-U, WIDTH-w) is as powerful as width-w
resolution, perhaps with some gap between the two width constraints. Our width
lower bound mentioned in the introduction can be cast in this language as

For any fixed order π on the variables and every ε > 0 there exist
contradictory CNFs τn with w(τn � 0) ≤ O(1) not provable in CDCL
(π-D,WIDTH-(1 − ε)n).

Finally, we would like to mention the currently open question about the exact
strength of CDCL without restarts. This is one of the most interesting open
questions in the area and has been considered heavily in the literature (see
[6,9,11,12,15,19] among others). It may be abstracted as

Does CDCL(ALWAYS-C, ALWAYS-U, NEVER-R) (or at least CDCL(NEVER-
R)) simulate general resolution?

For both open questions mentioned above, we have taken the liberty of removing
those amendments that do not appear immediately relevant.

At this point, since we discuss our main results in the introduction, we for-
mulate them here more or less matter-of-factly.

Theorem 1. For any fixed order π on the variables, the system CDCL
(DECISION-L, π-D) is polynomially equivalent to π-ordered resolution.

Theorem 2. For any fixed order π on the variables, the system CDCL
(FIRST-L, π-D) is polynomially equivalent to general resolution.

7 An amendment is polynomial-time computable if determining whether an action
in Action(S) is allowed by the amendment is polynomial-time checkable, given the
state S.
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3 CDCL(DECISION-L, π-D) =p π-Ordered Resolution

The proof of Theorem 1 is divided into two parts: we prove that each system is
equivalent to an intermediate system we call π-half-ordered resolution.

Recall that, for the system π-ordered resolution, the variable that is resolved
on must be π-maximal in each antecedent. In π-half-ordered resolution, this is
required of at least one of the antecedents. That is, π-half-ordered resolution is
the subsystem of resolution defined by imposing the restriction

(∀l ∈ C (π(l) < π(xi))) ∨ (∀l ∈ D (π(l) < π(xi)))

on the resolution rule (1). Clearly, π-half-ordered resolution simulates π-ordered
resolution but, somewhat surprisingly, it doesn’t have any additional power
over it.

Theorem 3. For any fixed order π on the variables, π-ordered resolution is
polynomially equivalent to π-half-ordered resolution.

We prove Theorem 3 by applying a sequence of transformations to a π-half-
ordered refutation that, with the aid of the following definition, can be shown
to make it incrementally closer to a π-ordered resolution refutation.

Definition 7. A resolution refutation is π-ordered up to k if it satisfies the
property that if any two clauses are resolved on a variable xi ∈ Vark

π, then all
resolution steps above it are on variables in Varπ(i)−1

π .

The π-ordered refutations are then precisely those that are π-ordered up to
n − 1. Now in order for these transformations not to blow up the size of the
refutation, we need to carefully keep track of its structure throughout the process.
As such, the proof of Theorem 3 depends heavily on resolution graphs and related
definitions introduced in Sect. 2.

Proof. Let Π be a π-half-ordered resolution refutation of τ . Without loss of
generality, assume π = id; otherwise, rename variables. We will construct by
induction on k (satisfying 0 ≤ k ≤ n − 1) a π-half-ordered resolution refutation
Πk of τ which is ordered up to k. For the base case, let Π0

def= Π. Suppose
now Πk has been constructed. Without loss of generality, assume that Πk is
connected; otherwise, take the subrefutation below any occurrence of 0.

Consider the set of nodes whose clauses are k-small. Note that this set
is parent-complete. We claim that it is also upward-closed and, hence, path-
complete. Indeed, let u be a parent of v and assume that cΠk

(u) is k-small. Then,
since we disallow weakenings, cΠk

(v) is obtained by resolving on a variable xi ∈
Vark

π. Since Πk is ordered up to k, it follows that Var(cΠk
(v)) ⊆ Vari−1

π ⊆ Vark
π;

otherwise, some variable in cΠk
(v) would have remained unresolved on a path

connecting v to the sink (here we use the fact that Πk is connected). Hence
cΠk

(v) is also k-small.
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By Proposition 1, this set defines a subrefutation of the clauses labeling the
independent set

Lk
def= minΠk

{v | cΠk
(v) is k -small}. (6)

Furthermore, Lk splits Πk into two parts, i.e., V (Πk) = uclΠk
(Lk) ∪

dclΠk
(Lk) and Lk = uclΠk

(Lk) ∩ dclΠk
(Lk). Let D denote the subproof on

dclΠk
(Lk) and let U denote the subrefutation on uclΠk

(Lk). Note that D is
comprised of all nodes in Π that are labeled by a clause that is not k-small or
belong to Lk, and U is comprised of all nodes labeled by a k-small clause. In
particular, all axioms are in D, all resolutions in U are on the variables in Vark

π,
and, since Πk is ordered up to k, all resolutions in D are on the variables not in
Vark

π. Define

M
def= minD{w | cΠk

(w) is the result of resolving two clauses on xk+1}. (7)

If M is empty, Πk+1
def= Πk. Otherwise, suppose M = {w1, . . . , ws} and

define Ai
def= uclD({wi}). We will eliminate all resolutions on xk+1 in D by the

following process, during which the set of nodes stays the same, while edges
and clause-labeling function possibly change. More precisely, we update D in
s rounds, defining a sequence of π-half-ordered resolution + weakening proofs
D1,D2, . . . , Ds. Initially D0

def= D. Fix now an index i. Let ci−1 denote the
clause-labeling cDi−1 . To define the transformation of Di−1 to Di, we need the
following structural properties of Di−1, which are easily verified by induction
simultaneously with the definition.

Claim. In the following properties, let u and v be arbitrary vertices in V (D).

a. If v is not above u in D, then the same is true in Di−1;
b. the clause ci−1(v) is equal to cD(v) or cD(v) ∨ xk+1 or cD(v) ∨ xk+1;
c. if v /∈ ⋃i−1

j=1 Aj then ci−1(v) = cD(v) and, moreover, this clause is obtained in
Di−1 with the same resolution as in D;

d. Di−1 is a π-half-ordered resolution + weakening proof.

Let us construct Di from Di−1. By property (c) and the fact that M is inde-
pendent, the resolution step at wi is unchanged from D to Di−1. Let w′ and w′′

denote the parents of wi in D and let cD(w′) = B∨xk+1 and cD(w′′) = C∨xk+1.
Since Πk is π-half-ordered, either B or C is k-small. Assume without loss of gen-
erality that B is k-small.

Recall that there is no resolution in D on variables in Vark
π. Thus, for all

v ∈ Ai, it follows that B is a subclause of cD(v), and by property (b), we have
the following crucial property:

For all v ∈ Ai, B is a subclause of ci−1(v). (8)

By property (a), Ai remains upward closed in Di−1. Accordingly, as the first
step, for any v �∈ Ai we set ci(v):=ci−1(v) and we leave its incoming edges
unchanged.
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Next, we update vertices v ∈ Ai in an arbitrary D-topological order main-
taining the property that ci(v) = ci−1(v) or ci(v) = ci−1(v)∨xk+1. In particular,
ci(v) = ci−1(v) whenever ci−1(v) contains the variable xk+1.

First we set ci(wi):=ci−1(wi) ∨ xk+1 and replace the incoming edges by a
weakening edge from w′′. This is possible since ci−1(wi) = cD(wi) by property
(c) and, hence, does not contain xk+1 by virtue of being in M .

For v ∈ Ai \ {wi}, we proceed as follows.

1. If xk+1 ∈ ci−1(v), keep the clause but replace incoming edges with a weaken-
ing edge (w′, v). This is well-defined by (8). Also, since w′ < w < v in D, we
maintain property (a).

2. If ci−1(v) = Res(ci−1(u), ci−1(w)) on xk+1 where xk+1 ∈ ci−1(u), set
ci(v):=ci−1(v) ∨ xk+1 – equivalently, ci−1(v) ∨ ci(u) – and replace incoming
edges by a weakening edge (u, v).

3. If ci−1(v) is weakened from ci−1(u) and xk+1 �∈ ci−1(v), set ci(v):=ci−1(v) ∨
ci(u). In other words, we append the literal xk+1 to ci(v) if and only if this
was previously done for ci(u).

4. Otherwise, xk+1 /∈ ci−1(v) and ci−1(v) = Res(ci−1(u), ci−1(w)) on some x�

where 	 > k + 1. In particular, xk+1 /∈ Var(ci−1(u)) ∪ Var(ci−1(w)). Set
ci(v):=Res(ci(u), ci(w)) that is, like in the previous item, we append xk+1 if
and only if it was previously done for either ci(v) or ci(w). Since 	 > k + 1,
this step remains π-half-ordered.

This completes our description of Di. It is straightforward to verify that Ds

is a π-half-ordered resolution + weakening proof without resolutions on xk+1.
To finally construct Πk+1, we reconnect Ds to U along Lk and then remove

any weakenings introduced in Ds. This may require adding new nodes, as it
may be the case that cs(v) �= cD(v) for some v ∈ Lk. But, in this case, it is
straightforward to verify, using (8), that there is a vertex w ∈ dclD(M) \ {M}
such that cD(v) = Res(cs(w), cs(v)) on xk+1, and this resolution is half-ordered.
In fact, w can be taken to be a parent in D of some nodes in M . Thus, when
necessary we add to Ds a new node ṽ labeled by Res(cs(w), cs(v)) and add the
edges (v, ṽ) and (w, ṽ).

Denote by Π̃k+1 the result of connecting Ds and U along the vertices in
Lk and this newly added collection of vertices. Since neither Ds nor U contain
resolutions on xk+1 except for those in the derivations of the clauses just added
to Ds, it follows that Π̃k+1 is a π-half-ordered resolution + weakening refutation
that is ordered up to k +1. Let Πk+1 be obtained by contracting all weakenings.

It only remains to analyze its size (note that a priori it can be doubled at
every step, which is unacceptable). Since

|Πk+1| ≤ |Πk| + |Lk|, (9)

we only have to control |Lk|. For that we will keep track of the invariant
|dclΠk

(Lk)|; more precisely, we claim that

|dclΠk+1(Lk+1)| ≤ |dclΠk
(Lk)|. (10)
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Let us prove this by constructing an injection from dclΠk+1(Lk+1) to dclΠk
(Lk);

we will utilize the notation from above.
First note that the resolution + weakening refutation Π̃k+1 and its

weakening-free contraction Πk+1 can be related as follows. For every node
v ∈ V (Πk+1) there exists a node v∗ ∈ V (Π̃k+1) with c

˜Πk+1
(v∗) ⊇ cΠk+1(v)

which is minimal among those contracting to v. If v is an axiom node of Πk+1

then so is v∗ in Π̃k+1. Otherwise, if u and w are the two parents of v, and if u′ and
w′ are the corresponding parents of v∗ (v∗ may not be obtained by weakening
due to the minimality assumption), then c

˜Πk+1
(u∗) is a subclause of c

˜Πk+1
(u′)

and c
˜Πk+1

(w∗) is a subclause of c
˜Πk+1

(w′). We claim that (v �→ v∗) |dclΠk+1 (Lk+1)

(which is injective by definition) is the desired injection. We have to check that
its image is contained in dclΠk

(Lk).
Fix v ∈ dclΠk+1(Lk+1). Then by definition of Lk, either v is an axiom or

both its parents are not (k + 1)-small. By the above mentioned facts about the
contraction Π̃k+1 → Πk+1, this property is inherited by v∗. In particular, v∗ �∈
{w̃ | w ∈ Lk} as all nodes in this set have at least one (k + 1)-small parent due
to half-orderedness. Finally, since the corresponding clauses in D and Ds differ
only in the variable xk+1, v∗ cannot be in U , for the same reason (recall that all
axioms are in D). Hence v∗ ∈ V (Ds) = V (D) = dclΠk

(Lk).
Having thus proved (10), we conclude by the obvious induction that |Lk| ≤

|dclΠk
(Lk)| ≤ |dclΠ0(L0)| ≤ |Π|. Then (9) implies |Πn−1| ≤ n|Π|, as desired.

At last, we must show the equivalence holds for the corresponding CDCL
system. We provide a sketch of the proof.

Theorem 4. For any fixed order π on the variables, CDCL(π-D,DECISION-L)
is polynomially equivalent to π-half-ordered resolution.

Proof. As above, assume π = id. The fact that CDCL(π-D,DECISION-L) poly-
nomially simulates π-half ordered resolution is almost trivial. A π-half-ordered
resolution step deriving Res(C ∨ xi,D ∨ xi) can be directly simulated by con-
structing a trail t that falsifies C ∨ D and contains a single unit propagation on
xi. This is possible since C or D is i-small. Then C ∨ D can be easily learned
using t.

The other direction is just slightly more involved. It suffices to show that for

a learning step (τ, t)
(D,t∗)
=⇒ (τ ∪{D}, t∗), there is a short π-half-ordered resolution

proof of D from τ . Any learned clause can be thought of naturally as the result
of a sequence of resolutions; there are clauses C1, . . . , Ck+1 in τ and variables
xi1 , . . . , xik

assigned by unit propagation in t from which we can inductively
define

C ′
k+1

def= Ck+1 and C ′
j
def= Res(Cj , C

′
j+1)

where Cj and C ′
j+1 are resolvable on xij

and D = C ′
1. These resolutions may

not all be π-half-ordered, but they can be reordered and duplicated to derive
the same clause while maintaining π-half-orderedness. Formally, we define by
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double induction a different collection of derivable clause: for γ and j in [k + 1]
satisfying j < γ, Cγ,γ

def= Cγ and

Cγ,j
def=

{
Res(Cj,1, Cγ,j+1) Cj,1 and Cγ,j+1 are resolvable on xij

Cγ,j+1 otherwise.

Because of π-D, the only literals appearing in Cj that are potentially larger than
xij

(with respect to π) are the other variables assigned by unit propagation in t
and resolved on in the derivation of C ′

1. One can show that the clause Cj,1 is the
result of “washing out” these other literals so that xij

appears maximally. Since
all resolutions on are clauses of this form, they are all π-half-ordered. And for
the learning scheme DECISION-L, the learned clause C ′

1 contains only decision
variables in t, so this reorganizing of resolutions does not affect the final derived
clause; it can be verified that Ck+1,1 = C ′

1 = D. In total, this derivation of
Ck+1,1 (and, hence, D) is π-half ordered and has at most n2 resolutions.

4 CDCL(FIRST-L, π-D) =p General Resolution

This result is by far the most technical. It would have been impossible to give
a satisfying treatment in the space available, but in the interest of providing
some idea of its formal aspects, we briefly discuss our approach. As in the pre-
vious section, the proof is divided into two parts: we prove that each system is
equivalent to an intermediate system we call π-trail resolution.

Definition 8. Fix an order π on the variables. The proof system π-trail resolu-
tion is defined as follows. Its lines are either clauses or trails, where the empty
trail is an axiom. It has the following rules of inference:

t

[t, xi
d= a]

, (Decision rule)

where xi is the π-smallest index such that xi does not appear in t and a ∈ {0, 1}
is arbitrary;

t C

[t, xi
u= a]

, (Unit propagation rule)

where C|t = xa
i ;

C ∨ xa
i D ∨ x1−a

i t

C ∨ D
, (Learning rule)

where (C ∨ D)|t = 0, (xi
∗= a) ∈ t and all other variables of C appear before xi

in t.
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Without the unit propagation rule, this is just π-half-ordered resolution,
modulo additional traffic in trails. It follows almost directly from its definition
that π-trail resolution is polynomially equivalent to CDCL(FIRST-L, π-D) (and
even CDCL(π-D)). Our main technical contribution is proving the following.

Theorem 5. For any fixed order π on the variables, π-trail resolution polyno-
mially simulates general resolution.

The key observation is that, due to the unit propagation rule, π-trail resolu-
tion becomes significantly more powerful when the underlying formula has many
unit clauses. Thus, we design the simulation algorithm to output a derivation of
all unit clauses appearing in the given refutation Π and then recursively apply it
to gain access to more unit clauses throughout the procedure. At first glance, it
might seem reasonable to recursively apply the simulation algorithm to various
restrictions of Π, but restriction as an operation has two flaws with regards to
our objectives. First, the results of different restrictions on proofs often overlap;
for example, when viewing restriction as an operation on resolution graphs, the
graphs of Π|xi=0 and Π|xi=1 will likely share vertices from G(Π). This leads to
an exponential blow-up in the size of the output if one is not careful. Second,
restrictions may collapse parts of the Π; for example, if ρ falsifies an axiom of
Π, then Π|ρ is the trivial refutation and it is impossible to extract anything
from it by recursively applying our simulation algorithm.

To make this approach feasible, we introduce a new operator, which may be
of independent interest, called variable deletion; it is an analogue of restriction
for sets of variables as opposed to sets of variable assignments. This operator has
the property that it always yields a nontrivial refutation (for proper subsets of
variables), and its size and structure are highly regulated by the size and struc-
ture of the input refutation. This allows for a surgery-like process; we simulate
small local pieces of the refutation and then stitch them together into a new
global refutation. For complete details, see the full version of this paper [16].

5 Conclusion

Our work continues the line of research aimed at better understanding theo-
retical limitations of CDCL solvers. We have focused on the impact of decision
strategies, and we have considered the simple strategy that always chooses the
first available variable under a fixed ordering. We have shown that, somewhat
surprisingly, the power of this model heavily depends on the learning scheme
employed and may vary from ordered resolution to general resolution.

In practice, the fact that CDCL(DECISION-L, π-D,ALWAYS-C,ALWAYS-U)
is not as powerful as resolution supports the observation that CDCL solvers
with the ordered decision strategy are often less efficient than those with more
powerful decision strategies like VSIDS. But, although DECISION-L is an assert-
ing learning strategy, most solvers use more efficient asserting strategies like
1-UIP. A natural open question then is what can be proved if DECISION-L
is replaced with some other amendment modeling a different, possibly more
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practical asserting learning scheme? Furthermore, what is the exact strength of
CDCL(π-D,ALWAYS-C,ALWAYS-U)?
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Abstract. In recent years there has been an increasing interest in study-
ing proof systems stronger than Resolution, with the aim of building
more efficient SAT solvers based on them. In defining these proof sys-
tems, we try to find a balance between the power of the proof system
(the size of the proofs required to refute a formula) and the difficulty of
finding the proofs. Among those proof systems we can mention Circular
Resolution, MaxSAT Resolution with Extensions and MaxSAT Resolu-
tion with the Dual-Rail encoding.

In this paper we study the relative power of those proof systems from a
theoretical perspective. We prove that Circular Resolution and MaxSAT
Resolution with extension are polynomially equivalent proof systems.
This result is generalized to arbitrary sets of inference rules with proof
constructions based on circular graphs or based on weighted clauses. We
also prove that when we restrict the Split rule (that both systems use)
to bounded size clauses, these two restricted systems are also equivalent.
Finally, we show the relationship between these two restricted systems
and Dual-Rail MaxSAT Resolution.

1 Introduction

The Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) problems are cen-
tral in computer science. SAT is the problem of, given a CNF formula, deciding if it
has an assignment of 0/1 values that satisfy the formula. MaxSAT is the optimiza-
tion version of SAT. Given a CNF formula, we want to know what is the maximum
number of clauses that can be satisfied by an assignment. SAT and the decision
version of MaxSAT are NP-Complete. Problems in many different areas like plan-
ning, computational biology, circuit design and verification, etc. can be solved by
encoding them into SAT or MaxSAT, and then using a SAT or MaxSAT solver.

Resolution based SAT solvers can handle huge industrial formulas successfully,
but on the other hand, seemingly easy tautologies like the Pigeonhole Principle

Research partially supported by the EU H2020 Research and Innovation Programme
under the LOGISTAR project (Grant Agreement No. 769142), the MINECO-FEDER
project TASSAT3 (TIN2016-76573-C2-2-P) and the MICINN project PROOFS
(PID2019-109137GB-C21).

c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 166–181, 2020.
https://doi.org/10.1007/978-3-030-51825-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_13&domain=pdf
http://orcid.org/0000-0003-1646-7177
http://orcid.org/0000-0001-5883-5746
https://doi.org/10.1007/978-3-030-51825-7_13


Equivalence Between Systems Stronger Than Resolution 167

require exponentially long Resolution refutations [8]. An important research direc-
tion is to implement SAT solvers based on stronger proof systems than Resolution.
To be able to do that, the proof systems should not be too strong, given that the
stronger a proof system is, the harder it is to find efficient algorithms to find refu-
tations for the formulas. This is related to the notion of automatizability [2,5].

In the last few years, a number of proof systems somewhat stronger than
Resolution have been defined. Among them are MaxSAT Resolution with Exten-
sion [13], Circular Resolution [1], Dual-Rail MaxSAT [9], Weighted Dual-Rail
MaxSAT [3,14] and Sheraly-Adams proof system [7,15]. All these systems have
polynomial size proofs of formulas like the Pigeonhole Principle. Atserias and
Lauria [1] showed that Circular Resolution is equivalent to the Sheraly-Adams
proof system. Larrosa and Rollón [13] showed that MaxSAT Resolution with
Extension can simulate Dual-Rail MaxSAT. In this paper, we show that MaxSAT
Resolution with Extension is equivalent to Circular Resolution. This equivalence
is parametric on the set of inference rules used by both proof systems.

Both Circular Resolution and MaxSAT Resolution with Extension use a rule
called Split or Extension, where from a clause A, we can obtain both A ∨ x
and A ∨ ¬x. We can add a restriction on this rule, and therefore on the proof
system. If we bound the number of literals of A to be used in the split rule by
k, for k ≥ 0, we can talk about MaxSAT Resolution with k-Extension, or about
k-Circular Resolution. In the present article, we also prove the equivalence of
both systems, k-Circular Resolution and MaxSAT Resolution with k-Extensions,
and improve the result of [13], proving that these restricted proof systems can
also simulate Dual-Rail MaxSAT and Weighted Dual-Rail MaxSAT.

This paper proceeds as follows. In the preliminarySect. 2we introduceCircular,
Weighted and Dual-Rail proofs. In Sect. 3, we prove some basic facts about these
proof systems. The equivalence of Circular Resolution and MaxSAT Resolution
with Extension is proved in Sect. 4. In Sect. 5, we describe a restriction of these two
proof systems, show that they are equivalent, and prove that they can simulate
Weighted Dual-Rail MaxSAT.

2 Preliminaries

We consider a set x1, . . . , xn of variables, literals of the form xi or ¬xi, clauses
A = l1 ∨· · ·∨ lr defined as sets of literals, and formulas defined as sets of clauses.
Additionally, we also consider weighted formulas, defined as multisets of the form
F = {(A1, u1), . . . , (Ar, ur)}, where the Ai’s are clauses and the ui’s are finite
(positive or negative) integers. These integers ui, when positive, describe the
number of occurrences of the clause Ai. When they are negative, as we will see,
they represent the obligation to prove these clauses in the future. Notice also
that we do not require Ai �= Aj , when i �= j, thus we deal with multisets. We
say that two weighted formulas are (fold-unfold) equivalent, noted F1 ≈ F2, if
for any clause A, we have

∑
(A,u)∈F1

u =
∑

(A,v)∈F2
v. Notice that, contrarily to

traditional Partial MaxSAT formulas, we do not use clauses with infinite weight.
An inference rule is given by a multi-set of antecedent clauses and a multi-set of

consequent clauses where any truth assignment that satisfies all the antecedents,
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also satisfies all the consequent clauses. Notice that the MaxSAT Resolution

rule was originally proposed to solve MaxSAT, and therefore, it satisfies additional
properties. The rule preserves the number of unsatisfied clauses, for any assign-
ment. Here, following the original idea of Ignatiev et al. [9], we use these MaxSAT
techniques to solve SAT.

Definition 1. These are some examples of inference rules defined in the litera-
ture (with possibly different names):

where, in the MaxSAT Resolution rule, if A = x1 ∨ · · · ∨ xr, then A denotes
the set of |A| clauses {¬x1, x1 ∨ ¬x2, x1 ∨ x2 ∨ ¬x3, . . . , x1 ∨ · · · ∨ xr−1 ∨ ¬xr}.

Notice that, in the previous definition, Symmetric Cut is a special case of
Cut where A = B. Similarly, it is also a special case of MaxSAT Resolution

where A = B, since x∨A∨A only contain tautologies that are removed. Notice
that 0-Split can be generalized to the k-Split rule where Split is applied
only to clauses A of length at most k. Below, we will also see that Split and
Extension (defined in Sect. 3) are in essence the same inference rule.

Traditionally, fixed a setR of inference rules, a set of hypothesesH and a goalC,
a proof of H � C is a finite sequence of formulas that starts with H, ends in C, and
such that any other formula is one of the consequent of an inference rule in R whose
antecedents are earlier in the sequence. These proofs can naturally be represented
as bipartite DAGs, where nodes are either formulas or inference rules and edges
denote the occurrence of a formula in the antecedents or the consequent of the rule.

In this paper we consider three distinct more complicated notions of proof, or
proof systems: Circular resolution [1], MaxSAT Resolution with Extension [13],
and Dual-Rail MaxSAT [9] or its generalization Weighted Dual-Rail MaxSAT [3].

All these proof systems will share the same inference rules, but they will use
them in distinct ways (despite they have the same name). Thus, for instance, in
the weighted context, the Cut rule will replace the premises x∨A and ¬x∨B by
the conclusion A ∨ B. Therefore, in the weighted context, after the application
of the cut, these premises are no longer available for further cuts.

All these proof systems are able to prove the Pigeonhole Principle in polyno-
mial size. In this paper we will study the relative power of these proof systems.

2.1 Circular Proofs

First, we introduce Circular Proofs as defined by Atserias and Lauria [1]:
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Definition 2 (Circular Proof). Fixed a set of inference rules R, a set of
hypotheses H and a goal C, a circular proof of H � C is a bipartite directed graph
(I, J,E) where nodes are either inference rules (R ∈ I) or formulas1 (A ∈ J),
and edges A → R ∈ E denotes the occurrence of clause A in the antecedents of
rule R and edges R → A ∈ E the occurrence of clause A in the consequent of R.

Given a flow assignment Flow : I → N
+ to the rules, we define the balance

of the clause as:

Bal(A) =
∑

R∈Nin(A)

Flow(R) −
∑

R∈Nout(A)

Flow(R)

where N in(A) = {R ∈ I | R → A} and Nout(A) = {R ∈ I | A → R} are the sets
of neighbours of a node.

In order to ensure soundness of a circular proof, it is required the existence
of a flow assignment satisfying Bal(A) ≥ 0, for any formula A ∈ J \ H, and
Bal(C) > 0, for the goal C.

Atserias and Lauria [1] define Circular Resolution as the circular proof system
where the set of inference rules is fixed to R = {Axiom, SymmetricCut,Split}
and prove its soundness.

We will assume that the set of inference rules allows us to construct a constant
size circular proof where formula A is derivable from A in one or more steps.
The inference rule Axiom is included in R for this purpose (in the third proof of
Fig. 1, x ∨ ¬x is proved, which shows that Axiom rule is indeed not necessary).
If A is the empty clause, we can use the Split rule or even the 0-split rule and
the Cut or the Symmetric Cut rules. If A is of the form A = x ∨A′, we have
two possibilities, as shown in Fig. 1.

Fig. 1. Three ways to proof A from A.

The length of a proof is defined as the number of nodes of the bipartite graph.

2.2 Weighted Proofs

Second, we also introduce Weighted Proofs, following the ideas of Larrosa and
Heras [12] and Bonet et al. [4,6] for positive weights and Larrosa and Rollón [13] for
1 We keep the name formula for consistency with the original definition, although they

are really clauses.
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positive and negative weights. The main idea is that, when we apply an inference
rule, we replace the antecedents by the consequent, instead of adding the conse-
quent to the set of proved formulas. As a consequence, formulas cannot be reused.
This is similar to the definition of Read Once Resolution [10]. We use weighted for-
mulas, i.e. multi-sets of clauses instead of sets of clauses and, or more compactly,
pairs (A, u) where integer u represents the number of occurrences of clauseA. This
makes sense since non-reusability of clauses implies that it is not the same hav-
ing one or two copies of the same clause. Allowing the use of negative weights, we
can represent clauses that are not proved yet and will be proved later. Notice that
these proof systems were originally designed to solve MaxSAT. Here, we use them
to construct proofs of SAT problems. Hence, the original formulas are unweighted,
and we only use weighted formulas in the proofs.

Definition 3 (Weighted Proof). Fixed a set of inference rules R, a set of
hypotheses H and a goal C, a weighted proof of H � C is a sequence F1 � · · · � Fn

of weighted formulas such that:

1. F1 = {(A, uA) | A ∈ H} for some arbitrary and positive weights uA ≥ 0.
2. Fn contains the goal (C, u) with strictly positive weight u > 0, and possibly

other clauses, all of them with positive weight.
3. For every proof step Fi � Fi+1, either

(a) (regular step) there exist an inference rule A1, . . . , Ar � B1, . . . , Bs ∈ R
and a positive weight u > 0 such that

Fi+1 = Fi \ {(A1, u), . . . , (Ar, u)} ∪ {(B1, u), . . . , (Bs, u)}
or,

(b) (fold-unfold step) Fi+1 ≈ Fi.

Alternatively, fold-unfold steps may be defined as the application of the Fold
and Unfold rules defined as:

(C, u)(C, v)
(C, u + v)

Fold

(C, u + v)
(C, u)(C, v)

Unfold

Notice that, in regular steps, weights are positive integers. Instead, in the Fold
and Unfold rules, u and v can be negative. Clauses with weight zero are freely
removed from the formula, as well as tautological clauses x ∨ ¬x ∨ A. Notice
that only one fold-unfold step is necessary between two regular steps, just to get
(A, u) for every antecedent A of the next regular step, u being the weight of this
next step. Moreover, only a constant-bounded number of Fold and Unfold

rule applications is needed in this fold-unfold step. This motivates the definition
of the length of a proof as its number of regular steps.

Larrosa and Heras [12] define MaxSAT Resolution as a method to solve
MaxSAT using positive weighted proofs with the MaxSAT Resolution rule.
Bonet et al. [4,6] prove the completeness of this method for MaxSAT. The
method is complete even if we restrict the hypotheses H to have weight one.
Notice that the weighted proof system with the Cut rule is incomplete if we
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restrict hypotheses to have weight one. In other words, resolution is incomplete
if we restrict hypotheses to be used only once like in Read Once Resolution [10].

Notice also that the MaxSAT resolution rule defined in [12] allows the weights
of the antecedents to be different. Our version using equal weights for both
antecedents is equivalent using the fold and unfold rules.

Recently, Larrosa and Rollón [13] define MaxSAT Resolution with Extension
as the weighted proof system using R = {MaxSATResolution,Split} as
inference rules. In fact, they use a rule called Extension that, as we will see
below, is equivalent to the Split rule. They only explicitly mention the Fold

rule, but notice that the Unfold is a special case of the Extension rule.
Traditionally, we say that formulas F1 subsumes another formula F2, noted

F1 ⊆ F2, if for every clause A2 ∈ F2, there exists a clause A1 ∈ F1 such that
A1 ⊆ A2. Instantiating a variable by true or false in a formula F2 results in a
formula F1 ⊆ F2 subsuming it. Moreover, for most proof systems, if F1 ⊆ F2

and we have a proof of F2, we can easily construct a shorter proof of F1. In the
case of weighted proofs, we have to redefine these notions.

Definition 4 (Subsumption). We say that a weighted formula F1 subsumes
another weighted formula F2 if, either

1. F2 = {(B1, v1), . . . , (Bs, vs)} and there is a subset {(A1, u1), . . . , (Ar, ur)} ⊆
F1 such that

∑r
i=1 ui ≥ ∑s

j=1 vj and, for all i = 1, . . . , r and j = 1, . . . , s,
Ai ⊆ Bj, or

2. We can decompose F1 ≈ F ′
1 ∪ F ′′

1 and F2 ≈ F ′
2 ∪ F ′′

2 such that F ′
1 subsumes

F ′
2 and F ′′

1 subsumes F ′′
2 .

We say that a set of inference rules R is closed under subsumption if when-
ever F2 �R F ′

2 in one step and F1 subsumes F2, there exists a formula F ′
1 such

that F1 �R F ′
1 in linear2 number of steps and F ′

1 subsumes F ′
2.

The definition of a proof system being closed under subsumption is a gener-
alization of the definition of being closed under restrictions. If F1 subsumes F2,
it is not necessarily true that F2 under a restriction is equal to F1. For instance,
if F1 = {a,¬x ∨ b} and F2 = {x ∨ a,¬x ∨ b}, F1 subsumes F2, but F1 is not the
result of applying a restriction to F2.

Notice that MaxSAT Resolution is not closed under subsumption. For
example, fromF2 = {(x∨a, 1), (¬x∨b, 1)} we deriveF ′

2 = {(a∨b, 1), (x∨a∨¬b, 1),
(¬x ∨ b ∨ a, 1)}. However, from F1 = {(a, 1), (¬x ∨ b, 1)} that subsumes F2 we
cannot derive any formula subsuming F ′

2. If in addition we also use Split, from
F1, we can derive F ′

1 = {(a ∨ b, 1), (a ∨ ¬b, 1), (¬x ∨ b, 1)} that subsumes F ′
2.

Lemma 1. Weighted proofs using R = {MaxSATResolution,Split}, R =
{Cut} or R = {Split} are all closed under subsumption.

The union of rule sets closed under subsumption is closed under subsumption.

2 Linear in the number of variables of F1.
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2.3 Weighted Dual-Rail Proofs

Third, we introduce the notion of Weighted Dual-Rail Proofs introduced
by Bonet et al. [3] based on the notion of Dual-Rail Proofs introduced in [9].
Weighted Dual-Rail MaxSAT proofs may be seen as a special case of weighted
proofs where all clause weights along the proof are positive.

The dual-rail encoding of the clauses H is defined as follows: Given a clause A
over the variables {x1, . . . , xn}, Adr is the clause over the variables {p1, . . . , pn,
n1, . . . , nn} that results from replacing in A the occurrences of xi by ¬ni, and
occurrences of ¬xi by ¬pi. The semantics of pi is “variable xi is positive” and
the semantics of ni is “the variable xi is negative”.

Definition 5 (Weighted Dual-Rail Proof). Fixed a set of hypotheses H, a
weighted dual-rail proof of H � is a sequence F1 � · · · � Fm of positively
weighted formulas over the set of variables {p1, . . . , pn, n1, . . . , nn}, such that:

1. F1 = {(Adr, uA) | A ∈ H} ∪ {(¬pi ∨ ¬ni, ui), (pi, vi), (ni, vi) | i = 1, . . . , n},
for some arbitrary positive weights uA, ui and vi.

2. ( , 1 +
∑n

i=1 vi) ∈ Fm.
3. For every step Fi � Fi+1, we apply the MaxSAT Resolution rule (regular

step) or the fold-unfold step like in weighted proofs.

(Unweighted) Dual-Rail MaxSAT is the special case were weights vi’s are
equal to one. In the original definition [9], weights uA’s and ui are equal to
infinite. The use of infinite weights and negative weights together introduce some
complications. Here, we prefer to use arbitrarily large, but finite weights, which
result in an equivalent proof system.

Notice that, contrarily to generic weighted proofs, here weights are all pos-
itive. Notice also that, since weights uA’s and ui are unrestricted, from clauses
{(¬pi∨¬ni, ui), (pi, vi), (ni, vi)} we can derive

∑n
i=1 vi copies of the empty clause

plus (pi∨ni, vi) for every i using the MaxSAT Resolution rule. We have to derive
at least one more empty clause to prove unsatisfiability.

3 Basic Facts

In this section we prove that MaxSAT Resolution with Extension [13] may be
formulated in different but equivalent ways.

First, notice that the Extension rule, defined in [13]:

does not fit to the weighted proof scheme (not all consequent formulas have
the same weight in the inference rule). However, it is easy to prove that, in the
construction of weighted proofs, this rule is equivalent to the Split rule:

Lemma 2. The Split and Extension rules are equivalent in weighted proof
systems.
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Proof. We can simulate a step of Split as:

(A, u)
Extension(A, u)

(A,−u) (x ∨ A, u) (¬x ∨ A, u)
Fold(x ∨ A, u) (¬x ∨ A, u)

Conversely, we can simulate a step of Extension as:

Unfold(A, u) (A,−u)
Split(A,−u) (x ∨ A, u) (¬x ∨ A, u)

�

Second, we will prove that MaxSAT Resolution with Extension may be for-
mulated using the Symmetric Cut rule instead of the MaxSAT Resolution

rule. As we have already said, the Symmetric Cut rule is a special case of
the MaxSAT Resolution rule, where A = B; i.e. all the clauses of the form
x∨A∨¬B disappear (see comments after Definition 1). Interestingly, this limited
form of MaxSAT Resolution is polynomially equivalent to the normal MaxSAT
Resolution in the presence of Split (or equivalently Extension).

Lemma 3. Weighted proofs using R = {MaxSATResolution, Split} are
polynomially equivalent to weighted proofs using R = {SymmetricCut, Split}.
Proof. Symmetric Cut is a particular case of MaxSAT resolution, where
A = B. Therefore, the equivalence is trivial in one direction.

In the opposite direction, we have to see how to simulate one step of
MaxSAT resolution with a linear number of Symmetric Cut and Split

steps. Let A = a1 ∨ · · · ∨ ar and B = b1 ∨ · · · ∨ bs.

(x ∨ A, u) (¬x ∨ B, u)
Split(x ∨ A ∨ ¬b1, u) (x ∨ A ∨ b1, u)

(¬x ∨ B, u)
Split(x ∨ A ∨ ¬b1, u) (x ∨ A ∨ b1 ∨ ¬b2, u) (x ∨ A ∨ b1 ∨ b2, u)

(¬x ∨ B, u) (s − 2) × Split(x ∨ A ∨ B, u)
(x ∨ A ∨ ¬b1, u) · · · (x ∨ A ∨ b1 ∨ · · · ∨ bs−1 ∨ ¬bs, u)

(¬x ∨ B, u)
r × Split(x ∨ A ∨ B, u) (¬x ∨ A ∨ B, u)

(x ∨ A ∨ B, u) (¬x ∨ B ∨ A, u)
Symmetric Cut(A ∨ B, u)

(x ∨ A ∨ B, u) (¬x ∨ B ∨ A, u)

In blue we mark the clauses that are added by the last inference step. �

Notice that in the previous proof, the equivalence doesn’t follow for the
subsystem where the number of literals on the formula performing the Split
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is bounded. So the previous argument does not show the equivalence between
MaxSAT Resolution plus k-Split and Symmetric Cut plus k-Split.

Lemmas 2 and 3 allow us to conclude:

Corollary 1. MaxSAT Resolution with Extension [13] is equivalent to weighted
proofs using rules R = {SymmetricCut, Split}.

The set R in Corollary 1 are precisely the rules used to define Circular Res-
olution [1] (except for the use of the Axiom rule that is added for a minor
technical reason). This simplifies the proof of equivalence of both proof systems.

4 Equivalence of Circular Resolution and MaxSAT
Resolution with Extension

In this Section we will prove a more general result: the equivalence between a
proof system based on circular proofs with a set of inference rules R and a proof
system based on weighted proofs using the same set of inference rules R.

First we prove the more difficult direction, how we can simulate a circular
proof with a weighted proof.

Lemma 4. Weighted proofs polynomially simulate Circular proofs using the
same set of inference rules.

Proof. Assume we have a circular proof (I, J,E) with formula nodes J , inference
nodes I, edgesE, hypotheses H ⊂ J and goalC ∈ J . Without loss of generality, we
assume that the hypotheses formulas do not have incoming edges: for any A ∈ H,
we haveN in(A) = ∅. Notice that removing these incoming edges in a circular proof
only decreases the balance of hypotheses formulas (that are already allowed to have
negative balance) and increases the balance of the origin of these edges.

Now, assign a total ordering µ : I ∪ J → {1, . . . , |I| + |J |} to each node with
the following restrictions: 1) hypotheses nodes H go before any other node, and
2) for every inference node R, the formulas it generates are placed after R in the
ordering µ. So, for any R ∈ I and A ∈ Nout(R) we have µ(R) < µ(A). Notice
that, if hypotheses nodes do not have incoming edges, there always exists such
an ordering.

We construct the weighted proof F0 � F|H| � · · · � F|I|+|J| defined by:

F0 = {(A,−Bal(A)) | A ∈ H}
Fm = {(A,F low(R)) | (A → R) ∈ E ∧ µ(A) ≤ m < µ(R)} ∪

{(A,−Flow(R)) | (A → R) ∈ E ∧ µ(R) ≤ m < µ(A)} ∪
{(A,F low(R)) | (R → A) ∈ E ∧ µ(R) ≤ m < µ(A)} ∪
{(A,Bal(A)) | A ∈ J \ H ∧ µ(A) ≤ m}

for any m ∈ {|H|, . . . , |I| + |J |}.
Notice that Fm only depends on the edges that connect a node smaller or

equal to m with a node bigger than m. Notice also that by definition of µ we
never have the situation (R → A) ∈ E ∧ µ(A) < µ(R).
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Now, we will prove that this is really a weighted proof.
Since all clauses from H only have outgoing edges, their balance is neg-

ative, and the weights in F0 are positive. Since, according to µ, the small-
est nodes are the hypotheses, and they do not have incoming edges, we have
F|H| = {(A,F low(R)) | (A ∈ H ∧ (A → R) ∈ E}. Moreover, as Bal(A) =
−∑

R∈Nout(A) Flow(R) ≤ 0, we can obtain F|H| from F0 by fold-unfold step.
For the rest of steps Fi � Fi+1 with i ≥ |H|, we distinguish two cases

according to the kind of node at position i + 1:

1. For formula nodes A ∈ J , with µ(A) = i + 1.
By definition of µ, for any R ∈ N in(A), we have µ(R) < µ(A). For the outgoing
nodes, we can decompose them into Nout(A) = I1 ∪ I2, where, for any R ∈ I1,
µ(R) > µ(A), and for any R ∈ I2, µ(R) < µ(A). In Fi, we have (A,F low(R)),
where R ∈ N in(A), and, for every R ∈ I2, we also have (A,−Flow(R)).
Applying the Fold and Unfold rules, we derive the set of clauses
{(A,F low(R)) | R ∈ I1} plus (A,m), where m =

∑
R∈N in(A) Flow(R) −

∑
R∈Nout(A) Flow(R) ≥ 0 is the balance of A.

2. Inference nodes R ∈ I, with µ(R) = i + 1.
In this case, for all consequent A ∈ Nout(R) of R, we have µ(A) > µ(R).
However, the antecedents can be decomposed into two subsets J1 = {A ∈
N in(R) | µ(A) < µ(R)} and J2 = {A ∈ N in(R) | µ(A) > µ(R)}. In Fi, we
only have the clauses of J1. In order to apply the same rule R with weights,
we have to also introduce the clauses of J2. This can be done applying the
Unfold rule that, from the empty set of antecedents, deduces (A,F low(R))
and (A,−Flow(R)), for any A ∈ J2. After that, we have no problem to apply
the same rule R with weight Flow(R), obtaining Fi+1.

�
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Example 1. Consider the third circular proof of Fig. 1. We construct the corre-
sponding weighted proof, as described in the proof of Lemma4, where nodes are
ordered from top to bottom according to µ, and all inference nodes have the
same flow:

Lemma 5. Circular proofs polynomially simulate weighted proofs using the
same set of inference rules.

Proof. Assume we have a weighted proof F1 � F2 � · · · � Fn, where F1 are
the hypotheses, and Fn contains the goal and the rest of clauses in Fn have
positive weights. We will construct a circular resolution proof with three kinds
of formula nodes: J1 called axiom nodes, J2 called auxiliary nodes (used only
in the base case) and J3 called normal nodes and inference nodes I such that
there exist a flow assignment Flow : I → N and balance Bal : J → N satisfying
1) the set of axiom nodes A ∈ J1 is the set of hypotheses in F1 and satisfy
Bal(A) = −∑

(A,c)∈F1
c 2) the auxiliary nodes all have positive balance and

3) for every clause (A, u) in Fn, there exists a unique normal node A ∈ J3 that
satisfies Bal(A) =

∑
(A,c)∈Fn

c. The construction is by induction on n.
If n = 1, for any hypothesis A of the weighted proof, let uA =

∑
(A,u)∈F1

u.
We construct the constant-size circular proof that proves A from A with an
axiom node A with balance −uA, a normal node A with balance uA, and the
necessary auxiliary nodes. (Recall that we assume that the set of inference rules
R allow us to infer A with balance uA, from A with balance −uA, for any clause
A, using a constant-size circular proof).

Assume now, by induction hypothesis, that we have constructed a circular
resolution corresponding to F1 � · · · � Fi. Depending on the MaxSAT resolution
rule used in the step Fi � Fi+1, we have two cases:

1. If the last MaxSAT inference is a Fold or Unfold, the same circular reso-
lution proof constructed for F1 � · · · � Fi works for F1 � · · · � Fi+1. Only in
the special case of unfolding ∅ � (A, u), (A,−u), if there is no formula node
corresponding to A, we add a lonely normal node A (that will have balance
zero) to ensure property 3).
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2. If it corresponds to any other rule R : A1, . . . , Ar � B1, . . . , Bs, we have
Fi = Fi−1 \ {(A1, u), . . . , (Ar, u)} ∪ {(B1, u), . . . , (Bs, u)}, for some weight u.
We add, to the already constructed circular resolution proof, a new inference
node R with flow Flow(R) = u. We add edges from the formula nodes cor-
responding to Ai’s to the node R. If they do not exist, we add new normal
nodes Bj ’s. Finally, we add an edge from R to every Bj . The addition of these
nodes has the effect of reducing the balance of Ai’s by u, and creating nodes
Bj with balance u, if they did not exist, or increasing the balance of Bj in
u, if it existed. By induction hypothesis, this makes property 3) hold for the
new circular resolution proof and Fi.

Notice that all clauses in F1 have strictly positive weight. Therefore, all axiom
formula nodes in J1 have negative balance and all nodes in J2 positive balance.
However, since clauses in Fi, for i �= 1, n may have negative weight, balance of
normal nodes in J3 can also be negative during the construction of the circular
resolution proof. Since all clauses in Fn have positive weight, at the end of the
construction process, all normal nodes will have positive balance. Therefore, at
the end of the process, the set of hypotheses H will be J1. �

Corollary 2. MaxSAT Resolution with Extension and Circular Resolution are
polynomially equivalent proof systems.

Proof. From Lemmas 2, 3, 4 and 5. �

5 Systems that Simulate Dual-Rail MaxSAT

In this Section, we analyze proof systems weaker than Circular Resolution and
MaxSAT Resolution with Extension. We replace the Split rule by the 0-Split

rule. Relaxing this rule forces us to use the non-symmetric version of the cut
rules, as the following example suggests.

Example 2. Weighted proofs and circular proofs using {SymmetricCut,
0-Split} are not able to prove the unsatisfiability of the following formulas

F1 = {¬x ∨ y, ¬y ∨ z, ¬z ∨ ¬x, x ∨ v, ¬v ∨ w, ¬w ∨ x}

F2 = {¬x, x ∨ y, ¬y}
The previous example suggests that we cannot base a complete proof system

in the Symmetric Cut rule, when we restrict the power of the Split rule. The
natural question is how to compare the power of the Cut and the MaxSAT

Resolution rule, when we are in the context of weighted proofs, and the rules
replace the premises by the conclusions.

Example 3. Consider the formula F1 = {x ∨ y, x ∨ ¬y, ¬x}.
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Assigning weight one to all the hypotheses clauses we can deduce the empty
clause with weight one using MaxSAT Resolution:

(x ∨ y, 1), (¬x, 1), (x ∨ ¬y, 1) � (y, 1), (¬x ∨ ¬y, 1), (x ∨ ¬y, 1)
� (y, 1), (¬y, 1) � ( , 1)

In the first step of this proof, since we are working with weighted proofs,
after using x ∨ y and ¬x, these clauses disappear, and instead we obtain y and
¬x ∨ ¬y.

To simulate such a step with the Cut in the replacement form, we also use
x ∨ y and ¬x, but only obtain y. In the following steps, we don’t have ¬x ∨ ¬y,
but we can use ¬x, that subsumes it. However, we need to use clause ¬x twice
(or ¬x with weight 2), one for the application of the first cut rule, and the other
one to do the job of ¬x ∨ ¬y. Repeating the same idea for the rest of the steps,
we obtain the following proof with the Cut in the context of replacement rule
with weights:

(x ∨ y, 1), (¬x, 2), (x ∨ ¬y, 1) � (y, 1), (¬x, 1), (x ∨ ¬y, 1)
� (y, 1), (¬y, 1) � ( , 1)

In this example, a deeper reorganization of the proof (cutting first y and then
x) allows us to derive the empty clause with weights one for all the premises:

(x ∨ y, 1), (¬x, 1), (x ∨ ¬y, 1) � (x, 1), (¬x, 1) � ( , 1)

However, this is not always possible. For some unsatisfiable formulas, if we assign
weight one to all the premises, we cannot obtain the empty clause using the
Cut rule replacing premises by conclusions. This fact is deeply related to the
incompleteness of the Read Once Resolution [10]. For instance, consider the
unsatisfiable formula {x1 ∨x2, x3 ∨x4,¬x1 ∨¬x3, ¬x1 ∨¬x4, ¬x2 ∨¬x3, ¬x2 ∨
¬x4} from [11]. In the context of weighted proofs, using the replacement Cut

rule, we need to start with clauses with weight bigger than one in order to prove
unsatisfiability. On the other hand, using MaxSAT Resolution all hypotheses
may have weight one, since Bonet et al. [4,6] prove that, for any unsatisfiable
formula, we can derive the empty clause with the MaxSAT Resolution rule
and weight one for all the premises.

The previous example suggests us how we can simulate a weighted proof
using MaxSAT Resolution with a weighted proof using Cut, at the cost of
increasing the weights of the initial clauses.

Lemma 6. Let R be a set of inference rules closed under subsumption.
Weighted proofs using {Cut} ∪ R are polynomially equivalent to weighted

proofs using {MaxSATResolution} ∪ R.

Proof. In one direction the proof is trivial, since MaxSAT Resolution has the
same consequent as the Cut rule plus some additional clauses.

In the other direction, let n be the number of variables of the formula. Let
F1 � · · · � Fm be a weighted proof using {MaxSAT Resolution}∪R. We can
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find an equivalent proof F ′
1 � · · · � F ′

m′ using {Cut}∪R, where m′ = mO(n),
such that 1) F ′

1 = {(A, v) | (A, u) ∈ F1 ∧ v ≤ km u}, where k = O(n) and
2) F ′

m′ subsumes Fm.
For the base case m = 1, it is trivial.
For the induction case m > 1, let F1 � . . . Fm+1 be the proof with MaxSAT

Resolution and let F ′
1 � · · · � F ′

m′ be the proof with Cut given by the
induction hypothesis for the first m steps. There are three cases:

1. If the last inference step Fm � Fm+1 is a Fold, Unfold, then the same
proof already works since F ′

m also subsumes Fm+1.
2. If this last step applies any rule from R, by closure under subsumption of R,

applying a linear number of rules of R we can construct F ′
m′ � · · · � Fm′+O(n),

where F ′
m′+O(n) subsumes Fm+1.

3. If the last inference step is an application of the MaxSAT Resolution rule,
let

Fm = F ∪ {(x ∨ A, u), (¬x ∨ B, u)} and
Fm+1 = F ∪ {(A ∨ B, u), (x ∨ A ∨ B, u), (¬x ∨ B ∨ A, u)}.

Let r = 1 + max{|A|, |B|} = O(n) and let F ′′
1 � · · · � F ′′

m′ the same
proof as F ′

1 � · · · � F ′
m′ , where every weight has been multiplied by r.

By induction hypothesis, F ′
m′ subsumes Fm. Hence, F ′′

m′ contains a clause
(A′, r u1) corresponding to (x ∨ A, u), where A′ ⊆ x ∨ A and u′ ≥ u, and a
clause (B′, r u2) corresponding to (¬x∨B, u), where B′ ⊆ ¬x∨B and u2 ≥ u.
If x �∈ A′ or ¬x �∈ B′, applying the Unfold rule to F ′′

n we can split these
clauses into clauses subsuming {(A ∨B, u), (x ∨A ∨B, u), (¬x ∨B ∨A, u)}
with higher weights. Otherwise, we apply the Unfold rule to obtain r copies
of (A′, u) and r copies of (B′, u), plus some useless clauses. The application
of the Cut rule to one copy of (A′, u) and one of (B′, u) results in a clause
that subsumes (A ∪ B, u). There are also at least |B| more copies of (A′, u)
that will subsume the clauses (x ∨ A ∨ B, u), and at least |A| more copies of
(B′, u) that will subsume the clauses (¬x ∨ B ∨ A, u).

Notice that the length of the proof ismultiplied byO(n).Theweights aremultiplied
by Om(n), hence its logarithmic representation is multiplied by mO(log n). �

Corollary 3. The circular proofs system using {Cut, k-Split} is polynomially
equivalent to theweighted proofs systemusing {MaxSATResolution, k-Split}.
Proof. From Lemma 6 and Lemmas 4 and 5.

In [13], it is proved that MaxSAT Resolution with Extension can simulate
Dual-Rail MaxSAT. Next we prove that even using 0-Split instead of Split,
it can simulate Weighted Dual-Rail, and as a consequence the weaker system
Dual-Rail MaxSAT.

Theorem 1. The weighted proof system using R = {MaxSATResolution,
0-Split} polynomially simulates the Weighted Dual-Rail MaxSAT proof system.
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Proof. Let F1 � · · · � Fm be a proof in weighted dual-rail MaxSAT. Let Ardr

be the reverse of the dual-rail encoding, i.e. the substitution of variable pi by
xi and of ni by ¬xi. Applying this translation we get Frdr

1 = {(A, uA) | A ∈
H} ∪ {(xi, vi), (¬xi, vi) | i = 1, . . . , n} and Frdr

n = {( , 1 +
∑n

i=1 vi)} ∪F where
all clauses in F have positive weight. Moreover, all steps in the proof satisfy
Frdr

i � Frdr
i+1, since all MaxSAT cuts between pi and ¬pi, or between ni and ¬ni

will become cuts of xi and ¬xi. Notice that clauses ¬pi ∨ ¬ni are translated
back as xi ∨ ¬xi, hence tautologies and removed. Cuts in F1 � · · · � Fm with
¬pi ∨ ¬ni, when translated back, have not any effect (they replace pi by ¬ni or
ni by ¬pi, hence xi by xi), thus they are removed. We can construct then the
following weighted proof using R:

{(A, uA) | A ∈ H}
� {(A, uA) | A ∈ H} ∪ {( ,−∑n

i=1 vi), ( , vi) | i = 1, . . . , n} Unfold

� {(A, uA) | A ∈ H} ∪ {( ,−∑n
i=1 vi), (xi, vi), (¬xi, vi) | i = 1, . . . , n} 0-Split

= Frdr
1 ∪ {( ,−∑n

i=1 vi)}
· · ·
� Frdr

n ∪ {( ,−∑n
i=1 vi)}

= {( , 1 +
∑n

i=1 vi)} ∪ F ∪ {( ,−∑n
i=1 vi)} Fold

� {( , 1)} ∪ F

that is a valid weighted proof for H � . �

Corollary 4. The circular proof system using R = {Cut, 0-Split} polynomi-
ally simulates the Weighted Dual-Rail MaxSAT proof system.

Proof. Weighted Dual-Rail MaxSAT is polynomially simulated by weighted
proofs using {MaxSATResolution, 0-Split}, by Theorem 1. This is simu-
lated by weighted proofs using {Cut, 0-Split}, by Lemma 6. And this is simu-
lated by circular proofs using {Cut, 0-Split}, by Lemma 4.

6 Conclusions

We have shown how circular proofs and weighted proofs (with positive and neg-
ative weights), both parametric in the set of inference rules, are equivalent proof
systems. We have also shown that if Split is one of such inference rules, then it
does not matter if the other rule is Cut, MaxSAT Resolution or Symmet-

ric Cut. In all the cases, we get polynomially equivalent proof systems. This
proves the equivalence of Circular Resolution [1] and MaxSAT Resolution with
extensions [13].

In these formalisms, if we restrict the Split rule to clauses of length zero (as
� x,¬x), together with the Cut rule, we still get a strong enough proof system

enable to simulate Weighted Dual-Rail MaxSAT [3,9] and to get polynomial
proofs of the pigeonhole principle.
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11. Kleine Büning, H., Wojciechowski, P., Subramani, K.: On the computational com-
plexity of read once resolution decidability in 2CNF formulas. In: Gopal, T.V.,
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Abstract. We give a significantly simplified proof of the exponential
separation between regular and general resolution of Alekhnovich et al.
(2007) as a consequence of a general theorem lifting proof depth to regular
proof length in resolution. This simpler proof then allows us to strengthen
the separation further, and to construct families of theoretically very easy
benchmarks that are surprisingly hard for SAT solvers in practice.

1 Introduction

In the resolution proof system [17] the unsatisfiability of a formula in conjunctive
normal form (CNF) is shown by iteratively deriving new disjunctive clauses until
contradiction is reached (in the form of the empty clause). A resolution proof is
said to be regular [59] if along the path of derivation steps from any input clause
to contradiction every variable is eliminated, or resolved , at most once. This con-
dition appears quite natural, since it essentially means that intermediate results
should not be proven in a form stronger than what will later be used in the deriva-
tion, and indeed DPLL-style algorithms [26,27] can be seen to search for regular
proofs. In view of this, it is natural to ask whether regularity can be assumed
without loss of proof power, but this was ruled out in [40]. General resolution
was shown to be superpolynomially stronger than regular resolution in [31], a
separation that was improved to exponential in [2,61]. Regular resolution is in
turn known to be exponentially stronger than tree-like resolution [11,19], where
no intermediate clause can be used for further derivations more than once.

There is an interesting connection here to the quest for a better under-
standing of state-of-the-art SAT solvers based on conflict-driven clause learning
(CDCL) [47,48].1 Tree-like resolution corresponds to solvers without any clause

1 A similar idea in the context of CSPs was independently developed in [5].
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learning, whereas CDCL solvers have the potential to be as strong as general res-
olution [3,51]. The proofs of the latter result crucially use, among other assump-
tions, that solvers make frequent restarts, but it has remained open whether this
is strictly needed, or whether “smarter” CDCL solvers without restarts could be
equally powerful. To model CDCL without restarts, proof systems such as pool
resolution [62] and different variants of resolution trees with lemmas (RTL) [20]
have been introduced, which sit between regular and general resolution. There-
fore, if one wants to prove that restarts increase the reasoning power of CDCL
solvers, then formulas that could show this would, in particular, have to separate
regular from general resolution. However, all known formulas witnessing this sep-
aration [2,61] have also been shown to have short pool resolution proofs [18,21].
It is therefore interesting to develop methods to find new formula families sepa-
rating regular and general resolution. This brings us to our next topic of lifting .

In one sentence, a lifting theorem takes a weak complexity lower bound
and amplifies it to a much stronger lower bound by simple syntactic manip-
ulations. Focusing for concreteness on Boolean functions, one can take some
moderately hard function f : {0, 1}n → {0, 1} and compose it with a gadget
g : {0, 1}m → {0, 1} to obtain the new lifted function f ◦ gn : {0, 1}mn → {0, 1}
defined as f(g(y1), g(y2), . . . , g(yn)), where yj ∈ {0, 1}m for j ∈ [n]. If the gad-
get g is carefully chosen, one can show that there is essentially no better way of
evaluating f ◦ gn than first computing g(yj) for all j ∈ [n] and then applying f
to the outputs. From this it follows that f ◦ gn is a much harder function than
f or g in isolation.

A seminal early paper implementing this paradigm is [54], and the redis-
covery and strengthening of this work has led to dramatic progress on many
long-standing open problems in communication complexity [33–35,37,38]. Other
successful examples of the lifting paradigm include lower bounds in monotone
complexity [52,53,58], extension complexity [32,43,45], and data structures [24].
Lifting has also been a very productive approach in proof complexity. Interest-
ingly, many of the relevant papers [6,8,9,12,13,19,41,49,50] predate the “lifting
revolution” and were not thought of as lifting papers at the time, but in later
works such as [29,36,57] the connection is more explicit.

As described above, in the lifting construction different copies of the gadget g
are evaluated on disjoint sets of variables. In [55] it was instead proposed to let
the variable domains for different gadgets overlap as specified by well-connected
so-called expander graphs. This idea of recycling variables between gadgets has
turned out to be very powerful, and an ingredient in a number of strong trade-off
results between different complexity measures [15,16,56].

Our Contributions. The starting point of our work is the simple but crucial
observation that the stone formulas in [2] can be viewed as lifted versions of
pebbling formulas [14] with maximal overlap, namely as specified by complete
bipartite graphs. This raises the question whether there is a lifting theorem
waiting to be discovered here, and indeed we prove that the separation in [2] can
be proven more cleanly as the statement that strong enough lower bounds on
proof depth can be lifted to exponential lower bounds on proof length in regular
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resolution. This in turn implies that if one can find formulas that have short
resolution proofs with only small clauses, but that require large depth, then
lifting with overlap yields formulas that separate regular and general resolution.

This simpler, more modular proof of [2] is the main conceptual contribution
of our paper, but this simplicity also opens up a path to further improvements.
Originally, lifting with overlap was defined in [55] for low-degree expander graphs,
and we show that our new lifting theorem can be extended to this setting also.
Intuitively, this yields “sparse” versions of stone formulas that are essentially as
hard as the original ones but much smaller. We use this finding for two purposes.

Firstly, we slightly improve the separation between regular and general reso-
lution. It was known that there are formulas having general resolution proofs of
length L that require regular proofs of length exp

(
Ω

(
L/((log L)7 log log L)

))
[61].

We improve the lower bound to exp
(
Ω

(
L/((log L)3(log log L)5)

))
.

Secondly, and perhaps more interestingly from an applied perspective, sparse
stone formulas provide the first benchmarks separating regular and general res-
olution that are sufficiently small to allow meaningful experiments with CDCL
solvers. Original stone formulas have the problem that they grow very big very
fast. The so-called guarded formulas in [2,61] do not suffer from this problem,
but the guarding literals ensuring the hardness in regular resolution are immedi-
ately removed during standard preprocessing, making these formulas very easy
in practice. In contrast, sparse stone formulas exhibit quite interesting phenom-
ena. Depending on the exact parameter settings they are either very dependent
on frequent restarts, or very hard even with frequent restarts. This is so even
though short proofs without restarts exist, which also seem to be possible to find
algorithmically if the decision heuristic of the solver is carefully hand-coded.

Outline of This Paper. After reviewing some preliminaries in Sect. 2, we
present our proof of [2] as a lifting result in Sect. 3. We extend the lower bound
to sparse stone formulas in Sect. 4. We conclude with brief discussions of some
experimental results in Sect. 5 and directions for future research in Sect. 6.

2 Preliminaries

Resolution. Throughout this paper 0 denotes false and 1 denotes true. A lit-
eral a is either a variable x or its negation x. A clause C is a disjunction
a1 ∨ · · · ∨ ak of literals; the width of C is k. A CNF formula F = C1 ∧ · · · ∧ Cm

is a conjunction of clauses, the size (or length) of which is m. We view clauses
and CNF formulas as sets, so order is irrelevant and there are no repetitions.

A resolution proof for (the unsatisfiability of) F , also referred to as a reso-
lution refutation of F , is a sequence of clauses, ending with the empty clause ⊥
containing no literals, such that each clause either belongs to F or is obtained by
applying the resolution rule C ∨ x, D ∨ x � C ∨ D to two previous clauses. If we
lay out the proof as a graph the result is a directed acyclic graph (DAG) where
each node is labelled with a clause, where without loss of generality there is a
single source labelled ⊥, where each sink is a clause in F , and each intermediate
node can be written on the form C ∨ D with edges to the children C ∨ x and
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D ∨ x. The length of a refutation is the number of clauses, its width is the max-
imal width of a clause in it, and its depth is the longest path in the refutation
DAG. The resolution length, width and depth of a formula are the minimum
over all resolution refutations of it.

A restriction ρ is a partial assignment of truth values to variables. We write
ρ(x) = ∗ to denote that variable x is unassigned. We obtain the restricted
clause C�ρ from C by removing literals falsified by ρ, and the restricted for-
mula F�ρ from F by removing clauses satisfied by ρ and replacing other clauses C
by C�ρ.

If a formula F has a resolution refutation π, then for every restriction ρ the
restricted formula F�ρ has a refutation π′—denoted by π�ρ—the length, width
and depth of which are bounded by the length, width and depth of π, respectively.
If π is regular, then so is π�ρ. We will need the following straightforward property
of resolution depth.

Lemma 1 ([60]). If F requires resolution depth D, then for every variable x
in F it holds for some b ∈ {0, 1} that F�{x:=b} requires resolution depth D − 1.

Branching Programs. In the falsified clause search problem for an unsatisfiable
CNF formula F , the input is some (total) assignment α and a valid output is
any clause of F that α falsifies.

From a resolution refutation of F we can build a branching program for the
falsified clause search problem with the same underlying graph, where every
non-source node queries a variable x and has outgoing edges 0 and 1, and where
any assignment α leads to a sink labelled by a clause that is a valid solution
to the search problem for F . We maintain the invariant that an assignment α
can reach a node labelled by C if and only if α falsifies C—in what follows, we
will be slightly sloppy and identify a node and the clause labelling it. In order
to maintain the invariant, if a node C ∨ D has children C ∨ x and D ∨ x, we
query variable x at that node, move to the child with the new literal falsified
by the assignment to x, and forget the value of any variable not in this child. A
proof is regular if and only if it yields a read-once branching program, where any
variable is queried at most once along any path, and it is tree-like if it yields a
search tree.

Pebbling Formulas. Given a DAG H of indegree 2 with a single sink, the
pebbling formula over H [14], denoted PebH , has one variable per vertex, a clause
u for each source u, a clause u ∨ v ∨ w for each non-source w with predecessors
u and v, and a clause z for the sink z.

Pebbling formulas over n-vertex DAGs H have short, small-width refutations,
of length O(n) and width 3, but may require large depth. More precisely, the
required depth coincides with the so-called reversible pebbling number of H [22],
and there exist graphs with pebbling number Θ(n/ log n) [30]. We will also need
that so-called pyramid graphs have pebbling number Θ(

√
n) [23,25].

Lifting. We proceed to define lifting with overlap inspired by [55]. Let F be a
formula with n original variables xi. We have m new main variables rj , which
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we often refer to as stone variables. Let G be a bipartite graph of left degree d
and right degree d′ with original variables on the left side and main variables
on the right side. We have dn new selector variables si,j , one for each edge (i, j)
in G.

For convenience, let us write y1 = y and y0 = y for the positive and negative
literals over a variable y. Then the lifting of xb

i for b ∈ {0, 1} is the conjunction
of d clauses LG(xb

i ) =
∧

j∈N(i) si,j ∨ rb
j . The lifting of a clause C of width w

is the expression LG(C) =
∨

xb
i ∈C LG(xb

i ), expanded into a CNF formula of
width 2w and size dw. The lifting of a CNF formula F is the formula LG(F ) =∧

C∈F LG(C) ∧ ∧
i∈[n]

∨
j∈N(i) si,j of size at most dw|F | + n. We will omit the

graph G from the notation when it is clear from context.
If G is a disjoint union of stars, then we obtain the usual lifting defined in [7],

and if G is a complete bipartite graph with m ≥ 2n and F is a pebbling formula,
then we obtain a stone formula [2]. We will need the fact, implicit in [13], that
formulas with short, small-width refutations remain easy after lifting.

Lemma 2. Let π be a resolution refutation of F of length L and width w, and
let G be a bipartite graph of left degree d. Then there is a resolution refutation
of LG(F ) of length O(dw+1L).

For the particular case of pebbling formulas, where there is a refutation where
each derived clause is of width at most 2 even if some axioms are of width 3, the
upper bound can be improved to O

(
d3L

)
.

Graphs. In Sect. 3, we use complete bipartite graphs to reprove the known
lower bounds on stone formulas. In Sect. 4, we consider bipartite random graphs
sampled from the G(n,m, d) distribution, where the left and right sides U and V
have n and m vertices respectively, and d right neighbours are chosen at random
for each left vertex.

A bipartite graph is an (r, κ)-expander if every left subset of vertices U ′ ⊆ U
of size |U ′| ≤ r has at least κ|U ′| neighbours. It is well-known (see for instance
[39]) that random graphs are good expanders.

Lemma 3. With high probability a graph G ∼ G(n,m, d) with d = Θ(log(n/m))
is an (r, κ)-expander with κ = Θ(d), r = Θ(m/κ), and right degree d′ ≤ 2dn/m.

The following lemma, as well as its proof, is essentially the same as Lemmas 5
and 6 in [1] but adapted to vertex expansion.

Lemma 4. If G is an (r, κ)-expander, then for every set V ′ ⊆ V of size at
most κr/4 there exists a set U ′ ⊆ U of size at most r/2 such that the graph
G \ (U ′ ∪ N(U ′) ∪ V ′) obtained from G by removing U ′, N(U ′), and V ′ is an
(r/2, κ/2)-expander.

Matchings and the Matching Game. A matching μ in a bipartite graph is
a set of vertex-disjoint edges. We write μ(u) = v if the edge (u, v) is in μ. The
matching game [10] on a bipartite graph is played between two players Prover
and Disprover, with r fingers each numbered 1, . . . , r. In each round:
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– either Prover places an unused finger i on a free vertex u ∈ U , in which case
Disprover has to place his i-th finger on a vertex v ∈ N(u) not currently
occupied by other fingers;

– or Prover removes one finger i from a vertex, in which case Disprover removes
his i-th finger.

Prover wins if at some point Disprover cannot answer one of his moves, and
Disprover wins if the game can continue forever.

Theorem 5 ([10, Theorem 4.2]). If a graph is an (r, 1+δ)-bipartite expander,
then Prover needs at least δr/(2 + δ) fingers to win the matching game.

3 Lower Bound for Stone Formulas as a Lifting Theorem

We reprove the result in [2] by reinterpreting it as a lifting theorem.

Theorem 6. If F has resolution depth D and m ≥ 2D, then LG(F ) for G the
complete bipartite graph Kn,m has regular resolution length exp(Ω(D2/n)).

When we choose as F the pebbling formula of a graph of pebbling number
Ω(n/ log n) [30] we reprove the result in [2], slightly improving the lower bound
from exp(Ω(n/ log3 n)) to exp(Ω(n/ log2 n)).

Corollary 7. There are formulas that have general resolution refutations of
length O(n4) but require regular resolution length exp(Ω(n/ log2 n)).

We start with an overview and a few definitions common to this and the next
section. The proof at a high level follows a common pattern in proof complexity:
given some complexity measure on clauses, we apply a restriction to the resolu-
tion refutation that removes all complex clauses from a short enough proof. In a
separate argument, we show that the restricted formula always requires complex
clauses, contradicting our assumption of a short refutation.

To build a restriction we use the following concepts. Let μ : I → J be a partial
matching from original to stone variables. A matching μ induces an assignment
ρ to selector variables as follows.

ρ(si,j) =

⎧
⎪⎨

⎪⎩

1 if μ(i) = j,

0 if i ∈ dom(μ) or j ∈ im(μ) but μ(i) �= j,

∗ otherwise.

We say that an assignment ρ whose restriction to selector variables is of this
form respects the lifting because LG(F )�ρ = LG′

(F�σ), where G′ is the induced
subgraph G[(I \ dom μ) ∪ (J \ im μ)] and σ is the induced assignment to original
variables σ(xi) = ρ(rμ(i)) if i ∈ dom(μ), and σ(xi) = ∗ otherwise. An assignment
that respects the lifting is uninformative if it induces an empty assignment to
original variables, that is ρ(rj) = ∗ whenever j ∈ im μ. Given an uninformative
assignment ρ and an assignment to original variables σ, we can extend the former
to agree with the latter as ρ(rj) = σ(xμ−1(j)) if j ∈ im μ and ρ(rj) = ∗ otherwise.
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The size of an assignment is the maximum of the size of the matching and the
number of assigned stone variables.

A helpful complexity measure is the width of a clause; we use a complexity
measure from [2] that enforces an additional structure with respect to the lifting.

Definition 8. A clause C is (c, z)-complex if either

1. C contains at least c stone variables,
2. there is a matching μ of size c such that C contains the literal si,j for each

(i, j) ∈ μ, or
3. there is a set W of size c where C contains at least z literals si,j for each

i ∈ W .

In this section we only use (c, c)-complex clauses, which we refer to as c-
complex. Note that c can range from 1 to m. We also need the following lemma,
which can be established by a straightforward calculation.

Lemma 9. Consider a set of s clauses C and a set of n possibly dependent
literals L such that after setting ln(s)n/p literals in L (plus any dependencies),
for each clause C ∈ C there is a subset LC ⊆ L of at least p literals, each of
which satisfies C. Then there is a set of ln(s)n/p literals that satisfies C.

From now on we assume that G is the complete bipartite graph Kn,m. The
first step is to show that we can remove all complex clauses from a short proof.

Lemma 10. There exists ε > 0 such that if π is a resolution refutation of L(F )
of size s = exp(εc3/mn), then there exists an uninformative restriction ρ of
size c/2 such that π�ρ has no c-complex clauses.

Proof. We build a restriction greedily. First we choose a matching μ so that
after setting the corresponding selector variables with the restriction ρ induced
by μ we satisfy all c-complex clauses of type 2 and 3 in Definition 8. There are
mn positive selector literals sij . A clause of type 2 is satisfied if we set one of c
variables si,j = 0, and that happens if we assign a literal sij′ = 1 with j′ �= j,
for a total of c(m − 1) ≥ c2 choices. A clause of type 3 is satisfied if we set one
of c2 literals si,j = 1. After picking k pairs to be matched there are still at least
(c − k)(m − k − 1) ≥ (c − k)2 literals available to satisfy clauses of type 2, and
(c − k)2 literals available to satisfy clauses of type 3, so we can apply Lemma 9
and obtain that setting q ≤ ln(s)mn/(c2/4) literals is enough to satisfy all such
clauses. Note that we used that k ≤ ln(s)mn/(c2/4) ≤ c/2.

Next we extend ρ to ρ′ by setting some stone variables that are untouched
by μ so that we satisfy all clauses of type 1. There are m − q such variables,
hence at most 2m literals, and a clause is satisfied when one of c variables is
picked with the appropriate polarity. After picking k literals there are at least
c − q − k ≥ c/2 − k choices left for each clause, so we can apply Lemma 9 and
get that setting q′ = log s m/(c/8) variables is enough to satisfy all clauses of
type 1. Note that we used that k ≤ ln(s)m/(c/8) ≤ c/4, which follows from
ln(s) ≤ c2/16m ≤ c3/16mn.

The size of the restriction ρ′ is then at most c/2. ��
Next we show that regular resolution proofs always contain a complex clause.
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Lemma 11. If F requires depth D, then any regular resolution refutation of
L(F ) with m < D has an m/4-complex clause.

Proof. We build a path through the read-once branching program corresponding
to the proof, using a decision tree T for F of depth D to give the answers to
some queries. We also keep a matching μ, with the invariant that there is an
edge (i, j) in the matching if and only if sij = 1 or there are m/4 stones j′ �= j
such that sij′ = 0. We can do so using the following strategy as long as at most
m/4 stones are assigned and at most m/4 stones are matched.

– If the adversary queries sij then if neither i nor j are matched we answer 1
and add (i, j) to the matching, if μ(i) = j we answer 1, and otherwise we
answer 0. If more than m/4 variables sij′ are 0 (for i fixed and j′ ∈ [m]) we
choose one of the m/4 stones j′′ that are not assigned, nor matched, nor have
sij′′ = 0 and add (i, j′′) to the matching.

– If the adversary queries rj and j is matched to i, we answer b so that the
depth of T only shrinks by 1 when original variable xi is set to b, as given
by Lemma 1. Otherwise we answer arbitrarily.

– If the adversary forgets a variable and there is an edge in the matching that
does not respect the invariant, we remove it.

Assume for the sake of contradiction that we never reach an m/4-complex
clause. Then we can maintain the invariant until we reach a leaf of the branching
program, and that leaf never falsifies a clause of the form

∨
j∈[m] si,j . It follows

that the path ends at a clause from L(D), at which point the depth of T reduced
to 0. Observe that the depth of T only decreases by 1 when a stone variable is
queried and that, since the branching program is read-once, these queries must
be to D different stones, but only m < D stones are available. ��

We use these lemmas to complete the plan outlined at the beginning of this
section and prove our lifting theorem.

Proof (of Theorem 6). Assume for the sake of contradiction that π is a refutation
of L(F ) of length less than exp(δD2/n), where δ = ε/1024 for the ε of Lemma 10.

We invoke Lemma 10 with c = D/8 to obtain that there is an uninformative
restriction ρ of size D/16 such that π�ρ has no D/8-complex clauses. By Lemma 1
we can assign values to the matched stones in a way that the induced assignment
to original variables σ yields a formula of depth 15D/16. We additionally assign
all but the first 15D/16 − 1 stones arbitrarily and set all selector variables that
point to an assigned stone to 0. Let ρ′ be the new restriction.

The formula F ′ = L(F )�ρ′ is the lifted version of a formula F�σ of depth
D′ = 15D/16 with m′ = D′ − 1 stones, hence by Lemma 11 any refutation of
F ′ has an m′/4-complex clause. But since m′/4 ≥ 15D/64 − 1 > D/8, this
contradicts the fact that the refutation π�ρ′ has no D/8-complex clauses. ��
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4 Lower Bound for Sparsely Lifted Formulas

We now generalize the lifting to sparse graphs. The first step is again to show
that we can remove all complex clauses from a short proof, but this becomes a
harder task so let us begin with an informal overview. Say that we start with a
lifted formula whose selector variable graph is an expander and, as in Lemma10,
we want to make a few stones be assigned and a few stones be matched. After we
remove these stone vertices from the graph, it will likely stop being an expander
(e.g. because we will likely remove all the neighbours of some vertex).

Fortunately by Lemma 4 given a subset V ′ of right vertices to remove there
is a subset U ′ of left vertices such that removing V ′, U ′, and N(U ′) from the
graph yields an expander, but this is still not enough because removing U ′ forces
us to a matching that may interfere with our plans. Maybe there is some vertex
i ∈ U ′ corresponding to an original variable that we want to assign to 0 but
all of its neighbours are assigned to 1, or maybe there is some original variable
i ∈ U ′ all of whose neighbours are already matched to other original variables.

Our solution is to add one backup vertex for each stone vertex j, so that we
can delay the expansion restoring step. Of course we cannot decide beforehand
which vertices are primary and which are backup, otherwise it might be that
all complex clauses would talk only about backup vertices and our assignment
would not affect them, so we have to treat primary and backup vertices equally.
But still we make sure that if a vertex j is assigned 1, then its backup is assigned
0 and viceversa, taking care of the first problem; and that if a stone vertex j is
matched to some original variable i then its backup is still free and viceversa,
taking care of the second problem.

To make the concept of backup vertices formal, we say that a bipartite graph
G of the form U ∪(V0∪V1) is a mirror if the subgraphs G0(U ∪V0) and G1(U ∪V1)
are isomorphic, which we also refer to as the two halves of G.

We can state our sparse lifting theorem using the concept of mirror graphs.

Theorem 12. If F has resolution depth D, and G is a mirror graph with G0 ∼
G(n,D/2, d), where d = Θ(log(n/D)), then with high probability LG(F ) has
regular resolution length exp(Ω(D3/d2n2)).

As before, if we choose for F the pebbling formula of a graph of pebbling
number Θ(n/ log n), then we get the following improved separation of regular
and general resolution.

Corollary 13. There are formulas that have general resolution refutations of
length O(n log log3 n) but require regular resolution length exp(Ω(n/ log3 n log
log2 n)).

Let us establish some notation. After fixing an isomorphism Ψ : G0 → G1

we name the vertices in pairs j0 and j1 so that j1 = Ψ(j0). If jb ∈ Vb and
a ∈ {0, 1}, we let jb + a denote the vertex j(a + b mod 2) ∈ Va+b mod 2. Let
m = |V0| so there are 2m right vertices in G. In this section c-complex stands
for (c, 1)-complex and we assume that d = Θ(log(n/m)).



Simplified and Improved Separations 191

Lemma 14. If G is a mirror (r, κ)-expander with κ > 2, where κr = Θ(m), and
π is a resolution proof of LG(F ) of size s = exp(O(c2m/d2n2)), where c = Θ(m),
then there is a restriction ρ such that π�ρ is a proof of LG′

(F ′) that has no c-
complex clauses, where F ′ has resolution depth at least D − r/2 − κr/8 and G′

is an (r/2, κ/2)-expander.

Proof. We show that such a restriction exists using a hybrid between a random
and a greedy restriction. We randomly partition the stone vertices in V0 into free,
assigned, and matched stones, and mirror the partition in V1. Of the assigned
stones, a set A−

0 of κr/16 stones are set to 0, and a set A+
0 of κr/16 stones are set

to 1, while the stones in the corresponding sets A−
1 = ψ(A−

0 ) and A+
1 = ψ(A+

0 )
are set to 1 and 0 respectively. We plan to use the sets M0 and M1 = ψ(M0) of
κr/8 matched stones each to greedily build a matching. The remaining 2(m −
κr/4) stone vertices are tentatively left untouched.

First we claim that, with high probability, all clauses of type 1 are satisfied.
To show this we note that a clause C of type 1 contains at least c/4 literals of
the same polarity and referring to the same half of the graph. Assume without
loss of generality that C contains c/4 positive literals referring to stones in V0

and let C+
0 = {j0 ∈ V0 : rj0 ∈ C} be these stones.

The probability that no positive stone literal is satisfied is

Pr[C+
0 ∩A+

0 = ∅] ≤
(|V0\C+

0 |
|A+

0 |
)

( |V0|
|A+

0 |
) ≤ (1−c/4m)κr/16 = exp(−Ω(κr)) = exp(−Ω(m))

and since ln s = O
(
c2m/d2n2

)
= O

(
m(c2/d2n2)

)
= o(m) the claim follows from

a union bound over all clauses of type 1.
Next we greedily build a matching μ with the goal of satisfying all clauses of

types 2 and 3. We ensure that overlaying both halves of the matching would also
result in a matching; in other words if a vertex jb is matched then we ensure
that jb + 1 is not. For each edge (i, jb) in the matching we set si,jb = 1, we set
si′,jb = 0 and si,j′b′ = 0 for all i′ �= i, j′ �= j, and b′ ∈ {0, 1}, and we leave
si,jb+1 tentatively unset for all i. Before we actually build the matching we need
to prove that, with high probability, each of these clauses can be satisfied by
choosing one of cκr/32m edges (i, jb) with j ∈ Mb to be in the matching.

For a clause C of type 3 we assume without loss of generality that c/2 literals
refer to stones in V0. We can express the number of edges that satisfy C as
the random variable xC =

∑
j0∈V0

xC,j0 where xC,j0 takes the value tC,j0 =
|{(i, j0) ∈ E : si,j0 ∈ C}| if j0 ∈ M0 and 0 otherwise. We have that

EC = E[xC ] =
∑

j0∈V0

E[xC,j0] =
∑

j0∈V0

tC,j0 · Pr[j0 ∈ M0]

=
|M0|
m

∑

j0∈V0

tC,j0 ≥ κr

8m
· c

2
=

cκr

16m
= Θ(c)
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and each of xC,j is bounded by the right degree d′ ≤ 2dn/m, therefore by
Hoeffding’s inequality for sampling without replacement we obtain that

Pr[xC < EC/2] ≤ exp

(
−2

(EC − EC/2)2∑
j0∈V0

t2C,j0

)
= exp(−Ω(c2/d′c)) = exp(−Ω(cm/dn))

and the claim follows from a union bound over all clauses of type 3.
For clauses of type 2, for each literal si,j0 ∈ C it is enough to choose as an

edge one of the (d − 1) edges (i, j′0) with j′ �= j. Hence the number of available
choices is the random variable xC defined as before except that tC,j0 = |{(i, j0) ∈
E0 : ∃j′ ∈ V0\{j} , si,j′ ∈ C}|. We have EC = E[xC ] ≥ (d−1)cκr/16m therefore
Pr[xC < EC ] = exp(−Ω(cm/n)) and the claim follows from a union bound.

Let us finish this step of the proof by building the matching. Observe that
choosing an edge makes up to d + d′ incident edges ineligible, as well as up to
d + d′ edges in the other half, for a total of 2(d + d′) ≤ 5d′, hence after making
 choices there are still e() = cκr/32 − 5d′ choices available for each clause.
By averaging, there is an edge that satisfies at least an e()/dn fraction of the
clauses of types 2 and 3. Hence after picking

k = e−1(cκr/64m) =
cκr/64m

5d′ ≤ cκr

320dn

edges the remaining fraction of clauses is at most

k∏

�=1

(
1 − e()

dn

)
≤

(
1 − e(k)

dn

)k

=
(

1 − cκr

64mdn

) cκr
320dn

= exp
(

− Ω

(
c2m

d2n2

))
.

The last step is to ensure that after removing V ′
0 = A0 ∪M0 from G0 we still

have a good expander. By Lemma 4 there is a set U ′ of size r/2 such that G0 \
U ′ ∪ N(U ′) ∪ V ′

0 is an (r/2, κ/2)-expander. Let U ′′ = U ′\dom μ. Let ν : U ′′ → V0

be an injective mapping from indices to stones, which exists by Hall’s theorem,
and let σ : U ′′ → {0, 1} be an assignment to U ′′ such that the depth of F�σ

reduces by at most |σ|.
We match each vertex i ∈ U ′′ to a stone as follows. If ν(i) ∈ A−

0 then
rν(i)+σ(i) = σ(i) so we set si,ν(i)+σ(i) = 1, while if ν(i) ∈ A+

0 then rν(i)+σ(i) =
1 − σ(i) so we set si,ν(i)+σ(i)+1 = 1. If ν(i) ∈ M0 then note that by construction
of the matching μ at least one of ν(i) and ν(i) + 1 is not matched; we let jb be
that stone and set si,jb = 1 and rjb = σ(i). Otherwise we add ν(i) to M0 and
ν(i) + 1 to M1, and do as in the previous case.

We also assign values to matched stones. Let dom μ be the matched original
variables and let τ : dom μ → {0, 1} be an assignment to dom μ such that the
depth of F�σ∪τ reduces by at most |τ |. For each vertex i ∈ dom μ we set rμ(i) =
τ(i). To obtain our final graph we set to 0 any variable si,j with i ∈ U ′ ∪ dom μ
or j ∈ V ′

0 ∪ N(U ′) ∪ V1 that remains unassigned.
Let us recap and show that LG(F )�ρ = LG′

(F ′) where G′ is an expander
and F ′ has large depth as we claimed. G′ is the subgraph of G induced by
U \ (U ′ ∪ dom μ) and V0 \ (V ′

0 ∪ N(U ′)), since we did not assign any selector



Simplified and Improved Separations 193

variable corresponding to an edge between these two sets, but we did assign
every other selector variable. The graph induced by U \U ′ and V0 \ (V ′

0 ∪N(U ′))
is an (r/2, κ/2)-expander by Lemma 4, and since removing left vertices does not
affect expansion, so is G′. Regarding F ′, for every variable si,j = 1 we have that
rj = (σ ∪ τ)(i), so F ′ = F�σ∪τ which has depth at least D − r/2 − κr/8. ��

To prove an equivalent of Lemma 11 we use the extended matching game,
where we allow the following additional move:

– Prover places an unused finger i on a free vertex v ∈ V , in which case Dis-
prover places his i-th finger on v and optionally moves Prover’s finger to a
free vertex u ∈ N(v).

Lemma 15. If Prover needs p fingers to win the matching game on a graph of
right degree d′, then it needs p − d′ fingers to win the extended matching game.

The proof can be found in the forthcoming full version.
Finally we are ready to prove our last lemma and complete the proof.

Lemma 16. If F has resolution depth D, and G is a bipartite graph whose
right hand side is of size m < D, duch that G requires r fingers in the extended
matching game, then any regular resolution refutation of LG(F ) has an r/3-
complex clause.

Proof. At a high level we proceed as in the proof of Lemma11, except that now
keeping a matching is a more delicate task, and hence we use the extended match-
ing game for it. We want to match any index i for which we have information
about, this is the value of a variable si,j is remembered.

– If the adversary queries rj and μ(i) = j for some i, then we answer so that
the depth of the decision tree only shrinks by 1.

– If the adversary queries rj where j is not in the matching, then we play j in
the matching game. If we receive an answer i we add (i, j) to the matching
and answer so that the depth of the decision tree only shrinks by 1. If instead
we receive the answer j, we answer arbitrarily.

– If the adversary queries si,j where either i or j are in the matching then we
answer 1 if (i, j) is in the matching and 0 otherwise.

– If the adversary queries si,j where neither i nor j are in the matching then
we play i in the matching game and receive an answer j′. We add (i, j′) to
the matching and answer 1 if j = j′ and 0 otherwise.

– If after the adversary forgets a variable there is an index i such that μ(i) = j
but none of si,j′ and rj are assigned, we forget i in the matching game.

Assume for the sake of contradiction that Prover does not win the matching
game. It follows that the branching program ends at a clause in L(D) for D ∈ F ,
at which point the depth of T reduced to 0. Observe that the depth of T only
decreases by 1 when a stone variable is queried and that, since the branching
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program is read-once, these queries must be to D different stones. However, only
m < D stones are available.

It follows that Prover eventually uses r fingers in the matching game, at
which point we claim that we are at an r/3-complex clause. Let us see why. For
each finger i in the matching game we remember either a selector literal si,j = 1,
a selector literal si,j = 0, or a stone variable rj , hence we remember at least
r/3 variables of either type. In the first case we are at a clause of type 2, in the
second at a clause of type 3, and in the third at a clause of type 1. ��
Proof (of Theorem 12). By Lemma 3, with high probability G0 is an (r, κ)-
expander for r = Θ(m/d) and κ = Θ(d), and has right degree at most 2dn/m.
Assume for the sake of contradiction that π is a refutation of LG(F ) of length
less than exp(εD3/d2n2).

Let ρ be the restriction given by Lemma 14 so that π�ρ is a regular resolution
proof with no c-complex clauses with c = κr/75 = Θ(m). The formula L(F )�ρ is
the lifted version LG′

(F ′) of a formula F ′ of depth at least D − r/2 − κr/8, and
the graph G′ is an (r/2, κ/2)-expander with m′ ≤ m − κr/8 ≤ D − r/2 − κr/8.
Since for each set U of size at most κr/8 and subset U ′ ⊆ U of size |U |·4/κ ≤ r/2
it holds that |N(U)| ≥ |N(U ′)| ≥ κ/2|U ′| = 2|U |, G′ is also a (κr/8, 2)-expander,
hence by Theorem 5 and Lemma 15 G′ requires κr/24−d′ ≥ κr/25 fingers in the
extended matching game. By Lemma 11 any regular resolution proof of LG′

(F ′)
has a κr/75-complex clause. But this contradicts that the proof π�ρ has no
κr/75-complex clauses. ��

It would also be interesting to prove a lower bound with plain random graphs,
not relying on the additional mirror structure. Unfortunately, without backup
vertices, the expansion restoring step would make r/2 right vertices ineligible
to be matched, and that can prevent us from satisfying clauses of type 3 of
complexity up to d′r/2 � m.

5 Experiments

We have run some experiments to investigate how hard sparse stone formulas are
in practice and how restarts influence solvers running on this particular family.

As base formulas we use pebbling formulas over Gilbert–Tarjan graphs with
butterflies [30,42], which require depth Θ(n/ log2 n), and over pyramid graphs,
which require depth Θ(

√
n). Note that lifting the first type of formulas yields

benchmarks that are provably hard for regular resolution, whereas for the second
type of formulas we are not able to give any theoretical guarantees. Our experi-
mental results are very similar, however, and so below we only discuss formulas
obtained from pyramids, for which more benchmarks can be generated.

We used an instrumented version [28] of the solver Glucose [4] to make it
possible to experiment with different heuristics. The results reported here are
for the settings that worked best, namely VSIDS decision heuristic and prepro-
cessing switched on. To vary the restart frequency we used Luby restarts with
factors 1, 10, 100, and 1000 plus a setting with no restarts. The time-out limit
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was 24 h. For the record, we also ran some preliminary experiments for standard
Glucose (with adaptive restarts) and Lingeling [46], but since the results were
similar to those for Luby restarts with a factor 100 we did not run full-scale
experiments with these configurations.

We illustrate our findings in Fig. 1 by plotting results from experiments using
the pebbling formula over a pyramid graph of height 12 as the base formula and
varying the number of stones. We used random graphs of left degree 6 as selector
variable graphs. Note that once the pebbling DAG for the base formula has been
fixed, changing the number of stones does not change the size of the formula too
much. For the particular pebbling DAG in Fig. 1, the number of variables is in
the interval from 550 to 650.

Empirically, the formulas are hardest when the number of stones is close
to the proof depth for the base formula, which is also the scenario where the
calculations in Sect. 4 yield the strongest bound. We expect the hardness to
increase as the number of stones approaches from below the proof depth of the
base formula, but as the number of stones grow further the formulas should get
easier again. This is so since the fact that the selector graph left degree is kept
constant means that the overlap decreases and ultimately vanishes, and pebbling
formulas lifted without overlap are easy for regular resolution.

Fig. 1. Solving stone formulas over a pyramid of height 12.

Interestingly, the solver behaviour is very different on either side of this hard-
ness peak. As we can see on the left in Fig. 1a, in the beginning the number
of conflicts (and hence the running time) grows exponentially in the number
of stones, independently of the number of restarts. With more stones, how-
ever, restarts become critical. The number of restarts used to solve a particular
instance remains similar among all solver configurations, as shown on the right
in Fig. 1b. Therefore, if the solver restarts more frequently it reaches this number
of restarts faster and solves the formula faster, as shown by the conflict counts
on the right in Fig. 1a.
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To make CDCL solvers run as fast as possible, we crafted a custom deci-
sion order tailored to stone formulas over pyramids. With this decision order,
no restarts, and very limited clause erasures, the solver decided dense stone
formulas over pyramids of height h with h stones in a number of conflicts pro-
portional to h7.28 (where we note that these formulas have O

(
h3

)
variables and

O
(
h5

)
clauses). For sparse stone formulas, we found one decision order (custom 1

in Fig. 1a) that worked reasonably well for small pyramids but failed for larger
ones. A second attempt (custom 2) performed well for all pyramid sizes as long
as the number of stones was below the hardness peak, but failed for more stones
(when the formulas become easy for VSIDS with frequent restarts).

Summing up, even though stone formulas always possess short resolution
refutations, and even though CDCL solvers can sometimes be guided to decide
the formulas quickly even without restarts, these formulas can be surprisingly
hard in practice for state-of-the-art solvers with default heuristics. The frequency
of restarts seems to play a crucial role—which is an interesting empirical par-
allel of the theoretical results in [3,51]—but for some settings of stone formula
parameters even frequent restarts cannot help the solver to perform well.

6 Concluding Remarks

In this work we employ lifting, a technique that has led to numerous break-
throughs in computational complexity theory in the last few years, to give a
significantly simplified proof of the result in [2] that general resolution is expo-
nentially more powerful than regular resolution. We obtain this separation as a
corollary of a generic lifting theorem amplifying lower bounds on proof depth
to lower bounds on regular proof length in resolution. Thanks to this new per-
spective we are also able to extend the result further, so that we obtain smaller
benchmark formulas that slightly strengthen the parameters of the previously
strongest separation between regular and general resolution in [61].

Furthermore, these new formulas are also small enough to make it possible
to run experiments with CDCL solvers to see how the running time scales as
the formula size grows. Our results show that although these formulas are the-
oretically very easy, and have resolution proofs that seem possible to find for
CDCL solvers without restarts if they are given guidance about which variable
decisions to make, in practice the performance depends heavily on settings such
as frequent restarts, and is sometimes very poor even for very frequent restarts.

Our main result implies that if we can find CNF formulas that have resolution
proofs in small width but require sufficiently large depth, then lifted versions of
such formulas separate regular and general resolution. (This is so since proof
width can only increase by a constant factor after lifting, and small-width proofs
have to be short in general resolution by a simple counting argument.) Unfortu-
nately, the only such formulas that are currently known are pebbling formulas.
It would be very interesting to find other formulas with the same property.

Also, it would be desirable to improve the parameters of our lifting theorem.
A popular family of pebbling graphs are pyramids, but the proof depth for
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pebbling formulas based on such graphs is right below the threshold where the
lower bound amplification kicks in. Could the analysis in the proof of the lifting
theorem be tightened to work also for, e.g., pebbling formulas over pyramids?

On the applied side, it is intriguing that sparse stone formulas can be so hard
in practice. One natural question is whether one could find some tailor-made
decision heuristic that always makes CDCL solvers run fast on such formulas,
with or even without restarts. An even more relevant question is whether some
improvement in standard CDCL heuristics could make state-of-the-art solvers
run fast on these formulas (while maintaining performance on other formulas).
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37. Göös, M., Pitassi, T., Watson, T.: Deterministic communication vs. partition num-
ber. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2015), pp. 1077–1088, October 2015
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Abstract. Mycielski graphs are a family of triangle-free graphs Mk with
arbitrarily high chromatic number. Mk has chromatic number k and
there is a short informal proof of this fact, yet finding proofs of it via
automated reasoning techniques has proved to be a challenging task. In
this paper, we study the complexity of clausal proofs of the uncolorability
of Mk with k − 1 colors. In particular, we consider variants of the PR
(propagation redundancy) proof system that are without new variables,
and with or without deletion. These proof systems are of interest due to
their potential uses for proof search. As our main result, we present a
sublinear-length and constant-width PR proof without new variables or
deletion. We also implement a proof generator and verify the correctness
of our proof. Furthermore, we consider formulas extended with clauses
from the proof until a short resolution proof exists, and investigate the
performance of CDCL in finding the short proof. This turns out to be
difficult for CDCL with the standard heuristics. Finally, we describe an
approach inspired by SAT sweeping to find proofs of these extended
formulas.

1 Introduction

Proof complexity investigates the relative strengths of Cook–Reckhow proof
systems [7], defined in terms of the length of the shortest proof of a tautology as a
function of the length of the tautology. Proof systems are separated with respect
to their strengths by establishing lower and upper bounds on the lengths of the
proofs of certain “difficult” tautologies in each system. Finding short proofs of such
tautologies in a proof system is a method for proving small upper bounds, which
provide evidence for the strength of a proof system. Similarly, the existence of a
large lower bound implies that a proof system is relatively weak. The related field
of SAT solving involves the study of search algorithms that have corresponding
proof systems, and concerns itself with not only the existence of short proofs, but
also the prospect of finding them automatically when they exist. As a result, the
two areas interact. The long-term agenda of proof complexity is to prove lower
bounds on proof systems of increasing strength towards concluding NP �= co-NP,
whereas SAT solving benefits from strong proof systems with properties that
make them suitable for automation. A recently proposed such system is PR
(propagation redundancy) [14] and some of its variants SPR (subset PR), PR−

(without new variables), DPR− (allowing deletion).
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For several difficult tautologies, PR has been shown to admit proofs that are
short (at most polynomial length), narrow (small clause width), and without
extension (disallowing new variables) [5, 12, 13, 14]. From the perspective of
proof search, these are favorable qualities for a proof system:

– Polynomial length is essentially a necessity.
– Small width implies that we may limit the search to narrow proofs.
– Eliminating extension drastically shrinks the search space.

Compared to strong proof systems with extension, a proof system with the above
properties may admit a proof search algorithm that is effective in practice.

Mycielski graphs are a family of triangle-free graphs Mk with arbitrarily high
chromatic number. In particular, Mk has chromatic number k. Despite having
a simple informal proof, this has been a difficult fact to prove via automated
reasoning techniques, and the state-of-the-art tools can only handle instances up
to M6 or M7 [6, 9, 18, 19, 20, 21, 23]. Symmetry breaking [8], a crucial automated
reasoning technique for hard graph coloring instances, is hardly effective on these
graphs as the largest clique has size 2. Most short PR proofs for hard problems
are based on symmetry arguments. Donald Knuth challenged us in personal
communication1 to explore whether short PR proofs exist for Mycielski graph
formulas.

In this paper, we provide short proofs in PR− and DPR− for the colorability
of Mycielski graphs [17]. Our proofs are of length quasilinear (with deletion and
low discrepancy) and sublinear (without deletion but high discrepancy) in the
length of the original formula, and include clauses that are at most ternary. With
deletion allowed, the PR inferences have short witnesses, which allows us to
additionally establish the existence of quasilinear-length DSPR− proofs. We also
implement a proof generator and verify the generated proofs with dpr-trim2.
Furthermore, we experiment with adding various combinations of the clauses
in the proofs to the formulas and observe their effect on conflict-driven clause
learning (CDCL) solver [3,16] performance. It turns out that the resulting
formulas are still difficult for state-of-the-art CDCL solvers despite the existence
of short resolution proofs, reinforcing a recent result by Vinyals [22]. We then
demonstrate an approach inspired by SAT sweeping [24] to solve these difficult
formulas automatically.

2 Preliminaries

In this work we focus on propositional formulas in conjunctive normal form
(CNF), which consist of the following: n Boolean variables, at most 2n literals
pi and pi referring to different polarities of variables, and m clauses C1, . . . , Cm

where each clause is a disjunction of literals. The CNF formula is the conjunction
of all clauses. Formulas in CNF can be treated as sets of clauses, and clauses as

1 Email correspondence on May 25, 2019
2 https://github.com/marijnheule/dpr-trim

https://github.com/marijnheule/dpr-trim
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sets of literals. For two clauses C,D such that p ∈ C, p ∈ D, their resolvent on p
is the clause (C \ {p}) ∪ (D \ {p}). A clause is called a tautology if it includes
both p and p. We denote the empty clause by ⊥.

An assignment α is a partial mapping of variables in a formula to truth values
in {0, 1}. We denote assignments by a conjunction of the literals they satisfy.
As an example, the assignment x �→ 1, y �→ 0, z �→ 1 is denoted by x ∧ y ∧ z.
The set of variables assigned by α is denoted by dom(α). We denote by F |α
the restriction of a formula F under an assignment α, the formula obtained by
removing satisfied clauses and falsified literals from F . A clause C is said to block
the assignment α =

∧
p∈C p, which we denote by C.

A clause is called unit if it contains a single literal. Unit propagation refers to
the iterative procedure where we assign the variables in a formula F to satisfy
the unit clauses, restrict the formula under the assignment, and repeat until no
unit clauses remain. If this procedure yields the empty clause ⊥, we say that unit
propagation derives a conflict on F .

Assume for the rest of the paper that F,H are formulas in CNF, C is a clause,
and α is the assignment blocked by C. Formulas F,H are equisatisfiable if either
they are both satisfiable or both unsatisfiable. C is redundant with respect to F
if F and F ∧C are equisatisfiable. C is blocked with respect to F if there exists a
literal p ∈ C such that for each clause D ∈ F that includes p, the resolvent of C
and D on p is a tautology [15]. C is a reverse unit propagation (RUP) inference
from F if unit propagation derives a conflict on F ∧ α [11]. F implies H by unit
propagation, denoted F 	1 H, if each clause C ∈ H is a RUP inference from F .
Let us state a lemma about implication by unit propagation for later use.

Lemma 1 ([5]). Let C,D be clauses such that C ∨D is not a tautology and let
α be the assignment blocked by C. Then

F |α 	1 D \ C ⇐⇒ F |α 	1 D ⇐⇒ F 	1 C ∨ D.

Letting xi be either a unit clause or a conjunction of unit clauses, we will use the
notation F 	1 x1 	1 x2 	1 . . . 	1 xN to mean that for each i ∈ {1, . . . , N} we have
F ∧ ∧i−1

j=1 xj 	1 xi. This serves as a compact way of writing a sequence of unit
clauses that become true on the way to deriving xN from F via unit propagation.

3 PR proof system

Redundancy is the basis for clausal proof systems. In a clausal proof of a contra-
diction, we start with the formula and introduce redundant clauses until we can
finally introduce the empty clause. Since satisfiability is preserved at each step
due to redundancy, introduction of the empty clause implies that the formula
is unsatisfiable. The sequence of redundant clauses constitutes a proof of the
formula. Also note that since only unsatisfiable formulas are of interest, we use
“proof” and “refutation” interchangeably.

Definition 1. For a formula F , a valid clausal proof of it is a sequence of
clause–witness pairs (C1, ω1), . . . , (CN , ωN ) where, defining Fi := F ∧ ∧i

j=1 Cj,
we have
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– each clause Ci is redundant with respect to the conjunction of the formula
with the preceding clauses in the proof, that is, Fi−1 and Fi = Fi−1 ∧ Ci are
equisatisfiable,

– there exists a predicate r(Fi−1, Ci, ωi) computable in polynomial time that
indicates whether Ci is redundant with respect to Fi−1,

– CN = ⊥.

For a clausal proof P of length N , we call maxi∈{1,...,N} |Ci| its width.

Definition 2. C is propagation redundant with respect to F if there exists an
assignment ω satisfying C such that F |α 	1 F |ω where α is the assignment blocked
by C.

Note that propagation redundancy can be decided in polynomial time given a
witness ω due to the existence of efficient unit propagation algorithms. Unit
propagation is a core primitive in SAT solvers, and despite the prevalence of
large collections of heuristics implemented in solvers, in practice the majority of
the runtime of a SAT solver is spent performing unit propagation inferences.

Theorem 1 ([14]). If C is propagation redundant with respect to F , then it is
redundant with respect to F .

Theorem 1 allows us to define a specific clausal proof system:

Definition 3. A PR proof is a clausal proof where the predicate r(Fi−1, Ci, ωi)
in Definition 1 computes the relation Fi−1|αi

	1 Fi−1|ωi
where αi is the assignment

blocked by Ci.

Resolvents, blocked clauses, and RUP inferences are propagation redundant.
Hence they are valid steps in a PR proof.

Let us also mention a few notable variants of the PR proof system:

– SPR: For each clause–witness pair (Ci, ωi) in the proof and αi the assignment
blocked by Ci, require that dom(ωi) = dom(αi).

– PR−: No clause C in the proof can include a variable that does not occur in
the formula F being proven.

– DPR: In addition to introducing redundant clauses, allow deletion of a
previous clause in the proof (or the original formula), that is, allow Fi =
Fi−1 \ {C} for some C ∈ Fi−1.

Following the notation of Buss and Thapen [5], the prefix “D” denotes a variant
of a proof system with deletion allowed, and the superscript “−” denotes a variant
disallowing new variables.

3.1 Expressiveness of PR

Intuition PR allows us to introduce clauses that intuitively support the following
reasoning:
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If there exists a satisfying assignment, then there exists a satisfying
assignment with a certain property X, described by the witness ω. This
is because we can take any assignment that does not have X, apply a
transformation to it that does not violate any original constraints of the
formula, and obtain a new satisfying assignment with property X. The
validation of such a transformation in general is NP-hard. Transformations
are limited such that they can be validated using unit propagation.

Hence, if our goal is to find some (not all) of the satisfying assignments to a formula
or to refute it, then we can extend the formula by introducing useful assumptions
without harming our goal since satisfiability is preserved with each assumption.
The redundancy of each assumption is efficiently checkable using the blocked
assignment α and the witness ω which together describe the transformation that
we apply to a solution without property X to obtain another with X. Having
this kind of understanding and mentally executing unit propagation allows us to
look for PR proofs while continuing to reason at a relatively intuitive level. This
proves useful when working towards upper bounds.

Upper bounds For several difficult tautologies (pigeonhole principle, bit pi-
geonhole principle, parity principle, clique-coloring principle, Tseitin tautologies)
short SPR− proofs exist [5,14]. Still, there are several problems mentioned by
Buss and Thapen [5] for which there are no known PR− proofs of polynomial
length. Furthermore, we do not know whether there are short SPR− proofs of the
Mycielski graph formulas. Buss and Thapen [5] have a partial simulation result
between SPR− and PR− depending on a notion called “discrepancy”, defined as
follows.

Definition 4. For a PR inference, its discrepancy is |dom(ω) \ dom(α)|.
Theorem 2. Let F be a formula with a PR refutation of length N such that
maxi∈{1,...,N}|dom(ωi) \ dom(αi)| ≤ δ. Then, F has an SPR refutation of length
O(2δN) without using variables not in the PR refutation.

As a result, a PR proof of length N with maximum discrepancy at most log N
directly gives an SPR proof of length O(N2). In our case, the maximum discrep-
ancy of the PR− proof is Ω(N/(log N)2), hence we cannot utilize Theorem 2 to
obtain a polynomial-length SPR− proof. For our DPR− proof, the maximum
discrepancy is 2, and by Theorem 2 there do exist quasilinear-length DSPR−

proofs of the Mycielski graph formulas.

4 Proofs of Mycielski graph formulas

4.1 Mycielski graphs

Let G = (V,E) be a graph. Its Mycielski graph μ(G) is constructed as follows:

1. Include G in μ(G) as a subgraph.
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2. For each vertex vi ∈ V , add a new vertex ui that is connected to all the
neighbors of vi in G.

3. Add a vertex w that is connected to each ui.

Unless G has a triangle μ(G) does not have a triangle, and μ(G) has chromatic
number one higher than G. We denote the chromatic number of G by χ(G).

Starting with M2 = K2 (the complete graph on 2 vertices) and applying
Mk = μ(Mk−1) repeatedly, we obtain triangle-free graphs with arbitrarily large
chromatic number. We call Mk the kth Mycielski graph. Since χ(M2) = 2 and μ
increases the chromatic number by one, we have χ(Mk) = k. The graph Mk has
3 · 2k−2 − 1 = Θ(2k) vertices and 1

2 (7 · 3k−2 + 1) − 3 · 2k−2 = Θ(3k) edges [1].

Fig. 1. The first few graphs in the sequence of Mycielski graphs.

Let us denote by MYCk the contradiction that Mk is colorable with k − 1
colors. We will present short PR− and DPR− proofs of MYCk in Section 4.2.
Before doing so, let us present the short informal argument to prove that applying
μ increases the chromatic number, which implies that χ(Mk) > k − 1.

Proposition 1. χ(μ(G)) > χ(G).

Proof. Assume we partition the vertices of μ(G) as V ∪ U ∪ {w} where V is the
set of vertices of G which is included as a subgraph, U is the set of newly added
vertices corresponding to each vertex in V , and w is the vertex that is connected
to all of U .

Let k = χ(G), and denote [k] = {1, 2, . . . , k}. Denote the set of neighbors of
a vertex v by N(v). Consider a proper k-coloring φ : V ∪ U → [k] of μ(G) \ {w}.
Assume that in this coloring U uses only the first k − 1 colors. Then we can
define a (k − 1)-coloring φ′ of G by setting φ′(vi) = φ(ui) for vi with φ(vi) = k
and copying φ for the remaining vertices. The coloring φ′ is proper, because for
any two vi, vj ,

– if φ(vi) = φ(vj) = k, then no edges exist between them;
– if φ(vi), φ(vj) < k, then their colors are not modified;
– if φ(vi) �= φ(vj) = k, then φ′(vi) = φ(vi) �= φ(uj) = φ′(vj) since for all

v ∈ N(vj) we have φ(v) �= φ(uj).
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As a result, we can obtain a proper (k − 1)-coloring of G, contradiction. Hence,
U must use at least k colors in a proper coloring of μ(G), and since w then has
to have a color greater than k we have χ(μ(G)) > k = χ(G). ��
Theorem 3. Mk is not colorable with k − 1 colors.

Proof. Follows from the fact that χ(M2) = 2 and Proposition 1 via induction. ��

4.2 PR proofs

To obtain PR− and DPR− proofs, we follow a different kind of reasoning than
that of the informal proof in the previous section. Let k ≥ 3. Denote by vi, Ek−1

the vertices and the edge set of the (k−1)th Mycielski graph, respectively. Assume
we partition the vertices of Mk as in the proof of Proposition 1 into V ∪ U ∪ {w}.
Let nk = |V | = |U | = 3 · 2k−3 − 1.

In propositional logic, MYCk is defined on the variables vi,c, ui,c, wc for
i ∈ [nk], c ∈ [k−1]. The variable vi,c indicates that the vertex vi ∈ V is assigned
color c, and ui,c, wc have similar meanings. MYCk consists of the clauses

∨

c∈[k−1]

vi,c for each i ∈ [nk]

∨

c∈[k−1]

ui,c for each i ∈ [nk]

∨

c∈[k−1]

wc

vi,c ∨ vj,c for each vivj ∈ Ek−1, c ∈ [k − 1]

ui,c ∨ vj,c for each i, j such that vivj ∈ Ek−1, c ∈ [k − 1]

ui,c ∨ wc for each i ∈ [nk], c ∈ [k − 1].

For both the PR− and the DPR− proofs, the high-level strategy is to introduce
clauses that effectively insert edges between any ui, uj for which vivj ∈ Ek−1.
In other words, if there is an edge vivj , we introduce clauses that imply the
existence of the edge uiuj , resulting in the modified graph M ′

k that has an induced
subgraph M ′

k[U ] isomorphic to Mk−1, and has all of its vertices connected to w.
As an example, Figure 3a shows the result of this step on M4. Then we partition
the vertices of M ′

k[U ] into new V ∪ U ∪ {w} similar to the way we did for Mk.
Such a partition exists as M ′

k[U ] is isomorphic to Mk−1 which by construction has
this partition. Then we inductively repeat the whole process. Figure 3c displays
the result of repeating it once. Finally, the added edges result in a k-clique in
Mk, as illustrated in Figure 3d. The vertices that participate in the clique are
the two ui’s of the subgraph we obtain at the last step that is isomorphic to M3

and the w’s of all the intermediate graphs isomorphic to Mk′ for k′ ∈ [k] \ {1, 2}.
Since we have k − 1 colors available, the problem then reduces to the pigeonhole
principle with k pigeons and k − 1 holes (denoted PHPk−1), for which we know
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there exists a polynomial-length PR− proof due to Heule et al. [14]. At the end
we simply concatenate the pigeonhole proof for the clique, which derives the
empty clause as desired.

The primary difference between the versions of the proof with and without
deletion is the discrepancy of the PR inferences. Deletion allows us to detach
M ′

k[U ] from M ′
k[V ], as illustrated in Figure 3b, by removing each preceding clause

that contains both a variable corresponding to some vertex in U and another
corresponding to some vertex in V . This makes it possible to introduce the PR
clauses with discrepancy bounded by a constant. Without deletion, we instead
introduce the PR inferences at each inductive step which imply that every ui ∈ U
has the same color as its corresponding vi, and this requires us to keep track of
sets of equivalent vertices and assign them together in the witnesses. Figure 4
displays the effect of introducing these clauses on M4.

For ease of presentation, we first describe the DPR− proof, followed by the
PR− proof.

Theorem 4. MYCk has quasilinear-length DPR− and DSPR− refutations.

Proof. At each step below, let F denote the conjunction of MYCk with the
clauses introduced in the previous steps.

1. As the first step, we introduce (2|U | + 1)
(
k−1
2

)
blocked clauses

vi,c ∨ vi,c′ for each i ∈ [nk]
ui,c ∨ ui,c′ for each i ∈ [nk]
wc ∨ wc′

(1)

for each c, c′ ∈ [k − 1] such that c < c′. These clauses assert that each vertex
in the graph can be assumed to have at most one color.

2. Then, we introduce |U |(k − 1)(k − 2) PR clauses

vi,c ∨ ui,c′ ∨ wc for each i ∈ [nk] and
for each c, c′ ∈ [k − 1], c �= c′.

(2)

Intuitively, these clauses introduce the assumption that if there exists a
solution, then there exists a solution that does not simultaneously have vi

colored c, ui colored c′, and w not colored c. If ui has color c′, then we can
switch its color to c and still have a valid coloring. The validity of this new
coloring is verifiable relying only on unit propagation inferences. It does not
create any monochromatic edges between ui and vj ∈ N(vi) ∩ V , as vj would
already not have the color c. It also does not create a monochromatic edge
between ui and w since w is already assumed not to have color c. Figure 2
shows this argument with a diagram. The corresponding witness for this
transformation is ω = vi,c ∧ ui,c′ ∧ ui,c ∧ wc, leading to a discrepancy of 1.

3. Then, we introduce |Ek−1|(k − 1)(k − 2) RUP inferences

ui,c ∨ uj,c ∨ vi,c′ for each i, j such that vivj ∈ Ek−1 and
for each c, c′ ∈ [k − 1], c �= c′.

(3)
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vi vj

ui uj

w

ω

vi vj

ui uj

w

Fig. 2. Schematic form of the argument for the PR inference. With c = Red
and c′ = Blue, the above diagram shows the transformation we can apply to a
solution to obtain another valid solution. A vertex colored black on the inside
means that it does not have the outer color, i.e. w has some color other than red.
Unit propagation implies that vj is not colored red.

Let C = ui,c ∨ uj,c ∨ vi,c′ and α = C. Due to the previously introduced
blocked and PR clauses (from (1) and (2)) we have

F |α 	1 wc′ 	1
∧

1≤d≤k−1
d�=c′

wd 	1
∧

1≤d≤k−1
d�=c′

vj,d 	1 vj,c′

and also F |vj,c′ 	1 vi,c′ due to the edge vivj . These imply that F |α 	1 vi,c′ .
Then, since vi,c′ ∈ C, we have F |α 	1 ⊥ by Lemma 1.

4. Next, we introduce |Ek−1|(k − 1) RUP inferences

ui,c ∨ uj,c for each i, j such that vivj ∈ Ek−1 and
for each c ∈ [k − 1].

(4)

Let D = ui,c ∨uj,c and β = D. From the previous set of RUP inferences in (3)
we have

F |β 	1
∧

1≤d≤k−1
d�=c

vi,d 	1 vi,c.

Due to the edge ujvi we also have F |vi,c
	1 uj,c and consequently F |β 	1 uj,c.

Since uj,c ∈ D, we have F |β 	1 ⊥ by Lemma 1.
With the addition of this last set of assumptions, we have effectively copied
the edges between vi to between ui. Figure 3a visualizes the result of this step
on M4 with the red edges corresponding to the newly introduced assumptions.

5. After the addition of the new edges, we delete the clauses introduced in steps
2, 3, and the clauses corresponding to the edges between U and V of the
current Mycielski graph. Figure 3b displays the graph after the deletions.

6. Then we inductively repeat steps 2–5, that is, we introduce clauses and delete
the intermediate ones for each subgraph isomorphic to Mycielski graphs of
descending order. Figure 3c shows the result of repeating the process on a
subgraph isomorphic to M3, with the blue edges corresponding to the latest
assumptions.
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(a) Introduction of
edge assumptions to
obtain a subgraph
isomorphic to the
Mycielski graph of
the previous order.

(b) Deletions of the
clauses introduced
previously and the
edges between U, V
to detach the sub-
graph.

(c) Repetition of the
inductive step on
the previously ob-
tained subgraph iso-
morphic to M3.

(d) Detached clique
obtained after delet-
ing the clauses cor-
responding to the
edges leaving the
clique.

Fig. 3. Illustrations of the proof steps in the case where M4 is the initial graph,
i.e. MYC4 is the formula being refuted. The blue and the red edges correspond
to the clauses introduced as RUP inferences, and the clauses corresponding to
the faded edges are deleted.

7. After an edge is inserted between the two ui of the subgraph isomorphic to M3,
we obtain a k-clique on the two ui and all of the previous w’s. Then we delete
all the clauses corresponding to the edges leaving the clique. This detaches
the clique from the rest of the graph as illustrated for M4 in Figure 3d. Since
(k − 1)-colorability of the k-clique is exactly the pigeonhole principle, we
simply concatenate a PR− proof of the pigeonhole principle as described
by Heule et al. [14], which has maximum discrepancy 2. This completes the
DPR− proof that Mk is not colorable with k − 1 colors.

In total, the proof has length O(3kk2) and the PR inferences have maximum
discrepancy 2. Hence, by Theorem 2, there also exists a DSPR− proof of length
O(3kk2). Since MYCk has length Θ(3kk), if we denote the length of the formula
by S then the proof is of quasilinear length O(S log S). ��

Theorem 5. MYCk has sublinear-length PR− refutations.

Proof. At a high level, the proof is similar to the DPR− proof. However, in order
to avoid deletion we introduce assumptions at each inductive step that imply the
equivalence of every ui with its corresponding vi. This eliminates the need to
detach M ′

k[U ] from M ′
k[V ], but leads to sets of vertices forced to have the same

color. As a result, the witnesses for the PR inferences after the first inductive
step that refer to switching the color of a vertex ν need to also include all the
previous vertices forced to have the same color as ν.

1. We start by introducing the blocked clauses from (1).
2. Then we introduce the PR inferences from (2).
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3. It becomes possible to infer the following |U |(k − 1)(k − 2) clauses via PR.

ui,c ∨ vi,c′ for each i ∈ [nk] and
for each c, c′ ∈ [k − 1], c �= c′.

(5)

Let γ = ui,c ∧ vi,c′ , and denote the conjunction of the formula and the
clauses in (1) and (2) by F . In step 3 of the previous proof we showed that
F 	1 ui,c ∨ uj,c ∨ vi,c′ . Then, by Lemma 1, we have F |γ 	1 uj,c. Hence, we
can switch the color of vi from c′ to c. This does not result in any conflicts
since ui having color c implies that no vj ∈ N(vi) ∩ V has the color c, and
uj,c is implied by unit propagation. As a result, the clause ui,c ∨ vi,c′ is PR
with witness ω = ui,c ∧ vi,c′ ∧ vi,c. After the addition of these clauses, the
equivalence ui,c ↔ vi,c is implied via unit propagation. Due to the edge vivj ,
the existence of the edge uiuj is also implied via unit propagation. This step
allows us to avoid deletion.

4. At this point, we inductively repeat steps 2–3 for each subgraph isomorphic
to Mycielski graphs of descending order. However, due to the equivalences
ui,c ↔ vi,c, any subsequent PR inference that argues by way of switching
a vertex ν’s color should include in its witness the same color switch for
all the vertices that are transitively equivalent to ν from the previous steps.
For instance, if a witness contains νc′ ∧ νc, then for each vertex η that is
equivalent to ν it also has to contain ηc′ ∧ ηc. The maximum number of such
vertices for any ν occurring in the proof is Ω(2k).

5. After the PR clauses are introduced for the subgraph isomorphic to M3,
the existence of a k-clique is implied via unit propagation. Figure 4 shows
the equivalent vertices and the implied edges after the last inductive step
when starting from M4. At the end, we simply concatenate a proof of the
pigeonhole principle as before, taking care to include in the witnesses all the
equivalent vertices (as described in the previous step) to each vertex whose
color is switched by a witness.

Fig. 4. Equivalent vertices and implied edges. Groups of equivalent vertices are high-
lighted. Dashed edges are implied by unit propagation.

The proof has length O(2kk2), and MYCk has length Θ(3kk). Letting S denote
the length of the formula, the proof has sublinear length O(Slog3 2(log S)2). ��
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In the PR− proof, the maximum discrepancy is Ω(2k). Letting N be the length of
the proof, this becomes Ω(N/(log N)2). As a result, we cannot rely on Theorem 2,
and the existence of a polynomial-length SPR− proof for Mycielski graph formulas
remains open. While the existence of such a proof is plausible, we conjecture that
it will not be of constant width as the ones we present.

5 Experimental results

All of the formulas, proofs, and the code for our experiments are available at
https://github.com/emreyolcu/mycielski.

5.1 Proof verification

In order to verify the proofs we described in the previous section, we implemented
two proof generators for MYCk and checked the DPR− and PR− proofs with
dpr-trim for values of k from 5 to 10. Figure 5 shows a plot of the lengths of
the formulas and the proofs, and Table 1 shows their exact sizes.

5 6 7 8 9 10

103

104

105

106

k

#cls
DPR−

PR−

Fig. 5. Plot of the length of the formula
and the lengths of the proofs versus k.

Table 1. Formula and proof sizes.
For each formula MYCk, this ta-
ble shows the number of variables
and clauses in the formula, and the
lengths of the proofs.

k #vars #cls DPR− PR−

5 92 307 1572 600
6 235 1227 7635 2165
7 570 4625 33178 6796
8 1337 16711 134855 19523
9 3064 58551 524456 52816
10 6903 200531 1976271 136905

5.2 Effect of redundant clauses on CDCL performance

Suppose we have a proof search algorithm for DPR− and that the redundant
clauses we introduce in the DPR− proof are discovered automatically. Assuming
they are found by some method, we look at their effect on the efficiency of
CDCL at finding the rest of the proof automatically. In addition, we generate
satisfiable instances of the coloring problem (denoted MYC+

k and stating that Mk

is colorable with k colors) and compare how many of the satisfying assignments
remain after the clauses are introduced. The reduction in the number of solutions
suggests that the added clauses do a significant amount of work in breaking
symmetries.

https://github.com/emreyolcu/mycielski
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Table 2. Number of solutions left in
MYC+

k after introducing redundant
clauses. PR\BC is the version of the
formula where we add the PR clauses
but not the BC ones. For k ≥ 5, it
takes longer than 24 hours to count
all solutions, so we only included the
results for two small formulas here.

k MYC+
k BC PR\BC PR

3 60 30 36 18
4 163680 12480 6576 792

Table 3. CDCL performance on for-
mulas with additional clauses. Each
cell shows the time (in seconds) it
takes for CaDiCaL to prove unsatisfia-
bility. The cells with dashes indicate
that the solver ran out of time before
finding a proof.

k MYCk BC PR R1 R2

5 0.07 0.04 0.03 0.01 0.00
6 29.53 24.51 1.17 0.03 0.01
7 — — 26.80 0.28 0.02
8 — — 1503 1.33 0.19
9 — — — 22.99 0.88
10 — — — 196.18 12.88

Let us denote by

– BC: the blocked clauses that we add in step 1,
– PR: the PR clauses that we add inductively in step 2,
– R1: the RUP inferences that we add inductively in step 3,
– R2: the RUP inferences that we add inductively in step 4.

We consider extended versions of the formulas where we gradually include more
of the redundant clauses. We cumulatively introduce the redundant clauses from
each step, i.e. when we add the PR clauses we also add the BC clauses.

For the satisfiable formulas MYC+
k , the remaining number of solutions are in

Table 2. We used allsat3 to count the exact number of solutions. Adding only
the BC or PR clauses drastically reduces the number of solutions. Adding them
both leaves a fraction of the solutions.

For the unsatisfiable formulas, we ran CaDiCaL4 [3] with a timeout of 2000
seconds on the original formulas and the versions including the clauses introduced
at each step. The results are in Table 3. These runtimes are somewhat unexpected
as R1 and R2 can be derived from MYCk+PR with relatively few resolution steps.
One would therefore expect the performance on MYCk+PR, MYCk+R1, and
MYCk+R2 to be similar. We study this observation in the next subsection.

5.3 Difficult extended Mycielski graph formulas

The CDCL paradigm has been highly successful, because it has been able to find
short refutations for problems arising from various applications. However, the
above results show that there exist formulas for which CDCL cannot find the
short refutations. In particular, the MYCk+PR formulas have length Θ(3kk) and
there exist resolution refutations of length O(3kk3): Each clause in R1 and R2, of

3 https://github.com/marijnheule/allsat
4 http://fmv.jku.at/cadical/

https://github.com/marijnheule/allsat
http://fmv.jku.at/cadical/
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which there are O(3kk2), can be derived in O(k) steps of resolution. As for the
clique, it is known that PHPk−1 has resolution refutations of length O(2kk3) [4].

This shows that, even if we devise an algorithm to discover the redundant PR
clauses automatically, the Mycielski graph formulas still remain difficult for the
standard tools. After the clauses in BC and PR become part of the formula, the
difficulty lies in deriving the R2 clauses automatically. If we resort to incremental
SAT solving [10] and provide the cubes ui,c ∧ uj,c (negation of each clause in R2)
as assumptions to the solver, the formulas become relatively easily solvable. For
instance, MYC10+PR takes approximately 3 minutes on a single CPU. Although it
is unlikely that a solver can run this efficiently without any explicit guidance, the
small runtime provides evidence that the shortest resolution proof of MYC10+PR
is of modest length.

In this section, we describe a method for discovering useful cubes automatically
and using them to solve the MYCk+PR formulas. While inefficient, with this
method it at least becomes possible to find proofs of these formulas in a matter
of minutes, compared to CDCL which did not succeed even with a timeout of
three days on MYC10+PR. Given a formula F , the below procedure discovers
binary clauses, inserts them to F , and attempts to solve F via CDCL.

1. Iteratively remove the clause that has the largest number of resolution candi-
dates until the formula becomes satisfiable. For MYCk+PR, this corresponds
to simply removing the clause w1 ∨ . . . ∨ wk−1. Call the newly obtained
formula, which is satisfiable, F−.

2. Repeat:
(a) Sample M satisfying assignments for F− using a local search solver (we

used YalSAT5 [2]).
(b) Find all pairs of literals (li, lj) that do not appear together in any of the

solutions sampled so far. Form a list with the cubes li ∧ lj , and shuffle
it in order to avoid ordering the pairs with respect to variable indices.
In the case of MYCk+PR, the clause ui,c ∨ uj,c is implied by F−, hence
(ui,c, uj,c) must be among the pairs found.

(c) If the number of pairs found did not decrease by more than 1 percent
after the latest addition of satisfying assignments, break.

3. Repeat:
(a) Partition the remaining cubes into P pieces. Use P workers in parallel

to perform incremental solving with a limit of L conflicts allowed on
the instances of the formula F using each separate piece as the set of
assumptions. Aggregate a list of refuted cubes.

(b) For each refuted cube B, append B to the formula F .
(c) If the number of refuted cubes is less than half of the previous iteration,

break.
4. Run CDCL on the final formula F that includes negations of all the refuted

cubes.

Table 4 displays the results for formulas with k ∈ {7, . . . , 10} and varying
numbers of parallel workers P .
5 http://fmv.jku.at/yalsat/

http://fmv.jku.at/yalsat/
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Table 4. Results on finding proofs for MYCk+PR. From left to right, the columns
correspond to the number of samples used for obtaining a list of cubes, the
number of cubes obtained after filtering pairs of literals, time it takes to sample
solutions using a local search solver with 20 workers and filter pairs of literals,
maximum number L of conflicts allowed to the incremental SAT solver, number
of parallel workers P , total time it takes to refute cubes and prove unsatisfiability
of the final formula F , percentage of time spent in the final CDCL run on F ,
number of iterations spent refuting cubes and adding them to the formula.

k #samples #cubes
time to

cubes
L P

time to
solve

final% #iter

7 2000 9675 18.4s 100

1 15.4s 0.39% 2
12 5.7s 0.87% 3
25 5.3s 0.94% 4
50 6.3s 0.80% 4

8 2000 38255 2m 15s 100

1 2m 50s 0.12% 2
12 44.4s 0.43% 4
25 30.6s 0.65% 4
50 33.5s 0.60% 5

9 3000 148624 10m 37s 100

1 38m 40s 0.03% 2
12 7m 4s 0.14% 5
25 5m 22s 0.24% 6
50 3m 26s 0.26% 5

10 3000 568214 35m 18s 100

1 11h 37m 0.003% 3
12 1h 55m 0.04% 6
25 1h 7m 0.33% 5
50 42m 18s 0.32% 6

6 Conclusion

We showed that there exist short DPR−, DSPR−, and PR− proofs of the col-
orability of Mycielski graphs. Interesting questions about the proof complexity
of PR variants remain. For instance, DPR− has not been shown to separate
from ER or Frege, and even simpler questions regarding upper bounds for some
difficult tautologies are open. It is also unknown, although plausible, whether
there exists a polynomial-length SPR− proof of the Mycielski graph formulas.

Apart from our theoretical results, we encountered formulas with short res-
olution proofs for which CDCL requires substantial runtime. We developed an
automated reasoning method to solve these formulas. In future work, we plan to
study whether this method is also effective on other problems that are challenging
for CDCL.

Acknowledgements. This work has been supported by the National Science Foun-
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216 E. Yolcu et al.

References

1. The On-Line Encyclopedia of Integer Sequences. Published electronically at
https://oeis.org/A122695

2. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Proceedings of SAT Competition 2017 – Solver and Bench-
mark Descriptions. vol. B-2017-1, pp. 14–15 (2017)

3. Biere, A.: CaDiCaL at the SAT Race 2019. In: Proceedings of SAT Race 2019 –
Solver and Benchmark Descriptions. vol. B-2019-1, pp. 8–9 (2019)

4. Buss, S., Pitassi, T.: Resolution and the weak pigeonhole principle. In: Computer
Science Logic, pp. 149–156 (1998)

5. Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended reso-
lution. In: Theory and Applications of Satisfiability Testing – SAT 2019. pp. 71–89
(2019)

6. Caramia, M., Dell’Olmo, P.: Coloring graphs by iterated local search traversing
feasible and infeasible solutions. Discrete Applied Mathematics 156(2), 201–217
(2008)

7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

8. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking pred-
icates for search problems. In: Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning. pp. 148–159 (1996)

9. Desrosiers, C., Galinier, P., Hertz, A.: Efficient algorithms for finding critical sub-
graphs. Discrete Applied Mathematics 156(2), 244–266 (2008)

10. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003)

11. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the Conference on Design, Automation and Test in Europe
(DATE 2003). pp. 886–891 (2003)

12. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 75–92 (2018)

13. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In:
NASA Formal Methods. pp. 204–210 (2019)

14. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension-free proof systems. Journal
of Automated Reasoning 64(3), 533–554 (2020)

15. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96–97, 149–176 (1999)

16. Marques-Silva, J.P., Sakallah, K.A.: GRASP—a new search algorithm for sat-
isfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design. pp. 220–227 (1997)

17. Mycielski, J.: Sur le coloriage des graphs. Colloquium Mathematicae 3(2), 161–162
(1955)

18. Ramani, A., Aloul, F.A., Markov, I.L., Sakallah, K.A.: Breaking instance-
independent symmetries in exact graph coloring. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE 2004). pp. 324–329 (2004)

19. Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking by
simulating Zykov contraction. In: Theory and Applications of Satisfiability Testing
– SAT 2009. pp. 223–236 (2009)

20. Trick, M.A., Yildiz, H.: A large neighborhood search heuristic for graph coloring.
In: Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems. pp. 346–360 (2007)

https://oeis.org/A122695


Mycielski Graphs and PR Proofs 217

21. Van Gelder, A.: Another look at graph coloring via propositional satisfiability.
Discrete Applied Mathematics 156(2), 230–243 (2008)

22. Vinyals, M.: Hard examples for common variable decision heuristics. In: Proceed-
ings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)

23. Zhou, Z., Li, C.M., Huang, C., Xu, R.: An exact algorithm with learning for the
graph coloring problem. Computers and Operations Research 51, 282–301 (2014)

24. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.: SAT sweeping
with local observability don’t-cares. In: Proceedings of the 43rd Annual Design
Automation Conference. pp. 229–234 (2006)



Towards a Better Understanding
of (Partial Weighted) MaxSAT

Proof Systems

Javier Larrosa and Emma Rollon(B)
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Abstract. MaxSAT is a very popular language for discrete optimiza-
tion with many domains of application. While there has been a lot of
progress in MaxSAT solvers during the last decade, the theoretical anal-
ysis of MaxSAT inference has not followed the pace. Aiming at com-
pensating that lack of balance, in this paper we do a proof complexity
approach to MaxSAT resolution-based proof systems. First, we give some
basic definitions on completeness and show that refutational complete-
ness makes compleness redundant, as it happens in SAT. Then we take
three inference rules such that adding them sequentially allows us to nav-
igate from the weakest to the strongest resolution-based MaxSAT system
available (i.e., from standalone MaxSAT resolution to the recently pro-
posed ResE), each rule making the system stronger. Finally, we show
that the strongest system captures the recently proposed concept of Cir-
cular Proof while being conceptually simpler, since weights, which are
intrinsic in MaxSAT, naturally guarantee the flow condition required for
the SAT case.

Keywords: MaxSAT · Rule-based proof systems · Circular proofs

1 Introduction

Proof Complexity is the field aiming to understand the computational cost
required to prove or refute statements. Different proof systems may provide
different proofs for the same formula and some proof systems are provably more
efficient than others. When that happens, proof complexity cares about which
elements of the more powerful proof system really make the difference.

In propositional logic, proof systems that work with CNF formulas have
attracted the interest of researchers for several decades. One of the reasons is
that CNF is the working language of the extremely successful SAT solvers and
the search spaces that they traverse can be understood and analyzed as proofs [5].
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(Partial Weighted) MaxSAT is the optimization version of SAT. Although
discrete optimization problems can be modeled and solved with SAT solvers,
many of these problems are more naturally treated as MaxSAT. For this reason
the design of MaxSAT solvers has attracted the interest of researchers in the
last decade. Interestingly, while some of the first efficient MaxSAT solvers were
strongly influenced by MaxSAT inference [9], this influence has diminished along
time. The currently most efficient algorithms solve MaxSAT by sophisticated
sequences of calls to SAT solvers [1,4,11].

We think it is important to understand this scientific trend with a more
formal approach and such understanding must go through an analysis of the
possibilities and limitations of MaxSAT proof systems (how MaxSAT inference
compares with obtaining the same result with a sequence of SAT inferences?).
The purpose of this paper is to start contributing in that direction by improv-
ing the understanding of MaxSAT proof systems. With that aim we extend
some classic proof complexity concepts (i.e, entailment, completeness, etc) to
MaxSAT and analyze three proof systems of increasing complexity: from stand-
alone MaxSAT resolution (Res) [9] to the recently proposed resolution with
extension (ResE) [10]. For the sake of clarity, we break the extension rule of
ResE into two atomic rules: split and virtual ; and analyze their incremental
power. Our results show that each add-on makes a provable stronger system.
More precisely, we have observed that: Res is sound and refutationally complete.
Adding the split rule (ResS) we get completeness and (unlike what happens in
SAT) some exponential speed-up in certain refutations. Further adding the vir-
tual rule (ResSV), which allows to keep negative weights during proofs, we get
further speed-up by capturing the concept of circular proofs [3]. We also give
the interesting and somehow unexpected result that in some cases rephrasing a
MaxSAT refutation as a MaxSAT entailment may transform the problem from
exponentially hard to polynomial when using ResSV.

The structure of the paper is as follows. In Sects. 2 and 3 we provide prelim-
inaries on SAT and MaxSAT, respectively. In Sect. 4 we define some variations
of the Pigeon Hole Problem that we need for the proofs of the theorems. In
Sect. 5 we provide basic definition and properties on MaxSAT proof systems and
introduce and analyze the different systems addressed in the paper. In Sect. 6
we show how the strongest proof system ResSV captures the notion of Circular
Proof. Finally, in Sect. 7, we give some conclusions.

2 SAT Preliminaries

A boolean variable x takes values on the set {0, 1}. A literal is a variable x
(positive literal) or its negation x (negative literal). A clause is a disjunction of
literals. A clause C is satisfied by a truth assignment X if X contains at least
one of the literals in C. The empty clause is denoted � and cannot be satisfied.
The negation of a clause C = l1 ∨ l2 ∨ . . . ∨ lp is satisfied if all its literals are
falsified and this can be trivially expressed in CNF as the set of unit clause
{l1, l2, . . . , lp}.
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A CNF formula F is a set of clauses (understood as a conjunction). A truth
assignment satisfies a formula if it satisfies all its clauses. If such an assignment
exists, we say that the assignment is a model and the formula is satisfiable,
noted SAT (F). Determining whether a formula is satisfiable constitutes the
well-known SAT Problem.

We say that formula F entails formula G, noted F |= G, if every model of F
is also a model of G. Two formulas F and G are equivalent, noted F ≡ G, if they
entail each other.

An inference rule is given by a set of antecedent clauses and a set of con-
sequent clauses. In SAT, the intended meaning of an inference rule is that if
some clauses of a formula match the antecedents, the consequents can be added.
The rule is sound if every truth assignment that satisfies the antecedents also
satisfies the consequents. The process of applying an inference rule to a formula
F is noted F � F ′.

Consider the following two rules [3,12],

x ∨ A x ∨ B A
A ∨ B A ∨ x A ∨ x

(resolution) (split)

where A and B are arbitrary (possibly empty) disjunctions of literals and x is
an arbitrary variable. In propositional logic it is customary to define rules with
just one consequent because one rule with s consequents can be obtained from
s one-consequent rules. As we will see, this is not the case in MaxSAT. For this
reason, here we prefer to introduce the two-consequents split rule instead of the
equivalent weakening rule [3] to keep the parallelism with MaxSAT more evident.

A proof system Δ is a set of inference rules. A proof of length e under a
proof system Δ is a finite sequence F0 � F1 � . . . � Fe where F0 is the original
formula and each Fi is obtained by applying an inference rule from Δ. We will
use �∗ to denote an arbitrary number of inference steps. A short proof is a proof
whose length can be bounded by a polynomial on |F|. A refutation is a proof
such that � ∈ Fe. Refutations are important because they prove unsatisfiability.

A proof system is sound if all its rules are sound. All the SAT rules and proof
systems considered in this paper are sound. A proof system is complete if for
every F ,G such that F |= G, there is a proof F �∗ H with G ⊆ H. Although
completeness is a natural and elegant property, it has limited practical inter-
est. For that reason a weaker version of completeness has been defined. A proof
system is refutationally complete if for every unsatisfiable formula F there is a
refutation starting in F (i.e, completeness is required only for refutations). It is
usually believed that refutational completeness is enough for practical purposes.
The reason is that F |= G if and only if F ∪ G is unsatisfiable, so any implica-
tionally complete proof system can prove the entailment by deriving a refutation
from a CNF formula equivalent to F ∪ G.

It is well-known that the proof system made exclusively of resolution is refu-
tationally complete and adding the split rule makes the system complete. The
following property says that adding the split rule does not give any advantage
to resolution in terms of refutational power.
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Property 1 [(see Lemma 7 in [2]]. A proof system with resolution and split as
inference rules cannot make shorter refutations than a proof system with only
resolution.

3 MaxSAT Preliminaries

A weight w is a positive number or ∞ (i.e, w ∈ R
+ ∪{∞}). We extend sum and

substraction to weights defining ∞ + w = ∞ and ∞ − w = ∞ for all w. Note
that v − w is only defined when w ≤ v.

A weighted clause is a pair (C,w) where C is a clause and w is a weight
associated to its falsification. If w = ∞ we say that the clause is hard, else it
is soft. A weighted MaxSAT CNF formula is a set of weighted clauses F =
{(C1, w1), (C2, w2), . . . , (Cp, wp)}. If all the clauses are hard, we say that the
formula is hard. We say that G ⊆ F if for all (C,w) ∈ G there is a (C,w′) ∈ F
with w ≤ w′.

Given a formula F , we define the cost of a truth assignment X, noted F(X),
as the sum of weights over the clauses that are falsified by X. The MaxSAT
problem is to find the minimum cost over the set of all truth assignments,

MaxSAT (F) = min
X

F(X)

This definition of MaxSAT including weights and hard clauses is sometimes
referred to as Partial Weighted MaxSAT [11]. Note that any clause (C,w) can
be broken into two clauses (C, u), (C, v) as long as u + v = w. In the following
we will assume that clauses are separated and merged as needed.

We say that formula F entails formula G, noted F |= G, if G(X) is a lower
bound of F(X). That is, if for all X, F(X) ≥ G(X). We say that two formulas
F and G are equivalent, noted F ≡ G, if they entail each other. That is, if forall
X, F(X) = G(X).

In the following Sections we will find useful to deal with negated clauses.
Hence, the corresponding definitions and useful properties. Let A and B be
arbitrary disjunctions of literals. Let (A ∨ B,w) mean that falsifying A ∨ B
incurs a cost of w. Although A ∨ B is not a clause, the following property shows
that it can be efficiently transformed into a CNF equivalent,

Property 2. {(A ∨ l1 ∨ l2 ∨ . . . ∨ lp, w)} ≡ {(A ∨ l1, w), (A ∨ l1 ∨ l2, w), . . . , (A ∨
l1 ∨ . . . ∨ lp−1 ∨ lp, w)}.

Observe that if we restrict the MaxSAT language to hard formulas we have
standard SAT CNF formulas where ∞ corresponds to false and 0 corresponds
to true. Note that all the previous definitions naturally instantiate to their SAT
analogous.

4 Pigeon Hole Problem and Variations

We define the well-known Pigeon Hole Problem PHP and three MaxSAT versions
SPHP , SPHP0 and SPHP1, that we will be using in the proof of our results.
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In the Pigeon Hole Problem PHP the goal is to assign m + 1 pigeons to m
holes without any pair of pigeons sharing their hole. In the usual SAT encoding
there is a boolean variable xij (with 1 ≤ i ≤ m + 1, and 1 ≤ j ≤ m) which is
true if pigeon i is in hole j. There are two groups of clauses. For each pigeon i,
we have the clause,

Pi = {xi1 ∨ xi2 ∨ . . . ∨ xim}
indicating that pigeon i must be assigned to a hole. For each hole j we have the
set of clauses,

Hj = {xij ∨ xi′j | 1 ≤ i < i′ ≤ m + 1}
indicating that hole j is occupied by at most one pigeon. Let K be the union of
all these sets of clauses K = ∪1≤i≤m+1Pi ∪1≤j≤m Hj . It is obvious that K is an
unsatisfiable CNF formula. In MaxSAT notation the pigeon hole problem is,

PHP = {(C,∞) | C ∈ K}
and clearly MaxSAT (PHP) = ∞.

In the soft Pigeon Hole Problem SPHP the goal is to find the assignment
that falsifies the minimum number of clauses. In MaxSAT language it is encoded
as,

SPHP = {(C, 1) | C ∈ K}
and it is obvious that MaxSAT (SPHP) = 1.

The SPHP0 problem is like the soft pigeon hole problem but augmented
with one more clause (�,m2 + m) where m is the number of holes. Note that
MaxSAT (SPHP0 ) = m2 + m + 1.

Finally, the SPHP1 problem is like the soft pigeon hole problem but aug-
mented with a set of unit clauses {(xij , 1), (xij , 1)| 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}.
Note that MaxSAT (SPHP1 ) = m2 + m + 1.

5 MaxSAT Proof Systems

A MaxSAT inference rule is given by a set of antecedent clauses and a set of
consequent clause. In MaxSAT, the application of an inference rule is to replace
the antecedents by the consequents. The process of applying an inference rule to
a formula F is also noted F � F ′. The rule is sound if it preserves the equivalence
of the formula.

As in the SAT case, given a proof system Δ (namely, a set of rules) a proof
of length e is a sequence F0 � F1 � . . . � Fe where F0 is the original formula
and each Fi is obtained by applying an inference rule from Δ. If G ⊆ Fe, we say
that the proof is a proof of G from F .

A proof system is sound if all its rules are sound. In this paper all MaxSAT
rules and proof systems are sound. A proof system is complete if for every F , G
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such that F |= G, there is a proof of G from F . A refutation of F is a proof of
(�, k) from F with k = MaxSAT (F). A proof system is refutationally complete
if it can derive a refutation of every formula F .

Next we show that, similarly to what happens in SAT, refutationally com-
pleteness is sufficient for practical purposes. The reason is that it can also be
used to proof or disproof general entailment, making completeness somehow
redundant. We need first to define the maximum soft cost of a formula as
�(F) =

∑
(C,w)∈F |w �=∞ w and the negation of a MaxSAT formula as the nega-

tion of all its clauses F = {(C,w)| (C,w) ∈ F}. The following property tells the
effect of negating a formula without hard clauses,

Property 3. If F is a CNF MaxSAT formula without hard clauses, then

F(X) = �(F) − F(X)

Proof. Let X be a truth assignment, S be the set of clauses satisfied by X and U
be the set of clauses falsified by X. It is clear that F(X) =

∑
(Ci,wi)∈U wi while

F(X) =
∑

(Ci,wi)∈S wi. Since S ∩ U = ∅ and S ∪ U = F , then
∑

(Ci,wi)∈U wi +
∑

(Ci,wi)∈S wi = �(F). Therefore, F(X)+F(X) = �(F) and, as a consequence,
F(X) = �(F) − F(X).

We can now show that an entailment F |= G can be rephrased as a MaxSAT
problem,

Theorem 1. Let F and G be two MaxSAT formulas, possibly with hard clauses.
Then,

F |= G iff MaxSAT (F ∪ G′
) ≥ �(G′)

where G′ is a softened version of G in which infinity weights are replaced by
max{�(G),�(F)} + 1.

Proof. Let us prove the if direction. F |= G means that ∀X,F(X) ≥ G(X). Also,
by construction ∀X,G(X) ≥ G′(X). Therefore, ∀X,F(X) ≥ G(X). Because G′

does not contain hard clauses, G′(X) �= ∞, which means that, ∀X,F(X) −
G′(X) ≥ 0 Adding �(G′) to both sides of the disequality we get, ∀X,F(X) +
�(G′) − G′(X) ≥ �(G′). By Property 3, we have, ∀X,F(X) + G′

(X) ≥ �(G′)
which clearly means that, MaxSAT (F ∪ G′

) ≥ �(G′).
Let us proof the else if direction. maxSAT (F ∪ G′

) ≥ �(G′) implies that
∀X,F(X) + G′

(X) ≥ �(G′). Moreover, since G′
does not have hard clauses,

from Property 3 we know that, ∀X,F(X) + �(G′) − G′(X) ≥ �(G′) so we have,
∀X,F(X) ≥ G′(X) and we need to have, ∀X,F(X) ≥ G(X). We reason on cases
for truth assignment X:

1. If G′(X) <= �(G), by definition of G′, G′(X) = G(X) �= ∞. Therefore,
F(X) ≥ G′(X) = G(X), which proofs this case.
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2. If G′(X) > �(G), by definition of G′, G(X) = ∞. We show that in this case,
F(X) = ∞.

– if �(F) ≤ �(G) then F(X) ≥ G′(X) > �(G) ≥ �(F). We show that
F(X) > �(F) implies that F(X) = ∞. We proceed by contradiction.
Let us suppose that F(X) > �(F) and F(X) �= ∞. The latter means
that X satisfies all hard clauses. As a consequence, F(X) ≤ �(F), which
contradicts the hypothesis.

– if �(F) > �(G), then there are no X such that �(G) < G′(X) ≤ �(F).
By definition of G′, forall (Ci,∞) ∈ G, (Ci,�(F) + 1) ∈ G′. Therefore,
either X satisfies all hard clauses in G and then G′(X) ≤ �(G) or X
falsifies at least one hard clause in G and then G′(X) > �(F).

which proofs the theorem.

The application of the previous theorem to single clause entailment yields
the following corollary.

Corollary 1. Let F be a formula and (C,w) be a weighted clause. Then,

F |= (C,w) iff MaxSAT (F ∪ {(C, u)} ≥ u

where u =
{

w, if w �= ∞
�(F) + 1, if w = ∞

A useful application of this corollary will be shown in Sect. 5.3.
In the rest of the section we introduce and analyze the incremental impact

of the three inference rules.

5.1 Resolution

The MaxSAT resolution rule [8] is,

(x ∨ A, v) (x ∨ B,w)
(A ∨ B,m)

(x ∨ A, v − m) (x ∨ B,w − m)
(x ∨ A ∨ B,m) (x ∨ B ∨ A,m)

where A and B are arbitrary (possibly empty) disjunctions of literals and m =
min{v, w}. When A (resp. B) is empty, A (resp. B) is constant true, so x∨A∨B
(resp. x∨A∨B) is tautological. Note that MaxSAT resolution, when applied to
two hard clauses, corresponds to SAT resolution.

It is known that the proof system Res made exclusively of the resolution
rule is refutationally complete,

Theorem 2 [6,9]. Res is refutationally complete.

However, as we show next, it is not complete.
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Theorem 3. Res is not complete.

Proof. Consider formula F = {(x, 1), (y, 1)}. It is clear that F |= (x∨y, 1) which
cannot be derived with Res.

It is well-known that Res cannot compute short refutations for PHP [12] or
SPHP [6]. However, it can efficiently refute SPHP 1. We write it as a property
and sketch the proof (which is a direct adaptation of what was proved in [7] and
[10]) because it will be instrumental in the proof of several results in the rest of
this section,

Property 4. There is a short Res refutation of SPHP 1.

Proof. The proof is based on the fact that for each one of the m + 1 pigeons
there is a short refutation

{(xi1 ∨ xi2 ∨ . . . ∨ xim, 1)} ∪ {(xij , 1)| 1 ≤ j ≤ m} �∗ G ∪ (�, 1)

and for each one of the m holes there is a short refutation

{(xij ∨ xi′j , 1) | 1 ≤ i < i′ ≤ m + 1} ∪ {(xij , 1) | 1 ≤ i ≤ m + 1} �∗ G ∪ {(�,m)}
Because each derivation is independent of the other we can concatenate them
into,

SPHP1 �∗ G ∪ {(�,m2 + m + 1)}

which is a refutation of SPHP1.

5.2 Split

The split rule,

(A,w)
(A ∨ x,w) (A ∨ x,w)

is the natural extension of its SAT counterpart. Consider the proof system ResS,
made of resolution and split. We show that, as it happens in the SAT case, the
split rule brings completeness,

Theorem 4. ResS is complete.

Proof. The proof is based on the following facts:

1. For every formula F there is a proof F �∗ Fe where Fe is made exclusively
of splits in which all the clauses of F e contain all the variables in the formula
and there are no repeated clauses. Each clause (C,w) ∈ F can be expanded
to a new variable not in C using the split rule. This process can be repeated
until all clauses in the current formula contain all the variables in the formula.
Note that all clauses (C ′, u), (C ′, v) can be merged and, as a result, Fe does
not contain repeated clauses.
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2. If F �∗ Fe then Fe �∗ F . Let F = F0 � F1 � F2 � . . . � Fp = Fe be the
proof from F to Fe. Then, Fe = Fp � . . . � F2 � F1 � F0 = F is done
resolving the pairs of clauses in Fi that were splitted in the Fi−1 � Fi step.

3. If Fe(X) = w then there exists a unique clause (C,w) ∈ Fe which is falsified
by X

By fact (1), F �∗ Fe and G �∗ Ge. Because of soundness, �, ∀X,F(X) =
Fe(X) and ∀X,G(X) = Ge(X). Since F |= G, ∀X,F (X) ≥ G(X). Therefore,
∀X,F e(X) ≥ Ge(X) which, by fact (3), means that for each X there exists a
unique (C,F e(X)) ∈ Fe and (C,Ge(X)) which is falsified by X. Separating
all (C,Fe(X)) into (C,Ge(X)), (C,Fe(X) − Ge(X)) we have Fe = Ge ∪ He.
Therefore, F � Fe = Ge ∪ He. By fact (2), Ge ∪ He �∗ G ∪ He.

However, unlike what happens in the SAT case (see Property 1), ResS is
stronger than Res,

Theorem 5. ResS is stronger than Res.

Proof. On the one hand, it is clear that ResS can simulate any proof of Res
since it is a superset of Res. On the other hand, unlike Res, ResS can produce
short refutations for SPHP 0, as shown below.

First, let us proof that Res cannot produce short refutations for SPHP 0.
Since the resolution rule does not apply to the empty clause (�, w), if Res could
refute SPHP0 in polynomial time it would also refute SPHP in polynomial time,
which is impossible [6].

ResS can produce short refutations for SPHP 0 because it can transform
SPHP 0 into SPHP 1 and then apply Property 4. The transformation is done
by a sequence of splits,

(�, 1)
(xij , 1) (xij , 1)

that move one unit of weight from the empty clause to every variable in the
formula and its negation.

5.3 Virtual

In a recent paper [10] we proposed a proof system in which clauses with negative
weights can appear during the proof. This is equivalent to adding to ResS the
virtual rule,

(A,w) (A,−w)

which allows to introduce a fresh clause (A,w) into the formula. To preserve
soundness (i.e, cancel out the effect of the addition) it also adds (A,−w).

Let ResSV be the proof system made of resolution, split and virtual (note
that resolution and split are only defined for antecedents with positive weights).
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It has been shown that if F0 �∗ Fe is a ResSV proof and Fe does not contain
any negative weight, then for every G ⊆ Fe we have that F |= G.

The following theorem shows that the virtual rule adds further strength to
the proof system,

Theorem 6. ResSV is stronger than ResS.

Proof. On the one hand, it is clear that ResSV can simulate any proof of ResS
since it is a superset of ResS. On the other hand, ResSV can produce a short
refutation of SPHP and ResS cannot.

The short refutation of ResSV, as shown in [10], is obtained by first virtually
transforming SPHP into SPHP 1. Then, it uses Property 4 to derive (�,m2 +
m+1). Finally, it splits one unit of the empty clause cost to each pair xij , xij to
cancel out negative weights. At the end of the process all clauses have positive
weight while still having (�, 1).

It is clear that ResS cannot polynomially refute SPHP because otherwise
a SAT proof system with resolution and split rules would produce shorter
refutations than a SAT proof system with only resolution, which contradicts
Property 1.

We will finish this section showing that Theorem 1 has an unexpected applica-
tion in the context of ResSV. Consider the problem of proving PHP |= (�,∞).
This can be done with a refutation of PHP . Namely PHP �∗ (�,∞) ∪ F or
using Corollary 1, which tells that F |= (�,∞) if and only if MaxSAT (F) ≥ 1.
The following two theorems shows that ResSV cannot do efficiently the first
approach, but can do efficiently the second.

Theorem 7. There is no short ResSV refutation of PHP .

Proof. Virtual rule cannot introduce hard clauses and resolution and split rules
only produce a hard consequence if they have hard antecedents. As a conse-
quence, (�,∞) can only be obtained by resolving or splitting hard clauses in
PHP . If ResSV produce a short refutation for PHP , ResS and, as a conse-
quence Res, also produce the same short refutation for PHP , which contradicts
Property 1.

Theorem 8. There is a polynomial ResSV proof of (�, 1) from PHP .

Proof. We only need to apply the virtual rule,

(�,m2 + m) (�,−m2 − m)

and then split,

(�, 1)
(xij , 1) (xij , 1)

for each i, j. The resulting problem is similar to SPHP 1 but with hard clauses.
At this point and adapting the proof of 4 we can derive (�,m2 + m + 1) cancel
out the negative weight while still retaining (�, 1).
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6 MaxSAT Circular Proofs

In this section we study the relation between ResSV and the recently proposed
concept of circular proofs [3]. Circular proofs allows the addition of an arbitrary
set of clauses to the original formula. It can be seen that conclusions are sound
as long as the added clauses are re-derived as many times as they are used. In
the original paper this condition is characterized as the existence of a flow in
a graphical representation of the proof. Here we show that the ResSV proof
system naturally captures the same idea and extends it from SAT to MaxSAT
with an arguably simpler notation. In particular, the virtual rule guarantees the
existence of the flow.

6.1 SAT Circular Proofs

We start reviewing the SAT case, as defined in [3]. Given a CNF formula F a
circular pre-proof of Cr from F is a sequence,

Π = C1, C2, . . . , Cp, Cp+1, Cp+2, . . . , Cp+q, Cp+q+1, Cp+q+2, . . . , Cr

such that F = {C1, C2, . . . , Cp}, B = {Cp+1, Cp+2, . . . , Cp+q} is an arbitrary set
of clauses and each Ci (i > p + q) is obtained from previous clauses by applying
an inference rule in the proof system. Note that the same clause can be both
derived and used several times during the proof.

A circular pre-proof Π can be associated with a directed bi-partite graph
G(Π) = (I ∪ J,E) such that there is one node in J for each element of the
sequence (called clause nodes) and one node in I for each inference step (called
inference nodes). There is an arc from u ∈ J to v ∈ I if u is an antecedent
clause in the inference step of v. There is an arc from u ∈ I to v ∈ J if v is a
consequent clause in the inference step of u. The graph is compacted by merging
nodes whose associated clause is identical to one in B. Note that before the
compactation the graph is acyclic, but the compactation may introduce cycles.
The set of in-neighbors and out-neighbors of node C ∈ J are denoted N−(C)
and N+(C), respectively.

A flow assignment for a circular pre-proof is an assignment f : I −→ R
+ of

positive reals to inference nodes. The balance of node C ∈ J is the inflow minus
the outflow,

b(C) =
∑

R∈N−(C)

f(R) −
∑

R∈N+(C)

f(R)

Definition 1. A SAT circular proof of clause A from CNF formula F is a pre-
proof Π whose proof-graph G(Π) admits a flow in which all clauses not in F
have non-negative balance and A ∈ J has a strictly positive balance.

Theorem 9 (soundness). Assuming a sound SAT proof system, if there is a
SAT circular proof of A from formula F then F |= A.
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Property 5. Using the proof system with the following two rules,

x ∨ D x ∨ D D
D D ∨ x D ∨ x

(symmetric resolution) (split)

there is a short circular refutation of PHP .

6.2 ResSV and MaxSAT Circular Proofs

Now we show that the MaxSAT ResSV proof system is a true extension of
circular proofs from SAT to MaxSAT. The following two theorems show that,
when restricted to hard formulas, ResSV and SAT circular proofs can simulate
each other. Recall that specializing Corollary 1 to hard formulas, F |= (A,∞)
and MaxSAT (F ∪ {(A, 1)}) ≥ 1 is equivalent. Therefore, one can show F |=
(A,∞) with a proof F ∪ {(A, 1)} �∗ (�, 1) ∪ G.

Theorem 10. Let Π be a SAT circular proof of clause A from formula F =
{C1, . . . , Cp} using the proof system symmetric resolution and split. There is a
MaxSAT ResSV proof of (�, 1) from F ′ = {(C1,∞), . . . , (Cp,∞)} ∪ {(A, 1)}.
The length of the proof is O(|Π|).
Proof. Let G(Π) = (J ∪ I,A) be the proof graph and and f(·) the flow of Π.
By definition of SAT circular proof, A ∈ J and b(A) > 0.

The ResSV proof starts with F ′ = {(C1,∞), . . . , (Cp,∞)} ∪ {(A, 1)} and
consists in 3 phases. In the first phase, the virtual rule is applied for each C ∈ J
not in F , introducing {(C, o), (C,−o)} with o =

∑
R∈N−(C) f(R). In the second

phase, there is an inference step for each u ∈ I. If u is a SAT split, the infer-
ence step is a MaxSAT split generating two clauses with weight f(u). If u is a
SAT symmetric resolution, the inference step is a MaxSAT resolution generat-
ing one clause with weight f(u). Note that this phase never creates new clauses
because all of them have been virtually added at the first phase. It only moves
weights around the existing ones. Note as well that we guarantee by construc-
tion that at each step of the proof the antecedents are available no matter in
which order the proof is done because the first phase has given enough weight to
each added clause to guarantee it and original clauses are hard, so their weight
never decreases. At the end of the second phase we have F ∪ {(A, 1)} ∪ C with
C = {(C, b(C) | C ∈ J, b(C) > 0} with b(C) being the balance of C. Therefore
(A, b(A)) is in C. The third phase is a final sequence of q steps in which (�, 1) is
derived from {(A, 1), (A, b(A)} which completes the proof. Note that the size of
the proof is O(|J + I|) = O(|Π|).
Theorem 11. Consider a hard formula F = {(C1,∞), . . . , (Cp,∞)} and a
ResSV proof F ∪ {(A, 1)} �∗ F ∪ G ∪ {(�, 1)} with e inference steps. There
is a SAT circular proof Π of A from F ′ = {C1, . . . , Cp} with proof system sym-
metric resolution and split. Besides, |Π| = O(e).
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Proof. We need to build a graph G(Π) = (J ∪I, E) with F ′ ⊂ J and A ∈ J , and
a flow f(·) that satisfies the balance conditions and with which A has strictly
positive balance.

Because the virtual rule does not have antecedents all its applications can
be done at the beginning of the proof and all the cancellation of all the virtual
clauses can be done at the end. Therefore, we can omit all those inference steps
and assume without loss of generality that the proof is a ResS (that is, without
virtual),

F ∪ {(A, 1)} ∪ B � F1 � F2 � . . . � Fe = F ∪ G ∪ {(�, 1)} ∪ B
where B is the set of virtually added clauses. Note as well that any application of
MaxSAT resolution between x∨A and x∨B can be simulated by a short sequence
of splits to both clauses until their scope is the same and then one resolution
step between x ∨ A ∨ B and x ∨ A ∨ B. So, again without loss of generality we
can assume that the proof only contains splits and symmetric resolutions.

Our proof contains three phases. First, we are going to build an acyclic graph
G′(Π) which is an unfolded version of G(Π) and a flow function f ′(·) that may
have ∞ flows. Second we will compute f(·) traversing the graph G′(Π) bottom-
up and replacing any infinite flow in f ′(·) by a finite one that still guarantees the
flow condition. In the third and final phase, we will compact the graph which
will constitute the circular proof.
Phase 1:

We build G′(Π) = (J ′ ∪ I ′, E′) by following the proof step by step. Let
G′

i = (J ′
i ∪ I ′

i, E
′
i) be the graph associated to proof step i. We define the front of

Gi as the set of clause nodes in J ′
i with strictly positive balance. By construction

of G′
i we will guarantee a connection between the current formula Fi and the

front of the current graph G′
i

Fi = {(C, b(C)) | C ∈ J ′
i , b(C) =

∑

R∈N−(C)

f ′(R) −
∑

R∈N+(C)

f ′(R)}

where we define ∞ − ∞ = ∞.
G′

1 contains one clause node for each clause in F , {(A, 1)} and B, respectively.
For each clause node there is one dummy inference node pointing to it. The flow
f ′(·) of the inference node is the weight of the clause it points to. This set of
dummy inference nodes will be removed at step three. Then we proceed through
the proof. At inference step i, we add a new inference node i to I. Its in-neighbors
will be nodes from the front (that must exist because of the invariant) and its out-
neighbors will be newly added clause nodes. Its flow f ′(i) is the weight moved
by the inference rule (which may be infinite). If the inference rule is split we
add two clause nodes, one for each consequent and add the corresponding arcs.
If the inference rule is a resolution we add one clause node for its consequent
and add the corresponding arcs. Note that, the out-neighbors of node i have a
positive balance and in-neighbors of i have their out-flow decreased, but cannot
turn negative. Finally, we merge any pair of nodes in the front of G′

i whose
associated clause is the same (which preserves the property of balances being
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non-negative). Graph G′ is obtained after processing the last inference step. Note
that the invariant guarantees that � is in G′ and its balance is 1.
Phase 2:

Now we traverse the inference nodes of G′ in the reverse order of how they
were added transforming infinite flows into finite. When considering node i,
because of the traversing order, we know that every C ∈ N+(i) has finite out-
going flow. We compute the flow value f(i) as follows: if f ′(i) is finite, then
f(i) = f ′(i), else f(i) is the minimum value that guarantees that the balance of
every C ∈ N+(i) is non-negative.
Phase 3:

We obtain G by doing some final arrangements to G′. First, we remove
dummy inference nodes pointing to clauses in F , (A, 1) and B added in Phase
1. As a result, the balance of these nodes is negative. In particular, the balance
of nodes representing A and B is its negative weight.

Since B ⊆ Fe, we know that all nodes representing B are included in the
front of G′ with balance greater than or equal to its weight. We compact these
nodes with the ones in G′

1 and, as a result, its balance is positive.
Finally, we add some split nodes with flow 1 from node � (recall that b(�) =

1) in order to generate A and A, and we compact the latter ones with the ones
in G′

1. As a result, the balance of A is 1 and the balance of A nodes is positive.

7 Conclusions

This paper constitutes a first attempt towards MaxSAT resolution-based proof
complexity analysis. We have provided some basic definitions and results empha-
sizing the similarities and differences with respect to SAT. In particular, we
have shown that MaxSAT entailment can be rephrased as a MaxSAT refutation
problem and, as a consequence, refutation completeness is sufficient for practi-
cal purposes. Interestingly, when such rephrasing is applied to hard formulas it
transforms a SAT query into a MaxSAT one, and such transformation turns out
to be relevant in our analysis of SAT circular proofs.

We have also provided three basic inference MaxSAT rules used in resolution-
based proof systems (e.g. resolution, split and virtual) and have analysed their
incremental effect in terms of refutation power. Finally, we have related ResSV,
the strongest of the proof systems considered, with the recently proposed concept
of circular proofs. We have shown that ResSV generalizes SAT circular proofs
as defined in [3].

An additional contribution of the paper is to put together under a formal
framework and common notation some ideas spread around in different recent
papers such as [3,7,10].
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Abstract. Restarts are a widely-used class of techniques integral to
the efficiency of Conflict-Driven Clause Learning (CDCL) Boolean SAT
solvers. While the utility of such policies has been well-established empir-
ically, a theoretical understanding of whether restarts are indeed crucial
to the power of CDCL solvers is missing.

In this paper, we prove a series of theoretical results that characterize
the power of restarts for various models of SAT solvers. More precisely,
we make the following contributions. First, we prove an exponential sepa-
ration between a drunk randomized CDCL solver model with restarts and
the same model without restarts using a family of satisfiable instances.
Second, we show that the configuration of CDCL solver with VSIDS
branching and restarts (with activities erased after restarts) is exponen-
tially more powerful than the same configuration without restarts for
a family of unsatisfiable instances. To the best of our knowledge, these
are the first separation results involving restarts in the context of SAT
solvers. Third, we show that restarts do not add any proof complexity-
theoretic power vis-a-vis a number of models of CDCL and DPLL solvers
with non-deterministic static variable and value selection.

1 Introduction

Over the last two decades, Conflict-Driven Clause Learning (CDCL) SAT solvers
have had a revolutionary impact on many areas of software engineering, security
and AI. This is primarily due to their ability to solve real-world instances con-
taining millions of variables and clauses [2,6,15,16,18], despite the fact that the
Boolean SAT problem is known to be an NP-complete problem and is believed
to be intractable in the worst case.

This remarkable success has prompted complexity theorists to seek an expla-
nation for the efficacy of CDCL solvers, with the aim of bridging the gap between
theory and practice. Fortunately, a few results have already been established that
lay the groundwork for a deeper understanding of SAT solvers viewed as proof
systems [3,8,11]. Among them, the most important result is the one by Pipatsri-
sawat and Darwiche [18] and independently by Atserias et al. [2], that shows that
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 233–249, 2020.
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an idealized model of CDCL solvers with non-deterministic branching (variable
selection and value selection), and restarts is polynomially equivalent to the gen-
eral resolution proof system. However, an important question that remains open
is whether this result holds even when restarts are disabled, i.e., whether config-
urations of CDCL solvers without restarts (when modeled as proof systems) are
polynomial equivalent to the general resolution proof system. In practice there
is significant evidence that restarts are crucial to solver performance.

This question of the “power of restarts” has prompted considerable theo-
retical work. For example, Bonet, Buss and Johannsen [7] showed that CDCL
solvers with no restarts (but with non-deterministic variable and value selection)
are strictly more powerful than regular resolution. Despite this progress, the cen-
tral questions, such as whether restarts are integral to the efficient simulation of
general resolution by CDCL solvers, remain open.

In addition to the aforementioned theoretical work, there have been many
empirical attempts at understanding restarts given how important they are to
solver performance. Many hypotheses have been proposed aimed at explaining
the power of restarts. Examples include, the heavy-tail explanation [10], and
the “restarts compact assignment trail and hence produce clauses with lower
literal block distance (LBD)” perspective [14]. Having said that, the heavy-tailed
distribution explanation of the power of restarts is not considered valid anymore
in the CDCL setting [14].

1.1 Contributions

In this paper we make several contributions to the theoretical understanding of
the power of restarts for several restricted models of CDCL solvers:

1. First, we show that CDCL solvers with backtracking, non-deterministic
dynamic variable selection, randomized value selection, and restarts1 are
exponentially faster than the same model, but without restarts, with high
probability (w.h.p)2. A notable feature of our proof is that we obtain this
separation on a family of satisfiable instances. (See Sect. 4 for details.)

2. Second, we prove that CDCL solvers with VSIDS variable selection, phase sav-
ing value selection and restarts (where activities of variables are reset to zero
after restarts) are exponentially faster (w.h.p) than the same solver configu-
ration but without restarts for a class of unsatisfiable formulas. This result
holds irrespective of whether the solver uses backtracking or backjumping.
(See Sect. 5 for details.)

3. Finally, we prove several smaller separation and equivalence results for vari-
ous configurations of CDCL and DPLL solvers with and without restarts. For
example, we show that CDCL solvers with non-deterministic static variable

1 In keeping with the terminology from [1], we refer any CDCL solver with randomized
value selection as a drunk solver.

2 We say that an event occurs with high probability (w.h.p.) if the probability of that
event happening goes to 1 as n → ∞.
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selection, non-deterministic static value selection, and with restarts, are poly-
nomially equivalent to the same model but without restarts. Another result
we show is that for DPLL solvers, restarts do not add proof theoretic power
as long as the solver configuration has non-deterministic dynamic variable
selection. (See Sect. 6 for details.)

2 Definitions and Preliminaries

Below we provide relevant definitions and concepts used in this paper. We refer
the reader to the Handbook of Satisfiability [6] for literature on CDCL and
DPLL solvers and to [4,12] for literature on proof complexity.

We denote by [c] the set of natural numbers {1, . . . , c}. We treat CDCL
solvers as proof systems. For proof systems A and B, we use A ∼p B to denote
that they are polynomially equivalent (p-equivalent). Throughout this paper it
is convenient to think of the trail π of the solver during its run on a formula F
as a restriction to that formula. We call a function π : {x1, . . . , xn} → {0, 1, ∗} a
restriction, where ∗ denotes that the variable is unassigned by π. Additionally,
we assume that our Boolean Constraint Propagation (BCP) scheme is greedy,
i.e., BCP is performed till “saturation”.

Restarts in SAT Solvers. A restart policy is a method that erases part of
the state of the solver at certain intervals during the run of a solver [10]. In
most modern CDCL solvers, the restart policy erases the assignment trail upon
invocation, but may choose not to erase the learnt clause database or variable
activities. Throughout this paper, we assume that all restart policies are non-
deterministic, i.e., the solver may (dynamically) non-deterministically choose its
restart sequence. We refer the reader to a paper by Liang et al. [14] for a detailed
discussion on modern restart policies.

3 Notation for Solver Configurations Considered

In this section, we precisely define the various heuristics used to define SAT
solver configurations in this paper. By the term solver configuration we mean a
solver parameterized with appropriate heuristic choices. For example, a CDCL
solver with non-deterministic variable and value selection, as well as asserting
learning scheme with restarts would be considered a solver configuration.

To keep track of these configurations, we denote solver configurations by the
notation ME,R

A,B , where M indicates the underlying solver model (we use C for
CDCL and D for DPLL solvers); the subscript A denotes a variable selection
scheme; the subscript B is a value selection scheme; the superscript E is a
backtracking scheme, and finally the superscript R indicates whether the solver
configuration comes equipped with a restart policy. That is, the presence of
the superscript R indicates that the configuration has restarts, and its absence
indicates that it does not. A ∗ in place of A,B or E denotes that the scheme is
arbitrary, meaning that it works for any such scheme. See Table 1 for examples
of solver configurations studied in this paper.
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Table 1. Solver configurations in the order they appear in the paper. ND stands for
non-deterministic dynamic.

Model Variable selection Value selection Backtracking Restarts

CT,R
ND,RD CDCL ND Random dynamic Backtracking Yes

CT
ND,RD CDCL ND Random dynamic Backtracking No

CJ,R
VS,PS CDCL VSIDS Phase saving Backjumping Yes

CJ
VS,PS CDCL VSIDS Phase saving Backjumping No

CJ,R
S,S CDCL Static Static Backjumping Yes

CJ
S,S CDCL Static Static Backjumping No

DT
ND,∗ DPLL ND Arbitrary Backtracking No

DT,R
ND,ND DPLL ND ND Backtracking Yes

DT
ND,ND DPLL ND ND Backtracking No

DT,R
ND,RD DPLL ND Random dynamic Backtracking Yes

DT
ND,RD DPLL ND Random dynamic Backtracking No

CJ,R
ND,ND CDCL ND ND Backjumping Yes

CJ
ND,ND CDCL ND ND Backjumping No

3.1 Variable Selection Schemes

1. Static (S): Upon invocation, the S variable selection heuristic returns the
unassigned variable with the highest rank according to some predetermined,
fixed, total ordering of the variables.
2. Non-deterministic Dynamic (ND): The ND variable selection scheme
non-deterministically selects and returns an unassigned variable.
3. VSIDS (VS) [16]: Each variable has an associated number, called its activity,
initially set to 0. Each time a solver learns a conflict, the activities of variables
appearing on the conflict side of the implication graph receive a constant bump.
The activities of all variables are decayed by a constant c, where 0 < c < 1, at
regular intervals. The VSIDS variable selection heuristic returns the unassigned
variable with highest activity, with ties broken randomly.

3.2 Value Selection Schemes

1. Static (S): Before execution, a 1-1 mapping of variables to values is fixed.
The S value selection heuristic takes as input a variable and returns the value
assigned to that variable according to the predetermined mapping.
2. Non-deterministic Dynamic (ND): The ND value selection scheme non-
deterministically selects and returns a truth assignment.
3. Random Dynamic (RD): A randomized algorithm that takes as input a
variable and returns a uniformly random truth assignment.
4. Phase Saving (PS): A heuristic that takes as input an unassigned variable
and returns the previous truth value that was assigned to the variable. Typically
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solver designers determine what value is returned when a variable has not been
previously assigned. For simplicity, we use the phase saving heuristic that returns
0 if the variable has not been previously assigned.

3.3 Backtracking and Backjumping Schemes

To define different backtracking schemes we use the concept of decision level
of a variable x, which is the number of decision variables on the trail prior to
x. Backtracking (T): Upon deriving a conflict clause, the solver undoes the
most recent decision variable on the assignment trail. Backjumping (J): Upon
deriving a conflict clause, the solver undoes all decision variables with decision
level higher than the variable with the second highest decision level in the conflict
clause.
Note on Solver Heuristics. Most of our results hold irrespective of the choice
of deterministic asserting clause learning schemes (except for Proposition 22).
Additionally, it goes without saying that the questions we address in this paper
make sense only when it is assumed that solver heuristics are polynomial time
methods.

4 Separation for Drunk CDCL with and Without
Restarts

Inspired by Alekhnovich et al. [1], where the authors proved exponential lower
bound for drunk DPLL solvers over a class of satisfiable instances, we studied
the behavior of restarts in a drunken model of CDCL solver. We introduce a class
of satisfiable formulas, Laddern, and use them to prove the separation between
CT,R

ND,RD and CT
ND,RD . At the core of these formulas is a formula which is hard for

general resolution even after any small restriction (corresponding to the current
trail of the solver). For this, we use the well-known Tseitin formulas.

Definition 1 (Tseitin Formulas). Let G = (V,E) be a graph and f : V →
{0, 1} a labelling of the vertices. The formula Tseitin(G, f) has variables xe for
e ∈ E and constraints

⊕
uv∈E xuv = f(v) for each v ∈ V .

For any graph G, Tseitin(G, f) is unsatisfiable iff
⊕

v∈V f(v) = 1, in which case
we call f an odd labelling. The specifics of the labelling are irrelevant for our
applications, any odd labelling will do. Therefore, we often omit defining f , and
simply assume that it is odd.

The family of satisfiable Laddern formulas are built around the Tseitin for-
mulas, unless the variables of the formula are set to be consistent to one of two
satisfying assignments, the formula will become unsatisfiable. Furthermore, the
solver will only be able to backtrack out of the unsatisfiable sub-formula by first
refuting Tseitin, which is a provably hard task for any CDCL solver [20].

The Laddern formulas contain two sets of variables, �i
j for 0 ≤ i ≤ n − 2, j ∈

[log n] and cm for m ∈ [log n], where n is a power of two. We denote by �i
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the block of variables {�i
1, . . . , �

i
log n}. These formulas are constructed using the

following gadgets.
Ladder gadgets: Li := (�i

1 ∨ . . . ∨ �i
log n) ∧ (¬�i

1 ∨ . . . ∨ ¬�i
log n).

Observe that Li is falsified only by the all-1 and all-0 assignments.
Connecting gadgets: Ci := (cbin(i,1)1 ∧ . . . ∧ c

bin(i,log n)
log n ).

Here, bin(i,m) returns the mth bit of the binary representation of i, and c1m :=
cm, while c0m := ¬cm. That is, Ci is the conjunction that is satisfied only by the
assignment encoding i in binary.
Equivalence gadget: EQ :=

∧n−2
i,j=0

∧log n
m,k=1(�

i
k ⇐⇒ �j

m).
These clauses enforce that every �-variable must take the same value.

Definition 2 (Ladder formulas). For G = (V,E) with |E| = n − 1 where n
is a power of two, let Tseitin(G, f) be defined on the variables {�01, . . . , �

n−2
1 }.

Laddern(G, f) is the conjunction of the clauses representing

Li ⇒ Ci, ∀0 ≤ i ≤ n − 2

Ci ⇒ Tseitin(G, f), ∀0 ≤ i ≤ n − 2

Cn−1 ⇒ EQ.

Observe that the Laddern(G, f) formulas have polynomial size provided that the
degree of G is O(log n). As well, this formula is satisfiable only by the assignments
that sets cm = 1 and �i

j = �p
q for every m, j, q ∈ [log n] and 0 ≤ i, p ≤ n − 2.

These formulas are constructed so that after setting only a few variables, any
drunk solver will enter an unsatisfiable subformula w.h.p. and thus be forced to
refute the Tseitin formula. Both the ladder gadgets and equivalence gadget act
as trapdoors for the Tseitin formula. Indeed, if any c-variable is set to 0 then
we have already entered an unsatisfiable instance. Similarly, setting �i

j = 1 and
�p
q = 0 for any 0 ≤ i, p ≤ n − 2, j, q ∈ [log n] causes us to enter an unsatisfiable

instance. This is because setting all c-variables to 1 together with this assignment
would falsify a clause of the equivalence gadget. Thus, after the second decision of
the solver, the probability that it is in an unsatisfiable instance is already at least
1/2. With these formulas in hand, we prove the following theorem, separating
backtracking CT

ND,RD solvers with and without restarts.

Theorem 3. There exists a family of O(log n)-degree graphs G such that

1. Laddern(G, f) can be decided in time O(n2) by CT,R
ND,RD , except with expo-

nentially small probability.
2. CT

ND,RD requires exponential time to decide Laddern(G, f), except with prob-
ability O(1/n).

The proof of the preceding theorem occupies the remainder of this section.

4.1 Upper Bound on Ladder Formulas via Restarts

We present the proof for part (1) of Theorem 3. The proof relies on the following
lemma, stating that given the all-1 restriction to the c-variables, CT

ND,RD will
find a satisfying assignment.
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Lemma 4. For any graph G, CT
ND,RD will find a satisfying assignment to

Laddern(G, f)[c1 = 1, . . . , clog n = 1] in time O(n log n).

Proof. When all c variables are 1, we have Cn−1 = 1. By the construction of
the connecting gadget, Ci = 0 for all 0 ≤ i ≤ n − 2. Under this assignment, the
remaining clauses belong to EQ, along with ¬Li for 0 ≤ i ≤ n − 2. It is easy
to see that, as soon as the solver sets an �-variable, these clauses will propagate
the remaining �-variables to the same value. �

Put differently, the set of c variables forms a weak backdoor [23,24] for
Laddern formulas. Part (1) of Theorem 3 shows that, with probability at least
1/2, CT,R

ND,RD can exploit this weak backdoor using only O(n) number of restarts.

Proof (of Theorem 3 Part (1)). By Lemma 4, if CT,R
ND,RD is able to assign all c

variables to 1 before assigning any other variables, then the solver will find a
satisfying assignment in time O(n log n) with probability 1. We show that the
solver can exploit restarts in order to find this assignment. The strategy the
solver adopts is as follows: query each of the c-variables; if at least one of the
c-variables was assigned to 0, restart. We argue that if the solver repeats this
procedure k = n2 times then it will find the all-1 assignment to the c-variables,
except with exponentially small probability. Because each variable is assigned 0
and 1 with equal probability, the probability that a single round of this procedure
finds the all-1 assignment is 2− log n. Therefore, the probability that the solver
has not found the all-1 assignment after k rounds is

(1 − 1/n)k ≤ e−k/n = e−n.

�
4.2 Lower Bound on Ladder Formulas Without Restarts

We now prove part (2) of Theorem 3. The proof relies on the following three tech-
nical lemmas. The first claims that the solver is well-behaved (most importantly
that it cannot learn any new clauses) while it has not made many decisions.

Lemma 5. Let G be any graph of degree at least d. Suppose that CT
ND,RD has

made δ < min(d − 1, log n − 1) decisions since its invocation on Laddern(G, f).
Let πδ be the current trail, then

1. The solver has yet to enter a conflict, and thus has not learned any clauses.
2. The trail πδ contains variables from at most δ different blocks �i.

We defer the proof of this lemma to the arXiv version of the paper [13].
The following technical lemma states that if a solver with backtracking has

caused the formula to become unsatisfiable, then it must refute that formula
before it can backtrack out of it. For a restriction π and a formula F , we say
that the solver has produced a refutation of an unsatisfiable formula F [π] if it has
learned a clause C such that C is falsified under π. Note that because general
resolution p-simulates CDCL, any refutation of a formula F [π] implies a general
resolution refutation of F [π] of size at most polynomial in the time that the
solver took to produce that refutation.
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Lemma 6. Let F be any propositional formula, let π be the current trail of
the solver, and let x be any literal in π. Then, CT

ND,ND backtracks x only after
it has produced a refutation of F [π].

Proof. In order to backtrack x, the solver must have learned a clause C asserting
the negation of some literal z ∈ π that was set before x. Therefore, C must only
contain the negation of literals in π. Hence, C[π] = ∅. �

The third lemma reduces proving a lower bound on the runtime of CT
ND,ND

on the Laddern formulas under any well-behaved restriction to proving a general
resolution lower bound on an associated Tseitin formula.

Definition 7. For any unsatisfiable formula F , denote by Res(F � ∅) the min-
imal size of any general resolution refutation of F .

We say that a restriction (thought of as the current trail of the solver) π to
Laddern(G, f) implies Tseitin if π either sets some c-variable to 0 or π[�i

j ] = 1
and π[�p

q ] = 0 for some 0 ≤ i, q ≤ n − 2, j, q ∈ [log n]. Observe that in both of
these cases the formula Laddern(G, f)[π] is unsatisfiable.

Lemma 8. Let π be any restriction that implies Tseitin and such that each
clause of Laddern(G, f)[π] is either satisfied or contains at least two unassigned
variables. Suppose that π sets variables from at most δ blocks �i. Then there is
a restriction ρ∗

π that sets at most δ variables of Tseitin(G, f) such that

Res(Laddern(G, f)[π] � ∅) ≥ Res(Tseitin(G, f)[ρ∗
π] � ∅).

We defer the proof of this lemma to the arXiv version of the paper [13], and
show how to use them to prove part (2) of Theorem 3. We prove this statement
for any degree O(log n) graph G with sufficient expansion.

Definition 9. The expansion of a graph G = (V,E) is

e(G) := min
V ′⊆V,|V ′|≤|V |/2

|E[V ′, V \ V ′]|
|V ′| ,

where E[V ′, V \ V ′] is the set of edges in E with one endpoint in V ′ and the
other in V \ V ′.

For every d ≥ 3, Ramanujan Graphs provide an infinite family of d-regular
expander graphs G for which e(G) ≥ d/4. The lower bound on solver runtime
relies on the general resolution lower bounds for the Tseitin formulas [20]; we
use the following lower bound criterion which follows immediately3 from [5].

Corollary 10 ([5]). For any connected graph G = (V,E) with maximum degree
d and odd weight function f ,

Res(Tseitin(G, f) � ∅) = exp
(

Ω

(
(e(G)|V |/3 − d)2

|E|
))

3 In particular, this follows from Theorem 4.4 and Corollary 3.6 in [5], noting that the
definition of expansion used in their paper is lower bounded by 3e(G)/|V | as they
restrict to sets of vertices of size between |V |/3 and 2|V |/3.
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We are now ready to prove the theorem.

Proof (of part (2) Theorem 3). Fix G = (V,E) to be any degree-(8 log n) graph
on |E| = n − 1 edges such that e(G) ≥ 2 log n. Ramanujan graphs satisfy these
conditions.

First, we argue that within δ < log n−1 decisions from the solver’s invocation,
the trail πδ will imply Tseitin, except with probability 1 − /2δ−1. By Lemma 5,
the solver has yet to backtrack or learn any clauses, and it has set variables from
at most δ blocks �i. Let x be the variable queried during the δth decision. If x
is a c variable, then with probability 1/2 the solver sets ci = 0. If x is a variable
�i
j , then, unless this is the first time the solver sets an �-variable, the probability

that it sets �i
j to a different value than the previously set �-variable is 1/2.

Conditioning on the event that, within the first log n−2 decisions the trail of
the solver implies Tseitin (which occurs with probability at least (n − 8)/n), we
argue that the runtime of the solver is exponential in n. Let δ < log n− 1 be the
first decision level such that the current trail πδ implies Tseitin. By Lemma 6
the solver must have produced a refutation of Laddern(G, f)[πδ] in order to
backtrack out of the unsatisfying assignment. If the solver takes t steps to refute
Laddern(G, f)[πδ] then this implies a general resolution refutation of size poly(t).
Therefore, in order to lower bound the runtime of the solver, it is enough to lower
bound the size of general resolution refutations of Laddern(G, f)[πδ].

By Lemma 5, the solver has not learned any clauses, and has yet to enter
into a conflict and therefore no clause in Laddern(G, f)[πδ] is falsified. As well,
πδ sets variables from at most δ < log n − 1 blocks �i. By Lemma 8 there exists
a restriction ρ∗

π such that Res(Laddern(G, f)[π] � ∅) ≥ Res(Tseitin(G, f)[ρ∗
π] �

∅). Furthermore, ρ∗
π sets at most δ < log n − 1 variables and therefore cannot

falsify any constraint of Tseitin(G, f), as each clause depends on 8 log n variables.
Observe that if we set a variable xe of Tseitin(G, f) then we obtain a new
instance of Tseitin(Gρ∗

π
, f ′) on a graph Gρ∗

π
= (V,E \ {e}). Therefore, we are

able to apply Corollary 10 provided that we can show that e(Gρ∗
π
) is large enough.

Claim 11. Let G = (V,E) be a graph and let G′ = (V,E′) be obtained from G
by removing at most e(G)/2 edges. Then e(G′) ≥ e(G)/2.

Proof. Let V ′ ⊆ V with |V ′| ≤ |V |/2. Then, E′[V ′, V \V ′] ≥ e(G)|V ′|−e(G)/2 ≥
(e(G)/2)|V ′|. �

It follows that e(Gρ∗
π
) ≥ log n. Note that |V | = n/8 log n. By Corollary 10,

Res(Laddern(G, f)[π] � ∅) = exp(Ω(((n − 1)/24 − 8 log n)2/n)) = exp(Ω(n)).

Therefore, the runtime of CT
ND,ND is exp(Ω(n)) on Laddern(G,F ) w.h.p. �

5 CDCL+VSIDS Solvers with and Without Restarts

In this section, we prove that CDCL solvers with VSIDS variable selection,
phase saving value selection and restarts (where activities of variables are reset
to zero after restarts) are exponentially more powerful than the same solver
configuration but without restarts, w.h.p.
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Theorem 12. There is a family of unsatisfiable formulas that can be decided in
polynomial time with CJ,R

VS ,PS but requires exponential time with CJ
VS ,PS , except

with exponentially small probability.

We show this separation using pitfall formulas Φ(Gn, f, n, k), designed to be
hard for solvers using the VSIDS heuristic [22]. We assume that Gn is a constant-
degree expander graph with n vertices and m edges, f : V (Gn) → {0, 1} is a
function with odd support as with Tseitin formulas, we think of k as a constant
and let n grow. We denote the indicator function of a Boolean expression B with
�B�. These formulas have k blocks of variables named Xj , Yj , Zj , Pj , and Aj ,
with j ∈ [k], and the following clauses:

–
(⊕

e�v xj,e = f(v)
) ∨ ∨n

i=1 zj,i, expanded into CNF, for v ∈ V (Gn) and j ∈
[k];

– yj,i1 ∨ yj,i2 ∨ ¬pj,i3 for i1, i2 ∈ [n], i1 < i2, i3 ∈ [m + n], and j ∈ [k];
– yj,i1 ∨ ∨

i∈[m+n]\{i2} pj,i ∨
∨i2−1

i=1 xj,i ∨¬xj,i2 for i1 ∈ [n], i2 ∈ [m], and j ∈ [k];

– yj,i1 ∨ ∨
i∈[m+n]\{m+i2} pj,i ∨

∨m
i=1 xj,i ∨

∨i2−1
i=1+�i2=n� zj,i ∨¬zj,i2 for i1, i2 ∈ [n]

and j ∈ [k];
– ¬aj,1 ∨ aj,3 ∨ ¬zj,i1 , ¬aj,2 ∨ ¬aj,3 ∨ ¬zj,i1 , aj,1 ∨ ¬zj,i1 ∨ ¬yj,i2 , and aj,2 ∨

¬zj,i1 ∨ ¬yj,i2 for i1, i2 ∈ [n] and j ∈ [k]; and
–

∨
j∈[k] ¬yj,i ∨ ¬yj,i+1 for odd i ∈ [n].

To give a brief overview, the first type of clauses are essentially a Tseitin
formula and thus are hard to solve. The next four types form a pitfall gadget,
which has the following easy-to-check property.

Claim 13. Given any pair of variables yj,i1 and yj,i2 from the same block Yj,
assigning yj,i1 = 0 and yj,i2 = 0 yields a conflict.

Furthermore, such a conflict involves all of the variables of a block Xj , which
makes the solver prioritize these variables and it becomes stuck in a part of the
search space where it must refute the first kind of clauses. Proving this formally
requires a delicate argument, but we can use the end result as a black box.

Theorem 14 ([22, Theorem 3.6]). For k fixed, Φ(Gn, f, n, k) requires time
exp(Ω(n)) to decide with CJ

VS ,PS , except with exponentially small probability.

The last type of clauses, denoted by Γi, ensure that a short general resolution
proof exists. Not only that, we can also prove that pitfall formulas have small
backdoors [23,24], which is enough for a formula to be easy for CJ,R

VS ,PS .

Definition 15. A set of variables V is a strong backdoor for unit-propagation if
every assignment to all variables in V leads to a conflict, after unit propagation.

Lemma 16. If F has a strong backdoor for unit-propagation of size c, then
CJ,R

VS ,PS can solve F in time nO(c), except with exponentially small probability.
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Proof. We say that the solver learns a beneficial clause if it only contains vari-
ables in V . Since there are 2c possible assignments to variables in V and each
beneficial clause forbids at least one assignment, it follows that learning 2c ben-
eficial clauses is enough to produce a conflict at level 0.

Therefore it is enough to prove that, after each restart, we learn a beneficial
clause with large enough probability. Since all variables are tied, all decisions
before the first conflict after a restart are random, and hence with probability
at least n−c the first variables to be decided before reaching the first conflict are
(a subset of) V . If this is the case then, since V is a strong backdoor, no more
decisions are needed to reach a conflict, and furthermore all decisions in the trail
are variables in V , hence the learned clause is beneficial.

It follows that the probability of having a sequence of n2c restarts without
learning a beneficial clause is at most

(1 − n−c)n2c ≤ exp(−n−c · n2c) = exp(−nc) (1)

hence by a union bound the probability of the algorithm needing more than
2c · n2c restarts is at most 2c · exp(−nc). �

We prove Theorem 12 by showing that Φ(Gn, f, n, k) contains a backdoor of
size 2k(k + 1).

Proof (of Theorem 12). We claim that the set of variables V = {yj,i | (j, i) ∈
[k]×[2k+2]} is a strong backdoor for unit-propagation. Consider any assignment
to V . Each of the k+1 clauses Γ1,Γ3, . . . ,Γ2k+1 forces a different variable yj,i to
0, hence by the pigeonhole principle there is at least one block with two variables
assigned to 0. But by Claim 13, this is enough to reach a conflict.

The upper bound follows from Lemma 16, while the lower bound follows from
Theorem 14. �

6 Minor Equivalences and Separations for CDCL/DPLL
Solvers with and Without Restarts

In this section, we prove four smaller separation and equivalence results for
various configurations of CDCL and DPLL solvers with and without restarts.

6.1 Equivalence Between CDCL Solvers with Static Configurations
with and Without Restarts

First, we show that CDCL solvers with non-deterministic static variable and
value selection without restarts (CJ

S ,S ) is as powerful as the same configuration
with restarts (CJ,R

S ,S ) for both satisfiable and unsatisfiable formulas. We assume
that the BCP subroutine for the solver configurations under consideration is
“fixed” in the following sense: if there is more than one unit clause under a
partial assignment, the BCP subroutine propagates the clause that is added to
the clause database first.
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Theorem 17. CJ
S ,S ∼p CJ,R

S ,S provided that they are given the same variable
ordering and fixed mapping of variables to values for the variable selection and
value selection schemes respectively.

We prove this theorem by arguing for any run of CJ,R
S ,S , that restarts can be

removed without increasing the run-time.

Proof. Consider a run of CJ,R
S ,S on some formula F , and suppose that the solver

has made t restart calls. Consider the trail π for CJ,R
S ,S up to the variable l from

the second highest decision from the last learnt clause before the first restart
call. Now, observe that because the decision and variable selection orders are
static, once CJ,R

S ,S restarts, it will force it to repeat the same decisions and unit
propagations that brought it to the trail π. Suppose that this is not the case and
consider the first literal on which the trails differ. This difference could not be
caused by a unit propagation as the solver has not learned any new clauses since
the restart. Thus, it must have been caused by a decision. However, because the
clause databases are the same, this would contradict the static variable and value
order. Therefore, this restart can be ignored, and we obtain a run of CJ,R

S ,S with
d − 1 restarts without increasing the run-time. The proof follows by induction.
Once all restarts have been removed, the result is a valid run of CJ

S ,S . �
Note that in the proof of Theorem 17, not only we argue that CJ

S ,S is p-
equivalent to CJ,R

S ,S , we also show that the two configurations produce the same
run. The crucial observation is that given any state of CJ,R

S ,S , we can produce a
run of CJ

S ,S which ends in the same state. In other words, our proof not only
suggests that CJ,R

S ,S is equivalent to CJ
S ,S from a proof theoretic point of view, it

also implies that the two configurations are equivalent for satisfiable formulas.

6.2 Equivalence Between DPLL Solvers with ND Variable Selection
on UNSAT Formulas

We show that when considered as a proof system, a DPLL solver with non-
deterministic dynamic variable selection, arbitrary value selection and no restarts
(DT

ND,∗) is p-equivalent to DPLL solver with non-deterministic dynamic variable
and value selection and restarts (DT,R

ND,ND), and hence, transitively p-equivalent
to tree-like resolution—the restriction of general resolution where each conse-
quent can be an antecedent in only one later inference.

Theorem 18. DT
ND,∗ ∼p DT

ND,ND .

Proof. To show that DT
ND,ND p-simulates DT

ND,∗, we argue that every proof
of DT

ND,ND can be converted to a proof of same size in DT
ND,∗. Let F be an

unsatisfiable formula. Recall that a run of DT
ND,ND on F begins with non-

deterministically picking some variable x to branch on, and a truth value to
assign to x. W.l.o.g. suppose that the solver assigns x to 1. Thus, the solver will
first refute F [x = 1] before backtracking and refuting F [x = 0].
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To simulate a run of DT
ND,ND with DT

ND,∗, since variable selection is non-
deterministic, DT

ND,∗ also chooses the variable x as the first variable to branch
on. If the value selection returns x = α for α ∈ {0, 1}, then the solver focus
on the restricted formula F [x = α] first. Because there is no clause learning,
whether F [x = 1] or F [x = 0] is searched first does not affect the size of the
search space for the other. The proof follows by recursively calling DT

ND,∗ on
F [x = 1] and F [x = 0]. The converse direction follows since every run of DT

ND,∗
is a run of DT

ND,ND . �

Corollary 19. DT
ND,∗ ∼p DT,R

ND,ND .

Proof. This follows from the fact that DT,R
ND,ND ∼p DT

ND,ND . Indeed, with non-
deterministic branching and without clause learning, restarts cannot help. If ever
DT,R

ND,ND queries a variable x = α for α ∈ {0, 1} and then later restarts to assign
it to 1 − α, then DT

ND,ND ignores the part of the computation when x = α and
instead immediately non-deterministically chooses x = 1 − α. �

It is interesting to note that while the above result establishes a p-equivalence
between DPLL solver models DT

ND,∗ and DT,R
ND,ND , the following corollary implies

that DPLL solvers with non-deterministic variable and randomized value selec-
tion are exponentially separable for satisfiable instances.

6.3 Separation Result for Drunk DPLL Solvers

We show that DPLL solvers with non-deterministic variable selection, random-
ized value selection and no restarts (DT

ND,RD) is exponentially weaker than the
same configuration with restarts (DT,R

ND,RD).

Corollary 20. DT
ND,RD runs exponentially slower on the class of satisfiable for-

mulas Laddern(G, f) than DT,R
ND,RD , with high probability.

The separation follows from the fact that our proof of the upper bound from The-
orem 3 does not use the fact the solver has access to clause learning, which means
the solver DT,R

ND,RD can also find a satisfying assignment for Laddern(G, f) in
time O(n2), except with exponentially small probability. On the other hand, the
lower bound from Theorem 3 immediately implies an exponential lower bound
for DT

ND,RD , since DT
ND,RD is strictly weaker than CT

ND,RD .

6.4 Separation Result for CDCL Solvers with WDLS

Finally, we state an observation of Robert Robere [19] on restarts in the context
of the Weak Decision Learning Scheme (WDLS).

Definition 21 (WDLS). Upon deriving a conflict, a CDCL solver with WDLS
learns a conflict clause which is the disjunction of the negation of the decision
variables on the current assignment trail.
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Theorem 22. CJ
ND,ND+WDLS is exponentially weaker than CJ,R

ND,ND+WDLS.

Proof. The solver model CJ
ND,ND with WDLS is only as powerful as DT

ND,ND ,
since each learnt clause will only be used once for propagation after the solver
backtracks immediately after learning the conlict clause, and remains satisfied for
the rest of the solver run. This is exactly how DT

ND,ND behaves under the same
circumstances. On the other hand, WDLS is an asserting learning scheme [17],
and hence satisfies the conditions of the main theorem in [18], proving that CDCL
with any asserting learning scheme and restarts p-simulates general resolution.
Thus, we immediately have CJ,R

ND,ND with WDLS is exponentially more powerful
than the same solver but with no restarts (for unsatisfiable instances). �

7 Related Work

Previous Work on Theoretical Understanding of Restarts: Buss et al. [8]
and Van Gelder [21] proposed two proof systems, namely regWRTI and pool
resolution respectively, with the aim of explaining the power of restarts in CDCL
solvers. Buss et al. proved that regWRTI is able to capture exactly the power
of CDCL solvers with non-greedy BCP and without restarts and Van Gelder
proved that pool resolution can simulate certain configurations of DPLL solvers
with clause learning. As both pool resolution and regWRTI are strictly more
powerful than regular resolution, a natural question is whether formulas that
exponentially separate regular and general resolution can be used to prove lower
bounds for pool resolution and regWRTI, thus transitively proving lower bounds
for CDCL solvers without restarts. However, since Bonet et al. [7] and Buss
and Ko�lodziejczyk [9] proved that all such candidates have short proofs in pool
resolution and regWRTI, the question of whether CDCL solvers without restarts
are as powerful as general resolution still remains open.

Previous Work on Empirical Understanding of Restarts: The first paper
to discuss restarts in the context of DPLL SAT solvers was by Gomes and Sel-
man [10]. They proposed an explanation for the power of restarts popularly
referred to as “heavy-tailed explanation of restarts”. Their explanation relies on
the observation that the runtime of randomized DPLL SAT solvers on satisfi-
able instances, when invoked with different random seeds, exhibits a heavy-tailed
distribution. This means that the probability of the solver exhibiting a long run-
time on a given input and random seed is non-negligible. However, because of
the heavy-tailed distribution of solver runtimes, it is likely that the solver may
run quickly on the given input for a different random seed. This observation was
the motivation for the original proposal of the restart heuristic in DPLL SAT
solvers by Gomes and Selman [10].

Unfortunately, the heavy-tailed explanation of the power of restarts does not
lift to the context of CDCL SAT solvers. The key reason is that, unlike DPLL
solvers, CDCL solvers save solver state (e.g., learnt clauses and variable activ-
ities) across restart boundaries. Additionally, the efficacy of restarts has been
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observed for both deterministic and randomized CDCL solvers, while the heavy-
tailed explanation inherently relies on randomness. Hence, newer explanations
have been proposed and validated empirically on SAT competition benchmarks.
Chief among them is the idea that “restarts compact the assignment trail during
its run and hence produce clauses with lower literal block distance (LBD), a key
metric of quality of learnt clauses” [14].

Comparison of Our Separation Results with Heavy-Tailed Explanation
of Restarts: A cursory glance at some of our separation results might lead
one to believe that they are a complexity-theoretical analogue of the heavy-
tailed explanation of the power of restarts, since our separation results are over
randomized solver models. We argue this is not the case. First, notice that our
main results are for drunk CDCL solvers that save solver state (e.g., learnt
clauses) across restart boundaries, unlike the randomized DPLL solvers studied
by Gomes et al. [10]. Second, we make no assumptions about independence (or
lack thereof) of branching decisions across restarts boundaries. In point of fact,
the variable selection in the CDCL model we use is non-deterministic. Only the
value selection is randomized. More precisely, we have arrived at a separation
result without relying on the assumptions made by the heavy-tailed distribution
explanation, and interestingly we are able to prove that the “solver does get
stuck in a bad part of the search space by making bad value selections”. Note
that in our model the solver is free to go back to “similar parts of the search
space across restart boundaries”. In fact, in our proof for CDCL with restarts,
the solver chooses the same variable order across restart boundaries.

8 Conclusions

In this paper, we prove a series of results that establish the power of restarts (or
lack thereof) for several models of CDCL and DPLL solvers. We first showed that
CDCL solvers with backtracking, non-deterministic dynamic variable selection,
randomized dynamic value selection, and restarts are exponentially faster than
the same model without restarts for a class of satisfiable instances. Second, we
showed CDCL solvers with VSIDS variable selection and phase saving without
restarts are exponentially weaker than the same solver with restarts, for a family
of unsatisfiable formulas. Finally, we proved four additional smaller separation
and equivalence results for various configurations of DPLL and CDCL solvers.

By contrast to previous attempts at a “theoretical understanding the power
of restarts” that typically assumed that variable and value selection heuristics in
solvers are non-deterministic, we chose to study randomized or real-world models
of solvers (e.g., VSIDS branching with phase saving value selection) that enabled
us to more effectively isolate the power of restarts. This leads us to believe that
the efficacy of restarts becomes apparent only when the solver models considered
have weak heuristics (e.g., randomized or real-world deterministic) as opposed
to models that assume that all solver heuristics are non-deterministic.
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Abstract. Given a Boolean formula ϕ, the problem of model counting,
also referred to as #SAT, is to compute the number of solutions of ϕ.
The hashing-based techniques for approximate counting have emerged
as a dominant approach, promising achievement of both scalability and
rigorous theoretical guarantees. The standard construction of strongly 2-
universal hash functions employs dense XORs (i.e., involving half of the
variables in expectation), which is widely known to cause degradation in
the runtime performance of state of the art SAT solvers. Consequently,
the past few years have witnessed an intense activity in the design of
sparse XORs as hash functions. Such constructions have been proposed
with beliefs to provide runtime performance improvement along with
theoretical guarantees similar to that of dense XORs.

The primary contribution of this paper is a rigorous theoretical and
empirical analysis to understand the effect of the sparsity of XORs.
In contradiction to prior beliefs of applicability of analysis for sparse
hash functions to all the hashing-based techniques, we prove a con-
tradictory result. We show that the best-known bounds obtained for
sparse XORs are still too weak to yield theoretical guarantees for a
large class of hashing-based techniques, including the state of the art
approach ApproxMC3. We then turn to a rigorous empirical analysis of
the performance benefits of sparse hash functions. To this end, we first
design, to the best of our knowledge, the most efficient algorithm called
SparseCount2 using sparse hash functions, which achieves at least up to
two orders of magnitude performance improvement over its predecessor.
Contradicting the current beliefs, we observe that SparseCount2 still falls
short of ApproxMC3 in runtime performance despite the usage of dense
XORs in ApproxMC3. In conclusion, our work showcases that the ques-
tion of whether it is possible to use short XORs to achieve scalability
while providing strong theoretical guarantees is still wide open.
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1 Background and Introduction

Given a Boolean formula ϕ, the problem of model counting, also referred to
as #SAT, is to compute the number of solutions of ϕ. Model counting is a
fundamental problem in computer science with a wide range of applications
ranging from quantified information flow, reliability of networks, probabilistic
programming, Bayesian networks, and others [4,5,10,16,21–23].

Given the computational intractability of #SAT, attention has been focused
on the approximation of #SAT [28,30]. In a breakthrough result, Stockmeyer
provided a hashing-based randomized approximation scheme for counting that
makes polynomially many invocations of an NP oracle [27]. The procedure, how-
ever, was computationally prohibitive in practice at that time, and no practical
tools existed based on Stockmeyer’s proposed algorithmic framework until the
early 2000s [16]. Motivated by the success of SAT solvers, there has been a surge
of interest in the design of hashing-based techniques for approximate model
counting in the past decade [8,9,13,15,24,25].

The core idea of the hashing-based framework is to employ pairwise inde-
pendent hash functions1 to partition the solution space into roughly equal-sized
small cells, wherein a cell is called small if it has solutions less than or equal to a
pre-computed threshold, denoted by thresh. A SAT solver is employed to check
if a cell is small by enumerating solutions one-by-one until either there are no
more solutions or we have already enumerated thresh+1 solutions. The current
state of the art techniques can be broadly classified into two categories:

– The first category of techniques, henceforth called Cat1, consists of techniques
that compute a constant factor approximation by setting thresh to a constant
and use Stockmeyer’s technique of constructing multiple copies of the input
formula. [1,2,12,29,31]

– The second class of techniques, henceforth called Cat2, consists of techniques
that directly compute an (ε, δ)-estimate by setting thresh to O( 1

ε2 ), and hence
invoking the underlying NP oracle O( 1

ε2 ) times [7–9,20,21,24,25].

The current state of the art technique, measured by runtime performance, is
ApproxMC3, which falls into the class of Cat2 techniques [25]. The proofs of
correctness for all the hashing-based techniques involve the use of concentration
bounds due to pairwise independent hash functions.

The standard construction of pairwise independent hash functions employed
in these techniques can be expressed as a conjunction of XOR constraints such
that every variable is chosen with probability f = 1/2 for each XORs. As such,
each XOR contains, on an average, n/2 variables. A SAT solver is invoked to
enumerate solutions of the formula ϕ in conjunction with these XOR constraints.
The performance of SAT solvers, however, degrades with an increase in the size of
XORs [15]. Therefore recent efforts have focused on the design of hash functions
1 Pairwise independent hash functions were initially referred to as strongly 2-universal

hash functions in [6]. The prior work on approximate counting often uses the term
2-universal hashing to refer to strongly 2-universal hash functions.
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where each variable is chosen with probability f < 1/2 [1,2,11,14,17]. We refer
to the XOR constructed with f = 1/2 as dense XORs while those constructed
with f < 1/2 as sparse XORs. In particular, given a hash function, h and cell α,
the random variable of interest, denoted by Cnt〈ϕ,h,α〉 is the number of solutions
of ϕ that h maps to cell α. The pairwise independence of dense XORs is known
to bound the variance of Cnt〈ϕ,h,α〉 by the expectation of Cnt〈ϕ,h,α〉, which is
sufficient for their usage for both Cat1 and Cat2 techniques.

In a significant result, Asteris and Dimakis [3], and Zhao et al. [31] showed
that f = O(log n/n) asymptotically suffices for Cat1 techniques. It is worth
pointing that f = O(log n/n) provides weaker guarantees on the variance of
Cnt〈ϕ,h,α〉 as compared to the case when f = 1/2. However, Zhao et al. showed
that the weaker guarantees are sufficient for Cat1 techniques with only polyno-
mial overhead on the time complexity. Furthermore, Zhao et al. provided neces-
sary and sufficient conditions on the required asymptotic value of f and proposed
a new algorithm SparseCount that uses the proposed family of hash functions.
One would expect that the result of Zhao et al. would settle the quest for efficient
hash functions. However, upon closer examination, few questions have been left
unanswered in Zhao et al.’s work and subsequent follow-up studies [1,9,21].

1. Can the hash function constructed by Zhao et al. be used for Cat2 techniques,
in particular for state of the art hashing-based techniques like ApproxMC3?

2. In practice, can the overhead due to the weakness of theoretical guarantees
of sparse XORs proposed by Zhao et al. be compensated by the gain of
performance due to sparse XORs in the runtime of SparseCount?

3. Is the runtime performance of SparseCount competitive to that of ApproxMC3?
The reader may observe that Zhao et al.’s paper does not compare their
proposed algorithm for (ε, δ)-guarantees, called SparseCount, with state of
the art algorithms at that time such as ApproxMC2, which is now in its third
version, ApproxMC3 [25]. Therefore the question of whether the proposed
sparse XORs are efficient in runtime was not settled. It is perhaps worth
remarking that another line of work based on the construction of sparse XORs
using low-density parity codes is known to introduce significant slowdown [1,
2] (See Section 9 of [1]).

The primary contribution of this paper is a rigorous theoretical and empirical
analysis to understand the effect of sparse XORs for approximate model counters.
In particular, we make the following key contributions:

1. We prove that the bounds obtained by Zhao et al., which are the strongest
known bounds at this point, for the variance of Cnt〈ϕ,h,α〉, are still too weak
for the analysis of ApproxMC3. To the best of our knowledge, this is the first
time the need for stronger bounds in the context of Cat2 techniques has been
identified.

2. Since the weakness of bounds prevents usage of sparse hash functions in
ApproxMC3, we design the most efficient algorithm, to the best of our knowl-
edge, using sparse hash functions. To this end, we propose an improvement of



On the Sparsity of XORs in Approximate Model Counting 253

SparseCount, called SparseCount2, that reduces the number of SAT calls from
linear to logarithmic and significantly improves the runtime performance of
SparseCount. The improvement from linear to logarithmic uses the idea of
prefix-slicing introduced by Chakraborty, Meel, and Vardi [9] for ApproxMC2.

3. We next present a rigorous empirical study involving a benchmark suite total-
ing over 1800 instances of runtime performance of SparseCount2 vis-a-vis the
state of the art approximate counting technique, ApproxMC3. Surprisingly
and contrary to current beliefs, we discover that ApproxMC3, which uses
dense XORs significantly outperforms SparseCount2 for every benchmark. It
is worth remarking that both ApproxMC3 and SparseCount2 use identical SAT
solver for underlying SAT calls and similar to other hashing-based techniques,
over 99% for each of the algorithms is indeed consumed by the underlying
SAT solver.

Given the surprising nature of our results, few words are in order. First of all,
our work identifies the tradeoffs involved in the usage of sparse hash functions
and demonstrates that the variance bounds offered by sparse hash functions
are too weak to be employed in the state of the art techniques. Secondly, our
work demonstrates that the weakness of variance bounds leads to such a large
overhead that the algorithms using sparse hash functions scale much worse com-
pared to the algorithms without sparse XORs. Thirdly and finally, we believe
the negative results showcase that the question of the usage of sparse XORs
to achieve scalability while providing strong theoretical guarantees is still wide
open. In an upcoming work, Meel r© Akshay2 [20] define a new family of hash
functions, called concentrated hashing, and provide a new construction of sparse
hash functions belonging to concentrated hashing, and design a new algorithmic
framework on top of ApproxMC, which is shown to achieve runtime improve-
ments.

The rest of the paper is organized as follows. We discuss notations and prelim-
inaries in Sect. 2. We then discuss the weakness of guarantees offered by sparse
XORs in Sect. 3. In Sect. 4, we seek to design an efficient algorithm that utilizes
all the advancements, to the best of our knowledge, in approximate model count-
ing community. We present a rigorous empirical study comparing performance
of SparseCount, SparseCount2, and ApproxMC3 in Sect. 5 and conclude in Sect. 6.

2 Preliminaries and Notations

Let ϕ be a Boolean formula in conjunctive normal form (CNF), and let Vars(ϕ)
be the set of variables appearing in ϕ. The set Vars(ϕ) is also called the support
of ϕ. Unless otherwise stated, we will use n to denote the number of variables
in ϕ i.e., |Vars(ϕ)|. An assignment of truth values to the variables in Vars(ϕ) is
called a satisfying assignment or witness of ϕ if it makes ϕ evaluate to true. We
denote the set of all witnesses of ϕ by Rϕ.

2 r© is used to denote random author ordering, as suggested by the authors.
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We write Pr [Z] to denote the probability of outcome Z. The expected value
of Z is denoted E [Z] and its variance is denoted σ2 [Z].

The propositional model counting problem is to compute |Rϕ| for a given CNF
formula ϕ. A probably approximately correct (PAC) counter is a probabilistic
algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a tolerance ε >
0, and a confidence parameter δ ∈ (0, 1], and returns a count c with (ε, δ)-
guarantees, i.e., Pr

[
|Rϕ|/(1 + ε) ≤ c ≤ (1 + ε)|Rϕ|

]
≥ 1 − δ.

In this work, we employ a family of universal hash functions. Let H(n,m) �
{h : {0, 1}n → {0, 1}m} be a family of hash functions mapping {0, 1}n to {0, 1}m.
We use h

R←− H to denote the probability space obtained by choosing a function
h uniformly at random from H.

In this work, we will use the concept of prefix-slicing introduced by
Chakraborty et al. [9]. For h ∈ H(n,m), formally, for every j ∈ {1, . . . , m},
the jth prefix-slice of h, denoted h(j), is a map from {0, 1}n to {0, 1}j , such that
h(j)(y)[i] = h(y)[i], for all y ∈ {0, 1}n and for all i ∈ {1, . . . j}. Similarly, the jth

prefix-slice of α, denoted α(j), is an element of {0, 1}m such that α(j)[i] = α[i]
for all i ∈ {1, . . . j}. The randomness in the choices of h and α induce random-
ness in the choices of h(m) and α(m). However, the (h(j), α(j)) pairs chosen for
different values of j are no longer independent. Specifically, h(k)(y)[i] = h(�)(y)[i]
and α(k)[i] = α(l)[i] for 1 ≤ k ≤ � ≤ m and for all i ∈ {1, . . . k}.

For a formula ϕ, h ∈ H(n,m), and α ∈ {0, 1}m, we define Cnt〈F,h(i),α(i)〉 :=
|{y ∈ Rϕ | h(i)(y) = α(i)}|, i.e. the number of solutions of ϕ mapped to α(i) by
h(i). For the sake of notational clarity, whenever h(i) and α(i) are clear from the
context, we will use Cnt〈i〉 as a shorthand for Cnt〈F,h(i),α(i)〉.

Definition 1. [6] A family of hash functions H(n,m) is pairwise independent
(also known as strongly 2-universal) if ∀ α1, α2 ∈ {0, 1}m, ∀ distinct y1, y2 ∈
{0, 1}n, h

R←− H, we have Pr[h(y1) = α1 ∧ h(y2) = α2] = 1
22m .

Definition 2. Let A ∈ {0, 1}m×n be a random matrix whose entries are
Bernoulli i.i.d. random variables such that fi = Pr [A[i, j] = 1] for all j ∈ [n].
Let b ∈ {0, 1}m be chosen uniformly at random, independently from A. Let
hA,b(y) = Ay + b and H{fi}(n,m) = {hA,b : {0, 1}n → {0, 1}m}, where hA,b
R←− H{fi}(n,m) is chosen randomly according to this process. Then, H{fi}(n,m)

is defined as hash family with {fi}-sparsity.
Since we can represent hash functions in H{fi}(n,m) using a set of XORs;

we will use dense XORs to refer to hash functions with fi = 1
2 for all i while we

use sparse XORs to refer to hash functions with fi < 1
2 for some i. Note that

H{fi=
1
2}(n,m) is the standard pairwise independent hash family, also denoted

as Hxor(n,m) in earlier works [21].

Definition 3. [11] Let k ≥ 0 and δ > 2. Let Z be a random variable with
μ = E[Z]. Then Z is strongly (k, δ)-concentrated if Pr[|Z − μ| ≥ √

k] ≤ 1/δ and
weakly (k, δ)-concentrated if both Pr[Z ≤ μ − √

k] ≤ 1/δ and Pr[Z ≥ μ +
√

k]
≤ 1/δ.
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2.1 Related Work

Gomes et al. [14] first identified the improvements in solving time due to the
usage of sparse XORs in approximate model counting algorithms. The question
of whether sparse XORs can provide the required theoretical guarantees was
left open. A significant progress in this direction was achieved by Ermon et
al. [11], who provided the first rigorous analysis of the usage of sparse XOR
constraints. Building on Ermon et al., Zhao et al. [31] and Asteris and Dimakis [3]
independently provided further improved analysis of Ermon et al. and showed
that probability f = O( log n

n ) suffices to provide constant factor approximation,
which can be amplified to (1 + ε) approximation.

While the above mentioned efforts focused on each entry of A to be i.i.d.,
Achlioptas and Theodorpoulos [2], Achlioptas, Hammoudeh, and Theodorpou-
los [1] investigated the design of hash functions where A is a structured matrix
by drawing on connections to the error correcting codes. While their techniques
provide a construction of sparse constraints, the constants involved in asymp-
totics lead to impractical algorithms for (ε, δ) guarantees (See Sect. 9 of [1]). The
work of Achlioptas et al. demonstrates the promise and limitations of structured
random matrices in the design of hashing-based algorithms; however, there is no
such study in the case when all the entries are i.i.d. In this paper, we theoreti-
cally improve the construction proposed by Asteris and Dimakis [3], and Zhao
et al. [31] and perform a rigorous empirical study to understand the tradeoffs of
sparsity.

3 Weakness of Guarantees Offered by Sparse XORs

In this section, we present the first contribution of this paper: demonstration of
the weakness of theoretical guarantees obtained in prior work [3,11,31] for sparse
XORs. To this end, we investigate whether the bounds offered by Zhao et al. on
the variance of Cnt〈i〉, which are the strongest bounds known on sparse XORs,
can be employed in the analysis of Cat2 techniques. For clarity of exposition, we
focus on the usage of sparse XOR bounds in ApproxMC3, but our conclusions
extend to other Cat2 techniques, as pointed out below.

The analysis of ApproxMC3 employs the bounds on the variance of Cnt〈i〉
using the following standard concentration bounds.

Lemma 1. For every β > 0,0 < ε ≤ 1, 0 ≤ i ≤ n, we have:

1. Chebyshev Inequality

Pr

[∣∣Cnt〈i〉 − E[Cnt〈i〉]
∣∣ ≥ ε

1 + ε
E[Cnt〈i〉]

]
≤ (1 + ε)2σ2[Cnt〈i〉]

ε2E[Cnt〈i〉]2

2. Paley-Zygmund Inequality

Pr[Cnt〈i〉 ≤ βE[Cnt〈i〉]] ≤ 1

1 +
(1 − β)2E[Cnt〈i〉]2

σ2[Cnt〈i〉]
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The analysis of Cat2 techniques (and ApproxMC3 in particular) bounds the
failure probability of the underlying algorithm by upper bounding the above
expressions for appropriately chosen values of i. To obtain meaningful upper
bounds, these techniques employ the inequality σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] obtained
via the usage of 2-universal hash functions3.

Recall, that the core idea of the hashing-based framework is to employ 2-
universal hash functions to partition the solution space into roughly equal sized
small cells, wherein a cell is called small if it has solutions less than or equal to a
pre-computed threshold, denoted by thresh, which is chosen as O(1/ε2). To this
end, the analysis lower bounds E[Cnt〈i〉] by thresh

2 , which allows the denominator
to be lower bounded by a constant. Given that thresh can be set to O( 1

ε2 )1/c for
some c > 0, we can relax the requirement on the chosen hash family to ensuring
σ2[Cnt〈i〉] ≤ E[Cnt〈i〉]2−c for some c > 0. Note that pairwise independent hash
functions based on dense XORs ensure σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] (i.e., c = 1).

We now investigate the guarantees provided by sparse XORs. To this end,
we first recall the following result, which follows from combining Theorem 1 and
Theorem 3 of [11].

Lemma 2. [11]4 For 2 ≤ |RF | ≤ 2n, let

w∗ = max

⎧
⎨
⎩w

∣∣
w∑

j=1

(
n

j

)
≤ |RF | − 1

⎫
⎬
⎭

q∗ = |RF | − 1 −
w∗∑

w=1

(
n

w

)

η =
1

|RF | − 1

(
q∗

(
1
2

+
1
2
(1 − 2f)w∗+1

)m

+
w∗∑

w=1

(
n

w

) (
1
2

+
1
2
(1 − 2f)w

)m
)

For h
R←− H{fj}(n,m), we have:

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + ηE[Cnt〈i〉](|RF | − 1) − E[Cnt〈i〉]2.

Zhao et al. [31], building on Ermon et al. [11], obtain the following bound
(see, Lemma 8 and Lemma 10 of [31]).

Lemma 3. [31] Define k = 2mη(1 − 1
|RF | ). Then k ≤ γ for γ > 1.

The bound on σ2[Cnt〈i〉] from Zhao et al. can be stated as:

Theorem 1. σ2[Cnt〈i〉] ≤ ζ where ζ ∈ Ω(E[Cnt〈i〉]2).

3 While we are focusing on ApproxMC3, the requirement of σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] holds
for other Cat2 techniques.

4 The expression stated in the Theorem can be found in the revised version at
https://cs.stanford.edu/∼ermon/papers/SparseHashing-revised.pdf (Accessed: May
10, 2020).

https://cs.stanford.edu/~ermon/papers/SparseHashing-revised.pdf
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Proof.

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + ηE[Cnt〈i〉](|RF | − 1) − E[Cnt〈i〉]2.

(Substituting |RF | = E[Cnt〈i〉] × 2m, we have)

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + 2mηE[Cnt〈i〉]2(1 − 1/|RF |) − E[Cnt〈i〉]2

Substituting k = 2mη(1 − 1
|RF | ), we have:

σ2[Cnt〈i〉] ≤ E[Cnt〈i〉] + (k − 1)E[Cnt〈i〉]2 = ζ.

Using Corollary 3, we have ζ ∈ Ω(E[Cnt〈i〉]2).

Recall, the analysis of ApproxMC3 requires us to upper bound σ2[Cnt〈i〉]
by E[Cnt〈i〉]2−c for c > 0. Since the best-known bounds on σ2[Cnt〈i〉] lower
bound σ2[Cnt〈i〉] by E[Cnt〈i〉]2, these bounds are not sufficient to be used by
ApproxMC3. At this point, one may wonder as to what is the key algorith-
mic difference between Cat1 and Cat2 that necessitates the use of stronger
bounds: Cat1 techniques compute a constant factor approximation and then
make use of Stockmeyer’s argument to lift a constant factor approximation to
(1 + ε)-approximation, whereas, Cat2 techniques directly compute a (1 + ε)-
approximation, which necessitates the usage of stronger concentration bounds.

4 SparseCount2: An Efficient Algorithm for Sparse XORs

The inability of sparse XORs to provide good enough bounds on variance for
usage in Cat2 techniques, in particular ApproxMC3, leads us to ask: how do we
design the most efficient algorithm for approximate model counting making use
of the existing gadgets in the model counting literature. We recall that Zhao et
al. [31] provided matching necessary and sufficient conditions on the required
asymptotic density of matrix A. Furthermore, they proposed a hashing-based
algorithm, SparseCount, that utilizes sparser constraints.

As mentioned earlier, Chakraborty et al. [9] proposed the technique of using
prefix-slicing of hash functions in the context of hashing-based techniques and
their empirical evaluation demonstrated significant theoretical and empirical
improvements owing to the usage of prefix hashing. In this work, we first show
a dramatic reduction in the complexity of SparseCount by utilizing the concept
of prefix-slicing and thereby improving the number of SAT calls from O(n log n)
to O((log n)2) for fixed ε and δ The modified algorithm, called SparseCount2,
significantly outperforms SparseCount, as demonstrated in Sect. 5.

Algorithm 1 shows the pseudo-code for SparseCount2. SparseCount2 assumes
access to SAT oracle that takes in a formula ϕ and returns YES if ϕ is satisfiable,
otherwise it returns NO. Furthermore, SparseCount2 assumes access to the sub-
routine MakeCopies that creates multiple copies of a given formula, a standard
technique first proposed by Stockmeyer [27] to lift a constant factor approxima-
tion to that of (1+ε)-factor approximation for arbitrary ε. Similar to Algorithm
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Algorithm 1. SparseCount2 (ϕ, ε, δ)  Assume ϕ is satisfiable
1: Δ ← 0.0042
2: ψ ← MakeCopies(ϕ, � 1

log4(1+ε)
�)

3: m ← 0; iter ← 0; C ← EmptyList; n̂ ← |Vars(ψ)|
4: T ←

⌈ log(n̂/δ)

Δ

⌉

5: {fj} ← ComputeSparseDensities(n̂)
6: repeat
7: iter ← iter + 1
8: m ← CoreSearch(ψ, m, {fj})
9: AddToList(C, 2m)

10: until iter < T
11: ĉ ← Median(C)
12: return ĉ�log4(1+ε)�

Algorithm 2. CoreSearch(ψ, mPrev, {fj})

1: Choose h uniformly at random from H{fj}(n̂, n̂)
2: Choose α uniformly at random from {0, 1}n̂

3: Y ← SAT(ψ ∧ h(n̂)(Vars(ψ)) = αn̂)
4: if Y is YES then
5: return n̂
6: m ← LogSATSearch(ψ, h, α, mPrev)
7: return m

1 of [11], we choose {fj} in line 5, such that the resulting hash functions guaran-
tee weak (μ2

i , 9/4)-concentration for the random variable Cnt〈i〉 for all i, where
μi = E[Cnt〈i〉]. SparseCount2 shares similarity with SparseCount with the core
difference in the replacement of linear search in SparseCount with the procedure
CoreSearch. CoreSearch shares similarity with the procedure ApproxMC2Core of
Chakraborty et al. [9]. The subroutine CoreSearch employs prefix search, which
ensures that for all i, Cnt〈i〉 ≥ Cnt〈i+1〉. The monotonicity of Cnt〈i〉 allows us
to perform a binary search to find the value of i for which Cnt〈i〉 ≥ 1 and
Cnt〈i+1〉 = 0. Consequently, we make O(log n) calls to the underlying NP oracle
during each invocation of CoreSearch instead of O(n) calls in case of SparseCount.
Note that CoreSearch is invoked T times, where T =

⌈
log(n̂/δ)

Δ

⌉
(n̂, δ,Δ as defined

in the algorithm) and the returned value is added to the list C. We then return
the median of C.

It is worth noting that SparseCount2 and ApproxMC3 differ only in the usage
of thresh, which is set to 1 for SparseCount2 and a function of ε for ApproxMC3,
as observed in the discussion following Lemma 1. The usage of thresh dependent
on ε requires stronger bounds on variance, which can not be provided by sparse
XORs as discussed in the previous section.
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Algorithm 3. LogSATSearch(ψ, h, α, mPrev)
1: loIndex ← 0; hiIndex ← n̂ − 1; m ← mPrev
2: BigCell[0] ← 1; BigCell[n̂] ← 0
3: BigCell[i] ←⊥ ∀ i ∈ [1, n̂ − 1]
4: while true do
5: Y ← SAT(ψ ∧ h(m)(Vars(ψ)) = α(m))
6: if Y is YES then
7: if BigCell[m + 1] = 0 then
8: return m + 1

9: BigCell[i] ← 1 ∀i ∈ {1, ...m}
10: loIndex ← m
11: if |m−mPrev| < 3 then
12: m ← m + 1
13: else if 2m < |n̂| then
14: m ← 2m
15: else m ← (hiIndex+m)/2

16: else
17: if BigCell[m − 1] = 1 then
18: return m
19: BigCell[i] ← 0 ∀ i ∈ {m, ...n̂}
20: hiIndex ← m
21: if |m−mPrev| < 3 then m ← m − 1
22: else m ← (loIndex+m)/2

4.1 Analysis of Correctness of SparseCount2

We now present the theoretical analysis of SparseCount2. It is worth asserting
that the proof structure and technique for SparseCount2 and ApproxMC3 are
significantly different, as is evident from the inability of ApproxMC3 to use sparse
XORs. Therefore, while the algorithmic change might look minor, the proof of
correctness requires a different analysis.

Theorem 2. Let SparseCount2 employ H{fj}n
j=0 hash families, where {fj}n

j=0

is chosen such that it guarantees weak (μ2
i , 9/4)-concentration for the random

variable Cnt〈i〉 for all i, then SparseCount2 returns count c such that

Pr

[ |Rϕ|
1 + ε

≤ c ≤ (1 + ε) × |Rϕ|
]

≥ 1 − δ

Proof. Similar to [31], we assume that |Rϕ| is a power of 2; a relaxation of
the assumption simply introduces a constant factor in the approximation. Let
|Rψ| = 2i∗

and for we define the variable Cntt〈i〉 to denote the value of Cnt〈i〉
when iter = t. Let μt

i = E[Cntt〈i〉] = 2i∗

2i . Note that the choice of fi ensures that
Cntt〈i〉 is weakly ((μt

i)
2, 9/4) concentrated.

Let E denote the event that ĉ > 4×|Rψ| or ĉ <
|Rψ|
4 . We denote the event ĉ >

4 × |Rψ| as EH and the event ĉ <
|Rψ|
4 as EL. Note that Pr[E ] = Pr[EL] +Pr[EH ].

We now compute Pr[EL] and Pr[EH ] as follows:
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1. From Algorithm 1, we have ĉ = Median(C). For ĉ <
|Rψ|
4 , we have that for

at least T
2 iterations of CoreSearch returns m < i∗ − 2. For t-th invocation

of CoreSearch (i.e., iter = t) to return m − 1, then it is necessarily the case
that Cntt〈m〉 = 0. Since {fj}n

j=0 is chosen such that the resulting hash func-
tion guarantees ((μt

m)2, 9/4)-concentration for the random variable Cntt〈m〉,
we have Pr[Cntt〈m〉 ≥ 1] ≥ 5/9 for m ≤ i∗ − 2.
Let us denote, by E i

L, the event that at least for T
2 of {Cntt〈i〉}T

t=0 we have

Cntt〈i〉 = 0 . Therefore, by Chernoff bound we have Pr[E i
L] ≤ e−ν(1)T where

ν(1) = 2(4/9 − 1/2)2. By applying union bound, we have Pr[EL] ≤ ne−ν(1)T

2. Again, from the Algorithm1, we have ĉ = Median(C). Therefore, for ĉ >
4× |Rψ|, we have at least T

2 invocations of CoreSearch return m > i∗ +2. For
t-th invocation of CoreSearch (i.e., iter = t) to return m, then it is necessarily
the case that Cntt〈m−1〉 ≥ 1.
Noting, E[Cntt〈m〉] = 2i∗−m. For m ≥ i∗ + 2, we have for m ≥ i∗ + 2

Pr[Cntt〈m〉 ≥ 1] ≤ 1/4.

Let us denote by E i
H , the event that for at least T

2 of {Cntt〈i〉}T
t=0 values, we

have Cntt〈i〉 ≥ 1. By Chernoff bound for m ≥ i∗ +2, we have Pr[E i
H ] ≤ e−ν(2)T

where ν(2) = 2(1/4 − 1/2)2. By applying union bound, we have Pr[EH ] ≤
ne−ν(2)T .

Therefore, we have Pr[E ] = Pr[EL] + Pr[EH ] ≤ ne−ν(1)T + ne−ν(2)T . Substituting
T , we have

Pr

[ |Rψ|
4

≤ ĉ ≤ 4 × |Rψ|
]

≥ 1 − δ.

Now notice that |Rψ| = |Rϕ| 1
log4(1+ε) ; Therefore, |Rψ|

4 ≤ ĉ ≤ 4 × |Rψ| ensures
that we have |Rϕ|

1+ε ≤ c ≤ (1 + ε) × |Rϕ|. Therefore,

Pr

[ |Rϕ|
1 + ε

≤ c ≤ (1 + ε) × |Rϕ|
]

≥ 1 − δ.

5 Empirical Studies

We focus on empirical study for comparison of runtime performance
of SparseCount, SparseCount2, and ApproxMC3. All the three algorithms,
SparseCount, SparseCount2, and ApproxMC3, are implemented in C++ and use
the same underlying SAT solver, CryptoMiniSat [26] augmented with the BIRD
framework introduced in [24,25]. CryptoMiniSat augmented with BIRD is state
of the art SAT solver equipped to handle XOR constraints natively. It is worth
noting that for hashing-based techniques, over 99% of the runtime is consumed
by the underlying SAT solver [25]. Therefore, the difference in the performance
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Table 1. Table of comparison between SparseCount, SparseCount2, and ApproxMC3

Benchmark (.cnf) Vars Clauses Time (s)

SparseCount SparseCount2 ApproxMC3

blasted case200 14 42 18.13 8.49 0.01

blasted case60 15 35 350.48 23.43 0.01

s27 3 2 20 43 1581.63 30.28 0.01

SetTest.sk 9 21 33744 148948 1679.62 171.02 0.81

lss.sk 6 7 82362 259552 1959.39 405.61 1.63

registerlesSwap.sk 3 10 372 1493 2498.02 60.23 0.03

polynomial.sk 7 25 313 1027 2896.49 99.94 0.02

02A-3 5488 21477 3576.82 467.26 0.06

blasted case24 65 190 TO 125.25 0.05

ConcreteActivityService.sk 13 28 2481 9011 TO 467.97 0.84

GuidanceService2.sk 2 27 715 2181 TO 498.14 0.29

ActivityService2.sk 10 27 1952 6867 TO 505.23 0.5

UserServiceImpl.sk 8 32 1509 5009 TO 511.09 0.33

or-100-10-4-UC-60 200 500 TO 608.86 0.05

02A-2 3857 15028 TO 1063.67 0.05

LoginService2.sk 23 36 11511 41411 TO 1127.36 2.96

17.sk 3 45 10090 27056 TO 1299.15 1.69

diagStencil.sk 35 36 319730 1774184 TO 2188.19 112.52

tableBasedAddition.sk 240 1024 1026 961 TO TO 2.17

blasted squaring9 1434 5028 TO TO 5.04

blasted TR b12 1 linear 1914 6619 TO TO 259.3

of the algorithms is primarily due to the number of SAT calls and the formulas
over which the SAT solver is invoked. Furthermore, our empirical conclusions do
not change even using the older versions of CryptoMiniSat.

We conducted experiments on a wide variety of publicly available bench-
marks. Our benchmark suite consists of 1896 formulas arising from probabilistic
inference in grid networks, synthetic grid structured random interaction Ising
models, plan recognition, DQMR networks, bit-blasted versions of SMTLIB
benchmarks, ISCAS89 combinational circuits, and program synthesis examples.
Every experiment consisted of running a counting algorithm on a particular
instance with a timeout of 4500 s. The experiments were conducted on a high-
performance cluster, where each node consists of E5-2690 v3 CPU with 24 cores
and 96GB of RAM. We set ε = 0.8 and δ = 0.2 for all the tools.

The objective of our empirical study was to seek answers to the following
questions:

1. How does SparseCount compare against SparseCount2 in terms of runtime
performance?

2. How does SparseCount2 perform against ApproxMC3 in terms of runtime?
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Overall, we observe that SparseCount2 significantly outperforms SparseCount.
On the other hand, ApproxMC3 outperforms SparseCount2 with a mean speedup
of 568.53×.

Our conclusions are surprising and stand in stark contrast to the widely held
belief that the current construction of sparse XORs by Zhao et al. [31] and
Ermon et al. [11] lead to runtime improvement [1,18,19].

Figure 1 shows the cactus plot for SparseCount, SparseCount2, and
ApproxMC3. We present the number of benchmarks on x−axis and the time
taken on y−axis. A point (x, y) implies that x benchmarks took less than or
equal to y seconds for the corresponding tool to execute. We present a runtime
comparison of SparseCount2 vis-a-vis SparseCount and ApproxMC3 in Table 1.
Column 1 of this table gives the benchmark name while column 2 and 3 list
the number of variables and clauses, respectively. Column 4, 5, and 6 list the
runtime (in seconds) of SparseCount, SparseCount2 and ApproxMC3, respectively.
Note that “TO” stands for timeout. For lack of space, we present results only
on a subset of benchmarks. The detailed logs along with list of benchmarks and
the binaries employed to run the experiments are available at http://doi.org/10.
5281/zenodo.3792748

We present relative comparisons separately for ease of exposition and clarity.

5.1 SparseCount vis-a-vis SparseCount2

As shown in Fig. 1, with a timeout of 4500 s, SparseCount could only finish execu-
tion on 90 benchmarks while SparseCount2 completed on 379 benchmarks. Note
that SparseCount2 retains the same theoretical guarantees of SparseCount.

Fig. 1. Cactus plot of runtime performance (best viewed in color)

http://doi.org/10.5281/zenodo.3792748
http://doi.org/10.5281/zenodo.3792748
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For a clear picture of performance gain achieved by SparseCount2 over
SparseCount, we turn to Table 1. Table 1 clearly demonstrates that SparseCount2
outperforms SparseCount significantly. In particular, for all the benchmarks
where both SparseCount and SparseCount2 did not timeout, the mean speedup
is 10.94×.

Explanation. The stark difference in the performance of SparseCount and
SparseCount2 is primarily due to a significant reduction in the number of SAT
calls in SparseCount2. Recall, SparseCount invokes the underlying SAT solver
O(n log n) times while SparseCount invokes the underlying SAT solver only
O(log2 n) times. As discussed above, such a difference was achieved due to the
usage of prefix-slices.

5.2 ApproxMC3 vis-a-vis SparseCount2

With a timeout of 4500 s, SparseCount2 could only finish execution on 379
benchmarks while ApproxMC3 finishes execution on 1169 benchmarks. Further-
more, Table 1 clearly demonstrates that ApproxMC3 significantly outperforms
SparseCount2. In particular, for all the formulas where both SparseCount2 and
ApproxMC3 did not timeout, the mean speedup is 568.53×. In light of recent
improvements in CryptoMiniSat, one may wonder if the observations reported
in this paper are mere artifacts of how the SAT solvers have changed in the
past few years and perhaps such a study on an earlier version of CryptoMiniSat
may have led to a different conclusion. To account for this threat of validity, we
conducted preliminary experiments using the old versions of CryptoMiniSat and
again observed that similar observations hold. In particular, the latest improve-
ments in CryptoMiniSat such as BIRD framework [24,25] favor SparseCount and
SparseCount2 relatively in comparison to ApproxMC3.

Explanation. The primary contributing factor for the difference in the runtime
performance of SparseCount2 and ApproxMC3 is the fact that weaker guarantees
for the variance of Cnt〈i〉 necessitates the usage of Stockmeyer’s trick of usage of
the amplification technique wherein the underlying routines are invoked over ψ
instead of ϕ. Furthermore, the weak theoretical guarantees also lead to a larger
value of T as compared to its analogous parameter in ApproxMC3. It is worth
noticing that prior work on the design of sparse hash function has claimed that
the usage of sparse hash functions leads to runtime performance improvement of
the underlying techniques. Such inference may perhaps be drawn based only on
observing the time taken by a SAT solver on CNF formula with a fixed number
of XORs and only varying the density of XORs. While such an observation
does indeed highlight that sparse XORs are easy for SAT solvers, but it fails, as
has been the case in prior work, to take into account the tradeoffs due to the
weakness of theoretical guarantees of sparse hash functions. To emphasize this
further, the best known theoretical guarantees offered by sparse XORs are so
weak that one can not merely replace the dense XORs with sparse XORs. The
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state of the art counters such as ApproxMC3 require stronger guarantees than
those known today.

6 Conclusion

Hashing-based techniques have emerged as a promising paradigm to attain scal-
ability and rigorous guarantees in the context of approximate model counting.
Since the performance of SAT solvers was observed to degrade with an increase
in the size of XORs, efforts have focused on the design of sparse XORs. In this
paper, we performed the first rigorous analysis to understand the theoretical
and empirical effect of sparse XORs. Our conclusions are surprising and stand
in stark contrast to the widely held belief that the current construction of sparse
XORs by Zhao et al. [31] and Ermon et al. [11] lead to runtime improvement.
We demonstrate that the theoretical guarantees offered by the construction as
mentioned earlier are still too weak to be employed in the state of the art approx-
imate counters such as ApproxMC3. Furthermore, the most efficient algorithm
using sparse XORs, to the best of our knowledge, still falls significantly short of
ApproxMC3 in runtime performance. While our analysis leads to negative results
for the current state of the art sparse construction of hash functions, we hope
our work would motivate other researchers in the community to investigate the
construction of efficient hash functions rigorously. In this spirit, concurrent work
of Meel r© Akshay [20] proposes a new family of hash functions called concen-
trated hash functions, and design a new family of sparse hash functions of the
form Ay + b wherein every entry of A[i] is chosen with probability pi ∈ O( log n

n ).
Meel r© Akshay propose an adaption of ApproxMC3 that can make use of the
newly designed sparse hash functions, and in turn, obtain promising speedups
on a subset of benchmarks.
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Abstract. The propositional model counting problem (#SAT) is known
to be fixed-parameter-tractable (FPT) when parameterized by the width
k of a given tree decomposition of the incidence graph. The running time
of the fastest known FPT algorithm contains the exponential factor of
4k. We improve this factor to 2k by utilizing fast algorithms for comput-
ing the zeta transform and covering product of functions representing
partial model counts, thereby achieving the same running time as FPT
algorithms that are parameterized by the less general treewidth of the
primal graph. Our new algorithm is asymptotically optimal unless the
Strong Exponential Time Hypothesis (SETH) fails.

1 Introduction

Propositionalmodel counting (#SAT) is the problemof determining the number of
satisfying truth assignments of a given propositional formula. The problem arises
in several areas of AI, in particular in the context of probabilistic reasoning [2,15].
#SAT is #P-complete [18], even for 2-CNF Horn formulas, and it is NP-hard to
approximate the number of models of a formula with n variables within 2n1−ε

,
for any ε > 0 [15].

Since syntactic restrictions do not make the problem tractable, research gen-
erally focused on structural restrictions in terms of certain graphs associated
with the input formula, which is often assumed to be in CNF. Popular graph-
ical models are the primal graph (vertices are the variables, two variables are
adjacent if they appear together in a clause), the dual graph (vertices are the
clauses, two clauses are adjacent if they share a variable), and the incidence
graph (vertices are variables and clauses, a variable and a clause are adjacent if
the variable occurs in the clause). The structural complexity of a graph can be
restricted in terms of the fundamental graph invariant treewidth [14] By taking
the treewidth of the primal, dual, or incidence graph one obtains the primal
treewidth, the dual treewidth, and the incidence treewidth of the formula, respec-
tively. If we consider CNF formulas for which any of the three parameters is
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bounded by a constant, the number of models can be computed in polynomial
time. Indeed, the order of the polynomial is independent of the treewidth bound,
and so #SAT is fixed-parameter tractable (FPT) when parameterized by primal,
dual or incidence treewidth.

Incidence treewidth is considered the most general parameter among the
three, as any formula of primal or dual treewidth k has incidence treewidth at
most k + 1. However, one can easily construct formulas of constant incidence
treewidth and arbitrarily large primal and dual treewidth. Known model count-
ing algorithms based on incidence treewidth have to pay for this generality with
a significant larger running time: Whereas the number of models for formulas
of primal or dual treewidth k can be counted in time1 O∗(2k), the best know
algorithm for formulas of incidence treewidth k takes time O∗(4k).2 This discrep-
ancy cannot be accounted for by a loose worst-case analysis, but is caused by the
actual size of the dynamic programming tables constructed by the algorithms.

In this paper, we show that algebraic techniques can be used to bring down
the running time to O∗(2k). Specifically, we prove that the most time-consuming
steps can be expressed as zeta transforms and covering products of functions
obtained from partial model counts. Since there are fast algorithms for comput-
ing these operations [3], we obtain the desired speedup.

2 Preliminaries

Treewidth. Let G = (V (G), E(G)) be a graph, T = (V (T ), E(T )) be a tree, and
χ be a labeling of the vertices of T by sets of vertices of G. We refer to the
vertices of T as “nodes” to avoid confusion with the vertices of G. The tuple
(T, χ) is a tree decomposition of G if the following three conditions hold:

1. For every v ∈ V (G) there exists a node t ∈ V (T ) such that v ∈ χ(t).
2. For every vw ∈ E(G) there exists a node t ∈ V (T ) such that v, w ∈ χ(t).
3. For any three nodes t1, t2, t3 ∈ V (T ), if t2 lies on the path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree decomposition (T, χ) is defined by maxt∈V (T ) |χ(t)| − 1. The
treewidth tw(G) of a graph G is the minimum width over all its tree decompo-
sitions. For constant k, there exists a linear-time algorithm that checks whether
a given graph has treewidth at most k and, if so, outputs a tree decomposi-
tion of minimum width [5]. However, the huge constant factor in the runtime
of this algorithm makes it practically infeasible. For our purposes, it suffices to
obtain tree decompositions of small but not necessarily minimal width. There

1 The O∗ notation omits factors that are polynomial in the input size [19].
2 Alternatively, one can convert a formula with incidence treewidth k into a 3-CNF
formula that has the same number of models and dual treewidth at most 3(k+1), or
an equisatisfiable 3-CNF formula of primal treewidth at most 3(k+1) [17]. Applying
one of these transformations followed by an algorithm for the corresponding width
parameter results in an overall running time of O∗(8k).
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exist several powerful tree decomposition heuristics that construct tree decom-
positions of small width for many cases that are relevant in practice [4,12], and
the single-exponential FPT algorithm by Bodlander et al. [6] produces a factor-5
approximation of treewidth.

In this paper we also consider a particular type of tree decompositions. The
triple (T, χ, r) is a nice tree decomposition of G if (T, χ) is a tree decomposition,
the tree T is rooted at node r, and the following three conditions hold [11]:

1. Every node of T has at most two children.
2. If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in that

case we call t a join node.
3. If a node t of T has exactly one child t′, then one of the following holds:

(a) |χ(t)| = |χ(t′)| + 1 and χ(t′) ⊂ χ(t); in that case we call t an introduce
node.

(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget node.

It is known that one can transform efficiently any tree decomposition of
width k of a graph with n vertices into a nice tree decomposition of width at
most k and at most 4n nodes [11, Lemma 13.1.3].

Propositional Formulas. We consider propositional formulas F in conjunctive
normal form (CNF) represented as set of clauses. Each clause in F is a finite
set of literals, and a literal is a negated or unnegated propositional variable.
For a clause C we denote by var(C) the set of variables that occur (negated or
unnegated) in C; for a formula F we put var(F ) =

⋃
C∈F var(C). The size of a

clause is its cardinality. A truth assignment is a mapping τ : X → {0, 1} defined
on some set X of variables. We extend τ to literals by setting τ(¬x) = 1 − τ(x)
for x ∈ X. A truth assignment τ : X → {0, 1} satisfies a clause C if for some
variable x ∈ var(C) ∩ X we have x ∈ C and τ(x) = 1, or ¬x ∈ C and τ(x) = 0.
An assignment satisfies a set F of clauses if it satisfies every clause in F . For
a formula F , we call a truth assignment τ : var(F ) → {0, 1} a model of F if τ
satisfies F . We denote the number of models of F by #(F ). The propositional
model counting problem #SAT is the problem of computing #(F ) for a given
propositional formula F in CNF.

Incidence Treewidth. The incidence graph G∗(F ) of a CNF formula F is the
bipartite graph with vertex set F ∪var(F ); a variable x and a clause C are joined
by an edge if and only if x ∈ var(C). The incidence treewidth tw∗(F ) of a CNF
formula F is the treewidth of its incidence graph, that is tw∗(F ) = tw(G∗(F )).

Definition 1 (Zeta and Möbius Transforms). Let V be a finite set and let
f : 2V → Z be a function. The zeta transform ζf of f is defined as

(ζf)(X) =
∑

Y ⊆X

f(Y ), (1)

and the Möbius transform μf of f is given by

(μf)(X) =
∑

Y ⊆X

(−1)|X\Y |f(Y ). (2)
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Theorem 1 (Kennes [10]). Let V be an k-element set and let f : 2V → Z be
a function. All values of ζf and μf can be computed using O(2kk) arithmetic
operations.

Definition 2. The covering product of two functions f, g : 2V → Z is a function
(f ∗c g) : 2V → Z such that for every Y ⊆ V ,

(f ∗c g)(Y ) =
∑

A∪B=Y

f(A)g(B). (3)

The covering product can be computed using zeta and Möbius transforms by
applying the following two results (see Aigner [1]).

Lemma 1. Given functions f, g : 2V → Z, the zeta transform of the covering
product of f and g is the pointwise product of the zeta-transformed arguments.
That is, for each X ⊆ V

ζ(f ∗c g)(X) = (ζf(X))(ζg(X)).

Theorem 2 (Inversion formula). Let f : 2V → Z. Then for every X ⊆ V

f(X) = (μζf)(X) = (ζμf)(X).

3 Faster Model Counting for Incidence Treewidth

Samer and Szeider presented an algorithm for #SAT with a running time
of O∗(4k) [16], where k is the width of a given tree decomposition of the incidence
graph. In this section, we are going to show how to improve this to O∗(2k).

Their algorithm proceeds by bottom-up dynamic programming on a nice tree
decomposition, maintaining tables that contain partial solution counts for each
node. For the remainder of this section, let F be an arbitrary but fixed CNF
formula, and let (T, χ, r) be a nice tree-decomposition of the incidence graph
G∗(F ) that has width k. For each node t of T , let Tt denote the subtree of T
rooted at t, and let Vt =

⋃
t′∈V (Tt)

χ(t′) denote the set of vertices appearing in
bags of Tt. Further, let Ft denote the set of clauses in Vt, and let Xt denote
the set of all variables in Vt. We also use the shorthands χc(t) = χ(t) ∩ F and
χv(t) = χ(t) ∩ var(F ) for the set of clauses and the set of variables in χ(t),
respectively. Let t be a node of T . For each assignment α : χv(t) → {0, 1} and
subset A ⊆ χc(t), we define N(t, α,A) as the set of assignments τ : Xt → {0, 1}
for which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χv(t).
2. A is exactly the set of clauses in Ft that are not satisfied by τ .

We represent the values of n(t, α,A) = |N(t, α,A)| for all α : χv(t) → {0, 1}
and A ⊆ χc(t) by a table Mt with |χ(t)| + 1 columns and 2|χ(t)| rows. The
first |χ(t)| columns of Mt contain Boolean values encoding α(x) for variables
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x ∈ χv(t), and membership of C in A for clauses C ∈ χc(t). The last entry of
each row contains the integer n(t, α,A).

Samer and Szeider showed that the entries of the table Mt can be efficiently
computed for each node t. More specifically, they showed how Mt can be obtained
for leaf nodes t, and how Mt can be computed from the tables for the child nodes
of introduce, forget, and join nodes t. Since the running time for join and variable
introduce nodes are the bottleneck of the algorithm, we summarize the results
concerning correctness and running time for the remaining node types as follows.

Lemma 2 (Samer and Szeider [16]). If t ∈ T is a leaf node, or a forget or
clause introduce node with child t′ such that Mt′ has already been computed, the
table Mt can be obtained in time 2k|ϕ|O(1).

The table entries for a join node can be computed as a sum of products from
tables of its child nodes.

Lemma 3 (Samer and Szeider [16]). Let t ∈ T be a join node with chil-
dren t1, t2. For each assignment α : χv(t) → {0, 1} and set A ⊆ χc(t) we have

n(t, α,A) =
∑

A1,A2⊆χc(t),
A1∩A2=A

n(t1, α,A1) n(t2, α,A2). (4)

A straight-forward algorithm for computing this sum requires an arithmetic
operation for each pair (A1, A2) where A1 ⊆ χc(t1), A2 ⊆ χc(t2), and thus
2k2k = 4k operations in the worst case. By using a fast algorithm for the covering
product, we can significantly reduce the number of arithmetic operations and
thus the running time. The key observation is that the sum of products in (4)
can be readily expressed as a covering product (3).

Lemma 4. Let t be a join node of T with children t1, t2 and let α : χv(t) →
{0, 1} be a truth assignment. For i ∈ {1, 2} let fi : 2χc(ti) → Z be the function
given by fi(A) := n(ti, α, χc(t) \ A). Then n(t, α, χc(t) \ A) = (f1 ∗c f2)(A) for
each subset A ⊆ χc(t).

Proof. For S ⊆ χc(t), let Sc = χc(t) \ S. We have

(f1 ∗c f2)(A) =
∑

A1,A2⊆χc(t)
A1∪A2=A

f1(A1) f2(A2)

=
∑

A1,A2⊆χc(t)
Ac

1∩Ac
2=Ac

n(t1, α,Ac
1) n(t2, α,Ac

2) = n(t, α,Ac).

	

For variable introduce nodes the table entry for each assignment and subset of
clauses can be computed as a sum over table entries of the child table.



272 F. Slivovsky and S. Szeider

Lemma 5 (Samer and Szeider [16]). Let t be an introduce node with child t′

such that χ(t) = χ(t′) ∪ {x} for a variable x. Then, for each truth assignment
α : χv(t′) → {0, 1} and set A ⊆ χc(t), we have

n(t, α ∪ {(x, 0)}, A) =

⎧
⎪⎨

⎪⎩

0 if ¬x ∈ C for some C ∈ A

∑

B′⊆B

n(t′, α,A ∪ B′)
otherwise, where

B = {C ∈ χc(t) | ¬x ∈ C};
(5)

n(t, α ∪ {(x, 1)}, A) =

⎧
⎪⎨

⎪⎩

0 if x ∈ C for some C ∈ A;
∑

B′⊆B

n(t′, α,A ∪ B′)
otherwise, where

B = {C ∈ χc(t) | x ∈ C}.

(6)

A simple approach is to go through all 2k assignments α and subsets A and, if
necessary, compute the sums in (5) and (6). Since there could be up to 2k subsets
to sum over, this again requires 4k arithmetic operations in the worst case. The
following lemma observes that we can instead use the zeta transform (1).

Lemma 6. Let t be an introduce node with child t′ such that χ(t) = χ(t′)∪{x}
for a variable x. Define f(S) = n(t′, α, S) for S ⊆ χc(t′). Then, for each truth
assignment α : χv(t′) → {0, 1} and set A ⊆ χc(t), we have

n(t, α ∪ {(x, 0)}, A) =

⎧
⎪⎨

⎪⎩

0 if ¬x ∈ C for some C ∈ A;

(ζf)(A ∪ B) − (ζf)(A)
otherwise, where

B = {C ∈ χc(t) | ¬x ∈ C};
(7)

n(t, α ∪ {(x, 1)}, A) =

⎧
⎪⎨

⎪⎩

0 if x ∈ C for some C ∈ A;

(ζf)(A ∪ B) − (ζf)(A)
otherwise, where

B = {C ∈ χc(t) | x ∈ C}.

(8)

Proof. We can rewrite the sums in (5) and (6) as
∑

A⊆S⊆A∪B

f(S) =
∑

S⊆A∪B

f(S) −
∑

S⊆A

f(S) = (ζf)(A ∪ B) − (ζf)(A).

	

By Theorem 1, the zeta and Möbius transform of a function f : 2V → Z can

be computed using O(2kk) arithmetic operations, where k = |V | is the size of the
underlying set. In conjunction with Lemma1 and Lemma 2, this lets us compute
the covering product of two functions f, g : 2V → Z with O(2kk) operations.

How this translates into running time depends on the choice of computational
model. Since the model count of a formula can be exponential in the number of
variables, it is unrealistic to assume that arithmetic operations can be performed
in constant time. Instead, we adopt a random access machine model where two n-
bit integers can be added, subtracted, and compared in time O(n), and multiplied
in time O(n log n) [8]. For the purposes of proving a bound of O∗(2k), it is
sufficient to show that the bit size of integers obtained as intermediate results
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while computing the zeta and Möbius transforms is polynomially bounded by
the number of variables in the input formula. To verify that this is the case, we
present the dynamic programming algorithms used to efficiently compute these
transforms [3], following the presentation by Fomin and Kratsch [7].

Theorem 3. Let V be a k-element set and let f : 2V → Z be a function that can
be evaluated in time O(1) and whose range is contained in the interval (−2N , 2N ).
All values of ζf and μf can be computed in time 2k(k + N)O(1).

Proof. Let V = {1, . . . , k}. We compute intermediate values

ζj(X) =
∑

Y ⊆X∩{1,...,j}
f(Y ∪ (X ∩ {j + 1, . . . , k})),

for j = 0, . . . , k. Note that ζk(X) = (ζf)(X). The values ζj can be computed as

ζj(X) =

{
ζj−1(X) when j /∈ X,

ζj−1(X) + ζj−1(X \ {j}) when j ∈ X.

For the Möbius transform, we compute intermediate values

μj(X) =
∑

Y ⊆X∩{1,...,j}
(−1)|(X∩{1,...,j})\Y |f(Y ∪ (X ∩ {j + 1, . . . , k})).

Again we have μk(X) = (μf)(X), and the values μj can be computed as

μj(X) =

{
μj−1(X) when j /∈ X,

μj−1(X) − μj−1(X \ {j}) when j ∈ X.

In both cases, this requires k arithmetic operations for each set X ⊆ V , and the
intermediate values are contained in the interval (−2k2N , 2k2N ). 	

Corollary 1. Let V be an k-element set and let f, g : 2V → Z be functions
that can be evaluated in time O(1) and whose range is contained in the inter-
val (−2N , 2N ). All values of f ∗c g can be computed in time 2k(k + N)O(1).

Having obtained these bounds on the time required to compute the zeta trans-
form and the covering product, we can now state improved time bounds for
obtaining the entries of the tables Mt of join and variable introduce nodes t.

Lemma 7. The table Mt for a join node t ∈ T can be computed in time O∗(2k)
given the tables Mt1 and Mt2 of its child nodes t1 and t2.

Proof. Let p = |χv(t)| and q = |χc(t)|. For each assignment α : χv(t) → {0, 1},
we perform the following steps. For i ∈ {1, 2}, we first modify the table Mti

by
flipping the values encoding membership of a clause C in the set A so as to obtain
a table M ′

i containing the values fi(A) := n(ti, α, χc(t) \ A) for each A ⊆ χc(t).
Clearly, this can be done in time O∗(2p). By Lemma 4, the values (f1 ∗c f2)(A)
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correspond to n(t, α, χc(t)\A). Each entry of the tables Mti
represents a partial

model count that cannot exceed 2n, so we can compute all values of the covering
product f1 ∗c f2 in time 2q(q + n)O(1) by Corollary 1, where n is the number of
variables. Since q ≤ n this is in O∗(2q). There are at most 2p assignments α :
χv(t) → {0, 1}, so the overall running time is in O∗(2k). 	

Lemma 8. The table Mt for a variable introduce node t ∈ T can be computed
in time O∗(2k) given the table Mt′ of its child node t′.

Proof. As before, let p = |χv(t′)| and q = |χc(t′)|. For each truth assignment
α : χv(t′) → {0, 1}, we proceed as follows. We compute the value of the zeta
transform (ζf)(A) for all subsets A ⊆ χc(t′). Again, each entry of Mt′ represents
a partial model count that is bounded by 2n, so we can do this in time 2q(q +
n)O(1) by Theorem 1. Since q ≤ n this is in O∗(2q). Then, we iterate over all A ⊆
χc(t′) and set the entries Mt(α,A) based on (7) and (8), using the values of ζf .
This can again be done in time O∗(2q) and is correct by Lemma 6. The number
of assignments α : χv(t) → {0, 1} is 2p, so the overall running time is in O∗(2k).

	

Theorem 4. Given a CNF formula F and a nice tree decomposition of G∗(F ),
we can compute #(F ) in time O∗(2k), where k is the width of the decomposition.

Proof. Let (T, χ, r) be a nice tree decomposition of the incidence graph of F .
We compute the tables Mt for all nodes t of T , starting from the leaf nodes of T .
By Lemmas 2, 7, and 8, each table can be computed in time O∗(2k). We can
compute #(F ) =

∑
α:χv(r)→{0,1} n(r, α, ∅) at the root r. 	


4 Discussion

The space requirements of the algorithm remain unchanged by the proposed
improvements. Each table Mt has at most 2k+1 entries, and each entry requires
up to n bits. By keeping as few tables in memory as possible and discarding
tables whenever they are no longer needed, no more than 1 + log2(N + 1)�
tables need to be stored in memory at any point, where N is the number of
nodes in the tree decomposition [16, Proposition 3].

Let sr := inf{ δ | there exists an O∗(2δn) algorithm that decides the satisfia-
bility of n-variable r-CNF formulas with parameter n } and let s∞ := limr→∞ sr.
Impagliazzo et al. [9] introduced the Strong Exponential Time Hypothesis
(SETH), which states that s∞ = 1. SETH has served as a very useful hypothesis
for establishing tight bounds on the running time for NP-hard problems [13].
For instance, an immediate consequence of the SETH is that the satisfiabil-
ity of an n-variable CNF formula cannot be solved in time O∗((2 − ε))n) for
any ε > 0. However, for the incidence graph of an n-variable CNF formula
F = {C1, . . . , Cm} we can always give a tree decomposition (T, χ) of width n
(recall that the width of a tree decomposition is the size of its largest bag minus
one) by taking as T a star with center t and leaves t1, . . . , tm, and by putting
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χ(t) = var(F ) and χ(ti) = var(F ) ∪ {Ci}, for 1 ≤ i ≤ n. Thus, if the bound in
Theorem 4 could be improved from O∗(2k) to O∗((2 − ε)k), we would have an
O∗((2 − ε)n) SAT-algorithm, and hence a contradiction to the SETH. We can,
therefore, conclude that Theorem 4 is tight under the SETH.

Acknowledgements. We thank Andreas Björklund for the suggestion of using cover-
ing products to improve the running time of SAT algorithms for instances of bounded
incidence treewidth.
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Abstract. Maximum Satisfiability (MaxSat) solving is an active area of
research motivated by numerous successful applications to solving NP-
hard combinatorial optimization problems. One of the most successful
approaches to solving MaxSat instances arising from real world applica-
tions is the Implicit Hitting Set (IHS) approach. IHS solvers are complete
MaxSat solvers that harness the strengths of both Boolean Satisfiabil-
ity (SAT) and Integer Linear Programming (IP) solvers by decoupling
core-extraction and optimization. While such solvers show state-of-the-
art performance on many instances, it is known that there exist MaxSat
instances on which IHS solvers need to extract an exponential number
of cores before terminating. Motivated by the structure of the simplest
of these problematic instances, we propose a technique we call abstract
cores that provides a compact representation for a potentially exponen-
tial number of regular cores. We demonstrate how to incorporate abstract
core reasoning into the IHS algorithm and report on an empirical evalu-
ation demonstrating that including abstract cores into a state-of-the-art
IHS solver improves its performance enough to surpass the best perform-
ing solvers of the most recent 2019 MaxSat Evaluation.

Keywords: Combinatorial optimization · Maximum Satisfiability ·
MaxSat · Implicit Hitting Set · IHS

1 Introduction

Maximum Satisfiability (MaxSat), the optimisation extension of the Boolean
Satisfiability (SAT) problem, has in recent years matured into a competitive and
thriving constraint optimisation paradigm with several successful applications in
a variety of domains [7,8,11,16,18,19,31]. As a consequence, the development
of MaxSat solvers is an active area of research with the state-of-the-art solvers
evaluated annually in the MaxSat Evaluations [4,5].

In this work, we focus on improving the Implicit Hitting Set (IHS) app-
roach to complete MaxSat solving [4,14,29]. As witnessed by the results of the
annual evaluations, IHS solvers are, together with core-guided [2,20,24–26] and
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model improving [22] algorithms, one of the most successful approaches to solv-
ing MaxSat instances encountered in practical applications. IHS solvers decouple
MaxSat solving into separate core extraction and optimisation steps. By using
a Boolean Satisfiability (SAT) solver for core extraction and an Integer Linear
Programming (IP) optimizer, the IHS approach is able to exploit the disparate
strengths of these different technologies.

Through this separation IHS solvers avoid increasing the complexity of the
underlying SAT instance by deferring all numerical reasoning to the optimizer
[13]. One drawback of the approach, however, is that on some problems an
exponential number of cores need to be extracted by the SAT solver and given
to the optimizer. In this paper we identify a seemingly common pattern that
appears in the simplest problems exhibiting this exponential worse case. We
propose a technique, which we call abstract cores, for addressing problems with
this pattern. Abstract cores provide a compact representation for a potentially
exponential number of ordinary cores. Hence, by extracting abstract cores and
giving them to the optimizer we can in principle achieve an exponential reduction
in the number of constraints the SAT solver has to extract and supply to the
optimizer. The net effect can be significant performance improvements.

In the rest of the paper we formalize the concept of abstract cores and explain
how to incorporate them into the IHS algorithm both in theory and practice.
Finally, we demonstrate empirically that adding abstract cores to a state-of-the-
art IHS solver improves its performance enough to surpass the best performing
solvers of the 2019 MaxSat evaluation.

2 Preliminaries

MaxSat problems are expressed as cnf formulas F with weight annotations. A
cnf formula consists of a conjunction (∧) of clauses, each of which is a disjunction
(∨) of literals, a literal is either a variable v of F (a positive literal) or its negation
¬v (a negative literal). We will often regard F and clauses C as being sets of
clauses and literals respectively. For example l ∈ C, indicates that literal l is in
the clause C using set notation, and (x,¬y, z) denotes the clause (x ∨ ¬y ∨ z).

A truth assignment τ maps Boolean variables to 1 (true) or 0 (false).
It is extended to assign 1 or 0 to literals, clauses and formulas in the fol-
lowing standard way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C}, and
τ(F) = min{τ(C) |C ∈ F}, for literals l, clauses C, and cnf formulas F , respec-
tively. We say that τ satisfies a clause C (formula F) if τ(C) = 1 (τ(F) = 1),
and that the formula F is satisfiable if there exists a truth assignment τ such
that τ(F) = 1.

A MaxSat instance I = (F ,wt) is a cnf formula F along with a weight
function that maps every clause C ∈ F to a integer weight wt(C) > 0. Clauses
C whose weight is infinite wt(C) = ∞ are called hard clauses while those with a
finite weight are called soft clauses. I is said to be unweighted if all soft clauses
have weight 1. We denote the set of hard and soft clauses of F by FH and FS ,
respectively.
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An assignment τ is a solution to I if it satisfies FH (τ(FH) = 1). The cost of a
solution τ , cost(I, τ), is the sum of the weights of the soft clauses it falsifies, i.e.,
cost(I, τ) =

∑
C∈FS

(1 − τ(C)) ·wt(C). When the instance is clear from context
we shorten notation to cost(τ). A solution τ is optimal if it has minimum cost
among all solutions: i.e. if cost(τ) ≤ cost(τ ′) holds for all solutions τ ′. The task
in MaxSat solving is to find an (any) optimal solution. We will assume that at
least one solution exists, i.e., that FH is satisfiable.

To simplify our notation it will be useful to transform all of the soft clauses
in F so that they become unit clauses containing a single negative literal. If
C ∈ FS is not in the right form we replace it by the soft clause (¬b) and the
hard clause (C ∨ b), where b is a brand new variable and wt((¬b)) = wt(C).
This transformation preserves the set of solutions and their costs. We call the
variables in the resulting set of unit soft clauses blocking variables or b-variables
for short. Note that assigning a b-variable b the value true is equivalent to
falsifying its corresponding soft clause (¬b). We denote the set of b-variables of
the transformed formula by FB, and write wt(b) for a b-variable b to denote the
weight of its underlying soft clause wt(¬b). With this convention we can write
the cost of a solution τ more simply as cost(τ) =

∑
b∈FB

wt(b) · τ(b). For any
set B of b-variables we write cost(B) to denote the sum of their weights.

In the MaxSat context a core κ is defined to be a set of soft clauses κ ⊆ FS

that are unsatisfiable given the hard clauses, i.e.. κ ∪ FH is unsatisfiable. This
means that every solution τ , which by definition must satisfy FH , must falsify
at least one soft clause in κ. Given that the soft clauses are of the form (¬b) for
some b-variable b we can express every core as a clause κ =

∨
b∈κ b containing

only positive b-variables: one of these variables must be true. This clause is
entailed by FH . We can also express κ as a linear inequality

∑
{b|(¬b)∈κ} b ≥ 1

that is also entailed by FH . A MaxSat correction set hs is dually defined to be
a set of soft clauses hs ⊆ FS whose removal renders the remaining soft clauses
satisfiable with the hard clauses, i.e., (FS − hs) ∪ FH is satisfiable.

3 Implicit Hitting Set Based MaxSat Solving

Algorithm 1 shows the implicit hitting set (IHS) approach to MaxSat solving.
Our specification generalizes the original specification of [13]. In particular, we
use upper and lower bounds, terminating when these bounds meet, rather than
waiting until the optimizer returns a correction set as in [13]. We use this refor-
mulation as it makes it easier to understand our extension to abstract cores.

Starting from a lower bound of zero, an upper bound of infinity, and an
empty set of cores C (line 3), the algorithm computes a minimum cost hitting
set of its current set of cores C. This is accomplished by expressing each core
in C as its equivalent linear inequality

∑
b∈κ b ≥ 1 and using the optimizer to

find a solution hs with the smallest weight of true b variables (Fig. 1a). This
corresponds to computing the minimum weight of soft clauses that need to be
falsified in order to satisfy the constraints imposed by cores found so far. Hence,
cost(hs) must be a lower bound on the cost of any optimal solution: every solution
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must satisfy these constraints. This allows us to update the lower bound (line 6)
and exit the while loop if the lower bound now meets the upper bound. (Note
that since new cores are continually added to the optimizer’s model the lower
bound will never decrease).

The optimizer’s solution is then used to extract more cores that can be added
to the optimizer’s constrains for the next iteration. Core extraction is done by
the ex-cores procedure shown in Algorithm2. ex-cores extracts cores until it
finds a solution τ . If the solution has lower cost than any previous solution the
upper bound UB will be updated and this best solution stored in τbest . The set
of cores K extracted are returned and added to the optimizer’s model potentially
increasing the lower bound.

1 Basic-IHS (F ,wt)
Input: A MaxSat instance (F ,wt)
Output: An optimal solution τ

2 LB ← 0; UB ← ∞;
3 τbest ← ∅; C ← ∅ ;
4 while (true) do
5 hs ← Min-Hs(FB , C);
6 LB = cost(hs);

7 if (LB = UB) break;
8 K ← ex-cores (hs,UB , τbest );
9 if (LB = UB) break;

10 C ← C ∪ K

11 return τbest
Algorithm 1: IHS MaxSat

Min-Hs (FB , C):
minimize:

∑

b∈FB

wt(b) · b

subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C

b ∈ {0, 1} ∀b ∈ FB

return:

{b | b set to 1 in opt. soln}

(a) IP for optimizing with cores

The original IHS formulation [13] extracted only one core from each optimizer
solution, but this was shown to be a significant detriment to performance [15]
requiring too many calls to the optimizer. The procedure ex-cores gives one
simple way of extracting more than one core from the optimizer’s solution hs. It
can be extended in a variety ways to allow extracting large numbers (hundreds)
of cores from each optimizer solution [12,15,28]. In our implementation we used
such techniques.

ex-cores (Algorithm 2) uses a SAT solver and its assumption mechanism to
extract cores. It first initializes the assumptions to force the SAT solver to satisfy
every soft clause not in hs. More specifically, for every soft clause (¬b) not in
hs, ¬b is assumed, forcing the solver to satisfy this soft clause. Then it invokes
ex-cores-sub which iteratively calls the SAT solver to find a solution satisfying
FH along with the current set of assumptions. After each core is found its b-
variables are removed from the assumptions (line 11) so that on each iteration
we require the SAT solver to satisfy fewer soft clauses. Since FH is satisfiable,
eventually the SAT solver will be asked to satisfy so few soft clauses that it will
find a solution τ terminating the loop.

In the original IHS specification [13] IHS terminates with an optimal solution
when the optimal hitting set hs is a correction set. This condition will also cause
termination in our specification. In particular, before calling ex-cores the lower
bound LB is set to cost(hs) (Algorithm 1, line 6). If hs is a correction set, a
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1 ex-cores (hs,UB , τbest )
2 assumps = {¬b | b ∈ (FB − hs)};
3 return ex-cores-sub(assumps,UB , τbest )

4 ex-cores-sub (UB , τbest )
5 K ← {};
6 while true do

7 (sat? , κ, τ) ← sat-assume
(FH , assumps) ;

8 if (sat?) then
9 if (cost(τ) < UB) then τbest ← τ ; UB ← cost(τ);

10 return K;

11 else K ← K ∪ {κ}; assumps ← assumps − {¬b|b ∈ κ}
Algorithm 2: Extracting multiple cores from a single optimizer solution

solution τ will be found by the SAT solver in the first iteration of Algorithm2,
(line 7). That τ will have cost(τ) = cost(hs) as it cannot falsify any soft clause
not in hs and cannot have cost less than the lower bound. Hence, on ex-cores’s
return Algorithm 1 will terminate with UB = LB . As shown in [13] the opti-
mizer’s must eventually return a correction set. This means that the original
proof that IHS terminates, returning an optimal solution given in [13] continues
to apply our reformulated Algorithm1.

Algorithm 1 can also terminate before the optimizer returns a correction set.
In particular, τbest can be set to an optimal solution (Algorithm 2, line 9) well
before we can verify its optimality. In this case termination can occur as soon
as the optimizer has been given a sufficient number of cores to drive its lower
bound up to cost(τbest), even if the optimizer’s solution is not a correction set.
In fact, termination in the IHS approach always requires that the optimizer be
given enough constraints to drive the cost of its optimal solution up to the cost
of the MaxSat optimal solution.

Example 1. With FH = {(b1, b2), (b2, b3), (b3, b4)} and FS = {(¬b1), (¬b2),
(¬b3), (¬b4)} all having weight 1, Algorithm1 will first obtain hs = ∅ from
Min-Hs as there initially are no cores to hit. ex-cores will then SAT solve FH

under the assumptions ¬b1, ¬b2, ¬b3, ¬b4 trying to satisfy all softs not in hs.
This is unsat and any of a number of different cores could be returned. Say that
the core (b1, b2) is returned. ex-cores then attempts another SAT solve, this
time with the assumptions ¬b3 and ¬b4. Now the SAT solver returns the core
(b3, b4). Finally, the SAT solver will be called to solve FH under the empty set
of assumptions. Say that the solver finds the satisfying assignment τ = {¬b1, b2,
¬b3, b4} setting UB to 2 and τbest to τ . After returning to the main IHS routine,
Min-Hs will be asked to compute an optimal solution to the set of cores {(b1, b2),
(b3, b4)}. It might return hs = {b1, b4} and set LB = cost(hs) = 2. Now LB is
equal to UB and τbest can be returned since it is an optimal solution. Note that
in this example hs, is not a correction set.

As mentioned above IHS cannot terminate until its optimizer has been given
enough constraints to drive the cost of an optimal solution up to be equal to the
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cost of an optimal MaxSat solution. As shown in [12] in the worst case this can
require giving the optimizer an exponential number of constraints.

Example 2. Let n and r be integers with 0 < r < n. Consider the MaxSat
instance F n,r with FH

n,r = cnf(
∑n

i=1 bi ≥ r) and FS
n,r = {(¬bi) | 1 ≤ i ≤ n},

where cnf(
∑n

i=1 bi ≥ r) is a cnf encoding of the cardinality constraint stating
that at least r soft clauses must be falsified. The cost of every optimal solution
is thus r; the maximum number of soft clauses that can be satisfied is n − r;
and every subset of n − r + 1 soft clauses must be a core. Let C be the set of all
of such cores. From the results of [12] we have that if the optimizer is given all
cores in C it would yield solutions hs with cost(hs) = r; furthermore, if even one
core of C is missing from the optimizer the optimizer solutions hs would have
cost(hs) < r. This means that Algorithm 1 will have to extract

(
n

n−r+1

)
cores

for the optimizer before it can reach the cost of an optimal MaxSat solution and
terminate. When r is close to n/2 the number of cores required for termination
is exponential in n.

The results of the 2019 MaxSat Evaluation [4,5] witness this drawback
in practice. The drmx-atmostk set of instances in the evaluation contain 11
instances with the same underlying structure as Example 2. Out of these, the
IHS solver MaxHS [13,14], failed to solve 8 out of 11 when given an hour for each
instance, while the best performing solvers were able to solve all 11 instances in
under 10s.

4 Abstract Cores

Example 2 shows that a significant bottleneck for the IHS approach on some
instances is the large number of cores that have to be given to the optimizer.
Thus, a natural question to ask is whether or not there exists a more compact
representation of this large number of cores that can still be efficiently reasoned
with by the IHS algorithm. In this section we propose abstract cores as one such
representation. As we will demonstrate, each abstract core compactly represents
a large number of regular cores. By extracting abstract cores with the SAT solver
and then giving them to the optimizer, we can communicate constraints to the
optimizer that would have otherwise potentially required an exponential number
of ordinary core constraints.

The structure of the instances F n,r discussed in Example 2 provides some
intuition for abstract cores. In these instances the identity of the variables does
not matter, all that matters is how many are set to true and how many are set
to false. For example, in any core κ of F n,r we can exchange any soft clause
C ∈ κ for any other soft clause C ′ �∈ κ and the result will still be a core of F n,r.
In other words, every soft clause is exchangeable with every other soft clause
in these instances. While it seems unlikely that complete exchangeability would
hold for other instances, it is plausible that many instances might contain subsets
of soft clauses that are exchangeable or nearly exchangeable. In particular, in
any MaxSat instance the cost of a solution depends only on the number of soft
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clauses of each weight that it falsifies. The identity of the falsified soft clauses
does not matter except to the extent that FH might place logical constraints on
the set of soft clauses that can be satisfied together.1

Abstraction Sets. Suppose we have a set of b-variables all with the same weight
and we want to exploit any exchangeability that might exist between their cor-
responding soft clauses. This can be accomplished by forming an abstraction set.
An abstraction set, ab, is a set of b-variables that have been annotated by adding
|ab| new variables, called ab’s count variables, used to indicate the number of
true b-variables in ab (i.e. the number of corresponding falsified soft clauses).
The count variables allow us to abstract away from the identity of the particular
b-variables that have been made false. We let ab.c denote the sequence of ab’s
count variables, and let the individual count variables be denoted by ab.c[1],
. . ., ab.c[|ab|]. Every count variable has a corresponding definition, with the i’th
count variable being defined by the constraint ab.c[i] ↔ ∑

b∈ab b ≥ i. Note that
these definitions can be encoded into cnf and added to the SAT solver using
various known encodings for cardinality constraints [3,6,27,30].

Let AB be a collection of abstraction sets. We require that (1) the sets in
AB are disjoint (so no b-variable is part of two different abstraction sets) and
(2) that all of the b-variables in a specific abstraction set ab ∈ AB have the
same weight (variables in different abstraction sets can have different weights).
Let AB.c =

⋃
ab∈AB ab.c be the set of all count variables.

Definition 1. An abstract core is a clause C such that (1) all literals C are
either positive b-variables or count variables, ∀l ∈ C (l ∈ FB ∨ l ∈ AB.c); and
(2) C is entailed by FH and the conjunction of the count variable definitions,
i.e., FH ∧ (∧

ab.c[k]∈AB.c(ab.c[k] ↔ ∑
b∈ab b ≥ k

) |= C.

As pointed out in Sect. 2 every ordinary core is equivalent to a clause con-
taining only positive b-variables that is entailed by FH . Abstract cores, can be
ordinary cores containing only b-variables but they can also contain positive
count variables. Like ordinary cores they also must be entailed by FH (and the
count variable definitions that are required to give meaning to the count variables
they contain).

Example 3. Consider an instance F n,r defined in Example 2. Say we form an
single abstraction set, ab, from the full set of blocking variables FB

n,r. Then
F n,r will have among its abstract cores the unit clause (ab.c[r]) asserting that∑

b∈FB
n,r b ≥ r. This single abstract core is equivalent to the conjunction of

(
n

n−r+1

)
non-abstract cores. In particular, with n b-variables, asserting that at

least r must be true entails that every set of n − r + 1 b-variables must contain
at least one true b-variable. That is, (ab.c[r]) entails

(
n

n−r+1

)
different clauses

each of which is equivalent to a non-abstract core. It is not difficult to show that
entailment in the other direction also holds giving equivalence.

1 This notion of exchangeability is clearly related to symmetries and exploring this
connection is a worthwhile direction for future work.
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This example demonstrates the expressive power of abstract cores. More
generally, let C be an abstract core containing the count literals {ab1 .c[c1], . . . ,
abk .c[ck]}. Then, each abi .c[ci] is equivalent to the conjunction of

( |abi|
|abi|−ci+1

)

clauses. Hence, C is equivalent to the conjunction of
∏k

i=1

( |abi|
|abi|−ci+1

)
non-

abstract cores. In other words, abstract cores achieve the desideratum of provid-
ing a compact representation of a large number of cores. We address the second
desideratum of being able to reason efficiently with abstract cores in the IHS
algorithm in the next section. It can also be noted that core-guided solvers use
cardinality constraints and thus are able to generate abstract cores, although
they use these cores in a different way than our proposed approach.

1 Abstract-IHS (F ,wt);

2 LB ← 0; UB ← ∞; τbest ← ∅;
3 C ← ∅; AB ← ∅
4 while true do

5 hs ← Min-Abs(FB , AB, C)
6 LB = cost(hs);
7 AB ← update-abs(AB, K)

8 if (LB = UB) break;
9 K ← ex-abs-cores;

10 (hs, AB,UB , τbest );
11 if (LB = UB) break;

12 C ← C ∪ K;

13 return τbest

Algorithm 3: IHS with
abstract cores

Min-Abs (FB , AB, C)
minimize:

∑

b∈FB

wt(b) · b

subject to:

∑
x∈κ x ≥ 1 ∀κ ∈ C

∑
b∈ab b − k · ab.c[k] ≥ 0 ∀ab.c[k] ∈ AB.c

∑
b∈ab b − |ab| · ab.c[k] < k ∀ab.c[k] ∈ AB.c

b ∈ {0, 1} ∀b ∈ FB

ab.c[k] ∈ {0, 1} ∀ab.c[k] ∈ AB.c

return: {b | b set to 1 in opt. soln}

(a) IP for optimizing with abstract cores

5 Abstract Cores in IHS MaxSat Solving

Algorithm 3 shows the IHS algorithm extended with abstract cores. Its pro-
cessing follows the same steps as used earlier in the non-abstract IHS algo-
rithm (Algorithm 1). There are however, three changes: (1) the optimizer must
now solve a slightly different problem, (2) the abstraction sets are used in
ex-abs-cores when extracting new constraints for the optimizer and (3) a
collection of abstraction sets AB is maintained and dynamically updated by
update-abs (line 7). We will assume that update-abs is also responsible for
updating FH so that FH always includes all of the count variable definitions,⋃

ab.c[k]∈AB.c cnf(ab.c[k] ↔ ∑
b∈ab b ≥ k) as new abstraction sets are added. In

this way the other routines given below need only access FH assuming that it
already includes the count variable definitions.

New Optimization Problem: The optimization problem shown in Fig. 2a is very
similar to the previous minimum cost hitting set optimization (Fig. 1a). It con-
tinues to minimize the cost of the set of b-variables that have to be set to true in



Abstract Cores in Implicit Hitting Set MaxSat Solving 285

order to satisfy the constraints. Each abstract core κ ∈ C is a clause and thus is
equivalent to the linear constraint

∑
x∈κ x ≥ 1, just like the non-abstract cores.

The abstract cores can, however, contain count variables ab.c[k] each of which
has a specific definition. These definitions need to be given to the optimizer as
linear constraints. For each count variable ab.c[i] the constraints added are (a)∑

b∈ab b − k · ab.c[k] ≥ 0 and (b)
∑

b∈ab b − |ab| · ab.c[k] < k. That is, when
ab.c[k] is 1 (true) constraint (a) ensures that the sum of ab’s b-variables is ≥ k
and constraint (b) becomes trivial; and when ab.c[k] is 0 (false) constraint (a)
becomes trivial and constraint (b) ensures that the sum of ab’s b-variables is
< k. These definitions ensure the intended interaction between abstract cores

and count variables. For example, if the optimizer has the abstract core con-
straint b1 + ab.c[5]+ b2 ≥ 1 it must be able to reason that if it chooses to satisfy
this constraint by setting ab.c[5] = 1 then it must also set 5 of the b-variables
in ab to 1. The definitions allow this inference.

Extracting Abstract Cores: As before the optimizer’s solution is used to cre-
ate a set of assumptions for the SAT solver. Cores arise from the conflicts the
SAT solver finds when using these assumptions. For ordinary cores ex-cores
(Algorithm 2) used a set of negated b-variables as assumptions (ensuring that
the corresponding set of soft clauses must be satisfied). If the SAT solver finds
a conflict over these assumptions, the conflict will be a clause containing only
negated assumptions; i.e, a clause containing only positive b-variables. Such
clauses are ordinary cores. Hence, if we wish to extract abstract cores, we must
give the SAT solver assumptions that consist of negated b-variables and negated
count variables. Any conflicts that arise will then contain positive b-variables
and positive count variables and will thus be abstract cores.

In the non-abstract case, the optimizer’s solution hs specifies a set of b-
variables that can be set to true to obtain an optimal solution to the current set
of constraints. That is, hs provides a set of clauses that, if falsified, will most
cost effectively block the cores found so far. In the abstract case, the optimizer’s
solution is also a set of b-variables with the same properties. All that has changed
is the type of constraints the optimizer has optimized over.

Consider an abstraction set in the current set of abstractions ab ∈ AB.
Say that ab is the set of b-variables {b1, b2, b3, b4}. Further, suppose that the
optimizer returns the set hs = {b1, b4, b5} as its solution, and that the full
set of b-variables is FB = {b1, b2, b3, b4, b5, b6}. In the non-abstract case, the
SAT solver will be allowed to make b1, b4 and b5 true, while being forced to
make b2, b3, and b6 false. In particular, the SAT solver will be called with the
set of assumptions ¬b2, ¬b3 and ¬b6, i.e., the set {¬b | b ∈ (FB − hs)} (line 7,
Algorithm 2). Notice, that the SAT solver is being allowed to make specific b-
variables in ab∩hs true (namely b1 and b4), while being forced to make specific
b-variables in ab − (ab ∩ hs) false (namely b2 and b3). Given that we believe
the b-variables in ab to exchangeable, we can achieve abstraction by removing
these specific choices. In particular, instead of assuming that b2 and b3 are false

and forcing the SAT solver to satisfy these specific soft clauses, we can instead
assume ¬ab.c[3]. This means allowing at most two b-variables in ab to be true,
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1 ex-abs-cores (hs, AB,UB , τbest)
2 assumps ← {¬b | b ∈ FB − hs};
3 foreach ab ∈ AB do
4 assumps ← assumps − {¬b | b ∈ ab};
5 if |ab ∩ hs| = |ab| then continue;
6 assumps ← assumps ∪ {¬ab.c[|ab ∩ hs| + 1]};

7 K ← ex-cores-sub(assumps,UB , τbest);
8 optionally: K ← K ∪ ex-cores(hs,UB , τbest);
9 return K

Algorithm 4: Extracting Abstract cores from the optimizer solution

forcing the remaining |ab| − 2 ( = 2) b-variables to be false. Hence, the SAT
solver must satisfy at least two soft clauses from the set {(¬b1), (¬b2), (¬b3),
(¬b4)} corresponding to ab, but it is no longer forced to try to satisfy the specific
clauses (¬b2) and (¬b3). Hence, we can use {¬ab.c[3],¬b6} as the SAT solver’s
assumptions and thus be able to extract an abstract core. Note also that since
the weight of every b-variable in ab is the same, the SAT solver is still being asked
to find a solution of cost equal to cost(hs). Using this insight we can specify the
procedure ex-abs-cores used to extract abstract cores.

Algorithm 4 shows the procedure ex-abs-cores. Once it has set up its
assumptions this procedure operates exactly like ex-cores, calling the same
subroutine ex-cores-sub to iteratively extract some number of cores. It first
adds the negation of all b-variables not in hs: the optimizer wants to satisfy all
of these soft clauses. Then it performs abstraction. It removes the b-variables of
each abstraction set ab from the assumptions, and adds instead a single count
variable from ab. The optimizer’s solution has made k = |hs ∩ ab| of ab’s b-
variables true. So we permit the SAT solver to make this number of ab’s b-
variables true, but no more. This is accomplished by giving it the assumption
¬ab.c[k + 1]. Note that ¬ab.c[k + 1] ↔ ∑

b∈ab b ≤ k by the definition of the
count variables. Finally, if every b-variable of ab is in hs we need not add any-
thing to the set of assumptions (line 5): the SAT solver can freely make all of
ab’s b-variables true.

ex-abs-cores also has the option of additionally extracting a set of non-
abstract cores by invoking its non-abstract version (line 8). Abstract and non-
abstract cores can be freely mixed in Abstract-IHS. Due to the indeterminism in
the conflicts the SAT solver returns, the non-abstract cores need not be subsumed
by the abstract cores. Hence, in practice it is often beneficial to extract both.

The correctness of the IHS algorithm with abstract cores is easily proved.

Theorem 1. Let (F ,wt) be a MaxSat instance with FH being satisfiable and
assume that (a) the optimizer correctly returns optimal solutions to its set of
constraints, and (b) every conflict C over assumptions returned by the SAT solver
is a clause that is entailed by the formula it is solving. Then Abstract-IHS when
called on (F ,wt) must eventually terminate returning an optimal solution.
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Proof. First observe that the extra clauses E used to define the count variables
in AB.c do not change the set of solutions (models of FH) nor their costs as they
are definitions. In particular, any model τ of FH can be extended to a model of
FH ∪E by appropriately setting the value of each count variable, and any model
τE of FH∪E becomes a model of FH once we remove its assignments to the count
variables. In both cases the cost of the model is preserved. Therefore, we will
prove that Abstract-IHS eventually terminates returning an optimal solution to
(F ∪ E,wt) (with every clause in E being hard): this optimal solution provides
us with an optimal solution to (F ,wt).

From the definitions of the count variables in E and the soundness of the
abstract cores computed as assumption conflicts by the SAT solver, we see that
every constraint in the optimizer’s model is entailed by FH ∪ E. That is, every
solution of FH ∪E is also a solution of the optimizer’s constraints. Therefore, the
cost of the optimizer’s optimal solutions, LB , is always a lower bound on the cost
of an optimal solution of FH∪E. Furthermore, τbest is always a solution of FH∪E
as it is found by the SAT solver. Therefore, when UB = cost(τbest) = LB , τbest
must be an optimal solution. Hence we have that when Abstract-IHS returns a
solution, that solution must be optimal.

Furthermore, when the optimizer returns a solution hs to its model and hs
does not cause termination, then Abstract-IHS will compute a new abstract core
κ that hs does not satisfy. This follows from the fact κ is falsified by all solutions
that make false exactly the same set of un-abstracted b-variables and exactly
the same count of b-variables from each abstraction set as hs. Hence, once we
add κ to the optimizer we block the solution hs. There are only a finite number
of solutions to the optimizer’s constraints since the variables all 0/1 variables,
and every optimal MaxSat solution of FH ∪ E always satisfies the optimizer’s
model. Therefore, as more constraints are added to the optimizer it must even-
tually return one of these optimal MaxSat solutions causing Abstract-IHS to
terminate. ��
Example 4. Consider running Abstract-IHS on the formula used in Example 1:
FH = {(b1, b2), (b2, b3), (b3, b4)}, FS = {(¬b1), (¬b2), (¬b3), (¬b4)}, and all
weights equal to 1. First Min-Abs is called on an empty set of constraints, and it
returns hs = ∅. Say that update-abs creates a single abstraction set, AB = {ab},
with ab = {b2, b3} and that it is unchanged during the rest of the run.

Using hs, ex-abs-cores will initialize its assumptions to {¬b1, ¬ab.c[1], ¬b4}
and call the SAT solver. These assumptions are unsat . Let the conflict found
be the unit clause (ab.c[1]). In ex-cores-sub the next SAT call will be with
the assumptions {¬b1, ¬b4}. These assumptions are satisfiable and the solution
τ = {¬b1, b2, b3, ¬b4} is returned. The upper bound UB will be set to cost(τ) = 2
and τbest will be set to τ .

ex-abs-cores now returns and the optimizer is called with the set of abstract
cores C = {(ab.c[1])}. The optimizer can return two different optimal solutions
{b2} or {b3}, and say that it returns the first one hs = {b2}. This will set the
lower bound LB = cost(hs) = 1. Then ex-abs-cores will be called again and
from hs it will initialize its assumptions to {¬b1,¬ab.c[2],¬b4}, which is unsat
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with the unique conflict (b1, ab.c[2], b4). Hence, the next SAT call will be with an
empty set of assumptions and a solution will be found. Suppose that this solution
is the same as before, so that neither UB nor τbest is changed. ex-abs-cores
will then return and the optimizer called with the accumulated cores {(ab.c[1]),
(b1, ab.c[2], b4)}. There are different choices for the optimal solution, but say that
it returns {b2, b3} as its optimal solution. This will reset the lower bound LB to
2, the lower bound will meet the upper bound, and the MaxSat optimal solution
τbest = {¬b1, b2, b3,¬b4} will be found.

Abstract cores can decrease the worst-case number of cores the IHS algo-
rithm needs to extract. Consider the instances F n,r from Examples 2 and 3. As
discussed in Example 2 when r is close to n/2 these instances have an exponen-
tial number of non-abstract cores all of which must be extracted by the IHS
algorithm. If on the other hand all b-variables are placed into a single abstrac-
tion set ab as in Example 3, Abstract-IHS will generate the sequence of abstract
cores (ab.c[1]), . . . , (ab.c[r]) after which the optimizer will return a solution of
cost r that will be a correction sets allowing Abstract-IHS to terminate. More
generally, this strategy can be applied to any unweighted MaxSat instance.

Proposition 1. Let (F ,wt) be an unweighted MaxSat instance, i.e. w(C) = 1
for all C ∈ FS and construct an abstraction set ab containing all FB. Then
Algorithm3 needs to extract at most |Fs| cores before terminating.

The solving strategy of Proposition 1 in fact mimics the Linear UNSAT-SAT
algorithm [9,17] where the SAT solver solves the sequence of queries “can a
solution of cost 1 be found”, “can a solution of cost 2 be found”, etc. As inter-
esting future work, we note that the framework of abstract cores presented here
can be used to mimic the behaviour several of the recently proposed core-guided
algorithms [23,25,26].

Computing Abstraction Sets: When computing abstraction sets, there is an inher-
ent trade-off between the overhead and potential benefits from abstraction; too
large sets can lead to large cnf encodings for the count variable definitions, mak-
ing SAT solving very inefficient while with too small sets the algorithm reverts
back to non-abstract IHS with hardly any gain from abstraction.

Although the notion of exchangeability has intuitive appeal, it seems likely be
computationally hard to identify exchangeable b-variables that can be grouped
into abstraction sets. In our implementation we used a heuristic approach to
finding abstraction sets motivated by the F n,r instances (Example 1). In those
instances, each b-variable appears in many cores with each of the other b-
variables. We decided to build abstraction sets from sets of b-variables that
often appear in cores together. This technique worked in practice (see Sect. 6),
but a deeper understanding of how best to construct abstraction sets remains as
future work.

To find b-variables that appear in many cores with each other, we used the
set of cores found to construct a graph G. The graph has b-variables as nodes
and weighted edges between two b-variables representing the number of times
these two b-variables appeared together in a core. We then applied the Louvain
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Fig. 1. Cactus plot of solver performance on the unweighted (left) and weighted (right)
instances of MSEval 2019. The numbers in parenthesis are the number of instance
solved within the time and memory limits

clustering algorithm [10] to G obtain clusters of nodes such that the nodes in
a cluster have a higher weight of edges between each other (i.e. appear in cores
more often together) than with nodes in other clusters, these were then taken to
define an abstraction set. We also monitored how effective the cores found were
in increasing the lower bound generated by the optimizer. If the cores were fail-
ing to drive the optimizer’s lower bound higher, we computed new abstraction
sets by clustering the graph G, and updated AB with these new abstraction sets.
If clustering had already been performed and the extracted cores were still not
effective, the nodes of the b-variables in each abstraction set were merged into
one new node and G was reclustered. (The Louvain algorithm can compute hier-
archical clusters). Any new clusters so generated will either be new abstraction
sets or supersets of existing abstractions sets. New abstraction sets are formed
from these new clusters and added to AB. All subsets are removed from AB so
that future abstractions will be generated using the larger abstraction sets.

We also found that abstraction was not cost effective on instances where
the average core size was in the hundreds. The generated abstraction sets were
so large that the cnf encoding of their count variables definitions slowed the
SAT solver down too much. Finally, only we add the cnf encoding of the count
variable definitions ab.c[k] ↔ ∑

b∈ab b ≥ k to the SAT solver when ¬ab.c[k] first
appears in the set of assumptions. Furthermore, we only add the encoding in the
direction ab.c[k] ← ∑

b∈ab b ≥ k.

6 Experimental Evaluation

We have implemented two versions of abstract cores on top of the MaxHS
solver [12,14] using the version that had been submitted to the MaxSat 2019 eval-
uation (MSE 2019) [5]. The two new solvers are called maxhs-abs and maxhs-
abs-ex. maxhs-abs implements the abstraction method described above, using
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the Louvain algorithm to dynamically decide on the abstraction sets and extract-
ing both abstract and non-abstract cores in ex-abs-cores. We used the well
known totalizer encoding [6] to encode the count variable definitions into cnf.
In particular, each totalizer takes as input the b-variables of an abstraction set
ab, and the totalizer outputs become the count variables ab.c[k].

The maxhs-abs-ex solver additionally exploits the totalizer encodings by
using the technique of core exhaustion [20]. This technique uses SAT calls to
determine a lower bound on the number of totalizer outputs forced to be true.
This technique can sometimes force many of the abstraction set count variables.
We impose a resource bound of 60s on the process so exhaustion is not complete.

We compare the new solvers to the base maxhs (MSE 2019 version) as
well as to two other solvers: the MSE 2019 version of RC2 (rc2) [4,20], the
best performing solver in both the weighted and unweighted track and a new
solver in MSE 2019 called UWrMaxSat (UWr) [4,21]. Both implement the OLL
algorithm [1,25] and differ mainly in how the cardinality constraints are encoded
into cnf. As benchmarks, we used all 599 weighted and 586 unweighted instances
from the complete track of the 2019 MaxSat Evaluation, drawn from a variety of
different problem families. All experiments were run on a cluster of 2.4 GHz Intel
machines using a per-instance time limit of 3600 s and memory limit of 5 GB.

Figure 1 show cactus plots comparing the solvers on the unweighted (left) and
weighted (right) instances. Comparing maxhs and maxhs-abs we observe that
abstract core reasoning is very effective, increasing the number of unweighted
instances solved from 397 to 433 and weighted instances from 361 to 379 sur-
passing both rc2 and UWr in both categories. maxhs-abs-ex improves even
further with 438 unweighted and 387 weighted instances solved.

Table 1. The entry in cell (X, Y ) shows the number instances solved by solver X that
were not solved by solver Y in the format #Unweighted/#Weighted.

Solver maxhs-abs-ex maxhs-abs rc2 UWr maxhs

maxhs-abs-ex 7/8 26/37 29/46 60/42

maxhs-abs 2/0 27/33 31/43 55/35

rc2 10/26 16/30 12/29 61/50

UWr 8/27 15/32 7/21 61/52

maxhs 19/16 19/17 36/35 41/45

Table 1 gives a pair-wise solver comparison of the number of instances that
could be solved by one solver but not by the other. We observe that even though
the solvers can be ranked by number of instances solved, every solver was able
to beat every other solver on some instances (except that maxhs-abs did not
solve any weighted instances that maxhs-abs-ex could not). This speaks to the
diversity of the instances, and indicates that truly robust solvers might have to
employ a variety of different techniques.
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Fig. 2. Number of instances solved in the 25/48 families of unweighted instances
on which maxhs-abs-ex, rc2, and maxhs solved different amounts of instances: 1.
kbtree, 2. extension-enforcement, 3. optic, 4. logic-synthesis, 5. close-solutions, 6. min-
fill, 7. atcoss, 8. set-covering, 9. maxcut, 10. aes, 11. gen-hyper-tw, 12. frb, 13. bcp, 14.
HaplotypeAssembly, 15. scheduling, 16. CircuitTraceCompaction, 17. xai-mindset2, 18.
MaxSATQueriesinInterpretableClassifiers, 19. reversi, 20. aes-key-recovery, 21. uaq, 22.
MaximumCommonSub-GraphExtraction, 23. protein-ins, 24. drmx-atmostk, 25. fault-
diagnosis

Fig. 3. Number of instances solved in the 27/39 families of unweighted instances
on which maxhs-abs-ex, rc2, and maxhs solved different amounts of instances:
1. BTBNSL, 2. maxcut, 3. correlation-clustering, 4. auctions, 5. ParametricRBAC-
Maintenance, 6. ramsey, 7. set-covering, 8. timetabling, 9. relational-inference, 10. hs-
timetabling, 11. frb, 12. mpe, 13. railway-transport, 14. metro, 15. max-realizability,
16. MaxSATQueriesinInterpretableClassifiers, 17. haplotyping-pedigrees, 18. drmx-
cryptogen, 19. spot5, 20. af-synthesis, 21. min-width, 22. css-refactoring, 23. shiftdesign,
24. lisbon-wedding, 25. tcp, 26. rna-alignment, 27. drmx-atmostk

Figures 2 and 3 show a breakdown by family for the three solvers maxhs-
abs-ex, rc2 and maxhs. The plots show only those families where the solvers
exhibited different performance. We observe that rc2 and maxhs achieve quite
disparate performance with each one dominating the other on different families.
maxhs-abs-ex, on the other hand, is often able to achieve the same performance
as the better of the two other solvers on these different families.
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7 Conclusion

We proposed abstract cores for improving the Implicit Hitting Set (IHS) based
approach to complete MaxSat solving. More specifically, we address the large
worst-case number of cores that IHS needs to extract before terminating. An
abstract core is a compact representation of a (potentially large) set of (regular)
cores. We incorporate abstract core reasoning into the IHS algorithm, prove
correctness of the resulting algorithm and report on an experimental evaluation
comparing IHS with abstract cores to the best performing solvers of the latest
MaxSat Evaluation. The results indicate that abstract cores indeed improve
the empirical performance of the IHS algorithm, resulting in state-of-the-art
performance on the instances of the Evaluation.
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Abstract. We study the MaxRes rule in the context of certifying unsat-
isfiability. We show that it can be exponentially more powerful than
tree-like resolution, and when augmented with weakening (the system
MaxResW), p-simulates tree-like resolution. In devising a lower bound
technique specific to MaxRes (and not merely inheriting lower bounds
from Res), we define a new semialgebraic proof system called the Sub-
CubeSums proof system. This system, which p-simulates MaxResW, is
a special case of the Sherali–Adams proof system. In expressivity, it is
the integral restriction of conical juntas studied in the contexts of com-
munication complexity and extension complexity. We show that it is not
simulated by Res. Using a proof technique qualitatively different from
the lower bounds that MaxResW inherits from Res, we show that Tseitin
contradictions on expander graphs are hard to refute in SubCubeSums.
We also establish a lower bound technique via lifting: for formulas requir-
ing large degree in SubCubeSums, their XOR-ification requires large size
in SubCubeSums.

Keywords: Proof complexity · MaxSAT resolution · Subcube
complexity · Sherali–Adams proofs · Conical juntas

1 Introduction

The most well-studied propositional proof system is Resolution (Res), [5,22]. It
is a refutational line-based system that operates on clauses, successively inferring
newer clauses until the empty clause is derived, indicating that the initial set
of clauses is unsatisfiable. It has just one satisfiability-preserving rule: if clauses
A ∨ x and B ∨ ¬x have been inferred, then the clause A ∨ B can be inferred.
Sometimes it is convenient, though not necessary in terms of efficiency, to also
allow a weakening rule: from clause A, a clause A ∨ x can be inferred. While
there are several lower bounds known for this system, it is still very useful in
practice and underlies many current SAT solvers.

While deciding satisfiability of a propositional formula is NP-complete, the
MaxSAT question is an optimization question, and deciding whether its value is
as given (i.e. deciding, given a formula and a number k, whether the maximum
number of clauses simultaneously satisfiable is exactly k) is potentially harder
c© Springer Nature Switzerland AG 2020
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since it is hard for both NP and coNP. A proof system for MaxSAT was proposed
in [7,14]. This system, denoted MaxSAT Resolution or more briefly MaxRes,
operates on multi-sets of clauses. At each step, two clauses from the multi-set
are resolved and removed. The resolvent, as well as certain “disjoint” weakenings
of the two clauses, are added to the multiset. The invariant maintained is that for
each assignment ρ, the number of clauses in the multi-set falsified by ρ remains
unchanged. The process stops when the multi-set has a satisfiable instance along
with k copies of the empty clause; k is exactly the minimum number of clauses
of the initial multi-set that must be falsified by every assignment.

Since MaxRes maintains multi-sets of clauses and replaces used clauses, this
suggests a “read-once”-like constraint. However, this is not the case; read-once
resolution is not even complete [13], whereas MaxRes is a complete system for
certifying the MaxSAT value (and in particular, for certifying unsatisfiability).
One could use the MaxRes system to certify unsatisfiability, by stopping the
derivation as soon as one empty clause is produced. Such a proof of unsatisfiabil-
ity, by the very definition of the system, can be p-simulated by Resolution. (The
MaxRes proof is itself a proof with resolution and weakening, and weakening can
be eliminated at no cost.) Thus, lower bounds for Resolution automatically apply
to MaxRes and to MaxResW (the augmenting of MaxRes with an appropriate
weakening rule) as well. However, since MaxRes needs to maintain a stronger
invariant than merely satisfiability, it seems reasonable that for certifying unsatis-
fiability, MaxRes is weaker than Resolution. (This would explain why, in practice,
MaxSAT solvers do not seem to use MaxRes – possibly with the exception of
[20], but they instead directly call SAT solvers, which use standard resolution.)
Proving this would require a lower bound technique specific to MaxRes.

Associating with each clause the subcube (conjunction of literals) of assign-
ments that falsify it, each MaxRes step manipulates and rearranges multi-sets
of subcubes. This naturally leads us to the formulation of a static semi-algebraic
proof system that we call the SubCubeSums proof system. This system, by its
very definition, p-simulates MaxResW and is a special case of the Sherali–Adams
proof system. Given this position in the ecosystem of simple proof systems, under-
standing its capabilities and limitations seems an interesting question.

Our Contributions and Techniques

1. We observe that for certifying unsatisfiability, the proof system MaxResW
p-simulates the tree-like fragment of Res, TreeRes (Lemma 1). This simula-
tion seems to make essential use of the weakening rule. On the other hand,
we show that even MaxRes without weakening is not simulated by TreeRes
(Theorem 1). We exhibit a formula, which is a variant of the pebbling contra-
diction [4] on a pyramid graph, with short refutations in MaxRes (Lemma2),
and show that it requires exponential size in TreeRes (Lemma 7).

2. We initiate a formal study of the newly-defined semialgebraic proof system
SubCubeSums, which is a natural restriction of the Sherali–Adams proof
system. We show that this system is not simulated by Res (Theorem 2).



MaxSAT Resolution and Subcube Sums 297

3. We show that the Tseitin contradiction on an odd-charged expander graph
is hard for SubCubeSums (Theorem3) and hence also hard for MaxResW.
While this already follows from the fact that these formulas are hard for
Sherali–Adams [1], our lower-bound technique is qualitatively different; it
crucially uses the fact that a stricter invariant is maintained in MaxResW
and SubCubeSums refutations.

4. Abstracting the ideas from the lower bound for Tseitin contradictions, we
devise a lower-bound technique for SubCubeSums based on lifting (Theo-
rem 4). Namely, we show that if every SubCubeSums refutation of a formula
F must have at least one wide clause, then every SubCubeSums refutation
of the formula F ◦ ⊕ must have many cubes. We illustrate how the Tseitin
contradiction lower bound can be recovered in this way.

The relations among these proof systems are summarized in the figure below,
which also includes two proof systems discussed in Related Work.

TreeRes MaxRes

MaxResW

Res SubCubeSums

Sherali–Adams

DRMaxSAT

MaxResE

– A B denotes that A
simulates B and B does
not simulate A.

– A B denotes that A
simulates B.

– A B denotes that A
does not simulate B.

Related Work

One reason why studying MaxRes is interesting is that it displays unexpected
power after some preprocessing. As described in [12] (see also [18]), the PHP
formulas that are hard for Resolution can be encoded into MaxHornSAT, and
then polynomially many MaxRes steps suffice to expose the contradiction. The
underlying proof system, DRMaxSAT, has been studied further in [6], where
it is shown to p-simulate general Resolution. While DRMaxSAT gains power
from the encoding, the basic steps are MaxRes steps. Thus, to understand how
DRMaxSAT operates, a better understanding of MaxRes could be quite useful.

A very recent paper [15] studies a proof system MaxResE where MaxRes
is augmented with an extension rule. The extension rule generalises a weighted
version of MaxRes; as defined, it eliminates the non-negativity constraint inher-
ent in MaxResW and SubCubeSums. This system happens to be equivalent to
Circular Resolution [16], which in turn is equivalent to Sherali–Adams [2]. It is
also worth mentioning that MaxResW appears in [16] as MaxRes with a split
rule, or ResS.

In the setting of communication complexity and of extension complexity of
polytopes, non-negative rank is an important and useful measure. As discussed
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in [11], the query-complexity analogue is conical juntas; these are non-negative
combinations of subcubes. Our SubCubeSums refutations are a restriction of
conical juntas to non-negative integral combinations. Not surprisingly, our lower
bound for Tseitin contradictions is similar to the conical junta degree lower
bound established in [10].

Organisation of the Paper

We define the proof systems MaxRes, MaxResW, and SubCubeSums in Sect. 2.
In Sect. 3 we relate them to TreeRes. In Sect. 4, we focus on the SubCubeSums
proof system, showing the separation from Res (Sect. 4.1), the lower bound for
SubCubeSums (Sect. 4.2), and the lifting technique (Sect. 4.3).

2 Defining the Proof Systems

For set X of variables, let 〈X〉 denote the set of all total assignments to variables
in X. For a (multi-) set of F clauses, violF : 〈X〉 → {0} ∪ N is the function
mapping α to the number of clauses in F (counted with multiplicity) falsified by
α. A (sub)cube is the set of assignments falsifying a clause, or equivalently, the
set of assignments satisfying a conjunction of literals.

The proof system Res has the resolution rule inferring C ∨D from C ∨x and
D ∨ x, and optionally the weakening rule inferring C ∨ x from C if x 	∈ C. A
refutation of a CNF formula F is a sequence of clauses C1, . . . , Ct where each Ci

is either in F or is obtained from some j, k < i using resolution or weakening, and
where Ct is the empty clause. The underlying graph of such a refutation has the
clauses as nodes, and directed edge from C to D if C is used in the step deriving
D. The proof system TreeRes is the fragment of Res where only refutations in
which the underlying graph is a tree are permitted. A proof system P simulates
(p-simulates) another proof system P ′ if proofs in P can be transformed into
proofs in P ′ with polynomial blow-up (in time polynomial in the size of the
proof). See, for instance, [3], for more details.

The MaxRes and MaxResW Proof Systems

The MaxRes proof system operates on sets of clauses, and uses the MaxSAT
resolution rule [7], defined as follows:

x ∨ a1 ∨ . . . ∨ as (x ∨ A)
x ∨ b1 ∨ . . . ∨ bt (x ∨ B)
a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt (the “standard resolvent”)

(weakenings of x ∨ A)
x ∨ A ∨ b1
x ∨ A ∨ b1 ∨ b2
...
x ∨ A ∨ b1 ∨ . . . ∨ bt−1 ∨ bt

(weakenings of x ∨ B)
x ∨ B ∨ a1

x ∨ B ∨ a1 ∨ a2

...
x ∨ B ∨ a1 ∨ . . . ∨ as−1 ∨ as
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The weakening rule for MaxSAT resolution replaces a clause A by the two clauses
A∨x and A∨x. While applying either of these rules, the antecedents are removed
from the multi-set and the non-tautologous consequents are added. If F ′ is
obtained from F by applying these rules, then violF and violF ′ are the same
function.

In the proof system MaxRes, a refutation of F is a sequence F =
F0, F1, . . . , Fs where each Fi is a multi-set of clauses, each Fi is obtained from
Fi−1 by an application of the MaxSAT resolution rule, and Fs contains the empty
clause �. In the proof system MaxResW, Fi may also be obtained from Fi−1

by using the weakening rule. The size of the proof is the number of steps, s. In
[7,14], MaxRes is shown to be complete for MaxSAT, hence also for unsatisfia-
bility. Since the proof system MaxRes we consider here is a refutation system
rather than a system for MaxSAT, we can stop as soon as a single � is derived.

The SubCubeSums Proof System

The SubCubeSums proof system is a static proof system. For an unsatisfiable
CNF formula F , a SubCubeSums proof is a multi-set G of sub-cubes (or terms,
or conjunctions of literals) satisfying violF ≡ 1 + violG.

We can view SubCubeSums as a subsystem of the semialgebraic Sherali–
Adams proof system as follows. Let F be a CNF formula with m clauses in
variables x1, . . . , xn. Each clause Ci, i ∈ [m], is translated into a polynomial
equation fi = 0; a Boolean assignment satisfies clause Ci iff it satisfies equation
fi = 0. Boolean values are forced through the axioms x2

j − xj = 0 for j ∈ [n]. A
Sherali–Adams proof is a sequence of polynomials gi, i ∈ [m]; qj , j ∈ [n]; and a
polynomial p0 of the form

p0 =
∑

A,B⊆[n]

αA,B

∏

j∈A

xj

∏

j∈B

(1 − xj)

where each αA,B ≥ 0, such that
( ∑

i∈[m]

gifi

)
+

( ∑

j∈[n]

qj(x2
j − xj)

)
+ p0 + 1 = 0

The degree or rank of the proof is the maximum degree of gifi, qj(x2
j − xj), p0.

The polynomials fi corresponding to the clauses, as well as the terms in p0,
are conjunctions of literals, thus special kinds of d-juntas (Boolean functions
depending on at most d variables). So p0 is a non-negative linear combination
of non-negative juntas, that is, in the nomenclature of [11], a conical junta.

The Sherali–Adams system is sound and complete, and verifiable in random-
ized polynomial time; see for instance [9].

Consider the following restriction of Sherali–Adams:

1. Each gi = −1.
2. Each αA,B ∈ Z

≥0, (non-negative integers), and αA,B > 0 =⇒ A ∩ B = ∅.
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This implies each qj must be 0, since the rest of the expression is multilinear.
Hence, for some non-negative integral αA,B ,

∑

A,B⊆[n]:A∩B=∅
αA,B

∏

j∈A

xj

∏

j∈B

(1 − xj) + 1 =
∑

i∈[m]

fi

This is exactly the SubCubeSums proof system: the terms in p0 are subcubes,
and the right-hand-side is violF . For each disjoint pair A,B, the SubCubeSums
proof has αA,B copies of the corresponding sub-cube. The degree of a SubCube-
Sums proof is the maximum number of literals appearing in a conjunction. The
size of a SubCubeSums proof is the number of subcubes, that is,

∑
A,B αA,B .

The constraint gi = 1 means that for bounded CNF formulas, the degree of a
SubCubeSums proof is essentially the degree of p0, i.e. the degree of the juntas.

The following proposition shows why this restriction remains complete.

Proposition 1. SubCubeSums p-simulates MaxResW.

Proof. If an unsatisfiable CNF formula F with m clauses and n ≥ 3 variables
has a MaxResW refutation with s steps, then this derivation produces {�} ∪ G
where the number of clauses in G is at most m+(n−2)s−1. (A weakening step
increases the number of clauses by 1. A MaxRes step increases it by at most
n − 2.) The subcubes falsifying the clauses in G give a SubCubeSums proof. ��

In fact, SubCubeSums is also implicationally complete in the following sense.
We say that f ≥ g if for every Boolean x, f(x) ≥ g(x).

Proposition 2. If f and g are polynomials with f ≥ g, then there are subcubes
hj and non-negative numbers cj such that on the Boolean hypercube, f − g =∑

j cjhj. Further, if f, g are integral on the Boolean hypercube, so are the cj.

3 MaxRes, MaxResW, and TreeRes

Since TreeRes allows reuse only of input clauses, while MaxRes does not allow
any reuse of clauses but produces multiple clauses at each step, the relative power
of these fragments of Res is intriguing. In this section, we show that MaxRes with
the weakening rule, MaxResW, p-simulates TreeRes, is exponentially separated
from it, and even MaxRes (without weakening) is not simulated by TreeRes.

Lemma 1. For every unsatisfiable CNF F , size(F �MaxResW �) ≤ 2size
(F �TreeRes �).

Proof. Let T be a tree-like derivation of � from F of size s. Without loss of
generality, we may assume that T is regular; no variable is used as pivot twice
on the same path.

Since a MaxSAT resolution step always adds the standard resolvent, each
step in a tree-like resolution proof can be performed in MaxResW as well, pro-
vided the antecedents are available. However, a tree-like proof may use an axiom
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(a clause in F ) multiple times, whereas after it is used once in MaxResW it is
no longer available, although some weakenings are available. So we need to work
with weaker antecedents. We describe below how to obtain sufficient weakenings.

For each axiom A ∈ F , consider the subtree TA of T defined by retaining
only the paths from leaves labeled A to the final empty clause. We will produce
multiple disjoint weakenings of A, one for each leaf labelled A. Start with A at
the final node (where TA has the empty clause) and walk up the tree TA towards
the leaves. If we reach a branching node v with clause A′, and the pivot at v is
x, weaken A′ to A′ ∨ x and A′ ∨ x. Proceed along the edge contributing x with
A′ ∨ x, and along the other edge with A′ ∨ x. Since T is regular, no tautologies
are created in this process, which ends with multiple “disjoint” weakenings of A.

After doing this for each axiom, we have as many clauses as leaves in T . Now
we simply perform all the steps in T .

Since each weakening step increases the number of clauses by one, and since
we finally produce at most s clauses for the leaves, the number of weakening
steps required is at most s. ��

We now show that even without weakening, MaxRes has short proofs of
formulas exponentially hard for TreeRes. The formulas that exhibit the sepa-
ration are composed formulas of the form F ◦ g, where F is a CNF formula,
g : {0, 1}� → {0, 1} is a Boolean function, there are � new variables x1, . . . , x� for
each original variable x of F , and there is a block of clauses C ◦ g, a CNF expan-
sion of the expression

∨
xb∈C�g(x1, . . . x�) = b�, for each original clause C ∈ F .

We use the pebbling formulas on single-sink directed acyclic graphs: there is a
variable for each node, variables at sources must be true, the variable at the sink
must be false, and at each node v, if variables at origins of incoming edges are
true, then the variable at v must also be true.

We denote by PebHint(G) the standard pebbling formula with additional
hints u∨v for each pair of siblings (u, v)—that is, two incomparable vertices with
a common predecessor—, and we prove the separation for PebHint(G) composed
with the OR function. More formally, if G is a DAG with a single sink z, we
define PebHint(G) ◦ OR as follows. For each vertex v ∈ G there are variables v1
and v2. The clauses are

– For each source v, the clause v1 ∨ v2.
– For each internal vertex w with predecessors u, v, the expression ((u1 ∨ u2) ∧

(v1 ∨ v2)) → (w1 ∨ w2), expanded into 4 clauses.
– The clauses z1 and z2 for the sink z.
– For each pair of siblings (u, v), the clause u1 ∨ u2 ∨ v1 ∨ v2.

Note that the first three types of clauses are also present in standard composed
pebbling formulas, while the last type are the hints.

We prove a MaxRes upper bound for the particular case of pyramid graphs.
Let Ph be a pyramid graph of height h and n = Θ(h2) vertices.

Lemma 2. The PebHint(Ph)◦OR formulas have Θ(n) size MaxRes refutations.
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Proof. We derive the clause s1 ∨ s2 for each vertex s ∈ Pn in layered order, and
left-to-right within one layer. If s is a source, then s1 ∨ s2 is readily available as
an axiom. Otherwise assume that for a vertex s with predecessors u and v and
siblings r and t – in this order – we have clauses u1 ∨ u2 ∨ s1 ∨ s2 and v1 ∨ v2,
and let us see how to derive s1 ∨ s2. (Except at the boundary, we don’t have the
clause u1 ∨ u2 itself, since it has been used to obtain the sibling r and doesn’t
exist anymore.) We also make sure that the clause v1 ∨ v2 ∨ t1 ∨ t2 becomes
available to be used in the next step.

In the following derivation we skip ∨ symbols, and we colour-code clauses so
that green clauses are available by induction, axioms are blue, and red clauses,
on the right side in steps with multiple consequents, are additional clauses that
are obtained by the MaxRes rule but not with the usual resolution rule.

u1v1s1s2 u1u2s1s2
u2v1s1s2

u2v1s1s2
v1s1s2

u1u2v1s1s2 u1v2s1s2
u2v1v2s1s2 u2v2s1s2

v1v2s1s2 v1v2
v1s1s2

s1s2

v1v2s1 v1v2s1s2 s1s2t1t2
v1v2s1t1t2

v1v2t1t2

The case where some of the siblings are missing is similar: if r is missing
then we use the axiom u1 ∨ u2 instead of the clause u1 ∨ u2 ∨ s1 ∨ s2 that would
be available by induction, and if t is missing then we skip the steps that use
s1 ∨ s2 ∨ t1 ∨ t2 and lead to deriving v1 ∨ v2 ∨ t1 ∨ t2.

Finally, once we derive the clause z1∨z2 for the sink, we resolve it with axiom
clauses z1 and z2 to obtain a contradiction.

A constant number of steps suffice for each vertex, for a total of Θ(n). ��
We can prove a tree-like lower bound along the lines of [3], but with some

extra care to respect the hints. As in [3] we use the pebble game, a game where
the single player starts with a DAG and a set of pebbles, the allowed moves are
to place a pebble on a vertex if all its predecessors have pebbles or to remove a
pebble at any time, and the goal is to place a pebble on the sink using the
minimum number of pebbles. Denote by bpeb(P → w) the cost of placing
a pebble on a vertex w assuming there are free pebbles on a set of vertices
P ⊆ V – in other words, the number of pebbles used outside of P when the
starting position has pebbles in P . For a DAG G with a single sink z, bpeb(G)
denotes bpeb(∅ → z). For U ⊆ V and v ∈ V , the subgraph of v modulo U is the
set of vertices u such that there exists a path from u to v avoiding U .

Lemma 3 ([8]). bpeb(Ph) = h + 1.

Lemma 4 ([3]). For all P, v, w, we have

bpeb(P → v) ≤ max(bpeb(P → w),bpeb(P ∪ {w} → v) + 1).
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The canonical search problem of a formula F is the relation Search(F ) where
inputs are variable assignments α ∈ {0, 1}n and the valid outputs for α are the
clauses C ∈ F that α falsifies. Given a relation f , we denote by DT1(f) the 1-
query complexity of f [17], that is the minimum over all decision trees computing
f of the maximum of 1-answers that the decision tree receives.

Lemma 5. For all G we have DT1(Search(PebHint(G))) ≥ bpeb(G) − 1.

Proof. We give an adversarial strategy. Let Ri be the set of variables that are
assigned to 1 at round i. We initially set w0 = z, and maintain the invariant
that

1. there is a distinguished variable wi and a path πi from wi to the sink z such
that a queried variable v is 0 iff v ∈ πi; and

2. after each query the number of 1 answers so far is at least bpeb(G) −
bpeb(Ri → wi).

Assume that a variable v is queried. If v is not in the subgraph of wi modulo
Ri then we answer 0 if v ∈ πi and 1 otherwise. Otherwise we consider p0 =
bpeb(Ri → v) and p1 = bpeb(Ri ∪ {v} → wi). By Lemma 4, bpeb(Ri → wi) ≤
max(p0, p1 + 1). If p0 ≥ p1 then we answer 0, set wi+1 = v, and extend πi with
a path from wi+1 to wi that does not contain any 1 variables (which exists by
definition of subgraph modulo Ri). This preserves item 1 of the invariant, and
since p0 ≥ bpeb(Ri → wi), item 2 is also preserved. Otherwise we answer 1 and
since p1 ≥ bpeb(Ri → wi) − 1 the invariant is also preserved.

This strategy does not falsify any hint clause, because all 0 variables lie on
a path, or the sink axiom, because the sink is assigned 0 if at all. Therefore the
decision tree ends at a vertex wt that is set to 0 and all its predecessors are set
to 1, hence bpeb(Rt → wt) = 1. By item 2 of the invariant the number of 1
answers is at least bpeb(G) − 1. ��

To complete the lower bound we use the Pudlák–Impagliazzo Prover–Delayer
game [21] where Prover points to a variable, Delayer may answer 0, 1, or ∗, in
which case Delayer obtains a point in exchange for letting Prover choose the
answer, and the game ends when a clause is falsified.

Lemma 6 ([21]). If Delayer can win p points, then all TreeRes proofs require
size at least 2p.

Lemma 7. F ◦OR requires size exp(Ω(DT1(Search(F )))) in tree-like resolution.

Proof. We use a strategy for the 1-query game of Search(F ) to ensure that
Delayer gets DT1(F ) points in the Prover–Delayer game. If Prover queries a
variable xi then

– If x is already queried we answer accordingly.
– Otherwise we query x. If the answer is 0 we answer 0, otherwise we answer ∗.
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Our strategy ensures that if both x1 and x2 are assigned then x1 ∨ x2 = x.
Therefore the game only finishes at a leaf of the decision tree, at which point
Delayer earns as many points as 1s are present in the path leading to the leaf.
The lemma follows by Lemma 6. ��

The formulas PebHint(Pn) ◦ OR are easy to refute in MaxRes (Lemma 2),
but from Lemmas 3,5, and 7, they are exponentially hard for TreeRes. Hence,

Theorem 1. TreeRes does not simulate MaxResW and MaxRes.

4 The SubCubeSums Proof System

In this section, we explore the power and limitations of the SubCubeSums proof
system. On the one hand we show (Theorem 2) that it has short proofs of the
subset cardinality formulas, known to be hard for resolution but easy for Sherali–
Adams. On the other hand we show a lower bound for SubCubeSums for the
Tseitin formulas on odd-charged expander graphs (Theorem3). Finally, we estab-
lish a technique for obtaining lower bounds on SubCubeSums size: a degree lower
bound in SubCubeSums for F translates to a size lower bound in SubCubeSums
for F ◦ ⊕ (Theorem 4).

4.1 Res Does Not Simulate SubCubeSums

We now show that Res does not simulate SubCubeSums.

Theorem 2. There are formulas that have SubCubeSums proofs of size O(n)
but require resolution length exp(Ω(n)).

The separation is achieved using subset cardinality formulas [19,23,25]. These
are defined as follows: we have a bipartite graph G(U ∪ V,E), with |U | = |V | =
n. The degree of G is 4, except for two vertices that have degree 5. There is
one variable for each edge. For each left vertex u ∈ U we have a constraint∑

e	u xe ≥ �d(u)/2�, while for each right vertex v ∈ V we have a constraint∑
e	v xe ≤ �d(v)/2�, both expressed as a CNF. In other words, for each vertex

u ∈ U we have the clauses
∨

i∈I xi for I ∈ (
E(u)


d(u)/2�+1

)
, while for each vertex

v ∈ V we have the clauses
∨

i∈I xi for I ∈ (
E(v)


d(v)/2�+1

)
.

The lower bound requires G to be an expander, and is proven in [19, Theo-
rem 6]. The upper bound is the following lemma.

Lemma 8. Subset cardinality formulas have SubCubeSums proofs of size O(n).

Proof. Our plan is to reconstruct each constraint independently, so that for each
vertex we obtain the original constraints

∑
e	u xe ≥ �d(u)/2� and

∑
e	v xe ≥

�d(v)/2�, and then add all of these constraints together.
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Formally, if Fu is the set of polynomials that encode the constraint corre-
sponding to vertex u, we want to write the equations

∑

f∈Fu

f −
(

�d(u)/2� −
∑

e	u

xe

)
=

∑

j

cu,jhj (1)

and ∑

f∈Fv

f −
(

�d(v)/2� −
∑

e	v

xe

)
=

∑

j

cv,jhj (2)

with cu,j , cv,j ≥ 0 and
∑

j cu,j = O(1), so that with cj =
∑

v∈U∪V cv,j , we get

∑

f∈F

f =
∑

u∈U

∑

f∈Fu

f +
∑

v∈V

∑

f∈Fv

f

=
∑

u∈U

(
�d(u)/2� −

∑

e	u

xe +
∑

j

cu,jhj

)

+
∑

v∈V

(
�d(v)/2� −

∑

e	v

xe +
∑

j

cv,jhj

)

=
∑

u∈U

�d(u)/2� +
∑

v∈V

�d(v)/2� −
∑

e∈E

(xe + xe) +
∑

j

cjhj

=
(

1 +
∑

u∈U

2
)

+
(

1 +
∑

v∈V

2
)

−
∑

e∈E

1 +
∑

j

cjhj

= (2n + 1) + (2n + 1) − (4n + 1) +
∑

j

cjhj = 1 +
∑

j

cjhj

Hence we can write
∑

f∈F f − 1 =
∑

j cjhj with
∑

j cj = O(n) and each cj ≥ 0.
It remains to show how to derive Eqs. (1) and (2). The easiest way is to

appeal to the implicational completeness of SubCubeSums, Proposition 2. We
continue deriving Eq. (1), assuming for simplicity a vertex of degree d and inci-
dent edges [d]. Let xI =

∏
i∈I xi, and let

{
xI : I ∈ (

[d]
d−k+1

)}
represent a con-

straint
∑

i∈[d] xi ≥ k. Let f =
∑

I∈( [d]
d−k+1) xI and g = k − ∑

i∈[d] xi. For each

point x ∈ {0, 1}d we have that either x satisfies the constraint, in which case
f(x) ≥ 0 ≥ g(x), or it falsifies it, in which case we have on the one hand
g(x) = s > 0, and on the other hand f(x) =

(
d−k+s
d−k+1

)
= (d−k+s)·····s

(d−k+1)·····1 ≥ s.
We proved that f ≥ g, therefore by Proposition 2 we can write f − g as a

sum of subcubes of size at most 2d = O(1).
Equation (2) can be derived analogously, completing the proof. ��

4.2 A Lower Bound for SubCubeSums

Fix any graph G with n nodes and m edges, and let I be the node-edge incidence
matrix. Assign a variable xe for each edge e. Let b be a vector in {0, 1}n with
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∑
i bi ≡ 1 mod 2. The Tseitin contradiction asserts that the system IX = b has

a solution over F2. The CNF formulation has, for each vertex u in G, with degree
du, a set Su of 2du−1 clauses expressing that the parity of the set of variables
{xe | e is incident on u} equals bu.

These formulas are exponentially hard for Res [24], and hence are also hard
for MaxResW. We now show that they are also hard for SubCubeSums. By
Theorem 2, this lower bound cannot be inferred from hardness for Res.

We will use some standard facts: For connected graph G, over F2, if
∑

i bi ≡
1 mod 2, then the equations IX = b have no solution, and if

∑
i bi ≡ 0 mod 2,

then IX = b has exactly 2m−n+1 solutions. Furthermore, for any assignment a,
and any vertex u, a falsifies at most one clause in Su.

A graph is a c-expander if for all V ′ ⊆ V with |V ′| ≤ |V |/2, |δ(V ′)| ≥ c|V ′|,
where δ(V ′) = {(u, v) ∈ E | u ∈ V ′, v ∈ V \ V ′}.

Theorem 3. Tseitin contradictions on odd-charged expanders require exponen-
tial size SubCubeSums refutations.

Proof. Fix a graph G that is a d-regular c-expander on n vertices, where n is
odd; m = dn/2. Let b be the all-1s vector. The Tseitin contradiction F has n2d−1

clauses. By the facts mentioned above, for all a ∈ {0, 1}m, violF (a) is odd. So
violF partitions {0, 1}m into X1,X3, . . . , XN−1, where Xi = viol−1

F (i).
Let C be a SubCubeSums refutation of F , that is, violC = violF − 1 = g, say.

For a cube C, define Ni(C) = |C ∩ Xi|. Then for all C ∈ C, N1(C) = 0, and so
C is partitioned by Xi, i ≥ 3. Let C′ be those cubes of C that have a non-empty
part in X3. We will show that C′ is large. In fact, we will show that for a suitable
S, the set C′′ ⊆ C′ of cubes with |C ∩ X5| ≤ S|C ∩ X3| is large.

Defining the probability distribution μ on C′ as

μ(C) =
|C ∩ X3|∑

D∈C′ |D ∩ X3| =
N3(C)∑

D∈C′ N3(D)
,

|C′| = E
C∼μ

[
1

μ(C)

]
≥ E

C∼μ

[
1

μ(C)

∣∣∣∣
|C ∩ X5|
|C ∩ X3| ≤ S

]

︸ ︷︷ ︸
A

·Pr
μ

[ |C ∩ X5|
|C ∩ X3| ≤ S

]

︸ ︷︷ ︸
B

(3)

We want to choose a good value for S so that A is very large, and B is Θ(1). To
see what will be a good value for S, we estimate the expected value of |C∩X5|

|C∩X3|
and then use Markov’s inequality. For this, we should understand the sets X3,
X5 better. These set sizes are known precisely: for each odd i, |Xi| =

(
n
i

)
2m−n+1.

Now let us consider C ∩ X3 and C ∩ X5 for some C ∈ C′. We rewrite the
system IX = b as I ′X ′ + ICXC = b, where XC are the variables fixed in cube
C (to aC , say). So I ′X ′ = b + ICaC . An assignment a is in C ∩ Xr iff it is of the
form a′aC , and a′ falsifies exactly r equations in I ′X ′ = b′ where b′ = b + ICaC .
This is a system for the subgraph GC where the edges in XC have been deleted.
This subgraph may not be connected, so we cannot use our size expressions
directly. Consider the vertex sets V1, V2, . . . of the components of GC . The system
I ′X ′ = b′ can be broken up into independent systems; I ′(i)X ′(i) = b′(i) for the



MaxSAT Resolution and Subcube Sums 307

ith connected component. Say a component is odd if
∑

j∈Vi
b′(i)j ≡ 1 mod 2,

even otherwise. Let |Vi| = ni and |Ei| = mi. Any a′ falsifies an odd/even number
of equations in an odd/even component.

For a′ ∈ C∩X3, it must falsify three equations overall, so GC must have either
one or three odd components. If it has only one odd component, then there is
another assignment in C falsifying just one equation (from this odd component),
so C ∩ X1 	= ∅, a contradiction. Hence GC has exactly three odd components,
with vertex sets V1, V2, V3, and overall k ≥ 3 components. An a ∈ C ∩X3 falsifies
exactly one equation in I(1), I(2), I(3). We thus arrive at the expression

|C ∩ X3| =

(
3∏

i=1

ni2mi−ni+1

)(
∏

i≥4

2mi−ni+1

)
= n1n2n32m−w(C)−n+k.

Similarly, an a′ ∈ C ∩ X5 must falsify five equations overall. One each must
be from V1, V2, V3. The remaining 2 must be from the same component. Hence

|C ∩ X5| = n1n2n3

(
3∑

i=1

(
ni

3

)
1
ni

+
k∑

i=4

(
ni

2

))
2m−w(C)−n+k

≥ n1n2n32m−w(C)−n+k

(
1
3

k∑

i=1

(
ni − 1

2

))

Hence we have, for C ∈ C′,
|C ∩ X5|
|C ∩ X3| ≥ 1

3

k∑

i=1

(
ni − 1

2

)
.

We can deduce more by using the definition of μ, and the following fact: Since
g = violF − 1, an assignment in X3 belongs to exactly two cubes in C, and by
definition these cubes are in C′. Similarly, an assignment in X5 belongs to exactly
four cubes in C, not all of which may be in C′. Hence

∑

C∈C′
|C ∩ X3| = 2|X3| = 2

(
n

3

)
2m−n+1; μ(C) =

|C ∩ X3|
2|X3| .

∑

C∈C′
|C ∩ X5| ≤ 4|X5| = 4

(
n

5

)
2m−n+1.

Now we can estimate the average:

E
μ

[ |C ∩ X5|
|C ∩ X3|

]
=

∑

C∈C′
μ(C)

|C ∩ X5|
|C ∩ X3| =

∑

C∈C′

|C ∩ X5|
2|X3| ≤ 4|X5|

2|X3| ≤ n2

10

At S = n2/9, by Markov’s inequality, B = Pr
μ

[ |C ∩ X5|
|C ∩ X3| ≤ S =

n2

9

]
≥ 1/10.

Now we show that conditioned on |C∩X5|
|C∩X3| ≤ S, the average value of 1

μ(C) is large.

1
μ(C)

=
2|X3|

|C ∩ X3| =
2
(
n
3

)
2m−n+1

n1n2n32m−w(C)−n+k
=

2
(
n
3

)
2w(C)+1−k

n1n2n3
≥ 2w(C)+1−n

3



308 Y. Filmus et al.

So we must show that w(C) must be large. Each literal in C removes one
edge from G while constructing GC . Counting the sizes of the cuts that isolate
components of GC , we count each deleted edge twice. So

2w(C) =
k∑

i=1

|δ(Vi, V \ Vi)| =
∑

i:ni≤n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q1

+
∑

i:ni>n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q2

By the c-expansion property of G, Q1 ≥ cni.
If ni > n/2, it still cannot be too large because of the conditioning. Recall

S =
n2

9
≥ |C ∩ X5|

|C ∩ X3| ≥ 1
3

k∑

i=1

(
ni − 1

2

)

So each ni ≤ 5n/6. Thus even when ni > n/2, we can conclude that ni/5 ≤
n/6 ≤ n − ni < n/2. By expansion of V \ Vi, we have Q2 ≥ c(n − ni) ≥ cni/5.

2w(C) =
∑

i:ni≤n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q1

+
∑

i:ni>n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q2

≥ cn

5

Choose c-expanders where c ensures w(C) + 1 − n = Ω(n). (Any constant
c > 10.) Going back to our calculation of A from Eq. 3),

A = E
C∼μ

[
1

μ(C)

∣∣∣∣
|C ∩ X5|
|C ∩ X3| ≤ S

]
≥ E

C∼μ

[
2w(C)+1−n

3

∣∣∣∣
|C ∩ X5|
|C ∩ X3| ≤ S

]
= 2Ω(n)

for suitable c > 10. Thus |C| ≥ |C′| ≥ A · B ≥ 2Ω(n) · (1/10) . ��

4.3 Lifting Degree Lower Bounds to Size

We describe a general technique to lift lower bounds on conical junta degree to
size lower bounds for SubCubeSums.

Theorem 4. Let d be the minimum degree of a SubCubeSums refutation of an
unsatisfiable CNF formula F . Then every SubCubeSums refutation of F ◦ ⊕ has
size exp(Ω(d)).

Before proving this theorem, we establish two lemmas. For a function h:
{0, 1}n → R, define the function h ◦ ⊕ : {0, 1}2n → R as (h ◦ ⊕)(α1, α2) =
h(α1 ⊕ α2), where α1, α2 ∈ {0, 1}n and the ⊕ in α1 ⊕ α2 is taken bitwise.

Lemma 9. violF (α1 ⊕ α2) = violF◦⊕(α1, α2).

Proof. Fix assignments α1, α2 and let α = α1 ⊕ α2. We claim that for each
clause C ∈ F falsified by α there is exactly one clause D ∈ F ◦⊕ that is falsified
by α1α2. Indeed, by the definition of composed formula the assignment α1α2

falsifies C ◦ ⊕, hence the assignment falsifies some clause D ∈ C ◦ ⊕. However,
the clauses in the CNF expansion of C ◦ ⊕ have disjoint subcubes, hence α1α2

falsifies at most one clause from the same block. Observing that if α does not
falsify C, then α1α2 does not falsify any clause in C ◦ ⊕ completes the proof. ��
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Corollary 1. violF◦⊕ − 1 = ((violF ) ◦ ⊕) − 1 = (violF − 1) ◦ ⊕.

Lemma 10. If f ◦ ⊕2 has a (integral) conical junta of size s, then f has a
(integral) conical junta of degree d = O(log s).

Proof. Let J be a conical junta of size s that computes f ◦ ⊕2. Let ρ be the
following random restriction: for each variable x of f , pick i ∈ {0, 1} and b ∈
{0, 1} uniformly and set xi = b. Consider a term C of J of degree at least d >
log4/3 s. The probability that C is not zeroed out by ρ is at most (3/4)d < 1/s,
hence the probability that the junta J�ρ has degree larger than d is at most
s · (3/4)d < 1. Hence there is a restriction ρ such that J�ρ is a junta of degree
at most d, although not one that computes f . Since for each original variable
x, ρ sets exactly one of the variables x0, x1, flipping the appropriate surviving
variables—those where xi is set to 1—gives a junta of degree at most d for f . ��
Proof (of Theorem 4). We prove the contrapositive. Assume F ◦ ⊕ has a Sub-
CubeSums proof of size s. Let H be the collection of s cubes in this proof.
So violF◦⊕ − 1 = violH . By Corollary 1, there is an integral conical junta for
(violF − 1) ◦ ⊕ of size s. By Lemma 10 there is an integral conical junta for
violF − 1 of degree O(log s). ��

Recovering the Tseitin lower bound: This theorem, along with the Ω(n) conical
junta degree lower bound of [10], yields an exponential lower bound for the
SubCubeSums and MaxResW refutation size for Tseitin contradictions.

A candidate for separating Res from SubCubeSums: We conjecture that the Sub-
CubeSums degree of the pebbling contradiction on the pyramid graph, or on
a minor modification of it (a stack of butterfly networks, say, at the base of a
pyramid), is nΩ(1). This, with Theorem 4, would imply that F ◦⊕ is hard for Sub-
CubeSums, thereby separating it from Res. We have not yet been able to prove
the desired degree lower bound. We do know that SubCubeSums degree is not
exactly the same as Res width – for small examples, a brute-force computation
has shown SubCubeSums degree to be strictly larger than Res width.

5 Discussion

We placed MaxRes(W) in a propositional proof complexity frame and compared
it to more standard proof systems, showing that MaxResW is between tree-like
resolution (strictly) and resolution. With the goal of also separating MaxRes and
resolution we devised a new lower bound technique, captured by SubCubeSums,
and proved lower bounds for MaxRes without relying on Res lower bounds.

Perhaps the most conspicuous open problem is whether our conjecture that
pebbling contradictions composed with XOR separate Res and SubCubeSums
holds. It also remains open to show that MaxRes simulates TreeRes – or even
MaxResW – or that they are incomparable instead.
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Abstract. Two major considerations when encoding pseudo-Boolean
(PB) constraints into SAT are the size of the encoding and its prop-
agation strength, that is, the guarantee that it has a good behaviour
under unit propagation. Several encodings with propagation strength
guarantees rely upon prior compilation of the constraints into DNNF
(decomposable negation normal form), BDD (binary decision diagram),
or some other sub-variants. However it has been shown that there exist
PB-constraints whose ordered BDD (OBDD) representations, and thus
the inferred CNF encodings, all have exponential size. Since DNNFs are
more succinct than OBDDs, preferring encodings via DNNF to avoid size
explosion seems a legitimate choice. Yet in this paper, we prove the exis-
tence of PB-constraints whose DNNFs all require exponential size.

Keywords: PB constraints · Knowledge compilation · DNNF

1 Introduction

Pseudo-Boolean (PB) constraints are Boolean functions over 0/1 Boolean vari-
ables x1, . . . , xn of the form

∑n
i=1 wixi ‘op’ θ where the wi are integer weights, θ

is an integer threshold and ‘op’ is a comparison operator <,≤, > or ≥. PB-
constraints have been studied extensively under different names (e.g. threshold
functions [14], Knapsack constraints [13]) due to their omnipresence in many
domains of AI and their wide range of practical applications [3,7,9,15,21].

One way to handle PB-constraints in a constraint satisfaction problem is to
translate them into a CNF formula and feed it to a SAT solver. The general idea is
to generate aCNF, possibly introducing auxiliary Boolean variables, whose restric-
tion to variables of the constraint is equivalent to the constraint. Two major con-
siderations here are the size of the CNF encoding and its propagation strength.
One wants, on the one hand, to avoid the size of the encoding to explode, and on
the other hand, to guarantee a good behaviour of the SAT instance under unit
propagation – a technique at the very core of SAT solving. Desired propagation
strength properties are, for instance, generalized arc consistency (GAC) [4] or
propagation completeness (PC) [6]. Several encodings to CNF follow the same two-
steps method: first, each constraint is represented in a compact form such as BDD
(Binary Decision Diagram) or DNNF (Decomposable Negation Normal Form).
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 312–321, 2020.
https://doi.org/10.1007/978-3-030-51825-7_22
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Second, the compact forms are turned into CNFs using Tseitin or other transfor-
mations. The SAT instance is the conjunction of all obtained CNFs. It is worth
mentioning that there are GAC encodings of PB-constraints into polynomial size
CNFs that do not follow this two-steps method [5]. However no similar result is
known for PC encodings. PC encodings are more restrictive that GAC encodings
and may be obtained via techniques requiring compilation toDNNF [17]. Thus the
first step is a knowledge compilation task.

Knowledge compilation studies different representations for knowledge [10,
19] under the general idea that some representations are more suitable than
others when solving specific reasoning problems. One observation that has been
made is that the more reasoning tasks can be solved efficiently with particular
representations, the larger these representations get in size. In the context of
constraint encodings to SAT, the conversion of compiled forms to CNFs does not
reduce the size of the SAT instance, therefore it is essential to control the size
of the representations obtained by knowledge compilation.

Several representations have been studied with respect to different encoding
techniques with the purpose of determining which properties of representations
are sufficient to ensure propagation strength [1,2,11,12,16,17]. Popular represen-
tations in this context are DNNF and BDD and their many variants: deterministic
DNNF, smooth DNNF, OBDD. . . As mentioned above, a problem occurring when
compiling a constraint into such representations is that exponential space may
be required. Most notably, it has been shown in [2,14] that some PB-constraints
can only be represented by OBDDs whose size is exponential in

√
n, where n is

the number of variables. Our contribution is the proof of the following theorem
where we lift the statement from OBDD to DNNF.

Theorem 1. There is a class of PB-constraints F such that for any constraint
f ∈ F on n2 variables, any DNNF representation of f has size 2Ω(n).

Since DNNFs are exponentially more succinct than OBDDs [10], our result is a
generalisation of the result in [2,14]. The class F is similar to that used in [2,14],
actually the only difference is the choice of the threshold for the PB-constraints.
Yet, adapting proofs given in [2,14] for OBDD to DNNF is not straightforward,
thus our proof of Theorem1 bears very little resemblance.

It has been shown in [18] that there exist sets of PB-constraints such that the
whole set (so a conjunction of PB-constraints) requires exponential size DNNF
to represent. Our result is a generalisation to single PB-constraints.

2 Preliminaries

Conventions of Notation. Boolean variables are seen as variables over {0, 1},
where 0 and 1 represent false and true respectively. Via this 0/1 representation,
Boolean variables can be used in arithmetic expressions over Z. For notational
convenience, we keep the usual operators ¬, ∨ and ∧ to denote, respectively, the
negation, disjunction and conjunction of Boolean variables or functions. Given
X a set of n Boolean variables, assignments to X are seen as vectors in {0, 1}n.
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Single Boolean variables are written in plain text (x) while assignments to several
variables are written in bold (x). We write x ≤ y when the vector y dominates
x element-wise. We write x < y when x ≤ y and x �= y. In this framework, a
Boolean function f over X is a mapping from {0, 1}n to {0, 1}. f is said to accept
an assignment x when f(x) = 1, then x is called a model of f . The function is
monotone if for any model x of f , all y ≥ x are models of f as well. The set of
models of f is denoted f -1(1). Given f and g two Boolean functions over X, we
write f ≤ g when f -1(1) ⊆ g -1(1). We write f < g when the inclusion is strict.

Pseudo-Boolean Constraints. Pseudo-Boolean (PB) constraints are inequal-
ities the form

∑n
i=1 wixi ‘op’ θ where the xi are 0/1 Boolean variables, the wi

and θ are integers, and ‘op’ is one of the comparison operator <, ≤, > or ≥. A
PB-constraint is associated with a Boolean function whose models are exactly
the assignments to {x1, . . . , xn} that satisfy the inequality. For simplicity we
directly consider PB-constraints as Boolean functions – although the same func-
tion may represent different constraints – while keeping the term “constraints”
when referring to them. In this paper, we restrict our attention to PB-constraints
where ‘op’ is ≥ and all weights are positive integers. Note that such PB-
constraints are monotone Boolean functions. Given a sequence of positive integer
weights W = (w1, . . . , wn) and an integer threshold θ, we define the function
w : {0, 1}n → N that maps any assignment to its weight by w(x) =

∑n
i=1 wixi.

With these notations, a PB-constraint over X for a given pair (W, θ) is a Boolean
function whose models are exactly the x such that w(x) ≥ θ.

Example 1. Let n = 5, W = (1, 2, 3, 4, 5) and θ = 9. The PB-constraint for
(W, θ) is the Boolean function whose models are the assignments such that
∑5

i=1 ixi ≥ 9. E.g. x = (0, 1, 1, 0, 1) is a model of weight w(x) = 10.

For notational clarity, given any subset Y ⊆ X and denoting x|Y the restriction
of x to variables of Y , we overload w so that w(x|Y ) is the sum of weights
activated by variables of Y set to 1 in x.

Decomposable NNF. A circuit in negation normal form (NNF) is a single out-
put Boolean circuit whose inputs are Boolean variables and their complements,
and whose gates are fanin-2 AND and OR gates. The size of the circuit is the
number of its gates. We say that an NNF is decomposable (DNNF) if for any
AND gate, the two sub-circuits rooted at that gate share no input variable, i.e.,
if x or ¬x is an input of the circuit rooted at the left input of the AND gate,
then neither x nor ¬x is an input of the circuit rooted at the right input, and
vice versa. A Boolean function f is encoded by a DNNF D if the assignments of
variables for which the output of D is 1 (true) are exactly the models of f .

Rectangle Covers. Let X be a finite set of Boolean variables and let Π =
(X1,X2) be a partition of X (i.e., X1 ∪X2 = X and X1 ∩X2 = ∅). A rectangle r
with respect to Π is a Boolean function over X defined as the conjunction of two
functions ρ1 and ρ2 over X1 and X2 respectively. Π is called the partition of r.
We say that the partition and the rectangle are balanced when |X|

3 ≤ |X1| ≤ 2|X|
3

(thus the same holds for X2). Whenever considering a partition (X1,X2), we use
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for any assignment x to X the notations x1 := x|X1 and x2 := x|X2 . And for any
two assignments x1 and x2 to X1 and X2, we note (x1,x2) the assignment to X
whose restrictions to X1 and X2 are x1 and x2. Given f a Boolean function over
X, a rectangle cover of f is a disjunction of rectangles over X, possibly with
different partitions, equivalent to f . The size of a rectangle cover is the number
of its rectangles. A cover is called balanced if all its rectangles are balanced.

Example 2. Going back to Example 1, consider the partition X1 := {x1, x3, x4},
X2 := {x2, x5} and define ρ1 := x3 ∧ x4 and ρ2 := x2 ∨ x5. Then r := ρ1 ∧ ρ2 is
a rectangle w.r.t. this partition that accepts only models of the PB-constraint
from Example 1. Thus it can be part of a rectangle cover for this constraint.

Any function f has at least one balanced rectangle cover as one can create a
balanced rectangle accepting exactly one chosen model of f . We denote by C(f)
the size of the smallest balanced rectangle cover of f . The following result from
[8] links C(f) to the size of any DNNF encoding f .

Theorem 2. Let D be a DNNF encoding a Boolean function f . Then f has a
balanced rectangle cover of size at most the size of D.

Theorem 2 reduces the problem of finding lower bounds on the size of DNNFs
encoding f to that of finding lower bounds on C(f).

3 Restriction to Threshold Models of PB-Constraints

The strategy to prove Theorem 1 is to find a PB-constraint f over n variables
such that C(f) is exponential in

√
n and then use Theorem 2. We first show that

we can restrict our attention to covering particular models of f with rectangles
rather than the whole function. In this section X is a set of n Boolean variables
and f is a PB-constraint over X. Recall that we only consider constraints of the
form

∑n
i=1 wixi ≥ θ where the wi and θ are positive integers.

Definition 1. The threshold models of f are the models x such that w(x) = θ.

Threshold models should not be confused with minimal models (or minimals).

Definition 2. A minimal of f is a model x such that no y < x is a model of f .

For a monotone PB-constraint, a minimal model is such that its sum of weights
drops below the threshold if we remove any element from it. Any threshold
model is minimal, but not all minimals are threshold models. There even exist
constraints with no threshold models (e.g. take even weights and an odd thresh-
old) while there always are minimals for satisfiable constraints.

Example 3. The minimals of the PB-constraint from Example 1 are (0, 0, 0, 1, 1),
(0, 1, 1, 1, 0), (1, 0, 1, 0, 1) and (0, 1, 1, 0, 1). The first three are threshold models.

Let f∗ be the Boolean function whose models are exactly the threshold models
of f . In the next lemma, we prove that the smallest rectangle cover of f∗ has
size at most C(f). Thus, lower bounds on C(f∗) are also lower bounds on C(f).
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Lemma 1. Let f∗ be the Boolean function whose models are exactly the thresh-
old models of f . Then C(f) ≥ C(f∗).

Proof. Let r := ρ1 ∧ρ2 be a balanced rectangle with r ≤ f and assume r accepts
some threshold models. Let Π := (X1,X2) be the partition of r. We claim that
there exist two integers θ1 and θ2 such that θ1 + θ2 = θ and, for any threshold
model x accepted by r, there is w(x1) = θ1 and w(x2) = θ2. To see this, assume
by contradiction that there exists another partition θ = θ′

1 + θ′
2 of θ such that

some other threshold model y with w(y1) = θ′
1 and w(y2) = θ′

2 is accepted
by r. Then either w(x1) + w(y2) < θ or w(y1) + w(x2) < θ, but since (x1,y2)
and (y1,x2) are also models of r, r would accept a non-model of f , which is
forbidden. Now let ρ∗

1 (resp. ρ∗
2) be the function whose models are exactly the

models of ρ1 (resp. ρ2) of weight θ1 (resp. θ2). Then r∗ := ρ∗
1 ∧ ρ∗

2 is a balanced
rectangle whose models are exactly the threshold models accepted by r.

Now consider a balanced rectangle cover of f of size C(f). For each rect-
angle r of the cover, if r accepts no threshold model then discard it, otherwise
construct r∗. The disjunction of these new rectangles is a balanced rectangle
cover of f∗ of size at most C(f). Therefore C(f) ≥ C(f∗). ��

4 Reduction to Covering Maximal Matchings of Kn,n

We define the class of hard PB-constraints for Theorem1 in this section. Recall
that for a hard constraint f , our aim is to find an exponential lower bound
on C(f). We will show, using Lemma 1, that the problem can be reduced to
that of covering all maximal matchings of the complete n × n bipartite graph
Kn,n with rectangles. In this section, X is a set of n2 Boolean variables. For
presentability reasons, assignments to X are written as n × n matrices. Each
variable xi,j has the weight wi,j := (2i + 2j+n)/2. Define the matrix of weights
W := (wi,j : 1 ≤ i, j ≤ n) and the threshold θ := 22n − 1. The PB-constraint f
for the pair (W, θ) is such that f(x) = 1 if and only if x satisfies

∑

1≤i,j≤n

(
2i + 2j+n

2

)

xi,j ≥ 22n − 1 . (1)

Constraints of this form constitute the class of hard constraints of Theorem1.
One may find it easier to picture f writing the weights and threshold as binary
numbers of 2n bits. Bits of indices 1 to n form the lower part of the number and
those of indices n + 1 to 2n form the upper part. The weight wi,j is the binary
number where the only bits set to 1 are the ith bit of the lower part and the jth
bit of the upper part. Thus when a variable xi,j is set to 1, exactly one bit of
value 1 is added to each part of the binary number of the sum.

Assignments to X uniquely encode subgraphs of Kn,n. We denote U =
{u1, . . . , un} the nodes of the left side and V = {v1, . . . , vn} those of the right
side of Kn,n. The bipartite graph encoded by x is such that there is an edge
between the ui and vj if and only if xi,j is set to 1 in x.
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Example 4. Take n = 4. The assignment x =

⎛

⎜
⎝

1 1 0 1
0 0 0 0
0 1 0 0
0 1 0 0

⎞

⎟
⎠ encodes

u1

u2

u3

u4

v1
v2
v3
v4

Definition 3. A maximal matching assignment (or maximal matching model)
is an assignment x to X such that

• for any i ∈ [n], there is exactly one k such that xi,k is set to 1 in x,
• for any j ∈ [n], there is exactly one k such that xk,j is set to 1 in x.

As the name suggests, the maximal matching assignments are those encoding
graphs whose edges form a maximal matching of Kn,n (i.e., a maximum cardi-
nality matching). One can also see them as encodings for permutations of [n].

Example 5. The maximal matching model x =

⎛

⎜
⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟
⎠ encodes

u1

u2

u3

u4

v1
v2
v3
v4

For a given x, define vark (x) by vark (x) := {j | xk,j is set to 1 in x} when
1 ≤ k ≤ n and by vark (x) := {i | xi,k−n is set to 1 in x} when n + 1 ≤ k ≤ 2n.
vark (x) stores the index of variables in x that directly add 1 to the kth bit
of w(x). Note that a maximal matching model is an assignment x such that
|vark (x) | = 1 for all k. It is easy to see that maximal matching models are
threshold models of f : seeing weights as binary numbers of 2n bits, for every
bit of the sum the value 1 is added exactly once, so exactly the first 2n bits of
the sum are set to 1, which gives us θ. Note that not all threshold models of f
are maximal matching models, for instance the assignment from Example 4 does
not encode a maximal matching but one can verify that it is a threshold model.
Recall that f∗ is the function whose models are the threshold models of f . In the
next lemmas, we prove that lower bounds on the size of rectangle covers of the
maximal matching models are lower bounds on C(f∗), and a fortiori on C(f).

Lemma 2. Let Π := (X1,X2) be a partition of X. Let x := (x1,x2) and y :=
(y1,y2) be maximal matching assignments. If (x1,y2) and (y1,x2) both have
weight θ := 22n − 1 then both are maximal matching assignments.

Proof. It is sufficient to show that |vark (x1,y2) | = 1 and |vark (y1,x2) | = 1 for
all 1 ≤ k ≤ 2n. We prove it for (x1,y2) by induction on k. First observe that
since |vark (x) | = 1 and |vark (y) | = 1 for all 1 ≤ k ≤ 2n, the only possibilities
for |vark (x1,y2) | are 0, 1 or 2.

• For the base case k = 1, if |var1 (x1,y2) | is even then the first bit of w(x1) +
w(y2) is 0 and the weight of (x1,y2) is not θ. So |var1 (x1,y2) | = 1.

• For the general case 1 < k ≤ 2n, assume that |var1 (x1,y2) | = · · · =
|vark−1 (x1,y2) | = 1. So the kth bit of w(x1) + w(y2) depends only on the
parity of |vark (x1,y2) |: the kth bit is 0 if |vark (x1,y2) | is even and 1 other-
wise. (x1,y2) has weight θ so |vark (x1,y2) | = 1.

The argument applies to (y1,x2) analogously. ��
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Lemma 3. Let f be the PB-constraint (1) and let f̂ be the function whose mod-
els are exactly the maximal matching assignments. Then C(f) ≥ C(f̂).

Proof. By Lemma 1, it is sufficient to prove that C(f∗) ≥ C(f̂). We already know
that f̂ ≤ f∗. Let r := ρ1 ∧ ρ2 be a balanced rectangle of partition Π := (X1,X2)
with r ≤ f∗, and assume r accepts some maximal matching assignment. Let ρ̂1
(resp. ρ̂2) be the Boolean function over X1 (resp. X2) whose models are the x1

(resp. x2) such that there is a maximal matching assignment (x1,x2) accepted
by r. We claim that the balanced rectangle r̂ := ρ̂1 ∧ ρ̂2 accepts exactly the
maximal matching models of r. On the one hand, it is clear that all maximal
matching models of r are models of r̂. On the other hand, all models of r̂ are
threshold models of the form (x1,y2), where (x1,x2) and (y1,y2) encode maxi-
mal matchings, so by Lemma 2, r̂ accepts only maximal matching models of r.

Now consider a balanced rectangle cover of f∗ of size C(f∗). For each rect-
angle r of the cover, if r accepts no maximal matching assignment then discard
it, otherwise construct r̂. The disjunction of these new rectangles is a balanced
rectangle cover of f̂ of size at most C(f∗). Therefore C(f∗) ≥ C(f̂). ��

5 Proof of Theorem 1

Theorem 1. There is a class of PB-constraints F such that for any constraint
f ∈ F on n2 variables, any DNNF encoding f has size 2Ω(n).

F is the class of constraints defined in (1). Thanks to Theorem 2 and Lemma 3,
the proof boils down to finding exponential lower bounds on C(f̂), where f̂ is
the Boolean function on n2 variables whose models encode exactly the maximal
matchings of Kn,n (or equivalently, the permutations of [n]). f̂ has n! models.
The idea is now to prove that rectangles covering f̂ must be relatively small, so
that covering the whole function requires many of them.

Lemma 4. Let Π = (X1,X2) be a balanced partition of X. Let r be a rectangle
with respect to Π with r ≤ f̂ . Then |r -1(1)| ≤ n!/

( n

n
√

2/3

)
.

The function f̂ has already been studied extensively in the literature, often
under the name PERMn (for permutations on [n]), see for instance Chap. 4 of
[22] or Sect. 6.2 of [20] where a statement similar to Lemma 4 is established. With
Lemma 4 we can give the proof of Theorem 1.

Proof (Theorem 1). Let
∨C(f̂)

k=1 rk be a balanced rectangle cover of f̂ . We have
∑C(f̂)

k=1 |r -1
k (1)| ≥ |f̂ -1(1)| = n!. Lemma 4 gives us (C(f̂)n!)/

( n

n
√

2/3

) ≥ n!, thus

C(f̂) ≥
(

n

n
√

2/3

)

≥
(

n

n
√

2/3

)n
√

2/3

=
(

3
2

)n

√
2/3
2

≥ 2n

√
2/3
4 = 2Ω(n)

where we have used
(
a
b

) ≥ (a/b)b and 3/2 ≥ √
2. Using Lemma 3 we get that

C(f) ≥ C(f̂) ≥ 2Ω(n). Theorem 2 allows us to conclude. ��
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Fig. 1. Partition of maximal matching

All that is left is to prove Lemma 4.

Proof (Lemma 4).
Let r := ρ1 ∧ ρ2 and Π := (X1,X2). Recall that U := {u1, . . . , un} and V :=

{v1, . . . , vn} are the nodes from the left and right part of Kn,n respectively. Define
U1 := {ui | there exists xi,l ∈ X1 such that a model of ρ1 has xi,l set to 1} and
V1 := {vj | there exists xl,j ∈ X1 such that a model of ρ1 has xl,j set to 1}.
Define U2 and V2 analogously (this time using X2 and ρ2). Figure 1 illustrates
the construction of these sets: Fig. 1a shows a partition Π of the edges of K4,4

(full edges in X1, dotted edges in X2) and Fig. 1b shows the contribution of a
model of r to U1, V1, U2, and V2 after partition according to Π.

Models of ρ1 are clearly matchings of Kn,n. Actually they are matchings
between U1 and V1 by construction of these sets. We claim that they are maximal.
To verify this, observe that U1 ∩ U2 = ∅ and V1 ∩ V2 = ∅ since otherwise r
has a model that is not a matching. Thus if ρ1 were to accept a non-maximal
matching between U1 and V1 then r would accept a non-maximal matching
between U and V . So ρ1 accepts only maximal matchings between U1 and V1,
consequently |U1| = |V1|. The argument applies symmetrically for V2 and U2.
We note k := |U1|. It stands that U1 ∪ U2 = U and V1 ∪ V2 = V as otherwise r
accepts matchings that are not maximal. So |U2| = |V2| = n − k. We now have
|ρ -1

1 (1)| ≤ k! and |ρ -1
2 (1)| ≤ (n − k)!, leading to |r -1(1)| ≤ k!(n − k)! = n!/

(
n
k

)
.

Up to k2 edges may be used to build matchings between U1 and V1. Since r
is balanced we obtain k2 ≤ 2n2/3. Applying the same argument to U2 and V2

gives us (n − k)2 ≤ 2n2/3, so n(1 − √
2/3) ≤ k ≤ n

√
2/3. Finally, the function

k �→ n!/
(
n
k

)
, when restricted to some interval [[n(1−α), αn]], reaches its maximum

at k = αn, hence the upper bound |r -1(1)| ≤ n!/
( n

n
√

2/3

)
. ��
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Abstract. Current pseudo-Boolean solvers implement different variants
of the cutting planes proof system to infer new constraints during con-
flict analysis. One of these variants is generalized resolution, which allows
to infer strong constraints, but suffers from the growth of coefficients
it generates while combining pseudo-Boolean constraints. Another vari-
ant consists in using weakening and division, which is more efficient in
practice but may infer weaker constraints. In both cases, weakening is
mandatory to derive conflicting constraints. However, its impact on the
performance of pseudo-Boolean solvers has not been assessed so far. In
this paper, new application strategies for this rule are studied, aiming to
infer strong constraints with small coefficients. We implemented them in
Sat4j and observed that each of them improves the runtime of the solver.
While none of them performs better than the others on all benchmarks,
applying weakening on the conflict side has surprising good performance,
whereas applying partial weakening and division on both the conflict and
the reason sides provides the best results overall.

Keywords: PB constraint · Constraint learning · Cutting planes

1 Introduction

The last decades have seen many improvements in SAT solving that are at the
root of the success of modern SAT solvers [5,13,15]. Despite their practical effi-
ciency on many real-world instances, these solvers suffer from the weakness of
the resolution proof system they use in their conflict analyses. Specifically, when
proving the unsatisfiability of an input formula requires an exponential number of
resolution steps – as for pigeonhole-principle formulae [9] – a SAT solver cannot
find a refutation proof efficiently. This motivated the development of pseudo-
Boolean (PB) solvers [17], which take as input conjunctions of PB constraints
(linear inequations over Boolean variables) and apply cutting planes based infer-
ence to derive inconsistency [8,10,16]. This inference system is stronger than the
resolution proof system, as it p-simulates the latter: any resolution proof can be
translated into a cutting planes proof of polynomial size [2]. Using such a proof
system may, in theory, make solvers more efficient: for instance, a pigeonhole
principle formula may be refuted with a linear number of cutting planes steps.
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https://doi.org/10.1007/978-3-030-51825-7_23
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However, in practice, PB solvers fail to keep the promises of the theory. In
particular, they only implement subsets of the cutting planes proof system, which
degenerate to resolution when given a CNF formula as input: they do not exploit
the full power of the cutting planes proof system [20]. One of these subsets is
generalized resolution [10], which is implemented in many PB solvers [1,4,11,19].
It consists in using the cancellation rule to combine constraints so as to resolve
away literals during conflict analysis, as SAT solvers do with the resolution rule.
Another approach has been introduced by RoundingSat [7], which relies on the
weakening and division rules to infer constraints having smaller coefficients to
be more efficient in practice. These proof systems are described in Sect. 2.

This paper follows the direction initiated by RoundingSat and investigates to
what extent applying the weakening rule may have an impact on the performance
of PB solvers. First, we show that applying a partial weakening instead of an
aggressive weakening as proposed in [7] allows to infer stronger constraints while
preserving the nice properties of RoundingSat. Second, we show that weakening
operations can be extended to certain literals that are falsified by the current
partial assignment to derive shorter constraints. Finally, we introduce a trade-
off strategy, trying to get the best of both worlds. These new approaches are
described in Sect. 3, and empirically evaluated in Sect. 4.

2 Pseudo-Boolean Solving

We consider a propositional setting defined on a finite set of classically inter-
preted propositional variables V . A literal l is a variable v ∈ V or its negation v̄.
Boolean values are represented by the integers 1 (true) and 0 (false), so that
v̄ = 1 − v. A PB constraint is an integral linear equation or inequation over
Boolean variables. Such constraints are supposed, w.l.o.g., to be in the normal-
ized form

∑n
i=1 αili ≥ δ, where αi (the coefficients or weights) and δ (the degree)

are positive integers and li are literals. A cardinality constraint is a PB constraint
with its weights equal to 1 and a clause is a cardinality constraint of degree 1.

Several approaches have been designed for solving PB problems. One of them
consists in encoding the input into a CNF formula and let a SAT solver decide
its satisfiability [6,14,18], while another one relies on lazily translating PB con-
straints into clauses during conflict analysis [21]. However, such solvers are based
on the resolution proof system, which is somewhat weak : instances that are hard
for resolution are out of reach of SAT solvers. In the following, we consider instead
solvers based on the cutting planes proof system, the PB counterpart of the res-
olution proof system. Such solvers handle PB constraints natively, and are based
on one of the two main subsets of cutting planes rules described below.

2.1 Generalized Resolution Based Solvers

Following the CDCL algorithm of SAT solvers, PB solvers based on generalized
resolution [10] make decisions on variables, which force other literals to be sat-
isfied. These propagated literals are detected using the slack of each constraint.
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Definition 1 (slack). Given a partial assignment ρ, the slack of a constraint∑n
i=1 αili ≥ δ is the value

∑n
i=1,ρ(li) �=0 αi − δ.

Observation 1. Let s be the slack of the constraint
∑n

i=1 αili ≥ δ under some
partial assignment. If s < 0, the constraint is currently falsified. Otherwise, the
constraint requires all unassigned literals having a weight α > s to be satisfied.

Example 1. Let ρ be the partial assignement such that ρ(a) = 1, ρ(c) = ρ(d) =
ρ(e) = 0 (all other variables are unassigned). Under ρ, the constraint 6b̄ + 6c +
4e+f +g+h ≥ 7 has slack 2. As b̄ is unassigned and has weight 6 > 2, this literal
is propagated (the constraint is the reason for b̄). This propagation falsifies the
constraint 5a + 4b + c + d ≥ 6, which now has slack −1 (this is a conflict).

When a conflict occurs, the solver analyzes this conflict to derive an assertive
constraint, i.e., a constraint propagating some of its literals. To do so, it applies
successively the cancellation rule between the conflict and the reason for the
propagation of one of its literals (“LCM” denotes the least common multiple):

αl +
∑n

i=1 αili ≥ δ βl̄ +
∑n

i=1 βili ≥ δ′ μα = νβ = LCM(α, β)
(canc.)∑n

i=1(μαi + νβi)li ≥ μδ + νδ′ − μα

To make sure that an assertive constraint will be eventually derived, the con-
straint produced by this operation has to be conflictual, which is not guaranteed
by the cancellation rule. To preserve the conflict, one can take advantage of the
fact that the slack is subadditive: the slack of the constraint obtained by apply-
ing the cancellation between two constraints is at most equal to the sum of the
slacks of these constraints. Whenever the sum of both slacks is not negative, the
constraint may not be conflictual, and the weakening and saturation rules are
applied until the slack of the reason becomes low enough to ensure the conflict
to be preserved (only literals that are not falsified may be weakened away).

αl +
∑n

i=1 αili ≥ δ
(weakening)∑n

i=1 αili ≥ δ − α

∑n
i=1 αili ≥ δ

(saturation)∑n
i=1 min(δ, αi)li ≥ δ

Example 2 (Example 1 cont’d). As 5a + 4b + c + d ≥ 6 is conflicting and b̄ was
propagated by 6b̄+6c+4e+f +g +h ≥ 7, the cancellation rule must be applied
between these two constraints to eliminate b. To do so, the conflict side (i.e., the
first constraint) has to be multiplied by 3 and the reason side (i.e., the second
constraint) by 2, giving slack −3 and 4, respectively. As the sum of these values
is equal to 1, the resulting constraint is not guaranteed to be conflicting. Thus,
the reason is weakened on g and h and saturated to get 5b̄ + 5c + 4e + f ≥ 5,
which has slack 1. To cancel b out, this constraint is multiplied by 4 and the
conflict by 5, giving 25a + 25c + 16e + 5d + 4f ≥ 30, which has slack −1.
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This approach has several drawbacks. Observe in Example 2 the growth of the
coefficients in just one derivation step. In practice, there are many such steps dur-
ing conflict analysis, and the learned constraints will be reused later on, so that
coefficients will continue to grow, requiring the use of arbitrary precision arith-
metic. Moreover, after each weakening operation, the LCM of the coefficients
must be recomputed to estimate the slack, and other literals to be weakened
must be found. The cost of these operations motivated the development of alter-
native proof systems, such as those weakening the derived constraints to infer
only cardinality constraints [1], or those based on the division rule.

2.2 Division Based Solvers

To limit the growth of the coefficients during conflict analysis, RoundingSat [7]
introduced an aggressive use of the weakening and division rules.

∑n
i=1 αili ≥ δ r > 0

(division)∑n
i=1�αi

r �li ≥ � δ
r �

When a conflict occurs, both the conflict and the reason are weakened so as to
remove all literals not falsified by the current assignment and having a coefficient
not divisible by the weight of the literal used as pivot for the cancellation, before
being divided by this weight. This ensures that the pivot has a weight equal to 1,
which guarantees that the result of the cancellation will be conflictual [3].

Example 3 (Example 2 cont’d). The weakening operation is applied on both the
conflict 5a + 4b + c + d ≥ 6 and the reason 6b̄ + 6c + 4e + f + g + h ≥ 7, yielding
4b + c + d ≥ 1 and 6b̄ + 6c + 4e ≥ 4, respectively. Both constraints are then
divided by the coefficient of the pivot (4 and 6, respectively), giving b+c+d ≥ 1
and b̄ + c + e ≥ 1. Applying the cancellation rule on these two constraints gives
2c + d + e ≥ 1, which is equivalent to the clause c + d + e ≥ 1.

The RoundingSat approach succeeds in keeping coefficients small, and its
aggressive weakening allows to find the literals to remove efficiently. However,
some constraints inferred by this solver may be weaker than those inferred with
generalized resolution (compare the constraints derived in Examples 2 and 3).

3 Weakening Strategies

As explained before, the weakening rule is mandatory in PB solvers to main-
tain the inferred constraints conflictual. In the following, we introduce different
strategies for applying this rule in PB solvers, designed towards finding a tradeoff
between the strength of the inferred constraints and their size.
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3.1 Weakening Ineffective Literals for Shorter Constraints

Within CDCL solvers, one captures the reason for a conflict being encountered.
A conflict occurs when a variable is propagated to both 0 and 1. Intuitively,
understanding why such a conflict occurred amounts to understanding why these
values have been propagated. In the PB case, a constraint may be conflicting
(resp. propagate literals) even if it contains literals that are unassigned or already
satisfied (see Example 1). However, conflicts (resp. propagations) depend only on
falsified literals (the slack of a constraint changes only when one of its literals is
falsified). Literals that are not falsified are thus ineffective: they do not play a
role in the conflict (resp. propagation), and may thus be weakened away. We can
go even further: when most literals are falsified, weakening some of them may
still preserve the conflict (resp. propagation), as shown in the following example.

Example 4. Let ρ be the partial assignment such that ρ(a) = ρ(c) = ρ(f) = 0 (all
other variables are unassigned). Under ρ, 3ā+3b̄+c+d+e ≥ 6 has slack 2, so that
literal b̄ is propagated to 1. This propagation still holds after weakening away
ā, d and e, giving after saturation b̄ + c ≥ 1. Similarly, consider the conflicting
constraint 2a+b+c+f ≥ 2. After the propagation of b̄, weakening the constraint
on c and applying saturation produces a + b + f ≥ 1, which is still conflicting.
In both cases, the slack allows to detect whether a literal can be weakened.

Observe that the constraints obtained are shorter, but are always clauses.
This guarantees that the resulting constraint will be conflictual, but, if this
operation is performed on both sides, only clauses can be inferred, and the proof
system boils down to resolution, as in SATIRE [21] or Sat4j-Resolution [11].

Example 5 (Example 4 cont’d). If a resolution step is performed between the
weaker constraints b̄ + c ≥ 1 and a + b + f ≥ 1, the clause a + c + f ≥ 1 is
inferred. However, if only one side is weakened, for example the conflict side, the
cancellation between 3ā + 3b̄ + c + d + e ≥ 6 and a + b + f ≥ 1 produces the
constraint 3f + c + d + e ≥ 3. Observe that, when the weakening operation is
applied at the next step, the stronger clause c+f ≥ 1 is inferred after saturation.

3.2 Partial Weakening for Stronger Constraints

To avoid the inference of constraints that are too weak to preserve the strength
of the proof system, an interesting option is to use partial weakening. Indeed,
the weakening rule, as described above, can be generalized as follows.

αl +
∑n

i=1 αili ≥ δ ε ∈ N 0 < ε ≤ α
(partial weakening)

(α − ε)l +
∑n

i=1 αili ≥ δ − ε

This rule is rarely used in practice by PB solvers, and the weakening rule
(i.e., the case when ε = α) is often preferred. However, partial weakening gives
more freedom when it comes to inferring new constraints, and allows to infer
stronger constraints. We implemented a variant of RoundingSat which uses this
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rule as follows. Before cancelling a literal out during conflict analysis, all literals
that are not currently falsified and have a coefficient not divisible by the weight
of the pivot are partially weakened (instead of simply weakened). This operation
is applied so that the resulting coefficient becomes a multiple of the weight of
the pivot. This approach preserves the nice properties of RoundingSat (see [7,
Proposition 3.1 and Corollary 3.2]), and in particular the fact that the produced
constraint will be conflictual (the coefficient of the pivot will be equal to 1). It
also allows to infer stronger constraints, as illustrated by the following example.

Example 6. Let ρ be the partial assignment defined by ρ(a) = 1 and ρ(b) =
ρ(c) = ρ(d) = ρ(e) = 0 (all other variables are unassigned). Consider the (con-
flicting) constraint 8a + 7b + 7c + 2d + 2e + f ≥ 11, where b is the literal to be
cancelled out. The above rule yields 7a + 7b + 7c + 2d + 2e ≥ 9 which, divided
by 7, gives a + b + c + d + e ≥ 2. This constraint is stronger than the clause
b + c + d + e ≥ 1 inferred by RoundingSat, which weakens away the literal a.

This variant has several advantages. First, its cost is comparable to that of
RoundingSat : checking whether a coefficient is divisible by the weight of the
pivot is computed with the remainder of the division of the former by the latter,
which is the amount by which the literal must be partially weakened. Second, the
constraints it infers may be stronger than that of RoundingSat. Yet, this strategy
does not reduce the size of the constraints as much as the weakening of ineffective
literals. To get the best of both worlds, we introduce tradeoff strategies.

3.3 Towards a Tradeoff

The previous sections showed that the weakening operation may help finding
short explanations for conflicts, but may also infer weaker constraints. Several
observations may guide us towards tradeoff applications of the weakening rule.

First, the key property motivating RoundingSat to round the coefficient of
the pivot to 1 does not require it to be equal to 1 on both sides of the cancellation:
actually, having a coefficient equal to 1 on only one side is enough to guarantee
the resulting constraint to be conflicting [3]. Weakening only the reason or the
conflict is thus enough to preserve this property, while maintaining coefficients
low enough, as only one side of the cancellation may need to be multiplied.

Second, one may apply the weakening rule in a different manner to keep
coefficients small so as to speed up arithmetic operations. A possible approach
is the following, that we call Multiply and Weaken. Let r be the coefficient of the
pivot used in the cancellation appearing in the reason and c that in the conflict.
Find two values μ and ν such that (ν − 1) · r < μ · c ≤ ν · r (which can be done
using Euclidean division). Then, multiply the reason by ν, and apply weakening
operations on this constraint so as to reduce the coefficient of the pivot to μ · c.
Note that, in order to preserve the propagation, this coefficient cannot be weak-
ened directly. Instead, ineffective literals (as described above) are successively
weakened away so that the saturation rule produces the expected reduction on
the coefficient. Since this operation does not guarantee to preserve the conflict,
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an additional weakening operation has to be performed, as for generalized reso-
lution. Note that this approach may also derive clauses, even though this is not
always the case, as shown in the following example.

Example 7. Let ρ be the partial assignment such that ρ(a) = ρ(d) = 0 and
ρ(e) = 1 (all other variables are unassigned). Under ρ the constraint 5a + 5b +
3c + 2d + e ≥ 6 propagates b. The constraint 3b̄ + 2a + 2d + ē ≥ 5 becomes
thus falsified. Instead of using the LCM of 3 and 5 (i.e., 15), the reason of b is
weakened on e and partially on c to get, after saturation, 3a + 3b + 2d + c ≥ 3.
The cancellation produces then 5a + 4d + c + ē ≥ 5.

4 Experimental Results

This section presents an empirical evaluation of the various strategies introduced
in this paper. To make sure that their comparison only takes care of the under-
lying proof systems, and not of implementation details, we integrated all of them
in Sat4j [11] (including RoundingSat proof system). The source code is available
on Sat4j repository1.

All experiments presented in this section have been run on a cluster equiped
with quadcore bi-processors Intel XEON E5-5637 v4 (3.5 GHz) and 128 GB of
memory. The time limit was set to 1200 seconds and the memory limit to 32 GB.
The whole set of decision benchmarks containing “small” integers used in the
PB competitions since the first edition [12] was considered as input.
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Fig. 1. Cactus plot of the different strategies implemented in Sat4j. For more readabil-
ity, the first 3,500 easy instances are cut out.

As shown by Fig. 1, strategies applying heavily the weakening rule perform
better than generalized resolution. Yet, among these strategies, none of them
is strictly better than the others. In particular, the Virtual Best Solver (VBS),

1 https://gitlab.ow2.org/sat4j/sat4j/tree/weakening-investigations.

https://gitlab.ow2.org/sat4j/sat4j/tree/weakening-investigations
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obtained by choosing the best solver for each of the instances, performs clearly
better than any individual strategy. Each of these individual strategies does not
have an important contribution to the VBS, since the both, conflict and reason
variants are very similar. However, if we consider the VBS of the different “main”
strategies, and in particular that of RS, Partial RS and Weaken Ineffective (also
represented on the cactus plot), their contributions become clearer: Generalized
Resolution contributes to 6 instances, RS to 13 instances, Partial RS to 16
instances, and Weaken Ineffective to 83 instances. Even though Multiply and
Weaken does not solve instances that are not solved by any other solver, it
solves 13 instances more than 1 second faster than any other approach (5 among
them are faster solved by more than 1 min). This suggests that choosing the
right weakening strategy plays a key role in the performance of the solver.

The strategies showing the best and most robust performance are those
applying the RoundingSat (RS ) approach on both sides of the cancellation rule,
as they widely take advantage of the inference power of the division rule. How-
ever, applying partial weakening instead of weakening gives better results, thanks
to the stronger constraints it infers. In particular, RS (both) solves 3895 instances
and Partial RS (both) solves 3903 instances (with 3845 common instances). The
performance of Partial RS (both) is evidenced on the tsp family, especially on
satisfiable instances: it solves 22 more such instances than RS (both), i.e., 35
instances. For unsatisfiable instances, no common instances are solved: Partial
RS (both) solves 7 instances, while RS (both) solves 5 distinct instances. In both
cases, Partial RS (both) performs much more assignments per second than RS
(both), allowing it to go further in the search space within the time limit.

Surprisingly, another strategy exhibiting good performance consists in weak-
ening ineffective literals on the conflict side at each cancellation (it contributes
to 18 instances in the VBS). Similarly, RoundingSat strategies perform better
when applied on the conflict side rather than the reason side. Since the early
development of cutting planes based solvers, weakening has only been applied on
the reason side (except for RoundingSat [7], which applies it on both sides). Our
experiments show that it may be preferable to apply it only on the conflict side:
literals introduced there when cancelling may still be weakened away later on.

The gain we observe between the different strategies has several plausible
explanations. First, the solver does not explore the same search space from one
strategy to another, and it may thus learn completely different constraints. In
particular, they may be stronger or weaker, and this impacts the size of the proof
built by the solver. Second, these constraints may be based on distinct literals,
which may have side effects on the VSIDS heuristic [15]: different literals will be
“bumped” during conflict analysis. Such side effects are hard to assess, due to
the tight link between the heuristic and the other components of the solver.

5 Conclusion

In this paper, we introduced various strategies for applying the weakening rule in
PB solvers. We showed that each of them may improve the runtime of the solver,
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but not on all benchmarks. Contrary to the approaches implemented in most
PB solvers, the strategies consisting in applying an aggressive weakening only on
the conflict side provide surprisingly good results. However, approaches based on
RoundingSat perform better, but our experiments showed that partial weakening
is preferable in this context. This suggests that weakening operations should be
guided by the strength of the constraints to infer. To do so, a perspective for
further research consists in searching for better tradeoffs in this direction.
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Abstract. The last decade has witnessed remarkable improvements in
the analysis of inconsistent formulas, namely in the case of Boolean Sat-
isfiability (SAT) formulas. However, these successes have been restricted
to monotonic logics. Recent work proposed the notion of strong incon-
sistency for a number of non-monotonic logics, including Answer Set
Programming (ASP). This paper shows how algorithms for reasoning
about inconsistency in monotonic logics can be extended to the case
of ASP programs, in the concrete case of strong inconsistency. Initial
experimental results illustrate the potential of the proposed approach.

1 Introduction

The last decade and a half witnessed a remarkable evolution in algorithms for
reasoning about inconsistency. This is the case with algorithms for the extraction
and enumeration of minimal unsatisfiable subsets (MUSes) [4–6,8,9,33,34,37,42]
and minimal correction subsets (MCSes) [3,6,21,26,27,36,39,40,45], but also
algorithms for maximum satisfiability (MaxSAT) [1,2,18,35,41]. This work was
motivated by earlier important advances [7,17,28,29,32,48]. Although most of
this work was proposed in the context of propositional formulas it is also the
case that most of the algorithms are amenable to generalization for different
fragments of First-Order Logic (FOL). These algorithms specifically addressed
monotonic logics, with propositional logic as a concrete example.

In the case of non-monotonic logics, minimal inconsistency is uninterest-
ing [16], because of non-monotonicity. Recent work proposed the concept of
strong inconsistency for non-monotonic logics [15,16], which enabled demon-
strating that well-known properties of inconsistent sets in monotonic logics also
apply in the case of strong inconsistency, with a reference example being the
minimal hitting set relationship between minimal inconsistent subsets and min-
imal correction subsets [46]. Nevertheless, a limitation of this earlier work is
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that the algorithms proposed aim at being illustrative, consisting of simple set
enumeration approaches, known not to scale in practice [34].

This paper changes this state of affairs. Concretely, the paper proposes novel
simple insights, which enable any algorithm for reasoning about inconsistency
in the monotonic cases, to also be applicable to reasoning about strong inconsis-
tency in the non-monotonic cases. The paper demonstrates the proposed ideas
in the concrete setting of Answer Set Programming (ASP) [14,22], but these
can be applied in other settings provided mild conditions hold. The significance
of being able to reason efficiently about (strong) inconsistency in ASP should
be highlighted. Whereas SAT reasoners represent a remarkable (and unique)
problem solving technology, ASP blends efficient problem solving (by exploiting
the technologies that are the hallmark of SAT solvers) with a well-established
and widely used knowledge representation paradigm. The proposed algorithms
enable new applications of ASP based on reasoning about (strong) inconsistency.

2 Preliminaries

Boolean Satisfiability. We consider definitions and notation standard in Boolean
Satisfiability (SAT) [10]. Concretely, we consider propositional formulas in
conjunctive normal form (CNF), defined as a conjunction, or set, of clauses
F = {c1, ..., cm} over a set of variables V (F) = {x1, ..., xn} where a clause is a
disjunction of literals, and a literal is a variable x or its negation ¬x. An inter-
pretation is a mapping µ: V (F) → {0, 1}. If µ satisfies F , it is referred to as a
model of F . F � G means that all the models of F are models of G. A minimal
(resp. maximal) model is such that the set of variables assigned value 1 (resp. 0)
is irreducible. A formula is satisfiable (F � ⊥) if it has a model; and otherwise
unsatisfiable (F � ⊥). In the latter case, the following definitions apply:

Definition 1 (MUS/MCS). M ⊆ F is a minimal unsatisfiable subset (MUS)
if and only if M � ⊥ and for all M′

� M, M′
� ⊥. C ⊆ F is a minimal

correction subset (MCS) if and only if (F\C) � ⊥ and for all C′
� C, F\C′ � ⊥.

MUSes are minimal explanations of unsatisfiability, while MCSes are irre-
ducible sets of clauses whose removal renders satisfiability. The complement of
an MCS is a maximal satisfiable subset (MSS). MUSes and MCSes are hitting set
duals: Every MCS is a minimal hitting set of all MUSes and vice versa [11,46].

Example 1. Let Fex = {(¬x1), (x1), (x1 ∨x2), (¬x2)}. Fex is unsatisfiable. It has
two MUSes: M1 = {(x1), (¬x1)}, M2 = {(¬x1), (x1 ∨ x2), (¬x2)}; and three
MCSes: C1 = {(¬x1)}, C2 = {(x1), (x1 ∨ x2)}, C3 = {(x1), (¬x2)}.

Minimal Sets over a Monotone Predicate. Several problems in propositional
logic can be reduced to computing a minimal set over a monotone predicate
(MSMP) [37,38]1. In this setting, a predicate p: 2R → {0, 1}, defined over a

1 MSMP was proposed in [37,38], but it was inspired by earlier work [12,13].
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reference set R, is monotone if whenever p(R0) holds, then p(R1) also holds,
with R0 ⊆ R1 ⊆ R. M ⊆ R is a minimal set over a predicate p if p(M) holds
and, for all M′

� M, p(M′) does not hold. As an example, given F � ⊥,
by setting R � F , the MUSes of F are the minimal sets over the monotone
predicate p(W) � ¬SAT(W), with W ⊆ R. The MCSes of F are the minimal
sets over p(W) � SAT(R\W), with W ⊆ R.

Answer Set Programming & Strong Inconsistency. We review basic concepts in
ASP. A more detailed account can be found in [14,22].

A (normal) logic program P = {r1, ..., rn} is a finite set of rules of the fol-
lowing form: a ← b1, ..., bm, not cm+1, ..., not cn, where a, bi and ci are atoms.
A literal is an atom or its default negation not a. Extended logic programs
may include classical negation (¬). For a rule r, body(r) denotes the literals
b1, ..., bm, not cm+1, ..., not cn and head(r) denotes the literal a. We write B+(r)
for b1, ..., bm and B−(r) for cm+1, ..., cn. A rule is a fact if it has an empty body.
Further, we allow choice rules of the form n ≤ {a1, ..., ak}, with n ≥ 0. A
program is ground if it does not contain any variables. A ground instance of a
program P , denoted grd(P ), is a ground program obtained by substituting the
variables of P by all constants from its Herbrand universe.

The semantics of ASP programs can be defined via a reduct [25]. A set I of
ground atoms is a model of a program P if head(r) ∈ I whenever B+(r) ⊆ I and
B−(r)∩I = ∅ for every r ∈ grd(P ). The reduct of P w.r.t. the set I, denoted P I ,
is defined as P I = {head(r) ← B+(r) | r ∈ grd(P ), I ∩ B−(r) = ∅}. The set I is
an answer set of P if I is a minimal model of P I . The inclusion of choice rule
n ≤ {a1, ..., ak} guarantees that any answer set contains at least n atoms from
{a1, ..., ak}. A program P is consistent if it has at least one consistent answer
set; otherwise, P is inconsistent.

This paper focuses on the analysis of inconsistent ASP programs. Through-
out, we will consider that programs are partitioned into two subsets: P = B∪S,
where B denotes background knowledge, assumed to be consistent and which
cannot be relaxed, and S denotes the set of rules that can be dropped to achieve
consistency. In contrast to propositional logic, logical entailment is not mono-
tonic in ASP. Hence, supersets of an inconsistent program are not necessarily
inconsistent, and a subset of a consistent program may be inconsistent. This
way, MUSes and MCSes as defined for propositional logic do not capture their
intended meaning and properties. To overcome this drawback, the notion of
strong inconsistency [15,16]2 was recently proposed: Given an inconsistent pro-
gram P = B∪S, P ′ = B∪S′, with S′ ⊆ S, is strongly P -inconsistent if for all S′′,
with S′ ⊆ S′′ ⊆ S, B ∪ S′′ is inconsistent. In other words, strong inconsistency
denotes that all supersets (up to P ) of a given subprogram are inconsistent. Min-
imal explanations and corrections of inconsistent ASP programs can be defined
in terms of strong inconsistency, as follows:

Definition 2 (MSIS/MSICS). Given an inconsistent program P = B ∪ S,
the subset M ⊆ S is a minimal strongly P -inconsistent subset (MSIS) iff B ∪
2 This notion was defined for arbitrary non-monotonic logics. We show it for ASP.



Reasoning About Strong Inconsistency in ASP 335

M is strongly P -inconsistent and, for all M ′
� M , B ∪ M ′ is not strongly

P -inconsistent. C ⊆ S is a minimal strong P -inconsistency correction subset
(MSICS) iff B ∪ (S\C) is not strongly P -inconsistent and, for all C ′

� C,
B ∪ (S\C ′) is strongly P -inconsistent.

The complement of an MSICS is a maximal consistent subset. Besides, every
MSIS is a minimal hitting set of the set of all MSICSes and vice versa [15,16].

Example 2. Consider the inconsistent program Pex = Bex ∪ Sex, with Bex = ∅
and Sex = {r1 : a ← not a, not b., r2 : b ← not a., r3 : ¬b.}. There are
two MSISes: M1 = {r1, r3}, M2 = {r2, r3}; and two MSICSes: C1 = {r1, r2},
C2 = {r3}. Notice that although {r1} is inconsistent, it is not strongly Pex-
inconsistent, since {r1, r2} is consistent (with the only answer set {b}).

Related Work. Debugging ASP programs has attracted a large body of research
(see [20] for a survey). Systems as spock [24] or Ouroboros [43,44], based on
meta-programming, enable pinpointing errors causing inconsistency, as unsup-
ported atoms or unsatisfied rules. On the other hand, DWASP [19] allows for inter-
actively debugging ASP programs by exploiting unsatisfiable cores. In contrast,
our goal is computing MSISes and MSICSes, in the case of strong inconsistency.
Our work is closely related to [30,31], which extended a number of algorithms for
MSSes in SAT to maximal consistent subsets in ASP (and so MSICSes). Herein,
we focus on computing MSISes as well, and on enumerating both kinds of sets. To
our best knowledge, the only proposed approach for computing MSISes [15,16]
relies on exhaustive set enumeration and was not evaluated empirically.

3 Reasoning About Strongly Inconsistent ASP Programs

3.1 Strong Inconsistency and MSMP

Strong inconsistency exhibits a monotonicity property, that all the supersets
(up to P ) of a strongly P -inconsistent program are strongly P -inconsistent too:

Proposition 1. Let P = B ∪ S, and PU = B ∪ U , with U ⊆ S, be strongly P -
inconsistent. Then, for all U ⊆ U ′ ⊆ S, PU ′ = B∪U ′ is strongly P -inconsistent.

Proof. Since PU is strongly P -inconsistent, for all U ′ with U ⊆ U ′ ⊆ S, B ∪ U ′

is inconsistent. Hence, for any superset U ′ with U ⊆ U ′ ⊆ S, it holds that for
all U ′ ⊆ U ′′ ⊆ S, B ∪ U ′′ is inconsistent. So, PU ′ is strongly P -inconsistent. �

Throughout, for a given program P = B ∪ S, and R ⊆ S, SAT+(B,S,R)
indicates whether there is a superset of R (up to S) that together with B is
consistent, i.e. it is true iff there exists R′, with R ⊆ R′ ⊆ S, such that P ′ =
B ∪ R′ is consistent. Noticeably, SAT+(B,S,R) is false iff B ∪ R is strongly
P -inconsistent. We show that computing an MSIS is an instance of MSMP.

Proposition 2. Computing an MSIS is an instance of the MSMP problem.
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Algorithm 1: Deletion-based minimal set computation
Input: p: Monotone predicate, R: Reference set
Output: M: Minimal set

1 M ← R; // M is over-approximation

2 foreach u ∈ M do // Inv: p(M)
3 if p(M \ {u}) then // Do we need u?
4 M ← M \ {u}; // If not, drop it

5 return M; // Final M is a minimal set

Proof. Let p(W) � ¬SAT+(B,S,W) with W ⊆ R, and R � S. We prove that p
is monotone and that any minimal set over p is an MSIS of P = B ∪ S.
Monotonicity : If p(W) holds, B∪W is strongly P -inconsistent. By Proposition 1,
for all W ′, with W ⊆ W ′ ⊆ S, B∪W ′ is strongly P -inconsistent, so p(W ′) holds.
Correctness: Let M be a minimal set for which p(M) holds, i.e. B∪M is strongly
P -inconsistent. Since M is minimal, for any M′

� M, p(M′) does not hold, i.e.
B ∪ M′ is not strongly P -inconsistent. Thus, by Definition 2, M is an MSIS. �

Computing an MSICS can also be reduced to MSMP. The proof is analogous,
by defining p(W) � SAT+(B,S, S\W) with W ⊆ R, and R � S.

3.2 Computing Minimal Explanations and Corrections

The reductions above enable computing MSISes and MSICSes by using any
algorithm for MSMP and an oracle implementing SAT+(B,S,R).

Extracting a Single Minimal Set. Algorithms for computing a single minimal
set in MSMP include Deletion [17], Progression [37] or QuickXplain [32], among
others [8]. Herein we focus on the deletion-based approach, shown in Algorithm 1.

Given an inconsistent program P = B∪S, by setting the predicate to p(W) �
¬SAT+(B,S,W) with W ⊆ R, and R � S, Algorithm 1 proceeds as follows:
Starting with M = R, the algorithm iteratively picks a rule u ∈ M and tests
whether B ∪ (M\{u}) is strongly P -inconsistent. If it is, u is removed from M;
otherwise u is kept in M. After considering all the rules in R, M is an MSIS.

An MSICS of P can be computed using basic linear search (BLS) [6,36]:
Starting with S = ∅, iteratively pick a rule in u ∈ S\S and test whether
SAT+(B,S,S∪{u}) holds. If it does, B∪(S∪{u}) is not strongly P -inconsistent,
and u is added to S. On termination, the set of rules not added to S is
an MSICS (and S is a maximal consistent subset). Besides, if the oracle for
SAT+(B,S,S ∪{u}) returns a witness after positive answers, all the elements in
S satisfied can be added to S, saving some predicate tests. BLS is equivalent to
Algorithm 1 using the predicate p(W) � SAT+(B,S, S\W), with W ⊆ R, and
R � S.
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Algorithm 2: Minimal set enumeration
Input: P = B ∪ S: Inconsistent ASP program
Output: MSISes and MSICSes of P

1 I ← {pi | ri ∈ S};
2 H ← ∅; // Block MSISes and MSICSes

3 while true do
4 (st,MxM) ← ComputeMaximalModel(H);
5 if not st then return
6 R ← {ri | pi ∈ MxM}; // Pick selected rules

7 if not SAT+(B,S,R) then
8 M ← ComputeMSIS(B,S,R); // Extract MSIS from R
9 ReportMSIS(M);

10 b ← {¬pi | ri ∈ M}; // Block the MSIS

11 else
12 ReportMSICS(S \ R);
13 b ← {pi | pi ∈ I \ MxM}; // Block the MSICS

14 H ← H ∪ {b};

Enumerating Minimal Sets. MARCO [33] is a successful approach for enumerat-
ing MUSes and MCSes of CNF formulas. This algorithm exploits the hitting set
duality between MUSes and MCSes. Since this relationship also holds between
MSISes and MSICSes, MARCO can be adapted to ASP, as shown in Algorithm 2.

For a given inconsistent program P = B ∪ S, the algorithm associates a
propositional variable pi with each rule ri ∈ S, and maintains a CNF formula H
defined on these variables. The formula H, initially empty, serves to subsequently
avoid considering any superset (resp. subset) of previously found MSISes (resp.
MSICSes). Iteratively, a maximal model MxM of H is computed, which induces
the set of rules R whose associated variables are set to 1 in MxM . Then, if the
program B∪R is strongly P -inconsistent (i.e. if SAT+(B,S,R) does not hold), an
MSIS M ⊆ R of P is extracted (e.g. by using Algorithm 1, with R � R), whose
supersets are blocked by adding a negative clause on its associated variables to
H. Otherwise, R is a maximal consistent subset, and so S\R is an MSICS of P ,
whose subsets are blocked by adding a positive clause on its associated variables
to H. The process is repeated until H becomes unsatisfiable, with the guarantee
that all MSISes and MSICSes of P have been computed.

Algorithm 2 is organized to give (heuristic) preference to finding MSISes
quickly. We refer to it as eMax. A variant giving preference to finding MSICSes
can be easily obtained, by computing minimal models of H (instead of maximal
ones) and extracting an MSICS whenever SAT+(B,S,R) holds. This variant is
referred to as eMin.

Implementing SAT+(B,S,R). It remains to discuss the way SAT+(B,S,R) can
be implemented in ASP. We invoke an ASP solver on an modified program which
includes selector atoms and choice rules. This approach was used in [30,31] to
compute maximal consistent subsets. For a set of atoms A, choice(A) denotes
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the rule 0 ≤ {a1, .., ak}, with ai ∈ A. Modern ASP solvers allow choice rules,
and their inclusion does not increase the complexity beyond NP [47].

For a given program P = B ∪ S, we first build the program Ps = B ∪ Ss,
where Ss is obtained from S as follows: for each rule ri ∈ S we introduce a fresh
atom si, and add the rule head(ri) ← body(ri), si to Ss. Note that if the fact si
is added to Ps, the rule ri is activated, and relaxed otherwise. For a given subset
R ⊆ S, we use s(R) to denote the set of selector atoms for rules in R in Ss, i.e.
s(R) = {si | ri ∈ R}. Then, the test SAT+(B,S,R) is solved by invoking an ASP
solver on the program P ′ = Ps ∪ ∪s∈s(R){s} ∪ choice(s(S\R)). Notice that each
rule r ∈ R is active in P ′. Besides, the inclusion of the rule choice(s(S\R)) allows
for activating any (or none) of the rules in S\R when looking for answer sets of
P ′. Hence, P ′ is consistent iff the program B ∪R is not strongly P -inconsistent.

Example 3. Let P = B ∪ S be the program in Example 2, and consider the
test SAT+(B,S, {r1}). We first build Ps = {a ← not a, not b, s1., b ← not a, s2.,
¬b ← s3.}. Then, we define P ′ = Ps ∪ {s1.} ∪ choice({s2, s3}). P ′ is consistent
(with the unique answer set {b, s1, s2}), indicating that {r1} is not strongly
P -inconsistent.

4 Preliminary Results

This section reports an initial experimental assessment of the proposed
approaches. We implemented a prototype in Python 2.7, interfacing the ASP
solver clingo [23] (v. 5.4.0), and ran a series of experiments on a Linux
machine (2.26 GHz, 128 GB). Each process was limited to 3600 s and 4 GB.
Below, ComputeMSIS (resp. ComputeMSICS) is Algorithm 1 using the predicate
shown in Sect. 3 for computing an MSIS (resp. MSICS). Besides, witnesses are
used in the extraction of MSICSes as an optimization, as described earlier. On
the other hand, eMax corresponds to Algorithm 2, giving preference to find-
ing MSISes quickly, and eMin is the variant that gives preference to MSIC-
Ses. In these cases, maximal and minimal models are computed using the tool
mcsls [36]3.

Similarly to earlier work [31], we built a number of instances. We considered
three problem domains (common in ASP competitions): Graceful graphs, Knight
tour with holes and Solitaire. Each instance is an inconsistent ASP program
P = B ∪ S, where B contains the rules encoding the problem domain (assumed
correct) and S contains the facts specific for each instance. Given the complexity
of the tasks to solve, the instances are reasonably small. The benchmarks are as
follows: 1) Graceful graphs: Given a graph (V,E) the goal is to label its vertices
with distinct integers in the range 0..|E| so that each edge is labeled with the
absolute difference between the labels of its vertices and all edge labels are
distinct. S contains the facts indicating the edges, so |S| = |E|. We considered
values of |V | ∈ {10, 20} and |E| ∈ {10, 20, 50}. 2) Knight tour with holes: Given

3 Computing a minimal/maximal model can be reduced to computing an MCS. For
this purpose, several alternatives can be used (e.g. [3,36,39,40]).
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Fig. 1. Running times

Fig. 2. Number of reported sets (eMin vs eMax)

an N ×N board with H holes, the problem asks if a knight chess piece can visit
all non-hole positions of the boards exactly once returning to the initial position.
S consists of facts with the positions of holes, so |S| = H. We considered values
of N ∈ {7, 8} and H ∈ {10, 20, 30}. 3) Solitaire: Given a 7 × 7 board, with 2 × 2
corners removed (i.e. with 33 squares), an initial configuration is specified by
facts empty(L) and full(L), indicating if each square L is empty or contains
a stone. A stone can be moved by two squares if it jumps over another stone,
which is removed. The goal is to perform T steps. S contains the facts empty(L)
and full(L), so |S| = 33. We considered values of T ∈ {8, 10, 12, 14, 16, 18}. For
each configuration, we built 20 random instances, making 360 in all.
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The results are summarized in Fig. 1. Figure 1a shows, for each instance, the
running times needed for computing a single MSIS and an MSICS. ComputeMSIS
and ComputeMSICS solved, respectively, 295 and 317 instances. The results vary
across the set of instances, although in more cases computing an MSICS was per-
formed faster than computing an MSIS. Figure 1b compares eMax and eMin. In
this case, complete enumeration was achieved for 172 and 167 instances respec-
tively. However, as the plot indicates, there is no clear winner.

Figure 2 shows the number of reported minimal sets over the whole bench-
mark set. By the time limit eMax reports 9008 MSISes and 12081 MSICSes,
whereas eMin computes 5684 MSISes and 20057 MSICSes. As shown in Fig. 2a,
eMax is much more efficient at computing MSISes, whereas eMin finds MSICSes
faster (see Fig. 2b). Thus, each variant is effective at its intended purpose. These
results suggest that a combination may be a good option for obtaining both sets
quickly.

5 Conclusions

Recent work proposed the concept of strong inconsistency [15,16], which pro-
vides a way of reasoning about inconsistency in non-monotonic logics. This paper
shows how the large body of work for reasoning about (minimal) inconsistency
in monotonic logics, originally developed in the context of SAT, can be readily
applied to the case of reasoning about strong inconsistency in non-monotonic
logics. Furthermore, the paper applies these insights to the case of ASP. Exper-
imental results illustrate the scope and applicability of the proposed approach.
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Abstract. Treewidth is one of the most prominent structural parame-
ters. While numerous theoretical results establish tractability under the
assumption of fixed treewidth, the practical success of exploiting this
parameter is far behind what theoretical runtime bounds have promised.
In particular, a naive application of dynamic programming (DP) on tree
decompositions (TDs) suffers already from instances of medium width.
In this paper, we present several measures to advance this paradigm
towards general applicability in practice: We present nested DP, where
different levels of abstractions are used to (recursively) compute TDs
of a given instance. Further, we integrate the concept of hybrid solv-
ing, where subproblems hidden by the abstraction are solved by classical
search-based solvers, which leads to an interleaving of parameterized and
classical solving. Finally, we provide nested DP algorithms and imple-
mentations relying on database technology for variants and extensions of
Boolean satisfiability. Experiments indicate that the advancements are
promising.

1 Introduction

Treewidth [43] is a prominent structural parameter, originating from graph the-
ory and is well-studied in the area of parameterized complexity [6,18,40]. For
several problems hard for complexity class NP, there are results [12] showing so-
called (fixed-parameter) tractability, which indicates a fixed-parameter tractable
(FPT) algorithm running in polynomial time assuming that a given parameter
(e.g., treewidth) is fixed. Practical implementations exploiting treewidth include
generic frameworks [3,5,36], but also dedicated solvers that deal with problems
ranging from (counting variants of) Boolean satisfiability (Sat) [25], over gener-
alizations thereof [9,10] based on Quantified Boolean Formulas (QBFs), to for-
malisms relevant to knowledge representation and reasoning [22]. For Sat, these
solvers are of particular interest as there is a well-known correspondence between
treewidth and resolution width [2]. QBFs extend Boolean logic by explicit uni-
versal and existential quantification over variables, which has applications in
formal verification, synthesis, and AI problems such as planning [28]. Some of
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these parameterized solvers are particularly efficient for certain fragments [37],
and even successfully participated in problem-specific competitions [42].

Most of these systems are based on dynamic programming (DP), where a tree
decomposition (TD) is traversed in a post-order, i.e., from the leaves towards the
root, and thereby for each TD node tables are computed. The size of these tables
(and thus the computational efforts required) are bounded by a function in the
treewidth of the instance. Although dedicated competitions [15] for treewidth
advanced the state-of-the-art for efficiently computing treewidth and TDs [1,47],
these DP approaches reach their limits when instances have higher treewidth; a
situation which can even occur in structured real-world instances [38]. Neverthe-
less in the area of Boolean satisfiability, this approach proved to be successful
for counting problems, such as, e.g., (weighted) model counting [24,25,44] and
projected model counting [23].

To further increase the applicability of this paradigm, novel techniques are
required which (1) rely on different levels of abstraction of the instance at hand;
(2) treat subproblems originating in the abstraction by standard solvers when-
ever widths appear too high; and (3) use highly sophisticated data management
in order to store and process tables obtained by dynamic programming.

Contributions. Above aspects are treated as follows.

1. To tame the beast of high treewidth, we propose nested dynamic program-
ming, where only parts of an abstraction of a graph are decomposed. Then,
each TD node also needs to solve a subproblem residing in the graph, but
may involve vertices outside the abstraction. In turn, for solving such sub-
problems, the idea of nested DP is to subsequently repeat decomposing and
solving more fine-grained graph abstractions in a nested fashion. This results
not only in elegant DP algorithms, but also allows to deal with high treewidth.
While candidates for obtaining abstractions often originate naturally from the
problem, nested DP may require non-obvious sub-abstractions, for which we
present a generic solution.

2. To further improve the capability of handling high treewidth, we show how to
apply nested DP in the context of hybrid solving, where established, standard
solvers (e.g., Sat solvers) and caching are incorporated in nested DP such that
the best of two worlds are combined. Thereby, structured solving is applied
to parts of the problem instance subject to counting or enumeration, while
depending on results of subproblems. These subproblems (subject to search)
reside in the abstraction only, and are solved via standard solvers.

3. We implemented a system based on a recently published tool called dpdb [24]
for using database management systems (DBMS) to efficiently perform table
manipulation operations needed during DP. Our system uses and significantly
extends this tool in order to perform hybrid solving, thereby combining nested
DP and standard solvers. As a result, we use DBMS for efficiently implement-
ing the handling of tables needed by nested DP. Preliminary experiments
indicate that nested DP with hybrid solving can be fruitful.

We exemplify these ideas on the problem of Projected Model Counting (#∃Sat)
and discuss adaptions for other problems.
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Fig. 1. Graph G (left), a TD T of graph G (right).

2 Background

Projected Model Counting. We define Boolean formulas in the usual way,
cf., [28]. A literal is a Boolean variable x or its negation ¬x. A (CNF) formula ϕ
is a set of clauses interpreted as conjunction. A clause is a set of literals inter-
preted as disjunction. For a formula or clause X, we abbreviate by var(X) the
variables that occur in X. An assignment of ϕ is a mapping I : var(ϕ) → {0, 1}.
The formula ϕ[I] under assignment I is obtained by removing every clause c
from ϕ that contains a literal set to 1 by I, and removing from every remaining
clause of ϕ all literals set to 0 by I. An assignment I is satisfying if ϕ[I] = ∅.
Problem #Sat asks to output the number of satisfying assignments of a formula.
Projected Model Counting #∃Sat takes a formula ϕ and a set P ⊆ var(ϕ) of pro-
jection variables, and asks for #∃Sat(ϕ,P ) := |{I−1(1)∩P | ϕ[I] = ∅}|. Conse-
quently, Sat(ϕ) := #∃Sat(ϕ, ∅), and #Sat(ϕ) := #∃Sat(ϕ, var(ϕ)). #∃Sat
is #·NP-complete [19] and thus probably harder than #Sat (#P-complete).

Tree Decomposition and Treewidth. We assume familiarity with graph
terminology, cf., [17]. A tree decomposition (TD) [43] of a given graph G is
a pair T = (T, χ) where T is a rooted tree and χ assigns to each node
t ∈ V (T ) a set χ(t) ⊆ V (G), called bag, such that (i) V (G) =

⋃
t∈V (T ) χ(t),

(ii) E(G) ⊆ {{u, v} | t ∈ V (T ), {u, v} ⊆ χ(t) }, and (iii) for each r, s, t ∈ V (T ),
such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). We let
width(T ) := maxt∈V (T ) |χ(t)| − 1. The treewidth tw(G) of G is the minimum
width(T ) over all TDs T of G. For a node t ∈ V (T ), we say that type(t) is leaf
if t has no children and χ(t) = ∅; join if t has children t′ and t′′ with t′ �= t′′ and
χ(t) = χ(t′) = χ(t′′); intr (“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t) and
|χ(t)| = |χ(t′)| + 1; rem (“removal”) if t has a single child t′, χ(t′) ⊇ χ(t) and
|χ(t′)| = |χ(t)| + 1. If for every node t ∈ V (T ), type(t) ∈ {leaf, join, intr, rem},
the TD is called nice. A nice TD can be computed from a given TD T in linear
time without increasing the width [31], assuming the width of T is fixed.

Example 1. Figure 1 depicts a graph G and a (non-nice) TD T of G of width 2.

Relational Algebra. We formalize DP algorithms by means of relational alge-
bra [11], similar to related work [24]. A table τ is a finite set of rows r over a
set att(τ) of attributes. Each row r ∈ τ is a set of pairs (a, v) with a ∈ att(τ) and v
in domain dom(a) of a, s.t. for each a ∈ att(τ) there is exactly one (a, v) ∈ r.
Notably, apart from counters we use mainly binary domains in this paper.

Selection of rows in τ according to a Boolean formula ϕ is defined by σϕ(τ) :=
{r | r ∈ τ, ϕ[ass(r)] = ∅}, assuming that ass(r) refers to the truth assignment
over the attributes of binary domain of a given row r ∈ τ. Given a relation τ ′
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Listing 1: Table algorithm #Satt(χt, ϕt, 〈τ1, . . . , τ�〉) for solving #Sat on node t
of a nice tree decomposition, cf., [24].

In: Bag χt, bag formula ϕt, child tables 〈τ1, . . . τ�〉 of t.
Out: Table τt.

1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χt is introduced then
3 τt := τ1 ��ϕt {{(a, 0)}, {(a, 1)}}
4 else if type(t) = rem, and a �∈ χt is removed then
5 τt := χtGcnt←SUM(cnt)(Πatt(τ1)\{a}τ1)
6 else if type(t) = join then

7 τt := Π̇χt,{cnt←cnt·cnt′}(τ1 ��∧
a∈χt

a=a′ ρ⋃

a∈att(τ2)
{a�→a′}τ2)

with att(τ ′)∩att(τ) = ∅, we refer to the cross-join by τ×τ ′ := {r∪r′ | r ∈ τ, r′ ∈
τ ′}. Further, a join (using ϕ) corresponds to τ ��ϕ τ ′ := σϕ(τ × τ ′). We define
renaming of τ , given a set A of attributes, and a bijective mapping m : att(τ) →
A by ρm(τ) := {(m(a), v) | (a, v) ∈ τ}. τ projected to A ⊆ att(τ) is given by
ΠA(τ) := {rA | r ∈ τ}, where rA := {(a, v) | (a, v) ∈ r, a ∈ A}. This is lifted to
extended projection Π̇A,(a←f), assuming attribute a ∈ att(τ) \ A and arithmetic
function f : τ → N. Formally, we define Π̇A,(a←f)(τ) := {rA ∪ {(a, f(r))} | r ∈
τ}. We use aggregation by grouping AG(a←g), where we assume A ⊆ att(τ), a ∈
att(τ)\A and an aggregate function g : 2τ → dom(a). We define AG(a←g)(τ) :=
{r ∪ {(a, g(τ [r]))} | r ∈ ΠA(τ)}, where τ [r] := {r′ | r′ ∈ τ, r′ ⊇ r}.

3 Towards Nested Dynamic Programming

A solver based on dynamic programming (DP) evaluates a given input instance I
in parts along a given TD of a graph representation G of the instance. Thereby,
for each node t of the TD, intermediate results are stored in a table τt. This is
achieved by running a so-called table algorithm, which is designed for a certain
graph representation, and stores in τt results of problem parts of I, thereby
considering tables τt′ for child nodes t′ of t. DP works for many problems:

1. Construct a graph representation G of I.
2. Compute (some) tree decomposition T = (T, χ) of G.
3. Traverse the nodes of T in post-order (bottom-up tree traversal of T ). At

every node t of T during post-order traversal, execute a table algorithm that
takes as input bag χ(t), a certain bag instance It depending on the problem,
as well as previously computed child tables of t. Then, the results of this
execution are stored in table τt.

4. Finally, interpret table τn for the root node n of T in order to output the
solution to the problem for instance I.

Having relational algebra and this paradigm at hand, we exemplarily show how
to solve #Sat, required for solving #∃Sat later. To this end, we need the
following graph representation for a given formula ϕ. The primal graph Gϕ [44]
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of a formula ϕ has as vertices its variables, where two variables are joined by
an edge if they occur together in a clause of ϕ. Given a TD T = (T, χ) of Gϕ

and a node t of T . Then, we let bag instance ϕt of ϕ, called bag formula, be the
clauses { c | c ∈ ϕ, var(c) ⊆ χ(t) } entirely covered by the bag χ(t).

Now, the only ingredient that is still missing for solving #Sat via dynamic
programming along a given TD, is the table algorithm #Satt. For brevity, table
algorithm #Satt as presented in Listing 1 shows the four cases corresponding to
the four node types of a nice TD, as any TD node forms just an overlap of these
four cases. Each table τt consists of rows using attributes χ(t)∪{cnt}, represent-
ing an assignment of ϕt and cnt is a counter. Then, the table τt for a leaf node t,
where type(t) = leaf, consists of the empty assignment and counter 1, cf., Line 1.
For nodes t with introduced variable a ∈ χ(t), we guess in Line 3 for each assign-
ment of the child table, whether a is set to true or to false, and ensure that ϕt is
satisfied. When an atom a is removed in a remove node t, we project assignments
of child tables to χ(t), cf., Line 5, and sum up counters of the same assignments.
For join nodes, counters of equal assignments are multiplied (Line 7).

Example 2. Let ϕ:={
c1

︷ ︸︸ ︷
{¬x, y, a},

c2
︷ ︸︸ ︷
{x,¬y,¬a},

c3
︷ ︸︸ ︷
{x, b},

c4
︷ ︸︸ ︷
{x,¬b}}. Observe that G of

Fig. 1 is the primal graph Gϕ and that there are 6 satisfying assignments of ϕ. We
discuss selected cases of running algorithm #Satt on each node t of TD Tnice of
Fig. 2 in post-order, thereby evaluating ϕ in parts. Observe that type(t1) = leaf.
Consequently, τ1 = {{(cnt, 1)}}, cf., Line 1. Nodes t ∈ {t2, t3, t4} are of type(t) =
intr. Thus, we cross-join table τ1 with {{(x, 0)}, {(x, 1)}} (two possible truth
assignments for x), cf., Line 3, which is cross-joined with {{(a, 0)}, {(a, 1)}},
and then with {{(y, 0)}, {(y, 1)}}. Then, for node t4 we additionally filter, cf.,
Line 3, those rows, where ϕt4 = {c1, c2} is satisfied and obtain table τ4. Node t5
is of type(t5) = rem, where a is removed, i.e., by the properties of TDs, it is
guaranteed that all clauses of ϕ using a are checked below t5 and that no clause
involving a will occur above t4. Consequently, τ5 is obtained from τ4 by pro-
jecting to {x, y} and summing up the counters cnt of rows of equal assignments
correspondingly, cf., Line 5. Similarly, one proceeds with τ6 and the right part
of the tree, obtaining tables τ7 − τ10. In node t11, we join common assignments
of tables τ6 and τ10, and multiply counters cnt accordingly. Finally, we obtain 6
satisfying assignments, as expected. In all the tables the corresponding parts of
assignment I, where x, y, b are set to 1 and a is set to 0 are highlighted.

Although these tables obtained via table algorithms might be exponential in
size, the size is bounded by the width of the given TD of the primal graph Gϕ.
Still, practical results of such algorithms show competitive behaviour [3,25]
up to a certain width. As a result, instances with high (tree-)width seem out
of reach. Even further, if we lift the table algorithm #Satt in order to solve
problem #∃Sat, we are double exponential in the treewidth [23] and suffer
from a rather complicated algorithm. To mitigate these issues, we present a
novel approach to deal with high treewidth, by nesting of DP on abstractions
of Gϕ. As we will see, this not only works for #Sat, but also for #∃Sat with
adaptions.
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Fig. 2. Tables obtained by #Satt on Tnice for ϕ of Example 2.

3.1 Essentials for Nested Dynamic Programming

Assume that a set U of variables of ϕ, called nesting variables, appears uniquely
in one TD node t. Then, one could do DP on the TD as before, but no truth value
for any variable in U is stored. Instead, clauses involving U could be evaluated
by nested DP within node t, since variables U appear uniquely in t. Indeed,
for DP on the other (non-nesting) variables, only the result of this evaluation
is essential. Now, before we can apply nested DP, we need abstractions with
room for choosing nesting variables between the empty set and the set of all the
variables. Inspired by related work [16,20,26,29], we define the nested primal
graph NA

ϕ for a given formula ϕ and a given set A ⊆ var(ϕ) of abstraction
variables. To this end, we say a path P in primal graph Gϕ is a nesting path
(between u and v) using A, if P = u, v1, . . . , v�, v (	 ≥ 0), and every vertex vi is
a nesting variable, i.e., vi /∈ A for 1 ≤ i ≤ 	. Note that any path in Gϕ is nesting
using A if A = ∅. Then, the vertices of nested primal graph NA

ϕ correspond
to A and there is an edge between two vertices u, v ∈ A if there is a nesting
path between u and v. Observe that the nested primal graph only consists of
abstraction variables and, intuitively, “hides” nesting variables in nesting paths
of primal graph Gϕ.

Example 3. Recall formula ϕ and primal graph Gϕ of Example 2. Given abstrac-
tion variables A= {x, y}, nesting paths of Gϕ are, e.g., P1 =x, P2 =x, b, P3 = b, x,
P4 =x, y, P5 = x, a, y. However, neither path P6 = y, x, b, nor path P7 = b, x, y, a
is nesting using A. Nested primal graph NA

ϕ contains edge {x, y} over vertices A
due to paths P4, P5.

The nested primal graph provides abstractions of needed flexibility for nested
DP. Indeed, if we set abstraction variables to A= var(ϕ), we end up with full
DP and zero nesting, whereas setting A= ∅ results in full nesting, i.e., nesting
of all variables. Intuitively, the nested primal graph ensures that clauses subject
to nesting (containing nesting variables) can be safely evaluated in exactly one
node of a TD of the nested primal graph. To formalize this, we let nestReach(U)
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Listing 2: Algorithm HybDP#∃Sat(depth, ϕ, P ′, A′) for hybrid solving of #∃Sat by
nested DP with abstraction variables A′.

In: Nesting depth ≥ 0, formula ϕ, projection variables P ′ ⊆ var(ϕ), and
abstraction variables A′ ⊆ var(ϕ).

Out: Number #∃Sat(ϕ, P ′) of assignments.

1 ϕ, P ← BCP And Preprocessing(ϕ, P ′)
2 A ← A′ ∩ P
3 if ϕ ∈ dom(cache) /*Cache Hit occurred*/ then return cache(ϕ) · 2|P ′\P |

4 if var(ϕ) ∩ P = ∅ then return Sat(ϕ) · 2|P ′\P |

5 (T, χ) ← Decompose via Heuristics(NA
ϕ ) /* Decompose */

6 width ← maxt in T |χ(t)| − 1
7 if width ≥ thresholdhybrid or depth ≥ thresholddepth /* Standard Solver */ then
8 if var(ϕ) = P then cache ← cache ∪{(ϕ,#Sat(ϕ))}
9 else cache ← cache ∪{(ϕ,#∃Sat(ϕ, P ))}

10 return cache(ϕ) · 2|P ′\P |

11 if width ≥ thresholdabstr /* Abstract via Heuristics & Decompose */ then
12 A ← Choose Subset via Heuristics(A, ϕ)
13 (T, χ) ← Decompose via Heuristics(NA

ϕ )

14 n ← root(T )
15 τ ← {} /* empty mapping */

16 for iterate t in post-order(T, n) /* Nested Dynamic Programming */ do
17 {t1, . . . , t�} ← children(T, t)

18 τt ← #∃Satt(depth, χ(t), ϕt, P, ϕA
t , A′ \ A, 〈τt1 , . . . , τt�〉)

19 cache ← cache ∪{(ϕ, c)} where Πcnt(τn) = {{(cnt, c)}}
20 return cache(ϕ) · 2|P ′\P |

for any set U ⊆ var(ϕ) of variables containing nesting variables (U �⊆ A), be the
set of vertices of all nesting paths of Gϕ between vertices a, b using A such that
(i) both a, b ∈ U , or (ii) a ∈ U \ A. Intuitively, this definition ensures that from
a given set U of variables, we obtain reachable (i) nesting and (ii) abstraction
variables, needed to evaluate clauses over U . Then, assuming a TD T of NA

ϕ , we
say a set U ⊆ var(ϕ) of variables (“compatible set”) is compatible with a node t
of T , and vice versa, if (I) U = nestReach(U), and (II) U ∩ A ⊆ χ(t).

Example 4. Assume again formula ϕ, primal graph Gϕ and abstraction vari-
ables A = {x, y} of the previous example. Further, consider any TD (T, χ)
of NA

ϕ . Observe that nestReach({b}) = {b, x} due to nesting path b, x, i.e., {b}
is not a compatible set. However, {b, x} is compatible with any node t of T
where x ∈ χ(t). Indeed, to evaluate clauses c3, c4 ∈ ϕ, we need to evaluate
both b and x. Similarly, {a, x} is not a compatible set due to nesting path a, y,
but {a, x, y} is a compatible set. Also, {a, b, x, y} is a compatible set.

By construction any nesting variable is in at least one compatible set. How-
ever, (1) a nesting variable could be even in several compatible sets, and (2)
a compatible set could be compatible with several nodes of T . Hence, to allow
nested evaluation, we need to ensure that each nesting variable is evaluated only
in one unique node t. As a result, we formalize for every compatible set U that is
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Listing 3: Nested table algorithm #∃Satt(depth, χt, ϕt, P, ϕA
t , A′, 〈τ1, . . . , τ�〉) for

solving #∃Sat on node t of a nice TD.

In: Nesting depth ≥ 0, bag χt, bag formula ϕt, projection variables P , nested bag
formula ϕA

t , abstraction variables A′, and child tables 〈τ1, . . . τ�〉 of t.
Out: Table τt.

1 if type(t) = leaf then τt ← {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χt is introduced then
3 τt ← τ1 ��ϕt {{(a, 0)}, {(a, 1)}}
4 τt ← σcnt>0(Π̇χt,{cnt← cnt ·HybDP#∃Sat(depth+1, ϕA

t [ass], P∩var(ϕA
t [ass]), A′)}τt)

5 else if type(t) = rem, and a �∈ χt is removed then
6 τt ← χtGcnt←SUM(cnt)(Πatt(τ1)\{a}τ1)
7 else if type(t) = join then

8 τt ← Π̇χt,{cnt←cnt·cnt′}(τ1 ��∧
a∈χt

a=a′ ρ⋃

a∈att(τ2)
{a�→a′}τ2)

	) Function ass refers to the respective truth assignment I: χt → {0, 1} of a given
row r ∈ τt.

subset-minimal, a unique node t compatible with U , denoted by comp(U) := t.
For simplicity of our algorithms, we assume these unique nodes for U are intro-
duce nodes, i.e., type(t) = intr. We denote the union of all compatible sets U
where comp(U) = t, by nested bag variables χA

t . Then, the nested bag formula ϕA
t

for a node t of T equals ϕA
t := {c | c ∈ ϕ, var(c) ⊆ χA

t } \ ϕt, where formula ϕt

is defined above.

Example 5. Recall formula ϕ, TD T = (T, χ) of Gϕ, and abstraction vari-
ables A = {x, y} of Example 3. Consider TD T ′ := (T, χ′), where χ′(t) :=
χ(t) ∩ {x, y} for each node t of T . Observe that T ′ is T , but restricted to A
and that T ′ is a TD of NA

ϕ of width 1. Observe that only for compatible
set U = {b, x} we have two nodes compatible with U , namely t2 and t3. We
assume comp(U) = t2. Consequently, nested bag formulas are ϕA

t1 = {c1, c2},
ϕA

t2 = {c3, c4}, and ϕA
t3 = ∅.

Assume any TD T of NA
ϕ using any set A of abstraction variables. Observe

that the definitions of nested primal graph and nested bag formula ensure that
any set S of vertices connected via edges in Gϕ will “appear” among nested bag
variables of some node of T . Even more stringent, each variable a ∈ var(ϕ) \ A
appears only in nested bag formula ϕA

t of node t unique for a. These unique
variable appearances allow to nest evaluating ϕA

t under some assignment to χ(t).

3.2 Hybrid Solving Based on Nested DP

Now, we have definitions at hand to discuss nested DP in the context of hybrid
solving, which combines using both standard solvers and parameterized solvers
exploiting treewidth. We first illustrate the ideas for the problem #∃Sat and
then discuss possible generalizations in Sect. 3.3; a concrete implementation is
presented in Sect. 4.

Listing 2 depicts our algorithm HybDP#∃Sat for solving #∃Sat. Note that
the recursion is indirect in Line 18 through Line 4 of Listing 3 (discussed later).
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Fig. 3. Selected tables obtained by nested DP on TD T ′ of N
{x,y}
ϕ (left) and on TD T ′′

of N
{x}
ϕ (right) for ϕ and projection variables P = {x, y} of Example 6 via HybDP#∃Satt

.

Algorithm HybDP#∃Sat takes formula ϕ, projection variables P ′ and abstraction
variables A′. The algorithm uses a global, but rather naive and simple cache
mapping a formula to an integer, and consists of four subsequent blocks of code,
separated by empty lines: (1) Preprocessing & Cache Consolidation, (2) Standard
Solving, (3) Abstraction & Decomposition, and (4) Nested DP.

Block (1) spans Lines 1–3 and performs Boolean conflict propagation and
preprocessing, thereby obtaining projection variables P ⊆ P ′ (preserving satis-
fying assignments w.r.t. P ′), sets A to A′ ∩ P in Line 2, and consolidates cache
with the updated formula ϕ. If ϕ is not cached, we do standard solving if the
width is out-of-reach for nested DP in Block (2), spanning Lines 4–10. More
concretely, if ϕ does not contain projection variables, we employ a Sat solver
returning integer 1 or 0. If ϕ contains projection variables and either the width
obtained by heuristically decomposing Gϕ is above thresholdhybrid, or the nest-
ing depth exceeds thresholddepth, we use a standard #Sat or #∃Sat solver
depending on var(ϕ)∩P . Block (3) spans Lines 11–13 and is reached if no cache
entry was found in Block (1) and standard solving was skipped in Block (2). If
the width of the computed decomposition is above thresholdabstr, we need to use
an abstraction in form of the nested primal graph. This is achieved by choosing
suitable subsets E ⊆ A of abstraction variables and decomposing ϕE

t heuristi-
cally. Finally, Block (4) concerns nested DP, cf., Lines 14–20. This block relies
on nested table algorithm #∃Satt, which takes parameters similar to table algo-
rithm #Satt, but additionally requires the nested bag formula for current node t,
projection variables P and abstraction variables. Nested table algorithm #∃Satt

is sketched in Listing 3 and recursively calls for each row r ∈ τt, HybDP#∃Sat on
nested bag formula ϕA

t simplified by the assignment ass(r) of the current row r.
This is implemented in Line 4 by using extended projection, cf., Listing 1, where
the count cnt of the respective row r is updated by multiplying the result of
the recursive call HybDP#∃Sat. Notably, as the recursive call HybDP#∃Sat within
extended projection of Line 4 implicitly takes a given current row r, the function
occurrences ass in Line 4 implicitly take this row r as an argument. As a result,
our approach deals with high treewidth by recursively finding and decomposing
abstractions of the graph. If the treewidth is too high for some parts, TDs of
abstractions are used to guide standard solvers.

Example 6. Recall formula ϕ, set A of abstraction variables, and TD T ′ of nested
primal graph NA

ϕ given in Example 5. Restricted to projection set P := {x, y},
ϕ has two satisfying assignments, namely {x → 1, y → 0} and {x → 1, y → 1}.
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Listing 4: Nested table algorithm QSatt(depth, χt, ϕt, ϕ
A
t , A′, 〈τ1, . . . , τ�〉) for

solving QSat on node t of a nice tree decomposition.

In: Nesting depth ≥ 0, bag χt, bag QBF ϕt = Q V.γ, nested bag QBF ϕA
t ,

abstraction variables A′, and child tables 〈τ1, . . . τ�〉 of t.
Out: Table τt.

1 if type(t) = leaf then τt ← {∅}
2 else if type(t) = intr, and a ∈ χt is introduced then
3 τt ← τ1 ��ϕt {{(a, 0)}, {(a, 1)}}
4 τt ← σ(Q=∃ ∨ |τt|=2|χt|) ∧ HybDPQSat(depth+1,ϕA

t [ass],A′)(τt)

5 else if type(t) = rem, and a �∈ χt is removed then
6 τt ← Πatt(τ1)\{a}τ1
7 else if type(t) = join then
8 τt ← Πχt(τ1 ��∧

a∈χt
a=a′ ρ⋃

a∈att(τ2)
{a�→a′}τ2)

	) The cardinality of a table τ can be obtained via relational algebra (sub-expression):
|τ | := c, where {{(card, c)}} = ∅Gcard←SUM(1)τ

Consequently, the solution to #∃Sat is 2. Figure 3 (left) shows TD T ′ of NA
ϕ and

tables obtained by HybDP#∃Satt
(ϕ,P,A) for solving projected model counting

on ϕ and P . Note that the same example easily works for #Sat, where P =
var(ϕ).

Algorithm #∃Satt of Listing 3 works similar to algorithm #Satt, but
uses attribute “cnt” for storing (projected) counts accordingly. We briefly dis-
cuss executing #∃Satt1 in the context of Line 18 of algorithm HybDP#∃Satt

on node t1 of T ′, resulting in table τ1 as shown in Fig. 3 (left). Recall
that comp({a, x, y}) = t1, and, consequently, ϕA

t1 = {{¬x, y, a}, {x,¬y,¬a}}.
Then, in Line 4 of algorithm #∃Satt, for each assignment ass(r) to {x, y} of
each row r of τ1, we compute HybDP#∃Satt

(ψ,P ∩var(ψ), ∅) using ψ = ϕA
t1 [ass(r)].

Each of these recursive calls, however, is already solved by BCP and preprocess-
ing, e.g., ϕA

t1 [{x → 1, y → 0}] of Row 2 simplifies to {{a}}.
Figure 3 (right) shows TD T ′′ of NE

ϕ with E := {x}, and tables obtained
by HybDP#∃Satt

(ϕ,P,E). Still, ϕE
t1 [ass(r)] for a given assignment ass(r) : {x} →

{0, 1} of any row r ∈ τ1 can be simplified. Concretely, ϕE
t1 [{x → 0}] evaluates

to ∅ and ϕE
t1 [{x → 1}] evaluates to two variable-distinct clauses, namely {¬b}

and {y, a}. Thus, there are 2 satisfying assignments {y → 0}, {y → 1}
of ϕE

t1 [{x → 1}] restricted to P .

Theorem 1. Given formula ϕ, projection variables P ⊆ var(ϕ), and
abstraction variables A′ ⊆ var(ϕ). Then, HybDP#∃Sat(ϕ,P,A′) correctly
returns #∃Sat(ϕ,P ).

Proof (Sketch). Observe that (A): (T, χ) is a TD of nested primal graph NA
ϕ

such that A ⊆ A′ ∩P . The interesting part of algorithm HybDP#∃Sat lies in Block
(3), in particular in Lines 11–13. The proof proceeds by structural induction on
ϕ. By construction, we have (B): Every variable of var(ϕ) \ A occurs in some
nested bag formula ϕA

t as used in the call to #∃Satt in Line 18 for a unique
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node t of T . Observe that #∃Satt corresponds to #Satt, whose correctness is
established via invariants, cf., [24,44], only Line 4 differs. In Line 4 of #∃Satt,
HybDP#∃Sat is called recursively on subformulas ϕA

t [ass(r)] for each r ∈ τt. By
induction hypothesis, we have (C): these calls result to #∃Sat(ϕA

t [ass(r)], P ∩
var(ϕA

t [ass(r)])) for each r ∈ τt. By (A), #∃Satt as called in Line 18 stores only
table attributes in χt ⊆ A ⊆ P . Thus, by (C), recursive calls can be subsequently
multiplied to cnt for each r ∈ τt.

3.3 Generalizing Nested DP to Other Formalisms

Nested DP as proposed above is by far not restricted to (projected) model count-
ing, or counting problems in general. In fact, one can easily generalize nested
DP to other relevant formalisms, briefly sketched for the QBF formalism.

Quantified Boolean Formulas (QBFs). We assume QBFs of the form ϕ =
∃V1.∀V2. . . . ∃V�.γ using quantifiers ∃,∀, where γ is a CNF formula and var(ϕ) =
var(γ) = V1 ∪ V2 · · · ∪ V�. Given QBF ϕ = Q V.ψ with Q ∈ {∃,∀}, we
let qvar(ϕ) := V . For an assignment I : V ′ → {0, 1} with V ′ ⊆ V , we let
ϕ[I] := ψ[I] if V ′ =V , and ϕ[I] := Q(V \ V ′).ψ[I] if V ′

�V . Validity of ϕ
(QSat) is recursively defined: ∃V.ϕ is valid if there is I: V → {0, 1} where ϕ[I]
is valid; ∀V.ϕ is valid if for every I: V → {0, 1}, ϕ[I] is valid.

Hybrid solving by nested DP can be extended to problem QSat. To the end
of using this approach for QBFs, we define the primal graph Gϕ for a QBF ϕ =
∃V1.∀V2. . . . ∃V�.γ analogously to the primal graph of a Boolean formula, i.e.,
Gϕ := Gγ . Consequently, also the nested primal graph is defined for a given
set A ⊆ var(ϕ) by NA

ϕ := NA
γ . Now, let A ⊆ var(ϕ) be a set of abstraction

variables, and T = (T, χ) be a TD of NA
ϕ and t be a node of T . Then, the bag

QBF ϕt is given by ϕt := ∃V1.∀V2. . . . ∃V�.γt and the nested bag QBF ϕA
t for a

set A ⊆ var(ϕ) amounts to ϕA
t := ∃V1.∀V2. . . . ∃V�.γ

A
t .

Algorithm HybDPQSat is similar to HybDP#∃Sat of Listing 2, where the projec-
tion variables parameter P ′ is removed since P ′ constantly coincides with vari-
ables qvar(ϕ) of the outermost quantifier. Further, Line 4 is removed, Lines 8
and 9 are replaced by calling a QSat solver and nested table algorithm #∃Satt

of Line 18 is replaced by nested table algorithm QSatt as presented in List-
ing 4. Algorithm QSatt is of similar shape as algorithm #∃Satt, cf., Listing 3,
but does not maintain counts cnt. Further, Line 4 of algorithm QSatt intu-
itively filters τt fulfilling the outer-most quantifier, and keeps those rows r of τt,
where the recursive call to HybDPQSat on nested bag formula simplified by the
assignment ass(r) of r succeeds. For ensuring that the outer-most quantifier Q is
fulfilled, we are either in the situation that Q = ∃, which immediately is fulfilled
for every row r in τt since r itself serves as a witness. If Q = ∀, we need to
check that τt contains 2|χ(t)| many (all) rows. The cardinality of table τt can
be computed via a sub-expression of relational algebra as hinted in the footnote
of Listing 4. Notably, if Q = ∀, we do not need to check in Line 8 of Listing 4,
whether all rows sustain in table τt since this is already ensured for both child
tables τ1, τ2 of t. Then, if in the end the table for the root node of T is not empty,
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it is guaranteed that either the table contains some (if Q = ∃) or all (if Q = ∀)
rows and that ϕ is valid. Note that algorithm QSatt can be extended to also
consider more fine-grained quantifier dependency schemes.

Compared to other algorithms for QSat using treewidth [9,10], hybrid solv-
ing based on nested DP is quite compact without the need of nested tables.
Instead of rather involved data structures (nested tables), we use here plain
tables that can be handled by modern database systems efficiently.

4 Implementation and Preliminary Results

We implemented a hybrid solver nestHDB1 based on nested DP in Python3 and
using table manipulation techniques by means of SQL and the database manage-
ment system (DBMS) Postgres. Our solver builds upon the recently published
prototype dpdb [24], which applied a DBMS for plain dynamic programming
algorithms. However, we used the most-recent version 12 of Postgres and we
let it operate on a tmpfs-ramdisk. In our solver, the DBMS serves the purpose
of extremely efficient in-memory table manipulations and query optimization
required by nested DP, and therefore nestHDB benefits from database technol-
ogy.

Nested DP & Choice of Standard Solvers. We implemented dedicated
nested DP algorithms for solving #Sat and #∃Sat, where we do (nested) DP
up to thresholddepth = 2. Further, we set thresholdhybrid = 1000 and therefore
we do not “fall back” to standard solvers based on the width (cf., Line 7 of
Listing 2), but based on the nesting depth.

Also, the evaluation of the nested bag formula is “shifted” to the database if
it uses at most 40 abstraction variables, since Postgres efficiently handles these
small-sized Boolean formulas. Thereby, further nesting is saved by executing
optimized SQL statements within the TD nodes. A value of 40 seems to be a
nice balance between the overhead caused by standard solvers for small formulas
and exponential growth counteracting the advantages of the DBMS. For hybrid
solving, we use #Sat solver sharpSAT [48] and for #∃Sat we employ the recently
published #∃Sat solver projMC [35], solver sharpSAT and Sat solver picosat [4].
Observe that our solver immediately benefits from better standard solvers and
further improvements of the solvers above.

Choosing Non-nesting Variables & Compatible Nodes. TDs are com-
puted by means of heuristics via decomposition library htd [1]. For finding good
abstractions (crucial), i.e., abstraction variables for the nested primal graph, we
use encodings for solver clingo [27], which is based on logic programming (ASP)
and therefore perfectly suited for solving reachability via nesting paths. There,
among a reasonably sized subset of vertices of smallest degree, we aim for a
preferably large (maximal) set A of abstraction variables such that at the same
time the resulting graph NA

ϕ is reasonably sparse, which is achieved by minimiz-
ing the number of edges of NA

ϕ . To this end, we use built-in (cost) optimization,

1 Source code, instances, and detailed results are available at: tinyurl.com/nesthdb.

https://tinyurl.com/nesthdb
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Fig. 4. Cactus plot of instances for #Sat, where instances (x-axis) are ordered for
each solver individually by runtime[seconds] (y-axis). thresholdabstr = 38.

where we take the best results obtained by clingo after running at most 35 s.
For the concrete encodings used in nestHDB, we refer to the online repository
as stated above. We expect that this initial approach can be improved and that
extending by problem-specific as well as domain-specific information might help
in choosing promising abstraction variables A.

As rows of tables during (nested) DP can be independently computed and
parallelized [25], hybrid solver nestHDB potentially calls standard solvers for
solving subproblems in parallel using a thread pool. Thereby, the uniquely com-
patible node for relevant compatible sets U , as denoted in this paper by comp(U),
is decided during runtime among compatible nodes on a first-come-first-serve
basis.

Benchmarked Solvers & Instances. We benchmarked nestHDB and 16
other publicly available #Sat solvers on 1,494 instances recently consid-
ered [24]. Among those solvers are single-core solvers miniC2D [41], d4 [34],
c2d [13], ganak [46], sharpSAT [48], sdd [14], sts [21], dsharp [39], cnf2eadt [32],
cachet [45], sharpCDCL [30], approxmc3 [8], and bdd minisat [49]. We also included
multi-core solvers dpdb [24], gpusat2 [25], as well as countAntom [7]. While
nestHDB itself is a multi-core solver, we additionally included in our com-
parison nestHDB(sc), which is nestHDB, but restricted to a single core only.
The instances [24] we took are already preprocessed by pmc [33] using recom-
mended options -vivification -eliminateLit -litImplied -iterate=10

-equiv -orGate -affine for preserving model counts. However, nestHDB still
uses pmc with these options also in Line 1 of Listing 2.

Further, we considered the problem #∃Sat, where we compare solvers pro-
jMC [35], clingo [27], ganak [46], nestHDB (see footnote 1), and nestHDB(sc)
on 610 publicly available instances2 from projMC (consisting of 15 planning,
60 circuit, and 100 random instances) and Fremont, with 170 symbolic-markov
applications, and 265 misc instances. For preprocessing in Line 1 of Listing 2,

2 Sources: tinyurl.com/projmc;tinyurl.com/pmc-fremont-01-2020.

https://tinyurl.com/projmc
https://tinyurl.com/pmc-fremont-01-2020
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Fig. 5. Number of solved #∃Sat insts., grouped by upper bound intervals of
treewidth (left), cactus plot (right). time[h] is cumulated wall clock time, timeouts
count as 900 s. thresholdabstr = 8.

nestHDB uses pmc as before, but without options -equiv -orGate -affine to
ensure preservation of models (equivalence).

Benchmark Setup. Solvers ran on a cluster of 12 nodes. Each node of the
cluster is equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical
cores each at 2.2 GHz clock speed, 256 GB RAM. For dpdb and nestHDB, we
used Postgres 12 on a tmpfs-ramdisk (/tmp) that could grow up to at most 1 GB
per run. Results were gathered on Ubuntu 16.04.1 LTS machines with disabled
hyperthreading on kernel 4.4.0-139. We mainly compare total wall clock time and
number of timeouts. For parallel solvers (dpdb, countAntom, nestHDB) we allow
12 physical cores. Timeout is 900 s and RAM is limited to 16 GB per instance
and solver. Results for gpusat2 are taken from [24].

Benchmark Results. The results for #Sat showing the best 14 solvers are
summarized in the cactus plot of Fig. 4. Overall it shows nestHDB among the
best solvers, solving 1,273 instances. The reason for this is, compared to dpdb,
that nestHDB can solve instances using TDs of primal graphs of widths larger
than 44, up to width 266. This limit is even slightly larger than the width of
264 that sharpSAT on its own can handle. We also tried using minic2d instead
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Fig. 6. Scatter plot of instances for #∃Sat, where the x-axis shows runtime in seconds
of nestHDB compared to the y-axis showing runtime of projMC (left) and of ganak
(right). thresholdabstr = 8.

of sharpSAT as standard solver for solvers nestHDB and nestHDB(sc), but we
could only solve one instance more. Notably, nestHDB(sc) has about the same
performance as nestHDB, indicating that parallelism does not help much on
the instances. Further, we observed that the employed simple cache as used in
Listing 2, provides only a marginal improvement.

Figure 5 (left) depicts a table of results on #∃Sat, where we observe that
nestHDB does a good job on instances with low widths below thresholdabstr = 8
(containing ideas of dpdb), but also on widths well above 8 (using nested DP).
Notably, nestHDB is also competitive on widths well above 50. Indeed, nestHDB
and nestHDB(sc) perform well on all benchmark sets, whereas on some sets the
solvers projMC, clingo and ganak are faster. Overall, parallelism provides a signif-
icant improvement here, but still nestHDB(sc) shows competitive performance,
which is also visualized in the cactus plot of Fig. 5 (right). Figure 6 shows scatter
plots comparing nestHDB to projMC (left) and to ganak (right). Overall, both
plots show that nestHDB solves more instances, since in both cases the y-axis
shows more black dots at 900 s than the x-axis. Further, the bottom left of both
plots shows that there are plenty easy instances that can be solved by projMC and
ganak in well below 50 s, where nestHDB needs up to 200 s. Similarly, the cactus
plot given in Fig. 5 (right) shows that nestHDB can have some overhead com-
pared to the three standard solvers, which is not surprising. This indicates that
there is still room for improvement if, e.g., easy instances are easily detected,
and if standard solvers are used for those instances. Alternatively, one could
also just run a standard solver for at most 50 s and if not solved within 50 s,
the heavier machinery of nested dynamic programming is invoked. Apart from
these instances, Fig. 6 shows that nestHDB solves harder instances faster, where
standard solvers struggle.
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5 Conclusion

We presented nested dynamic programming (nested DP) using different levels
of abstractions, which are subsequently refined and solved recursively. This app-
roach is complemented with hybrid solving, where (search-intense) subproblems
are solved by standard solvers. We provided nested DP algorithms for prob-
lems related to Boolean satisfiability, but the idea can be easily applied for
other formalisms. We implemented some of these algorithms and our bench-
mark results are promising. For future work, we plan deeper studies of problem-
specific abstractions, in particular for QSat. We want to further tune our solver
parameters (e.g., thresholds, timeouts, sizes), deepen interleaving with solvers
like projMC, and to use incremental solving for obtaining abstractions and evalu-
ating nested bag formulas, where intermediate solver references are kept during
dynamic programming and formulas are iteratively added and (re-)solved.
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Abstract. We address the satisfiability of systems of polynomial equa-
tions over bit-vectors. Instead of conventional bit-blasting, we exploit
word-level inference to translate these systems into non-linear pseudo-
boolean constraints. We derive the pseudo-booleans by simulating bit
assignments through the addition of (linear) polynomials and applying
a strong form of propagation by computing Gröbner bases. By handling
bit assignments symbolically, the number of Gröbner basis calculations,
along with the number of assignments, is reduced. The final Gröbner
basis yields expressions for the bit-vectors in terms of the symbolic bits,
together with non-linear pseudo-boolean constraints on the symbolic
variables, modulo a power of two. The pseudo-booleans can be solved
by translation into classical linear pseudo-boolean constraints (without
a modulo) or by encoding them as propositional formulae, for which a
novel translation process is described.

Keywords: Gröbner bases · Bit-vectors · Modulo arithmetic · SMT

1 Introduction

Some of the most influential algorithms in algebraic computation, such as Buch-
berger’s algorithm [7] and Collin’s Cylindrical Algebraic Decomposition algo-
rithm [8], were invented long before the advent of SMT. SMT itself has evolved
from its origins in SAT into a largely independently branch of symbolic com-
putation. Yet the potential of cross-fertilising one branch with the other has
been repeatedly observed [1,6,10], and a new class of SMT solvers is begin-
ning to emerge that apply both algebraic and satisfiability techniques in tandem
[15,16,23]. The problem, however, is that algebraic algorithms do not readily fit
into the standard SMT architecture [22] because they are not normally incre-
mental or backtrackable, and rarely support learning [1].

For application to software verification, the SMT background theory of
bit-vectors is of central interest. Solvers for bit-vectors conventionally trans-
late bit-vector constraints into propositional formulae by replacing constraints
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with propositional circuits that realise them, a technique evocatively called
bit-blasting. However, particularly for constraints involving multiplication, the
resulting formulae can be prohibitively large. Moreover, bit-blasting foregoes the
advantages afforded by reasoning at the level of bit-vectors [3,14].

In this paper we present a new architecture for solving systems of polynomial
equalities over bit-vectors. Rather than converting to SAT and bit-blasting, the
method sets bits in order of least significance through the addition of certain
polynomials to the system. Computing a Gröbner basis [5] for the resulting
system effects a kind of high-level propagation, which we have called bit-sequence
propagation, in which the values of other bits can be automatically inferred.
Furthermore, we show how the procedure can be carried out with symbolic truth
values without giving up bit-sequence propagation, thus unifying Gröbner basis
calculations that would otherwise be separate.

Once all bits are assigned truth values (symbolic or otherwise), the resulting
Gröbner basis prescribes an assignment to the bit-vectors which is a function
of the symbolic truth values. The remaining polynomials in the basis relate the
symbolic truth values and correspond to non-linear pseudo-boolean constraints
modulo a power of two. These constraints can be solved either by translation
into classical linear pseudo-boolean constraints (without a modulo) or else by
encoding them as propositional formulae, for which a novel translation process is
described. Either way, the algebraic Gröbner basis computation is encapsulated
in the phase that emits the pseudo-boolean constraints, hence the Gröbner basis
engine [5] does not need to be backtrackable, incremental or support learning.
The approach can be extended naturally to handle polynomial disequalities since
the bit-vectors in the disequalities can be reformulated in terms of the symbolic
variables of the equalities, and the disequalities forced to hold as well by virtue of
a Tseytin transform [24]. Overall, the architecture provides a principled method
for compiling high-level polynomials to low-level pseudo-boolean constraints.

In summary, this paper makes the following contributions:

– We specialise a Gröbner basis algorithm for integers modulo 2ω [5], using
the concept of rank [21], introducing an algorithmic modification to ease the
computational burden of computing Gröbner bases;

– We introduce bit-sequence propagation, in which an individual bit is set to a
truth value 0 or 1 by adding a suitable (linear) polynomial to the system and
then the effect on other bits is inferred by computing a Gröbner basis;

– We show how bit assignments can be handled symbolically in order to unify
distinct Gröbner basis computations, eventually yielding a residue system of
non-linear pseudo-boolean constraints;

– We show how the resulting pseudo-boolean systems can be solved by employ-
ing a novel rewrite procedure for converting non-linear modulo pseudo-
booleans to propositional formulae.

The paper is structured as follows: Sect. 2 illustrates bit-sequence propagation
through a concrete example. The supporting concepts of Gröbner bases for mod-
ulo integers and pseudo-boolean encoding are detailed in Sect. 3. Experimental
results are given in Sect. 4 and Sect. 5 surveys related work.
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Fig. 1. Bit-assignments and word-level propagation: 0/1 bits and symbolic bits

2 Bit-Sequence Propagation in a Nutshell

Classically, that is for polynomials over algebraically closed fields, unsatisfiabil-
ity can be decided by Hilbert’s Nullstellensatz [9]. This equates unsatisfiability
with the existence of a non-zero constant polynomial in a Gröbner basis for the
polynomials. The concept of Gröbner basis is inextricably linked with that of an
ideal [9]. The ideal for a given system (set) of polynomials is the least set closed
under the addition of polynomials drawn from the set and multiplication of an
arbitrary polynomial with a polynomial from the set; an ideal shares the same
zeros as the system from which it is derived, but is not finite. A Gröbner basis
is merely a finite representation of an ideal, convenient because, among other
things, it enables satisfiability to be detected, at least over a field.

Unary bit-vectors constitute a field, but Nullstellensatz does not hold for bit-
vectors with multiple bits. To see this, consider the polynomial equation x2+2 =
0 where the arithmetic is 3-bit (modulo 8). Any solution x to this equation must
be even. But, 02+ 2 = 2, 22+ 2 = 6, 42+ 2 = 2 and 62+ 2 = 6. Hence x2+2 = 0
has no solutions, yet the Gröbner basis {x2 + 2} does not contain a non-zero
constant polynomial. Moreover, even for a Gröbner basis of a satisfiable system,
such as {x2 + 4}, the solutions to the system cannot be immediately read off
from the basis. The force of these observations is that Gröbner bases need to be
augmented with search to test satisfiability and discover models. To illustrate
this we consider a more complicated system:

B =

⎧
⎨

⎩

y2 + 120x2 + 123x + 48 = 0, yx + 65x2 + 50x + 32 = 0,
2y + 63x2 + 59x + 128 = 0, x3 + 135x2 + 100x + 64 = 0,

64x2 + 192x = 0

⎫
⎬

⎭

where x, y ∈ Z256. Henceforth we follow convention and omit = 0 from systems.
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2.1 Solving Using 0/1 Truth Values

Since Z256 is finite, this system can be solved by viewing the problem [20] as
a finite domain constraint satisfaction problem. In this setting, each bit-vector
is associated with a set of values that is progressively pruned using word-level
constraint propagation rules. The search tree in the left-hand side of Fig. 1 illus-
trates how pruning is achieved by setting and inferring bits in the order of
least-significance, starting with the bits of x then those of y. On a left branch
of the tree one bit, xi or yj , is set to 0; on a right branch the bit is set to 1
(indicated in bold). Each node is labelled with a Gröbner basis that encodes
the impact of setting a bit on all other bits. Gröbner bases are indexed by their
position in the tree. Grey nodes correspond to the solutions of B.

Computing B0. Setting the least significant bit of x to 0 can be achieved by
imposing x = 2w for some otherwise unconstrained variable w. Hence, we add
2w − x to B and compute a Gröbner basis with respect to the lexicographical
ordering on variables w � y � x, yielding:

{
wx + 86x + 96, 2w + 255x, y2 + 219x + 48,
yx + 134x + 96, 2y + 231x + 64, x2 + 172x + 192, 64x

}

To eliminate dependence on w, polynomials involving w are removed, giving:

B0 =
{

y2 + 219x + 48, yx + 134x + 96, 2y + 231x + 64,
x2 + 172x + 192, 64x

}

Note that B0 contains 64x (representing 64x = 0) which indicates that x is a
multiple of 4. Thus bit 1 is also 0, although we did not actively impose it.

Now, observe the constraint 64x = 0 implies 0 = 26(x−0) hence x−0 = 22w′

for some w′. To set the next bit to 0, put w′ = 2w which gives x−0 = 8w yielding
the polynomial 8w − x. Otherwise, to set the next bit put w′ = 2w + 1 giving
the polynomial 8w − x + 4.

Computing B00. Augmenting B0 with 8w − x, calculating a Gröbner basis, and
then eliminating w gives:

B00 =
{

y2 + 219x + 48, yx + 128, 2y + 231x + 64,
x2, 2x + 160

}

Since B00 includes 2x+160 (representing 2x+160 = 0) it follows that only bit 7
is undetermined. To constrain it, observe 0 = 2(x − 48) thus x − 48 = 27w′ for
some w′. Putting w′ = 2w gives x−48 = 256w = 0 hence the polynomial x−48.
Conversely, putting w′ = 2w + 1 gives x − 48 = 256w + 128 = 128 thus x − 176.

Computing B000 and B001. Adding x − 48 and x − 176 to B00, computing a
Gröbner basis, and eliminating w (a vacuous step), respectively yields:

B000 =
{
y2 + 64, 2y + 144, x + 208

}
B001 =

{
y2 + 192, 2y + 16, x + 80

}
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Both systems contain a single constraint on x which uniquely determines its
value, hence we move attention to y. Both B000 and B001 contain equations with
leading terms 2y and thus only bit 7 of y must be constrained. Following the
same procedure as before, we obtain:

B0000 =

⎧
⎨

⎩

y + 200,
x + 208,

128

⎫
⎬

⎭
B0001 =

⎧
⎨

⎩

y + 72,
x + 208,

128

⎫
⎬

⎭
B0010 =

{
y + 136,

x + 80

}

B0011 =

{
y + 8,
x + 80

}

These Gröbner bases all completely constrain x and y, hence are leaf nodes. Note
that B0000 and B0001 contain the non-zero, constant polynomial 128, indicating
unsatisfiability. Hence, only B0010 and B0011 actually yield solutions (highlighted
in grey), namely x �→ 176, y �→ 120 and x �→ 176, y �→ 248 respectively.

Computing B∗. The general principle is that if 2k(x − �) is in the basis and ω is
the bit width, then the linear polynomial 2ω−k+1w−x+� is added for some fresh
w to set the next undermined bit to 0. Conversely, to set the next bit to 1, the
polynomial 2ω−k+1w − x + 2ω−k + � is added. We name this tactic bit-sequence
propagation. Using this tactic to flesh out the rest of the tree gives the following
satisfiable bases (also marked in grey in the figure):

B1 =
{
y + 183, x + 91

}
B0110 =

{
y + 158, x + 92

}
B0111 =

{
y + 30, x + 92

}

yielding x �→ 165, y �→ 73, x �→ 164, y �→ 98 and x �→ 164, y �→ 226 respectively.

2.2 Solving Using Symbolic Truth Values

To reduce the total number of Gröbner basis calculations, we observe that it is
sufficient to work with symbolic bits. The right-hand side of Fig. 1 illustrates how
this reduces the number of bases calculated to 4, albeit at the cost of carrying
symbolic bits in the basis. Bit-sequence propagation generalises via the single
rule: if 2k(x − �) is in the basis and ω is the bit width, then the polynomials
2ω−k+1w − x + 2ω−kb + � and b2 − b are added to the basis. This sets the next
undermined bit to the symbolic value b; the polynomial b2 − b merely asserts
that each symbolic b can only be 0 or 1. This construction gives:

PB1 =

⎧
⎨

⎩

y2 + 219x + 216b1 + 48, yx + 6x + 181b1 + 96, yb1 + 183b1,
2y + 103x + 203b1 + 64, x2 + 44x + 139b1 + 192, xb1 + 91b1,

64x + 192b1, b21 + 255b1

⎫
⎬

⎭

...

PB4 =

⎧
⎨

⎩

y + 128b4 + 192b3 + 214b2 + 153b1 + 200, x + 12b2 + 255b1 + 80,
b24 + 255b4, 128b4b1 + 128b1, b23 + 255b3, 64b3b1,

128b3 + 128b2 + 128, b22 + 255b2, 2b2b1 + 254b1, b21 + 255b1

⎫
⎬

⎭

The final PB4 expresses x and y as combinations of b4, b3, b2 and b1:

y ≡256 −128b4 − 192b3 − 214b2 − 153b1 − 200 x ≡256 −12b2 − 255b1 − 80

Observe that the remaining polynomials are non-linear pseudo-boolean con-
straints over b4, b3, b2 and b1 modulo 256. The polynomials b2i + 255bi, which
assert that each bi is binary, are subsequently ignored.
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2.3 Solving Using SAT

These pseudo-booleans can be simplified by observing that when all coefficients
in the constraint are divisible by a power of 2 then the modulo can be lowered:

128b4b1 + 128b1 ≡256 0 ⇐⇒ b4b1 + b1 ≡2 0
64b3b1 ≡256 0 ⇐⇒ b3b1 ≡4 0

128b3 + 128b2 + 128 ≡256 0 ⇐⇒ b3 + b2 + 1 ≡2 0
2b2b1 + 254b1 ≡256 0 ⇐⇒ b2b1 + 127b1 ≡128 0

Since the reduced versions of the first and third constraints are modulo 2 they
can be mapped immediately to the propositional formulae:

b4b1 + b1 ≡2 0 ⇐⇒ (b4 ∧ b1) ⇔ b1
b3 + b2 + 1 ≡2 0 ⇐⇒ ¬(b3 ⇔ b2)

where the negation is introduced because of the constant 1. The second and
fourth constraints cannot be handled so directly because the modulus is not 2.
However, for the second, we can use the fact that the left-hand side is a single
term to infer either b3 or b1 must be 0, yielding the formula ¬b3 ∨ ¬b1. Finally,
for the fourth constraint, we do a case split on b2. Setting b2 = 0 simplifies the
constraint to 127b1 ≡128 0, from which b1 = 0 is inferred. Conversely, setting
b2 = 1 simplifies the constraint to 128b1 ≡128 0 which is vacuous. Overall, we
derive the formula (¬b2 ∧ ¬b1) ∨ b2 for the fourth constraint. There are 5 truth
assignments for the formula assembled from the above 4 sub-formulae, yielding
5 assignments to x and y that concur with those given previously.

The reasoning exemplified here has been distilled into a series of rules, pre-
sented in Sect. 3.8, for encoding non–linear modulo pseudo-booleans into SAT.
An alternative approach finds the values for b4, b3, b2 and b1 using a cutting-
plane pseudo-boolean solver [19] alongside a modulo elimination transformation
[13, Section 3]. Regardless of the particular method employed to solve this sys-
tem, observe that search has been isolated in the SAT/pseudo-boolean solver;
the Gröbner bases are calculated in an entirely deterministic fashion.

3 Theoretical Underpinnings

In its classical form, Buchberger’s algorithm for computing Gröbner bases is
only applicable to polynomials over fields [18], such as rationals and complex
numbers, where every non-zero element has a multiplicative inverse. However,
integers modulo 2ω only have this property for ω = 1, as even numbers do not
have multiplicative inverses for ω > 1. Nevertheless, a variant of Buchberger’s
algorithm has been reported that is applicable to modulo integers with respect
to arbitrary moduli [5]. This section specialises this variant to integers mod-
ulo 2ω, exploiting the concept of rank [21] to efficiently determine divisibility
over modulo integers. An algorithmic refinement is also reported that reduces
the number of calculated S-polynomials, the key to improving efficiency. The
section concludes with a formalisation of the rules for encoding non-linear mod-
ulo pseudo-booleans into propositional formulae, first introduced in Sect. 2.3.
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3.1 Modulo Integers

Let N (resp., N+), denote the non-negative (resp., positive) integers, ω ∈ N+ be
the bit-width, m = 2ω and Zm = {0, 1, . . . ,m − 1} denote the integers modulo
m. The rank of x ∈ Zm [21] is defined: rankω(x) = max{j ∈ N | 2j divides x}
if x > 0 and ω otherwise. Rank can be computed by counting the number of
trailing zeros in an integer’s binary representation [26].

Example 1. In Z256 when ω = 8, rank8(0) = 8, rank8(15) = 0 and rank8(56) = 3.

If x ∈ Zm, x �= 0 then x = 2rankω(x)d where d = x/2rankω(x) is odd. This is referred
to as the rank decomposition of x. If x ∈ Zm then x is said to be invertible if
there exists x−1 ∈ Zm, necessarily unique, such that xx−1 = 1. This occurs iff
x is odd, in which case x−1 can be found as a stationary point of the sequence
y1 = 1, yn+1 = yn(2−xyn) [21]. For x1, x2 ∈ Zm, x1 is said to be divisible by x2 if
x1 = yx2 for some y ∈ Zm. This occurs iff rankω(x1) ≥ rankω(x2), in which case,
letting xi = 2kidi be the rank decomposition of xi, it follows y = 2k1−k2d1d2

−1.

3.2 Polynomials and Ideals

A monomial is an expression xα = xα1
1 · · · xαn

n where x = 〈x1, . . . , xn〉 is a
vector of variables and α = 〈α1, . . . , αn〉 ∈ N

n. A term is an expression cxα

where c ∈ Zm. A polynomial is either 0 or an expression t1 + · · ·+ ts where each
ti is a term. In this expression, we assume all ti have non-zero coefficients and
distinct monomials, since terms with 0 coefficients can be removed and terms
with the same monomial can be collected by summing their coefficients. The set
of all polynomials over Zm is denoted Zm[x]. For p ∈ Zm[x] and a ∈ Z

n
m, �p�(a)

denotes the result of substituting ai for each xi in p and evaluating the result.
An ideal is a set I ⊆ Zm[x] such that Σs

i=1uipi ∈ I for all s ∈ N, pi ∈ I and
ui ∈ Zm[x]. If P ⊆ Zm[x] then 〈P 〉 = {∑s

i=1 uipi | s ≥ 0, pi ∈ P, ui ∈ Zm[x]} is
the ideal generated by P ; if I = 〈P 〉 then P is said to be a basis for I. The solution
(zero) set of P ⊆ Zm[x] is defined: γ(P ) = {a ∈ Z

n
m | ∀p ∈ P. �p�(a) = 0}. Note

that γ(〈P 〉) = γ(P ), hence if P1, P2 are both bases for the same ideal I, then
γ(P1) = γ(I) = γ(P2). Given a set P1 ⊆ Zm[x], it is thus desirable to find a
basis P2 for 〈P1〉 which exposes information about the zeros of P1. The concept
of Gröbner basis makes this idea concrete.

3.3 Leading Terms

Let ≺ denote the lexicographical ordering over monomials defined by xα ≺ xβ

if α �= β and αi < βi at the first index i where αi �= βi. Note that this ordering
depends on the order of the variables in x. If p ∈ Zm[x] then either p = 0 or else
p = cxα + q for some polynomial q, where all terms dxβ appearing in q satisfy
xβ ≺ xα . In the latter case, the leading term, coefficient and monomial of p are
defined lt(p) = cxα, lc(p) = c and lm(p) = xα respectively.

Example 2. Let p1 = y2 + 3yx ∈ Z256[y, x] and p2 = 3xy + y2 ∈ Z256[x, y].
Note that p1 and p2 consist of the same terms, yet lt(p1) = y2, lc(p1) = 1 and
lm(p1) = y2 and lt(p2) = 3xy, lc(p2) = 3 and lm(p2) = xy.
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3.4 Reduction

Leading terms give a rewrite procedure over polynomials. First, note that if
t1 = c1x

α1 , t2 = c2x
α2 are terms then there exists a term t such that t1 = tt2 iff

α1 ≥ α2 component-wise and c1 is divisible by c2; in this case, t = dxβ where
c1 = dc2 and β = α1−α2. With divisibility in place, reducibility can be defined:

Definition 1. Let p, q, r ∈ Zm[x], p, q �= 0. Then, p is said to be reducible by q
to r, denoted p →q r, if lt(p) = cxα lt(q) and p = cxαq + r for some term cxα .

Reducibility lifts to sets P ⊆ Zm[x] by →P =
⋃

p∈P →p and →+
P (resp. →∗

P ) is
the transitive (resp. transitive, reflexive) closure of →P . If p →+

P r for some r
then p is said to be reducible by P , otherwise irreducible by P , denoted p �→P .

Example 3. Let p = yx2 + 2yx + 5y + x and P = {p1, p2} ⊆ Z256[y, x] where
p1 = yx+3y and p2 = 4y+x. Then, lt(p) = yx2 = x lt(p1) and p = xp1+r1 where
r1 = 255yx + 5y + x. Similarly, lt(r1) = 255yx = 255 lt(p1) and r1 = 255p1 + r2
where r2 = 8y + x. Finally, lt(r2) = 8y = 2 lt(p2) and r2 = 2(4y + x) + r3 where
r3 = 255x. Thus, p →p1 r1 →p1 r2 →p2 r3 = 255x hence p →+

P 255x.

Note if p →+
P r then r has a strictly smaller leading term than p. Moreover, if

p ∈ Zm[x], P ⊆ Zm[x] and p →∗
P 0 then p ∈ 〈P 〉. The converse of this does not

hold in general, as the following example shows:

Example 4. If p = x and P = {p1, p2} ⊆ Z256[y, x] where p1 = 2yx2 + 2x2 +
6yx + x and p2 = 4y + 4 then p is irreducible by P , yet p = (154yx + 206y +
154x + 1)p1 + (179yx3 + 50yx2 + 75yx + 179x3 + 25x2)p2 ∈ 〈P 〉.

3.5 Gröbner Bases

Definition 2. Let I ⊆ Zm[x] be an ideal. A set P ⊆ I is a Gröbner basis for I
iff, for all p ∈ I, if p �= 0 then p is reducible by some q ∈ P .

If P ⊆ Zm[x] is a Gröbner basis for the ideal I ⊆ Zm[x] and p ∈ I then p →∗
P 0.

Hence, Gröbner bases allow ideal membership to be tested by reduction. In order
to compute Gröbner bases, an auxiliary definition is required:

Definition 3. The S-polynomial of p1, p2 ∈ Zm[x] is defined:

spol(p1, p2) = d22k−k1xα−α1p1 − d12k−k2xα−α2p2

where, if pi = 0 then ki = ω, di = 1 and αi = 0, else 2kidi is the rank decom-
position of lc(pi) and xαi = lm(pi), k = max(k1, k2) and α = max(α1,α2).

Example 5. Let p1 = 2yx2 + 2x2 + 6yx + x and p2 = 4y + 4 in Z256[y, x].
Then, spol(p1, p2) = 2(2yx2 + 2x2 + 6yx + x) − x2(4y + 4) = 12yx + 2x and
spol(p1, 0) = 128(2yx2 + 2x2 + 6yx + x) − yx2(0) = 128x.
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The following theorem, adapted from [5], provides an effective criterion for
detecting that a finite basis is a Gröbner basis:

Theorem 1. Let P ⊆ Zm[x] and suppose for all p1, p2 ∈ P , spol(p1, p2) →∗
P 0

and spol(p1, 0) →∗
P 0. Then, P is a Gröbner basis for 〈P 〉.

Note that if |P | = � then this criterion takes
(

�
2

)
+ � reductions to verify.

function buchberger(F )
begin

G := F ; S := {{g1, g2} | g1 ∈ G, g2 ∈ G ∪ {0}, g1 �= g2}
while (S �= ∅)

{g1, g2} := element(S)
S := S − {g1, g2}
r := reduce(spol(g1, g2), G)
if (r �= 0)

G := G ∪ {r}
S := S ∪ {{r, g} | g ∈ G ∪ {0}}

end if
end while
return G

end

Fig. 2. Buchberger’s algorithm over integers modulo 2ω

3.6 Buchberger’s Algorithm

Theorem 1 also yields a strategy for converting a finite basis P ⊆ Zm[x] for an
ideal I ⊆ Zm[x] to a Gröbner basis for I. The strategy works by reducing each S-
polynomial of the basis in turn; if some S-polynomial does not reduce to 0 then its
reduced form is added to the basis and the procedure continues. Eventually, all S-
polynomials of basis elements reduce to 0, at which point the algorithm returns.
The algorithm determined by this strategy is called Buchberger’s algorithm.
Figure 2 presents a version of Buchberger’s algorithm, adapted from [5], which
utilises a set S to record the set of S-polynomials that have yet to be reduced. It
requires an auxiliary function reduce which realises reduction. More specifically, if
p ∈ Zm[x] and P ⊆ Zm[x] is finite then p →∗

P reduce(p, P ) and reduce(p, P ) �→P .

Example 6. The table gives a trace of Buchberger’s algorithm on P = {p1, p2} ⊆
Z256[x, y] where p1 = 2yx2 + 2x2 + 6yx + x and p2 = 4y + 4. Step k displays the
values of G and S, and the next reduction, after k iterations of the main loop.
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step G S reduction
0 {p1, p2} {{p2, 0}, {p1, p2}, {p1, 0}} 0 →G 0
1 {p1, p2} {{p1, p2}, {p1, 0}} 12yx + 2x →G 246x = p3
2 {p1, p2, p3} {{p3, 0}, {p2, p3}, {p1, p3},

{p1, 0}}
0 →G 0

3 {p1, p2, p3} {{p2, p3}, {p1, p3}, {p1, 0}} 236x →G 0
4 {p1, p2, p3} {{p1, p3}, {p1, p0}} 226yx + 246x2 + 123x

→G 123x = p4
5 {p1, p2, p3, p4} {{p4, 0}, {p3, p4}, {p2, p4},

{p1, p4}, {p1, 0}}
0 →G 0

...
...

...
...

9 {p1, p2, p3, p4} {{p1, 0}} 128x →G 0
10 {p1, p2, p3, p4} ∅ −

function modifiedBuchberger(F )
begin

G := ∅; A := F ; S := ∅
while (A �= ∅ ∨ S �= ∅)

if (A �= ∅)
p := element(A); A := A − {p}

else
{f1, f2} := element(S); S := S − {f1, f2}; p := spol(f1, f2)

end if
r := reduce(p, G)
if (r �= 0)

H := {g ∈ G | g �→r}; G := H ∪ {r}; A := A ∪ (G − H)
S := {{g1, g2} ∈ S | g1, g2 ∈ H ∪ {0}}) ∪ {(p, h) | h ∈ H ∪ {0}}

end if
end while
return G

end

Fig. 3. Modified Buchberger’s algorithm over integers modulo 2ω

3.7 Modified Buchberger’s Algorithm

Note that, for the Gröbner basis computed in Example 6, only p2 and p4 are
necessary to ensure the Gröbner property, since any polynomial reducible by p1
or p3 must be reducible by p4. This observation is formalised in the result:
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Theorem 2. Let P ⊆ Zm[x] and P ′ = {p ∈ P | p �→P−{p}}. Suppose for
all p ∈ P − P ′ that p →∗

P ′ 0, and for all p1, p2 ∈ P ′, spol(p1, p2) →∗
P ′ 0 and

spol(p1, 0) →∗
P ′ 0. Then, P ′ is a Gröbner basis for 〈P 〉.

Proof. By Theorem 1, P ′ is a Gröbner basis for 〈P ′〉. However, since P ′ ⊆ P and
p →∗

P ′ 0 for all p ∈ P − P ′ it follows that 〈P 〉 = 〈P ′〉. The result follows.

If |P | = �1 and |P ′| = �2 then this criterion takes
(
�2
2

)
+ �2 +(�1 − �2) =

(
�2
2

)
+ �1

reductions to verify, as opposed to
(
�1
2

)
+ �1 reductions via the original criterion.

Moreover, as for the original criterion, it yields an algorithm for converting a
finite basis into a Gröbner basis. The algorithm operates as the original, except
whenever a basis element becomes reducible by a newly added element, it is
removed from, and then reduced by, the basis. If it reduces to 0 then it is dis-
carded; otherwise, its reduced form is added to the basis. All S-polynomials
derived from it are then discarded. Figure 3 presents a modification to Buch-
berger’s algorithm that implements this idea using a third set A to store ele-
ments that are removed from the basis. Elements of A are reduced in preference
to elements of S, and the algorithm terminates when both A and S are empty.
To handle the fact that some elements of the input basis could be reducible by
other elements of the input basis, the set G is initialised to ∅ and the set A is
initialised to P . Hence, the first iterations of the loop effectively add the input
polynomials to the basis.

Example 7. The following table summarises a trace of the modified Buchberger
algorithm on the same input as Example 6.

step G A S reduction
0 ∅ {p1, p2} ∅ p1 →G p1
1 {p1} {p2} {{p1, 0}} p2 →G p2
2 {p1, p2} ∅ {{p2, 0}, {p1, p2}, {p1, 0}} 0 →G 0
3 {p1, p2} ∅ {{p1, p2}, {p1, 0}} 12yx + 2x →G 246x = p3
4 {p2, p3} {p1} {{p3, 0}, {p2, p3}} p1 →G x = p4
5 {p2, p4} {p3} {{p4, 0}, {p2, p4}} p3 →G 0
6 {p2, p4} ∅ {{p4, 0}, {p2, p4}} 0 →G 0
7 {p2, p4} ∅ {{p2, p4}} 4x →G 0
8 {p2, p4} ∅ ∅ −

As noted above, the first two steps of the trace simply add the two input
polynomials to the basis, which had already been performed in the original trace.
Removing these steps yields a trace length of 6 compared to 10 in the original
example. Moreover, by construction, neither p2 nor p4 is reducible by the other.

3.8 Encoding Pseudo-Boolean Constraints

Figure 4 presents rules for translating a polynomial in the form c · X ≡2r d to
a propositional formula such that c ∈ Z

�
m, d ∈ Zm and X ∈ ℘(∪x)�, where
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true
ε · ε ≡2r 0 → true

false
∀ci ∈ c. rank(ci) > 0 rank(d) = 0

c · X ≡2r d → false

xor
1 · X ≡2 1 → ⊕

X∈X (
∧

X)
iff

c · X ≡2 1 → f

c · X ≡2 0 → ¬f

scale
c · X ≡2r d → f

(2sc) · X ≡2r+s (2sd) → f
set

rank(d) = 0 ∃!ci ∈ c. rank(ci) = 0
(c · X ≡2r d)[x �→ 1 | x ∈ Xi] → f

c · X ≡2r d → (
∧

Xi) ∧ f

clear

rank(d) > 0 ∃!ci ∈ c. rank(ci) = 0
∀x ∈ Xi. (c · X ≡2r d)[x �→ 0] → fx

c · X ≡2r d → ∨
x∈Xi

(¬x ∧ fx)

split
x ∈ ⋃

X (c · X ≡2r d)[x �→ 0] → f0 (c · X ≡2r d)[x → 1] → f1

c · X ≡2r d → (¬x ∧ f0) ∨ (x ∧ f1)

Fig. 4. Reduction rules for pseudo-boolean polynomials modulo 2r

x, recall, is the vector of variables and � is the arity of the vectors c and X.
This form of constraint, although restrictive, is sufficient to express the pseudo-
booleans which arise in the final Gröbner basis, as illustrated below:

Example 8. Returning to PB4 of Sect. 2 the polynomials 128b4b1 + 128b1 and
128b3 + 128b2 + 128 can be written as 〈128, 128〉 · 〈{b1, b4}, {b1}〉 ≡256 0 and
〈128, 128〉 · 〈{b3}, {b2}〉 ≡256 128 since 128 = −128 (mod 256).

The rules of Fig. 4 collectively reduce the problem of encoding a constraint to
that of encoding one or more strictly simpler constraints. For brevity, we limit
the commentary to the more subtle rules. The false rule handles constraints
which are unsatisfiable because the coefficients c are all even and d is odd. The
scale rule reduces the encoding problem to that for an equi-satisfiable constraint
obtained by dividing the modulo, coefficients and constant by a power of 2. The
set rule handles constraints where d is odd and there is a unique term ciXi for
which ci is odd. In this circumstance all the variables of Xi must be 1 for the
constraint to be satisfiable. Conversely, clear deals with constraints for which d is
even and there exists a unique ciXi for which ci is odd since then one variable of
Xi must be 0 for satisfiability. When none of above are applicable, split is applied
to reduce to encoding problem to that of two strictly smaller constraints.

4 Experimental Results

Our aim is to apply high-level algebraic reasoning to systematically reduce poly-
nomials to compact systems of low-level constraints. Our experimental work thus
assesses how the complexity of the low-level constraints relate to that of the input
polynomials. Although we provide timings for our Buchberger algorithm, which
as far as we know is state-of-the-art, this is not our main concern. Indeed, fast
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Fig. 5. Top row: number of symbolic variables (y) against ω (x) for n = 2, 3 and 4;
Bottom row: number of pseudo-booleans (y) against ω (x) for n = 2, 3 and 4

algorithms for calculating Gröbner bases over fields have emerged in the last
two decades [11,12], and similar performance gains seem achievable for modulo
arithmetic. In light of this, our Buchberger algorithm is implemented in Scala
2.13.0 (compiled to JVM) using BigInt for complete generality. Experiments
were performed on a 2.7 GHz Intel i5 Macbook with 16 Gbyte of SDRAM.

Datasets. To exercise the symbolic method, polynomial systems were generated
for different numbers of bit-vectors n and different bit-widths ω. For each ω ∈
{2, 4, 8, 16, 32, 64} and n ∈ {2, 3, 4}, 100 polynomial systems were constructed
by randomly generating points in Z

n
2ω and deriving a system with these points as

their zeros. First, each point was described as a system of n (linear) polynomials.
Second, a single system was then formed with n points as its zeros through the
introduction of n − 1 fresh variables [2]. Third, the fresh variables were eliminated
by calculating a Gröbner base to derive a basis constituting a single datapoint.

Symbolic Variable and Pseudo-Boolean Count. Figure 5 presents box and whisker
diagrams that summarise the numbers of symbolic variables and pseudo-booleans
appearing in the derived pseudo-boolean systems. For each box and whisker, the
lower and upper limits of the box indicate the first and third quartiles, the
central line the median. The inter-quartile range (IQR) is the distance from the
top to the bottom of the box. By convention the whiskers extend to 1.5 times the
IQR above and below the median value; any point falling outside of this range
is considered to be an outlier and is plotted as an individual point. Figure 5
was derived from datapoints generated from 6 random points. Similar trends
are observed with fewer points and appear to be displayed for more points, but
variable elimination impedes dataset generation and large-scale evaluation.
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Fig. 6. Histograms for the ratio of the number of pseudo-booleans (top row)/logical
connectives (bottom row) to the multiplication count for n = 2, 3, 4 and ω = 32

For both the number of symbolic variables and the number of pseudo-
booleans, the medians level off after an initial increase and then appear to be
relatively independent of ω. This surprising result suggests that algebraic meth-
ods have a role in reducing the complexity of polynomials for bit-vectors, which
is sensitive to ω for bit-blasting. This implication is that the number of Gröbner
base calculations also stabilises with ω since this tallies with the number of sym-
bolic variables. We also observe that the number of symbolic bits employed is
typically only a fraction of the total number of bits occurring in the bit-vectors,
hence setting a single symbolic bit is often sufficient to infer values for many
other bits.

Pseudo-Boolean versus Multiplication Count. The upper row of Fig. 6 presents
a fine-grained analysis of the number of pseudo-booleans, comparing this count
to the number of bit-vector multiplications in the datasets. Multiplications are
counted as follows: a monomial x3yz, say, in a polynomial system contributes
2 + 1 + 1 = 4 to its multiplication count, irrespective of whether it occurs
singly or multiply in the system. The term 42x3yz also contributes 4 to the
count, so simple multiplications with constants are ignored. Addition is also not
counted, the rationale being to compare the number of pseudo-booleans against
the number of bit-vector multiplications, assuming that different occurrences of
a monomial are detected and factored together. The x-axis of the histograms of
Fig. 6 divides the different ratios into bins, the first column giving the number of
datasets for which the ratio falls within [0, 0.25). As n increases the ratios bunch
more tightly around the bin [0.5, 0.75) and, more significantly, the number of
pseudo-booleans rarely exceed twice the multiplication count, at least for ω = 32.
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Fig. 7. Timings for Buchberger in seconds (y) against ω (x) for n = 2, 3, 4

Logical Connectives versus Multiplication Count. The lower row of Fig. 6 exam-
ines the complexity of the resulting pseudo-boolean systems from another per-
spective: the number of logical connectives required to encode them. The pseudo-
boolean systems were translated to propositional formulae using the reduction
rules of Fig. 4 and their complexity measured by counting the number of logical
connectives used within them. The histograms present a frequency analysis of
ratios of the number logical connectives to the multiplication count. Remarkably,
histograms show that typically no more than 25 logical connectives are required
per multiplication for ω = 32.

Timing. Although the number of symbolic variables is a proxy for complexity,
it ignores that Gröbner basis computations increase in cost with the number
of symbolic variables. Figure 7 is intended to add clarity, plotting the time in
seconds to calculate the pseudo-booleans against ω. As expected, the median
runtimes increase with ω for any given n, though not alarmingly so for an imple-
mentation based on Buchberger rather than a modern, fast engine such as F5 [12].
It should be emphasised that the Gröbner basis computations are the dominat-
ing overhead: the resulting SAT instances are almost trivial for our datapoints.
By way of an initial comparison, our approach is 23-fold slower on average than
CVC4 [4] on our 64 bit problems though, no doubt, building on F5 rather than
Buchberger would significantly reduce this gap, as would recoding in C++.

5 Related Work

Momentum may be growing [1,6,10] for combining algebraic and SMT tech-
niques but work at this intersection has mainly focused on CAD [16,23]. Gröbner
bases have been used [3], however, for interpolating non-linear constraints over
bit-vectors by use of symbolic conversion predicates. These predicates are used
to lazily convert between bit-vectors and rationals, over which Gröbner bases
are computed. A closer integration of Gröbner bases and bit-vectors is offered
by modifying Buchberger’s algorithm [7] to handle modulo arithmetic [5], work
which is developed in this paper. This approach has found application in verifying
the equivalence of multiplication circuits [17], using signed and unsigned machine
arithmetic. Further afield, but also motivated by the desire to bypass bit-blasting,
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efficient portfolio bit-vector solvers have been developed [25], combining learning
with word-level propagators [20] that iteratively restrict the values that can be
assigned to a bit-vector. In contrast to our work, the propagators are designed
to run in constant time and make use of low-level bit-twiddling operations [26].

6 Concluding Discussion

This paper argues for translating polynomial equalities over bit-vectors into
pseudo-boolean constraints, the central idea being to use Gröbner bases to expose
the consequences of setting an individual bit on the bit-vectors over which a poly-
nomial system is defined. The resulting technique, named bit-sequence propaga-
tion, typically infers the values of many bits from setting a single bit, even in the
context of symbolic bit assignments. The symbolic bits enable the Gröbner bases
to be calculated in a deterministic fashion, with search encapsulated within the
pseudo-boolean solver, whether one is employed directly or a reduction to SAT
is used. Furthermore, the technique extends to systems of mixed polynomial
equalities and disequalities. Disequalities can be handled by expressing each dis-
equality in terms of symbolic variables by rewriting the disequalities using the
final basis derived for the equalities. Each disequality can then be converted to
propositional formulae, as with an equality, and then a standard transform [24]
used to ensure that the negation of each of these formulae holds.

References
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Abstract. Recent experiments have shown that satisfiability of a quan-
tified bit-vector formula coming from practical applications almost never
changes after reducing all bit-widths in the formula to a small number
of bits. This paper proposes a novel technique based on this observa-
tion. Roughly speaking, a given quantified bit-vector formula is reduced
and sent to a solver, an obtained model is then extended to the original
bit-widths and verified against the original formula. We also present an
experimental evaluation demonstrating that this technique can signifi-
cantly improve the performance of state-of-the-art smt solvers Boolec-
tor, CVC4, and Q3B on quantified bit-vector formulas from the smt-lib

repository.

1 Introduction

We have recently studied the influence of bit-width changes on satisfiability
of quantified bit-vector formulas from the smt-lib repository. The experiments
showed that satisfiability is surprisingly stable under these changes [7]. For exam-
ple, more than 95% of the considered formulas keep the same satisfiability status
after changing the bit-widths of all variables and constants to an arbitrary value
between 1 and the original bit-width. Indeed, all these stable formulas have the
same satisfiability status even if we replace every bit-vector constant and vari-
able by its least-significant bit and thus transform the formula into a quantified
Boolean formula. Moreover, the percentage of stable formulas increased well
over 99% if all bit-widths are reduced to any value between 4 and the original
bit-width.

The experiments also confirm natural expectation that a formula with smaller
bit-widths can be often solved considerably faster than the formula with the same
structure but with larger bit-widths. For example, solving the formula

ϕ ≡ ∀x∀y∃z (x · (y + z) = 0)
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takes Boolector [11] several minutes on a standard desktop machine when the
variables x, y, z and the constant 0 have the bit-width 32, but it is solved instantly
when the bit-width is 2.

This paper presents a new technique for deciding satisfiability of quantified
bit-vector formulas that builds on the two mentioned observations: satisfiability
status of these formulas is usually stable under bit-width reduction and formulas
with reduced bit-widths can be often solved faster. Intuitively, the technique
consists of the following steps:

1. Reduce bit-widths of variables and constants in the input formula to a smaller
bit-width.

2. Decide satisfiability of the reduced formula using a standard decision proce-
dure. If the reduced formula is satisfiable, obtain its model. If it is unsatisfi-
able, obtain its countermodel (i.e., a reason for unsatisfiability).

3. Extend the model or the countermodel to the original bit-widths. For example,
a model of the formula ϕ defined above reduced to bit-widths 2 has the form
z[2] = −y[2], where the superscripts denote bit-widths of the corresponding
variables. After extension to the original bit-width, we get z[32] = −y[32].

4. Check whether the extended (counter)model is also a (counter)model of the
original formula. If the extended model is a model of the original formula, then
the formula is satisfiable. If the extended countermodel is a countermodel of
the original formula, then the formula unsatisfiable. In the remaining cases,
we increase the bit-widths in the reduced formula and repeat the process.

The technique has some similarities with the approximation framework of
Zeljić et al. [12], which also reduces the precision of a given formula, computes a
model of the reduced formula, and checks if it is a model of the original formula.
However, the framework considers only quantifier-free formulas (and hence mod-
els are just elements of the considered domains, while they are interpretations
of Skolem functions in our setting) and it does not work with countermodels (it
processes unsat cores of reduced formulas instead).

The detailed description of formula reduction and (counter)model extension
is given in Sect. 3, preceded by Sect. 2 that recalls all necessary background and
notation. The algorithm is precisely formulated in Sect. 4. Section 5 presents our
proof-of-concept implementation and it discusses many practical aspects: how to
get a counterexample, what to do with an incomplete model etc. Experimental
evaluation of the technique can be found in Sect. 6. It clearly shows that the pre-
sented technique can improve performance of considered state-of-the-art solvers
for quantified bit-vector formulas, namely Boolector [11], CVC4 [1], and Q3B [9],
on both satisfiable and unsatisfiable formulas from various subcategories of the
relevant smt-lib category BV.

2 Preliminaries

This section briefly recalls the used logical notions and the theory of fixed sized
bit-vectors (BV or bit-vector theory for short). In the description, we assume
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familiarity with standard definitions of a many-sorted logic, well-sorted terms,
atomic formulas, and formulas. To simplify the presentation, we suppose that
all formulas are in the negation normal form. That is, all formulas use only
logical connectives disjunction, conjunction, and negation and the arguments of
all negations are atomic formulas. We suppose that sets of all free and all bound
variables in the formula are disjoint and that each variable is quantified at most
once.

The bit-vector theory is a many-sorted first-order theory with infinitely many
sorts denoted [n], where n is a positive integer. Each sort [n] is interpreted
as the set of all bit-vectors of length n, which is also called their bit-width.
We denote the set of all bit-vectors of bit-width n as BVn and variables of
sort [n] as x[n], y[n], etc. The BV theory uses only three predicate symbols,
namely equality (=), unsigned inequality of binary-encoded natural numbers
(≤u), and signed inequality of integers in two’s complement representation (≤s).
The theory also contains various interpreted function symbols. Many of them
represent binary operations that produce a bit-vector of the same bit-width as its
two arguments. This is the case of addition (+), multiplication (·), bit-wise and
(&), bit-wise or (|), bit-wise exclusive or (⊕), left-shift (�), and right-shift (�).
The theory further contains function symbols for two’s complement negation (−),
concatenation (concat), zero extension extending the argument with n most-
significant zero bits (zeroExtn), sign extension extending the argument with n
copies of the sign bit (signExtn), and extraction of bits delimited by positions
u and l (including bits at these positions) from the argument, where position
0 refers to the least-significant bit and u ≥ l (extractu

l ). The signature of BV
theory also contains numerals for constants m[n] for each bit-width n > 0 and
each number 0 ≤ m ≤ 2n − 1. Each term t has an associated bit-width, which is
denoted as bw(t). The precise definition of the many-sorted logic can be found
for example in Barrett et al. [3]. The precise description of bit-vector theory can
be found for example in the paper describing complexity of quantified bit-vector
theory by Kovásznai et al. [10].

A signature Σ is a set of uninterpreted function symbols, which is disjoint with
the set of all interpreted bit-vector function and predicate symbols. Each function
symbol f ∈ Σ has an associated arity k ∈ N0 and a sort (n1, n2, . . . , nk, n) ∈
N

k+1, where the numbers ni represent bit-widths of the arguments of f and n
represents the bit-width of its result. A Σ-structure M maps each uninterpreted
function f of the sort (n1, n2, . . . , nk, n) to a function of the type BVn1 ×BVn2 ×
. . . × BVnk

→ BVn, and each variable x[n] to a bit-vector value in BVn.
For a Σ-structure M, we define the evaluation function � �M, which assigns

to each term t the bit-vector �t�M obtained by (i) substituting each variable x
in t by its value M(x) given by M and (ii) evaluating all interpreted functions
and predicates using their given semantics and all uninterpreted functions using
their interpretations given by M(f). Similarly, the function � �M assigns to each
formula ϕ the Boolean value �ϕ�M obtained by substituting free variables in ϕ
by values given by M and evaluating all functions, predicates, logical operators
etc. according to M and the standard semantics. A formula ϕ is satisfiable if
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�ϕ�M = � for some Σ-structure M; it is unsatisfiable otherwise. A Σ-structure
M is called a model of ϕ whenever �ϕ�M = �.

The Skolemization of a formula ϕ, denoted skolemize(ϕ), is a formula that is
obtained from ϕ by replacing each existentially quantified variable x[n] in ϕ by
a fresh uninterpreted function symbol fx[n] that has as arguments all variables
that are universally quantified above x[n] in the syntactic tree of the formula ϕ.
Skolemization preserves the satisfiability of the input formula ϕ [6].

For a satisfiable formula ϕ without uninterpreted functions, a model M of
skolemize(ϕ) assigns a bit-vector M(y[m]) ∈ BVm to each free variable y[m] in ϕ,
and a function M(fx[n]) to each Skolem function fx[n] , which corresponds to an
existentially quantified variable x[n] in the formula ϕ. The functions M(fx[n])
may be arbitrary functions (of the corresponding type) in the mathematical
sense. To be able to work with the model, we use the notion of a symbolic model,
in which the functions M(fx[n]) are represented symbolically by terms. Namely,
M(fx[n]) is a bit-vector term of bit-width n whose free variables may be only
the variables that are universally quantified above x[n] in the original formula
ϕ. In the further text, we treat the symbolic models as if they assign a term
not to the corresponding Skolem function fx[n] , but directly to the existentially
quantified variable x[n]. For example, the formula

∀x[32]∀y[32] ∃z[32]
(
x[32] · (y[32] + z[32]) = 0[32]

)

from the introduction has a symbolic model {z[32] → −y[32]}.
For a sentence ϕ, the dual notion to the symbolic model is a symbolic coun-

termodel. The symbolic countermodel of a sentence ϕ is a symbolic model of the
negation normal form of ¬ϕ, i.e., a Σ-structure M that assigns to each univer-
sally quantified variable x[n] in ϕ a term of bit-width n whose free variables may
be only the existentially quantified variables that are quantified above x[n] in
the original formula ϕ.

We can define substitution of a symbolic (counter)model into a given formula.
We define this notion more generally to allow substitution of an arbitrary assign-
ment that assigns terms to variables of the formula. For each such assignment
A and a formula ϕ, we denote as A(ϕ) the result of simultaneous substitution
of the term A(x[n]) for each variable x[n] in the domain of A and removing all
quantifications of the substituted variables. For example, the value of

A
(
∀x[32]∀y[32] ∃z[32] (x[32] · (y[32] + z[32]) = 0[32])

)

for A = {z[32] → −y[32]} is ∀x[32]∀y[32] (x[32] · (y[32] + (−y[32])) = 0[32]).

3 Formula Reduction and Model Extension

This section describes the basic building blocks of our new technique, namely
reduction of bit-widths in a given formula and extension of bit-widths in a given
model or countermodel.
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3.1 Reduction of Bit-Widths in Formulas

The goal of the reduction procedure is to reduce the bit-widths of all variables
and constants in a given formula so that they do not exceed a given bit-width.
In fact, we reduce bit-widths of all terms in the formula in order to keep the
formula type consistent. A similar reduction is defined in our previous paper [7],
but only for a simpler fragment of the considered logic.

As the first step, we inductively define a function rt that takes a term and
a bit-width bw ∈ N and reduces all subterms of the term. The function always
cuts off all most-significant bits above the given bit-width bw. As the base case,
we define the reduction on constants and variables.

rt(m[n], bw) = (m mod 2min(n,bw))
[min(n,bw)]

rt(x[n], bw) = x[min(n,bw)]

Further, let ◦ range over the set {+, ·,&, |,⊕,�,�} of binary functions that
produce results of the same bit-width as the bit-width of their arguments. To
reduce a term t1 ◦ t2, we just need to reduce the arguments.

rt(t1 ◦ t2, bw) = rt(t1, bw) ◦ rt(t2, bw)
rt(−t1, bw) = −rt(t1, bw)

The most interesting cases are the functions that change bit-widths. As the first
case, let extn be a function that extends its argument with n most-significant
zero bits (zeroExtn) or with n copies of the sign bit (signExtn). A term extn(t)
where t has bw or more bits is reduced just to rt(t, bw). Indeed, the function extn

is completely removed as the bits it would add exceed the maximal bit-width.
When t has less than bw bits, we apply the extension function but we decrement
its parameter if the bit-width of the resulting term should exceed bw. Moreover,
we also apply the reduction function to t to guarantee that bit-widths of its
subterms do not exceed bw.

rt(extn(t), bw) =

{
rt(t, bw) if bw(t) ≥ bw

extmin(n,bw−bw(t))(rt(t, bw)) if bw(t) < bw

As the second case, consider a term extractu
l (t) that represents bits of t between

positions u and l (including these positions). The reduction is defined by one of
the following three subcases according to the relation of bw and positions u and
l. Recall that u ≥ l, the bit-width of the original term is u − l + 1, and it has to
be reduced to m = min(u − l + 1, bw).

– If both u and l point to some of the bw least-significant bits of t (i.e., bw > u),
the positions u and l of rt(t, bw) are defined, and so we just reduce the
argument t and do not change the parameters of extract.

– If l points to some of the bw least-significant bits of t but u does not (i.e.,
u ≥ bw > l), we reduce the argument t, extract its most-significant bits up to
the position l, and extend the result with most-significant zero bits such that
the bit-width of the result is m. These additional zero bits correspond to the
positions that should be extracted, but are not present in the term rt(t, bw).
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– If both positions u and l point outside the bw least-significant bits of t (i.e.,
l ≥ bw), we replace the term with the bit-vector of zeroes of the length m.

In the following formal definition, we denote by o the bit-width of term t after
reduction, i.e., o = bw(rt(t, bw)) = min(bw(t), bw).

rt(extractu
l (t), bw) =

⎧
⎪⎨
⎪⎩

extractu
l (rt(t, bw)) if bw > u

extm−(o−l)(extracto−1
l (rt(t, bw))) if u ≥ bw > l

0[m] if l ≥ bw

where ext ∈ {signExt, zeroExt} can be chosen during the implementation.
Finally, reduction of a term concat(t1, t2) representing concatenation of t1

and t2 is given by one of the following two cases. Note that the reduced term
should have the size m = min(bw(t1) + bw(t2), bw). If bw(t2) ≥ bw, the term is
reduced to rt(t2, bw) as the bits of t1 exceed the desired maximal bit-width. In
the opposite case, we reduce both t1 and t2 and create the term containing all
the bits of the reduced term t2 preceded by m − bw(t2) least-significant bits of
the reduced term t1.

rt(concat(t1, t2), bw) =

=

{
rt(t2, bw) if bw(t2) ≥ bw

concat
(
extract

m−bw(t2)−1
0

(
rt(t1, bw)

)
, rt(t2, bw)

)
if bw(t2) < bw

Now we define a function rf that reduces the maximal bit-widths of all terms
in a given formula to a given value bw. The function is again defined inductively
using the function rt in the base case to reduce arguments of predicate symbols.
The rest of the definition is straightforward.

rf (t1 � t2, bw) = rt(t1, bw) � rt(t2, bw) for � ∈ {=,≤u,≤s}
rf (¬ϕ, bw) = ¬rf (ϕ, bw)

rf (ϕ1 � ϕ2, bw) = rf (ϕ1, bw) ◦ rf (ϕ2, bw) for � ∈ {∧,∨}
rf (Qx[n] .ϕ, bw) = Qx[min(n,bw)] .rf (ϕ, bw) for Q ∈ {∀,∃}

3.2 Extending Bit-Widths of Symbolic Models

If a reduced formula is satisfiable and its symbolic model M is obtained, it cannot
be directly substituted into the original formula. It first needs to be extended to
the original bit-widths. Intuitively, for each result M(x) = t, where the original
bit-width of the variable x is n, we

1. increase bit-widths of all variables in t to match the bit-widths in the original
formula ϕ,
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2. for each operation whose arguments need to have the same bit-width, we
increase bit-width of the argument with the smaller bit-width to match the
bit-width of the other argument,

3. change the bit-width of the resulting term to match the bit-width of the
original variable x[n].

In the formalization, we need to know bit-widths of the variables in the
original formula. Therefore, for a formula ϕ, we introduce the function bwsϕ

that maps each variable name x in ϕ to its original bit-width in ϕ. For example,
bwsx[32]+y[32]=0[32](x) = 32. Further, we use the function adjust , which adjusts
the bit-width of the given term t to the given bit-width bw.

adjust(t, bw) =

⎧
⎪⎨
⎪⎩

t if bw(t) = bw

extbw−bw(t)(t) if bw(t) < bw

extractbw−1
0 (t) if bw(t) > bw

where ext ∈ {signExt, zeroExt} can be chosen during the implementation.
For each term t of the reduced model, we now recursively construct a term t,

which uses only the variables of the original formula and is well-sorted. In other
words, this construction implements the first two steps of the symbolic model
extension described above.

As the base cases, we keep the bit-width of all constants and extend the
bit-width of all variables to their original bit-widths in ϕ.

m[n] = m[n]

x[n] = x[bwsϕ(x)]

For any operation ◦ ∈ {+, ·,&, |,⊕,�,�} that requires arguments of the same
bit-widths, we may need to extend the shorter of these arguments.

t1 ◦ t2 = adjust
(
t1,max(bw(t1),bw(t2))

) ◦ adjust
(
t2,max(bw(t1),bw(t2))

)

For the remaining operations, the construction is straightforward.

−t1 = − t1

extn(t1) = extn(t1) for ext ∈ {zeroExt, signExt}
extracti

j(t1) = extracti
j(t1)

concat(t1, t2) = concat(t1, t2)

Now we complete the symbolic model extension with its third step. Formally,
for a symbolic model M we define a model extension extendM (M) that assigns
to each variable x in the domain of M the term M(x) adjusted to the original
bit-width of x.

extendM (M)(x) = adjust(M(x),bwsϕ(x)).
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Example 1. Consider a formula ϕ that contains variables x[8], y[8], z[4], v[8], w[4].
Suppose that we have the M of rf (ϕ, 4) given below. With the parameter ext of
adjust set to signExt, the assignment extendM (M) is defined as follows.

M = {x[4] → v[4] + 3[4], extendM (M) = {x[8] → v[8] + 3[8],

y[4] → w[4], y[8] → signExt4(w
[4]),

z[4] → v[4], z[4] → extract30(v
[8])}

Note that the numeral 3[8] in extendM (M) arises by evaluation of the ground
term signExt4(3[4]).

Note on additional smt-lib operations. The syntax of the BV theory given in
smt-lib actually contains more predicates and functions than we have defined.
The constructions presented in Subsections 3.1 and 3.2 can be extended to cover
these additional predicates and functions mostly very easily. One interesting case
is the if-then-else operator ite(ϕ, t1, t2) where the first argument is a formula
instead of a term. To accommodate this operator, the reduction functions rt and
rf are defined as mutually recursive, and the symbolic model extension has to
be enriched to handle not only terms, but also formulas. All these extensions
can be found in the dissertation of M. Jonáš [8]. Note that ite indeed appears
in symbolic models in practice.

4 Algorithm

In this section, we propose an algorithm that employs bit-width reductions and
extensions to decide satisfiability of an input formula. In the first subsection, we
describe a simpler approach that can only decide that a formula is satisfiable.
The following subsection dualizes this approach to unsatisfiable formulas. We
then show how to combine these two approaches in a single algorithm, which is
able to decide both satisfiability and unsatisfiability of a formula.

4.1 Checking Satisfiability Using Reductions and Extensions

Having defined the functions rf (see Subsect. 3.1), which reduces bit-widths in
a formula, and extendM (see Subsect. 3.2), which extends bit-widths in a sym-
bolic model of the reduced formula, it is fairly straightforward to formulate an
algorithm that can decide satisfiability of a formula using reduced bit-widths.

This algorithm first reduces the bit-widths in the input formula ϕ, thus
obtains a reduced formula ϕred , and checks its satisfiability. If the formula is
not satisfiable, the algorithm computes a new reduced formula ϕred with an
increased bit-width and repeats the process. If, on the other hand, the reduced
formula ϕred is satisfiable, the algorithm obtains its symbolic model M, which
assigns a term to each existentially quantified and free variable of the formula
ϕred . The model is then extended to the original bit-widths of the variables in
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the formula ϕ and the extended model is substituted into the original formula
ϕ, yielding a formula ϕsub . The formula ϕsub may not be quantifier-free, but it
contains only universally quantified variables and no free variables. The formula
ϕsub may therefore be checked for satisfiability by a solver for quantifier-free bit-
vector formulas: the solver can be called on the formula ϕ¬

sub that results from
removing all quantifiers from the formula ¬ϕsub transformed to the negation
normal form. Since the formula ϕsub is closed, the satisfiability of ϕ¬

sub implies
unsatisfiability of ϕsub and vice versa. Finally, if the formula ϕsub is satisfiable,
so is the original formula. If the formula ϕsub is not satisfiable, the process is
repeated with an increased bit-width.

Example 2. Consider the formula ϕ ≡ ∀x[32]∃y[32] (x[32] + y[32] = 0[32]). Reduc-
tion to 2 bits yields the formula rf (ϕ, 2) ≡ ∀x[2]∃y[2] (x[2] + y[2] = 0[2]). An
smt solver can decide that this formula is satisfiable and its symbolic model
is {y[2] → −x[2]}. An extended candidate model is then {y[32] → −x[32]}.
After substituting this candidate model into the formula, one gets the formula
ϕsub ≡ ∀x[32] (x[32] + (−x[32]) = 0[32]). Negating the formula ϕsub and removing
all the quantifiers yields the quantifier-free formula (x[32] + (−x[32]) �= 0[32]),
which is unsatisfiable. Therefore, the formula ϕsub is satisfiable and, in turn, the
original formula ϕ is satisfiable as well.

The correctness of the approach is guaranteed by the following theorem.

Theorem 1 ([8, Theorem 11.1]). Let ϕ be a formula in the negation normal
form and A a mapping that assigns terms only to free and existentially quanti-
fied variables of ϕ. If each term A(x) contains only universal variables that are
quantified in ϕ before the variable x, satisfiability of A(ϕ) implies satisfiability
of ϕ.

4.2 Dual Algorithm

The algorithm of the previous subsection can improve performance of an smt

solver only for satisfiable formulas. However, its dual version can be used to
improve performance on unsatisfiable formulas. In the dual algorithm, one can
decide unsatisfiability of a formula by computing a countermodel of a reduced
formula and verifying it against the original formula. More precisely, if the solver
decides that the reduced formula ϕred is unsatisfiable, one can extend its coun-
termodel M, substitute the extended countermodel into the original formula,
obtaining a formula ϕsub which contains only existentially quantified variables.
Satisfiability of ϕsub can be again checked by a solver for quantifier-free formulas
applied to ϕsub after removing all its existential quantifiers. If the formula ϕsub is
unsatisfiable, the original formula ϕ must have been unsatisfiable. If the formula
ϕsub is satisfiable, the process is repeated with an increased bit-width.

Example 3. Consider the formula ϕ = ∀y[32] (x[32] + y[32] = 0[32]). Reduction
to one bit yields the formula rf (ϕ, 1) = ∀y[1] (x[1] + y[1] = 0[1]). This formula
can be decided as unsatisfiable by an smt solver and its countermodel is {y[1] →
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−x[1]+1[1]}. The extension of this countermodel to the original bit-widths is then
{y[32] → −x[32] + 1[32]}. After substituting this candidate countermodel to the
original formula, one obtains the quantifier-free formula ϕsub = (x[32]+(−x[32]+
1[32]) = 0[32]), which is unsatisfiable. The original formula ϕ is thus unsatisfiable.

The correctness of the dual algorithm is guaranteed by the following theorem.

Theorem 2 ([8, Theorem 11.2]). Let ϕ be a formula in the negation normal
form and A a mapping that assigns terms only to universally quantified variables
of ϕ. If each term A(x) contains only free and existential variables that are quan-
tified in ϕ before the variable x, unsatisfiability of A(ϕ) implies unsatisfiability
of ϕ.

4.3 Combined Algorithm

Now we combine the two algorithms into one. In the rest of this section, we sup-
pose that there exists a model-generating solver that produces symbolic models
for satisfiable quantified bit-vector formulas and countermodels for unsatisfiable
ones. Formally, let solve(ϕ) be the function that returns (sat,model) if ϕ is
satisfiable and (unsat, countermodel) in the opposite case.

Further, we use smt queries to check the satisfiability of ϕsub . Generally, these
queries can be answered by a different smt solver than the model-generating one.
We call it model-validating solver and suppose that it has the function verify(ψ)
which returns either sat or unsat reflecting the satisfiability of ψ.

Using these two solvers, the algorithm presented in Listing 1.1 combines the
techniques of the two preceding subsections. This algorithm first reduces the bit-
widths in the input formula to 1 and checks satisfiability of the reduced formula
ϕred by the model-generating solver. According to the result, we try to validate
either the extended symbolic model or the extended symbolic countermodel with
the model-validating solver. If the validation succeeds, the satisfiability of the
original formula is decided. Otherwise, we repeat the process but this time we
reduce the bit-widths in the input formula to twice the value used in the previous
iteration. The algorithm terminates at the latest in the iteration when the value
of bw is so high that the formula ϕred is identical to the input formula ϕ. In
this case, the model-generating solver provides a model or a countermodel M
of ϕ. As M contains the unchanged variables of ϕ, its extension extendM (M)
is identical to M and the model-validating solver has to confirm the result.

5 Implementation

We have implemented the proposed algorithm in a proof-of-concept tool. How-
ever, our implementation differs in several aspects from the described algorithm.
This section explains all these differences and provides more details about the
implementation.
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Listing 1.1. The combined algorithm for checking satisfiability of ϕ using bit-width
reductions and extensions.

1 bw ← 1
2 while (true) {
3 ϕred ← rf (ϕ, bw)
4 (result , M) ← solve(ϕred )
5 A ← extendM (M)
6 ϕsub ← A(ϕ)
7 if (result == sat) {
8 ϕ¬

sub ← removeQuantifiers(¬ϕsub)
9 verificationResult ← verify(ϕ¬

sub)
10 if (verificationResult == unsat) return SAT
11 }
12 if (result == unsat) {
13 ϕsub ← removeQuantifiers(ϕsub)
14 verificationResult ← verify(ϕsub)
15 if (verificationResult == unsat) return UNSAT
16 }
17 bw ← increaseBW(bw)
18 }

5.1 Model-Generating Solver

As the model-generating solver, we use Boolector 3.2.0 as it can return symbol-
ically expressed Skolem functions as models of satisfiable quantified formulas,
which is crucial for our approach. Unfortunately, Boolector does not satisfy some
requirements that we imposed on the model-generating solver.

First, the symbolic model M returned by Boolector may not contain terms
for all existentially quantified variables of the input formula ϕ. Therefore, the for-
mula ϕsub may still contain both existentially and universally quantified variables
and we cannot employ an smt solver for quantifier-free formulas as the model-
validation solver. Our implementation thus uses a model-validating solver that
supports quantified formulas. An alternative solution is to extend M to all exis-
tentially quantified variables, for example by assigning 0[n] to each existentially
quantified variable x[n] that is not assigned by M. This allows using a solver for
quantifier-free formulas as the model-validating solver. However, our preliminary
experiments indicate that this alternative solution does not bring any significant
benefit. Moreover, the best performing smt solvers for the quantifier-free bit-
vector formulas can also handle quantified formulas.

Second, Boolector returns symbolic models only for satisfiable formulas and
cannot return symbolic countermodels. We alleviate this problem by running
two parallel instances of Boolector: one on the original formula ϕ and one on
the formula ¬ϕ′, where ϕ′ arises from ϕ by existential quantification of all free
variables. We then use only the result of the solver that decides that the formula
is satisfiable; if ϕ is satisfiable, we get its symbolic model, if ¬ϕ′ is satisfiable,
we get its symbolic model, which is a symbolic countermodel of ϕ. Effectively,
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this is equivalent to running the algorithm of Listing 1.1 without the lines 12–
16 in two parallel instances: one on ϕ and the other on ¬ϕ′. This is what our
implementation actually does.

5.2 Portfolio Solver

The aim of our research is to improve the performance of an smt solver for the
BV theory using the bit-width reductions and extensions. The solver is used as
the model-validating solver. We investigate two implementations:

– To see real-world benefits, we run the original solver in parallel with the
two processes that use bit-width reductions. The result of the first process
that decides the satisfiability of the input formula is returned. The schematic
overview of our portfolio solver is presented in Fig. 1. In this variant, if the
reducing solvers reach the original bit-width of the formula, they return
unknown.

– To see the negative overhead of reductions, we also consider a variant of
the above-mentioned approach, but without the middle thread with original
solver. In this variant, the reducing solvers are additionally executed for the
original bit-width in their last iteration.

Our experimental implementation is written in C++ and Python. It utilizes
the C++ api of Z3 [5] to parse the input formula in the smt-lib format. The Z3
api is also used in the implementation of formula reductions and some simplifi-
cations (conversion to the negation normal form and renaming bound variables
to have unique names). The only part written in Python is a simple wrapper that
executes the three parallel threads and collects their results. As the parameters,
we use ext = zeroExt in rt , ext = signExt in adjust , and increaseBW(x) = 2∗x.
These parameters had the best performance during our preliminary evaluation,
but can be changed. The implementation is available at: https://github.com/
martinjonas/bw-reducing-solver.

6 Experimental Evaluation

We have evaluated the impact of our technique on the performance of three
leading smt solvers for the BV theory: Boolector 3.2.0 [11], CVC4 1.6 [1], and
Q3B 1.0 [9]. Each of these solvers has been employed as the model-validating
solver, while the model-generating solver remains the same, namely Boolector.
For the evaluation, we have used all 5741 quantified bit-vector formulas from the
smt-lib benchmark repository [2]. The formulas are divided into 8 benchmark
families coming from different sources.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00 GHz processors and 128 gb of ram. Each benchmark run
was limited to use 16 gb of ram and 5 min of wall time. All measured times are
wall times. For reliable benchmarking we employed BenchExec [4].

https://github.com/martinjonas/bw-reducing-solver
https://github.com/martinjonas/bw-reducing-solver
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Fig. 1. High-level overview of the portfolio solver. The three shaded areas are executed
in parallel and the first result is returned.

6.1 Boolector

First, we have evaluated the impact of our technique on the performance of
Boolector 3.2.0. We have compared the vanilla Boolector (referred to as btor),
our portfolio solver running Boolector as both model-generating and model-
validating solver (btor-r), and the portfolio variant without the original solver
(btor-r-no). The numbers of formulas of individual benchmark families solved
by the three solvers can be found in the corresponding columns of Table 1. While
btor-r-no is not very competitive, the full portfolio solver was able to solve 22
formulas more than Boolector itself. Note that this amounts to 8.6% of the for-
mulas unsolved by Boolector. The scatter plots in Fig. 2 shows the performance
of the solvers. With the full portfolio approach, our technique can also signif-
icantly reduce the running time of Boolector on a non-trivial number of both
satisfiable and unsatisfiable formulas from various benchmark families.

We have also investigated the reduction bit-width that was necessary to
improve the performance of Boolector. Among all executions of the full port-
folio solver, 475 benchmarks were actually decided by one of the two parallel
threads that perform bit-width reductions. From these 475 benchmarks, 193
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Table 1. The table shows for each benchmark family and each solver the number of
benchmarks that were solver by the solver within a given timeout.
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Fig. 2. Scatter plots of wall times of the solver btor vs the solvers btor-r and
btor-r-no. Each point represents one benchmark, its color shows the benchmark family,
and its shape shows its satisfiability.

were decided using the bit-width of 1 bit, 141 using 2 bits, 111 using 4 bits, 23
using 8 bits, and 7 using 16 bits.

6.2 CVC4 and Q3B

We have also performed evaluations with CVC4 and Q3B as model-validating
solvers. This yields the following four solvers: cvc4, q3b are the vanilla CVC4
and Q3B, respectively; cvc4-r, q3b-r are the portfolio solvers using CVC4 and
Q3B, respectively, as the model-validating solver.
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Fig. 3. Scatter plots of wall times of the virtual best solvers btor|cvc4 vs. btor|cvc4-r
(left) and btor|q3b vs. btor|q3b-r (right).

Whenever the model-generating solver differs from the model-validating
solver, the comparison is more involved. For example, the direct comparison of
cvc4 and cvc4-r would be unfair and could be biased towards cvc4-r. This hap-
pens because models are provided by Boolector as the model-generating solver
and the model validation may become trivial for CVC4, even if it could not
solve the reduced formula alone. To eliminate this bias, we do not compare
cvc4 against cvc4-r, but the virtual-best solver from btor and cvc4, denoted
as btor|cvc4, against the virtual-best solver from btor and cvc4-r, denoted as
btor|cvc4-r. We thus investigate only the effect of reductions and not the per-
formance of the model-generating solver on the input formula. Similarly, we com-
pare the virtual-best solver btor|q3b against the virtual-best solver btor|q3b-r.

Table 1 shows the number of benchmarks solved by the compared solvers. In
particular, reductions helped the virtual-best solver btor|cvc4-r to solve 4 more
benchmarks than the solver btor|cvc4. This amounts to 3.4% of the benchmarks
unsolved by btor|cvc4. For btor|q3b-r, the reductions help to solve 7 new
benchmarks, i.e., 8.8% of unsolved benchmarks.

Similarly to the case of Boolector, reductions also help btor|cvc4-r to decide
several benchmarks faster than the solver btor|cvc4 without reductions. This
can be seen on the first scatter plot in Fig. 3. As the second scatter plot in this
figure shows, reductions also help Q3B to solve some benchmarks faster.

All experimental data, together with additional results and all scripts that
were used during the evaluation are available at: https://fi.muni.cz/∼xstrejc/
sat2020/.

7 Conclusions

We have described an algorithm that improves performance of smt solvers for
quantified bit-vector formulas by reducing bit-widths in the input formula. We
have shown that if used in a portfolio approach, our proof-of-concept implemen-

https://fi.muni.cz/~xstrejc/sat2020/
https://fi.muni.cz/~xstrejc/sat2020/
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tation of this algorithm improves performance of state-of-the art smt solvers
Boolector, CVC4, and Q3B.

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)
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Abstract. We suggest a general framework to study dependency
schemes for dependency quantified Boolean formulas (DQBF). As our
main contribution, we exhibit a new tautology-free DQBF dependency
scheme that generalises the reflexive resolution path dependency scheme.
We establish soundness of the tautology-free scheme, implying that it
can be used in any DQBF proof system. We further explore the power
of DQBF resolution systems parameterised by dependency schemes and
show that our new scheme results in exponentially shorter proofs in com-
parison to the reflexive resolution path dependency scheme when used
in the expansion DQBF system ∀Exp+Res.

On QBFs, we demonstrate that our new scheme is exponentially
stronger than the reflexive resolution path dependency scheme when
used in Q-resolution, thus resulting in the strongest QBF dependency
scheme known to date.

Keywords: DQBF · Dependency schemes · Proof complexity · QBF

1 Introduction

Quantified Boolean formulas (QBF) have been intensively studied in the past
decade, both practically and theoretically. On the practical side, there have been
huge improvements in QBF solving [30]. These build on the success of SAT solv-
ing [36], but also incorporate new ideas genuine to the QBF domain, such as
expansion solving [21] and dependency schemes [32]. Due to its PSPACE com-
pleteness, QBF solving is relevant to many application domains that cannot be
efficiently encoded into SAT [17,23,26]. On the theoretical side, there is a sub-
stantial body of QBF proof complexity results (e.g. [3,6,8–10]), which calibrates
the strength of solvers while guiding their development.

In QBF solving, a severe technical complication is that variable dependencies
stemming from the linear order of quantification1 must be respected when assign-
ing variables. In contrast, a SAT solver can assign variables in any order, granting
1 The standard input for solvers is a prenex QBF.
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complete freedom to decision heuristics, which are crucial for performance. As
a remedy, QBF researchers have developed dependency schemes. Dependency
schemes try to determine algorithmically which of the variable dependencies are
essential, thereby identifying spurious dependencies which can be safely disre-
garded. The result is greater freedom for decision heuristics.

Practical QBF solving utilises dependency schemes, for example the solvers
DepQBF [24] and Qute [27,28], and experiments show dependency-aware solving
is particularly competitive on QBFs with high quantifier complexity [20,25].

The performance gains are also underlined by theoretical findings. There is a
sequence of results [7,29,35] that establish how and when dependency schemes
are sound to use with a QBF proof system, such as the central QBF resolution
systems Q-resolution [22] and long-distance Q-resolution [2]. In [6] it is demon-
strated that using the reflexive resolution path dependency scheme (Drrs [35])
in Q-resolution can exponentially shorten proofs.

While dependency schemes aim to algorithmically determine spurious depen-
dencies, dependency quantified Boolean formulas (DQBF) allow to directly
express variable dependencies by specifying, for each existential variable x, a
dependency set of universal variables on which x depends. This is akin to the
use of Henkin quantifiers in first-order logic [18]. Compared to QBFs, DQBFs
boost reasoning power and enable further applications (cf. [33] for an overview).
The price of succinct encodings is an increase of the complexity of the satisfia-
bility problem from PSPACE (for QBF) to NEXP (for DQBF) [1].

It seems natural that there should be a relationship between dependency
schemes and DQBF, and indeed the paper [7] suggests that dependency schemes
for QBF should be viewed as truth-preserving mappings from QBF to DQBF.

Now, is there even a need for dependency schemes for DQBF? The answer
is yes: also for DQBFs it is possible that the dependency sets contain spurious
dependencies, which can be safely eliminated [37]. Indeed, Wimmer et al. [37]
showed that several dependency schemes for QBF, including Drrs, can be lifted
to DQBF. They also demonstrate that using dependency schemes for DQBF
preprocessing can have a significant positive impact on solving time.

However, in contrast to QBF, there are currently no results on how DQBF
dependency schemes can be incorporated into DQBF proof systems, and how
this affects their proof-theoretic strength.

This paper contributes to the theory of DQBF dependency schemes on three
main fronts.

A. A proof complexity framework for DQBF dependency schemes. We
extend the interpretation of QBF dependency schemes proposed in [7] to DQBF.
The result is a framework in which a sound DQBF dependency scheme D can be
straightforwardly incorporated into an arbitrary DQBF proof system P, yielding
the parametrised system P(D). More precisely, in our framework a proof of Φ in
P(D) is simply a P proof of D(Φ), where D is a mapping between DQBFs.

A major benefit of this approach is that the rules of the proof system remain
independent of the dependency scheme, which essentially plays the role of a pre-
processor. Moreover, soundness of a dependency scheme is characterised by the
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natural property of full exhibition [4,34], independently of proofs. This is a wel-
come feature, since even defining sound parameterisations on the QBF fragment
has been fairly non-trivial, e.g. for the long-distance Q-resolution calculus [4,29].

We also extend the notion of genuine proof size lower bounds [12,14] to
DQBF proof systems. Since DQBF encompasses QBF, proof systems are sus-
ceptible to lower bounds from QBF proof complexity. We define a precise con-
dition by which hardness from the QBF fragment is factored out. As such, our
framework fosters the first dedicated DQBF proof complexity results.

B. The tautology-free dependency scheme. We define and analyse a
new DQBF dependency scheme called the tautology-free dependency scheme
(Dtf). Our scheme builds on the reflexive resolution path dependency scheme
(Drrs) [35], originally defined for QBFs, which prior to this paper was the
strongest known DQBF scheme. Dtf improves on Drrs by disallowing certain
kinds of tautologies in resolution paths, thereby identifying further spurious
dependencies.

We show that Dtf is fully exhibited, and therefore sound, by reducing its full
exhibition to that of Drrs. For this, we point out that the full exhibition of Drrs

on DQBF is an immediate consequence of results of Wimmer et al. [37].

C. Exponential separations of (D)QBF proof systems. To demonstrate
the strength of our new scheme Dtf, we show that it can exponentially shorten
proofs in DQBF proof systems. As a case study, we consider the expansion
calculus ∀Exp+Res. The choice of ∀Exp+Res is motivated by two considerations:
(1) it is a natural calculus, whose QBF fragment models expansion solving [21],
and (2) other standard QBF resolution systems such as Q-resolution and long-
distance Q-resolution do not lift to DQBF [11].

For ∀Exp+Res parameterised by dependency schemes we show that

∀Exp+Res < ∀Exp+Res(Drrs) < ∀Exp+Res(Dtf) (1)

forms a hierarchy of DQBF proof systems of strictly increasing strength.
Since there exist no prior DQBF proof complexity results whatsoever, this

entails proving exponential proof-size lower bounds in the first two systems. We
obtain these by introducing two new DQBF versions of the equality formulas
(originally QBFs [8,13]). Together with the corresponding upper bounds, this
yields the separations in (1). We highlight that these are genuine separations in
the precise sense of our DQBF framework, whereby hardness due to the QBF
fragment is factored out.

Finally, we show that our new dependency scheme Dtf is also relevant for
QBFs: we prove that Q-resolution parameterised by Dtf is exponentially stronger
than Q-resolution with Drrs. Thus Dtf currently constitutes the strongest known
dependency scheme for Q-resolution.

Organisation. Section 2 defines DQBF preliminaries. In Sect. 3 we explain
dependency schemes. Section 4 details how to parameterise DQBF proof sys-
tems by dependency schemes. In Sect. 5 we define our new scheme Dtf and show
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its soundness. In Sect. 6 we prove the proof complexity upper and lower bounds
needed for the strict hierarchy in (1). Section 7 applies Dtf to QBF and shows
that it is stronger than Drrs when used with Q-resolution.

2 Preliminaries

DQBF Syntax. We assume familiarity with the syntax of propositional logic
and the notion of Boolean formula (simply formula). A variable is an element z
of the countable set V. A literal is a variable z or its negation z. The negation of
a literal a is denoted a, where z := z for any variable z. A clause is a disjunction
of literals. A conjunctive normal form formula (CNF) is a conjunction of clauses.
The set of variables appearing in a formula ψ is denoted vars(ψ). For ease, we
often write clauses as sets of literals, and CNFs as sets of clauses. For any clause
C and any set of variables Z, we define C�Z := {a ∈ C : var(a) ∈ Z}.

A dependency quantified Boolean formula (DQBF) is a sentence of the form
Ψ := Π ·ψ, where Π := ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn

) is the quantifier prefix
and ψ is a CNF called the matrix. In the quantifier prefix, each existential
variable xi is associated with a dependency set Sxi

, which is a subset of the
universal variables {u1, . . . , um}. With vars∀(Ψ) and vars∃(Ψ) we denote the
universal and existential variable sets of Ψ , and with vars(Ψ) their union. We
deal only with closed DQBFs, in which vars(ψ) ⊆ vars(Ψ). We define a relation
deps(Ψ) on vars∀(Ψ) × vars∃(Ψ), where (u, x) ∈ deps(Ψ) if, and only if, u ∈ Sx.

The set of all DQBFs is denoted DQBF. A QBF is a DQBF whose dependency
sets are linearly ordered with respect to set inclusion, i.e. Sx1 ⊆ · · · ⊆ Sxn

. The
prefix of a QBF can be written as a linear order in the conventional way. The
set of all QBFs is denoted QBF.

DQBF Semantics. An assignment α to a set Z of Boolean variables is a
function from Z into the set of Boolean constants {0, 1}. The domain restriction
of α to a subset Z ′ ⊆ Z is written α�Z′ . The set of all assignments to Z is
denoted 〈Z〉. The restriction of a formula ψ by α, denoted ψ[α], is the result
of substituting each variable z in Z by α(z), followed by applying the standard
simplifications for Boolean constants, i.e. 0 �→ 1, 1 �→ 0, φ ∨ 0 �→ φ, φ ∨ 1 �→ 1,
φ∧ 1 �→ φ, and φ∧ 0 �→ 0. We say that α satisfies ψ when ψ[α] = 1, and falsifies
ψ when ψ[α] = 0.

A model for a DQBF Ψ := Π ·ψ is a set of functions f := {fx : x ∈ vars∃(Ψ)},
fx : 〈Sx〉 → 〈{x}〉, for which, for each α ∈ 〈vars∀(Ψ)〉, the combined assignment
α ∪ {fx(α�Sx

) : x ∈ vars∃(Ψ)} satisfies ψ. A DQBF is called true when it has a
model, otherwise it is called false. When two DQBFs share the same truth value,
we write Ψ

tr≡ Ψ ′.

DQBF Expansion. Universal expansion is a syntactic transformation that
removes a universal variable from a DQBF. Let Ψ be a DQBF, let u be a uni-
versal, and let y1, . . . , yk be the existentials for which u ∈ Syi

. The expansion of
Ψ by u is obtained by creating two ‘copies’ of Ψ . In the first copy, u is assigned
0 and each yi is renamed yu

i . In the second copy, u is assigned 1 and each yi is
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renamed yu
i . The two copies are then combined, and u is removed completely

from the prefix. Formally, exp(Ψ, u) := Π ′ · ψ′, where Π ′ is obtained from Π by
removing ∀u and replacing each ∃yi(Syi

) with ∃yu
i (Syi

\{u})∃yu
i (Syi

\{u}), and

ψ′ := ψ[u �→ 0, y1 �→ yu
1 , . . . , yk �→ yu

k ] ∧ ψ[u �→ 1, y1 �→ yu
1 , . . . , yk �→ yu

k ] .

Universal expansion is known to preserve the truth value, i.e. Ψ
tr≡ exp(Ψ, u).

Expansion by a set of universal variables U is defined as the successive expansion
by each u ∈ U (the order is irrelevant), and is denoted exp(Ψ,U). Expansion by
the whole set vars∀(Ψ) is denoted exp(Ψ), and referred to as the total expansion
of Ψ . The superscripts in the renamed existential variables are known as anno-
tations. Annotations grow during successive expansions. In the total expansion,
each variable is annotated with a total assignment to its dependency set.

3 DQBF Dependency Schemes and Full Exhibition

In this section, we lift the ‘DQBF-centric’ interpretation of QBF dependency
schemes [7] to the DQBF domain, and recall the definition of full exhibition.

How Should We Interpret Variable Dependence? Dependency schemes
[32] were originally introduced to identify so-called spurious dependencies: some-
times the order of quantification implies that z depends on z′, but forcing z to be
independent preserves the truth value. Technically, a dependency scheme D was
defined to map a QBF Φ to a set of pairs (z′, z) ∈ vars(Φ) × vars(Φ), describing
an overapproximation of the dependency structure: (z′, z) ∈ D(Φ) means that
the dependence of z on z′ should not be ignored, whereas (z′, z) /∈ D(Φ) means
that it can be. The definition was tailored to QBF solving, in which variable
dependencies for both true and false formulas come into play.

The DQBF-centric interpretation [7] followed somewhat later. There, the goal
was a dependency scheme framework tailored to refutational QBF proof systems.
Refutational systems work only with false formulas, and this allows a broad
refinement: the dependence of universals on existentials can be ignored. As such,
it makes sense to consider merely the effect of deleting some universal variables
from the existential dependency sets. Thus, a dependency scheme becomes a
mapping from QBF into DQBF.

Likewise, in this work we seek a framework tailored towards refutational proof
systems. Hence we advocate the same approach for the whole domain DQBF. A
DQBF dependency scheme will be viewed as a mapping to and from DQBF, in
which the dependency sets may shrink. The notion of shrinking dependency sets
is captured by the relation following.

Definition 1. We define the relation ≤ on DQBF×DQBF as follows: Π ′ · φ ≤
Π · ψ if, and only if, φ = ψ, vars∃(Ψ ′) = vars∃(Ψ), and the dependency set of
each existential in Π ′ is a subset of that of Π.

In this paper, we only consider poly-time computable dependency schemes.
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Definition 2 (dependency scheme). A dependency scheme is a polynomial-
time computable function D : DQBF → DQBF for which D(Ψ) ≤ Ψ for all Ψ .

Under this definition, a spurious dependency according to D is a pair (u, x)
such that u is in the dependency set for x in Ψ , but not in D(Ψ). A natural
property of dependency schemes, identified in [37], is monotonicity.2

Definition 3 (monotone (adapted from [37])). We call a dependency
scheme D monotone when Ψ ′ ≤ Ψ implies D(Ψ ′) ≤ D(Ψ), for all Ψ and Ψ ′.

A fundamental concept in the DQBF-centric framework, which has strong
connections to soundness in related proof systems [6], is full exhibition. First
used by Slivovsky [34], the name was coined later in [4], describing the fact that
there should be a model which ‘fully exhibits’ all spurious dependencies. ‘Full
exhibition’ is synonymous with ‘truth-value preserving’.

Definition 4 (full exhibition [4,34]). A dependency scheme D is called fully

exhibited when Ψ
tr≡ D(Ψ), for all Ψ .

4 Parametrising DQBF Calculi by Dependency Schemes

In this section we show how to incorporate dependency schemes into DQBF proof
systems. In the spirit of so-called ‘genuine’ lower bounds [12], we also introduce
a notion of genuine DQBF hardness.

Refutational DQBF Proof Systems. We first define what we mean by a
DQBF proof system. With FDQBF we denote the set of false DQBFs. We con-
sider only refutational proof systems, which try to show that a given formula is
false. Hence, ‘proof’ and ‘refutation’ can be considered synonymous.

Following [15], a DQBF proof system over an alphabet Σ is a polynomial-time
computable onto function P : Σ∗ → FDQBF. In practice, we do not always want
to define a proof system explicitly as a function on a domain of strings. Instead,
we define what constitutes a refutation in the proof system P, and then show: (1)
Soundness: if Ψ has a refutation, it is false (the codomain of P is FDQBF); (2)
Completeness: every false DQBF has a refutation (P is onto); (3) Checkability:
refutations can be checked efficiently (P is polynomial-time computable).

Two concrete examples of DQBF proof systems from the literature are the
fundamental expansion-based system ∀Exp+Res [7], and the more sophisticated
instantiation-based system IR-calc [7].

Incorporating Dependency Schemes. A dependency scheme, interpreted as
a DQBF mapping as in Definition 2, can be combined with an arbitrary proof
system in a straightforward manner.

Definition 5 (P(D)). Let P be a DQBF proof system and let D be a dependency
scheme. A P(D) refutation of a DQBF Ψ is a P refutation of D(Ψ).
2 A different notion of monotonicity for dependency schemes is defined in [29].
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The proof system P(D) essentially utilises the dependency scheme as a pre-
processing step, mapping its input Ψ to the image D(Ψ) before proceeding with
the refutation. In this way, the application of the dependency scheme D is sep-
arated from the rules of the proof system P, and consequently the definition of
P need not be explicitly modified to incorporate D (cf. [4,35]).

Of course, we must ensure that our preprocessing step is correct; we do not
want to map a true formula to a false one, which would result in an unsound
proof system. Now it becomes clear why full exhibition is central for soundness.

Proposition 6. Given a DQBF proof system P and a dependency scheme D,
P(D) is sound if, and only if, D is fully exhibited.

Proof. Suppose that D is fully exhibited. Let π be a P(D) refutation of a
DQBF Ψ . Then π is a P refutation of D(Ψ), which is false by the soundness
of P. Hence Ψ is false by the full exhibition of D, so P(D) is sound.

Suppose now that D is not fully exhibited. By definition of dependency
scheme, for each DQBF Ψ we have Ψ ≥ D(Ψ). It follows that D preserves falsity,
so there must exist a true DQBF Ψ for which D(Ψ) is false. Then there exists a
P refutation of D(Ψ) by the completeness of P, so P(D) is not sound. ��

Note that completeness and checkability of P are preserved trivially by any
dependency scheme, so we can even say that P(D) is a DQBF proof system if,
and only if, D is fully exhibited. Thus full exhibition characterises exactly the
dependency schemes whose incorporation preserves the proof system.

Simulations, Separations and Genuine Lower Bounds. Of course, the
rationale for utilising a dependency scheme as a preprocessor lies in the potential
for shorter refutations. We first recall the notion of p-simulation from [15]. Let P
and Q be DQBF proof systems. We say that P p-simulates Q (written Q ≤p P)
when there exists a polynomial-time computable function from Q refutations to
P refutations that preserves the refuted formula.

Since a p-simulation is computed in polynomial time, the translation from
Q into P incurs at most a polynomial size blow-up. As such, the conventional
approach to proving the non-existence of a p-simulation is to exhibit a family
of formulas {Ψn}n∈N that has polynomial-size refutations in Q, while requiring
super-polynomial size in P.

Now, it is of course possible that the hard formulas {Ψn}n∈N are QBFs.
While this suffices to show that Q �p P, it is not what we want from a study of
DQBF proof complexity; it is rather a statement about the QBF fragments of
the systems P and Q. In reality the situation is even more complex. The lower
bound may stem from QBF proof complexity even when {Ψn}n∈N are not QBFs.
More precisely, there may exist an ‘embedded’ QBF family {Φn}n∈N which is
already hard for P, where ‘embedded’ means Φn ≤ Ψn. Under the reasonable
assumption that decreasing dependency sets cannot increase proof size,3 any
DQBF family in which {Φn}n∈N is embedded will be hard for P.

3 This holds for all known DQBF proof systems.
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For that reason, we introduce a notion of genuine DQBF hardness that dis-
misses all embedded QBF lower bounds.

Definition 7. Let P and Q be DQBF proof systems. We write Q �
∗
p P when

there exists a DQBF family {Ψn}n∈N such that:

(a) {Ψn}n∈N has polynomial-size Q refutations;
(b) {Ψn}n∈N requires superpolynomial-size P refutations;
(c) every QBF family {Φn}n∈N with Φn ≤ Ψn has polynomial-size P refutations.

We write P <∗
p Q when both P ≤p Q and Q �

∗
p P hold.

Hence, P <∗
p Q means that Q simulates P, but P does not simulate Q, and

the hardness result for P is a genuine DQBF lower bound. Prior to this paper,
there were no such hardness results in the DQBF literature.

5 The Tautology-Free Dependency Scheme

In this section we define the tautology-free dependency scheme Dtf and show that
it is fully exhibited.

For any DQBF Ψ , we denote by I∃(Ψ) the set of independent existential
variables, i.e. I∃(Ψ) := {x ∈ vars∃(Ψ) : Sx = ∅} is the set of existentials whose
dependency sets are empty. For any k ∈ N, we define [k] := {n ∈ N : n ≤ k}.

Definition 8 (Drrs [35] and Dtf). The reflexive resolution path dependency
scheme (Drrs) is defined as the mapping Ψ �→ Ψ ′, where

Ψ := ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn
) · ψ ,

Ψ ′ := ∀u1 · · · ∀um∃x1(S′
x1

) · · · ∃xn(S′
xn

) · ψ ,

and S′
i is the set of universal variables u ∈ Si for which there exists a sequence

C1, . . . , Ck of clauses in ψ and a sequence p1, . . . , pk−1 of existential literals
satisfying the following conditions:

(a) u ∈ C1 and u ∈ Ck;
(b) for some j ∈ [k − 1], xi = var(pj);
(c) for each j ∈ [k − 1], pj ∈ Cj, pj ∈ Cj+1, and u ∈ Svar(pj);
(d) for each j ∈ [k − 2], var(pj) �= var(pj+1).

The tautology-free dependency scheme (Dtf) adds to Drrs the condition

(e) for each j ∈ [k − 1], (Cj ∪ Cj+1)�I∃(Ψ) is non-tautological.

Let us give an example, illustrating that Dtf is stronger than Drrs.

Example 9. Consider the DQBF Ψ = ∃x∀u∃z · C1 ∧ C2, where C1 = x ∨ u ∨ z
and C2 = x ∨ u ∨ z. The sequence of clauses C1, C2 and the sequence consisting
of the single literal p1 = z show that (u, z) ∈ deps(Drrs(Ψ)). However, the same
sequence of clauses violates condition (e) of Definition 8 because (C1 ∪ C2)�I∃(Ψ)

is a tautology on x ∈ I∃(Ψ). Since there are no other sequences that satisfy (a),
we conclude that (u, z) �∈ deps(Dtf(Ψ)). ��
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Proposition 10. Dtf is a monotone dependency scheme.

Proof. It is easy to see that Dtf(Ψ) ≤ Ψ for each Ψ . It remains to verify
polynomial-time computability and monotonicity.

Polynomial-Time Computability. As there are polynomially many pairs, it suf-
fices to show that whether (u, x) is in deps(Ψ) can be decided in polynomial time
for each pair (u, x). Consider the directed graph Gu

Ψ = (VΨ , Eu
Ψ ) with the vertex

set VΨ = {(C, a) : C ∈ Ψ, a ∈ C} and with an edge from (C, a) to (D, e) if e ∈ C,
u ∈ Svar(e), var(a) �= var(e), and (C ∪ D)�I∃(Ψ) is non-tautological.

We claim that (u, x) ∈ deps(Ψ) if, and only if, there is a literal a, var(a) = x,
and clauses C,C ′, C ′′ such that u ∈ C ′′, (C ′, a) is reachable from (C, u) and
(C ′′, e) is reachable from (C ′, a) for some e. Indeed, it is easy to verify that the
concatenation of a pair of such paths directly translates to the required sequences
from Definition 8, and vice versa. Clearly, Gu

Ψ can be constructed in polynomial
time, hence we can test all candidates (C, u), compute all middle points (C ′, a)
reachable from them, and check whether some (C ′′, e) is reachable from any of
them, all in polynomial time.

Monotonicity. Let Ψ, Ψ ′ be DQBFs with Ψ ′ ≤ Ψ , let (u, x) ∈ deps(Dtf(Ψ ′)). We
show that (u, x) ∈ deps(Dtf(Ψ)). It follows that Dtf(Ψ ′) ≤ Dtf(Ψ).

There exists a sequence of clauses C1, . . . , Ck and a sequence of literals
p1, . . . , pk−1 satisfying conditions (a) to (e) in Definition 8 with respect to
(u, x) ∈ deps(Ψ ′). We show that the same sequences satisfy conditions (a) to
(e) with respect to (u, x) ∈ deps(Ψ), which implies (u, x) ∈ deps(Dtf(Ψ)).

Conditions (a), (b) and (d) are satisfied trivially. Since Ψ ′ ≤ Ψ , each depen-
dency set Svar(pi) in Ψ is a superset of the corresponding dependency set S′

var(pi)

in Ψ ′, so condition (c) is satisfied. Condition (e) is satisfied since the set of
independent variables I∃(Ψ) is a subset of I∃(Ψ ′). ��

Wimmer et al. [37] essentially showed that Drrs is fully exhibited, even though
they did not use that term. Theorems 3 and 4 in [37] together imply that all
spurious dependencies can be removed one by one in any order without changing
the truth value (as is remarked at the start of Sect. 3.1 in that paper).

Theorem 11 (Wimmer et al. [37]). Drrs is fully exhibited.

We show full exhibition of Dtf by reduction to full exhibition of Drrs.

Theorem 12. Dtf is fully exhibited.

Proof. Since Dtf(Ψ) ≤ Ψ , we only need to show that if Ψ is true, then Dtf(Ψ) is
true. Assume Ψ is true; then there is an assignment σ ∈ 〈I∃(Ψ)〉 such that Ψ [σ] is
true. We claim that (u, x) ∈ deps(Drrs(Ψ [σ])) implies (u, x) ∈ deps(Dtf(Ψ)). Con-
sider sequences C1, . . . , Ck and p1, . . . , pk−1 witnessing (u, x) ∈ deps(Drrs(Ψ [σ])).
For each Ci there is C ′

i ∈ Ψ , such that Ci = C ′
i[σ], i.e. C ′

i ⊆ Ci ∪σ, where σ is the
largest clause falsified by σ. It is readily verified that the sequences C ′

1, . . . , C
′
k

and p1, . . . , pk−1 witness (u, x) ∈ deps(Dtf(Ψ)). In particular, no tautologies can
appear among (C ′

i ∪ C ′
i+1)�I∃(Ψ), because all C ′

i agree with σ on the variables



Strong (D)QBF Dependency Schemes via Tautology-Free Resolution Paths 403

of I∃(Ψ). Hence, we get Drrs(Ψ [σ]) ≤ Dtf(Ψ)[σ]. By full exhibition of Drrs, we
have that Drrs(Ψ [σ]) is true, which means Dtf(Ψ)[σ] is true, and hence Dtf(Ψ) is
true. ��
Example 13. Consider Ψ from Example 9. It is easy to see that Ψ is true. As
shown in Example 9, Dtf(Ψ) = ∃x∃z∀u · (x ∨ z ∨ u) ∧ (x ∨ z ∨ u). We can see
that the assignment x �→ 1, z �→ 0 is a model of Dtf(Ψ), which is therefore true,
in line with full exhibition of Dtf. ��

6 Proof Complexity of ∀Exp+Res(D)

Among the first DQBF proof systems to be introduced, the expansion based sys-
tem ∀Exp+Res [7,21] is arguably the most natural. In this section we investigate
its proof complexity under parametrisation by dependency schemes; that is, we
investigate the proof complexity of P(D) where P is ∀Exp+Res. Our main result
is the following theorem.

Theorem 14. ∀Exp+Res <∗
p ∀Exp+Res(Drrs) <∗

p ∀Exp+Res(Dtf).

The simulations present in Theorem 14 follow from two observations, namely
(1) Dtf(Ψ) ≤ Drrs(Ψ) (by definition), and (2) Ψ ′ ≤ Ψ guarantees that ∀Exp+Res
refutations of Ψ ′ are no larger than those of Ψ . Indeed, given a refutation of Ψ ,
restricting the annotations to the dependency sets of Ψ ′ produces a refutation of
Ψ ′ of the same size. We refer to this property as the monotonicity of ∀Exp+Res.

The challenge is to show the genuine separations (Theorems 20 and 26). We
note that the QBF analogue of the first separation is known [6]. The question
(and indeed the notion) of a genuine separation was not previously considered.

The DQBF Proof System ∀Exp+Res. We recall the propositional resolution
proof system [31]. A resolution refutation of a CNF ψ is a sequence C1, . . . , Ck

of clauses where Ck is empty and each Ci is derived by one of the following rules:

A Axiom: Ci is a clause in ψ;
R Resolution: Ci = A ∨ B, where Cr = A ∨ x and Cs = B ∨ x, for some r, s < i.

The DQBF proof system ∀Exp+Res, with which we shall concern ourselves for
the remainder of the section, is built upon resolution. Perhaps the most obvious
way to decide DQBF is to reduce it to propositional logic by expanding out all
the universal variables, based on the fact that Ψ is true if, and only if, the matrix
of exp(Ψ) is satisfiable. This is exactly how ∀Exp+Res works. The input DQBF
is first expanded, and then refuted in resolution.

Definition 15 (∀Exp+Res [7,21]). A ∀Exp+Res refutation of a DQBF Ψ is a
resolution refutation of the matrix of exp(Ψ).

It is known that ∀Exp+Res is sound, complete and checkable on DQBFs [7].
Note that a ∀Exp+Res refutation of Ψ may be small even if its expansion exp(Ψ)
is large, since the underlying resolution refutation of exp(Ψ) need not necessarily
introduce every clause as an axiom.
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Given that fully exhibited dependency schemes like Dtf and Drrs (Theo-
rem 12) can be incorporated into an arbitrary DQBF proof system P (Proposi-
tion 6), we obtain the DQBF proof systems ∀Exp+Res(Drrs) and ∀Exp+Res(Dtf).

Next we show the two genuine separations that together constitute a proof
of Theorem 14.

Separation of ∀Exp+Res and ∀Exp+Res(Drrs). Our separating formulas are
DQBFs based on the equality QBFs [8]. Our modification exploits a refined
dependency structure and utilises the following notation: the matrix-clause prod-
uct of a CNF ψ and a clause C is the CNF ψ ⊗ C := {D ∪ C : D ∈ ψ}.

Definition 16 (EQ0
n (adapted from [8])). EQ0

n := ΠEQ
n · ψEQ

n , where

ΠEQ
n := ∀u1 · · · ∀un∃x1(∅) · · · ∃xn(∅)∃z1(u1) · · · ∃zn(un) ,

ψEQ
n := (z1 ∨ · · · ∨ zn) ∧

∧n

i=1

(
(xi ∨ ui ∨ zi) ∧ (xi ∨ ui ∨ zi)

)
.

Since the dependency sets of EQ0
n are strict subsets of those of the original

equality formulas (in which each zi depends on each uj), the QBF lower bound
for ∀Exp+Res [5] does not suffice for EQ0

n. Nonetheless, a similar argument works,
based on the fact that no small subset of clauses in the expansion is unsatisfiable.

Theorem 17. {EQ0
n}n∈N requires exponential-size ∀Exp+Res refutations.

Proof. The total expansion of EQ0
n is the CNF ψ∧∧n

i=1

(
(xi ∨ zui

i ) ∧ (xi ∨ zui
i )

)
,

where ψ is the conjunction of all clauses of the form (za1
1 ∨ · · · ∨ zan

n ) with
var(ai) = ui. We show that removing any of the 2n clauses from ψ makes the
total expansion satisfiable. It follows that any resolution refutation of exp(EQ0

n)
must have 2n axiom clauses.

Suppose that some clause A is absent from ψ, and let us assume without
loss of generality that A := (zu1

1 ∨ · · · ∨ zun
n ), i.e. the clause corresponding to

ui �→ 1 for each i (the general case is symmetrical). Now, assigning each zui
i �→ 1

satisfies every clause in ψ except A. Assigning each zui
i �→ 0 satisfies each clause

(xi ∨ zui
i ). Finally, assigning each xi �→ 1 satisfies each clause (xi ∨ zui

i ). ��
The corresponding upper bound for EQ0

n in ∀Exp+Res(Drrs) does follow from
that of the original equality QBFs (by the monotonicity of Drrs and ∀Exp+Res).
We give a full proof nonetheless, since we will use the details later. The main
point is that Drrs identifies all pairs as spurious dependencies.

Proposition 18 ([6]). For all n, the dependency sets of Drrs(EQ0
n) are empty.

Proof. Aiming for contradiction, suppose that there exists a sequence of clauses
C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to
(d) of Definition 8 with respect to (ui, zi) ∈ deps(EQ0

n). Since zi is the unique
variable whose dependency set contains ui, we must have k = 2, by conditions
(c) and (d). By condition (a), we have ui ∈ C1, so C1 = (xi ∨ ui ∨ zi), and
by condition (c) we have p1 = zi. Also by condition (c) we have zi ∈ C2, so
C2 = (z1 ∨ · · · ∨ zn). We therefore reach a contradiction, since ui /∈ C2 violates
condition (a). ��
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Fig. 1. The prelude to a linear-size ∀Exp+Res refutation of Φ0
n. In order to reduce

exp(Φ0
n) to exp(Drrs(EQ0

n−1)), we need only derive the clause (z1 ∨ · · · ∨ zn−1).

Theorem 19 ([6]). {EQ0
n}n∈N has linear-size ∀Exp+Res(Drrs) refutations.

Proof. By Proposition 18, the total expansion of Drrs(EQ0
n) is obtained simply

by removing the universal literals; that is, the matrix of exp(Drrs(EQ0
n)) is

(z1 ∨ · · · ∨ zn) ∧
∧n

i=1

(
(xi ∨ zi) ∧ (xi ∨ zi)

)
. (2)

It is easy to see that this CNF has linear-size resolution refutations. First, resolve
each pair (xi ∨ zi), (xi ∨ zi) over xi, and resolve the resulting unit clauses (zi)
with the remaining clause to obtain the empty clause. ��

Theorems 17 and 19 together imply that ∀Exp+Res does not p-simulate
∀Exp+Res(Drrs). It remains to show that the lower bound is genuine.

Theorem 20. ∀Exp+Res �
∗
p ∀Exp+Res(Drrs).

Proof. It is easy to see that the largest QBF Φ0
n that is smaller than EQ0

n has
exactly one non-empty dependency set. Let us assume without loss of generality
that this is Szn

= {un}. We will show that Φ0
n has a linear-size ∀Exp+Res

refutation. Hence, by the monotonicity of ∀Exp+Res, any family of QBFs smaller
than {EQ0

n}n∈N has linear-size ∀Exp+Res refutations. Thus, by Theorems 17
and 19, {EQ0

n}n∈N satisfies all the conditions of Definition 7.
It remains to show that Φ0

n has a linear-size ∀Exp+Res refutation, or equiv-
alently, that exp(Φ0

n) has a linear-size resolution refutation. It is readily verified
that exp(Φ0

n) contains every clause in exp(Drrs(EQ0
n−1)) except (z1 ∨ · · · ∨ zn−1).

Figure 1 illustrates that this clause can be derived from exp(Φ0
n) in a constant

number of resolution steps. Since exp(Drrs(EQ0
n−1)) has a linear-size resolution

refutation by Theorem 19, so does exp(Φ0
n). ��

Separation of ∀Exp+Res(Drrs) and ∀Exp+Res(Dtf). For our second separation,
we introduce another DQBF family. This time, we refine the prefix of an existing
modification of the equality formulas.
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Definition 21 (EQ1
n (adapted from [13])). For each natural number n,

EQ1
n := ΠEQ

n ∃r(∅)∃s({u1, . . . , un}) ·
(
ψEQ

n ⊗ (r ∨ s)
) ∧ (

ψEQ
n ⊗ (r ∨ s)

) ∧ (r ∨ s) ∧ (r ∨ s) .

The main idea is that the addition of the fresh variables r and s is enough
to obfuscate all the spurious dependencies for Drrs. As such, preprocessing with
Drrs has no effect, and hardness can be proved via the ∀Exp+Res lower bound
for EQ0

n (Theorem 17).

Proposition 22. For each n, Drrs(EQ1
n) = EQ1

n.

Proof. To prove the proposition, we must find sequences satisfying conditions
(a) to (d) of Definition 8 with respect to both (ui, zi), (ui, s) ∈ deps(EQ1

n) for
each i. In fact, for both pairs (ui, zi) and (ui, s), the sequence of clauses

(r ∨ xi ∨ ui ∨ zi ∨ s), (r ∨ z1 ∨ · · · ∨ zn ∨ s), (r ∨ xi ∨ ui ∨ zi ∨ s)

and the sequence of literals zi, s suffice. ��
Theorem 23. {EQ1

n}n∈N requires exponential-size ∀Exp+Res(Drrs) refutations.

Proof. Consider the assignment α defined by r �→ 0, s �→ 0. It is easy to see
that EQ1

n[α] = EQ0
n. Now consider the ‘expanded’ assignment αU defined by

r �→ 0, sσ �→ 0 for each σ ∈ 〈{u1, . . . , un}〉. It is less easy to see, but readily veri-
fied, that exp(EQ1

n)[αU ] = exp(EQ1
n[α]) = exp(EQ0

n). Let π be a ∀Exp+Res(Drrs)
refutation of EQ1

n; that is, a resolution refutation of exp(Drrs(EQ1
n)). By Propo-

sition 22, π is a resolution refutation of exp(EQ1
n). Since resolution is closed

under restrictions, π[αU ] is a resolution refutation of exp(EQ1
n)[αU ] = exp(EQ0

n)
with

∣∣π[αU ]
∣∣ ≤ |π|. By Theorem 17, 2n ≤ ∣∣π[αU ]

∣∣ ≤ |π|. ��
The situation is quite different for the tautology-free dependency scheme Dtf.

Here, the simple detection of consecutive-clause tautologies in the variable r is
enough to identify all spurious dependencies, resulting in linear-size refutations.

Proposition 24. For each n, the dependency sets of Dtf(EQ1
n) are all empty.

Proof. Aiming for contradiction, suppose that there exists a sequence of clauses
C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to (e)
of Definition 8 with respect to (uj , y) ∈ deps(EQ1

n), for some y ∈ {zj , s}.
By condition (c), none of the var(pi) is r. Hence, if some Ci is either (r ∨ s)

or s ∨ r, we must have i = 1 or i = k, violating condition (a). Therefore those
clauses do not appear in the sequence. It follows that none of the var(pi) is s, for
otherwise we would have consecutive clauses Ci and Ci+1 whose resolvent over
s contains complementary literals in r, violating condition (e).

Hence each var(pi) = zj , and we must have k = 2, by conditions (c) and (d).
Now we reach a contradiction as in the proof of Proposition 18, despite the
addition of literals in r and s. By condition (a), we have ui ∈ C1, and we deduce
that ui /∈ C2, contradicting condition (a). ��
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Theorem 25. {EQ1
n}n∈N has linear-size ∀Exp+Res(Dtf) refutations.

Proof. By Proposition 24, the total expansion of Dtf(EQ1
n) is obtained by remov-

ing universal literals, hence exp(Dtf(EQ1
n)) is the CNF

(r ∨ z1 ∨ · · · ∨ zn ∨ s) ∧
∧n

i=1

(
(r ∨ xi ∨ zi ∨ s) ∧ (r ∨ xi ∨ zi ∨ s)

)
∧ (r ∨ s) ∧

(r ∨ z1 ∨ · · · ∨ zn ∨ s) ∧
∧n

i=1

(
(r ∨ xi ∨ zi ∨ s) ∧ (r ∨ xi ∨ zi ∨ s)

)
∧ (r ∨ s) .

By resolution of (r ∨ s) over r with each clause containing r, and likewise of
(r ∨ s) with each clause containing r, we obtain all clauses in the CNF

(exp(Drrs(EQ0
n)) ⊗ (s)) ∧ (exp(Drrs(EQ0

n)) ⊗ (s)) ,

where exp(Drrs(EQ0
n)) is the CNF (2) from the proof of Theorem 19. By res-

olution over s we obtain exp(Drrs(EQ0
n)) itself, which has a linear-size resolu-

tion refutation by Theorem 19. It is easy to see that the whole refutation of
exp(Dtf(EQ1

n)) is of linear size. ��
Theorem 26. ∀Exp+Res(Drrs) �

∗
p ∀Exp+Res(Dtf).

Proof. It is easy to see that the largest QBF Φ1
n that is smaller than EQ1

n has
Ss = {u1, . . . , un} and exactly one other non-empty dependency set Szi

= {ui},
where i = n without loss of generality. We will prove that Φ1

n has linear-size
∀Exp+Res(Drrs) refutations. We therefore prove the theorem, since by Theo-
rems 23 and 25, and the monotonicity of ∀Exp+Res(Drrs), {EQ1

n}n∈N satisfies
all the conditions of Definition 7.

A ∀Exp+Res(Drrs) refutation of Φ1
n is a ∀Exp+Res refutation of Drrs(Φ1

n). By
definition, Drrs(Φ1

n) ≤ Φ1
n. Now, Φ1

n has linear-size ∀Exp+Res refutations: it is
readily verified that exp(EQ1

n), which has linear-size resolution refutations, can
be derived from exp(Φ1

n) in a linear number of resolution steps. Hence Drrs(Φ1
n)

has linear-size ∀Exp+Res refutations, by the monotonicity of ∀Exp+Res; i.e. Φ1
n

has linear-size ∀Exp+Res(Drrs) refutations. ��

7 Tautology-Free Dependencies for QBF

We now turn our attention to dedicated QBF proof complexity, in particu-
lar to the QBF proof systems Q-Res(D) [35] that were introduced to model
dependency-aware QBF solving. We show the following.

Theorem 27. Q-Res(Dtf) is exponentially stronger than Q-Res(Drrs).

Since Drrs was state-of-the-art for Q-Res(D), Theorem 27 shows that Dtf is
currently the strongest known dependency scheme applicable to dependency-
aware QBF solving. We recall the definition of the QBF proof system Q-Res(D).
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Definition 28 (Q-Res(D) [22,35]). A Q-Res refutation of a DQBF Ψ is a
sequence C1, . . . , Ck of clauses in which Ck is empty and each Ci is derived
by one of the following rules:

A Axiom: Ci is a non-tautological clause in the matrix of Ψ ;
R Resolution: Ci = A ∨ B, where Cr = A ∨ x and Cs = B ∨ x, for some r, s < i

and some x ∈ vars∃(Φ), and Ci is not a tautology.
U Universal reduction: Ci ∨ a = Cr for some r < i and some literal a with

var(a) = u ∈ vars∀(Ψ) and (u, x) /∈ deps(Ψ) for each x ∈ vars(Ci).

Given a QBF dependency scheme D, a Q-Res(D) refutation of a QBF Φ is a
Q-Res refutation of D(Φ).

Q-Res(Dtf) is complete for QBF by [22], and soundness follows by full exhibition.

Theorem 29. Q-Res(Dtf) is a QBF proof system.

QBF Separation of Q-Res(Drrs) and Q-Res(Dtf). Our separating formulas are
the QBFs on which our DQBF modification EQ1

n (Definition 21) was based. An
exponential lower bound for these formulas in Q-Res(Drrs) was shown in [13].

Definition 30 (EQ2
n [13]). For each natural number n,

EQ2
n := ∃r∃x1 · · · ∃xn∀u1 · · · ∀un∃z1 · · · zn∃s ·

(
ψEQ

n ⊗ (r ∨ s)
) ∧ (

ψEQ
n ⊗ (r ∨ s)

) ∧ (r ∨ s) ∧ (r ∨ s)

Theorem 31 ([6]). {EQ2
n}n∈N requires exponential-size Q-Res(Drrs)

refutations.

We show that EQ2
n have linear-size refutations in Q-Res(Dtf). The proof is

along similar lines as our upper bound for EQ1
n in ∀Exp+Res(Dtf). We first show

that Dtf identifies the full set of spurious dependencies, which gives rise naturally
to short refutations.

Proposition 32. For each n, the dependency sets of Dtf(EQ2
n) are all empty.

Proof. Aiming for contradiction once again, suppose that there exists a sequence
of clauses C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions
(a) to (e) of Definition 8 with respect to (ui, y) ∈ deps(EQ1

n), for some variable
y ∈ {z1, . . . , zn, s}.

As in the proof of Proposition 24, we can deduce that variables r and s do
not appear in the sequence of literals. By condition (a) we have u ∈ C1. By
condition (c) we have p1 = zi and C2 = (z1 ∨ · · · ∨ zn ∨ a), with var(a) = s. By
conditions (c) and (d), we have p2 = zj for some j �= i. By condition (c) zj ∈ C2,
and by conditions (c) and (d) we must have k = 2. This violates condition (a),
since ui /∈ C2. ��
Theorem 33. {EQ2

n}n∈N has linear-size Q-Res(Dtf) refutations.
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Proof. By Proposition 32, deps(Dtf(EQ2
n)) is the empty relation. It follows that

all universal literals in the matrix may be removed by universal reduction. Hence,
with a single axiom and universal reduction step per clause, we derive the clauses
of exp(Dtf(EQ1

n)) from the proof of Theorem 25. Each step of the linear-size
resolution refutation described there is also available in Q-Res(Dtf). ��

8 Conclusions

We conclude with an interesting observation and a question for future research.
The family {EQ0

n}n∈N from Definition 16 is an adaptation of the equality QBFs
{EQn}n∈N from [8], obtained by shrinking the dependency set of each zi to
just {ui}. While in QBF {EQn}n∈N requires exponentially long proofs in both
∀Exp+Res and Q-Res [5,8], in DQBF {EQ0

n}n∈N remains hard only for ∀Exp+Res.
Indeed, even though Q-Res is incomplete for DQBF, it is sound, and {EQ0

n}n∈N

has linear-size Q-Res refutations. This suggests that there may be some hid-
den proof-complexity relationship between ∀Exp+Res and Q-Res in DQBF, even
though Q-Res is incomplete there.

We have presented the strongest known dependency scheme Dtf. A natural
question is whether some even stronger dependency schemes for (D)QBF exist.
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Abstract. We introduce new proof systems for quantified Boolean
formulas (QBFs) by enhancing Q-resolution systems with rules which
exploit local and global symmetries. The rules are based on homomor-
phisms that admit non-injective mappings between literals. This results
in systems that are stronger than Q-resolution with (injective) symme-
try rules. We further strengthen the systems by utilizing a dependency
system D in a way that surpasses Q(D)-resolution in relative strength.

Keywords: Symmetries · Homomorphisms · QBF · Q(D)-Resolution ·
Dependency schemes · Proof complexity

1 Introduction

In a 1985 paper, Krishnamurthy [12] introduced symmetry rules which
strengthen the propositional resolution system to admit exponentially shorter
proofs, for instance, linearly sized proofs for the Pigeon Hole Principle. The
global symmetry rule exploits the automorphisms of the entire input formula. The
even stronger local symmetry rule exploits the existence of isomorphic images of
subsets of clauses within the formula. Szeider [19] further strengthened Krishna-
murthy’s proof systems, generalizing the symmetry rules to homomorphism rules
by considering clause-preserving mappings that are not necessarily injective.

Recently, Kauers and Seidl [11] lifted Krishnamurthy’s most basic symmetry
rule, the global symmetry rule, to Q-resolution (Q-Res), the standard resolution-
based proof system for quantified Boolean formulas (QBFs) in prenex conjunc-
tive normal form (PCNF). They showed that several families of formulas that
require exponentially-sized Q-resolution proofs admit polynomially-sized proofs
if the generalized symmetry rule is added.

Our main contribution is the introduction and study of proof systems based
on Q-resolution that are even stronger than the one studied by Kauers and
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Seidl [11]: we lift the local symmetry rule to the quantified setting, as well as the
local and global homomorphism rules. A straightforward lifting of the rules from
the propositional case to the quantified case insists that the mapping between
literals on which the symmetries (or more generally, homomorphisms) operate
does not jump between quantifier blocks. A more general version allows a jump
between quantifier blocks, as long as the relative position of the variables in
the quantifier prefix is preserved. We go even a step further, and parameterize
our systems by a dependency scheme D [15], and only require the mapping to
preserve dependencies according to the chosen dependency scheme. Thus, our
systems strengthen Kauers and Seidl’s system along three dimensions:

1. from global symmetries to local symmetries,
2. from symmetries to homomorphisms, and
3. from quantifier-block preserving mappings to dependencies preserving map-

pings with respect to a dependency system.

Each of the three dimensions alone provides an exponential speedup.
Figure 1 gives an overview of the proof systems considered in this paper. In

the figure, D stands for the reflexive resolution-path dependency scheme [18], a
variant of the resolution-path dependency scheme [17,20], or any stronger depen-
dency scheme. The separations between LH and LS, LH and GH, LS and GS, GH
and GS, and GS and Q-Res, as well as the corresponding separations between the
systems using a dependency scheme D, follows from the propositional case [19].

We show an exponential separation between LH(D) and LH for the reflexive
resolution-path dependency scheme (Theorem 3). This result also provides sep-
arations between LS(D) and LS, GH(D) and GH, and GS(D) and GS (see the
legend in Fig. 1 for definitions).

2 Preliminaries

Formulas and Assignments. A literal is a negated or unnegated variable. If x is
a variable, we write x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. We
sometimes call literals x and ¬x the positive and negative polarity of variable x.
If X is a set of literals, we write X for the set {x : x ∈ X }. A clause is a finite
disjunction of literals, and a term is a finite conjunction of literals. We call a
clause tautological if it contains the same variable negated as well as unnegated.
A CNF formula is a finite conjunction of non-tautological clauses. Whenever
convenient, we treat clauses and terms as sets of literals, and CNF formulas
as sets of sets of literals. We write var(S) for the set of variables occurring
(negated or unnegated) in a clause or term S, that is, var(S) = { var(�) : � ∈ S }.
Moreover, we let var(φ) =

⋃
C∈φ var(C) denote the set of variables occurring in

a CNF formula φ.
A truth assignment (or simply assignment) to a set X of variables is a map-

ping τ : X → {0, 1}. We write [X] for the set of truth assignments to X, and
extend τ : X → {0, 1} to literals by letting τ(¬x) = 1 − τ(x) for x ∈ X. Let
τ : X → {0, 1} be a truth assignment. The restriction C[τ ] of a clause (term)
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Fig. 1. Proof system map. A → B indicates that system A p-simulates system B, but
B cannot p-simulate A.

S by τ is defined as follows: if there is a literal � ∈ S ∩ (X ∪ X) such that
τ(�) = 1 (τ(�) = 0) then S[τ ] = 1 (S[τ ] = 0). Otherwise, S[τ ] = S \ (X ∪ X).
The restriction φ[τ ] of a CNF formula φ by the assignment τ is defined
φ[τ ] = {C[τ ] : C ∈ φ,C[τ ] �= 1 }.

PCNF Formulas. A PCNF formula is denoted by Φ = Q.φ, where φ is a CNF
formula and Q = Q1X1 . . . QnXn is a sequence such that Qi ∈ {∀,∃}, Qi �= Qi+1

for 1 ≤ i < n, and the Xi are pairwise disjoint sets of variables. We call φ the
matrix of Φ and Q the (quantifier) prefix of Φ, and refer to the Xi as quantifier
blocks. We require that var(φ) = X1 ∪ · · · ∪ Xn and write var(Φ) = var(φ). We
define a partial order <Φ on var(φ) as x <Φ y ⇔ x ∈ Xi, y ∈ Xj , i < j. We
extend <Φ to a relation on literals in the obvious way and drop the subscript
whenever Φ is understood. For x ∈ var(Φ) we let RΦ(x) = { y ∈ var(Φ) : x <Φ y }
and LΦ(x) = { y ∈ var(Φ) : y <Φ x } denote the sets of variables to the right
and to the left of x in Φ, respectively. Relative to the PCNF formula Φ, variable
x is called existential (universal) if x ∈ Xi and Qi = ∃ (Qi = ∀). The set of
existential (universal) variables occurring in Φ is denoted var∃(Φ) (var∀(Φ)).
We define the set lit∃(Φ) (lit∀(Φ)) as a set of all existential (universal) literals
corresponding to var∃(Φ) (var∀(Φ)), i.e., if x ∈ var∃(Φ) then both x,¬x ∈ lit∃(Φ)
(resp. for the universal variable). The length of a PCNF formula Φ = Q.φ is given
by its cardinality |Φ|; the number of clauses in the matrix. The size of a PCNF
formula Φ = Q.φ is defined as ‖Φ‖ =

∑
C∈φ |C|. If τ is an assignment, then Φ[τ ]
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denotes the PCNF formula Q′.φ[τ ], where Q′ is the quantifier prefix obtained
from Q by deleting variables that do not occur in φ[τ ]. True and false PCNF
formulas are defined in the usual way.

Proof Systems. A proof of a formula F is a finite object x which certifies falsity
of F in the sense that, if x is given, then falsity of F can be verified in polynomial
time (proofs of falsity are also called refutations). A proof system Π is a set of
proofs such that (i) elements of Π can be recognized in polynomial time, and (ii)
a formula F is false if and only if Π contains a proof of F .

Let Π, Π′ be proof systems. We say that Π′ p-simulates Π if every proof
x ∈ Π can be transformed into a proof x′ ∈ Π′ in polynomial time such that x
and x′ prove the same formula. If Π and Π′ p-simulate each other, then we say
that they are p-equivalent.

Q-Resolution. Q-resolution is a generalization of propositional resolution to
PCNF formulas [6]. Q-resolution is of practical interest due to its relation to
search-based QBF solvers that implement Quantified Conflict Driven Constraint
Learning (QCDCL) [7,21]: the traces of QCDCL solvers correspond to Q-reso-
lution proofs [9,10].

Q-resolution proof system consists of propositional resolution and the univer-
sal reduction rule for dealing with universally quantified variables. This system
(Fig. 2) was shown to be sound and complete for false PCNF formulas [6].

Fig. 2. Derivation rules of Q-resolution for a PCNF formula Φ = Q.φ.

3 Dependency Schemes and Q(D)-Resolution

QCDCL generalizes the well-known DPLL procedure [8] from SAT to QSAT. In
essence, DPLL is a recursive algorithm that picks a variable of its input formula
and calls itself for both possible instantiations of that variable. Modern SAT
solvers derived from the DPLL algorithm, delegate the choice of which variable
to branch on to clever heuristics [16].
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In QCDCL, the quantifier prefix imposes constraints on the order of variable
assignments: a variable may be assigned only if it occurs in the leftmost quantifier
block with unassigned variables. Often, this is more restrictive than necessary.
For instance, variables from disjoint subformulas may be assigned in any order.
Intuitively, a variable can be assigned as long as it does not depend on any
unassigned variable. This is the intuition underlying a generalization of QCDCL
implemented in the solver DepQBF [13,14]. Dependency schemes are mappings
that associate every PCNF formula with a binary relation on its variables that
refines the order of variables in the quantifier prefix.1

Definition 1 (Dependency Scheme). A dependency scheme is a mapping D
that associates each PCNF formula Φ with a relation DΦ ⊆ { (x, y) : x <Φ y }
called the dependency relation of Φ with respect to D.

The mapping which simply returns the prefix ordering of an input formula can
be thought of as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme). The trivial dependency
scheme Dtrv associates each PCNF formula Φ with the relation Dtrv

Φ =
{ (x, y) : x <Φ y }.

DepQBF uses a dependency relation to determine the order in which vari-
ables can be assigned: if y is a variable and there is no unassigned variable x
such that (x, y) is in the dependency relation, then y is considered ready for
assignment. DepQBF also uses the dependency relation to generalize the ∀-
reduction rule used in clause learning [14]. As a result of its use of dependency
schemes, DepQBF generates proofs in a generalization of Q-resolution called
Q(D)-resolution [18], a proof system that takes a dependency scheme D as a
parameter.

Dependency schemes can be partially ordered based on their dependency
relations: if the dependency relation computed by a dependency scheme D1 is a
subset of the dependency relation computed by a dependency scheme D2 for each
PCNF formula, then D1 is more general than D2. The more general a depen-
dency scheme, the more freedom a solver has in choosing decision variables. Cur-
rently, (aside from the trivial dependency scheme) DepQBF supports (a refined
version [13, p.49] of) the standard dependency scheme [15]. We will work with the
more general reflexive resolution-path dependency scheme [18], a variant of the
resolution-path dependency scheme [17,20]. This dependency scheme computes
an overapproximation of variable dependencies based on whether two variables
are connected by a (pair of) resolution path(s).

Definition 3 (Resolution Path). Let Φ = Q.φ be a PCNF formula and let
X be a set of variables. A resolution path (from �1 to �2k) via X (in Φ) is a
sequence �1, . . . , �2k of literals satisfying the following properties:

1 The original definition of dependency schemes [15] is more restrictive than the one
given here, but the additional requirements are irrelevant for the purposes of this
paper.
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1. For all i ∈ [k], there is a Ci ∈ φ such that �2i−1, �2i ∈ Ci.
2. For all i ∈ [k], var(�2i−1) �= var(�2i).
3. For all i ∈ [k − 1], {�2i, �2i+1} ⊆ X ∪ X.
4. For all i ∈ [k − 1], �2i = �2i+1.

If π = �1, . . . , �2k is a resolution path in Φ via X, then we say that �1 and �2k

are connected in Φ (with respect to X). For every i ∈ {1, . . . , k −1}, we say that
π goes through var(�2i).

One can think of a resolution path as a potential chain of implications: if each
clause Ci contains exactly two literals, then assigning �1 to 0 requires setting �2k

to 1. If, in addition, there is such a path from �1 to �2k, then �1 and �2k have
to be assigned opposite values. Accordingly, the resolution path dependency
scheme identifies variables connected by a pair of resolution paths as potentially
dependent on each other.

Definition 4 (Dependency Pair). Let Φ be a PCNF formula and x, y ∈
var(Φ). We say {x, y} is a resolution-path dependency pair of Φ with respect to
X ⊆ var∃(Φ) if at least one of the following conditions holds:

– x and y, as well as ¬x and ¬y, are connected in Φ with respect to X.
– x and ¬y, as well as ¬x and y, are connected in Φ with respect to X.

Definition 5. The reflexive resolution-path dependency scheme is the mapping
Drrs that assigns to each PCNF formula Φ = Q.φ the relation Drrs

Φ = {x <Φ

y : {x, y} is a resolution-path dependency pair in Φ with respect to RΦ(x) \
var∀(Φ) }.

The derivation rules of Q(D)-resolution are shown in Fig. 3. Here, as in the rest
of the paper, D denotes an arbitrary dependency scheme.

Fig. 3. Derivation rules of Q(D)-resolution for a PCNF formula Φ = Q.φ.

A derivation in a proof system consists of repeated applications of the deriva-
tion rules to derive a clause from the clauses of an input formula. A sequence



418 A. Shukla et al.

S = C1, . . . , Ck of clauses is a Q(D)-resolution derivation of Ck from a PCNF
formula Φ = Q.φ if for each i ∈ {1, . . . , k} at least one of the following holds

1. Ci ∈ φ (Ci is an axiom).
2. C can be derived from C1 and C2 by the resolution rule.
3. C can be derived from C ′ by ∀-reduction with respect to the dependency

scheme D.

The size |S| of a derivation S is the number k of clauses in the sequence. A
refutation is a derivation of the empty clause.

Proposition 1 (Slivovsky and Szeider [18]). Q(Drrs)-resolution is a com-
plete proof system for false formulas; i.e., a PCNF formula is false if, and only
if, there exists a Q(Drrs)-resolution refutation of it.

Definition 6 (Equality formulas [3]). For every n ∈ N, the nth equality
formula is

EQ(n) := ∃x1 . . . xn∀u1 . . . un∃t1 . . . tn.

n∧

i=1

(
(xi ∨ ui ∨ ti) ∧ (xi ∨ ui ∨ ti)

)∧
n∨

i=1

ti.

For every n ∈ N, the formula EQ(n) is false, and any Q-resolution refutation of
EQ(n) has size exponential in n [3].

4 Homomorphisms

For a finite set L ⊆ lit of literals, a mapping ρ : L → lit is a renaming if
ρ(�) = ρ(�) for every pair �, � ∈ L of clashing literals in the domain of ρ. We
generalize renamings to clauses and formulas in the obvious way. For a clause C,
the image ρ(C) under renaming may be tautological. We define ρcls(φ) as the
set of all non-tautological ρ(C) with C ∈ φ. In the propositional case, the image
of a resolution derivation under a renaming contains a resolution derivation. For
QBFs, we have to take variable dependencies induced by the quantifier prefix into
account to make sure universal reduction steps are applicable in the image. We
define a notion of renaming that imposes additional restrictions to ensure that
the image of a Q(D)-resolution derivation is again a Q(D)-resolution derivation.

Definition 7. Let Φ1 = Q1.φ1 and Φ2 = Q2.φ2 be PCNF formulas and let D be
a dependency scheme for which Q(D)-resolution is sound. For any L ⊆ lit(Φ1),
a renaming ρ : L → lit(Φ2) is a D-renaming from Φ1 to Φ2 if it satisfies the
following conditions:

1. For every � ∈ L, qtypeΦ1
(�) = qtypeΦ2

(ρ(�)).
2. If ρ(�) = ρ(�′) and qtypeΦ1

(�) = ∀, then � = �′.
3. If �, �′ ∈ L and (var(ρ(�)), var(ρ(�′))) ∈ DΦ2 then (var(�), var(�′)) ∈ DΦ1 .
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This definition satisfies several desiderata. First, in the absence of universal
variables, it boils down to a previously defined notion of homomorphisms of
propositional formulas in CNF. Second, it enables us to transfer Q(D)-resolution
derivations, as stated in the following lemma.

Lemma 1. Let Φ1 = Q1.φ1 and Φ2 = Q2.φ2 be PCNF formulas and let D be a
dependency scheme for which Q(D)-resolution is sound. If C1, . . . , Ck is a Q(D)-
resolution derivation from ψ ⊆ φ1 in Φ1 and ρ : lit(ψ) → lit(Φ2) is a D-renaming
such that ρ(Ck) is non-tautological and ρcls(ψ) ⊆ φ2, then ρ(C1), . . . , ρ(Ck) con-
tains a Q(D)-resolution derivation of C ′

k ⊆ ρ(Ck) from clauses ρcls(ψ) in Φ2.

Proof. We proceed by induction on the length k of the derivation and distinguish
three cases. First, if Ck ∈ φ1 is an initial clause and ρ(Ck) is non-tautological
then ρ(Ck) ∈ φ2 by assumption. Second, if Ck is derived from clause Ci with
1 ≤ i < k by universal reduction, then Ck = Ci \ {�u} for a universal lit-
eral �u with var(�u) = u, and (u, e) /∈ DΦ1 for every existential variable e
occurring in Ci. We argue that ρ(Ci) is non-tautological. Towards a contra-
diction assume that ρ(Ci) is tautological. Since ρ(Ck) is assumed to be non-
tautological the only way for ρ(Ci) = ρ(Ck) ∪ {ρ(�u)} to be tautological is that
ρ(�u) ∈ ρ(Ci). Because ρ preserves quantifier types and Ci is non-tautological,
there must be a universal literal �′ ∈ Ci with var(�′) �= u such that ρ(�′) = ρ(�u).
That means ρ(�′) = ρ(�u) and thus �′ = �u by Property 2 and in particular
var(�′) = var(�u) = u, a contradiction. Thus ρ(Ci) is non-tautological and we
can apply the induction hypothesis to conclude that ρ(C1), . . . , ρ(Ci) contains
a Q(D)-resolution derivation of C ′

i ⊆ ρ(Ci) from ρcls(ψ) in Φ2. By Property 1,
every existential literal in C ′

i ⊆ ρ(Ci) is the image of an existential literal in Ci.
Property 3 ensures that (ρ(u), ρ(e)) /∈ DΦ2 for every existential variable ρ(e)
occurring in ρ(Ci), so a clause C ′

k ⊆ ρ(Ck) can be obtained from C ′
i ⊆ ρ(Ci) by

universal reduction.
Finally, let Ck be derived by resolution on pivot variable e from Ci and Cj

with 1 ≤ i < j < k. Assume without loss of generality that e ∈ Ci and ¬e ∈ Cj ,
so that Ci ⊆ Ck ∪ {e} and Cj ⊆ Ck ∪ {¬e}. If ρ(Ci) and ρ(Cj) are both non-
tautological we can apply the induction hypothesis to obtain Q(D)-resolution
derivations of clauses C ′

i ⊆ ρ(Ci) and C ′
j ⊆ ρ(Cj) from Φ2. If the pivot variable

is contained in both clauses we obtain C ′
k ⊆ ρ(Ck) by resolution, otherwise we

choose as C ′
k one among the clauses C ′

i and C ′
j that does not contain the pivot.

Otherwise, since ρ(Ck) is non-tautological, the clause ρ(Ci) ⊆ ρ(Ck) ∪ {ρ(e)}
can be tautological only if there is a literal � ∈ Ci such that ρ(�) = ρ(¬e).
Symmetrically, the clause ρ(Cj) ⊆ ρ(Ck) ∪ {ρ(¬e)} can be tautological only
if there is a literal �′ ∈ Cj such that ρ(�′) = ρ(e). It follows that at most
one of ρ(Ci) and ρ(Cj) can be tautological. Assume without loss of generality
that ρ(Ci) is tautological and let � ∈ Ci such that ρ(�) = ρ(¬e). Then ρ(Cj) ⊆
ρ(Ck) ∪ ρ(¬e) = ρ(Ck) and there is a Q(D)-resolution derivation of C ′

j ⊆ ρ(Ck)
from Φ2 by induction hypothesis. ��
This result states that if we apply a D-renaming to each clause in a Q(D)-
resolution derivation, a subsequence of the resulting sequence of clauses is a
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Q(D)-resolution derivation of a clause subsuming the image of the final clause
in the original derivation. In particular, the length of the derivation can only
decrease.

If any of the conditions of Definition 7 is dropped, then Lemma 1 no longer
holds, in the sense that we might obtain derivations that are not syntactically
correct. Mapping existential to universal literals may introduce tautologies that
are removed by universal reduction, which is unsound in general and forbidden
in Q(D)-resolution. The same problem can occur if universal literals are not
mapped in an injective way. If universal literals can be mapped to existential
literals, or independence according to the dependency scheme D is not preserved,
universal reduction may not be applicable in the image.

A D-renaming ρ from Φ to itself is a D-homomorphism from clause set φ to
clause set ψ with respect to Φ if ρ(φ) ⊆ ψ. The set of all D-homomorphisms
from φ to ψ with respect to Φ is denoted HomD

Φ (φ, ψ). D-homomorphisms gener-
alize symmetries of PCNF formulas, which are renamings that may only change
the order of variables within quantifier blocks [11]: any such mapping is bijective
and preserves the type of a variable, as well as dependencies indicated by the
trivial dependency scheme.

5 The Homomorphism Rule

Let Φ = Q.φ be PCNF formula and let D be a tractable dependency scheme for
which Q(D)-resolution is sound. Consider a Q(D)-resolution derivation of a
clause C from clauses ψ ⊆ φ in Φ. If there is a homomorphism ϕ ∈ HomD

Φ (ψ, φ)
then the local homomorphism rule can derive the clause ϕ(C). We call the
restricted form of this rule, which can only be applied if ψ = φ the global homo-
morphism rule. The proof systems GH(D) and LH(D) arise from Q(D)-resolution
by addition of the global and local homomorphism rule, respectively.

We present an example to illustrate the local homomorphism rule. Con-
sider the PCNF formula Φ = Q.φ where Q = ∀a b∃x∀c∃y z w and φ =
{C1, C2, C3, C4, C5} with C1 = {¬a,¬y, z}, C2 = {c, y, w}, C3 = {c,¬z}, C4 =
{b,¬x}, C5 = {¬a, x}. We use trivial dependency scheme Dtrv

Φ for this illustra-
tion. Consider the following Q(D)-resolution derivation S from the formula Φ:

C1 axiom;
C2 axiom;
{¬a, c, w, z} resolution from C1 and C2;
C3 axiom;
{¬a, c, w} resolution from {¬a, c, w, z} and C3.

Using the above resolution derivation S, we derive the clause {¬a, c, w} from Φ.
We define a non-injective mapping ρ over the subset of variables of Φ as follows;
ρ(a) = a, ρ(c) = b, ρ(y) = ρ(w) = ¬x and ρ(z) = x. By the definition of
renaming the complement of the literal takes the negation of the value defined
by ρ, for example, ρ(¬z) = ¬x. Note that the renaming jumps between the
quantifier blocks by allowing the mapping of literals from one quantifier block
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to another. Let ψ = {C1, C2, C3} ⊆ φ, the image of ψ under the renaming ρ is
ρ(ψ) = {C4, C5} ⊆ φ. All the three restrictions of Definition 7 are satisfied, hence
the renaming ρ ∈ HomD

Φ (ψ, φ). Thus, by using the local homomorphism rule, we
can obtain the clause ρ({¬a, c, w}) = {¬a, b,¬x} and add it to the matrix φ.

Proposition 2. The systems GH(D) and LH(D) are sound for any dependency
scheme D such that Q(D)-resolution is sound. That is, a PCNF formula that
has a refutation in GH(D) or LH(D) is false.

Proof. Let Φ = Q.φ be a PCNF formula and let S = C1, . . . , Ck be an LH(D)-
refutation of Φ. If S does not use the local homomorphism rule, then Φ is false
by the soundness of Q(D)-resolution. Otherwise, let Cj be derived from Ci by
application of the local homomorphism rule, where 1 ≤ i < j ≤ k. That is,
there is a subset of clauses ψ ⊆ φ such that Ci can be derived from ψ in Φ
and ϕ ∈ HomD

Φ (ψ, φ) is a homomorphism with ϕ(Ci) = Cj . By Lemma 1, the
sequence ϕ(C1), . . . , ϕ(Ci) contains a Q(D)-resolution derivation of C ′

i ⊆ ϕ(Ci)
from clauses ϕ(ψ) ⊆ φ in Φ. We can replace Cj with the corresponding derivation
and (possibly) simplify the proof to obtain an LH(D)-refutation of Φ with one
less application of the local homomorphism rule. In this way, we can get rid of all
uses of the local homomorphism rule one by one and obtain a Q(D)-resolution
refutation of Φ. ��

6 Lifting Lower Bounds from Q(Drrs)-Resolution
to LH(Drrs)

Let D be an arbitrary but fixed tractable and sound dependency scheme. Let
Φ = Q.φ be a PCNF formula with a 3CNF matrix such that each clause contains
at least two literals and cannot be simplified by universal reduction. Moreover,
we assume that each clause contains at most one universal literal. Observe that
any formula not solved by unit propagation can be transformed into this format
by applying unit propagation and splitting clauses.

From Φ we construct a formula Φ◦ = Q◦.φ◦ as follows. Let �1, . . . , �s be the
sequence of literals appearing in φ. For each existential literal �j we introduce
new existential variables yj,1, . . . , yj,j+9 and zj at the same quantifier depth and
create a chain of binary clauses

L′
j = {{¬yj,1, yj,2}, {¬yj,2, yj,3}, . . . , {¬yj,j+8, yj,j+9}, {¬yj,j+9, �j}}.

We add the variable zj to all clauses of L′
j except the fourth and (j+7)th one

to obtain a formula Lj , called the link of �j . The clause widths of a link yield a
sequence

3 3 3 2 3 . . . 3︸ ︷︷ ︸
j + 1 times

2 3 3

that uniquely identifies an existential literal �j .
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Next, we replace each existential literal of Φ by the first literal in its link.
More specifically, if Ei = {�j , �j+1, �j+2} is a clause of φ, we let

E◦
i := { yk,1 : �k is existential, j ≤ k ≤ j + 2 } ∪ { � ∈ Ei : � is universal }.

We combine the above definitions to obtain the formula

φ◦ := {E◦
1 , . . . , E◦

m} ∪
s⋃

j=1

(Lj ∪ {{¬zj}}).

We refer to clauses E◦
i as main clauses, clauses in Lj as link clauses, and to unit

clauses {zj} as auxiliary clauses.
Since link clauses only contain existential variables, homomorphisms from Lj

into φ◦ coincide with homomorphisms of propositional formulas defined by Szei-
der [19], and so the following result carries over to our setting.

Lemma 2 (Szeider [19]). HomD
Φ◦(Lj , φ

◦) = {idLj
} for any 1 ≤ j ≤ s.

The formulas Φ and Φ◦ have the same dependencies according to the
resolution-path dependency scheme.

Lemma 3. For every existential literal �j ∈ lit(Φ) and yj,i with 1 ≤ i ≤ j + 9,
we have Drrs

Φ◦(�j) = Drrs
Φ◦(yj,i) = Drrs

Φ(�j), as well as Drrs
Φ◦(zj) = ∅.

Proof. There is a natural correspondence between resolution paths of Φ and Φ◦.
Each resolution path in Φ can be extended to a resolution path in Φ◦ by using
links. Formally, if �j1 , �j2 , . . . , �j2k is a resolution path of Φ we obtain a resolution
path of Φ′ by replacing each literal �j2i−1 for 1 ≤ i ≤ k by the sequence

�j2i−1 ,¬yj2i−1,j2i−1+9, yj2i−1,j2i−1+9, . . . , yj2i−1,2,¬yj2i−1,1, yj2i−1

of literals from L′
j2i−1

in reverse order, and each adjacent literal �j2i for 1 ≤ i ≤ k
by the sequence

yj2i,1,¬yj2i,1, yj2i,2, . . . , yj2i,j2i+9,¬yj2i,j2i+9, �2i

of literals from L′
j2i

in order. Conversely, any resolution path of Φ◦ with original
literals of Φ as endpoints can be transformed into a resolution path of Φ by
removing sequences of link literals. Since link variables yj,i are introduced at
the same quantifier depth as var(�j) and var∀(Φ) = var∀(Φ◦), it follows that
Drrs

Φ◦(�j) = Drrs
Φ(�j). Further, a dependency-inducing resolution path of Φ◦

from a universal variable u to its negation ¬u goes through a literal �j if, and
only if, it goes through all the link variables yj,i, so Drrs

Φ◦(�j) = Drrs
Φ◦(yj,i) for

1 ≤ i ≤ j + 9. Finally, the variables zj occur negatively exclusively in the unit
clauses (¬zj), so Drrs

Φ◦(zj) = ∅. ��
For a QBF proof system Π and a false formula Φ, let PSizeΠ(Φ) denote the size
of a shortest Π-refutation of Φ.
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Corollary 1. PSizeQ(Drrs)-Res(Φ◦) ≤ PSizeQ(Drrs)-Res(Φ) + O(‖Φ‖2).

Proof. The original matrix φ can be obtained from φ◦ by resolving each exis-
tential literal �j in a main clause Ei with the link clauses in Lj and the aux-
iliary clause {¬z}. This requires O(j) steps for each literal �j with 1 ≤ j ≤ s,
and s ∈ O(‖Φ‖). Let S denote the corresponding Q(Drrs)-resolution derivation.
As resolution-path dependencies are preserved by Lemma 3, a Q(Drrs)-resolution
refutation S′ of Φ can be appended to S so as to obtain a Q(Drrs)-resolution
refutation of Φ◦. ��

We want to show that any LH(Drrs)-refutation of the “rigid” version Φ◦ of
a PCNF formula Φ can be mapped back to a Q(Drrs)-resolution refutation of
the original formula Φ. To do this, we introduce a new existential variable z and
define a renaming ρ : lit(Φ◦) → lit(Φ) ∪ {z} as follows:

ρ(u) := u, for each universal variableu;
ρ(yj,i) := �j , for 1 ≤ j ≤ s, 1 ≤ i ≤ j + 9;
ρ(�j) := �j , for 1 ≤ j ≤ s;
ρ(zj) := z, for 1 ≤ j ≤ s.

With this renaming, every link clause becomes tautological, every auxiliary
clause {¬zj} becomes ρ({¬zj}) = {¬z}, and main clauses E◦

i are mapped back
to original clauses ρ(E◦

i ) = Ei. Hence ρcls(φ◦) as defined in Sect. 4 is nothing
but φ ∪ {{¬z}}, and ¬z is a pure literal of ρcls(φ◦).

Lemma 4. The mapping ρ : lit(Φ◦) → lit(Φ) ∪ {z} is a Drrs-renaming from Φ◦

to Φz = ∃zQ.φ ∪ {{¬z}}.
Proof. By construction, the mapping preserves quantifier types and is injective
with respect to universal variables. Moreover, the new variable z and clause {¬z}
do not affect resolution-path dependencies in Φz and z has no dependencies
itself, so Drrs

Φ◦(v) = Drrs
Φz

(ρ(v)) holds for every variable v ∈ var(Φ◦) by
Lemma 3. ��

The following result establishes that “interesting” LH(D)-derivations using
at least two main clauses from Φ◦ cannot use the homomorphism rule in a non-
trivial way.

Lemma 5. Let S = C1, . . . , Ck be a Q(D)-resolution derivation from φ′ ⊆ φ◦

in Φ◦ such that no subsequence of S is a Q(D)-resolution derivation of Ck in Φ.
If S contains at least two main clauses as input clauses then ρ(Ck) = ρ(ϕ(Ck))
for any homomorphism ϕ ∈ HomD

Φ◦(φ′, φ◦).

A formal proof of Lemma 5 is rather tedious and has to be omitted due to space
constraints, but the underlying intuition is fairly simple. Since main clauses are
only connected through links, two main clauses can take part in a resolution
proof only if the two links corresponding to the pivot literal are present, which
by Lemma 2 leaves the identity as the only homomorphism that can be applied
to the main clauses or the clauses in the links. Having identified such a “rigid”
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part of a proof, one can then show that any other clause C that participates
in the proof has the same image under ρ as its homomorphic image ϕ(C), in
symbols ρ(C) = ρ(ϕ(C)).

The next result states that LH(D)-derivations that use at most one single
main clause cannot be too long.

Lemma 6. For any Q(D)-resolution derivation S of a clause C in Φ◦ with
at most one main clause among its input clauses, there is a Q(D)-resolution
derivation S′ of C ′ ⊆ C in Φ◦ of length O(|Φ◦|3).
Proof. Let S = C1, . . . , Ck be a Q(D)-resolution derivation of C = Ck in Φ◦

that contains at most one main clause among its input clauses. Any remaining
input clauses are auxiliary or link clauses. We construct the derivation S′ by first
resolving each link clause containing a literal zj with the auxiliary clause {¬zj}.
This requires at most |Φ◦| resolution steps. We then proceed as in S while (pos-
sibly) omitting resolution steps on variables zj . The length of S′ can be crudely
bounded as follows. After resolving out zj we are left with binary link clauses L′

j

and a single main clause of size at most three. Any Q(D)-resolution derivation
starting from these clauses can derive clauses of size at most three, and there
are O(|Φ◦|3) such clauses. ��
Lemma 7. PSizeQ(Drrs)-Res(Φ) ≤ PSizeLH(Drrs)(Φ◦) · O(|Φ◦|3).
Proof. Let C1, . . . , Ck be an LH(Drrs)-refutation of Φ◦. By Lemma 4, the map-
ping ρ is a Drrs-renaming from Φ◦ to Φz, so if no clause of C1, . . . , Ck is
derived by the local homomorphism rule, we can apply Lemma 1 and conclude
that ρ(C1), . . . , ρ(Ck) is a Q(Drrs)-resolution refutation of Φ. Otherwise, we
are going to turn ρ(C1), . . . , ρ(Ck) into a Q(Drrs)-resolution refutation of Φ
that is not too much larger. Suppose clause Cj is derived from Ci using the
local homomorphism rule for some 1 ≤ i < j ≤ k. That is, C1, . . . , Ci con-
tains a Q(Drrs)-resolution derivation S of Ci from clause set φ′ ⊆ φ◦ in Φ◦,
and there is a homomorphism ϕ ∈ HomD

Φ (φ′, φ◦) such that ϕ(Ci) = Cj . If the
derivation of Ci involves at most one main clause then its size is in O(|Φ◦|3)
by Lemma 6. By Lemma 1, the sequence ϕ(C1), . . . , ϕ(Ci) contains a Q(Drrs)-
resolution derivation of the clause ϕ(Ci) = Cj . We simply replace ρ(Cj) by
the image ρ(ϕ(C1)), . . . , ρ(ϕ(Ci)) of this entire derivation, increasing the proof
size by O(|Φ◦|3). Otherwise, the derivation S uses at least two main clauses. In
this case, Lemma 5 tells us that ρ(Ci) = ρ(ϕ(Ci)) = ρ(Cj), so we can simply
use ρ(Ci) instead of ρ(Cj). In this manner, we obtain a Q(Drrs)-resolution refu-
tation of Φz of size k · O(|Φ◦|3). Since ¬z is pure in Φz, the refutation cannot
contain the clause {¬z}, and is in fact a Q(Drrs)-resolution refutation of the
original formula Φ. ��

7 Separating LH(Drrs) from LH

In this section, we will use Corollary 1 and Lemma 7 to lift known separations of
Q-resolution systems without the homomorphism rule to systems with the homo-
morphism rule. First, we show that our assumption from the previous section
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that the formula Φ has a matrix in 3CNF does not affect certain semantic lower
bound techniques. More specifically, we show that long clauses occurring in the
equality formulas can be split without affecting the cost of these formulas [3].

Definition 8 (Universal Winning Strategy). For any set V of variables,
let [V ] denote the set of assignments of V . Let Φ = ∀U1∃E1 . . . ∀Un∃En.φ be a
false QBF. A universal strategy for Φ is a sequence S = (Si)1≤i≤n of functions Si :
[E1 ∪ · · · ∪ Ei−1] → [Ui]. The response of S to an existential assignment τ :
var∃(Φ) → {0, 1} is the assignment S(τ) =

⋃n
i=1 Si(τ |E1∪···∪Ei−1). The universal

strategy S is a universal winning strategy if the assignment τ ∪S(τ) satisfies the
matrix φ for every existential assignment τ : var∃(Φ) → {0, 1}.

Definition 9 (Cost). Let Φ = ∀U1∃E1 . . . ∀Un∃En.φ be a false QBF and let
S = (Si)1≤i≤n be a universal winning strategy for Φ. The cost of S is defined
as cost(S) = max{ |rng(Si)| : 1 ≤ i ≤ n }, where rng(f) denotes the range of
function f . The cost of the QBF Φ is the minimum cost of any universal winning
strategy for Φ.

The cost of a false QBF Φ is a lower bound on the size of any Q-resolution
refutation of Φ.

Theorem 1 (Beyersdorff, Blinkhorn, and Hinde [3]). Let C1, . . . , Ck be a
Q-resolution refutation of a QBF Φ. Then k ≥ cost(Φ).

Lemma 8. Let Φ = Q.φ ∪ {C} be a PCNF formula with clause C = C1 ∪ C2

and let y be a fresh variable. Further, let Φ′ = Q∃y.φ ∪ {C1 ∪ {y}, C2 ∪ {¬y}}
be the formula obtained from Φ by splitting C. Then Φ and Φ′ have the same
universal winning strategies.

Corollary 2. If Φ∗ is obtained from Φ by splitting clauses, then Φ∗ and Φ have
the same cost.

Proposition 3 (Beyersdorff, Blinkhorn, and Hinde [3]). For each n ∈ N,
EQ(n) has cost 2n.

This implies an exponential proof size lower bound by Theorem 1. At the same
time, it is known that these formulas have short Q(Drrs)-resolution refutations.

Theorem 2 (Blinkhorn and Beyersdorff [2]). For each n ∈ N, EQ(n) has
a Q(Drrs)-resolution refutation of size O(n).

We are now ready to prove an exponential separation of LH(Drrs) from LH(Dtrv).

Theorem 3. There is an infinite sequence (Φn)n∈N of false formulas such
that the shortest LH(Drrs)-refutation of Φn is polynomial in n but any LH(Dtrv)-
refutation of Φn has length 2Ω(n).
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Proof. For each n ∈ N, let EQ∗(n) denote a QBF obtained from EQ(n) by split-
ting clauses until each clause contains at most three literals in total and at most
one universal literal. By Proposition 3 and Corollary 2, EQ∗(n) has cost 2n and
thus requires Q-resolution refutations of size at least 2n by Theorem 1. At the
same time, since the original formula can be obtained by resolving on existential
variables introduced by splitting, and splitting does not introduce new resolution-
path dependencies among the original variables, Theorem 2 implies that EQ∗(n)
has a linear-size Q(Drrs)-resolution refutation. Now, consider the “rigid” ver-
sions EQ◦(n) of EQ∗(n). Clearly, the size of EQ◦(n) is polynomially bounded
in the size of EQ(n). By Theorem 2 and Corollary 1, the formulas EQ◦(n) have
polynomial-size Q(Drrs)-resolution refutations, and thus also polynomial-size
LH(Drrs)-refutations. On the other hand, Lemma 7 tells us that any LH(Dtrv)-
refutation of EQ◦(n) can be shorter than a Q-resolution refutation of EQ∗(n)
by at most a polynomial factor. ��
Since the short LH(Drrs)-refutations in the above theorem do not use the local
homomorphism rule, analogous separations hold for weaker systems.

Corollary 3. There is an infinite sequence (Φn)n∈N of false formulas such
that the shortest Π(Drrs)-refutation of Φn is polynomial in n but any Π(Dtrv)-
refutation of Φn has length 2Ω(n), for Π ∈ {GH, LS,GS}.

8 Concluding Remarks

We have lifted the local and the global homomorphism rule from propositional
resolution to the quantified case, introducing several generalizations, including
the use of dependency schemes. Although we have established an exponential
lower bound for the most general system LH without a dependency scheme, we
left open to prove an exponential lower bound for LH(Drrs).

The systems introduced here are incomparable with the proof systems
LQU+ [1] and IR-calc [4]. Since they are stronger than GS, there are classes
of formulas that are easy for our systems and hard for LQU+ and IR-calc [11].
For the converse, we can apply our construction to the QParity [4] formulas
and make them rigid, so that they are hard for LH. Both LQU+ and IR-calc can
derive the original formula and then proceed with short refutations of QParity.

There are several possibilities for further strengthening LH(Drrs). One possi-
bility is to consider a suitably defined dynamic homomorphism rule [19] which
considers homomorphisms between sets of derived clauses. Neither of the lower
bounds established in this paper applies to proof systems that use such a dynamic
rule: all the modifications made to the input formula to achieve rigidity can be
undone by a polynomial number of resolution steps so that after these steps
symmetries and homomorphisms can be exploited to get short proofs.

Another possibility, somewhat related to the dynamic systems discussed
above, is based on the idea of symmetry recomputation, as considered by
Blinkhorn and Beyersdorff [5], which exploits symmetries of the input formula
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after the application of a partial assignment. We think that this idea can be
combined with our homomorphism systems.

All these ideas for even stronger proof systems for QBF give rise to challeng-
ing theoretical questions that include separation results, as well as lower and
upper bounds. Another interesting line of research is concerned with the possi-
bility of utilizing the strength of the various homomorphism rules considered in
this paper within a QBF solver.
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Abstract. In applications, QBF solvers are expected to not only decide
whether a given formula is true or false but also return a solution in
the form of a strategy. Determining whether strategies can be efficiently
extracted from proof traces generated by QBF solvers is a fundamental
research task. Most resolution-based proof systems are known to implic-
itly support polynomial-time strategy extraction through a simulation of
the evaluation game associated with an input formula, but this approach
introduces large constant factors and results in unwieldy circuit repre-
sentations. In this work, we present an explicit polynomial-time strategy
extraction algorithm for the ∀-Exp+Res proof system. This system is
used by expansion-based solvers that implement counterexample-guided
abstraction refinement (CEGAR), currently one of the most effective
QBF solving paradigms. Our argument relies on a Curry-Howard style
correspondence between strategies and ∀-Exp+Res derivations, where
each strategy realizes an invariant obtained from an annotated clause
derived in the proof system.

1 Introduction

Continued improvements in the performance of satisfiability (SAT) solvers [14]
are enabling a growing number of applications in areas such as electronic
design automation [35]. At the same time, many of the underlying problems
are hard for complexity classes beyond NP and as such cannot be expected
to have succinct propositional encodings. Super-polynomial growth in encod-
ing size imposes a limit on the problem instances that can be feasibly solved
even with extremely efficient SAT solvers. Decision procedures for more succinct
languages such as Quantified Boolean Formulas (QBFs) represent a potential
solution to this scaling issue. QBFs extend propositional formulas with quan-
tification over truth values and support more succinct encodings for a range of
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problems [32]. Recent years have seen significant advancements in QBF solver
technology [20,21,25,26,29,30,34,36], up to a point where reduction to QBF can
be more efficient than reduction to SAT [13].

In some applications, QBF solvers are required to not only decide whether
a given formula is true or false but also compute a solution in the form of a
strategy. For example, if a synthesis problem is encoded as a QBF, a solver is
expected to either return the synthesized program or an explanation why the
specification cannot be satisfied [13]. Determining whether the proof trace of a
QBF solver can be efficiently transformed into a strategy—whether the proof
system supports polynomial-time strategy extraction—is a fundamental research
task [2,3,6,10,27].

One of the most successful QBF solving paradigms relies on partial Shannon
expansion [1,8] of universal variables within a counterexample-guided abstrac-
tion refinement (CEGAR) loop, as implemented in RAReQS [21], and, more
recently, in Ijtihad [9] and QFun [20]. The underlying proof system ∀-Exp+Res
[22] offers exponentially shorter proofs for certain classes of formulas than Q-
resolution [6], and can polynomially simulate Q-resolution on formulas with
few quantifier alternations [4], which includes many practically relevant cases.1

Polynomial-time strategy extraction follows from the fact that ∀-Exp+Res proofs
can be used to guide the universal player in an evaluation game [6,11], but turn-
ing this argument into circuits that compute a winning strategy is rather inef-
ficient. An explicit construction based on this idea for Q-resolution requires the
introduction of several gates for each literal in the proof and quantifier level of
the input formula [27], leading to unwieldy circuits that are substantially larger
than the original proof. In this work, we present a strategy extraction algorithm
for ∀-Exp+Res that is multi-linear in the number of proof steps and univer-
sal variables. This is asymptotically optimal for a construction that follows the
structure of the proof and maintains a circuit for each universal variable.

Our algorithm is inspired by [33], which for the first time has given a
local soundness argument for ∀-Exp+Res. [33] constructs partial strategies along
the ∀-Exp+Res-proof and provides a semantic abstraction that relates the con-
structed strategies to the clauses in the proof. In contrast, we associate a full
strategy to each node in the ∀-Exp+Res-proof and develop a syntactic argument
that ensures the soundness of the construction. For each clause in the proof,
we define a propositional invariant that corresponds to a syntactic weakening of
the input formula’s negated matrix. We then show that strategies satisfying the
invariants for the premises of a resolution step can be combined into a strategy
that satisfies the invariant for the resolvent. The main technical challenge we
had to overcome in deriving this syntactic weakening is that ∀-Exp+Res proofs
work over an extended propositional alphabet where multiple versions of the
same variable with different annotations may exist simultaneously. Our invari-
ant translates the propositions from the extended alphabet back to formulas over
the original vocabulary.

1 Conversely, there are classes of formulas with exponentially shorter Q-resolution
proofs [22], so that the systems are mutually separated.
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We believe that our syntactic soundness argument is more transparent than
the semantic construction from [33]. The clarity of the argument is also what
allows us to obtain a concise circuit representation of the resulting strategy.
Further, our syntactic argument establishes a Curry-Howard correspondence
between proof construction and strategy extraction. For each inference rule com-
bining proof terms, the correspondence provides a rule combining program terms.
The result is a program isomorphic to the proof. The widest-known correspon-
dence is between natural deduction proofs and lamba-calculus programs [18]. In
this paper we establish a precise correspondence between ∀-Exp+Res-proofs and
strategies—the strategy constructed for a node in the proof DAG satisfies the
invariant for the clause derived at that node. In contrast, the correspondence
stays implicit in the semantic argument from [33]. We expect that our ideas of
obtaining such an invariant by weakening the matrix and translating the clauses
over the extended alphabet back to a formula over the original variables will
have applications in studying further Curry-Howard correspondences for other
resolution-based QBF proof systems.

2 Preliminaries

Quantified Boolean Formulas (QBFs). We consider quantified Boolean formulas
(QBFs) with standard propositional connectives ∧,∨,¬,⇔,⊕, and quantifiers
∀,∃. We denote existentially quantified variables by x and y, and universally
quantified variables by u. Variables range over B = {0, 1}. A literal l is a vari-
able x or its negation ¬x. We write x for a set of variables or literals. A clause is a
disjunction of literals, and a propositional formula in conjunctive normal form is
a conjunction of clauses. We write � for the empty clause. Throughout the paper,
QBFs are assumed to be in prenex conjunctive normal form (PCNF). A PCNF
formula Φ = Π.ϕ consists of a sequence Π = Q1v1 . . . Qnvn with Qi ∈ {∀,∃}
for 1 ≤ i ≤ n, called the quantifier prefix of Φ, and a propositional formula ϕ
in conjunctive normal form, called the matrix of Φ. We define a relation ≺Π on
variables from the quantifier prefix as vi ≺Π vj whenever i < j. We extend ≺Π

to a relation on literals in the obvious way and drop the quantifier prefix Π from
the subscript when it is clear from the context.

QBF Expansion Proofs. We consider a proof system for false PCNF formu-
las known as ∀-Exp+Res [22]. This system combines instantiation of universal
variables with propositional resolution. Instantiation leads to existential liter-
als lτ that are annotated with an assignment τ : ul → B of the universal vari-
ables ul = {u | u ≺ l} that precede the variable of l in the quantifier prefix.
Following Beyersdorff et al. [6], we write l[τ ] = l{u�→τ(u) | u≺l} to filter out assign-
ments that are not permitted in the annotation of l. We sometimes treat an
assignment τ : u → B in an annotation as a set of literals and write l ∈ τ
if τ(l) = 1. We write Cτ for a clause C with all its literals annotated with [τ ].
The proof rules of ∀-Exp+Res are shown in Fig. 1. A ∀-Exp+Res proof of a PCNF
formula Φ is a sequence of clauses ending with the empty clause such that each
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(∀-exp)
{l[τ ] | l ∈ C, l is existential}

C1 ∨ xσ C2 ∨ ¬xσ

(res)
C1 ∨ C2

Here, C is a clause from the matrix and τ an assignment to all univer-
sal variables falsifying the universal literals of C. Both C1 and C2 are
annotated clauses and xσ is an annotated variable.

Fig. 1. The proof rules of ∀-Exp+Res.

clause is derived either by universal expansion (∀-exp) or by resolution (res) from
clauses appearing earlier in the sequence.

3 Strategies

A PCNF formula can be interpreted as the specification of a game between
an existential and a universal player [31]. The game proceeds by the players
assigning values to their respective variables in turn, following the order of the
quantifier prefix. The goal of the universal player is to falsify the matrix, the
goal of the existential player is to satisfy the matrix. Strategies for either player
can be conveniently represented as binary trees.

Definition 1 (Strategy). Let Φ = Π.ϕ be a PCNF formula. A (universal)
strategy for Φ is a labeled, rooted binary tree with the following properties:

1. Leaf nodes are labeled with ⊥, inner nodes are labeled with variables of Φ, and
edges are labeled with 0 or 1.

2. Nodes labeled with existential variables have exactly two child nodes, and nodes
labeled with universal variables have a single child node. Moreover, edges lead-
ing to distinct child nodes have distinct labels.

3. The sequence of variables encountered as labels on any path from the root to
a leaf follows the order ≺Π of variables in the quantifier prefix.

A strategy P for Φ is complete if each path from the root of P to a leaf contains
all variables of Φ. Each path from the root to a leaf of a strategy induces a truth
assignment in the obvious way. A strategy P is a (universal) winning strategy
for Φ if every such assignment falsifies the matrix ϕ.

We write P = Str(v, P−, P+) for a strategy P with root labeled by variable v
and principal subtrees P− and P+ such that the edge to the root of P− is labeled
with 0 and the edge to the root of P+ is labeled with 1. We use ∅ to denote the
“empty” strategy and write P = Str(v, ∅, P+) and P = Str(v, P−, ∅) to denote
strategies with root nodes that only have a 1-child and a 0-child, respectively.

In the next section, we will associate each clause C in a ∀-Exp+Res proof
with a strategy P . For clauses C derived by the ∀-exp rule with assignment τ ,
the corresponding strategy simply sets the universal variables according to τ .
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Definition 2. Let Φ = Π.ϕ be a PCNF formula and τ an assignment of the
universal variables of Φ. We define ConstStrat(Π, τ) as the complete strategy
for Φ where each assignment is consistent with τ .

Example 1. The figure to the right shows the strategy

x1

u

x2

⊥ ⊥
10

0
u

x2

⊥ ⊥
10

0

10

computed by ConstStrat(∃x1∀u∃x2,¬u). The tree
encodes the assignments {0/x1, 0/u, 0/x2}, {0/x1,
0/u, 1/x2}, {1/x1, 0/u, 0/x2}, {1/x1, 0/u, 1/x2} falsifying u.

4 Local Soundness

We present a local soundness argument for ∀-Exp+Res using strategies. To this
end, we will define a Combine operator that joins strategies along a deriva-
tion [33]. For each derived clause C, we will show that the strategy created for
this clause by the Combine operator satisfies a propositional invariant obtained
from C. Here, by a strategy P satisfying a formula ψ we mean that every assign-
ment consistent with P satisfies ψ, which we will write as P |= ψ.2 In this
notation, we will show that

P |= enc(C) ⇒ ¬ϕ,

where ϕ denotes the matrix and enc(C) translates the clause C back into a
formula over the original variables of the QBF as

enc(C) def=
∧

x
τi
i ∈C

( ∧

u∈τi

u
)

⇒ ¬xi.

The invariant enc(C) ⇒ ¬ϕ can be understood by considering the evaluation
game: if the existential player responds to every universal play in an annotation
by setting the literal to false, the current strategy is winning for the universal
player. Ultimately, at the empty clause, enc(�) = 1 and the combined strategy
turns into a winning strategy.

4.1 Combine

We will now introduce the Combine operator that merges two strategies P and Q
in a top-down manner and annotates each clause in a ∀-Exp+Res derivation
with a strategy. We write C [P ] for a clause C annotated with strategy P . The
definition of Combine as shown in Definition 4 is adapted from the definition of an
operator defined by Suda and Gleiss [33]. Since we work with complete strategy
trees (rather than partial strategies), the top-most variable remains equivalent
between two strategies when recursing on them in lock-step, so it is sufficient to

2 If the strategy P is identified with the disjunction of assignments induced by its
root-to-leaf paths, the relation P |= ψ coincides with propositional entailment.



434 M. Schlaipfer et al.

perform a case distinction on the top-most variable encountered in a strategy.
Moreover, our definition of Combine is tailored to ∀-Exp+Res.

Clauses derived by (∀-exp) are annotated with the strategy ConstStrat(Π, τ)
that plays the assignment τ . For the (res) rule we have the following cases:

– The top-most variable, say u, is universal:

• If the outgoing edge of u (lit(u), see Definition 3 below) differs from the
annotation τ(u) of the pivot in at least one of P and Q, we select the
strategy that differs.

• If lit(u) equals the annotation τ(u) of the pivot in both P and Q, we recurse.

– The top-most variable, say x, is existential:

• If x is the pivot of the inference rule, we combine the two strategies.
• If x is not the pivot, we recurse.

The base cases are when a universal edge differs, or we reach the pivot.

Definition 3 (lit). We define lit as the partial function mapping universal strat-
egy nodes to the literal they represent, based on their (unique) child node.

lit(P ) =

{
¬u if P = Str(u, P−, ∅)

u if P = Str(u, ∅, P+)

Definition 4 (Combine). We define Combine as a function from two strate-
gies, P and Q, and an annotated variable xτ to a new strategy inductively on a
∀-Exp+Res derivation in Fig. 2. We write Combine in infix notation as P �

xτ
Q.

Note that in the case where both lit(P ) �= l and lit(Q) �= l there is freedom of
which strategy out of P and Q to select. We will use the variant selecting P .

Example 1. We introduce our running example and use it to demonstrate the
combination of two strategies via Combine in Fig. 3.

Theorem 1. Let C be a clause derived by ∀-Exp+Res and P be the correspond-
ing strategy annotation computed by Combine. Then P |= enc(C) ⇒ ¬ϕ.

Proof. By induction on the ∀-Exp+Res derivation.

Base case. The base case corresponds to the ∀-exp rule.

(∀-exp)
Cτ [P ∈ ConstStrat(Π, τ)]

We need to show that P |= enc(Cτ ) ⇒ ¬ϕ. From the definition of ConstStrat
we know that P satisfies all universal literals in enc(Cτ ) following the assign-
ments determined by τ . P similarly satisfies the literals in the corresponding
negated clause ¬C in ¬ϕ, making both remaining formulas over the existential
variables equivalent. The negated matrix ¬ϕ is weaker than just ¬C, thus the
implication holds.
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For a (∀-exp) inference

(∀-exp)
Cτ [ConstStrat(Π, τ)]

For a (res) rule with pivot xτ

[P ] C1 ∨ ¬xτ C2 ∨ xτ [Q]
(res)

C1 ∨ C2 [P �
xτ

Q]

Top-most variable is universal:

Then P ∈ {Str(u, P −, ∅), Str(u, ∅, P+)},
and Q ∈ {Str(u, Q−, ∅), Str(u, ∅, Q+)}, and l ∈ {u, ¬u}.

if l ∈ τ , and lit(P ) �= l P �
xτ

Q
def
= P

if l ∈ τ , and lit(Q) �= l P �
xτ

Q
def
= Q

if l ∈ τ , and lit(P ) = lit(Q) = l σ
def
= τ − {l}

– if l = u P �
xτ

Q
def
= Str(u, ∅, P+ �

xσ
Q+)

– if l = ¬u P �
xτ

Q
def
= Str(u, P − �

xσ
Q−, ∅)

Top-most variable is existential:

if τ = {}, P = Str(x, P −, P+)

and Q = Str(x, Q−, Q+) P �
xτ

Q
def
= Str(x, Q−, P+)

if y �= x, P = Str(y, P −, P+)

and Q = Str(y, Q−, Q+) P �
xτ

Q
def
= Str(y, P − �

xτ
Q−, P+ �

xτ
Q+)

Fig. 2. Combine defined inductively along a ∀-Exp+Res derivation.

Induction Step. For a resolution rule with strategy annotations P , Q and the
combination of P and Q, i.e. P �

xτ
Q

[P ] C1 ∨ ¬xτ C2 ∨ xτ [Q]
(res)

C1 ∨ C2 [P �
xτ

Q]

we need to show that

P |= enc(C1 ∨ ¬xτ ) ⇒ ¬ϕ

and Q |= enc(C2 ∨ xτ ) ⇒ ¬ϕ

implies P �
xτ

Q |= enc(C1 ∨ C2) ⇒ ¬ϕ

Let π be an arbitrary complete assignment determined by strategy P �
xτ

Q.

We need to show that π |= enc(C1 ∨ C2) ⇒ ¬ϕ given the induction hypothesis.
By case distinction:
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Consider annotated clauses C1∨¬xu1
2 [P ]

and C2 ∨ xu1
2 [Q]. The strategies P and

Q and their combination along the res-
olution with pivot xu1

2 , i.e., P �
x

u1
2

Q are

depicted to the right. Combine proceeds
recursively—top-down—along the trees
P and Q. At level x1, we simply re-
curse and proceed by combining the sub-
strategies along the paths 0/x1 and 1/x1

from P and Q because x1 is not the pivot.
On the path along 0/x1 we detect that
0/u1 in P differs from the pivot’s annota-
tion 1/u1 and we select the sub-strategy
anchored in u1 from P . On the path along
1/x1 the annotation for u1 matches with
the values in P and Q and we continue to
level x2, which is the pivot. We select the
sub-strategy starting in 0/x2 from Q and
the sub-strategy starting in 1/x2 from P
and are done.

x1

u1

x2

u2

⊥
1

u2

⊥
0

10

0

u1

x2

u2

⊥
0

u2

⊥
1

10

1

10

P

x1

u1

x2

u2

⊥
0

u2

⊥
1

10

1

u1

x2

u2

⊥
1

u2

⊥
0

10

1

10

Q

x1

u1

x2

u2

⊥
1

u2

⊥
0

10

0

u1

x2

u2

⊥
1

u2

⊥
1

10

1

10

xu1
2

P �
x

u1
2

Q

Fig. 3. An application of Combine.

1. If π �|= enc(C1 ∨ C2) the implication is true and we are done.
2. If π |= enc(C1 ∨ C2) we have two cases:

(a) π �|= ∧
u∈τ u (π differs from the assignment determined by τ):

Let us assume, w.l.o.g., that π is from P , then we have the following
induction hypothesis:

π |= enc(C1) ∧
( ∧

u∈τ

u ⇒ x
)

⇒ ¬ϕ.

Since we are in case π |= enc(C1 ∨ C2), by the definition of enc we know
that π |= enc(C1). Furthermore we know that π �|= ∧

u∈τ u satisfying the
left-hand side of the outer implication, thus π must satisfy ¬ϕ for the IH
to be valid. Since, in this case the Combine operator evaluates to P and
π is from P , P |= enc(C1 ∨ C2) ⇒ ¬ϕ is valid.

(b) π |= ∧
u∈τ u (π equals the assignment determined by τ):

Again, since we are in case π |= enc(C1 ∨ C2), by the definition of enc
we know that π |= enc(C1) and π |= enc(C2). We also know that π |=∧

u∈τ u, so when π ∈ P the IH simplifies to π |= x ⇒ ¬ϕ. Similarly
the IH simplifies to π |= ¬x ⇒ ¬ϕ for π ∈ Q. Assume x = 1, then
P |= ¬ϕ. When we assume x = 0, then Q |= ¬ϕ. In either case, because
we assume the IH to be true, we know ¬ϕ needs to be true. Combine
chooses the respective paths in P and Q and combines them so that
Str(x,Q−, P+) |= enc(C1 ∨ C2) ⇒ ¬ϕ is valid. ��
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Remark on the Curry-Howard correspondence established by Theorem 1:

– We relate the clauses of a ∀-Exp+Res-proof and the extracted strategies: P |=
enc(C) ⇒ ¬ϕ signifies that the strategy P is a witness for the validity of the
QBF formula Π.enc(C) ⇒ ¬ϕ.

– We relate the rules of a ∀-Exp+Res-proof to strategy construction operators:
For an expansion-axiom with regard to an assignment τ , the strategy is given
by ConstStrat(Π, τ). For a resolution step, the strategy is obtained by applying
the Combine operator on the strategies for the parent nodes.

5 Implementing Strategies Using Circuits

The strategies we have introduced in the previous section have size exponential in
the number of existential variables in the quantifier prefix. Thus, it is impractical
to consider strategy extraction using such a data structure. Instead, we will now
demonstrate how we can implement the Combine operator on circuits. We will
show how we can construct the circuit for n output variables in such a way
that the size of the circuit is in the order of O(p · n), where p is the proof
length (number of clauses). This size is asymptotically optimal when constructing
circuits locally along the proof derivation for n variables, considering that each
inference can potentially manipulate each circuit.

5.1 Circuit Construction

We begin by introducing a number of auxiliary circuits. In the following let L,
R, and B (short for “left”, “right”, and “bottom”, according to their respective
positions in the inference rule) be tuples of circuits and let y be the input
variables. We write fui

for the circuit with output ui for f ∈ {L,R,B}.

Definition 5 (Equiv). We define the circuits Equiv<i
f for f ∈ {L,R}. These

circuits decide if all fui
evaluate to τ(ui) up to level i, given input y:

Equiv<1
f (y) def= 1 and Equiv<i

f (y) def= Equiv<i−1
f (y) ∧ fui−1(y) ⇔ τ(ui−1)

Next we define the circuits Diffi
L and Diffi

R using Equiv. The purpose of the
Diff circuits is to choose one of L and R simulating the case of Combine when
one of the strategies differs from τ at a universal edge. We need to consistently
select the function values from either L or R starting from some index i for all
subsequent outputs uj with j ≥ i.

Definition 6 (Diff). We define the circuits Diffi
L and Diffi

R symmetrically to
each other. We informally describe the circuit Diffi

L: Diffi
L is true, given input

y, if there has been a difference between an Luj
and τ(uj) for j ≤ i and when

there has been no difference between Ruk
and τ(uk) for k < j. Formally:

Diff0
L(y) def= 0 and Diffi

L(y) def= Diffi−1
L (y) ∨ (Equiv<i

R (y) ∧ Lui
(y) ⊕ τ(ui))

Diff0
R(y) def= 0 and Diffi

R(y) def= Diffi−1
R (y) ∨ (Equiv<i

L (y) ∧ Rui
(y) ⊕ τ(ui))
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Proposition 1. Let f ∈ {L,R} be either the left or right circuit and let g ∈
{L,R} − {f} be the opposite one. Once it has been established that Diffi

f is true,
we know that Diffj

g cannot turn true for j > i if it has not been true already at i.
Formally,

Diffi
f (y) ∧ ¬Diffi

g(y) ⇒ ¬Diffj
g(y),

for j > i is a tautology.

Proof. Assume that f = L and g = R, with the other case symmetric. It is clear
that when Diffi

L(y) is true, Equiv<j
L (y) must be false for j > i. When Equiv<j

L (y)
is false, we know that Diffj

R will remain false, if Diffi
R was false. ��

Note that both Diffi
L and Diffi

R can be true at the same index i. Namely, when
there is no difference up to some level j < i (Equiv<j

L (y) = Equiv<j
R (y) = 1) but

both Luj
(y) �= τ(uj) and Ruj

(y) �= τ(uj). In this case we have the same freedom
as in Combine when both lit(P ) and lit(Q) differ from τ .

Definition 7 (Circuit extraction for ∀-Exp+Res). Let R be a ∀-Exp+Res
proof. The circuit extraction Cir(ui) for output ui maps vertices in R to circuits
as defined in Fig. 4—with the circuits Combui

defined as follows.
Let � ∈ {∧,∨}. For ui ≺ x we define

Comb�
ui

(y) def= if Diffi−1
L (y) then Lui

(y)
else if Diffi−1

R (y) then Rui
(y)

else Lui
(y) � Rui

(y).

Let um be the maximum universal variable with um ≺ x. For x ≺ ui, we define

Combui
(y, x) def= if Diffm

L (y) then Lui
(y, x)

else if Diffm
R (y) then Rui

(y, x)
else (¬x ∨ Lui

(y, x)) ∧ (x ∨ Rui
(y, x)).

Note that in the case when both Diffi
L and Diffi

R are true for i, we prefer L (like
we have preferred the left strategy P in Combine), due to the order of appearance
in the if-then-else cascade.

Example 2. Consider again the strategies P and Q introduced in Example 1.
Strategy P encodes the circuits Lu1(x1) = x1 and Lu2(x1, x2) = x1 ⇔ x2.
Strategy Q encodes the circuits Ru1(x1) = 1 and Ru2(x1, x2) = x1 ⊕ x2. We
will show that combining the circuits L and R results in circuits B encoded by
P �

x
u1
2

Q, i.e. Bu1(x1) = x1 and Bu2(x1, x2) = x1 ∨ ¬x2.

We will demonstrate that our circuit construction yields the same circuits:
For Bu1 we are in the case u1 ≺ x2 and Diff0

L and Diff0
R are false by definition,

� = ∧ because the annotation u1 of the pivot is 1 so Definition 7 evaluates to

Bu1(x1) = if Diff0
L(x1) then x1

else if Diff0
R(x1) then 1

else x1 ∧ 1
= x1 ∧ 1 = x1.
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For a (∀-exp) inference

(∀-exp)
C¬ui∈τ [0]

(∀-exp)
Cui∈τ [1]

For a (res) rule with pivot xτ

[Lui ] C1 ∨ ¬xτ C2 ∨ xτ [Rui ] (res)
C1 ∨ C2 [Bui ]

if ui ≺ x, and ¬ui ∈ τ Bui

def
= Comb∨

ui
(y)

if x ≺ ui Bui

def
= Combui(y, x)

if ui ≺ x, and ui ∈ τ Bui

def
= Comb∧

ui
(y)

Fig. 4. Circuit extraction for ∀-Exp+Res proofs.

For Bu2 we are in case x ≺ u2, and u1 is the maximum ui ≺ x so we have

Bu2(x1, x2) = if Diff1
L(x1) then x1 ⇔ x2

else if Diff1
R(x1) then x1 ⊕ x2

else (¬x2 ∨ (x1 ⇔ x2)) ∧ (x2 ∨ (x1 ⊕ x2)).

Diff1
L(x1) evaluates to Lu1(x1) ⊕ τ(u1) = x1 ⊕ 1 = ¬x1 indicating a difference in

L when x1 = 0 leading us to choose the “if-then” branch: 0 ⇔ x2, which is true
when x2 = 0. Diff1

R(x1) evaluates to Ru1(x1) ⊕ τ(u1) = 1 ⊕ 1 = 0 indicating no
difference in R. So when x1 = 1, we reach the “else” branch, which evaluates
to 1 for both x2 = 0 and x2 = 1. Overall, we know that only the assignment
x1 = 0, x2 = 1 makes Bu2 false, thus we determine that Bu2(x1, x2) = x1 ∨ ¬x2.

5.2 Correctness and Running Time

Lemma 1. Let P and Q be strategies and let L and R be families of circuits
representing P and Q, respectively. Then the family B of circuits as specified
in Definition 7 represents P �

xτ
Q.

Proof (Sketch). When a function value for an output differs from the annotation
in circuit L we select the circuits from L for all consecutive outputs. While this
operation is implicit in Combine by selecting whole sub-trees of a strategy, we
need to make this operation explicit for each output in the circuit construction,
by looking at all preceding outputs, which we do in the Diff circuits.

If all preceding outputs equal the annotation, then we compute the new func-
tion value for the current output as a disjunction or conjunction, depending on
the assignment to the output in the annotation. This operation mimics Combine,
both in selecting the differing edge, if an edge differs, and keeping the equivalent
edge, if both function values equal the annotation.



440 M. Schlaipfer et al.

The case where we reach the pivot variable in Combine and select sub-
strategies from both input strategies, again needs to be made explicit in the
circuit construction: We need to check that we are in this case, by inspecting
whether one of the preceding outputs differs, like described above. However, we
need to check only the outputs up to the level of the pivot variable. Beyond that,
the selection of the sub-strategies at the pivot needs to be simulated, which we
do by adding a multiplexer with the pivot being the selector input.

The case where the top-most existential variable differs from the pivot in
Combine and we recurse is implicit in the circuit construction: The function val-
ues depend on these variables, but we do not need to handle existential variables
beyond the multiplexer construction.

The case where we recurse in Combine when both universal edges adhere
to the annotation is implicit in the circuit construction as well: it amounts to
iterative computation of the functions according to the quantifier level. ��
Lemma 2. Given a ∀-Exp+Res derivation of length p from a PCNF formula Φ
with n universal variables, the circuits as defined in Definition 7 can be computed
in time O(p · n).

Proof. For each output ui, we need a circuit Diffi−1
L . To compute that circuit

we reuse the circuits computing Equiv<i−1
R and Diffi−2

L , which we have already
computed for ui−1, so for output ui we only have to add the checks Rui−1 ⇔
τ(ui−1) and Lui−1 ⊕τ(ui−1) of constant size, and gates connecting these circuits,
also of constant size. Thus, the number of gates of the DiffL circuits for all n
outputs is in the order of O(n). The same analysis applies to the DiffR circuits,
adding another O(n). The if-then-else cascade adds another constant, but the
overall circuit complexity at a proof node remains O(n). Thus, overall we have
a circuit size and running time of O(p · n). ��
In combination with Theorem 1, the preceding lemmas imply the following.

Theorem 2. Given a ∀-Exp+Res derivation of length p from a PCNF formula Φ
with n universal variables, a family of circuits implementing a universal winning
strategy for Φ can be computed in time O(p · n).

Similarity to Craig Interpolation. When the circuit has a single output, note that
the Diff circuits are always false and we only use the “else” branches. In this case,
our system resembles a symmetric Craig interpolation system, cf. [19,24,28].

6 Circuit Extraction for QParity

We demonstrate our strategy extraction algorithm with the QParity formulas.
Each formula QParityn has a single universal variable with the parity function
on n variables as the unique universal winning strategy. Since Q-resolution proofs
can be efficiently turned into bounded-depth circuits computing a universal win-
ning strategy, QParity is known to be hard for Q-resolution [6]. At the same
time, it has short (even tree-like) ∀-Exp+Res proofs, and our strategy extraction
algorithm obtains a small circuit representing the n-bit parity function.
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Example 3 (QParity). The formula QParity says that there exists an assign-
ment of x1, . . . , xn such that u �= x1 ⊕ · · · ⊕ xn for all assignments of u. Clearly,
this formula is false, and the (unique) winning strategy for the universal player
is to assign u = x1 ⊕ · · · ⊕ xn. A PCNF encoding is obtained by introducing
auxiliary variables satisfying yi ⇔ ⊕i

j=1 xj as follows:

QParityn := ∃x1 . . . xn∀u∃y0 . . . yn.(¬y0) ∧ (u ⇔ yn) ∧
n∧

i=1

(yi ⇔ (yi−1 ⊕ xi))

The biconditional u ⇔ yn yields the clauses (¬u ∨ ¬yn) and (u ∨ yn), and each
formula (yi ⇔ (yi−1⊕xi)) translates to clauses (¬yi−1∨xi∨yi), (yi−1∨¬xi∨yi),
(yi−1∨xi∨¬yi), and (¬yi−1∨¬xi∨¬yi). Beyersdorff et al. show how to construct
short tree-like proofs for QParity in ∀-Exp+Res [4, Theorem 2]. We illustrate
their construction for the case n = 2. By expanding the universal variable u
(applying the ∀-exp rule), we obtain the following initial clauses:

(y¬u
0 x1¬y¬u

1 )︸ ︷︷ ︸
C1

∧ (yu
0¬x1y

u
1 )︸ ︷︷ ︸

C2

∧ (y¬u
1 x2¬y¬u

2 )︸ ︷︷ ︸
C3

∧ (yu
1¬x2y

u
2 )︸ ︷︷ ︸

C4

∧ (y¬u
0 ¬x1y

¬u
1 )︸ ︷︷ ︸

C5

∧ (yu
0x1¬yu

1 )︸ ︷︷ ︸
C6

∧ (¬y¬u
1 ¬x2¬y¬u

2 )︸ ︷︷ ︸
C7

∧ (¬yu
1x2y

u
2 )︸ ︷︷ ︸

C8

∧ (¬yu
0 )︸ ︷︷ ︸

C9

∧ (¬y¬u
0 )︸ ︷︷ ︸

C10

∧ (y¬u
2 )︸ ︷︷ ︸

C11

∧ (¬yu
2 )︸ ︷︷ ︸

C12

A resolution refutation completing the ∀-Exp+Res proof is shown in Fig. 5, where
each clause is annotated with the circuit computed for u according to Def. 7.
The empty clause is annotated (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) = x1 ⊕ x2, which is a
winning strategy.

[0] C1 C2 [1] [0] C3 C4 [1] [0] C5 C6 [1] [0] C7 C8 [1]

[x1] y¬u
0 yu

0 ¬y¬u
1 yu

1 y¬u
1 yu

1 ¬y¬u
2 yu

2 [x2] [¬x1] y¬u
0 yu

0 y¬u
1 ¬yu

1 ¬y¬u
1 ¬yu

1 ¬y¬u
2 yu

2 [¬x2]

[x1 ∨ x2] y¬u
0 yu

0 yu
1 ¬y¬u

2 yu
2 y¬u

0 yu
0 ¬yu

1 ¬y¬u
2 yu

2 [¬x1 ∨ ¬x2]

[(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)] y¬u
0 yu

0 ¬y¬u
2 yu

2 C9 [1] C10 [0] C11 [0] C12 [1]

� [(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)]

Fig. 5. ∀-Exp+Res proof of QParity2. We compress the last proof steps since they do
not affect the extracted circuit—either we add a conjunction with 1 or a disjunction
with 0.
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7 Related Work

Suda and Gleiss present a local soundness argument for several resolution-based
QBF calculi, including a generalization of ∀-Exp+Res [33]. They interpret clauses
derived in these systems as abstractions of partial strategies (a partial strategy
does not need to be defined for all moves of the existential player), and show that
resolution can be understood in terms of combining partial strategies. Sound-
ness of a proof system is obtained by showing that partial strategies with the
premises of a resolution step as their abstractions result in a partial strategy that
abstracts to the resolvent. The statement that the partial strategy constructed
at a particular node of a proof DAG abstracts to the clause derived at that
node is proved only indirectly, through observing that there are simple partial
strategies abstracting to initial clauses.

By contrast, we define a syntactic weakening of the matrix for each node
in the proof DAG and show that the strategy extracted at that node satisfies
the weakened matrix. Moreover, we manipulate complete strategies, which are
defined for all moves of the existential player. We believe that our use of complete
strategies and an explicit syntactic construction offer a considerably simpler and
clearer local soundness argument for ∀-Exp+Res.

A correspondence between Q-resolution proofs and strategies was first
observed by Goultiaeva et al. [15] and later extended to long-distance Q-
resolution by Egly et al. [12]. Balabanov and Jiang [2] present a linear-time
strategy extraction algorithm for Q-resolution that was generalized to long-
distance Q-resolution by Balabanov et al. [3]. Beyersdorff et al. [5] prove a corre-
spondence between strategies and proofs in IRM-calc, a system that generalizes
∀-Exp+Res. The notion that efficient extraction of winning moves from proofs
leads to polynomial-time strategy extraction is folklore. Peitl et al. [27] give
an explicit construction for Q-resolution with a dependency scheme. Chew and
Clymo [11] provide a general argument for QBF proof systems that combine
a propositional proof system with universal expansion. Surprisingly, they also
identify feasible interpolation of the underlying propositional proof system (i.e,
the property that interpolants can be computed from refutation proofs in poly-
nomial time [24]) as a necessary condition for such systems to have polynomial-
time strategy extraction. They further show that the QRAT proof system does
not have polynomial-time strategy extraction unless P=PSPACE. By contrast,
Heule et al. [16] proved that the (almost) dual proof system for true formulas
does have polynomial-time strategy extraction.

Jiang et al. [23] synthesize Boolean functions with a single output using
propositional Craig interpolation [19,24,28]. Given a Boolean relation ϕ :
B

n ×B �→ B, the authors of [23] derive a circuit f(x) such that ∀x.∃u.ϕ(x, u) ≡
∀x.ϕ(x, f(x)) holds. They derive a resolution refutation from ∀x.∃u.ϕ(x, u) by
negating it first and then expanding the universal quantifier to obtain an unsat-
isfiable CNF instance ¬ϕ(x, 0)∧¬ϕ(x, 1), which is then split into two partitions
A¬u def= ¬ϕ(x, 0) and Bu def= ¬ϕ(x, 1). An interpolant I(x) for these partitions
satisfies (A¬u → I) and (Bu → ¬I), hence the circuit f(x) def= I(x) yields 1 if
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¬ϕ(x, 0) and 0 if ¬ϕ(x, 1), satisfying the requirement above. I(x) is obtained
by annotating all clauses C in the resolution refutation by partial interpolants
IC , where IC

def= 0 if C ∈ A¬u, IC
def= 1 if C ∈ Bu, and Ic

def= (x ∨ I1) ∧ (¬x ∨ I2) if
C is the result of a resolution of C1 and C2 with partial interpolants I1 and I2,
respectively, on the pivot literal x.

The construction of the partitions A¬u and Bu in [23] is analogous to QBF
Expansion, and propositional interpolation is a (less general) version of the cir-
cuit extraction in Fig. 4. Consequently, [23] can be seen as a special case of our
framework that is limited to a single universally quantified variable. In fact, [23]
proposes an iterative approach to deal with multiple outputs (universal quanti-
fiers, respectively), requiring the repeated construction of refutations and inter-
polants and the substitution of outputs one at a time.

Hofferek et al. [17] extend the approach of Jiang et al. [23] to n universally
quantified Boolean variables by (syntactically) expanding the quantified formula
into 2n partitions and adapting the interpolation system to multiple partitions
accordingly. Their approach targets the theory of uninterpreted functions with
equality, which is a more expressive logic, but is limited to ∀∃∀-prefixes and
imposes an order on the resolution steps in the propositional part of the refuta-
tion.

Beyersdorff et al. [7] present a feasible interpolation technique for the cal-
culi LQU+-Res and IRM-calc. Their approach is restricted to instances of the
form ∃p.Qq.Qr.A(p, q) ∧ B(p, r) (where q and r can be quantified arbitrar-
ily) and yields an interpolant I(p). They show that for instances of the form
∃p.∀u.Qq.Qr.(A(p, q)∨u)∧ (B(p, r)∨¬u) the resulting interpolant I(p) repre-
sents a strategy for instantiating u. While this approach extends Jiang et al. [23]
to arbitarily quantified partitions, it is still limited to a single output u.

8 Conclusion

We presented a polynomial-time strategy extraction algorithm for ∀-Exp+Res
with a running time that is multi-linear in the number of universal variables
and resolution steps in the proof. It is based on a local soundness argument
showing that each intermediate strategy constructed for a derived clause satisfies
a propositional invariant obtained from that clause. This invariant translates
annotated literals back to the vocabulary of the original formula and gives them
a clear semantics based on the evaluation game: if the existential player responds
to the universal play in the annotation by setting the literal to false, the current
strategy is winning for the universal player. We believe that this idea can be
extended to more general proof systems such as IRM-calc [5]. Moreover, our
interpretation of annotated clauses in terms of the original variables may open
up new ways of integrating search-based (QCDCL) solvers with expansion.
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Abstract. Positional games are a mathematical class of two-player
games comprising Tic-tac-toe and its generalizations. We propose a novel
encoding of these games into Quantified Boolean Formulas (QBFs) such
that a game instance admits a winning strategy for first player if and only
if the corresponding formula is true. Our approach improves over previ-
ous QBF encodings of games in multiple ways. First, it is generic and
lets us encode other positional games, such as Hex. Second, structural
properties of positional games together with a careful treatment of illegal
moves let us generate more compact instances that can be solved faster by
state-of-the-art QBF solvers. We establish the latter fact through exten-
sive experiments. Finally, the compactness of our new encoding makes
it feasible to translate realistic game problems. We identify a few such
problems of historical significance and put them forward to the QBF
community as milestones of increasing difficulty.

Keywords: QBF encodings · Positional games · Quantified Boolean
Formula

1 Introduction

In a positional game [3,12], two players alternately claim unoccupied elements
of the board of the game. The goal of a player is to claim a set of elements that
form a winning set, and/or to prevent the other player from doing so. Tic-Tac-

Toe, and its competitive variant played on a 15 × 15 board, Gomoku, as well
as Hex are the most well-known positional games. When the size of the board is
not fixed, the decision problem, whether the first player has a winning strategy
from a given position in the game is PSPACE-complete for many such games.
The first result was established for Generalized Hex, a variant played on an
arbitrary graph [8]. Reisch [24] soon followed up with results for gomoku [24]
and Hex played on a board [25].

Recent work on the classical and parameterized computational complexity
of positional games provides us with elegant first-order logic formulations of
such domains [3,4]. We draw inspiration from this approach and introduce a
c© Springer Nature Switzerland AG 2020
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practical implementation for such games into QBF. We believe that Positional
Games exhibit a class of games large enough to include diverse and interesting
games and benchmarks, yet allow for a specific encoding exploiting structural
properties.

Our contributions are as follows: (1) Introduce the Corrective Encoding : a
generic translation of positional games into QBF; (2) We identify a few positional
games of historical significance and put them forward to the QBF community
as milestones of increasing difficulty; (3) Demonstrate on previously published
benchmark instances that our encoding leads to more compact instances that can
be solved faster by state-of-the-art QBF solvers; (4) Establish that the Corrective
Encoding enables QBF solving of realistic small scale puzzles of interest to human
players.

After a formal introduction to QBF and to positional games (Sect. 2), we
describe the contributed translation of positional games into QBFs (Sect. 3). We
then describe the selected benchmark game problems, including the proposed
milestones (Sect. 4), before experimentally evaluating the quality of our encoding
and comparing it to previous work (Sect. 5). We conclude with a discussion
contrasting our encoding with related work (Sect. 6).

2 Preliminaries on QBF and Positional Games

We assume a finite set of propositional variables X. A literal is a variable x
or its negation ¬x. A clause is a disjunction of literals. A Conjunctive Normal
Form (CNF) formula is a conjunction of clauses. An assignment of the variables
is a mapping τ : X → {⊥,�}. A literal x (resp. ¬x) is satisfied by the assignment
τ if τ(x) = � (resp. τ(x) = ⊥). A clause is satisfied by τ if at least one of the
literals is satisfied. A CNF formula is satisfied if all the clauses are satisfied.

A QBF formula (in Prenex -CNF) is a sequence of alternating blocks of exis-
tential (∃) and universal (∀) quantifiers over the propositional variables followed
by a CNF formula. A QBF formula may be interpreted as a game where an ∃
and ∀ player take turns building a variable assignment τ selecting the variables
in the order of the quantifier prefix. The objective of ∃ (resp. ∀) is that τ satisfies
(resp. falsifies) the formula.

Positional games are played by two players on a hypergraph G = (V,E). The
vertex set V indicates the set of available positions, while the each hyperedge
e ∈ E denotes a winning configuration. For some games, the hyperedges are
implicitly defined, instead of being explicitly part of the input. The two players
alternatively claim unclaimed vertices of V until either all elements are claimed
or one player wins. A position in a positional game is an allocation of vertices
to the players who have already claimed these vertices. The empty position is
the position where no vertex is allocated to a player. The notion of winning
depends on the game type. In a Maker-Maker game, the first player to claim all
vertices of some hyperedge e ∈ E wins. In a Maker-Breaker game, the first player
(Maker) wins if she claims all vertices of some hyperedge e ∈ E. If the game
ends and player 1 has not won, then the second player (Breaker) wins. The class
of (p, q)-positional games is defined similarly to that of positional games, except
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that on the first move, Player 1 claims q vertices and then each move after the
first, a player claims p vertices instead of 1. A winning strategy for player 1 is
a move for player 1 such that for all moves of player 2 there exists a move of
player 1. . . such that player 1 wins.

To illustrate these concepts, Fig. 1 displays a position from a well-known
Maker-Maker game, Tic-Tac-Toe, and a position from a Maker-Breaker game,
Hex. Although the rules of Hex are typically stated as Player 1 trying to create
a path from top left to bottom right and Player 2 trying to connect the top
right to bottom left, the objective of Player 2 is equivalent to preventing Player
1 from connecting their edges [20]. Therefore, Hex can indeed be seen as a
Maker-Breaker positional game.

a b c

d e f

g h i

{ a , b, c}, {d, e , f}, {g, h, i },

. . . , { a , e , i }, {c, e , g}
︸ ︷︷ ︸

Winning sets

(a) A game of Tic-Tac-Toe and
its winning configurations: the set of
aligned triples.

d

b

g

c

h

f
a e i

{ a , d, g}, { a , d, e , h}, { a , d, e , f, i },

{b, d, g}, {b, e , g}, . . . , {c, f, i }
︸ ︷︷ ︸

Winning sets

(b) A game of Hex and its winning configura-
tions for Black (Player 1): the set of paths from
the top left edge to the bottom right edge.

Fig. 1. Two positional games played on the same vertices: a–i where vertex a has been
claimed by Player 2 and vertices e and i have been claimed by Player 1.

3 The Corrective Encoding

In this section we present the Corrective encoding (COR). First we define posi-
tional games formally, describe the set of variables and the clauses in detail and
analyse the size of the encoding.

3.1 Description

A positional game is a tuple
∏

= 〈TB, TW,F,N, EB, EW〉 consisting of:

– Disjoint sets TB and TW of time points in which Black and White make
moves. We denote T = TB ∪ TW as the set of all time points that range
from {1, 2, . . .F}. For example, in a positional game where black starts and
p = q = 1, TB contains all odd and TW all even numbers of T .
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– F ∈ N the depth (or length) of the game.
– A set of vertices V = {1 . . .N} and two sets of hyperedges EB and EW of

winning configurations for Black and White, respectively.

The remainder of this section defines a translation of a positional game con-
figuration

∏
into a prenex QBF in CNF. For this we introduce variables defined

in the following table. For readability we use a function style notation instead
of variable subscripts. Let A denote the set of the two players {B,W}.

Variable Description

time(t) The game is still running by time point t ∈ T

board(a, v, t) Player a ∈ A owns vertex v ∈ V at time point t ∈ T

occupied(v, t) Vertex v ∈ V is occupied at t ∈ T

win(e) Black has claimed winning configuration e ∈ EB

move(v, t) Vertex v ∈ V is chosen at t ∈ Ta by player a ∈ A

moveL(i, t) The moves for White encoded logarithmically, 0 ≤ i < �log2(N)�}, t∈TW

ladder(i, t) Auxiliary variables for the ladder encoding, i ∈ V and t ∈ T

The last two sets of variables are of technical nature; ladder is used to encode
that a player must claim 1 vertex when it is their time t to move, whereas moveL
encodes the choices of White in a way that prevents the universal player from
falsifying the formula by breaking the rules of the game.

Quantification. Here we specify the quantifier prefix of our encoding. In the
order of the time point t = {1 . . . F} we introduce a level of quantifier blocks as
follows:

∃time(t)
if t ∈ TW then for all 0 ≤ i < �log2(N) ∀moveL(i, t)

for v ∈ V ∃move(v, t)
for v ∈ V, a ∈ A ∃board(a, v, t)

for v ∈ V ∃occupied(v, t)
for i ∈ V ∃ladder(i, t)

(1)

On the innermost level we have

e ∈ EB ∃win(e) (2)

In the remainder of this section we list the clauses that make the body of the
generated QBF instance. This body is constituted of sets of clauses encoding
different aspects of the game. The encoding is almost entirely symmetric for
both players apart from clauses which specify the interaction of the universal
variables.
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Time Handling. Variable time(t) holds if the game is not over at time point t.

{¬time(t) ∨ time(t − 1) | t ∈ T} (3)

Structure of the Board. Clauses (5) encode that both players cannot own the
same vertex. One fundamental property of positional games is that claimed ver-
tices never change owner. This basic property is captured in clause (6). Note that
these two clauses are independent from the time variable and act also when the
game is over. Once a vertex is claimed and board(a, v, t) is true the implication
chain in (6) sets all board variables for that vertex in the future, in particular
the last one board(a, v,F). Once the game is over (i.e. time(t) is set to false),
then all unclaimed vertices stay unclaimed (7) and the situation of the board at
the last active move of the game is propagated through to the final time point.

{¬board(a, v, 0) | a ∈ A, v ∈ V } (4)

{¬board(B, v, t) ∨ ¬board(W, v, t) | v ∈ V, t ∈ T} (5)

{¬board(a, v, t − 1) ∨ board(a, v, t) | a ∈ A, v ∈ V, t ∈ T} (6)

{time(t) ∨ board(a, v, t − 1) ∨ ¬board(a, v, t) | a ∈ A, v ∈ V, t ∈ T} (7)

The following clauses (8)–(10) define the meaning of occupied. Initially all
vertices are unoccupied (8) and by definition a vertex is occupied if it is owned
by Black or White.

{¬occupied(v, 0) | v ∈ V } (8)

{occupied(v, t) ∨ ¬board(a, v, t) | a ∈ A, v ∈ V, t ∈ T} (9)

{¬occupied(v, t) ∨ board(B, v, t) ∨ board(W, v, t) | v ∈ V, t ∈ T} (10)

Player’s Actions. The action clauses specify how the moves of the players affect
the board. If player a claims vertex v at time t ∈ Ta, i.e. move(v, t) is true, then
the game still has to be running (11). This clause can also be understood as if
the game is over no moves are allowed anymore. Moreover, when move(v, t) is
true, then vertex v was not occupied at the previous time point (12) and as a
result of the action the vertex is occupied (13).

{time(t) ∨ ¬move(v, t) | v ∈ V, t ∈ T} (11)

{¬occupied(v, t − 1) ∨ ¬move(v, t) | v ∈ V, t ∈ T} (12)

{board(a, v, t) ∨ ¬move(v, t) | v ∈ V, a ∈ A, t ∈ Ta} (13)

White’s Choice. The core of this encoding is how the universal variables interact
with the rest of the encoding without having to prevent illegal moves by White.
To avoid that White chooses too many vertices we encode the move logarith-
mically through variables moveL(i, t). Moreover, these variables only actually
imply a move of White in case the game is still running and the vertex was
unoccupied before. In case one of the prerequisites is not given, then no move
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will be forced by this clause. Let L1(v) denote to the set of indices that are 1 in
the binary representation of v, likewise L0(v) where there is a 0. The following
equality holds: v =

∑
j∈L1(v)

2j . For example, for 13 = 1101|2 the respective sets
are L1(13) = {0, 2, 3} and L1(13) = {1}.

⎧
⎨

⎩

∨

i∈L1(v)

¬moveL(i, t) ∨
∨

i∈L0(v)

moveL(i, t)

∨¬time(t) ∨ occupied(v, t − 1) ∨ move(v, t) | v ∈ V, t ∈ TW

} (14)

Notice how these clauses interact with (11) and (12) such that any choice
for the universal variables is not able to cause a contradiction. In case White
chooses a combination of moveL that does not imply an existing vertex, then still
a move is selected for White to satisfy the ladder encoding (see (21) to (25)).

Frame Axioms. The following two clauses specify what happens when no action
is performed on a position and the board variable is unchanged. Clause (15) says
that in time points where player s does not claim vertex v and the vertex has
not been previously owned by s then it will also not be owned in the following
step. In time points t of the opponent to s, all unclaimed vertices by s will be
unclaimed in the next time point. Clause (16) forces this.

{move(v, t) ∨ board(a, v, t − 1) ∨ ¬board(a, v, t) | a ∈ A, v ∈ V, t ∈ Ta} (15)
{board(a, v, t − 1) ∨ ¬board(a, v, t) | a ∈ A, v ∈ V, t ∈ T \ Ta} (16)

Winning Configuration. For each winning configuration e ∈ EB we have intro-
duced a variable win(e) and clauses (17) specifies that at least one of the winning
configuration have to be reached and (17) defines which vertices belong to it.

White should never reach a winning position, for this we introduce a clause for
each winning positions specified in clauses (19). We only need to encode this for
the last time point F due to the implication chain (6). This looks straightforward
from the definition, but we need to make sure with other clauses that White is
unable to play illegal moves to reach a winning position.

{
∨

e∈EB

win(e)

}

(17)

{¬win(e) ∨ board(B, v,F) | v ∈ e, e ∈ EB} (18)
{

∨

v∈e

¬board(W, v,F)

∣
∣
∣
∣
∣
e ∈ EW

}

(19)
{

win(e) ∨
∨

v∈e

¬board(B, v,F

∣
∣
∣
∣
∣
e ∈ EB

}

(20)
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Number of Moves. To restrict the number of moves we apply the ladder encoding
[9] to translate the cardinality constraint specifying the number of moves that a
player can make in a round.

The ladder essentially encodes the equivalence move(i+1, t) ⇔ ¬ladder(i, t)∧
ladder(i + 1, t). As soon as a move variable is set to true, all following ladder
variables are forced to true (21, 22) and all previous are forced to false (21, 23).
This ensures that no two move variables can be set to true. Clauses (25, 26)
ensure that at least one move variable is true.

{¬ladder(i, t) ∨ ladder(i + 1, t) | i ∈ V, i < N, t ∈ T} (21)
{¬move(i, t) ∨ ladder(i, t) | i ∈ V, t ∈ T} (22)

{¬move(i + 1, t) ∨ ¬ladder(i, t) | i ∈ V, i < N, t ∈ T} (23)
{move(1, t) ∨ ¬ladder(1, t) | t ∈ T} (24)

{move(i + 1, t) ∨ ladder(i, t) ∨ ¬ladder(i + 1, t) | i ∈ V, i < N, t ∈ T} (25)
{¬time(t) ∨ ladder(N, t) | t ∈ T} (26)

These clauses also enforce a move by White even if White had chosen an
already claimed vertex or no vertex with the moveL variables and clause (14)
does not fire. This is a crucial property of the encoding. An arbitrary vertex
for White is chosen by, the game continues and there is no backtracking even
though the universal player acted illegal.

Initial Positions. The QBF generator can also translate positional games that
contain initial positions of White and Black, i.e. vertices that players own before
the actual game starts. It is straight forward to turn this into an equivalent
description without initial positions: For each initial position v of one player
remove this vertex from all its winning configurations and remove all winning
configurations of the opposing player that contain v. After this operation we can
remove v from V and have an equivalent game.

Symmetry Breaking. We employ a simple form of manual symmetry breaking
by restricting the set of vertices from which the first move can be chosen. For
instance in Generalized Tic-tac-toe (GTTT) and a n×n board, if this set contains
the upper left triangle of the board (the set of coordinates (i, j) such that 1 ≤
i ≤ j ≤ n/2), the symmetries of the squared board are broken. Typically, for
other games with some initial positions for White and Black there is not much
need for symmetry breaking since row or column symmetries are usually already
broken by such a position.

Consecutive Moves. The positional game description need not have Black and
White alternate moves: a description may allow a player to select several vertices
consecutively. For instance, when q = 2 players claim two vertices in each round.
For the sake of simplicity, our presentation of COR above does not break this
symmetry. Our implementation avoids such symmetries by merging consecutive
moves into a single turn where a subset of vertices of the right cardinality must be
chosen. We implemented this cardinality constraint as a sequential counter [26].
In coincides with the ladder encodings in the single move case.
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3.2 Size of the COR Encoding

It is straightforward to estimate the number of variables and clauses of the
encoding. For instance, clauses with a description containing v ∈ V, t ∈ T are
generated at most N·F times. Since the depth of a game is limited by the number
of vertices, the number of clauses is roughly 20N2 + N · |EB| + |EW|.

∃ variables ∀ variables binary clauses ternary clauses long clauses
4FN F log2(N) 3N + 12NF + N|EB| 7NF NF + |EB| + |EW|

4 Instances

We used the encoding above to generate three sets of QBF instances based on
some well-known positional games.1 The first two sets consist of positions of Hex

and of a generalization of Tic-Tac-Toe on boards that are relatively small by
human playing standards. Positions from that benchmark are fairly easy to solve
even for relatively inexperienced human players of these games, and they can
be solved almost instantaneously by specialized solvers. Our encoding of these
positions should provide a reasonable challenge for QBF solvers as of 2019.

The third set contains the starting position of 4 positional games that are
of interest to experienced human players and to mathematicians. At least 3 of
these positions can be solved by specialized game algorithms developed in the
1990s and 2000s albeit with a non-trivial programming effort. The instances
in this third set are out of reach of current QBF solvers and we believe that
solving these positions with a QBF solver—via our encoding or a better one—
can constitute a good milestone for the field.

4.1 Harary’s Tic-Tac-Toe and GTTT(p, q)

Harary’s Tic-Tac-Toe is a Maker-Maker generalization of Tic-Tac-Toe

where instead of marking 3 aligned stones, the players are trying to mark a
set of cells congruent to a given polyomino. This type of game has received
accrued interest from the mathematical community which was able to show
the existence of a winning strategy or lack thereof for most polyomino shapes.
GTTT(p, q) is a further generalization of Harary’s Tic-Tac-Toe along the
principle of (p, q)-positional games [7].

Previous work has already proposed an encoding of GTTT(p, q) played on
small boards to QBF [7]. We refer to this existing in encoding as DYS. In our
first set of benchmark, we encode the exact same GTTT(p, q) configurations as
previous work. However, since our encoding is different, with obtain a different
set of QBF instances. This provides us with an opportunity to directly com-
pare our approach with existing work. We report results on the 96 instances

1 All our generated instances are available at github.com/vale1410/positional-games-
qbf-encoding.

http://github.com/vale1410/positional-games-qbf-encoding
http://github.com/vale1410/positional-games-qbf-encoding
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of GTTT(1, 1) played on a 4 × 4 board and compare formula size and solving
performance with the DYS encoding.2

4.2 Hex

We use 20 hand-crafted Hex puzzles of board size 4×4 up to 7×7 that all have a
winning strategy for Player 1. The first 19 of these Hex instances are of historical
significance. Indeed, they were created by Piet Hein, one of the inventors of Hex

and first appeared in the Danish newspaper Politken [14,20] during World War
II [13].3 The remaining puzzle is a 5× 5 position proposed by Cameron Browne,
it arose during standard play and offers a significant challenge for the Monte
Carlo Tree Search (MCTS) algorithm and the associated RAVE enhancement [5].
This is noteworthy because MCTS is the foundational algorithm behind the top
artificial players for numerous games including Hex and Go [6].

4.3 Challenges

We now put foward a few positional games that have attracted the attention of
board game players as well as AI or mathematics researchers. Table 1 summarizes
the proposed challenges together with the size of their COR encoding.

Qubic, also known as 3-dimensional Tic-Tac-Toe, is played on a 4×4×4
cube and the goal is to mark 4 aligned cells, horizontally, vertically, or diagonally.
Our first domain was solved for the first time in 1980 by combining depth-first
search with expert domain knowledge [21]. A second time in the 1990s using
Proof Number Search (PNS), a tree search algorithm for two-player games [27].

The second domain, freestyle Gomoku, is played on a 15×15 board and the
goal is to mark 5 aligned cells, horizontally, vertically, or diagonally. Already in
the 1930s, Gomoku was perceived to be giving an overwhelming advantage to
Black [27], the starting player, and by the 1980s professional Gomoku players
from Japan had claimed that the initial position admitted a Black winning strat-
egy [1]. This was confirmed in 1993 using the PNS algorithm, a domain heuristic
used to dramatically reduce the branching factor, and a database decomposing
the work in independent subtasks [1].

Connect6 is akin to Gomoku but the board is 19×19, the goal is 6 aligned
cells, and players place 2 stones per move [16]. The Mickey Mouse setup once was
among the most popular openings of Connect6 until it was solved in 2010 [30].
The resolution of Connect6 was based on PNS distributed over a cluster.

Our last challenge is an open-problem in Harary’s Tic-Tac-Toe which
corresponds to achieving shape Snaky on a 9 × 9 board. This problem
was recently put forward as an intriguing challenge for QBF solvers [7] and we
offer here an alternative, more compact, encoding.

2 We also generated the instances for larger values of p and q but the formulas are
much easier to solve and provide less insight.

3 We are grateful to Ryan Hayward and Bjarne Toft for providing us with this collec-
tion of puzzles.
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Table 1. Selected problems put forward to the QBF community and size of their
Corrective encoding. No preprocessing has been applied to these instances.

Challenge problem First systematic
solution

Size in QBF

Domain Variant #qb # ∀ # ∃ #cl #lits

Qubic 4 × 4 × 4 1980 65 192 29275 80343 245723

Snaky 9 × 9 Open 81 280 47137 130702 403595

Gomoku 15 × 15 freestyle 1993 225 896 357097 991430 3078404

Connect6 19 × 19 Mickey Mouse 2010 179 1602 510651 1527064 5031059

5 Analysis

5.1 Setup of Experiments

When solving problems encoded in QBF, the ideas underlying the encoding of a
problem are only a factor in whether the instances can be solved withing reason-
able resources. Two other important factors are the specific solver invoked and
the kind of preprocessing performed on the instance before solving, if any. In our
experiments, we chose four state-of-the-art QBF solvers, including the top three
solvers of the latest QBF Competition4 and three preprocessors, as indicated in
Table 2a.5 All software was called with default command line parameters.

Table 2. Software used and resulting performance on the first benchmark.

(a) Solvers and preprocessors used in

the experiments.

Software Shorthand

Solver

DepQbf 6.03 [18] depqbf

Caqe 4.0.1 [23] caqe

Qesto 1.0 [17] qesto

Qute 1.1 [22] qute

Prepro
cessor

QratPre+ 2.0 [19] Q

HQSPRE 1.4 [29] H

Bloqqer v37 [15] B

None N

(b) Solver performance depending on the

encoding, always using the best preprocessor.

Solver Preproc. S � ⊥ U time(s)

DYS

caqe B 92 31 61 4 11468

depqbf Q 82 28 54 14 27211

qesto BQ 74 27 47 22 34887

qute BQ 69 27 42 27 35837

COR

caqe Q 96 34 62 0 4099

depqbf N 96 34 62 0 602

qesto BQ 96 34 62 0 3404

qute B 82 30 52 14 23266

The experiments have been running on a i7-7820X CPU @ 3.60 GHz with 8
cores, 24 GB RAM. All solvers have been running with a dedicated single core.

4 http://www.qbflib.org/eval19.html.
5 We also attempted to use the rareqs QBF solver, but it timed out on almost all

instances. Preprocessor H was omitted due to large timeouts.

http://www.qbflib.org/eval19.html
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5.2 Experimental Comparison of Our New Encoding to the DYS

Before attempting to solve positional games, let us first examine how large and
amenable to preprocessing the generated encodings are. We use an approach
inspired by recent work on QBF preprocessors [19] and report in Table 3 the
number of quantifier blocks, universal and existential variables, clauses, and
literals, as well the time time needed for the preprocessing of a representative
instance of GTTT(1, 1). On both the existing DYS encoding and our proposed
COR, we test each preprocessor individually as well as the outcome of running
one preprocessor then another. No preprocessor timed out.

Table 3. Preprocessing on 5 × 5 instance gttt 1 1 00101121 5x5 b

N Q H B QB BQ HQ QH

DYS #qb 25 25 25 25 25 25 25 25

#∀ 300 300 300 299 299 299 300 300

#∃ 21056 12058 7553 2750 2605 2750 7553 7545

#cl 53589 35875 32978 21434 19625 19257 30191 30444

#lits 191485 127366 145480 120237 106590 105697 103312 135061

time(s) 0 46 1210 9 55 22 1233 2030

COR #qb 25 25 25 25 25 25 25 25

#∀ 60 60 58 58 58 58 58 58

#∃ 4649 3127 3433 1396 1360 1396 3432 2981

#cl 12490 8183 28918 8245 7943 7394 14899 19757

#lits 28544 19672 117953 35457 34412 30732 52381 88712

time(s) 0 0 275 2 2 2 277 20

Two observations stand out when looking at Table 3. First, DYS is much
larger than COR across most of the size dimensions. Second, preprocessors seem
to be much more capable or reducing the size of the DYS instance than the size
of the COR instance. Our interpretation is that it is a direct consequence of
the effort we have put in crafting the proposed new encoding: there is relatively
little improvement room left for the preprocessors to improve the formulas. Since
the size of a formula directly impacts how hard it is to solve, we expect QBF
solvers to struggle much more with DYS -encoded game instances than with
COR-encoded ones.

In our next experiment, we compare how well QBF solvers manage to solve
GTTT game instances when encoded with DYS and with COR. Since different
preprocessors tend to play to the strength of different solvers, we report the
preprocessor that lead to the best performance for each solver separately. We
compare the solvers and the encodings using 96 GTTT(1, 1) 4×4 game instances
and assuming a timeout of 1000 s, Table 2b displays for each configuration the
number of formulas solved (S), proven satisfiable (�), proven unsatisfiable (⊥),
and unsolved (U), as well as the cumulative time spent by the solver.
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The data in Table 2b confirms our intuition. GTTT games can be more effec-
tively solved through our encoding: 3 out of 4 solvers solve all COR instances
whereas none solve all DYS instances, and COR instances are solved between
up to two orders of magnitude faster. Furthermore, our results demonstrate
that the choice of encoding has a bigger impact than the choice of solver and
preprocessor.

5.3 Solving Increasingly Realistic Games

Iterative deepening is an algorithmic principle in game search recommending
to search for a d-move strategy before attempting to find a deeper one. This
principle lets one benefit from the memory-efficiency of depth-first search and
from the completeness of breadth-first search. It is easily adapted to solving
games via QBF: encode one formula per depth and attempt to solve them one
by one in order. We demonstrate the benefits of this adaptation in Fig. 2: the
position admits a depth 5 winning strategy. Proving the existence of a strategy
of depth ≤5 needs 0.1 s, but the formula stating the existence of a strategy of
depth ≤13 needs 2 hours to be proven. Although the outcome of searches at
short depths is subsumed by that of deeper searches, the exponential growth of
the required solving time makes iterative deepening a worthy trade-off.

1

2

3

4

(a) Position after White’s
mistaken second move.

d �|= φd |= φd

1 0.01
3 0.01
5 0.10
7 2.33
9 22.0

11 334.
13 7753.

(b) Time (s) needed by depqbf-N-COR to estab-
lish whether Black can win within depth ≤ d.

Fig. 2. GTTT 5 × 5 L game where Black can force a 5-move win.

Our final benchmark is the set of 20 historical Hex puzzles described in
Sect. 4.2. Except for one puzzle on which qesto needed more than 10 GB of
memory, all positions on board sizes 5 × 5 or less can be solved by state of
the art QBF solvers (Table 4). The 5 remaining puzzles remain out of reach at
this stage. This is a remarkable feat: for the first time, the QBF technology can
address game situations considered of interest to human players.
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Table 4. Solving classic Hex puzzles by encoding them through COR.

Puzzle size depth caqe-Q depqbf-N questo-BQ

d �|= φd−2 |= φd �|= φd−2 |= φd �|= φd−2 |= φd

Hein 04 3 × 3 05 0.01 0.01 0.02 0.02 0.01 0.00

Hein 09 4 × 4 07 0.01 0.11 0.03 0.15 0.01 0.06

Hein 12 4 × 4 07 0.02 0.10 0.05 0.22 0.00 0.02

Hein 07 4 × 4 09 0.30 4.31 0.33 5.69 0.09 1.66

Hein 06 4 × 4 13 10.2 15.5 2.95 17.7 3.92 9.79

Hein 13 5 × 5 09 0.24 15.6 0.72 17.1 0.06 4.61

Hein 14 5 × 5 09 0.38 19.0 1.24 42.4 0.18 4.40

Hein 11 5 × 5 11 5.17 240. 21. 0.457 1.84 23.6

Hein 19 5 × 5 11 2.29 44.4 3.60 80.8 0.91 13.1

Hein 08 5 × 5 11 4.13 104. 6.84 247.0 1.98 34.4

Hein 10 5 × 5 13 367. 4906. 443. 10259. 74.3 1543.

Hein 16 5 × 5 13 651. 8964. 1794. 8506. 278. 4406.

Hein 02 5 × 5 13 719. 22526. 1258. 10876. 317. 2957.

Hein 15 5 × 5 15 3247. 26938. 2928. 19469. 767. MO

Browne 5 × 5 09 0.87 57.45 0.91 21.2 0.25 2.89

6 Comparison to Related Encodings

Despite the similarity of QBF solving with systematic search for winning strate-
gies in games with perfect information, to the best of our knowledge there are
not many encodings published that have attempted translation from games to
QBF. After Walsh [28] challenged the QBF community to solve Connect4 on
a 7 × 6 board using QBF techniques in 2003, there was some activity in this
direction but with rather little success in experiments.

The first concrete and implemented encoding of a game is the work by Gent
and Rowley that presents a translation from Connect4 to QBF [11]. Building
upon Gent’s encoding [2] presents a QBF encoding of an Evader/Pursuer game
that resembles simpler chess-like endgames on boards of size 4 × 4 and 8 × 8.
Both papers analyse problems that are not positional games, but the authors do
report similar challenges in the construction of QBF formulas.

The closest to our encoding is the DYS encoding of GTTT [7] that has been
proposed recently which is an adaptation of the encoding for [11]. The structure
and clauses for these two encodings are similar so our more detailed comparison
to DYS also applies to the encoding in [11].

Apart from these games and encodings to the best of our knowledge we are
not aware of any other QBF formulations of games that improve upon them. In
the remainder of this section we will go into various properties regarding COR
and the existing encodings.
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Generalisation. Although we presume that the ideas behind DYS could be
extended to arbitrary positional games, the description of the encoding was
tailored to the GTTT domain. We chose positional game as an input formalism
to reach a reasonable level of generalisation, i.e. many two-player can be formu-
lated as positional games, but enough structural properties from the description
to create neat encodings.

Clausal Description. The description of the clauses in DYS is not purely clausal
and contains many equivalences. The general translation of equivalences into
CNF introduces auxiliary (Tseytin) variables of which some can be avoided
through better techniques. Our description consists only of clauses and much
work has gone to reduce the number of variables.

Size. The size of our encoding is quadratic in the number of vertices and linear in
the number of winning configurations. Even for smaller boards these scale effects
materialize and we demonstrate and discuss our observations in the following
Section.

Binary Clauses. Binary clauses enjoy many theoretical and practical advantages.
A purely 2CNF problem can be solved in polynomial time, SAT solvers invest
in the special treatment of binary clauses to speed up propagation and learning.
This should also apply to QBF solving. Discovering a binary clause structure of
a certain aspect of a problem description might be the key to crafting encodings
that also solve fast. Our encoding demonstrates that many aspects of positional
games can be captured through sets of binary clauses forming chains.

Timing. The variable gameoverz in DYS has the same meaning as time in our
encoding, it marks the end of the game and is crucial to prevent white from
reaching a winning position after black has already won. In DYS this variable
is added to almost all clauses such that when the game is finished the universal
variables cannot falsify these clauses anymore. This technique produces correct
encodings, but affects propagation negatively and weakens clause learning. We
avoid such weakening of the other clauses by de-coupling time and the board
structure of a game. When the game is finished (i.e. time is set to false) indepen-
dently of the choices of the players no moves are allowed anymore and all empty
board positions are propagated through to the end. We expect that COR makes
it easier for the solver to exploit transposition of sequence of moves leading to
the same board configuration than previous encodings.

Monotonicity. Using the property of monotonicity of positional games—the set
of claimed vertices only grows throughout the game—our clauses manage to
captures this property more directly than the previous encodings. For instance,
DYS introduces variables that are true if a player wins in time point t by reaching
a winning configuration. We avoid the need to know explicitly by which time
point a player won via propagating the claimed vertices through to the last
time point and only need to test for the winning configuration of both players
there. Through de-coupling the time aspect of games from checking winning
positions our encoding has fewer variables and shorter clauses, that again benefit
propagation.
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Adapted Log Encoding. This concept was first introduced for the encoding of
quantified constraint satisfaction problems (CSPs) into QBF [10]. There, a loga-
rithmic number of universal variables encode the binary representation of a CSP
variable. This technique was also applied with success in a game encoding to
QBF [2].

Indicator Variables. To the best of our knowledge all translations of games
(including non-positional ones) to QBF introduce variables that indicate types
of illegal moves by white. Such variables again weaken the encoding due to longer
clauses. The encoding DYS has the following types of illegal moves; white claims
too many vertices, too few vertices, already occupied vertices. All of these are
explicitly encoded in DYS whereas COR corrects white’s move. The key insight
in the work of [2] raises the question how to address White’s illegal behavior
without weakening the encoding or introducing auxiliary variables.

7 Conclusion and Future Work

We consider the craft of finding efficient translations of a problem description
to the clausal representation an important step towards better performances of
QBF solvers. Our investigation regarding the class of positional games demon-
strates that a carefully crafted translation using structural properties to decrease
and shorten clauses and decrease the number of variables improves the applica-
bility beyond trivial problems. We list some key insights:

– Binary implication chains capturing monotone structural properties of prob-
lem are crucial.

– Variables representing illegal moves by the universal player can be avoided.
– Encoding the choices of the choices by the universally player logarithmically

helps in this problem description.
– Preprocessing is crucial for previous encodings to perform, whereas on our

encoding has minor impact.

Our investigation focused on clause representation and we have yet to extend
to non-clausal description languages to QBF such as QCIR.

The insights from our investigation can be applied to translation of other
almost-positional games and to planning problems with similar structures.

Although Hex is a positional game, its hypergraph representation is expo-
nential in the board size because it needs to account for all paths between a pair
of sides. For larger boards one will need an implicit representation of the paths
between the two sides, possibly drawing inspiration from existing first-order logic
modeling [4].
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Abstract. Cohn and Umans proposed a framework for developing fast
matrix multiplication algorithms based on the embedding computation
in certain groups algebras [9]. In subsequent work with Kleinberg and
Szegedy, they connected this to the search for combinatorial objects
called strong uniquely solvable puzzles (strong USPs) [8]. We begin a sys-
tematic computer-aided search for these objects. We develop and imple-
ment algorithms based on reductions to SAT and IP to verify that puz-
zles are strong USPs and to search for large strong USPs. We produce
tight bounds on the maximum size of a strong USP for width k < 6,
and construct puzzles of small width that are larger than previous work.
Although our work only deals with puzzles of small-constant width and
does not produce a new, faster matrix multiplication algorithm, we pro-
vide evidence that there exist families of strong USPs that imply matrix
multiplication algorithms that are more efficient than those currently
known.

Keywords: Matrix multiplication · Strong uniquely solvable puzzle ·
Arithmetic complexity · Integer programming · Satisfiability ·
Reduction · Application

1 Introduction

An optimal algorithm for matrix multiplication remains elusive despite substan-
tial effort. We focus on the square variant of the matrix multiplication problem,
i.e., given two n-by-n matrices A and B over a field F , the goal is to com-
pute the matrix product C = A × B. The outstanding open question is: How
many field operations are required to compute C? The long thought-optimal
näıve algorithm based on the definition of matrix product is O(n3) time. The
groundbreaking work of Strassen showed that it can be done in time O(n2.808)
[24] using a divide-and-conquer approach. A long sequence of work concluding
with Coppersmith and Winograd’s algorithm (CW) reduced the running time
to O(n2.376) [10,21,22,25]. Recent computer-aided refinements of CW by others
reduced the exponent to ω ≤ 2.3728639 [13,18,26].
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Fig. 1. The leftmost diagram is a width-4 size-5 puzzle P . The middle three diagrams
are the three sets of subrows of P . The rightmost diagram is the puzzle P ′ resulting from
reordering the subrows of P as indicated by the arrows and then recombining them.
Since P can be rearranged as P ′ �= P without overlap, P is not uniquely solvable.

Approach. Cohn and Umans [9] introduced a framework for developing faster
algorithms for matrix multiplication by reducing this to a search for groups
with subsets that satisfy an algebraic property called the triple-product property
that allows matrix multiplication to be embedded in the group algebra. Their
approach takes inspiration from the O(n log n) algorithm for multiplying degree-
n univariate polynomials by embedding in the group algebra of the fast Fourier
transform, c.f., e.g., [11, Chapter 30]. Subsequent work [8] elaborated on this
idea and developed the notion of combinatorial objects called strong uniquely
solvable puzzles (strong USPs). These objects imply a group algebra embedding
for matrix multiplication, and hence give a matrix multiplication algorithm as
well.

A width-k puzzle P is a subset of {0, 1, 2}k, and the cardinality of P is
the puzzle’s size. Each element of P is called a row of P , and each row con-
sists of three subrows that are elements of {0, ∗}k, {1, ∗}k, {2, ∗}k respectively.
Informally, a puzzle P is a uniquely solvable puzzle (USP) if there is no way to
permute the subrows of P to form a distinct puzzle P ′ without cells with num-
bers overlapping. Figure 1 demonstrates a puzzle that is not a USP. A uniquely
solvable puzzle is strong if a tighter condition for non-overlapping holds (see
Definition 2). For a fixed width k, the larger the size of a strong USP, the faster
matrix multiplication algorithm it gives [8]. In fact Cohn et al. show that there
exist an infinite family of strong USPs that achieves ω < 2.48.

We follow Cohn et al.’s program by: (i) developing verification algorithms
to determine whether a puzzle is a strong USP, (ii) developing search algo-
rithms to find large strong USPs, and (iii) implementing and running practical
implementations of these algorithms. The most successful of the verification
algorithms function by reducing the problem through 3D matching to SAT and
IP which are then solved with existing tools. The algorithms we develop are not
efficient—they run in worst-case exponential time in the natural parameters.
However, the goal is to find a sufficiently large strong USP that would provide
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a faster matrix multiplication algorithm, and the resulting algorithm’s running
time is independent of the running time of our algorithms. The inefficiency of
our algorithms limit the search space that we can feasibly examine.

Results. Our experimental results give new bounds on the size of the largest
strong USP for small-width puzzles. For small-constant width, k ≤ 12, we beat
the largest sizes of [8, Proposition 3.8]. Our lower bounds on maximum size are
witnessed by strong USPs we found via search. For k ≤ 5 we give tight upper
bounds determined by exhaustively searching all puzzles up to isomorphism.
Although our current experimental results do not beat [8] for unbounded k,
they give evidence that there may exist families of strong USPs that give matrix
multiplication algorithms that are more efficient than those currently known.

Related Work. There are a number of negative results known. Näıvely, the
dimensions of the output matrix C implies that the problem requires at least
Ω(n2) time. Slightly better lower bounds are known in general and also for
specialized models of computation, c.f., e.g., [16,23]. There are also lower bounds
known for a variety of algorithmic approaches to matrix multiplication. Ambainis
et al. showed that the laser method cannot alone achieve an algorithm with
ω ≤ 2.3078 [4]. A recent breakthrough on arithmetic progressions in cap sets [12]
combined with a conditional result on the Erdös-Szemeredi sunflower conjecture
[3] imply that Cohn et al.’s strong USP approach cannot achieve ω = 2 + ε for
some ε > 0 [7]. Subsequent work has generalized this barrier [1,2] to a larger
class of algorithmic techniques. Despite this, we are unaware of a concrete lower
bound on ε implied by these negative results. There remains a substantial gap in
our understanding between what has been achieved by the positive refinements
of LeGall, Williams, and Stothers, and the impossibility of showing ω = 2 using
the strong USP approach.

Organization. Section 2 begins with the formal definition of a strong USP.
Sections 3 and 4, respectively, discuss our algorithms and heuristics for verifying
that and searching for a puzzle that is a strong USP. Section 5 discusses our
experimental results.

2 Preliminaries

For an integer k, we use [k] to denote the set {0, 1, 2, . . . , k − 1}. For a set Q,
SymQ denotes the symmetric group on the elements of Q, i.e., the group of
permutations acting on Q. Cohn et al. introduced the idea of a puzzle [8].

Definition 1 (Puzzle). For s, k ∈ N , an (s, k)-puzzle is a subset P ⊆ [3]k

with |P | = s. We call s the size of P , and k the width of P .
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We say that an (s, k)-puzzle has s rows and k columns. The columns of a puzzle
are inherently ordered and indexed by [k]. The rows of a puzzle have no inherent
ordering, however, it is often convenient to assume that they are ordered and
indexed by the set of natural numbers [s].

Cohn et al. establish a particular combinatorial property of puzzles that
allows one to derive group algebras that matrix multiplication can be efficiently
embedded into. Such puzzles are called strong uniquely solvable puzzles.

Definition 2 (Strong USP). An (s, k)-puzzle P is strong uniquely solvable
if for all π0, π1, π2 ∈ SymP : Either (i) π0 = π1 = π2, or (ii) there exists r ∈ P
and i ∈ [k] such that exactly two of the following hold: (π0(r))i = 0, (π1(r))i = 1,
(π2(r))i = 2.

Note that strong uniquely solvability is invariant to the (re)ordering of the rows
or columns of a puzzle. We use this fact implicitly.

Cohn et al. show the following connection between the existence of strong
USPs and upper bounds on the exponent of matrix multiplication ω.

Lemma 1 ([8, Corollary 3.6]). Let ε > 0, if there is a strong uniquely solv-
able (s, k)-puzzle, there is an algorithm for multiplying n-by-n matrices in time
O(nω+ε) where

ω ≤ min
m≥3,m∈N

3 log m

log(m − 1)
− 3 log s!

sk log(m − 1)
.

This result motivates the search for large strong USPs that would result in faster
algorithms for matrix multiplication. In the same article, the authors also demon-
strate the existence of an infinite family of strong uniquely solvable puzzles, for
width k divisible by three, that achieves a non-trivial bound on ω.

Lemma 2 ([8, Proposition 3.8]). There is an infinite family of strong
uniquely solvable puzzles that achieves ω < 2.48.

3 Verifying Strong USPs

The core focus of this article is the problem of verifying strong USPs, i.e., given
an (s, k)-puzzle P , output YES if P is a strong USP, and NO otherwise. In this
section we discuss the design of algorithms to solve this computational problem
as a function of the natural parameters s and k. Along the way we also discuss
some aspects of our practical implementation that informed or constrained our
designs. All the exact algorithms we develop in this section have exponential
running time. However, asymptotic worst-case running time is not the metric we
are truly interested in. Rather we are interested in the practical performance of
our algorithms and their capability for locating new large strong USPs. The algo-
rithm that we ultimately develop is a hybrid of a number of simpler algorithms
and heuristics.
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Algorithm 1: Brute Force
Input: An (s, k)-puzzle P .
Output: YES, if P is a strong USP and NO otherwise.
1: function VerifyBruteForce(P )
2: for π1 ∈ SymP do
3: for π2 ∈ SymP do
4: if π1 �= 1 ∨ π2 �= 1 then
5: found = false.
6: for r ∈ P do
7: for i ∈ [k] do
8: if δri,0 + δ(π1(r))i,1 + δ(π2(r))i,2 = 2 then found = true.

9: if not found then return NO.

10: return YES.

3.1 Brute Force

The obvious algorithm for verification comes directly from the definition of a
strong USP. Informally, we consider all ways of permuting the ones and twos
pieces relative to the zeroes pieces and check whether the non-overlapping con-
dition of Definition 2 is met. A formal description of the algorithm is found in
Algorithm 1.

The ones in Line 4 of Algorithm 1 denote the identity in SymP , and δa,b is
the Kronecker delta function which is one if a = b and zero otherwise. Observe
that Algorithm 1 does not refer to the π0 of Definition 2. This is because the
strong USP property is invariant to permutations of the rows and so π0 can be
thought of as an arbitrary phase. Hence, we fix π0 = 1 to simplify the algorithm.
Seeing that |SymP | = s!, we conclude that the algorithm runs in time O((s!)2 ·
s · k · poly(s)) where the last factor accounts for the operations on permutations
of s elements. The dominant term in the running time is the contribution from
iterating over pairs of permutations. Finally, notice that if P is a strong USP,
then the algorithm runs in time Θ((s!)2·s·k·poly(s)), and that if P is not a strong
USP the algorithm terminates early. The algorithm’s poor performance made it
unusable in our implementation, however, its simplicity and direct connection to
the definition made its implementation a valuable sanity check against later more
elaborate algorithms (and it served as effective onboarding to the undergraduate
students collaborating on this project).

Although Algorithm 1 performs poorly, examining the structure of a seem-
ingly trivial optimization leads to substantially more effective algorithms. Con-
sider the following function on triples of rows a, b, c ∈ P : f(a, b, c) = ∨i∈[k](δai,0 +
δbi,1 + δci,2 = 2). We can replace the innermost loop in Lines 7 & 8 of Algo-
rithm 1 with the statement found = found ∨ f(r, π1(r), π2(r)). Observe that f
neither depends on P , r, nor the permutations, and that Algorithm 1 no longer
depends directly on k. To slightly speed up Algorithm 1 we can precompute and
cache f before the algorithm starts and then look up values as the algorithm
runs. We precompute f specialized to the rows in the puzzle P , and call it fP .
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Fig. 2. An example hypergraph G with edges E = {(r1, r1, r2), (r1, r3, r3), (r2, r2, r1),
(r2, r3, r1), (r3, r2, r3)}. The highlighted edges are a non-trivial 3D matching M =
{(r1, r1, r2), (r2, r3, r1), (r3, r2, r3)} of G.

3.2 Strong USP Verification to 3D Matching

It turns out to be more useful to work with fP than with P . It is convenient
to think of fP as a function fP : P × P × P → {0, 1} that is the complement
of the characteristic function of the relations of a tripartite hypergraph HP =
〈P 	 P 	 P, f̄P 〉 where the vertex set is the disjoint union of three copies of P
and fP indicates the edges that are not present in HP .

Let H = 〈P 	 P 	 P,E ⊆ P 3〉 be a tripartite 3-hypergraph. We say H has
a 3D matching (3DM) iff there exists a subset M ⊆ E with |M | = |P | and for
all distinct edges e1, e2 ∈ M , e1 and e2 are vertex disjoint, i.e., e1 ∩ e2 = ∅.
Determining whether a hypergraph has a 3D matching is a well-known NP-
complete problem (c.f., e.g., [14]). We say that a 3D matching is non-trivial if
it is not the set {(r, r, r) | r ∈ P}. Figure 2 demonstrates a 3-hypergraph with a
non-trivial 3D matching.

The existence of non-trivial 3D matchings in HP is directly tied to whether
P is a strong USP.

Lemma 3. A puzzle P is a strong USP iff HP has no non-trivial 3D matching.

Proof. We first argue the reverse. Suppose that Hp has a non-trivial 3D matching
M . We show that P is not a strong USP by using M to construct π0, π1, π2 ∈
SymP that witness this. Let π0 be the identity permutation. For each r ∈ P ,
define π1(r) = q where (r, q, ∗) ∈ M . Note that q is well defined and unique
because M is 3D matching and so has vertex disjoint edges. Similarly define
π2(r) = q where (r, ∗, q) ∈ M . Observe that by construction

M = {(π0(r), π1(r), π2(r)) | r ∈ P}.

Since M is a matching of HP , M ⊆ f̄P . Because M is a non-trivial matching
at least one edge in (a, b, c) ∈ M has either a = b, a = c, or b = c. This implies,
respectively, that as constructed π0 = π1, π0 = π2, or π1 = π2. In each case we
have determined that π0, π1, and π2 are not all identical. Thus we determined
permutations such that for all r ∈ P , f(π0(r), π1(r), π2(r)) = 0. This violates
Condition (ii) of Definition 2, hence P is not a strong USP.
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The forward direction is symmetric. Suppose that P is not a strong USP. We
show that HP has a 3D matching. For P not to be a strong USP there must exist
π0, π1, π2 ∈ SymP not all identical such that Condition (ii) of Definition 2 fails.
Define e(r) = (π0(r), π1(r), π2(r)) and M = {e(r) | r ∈ P}. Since Condition (ii)
fails, we have that fP (e(r)) = false for all r ∈ P . This means that for all r ∈ P ,
e(r) ∈ f̄P and hence M ⊆ f̄P . Since π0 is a permutation, |M | = |P |. Observe
that M is non-trivial because not all the permutations are identical and there
must be some r ∈ P with e(r) having non-identical coordinates. Thus M is a
non-trivial 3D matching. �	

Note that although 3D matching is an NP-complete problem, Lemma 3 does
not immediately imply that verification of strong USPs is coNP-complete because
HP is not an arbitrary hypergraph. As a consequence of Definition 2, verification
is in coNP. It remains open whether verification is coNP-complete. Lemma 3
implies that to verify P is a strong USP it suffices to determine whether HP has
a 3D matching. In the subsequent sections we examine algorithms for the later
problem. We can, in retrospect, view Algorithm 1 as an algorithm for solving
3D matching.

The realization that verification of strong USPs is a specialization of 3D
matching leads to a dynamic programming algorithm for verification that runs
in linear-exponential time O(22spoly(s) + poly(s, k)). Applying more advanced
techniques like those of Björklund et al. can achieve a better asymptotic time of
O(2spoly(s) + poly(s, k)) [6]. For brevity, we defer the details of our algorithm
to the long version of this article.

3.3 3D Matching to Satisfiability

By Lemma 3, one can determine whether a puzzle P is a strong USP by con-
structing the graph HP and deciding whether it has a non-trivial 3D matching.
Here we reduce our 3D matching problem to the satisfiability (SAT) problem on
conjunctive normal form (CNF) formulas and then use a state-of-the-art SAT
solver to resolve the reduced problem. To perform the reduction, we convert
the graph HP into a CNF formula ΨP , a depth-2 formula that is the AND of
ORs of Boolean literals. We construct ΨP so that ΨP is satisfiable iff HP has a
non-trivial 3D matching.

Let HP = 〈V = P 	 P 	 P,E ⊆ P 3〉 be the 3D matching instance associated
with the puzzle P . Our goal is to determine whether there is a non-trivial 3D
matching M ⊆ E. A näıve reduction would be to have variables Mu,v,w indicating
inclusion of each edge (u, v, w) ∈ P 3 in the matching. This results in a formula ΨP

with s3 variables and size Θ(s5) because including an edge e ∈ P 3 excludes the
Θ(s2) edges e′ with e ∩ e′ = ∅. To decrease the size of ΨP we instead use sets of
variables to indicate which vertices in the second and third part of V are matched
with each vertex in the first part. In particular we have Boolean variables M1

u,v

and M2
u,w for all u, v, w ∈ P , and these variable map to assignments in the näıve

scheme in the following way: M1
u,v ∧ M2

u,w ⇔ Mu,v,w.
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We now write our CNF formula for 3D matching. First, we have clauses that
prevents non-edges from being in the matching:

Ψnon-edge
P =

∧

(u,v,w)∈E

(¬M1
u,v ∨ ¬M2

u,w). (1)

Second, we add clauses require that every vertex in HP is matched with some
edge:

Ψ≥1
P =

(
∧

u∈P

(∨v∈P M1
u,v) ∧ (∨w∈P M2

u,w)

)

∧
(

∧

v∈P

(∨u∈P M1
u,v)

)
∧

(
∧

w∈P

(∨u∈P M2
u,w)

)
.

(2)

Third, we require that each vertex be matched with at most one edge and so
have clauses that exclude matching edges that overlap on one or two coordinates.

Ψ≤1
P =

∧

i∈{1,2}

∧

(u,v),(u′,v′)∈P2

(u = u′ ∨ v = v′) ∧ (u, v �= u′, v′) ⇒ ¬M i
u,v ∨ ¬M i

u′,v′ .

(3)

Fourth, we exclude the trivial 3D matching by requiring that at least one of the
diagonal edges not be used: Ψnon-trivial

P =
∨

u∈P ¬M1
u,u∨¬M2

u,u. Finally, we AND
these into the overall CNF formula: ΨP = Ψnon-edge

P ∧ Ψ≤1
P ∧ Ψ≥1

P ∧ Ψnon-trivial
P .

The size of the CNF formula ΨP is Θ(s3), has 2s2 variables, and is a factor of s2

smaller than the näıve approach. Thus we reduce 3D matching to satisfiability
by converting the instance HP into the CNF formula ΨP .

To solve the reduced satisfiability instance we used the open-source solver
MapleCOMPSPS from the 2016 International SAT Competition [5]. This solver
is conflict driven and uses a learning rate branching heuristic to decide which
variables are likely to lead to conflict and has had demonstrable success in prac-
tice [19]. We chose MapleCOMPSPS because it was state of the art at the
time our project started. It is likely that more recently-developed solvers would
achieve similar or better performance on our task.

3.4 3D Matching to Integer Programming

In parallel to the previous subsection, we use the connection between verifi-
cation of strong USPs and 3D matching to reduce the former to integer pro-
gramming, another well-known NP-complete problem (c.f., e.g., [17]). Again, let
HP = 〈V,E〉 be the 3D matching instance associated with P . We construct an
integer program QP over {0, 1} that is infeasible iff P is a strong USP. Here the
reduction is simpler than the previous one because linear constraints naturally
capture matching.

We use Mu,v,w to denote a variable with values in {0, 1} to indicate whether
the edge (u, v, w) ∈ P 3 is present in the matching. To ensure that M is a subset
of E we add the following edge constraints to QP : ∀u, v, w ∈ P,∀(u, v, w) ∈
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E,Mu,v,w = 0. We also require that each vertex in each of the three parts
of the graph is incident to exactly one edge in M . This is captured by the
following vertex constraints in QP : ∀w ∈ P,

∑
u,v∈P Mu,v,w =

∑
u,v∈P Mu,w,v =∑

u,v∈P Mw,u,v = 1. Lastly, since we need that the 3D matching be non-trivial
we add the constraint:

∑
u∈P Mu,u,u < |P |.

To check whether P is a strong USP we determine whether QP is not feasi-
ble, i.e., that no assignment to the variables M satisfy all constraints. In practice
this computation is done using the commercial, closed-source, mixed-integer pro-
gramming solver Gurobi [15]. We note that reduction from 3D matching to IP
is polynomial time and that there are s3 variables in QP , and that the total size
of the constraints is s3 · Θ(1) + 3s · Θ(s2) + 1 · Θ(s3) = Θ(s3), similar to size of
ΨP in the SAT reduction.

3.5 Heuristics

Although the exact algorithms presented in the previous sections make sub-
stantial improvements over the brute force approach, the resulting performance
remains impractical. To resolve this, we also develop several fast verification
heuristics that may produce the non-definitive answer MAYBE in place of YES
or NO. Then, to verify a puzzle P we run this battery of fast heuristics and
return early if any of the heuristics produce a definitive YES or NO. When all
the heuristics result in MAYBE, we then run one of the slower exact algorithms
that were previously discussed. The heuristics have different forms, but all rely
on the structural properties of a strong USP. Here we discuss the two most effec-
tive heuristics, downward closure and greedy, and defer a deeper discussion of
these and several less effective heuristics, including projection to 2D matching,
to the full version of this article.

Downward Closed. The simplest heuristics we consider is based on the fact
that strong USPs are downward closed.

Lemma 4. If P is a strong USP, then so is every subpuzzle P ′ ⊆ P .

Proof. Let P be a strong USP and P ′ ⊆ P . By Definition 2, for every
(π1, π2, π3) ∈ Sym3

P not all identity, there exist r ∈ P and i ∈ [k] such that
exactly two of the following hold: (π0(r))i = 0, (π1(r))i = 1, (π2(r))i = 2. Con-
sider restricting the permutations to those that fix the elements of P\P ′. For
these permutations it must be the case that r ∈ P ′ because otherwise r ∈ P\P ′

and there is exactly one j ∈ [3] for which (πj(r))i = j holds. Thus we can drop
the elements of P\P ′ and conclude that for every tuple of permutations in SymP ′

the conditions of Definition 2 hold for P ′, and hence that P ′ is a strong USP. �	
This leads to a polynomial-time heuristic that can determine that a puzzle

is not a strong USP. Informally, the algorithm takes an (s, k)-puzzle P and
s′ ≤ s, and verifies that all subsets P ′ ⊆ P with size |P ′| = s′ are strong USPs.
If any subset P ′ is not a strong USP, the heuristic returns NO, otherwise it
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returns MAYBE. This algorithm runs in time O(
(

s
s′
) · T (s′, k)) where T (s′, k)

is the runtime for verifying an (s′, k)-puzzle. In practice we did not apply this
heuristic for s′ larger than 3, so the effective running time was O(s3 · T (3, k)),
which is polynomial in s and k using the verification algorithms from the previous
subsections that eliminate dependence on k for polynomial cost. This heuristic
can be made even more practical by caching the results for puzzles of size s′,
reducing the verification time per iteration to constant in exchange for Θ(

(
3k

s′
) ·

T (s′, k)) time and Θ(
(
3k

s′
)
) space to precompute the values for all puzzles of size

s′. From a practical point of view, running this heuristic is free for small constant
s′ ≤ 3, as even the reductions in the exact verification algorithms have a similar
or higher running time.

Greedy. This heuristic attempts to greedily solve the 3D matching instance HP .
The heuristic proceeds iteratively, determining the vertex of the first part of the
3D matching instance with the least edges and randomly selecting an edge of that
vertex to put into the 3D matching. If the heuristic successfully constructs a 3D
matching it returns NO indicating that the input puzzle P is not a strong USP.
If the heuristic reaches a point were prior commitments have made the matching
infeasible, the heuristic starts again from scratch. This process is repeated some
number of times before it gives up and returns MAYBE. In our implementation
we use s3 attempts because it is similar to the running time of the reductions
and it empirically reduced the number of instances requiring full verification in
the domain of puzzles with k = 6, 7, 8 while not increasing the running time by
too much.

3.6 Hybrid Algorithm

Our final verification algorithm (Algorithm 2) is a hybrid of several exact algo-
rithms and heuristics. The size thresholds for which algorithm and heuristic to
apply were determined experimentally for small k and were focused on the values
were our strong USP search algorithms were tractable k ≤ 6 (or nearly tractable
k ≤ 8). We decided to run both the reduction to SAT and IP in parallel because
it was not clear which algorithm performed better. Since verification halts when
either algorithm completes, the wasted effort is within a factor of two of what
the better algorithm could have done alone. We also chose to do this because we
experimentally observed that there were many instances that one of the algo-
rithms struggled with that the other did not—this resulted in a hybrid algorithm
that out performed the individual exact algorithms on average.

4 Searching for Strong USPs

In some ways the problem of constructing a large strong USP is similar to the
problem of constructing a large set of linearly independent vectors. In both cases,
the object to be constructed is a set, the order that elements are added does not
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Algorithm 2: Hybrid Verification Algorithm
Input: An (s, k)-puzzle P .
Output: YES, if P is found to be strong USP, and NO otherwise.
1: if s ≤ 2 then return VerifyBruteForce(P ).

2: if s ≤ 7 then return VerifyDynamicProgramming(P ).

3: if s ≤ 10 then
4: Return result if HeuristicDownwardClosed(P, 2) is not MAYBE.
5: return VerifyDynamicProgramming(P ).

6: Return result if HeuristicDownwardClosed(P, 3) is not MAYBE.
7: Return result if HeuristicGreedy(P ) is not MAYBE.
8: Run VerifySAT(P ) and VerifyIP(P ) in parallel and return the first result.

matter, the underlying elements are sequences of numbers, and there is a notion
of (in)dependence among sets of elements. There are well-known polynomial-time
algorithms for determining whether a set of vectors are independent, e.g., Gaus-
sian elimination, and we have a practical implementation for deciding whether
a puzzle is a strong USP.

There is a straightforward greedy algorithm for constructing maximum-size
sets of independent vectors: Start with an empty set S, and repeatedly add
vectors to S that are linearly independent of S. After this process completes
S is a largest set of linearly independent vectors. This problem admits such a
greedy algorithm because the family of sets of linearly independent vectors form
a matroid. The vector to be added each step can be computed efficiently by
solving a linear system of equations for vectors in the null space of S.

Unfortunately this same approach does not work for generating maximum-
size strong USPs. The set of strong USPs does not form a matroid, rather it is
only an independence system, c.f., e.g., [20]. In particular, (i) the empty puzzle
is a strong USP and (ii) the set of strong USP are downward closed by Lemma 4.
The final property required to be a matroid, the augmentation property, requires
that for every pair of strong USPs P1, P2 with |P1| ≤ |P2| there is a row of
r ∈ P2\P1 such that P1 ∪ {r} is also a strong USP. A simple counterexample
with the strong USPs P1 = {32} and P2 = {12, 23} concludes that neither
P1 ∪ {12} = {12, 32} nor P1 ∪ {23} = {23, 32} are strong USPs, and hence the
augmentation property fails. One consequence is that näıve greedy algorithms
will likely be ineffective for finding maximum-size strong USPs. Furthermore, we
do not currently have an efficient algorithm that can take a strong USP P and
determine a row r such that P ∪ {r} is a strong USP aside from slight pruning
of the ≤ 3k possible next rows r.

That said, we have had some success applying general purpose search tech-
niques together with our practical verification algorithm to construct maximum-
size strong USPs for small k. In particular, we implemented variants of depth-first
search (DFS) and breadth-first search (BFS). We defer the details of this to the
full version of this article.
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Fig. 3. Representative maximum-size strong USPs found for width k = 1, 2, . . . , 6.

The actual running times of both of these algorithms are prohibitive even for
k > 5, and the greater memory usage of BFS to store the entire search frontier
is in the tens of terabytes even for k = 6. There are some silver linings, DFS

can report intermediate results which are the maximally strong USPs that it has
discovered so far. Both algorithms admit the possibility of eliminating puzzles
from the search that are equivalent to puzzles that have already been searched,
though it is easier to fit into the structure BFS as the puzzles are already being
stored in a queue.

5 Experimental Results

Our experimental results come in three flavors for small-constant width k: (i)
constructive lower bounds on the maximum size of width-k strong USPs wit-
nessed by found puzzles, (ii) exhaustive upper bounds on the maximum size of
width-k strong USPs, and (iii) experimental run times comparing the algorithms
for verifying width-k strong USPs. BFS and DFS when able to run to comple-
tion search the entire space, up to puzzle isomorphism, and provide tight upper
and lower bounds. When unable to run to completion they provide only results
of form (i) and are not guaranteed to be tight.

5.1 New Bounds on the Size of Strong USPs

Figure 3 contains representative examples of maximum-size strong USPs we
found for k ≤ 6. Table 1 summarizes our main results in comparison with [8].
The lower bounds of [8] are from the constructions in their Propositions 3.1 and
3.8 that give families of strong USPs for k even or k divisible by three. The
upper bounds of [8] follow from their Lemma 3.2 (and the fact that the capacity
of strong USPs is bounded above by the capacity of USPs). The values of ω in
this table are computed by plugging s and k into Lemma 1 and optimizing over
m. For clarity we omit ω’s that would be larger than previous lines.

We derive tight bounds for all k ≤ 5 and constructively improve the known
lower bounds for 4 ≤ k ≤ 12. The strong uniquely solvable (14, 6)-puzzles we
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Table 1. Comparison of bounds on maximum size of strong USPs with [8] for small k.

[8] This work

k Maximum s ω Maximum s ω

1 1 = s 3.000 1 = s 3.000

2 2 ≤ s ≤ 3 2.875 2 = s 2.875

3 3 ≤ s ≤ 6 2.849 3 = s 2.849

4 4 ≤ s ≤ 12 2.850 5 = s 2.806

5 4 ≤ s ≤ 24 8 = s 2.777

6 10 ≤ s ≤ 45 2.792 14 ≤ s 2.733

7 10 ≤ s ≤ 86 21 ≤ s 2.722

8 16 ≤ s ≤ 162 30 ≤ s 2.719

9 36 ≤ s ≤ 307 2.739 42 ≤ s 2.718

10 36 ≤ s ≤ 581 64 ≤ s 2.706

11 36 ≤ s ≤ 1098 112 ≤ s 2.678

12 136 ≤ s ≤ 2075 2.696 196 ≤ s 2.653

found represent the greatest improvement in ω versus the construction of [8].
Further, our puzzle for k = 12 is the result of taking the Cartesian product of
two copies of a strong uniquely solvable (14, 6)-puzzle. Repeating this process
with more copies of the puzzle gives a strong USP implying ω < 2.522. Note
that Proposition 3.8 of [8] gives an infinite family of strong USPs that achieves
ω < 2.48 in the limit.

Based on the processing time we spent on k = 6, we conjecture that s = 14 is
tight for k = 6 and that our lower bounds for k > 6 are not. Our results suggests
there is considerable room for improvement in the construction of strong USPs,
and that it is likely that there exist large puzzles for k = 7, 8, 9 that would
beat [8]’s construction and perhaps come close to the Coppersmith-Winograd
refinements. It seems that new insights into the search problem are required to
proceed for k > 6.

5.2 Algorithm Performance

We implemented our algorithms in C++ (source code to be made available on
github) and ran them on a 2010 MacPro running Ubuntu 16.04 with dual Xeon
E5620 2.40 Ghz processors and 16 GB of RAM. Figure 4 contains log plots that
describe the performance of our algorithms on sets of 10000 random puzzles at
each point on a sweep through parameter space for width k = 5 . . . 10 and size
s = 1 . . . 30. We chose to test performance via random sampling because we do
not have access to a large set of solved instances. This domain coincides with
the frontier of our search space, and we tuned the parameters of the heuristics
and algorithms in the hybrid algorithm to perform well in this domain. We did
not deeply investigate performance characteristics outside of this domain.
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(a) Width-5 Strong USP.
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(b) Width-6 Strong USP.
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(c) Width-7 Strong USP.
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(d) Width-8 Strong USP.
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(e) Width-9 Strong USP.
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(f) Width-10 Strong USP.
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Fig. 4. Log plots of the average running times for verifying 10000 random puzzles
of widths five to ten. Note that the legend in (a) applies to all six plots, and that
the axes are named and labeled only on the edges of the page. Each plot describes the
behavior of five algorithms brute force (BF), dynamic programming (DP), reduction to
satisfiability (SAT), reduction to integer programming (IP), and the hybrid algorithm
(HYB). The final dashed line indicates the percentage of strong USP found among the
10000 random puzzles.
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The brute force and dynamic programming algorithms perform poorly except
for very small size, s ≤ 8, and their curves loosely match the 2Ω(n) time bounds
we have. The plots for the two reduction-based algorithms (SAT and IP) behave
similarly to each other. They are slower than brute force and dynamic program-
ming for small values of s, and their behavior for large s is quite a bit faster. We
speculate that the former is due to the cost of constructing the reduced instance
and overhead of the third party tools. Further observe that the SAT reduction
handily beats the IP reduction on large size for k = 5, but as k increases, the IP
reduction becomes faster. We also note that across the six plots the IP reduc-
tion has effectively the same running time and is independent of k, this is likely
because the size of the IP instance depends only on s. The hybrid algorithm
generally performs best or close to best. Notice that it matches the dynamic
programming algorithm closely for small values of s and then diverges when the
reduction-based algorithms and heuristics are activated around s = 10. Observe
that the hybrid algorithm is effectively constant time for large s. We expect
this is because the density of strong USPs decreases rapidly with s, and that
the randomly selected puzzles are likely far from satisfying Definition 2 and are
quickly rejected by the downward closure heuristic.

Overall, our hybrid verification algorithm performs reasonably well in prac-
tice, despite reductions through NP-complete problems.

6 Conclusions

We initiated the first study of the verification of strong USPs and developed
practical software for both verifying and searching for them. We give tight results
on the maximum size of width-k strong USPs for k ≤ 5. Although our results do
not produce a new upper bound on the running time of matrix multiplication,
they demonstrate there is promise in this approach. There are a number of open
questions. Is strong USP verification coNP-complete? What are tight bounds on
maximum size strong USPs for k ≥ 6 and do these bound lead to asymptotically
faster algorithms for matrix multiplication? The main bottleneck in our work is
the size of the search space—new insights seem to be required to substantially
reduce it. We have preliminary results that indicate that the size of the search
space can be reduced by modding out by the symmetries of puzzles, though this
has not yet led to new lower bounds.

Acknowledgments. The second and third authors thank Union College for Under-
graduate Summer Research Fellowships funding their work. The authors thank the
anonymous reviewers for their detailed and thoughtful suggestions for improving this
work.
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Abstract. Approximate circuits that trade the chip area or power con-
sumption for the precision of the computation play a key role in devel-
opment of energy-aware systems. Designing complex approximate cir-
cuits is, however, very difficult, especially, when a given approximation
error has to be guaranteed. Evolutionary search algorithms together with
SAT-based error evaluation currently represent one of the most success-
ful approaches for automated circuit approximation. In this paper, we
apply satisfiability solving not only for circuit evaluation but also for its
minimisation. We consider and evaluate several approaches to this task,
both inspired by existing works as well as novel ones. Our experiments
show that a combined strategy, integrating evolutionary search and SMT-
based sub-circuit minimisation (using quantified theory of arrays) that
we propose, is able to find complex approximate circuits (e.g. 16-bit mul-
tipliers) with considerably better trade-offs between the circuit precision
and size than existing approaches.

1 Introduction

Approximate circuits are digital circuits that trade functional correctness (pre-
cision of computation) for other design objectives such as chip area or power
consumption. Such circuits play an important role in development of resource-
efficient systems, including applications such as image and video processing [10]
or neural networks [14,17]. Designing approximate systems, i.e. finding optimal
trade-offs between the approximation error and resource savings is, however,
a complex and time-demanding process. Automated methods allowing one to
develop high-quality approximate circuits are thus in high demand, especially
when a bound on the approximation error is to be guaranteed.

There exists a vast body of literature (see, e.g. [13,16,18,19,26]) demon-
strating that evolutionary-based algorithms are able to automatically design
innovative approximate circuits providing high-quality trade-offs among the
different design objectives. There are two main challenges related to the
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evolutionary-driven circuit approximation: (1) Finding a fast and reliable evalu-
ation of candidate solutions. (2) Designing a quickly converging search strategy
that drives the exploration towards high-quality solutions.

Concerning the first challenge, several circuit evaluation techniques have been
proposed including parallel circuit simulation [27] and various formal meth-
ods [5,9,25,28]. In our recent work [3], we proposed and implemented a new
miter construction together with a resource-limited verifier for SAT-based eval-
uation of the worst-case error. This approach has made feasible approximation
of complex circuits, going beyond 16-bit adders and 12-bit multipliers, which
were the limits of previously known techniques. In this paper, we aim at the sec-
ond challenge. Inspired by recent advances in SAT-based exact synthesis [11,24]
(the problem of finding the optimum logic representation of a given Boolean
function), we investigate whether a search strategy based on satisfiability solv-
ing (StS)—i.e. SAT or SMT solving—can improve state-of-the-art methods for
designing complex approximate circuits.

We emphasize that complex circuits typically have more than a thousand
gates and thus a monolithic approach, i.e. representing the circuit approxima-
tion problem as a single StS query, is not tractable. Instead, we build on an
iterative approach where sub-circuits are optimised (i.e. the sub-circuit logic is
minimised while the original functionality is preserved) [23] or approximated (i.e.
the functionality of the sub-circuit is not preserved and the error of the whole
circuit is increased—to our best knowledge the iterative approximation has not
been considered yet).

Despite the enormous progress in satisfiability solving, our experiments
clearly show that the purely StS-based approximation significantly lags behind
the standard evolutionary approximation. Although the StS-based approxima-
tion performs informed (and thus in some sense more useful) changes in the
candidate circuits, the overhead caused by calling the solver does not pay off
compared to the uninformed but very cheap genetic mutations. Put differently,
the evolution can perform over 100-times more approximation attempts which
is enough to overcome the benefit of the informed changes.

In order to leverage the benefits of the informed changes, we propose a com-
bined approach. We interleave the evolutionary approximation and the StS-based
optimisation. The evolutionary approximation typically quickly converges to a
sub-optimal solution. After the progress of the evolution decreases below a cer-
tain threshold, we run the StS-based optimisation. It further reduces the circuit
size, but, more importantly, it introduces new reconnections in the circuit caus-
ing that the subsequent evolution is able to escape a local minimum and further
explore the design space.

2 Designing Approximate Circuits

Technology-independent functional approximation is the most preferred app-
roach to approximation of digital circuits. The goal is to replace the original
accurate circuit (further denoted as the golden circuit) by a less complex circuit
which exhibits some errors but improves non-functional circuit parameters such
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as power, delay, or chip area. Fully-automated functional approximation meth-
ods typically employ various heuristics to simplify the circuit logic and reduce
its area approximated by the sum of the sizes of the gates used—this sum is
further denoted as the circuit size.

The circuit size can be reduced either by replacing a gate by a smaller one
or by disconnecting a gate. The gate is disconnected if there is no connection
between its output and the primary outputs of the circuit. The essential oper-
ation in the approximation process is thus gate reconnection allowing one to
disconnect some gates. We stress that the space of possible reconnections grows
exponentially with the circuit size, and each reconnection typically causes a non-
trivial change in the overall circuit functionality.

To overcome this complexity, existing approximation techniques leverage var-
ious forms of greedy algorithms, such as ABACUS [18], or genetic algorithms,
such as Cartesian Genetic Programming [13,26], to identify suitable reconnec-
tions. The approximation then boils down to iteratively generating candidate
solutions and evaluating their quality, i.e. the obtained trade-off between the
circuit area and error. Circuit approximation can be naturally formulated as
multi-objective optimisation, but most works consider single-objective optimi-
sation of the circuit size for several predefined target errors—this is motivated
practically as the required error levels are typically known in advance and single-
objective optimisation is computationally less demanding.

There exist several metrics to quantify the error [8] and different techniques
allowing one to evaluate these metrics. For small circuits (up to 12-bit inputs),
parallel circuit simulation [27] provides the best performance. For larger cir-
cuits, various formal verification techniques have been proposed [5,9,25,28]. In
this paper, we build on the SAT-based technique we proposed in [3] allowing
one to verify whether a given candidate circuit meets the required bound T on
the worst-case absolute error (WCAE), i.e. whether the difference between the
candidate and the golden circuit is smaller than T for every input. The technique
constructs a miter [28], an auxiliary circuit interconnecting the golden and can-
didate circuit and allowing one to check their approximate equivalence given by
the bound T . The technique allows us to approximate complex circuits (16-bit
multipliers and beyond).

Recent advances in exact SAT-based synthesis of Boolean chains [24], pro-
viding efficient implementation of a given Boolean function, have opened new
avenues for automated circuit design and optimisation. In this paper, we inves-
tigate whether these advances can improve circuit approximation too.

3 SAT-based Circuit Approximation

We propose three different approaches for SAT-based circuit approximation.

3.1 A Monolithic Approach

The monolithic approach builds a single formula encoding the following
synthesis problem: For a given golden circuit GC, the size S of its currently
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best-known approximation, and an error bound T , synthesize an approximating
circuit AC whose size is smaller than S and that satisfies the constraint that
error(GC,AC) < T .

The formula has to encode the following features: (1) possible designs of the
circuit (i.e. possible interconnections and functionality of the gates), which must
be encoded using free variables whose suitable values are to be found by the
solver, thus fixing a certain design of the circuit; (2) the way the error of the
circuit is to be checked; and (3) the way the circuit size is to be evaluated.

In our approach, we use a forward-propagating network of two-input gates
to represent the designed circuit. We represent each gate by three integers. The
first two represent the inputs of the gate, and they can refer to some of the
primary inputs or to the output of one of the gates (which we identify with the
gate itself). The third integer then encodes the gate’s functionality that is chosen
from a predefined set of operations. A gate implementing each possible operation
has a predefined size given by the target chip architecture. To ensure that the
size of the synthesized circuit AC is smaller than the size S of the currently best
approximation, we add a constraint on the sum of the sizes of the gates forming
AC. We investigate and compare (cf. Section 4) the below presented three ways
of encoding the structure and functionality of C.

The first encoding is purely SAT-based although we present it using both
Boolean and integer variables—those are, however, bit-blasted away. Assume we
have k types of (binary) gates, use l gates, and have m/n primary input/output
bits, respectively. For each gate g ∈ G = {1, ..., l}, we use the integer variables
ing,1 and ing,2 to denote the first and second input of g. These variables range
over the domain W = {1, ...,m + l} of all wires in the circuit where the first
m wires carry the primary inputs and the next l wires carry the outputs of
the different gates. For g ∈ G, we also use the integer variable fg to denote its
type with the domain F = {1, ..., k}. Let I = {0, 1}m denote the different input
combinations. For u ∈ W , we use the Boolean variable bIu to hold the value of
the wire u for a primary input I ∈ I. We encode all possible circuits by the
conjunction of the formulae (ing,1 = u ∧ ing,2 = v ∧ fg = f) → ∧

I∈I
(bIm+g =

bIu opf bIv) that are generated for all gates g ∈ G, all possible types f ∈ F of g,
and all wires u, v ∈ W that may be used as the inputs of g. In particular, we
require that u < g and v < g to prevent backward connections in the circuit
(e.g. the input of g4 cannot be connected to the output of g6). In the formula,
opf denotes the Boolean operation implemented by gates of the type f ∈ F .

We also need to link the concrete input combinations with the input wires,
which is done by the conjunction

∧
I∈I

∧
j∈{1,...,m} b

I
j = I[j] where I[j] denotes

the j-th bit of I. Finally, for each output o ∈ O = {1, ..., n}, we introduce the
integer variable outo, which ranges over the domain of wires W and says from
where the output o is taken, and the Boolean variable outIo carrying the value of
the output o for the primary input I ∈ I (this variable will be compared with the
appropriate output of the golden circuit). These variables are connected with the
rest of the circuit using the conjunction of the formulae outo = u → ∧

I∈I
outIo =

bIu generated for every output o ∈ O and every wire u ∈ W . The solver then
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chooses a concrete circuit by fixing the values of the variables ing,1, ing,2, and
fg for every g ∈ G as well as the values of the variables outo for every o ∈ O.

Second, using a theory of arrays, we simplify the above encoding by using
an array b

I
: W → {0, 1} for each I ∈ I to hold the values of the wires in

W for the input I. Then, the conjuncts describing the structure of the circuit
may be simplified to fg = f → ∧

I∈I
(b

I
[m + g] = b

I
[ing,1] opf b

I
[ing,2]). The

input formula is changed to
∧

I∈I

∧
j∈{1,...,m} b

I
[j] = I[j] and similarly for the

output. Finally, third, using a theory of arrays with quantifiers, one suffices with
a single array b, simplifying the formulae describing the structure of the circuit
to fg = f → b[m+ g] = b[ing,1] opf b[ing,2]), adding the universal quantification
∀i1, ..., im over the entire formula, using the input formula

∧
j∈{1,...,m} b[j] = ij ,

and handling the output accordingly.
Using our encodings of AC, we can easily add a constraint on the required

error that compares the WCAE between the result coming from AC (using the
outo variables) and the expected result for all input combinations.

A comparison to existing encoding schemes for exact synthesis. Our encoding of
circuits is quite similar to other works such as [24]. The authors of [24] do not
consider a predefined set of gates. Instead, they synthesize the internal function-
ality of the gates too. The work [24] and other existing approaches use SAT based
encodings only. Further, they consider uniform gate sizes only (the circuit size is
given by the number of gates). Our more general formulation using non-uniform
gate sizes leads to more complex problems. As in [22], we use simplifications and
symmetry-pruning to reduce the complexity of the StS queries.

3.2 Sub-circuit Approximation

As discussed in [11], the monolithic approach for exact synthesis is feasible only
for small circuits up to 8 input bits (depending on the complexity of the syn-
thesized function). Our experiments confirm similar scalability limits also for
circuit approximation (cf. Sect. 4), and thus we focus on an iterative approach
that approximates selected sub-circuits. We focus on approximation wrt. Ham-
ming Distance as arithmetic metrics are not suitable for sub-circuits. Note that
there is no effective method allowing us to determine how the error introduced
in the sub-circuit affects the overall circuit error.

In every iteration, we select a single gate (either randomly or by enumeration,
depending on the circuit size) and perform a breadth-first search starting from
the selected gate to identify a sub-circuit of a suitable size. Note that, in our
approach, we consider multi-input and multi-output sub-circuits. The size of the
sub-circuits is indeed essential: Considering only very small sub-circuits prevents
the approximation from doing more complicated and non-local changes that are
crucial for finding high-quality approximate circuits. On the other hand, approx-
imation of larger sub-circuits introduces a significant overhead causing that only
a small number of iterations can be done within the given time limit. Regarding
the encoding of sub-circuit approximation, we consider the same schemes as in
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the monolithic approach discussed above. After every sub-circuit approximation,
we need to evaluate the error of the whole circuit. If it satisfies the error bound,
we accept the circuit as the new candidate solution, otherwise the next iteration
continues with the circuit before the approximation.

3.3 Evolutionary Approximation with StS-Based Optimisation

Evolutionary algorithms, in particular Cartesian Genetic Programming (CGP),
have achieved excellent results in approximation of complex circuits [3]. The
key idea is similar to sub-circuit approximation, but here CGP performs ran-
dom changes in the candidate solution instead of utilising satisfiability solving.
Unlike finding an optimal sub-circuit approximation, random changes are very
fast, and the success of CGP is typically achieved by a large number of small
changes. We emphasize that CGP is also able to accumulate a large change in
the candidate circuit via so-called inactive mutations [15]—a chain of changes
where only the last change directly affects the circuit functionality. Although
CGP usually quickly converges to a sub-optimum solution, it can get stuck in
this solution for a long time. On the other hand, the StS-based approach is able
to systematically search for improvements that are hard to find for CGP.

We hence propose a combined approach leveraging the benefits of both tech-
niques. In particular, we interleave the evolutionary search by iterative StS opti-
misation. In contrast to StS-based approximation, StS-based optimisation min-
imises the size of the selected sub-circuit by changing the internal structure while
preserving its functionality. The rationale behind this is based on the observation
that a large portion of approximated sub-circuits are rejected as they cause that
the WCAE error of the whole circuit gets above the allowed bound. Compared
with CGP, the cost of each approximation operation is too high—in our scenar-
ios, CGP is about 100-times faster. Therefore, the combined approach uses CGP
to introduce changes affecting the functionality, and the StS-based optimisation
to minimise the logic.Further, we also explore different encoding schemes for the
optimisation problem.

The interleaving is controlled in the following way. If CGP gets stuck in
a local optimum, we switch to the iterative StS optimisation that has a time
budget depending on the given overall time for the approximation. Once the
budget is spent, we continue with again CGP. Our experiments show that the
optimisation helps CGP to escape the local optimum and to further effectively
explore the space of candidate circuits.

4 Experimental Results

We ran all our experiments on a server with an Intel(R) Xeon(R) CPU at
2.40 GHz. Although search-based approximation can naturally benefit from a
simple task parallelisation, we use a single-core computation to simplify the
interpretation of the results.



Satisfiability Solving Meets Evolutionary Optimisation 487

A Comparison of different encoding schemes and satisfiability solvers. We con-
sider a set of formulae relevant for the monolithic as well as for the iterative
approach. The set includes both SAT and UNSAT instances including a full
adder, 2-bit adder, 2-bit multiplier, 4-1 multiplexor, and some randomly gen-
erated 4-input functions. We compare the total time needed to solve all the
formulae with a 3 hour time limit. We do not include any additional penalty for
timing out. The Z3 solver [6] and the quantified array encoding proved to be the
fastest combination of the encoding and the solver. Z3 with separate arrays for
different input combinations is about 2 times slower, and the Glucose solver [1]
with the purely SAT-based encoding is about 3 times slower. Z3 with the purely
SAT-based encoding as well as its SMT variant without bit-blasting were roughly
5 times slower. Other tested solvers—MathSAT [2], Minisat [7], Sadical [12], and
Vampire [20]—were all more than 5 times slower. Based on these observations,
we use Z3 with the quantified array encoding in all further StS-based queries.

The monolithic approach. The monolithic approach was able to find optimal
approximations of 2-bit adders and multipliers as well as randomly generated
functions with 4 inputs and 2 outputs. Approximation of larger circuits proved
to be infeasible, i.e. most instances timed out within the given limit of 3 h.

We compare the performance of our monolithic approach with Cirkit [21], a
state-of-the-art tool for exact synthesis. As expected, Cirkit is able to achieve
a better performance and scalability: It is significantly faster on 4-bit functions
and it can also synthesize optimal solutions for some 6-bit and 8-bit functions.
However, there are also some hard 6-bit instances that are infeasible for Cirkit.

The better performance of Cirkit is mainly caused by the following factors:
(1) Our formulation of circuit approximation is more complicated due to the
non-uniform gate sizes and the error quantification. (2) Cirkit uses different cir-
cuit representations (such as AIGs, MIGs, or n-bit look-up tables) that proved to
be more efficient for some exact synthesis problems [22]. (3) Cirkit implements
various optimisations and symmetry breaking methods [11]. Some of these meth-
ods are problem- and representation-specific and thus not directly applicable to
our approximation problem. We are, however, aware that our current prototype
implementation could be improved by adapting some of the methods. However,
the improvements would not change the practical limits of the monolithic app-
roach.

In the following subsections, we will examine three strategies for approxima-
tion of complex circuits: (1) CGP: the state-of-the-art evolutionary approxima-
tion [4]. (2) SMT: the sub-circuit approximation from Sect. 3.2. (3) COMB: the
combined approach from Sect. 3.3 using the following interleaving strategy:

In each iteration, we run the CGP-based approximation until no improvement
is found for 100 K generations. Then, for 10% of the overall time limit, we switch
to the SMT-based optimisation. Afterwards, a new iteration starts.

Based on our preliminary experiments, we use sub-circuits with 5 gates (recall
the discussion in Sect. 3.2) in all SMT-based sub-circuit approximation and opti-
misation queries. We also introduce a hard time limit on every such query.
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Table 1. The resulting size of the approximate circuits, obtained using the proposed
approximate strategies, expressed as the percentage of the size of the golden circuits
(left) and of the size of the best known approximations presented in [3] (right).

8-bit adders 4-bit multipliers

Err CGP SMT COMB CGP SMT COMB

1 % 64.8 83.5 54.5 78.4 90.5 74.6

2 % 52.6 78.0 44.9 69.3 82.6 67.1

5 % 37.1 57.4 32.3 53.4 77.0 49.7

32-bit adders 16-bit multipliers

Err[%] CGP COMB Err[%] CGP COMB

10−5 100.0 81.5 10−3 97.9 91.4

10−4 100.0 81.3 0.01 97.6 91.1

10−3 100.0 81.1 0.1 95.0 90.1

It prevents the SMT solver to spend a prohibitively long time in complex queries
and thus to significantly slow down the approximation process.

4.1 Performance on Small Circuits

We first consider small circuits (a 4-bit multiplier with 67 gates and an 8-bit
adder with 49 gates) to understand performance aspects of the search strategies.
We report the area savings (as the percentage of the size of the golden circuit)
for selected WCAE error bounds and the approximation time limit of 1 h.

Table 1 (left) shows the results obtained from 15 independent approximation
runs for each combination of the approximation method, circuit, and target error.
For the 8-bit adder, the combined approach wins in all 45 evolutionary runs. On
average, the combined approach saves 7.6% more than the pure CGP and 29%
more than the pure SMT-based approach. For the 4-bit multiplier, the combined
strategy provides 3.27% better savings than the pure CGP and 19,6% more than
the pure SMT-based approach. It also wins 37 out of 45 comparisons.

These experiments show that the pure SMT approximation is not competi-
tive, and it is not considered in the following approximation of complex circuits.

4.2 Performance on Complex Circuits

In this subsection, we focus on our key research question: Can the combined
strategy improve the performance of the approximation of complex circuits?

We consider approximation of (1) a 32-bit adder (the golden model has 235
gates), and (2) 16-bit multiplier (the golden model has 1,534 gates). To evalu-
ate the potential of the combined strategy, we start with state-of-art approxi-
mate circuits we obtained in our previous work by a pure evolutionary search
strategy [3]. For each target error, we choose the best 32-bit adders and 16-bit
multipliers, obtained by 2 and 8-h approximation runs respectively. From each
of these circuits (seeds), we continue the approximation using pure CGP and
combined strategy for 10 h (adders) and 75 h (multipliers).

32-bit adders. Each pure CGP run performs around 10 million iterations within
the given 10 h but achieves no improvements at all. The sub-circuit optimisation,
however, introduces changes in the circuit structure, which allow CGP to escape
the local optimum and perform further improvements. In total, the combined
strategy saves roughly 19% of the seeding circuit area—11% was achieved by the
CGP approximation and 8% by SMT optimisation.
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Fig. 1. Progress of the area reduction for
the 16-bit multiplier and target WCAEs:
red = 10−1%, green = 10−2%, blue = 10−3%.

16-bit multipliers. As illustrated in
Fig. 1, which shows the progress of
the two approximation strategies
for different target errors, the pure
CGP approximation improves the
candidate slowly and achieves only
marginal improvements after 45 h.
The combined strategy is able to
improve the candidate solution dur-
ing the whole 75-h run—after this
time, it saves 4–6% more than the
pure CGP. Recall that, compared to
32-bit adders, the approximation of the 16-bit multipliers is significantly more
complex. The 8-h CGP run computing the seed performs around 230 K itera-
tions, which is around 13-times less than the 2-h run for the 32-bit adder. Hence,
the pure CGP run requires much more time to reach the local optimum.

Conclusion. The proposed fusion of satisfiability solving and evolutionary opti-
misation leads to a new circuit approximation strategy that is able to effectively
escape local optima and thus to explore the design space more effectively than
pure evolutionary search strategies. The obtained approximate circuits provide
the best known trade-offs between the precision and the chip area.
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Abstract. In Wire Arc Additive Manufactoring (WAAM), an object is
welded from scratch. Finding feasible welding paths that make use of the
potential of the technology is a computationally complex problem as it
requires planning paths in 3D. All parts of the object to be manufactured
have to be visited in few welding paths. The search for such welding paths
in 3D can be mapped to searching for a fragmented Hamiltonian path in
a mathematical graph.

We propose a SAT-based approach to finding such fragmented Hamil-
tonian paths that is suitable for planning WAAM paths. We show how
to encode the search for such paths as a mix of SAT clauses and one
non-clausal constraint that can be integrated into the SAT solver itself.
The reasoning power of the solver enables us to impose additional con-
straints coming from the application domain on the planned paths, and
we show experimentally that in this way, we can find welding paths for
relatively complex object geometries.

1 Introduction

Modern additive manufacturing approaches hold a potential to add substantial
flexibility to manufacturing processes. In additive manufacturing, an object is
built step by step and ground up from raw material. While for plastics, 3D print-
ing is already established, for metal, additive manufacturing is more complex,
leading to a plethora of manufacturing approaches with different properties.

A notable approach in this context is wire arc additive manufacturing
(WAAM), where a metal object is welded from scratch onto a metal ground
body using metal from a wire roll [5]. Utilizing an industrial welding robot,
the approach enables the processing of relatively high volumes of metal in short
time frames with a large number of possible materials (e.g. Titanium, Aluminum,
Steels, Copper, . . .) [9,14]. WAAM is based on arc welding, where an electric cur-
rent induces the heat necessary to melt both the wire and the surface to which
wire material gets attached. Different shielding gases are used to protect the
c© Springer Nature Switzerland AG 2020
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Fig. 1. Welding robot for WAAM (Institute of Welding and Machining - Clausthal
University of Technology)

weld from interacting with the air. A typical manufacturing system can be seen
in Fig. 1. The robot welds along a path that needs to be planned in advance.
Traditionally, additive manufacturing is done layer by layer, just like for most
3D printers for plastics, so that these paths only need to be planned in 2D. The
material properties of metals however depend on how quickly it cools down. For
example, for low alloyed steel, the final material properties mainly depend on
the time it takes for the material to cool down from 800 ◦C to 500 ◦C [4]. Shorter
such so-called t8/5 times lead to a stronger and brittle material, while longer
times lead to a tougher but weaker material with less residual stresses [4]. This
can be exploited by making use of the possibility to stack up material locally
during the welding process and to thus deviate from welding layer by layer, so
that the material stays warm for a bit longer. The resulting local higher tough-
ness can for instance be useful in the region of highly loaded notches [15]. On
the other hand, far-sweeping welding paths speed up cooling, which is useful
when a higher strength of the material is locally needed. Such material proper-
ties can at the same time be less important in other parts of the object. This
gives the planning process some flexibility to attain local material properties,
which is a clear advantage of additive manufacturing over traditional manufac-
turing processes. Planning in full 3D increases the size of the search space for
possible welding paths dramatically, making the planning problem combinatori-
ally complex. This observation asks for algorithmic support from computational
engines such as SAT solvers. The planning problem has many side-constraints
such as gravity (it is not possible to weld underneath a part of the object already
welded), which can be encoded as clauses provided to the solver. The object to
be welded can be composed of several welding paths, but the number of paths
is typically low, as the disturbances caused by the ignition of the welding arc
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Fig. 2. Visualization of the block temperatures during a welding process. All blocks
including those not yet welded are write-framed, while blocks already welded are filled
with a semi-transparent color representing their temperatures. (Color figure online)

cause the local material properties to be worse and moving the robot head while
not welding leads to an additional loss of shielding gas and material.

We show in this paper how to search for welding paths with a satisfiability
(SAT) solver. We discretize the object to be manufactured into blocks and rep-
resent the connections between these blocks in the form of a graph. Two blocks
that can be manufactured in succession are connected by an edge in the graph.
For this initial study of planning welding paths under cooling time constraints
in 3D, we discretize the object parts into cubes, but the approach presented
is not restricted to cubes. By searching for a fragmented Hamiltonian path in
the graph, i.e., one that consists of multiple independent paths that together
visit all vertices, we encode the search for welding paths that together imple-
ment the complete object manufacturing process. Additional constraints on the
paths encode the process-induced requirements. In our approach, checking if the
planned fragmented path satisfies the requested t8/5 times is done after finding
a satisfying assignment to all variables. A simplified simulator calculates the
temperatures in all blocks during the welding process and implements abstract
versions of heat loss due to thermal conduction and radiation. Once in any block
with upper and lower t8/5 time limits a t8/5 time span has been observed that
lies outside of the specified range, the simulation stops and a clause is generated
that requires some part of the welding paths simulated until then to be different.
To illustrate a simulation, Fig. 2 shows a visualization the simulator state in the
middle of a welding process.

This paper is structured as follows: In the next section, we discuss the gen-
eral approach to encoding the search for a fragmented Hamiltonian path into the
SAT problem, including the special considerations from the application domain.
Section 3 contains the architecture of our prototype solver, including details on
the simulator for the evolution of the temperatures. Section 4 reports some exper-
imental results, followed by a discussion of related work. We conclude with an
outlook on future work and explain what role we expect SAT solving to play in
additive manufacturing in the future.
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2 Encoding Fragmented Hamiltonian Path Constraints
for WAAM

We assume familiarity with the basics of satisfiability solving (see, e.g., [3] for
an introduction) in the following. To describe the encoding of the welding path
planning problem as a fragmented Hamiltonian path problem, we first need to
define the latter.

Definition 1. Let G = (V,E) be a directed graph. We say that a set of sequences
S ⊆ V ∗ is a fragmented Hamiltonian path with k ∈ IN fragments if |S| = k,
every sequence (s0, . . . , sn) ∈ S is a path in G (i.e., such that for all 0 ≤ i < n,
we have (si, si+1) ∈ E), and after adding at most k−1 edges to E, the sequences
in S can be connected by the additional edges to a Hamiltonian path in G.

The fragmented Hamiltonian path problem is NP-hard since the Hamiltonian
path problem (its special case for k = 1) is also NP-hard. We want to use a SAT
solver to tackle this problem despite its NP-hardness. Since the fragments of a
fragmented Hamiltonian path cannot share vertices, they cannot share edges. We
exploit this by defining one Boolean variable xe for every edge e ∈ E to encode
whether the edge is part of a fragment or not. The values of these variables can
then together completely represent a fragmented Hamiltonian path.

Since every node can only be visited once, for every node and every pair of
incoming edges of the node, we use a SAT clause requiring one of the respective
Boolean edge variables to have a value of false. If a fragment originates in a
node, there does not actually need to be an active incoming edge. To encode
that there are at most k such nodes, we first allocate variables yv for every node
v ∈ V to represent whether a fragment originates from the node. Then, we add a
clause yv ∨∨

(v′,v)∈E x(v′,v) for every vertex v to ensure that all vertices in which
no fragment starts have incoming edges. Finally, we use some type of cardinality
constraint [13] to ensure that at most k variables in {yv}v∈V have values of true.

So far, such an encoding does not guarantee that the edges selected cannot
contain cycles, which is disallowed by Definition 1. Pandey and Rintanen [12]
showed that acyclicity can be efficiently taken into account by non-clausal con-
straint that the SAT solver evaluates before deciding next variable values (and
after unit propagation), as a clausal encoding needs large numbers of clauses and
variables. Following their observations, we use the same approach in this paper.

For the WAAM application, the graph represents the discretized blocks of the
object to be welded and the order in which successive blocks can be welded. The
fragments of a fragmented Hamiltonian path in the graph represent the welding
paths that together build up the object. They cannot contain cycles since a block
would then be welded twice. As the t8/5 times at the blocks depend on in which
order the fragments are welded, we also need to encode this order. Using the
assumption that k will normally be small in this application domain, we chose
to do so using |V |×k many variables {zv,i}v∈V,1≤i≤k. A variable zv,i should have
a value of true iff vertex v belongs to the ith path to be welded.

To ensure that these variables have meaningful values, we first encode
that every vertex has to be part of at least one fragment number, using |V |
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many clauses of length k. Then, we encode that all (successor) elements of a
path are marked as belonging to the same order. We do so with the clauses∧

(v,v′)∈E,1≤i≤k ¬zi,v∨¬x(v,v′)∨zi,v′ . Also, to exclude that all paths are marked as
having the same index, we add the clauses

∧
v,v′∈V,1≤i≤k ¬yv∨¬yv′ ∨¬zv,i∨¬zv′,i

which make sure that all path starting points have different fragment numbers.
This constraint will be the only one in our encoding that requires a number of
clauses quadratic in the number of vertices.

The relatively variable-intensive encoding of which vertex belongs to which
path number has the benefit that it enables us to concisely encode another
important requirement for welding: vertices v′ that lie above vertices v in the
three-dimensional grid cannot be welded in earlier fragments. It suffices to add
the clauses

∧
v,v′ s.t. v is directly above v′,1≤i<i′≤k ¬xi,v ∨ ¬xi′,v′ to ensure this. We

do not encode any downwards edges into E (and only the transitions back, front,
left, right, and up from each block), so we can ignore the i = i′ case.

3 Solver and Simulator Engineering

To evaluate the encoding for fragmented Hamiltonian paths presented in the
preceding section, we implemented the acyclicity non-clausal constraint on top
of the SAT solver Glucose 3.0 [2], which bases on Minisat [6]. The solver
is called by a host tool that reads a geometry description of the object to be
manufactured, constraints on t8/5 times for some blocks, and two constants
(described below) detailing the cooling properties of the welding process. The
tool then computes the underlying graph and performs the encoding presented
above. For encoding the cardinality constraints, we use cardinality networks [1]
as implemented in PySAT [10]. The SAT solver is used in incremental mode, so
that after each found fragmented Hamiltonian path satisfying the encoded side
constraints, we can run a simulator to check if welding the path would lead to
the satisfaction of the t8/5 time constraints, and rule out this path afterwards.

The simulator tracks the temperatures of all blocks during the welding pro-
cess. Initially, no block has been welded, meaning that no block has a tempera-
ture. When a block is welded, its temperature is initialized to 2500 ◦C. Between
welding the blocks, the simulator calculates temperature changes due to two
physical phenomena:

– Neighbouring blocks that have both been already welded exchange heat at
a rate that is proportional to their temperature difference (and the surface
area, which is however the same for all block faces in this work).

– Hot objects emit radiation from their outer surfaces (which can be detected
by infrared heat cameras). The intensity of radiation is proportional to the
difference between the fourth powers of the temperatures of the block and
the environment.

For very hot object parts (e.g., the weld), the temperature loss/exchange due to
radiation typically dominates the former physical phenomenon. In both phenom-
ena, temperature differences are driving the heat exchange, which means that the
dynamics of the system are represented as differential equations. Our simulator
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Table 1. Overview of the experimental results. computation times are taken on a
Linux-based computer with a i5-4200U processor running at 1.6 GHz (8 GB RAM).

Example Example 1 Example 2 Example 3

# Blocks to be welded 47 113 168

# t8/5 constraints 2 6 15

# Allowed path fragments 1 2 3

Comp. time to first solution 0.008 s 0.603 s 0.661 s

Comp. time enumerating all solutions 0.442 s 48.396 s 680.28 s

Comp. time enum. all frag. Ham. paths 0.228 s 26.552 s 422.40 s

# Solutions (satisfying t8/5 times) 64 256 2272

# Frag. Hamiltonian paths 728 31744 162624

Min/max/mean length of clauses 34/40/ 32/116/ 30/162/

added after t8/5 time violation 37.1084 55.1545 79.961

solves them approximately using the Euler method and 20 sub-steps per welded
block. While the simulation is of relatively low precision, its computational cost is
already substantial. During the simulation, we keep track of how quickly a block
in the object to be welded cools down from 800 ◦C to 500 ◦C. Since research on
the expected material properties in case of crossing the 500 ◦C barrier multiple
times (without exceeding 800 ◦C) has not converged to a well-usable model yet,
we require that for every crossing of the 500 ◦C limit, the time spent in tem-
peratures between 800 ◦C and 500 ◦C is within the boundaries imposed in the
object description. As soon as one boundary is crossed, the simulator computes a
clause ruling out the choice of fragments already welded until that point (includ-
ing their order). This clause is then added to the SAT solver’s clause database,
so that all fragmented paths with the same simulated prefix are ruled out.

The simulator requires two constants that define the magnitude of the two
physical phenomena causing temperature changes listed above. We chose those
values so that a visualization of the temperature evolution shows reasonable
behaviour and leads to non-trivial path planning problems that help us to eval-
uate our SAT-based approach. Similarly, the minimal and maximal t8/5 times
are chosen to lead to computationally interesting path planning problems to help
with our experimental evaluation in the next section. Fine-tuning the parame-
ters to conform precisely to the actual welding process is left for future work
after extensive experimentation with welding the planned paths.

4 Experiments

We evaluate the approach for encoding fragmented Hamiltonian path constraints
on a few WAAM welding path planning problem instances. The aim of the
experiments is to determine (a) how big the path-planned objects can be with our
approach, i.e., scalability, (b) how much solving time is spent in the CDCL-part
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of the SAT solver, the acyclicity constraint program code, and the simulator,
and (c) how long the conflict clauses computed by the temperature evolution
simulator are, i.e, how early in a fragmented path it can be detected that some
t8/5 time is not in the allowed range. With the experimental evaluation, we want
to shed light on the principal applicability of SAT solvers for the welding path
planning problem and what the most pressing further algorithmic improvements
necessary to support solving this problem for large objects to be manufactured
are. Table 1 contains experimental results on three example objects of different
sizes. To get an idea of how much computation time is spent in the core SAT
solver, in the non-clausal constraint code, and in the simulator, we evaluated
this on the second example using the profiling tool callgrind/valgrind. This
yielded 36.94% of time for the core parts of the SAT solver, 5.02% of time
for the non-clausal constraint, and 58.03% of time for the simulator. It can be
seen that the SAT solving part (including the non-clausal constraint) is already
quite efficient, and the simulator is the bottleneck. The clauses generated after
a simulation are quite long, so that the t8/5 time constraints (currently) prune
the search space only little.

5 Related Work

We are not aware of any published previous approach to encoding fragmented
Hamiltonian paths in SAT. However, Hamiltonian circuit constraints have been
considered in the context of constraint programming. One of the latest works in
this area is the one by Francis et al. [7], who distill previous approaches to incor-
porating such constraints to a new strong technique with a very high propagation
strength, i.e., such that for solving the problem instances, fewer decisions need
to be made by the solver. While their approach can be extended to Hamiltonian
paths using artificial cycle closing edges, we observed that propagation in their
approach is mostly dependent on which of these artificial edges are chosen by
the solver. This leads to unnecessary solver decisions.

Francis et al. [7] also argue that strong propagators based on computing flows
in the graphs consisting of the edges not yet ruled out by the solver, as previously
proposed and used for the all-different constraint in constraint programming [8],
is too costly in an efficient solving approach. Since this may change when dealing
with fragmented Hamiltonian paths, it makes sense to re-evaluate this statement
in this context in the future.

6 Conclusion and Outlook

In this paper, we described how SAT solving can help with new additive manu-
facturing approaches such as Wire Arc Additive Manufacturing (WAAM). From
an application point of view, the contribution of the paper is a way to handle
the complex combinational search problem for feasible welding paths. From a
SAT solving perspective, this paper describes a new encoding (using an acyclic-
ity non-clausal constraint) for finding fragmented Hamiltonian paths. It should
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be noted that there is an alternative to the non-clausal constraints employed in
our approach. We also experimented with an adaptation of the linear feedback-
shift register acyclicity SAT encoding by Johnson [11] to the case of fragmented
Hamiltonian paths. Using it resulted in only slightly longer computation times.
Adding further clausal constraints on welding paths may flip the advantage to
the the pure SAT encoding in the future.

The experiments performed with a first approximate simulator for the local
temperatures during welding show two results. First of all, SAT solvers are a suit-
able computational engine for this application domain. Future side-constraints
on feasible curve radius sizes or similar requirements on the welded paths that
are yet to be identified in WAAM research can easily be integrated as clauses.
Hence, SAT solvers can serve as a reasoning platform for such planning prob-
lems. Secondly, during simulation, the violation of t8/5 time constraints becomes
apparent relatively late, leading to long added clauses.

To solve this, we plan to investigate whether for complex system dynamics,
some sort of specialized simulation theory can be developed to exploit the fact
that while temperatures evolve non-linearly, they still evolve monotonely with
the heat applied in the system. At the same time, the fact that every block
is visited by the welding torch exactly once can be exploited to detect conflicts
earlier, suggesting that a full SMT approach with such a specialized theory solver
should be evaluated.
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Abstract. Decision trees play an important role both in Machine Learn-
ing and Knowledge Representation. They are attractive due to their
immediate interpretability. In the spirit of Occam’s razor, and inter-
pretability, it is desirable to calculate the smallest tree. This, however,
has proven to be a challenging task and greedy approaches are typically
used to learn trees in practice. Nevertheless, recent work showed that
by the use of SAT solvers one may calculate the optimal size tree for
real-world benchmarks. This paper proposes a novel SAT-based encod-
ing that explicitly models paths in the tree, which enables us to control
the tree’s depth as well as size. At the level of individual SAT calls, we
investigate splitting the search space into tree topologies. Our tool out-
performs the existing implementation. But also, the experimental results
show that minimizing the depth first and then minimizing the number
of nodes enables solving a larger set of instances.

1 Introduction

Decision trees play an important role in machine learning either on their own [6]
or in the context of ensembles [5]. Learning decision trees is especially attractive
in the context of interpretable machine learning due to their simplicity. However,
despite this simplicity, minimization of decision trees is well-known to be an NP-
hard problem [10,16]. Yet, smaller trees are likely to generalize better.

To learn trees, suboptimal, greedy algorithms are used in practice. With
the rise of powerful reasoning engines, recent research has tackled the problem
by the use of SAT, CSP, or MILP solvers [1,27,37,38]. Indeed, the state-of-
the-art technology shows that many (NP) hard problems are often successfully
solved. Conversely, such applications drive the reasoning technology by providing
interesting benchmarks.

This paper, follows this line of research and proposes a novel SAT-based
encoding. This encoding enables finding a decision tree conforming to the given
set of examples with a given depth and number of nodes. A minimal tree is found
by iterative calls to a SAT solver while minimizing size and depth.

Focusing not only on size but also on depth of the tree brings about opportu-
nities for further analysis. Intuitively, more shallow trees are less likely to over-fit.
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Indeed, modern packages such as Scikit [30] enable imposing a threshold on the
depth, which users have to set manually. Also, a shallow tree is more likely to
be interpretable by a human because less memory is required to keep track of a
single branch.

The problem at hand is of challenging complexity. In practice, we may need
to deal with a high number of features and examples, which brings the search-
space of possible trees into extreme dimensions. Looking for an optimal tree
means not only finding such tree but also proving that no smaller tree exists.

The SAT technology has recently shown a lot of promise in tackling difficult
combinatorial questions, e.g. Erdős’ discrepancy [22] or the Boolean Pythagorean
triples problem [13], among others. Inspired by these results we also investigate
the splitting of search-space based on the topology of the decision tree. The
paper has the following main contributions.

1. It proposes a novel SAT-based encoding for decision trees, along with a num-
ber of optimizations.

2. Compared to existing encoding, rather than representing nodes it represents
paths of the tree. This enables natively controlling not only the tree’s size but
also the tree’s depth.

3. It shows that minimizing depth first and then size enables tackling harder
instances.

4. It shows that search-space splitting by topologies enables tackling harder
instances.

5. The implemented tool outperforms existing work [27].

2 Preliminaries

Standard notions and notation for propositional logic are assumed [36]. A literal
is a Boolean variable (x) or its negation (denoted ¬x); a clause is a disjunc-
tion of literals a cube is a conjunction of literals. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses. General Boolean formulas
are also considered constructed by using the standard connectives conjunction
(∧), disjunction (∨), implication (→), bi-implication (↔). State-of-the-art SAT
solvers typically accept input in CNF. Non-CNF formulas are converted to CNF
by standard equisatisfiable clausification methods [31].

Several constraints in the paper also rely on cardinality constraints [34]. These
are also turned into CNF through standard means, the implementation avails of
the cardinality encodings in the tool PySAT [18,26].

2.1 Training Data

Standard setting of supervised learning is assumed [35]. Following notation and
concepts of [27] we expect features to be binary (with values 0, 1). Non-binary
features can be reduced to binary by unary or binary encoding. Analogously,
classes are also binary (positive, negative).



SAT-Based Encodings for Optimal Decision Trees with Explicit Paths 503

Examples are defined on a fixed set of features 1..F given as two sets, one
containing the negative examples (E−) and second containing positive examples
(E+). The examples are assumed consistent, i.e. E− ∩ E+ = ∅. We write E for the
whole set of examples, i.e. E = E− ∪ E+. Each example consists of feature-value
pairs. We write σ(q, f) for the value of a feature f in an example q. We assume
that all the examples are complete, i.e. σ(q) is total on 1..F.

3 SAT-Based Optimization of Decision Trees

The objective is to develop a propositional formula whose models are decision
trees congruent with the given set of samples. Such model then is found by a call
to an off-the-shelf SAT solver. As customary, we take the approach of optimizing
by solving a series of decision problems. This means finding a decision tree with
a certain size and diminishing the size until no such tree exists. Alternatively,
other type of search can be used, e.g., binary or progression.

This paper targets two optimization criteria: size and depth. Minimizing any
combination of the two may be potentially be of interest. Section 5 discusses the
exact type of search used in the implementation.

The structure of binary trees guarantees a number of well-known properties.
Any tree with n nodes has (n + 1)/2 leaves and (n − 1)/2 internal nodes. Further,
n is always odd and the number of leaves is equal to the number of paths going
from the root to a leaf. Our encoding heavily exploits this property:
Rather than modeling nodes of a tree, we model the set of unique paths from the
root to leaves.

The optimization algorithm has two levels. At the first level, search is being
carried out on the tree’s size and depth. At the second level, the decision prob-
lem of finding a tree with such depth and size is solved via a SAT solver. The
SAT solver is used in a black-box fashion, i.e., the problem is encoded into its
propositional form and any off-the-shelf SAT solver may be used to solve it.

In the remainder of this section we focus on the decision problem, which is
invoked with a given number of paths P (controlling size) and maximum allowed
number of steps in a path S (controlling depth).

The steps in a path are numbered in the following way. In the first step, each
path is in the root. In the last step of a path, the path goes from an internal node
to a leaf. This means that if we are looking for a tree with a particular depth
and particular number of nodes we set S and P accordingly. If we are looking
only for a tree with minimal number of nodes but with an arbitrary depth, the
value of S is set to P − 1, which corresponds to the number of internal nodes.

3.1 Path-Based Encoding

The encoding we propose models each path from the root to a leaf separately
while imposing relations between them that guarantee that the paths form a
binary tree. Throughout the paper, we use the convention that for a node labeled
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Table 1. Variables used in the encoding

Variable Semantics Range

gp
s Path p at step s goes right=1/left=0 p ∈ 1..P, s ∈ 1..S

tps Path p at step s is terminated p ∈ 1..P, s ∈ 1..S + 1

eps Path p at step s is equal to path p − 1 p ∈ 2..P, s ∈ 1..S + 1

ap
s,f Path p at step s is assigned feature f p ∈ 1..P, s ∈ 1..S, f ∈ 1..F

mp
q Path p matches an example q p ∈ 1..P, q ∈ E

mp
f,v Path p matches on value v for feature f p ∈ 1..P, f ∈ 1..F, v ∈ {0, 1}

cp Path p is classified as positive p ∈ 1..P

by a feature f , the left child corresponds to the value 0 of f and the right child
corresponds to the value 1 of f .

To model the tree, introduce a matrix of variables, where each row represents
a path and each column represents a step in the path. The first row (the first
path) is a path that only goes to the left—it is the leftmost path in the tree.
Analogously, the last row (the last path) is a path that only goes to the right—it
is the rightmost path in the tree. In general, the paths are ordered in the way
they would be obtained by running DFS that goes to the left first.

Each path corresponds to a sequence of 0’s and 1’s so that 0 is a step to the
left and 1 is a step to the right. Then, we consider these paths in a lexicographic
order. Each path is represented by a sequence of variables, one for each step,
where the variable represents whether the path goes left or right in that step.
Additionally, for each step we need to remember whether the path has already
terminated and which prefix is shared with the previous path.

Table 1 summarizes the main variables of the encoding. The direction of each
step s in a path p is determined by the variable gp

s . What is somewhat unusual
about this encoding is that paths may share prefixes. To that effect, the variable
ep
s represents that the path p in step s is in the same node as the preceding path

p − 1. The semantics of the variables ep
s is defined inductively. All paths share

the root and therefore ep
1 must be always true. In further steps, paths p and p−1

remain equal as long as both paths take steps in the same direction.

ep
1, p ∈ 2..P (1)

ep
s+1 ↔ (

(gp
s ↔ gp−1

s ) ∧ ep
s

)
, p ∈ 2..P, s ∈ 1..S (2)

Since it is unknown beforehand how many steps are in either path, the vari-
ables tps determine whether the path has already terminated or not. Observe
that the variables tps go up to step S + 1, whereas the variables gp

s go only to
step S. This is because the gp

s variables correspond to edges in the path while
termination is tracked for nodes (as well as equality). A terminated path remains
terminated and cannot terminate if it is still equal to the previous one. Any path
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(a) example tree

gps s

p 1 2
1 0 0
2 0 1
3 1 0
4 1 1

(b) step
direction

tps s

p 1 2 3
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1

(c) termination

eps s

p 1 2 3
2 1 1 0
3 1 0 0
4 1 1 0

(d) equality

Fig. 1. Assignment to the variables determining the tree’s topology

must be terminated after the last step.

tps → tps+1, p ∈ 1..P, s ∈ 1..S (3)
tps → ¬ep

s , p ∈ 2..P, s ∈ 1..S + 1 (4)
tpS+1, p ∈ 1..P (5)

Example 1. Figure 1 shows a binary tree along with the values of the topology
variables (gp

s , tps , and ep
s). The tree is comprising 4 leaves, therefore 4 paths.

In this simple example each path makes two steps and then it terminates. The
second path shares everything with the first one except for the leaf. The third
path only shares the root with the second path. The last path shares everything
with the third path, except for the leaf. Observe that since this is a full binary
tree, the gp

s variables represent the binary numbers from 0 to 3.

Now it is necessary to ensure that the paths are lexicographically ordered.
The first path always goes left and the last one always goes right. If a path p in
step s is in the same node as path p − 1, the path p can go left only if p − 1 also
went left (otherwise they would cross).

¬g1s ∧ gPs , s ∈ 1..S (6)

ep
s → (gp−1

s → gp
s ), p ∈ 2..P, s ∈ 1..S + 1 (7)

The lexicographic order alone does not guarantee a correct topology. Since
the tree is binary, any path must adhere to the following pattern. For a certain
number of steps it shares the prefix with the preceding path until it breaks off.
Once it breaks off, it has to go only to the left (or terminate). At the same time,
the preceding path can only go right after the break-off point (or terminate).
Otherwise, there would be a gap in the tree.

(¬tps ∧ ¬ep
s) → ¬gp

s , p ∈ 2..P, s ∈ 1..S (8)

(¬tps ∧ ¬ep
s) → gp−1

s , p ∈ 2..P, s ∈ 1..S (9)
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R
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C

F

0 1

1 0

1 0

Fig. 2. Two consecutive paths R–E and R–F diverging in node A. (Color figure online)

Figure 2 illustrates these constraints. Consider the blue path, R → A → B →
E and the red path, R → A → C → F , where the blue one is lexicographically
smaller. The paths diverge in node A—blue goes left, the red goes right. After-
wards, the blue path may only go right or terminate. In contrast, the red path
may only go left or terminate. The reason why this has to be the case is that for
the red one to follow blue in our ordering, the blue one has to contain the last
path for the subtree rooted in B while the red one has to contain the first path
for the subtree rooted in C.

Assigning Features and Their Semantics. The encoding of semantics of
the training data is similar to the one in [27] but with two major differences:

1. Here classification is only per path, while in [27] it is per node because any
node can potentially be a leaf, which means semantics of the examples in our
approach need only to be repeated (n + 2)/2 times rather than n times.

2. Our encoding introduces explicit variables to track whether a given training
example is matched for a given path, this is useful for one of the optimizations
(see Sect. 3.2).

We make sure that each step is assigned exactly one feature and that no
feature appears more than once on any path.

∑

f∈1..F

ap
s,f = 1, p ∈ 1..P, s ∈ 1..S (10)

∑

p∈1..P,s∈1..S

ap
s,f ≤ 1, f ∈ 1..F (11)

Recall that an example is seen as a set of feature-value pairs. We say that
a feature-value pair f, v is matched on a path if the path makes a step in the
direction of v in the node that is assigned the feature f . An example is matched
if all its feature-value pairs are matched. These two concepts are modeled by the
variables mp

f,v and mp
q , respectively. Observe that f, v is also matched on any

path that does not contain f at all. Finally, once a path matches any positive
example, it must be classified as positive and the other way around.
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mp
f,0 ↔

∧

s∈1..S

(¬tps ∧ ap
s,f → ¬gp

s ) p ∈ 1..P, f ∈ 1..F (12)

mp
f,1 ↔

∧

s∈1..S

(¬tps ∧ ap
s,f → gp

s ) p ∈ 1..P, f ∈ 1..F (13)

mp
q ↔

∧

f∈1..F

mp
f,σ(q,f) p ∈ 1..P, q ∈ E (14)

mp
q → cp q ∈ E+, p ∈ 1..P (15)

mp
q → ¬cp q ∈ E−, p ∈ 1..P (16)

Summary of the Encoding. The constraints (1)–(16) are parameterized by nat-
ural numbers P and S and their satisfying assignments represent a sequence of
P paths in a binary tree from the root to a leaf, where each path has at most S
edges. The paths are lexicographically ordered, starting from the leftmost path
and ending in the rightmost one. Additionally, the encoding ensures that there
are no gaps between paths and therefore these represent the whole binary tree.
Each node in a path is labeled by a feature in a way that shared prefixes among
paths are labeled by the same features. Each path is assigned a classification
class that must be congruent with the training examples given on the input.

3.2 Path Encoding Optimizations

The encoding described above permits constructing any decision tree conforming
to the given set of examples. However, certain optimizations can be made if we
assume that we are not interested in superfluous nodes.

Enforcing Example Matching. We make sure that any path (equivalently
any leaf), matches at least one of the given examples. If it does not, its classifi-
cation does not come from the examples and may therefore be arbitrary, which
means it can be removed from any tree without violating the classification of
the examples. At the formula level, additional constraints are added.

∨

q∈E
mp

q p ∈ 1..P (17)

Pure Features. Features with the same value in all the examples can be ignored
as they never permit distinguishing between two examples of a different class.
This is done at the preprocessing level, so the encoder never sees them.

Quasi-pure Features. A feature may appear with a fixed value v within all the
examples of one of the classes c. If such feature is assigned with the direction v,
then the tree can immediately terminate with a leaf classified with c. As such, we
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Table 2. Number of topologies (t) for tree size n ∈ 3..31 (Catalan numbers)

n 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

t 1 2 5 14 42 132 429 1,430 4,862 16,796 58,786 208,012 742,900 2,674,440 9,694,845

enforce that the child of a node assigned in the direction of the value v is a leaf
classified with the class c. At the formula level, we add the following constraint
for s ∈ 1..S and p ∈ 1..P.

(ap
s,f ∧ lit(v, gp

s )) → (tps+1 ∧ lit(c, cp)) where lit(0, x) = ¬x, lit(1, x) = x (18)

Path Lower Bounds. We propose to use MaxSAT to obtain lower bounds on
the length of a path. The question we ask is what is the shortest possible path
that separates positive and negatives examples. Since the lower bound considers
only one path at a time, the order of features on that path is irrelevant. In
preliminary experiments we have observed rather small lower bounds. However,
the bound can be improved for the leftmost and rightmost branches. This gives
us three types of bounds: for the leftmost and rightmost branches, and for any
branch in between. In any path a feature either does not appear, or appears
on a step that goes left or on a step that goes right. To model this behavior
we introduce two variables for each feature x0

f and x1
f (similar to the dual rail

encoding [25]). This corresponds to the following hard and soft constraints.

hard: ¬x0
f ∨ ¬x1

f f ∈ 1..F

hard: ¬x1
f/¬x0

f f ∈ 1..F, for leftmost/rightmost branch

hard:
∨

f∈1..F

x0
f ∧

∨

f∈1..F

x1
f for general branch

hard: mp
q ↔

∧

f∈1..F

¬x1−σ(q,f) p ∈ 1..P, q ∈ E

hard:
∧

q∈E+

¬mp
q ∨

∧

q∈E−
¬mp

q

soft: ¬xv
f f ∈ 1..F, v ∈ {0, 1}

4 Search-Space Splitting by Topologies

Upon initial experiments, we observed that the SAT solver may struggle even on
decision trees of modest size, e.g. 9 nodes. This is somewhat surprising because
the number of topologies does not initially grow that much; see Table 2.

This suggests splitting the search space into individual topologies and call the
SAT solver for each one of them separately. Like so, the SAT solver only needs to
find the labeling of the tree. Intuitively this should be an easier problem because
the SAT solver only needs to deal with one type of decisions.



SAT-Based Encodings for Optimal Decision Trees with Explicit Paths 509

This approach is not generally viable because eventually the number of
topologies is too large. To which we propose the following approach. The upper
part of the topology is fixed—until a certain depth—and the rest is left for the
SAT solver to complete. This gives rise to topology templates. Each topology
template is a tree, where each leaf is an actual leaf (�) of the topology or an
incomplete subtree (�).

Algorithm 1. Topology enumeration, with � - leaf, � - subtree
1 Function TE (n, d) begin
2 if n = 1 then return {�} // leaf

3 if d = 0 then return {�} // incomplete subtree

4 if d = 1 then
5 if n = 3 then return { tree (�, �) }
6 else if n = 5 then return { tree (�, �), tree (�, �) }
7 else return { tree (�, �), tree (�, �), tree (�, �) }
8 return {tree(l, r) | l ∈ TE(i, d − 1), r ∈ TE(n − i − 1, d − 1), i ∈ 1..n − 1}

Algorithm 1 recursively enumerates incomplete topologies on n nodes with
the cut-off parameter d. In order to avoid repetitions in enumeration, certain
cases need to be treated separately. If the cut-off parameter reaches 1, the chil-
dren of the current node will either be leaves (�) or incomplete subtrees (�).
This, in general gives three scenarios where either the left or the right child is a
leaf and the second child is a subtree, or both are subtrees. However, in the case
of n = 3, n = 5 the scenarios are different. Observe that because of the cut-off
parameter, the generated topology template may have less than n nodes.

We study topology enumeration both for our encoding as well as the encoding
of Narodytska et al. [27]. A given topology template in the encoding of Naro-
dytska et al. is enforced by a cube corresponding to the child relation and the
information whether a node is a leaf or not. An important property of our gen-
eration procedure is that the cut-off parameter is equal on all branches. This
means that numbering the topology template by BFS gives the same numbers
as a BFS on any topology corresponding to it. Since the encoding of mindt relies
on BFS, this property lets us directly translate the relation into a cube.

Our path-based encoding does not allow easily encoding a topology template
because the number of paths in an incomplete subtree (�) is unknown. To this

Algorithm 2. Topology enumeration with cardinalities
1 Function TE# (n, d) begin
2 if n = 1 then return {�} // leaf

3 if d = 0 then return {#n} // incomplete subtree of size n

4 return {tree(l, r) | l ∈ TE#(i, d − 1), r ∈ TE#(n − i − 1, d − 1), i ∈ 1..n − 1}
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Algorithm 3. Measuring difference between topologies
1 Function TDiff (t1, t2, w) begin
2 if |t1| = 0 then return w|t2|
3 else if |t2| = 0 then return w|t1|
4 else return TDiff(t1.left, t2.left, wΔ) + TDiff(t1.right, t2.right, wΔ)

effect, we introduce a variation on the topology template where the leaves of
the topology template are actual leaves (�) or an incomplete subtree with a
given cardinality (#k). These topology templates can be easily enumerated as
shown by Algorithm 2. Observe that the number of these topology templates may
be larger than in the previous version. Such topology template is encoded into
our path-based model in a straightforward fashion. Each path in the topology
template fixes the direction in prefixes in a certain number of paths. The number
of these paths corresponds to the #k node at the end of the path. Any path
terminating in � corresponds exactly to one path in the path-based model.

4.1 Topology Enumeration

A cube describing a topology template can either be encoded into assumptions
to enable incremental SAT solving [7] or appended as a set of unit clauses.
We observed that in our case incremental solving does not pay off for hard
instances. However, at the same time, if a large number of topology templates
need to be examined, initializing a new SAT solver for each one of them is too
costly. Therefore, the implementation employs both modes, incremental and non-
incremental, depending on the number of topology templates to be examined.

Another point of interest is the order in which the topology templates
are examined. In the case of non-incremental SAT solving and unsatisfiable
instances, the order does not matter because all formulas need to be solved
independently of one another. Hence, the order plays mainly a role in the case
of satisfiable instances. The order heuristics we propose is the following.

We start with the assumption that we already have a suboptimal solution
to the problem from a greedy (fast) algorithm. We would like to first focus on
topologies that are similar to the topology of this suboptimal solution. In order
to do so, we need some notion of difference between topologies (and topology
templates). For this purpose we define a simple function that recursively com-
pares the two topologies and accumulates a penalty once they are different.
Additionally, subtrees with lower depth are accounted with less weight.

Algorithm 3 shows the function. If one of the given trees is empty, the penalty
is the size of the other tree weighted by the factor w. Otherwise, the penalties
are calculated as a sum of the left and the right subtrees, respectively. As the
recursion descends, the weight is gradually decayed by the factor Δ ∈ (0, 1]. In
the implementation we chose the ad-hoc value of 0.75.

When partitioning the search space, the topology templates are enumerated
in the increasing order of the difference from the suboptimal solution.
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5 Experimental Evaluation

The tool was implemented on top of the PySAT package [18], which interfaces
with a number of modern SAT solvers and provides a number of implementations
of cardinality encodings. We used the CaDiCaL solver [3] and the k-Cardinality
Modulo Totalizer [26]. This configuration was chosen after some careful prelimi-
nary experiments. We show that this configuration performs significantly better
than the configuration used in the evaluation of Narodytska et al.

Our preliminary experiments also informed other ad-hoc choices that had to
be made as the search and encodings can be configured in a large number of
ways. An alternative would be to employ automated parameter tuning in the
spirit of ParamILS [15]; we leave this as future work.

The SAT solver is used in a non-incremental fashion, i.e., every decision
problem is solved independently of the other ones. The exception is topology
enumeration: if the number of topologies is larger than 500, the incremental
mode is employed (see Sect. 4).

A suboptimal greedy solution is obtained by the popular modern machine
learning library Scikit-learn [30], which also enables a seamless integration with
the Python implementation. The greedy solution is used in two scenarios: 1) to
obtain an upper bound on the number of nodes in the solution 2) to inform the
ordering of topologies during enumeration (see Sect. 4).

The experiments were performed on servers with Intel(R) Xeon(R) CPU at
2.60 GHz, 24 cores, 64 GB RAM, while always running 4 tasks in parallel. The
time limit was set to 1000 s and the memory limit to 3 GB. The experimental
results report on the following search modes:

(1) binary search on the number of nodes with no restriction on the depth
without topology enumeration (with sklearn upper-bound)

(2) linearly increasing the number of nodes with no restriction on the depth
with topology enumeration (linear UNSAT-SAT search)

(3) linearly increasing depth and linearly increasing number of nodes for each
considered depth.

Searches (1) and (2) find the smallest tree just as in [27]. The search (3) finds
the smallest tree in the lexicographic ordering of the pair depth-size.

The evaluation was carried out on the benchmarks used in [27], kindly pro-
vided by Narodytska. These benchmarks were originally obtained by sampling a
large set of instances [29], with sampling percentages of 20%, and 50% (we have
used the same exact sampled benchmarks as Narodytska et al.). The reader is
referred to [27] for the details of the sampling procedure.

We compare our tools with the state-of-the-art tool mindt [27]. Our tool is
run in the following configurations. The configuration dtfinder corresponds to
the search (1), i.e. size minimization via binary search and path-based encoding.
The configuration dtfinder-DT1 is the same type of search but with encoding
of Narodytska et al. The suffix -T in a configuration indicates topology-based
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Table 3. Results on all the benchmarks divided by the percentage of random sampling.

% 0.2 0.5

nf./ns 447/136 473/357

#I 754 709

#nd depth cpu-time #slv #nd depth cpu-time #slv

mindt 6 3 58 394 5 3 52 249

dtfinder-DT1 7 3 14 457 6 3 43 337

dtfinder-DT1-T 7 3 28 473 7 3 41 345

dtfinder-DT1-T-O 7 3 27 473 7 3 39 345

dtfinder 7 3 14 458 7 3 60 339

dtfinder-T 7 3 29 470 7 3 42 342

dtfinder-T-O 7 3 30 471 7 3 39 341

d-dtfinder 8 3 65 519 7 3 73 352

d-dtfinder-T-O 8 3 49 486 7 3 57 345

vbs 8 – 69 528 7 – 46 355

search (search (2)). The suffix -T-O topology-based is search with heuristic order-
ing. The configuration d-dtfinder corresponds to the search (3), i.e. depth-size
minimization.

Fig. 3. Distribution of the sizes of calculated optimal trees

Table 3 summarizes results for all the considered benchmarks and tools. The
first row (%) shows the percentage of random samplings used to construct the
instance, the second row the average number of features (nf.) and samples (ns.).
The third row (#I) shows the number of benchmarks in that category. The
remaining rows are grouped according to the tool they represent.
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Fig. 4. postoperative-patient-data-un 1-un with 50% sampling

For each of the tools we present four values: the average number of nodes
discovered (#nd); the average depth of the tree reported (depth); the average
CPU time taken in solved instances (cpu-time); and the number of instances
solved (#slv).

Figure 3 shows a histogram of the sizes of the optimal trees per solver. The
vertical axis shows the number of solved instances and the horizontal groups the
solvers according to the number of nodes of the reported decision trees. More
detailed overview of the data can be found here on the authors’ website [20].

Table 3 enables the following conclusions. Our implementation (dtfinder)
outperforms the tool by Narodytska et al. (mindt) in all cases. This is also the
case for their encoding; We attribute this to the choice of cardinality encoding
and the SAT solver. We used k-Cardinality Modulo Totalizer and CaDiCaL while
mindt uses sequential counter and glucose-0.3.

Comparing dtfinder with d-dtfinder, we can see that d-dtfinder is faster
to compute a minimum depth solution than dtfinder is to compute a minimum
size solution and even more interestingly, again solves even more instances.

The topology search-space splitting is beneficial in all encodings except for
depth minimization. Both our encoding and encoding of Narodytska et al. solves
more instances with topology enumeration. Not always this helps the average
CPU time; however, it went from 60s to 39s in path-based encoding for the 0.5
instances. The ordering of topologies enables a minor speed-up but overall the
effect is small.

The distribution of sizes of solved instances (Fig. 3) shows that the hardness
of an instance grows drastically with the size. While depth minimization is able
to solve a handful of instances of size 29, the path-based encoding solves just 1,
our implementation of Narodytska et al. none and, surprisingly mindt 1. This
can be attributed to the number of topologies (see Table 2).

Overall, focusing on minimizing depth first is computationally advantageous,
yet yielding decision trees of good quality. We illustrate this on a particular
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instance. Figure 4 shows decision trees calculated by our approach minimizing
depth first (d-dtfinder) and calculated by the greedy approach (sklearn).
The optimal tree gives depth 6 and size 29, the greedy approach gives depth 11
and size 37. In contrast, the other approaches timeout on this instance in 1000 s.

6 Related Work

Greedy algorithms for learning decision trees based on recursive splitting are
well-known [6,32,33]; see also [8] for an overview.

Various notions of optimality of decision trees appear in the literature. Some
approaches focus on finding a tree with a fixed depth but with the best accu-
racy [1,37,38]. These approaches assume a full (perfectly balanced) binary tree
of the fixed depth whose accuracy is to be optimized. While the problem is still
very hard, it is in some sense easier because the topology is fixed and only the
labeling needs to be calculated. However, combinations of these approaches in
our approach is an interesting line of research.

Another approach is taken by [14], which optimizes a linear combination of
accuracy and size. However, this approach is based on brute force search and in
our experiments we were only able to synthesize trees with a handful of features
while the considered benchmarks contain hundreds of features.

Closest to our work is [27], which uses SAT encoding to construct a size-
optimal decision tree for a given set of consistent samples. In contrast to our
work, individual nodes and their children relation are modeled explicitly. This
means that a path from the root to a leaf is implicit. In principle, one could also
restrict the depth of these implicit paths by adding additional counters or some
other form of cardinality constraints. This is bound to be less efficient. Further,
our encoding is closer to the idea of a tree. If the tree is modeled through nodes,
it must be ensured that is in fact a tree via cardinality constraints—ensuring
that each node has one and only one parent (except for the root) and that each
internal node has two children. These cardinality constraints are not needed in
our encoding. Since in our case, classes are per path rather than node we save
half of the semantic constraint (see Sect. 3.1). It is interesting to compare how
symmetries are broken in [27], where restrictions are imposed on the possible
children nodes. In our approach paths are ordered lexicographically rather than
in an arbitrary order. This order lets us single out the leftmost in the rightmost
branches, which turned out to be useful in lower-bounding the depth (Sect. 3.2).
We remark that lexicographic order is a popular means of breaking symmetries
in general graphs, cf. [12].

Earlier work for minimization of decision tree using Constraint Programming
(CP) exists [2]. It was shown in [27], that the approach by Narodytska et al.
strictly outperforms the approach of Bessiere at al. this is most likely to be
attributed to the fact that the CP encoding is asymptotically much larger.

Synthesis by calls to a SAT/SMT solver has seen increased interest in the
recent years, cf. [19,21,28]. Haaswi et al. used topology enumeration to synthesize
Boolean circuits [9]. The general idea is analogous to our approach (see Sect. 4).
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However, the set of possible topologies is partitioned differently. The possible
topologies are DAGs, whereas they are trees in our case. Topologies in their
approach belong to the same partition if they have the same number of nodes
at each level (levels are obtained by BFS). This approach is unlikely to give
good partitioning for binary trees and is more expensive to encode than our
approach. Further, in our approach, the enumeration of topologies simply goes
over all possible topologies if the number of nodes is small.

The well-known technique of cube-and-conquer (CnC) splits the search-space
by a lookahead solver [11,17]. The lookahead solver is run with a bound, which
yields cubes to be decided by a traditional CDCL solver. Compared to our app-
roach, CnC is much more general since it is applicable to any SAT instance, and,
the lookahead solver is less likely to generate cubes that will be decided trivially.
The downside is that CnC may not come up with a splitting as a human would.
Further, the lookahead solver can be very costly. In our preliminary experiments,
CnC performs much more poorly than a plain SAT solver on our instances. The
order in which cubes are decided is also investigated by Heule et al. [11].

7 Conclusions and Future Work

This paper proposes a novel SAT-based encoding for decision trees, which enables
natively controlling both the tree’s size and depth. We also study search-space
splitting by topology enumeration. Our implementation outperforms existing
work of [27] but also enables a finer control due to the explicit representation
of paths of the tree. This finer control lets us optimize practically interesting
instances that had been out of reach.

The proposed approaches open a number of avenues for future research. The
solving itself could be further improved by better splitting, parallelization, and
combining with cube-and-conquer [11]. While some preprocessing of the exam-
ples was already used in our optimization techniques (Sect. 3.2), further inspec-
tion could be used to draw more information from them, e.g. introduction of
extended variables in the spirit of [23]. The proposed techniques could also be
integrated into more expressive approaches, e.g. SMT-based synthesis [21].

At the application level, we are investigating the integration of our tool with
some greedy approaches, e.g. ensembles, where only limited depth is considered.
Or, consider a hybrid between a greedy approach and an exact approach where
an exact approach is invoked on smaller sub-problems. It would be interesting
to investigate whether trees with a smaller depth are really easier to understand
and interpret, and, what is the trade-off between depth and size. Our approach
provides the means to exactly quantify these metrics.

The experimental evaluation shows that SAT solvers poorly handle a search-
space with many topologies. We believe that this represents an important chal-
lenge for the SAT community.

Acknowledgements. This work was supported by national funds through FCT,
Fundação para a Ciência e a Tecnologia, under project UIDB/50021/2020, the project



516 M. Janota and A. Morgado

INFOCOS with reference PTDC/CCI-COM/32378/2017. The results were supported
by the Ministry of Education, Youth and Sports within the dedicated program ERC
CZ under the project POSTMAN with reference LL1902.

References

1. Bertsimas, D., Dunn, J.: Optimal classification trees. Mach. Learn. 106(7), 1039–
1082 (2017). https://doi.org/10.1007/s10994-017-5633-9

2. Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combi-
natorial optimisation. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 173–187.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 16

3. Biere, A.: CaDiCaL, Lingeling, PLingeling, Treengeling and YalSAT entering the
SAT competition 2017. In: Balyo,T., Heule, M., Järvisalo, M. (eds.) SAT Compe-
tition 2017: Solver and Benchmark Descriptions, pp. 14–15. University of Helsinki
(2017)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, p. 980. IOS Press,
Amsterdam (2009)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont (1984)
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Abstract. Incremental techniques have been widely used in solving
problems reducible to SAT and MaxSAT instances. When an algorithm
requires making subsequent runs of a SAT-solver on a slightly chang-
ing input formula, it is usually beneficial to change the strategy, so that
the algorithm only operates on a single instance of a SAT-solver. One
way to do this is via a mechanism called assumptions, which allows to
accumulate and reuse knowledge from one iteration to the next and, in
consequence, the provided input formula need not to be rebuilt during
computation. In this paper we propose an encoding of a Pseudo-Boolean
goal function that is based on sorting networks and can be provided to
a SAT-solver only once. Then, during an optimization process, differ-
ent bounds on the value of the function can be given to the solver by
appropriate sets of assumptions. The experimental results show that the
proposed technique is sound, that is, it increases the number of solved
instances and reduces the average time and memory used by the solver
on solved instances.

Keywords: Incremental encoding · CNF encoding · Pseudo-Boolean
constraints · Comparator networks · SAT-solvers

1 Introduction

A Pseudo-Boolean constraint (a PB-constraint, in short) is of the form a1x1 +
a2x2 + · · · + anxn # k, where n, k ∈ N, {x1, . . . , xn} is a set of propositional
literals (that is, variables or their negations), {a1, . . . , an} is a set of integer
coefficients, and # ∈ {<,≤,=,≥, >}. PB-constraints are more expressive and
more compact than clauses when representing some Boolean formulas, especially
for optimization problems. PB-constraints are used in many real-life applica-
tions, for example, in cumulative scheduling [31], logic synthesis [3] or verification
[9]. There have been many approaches for handling PB-constraints in the past,
for example, extending existing SAT-solvers to support PB-constraints natively
[14,21]. One of the most successful ideas was introduced by Eén and Sörensson
[13], who show how PB-constraints can be handled through translation to SAT.
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The algorithm, implemented in a tool called MiniSat+, incrementally strength-
ens the constraint on a goal function to find the optimum value, rebuilding par-
tially a formula on each iteration, and making a new call to the underlying
SAT-solver.

A typical SAT-solver accepts a problem instance as an input and outputs
a satisfying assignment or an Unsatisfiable statement as a result. This can
be inefficient if we want to minimize a value of a given goal function by solv-
ing many similar SAT instances (like in the aforementioned PB-solving algo-
rithm of MiniSat+). Parsing almost the same constraint sets, and then apply-
ing the same inferences could be costly, therefore a more preservative approach is
recommended.

An incremental approach for solving a series of related SAT instances was
introduced, for example, in [12], as the means of checking safety properties on
finite state machines. Later, the same authors implemented this technique in
MiniSat [11] as a general tool, which they simply called assumptions. Assump-
tions are propositions that hold solely for one specific invocation of the solver.
The goal of this paper is to propose an incremental algorithm for solving PB-
constraint optimization problems by modifying an iterative SAT-based algorithm
of KP-MiniSat+ [17], such that the input instance is encoded only once, and
later, a set of assumptions is changed from one iteration to another, such that
the encoding of the new constraint (on the goal function) is preserved, without
the need to rebuild the CNF formula.

1.1 Related Work

One way to solve a PB-constraint is to transform it to a SAT instance (via
Binary Decision Diagrams (BDDs), adders or sorting networks [7,13]) and pro-
cess it using – increasingly improving – state-of-the-art SAT-solvers. Recent
research have favored the approach that uses BDDs, which is evidenced by
several new constructions and optimizations [2,30]. In our previous paper we
showed that encodings based on comparator networks can still be very competi-
tive [17]. Comparator networks have been successfully applied to construct very
efficient encodings of cardinality and Pseudo-Boolean constraints. Codish and
Zazon-Ivry [10] introduced pairwise selection networks. We have later improved
their construction [16]. In [1] the authors proposed a mixed parametric approach
to the encodings, where the direct encoding is chosen for small sub-problems and
the splitting point is optimized when large problems are divided into two smaller
ones. They proposed to minimize the function λ · num vars + num clauses in
the encodings, where lambda is a constant chosen empirically. The constructed
encodings are small and efficient. Most encodings based on comparator networks
use variations of the Batcher’s Odd-Even Sorting Network [1,4,5,18].

Incremental usage of SAT-solvers has been studied extensively in the past
years, which allowed for the huge increase in the performance of SAT-based algo-
rithms [12,25,32,33]. Recently, incremental algorithms for MaxSAT instances
have appeared [24,27,34], and the experimental results show that the per-
formance of MaxSAT-solvers can be greatly improved by maintaining the
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learned information and the internal state of the SAT-solver between iterations.
Some incremental SAT algorithms also exist for solving PB-constraint instances.
For example, Manolios and Papavasileiou [22] proposed an algorithm for PB-
solving that uses a SAT-solver for the efficient exploration of the search space,
but at the same time exploits the high-level structure of the PB-constraints to
simplify the problem and direct the search. Some popular solvers also implement
incremental methods, for example, QMaxSAT [20] or Glucose [6].

1.2 Our Contribution

Even though MaxSAT problems and Pseudo-Boolean constraint satisfaction
problems have a very close relation with each other (by a simple reduction),
the notion of incrementality for encoding PB-constraints has not yet been fully
exploited. In this paper we show how sorter-based algorithm of KP-MiniSat+

can be extended to solve, even more efficiently, optimization problems involving
PB-constraints.

MiniSat+ has served as a base for many new solvers and has been extended
to test new constructions and optimizations in the field of PB-solving. Similarly,
we have developed a system based on it which encodes PB-constraints using a
new sorter-based algorithm [17], efficiently finds good mixed-radix bases for the
encoding (see Subsect. 2.2 for a definition) and incorporates a few other opti-
mizations. The underlying comparator network is called a 4-Way Merge Selec-
tion Network [18], and experiments showed that on many instances of popular
benchmarks our technique outperformed other state-of-the-art PB-solvers. Fur-
thermore, our solver has been recently extended to MaxSAT problems and can
successfully compete with state-of-the-art MaxSAT-solvers, which is evidenced
by achieving high places in MaxSAT Evaluation 2019. The new MaxSAT-solver,
called UWrMaxSat [29], took second place in both Weighted Complete Track
and Unweighted Complete Track of the competition.

In this paper we show how the encoding algorithm of the PB-solver can
be further improved by extending the usage of assumptions in the comparator
network encoding scheme. The new technique is a modification of the idea found
in NaPS [30] for simplifying inequality assertions in a constraint. It is applied
when a mixed-radix base is used to encode a constraint as an interconnected
sequence of sorting networks. The idea is to add a certain integer constant to
both sides of the constraint, such that the representation of right side constant
(in the base) contains only one non-zero digit. Now, in order to enforce the
inequality, one only needs to assert a single output variable of the encoding of
the last network. This simplification allows for a reduction of the number of
clauses in the resulting CNF encoding, as well as allows better propagation. We
have successfully implemented the technique in KP-MiniSat+. In the process
of minimizing the value of a goal function, the solver has to try a series of bounds
on it. The main purpose of our new construction is to avoid adding new variables
and clauses to the encoding after each bound change. In this paper we show how
to remedy this situation by adding a certain number of fresh variables to the
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encoded networks and then using them as assumptions to set a value of the
changing constant.

We experimentally compare our solver with other state-of-the-art general
constraints solvers like PBLib [28] and NaPS [30] to prove that our techniques
are good in practice. We use COMiniSatPS [26] by Chanseok Oh as the under-
lying SAT-solver, as it has been observed to perform better than the original
MiniSat [11] for many instances.

Since more than a decade there have been organized a series of Pseudo-
Boolean Evaluations [23] which aim to assess the state-of-the-art in the field of
PB-solvers. We use the competition problems from the PB 2016 Competition as
benchmarks for the solver proposed in this paper.

1.3 Structure of the Paper

In Sect. 2 we briefly describe our comparator network algorithm, then we explain
the Mixed Radix Base technique used in MiniSat+ and we show how it is
applied to encode a PB-constraint by constructing a series of comparator net-
works. In Sect. 3 we show how to leverage assumptions in order to build an incre-
mental algorithm on top of KP-MiniSat+’s PB-solving algorithm. We present
results of our experiments in Sect. 4, and we give concluding remarks in Sect. 5.

2 Background

The main tool in our encoding algorithms is a comparator network. Traditionally
comparator networks are presented as circuits that receive n inputs and permute
them using comparators (2-sorters) connected by “wires”. Each comparator has
two inputs and two outputs. The “lower” output is the maximum of inputs, and
“upper” one is the minimum. Their standard definitions and properties can be
found, for example, in [19].

2.1 4-Way Merge Selection Network

MiniSat+ uses Batcher’s original construction [8] – the 2-Odd-Even Sorting
Network. Later, it has been proposed to replace it with a selection network. A
selection network of order (n, k) is a comparator network such that for any 0–1
input of length n it outputs its k largest elements, where k is the RHS of a
constraint. Those k elements must also be sorted in order to easily assert the
given constraint, by asserting only the k-th output. In this paper we use sorting
networks as black-boxes, therefore we describe the algorithm in a brief manner.

The main building block of our encoding is a direct selection network, which
is a certain generalization of a comparator. Encoding of the direct selection
network of order (n, k) with inputs 〈x1, . . . , xn〉 and outputs 〈y1, . . . , yk〉 is the
set of clauses {xi1 ∧ · · · ∧ xip ⇒ yp : 1 ≤ p ≤ k, 1 ≤ i1 < · · · < ip ≤ n}. The
direct n-sorter is a direct selector of order (n, n), therefore we need n auxiliary
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variables and 2n − 1 clauses to encode it. This shows that n should be small in
order to avoid an exponential blowup in the number of clauses.

It has already been observed that using selection networks instead of sorting
networks is more efficient for the encoding of constraints [10], as the resulting
encodings are smaller and can achieve faster SAT-solver run-time. This fact has
been successfully used to encode cardinality constraints, and we have applied this
technique to PB-constraints using a construction called a 4-Way Merge Selection
Network. A detailed description of the algorithm, a proof of its correctness and
the corresponding analysis can be found in our previous paper [18]. We extended
our construction by mixing our network with the direct encoding for small values
of parameters n and k – the technique which was first described by Ab́ıo et al. [1].

2.2 Mixed Radix Base Technique

The authors of MiniSat+ devised a method to decompose a PB-constraint
into a number of interconnected sorting networks, where sorters play the role of
adders on unary numbers in a mixed radix representation.

In the classic base r radix system, positive integers are represented as finite
sequences of digits d = 〈d0, . . . , dm−1〉 where for each digit 0 ≤ di < r, and
for the most significant digit, dm−1 > 0. The integer value associated with d is
v = d0 + d1r + d2r

2 + · · · + dm−1r
m−1. A mixed radix system is a generalization

where a base B is a sequence of positive integers 〈r0, . . . , rm−1〉. The integer value
associated with d is v = d0w0 + d1w1 + d2w2 + · · · + dmwm where w0 = 1 and
for i ≥ 0, wi+1 = wiri. For example, the number 〈2, 4, 10〉B in base B = 〈3, 5〉 is
interpreted as 2 × 1 + 4 × 3 + 10 × 15 = 164 (values of wi’s in boldface).

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
1 2 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 1.
Coefficients
of ψ in base B

The decomposition of a PB-constraint into sorting net-
works is roughly as follows: first, find a “suitable” finite base
B for the given set of coefficients, for example, in MiniSat+

the base is chosen so that the sum of all the digits of the coef-
ficients written in that base is as small as possible. Then for
each element ri of B construct a sorting network where the
inputs of the i-th sorter will be those digits d (from the coeffi-
cients) where di is non-zero, plus the potential carry bits from
the (i − 1)-th sorter.

We show a construction of a sorting network system using
an example. We present a step-by-step process of translating
a PB-constraint ψ = 2x1 +2x2 +2x3 +2x4 +5x5 +18x6 ≤ 22.
Let B = 〈2, 3, 3〉 be the considered mixed radix base. The
representation of the coefficients of ψ in base B may be illustrated by a 6 × 4
matrix (see Fig. 1). The rows of the matrix correspond to the representation of
the coefficients in base B. Weights of the digit positions of base B are w̄ =
〈1, 2, 6, 18〉. Thus, the decomposition of the LHS (left-hand side) of ψ is:

1 · (x5) + 2 · (x1 + x2 + x3 + x4 + 2x5) + 6 · (0) + 18 · (x6)

Now we construct a series of four sorting networks in order to encode the sums
at each digit position of w̄. Given values for the variables, the sorted outputs
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Fig. 2. Decomposition of a PB-constraint into a series of interconnected sorting net-
works. Outputs of sorting networks are ordered such that the bottom bit is the largest.

from these networks represent unary numbers d1, d2, d3, d4 such that the LHS
of ψ takes the value 1 · d1 + 2 · d2 + 6 · d3 + 18 · d4.

The final step is to encode the carry operation from each digit position to
the next. The first three outputs must represent valid digits (in unary) for B. In
our example the single potential violation to this is d2, which is represented in 6
bits. To this end we add two components to the encoding: (1) each third output
of the second network is fed into the third network as carry input; and (2) a
normalizer MOD3 is added to encode that the output of the second network is
to be considered modulo 3. The full construction is illustrated in Fig. 2.

The outputs from these four sorting networks now specify a number in base
B, i.e., bits representing LHS of the constraint, each digit represented in unary.
To enforce the constraint, we have to add clauses representing the relation ≤22
(in base B). It is done by lexicographical comparison of digits representing LHS
to digits representing 22 = 〈0, 2, 0, 1〉B. Let l11, l21, l22, l61, l62, l181 represent the
outputs of the networks, like in Figure 2. Then the following set of clauses
enforce the ≤22 constraint: l181 ⇒ ¬l61 and l181 ⇒ ¬(l22 ∧ l11).

Could we eliminate the clauses and the MOD sub-networks as well? Consider
the following scheme. If we add 13 = 〈1, 0, 2, 0〉B to both sides of ψ, then we get
ψ′ = 2x1+2x2+2x3+2x4+5x5+18x6+13 < 36. Observe that 36 = 〈0, 0, 0, 2〉B
and the new decomposition of the LHS is:

1 · (1 + x5) + 2 · (x1 + x2 + x3 + x4 + 2x5) + 6 · (1 + 1) + 18 · (x6)

After this change we virtually add 1s as additional outputs to the corresponding
networks (one to the first network and two to the third network, as indicated by
the new decomposition). This will change the number of inputs to some networks,
that is, l11 will be an additional input to the second network (as a carry) and l61
will be a similar input to the fourth one. Thus, the fourth network will now have
2 inputs and an additional literal l182 representing its second output needs to be
created.

Observe that ψ and ψ′ are equivalent, but in the representation of 36 (in
base B) only the most significant bit has a non-zero value, therefore enforcing
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the < 36 constraint is as easy as adding a singleton clause ¬l182 (or setting it
as an assumption). In consequence, the only relevant outputs of the networks
(except the last one) are the ones that represent the carry bits, therefore there
is no need to use normalizers. This optimization was first proposed in NaPS

[30] and we have already implemented it in our previous solver [17]. Notice that
after changing the RHS, we need to rebuild most of the construction in order to
account for the increased number of inputs and outputs of each network and the
new carry bit positions. What follows is an improvement of this strategy, such
that we do not need to do the rebuilding step.

3 The Incremental Algorithm

We now show how we can better encode the goal function of a PB-constraint
optimization instance by adding assumptions to the previous construction. To
demonstrate each step of the algorithm, we will be using our running example,
i.e., the goal function is 2x1 + 2x2 + 2x3 + 2x4 + 5x5 + 18x6 and B = 〈2, 3, 3〉 is
the chosen base.

Code Notation. The pseudo-code is presented in Algorithms 1 and 2. The only
non-trivial data structure used is a vector, i.e., a dynamic array, which in our
case can store either numbers or literals, depending on the context. Vectors are
indexed starting from 0, and xi is the i-th element of a vector x̄. The vector
structure supports three straightforward operations:

– pushBack – appends a given element to the end of the vector.
– size – returns the number of elements currently stored in the vector.
– clear – removes all elements of the vector.

A special SAT-solver object ss is also available. It supports the following set of
operations:

– newV ar – creates a fresh variable and adds it to the solver instance.
– addClause – adds a clause to the solver instance (a clause is given as a

sequence of literals).
– encodeBySorter – given a sequence of input literals of size n, it constructs a

sorter with n inputs and n outputs and transforms it to a CNF formula (for
example, using our 4-Way Merge Selection Network). The formula is added to
the SAT-solver and the operation returns a sequence of literals representing
the output of the sorter.

– solve – takes a set of assumptions as input and returns a model if the solver
instance is satisfiable under given assumptions, otherwise returns UNSAT.

We now describe our algorithm and show how it works using our running
example. We do this in a bottom-up manner, starting with the encodeGoal
procedure (Algorithm 1).
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Algorithm 1. encodeGoal
Input: A PB function g(x̄) = a1x1 + a2x2 + · · · + anxn, where a1, a2, . . . , an > 0, and

a SAT-solver ss.
Output: A tuple 〈r̄, z̄, ȳ〉, where r̄ is a mixed radix base, z̄ are new assumption vari-

ables and ȳ is a sequence of variables representing output of the encoding. The out-
put is used in Algorithm 2 to force any upper bound on g(x̄) by setting assumptions
to ss.

1: r̄ ← findGoodBase(a1, a2, . . . , an)
2: let w̄ be the weight vector of r̄
3: let z̄, ȳ, carry, in and out be empty vectors
4: for i = 0 to r̄.size() − 1 do
5: in ← carry
6: for j = 1 to ri − 1 do
7: zwi

j ← ss.newV ar()
8: in.pushBack(zwi

j ), z̄.pushBack(zwi
j )

9: for j = 2 to ri − 1 do ss.addClause(¬zwi
j ∨ zwi

j−1)

10: for j = 1 to n do
11: repeat aj mod ri times in.pushBack(xj)

12: aj ← aj/ri

13: out ← ss.encodeBySorter(in)
14: carry.clear()
15: for j = ri − 1 while j < out.size() step ri do carry.pushBack(outj)

16: in ← carry
17: for j = 1 to n do
18: repeat aj times in.pushBack(xj)

19: ȳ ← ss.encodeBySorter(in)
20: return 〈r̄, z̄, ȳ〉

encodeGoal. Find a mixed radix base 〈r0, . . . , rm−1〉 (for some m ≥ 0) and
its weight vector 〈w0, . . . , wm〉 (lines 1–2). Next, decompose the goal function as
shown in the previous section with the following modifications. The i-th iteration
creates the i-th sorter for which inputs are stored in vector in. New assumption
variables are created and passed to the sorter as additional input. A more detailed
description is as follows, given we are in the i-th iteration of the main loop
(0 ≤ i ≤ m − 1).

In lines 6–8, create a new variable zwi
j for each 0 < j < ri (line 7). Add the

new variables as input to the current sorter (line 8). Next, for 1 < j < ri add
the clause zwi

j ⇒ zwi
j−1 to the instance (line 9).

The purpose for this step is as follows. The new variables allow to represent
any number between 0 and ri − 1 (for a given 0 ≤ i ≤ m − 1) in unary, and
the new clauses enforce the order of the bits. Now, if we would like to set the
variables 〈zwi

1 , . . . , zwi
ri−1〉 such that they represent a number 0 < j < ri − 1, we

need to only set zwi
j = 1 and zwi

j+1 = 0, and the unit propagation will set all
other zwi

j′ ’s such that exactly j of them will be set to true. If j = 0, then we only
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Fig. 3. An example of a novel PB-constraint decomposition. The top variables are
stored as assumptions and their values are adjusted after each iteration of the
algorithm.

need to set zwi
1 = 0, and if j = ri − 1 we set zwi

ri−1 = 1, and similarly the unit
propagation correctly sets the rest of the variables.

Let ai
j , 1 ≤ j ≤ n, denote the value of aj in line 11 in the i-th iteration of the

loop 4–15. In lines 10–12, add multiple copies of the variables x1, . . . , xn to in, in
such a way that they represent (in unary) terms of the sum

∑n
j=1(a

i
j mod ri)xj .

Since each sorter acts as an adder, the sequence out in line 13 represents the
value of the sum (plus carry and 〈zwi

1 , . . . , zwi
ri−1〉) in unary.

In our running example we create five new variables: z11 , z21 , z22 , z61 , z62 , and
the set of clauses consists of z22 ⇒ z21 and z62 ⇒ z61 .

Remember that we represent the value of the LHS as an expression w0 · d0 +
· · · + wm · dm, as explained in the previous section (each di is a sum of some
input variables). For each 0 ≤ i ≤ m− 1 and 0 < j < ri we add zwi

j to di. In our
running example the decomposition will look like this:

1 · (z11 + x5) + 2 · (z21 + z22 + x1 + x2 + x3 + x4 + 2x5) + 6 · (z61 + z62) + 18 · (x6)

In lines 10–15 a single sorter is created and the carry bits are set for the next
one. Notice that the output of the current sorter (stored in the out vector) is only
needed for calculating the carry bits passed to the next sorter (line 15). This is
because the only necessary output variable which enforces constraints belongs
to the last sorter (created in lines 16–19). Therefore no additional normalizers
are required, which is another advantage of using our construction.

We show in Fig. 3 how such a construction looks for our running example. The
new assumption variables are shown on the top. Compared to the example from
Fig. 2 we added some new inputs, therefore we needed to also create additional
outputs for each network. Notice that this changed the carry bit positions but
no normalizers were constructed.
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Algorithm 2. optimizeGoal
Input: A PB function g(x̄) = a1x1 + a2x2 + · · · + anxn, where a1, a2, . . . , an > 0, and

a SAT-solver ss that is filled already with encodings of other constraints.
Output: A model that minimizes the value of g(x̄) and satisfies other constraints or

UNSAT .
1: 〈res, model〉 ← ss.solve(∅)
2: if res = UNSAT then return UNSAT
3: 〈r̄, z̄, ȳ〉 ← encodeGoal(g, ss) # see Algorithm 1
4: UB ← g(model), LB ← 0, optModel ← model
5: let assump be an empty vector and w̄ be the weight vector of r̄
6: while UB > LB do
7: bound ← �0.65 · UB + 0.35 · LB� # LB < bound ≤ UB
8: assump.clear(), b ← bound
9: for i = 0 to r.size() − 1 do

10: j ← b mod ri, b ← b/ri
11: if j 	= 0 then j ← ri − j, b ← b + 1

12: if j = 0 then assump.pushBack(¬zwi
1 )

13: else if j = ri − 1 then assump.pushBack(zwi
ri−1)

14: else assump.pushBack(zwi
j ), assump.pushBack(¬zwi

j+1)

15: assump.pushBack(¬yb)
16: 〈res, model〉 ← ss.solve(assump) # g(x̄) < bound is enforced by assump
17: if res = SAT then
18: UB ← g(model) # g(model) < bound
19: optModel ← model
20: ss.addClause(¬yb)
21: else
22: LB ← bound
23: return optModel

optimizeGoal. The optimization procedure is presented in Algorithm2. Notice
that we assume a1, a2, . . . , an > 0. The goal function can be easily normalized
to satisfy this condition (see [13]). After encoding every constraint into CNF
formulas we first check if the given set of constraints is satisfiable (lines 1–2). If
it is, then we can optimize the goal function given the constraints. We encode the
goal function using the encodeGoal procedure (line 3). The optimization strategy
used is the binary search with the 65/35 split ratio. The detailed description
follows.

For the current bound on the constraint (stored in the bound variable) com-
pute how many 1s need to be added to both sides of the inequality, such that the
RHS has only the most significant position set in the base 〈r0, . . . , rm−1〉. Let c
be that number, that is, if bound is divisible by wm then c is zero, otherwise c
is set to wm − bound mod wm, and let 〈c0, . . . , cm−1〉 be the representation of c
in base 〈r0, . . . , rm−1〉. Notice that cm is omitted since it is equal to 0. For each
0 ≤ i ≤ m − 1, let j = ci and do:

– if j = 0, set zwi
1 = 0,

– if j = ri − 1, set zwi
ri−1 = 1,

– otherwise set zwi
j = 1 and zwi

j+1 = 0.
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This is done in lines 9–14, where variable b in the i-th iteration is set to the value
of 	bound/wi+1
. Thus, j is the i-th digit (in base r̄) of bwi+1−bound. Next, add
a singleton clause enforcing the constraint (line 15) to the set of assumptions.

In our running example let us assume that the current bound is 23, therefore
c = 13, so the assumptions are z11 = 1, z21 = 0, z62 = 1 (z22 and z61 will be set by
unit propagation), which means that in order to enforce a constraint <36, we
only need to add ¬y2 as another assumption. Note that ȳ is the output of the
last sorter created by the encodeGoal procedure, so y2 is equivalent to the l182
in Fig. 3.

Finally, we run the underlying SAT-solver under the current set of assump-
tions (line 16) and based on the answer we strengthen the bounds on the goal
function (lines 17–22). The binary search continues until the optimum is found.
For example, if the algorithm determines that the next bound to check for our
running example is 19, then we revert the assignment of the assumptions and
now we set z11 = 1, z22 = 1 and z62 = 1, since now we need to add 17 to both
sides of the inequality so that the encoding is still equisatisfiable with the <36
constraint. Notice that no other operation is necessary. As we will see in the next
section, the fact that we are building the sorting networks structure only once
for the goal function leads to a performance increase in both running time and
memory use, compared to other state-of-the-art methods. Let us now prove the
correctness of our algorithm, for the sake of completeness.

Theorem 1. Let g(x̄) = a1x1 + a2x2 + · · · + anxn, where a1, a2, . . . , an > 0 are
integer coefficients and x1, x2, . . . , xn are propositional literals. Let φ be a CNF
formula. Algorithm2 returns a model of φ which minimizes the value of g(x̄) or
UNSAT, if φ is unsatisfiable.

Proof (sketch). If φ is unsatisfiable, then the algorithm terminates on line 2.
Assume that φ is satisfiable. The binary search of optimizeGoal will find the
optimal model of φ with respect to the goal function g(x̄), if the distance between
upper and lower bounds decreases in each iteration of the algorithm. It is obvi-
ously true if g(x̄) < bound is enforced on SAT solver by assump set in lines
8–15. To prove this, let 〈r̄, z̄, ȳ〉 be the result of line 3, m be the size of r̄ and let
w̄ be the weight vector of base r̄ (see Subsect. 2.2). Fix the value of bound and
let b0 = bound and define bi+1 and ji to be the values of variables b and j after
line 11 in the i-th iteration of the loop in lines 9–14. Notice that bi+1 =

⌈
bi
ri

⌉

and ji = ribi+1 − bi. By induction one can prove the following invariants of the
loop: bi =

⌈
bound
wi

⌉
and

∑i−1
s=0 jsws = biwi − bound.

Therefore, after the loop, we have bound = bmwm − ∑m−1
s=0 jsws. It follows

that the inequality g(x̄) < bound is equivalent to g(x̄) +
∑m−1

s=0 jsws < bmwm

(1). Each value js is set (in unary) on variables zws
1 , . . . , zws

ri−1 in lines 12–14 (see
also line 9 in Algorithm1). In this way the LHS of (1) is set in the encoding
generated by encodeGoal. The sequence ȳ = (y1, y2, . . . ) represents (in unary) a
value that is multiplied by wm, thus, by adding ¬ybm to assump in line 15, we
enforce the value to be less than bm. That ends the proof that the SAT-solver
call in line 16 returns SAT if and only if both g(x̄) < bound and φ are satisfied.
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4 Experimental Evaluation

Our extension of MiniSat+, based on the features explained in this paper and in
the previous one [17], is available online1. We call it KP-MiniSat+ (KP-MSP,
in short). It should be linked with a slightly modified COMiniSatPS

2, where
the patch is also given at the link above (See footnote 1). The latest addition to
the patch is an assumptions processing improvement due to Hickey and Bacchus
[15]. Detailed results of the experimental evaluation are also available online3.

The set of instances we use is from the Pseudo-Boolean Competition 20164.
We use instances with linear Pseudo-Boolean constraints that encode optimiza-
tion problems. To this end, two categories from the competition have been
selected:

– OPT-BIGINT-LIN - 1109 instances of optimization problems with big
coefficients in the constraints (at least one constraint with a sum of coef-
ficients greater than 220). An objective function is present. The solver must
find a solution with the best possible value of the objective function.

– OPT-SMALLINT-LIN - 1600 instances of optimization problems. Like
OPT-BIGINT-LIN but with small coefficients in the constraints (no con-
straint with sum of coefficients greater than 220).

We compare our solver with two state-of-the-art general purpose con-
straint solvers. The first one is pbSolver from PBLib ver. 1.2.1, by Tobias
Philipp and Peter Steinke [28] (abbreviated to PBLib in the results). This
solver implements a plethora of encodings for three types of constraints: at-
most-one, at-most-k (cardinality constraints) and Pseudo-Boolean constraints.
PBLib automatically normalizes the input constraints and decides which
encoder provides the most effective translation. We have launched the pro-
gram ./BasicPBSolver/pbsolver of PBLib on each instance with the default
parameters.

The second solver is NaPS ver. 1.02b by Masahiko Sakai and Hidetomo
Nabeshima [30] which implements improved ROBDD structure for encoding con-
straints in band form, as well as other optimizations. This solver is also built
on the top of MiniSat+. NaPS won two of the optimization categories in the
Pseudo-Boolean Competition 2016: OPT-BIGINT-LIN and OPT-SMALLINT-
LIN. We have launched the main program of NaPS on each instance, with
parameters -a -s -nm.

We also compare our solver with the original MiniSat+ in two different ver-
sions, one using the original MiniSat SAT-solver and the other using COMin-

iSatPS. We label these MS+ and MS+COM in the results. We present results
for MS+COM in order to show that the advantage of using our solver does not
come simply from changing the underlying SAT-solver.
1 See https://github.com/karpiu/kp-minisatp.
2 See https://baldur.iti.kit.edu/sat-competition-2016/solvers.
3 See http://www.ii.uni.wroc.pl/∼karp/sat/2020.html.
4 See http://www.cril.univ-artois.fr/PB16/.

https://github.com/karpiu/kp-minisatp
https://baldur.iti.kit.edu/sat-competition-2016/solvers
http://www.ii.uni.wroc.pl/~karp/sat/2020.html
http://www.cril.univ-artois.fr/PB16/
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Table 1. Results summary for the OPT-BIGINT-LIN category

solver solved Opt UnSat cpu (s) scpu (s) avg(scpu) smem (MB) avg(smem)

KP-MSP++ 468 395 73 1046518 44424 94.9 208035 444.5

KP-MSP+- 467 395 72 1037085 44886 96.1 213973 458.2

KP-MSP-- 461 389 72 1039499 37672 81.7 283681 615.4

NaPS 383 314 69 1314536 51557 134.6 245533 641.1

MS+ 220 149 71 1647958 47759 217.1 42181 191.7

MS+COM 245 174 71 1609433 54234 221.4 46336 189.1

Table 2. Results summary for the OPT-SMALLINT-LIN category

solver solved Opt UnSat cpu (s) scpu (s) avg(scpu) smem (MB) avg(smem)

KP-MSP++ 894 808 86 1282788 43556 48.7 164223 183.7

KP-MSP+- 893 806 87 1278926 38474 43.1 162405 181.9

KP-MSP-- 893 809 84 1278722 37747 42.3 153619 172.0

NaPS 887 803 84 1310006 40376 45.5 186760 210.6

PBLib 747 691 56 1611247 74993 100.4 112993 151.3

MS+ 788 715 73 1515166 53566 68.0 113606 144.2

MS+COM 805 734 71 1491269 60270 74.9 106886 132.8

We are providing results for three versions of KP-MSP: (1) KP-MSP++
that contains our algorithms and the latest modification to COMiniSatPS, (2)
KP-MSP+- that also contains the algorithms but not the modification, and (3)
KP-MSP-- - without the algorithms and the modification, but still with opti-
mizations of KP-MSP described in [17] (in particular, in encodings of constraints
on a goal function, it reuses clauses from previous encoding by the “shared-
formulas” original technique of MiniSat+). We would like to see what is the
impact of new techniques on the number of solved instances and the average
times and spaces used.

All the three versions of KP-MSP used default parameters, except for the
parameter -gs, which forces the algorithm to always encode the goal function
using our selection network (and the direct encoding for small sub-networks).
This means that other constraints can sometimes be encoded using either BDDs
or adder networks, and the original MiniSat+’s heuristics (slightly modified
by us to strongly prefer encoding by sorters) decide which method is used. For
example, for OPT-BIGINT-LIN instances, in all encoded non-goal constraints:
99.58% were encoded by sorters, 0.34% by BDDs and 0.08% by adders. If we
consider only the successfully solved instances then the corresponding numbers
are: 99.73%, 0.02% and 0.25%.

All experiments were carried out on machines with Intel(R) Core(TM) i7-
2600 CPU @ 3.40 GHz. The timeout limit is set to 1800 s and the memory limit is
15 GB, which are enforced with the following commands: ulimit -Sv 15000000
and timeout − k 20 1809 < solver > < parameters > < instance >.
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Fig. 4. Cactus plot for OPT-BIGINT-LIN division from the PB16 suite

Fig. 5. Cactus plot for OPT-SMALLINT-LIN division from the PB16 suite

In Tables 1 and 2 we present results for categories OPT-BIGINT-LIN and
OPT-SMALLINT-LIN, respectively. In the solved column we show the total
number of solved instances, which is the sum of the number of instances where
the optimum was found (the Opt column) and the number of unsatisfiable
instances found (the UnSat column). In the cpu column we show the total
solving time (in seconds) of the solver over all instances of a given category, and
scpu is the total solving time over solved instances only. Similarly, smem is the
total memory space used (in megabytes) during the computation of the solved
instances. Averages have been computed as follows: avg(scpu) = scpu/solved
and avg(smem) = smem/solved.
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Looking at the results, one can observe that new algorithms increase the
number of solved instances to 468 in the OPT-BIGINT-LIN category. It is now
almost equal to the number of 470 instances solved together by all the competi-
tors of PB Competition 2016. The modification of COMiniSatPS add 1 solved
instance and reduces the average time (by 1.2 s) and memory use (by 13.7 MB).
The algorithms reduce the average memory use by 157.2 MB (KP-MSP+- versus
KP-MSP--). Moreover, one can observe significant improvement in the number
of solved instances in comparison to NaPS in this category.

In case of OPT-SMALLINT-LIN category, the differences among the results
of all three versions of KP-MSP are small. It is understandable, as the coefficients
of goal functions are not big in this category, thus, the sizes of mixed-radix bases
are small, so the optimization techniques of [17] are equivalently efficient to the
new algorithms.

In terms of memory usage MS+ and MS+COM are the most efficient in
this evaluation, but their overall performance is poor. Observe also that their
average values are computed over much smaller sets of solved instances. Solver
PBLib had the worst performance in this evaluation. Notice that the results of
PBLib for OPT-BIGINT-LIN division are not available. This is because PBLib
is using 64-bit integers in calculations, thus could not be launched with all OPT-
BIGINT-LIN instances.

Figures 4 and 5 show cactus plots of the results, which indicate the number
of solved instances within the time. We see a clear advantage of our solvers over
the competition in the OPT-BIGINT-LIN category.

5 Conclusions

In this paper we showed that comparator networks are still competitive when
used in encoding Pseudo-Boolean constraints to SAT. The popular idea of incre-
mental encoding applied to the sorting network encoding of a pseudo-Boolean
goal function leads to an increase in the number of solved instances in the OPT-
BIGINT-LIN category and reduces the memory use compared to other state-
of-the-art methods. The proposed modification is short and easy to implement
using any modern SAT-solver which supports assumptions.
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