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Abstract We recall the definitions of two independently defined elliptic versions of
the Kashiwara–Vergne Lie algebra krv, namely the Lie algebra krv(1,1) constructed
by Alekseev, Kawazumi, Kuno and Naef arising from the study of graded formality
isomorphisms associated to topological fundamental groups of surfaces, and the Lie
algebra krvell defined using mould theoretic techniques arising from multiple zeta
theory by Raphael and Schneps, and show that they coincide.
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1 Introduction

From its inception in Grothendieck’s Esquisse d’un Programme [9], Grothendieck–
Teichmüller theory was intended to study the automorphism groups of the profinite
mapping class groups—the fundamental groups of moduli spaces of Riemann sur-
faces of all genera and any number of marked points—with the goal of discovering
new properties of the absolute Galois group Gal(Q/Q). However, due to the ease of
study of the genus zero mapping class groups, which are essentially braid groups,
the genus zero case garnered most of the attention, starting from the definition of
the Grothendieck–Teichmüller group ̂GT by Drinfel’d [5] and the simultaneous
construction by Ihara of the Grothendieck–Teichmüller Lie algebra grt [12, 13] in
1991. The extension of the definition to a Grothendieck–Teichmüller group acting
on the profinite mapping class groups in all genera was subsequently given in 2000
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by Hatcher, Lochak, Schneps and Nakamura (cf. [11, 14]). The higher genus profi-
nite Grothendieck–Teichmüller group satisfies the two-level principle articulated by
Grothendieck, which states that the subgroup of ̂GT consisting of automorphisms
that extend to the genus one mapping class groups with one or two marked points
will automatically extend to automorphisms of the higher mapping class groups.

It has proven much more difficult to extend the Lie algebra Grothendieck–
Teichmüller construction to higher genus. Indeed, while the genus zero mapping
class groups have a natural Lie algebra analog in the form of the braid Lie algebras,
there is no good Lie algebra analog of the higher genus mapping class groups. The
only possible approach for the moment seems to be to replace the higher genus map-
ping class groups by their higher genus braid subgroups, which do have good Lie
algebra analogs.1 An early piece of work due to Tsunogai [19] in 2003 computed
the relations that must be satisfied by a derivation acting on the genus one 1-strand
braid Lie algebra lie(1,1) (which is free on two generators) to ensure that it extends to
a derivation on the genus one 2-strand braid Lie algebra, in analogy with the deriva-
tions in grt, shown by Ihara to be exactly those that act on the genus zero 4-strand
braid Lie algebra (also a free Lie algebra on two generators) and extend to derivations
of the 5-strand braid Lie algebra.

After this, the next real breakthrough in the higher genus Lie algebra situation
came with the work of Enriquez ([7], 2014) based on his previous joint work with
Calaque and Etingof ([4], 2009). In particular, using the same approach as Tsunogai
of replacing the higher genus mapping class groups with their higher genus braid
subgroups, Enriquez in [7] was able to extend the definition of grt to an elliptic
version grtell , which he identified with an explicit Lie subalgebra of the algebra of
derivations of the algebra of the genus one 1-strand braid Lie algebra lie(1,1) that
extend to derivations of the 2-strand genus one braid Lie algebra. He showed in
particular that there is a canonical surjection grtell →→ grt, and a canonical section
of this surjection, γ : grt ↪→ grtell .

TheGrothendieck–Teichmüller Lie algebra is closely related to twootherLie alge-
bras, the double shuffle Lie algebra that arises from the theory of multiple zeta values
and the Kashiwara–Vergne Lie algebra that arises from solutions to the (linearized)
Kashiwara–Vergne problem. Indeed, there exist injective Lie algebra morphisms

grt ↪→ ds ↪→ krv,

by work of Furusho [8] for the first injection, Écalle and Schneps [6, 16] for the
second and Alekseev and Torossian [3] for a direct proof that grt maps into krv.
In fact, these three algebras are conjectured to be isomorphic, a conjecture that is
supported by computation of the graded parts up to weight about 20. Thus it was a
natural consequence of the work of Enriquez to consider the possibility of extending

1Another approach would be to replace the higher genus mapping class groups by their Torelli
subgroups, which also have good Lie algebraic analogs determined by Hain [10]. In particular, this
would include the key case of higher genus with 0 marked points, which have no associated braid
groups. However, there has been no development of Lie Grothendieck–Teichmüller theory in this
context as yet.
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also these other Lie algebras from genus zero to genus one. An answer was proposed
for the double shuffle Lie algebra in [18], which proposes a definition of an elliptic
double shuffle Lie algebra dsell based on mould theory and an elliptic interpretation
of a major theorem of Écalle (cf. [6, 17, 18]). This elliptic double shuffle Lie algebra
admits a section γ : ds ↪→ dsell which extends Enriquez’s section in the sense that
the following diagram commutes;

grt� �

��

� � γ �� grtell � �

����
���

���
�

Der lie(1,1).

ds
� � γ �� dsell

� �

�������������

One interesting aspect of the mould theoretic approach is that it reveals a close
relationship between the elliptic double shuffle Lie algebra and the associated graded
of the usual double shuffle Lie algebra for the depth filtration. In the article [15], the
authors of this paper showed that an analogous approach works to construct an
elliptic version of krv, denoted krvell , which is given by two defining mould theoretic
properties, and again has the key features of

• being naturally identified with a Lie subalgebra of the derivation algebra of the
free Lie algebra on two generators;

• being equipped with an injective Lie algebra morphism γ : krv ↪→ krvell which
extends the Grothendieck–Teichmüller and double shuffle sections;

• having a structure closely related to that of the associated graded of krv for the
depth filtration.

In independent work, Alekseev et al. [1, 2] took a different approach to the con-
struction of higher genus Kashiwara–Vergne Lie algebras krv(g,n) for all g, n ≥ 1,
following the classical approach to the Kashiwara–Vergne problem which focuses
on determining graded formality isomorphisms between prounipotent fundamental
groups of surfaces and their graded counterparts (i.e. the exponentials of the associ-
ated gradeds of their associated Lie algebras).

More precisely, if � denotes a compact oriented surface of genus g with n + 1
boundary components, the space g(�) spanned by free homotopy classes of loops in
� carries the structure of a Lie bialgebra equipped with the Goldman bracket and the
Turaev cobracket. The Goldman–Turaev formality problem is the construction of a
Lie bialgebra homomorphism θ from g(�) to its associated graded gr g(�) such that
gr θ = id. In order to solve this problem, Alekseev et al. defined a family KV (g, n +
1) of Kashiwara–Vergne problems. In the particular situation where (g, n) = (1, 0),
the surface� is of genus 1 with one boundary component, and its fundamental group
is free on two generators A, B, with the boundary loop being given by C = (A, B).
The associated prounipotent fundamental group is then free on two generators ea , eb
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with a boundary element ec satisfying ec = (ea, eb) = eaebe−ae−b. The associated
Lie algebra is free ongeneratorsa,b. Sincewehave c = log(eaebe−ae−b), the explicit
formula for c in the Lie algebra is

c = CH
(

CH
(

CH(a, b),−a
)

,−b
)

= [a, b] + higher order terms,

whereCH denotes the Campbell-Hausdorff law on lie(1,1) � Lie[a, b]. To define the
genus one Kashiwara–Vergne Lie algebra krv(1,1), Alekseev et al. first defined the
space of derivations d of Lie[a, b] that annihilate the element c and further satisfy a
certain non-commutative divergence condition (see Sect. 2 for more detail), and then
took krv(1,1) to be the associated graded of the above space. In fact this essentially
comes down to using the same defining conditions but replacing c by its lowest graded
component [a, b]. They showed that the resulting space is a Lie algebra under the
bracket of derivations, and also that, like krvell , it is equipped with an injective Lie
algebra morphism krv ↪→ krv(1,1) that extends the Enriquez section γ : grt ↪→ grtell .

The main result of this article is the equivalence of these two definitions of the
elliptic Kashiwara–Vergne Lie algebra.

Main Theorem. There is a canonical isomorphism krv(1,1) � krvell .

It is an easy consequence of known results that the first defining property of krvell
corresponds to the annihilation of [a, b]. The proof of the theorem thus consists
essentially in comparing the second defining properties of the two algebras. The arti-
cle is organised as follows. In Sect. 2, we recall the definition of krv(1,1), in particular
the divergence property, and in Sect. 3, we give a new reformulation of the divergence
property. In Sect. 4 we recall the definition of krvell and show that translating its sec-
ond mould theoretic defining property back to a property of derivations on lie(1,1), it
coincides with the reformulated version of the divergence property of krv(1,1) given
in Sect. 3, which completes the proof.

2 The Elliptic Kashiwara–Vergne Lie Algebra from
[AKKN]

Let lie(1,1) be the free Lie algebra on two generators Lie[a, b], to be thought of as
the Lie algebra associated to the fundamental group of the once-punctured torus. Let
lie(1,1)n denote the weight n part of lie(1,1), where the weight is the total degree in a
and b, and let lie(1,1)n,r denote the weight n, depth r part of lie(1,1), where the depth
is the b-degree. From this point on, we use the notation c := [a, b] in lie(1,1) (this
comes down to replacing the previous c by its minimal weight part in the associated
graded).

Let der(1,1) denote the Lie subalgebra of Der lie(1,1) of derivations d such that
d(c) = 0. Let der(1,1)n denote the subspace of der(1,1) of derivations d such that
d(a), d(b) ∈ lie(1,1)n .
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We define the push-operator on lie(1,1) as follows. We can write any monomial in
the form ai0b · · · bair , where the i j ≥ 0. The push-operator acts on monomials by

push(ai0bai1b · · · bair ) = air bai0b · · · bair−1 , (1)

i.e. by cyclically permuting the powers of a between the b’s. The operator extends
to polynomials by linearity. We say that an element f ∈ lie(1,1) is push-invariant if
push( f ) = f .

Let f ∈ lie(1,1)n for n > 1. It is shown in Theorem 21 of [16] that there exists an
element g ∈ lie(1,1)n satisfying [a, g] + [b, f ] = 0 if and only if f is push-invariant,
and if this is the case then g is unique. This condition is equivalent to the existence of
a g such that the derivation determined by a �→ f , b �→ −g annihilates the bracket
[a, b]. Thus, f is the value on a of a derivation d ∈ der(1,1)n if and only if f is
push-invariant, in which case d(b) is uniquely defined.

Any element f ∈ lie(1,1) can be decomposed uniquely as

f = faa + fbb = a f a + b f b = a f aa a + a f ab b + b f ba a + b f bb b (2)

with fa, fb, f a, f b, f aa , f ab , f ba , f bb ∈ Q〈a, b〉. Let Tr2 be the quotient of the free
associative algebra Q〈a, b〉 (identified with the universal enveloping algebra of
lie(1,1) � Lie[a, b]) by the equivalence relation: two words w and w′ are equiva-
lent if one can be obtained from the other by cyclic permutation of the letters. We
write tr : Q〈a, b〉 → Tr2 for this quotient map, called the trace map.

The elliptic divergence map div : der(1,1) → Tr2 is defined in [AKKN] by

div(u) = tr( fa + gb)

where d ∈ der(1,1) satisfies d(a) = f d(b) = g. Since d([a, b]) = [a, g] + [ f, b] =
0, we have

agaa + agbb − agaa − bgba = b faa − a f ab − b f bb + b fbb.

Comparing the terms on both sides that start with a and end with b shows that
gb = − f a . Thus we can write the divergence condition as a function of just f :

div(d) = tr( fa − f a).

In fact, using the decomposition (2), we have

tr( fa − f a) = tr(a f aa + b f ba − f aa a − f ab b) = tr
(

( f ba − f ab )b
)

,

so
div(d) = tr

(

( f ba − f ab )b
)

.
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Definition The elliptic Kashiwara–Vergne Lie algebra krv(1,1) defined in [AKKN] is
theQ-vector space spanned by the derivations d ∈ der(1,1)n , n ≥ 3 having the property
that there exists K ∈ Q such that

div(d) =
{

K tr
([a, b] n−1

2
)

if n is odd

0 if n is even.
(3)

It is closed under the bracket of derivations.

3 A Reformulation of the div Condition

The div condition is related in a natural way to the push-operator defined in (1). For
any wordw, letC(w) denote its trace class in Tr2, i.e. the set of words obtained from
w by cyclically permuting its letters.We alsowriteCb(w) (resp.Cb(w)) for the subset
of C(w) of words starting (resp. ending) with b. For any word u = ai0b · · · bair−1 of
depth r − 1, set

P(u) = {pushi (u)
∣

∣ 0 ≤ i ≤ r − 1}.

Note that we have Cb(ub) = {pushi (u)b
∣

∣ 0 ≤ i ≤ r − 1}, i.e. Cb(ub) = P(u) · b,
and |P(u)| = |Cb(ub)|. The fact that |P(u)| can be less than r is due to the possible
symmetries in the word u with respect to the push-operator. For example, if u =
abbab, we have r = 4 but P(u) = {abbab, babba}, Cb(ub) = {abbabb, babbab}.

Set
pushsym(u) =

∑

v∈P(u)

w.

We extend the operator pushsym to all of Q〈a, b〉 by linearity.
Let ( f |w) denote the coefficient of a word w in the polynomial f . We also write

(

tr( f )|C(w)
)

for the coefficient of the trace class C(w) in tr( f ) ∈ Tr2.
Let f ∈ Q〈a, b〉. Then for any word u in a, b, setting w = ub, we have the

equality

(

tr
(

( f ba − f ab )b
) ∣

∣C(w)
)

= ∑

vb∈C(w)

(

( f ba − f ab )b
∣

∣ vb
)

= ∑

vb∈Cb(ub)

(

( f ba − f ab )b
∣

∣ vb
)

= ∑

v∈P(u)

(

f ba − f ab
∣

∣ v
)

=
(

pushsym( f ba − f ab )
∣

∣ u
)

. (4)
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Since w = ub, we have C(w) = C(ub) = C(bu). Indeed, the first equality holds
because since the polynomial ( f ba − f ab )b ends in b, we only need to consider the
coefficients of words in C(w) ending in b; the second holds because the subset of
words in C(w) = C(ub) ending in b is equal to Cb(ub), and the third holds because
Cb(ub) = P(u) · b as noted above.

Equation (4) allows us to rewrite the divergence condition (3) on an element
f ∈ lie(1,1)n as the following condition: there exists K ∈ Q such that for every word
u of weight n − 2 and depth r − 1, we have

(

pushsym( f ba − f ab )
∣

∣ u
) =

⎧

⎨

⎩

K
∑

v∈C(ub)

([a, b]r ∣

∣ v
)

if n = 2r + 1

0 if n �= 2r + 1.
(5)

This is the version of the divergence condition that we will use for comparison with
the Lie algebra krvell .

4 The Mould Theoretic krvel l from [15]

Recall that a mould is a family A = (Ar )r≥0 where Ar (u1, . . . , ur ) is a function of
r commutative variables. We restrict our attention here to rational-function moulds
with coefficients in Q. These form a Q-vector space under componentwise addition
and multiplication by scalars. When the number of variables is specified, we drop
the subscript r , for instance we write A(u1, . . . , ur ) = Ar (u1, . . . , ur ).

A mould is said to be alternal if A(∅) = 0 and

∑

w∈sh
(

(u1,...,uk ),(uk+1,...,ur )
)

Ar (w) = 0

for r ≥ 2 and 1 ≤ k ≤ r − 1.
Let us define a few mould operators. The swap, push, circ and �-operators on

moulds are given by

swap(A)(v1, . . . , vr ) = A(vr , vr−1 − vr , . . . , v1 − v2)

push(A)(u1, . . . , ur ) = A(u2, . . . , ur ,−u1 − · · · − ur )

circ(A)(v1, . . . , vr ) = A(vr , v1, . . . , vr−1)

�(A)(u1, . . . , ur ) = (u1 + · · · + ur )u1 · · · ur A(u1, . . . , ur ).

There is no difference between the use of the commutative variables ui or vi , however
the vi ’s are traditionally used for operators and relations concerning the swap of a
mould.
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There is a direct connection between power series in a, b (having no constant term
in a) and polynomial-valued moulds. Let ci = ad(a)i−1(b) for i ≥ 1, and consider
Lie algebra Lie[c1, c2, . . .] inside the polynomial algebra Q〈c1, c2, . . .〉. By Lazard
elimination, these algebras are free and all polynomials in lie(1,1) having no linear
term in a can be written as Lie polynomials in the ci .

There is a bijection between the space of polynomials in the ci and the space of
polynomial-valued moulds, coming from linearly extending the map

ca1 · · · car → (−1)n+r ua1−1
1 · · · uar−1

r , (6)

where n = a1 + · · · + ar . It is well-known that under this map, the subspace Lie
[c1, c2, . . .] of lie(1,1), which consists of all Lie polynomials having no linear term
in a, maps bijectively onto the space of alternal polynomial-valued moulds. In other
words, when speaking of polynomial moulds, alternality corresponds precisely to
the condition that the associated polynomial in a, b should be primitive for the stan-
dard coproduct �(a) = a ⊗ 1 + 1 ⊗ a �(b) = b ⊗ 1 + 1 ⊗ b, i.e. should be a Lie
polynomial.

Writing f ∈ lie(1,1)m as

f =
∑

k

ck a
k0b · · · bakr

and F for the corresponding mould, then swap(F) is explicitly given by

swap(F)(v1, . . . , vr ) = (−1)m−1
∑

k s.t. kr=0

ck v
k0
1 · · · vkr−1

r (7)

(cf. [[17], §3]).
A mould A is said to be push-invariant if push(A) = A, and circ-neutral if for

all r ≥ 2, we have
r−1
∑

i=0

circi (A)(v1, . . . , vr ) = 0.

We say that A is circ∗-neutral if it is becomes circ-neutral after adding on a constant-
valued mould.

Definition The mould version of krvell consists of all polynomial-valued moulds F
that are alternal and push-invariant and such that swap

(

�−1(F)
)

is circ∗-neutral.

The space krvell is bigraded for the depth and the degree. Let F ∈ krvell be
a mould of depth r and degree d, so that it corresponds under the bijection (6)
to a polynomial f ∈ lie(1,1)n,r with n = d + r . The mould push-invariance property
of a polynomial-valued mould F is equivalent to the polynomial push-invariance
push( f ) = f (cf. [[15], Prop. 12]). In turn, the polynomial push-invariance of f
implies that there exists a unique polynomial g ∈ lie

(1,1)
n,r+1 such that setting d(a) = f ,

d(b) = g, we obtain a derivation d ∈ der(1,1)n . The Lie bracket on krvell corresponds
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to the Lie bracket on krv(1,1), namely bracketing of the derivations d. Thus, in order
to prove that krvell is in bijection with krv

(1,1), it remains only to prove that the circ∗-
neutrality condition on swap

(

�−1(F)
)

is equivalent to the divergence condition (5)
on f .

Since

�−1(F)(u1, . . . , ur ) = 1

(u1 + · · · + ur )u1 · · · ur F(u1, . . . , ur ),

we have

swap
(

�−1(F)
)

(v1, . . . , vr ) = 1

v1(v1 − v2) · · · (vr−1 − vr )vr
swap(F)(v1, . . . , vr ),

so the circ∗-neutrality condition is given explicitly as the existence of a constant
K ∈ Q such that

swap(F)(v1, . . . , vr )

v1(v1 − v2) · · · (vr−1 − vr )vr
+ swap(F)(v2, . . . , v1)

v2(v2 − v3) · · · (vr − v1)v1
+ · · · +

+ swap(F)(vr , . . . , vr−1)

vr (vr − v1) · · · (vr−2 − vr−1)vr−1
=

{

0 n �= 2r + 1

(−1)r Kr n = 2r + 1.
(8)

Indeed, we note that the only possibility for the sum to be equal to a constant is when
the degrees of the numerator and denominator are equal, which can only happen
when the degree n − r of the mould F = ma( f ) in depth r is equal to the degree
r + 1 of the �-denominator in depth r , i.e. when n = 2r + 1. We write (−1)r Kr
for the constant rather than simply K , in order for the value of K in this formula
to correspond to the value in the definition of the divergence condition given in (5)
when we prove that the two conditions are equal.

Putting the left-hand side of (8) over a common denominator and multiplying
both sides by that denominator gives the equivalent equality

swap(F)(v1, v2, . . . , vr )v2 . . . vr−1(vr − v1) + swap(F)(v2, . . . , vr , v1)v3 · · · vr (v1 − v2) + · · ·

+swap(F)(vr , . . . , vr−1)v1 . . . vr−2(vr−1 − vr ) = (−1)r Kr v1 · · · vr (v1 − v2) · · · (vr − v1),

where K = 0 unless n = 2r + 1. The left-hand side of this expands to

v2 . . . vr−1vr swap(F)(v1, . . . , vr ) − v1v2 . . . vr−1 swap(F)(v1, . . . , vr )

+v1v3 . . . vr swap(F)(v2, . . . , vr , v1) − v2v3..vr swap(F)(v2, .., vr , v1) + · · ·
+v1 . . . vr−1 swap(F)(vr , . . . , vr−1) − v1 . . . vr−2vr swap(F)(vr , . . . vr−1). (9)

Fix a monomial vi1+1
1 v

i2+1
2 . . . vir+1

r . Calculating its coefficient in (9) yields
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(

swap(F)(v1, . . . , vr )|vi1+1
1 v

i2
2 . . . v

ir
r

) − (

swap(F)(v1, . . . , vr )|vi11 v
i2
2 . . . v

ir+1
r

)

+ (

swap(F)(v2, . . . , vr , v1)|vi11 v
i2+1
2 . . . v

ir
r

) − (

swap(F)(v2, . . . , vr , v1)|vi1+1
1 v

i2
2 . . . v

ir
r

) + · · ·
+ (

swap(F)(vr , v1, . . . , vr−1)|vi11 . . . v
ir+1
r

) − (

swap(F)(vr , v1, . . . , vr−1)|vi11 . . . v
ir−1+1
r−1 v

ir
r

)

= (

swap(F)(v1, . . . , vr )|vi1+1
1 v

i2
2 . . . v

ir
r

) − (

swap(F)(v1, . . . , vr )|vi11 v
i2
2 . . . v

ir+1
r

)

+ (

swap(F)(v1, . . . , vr )|vi2+1
1 v

i3
2 . . . v

i1
r

) − (

swap(F)(v1, . . . , vr )|vi21 v
i3
2 . . . v

i1+1
r

) + · · ·
+ (

swap(F)(v1, . . . , vr )|vir+1
1 . . . v

ir−1
r

) − (

swap(F)(v1, . . . , vr )|vir1 . . . v
ir−1+1
r

)

,

where the equality is obtained by bringing every term back to a coefficient of a word
in swap(F)(v1, . . . , vr ).

The circ∗-neutrality condition on swap
(

�−1(F)
)

can thus be expressed by the
family of relations for every tuple (i1, . . . , ir ):

(

swap(F)(v1, . . . , vr )|vi1+1
1 v

i2
2 . . . v

ir
r

) − (

swap(F)(v1, . . . , vr )|vi11 v
i2
2 . . . v

ir+1
r

)

+ (

swap(F)(v1, . . . , vr )|vi2+1
1 v

i3
2 . . . v

i1
r

) − (

swap(F)(v1, . . . , vr )|vi21 v
i3
2 . . . v

i1+1
r

) + · · ·
+ (

swap(F)(v1, . . . , vr )|vir+1
1 . . . v

ir−1
r

) − (

swap(F)(v1, . . . , vr )|vir1 . . . v
ir−1+1
r

)

= (−1)r Kr
(

(v1 − v2) . . . (vr − v1) | vi11 . . . v
ir
r

)

= (−1)r Kr
(

(v1 − v2) . . . (vr−1 − vr )vr | vi11 . . . v
ir
r

) − (−1)r Kr
(

v1(v1 − v2) . . . (vr−1 − vr ) | vi11 . . . v
ir
r

)

= (−1)r Kr
(

(v1 − v2) . . . (vr−1 − vr )vr | vi11 . . . v
ir
r

) + Kr
(

(v1 − v2) . . . (vr−1 − vr )vr | vir1 v
ir−1
2 . . . v

i1
r

)

. (10)

We now translate this equality back into polynomial terms. We start with the right-
hand side. The right-hand side is zero unless n = 2r + 1, so let us compute it in the
case n = 2r + 1. We have [a, b] = ad(a)(b) = c2, so [a, b]r = cr2, and by formula
(6), the polynomial-valued mould corresponding to [a, b]r is thus given by

A(u1, . . . , ur ) = (−1)r u1 · · · ur . (11)

The swap of this mould is given by

swap(A)(v1, . . . , vr ) = (−1)r (v1 − v2) · · · (vr−1 − vr )vr .

The moulds A and swap(A) are concentrated in degree r in depth r . Thus the right-
hand side of (10) is zero unless i1 + · · · + ir = r , in which case it can be written
as

Kr
(

swap(A)(v1, . . . , vr )
∣

∣ v
i1
1 v

i2
2 · · · virr

)

+ (−1)r Kr
(

swap(A)(v1, . . . , vr )
∣

∣ v
ir
1 v

ir−1
2 · · · vi1r

)

. (12)

So by (7), this expression translates back to polynomials as

− Kr
(

[a, b]r | ai1b · · · air b
)

+ (−1)r−1Kr
(

[a, b]r | air b · · · ai1b
)

, (13)

since here m = 2r is the degree of [a, b]r .
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Using (7) to directly translate the left-hand side of (10) in terms of the polynomial
f , we thus obtain the following expression equivalent to the circ-neutrality property
(10):

(

f | ai1+1bai2b · · · bair b) − (

f | ai1bai2b · · · bair+1b
)

+ (

f | ai2+1bai3b · · · bai1b) − (

f | ai2bai3b · · · bai1+1b
) + · · ·

+ (

f | air+1bai1b · · · bair−1b
) − (

f | air bai1b · · · bair−1+1b
)

= −Kr
(

[a, b]r | ai1b · · · air b
)

− (−1)r Kr
(

[a, b]r | air b · · · ai1b
)

. (14)

Since f is push-invariant, we have ( f |ub) = ( f |bu) for every word u, so we can
modify the negative terms in (14):

(

f | ai1+1bai2b · · · bair b) − (

f | bai1bai2b · · · bair+1
)

+ (

f | ai2+1bai3b · · · bai1b) − (

f | bai2bai3b · · · bai1+1
) + · · ·

+ (

f | air+1bai1b · · · bair−1b
) − (

f | bair bai1b · · · bair−1+1)

= −Kr
(

[a, b]r | ai1b · · · air b
)

− (−1)r Kr
(

[a, b]r | air b · · · ai1b
)

. (15)

Now all words in the positive terms start in a and end in b, and all words in the
negative terms start in b and end in a, so we can remove these letters and write

(

f ab | ai1bai2b · · · bair ) − (

f ba | ai1bai2b · · · bair )

+ (

f ab | ai2bai3b · · · bai1) − (

f ba | ai2bai3b · · · bai1) + · · ·
+ (

f ab | air bai1b · · · bair−1
) − (

f ba | air bai1b · · · bair−1
)

= −Kr
(

[a, b]r | ai1b · · · air b
)

− (−1)r Kr
(

[a, b]r | air b · · · ai1b
)

. (16)

Consider now a word u = ai1bai2b · · · bair of degree (weight) n − 2 and depth
r − 1, and let u′ denote u written backwards. Using the previous notation m for the
degree of ub = ai1b · · · air b, we have n − 2 = m − 1, i.e. m = n − 1. The left-hand
side of (16) is equal to

r−1
∑

i=0

(

( f ab − f ba )
∣

∣ pushi (u)
)

= r

|P(u)|
(

pushsym( f ab − f ba )
∣

∣ u
)

.

Changing the sign of both sides of (16) in order to compare with (5), it becomes

1

|P(u)|
(

pushsym( f ba − f ab )
∣

∣ u
)

=
{

0 n �= 2r + 1

K
(

[a, b]r | ub
)

+ (−1)r K
(

[a, b]r | u′b
)

n = 2r + 1.
(17)
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Since the left-hand sides of (5) and (17) are identical, in order to prove that they give
the same condition, we only need to check that the two right-hand sides are equal.
Cancelling the factor Kr from each, this reduces to the following lemma.

Lemma Let u be a word of depth r − 1 and weight n = 2r − 1, let u′ be u written
backwards, and let C(ub) denote the set of cyclic permutations of ub. Then

∑

v∈C(ub)

([a, b]r | v) = |P(u)|([a, b]r | ub) + (−1)r |P(u)|([a, b]r | u′b
)

. (18)

Proof Observe that if ([a, b]r |ub) �= 0, then ubmust satisfy the parity property that,
writing ub = u1 · · · u2r where each ui is letter a or b, the pair u2i−1u2i must be either
ab or ba for 0 ≤ i ≤ r . The coefficient of the word ub in [a, b]r is equal to (−1) j

where j is the number of pairs u2i−1u2i in ub that are equal to ba. In other words,
if a word w appears with non-zero coefficient in [a, b]r , then letting U = ba and
V = ab, we must be able to write w as a word in U, V , and the coefficient of w in
[a, b]r is (−1)m where m denotes the number of times the letter U occurs.

If w = ub = V r = (ab)r , then u′b = ub. The coefficient of V r in [a, b]r is equal
to 1, so the right-hand side of (18) is equal to 2 if r is even and 0 if r is odd. For the left-
hand side, C(ub) = {V r ,Ur } and Cb(ub) = {V r }, so |Cb(ub)| = 1. The coefficient
ofUr in [a, b]r is equal to (−1)r , so the left-hand side is again equal to 2 if r is even
and 0 if r is odd. Since |Cb(ub)| = |P(u)|, this proves (18) in the case ub = V r .

Suppose now that ub �= V r but that it satisfies the parity property. Write ub =
Ua1V b1 · · ·Uas V bs in which all the ai , bi ≥ 1 except for a1, which may be 0. Then
u′b is equal to aUbs−1V as · · ·Ub1V a1b. If bs > 1, then the pair u2(bs−1)+1u2(bs−1)+2

is aa, so ([a, b]r |u′b) = 0. If bs = 1, then the word u′b begins with aa and thus
does not have the parity property, so again ([a, b]r |u′b) = 0. This shows that if
([a, b]r |ub) �= 0 then ([a, b]r |u′b) = 0 and vice versa.

This leaves us with three possibilities for ub �= V r .
Case 1: ([a, b]r |ub) �= 0. Then ub has the parity property, so we write ub =
Ua1V b1 · · ·Uas V as as above. The right-hand side of (18) is then equal to (−1) j

where j = a1 + · · · + as . For the left-hand side, we note that the only words in the
cyclic permutation class C(ub) that have the parity property are the cyclic shifts
of ub by an even number of letters, otherwise a pair aa or bb necessarily occurs
as above. These are the same as the cyclic permutations of the word ub written in
the letters U, V . All these cyclic permutations obviously have the same number of
occurrences j of the letter U . Thus, the words in C(ub) for which [a, b]r has a
non-zero coefficient are the cyclic permutations of the word ub in the letters U, V ,
and the coefficient is always equal to (−1) j . These words are exactly half of the all
the words in C(ub), so the sum in the left-hand side is equal to (−1) j |C(ub)|/2.
But |Cb(ub)| = |P(u)| = |C(ub)|/2, so the left-hand side is equal to (−1) j , which
proves (18) for words ub having the parity property.
Case 2: ([a, b]r |u′b) �= 0. In this case it is u′b that has the parity property, and
the right-hand side of (18) is equal to (−1)r+ j ′ where j ′ is the number of occur-
rences of U in the word u′b = Ua1V b1 · · ·Uas V bs , i.e. j ′ = a1 + · · · + as . We have



On the Elliptic Kashiwara–Vergne Lie Algebra 239

ub = aUbs−1V as · · ·Ub1V b1b. The word w = Ubs−1V as · · ·Ub1V b1U then occurs
in C(ub), and the number of occurrences of the letter U in ub is equal to j =
b1 + · · · + bs−1 + bs . Since a1 + b1 + · · · + as + bs = r , we have j + j ′ = r so
j ′ = r − j and the right-hand side of (18) is equal to (−1) j . The number of words
in C(ub) that have non-zero coefficient in [a, b]r is |C(ub)|/2 = |Cb(ub)| = |P(u)|
as above, these words being exactly the cyclic permutations of w written in U, V ,
and the coefficient is always equal to (−1) j . So the left-hand side of (18) is equal to
(−1) j , which proves (18) in the case where u′b has the parity property.
Case 3: ([a, b]r |ub) = ([a, b]r |u′b) = 0. The right-hand side of (18) is zero. For
the left-hand side, consider the words in C(ub). If there are no words in C(ub)
whose coefficient in [a, b]r is non-zero, then the left-hand side of (18) is also
zero and (18) holds. Suppose instead that there is a word w ∈ C(ub) whose coef-
ficient in [a, b]r is non-zero. Then as we saw above, w is a cyclic shift of ub
by an odd number of letters, and since all cyclic shifts of w by an even num-
ber of letters then have the same coefficient in [a, b]r as w, we may assume
that w is the cyclic shift of ub by one letter, i.e. taking the final b and putting
it at the beginning. Since w has non-zero coefficient in [a, b]r , we can write
w = Ua1V b1 · · ·Uas V bs , where a1 > 0 since w now starts with b, but bs may be
equal to 0 since w may end with a. Then ub = aUa1−1V b1 · · ·Uas V bs b, so we can
write u′b = Ubs V as · · ·Ub1V a1−1ab = Ubs V as · · ·U v1V a1 . But then u′b satisfies the
parity property, so its coefficient in [a, b]r is non-zero, contradicting our assumption.
Thus under the assumption, all words inC(ub) have coefficient zero in [a, b]r , which
completes the proof of the Lemma. ♦
Acknowledgements The authors are extremely grateful to two separate referees who pointed out a
number of small inconsistencies in the submitted version of this paper, which produced a significant
improvement in the final version.
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