
Current Topics in Microbiology and Immunology

Kenji Kabashima
Gyohei Egawa   Editors

Inducible 
Lymphoid 
Organs



Current Topics in Microbiology
and Immunology

Volume 426

Series Editors

Rafi Ahmed
School of Medicine, Rollins Research Center, Emory University, Atlanta, GA,
USA

Shizuo Akira
Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan

Klaus Aktories
Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and
Toxicology, University of Freiburg, Freiburg, Baden-Württemberg, Germany

Arturo Casadevall
W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns
Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Richard W. Compans
Department of Microbiology and Immunology, Emory University, Atlanta, GA,
USA

Jorge E. Galan
Boyer Ctr. for Molecular Medicine, School of Medicine, Yale University, New
Haven, CT, USA

Adolfo Garcia-Sastre
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York,
NY, USA

Bernard Malissen
Parc Scientifique de Luminy, Centre d’Immunologie de Marseille-Luminy,
Marseille, France

Rino Rappuoli
GSK Vaccines, Siena, Italy



The review series Current Topics in Microbiology and Immunology provides a
synthesis of the latest research findings in the areas of molecular immunology,
bacteriology and virology. Each timely volume contains a wealth of information on
the featured subject. This review series is designed to provide access to up-to-date,
often previously unpublished information.

2019 Impact Factor: 3.095., 5-Year Impact Factor: 3.895
2019 Eigenfaktor Score: 0.00081, Article Influence Score: 1.363
2019 Cite Score: 6.0, SNIP: 1.023, h5-Index: 43

More information about this series at http://www.springer.com/series/82

http://www.springer.com/series/82


Kenji Kabashima • Gyohei Egawa
Editors

Inducible Lymphoid Organs
Responsible Series Editor: Shizuo Akira

123



Editors
Kenji Kabashima
Department of Dermatology
Kyoto University
Kyoto, Japan

Gyohei Egawa
Department of Dermatology
Kyoto University
Kyoto, Japan

ISSN 0070-217X ISSN 2196-9965 (electronic)
Current Topics in Microbiology and Immunology
ISBN 978-3-030-51746-5 ISBN 978-3-030-51747-2 (eBook)
https://doi.org/10.1007/978-3-030-51747-2

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-51747-2


Preface

The antigen presentation to lymphocytes is one of the most important processes to
develop adaptive immunity. We can functionally distinguish three distinct areas
where lymphocytes recognize antigens:primary lymphoid organs (bone marrow and
thymus), secondary lymphoid organs (lymph nodes and spleen), and the peripheral
tissues. In the primary lymphoid organs, both T and B cells undergo positive and
negative selections through recognizing self-antigens. In the secondary lymphoid
organs, foreign antigens are presented by antigen-presenting cells, and
antigen-specific lymphocytes are activated and expanded. Activated lymphocytes,
especially T cells, circulate all over the body to survey foreign antigens, and once
they recognize their cognate antigens, they promptly induce inflammation in an
antigen-specific manner. Antigen recognition in the peripheral tissue is the final key
process to develop adaptive immunity, thus to know about this process is essential
for better control of immune-mediated diseases.

In the peripheral tissues, our body sometimes generates de novo lymphoid
structure, called inducible lymphoid organs (ILOs). ILOs, also known as tertiary
lymphoid organs or ectopic lymphoid organs, are organized as “sentinel” lymphoid
tissues to be on the alert for invading pathogens, and are induced especially when
the tissues are repeatedly exposed to foreign antigens, such as under chronic
inflammation, infection, and cancers. ILOs have been observed in most tissues such
as the intestine, lung, skin, genital tract, and exocrine glands. In each tissue, ILOs
share many properties regarding its structure, cellular composition, and function,
but also may have unique structures and functions in a context dependent manner.

In this book, readers will learn the basic structure and function of ILOs in the
first chapter and will know the feature of ILOs in each tissue, which respectively
have specific names, in the following chapters. We particularly highlights iBALT in
the lung, M cells in the intestine, iSALT in the skin, MLCs in the genital tracts, and
ILOs found in the synovial membrane in rheumatoid arthritis patients, and also
covers the generations of artificially-constructed peripheral lymphoid tissues.
Accordingly, readers will learn similarities and differences among ILOs in different
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sites. We invite the readers to visit recent findings showing how ILOs control
adaptive immunity in each peripheral tissues.This book will offer fascinating and
insightful contents for both scientists and clinicians in the areas of infectious and
immune-associated diseases.

Kyoto, Japan
June 2020

Gyohei Egawa
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Abstract Tertiary lymphoid organs (TLOs), also known as inducible lymphoid
organs, tertiary lymphoid structures, tertiary lymphoid tissues, or ectopic lymphoid
organs are accumulations of cells in chronic inflammation that have been observed
in most tissues in autoimmunity, infection, and cancer in mouse and man. They
share many properties with secondary lymphoid organs (SLOs), particularly lymph
nodes, with regard to cellular composition, function, and regulation. TLOs include
T and B cells, dendritic cells, follicular dendritic cells, and many other stromal cells,
and high endothelial venules (HEVs) and lymphatic vessels. They serve as sites of
antigen presentation and tolerance induction; they are harmful in autoimmunity and
can be both harmful and beneficial in cancer. SLO induction in ontogeny is
mediated by interactions of several cell types, including CD4+ CD3- lymphoid
tissue inducer (LTi) RORct+ cells that express LTab and interact with mes-
enchymal lymphoid tissue organizer (LTo) FAP+ cells in the presence of lymphatic
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and blood vessels. A variety of inducer cells initiate TLOs, including bona fide LTi
cells, T cells, B cells, and NK cells. The mesenchymal organizer cells are less well
characterized but can include FAP+ cells. Current challenges include identification
of methods to inhibit TLOs in autoimmunity without affecting SLOs, and
enhancement of TLOs for defense against tumors.

1 Introduction

Tertiary lymphoid organs (TLOs), also known as inducible lymphoid organs,
ectopic lymphoid organs, tertiary lymphoid structures, or tertiary lymphoid tissues,
are accumulations of lymphoid cells that arise in the course of chronic inflammation
in infection (Neyt et al. 2012), autoimmunity, graft rejection, atherosclerosis, and
cancer (Table 1). The term TLO was used in a review article in 1992 (Picker and
Butcher 1992) to distinguish inflammation from classical lymphoid organs. Primary
lymphoid organs (thymus, bone marrow, Bursa of Fabricius in birds) give rise in
the course of ontogeny to the antigen recognizing cells of the immune system,
namely T and B lymphocytes. Secondary lymphoid organs (SLOs), which also arise
in ontogeny, include the lymph nodes (LNs), spleen, and mucosal-associated
lymphoid tissue such as the nasal-associated tissue (NALT), tonsils, adenoids, and
Peyer’s patches, serve as site of antigen recognition and immune cell activation.
TLOs are classified as lymphoid organs or tissues because of their cellular content,
organization, and vasculature which resemble those of SLOs. However, they are not
organs in that they do not have a defined immutable structure and location, and they
generally do not possess a well-defined capsule (Table 2). TLO function, assumed
to mimic that of secondary lymphoid organs, is a topic of intense speculation and
research and potential therapeutic significance.

Information concerning the developmental regulation of SLOs has exploded in
recent years. This provides a context for probing the origin and maintenance of
TLOs that will provide crucial information for their experimental manipulation
providing methodologies to limit them in pathology (e.g., autoimmunity) and to
augment them in therapeutics (e.g., cancer).

2 Examples of Human and Murine TLOs

There were few mentions of TLOs after their initial description in 1992, probably
because the field was not prepared for the concept that inflammation could develop
into an organized accumulation of cells that resembled a lymph node. Inflammation
at that time was defined by 4 clinical characteristics (heat, pain, redness, and
swelling) rather than by the histological and functional characteristics that define
different types and mechanisms of inflammation. The concept of TLOs received its
impetus from the nearly simultaneous observations that mice deficient in
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lymphotoxin-alpha (LTa) lacked lymph nodes (De Togni et al. 1994) and that rat
insulin promoter (RIP) driven transgenic expression of LTa in the pancreas, kidney,
and skin (RIPLTa mice) (Picarella et al. 1992) resulted in accumulations of cells at
those sites that resembled lymph nodes (Kratz et al. 1996), the result of a process

Table 1 Murine and Human Tertiary Lymphoid Organs

Disease Affected organ Species

Autoimmunity
Hashimoto’s
thyroiditis

Thyroid Mouse,
human

Inflammatory bowel
disease

Colon and small intestine Mouse,
human

Myasthenia gravis Thymus Mouse,
human

Multiple sclerosis Brain Mouse,
human

Rheumatoid arthritis Joint Mouse,
human

Primary biliary
cirrhosis

Liver Human

Sjögren’s syndrome Lacrimal and salivary glands Mouse,
human

Systemic lupus
erythematosus

Kidney Mouse,
human

Type 1 diabetes Pancreas Mouse,
human?

Microbial Infection
Borrelia burgdorferi Joint Human

Helicobacter pylori Stomach Human

Helicobacter spp. Liver Mouse

Influenza virus Lung-iBALT Mouse,
human

Hepatitis virus Liver Human

Mycobacterium
tuberculosis

Lung Mouse
human

Yersinia
pseudotuberculosis

Adipose tissue
(FALC)

Mouse

Chronic Graft
Rejection

Heart, lung, kidney Mouse,
human

Atherosclerosis Artery Mouse,
human

Cancer Lung, colon, skin, prostate, ovary, pancreas, liver,
testis, kidney, thyroid

Mouse,
human

Legend: References for these conditions are found in the text and the following review articles
[(Barone et al. 2016; Drayton et al. 2006; Neyt et al. 2012; Pipi et al. 2018)]. FALCs are described
in (Han et al. 2017)
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termed lymphoid neo-organogenesis or neogenesis. This resulted in a revival of the
concept of TLOs, although several different terms are now used to describe
essentially the same functional and histological structures. There has been an
explosion in the TLO literature with extensive documentation and several excellent
review articles (Neyt et al. 2012; Barone et al. 2016; Colbeck et al. 2017; Drayton
et al. 2006; Jones et al. 2016; Pipi et al. 2018) that list TLOs in man and mouse
(Table 1). TLOs have several features in common that are noted below, that permit
their designation as such, namely the lymphoid and stromal cellular content and
organization characteristic of lymph nodes including the appropriate vascular
compartments (high endothelial venules and lymphatic vessels). TLOs have been
described in almost every organ, including, pancreas, lung, kidney, skin, brain, gut,
liver, joints, artery, placenta, salivary and lacrimal glands, thymus, vagina, blood
vessels, heart, testes, and ovaries.

Table 2 Comparison of Secondary and Tertiary Lymphoid Organs

Characteristics Secondary lymphoid organ Tertiary lymphoid organ

Origin Ontogeny Induced

Examples Spleen, lymph node, Peyer’s
patches, tonsils, adenoids,
MALT

Chronic Infection; autoimmunity;
allograft rejection; cancer; iBALT;
atherosclerosis

Location Defined-relatively immutable Within an organ or tissue

Lymphoid
cells

T (CD4, CD8, Treg, Tfh), B,
plasma cell

T (CD4, CD8, Treg, Tfh), B, plasma cell

Antigen
presenting
cells

DC, FDC, macrophage DC, FDC, macrophage

Structures B cell follicles, germinal
centers, conduits

B cell follicles, germinal centers, conduits

Vessels HEVs, lymphatic vessels HEVs, lymphatic vessels

Stromal Cells FRC, MRC FRC

Capsule Defined Rare

Induction and
maintenance

LTo (FAP+ podplanin+,
LTbR+), LTi, endothelial
cells, retinoic acid

LTo (FAP+ podoplanin+, LTbR+),
ILC3/LTi, endothelial cells;
CD4+ CD3+; NKT; Th17; cdT cells
chronic inflammation; cytokines
(LT, TNF, LIGHT, IL-17); chemokines
(CXCL13, CCL19, CCL21)

Cytokines LTab, LTa3 LTab, LTa3, TNF; IL-22; IL-17

Chemokines CXCL13, CCL21, CCL19,
CXCL12

CXCL13, CCL21, CCL19, CXCL12

Durability Permanent (but can collapse) Transient

MALT mucosal-associated lymphoid tissue; iBALT inducible bronchial-associated lymphoid tissue;
Treg regulatory T cell; Tfh T follicular helper cell; DC dendritic cell; FDC follicular dendritic cell;
HEV high endothelial venule; FRC fibroblast reticular cell; MRC marginal reticular cell; LTo
lymphoid tissue organizer cell; FAP fibroblast activation protein-a; LTi lymphoid tissue inducer
cell; FAP

4 N. H. Ruddle



Organized lymphoid cell accumulations in adipose tissue were noted in most
species as early as 1863 and were termed milky spots (Von Recklinghausen 1863).
More recently, they have been called fat-associated lymphoid clusters (FALC)
(Elewa et al. 2014); they fit the definition of TLOs, with evidence of germinal
centers (Benezech et al. 2015). These accumulations are present at a steady state,
are reduced in germ-free mice suggesting a role for commensal organisms, and
increase in the course of aging (Camell et al. 2019). They can be induced by
zymosan injection (Benezech et al. 2015) or gram-negative bacterium Yersinia
pseudotuberculosis infection (Han et al. 2017). Randolph and colleagues have
described TLOs in Crohn’s disease in the mesenteric fat that invade the lymphatic
vessels that lead to LNs and suggested that they impede lymph flow in this con-
dition (Randolph et al. 2016).

3 TLOs Share Structural and Cellular Features with LNs

LNs are bean-shaped structures found at defined locations in the body. They consist
of a distinct capsule that contains collagen, smooth muscle cells, and lymphatic
vessels (Fig. 1a). LNs are served by afferent lymphatic vessels that bring dendritic
cells (DCs), soluble antigen, and lymphocytes. The lymph node is a mesh-like
structure supported by a variety of stromal cells, including fibroblastic reticular cells
(FRCs), follicular dendritic cells (FDCs), marginal reticular cells (MRCs), and
CXCL12 abundant reticular cells (CRCs). A recent analysis by RNAseq identified
as many as nine lymph node stromal cell clusters (Rodda et al. 2018). Some of the
LN stromal cells are positive for the marker, fibroblast activation protein-a
(FAP) (Denton et al. 2014) and FAP+ progenitors differentiate into many of these
stromal cell populations (Denton et al. 2019). The LN is permeated by conduits,
tubal structures lined by FRCs, that transport soluble antigens through the node.
T cells and DCs are located in the paracortex, while B cells are located in the cortex
with FDCs. Naïve lymphocytes enter the node through high endothelial venules
(HEVs), specialized blood vessels that express ligands that facilitate the cells’
recognition and entry. The HEVs of all immature LNs, Peyer’s patches, and mature
mesenteric nodes express mucosal addressin cell adhesion molecule-1
(MAdCAM-1), the ligand for a4b7 expressed on lymphocytes. Mature peripheral
LN HEVs express CCL21 and several adhesion molecules including peripheral
node addressin (PNAd), the ligand for CD62L (L-selectin) on lymphocytes. HEVs
are tonically stimulated through the LTbR (Browning et al. 2005; Liao and Ruddle
2006) and are plastic in that they express different genes under conditions of
homeostasis or inflammation (Liao and Ruddle 2006; Veerman et al. 2019). T cells
are guided to the paracortical region through their CCR7 recognition of the
chemokines CCL19 and CCL21 expressed by stromal cells and HEVs where they
recognize antigen on DCs that have also been directed to the paracortical area
through CCR7 interaction with CCL19 and CCL21. B cells are similarly directed to
the cortical region via their expression of CXCR5 that allows migration to the

Basics of Inducible Lymphoid Organs 5



chemokine, CXCL13, produced by stromal cells, including FDCs in the B cell
follicles. B cells interact with antigen and cytokines produced by T follicular helper.
(Tfh) cells in the follicles, giving rise to germinal centers, supported by the activity
of activation-induced deaminanse (AID), resulting in plasmablast and plasma cell
differentiation. Sphingosine-1-phosphate (S1P) is a lipid mediator that is found in
high concentrations in the lymph and blood. Cells leaving the LN via efferent
lymphatic vessels express high levels of an S1P receptor (S1P1) which interacts
with its ligand, facilitating egress from the LN.

TLOs share many cellular and structural similarities with LNs, including their
cellular composition-naïve and effector T cells, B cells, plasma cells, germinal
centers, and antigen presenting cells, DCs, and FDCs (Fig. 1b) (Table 2). Their
organization resembles that of LNs in that the cells are compartmentalized into
distinct B and T cells zones due to the presence of the T zone chemokines, CCL19
and CCL21, and the B cell zone-defining chemokines, CXCL13 (Hjelmstrom et al.
2000) and CXCL12. Furthermore, most of the stromal characteristics of LNs have
been noted in TLOs, namely conduits (Stranford and Ruddle 2012), HEVs (Kratz
et al. 1996), lymphatic vessels (Kerjaschki et al. 2004), and FAP+ cells (Denton
et al. 2019; Nayar et al. 2019). On the other hand, the well-defined capsule of LNs
with its characteristic features, including a subcapsular sinus with antigen pre-
senting cells, is rarely, if ever, seen. One characteristic that differentiates a TLO
from a LN is that the former, even when it includes FAP+ and other typical LN
stromal cells is located within another tissue, organ or tumor and thus is inescapably
influenced by the microenvironment of that location, including cytokines, growth
factors, and metabolites. Furthermore, in addition to microenvironmental differ-
ences between TLOs and LNs, there are environmental differences between TLOs
in diverse locations. For example, the TLO in a tumor is subjected to very different
influences than one in the pancreas in autoimmunity, including anoxia and sup-
pressive cytokines such as IL-10 and TGFb.

4 Activities and Functions of TLOs

What are the functions of TLOs? Why are they needed in the presence of an
exquisite system that includes secondary lymphoid organs that provide sites for
defense at strategic locations throughout the body? One suggestion is that TLOs
represent primitive forms of lymphoid organs and that they arise in response to a
chronic assault by a foreign pathogen when needed in infection. This is a logical
explanation for the phenomenon—that is, that a TLO could arise at the site of a
microbial infection, could sequester the foreign initiators of the infection, and, when
the organisms have been quarantined from the remainder of the body (e.g., the
chronic granuloma in tuberculosis), the TLO persists, or if organisms are elimi-
nated, the TLO dissipates. Thus, one could think of TLOs as an early, local defense
against microbes; they are apparent in the joint in Lyme arthritis (although by the
time the TLO appears, the infectious agent, Borrelia burgdorferi, is no longer
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detectable), in the lung in tuberculosis, in the liver in hepatitis B and C virus
infection, and the gut in Helicobacter pylori infection.

The role that TLOs play in cancer has been variously attributed to a spectrum
that ranges from protection against recurrence, to a marker of new cancers, to a
predisposition to cancer (Colbeck et al. 2017). There is considerable evidence that,
at least in breast cancer, the presence of TLOs (evaluated by HEV numbers,
presence of FDCs) in the tumor at biopsy is a positive predictor of long term and
disease-free survival (Martinet et al. 2011). Similar results have been found for
many other cancers (Sautes-Fridman et al. 2019). A recent study demonstrated that
the presence of TLOs is associated with a reduced risk of hepatocellular carcinoma
recurrence (Calderaro et al. 2019). The mechanism for TLO protection against
tumors could be due to physical sequestration of the tumor and local generation of
an immune response to tumor antigens, thus preventing metastases to the draining
LNs. An important study demonstrated that the mere presence of a TLO per se in a
murine model of lung cancer was not sufficient for tumor removal, but that deletion
of Tregs allowed for activation of the cells in the tumor TLOs and tumor destruction
(Joshi et al. 2015). It is apparent that in those situations where TLOs contribute to
defense, methods to enhance their activity or development should be pursued.

The close temporal association between some cancers and autoimmunity has led
to the hypothesis by Rosen and colleagues that autoantigens released by the
transformed cells activate the immune response (Rosen and Casciola-Rosen 2016).
This phenomenon has been described in several instances of systemic autoimmu-
nity (Shah et al. 2019, 2017), including rheumatoid arthritis and Sjögren’s syn-
drome, which can include TLOs. This model posits that the TLO is a response to
the tumor autoantigen and predicts the occurrence of cancer, but does not consider
whether or not the TLO is beneficial.

Some TLOs predispose to cancer. A mouse model of hepatitis leads to hepa-
tocellular carcinoma (Haybaeck et al. 2009) even though, as noted above, in
humans, TLOs are associated with a more favorable outcome in that cancer
(Calderaro et al. 2019). Helicobacter pylori infection in the gut is associated with
TLOs and gastric lymphoma (Mazzucchelli et al. 1999). Individuals with Sjögren’s
syndrome are at higher risk of developing non-Hodgkin’s lymphomas (Zintzaras
et al. 2005). One can envision a mechanism for lymphoma development through the
continual germinal center activity and high mutation rate in the TLO.

The major roles that TLOs play in autoimmunity appear to be destruction and
perpetuation in their ability to act as sites of antigen presentation. It is likely that
they play a role in epitope or determinant spreading. For example, the original
target of T cells in multiple sclerosis may be a peptide of myelin oligodendrocyte
glycoprotein (MOG), but new reactivities may arise in the TLO to additional
peptides of that protein or even another protein, such as myelin basic protein
(Kuerten et al. 2012; McMahon et al. 2005). Evidence that immunological reac-
tivity in the TLO differs from that in the rest of the body and that the immune
response actually occurs there comes from several examples. Mice transgenic for
the rat insulin promoter driving LTa develop TLOs at the sites of transgene
expression, the pancreas, kidney, and skin (Kratz et al. 1996). RIPLTa skin grafts
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that contain TLOs induce rejection of wild type skin allografts in mice that lack
secondary lymphoid organs and even generate memory to alloantigens (Nasr et al.
2007). Vj usage in the immunoglobulins of B cells of TLOs in rheumatoid arthritis
differs from that of B cells in the circulation indicating that memory cells arise in
the joint. These data support the concept that antibody affinity maturation is
ongoing in the TLO, indicative of functional germinal centers at that location
(Gause et al. 1997).

TLOs can also serve sites of tolerance induction or perpetuation. Their presence
in long surviving heart (Baddoura et al. 2005) and kidney allografts (Brown et al.
2011) is suggestive of such a role. The presence of Tregs in many TLOs including
those in atherosclerosis (Yin et al. 2016) and tumors (Joshi et al. 2015) suggests one
possible mechanism of tolerance. Lymphatic endothelial cells (LECs) in lymph
nodes are capable of self-antigen presentation and inducing tolerance (Cohen et al.
2014). It is likely that LECs in TLOs could play a similar role, and thus provide an
additional mechanism of tolerance.

5 Regulation of TLOs

5.1 LN Development

The signals and cellular requirements for initiation of SLOs in ontogeny in the
mouse have been fairly well elucidated and summarized in several reviews (Jeucken
et al. 2019; Ruddle and Akirav 2009). The precise signals for the development of
individual types of SLOs (peripheral LNs, mesenteric LNs, Peyer’s patches, spleen)
vary somewhat, but all depend on hematopoietic cells that express members of the
LT/TNF family that interact with stromal cells expressing receptors for that family
(Ruddle and Akirav 2009). LNs develop at defined locations throughout the body
and require interactions between mesenchymal stromal cells, called lymphoid tissue
organizer (LTo) cells and hematopoietic-derived lymphoid tissue inducer cells
(LTi), which are a type of innate lymphoid cell (ILC3). The original 2-cell model
has undergone some modification and requires consideration of the importance of
blood and lymphatic endothelial cells that also play organizing roles through their
expression of cytokines, cytokine receptors, chemokines, and adhesion molecules
and their transport of lymphoid cells (Fig. 2a).

Recent data indicate that the embryonic and mature LTo cells are FAP+ (Denton
et al. 2019). They express IL-7, LTbR, TNFR, VCAM, and MAdCAM-1. Retinoic
acid derived from nerves has been reported to activate mesenchymal cells to pro-
duce CXCL13 (van de Pavert et al. 2009) in a location that is determined by LTbR
on endothelial cells (Onder et al. 2017). Pre-LTi cells (CD45+ CD3- CD4+ Rorct-)
arrive via a vein between E14.5 and 15.0 at the inguinal LN anlagen that is
already enmeshed in lymphatic vessels (Bovay et al. 2018). At later times (E15.0–
18.5), additional LTi cells (CD45+ CD4+ CD3- a4b7+ RORct+ IL7Ra+ LTa+

Basics of Inducible Lymphoid Organs 9
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LTb+ CXCR5 + RANK+ RANKL+) are drawn into the region via expression of
CXCL13, CCL19, CCL21, and IL7 by the LTo cells and enter into the LN anlagen
via lymphatic vessels. Although lymphatic vessels clearly contribute in crucial
ways to LN development, controversy exists concerning whether they participate
initiators or as facilitators of the process (Koning and Mebius 2018; Onder and
Ludewig 2018a, b), while recent studies have clearly defined the temporal rela-
tionship of lymphatic vessels (Bovay et al. 2018).

LTi cell expression of RANK and RANKL results in autocrine activation of LTa
and further activation of LTo cells and lymphatic endothelial cells (Camara et al.
2019). CXCL13 produced by the LTo cells induces additional LTab from LTi cells.
The LTo cells that express TNFRI and LTbR respond to LTa and LTab produced
by the LTi cells and produce additional chemokines, including CCL19 and CCL21.
Eventually, the lymphatic vessels contribute to formation of the LN capsule and
subcapsular sinus. A recent publication suggests that even before birth a small
population of blood vessels, which has some characteristics of HEVs, allows further
accumulation of LTi cells and presumably B and T cells (Wang et al. 2018). Further
production of LTa3 and LTa1b2 induces lymphoid chemokines from stromal cells
and lymphatic vessels and partitioning of T cells and DCs in the paracortical
regions and B cells and FDCs into the cortex. HEVs immediately after birth even in
peripheral LNs express MAdCAM-1 and only at 24 h begin to express PNAd
(Mebius et al. 1996). MAdCAM-1 is under the control of LTa3 and the TNFR1,
whereas PNAd expression is regulated through the LTbR in part through LTab
induction of Chst4 (Hemmerich et al. 2001) a crucial glucosyl transferase that
modifies the scaffold proteins of PNAd.

5.2 Induction of TLOs

5.2.1 Central Questions

TLOs share many similarities with lymph nodes in regard to cellular composition
and organization. Do they also arise through the same signals that induce LNs? Are
LTo and LTi cells necessary for the development of TLOs? Or can other cells
substitute? A key function of LTi cells in LN development is their production of
LTab. However, in the adult, several cell types in addition to LTi cells produce the
LTab complex, including T cells (CD4 TH1, Th17, CD8), B cells, and NK cells.
The answer is that cells with all the characteristics of LTo and LTi cells can be
found in TLOs, but other cells can take over the activities of those crucial
embryonic players (Fig. 2b).
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5.2.2 Stromal Cells

TLOs develop in non-lymphoid organs that have their own complement of stromal
cells. Stromal cells in SLOs provide a scaffolding for cells and provide chemokines,
growth factors, cytokines, and ligands for vascular addressins to allow the appropriate
accumulation and organization of lymphoid cells. IL-7 appears to play an important
role (Timmer et al. 2007) as it does in LNdevelopment. The sites of TLOdevelopment
contain cells that assume the activities of LTos. As noted above, FAP+ cells are
pre-LTo cells in LNs (Denton et al. 2019); these cells are found in TLOs in a mouse
model of influenza virus, an infection in the lung. FAP+ immunofibroblasts are also
seen in Sjögren’s syndrome (SS) TLOs and in a mouse model of adenovirus-induced
SS (Barone et al. 2016; Nayar et al. 2019). These FAP+ cells express chemokines
(CXCL13, CCL19), podoplanin, ICAM-1 and VCAM-1, and IL-7 and thus have
some of the characteristics of LTo cells. In this case, the cells are dependent for their
activation on IL13 but independent of LTab and RORct. One can envision other
scenarios in other organs and under other TLO stimuli with dependence on LT.
Lymphatic vessels are found in TLOs, as are HEVs that express MAdCAM-1 and/or
PNAd, indicating that a source of cellular entrance and chemokine production are
available as additional responders to LTi and LTi-like cells.

5.2.3 LTi Cells

Although LTi cells are crucial for lymphoid organ development in ontogeny, it is
not intuitively obvious that they would persist in the adult once the lymphoid
organs are formed. Furthermore, even if they do persist in the adult, what is their
function in SLOs and TLOs? Cells with the characteristics of LTi cells are present
in adult lymphoid organs (Kim et al. 2007) and are capable of restoring splenic
architecture and function after infection with lymphocytic choriomeningitis virus
(Scandella et al. 2008). CD4+ CD3- RORct+ cells can restore lymphoid tissue to
CXCR5-/- mice and are responsive to IL-7 (Schmutz et al. 2009). Furthermore, ILC
precursors are found in peripheral blood in adult humans and mice; their expression
of CD62L indicates that they could access HEVs and populate already existing
SLOs and TLOs (Bar-Ephraim et al. 2019). However, this does not prove that they
function as LTi cells in the initiation of TLOs. A subset of ILC3 cells that express
neuropilin-1 (NRP-1) is found in human adult lymphoid tissue but not peripheral
blood or skin (Shikhagaie et al. 2017). These NRP1+ cells express several markers
of LTi cells (LTa, LTb, RORct) and can carry out activities in vitro consistent with
those of LTi cells, including induction of adhesion markers on mesenchymal
stromal cells. They are also found in lymphoid aggregates in the lungs of heavy
smokers with chronic obstructive pulmonary disease, circumstantial evidence for
their participation in induction of TLOs. LTi-like cells isolated from the lamina
propria of adult mice also contain transcripts for NRP-1 (Robinette et al. 2015). The
function, if any, of NRP-1 in the activity of LTi cells in development and in TLOs
remains to be elucidated. Nevertheless, these data suggest that cells with the
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characteristics of LTi cells persist in adults, can exhibit functions of LTi cells
in vitro and in vivo, and could conceivably participate in formation of TLOs.

5.2.4 LTi Cell Alternatives

Even if bona fide LTi cells are present in the adult, logic and experimental evidence
indicate that though they may contribute to TLOs, they are not absolutely required
for their maintenance and development. This was apparent from data obtained in the
early transgenic experiments indicating that individual components of the LT/TNF
family or downstream chemokines can induce TLOs in transgenic mice [reviewed
in (Drayton et al. 2006)]. Even though fetal LTi cells are the sole producers of the
various factors necessary for lymphoid organogenesis, several other cell types could
play similar roles in the adult in their expression of the same factors and ability to
induce the same chemokines and adhesion molecules. Notably, T cells, B cells, and
NK cells all express LT (Ware et al. 1992).

When RORct+ LTi cells are absent in adult mice, their function is assumed by
other cell types. As noted above, LTi cells restore splenic architecture after viral
infection, but mice that lack LTi cells still carry out this activity, albeit at a more
leisurely pace (25 days compared to 16 days with RORct+ intact cells) (Scandella
et al. 2008). FALC can still develop in absence of LTi cells; in that case NKT cells
take over their function (Benezech et al. 2015). Mice transgenic for thyroid
expression of CCL21, a key lymphoid chemokine downstream of LT, still develop
TLOs in the absence of LTi cells. This development is dependent on CD3+
CD4+ cells; their transfer, but not that of CD8 + or B220+ B cells, restores TLOs
to RAG deficient CCL21+ tg mice (Marinkovic et al. 2006). The CD3+ CD4+ cells
were clustered with DC cells in the nascent TLOs and their HEVs were inhibited by
treatment with a LTbR-FC fusion protein. These data strongly support the con-
clusion that CD4 + cells (most likely expressing LTab), when appropriately
stimulated by DCs, can support TLOs in the absence of LTi cells.

Th17 cells have been implicated in some TLOs. MOG-specific Th17 cell clones
can transfer TLOs to syngeneic recipients (Jager et al. 2009) and disease severity is
reduced in recipients deficient in the IL-17 receptor (Peters et al. 2011).
Controversy exists concerning whether iBALT formation depends on IL-17. One
report indicates that in the absence of LTi cells iBALT can be induced by
CD4+ cells producing IL-17; another concludes that iBALT do not require IL-17.
This controversy appears to be resolved by the realization that mechanisms and
cytokine requirements for iBALT induction differ, depending upon the inducting
agent. iBALT induced by LPS require IL-17 (Rangel-Moreno et al. 2011) as does
iBALT induced by Pseudonoas aeruginosa. In the latter case iBALT, the source of
IL-17 is cd T cells rather than the conventional ab Th17 cells (Fleige et al. 2011).
On the other hand, iBALT induced by the poxvirus modified vaccinia virus Ankara
does not require IL-17 (Fleige et al. 2011). IL-17 transgenic mice develop lung
infiltrates but they are composed mainly of macrophages and do not meet the
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criteria of TLOs indicating that IL-17 alone, in contrast to LT and LIGHT, is not a
primary inducer of TLOs. It is possible that additional cytokines produced by Th17
cells (LT, TNF, Il-22, IL-21) are necessary for the induction of TLOs.

5.3 TLO Plasticity

TLOs can be distinguished from LNs in their relative changeability and plasticity.
This is not to say that LNs are completely static. On the contrary, they undergo
extensive remodeling after immunization (Liao and Ruddle 2006), and, as noted
above, the spleen undergoes drastic reorganization after viral infection (Scandella
et al. 2008). However, these changes are brief and the organs usually return to the
steady state except in the case of a devastating destruction of lymphocytes as in,
e.g., AIDS. Even in that case, the structure of the LN remains. The case is quite
different for TLOs. Changes in the nature of the infiltrate occur in the NOD mouse
where Type 1 diabetes develops over the course of several weeks. The first his-
tologic indication is an infiltration of lymphoid cells around and in the islet of
Langerhans in the pancreas. The early (8 week) infiltrates are not organized and
have the hallmarks of “inflammation” and lack HEVs. Later (20 weeks), the
infiltrates have the appearance of TLOs, with T and B cell compartmentalization,
HEVs, and lymphatic vessels. Even later, the lymphoid cells are activated, b cell
destruction occurs, the mice are diabetic and the islet is fibrotic. The TLO has
disappeared (Penaranda et al. 2010). A similar situation is seen when in RIPTNFa
or RIPLTa mice when TNFa or LTa is expressed in the b cells in the pancreas of
B6 mice (Picarella et al. 1993). There is a gradual organization of the cells into
typical TLOs, which continue to enlarge over the age of the mouse. Treatment of
the mouse with a variety of activators (super antigens, etc.) does little to change the
appearance of the TLOs (A. Kratz PhD thesis). However, if RIPLTa or RIPTNFa
mice are crossed with mice transgenic for B7-1 (CD80) in b cells, infiltrating cells
become activated, the b cells are destroyed, the islet becomes fibrotic, and the mice
are diabetic (Ruddle, NH unpublished) (Guerder et al. 1995).

6 Summary and Conclusions

In this chapter, the characteristics, regulation, and roles of TLOs have been
described. These cellular infiltrates can be detrimental or beneficial, even in the
same condition, as in cancer where they can predispose to tumors, or protect against
them. The current challenge is to determine if there are any unique signals that
would permit their manipulation; on the one hand, inhibiting them in autoimmunity,
without seriously damaging the immune system and defense against pathogens,
and, on the other hand, enhancing them in cancer. One possibility would be to
target the LTab pathway since that is such a prominent feature of many TLOs.
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Early studies indicated that treatment with an LTbR-IgG fusion protein resulted in
reduction of HEVs and lymphoid chemokines in lacrimal glands and restoration of
tear production in a mouse model of Sjögren’s syndrome (Fava et al. 2011).
However, a clinical trial of a similar compound (Baminercept) failed to alleviate
clinical signs in Sjögren’s syndrome human patients, despite reducing levels of
plasma CXCL13 (St Clair et al. 2018). As noted above, it is likely that TLOs in the
adult are the result of several different initiators and may not be as dependent upon
the LTab signaling pathway as is SLO embryonic development. Thus, one could
envision treating additional pathways that would induce TLOs in particular situa-
tions. The remarkable improvement in histological and clinical signs in some
patients with RA after TNF inhibitor treatment suggests that pathway is a target for
TLO amelioration. Current information suggests that treatment to inhibit TLOs
while sparing SLOs and immune competence may be difficult because of the
extensive similarities between the two (Table 2).

Targeting LT to tumors and subsequent development of TLOs was accomplished
in a mouse model of melanoma by fusing the LTa gene to an antibody that rec-
ognizes a ganglioside on the tumor (Schrama et al. 2001). This resulted in devel-
opment of TLOs at the tumor and reduction of the number of metastases. Of special
interest was the presence of T cells in the tumor that recognized a melanocyte
differentiation antigen. This treatment was effective even in mice that lacked all
SLOs, providing evidence of antigen presentation and priming in the TLO at the
tumor site (Schrama et al. 2008). These data indicate that directed expression of LT
to tumors should result in TLOs capable of presenting antigen and eliminating
cancer.
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Abstract Pulmonary respiration inevitably exposes the mucosal surface of the lung
to potentially noxious stimuli, including pathogens, allergens, and particulates, each
of which can trigger pulmonary damage and inflammation. As inflammation resolves,
B and T lymphocytes often aggregate around large bronchi to form inducible
Bronchus-Associated Lymphoid Tissue (iBALT). iBALT formation can be initiated
by a diverse array of molecular pathways that converge on the activation and differ-
entiation of chemokine-expressing stromal cells that serve as the scaffolding for
iBALT and facilitate the recruitment, retention, and organization of leukocytes. Like
conventional lymphoid organs, iBALT recruits naïve lymphocytes from the blood,
exposes them to local antigens, in this case from the airways, and supports their
activation and differentiation into effector cells. The activity of iBALT is demon-
strably beneficial for the clearance of respiratory pathogens; however, it is less clear
whether it dampens or exacerbates inflammatory responses to non-infectious agents.
Here, we review the evidence regarding the role of iBALT in pulmonary immunity
and propose that the final outcome depends on the context of the disease.
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1 Introduction

Lymph nodes (LNs) are small, bean-shaped organs found along lymphatic vessels
that drain the parenchyma of non-lymphoid organs. Like other secondary lymphoid
organs (SLOs), LNs have a characteristic lymphoid architecture, with segregated B
and T cell domains organized by distinct stromal cell types (Fletcher et al. 2011;
Gentek and Bajenoff 2017). This structure facilitates the encounter of rare,
antigen-specific lymphocytes with antigen-bearing dendritic cells (DCs) and
thereby supports primary immune responses (Flajnik 2002; Neely and Flajnik
2016). LN formation occurs during late embryogenesis according to a develop-
mental program that proceeds independently of antigen or inflammation (Luther
et al. 2003). However, lymphocytes can also encounter antigen outside of LNs, as
shown in reptiles and birds (species that lack LN), and in experimental mice that
lack SLOs (Moyron-Quiroz et al. 2004). In these cases, T and B cells aggregate in
the parenchyma of peripheral non-lymphoid organs and even form distinct B and T
cell domains similar to those in conventional SLOs. Because these lymphoid
aggregates do not occur as part of a developmental program and are only formed
after local inflammation, they are termed tertiary lymphoid organs (TLO) (Hwang
et al. 2016; Cupedo et al. 2004).

Three types of TLOs are found in the lung: nodular inflammatory foci (NIF),
composed of clusters of myeloid cells and CD8+ T cells (Stahl et al. 2013);
granulomas, such as those formed during Mycobacterium tuberculosis infection,
characterized by a central core of infected macrophages surrounded by B cells and
T cells (Cadena et al. 2017); and inducible Bronchus-Associated Lymphoid Tissue
(iBALT), which most closely resembles the architecture of conventional SLOs and
is found in the perivascular space surrounding large blood vessels and along the
airways of the lung (Hwang et al. 2016; Fleige and Forster 2017). iBALT formation
occurs in response to numerous inflammatory conditions, using a variety of
molecular pathways. In this chapter, we will summarize the current understanding
of the steps leading to iBALT development and briefly review the impact of iBALT
on pulmonary immune responses against microbial infections, allergens, and
self-antigens.

2 Mechanisms Leading to iBALT Formation:
A Rainbow of Options

The spatial distribution of lymphocytes in TLOs resembles that in SLOs, with the
caveat that TLOs occur in places normally devoid of lymphocyte aggregates.
iBALT typically forms on the basal side of the bronchial epithelium, often in the
perivascular space of major blood vessels and consists minimally of a B cell fol-
licle, sometimes with an active germinal center (GC) (Holt 1993). A variety of B
cell phenotypes are observed in iBALT, including resting, naïve B cells,
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isotype-switched memory B cells, germinal center B cells, and antibody-secreting
plasma cells (GeurtsvanKessel et al. 2009; Halle et al. 2009; Rangel-Moreno et al.
2006). T cells and DCs are located along the bronchial epithelium and typically
surround the B cell follicle (Fig. 1a) (Halle et al. 2009).

The organization, maintenance, and survival of leukocytes in iBALT require the
presence of specialized stromal cells. For example, CD31+PNAd+ high endothelial
venules (HEVs) form near the outer edges of the B cell follicle and serve as entry
portals for recirculating lymphocytes (Ager 2017; Otsuki et al. 1989; Sato et al.
2000). Newly formed Thy1+ lymphatic endothelial cells (LECs) appear in the lungs
after an inflammatory response, particularly surrounding areas of iBALT, where
they support T cell recruitment and survival by secreting the chemokines, CCL21
and CCL19, as well as the cytokines, IL-7 and IL-33 (Baluk et al. 2009, 2014a). In
SLOs, the formation of B cell follicles depends on the secretion of CXCL13 by a
network of follicular dendritic cells (FDCs) that attract CXCR5+ B cells (Carlsen
et al. 2002; Yu et al. 2002). However, two types of B cell follicles are described in
iBALT—a classic follicle with CD35+CXCL13+ FDCs (Rangel-Moreno et al.
2011) and non-classical B cell follicle that lacks FDCs and instead uses podoplanin
(PDPN)+CD35−CD31−CXCL12+ fibroblast-like stromal cells to maintain the B cell

Fig. 1 Structure of iBALT. Immunofluorescence staining was performed on serial sections of
lungs from 3-week-old mice after treatment with LPS during the first week after birth. Top row
shows B cell follicle in iBALT (B220+ cells in blue delimited by the dotted line) and associated
HEV structures (PNAd+ in green and CD31+ n red) indicated by arrows. CD31+ blood
vasculature is observed in the whole field. Bronchi epithelia (Be) are indicated with arrowheads.
The bottom row shows IgD+ B cells inside the B cell follicle of iBALT (IgD+ in green) and the
associated FDC network that supports B cell aggregation (CD35+ cells in red). Scattered CD4 T
cells can be seen within and near the outer edges of the B cell follicle Be indicates bronchial
epithelium
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area (Fleige et al. 2014). Recruitment of B cells toward the PDPN+CXCL12+ cells
requires the expression of CXCR4 by B cells, similar to that described in the dark
zones of germinal centers in conventional SLOs (Rodda et al. 2015). While it
remains to be elucidated whether the two types of B cell follicles in iBALT are
functionally different, the differentiation of CXCL12+PDPN+ stroma requires IL-17
signaling (Fig. 1b).

A wide range of stimuli trigger iBALT formation including viruses
(Moyron-Quiroz et al. 2004; GeurtsvanKessel et al. 2009; Rangel-Moreno et al.
2007), bacteria (Baluk et al. 2014a; Fleige et al. 2014), fungi (Eddens et al. 2017),
helminths (Venturiello et al. 2007; Gentilini et al. 2011), microbial products, par-
ticulates, and other inflammatory stimuli (Kuroda et al. 2016; Gregson et al. 1979;
Noble and Zhao 2016). iBALT formation also occurs in mice that overexpress
(Botelho et al. 2013; Furtado et al. 2014) or lack (Kocks et al. 2007; Das et al. 2006;
Bouton et al. 2012) particular genes, each of which gives us insight into the
mechanisms that lead to TLO formation. In general, the development of iBALT
parallels the embryonic development of SLOs (Fig. 2). The first step of iBALT
development entails the activation and differentiation of stromal cell precursors into
iBALT supporting stroma—FDCs, HEVs, LECs, and CXCL12+PDPN+

fibroblasts
(Fig. 2a). In the second step, leukocyte-mediated inflammation increases the
recruitment of B and T cells around the activated stroma, leading to the maturation
of the iBALT structure (Fig. 2b). In the third step, inflammation resolves and
iBALT is maintained by homeostatic interactions between leukocytes and stromal
cells, which supports the recruitment and organization of leukocytes from the blood
(Fig. 2c).

The differentiation of each stromal cell type uses distinct molecular pathways
(Lu and Browning 2014; Girard et al. 2012). For example, the formation of LECs
depends on the secretion of IL-1b, which leads to VEGF expression and signaling
through VEGFR2 and VEGFR3 (Baluk et al. 2009, 2013, 2014a, b). Although the
formation of iBALT and the appearance of new lymphatic vessels occur at the same
time and are closely associated, the formation of new lymphatic vessels is inde-
pendent of iBALT development (Baluk et al. 2014a). The role of LTbR signaling is
not clear since LTb-deficient mice develop more lymphatic vessels than
LTa-deficient and WT mice when infected with Mycoplasma pulmonis (Mounzer
et al. 2010). However, the ectopic expression of LTa promotes TLO development
(Mounzer et al. 2010), including the formation of new lymphatic vessels,

JFig. 2 Sequential development of iBALT. a Early stage of iBALT formation requires the
differentiation and activation of stromal cells that segregate B cells and T cells. CXCL13
producing FDCs arise from the activation of FAP/+ fibroblastic cells in a LTab dependent
manner. b Local inflammation is required to amplify the activation of newly developed stromal
cells and the recruitment of activated lymphocytes and dendritic cells. During IAV infection
model, this stage would correspond to the lymphocyte aggregates observed right after clearance of
the virus around 14 days post-infection. c iBALT structures perdure after the peak of the
inflammatory response. At this stage, the feedback loop between stromal cells and the recruitment
of LTab-bearing lymphocytes is controlled by the frequency of recruitable LTab+ lymphocytes
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suggesting that LTa3 is sufficient to trigger the generation of new lymphatic vessels
and TLO. In contrast, the differentiation of FDCs, PDPN+

fibroblasts, and HEVs
heavily depends on LTbR signaling (Lu and Browning 2014), although in some
cases (i.e., LTab-deficient mice), it can be bypassed by the overexpression of TNFa
(Furtado et al. 2014; Guedj et al. 2014), suggesting that other members of the TNF
superfamily can act as triggers of FDC and PDPN+

fibroblast differentiation (Ciccia
et al. 2017; Ding et al. 2016; Berrih-Aknin et al. 2013).

A common mesenchymal stromal cell precursor in the LN gives rise to marginal
reticular cells (MRC), fibroblastic reticular cells (FRC), some FDCs, and CRCs, but
not HEVs (Denton et al. 2019a). This mesenchymal stromal cell precursor
expresses the fibroblast activation protein alpha (FAPa), VCAM, CXCL13, and
LTbR and is found in the perivascular region as lymphoid tissue inducer cells are
being recruited to the LN anlagen (Denton et al. 2019a). A similar fibroblastic
FAPa+ cell is found in the lungs of mice infected with influenza, one of the stimuli
that promotes iBALT formation (GeurtsvanKessel et al. 2009; Denton et al. 2019a,
b). Fate-mapping shows that FAPa+ mesenchymal cells are the precursors of
CD35+FAPa+ FDC-like cells in the B cell follicles of iBALT (Denton et al. 2019a).
Unlike in the LN anlagen, however, the differentiation of FAPa+ precursors into
mature stromal cells does not require the subset of innate lymphoid cells known as
lymphoid tissue inducer (LTi) cells (Denton et al. 2019a), most likely because of
numerous cell types, including activated B cells, T cells and DCs, can express LT
and promote stromal cell maturation (Rangel-Moreno et al. 2011; Furtado et al.
2014; Marinkovic et al. 2006).

In conventional SLOs, the transition of CD31+MadCAM−PNAd− blood
endothelial cells (BECs) to CD31+MadCAM+PNAd− immature HEVs and to
CD31+MadCAM−PNAd+ mature HEVs requires signaling through the LTbR and
the activation of the canonical (RelA, p52) and non-canonical (RelB) NF-kB
pathways (Ager 2017). In adult mice, LN HEVs need to be maintained by the
constant influx of homeostatically activated DCs arriving from the afferent lym-
phatics (Herzog et al. 2013; Baratin et al. 2015; Astarita et al. 2015). In fact, any
interruption of lymph flow (Mebius et al. 1991a, b), DC influx (Moussion and
Girard 2011; Wendland et al. 2011), or LTbR/NF-kB signaling (Martinet et al.
2013; Browning et al. 2005) leads to the rapid involution of HEVs into flattened
endothelial cells that lack PNAd expression. Similar pathways regulate
iBALT-associated HEVs that surround the B cell follicle (Weinstein and Storkus
2016; Sato et al. 2011; Drayton et al. 2003).

Interestingly, a wide variety of signals can trigger the initial differentiation of
stromal cells and start the process of iBALT formation. For example, the admin-
istration of LPS to neonatal mice leads to a strong IL-17 response, which turns on
CXCL13 and promotes iBALT formation (Rangel-Moreno et al. 2011). In fact,
IL-17 seems to be involved in the formation of iBALT and other TLOs in numerous
contexts (Rangel-Moreno et al. 2011; Fleige et al. 2012, 2014; Eddens et al. 2017).
Another Th17-related cytokine, IL-22, which is involved in epithelial repair and
TLO formation in other tissues (Aujla and Kolls 2009; Barone et al. 2015; Pociask
et al. 2013; Rendon et al. 2013), may also play a role in iBALT formation, as B cell
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follicles are mildly reduced in size and number in the lungs of M. tuberculosis-
infected IL-22-deficient mice (Khader et al. 2011).

Th17-related molecules are not the only inducers of iBALT formation, as mice
infected with modified Vaccinia Ankara develop iBALT in an IL-17-independent
fashion (Fleige et al. 2012, 2014). Mice infected with influenza also develop
iBALT. In this case, however, type I IFN signaling is responsible for CXCL13
expression by lung fibroblasts and subsequent formation of B cell aggregates
(Denton et al. 2019b). Similarly, mice infected with Pneumocystis murina develop
iBALT in response to a mixed Th2 (IL-13) and Th17 (IL-17A) response, in which
CXCL13 expression by lung PDPN+

fibroblasts is dependent on the synergistic
effects of IL-13 and IL-17 on IL-6 (Eddens et al. 2017). The pulmonary adminis-
tration of particulates like alum triggers iBALT formation via macrophage cell
death and IL-1a release (Kuroda et al. 2016). Similarly, the IL-1-related cytokines,
IL-36 and IL-18, promote the formation of TLOs in colorectal cancer (Weinstein
et al. 2019) and iBALT formation in COPD patients (Briend et al. 2017). Taken
together, these data suggest that the first step of iBALT development depends on
the differentiation of stromal cells capable of recruiting and organizing leukocytes
via the production of chemokines like CXCL13 and that subsequently, the accu-
mulation of activated, LT-expressing lymphocytes generate a positive feedback
loop that maintains the structure.

Interestingly, the impairment of lymphatic drainage from the lungs is sufficient
to trigger the formation of iBALT (Reed et al. 2019). Because the lymphatic vessels
in the lungs of humans and mice lack smooth muscle cells in the lymphangions
responsible for collecting lymph (Reed et al. 2019), the lymph flow from the lung
depends on changes in the thoracic pressure produced by respiration. However,
mice with a platelet-specific deletion of CLEC2, a ligand for PDPN and highly
expressed on platelets, have impaired lymphatic flow from the lungs and sponta-
neously develop iBALT (Reed et al. 2019). Moreover, the ablation of CD11c+ cells,
presumably DCs, leads to the dissolution of iBALT structures (GeurtsvanKessel
et al. 2009). Although CD11c+ cell depletion affects cells other than DCs, including
activated B cells (Zhang et al. 2019; Winslow et al. 2017; Naradikian et al. 2016)
and some FDCs (Aziz et al. 1997), these studies suggest that DCs are important for
the homeostatic maintenance of iBALT. Consistent with this idea, the loss of CCR7
on CD11c+ cells leads to iBALT formation (Halle et al. 2009; Fleige et al. 2018),
perhaps because activated DCs accumulate in the lung. Together these data suggest
that DCs help maintain iBALT by providing LT signals to stromal cells (Muniz
et al. 2011). Interestingly, CCR7 also regulates the trafficking of regulatory CD4+ T
cells (Tregs), which are important for limiting inflammatory responses (Georgiev
et al. 2019). Neonatal mice lacking CCR7 spontaneously form iBALT due to
impaired Treg migration and loss of inflammatory control (Foo et al. 2015; Cowan
et al. 2013). However, once iBALT is formed, it recruits FoxP3+ Tregs (Li et al.
2019; Trujillo et al. 2010; Siemeni et al. 2019), which help limit local inflammatory
responses. These data indicate that once formed, iBALT is maintained by home-
ostatic mechanisms similar to those that maintain conventional SLOs.
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3 Role of iBALT in Immunity Against Infectious Diseases

The structure of iBALT suggests that it should promote primary immune responses
against pulmonary antigens. In fact, antigen-specific T cell and B cell responses are
initiated in iBALT, leading to B and T cell activation, germinal center formation,
and the differentiation of plasma cells and effector T cells (Halle et al. 2009;
Gregson et al. 1979; Shilling et al. 2013). The functional outcomes of these
responses are often dependent on the type of pathogen or antigen as well as the
quality of the resulting immune response. Below, we will summarize what we know
about the role of iBALT in regulating immunity to different classes of pathogens.

a. Mycobacterial and other bacterial infections

The development or expansion of iBALT is often associated with bacterial infec-
tions (Baluk et al. 2014a; Khader et al. 2011; Jupelli et al. 2013; Chiavolini et al.
2010; Linge et al. 2017). For example, rats infected with Pseudomonas aeruginosa
develop iBALT (Iwata and Sato 1991), as do pigs infected with Salmonella
oranienburg, Mycoplasma granularum, or hemolytic streptococcus (Jericho et al.
1971a, b). In mice, pulmonary infection with Pseudomonas aeruginosa or
Staphylococcus aureus promotes the development of iBALT, in part via the
expression of CXCL12, CXCL13, and IL-17A (Frija-Masson et al. 2017), similar to
that seen in other models.

A consistent feature of most bacterial infections is the recruitment of neutrophils,
which likely enhance iBALT formation in a variety of ways. For example, neu-
trophils express cytokines like APRIL that activate B cells (Tecchio et al. 2014).
Moreover, neutrophils secrete proteases and reactive oxygen species that trigger
epithelial and mesenchymal cell activation (Meyer-Hoffert and Wiedow 2011). In
fact, serine proteases made by neutrophils promote iBALT formation by causing
damage and triggering the expression of inflammatory chemokines (Solleti et al.
2016). Activated neutrophils also produce neutrophil extracellular traps (NETs),
which consist of granular components precipitated on ejected chromatin (Kaplan
and Radic 2012). The NETs help trap and kill bacteria, but also cause damage and
inflammation that facilitate iBALT formation (Sørensen and Borregaard 2016; Zhao
et al. 2015).

iBALT formation is also associated with infection by Mycobacterium tubercu-
losis, the causative agent of pulmonary tuberculosis, which kills more than a million
people per year worldwide and is rapidly acquiring antibiotic resistance (Orme et al.
2015). The course of disease is characterized by a temporary paralysis of DC
migration to the lung-draining lymph nodes (Curtis et al. 2015; Vanessa et al. 2015;
Lai et al. 2014; Roberts and Robinson 2014), which delays the generation of Th1
and Th17 responses (Doz et al. 2013; Demangel et al. 2002), thereby allowing the
bacilli to accumulate in infected macrophages (Khan et al. 2019; Kang et al. 2011;
Blomgran et al. 2012). Even when protective Th1 and Th17 responses are gener-
ated, M. tuberculosis survives, but is contained in a granuloma—a type of inducible
lymphoid structure with a central area of infected macrophages surrounded by
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activated T cells and B cells (Cadena et al. 2017). These activated B and T cells
often form iBALT surrounding the granulomas in M. tuberculosis-infected humans
(Zhang et al. 2011; Ulrichs et al. 2004), non-human primates (Ganchua et al. 2018),
and mice (Khader et al. 2011; Slight et al. 2013). Importantly, the presence of
iBALT is associated with the maintenance of latency and containment of infection,
whereas the absence of iBALT is associated with active disease (Ulrichs et al. 2004;
Slight et al. 2013).

Although protective immunity against M. tuberculosis is mediated by
IFNc-producing Th1 cells, more recent data suggest IL-17A is also required
(Khader et al. 2007, 2011; Doz et al. 2013; Martínez-Barricarte et al. 2018). IFN-c
activates macrophages and kills the bacilli, whereas IL-17A increases CXCL13
expression, which is required for the recruitment and organization of cellular
infiltrates (Khader et al. 2007, 2011; Martínez-Barricarte et al. 2018; Gopal et al.
2013). Immune responses that deviate from these pathways fail to effectively
control disease, as shown in mice previously exposed to Schistosoma mansoni egg
antigen (SEA), which triggers a mixed Th1/Th2 response and thereby shifts the
leukocyte infiltrate from B cell follicles to perivascular T cells and ultimately fails
to control M. tuberculosis (DiNardo et al. 2016; Monin et al. 2015). Thus, effective
immunity to M. tuberculosis requires the proper spatial positioning of cells in the
lung consistent with iBALT formation.

Given the apparent protective effects of iBALT in the context of pulmonary
infections, it makes sense to develop pulmonary vaccines that also trigger iBALT
formation (Sanchez-Guzman et al. 2019). For example, pulmonary vaccination with
Francisella tularensis LPS as a vaccine antigen and recombinant Porin B as an
adjuvant promotes iBALT formation and germinal center development, leading to
significant titers of LPS-reactive IgG and IgM that, together with iBALT, protect
the immunized mice from subsequent challenge infection (Chiavolini et al. 2010).
Similarly, the pulmonary administration of protein nanoparticles promotes iBALT
formation in an antigen-non-specific fashion, leading to improved immune out-
comes following pulmonary infection with the intracellular bacteria Coxiella bur-
netii (Wiley et al. 2009). Thus, the formation of iBALT in response to
antigen-specific and antigen-non-specific stimuli provide subsequent protection
from bacterial infections.

b. Viral infections

Pulmonary infection with viruses, including influenza (GeurtsvanKessel et al. 2009;
Denton et al. 2019b; Richert et al. 2013), MVA (Fleige and Forster 2017; Fleige
et al. 2018; Mzinza et al. 2018), respiratory syncytial virus (RSV) (Auais et al.
2003), SARS coronavirus (Channappanavar et al. 2014) and adenovirus (Jericho
et al. 1971b), is often associated with the formation of iBALT. In mice, influenza
infection promotes iBALT formation, which supports germinal center responses
and the local differentiation of influenza-specific plasma cells (GeurtsvanKessel
et al. 2009; Rangel-Moreno et al. 2011), many of which differentiate locally, as the
disruption of iBALT two weeks after infection reduces local IgA production
(GeurtsvanKessel et al. 2009). Moreover, influenza-specific memory B cells in the
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lung are more broadly reactive against numerous strains of influenza (Adachi et al.
2015), suggesting that the BCR selection process in the germinal centers of iBALT
is qualitatively different than that in LNs. Moreover, mice with pre-existing iBALT
experience an accelerated, influenza-specific antibody response in the lung
(Rangel-Moreno et al. 2011; Wiley et al. 2009) and perform better than control
mice in terms of weight loss and viral titers. Interestingly, iBALT also forms in the
lungs of influenza-infected adult monkeys, but not in influenza-infected infants
(Holbrook et al. 2015), leading to poor antibody responses and increased pul-
monary damage in infants.

The presence of iBALT also provides a beneficial effect with SARS coronavirus,
which is cleared more rapidly in mice with iBALT by an accelerated antibody
response (Wiley et al. 2009). Similarly, mice that have iBALT induced as a result of
neonatal LPS exposure lose less weight and clear pneumovirus faster than mice
without iBALT (Foo et al. 2015). Importantly, CD4+ T cell response to pneu-
movirus is accelerated in mice with iBALT (Foo et al. 2015), suggesting that the
presence of iBALT in the lung leads to faster, more efficient pulmonary immune
responses that promote rapid viral clearance and reduce morbidity after infection.

Although a faster more robust immune response may be desirable for immunity
to many pathogens, some viruses elicit immune responses that are themselves the
primary cause of pathogenesis. For example, RSV causes acute bronchiolitis in
children and is linked to recurrent wheezing and asthma (Munywoki et al. 2013).
Interestingly, infection of CCR7-deficient mice with RSV leads to enhanced pro-
duction of IL-17 and IL-13 by CD4+ T cells and excessive mucus production
(Kallal et al. 2010). RSV-infected LTa-deficient mice, which lack conventional
lymphoid organs, also experience excessive IL-17 and IL-13 expression and
increased mucus production in the lung, suggesting that local immune responses in
iBALT are responsible for pathology (Kallal et al. 2010). Similar exacerbations of
pulmonary pathology are linked to the presence of iBALT in RSV-infected humans
(Johnson et al. 2007). The combination of a pulmonary allergic response and RSV
infection is particularly damaging in guinea pigs, which develop exacerbated
iBALT hyperplasia, goblet cell metaplasia, and airway hypersensitivity (Robinson
et al. 1997). Thus, in the context of RSV and perhaps other Th2-driven pulmonary
conditions, the presence of iBALT may exacerbate disease simply by driving
bigger, better faster immune responses that are more pathologic than protective.

c. Fungal infections

Mice infected with the opportunistic fungal pathogen, Pneumocystis, often generate
a mixed Th17/Th2 response. Importantly, the combination of IL-13 and IL-17
synergistically promotes the differentiation of pulmonary fibroblasts and their
expression of CXCL13, ultimately leading to iBALT formation (Eddens et al.
2017). Activated DCs also accumulate in the lungs of Pneumocystis-infected mice
and potentiate T cell priming to other pulmonary antigens (Swain et al. 2011). In
fact, prior infection with Pneumocystis enhances subsequent immunity to the
influenza virus, leading to the accelerated appearance of influenza-specific anti-
bodies and reduced expression of inflammatory cytokines in the bronchoalveolar
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lavage fluid, thereby reducing morbidity and accelerating viral clearance (Wiley and
Harmsen 2008). Thus, the formation of iBALT in response to one pathogen
enhances immunity to unrelated pathogens.

4 Role of iBALT in the Immune Response Against
Non-infectious Agents

a. Allergens

Allergic or atopic immune responses are mediated by inappropriate Th2 and/or
Th17 responses against non-pathogenic, environmental antigens, such as food
antigens (peanut, egg), arthropods (house dust mite, cockroach), and plant com-
ponents (pollen). The frequency of individuals developing severe allergies or
asthma is rapidly increasing for unknown reasons (Jappe et al. 2019). Allergic
responses typically involve a sensitization phase, in which allergen exposure primes
T cells, but does not cause symptoms (Pizzolla et al. 2016; Shilovskiy et al. 2019),
and a challenge phase, in which exposure to the same allergen caused an atopic
inflammatory response (Shinoda et al. 2017; Gregory and Lloyd 2011). In the lung,
chronic allergic responses promote airway remodeling, goblet cell hyperplasia and
excessive mucus production, ultimately leading to reductions in lung function
(Elieh Ali Komi and Bjermer 2019; Holt and Sly 2007) and obstructive leukocyte
infiltration (Lainez et al. 2019; Maselli and Hanania 2019).

Chronic or repetitive exposure to allergens can trigger iBALT formation (Guest
and Sell 2015). Hypersensitivity pneumonitis (sometimes called farmer’s lung) is a
classic example, in which repeated exposure to molds or other antigens in barn dust
leads to lung disease, in which iBALT features prominently (Suda et al. 1999). The
inflammatory milieu of allergic responses supports iBALT formation via numerous
mechanisms, including the combined expression of IL-13 and IL-17 that promote
stromal cell differentiation (Eddens et al. 2017). Moreover, Th2-related cytokines
like IL-5 promote the recruitment of eosinophils, which likely accelerate iBALT
formation by releasing granular contents including proteases and cytokines that in
turn cause damage and support cellular differentiation (Lee et al. 1997a; b). In fact,
this process can be mimicked by the overexpression of IL-5 in club cells (Lee et al.
1997a), which promotes eosinophil accumulation and iBAT formation in the
absence of exogenous antigen.

The presence of iBALT in the lungs might contribute to the development of
allergies by preferentially recruiting Th2 memory cells into the lung (Fleige et al.
2018; Shinoda et al. 2016), by increasing the concentration of IL-33 due to the
differentiation of new lymphatic endothelial cells (Shinoda et al. 2016, 2017), or by
supporting germinal centers that produce IgE+ or IgG1+ plasma cells (Chvatchko
et al. 1996). In fact, iBALT may generally exacerbate atopic inflammation by
supporting bigger, better, faster (albeit inappropriate) immune responses in the
lung. One way to accomplish this goal would be to recruit Gata3+CXCR5+ T
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follicular helper (Tfh13) cells to iBALT (Noble and Zhao 2016). Tfh13 cells
strongly produce IL-4, IL-5, and IL-13, but not IL-21, conditions that support B cell
differentiation into antibody-secreting cells that make IgG1 or high-affinity IgE
(Gowthaman et al. 2019).

Although repeated allergen exposure can lead to eosinophil recruitment, mucus
production, and IgE secretion, thereby promoting allergic inflammation and
pathology, these same activities should help control parasitic infection. In fact, mice
pre-sensitized with house dust mite extract developed iBALT areas, recruited
eosinophils, and expressed high levels of IL-4, IL-13, and IL-33 in the lungs, which
together acted to prevent the maturation of Ascaris larvae, whereas mice not
pre-sensitized with house dust mite failed to prevent larval development
(Gazzinelli-Guimaraes et al. 2019). These data suggest that although Th2-driven
iBALT formation may enhance atopic responses and promote pulmonary inflam-
mation, it may also be beneficial in the clearance of pulmonary parasites.

b. Self-antigens: the good and the bad, can we tell them apart?

TLOs, including iBALT, are often formed around tumors, in transplanted organs
and in the target organs of autoimmune responses. For example, the presence of
iBALT near tumor nests in patients with non-small-cell lung cancer (NSCLC)
correlates with a better prognosis (Dieu-Nosjean et al. 2016). Within iBALT, higher
numbers of DCs in close proximity to tumor cells (Dieu-Nosjean et al. 2008), the
presence of Tbet+CD4+ T cells (Goc et al. 2014), and the frequency of
CD161+CD4+ T cells (Braud et al. 2018), all indicate an active anti-tumor response
and correlate with better clinical outcomes. For some tumors, including breast
cancer (Peske et al. 2015), ovarian cancer (Kroeger et al. 2016; Truxova et al.
2018), and NSCLC (Germain et al. 2014), the presence of TLOs is associated with a
favorable prognosis, whereas in tumors like colorectal cancer, the chronic inflam-
mation associated with TLO formation is also linked to tumorigenesis (Weinstein
et al. 2019).

TLO development is initially triggered inflammatory responses that promote the
activation and differentiation of mesenchymal cells and trigger the expression of
CXCL13. In tumor that lack microbial components, inflammatory signals might
come from the release of danger-associated molecular patterns (DAMPs), such as
IL-1a (Kuroda et al. 2016), IL-18 (Briend et al. 2017), or IL-36c (Weinstein et al.
2017). Increased CXCL13 expression and the recruitment of LT-expressing lym-
phocytes promote the expression of ICAM, VCAM, PNAd, and CCL21 in blood
endothelial cells (BEC) and reinforce the recruitment of more LT-bearing cells. The
continuous signaling of LTab-LTbR activates the non-canonical NF-kB pathway
and leads to the differentiation of BEC into PNAd+ HEV (Ager 2017). Can the
process of HEV development be exploited to improve immune responses against
tumor cells? In this regard, VEGFR2 blockade prevents angiogenesis in tumors, but
also induces PD-L1 expression by tumor cells, thus impairing anti-tumor immunity.
However, the combined blockade of VEGFR2 and PD-L1 antibody maintained
anti-tumor immunity and promoted the differentiation of BEC into HEVs by the
constant influx of activated LT-expressing lymphocytes (Allen et al. 2017). Thus,
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the mechanisms that regulate lymphocyte recruitment and TLO formation can be
exploited for therapeutic benefit.

In contrast to the beneficial effect of local immunity against tumors, local
immune responses against organ transplants, including transplanted lungs, can lead
to graft rejection (Kumar et al. 2018). Not surprisingly the formation of iBALT with
active germinal centers is indicative of an ongoing immune response against
transplanted lungs and is associated with the development of antibody-mediated
rejection (Gauthier et al. 2019; Shenoy et al. 2012; Hasegawa et al. 1999).
Interestingly, this process can be prevented by the recruitment of Tregs, which
suppress germinal center formation in iBALT and prevent allo-antibody production
(Li et al. 2019). The switch from immunity to tolerance is mediated by the blockade
of costimulatory signals through CD40 and CD28. Moreover, once Tregs are
recruited to iBALT areas in the transplanted lung, it can be re-transplanted to
another recipient without rejection (Li et al. 2019)! Importantly, CXCR5+ Tregs in
limiting lung rejection after chronic GVHD were demonstrated in B10.BR mice
receiving lungs from C57BL/6 donors (McDonald-Hyman et al. 2016). In the
recipient B10.BR mice, lung transplants improved their function and reduced the
number of T follicular helper cells when receiving a passive transfer of CXCR5+

Tregs but not with CXCR5− Tregs. Overall these studies suggest that iBALT
facilitates the entry and interaction of CXCR5+ lymphocytes and that the type of
local immune response depends on the lymphocyte subsets recruited (Li et al. 2019;
McDonald-Hyman et al. 2016; Flynn et al. 2014).

Furthermore, in autoimmune diseases like rheumatoid arthritis (RA) and
Wegener’s granulomatosis (WG), iBALT can develop in the lungs and its occur-
rence is associated with a chronic and worsening status of the disease (Shilling et al.
2013). For instance, in RA increased concentration of serum rheumatoid factor
(IgM antibodies directed against IgG Fc portion) correlates with the appearance of
rheumatoid pulmonary vasculitis and TLO in the lungs (Rangel-Moreno et al.
2006). In Wegener’s granulomatosis (WG), lymphocytes in the lungs can form
diffuse infiltrates, but also can form structured iBALT and form germinal centers
(Shilling et al. 2013). The pronounced infiltration of granulocytes is characteristic
of a Th17-driven disease and is consistent with the role of IL-17 in promoting
iBALT formation.

5 Conclusion

Like many tertiary lymphoid organs, iBALT forms in response to a variety of
inflammatory stimuli that converge on the differentiation of specialized stromal
cells, the expression of homeostatic chemokines and the recruitment and organi-
zation of activated lymphocytes. Once formed, iBALT participates in local, pul-
monary immune responses by collecting antigen and APCs and supporting B and T
cell responses. The biological outcome of those immune responses is on the type of
antigen or pathogen and may be modified by the presence of iBALT by changing

Role of iBALT in Respiratory Immunity 33



the kinetics or magnitude of the resulting immune response, which may be bene-
ficial or harmful depending on the context. Thus, understanding the mechanisms
that control iBALT formation and function should give us insights into ways to
improve immunity to pathogens and malignancy and to dampen atopic or inflam-
matory diseases.
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Abstract An interesting phenomenon of chronic inflammation is that the associ-
ated cytokines can simultaneously promote inflammatory cell recruitment and tissue
pathology as well as tissue regeneration and development of inducible organized
lymphoid tissues (tertiary lymphoid organs or TLO), demonstrating the remarkable
dynamics of the immune interactions with host tissues. In mucosal tissues, chronic
immune-mediated inflammation can present a mixed inflammatory pathology
including neutrophil infiltrates along with the lymphocytic aggregates. The factors
driving this pattern may involve effects on barrier function as well as inducible
mechanisms associated with immune surveillance. The relative contribution of
these factors may be important in determining the outcome, from resolution to
inflammatory stalemate to progressive tissue pathology and destruction. Here, we
focus on the specific impact of cytokine-driven inducible lymphoid cells and tissues
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on immune surveillance at mucosal surfaces, including the induction of epithelial M
cells. We propose a model of chronic intestinal inflammation to assess the relative
contributions of mucosal barrier integrity, M cell transcytosis of luminal microbes,
and inducible lymphoid tissues.

1 Introduction

Tissue inflammation, which is classically characterized by the recruitment of
blood-borne cells from the blood into the tissues, can be categorized into two main
histological patterns: acute inflammation versus chronic inflammation. Acute
inflammation is characterized by short-lived recruitment of neutrophils (usually in
response to the bacterial infection) with programmed resolution mediated by
phagocytic macrophages and mediators such as resolvins and maresins, which alter
the patterns of cell recruitment (Sansbury and Spite 2016; Ji et al. 2011; Duvall and
Levy 2016; Serhan and Levy 2018). Chronic inflammation, by contrast, is a per-
sistent accumulation of recruited cells that can display different patterns, including
(but not limited to) lymphocytic infiltration, allergic inflammation with eosinophil
recruitment, or granuloma formation. The chronic inflammatory response can be
due to failed resolution of an acute inflammatory response as with a persistent
microbial infection, or it can be driven by an adaptive immune response to repeated
antigen stimulation, as in allergic asthma, or autoimmune disease.

In mucosal tissues, such as the intestine, chronic inflammation can present a
mixed picture, with both neutrophil and lymphocytic infiltration in the intestinal
lamina propria. The chronic nature of the inflammation would be expected to drive
a protective adaptive immune response, and indeed, the development of tertiary
lymphoid tissues in the intestine suggests an expansion of local active immune
surveillance and adaptive immunity. However, in some disease settings, the mixed
inflammatory pattern may persist, or as in the case of Crohn’s disease can also show
a discontinuous “skip lesion” pattern (Kleer and Appelman 2001), where normal
tissue can be immediately adjacent to fully inflamed lesions. Thus, the mechanism
(s) are sought to help explain the localization and progression of chronic (especially
mixed) inflammatory pathology. In this discussion, we will address the interaction
between acute inflammation, immune surveillance leading to adaptive immune
responses, and the mechanisms promoting chronic inflammatory pathology even in
the presence of an apparent robust mucosal immune response.

2 Chronic Inflammation and Tertiary Lymphoid Organs

A chronic inflammatory response at infected and damaged tissue sites promotes a
persistent interaction between local immune cells and tissue-resident stromal cells.
The consequences of this interaction are the accumulation of T and B cell
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populations in an organized fashion to form tertiary lymphoid organs
(TLO) (Barone et al. 2015; Jones et al. 2016). TLOs are highly organized ectopic
lymphoid follicles that develop extrinsic to the secondary lymphoid organs
(SLO) such as spleen and lymph nodes (Shipman et al. 2017). Like SLO, these
lymphoid structures harbor a sophisticated organization of T cell zones and B cell
follicles mimicking germinal center (GC) like structures (Shi et al. 2001).
Development of TLO has been associated with the pathogenesis of several
autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis,
multiple sclerosis, myasthenia gravis, and diabetes (Shi et al. 2001; Hsieh et al.
2011; Chang et al. 2011; Thurlings et al. 2008; Humby et al. 2009; Wengner et al.
2007; Takemura et al. 2001; Pikor et al. 2015). In other instances, TLOs are formed
in the target tissues or organs of chronic infection and inflammation including the
liver in hepatitis C virus infection, the lung in influenza A virus infection, the
intestines in inflammatory bowel disease as well as sites of chronic allograft
rejection, and even cancer (Buettner and Lochner 2016; Olivier et al. 2016; Aloisi
and Pujol-Borrell 2006; Buckley et al. 2015).

3 Cell—Cytokine Interactions in TLO Formation

The formation of organized lymphoid tissues requires the coordinated interactions
of a variety of cells responding to inducing cytokines; the induced stromal cells in
turn produce cytokines and chemokines that help coordinate the organization and
functions of the associated cells. While many of these interactions have been well
documented for the development of constitutive lymphoid organs, such as lymph
nodes, inflammation-induced lymphoid tissue development also needs to incorpo-
rate the influences of inflammatory cytokines that may alter the function of the
induced lymphoid tissues. Here, we will describe common cytokines and stromal
cells as well as the unique role of the inflammatory cytokine tumor necrosis factor
(TNFa, or in this review, TNF).

Specialized lymphoid tissues like TLO appear spontaneously at sites of
inflammation where LTa1b2 signaling is critical for the priming of stromal
fibroblast cells, which may trigger lymphoid tissue development (Drayton et al.
2003; Kratz et al. 1996). The role of induced stromal fibroblast cells in TLO
formation is critical, although our understanding of the molecular process defining
induction of the different specialized cells is limited; yet, this specialization is
critical in the coordinated development of the organized lymphoid tissue. Thus,
specific expression of TNF family members like LIGHT and RANKL by different
subsets of stromal cells has been shown to be involved in lymphoneogenesis in
different models of inflammation (Schrama et al. 2001; Yu et al. 2004; Hess et al.
2012; Mueller and Hess 2012). RANKL is also known to be critical in the induction
of M cells (discussed below), an important component of mucosal immune
surveillance (Knoop et al. 2009; Wood et al. 2016). Besides TNF, the IL23 family
member IL17 was deemed important in the activation of lung fibroblasts in the
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development of induced bronchus-associated lymphoid tissue (iBALT) (Fleige
et al. 2014).

One theory highlights the role of recruited and resident myeloid cells at inflamed
tissue sites in triggering activation of resident fibroblasts (Peduto et al. 2009;
Barone et al. 2016; Peters et al. 2011; Khader et al. 2011; Rangel-Moreno et al.
2006). In this scenario, TNF released by the local myeloid cells may upregulate the
expression of other cytokines and chemokines such as IL6 and BAFF on stromal
fibroblasts resulting in their activation (Hardy et al. 2012; Husson et al. 2000).
Circulating monocyte-derived macrophages are recruited to sites of chronic
inflammation, where they produce chemokines such as CXCL13 and CXCL12 to
help initiate TLO formation (Luo et al. 2019). This process is further aided by
IL7-expressing stromal fibroblast cells, which influence the secretion of these
chemokines in the local immune environment (Meier et al. 2007).

B cells are another cell subset recruited to sites of chronic inflammation and are a
predominant lymphoid cell population in TLO (Luo et al. 2019). CXCL13 is a B
cell attracting chemokine (also known as B cell attracting chemokine 1 or BCA1),
which is secreted by both macrophages and induced follicular dendritic cells
(FDC) and leads to B cell aggregation (Drayton et al. 2006). B cells are also potent
producers of lymphotoxins (LT) (Laskov et al. 1990). In this context, resident naïve
B cells and follicular DCs may resemble lymphoid tissue inducer (LTi) cells by
expressing sufficient levels of LTa1b2 that could then drive differentiation and
maturation of mesenchymal cells (Ngo et al. 2001; Moussion and Girard 2011).

Overexpression of tumor necrosis factor (TNF) in specific tissue locations is
proposed to be involved in TLO development; indeed, the phenomenon of “lym-
phoid neogenesis” was characterized in the context of tissue over-production of
TNF (Drayton et al. 2006; Brembilla et al. 2016; Picarella et al. 1993). Although
there is some level of correlation between ectopic overexpression of TNFa and
formation of TLO in the periphery (Barone et al. 2016), the mechanisms driving
this phenomenon are not clearly understood. In tissues with chronic inflammation,
the cytokine TNFa is also commonly found as the main contributor to inflammatory
pathogenesis, since it can be produced by many different cell types, including
myeloid cells, fibroblasts, and lymphocytes, as a consequence of NF-jB-dependent
signaling. Indeed, TNF is a nearly ubiquitous component in any inflammatory
response. Consequently, anti-TNF biologics have recently become a common
therapeutic in several chronic inflammatory diseases, including plaque psoriasis,
inflammatory bowel disease, and rheumatoid arthritis (Monaco et al. 2015).
Since TLO formation may be viewed as a beneficial expansion of mucosal
immunity, there is a potential paradox if anti-TNF therapeutics may have both an
inhibitory effect on TNF-mediated inflammation as well as an anti-therapeutic effect
if it also inhibits TLO formation.

Thus, TLO development can be broadly viewed as a progression beginning with
signals from pro-inflammatory cytokines produced by recruited and tissue-resident
myeloid cells, which trigger priming of the local stromal fibroblasts. Activation of
fibroblasts, which marks the first step in TLO development, leads to further pro-
duction of pro-inflammatory cytokines and adhesion molecules. Simultaneously, a
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variety of resident cells are induced to produce inflammatory cytokines such as
TNFa, LTa, and LTa1b2, which further promotes the maturation of TLO.
Fulfillment of this second step requires combined and continued activation of
TNFR1 and LTbR signaling pathways (Gräbner et al. 2009; Lötzer et al. 2010)
followed by downstream expression of cytokines and chemokines that systemati-
cally regulate differentiation of resident fibroblasts and give rise to specialized
lymphoid tissues.

4 Customized Stromal Cells and Immune Surveillance:
Intestinal M Cells

The induction of specialized lymphoid tissue stromal cells and organized structures
is strongly dependent on the local tissue environment. For example, the induction of
organized lymphoid tissues in pancreatic islets shows a strong resemblance to the
lymph node. By contrast, expression of the lymphocyte chemokine CCL21 in the
central nervous system only produces disorganized lymphocyte recruitment under
specific conditions such as toxoplasma infection, and even under those conditions,
organized lymphoid structures fail to appear. Expression of TNF in the CNS
astrocytes induced perivascular lymphocytic infiltrates with HEV-like vascular
changes, but without clear organization into lymphoid tissue (Stalder et al. 1998).

Regarding the influence of tissue environment, it should also be noted that
chronic inflammation and TNF are not only associated with induction of specialized
stromal cells, and it can also drive tissue stem cells or other progenitor cells pro-
moting tissue regeneration. For example, in multiple sclerosis, TNF produced by
autoimmune inflammation also drives the activation of astrocytes and remyelination
by oligodendrocytes (Arnett et al. 2001; Madsen et al. 2016; Patel et al. 2012). The
intestine may have parallels to this phenomenon, both in the induction of the
organized lymphoid stromal cells, but perhaps also in the regulation of the epithelial
barrier.

Returning to our focus on chronic inflammation in the intestine, here too the
tissue determines local customization in the induction of specialized stromal cells.
Thus, the unique feature of mucosal lymphoid tissue is that in contrast to lymph
nodes which rely on lymphatic drainage of myeloid antigen-presenting cells (e.g.,
Langerhans cells, dendritic cells) from the tissue into the lymph node, antigen
delivery is instead provided only at the luminal epithelium by M cells. M cells are
crypt stem cell-derived epithelial cells that have acquired specialized ability to
capture microparticles from the intestinal lumen and transport them across the
epithelial barrier to waiting dendritic cells in the organized lymphoid tissues (e.g.,
Peyer’s patches) below (Kraehenbuhl and Neutra 2000; Lo 2017; Dillon and Lo
2019). Their induction is largely dependent on expression of RANKL by induced
reticular fibroblastic cells, normally found among stromal cells in the organized
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lymphoid tissues, though in vitro and in vivo studies support a role for TNF as well
in M cell induction (Knoop et al. 2009; Wood et al. 2016).

The contrast with immune surveillance mechanisms in solid organs is intriguing;
in most tissues, resident myeloid cells such as tissue macrophages and skin
Langerhans cells use scavenger receptors and phagocytosis to acquire antigen, and
then directly present processed antigen to lymphocytes to initiate immune
responses. M cells, which are non-motile epithelial cells, instead use a combination
of mechanisms including changes at their apical surface to enable capture of sus-
pended biological microparticles based on surface charge. A few surface molecules
have also been identified as “capture receptors” for pathogen entry (Lo et al. 2012;
Hase et al. 2009; Neutra et al. 1996a, b; Barton et al. 2001; Clark et al. 1998;
Mengaud et al. 1996), though it could be argued that in many cases this mechanism
was a pathogen adaptation to the host rather than an evolved M cell-specific
strategy for general immune surveillance.

M cells are most commonly found in the epithelium overlying organized
mucosal lymphoid tissues such as Peyer’s patches and ILFs, and this characteristic
localization highlights the role M cells play in mucosal immune surveillance.
However, because they are epithelial cells, they are only specialized in micropar-
ticle capture and do not perform antigen processing or presentation, and do not
express any lymphocyte co-stimulation ligands. Instead, they transport the particles
and antigens across the epithelial barrier for delivery to intimately associated
sub-epithelial dendritic cells; thus, they act principally as “antigen delivery” cells
rather than “antigen-presenting” cells. Separating the delivery from presentation
among two different cell types at the epithelial barrier allows a neat differentiation
of specialized lineages, but it also separates functional penetration of the barrier
from functional immune surveillance (Fig. 1).

Mucosal lymphoid tissues and M cells appear to have an interesting relationship
to chronic inflammation and TNF. While Peyer’s patches and M cells are found in
mice lacking either of the TNF receptor genes (Parnell et al. 2017), these might be
categorized as “constitutive” mucosal lymphoid tissues, to be contrasted with
“inflammation-inducible” tissues (Lo 2017; Dillon and Lo 2019). In studies on
chronic intestinal inflammation in mice induced by DSS, M cells were induced
throughout the intestinal epithelium, but these were distinct from constitutive M
cells, as treatment with anti-TNF antibodies abrogated their induction (Bennett et al.
2016). Interestingly, the widespread inflammatory response in this model led to the
recruitment of lymphocytes into lamina propria aggregates, but the M cell induction
was not strictly dependent on the induction of other stromal cells, suggesting that
inflammation-induced M cells can appear independently of lymphoid organ stromal
cells. This disconnect may have important consequences discussed later.
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5 Airways: Chronic Inflammation
and Bronchus-Associated Lymphoid Tissues

The discussion so far has focused on the intestinal epithelial barrier, but related
issues are present in the airway, where immune surveillance at the epithelial barrier
shows a similar organization of organized lymphoid tissues. In the upper airway,
nasopharyngeal-associated lymphoid tissue (NALT) (Zuercher et al. 2002; Claeys
et al. 1996; Hameleers et al. 1989; Harmsen et al. 2002; Wu et al. 1997) in the
mouse and tonsil in humans both depend on epithelial M cells for antigen and
microparticle capture for delivery to underlying immune tissue. Deeper in the lung,
bronchus-associated lymphoid tissue (BALT) is also found in the sub-epithelial
tissue of the larger airways, with the organization similar to intestinal Peyer’s patch,
including epithelial M cells (Tango et al. 2000; Kim et al. 2011).

The impact of chronic inflammation on the epithelial barrier and organized
lymphoid tissue is also similar, though chronic inflammation here follows different
patterns. For example, allergic inflammation produces a picture of chronic
inflammation and lymphoid aggregates in the sub-epithelial tissues, accompanied
by lymphocyte, eosinophil, and neutrophil recruitment in the alveolar compartment.
In mice, organized lymphoid tissues such as BALT are less commonly found under
common vivarium conditions, though in the presence of chronic inflammation and

Fig. 1 Illustration of the specialization of M cell “antigen delivery” at the epithelial barrier versus
dendritic cell “antigen presentation” below the epithelial barrier. (Left) Electron microscopy image
showing the close relationship between dendritic cell process (green) and M cells (pink and purple)
above the epithelial basement membrane (bm, yellow). Lymphocyte (blue), possibly a B cell, is
shown adjacent to the M cells. (Right) Serial images of the same preparation were traced and
assembled into a 3D projection, showing the dendritic cell process reaching to interact with M
cells, while the cell body remains below the basement membrane (yellow) (Justin Chen)
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advanced age these tissues are more easily identified. Epithelial M cells have also
been identified, at least in the BALT of aging animals (Tango et al. 2000). Repeated
administration of aerosols of agricultural dusts from swine containment facilities
also has been shown to promote both neutrophil recruitment accompanied by
sub-epithelial lymphocyte aggregates (Poole et al. 2011, 2012, 2017), with some
similarities to organized lymphoid tissues. The contribution of TNF is not well
characterized in these situations.

6 Inducible Lymphoid Structure in the Intestine: TLO
Versus ILF

Having now covered the basic components in intestinal inducible lymphoid tissues,
we now discuss the potential functional implications of this lymphoid tissue
induction. In murine models of chronic ileal inflammation, formation of TLO has
been reported in the mesentery (Rehal and von der Weid 2017). Additionally, it was
proposed that formation of these mesenteric TLO was positively correlated with
disease progression, which was further supported by the observation of similar
lymphoid aggregates in the ileal mesentery of patients with Crohn’s disease
(Randolph et al. 2016). An intriguing theory is that chronic inflammation and
submucosal edema contribute to leaky lymphatic vessels allowing drainage of
immune cells and antigens in the adjoining tissue spaces, thereby promoting
lymphoid neogenesis.

In many ways, TLOs are similar as well as distinct from the intestinal-isolated
lymphoid follicles (ILFs). (1) Genesis and maturation of ILFs in the gut require
commensal recognition by the toll-like receptors as well as RORct-expressing LTi
cells, found in the crypts of the intestinal lamina propria (Bouskra et al. 2008; Tsuji
et al. 2008; Eberl et al. 2004; Eberl and Littman 2004). Consequently, maturation of
ILFs seems to be impaired in germ-free mice (Hamada et al. 2002; Pabst et al.
2006). Although persistent influx of antigens seems to be important for TLO for-
mation, it is not yet clear whether microbial antigens are necessary and sufficient for
the development of TLO. (2) The immune environments of TLO and ILFs are also
distinct, whereas TLOs harbor a consortium of lymphoid and myeloid cells, ILFs,
on the other hand, primarily constitute organized B cell follicles (Lorenz et al.
2003). (3) Evidence suggests that a reciprocal relationship between gut bacteria and
ILFs is essential for the regulation and maintenance of intestinal homeostasis
(Bouskra et al. 2008). Whether development of TLO is associated with resolution or
promotion of inflammation, however, remains to be determined.

52 R. Chakraborty and D. D. Lo



7 TLO: Are They Protective?

Recent studies have underscored the beneficial roles of TLO in microbial infection
and inflammation. Formation of TLO at ectopic locations can trigger
antigen-specific immune responses mediated primarily by plasma B cells and
antibodies in response to microbial and inflammatory stimuli (Schröder et al. 1996;
Dörner et al. 2002). In some microbial infections, TLOs serve as local “power-
houses” of immune activities, which is supported by an inflammatory milieu
(Ghosh et al. 2005). These local immune responses play an important role in
restricting microbial dissemination and may also contribute to their clearance
(Ghosh et al. 2005; Steere et al. 1988). Lung TLO is a positive development during
influenza virus infection where strong antigen-specific T cell responses drive viral
clearance and maintain tissue tolerance (Moyron-Quiroz et al. 2004, 2006).
Additionally, lymphocyte exit is believed to be an important phenomenon during
TLO-associated lymphangiogenesis insinuating a pro-resolving mechanism of TLO
in chronic inflammation (Nayar et al. 2016). Considering the important role of
lymphocyte-derived LTa1b2 in TLO-associated lymphangiogenesis, it has been
used as a therapeutic target for diseases like rheumatoid arthritis (Gommerman and
Browning 2003; Gatumu et al. 2009; Wu et al. 2001). However, blocking LTa1b2
signaling pathway in TLO-associated diseases may impair complete remodeling of
lymphatic vessels and subsequently lymphocyte egress, thereby impacting resolu-
tion of inflammation and regulation of tissue tolerance. Based on this evidence, it is
conceivable that inflammation-associated mesenteric TLO may play a protective
role to ameliorate or even resolve inflammation.

Current evidence supporting the protective role of TLO is limited and to some
extent controversial. Characterization of the immune repertoires in mature TLO
revealed the presence of regulatory T cells (Tregs) as well as a heterogeneous
population of B cells that could participate in immunosuppression (Yin et al. 2016).
Since follicular DCs in the TLO serve as long-term storehouses of microbial
antigens, they may influence antigen-specific B cell maturation including GC
reactions (somatic hypermutation and affinity maturation). Indeed, class-switched B
cells specifically CD19+/IgG1+ and CD19+/IgA+ B2 cells were observed in some
TLO, which bears evidence to matured GC reactions and supports the above
hypothesis (Srikakulapu et al. 2016). In this context, production of regulatory B cell
cytokines like IL10, TGFb1 by B1 cells may aid in the regulation of GC reactions,
B cell homeostasis, and eventually bolster immunosuppressive functions (Lykken
et al. 2015; Mauri and Menon 2015; Miyagaki 2015; Ray et al. 2012; Tedder 2015;
Shen and Fillatreau 2015).

The T cell repertoire in TLO includes both natural and induced Tregs, which
may have important immunosuppressive functions in the context of chronic
inflammatory diseases (Hu et al. 2015). However, these cells have been reported to
play controversial roles in some models of chronic inflammation, for example
atherosclerosis (Hu et al. 2015; Clement et al. 2015), thereby stressing the need to
study the roles of these cells in the regulation of T cell immunity in TLO-associated
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diseases. Naïve T cells are rare in TLO, but it could be hypothesized that they
differentiate into regulatory T memory cells in chronic inflammatory settings,
thereby contributing to antigen-specific immunosuppression (Bilate and Lafaille
2012; Curotto de Lafaille and Lafaille 2009). Adoptive transfer studies in aged
ApoE-/- mice revealed that Tregs in the TLO may be generated locally via clonal
selection of endogenous Tregs in an antigen-dependent manner (Hu et al. 2015). It
is possible that these processes are dictated by several other factors including the
age of mice and even the local immune and inflammatory environment. Further
studies suggested an important role of naïve CD4+ T cells in the generation of
TLO-specific induced Tregs (Hu et al. 2015); however, the functional significance
of these regulatory T cells in chronic inflammation is not fully understood. It
appears that a threshold exists, governed by the availability of antigens, inflam-
matory signals, and regulation of homeostasis in the T cell and B cell compart-
ments. Chronic inflammation may tip this balance from immunosuppression toward
sustained immune activation, thereby contributing to disease exacerbation.

Interestingly, not all diseases with chronic inflammation have been associated
with TLO formation but this development seems to be restricted to “permissive”
tissue sites, one classic example being the mucosal epithelium (Barone et al. 2016).
Although factors defining permissive tissue locations are currently unclear, per-
sistent exposure to antigens from the intestinal microbiota, in addition to baseline
inflammatory and other immune stimuli, could promote TLO formation.

It could be hypothesized that, in most settings, the development of TLO is a
response to, and not necessarily a cause of, inflammation. Tissue damage in con-
junction with defects in mucosal barrier integrity may result in increased flux of
luminal antigens across the epithelium that can initiate a pro-inflammatory cascade.
Enhanced local concentrations of cytokines and chemokines may induce accumu-
lation of both myeloid and lymphoid cell populations, which under the influence of
appropriate stimuli in the microenvironment may form organized immune cell
aggregates promoting lymphoid neogenesis. Indeed, it is important to determine the
factors triggering TLO formation; however, the mere presence of these lymphoid
aggregates does not guarantee a positive correlation with disease progression and
clinical outcomes.

8 Mucosal Epithelium Barrier Function and Immune
Surveillance

We now turn to the question of chronic inflammation in the intestine and its impact
on barrier function and immune surveillance. In contrast to solid organs, chronic
inflammation at the intestinal barrier presents different challenges. Here, the pres-
ence of intestinal luminal microbiota illustrates the importance of “location, loca-
tion, location” in health and disease. Microbes in the intestinal lumen may be part of
a balanced microbial ecology and include bacteria that would be considered
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“commensals” in the right context. However, the happy relationship is dependent
on the principle of “fences make for good neighbors,” as most bacteria are welcome
as long as they stay in the lumen. Breaches in the intestinal barrier threaten the
balance by triggering innate immune responses and inflammation. In this context,
there are three aspects that are critical to both barrier function and immune
surveillance: (1) intestinal epithelium barrier integrity, (2) surveillance across the
barrier by resident dendritic cells, and (3) M cell transcytosis across the barrier.

Inflammation and the cytokines produced are threats to the epithelial barrier not
just from potential cytolytic effects, but also to the integrity of the tight junction.
Extensive studies have identified a number of ways in which tight junctions can be
altered by inflammatory cytokines such as interferon gamma (IFN-c) (Chiba et al.
2006) and TNF (Marchiando et al. 2010), including changes in tight junction
components (e.g., changes in claudin gene expression) and changes in the distri-
bution of tight junction proteins, including recycling of proteins away from the tight
junction (Odenwald and Turner 2013; Van Itallie and Anderson 2014).

Intestinal epithelium barrier integrity at the tight junction is influenced by other
factors that are not always associated with chronic inflammation. For example,
luminal microbes also promote tight junction integrity through direct action on
intestinal epithelium, signaling through TLR2. In gnotobiotic mice, intestinal bar-
rier function is decreased due to the paucity of this signal, which actually promotes
the expression of tight junction proteins by the epithelium (Cario et al. 2007; Cario
2008).

Other signals within intestinal epithelium are also influential in maintaining
barrier function. Mutations in PTPN2 are linked to susceptibility to IBD, and
studies in mice suggest that a loss-of-function mutation in this phosphatase would
result in enhanced JAK-STAT signaling, potentiating the effects of
pro-inflammatory cytokines such as IFN-c on epithelial tight junctions (Spalinger
et al. 2016, 2018).

How would defects in barrier integrity affect chronic inflammation and patho-
genesis? The tight junction defects, ranging from altered claudin gene expression to
loss of tight junction components, can lead to increased permeability to ions, larger
molecules (assayed by permeability to dextran-FITC), or even globular proteins
(Van Itallie and Anderson 2014; Van Itallie et al. 2008). Within this size range,
innate immune ligands such as endotoxin and peptidoglycan can cross the barrier
and potentially trigger tissue inflammatory signals. Molecules in this range can also
be carried across the epithelial barrier by the pores provided by goblet cells, though
the relative contribution of this pathway would depend on the severity of the tight
junction defect.
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9 Mucosal Barrier Versus Protective Immunity—
Barriers, Immunity, and Inflammation

Given the microbiota present in the intestinal lumen, one might expect that
microbial components leaking across tight junctions or goblet cell pores would lead
to potential for innate immune-driven chronic inflammation. Yet under steady-state
conditions, this does not appear to be the case. Is there a robust protective immunity
to prevent the inflammatory response, a low-level tolerance to leaking innate
immune ligands, another unidentified mechanism, or is this leak pathway simply
insufficient to promote chronic inflammatory pathogenesis?

If there is a protective immune effector (or suppressor/regulatory) mechanism,
immune surveillance would potentially be required. In the setting of barrier function
defects, this surveillance would in principle depend mainly on resident macro-
phages in the lamina propria, but due to cell migration pathways, these macro-
phages are more likely to enter draining mesenteric lymphoid tissues rather than
lamina propria Peyer’s patches, TLO, or ILF. How then would a protective immune
response augment epithelial barrier function?

We referred to the presence of organized lymphoid tissue in mucosal tissues
such as intestine (and lung) as critical for the development of protective immune
responses, especially secretory IgA, though in some cases mucosal immunity can
develop in the apparent absence of organized mucosal immune tissue. In the setting
of chronic inflammation, the generation of organized lymphoid tissue is enhanced,
which would presumably also enhance protective immunity, reducing
inflammation-related pathogenesis and disease progression. However, as discussed
above, inflammation also has a deleterious effect on overall epithelial barrier
integrity.

In an attempt to make sense of all of these factors, we propose a scenario that
may help clarify the relationship between epithelial barrier function and induction
of organized lymphoid tissues in the setting of chronic inflammation. The initial
trigger of inflammation may be due to any of several mechanisms, including
microbial infection, immune effector activity, or breaches in the epithelial barrier
(e.g., ulceration), so this scenario seeks an explanation for the maintenance or
progression of inflammatory pathology.

We propose three parallel mechanisms (Fig. 2), each with different impacts on
the maintenance of chronic inflammation and pathogenesis. (1) At one end, we
view the inflammatory effects on epithelial barrier function to result in increased
permeability to innate immune ligands, triggering induction of cytokines such as
TNF and IL-1b, but not crossing the threshold to trigger broad recruitment of
inflammatory cells. (2) Inflammatory cytokines, such as TNF, induce changes in
crypt stem cells promoting the production of M cells, but asynchronous with the
formation of mature organized lymphoid tissues; transcytosis of microbes from the
lumen into lamina propria would drive innate immune signals and promote neu-
trophil recruitment. (3) Inflammatory cytokine/chemokine production by resident
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cells leads to the recruitment of lymphocytes into the lamina propria aggregates,
eventually leading to the formation of organized lymphoid tissues.

Note that this scenario provides a few interacting mechanisms that would
potentially reinforce the inflammatory pathogenesis. Barrier permeability would
lead to inflammatory cytokine-mediated induction of stem cells to produce M cells.
M cell in turn would transcytose luminal bacteria into the lamina propria. Since
bacteria could enter tissue in the absence of organized lymphoid tissues to capture
them, they would drive further innate immune pro-inflammatory responses,
including neutrophil recruitment and macrophage activation. This inflammatory
response would in turn drive further production of cytokines to degrade barrier
function and reinforce the signals driving M cell production. Lymphocyte recruit-
ment and formation of organized lymphoid tissues should lead to enhanced immune
surveillance and production of protective immunity, including secretory IgA
responses. However, the production of IgA may be of little impact on the effect of
microbial transcytosis into lamina propria, and the chronic inflammatory pattern is
sustained. Resolution of the inflammatory response may depend on sufficient
recruitment of neutrophils and macrophages to sterilize the lamina propria, as well
as production and recruitment of regulatory T cells.

Fig. 2 Mucosal barrier, immune surveillance, and inflammation. Model showing three factors
affecting intestinal chronic inflammation. Tight junction leakiness and M cell microbe transcytosis
may be factors contributing to ongoing chronic inflammation; induction of organized lymphoid
tissue may be a product of the inflammation, but without direct impact on the first two factors
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Abstract The skin is the outermost organ of the body and is exposed to many
kinds of external pathogens. To manage this, the skin contains multiple types of
immune cells. To achieve sufficient induction of cutaneous adaptive immune
responses, the antigen presentation/recognition in the skin is an essential process.
Recent studies have expanded our knowledge of how T cells survey their cognate
antigens in the skin. In addition, the formation of a lymphoid cluster, named
inducible skin-associated lymphoid tissue (iSALT), has been reported during skin
inflammation. Although iSALT may not be classified as a typical tertiary lymphoid
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organ, it provides specific antigen presentation sites in the skin. In this article, we
provide an overview of the antigen presentation mechanism in the skin, with a focus
on the development of iSALT and its function.

List of Abbreviations

APCs Antigen-presenting cells
cDCs Conventional dendritic cells
CHS Contact hypersensitivity
DCs Dendritic cells
FRC Follicular reticular cell
iSALT Inducible skin-associated lymphoid tissue
LCs Langerhans cells
LNs Lymph nodes
MALT Mucosa-associated lymphoid tissue
PCVs Post-capillary venules
pDCs Plasmacytoid DCs
PVMs Perivascular macrophages
SALT Skin-associated lymphoid tissue
SLO Secondary lymphoid organs
TLO Tertiary lymphoid organ
Tregs Regulatory T cells
TRM Resident memory T cells

1 Introduction

The skin is the outermost organ of the body and is exposed to many kinds of
external insults. To maintain the homeostasis of such an irritable tissue, the skin is
equipped with two types of barrier systems: a physical barrier and an immuno-
logical barrier (Egawa and Kabashima 2016).

The physiological barrier of the skin is solid compared with that in mucous
membranes, such as in tracheal and gastrointestinal tracts, because the skin needs to
block the evaporation of internal water. It consists of the stratum corneum (a
cornified layer of dead keratinocytes) and the tight junctions in the stratum gran-
ulosum, which are covered with the sebum secreted from sebaceous glands (Fig. 1).
These barriers are robust and block molecules with a molecular weight greater than
1000; therefore, no pathogenic microorganism can invade the body through the
intact physical skin barrier. In reality, however, there are many open seams in the
physical barrier; the skin easily sustains small traumas and the skin appendages,
such as hair follicles and sweat pores, lack the stratum corneum and can harbor
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microorganisms, known as the skin microbiome (Kabashima et al. 2019) (Fig. 1;
left). The pathogenic microorganisms/molecules often invade the body through
such “security holes” in the skin. To manage these invaders, the immune system
keeps the skin under constant surveillance.

The immunological barrier of the skin consists of multiple types of immune cells
(Fig. 1; right). Skin-resident innate immune cells, such as epidermal Langerhans
cells (LCs), dermal dendritic cells (DCs), and macrophages, monitor the invasion of
foreign antigens. Once they recognize the antigens, they produce inflammatory
cytokines to cause inflammation. Upon inflammation, many immune cells, such as
neutrophils, monocytes, and T cells, are recruited to the skin. Neutrophils and
monocytes provide a quick but unspecific immune response, whereas T cells pro-
vide a delayed but antigen-specific immune reaction. For the latter reaction, antigen
presentation to T cells in the skin is an essential process. To facilitate this, lymphoid
structures can be formed in the skin in some pathogenic conditions (discussed later).

In this article, we will discuss the antigen presentation mechanism in the skin
and focus on the function of a specific immunological unit, called inducible
skin-associated lymphoid tissue (iSALT), which plays an essential role in the
induction of cutaneous adaptive immunity (Natsuaki et al. 2014). We also review
the formation of lymphoid clusters in the human skin in several pathogenic
conditions.
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Fig. 1 The physical and immunological barrier of the skin. In the epidermis, tight junctions are
formed underneath the stratum corneum (in the stratum granulosum), and three types of immune
cells (Langerhans cells, cd T cells, and resident memory T cells) may reside between keratinocytes
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2 The Concept of SALT

T cells play a central role in adaptive immunity. They are generated and mature in
the primary lymphoid organs such as bone marrow and thymus. They then circulate
in the blood and travel to the secondary lymphoid organs (SLOs), such as lymph
nodes (LNs) and spleen, to survey for antigens. Once they recognize the cognate
antigen in SLOs, they are expanded and mature into effector T cells, and acquire the
nature to migrate peripheral organs such as the skin and gut. In some submucosal
areas, the tertiary lymphoid organs (TLOs) are organized as “sentinel” lymphoid
tissues to be on the alert for invading pathogens (Brandtzaeg et al. 1999). In
humans, for example, the oral and nasal pharynx areas are monitored by the tonsils
and adenoids, and lymphoid follicles are present in the normal bronchi. Single
lymphoid follicles are also distributed throughout the intestine and, in the distal
ileum, lymphoid follicles are grouped in large clusters termed Peyer’s patches.
These tissues are known as mucosa-associated lymphoid tissue (MALT) and serve
as antigen presentation sites in peripheral organs. As for skin, however, no lym-
phoid structures were reported until recently.

Around 1980, cutaneous immunologists elucidated some key findings; (1) LCs
are bone marrow-derived and capable of antigen presentation, (2) a fraction of T
cells display high skin tropism, and (3) epidermal cells markedly affect T cell
maturation by producing multiple cytokines and chemokines (Stingl et al. 1978;
Rubenfeld et al. 1981). Based on these findings, researchers proposed that lymphoid
tissues analogous to MALT in submucosal areas may exist within the skin. They
offered the term SALT (skin-associated lymphoid tissue) for these putative
skin-associated tissues (Streilein 1978, 1983, 1985; Egawa and Kabashima 2011).
As lymphoid structure was not found in the skin at that time, SALT was a con-
ceptual tissue; however, this hypothesis proposes that the skin is not merely a
physical barrier but also an essential component of the immune system, and that the
antigen presentation in the skin is an important step in elicitation of acquired skin
immune responses.

3 Antigen Presentation Mechanism in the Skin

After the development of the concept of SALT, focus was placed on the antigen
presentation mechanism in the skin. As the majority of skin-infiltrating T cells are
memory-phenotype, and naïve T cells and B cells are almost absent in the skin
(Clark et al. 2006), the antigen presentation process in the skin should be sub-
stantially different from that in the LNs and MALTs. Recent studies with transgenic
animals in combination with intravital imaging techniques have extensively
expanded our knowledge of the biology of cutaneous antigen-presenting cells
(APCs) and skin-resident/homing T cells. In this section, we will overview how
cells in the skin induce inflammation against pathogen invasion and how
T-cell-mediated adaptive immunity is initiated in the skin.
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3.1 Keratinocytes as an Initiator of Skin Inflammation

When keratinocytes are injured or recognize pathogens mainly through pattern
recognition receptors, such as Toll-like receptors, they produce several kinds of
proinflammatory cytokines, including tumor necrosis factor (TNF)-a, interleukin
(IL)-1a/b, IL-33, and thymic stromal lymphopoietin (TSLP) (Ansel et al. 1990;
Leyva-Castillo et al. 2013; Meephansan et al. 2013). These cytokines induce the
expression of E- and P-selectin and intercellular adhesion molecule 1 (ICAM-1) on
vascular endothelial cells that promote the extravasation of blood-circulating
lymphocytes (Brinkman et al. 2013). Phagocytes, such as neutrophils and mono-
cytes, appear in the skin as the primary treatment, and a small number of T cells
arrive slightly later to scan for their cognate antigens. Proinflammatory cytokines
produced by keratinocytes also activate skin-resident immune cells, including LCs
and DCs. For example, TSLP from keratinocytes promotes the migration of LCs to
the skin-draining LNs and enhances the induction of Th2-type immune responses
(Nakajima et al. 2012). These functions of keratinocytes as an initiator of skin
inflammation suggest that keratinocytes are not only a producer of the physical
barrier, but also an inducer of the immunological barrier.

3.2 Cutaneous Antigen-Presenting Cells

The antigens that breach the physical barrier of the skin are then captured by the
second-line immunological barrier, cutaneous DCs. DCs are a diverse family of
cells that play an essential role in linking the innate and adaptive immune systems
(Dress et al. 2018). In general, four cell types are classified into the DC family in
the skin: epidermal LCs, conventional DCs (cDCs), plasmacytoid DCs (pDCs), and
monocyte-derived DCs. cDCs can be further subdivided into the cDC1 and cDC2
subsets on the basis of subset-specific gene expression profiles, their dependence on
different transcription factors, and unique subset functions (Schlitzer et al. 2015;
Guilliams et al. 2016).

Epidermal LCs were previously thought to play a major role in antigen pre-
sentation not only in the LNs but also in the skin (Toews et al. 1980; Grabbe and
Schwarz 1998). However, novel depletion systems of LCs (and dermal DCs) have
challenged this classic LC paradigm (Bennett et al. 2005; Kissenpfennig et al.
2005). When LCs were selectively depleted, the contact hypersensitivity
(CHS) response, a classical mouse model for type IV hypersensitivity, was not
(Kissenpfennig et al. 2005; Bursch et al. 2007; Wang et al. 2008) or only mar-
ginally attenuated (Bennett et al. 2005). On the other hand, the depletion of LCs
caused impaired CD8+ T cell activation in the skin in a graft-versus-host disease
model (Bennett et al. 2011). These reports suggest that the role of LCs as cutaneous
APCs differs depending on the pathogenic conditions.
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The antigen-presenting role of cDCs is also controversial. Several studies found
that the depletion of both LCs and cDC1 markedly reduced the CHS response
(Bursch et al. 2007; Wang et al. 2008), suggesting that cDC1, but not LCs, plays an
important role during CHS. However, another study reported that Batf3-deficient
mice, which lack cDC1 in the skin, exhibited a normal CHS phenotype (Edelson
et al. 2010), suggesting compensation of its function by other DCs. We recently
demonstrated that when all subsets of cutaneous DCs were depleted, the elicitation
of CHS was abrogated, whereas selective depletion of LCs or cDC1 did not
attenuate the elicitation of CHS (Natsuaki et al. 2014). These results suggest the
dominant role of cDC2 in T cell activation in the skin, at least during CHS.

In addition to DCs, several other skin-resident cells have been proposed to
function in antigen presentation in the skin. Mast cells and basophils participate in
antigen presentation and promote Th2-type inflammatory responses by acquiring
MHC class II molecules from DC, termed “trogocytosis” (Dudeck et al. 2017;
Miyake et al. 2017). In addition, the deletion of MHC class I molecule on
radio-resistant cells impaired the activation of CD8+ T cells in CHS (Ono et al.
2018), suggesting the possible involvement of vascular endothelial cells (Kish et al.
2011) and keratinocytes (Gaspari and Katz 1988; Kim et al. 2009) as APCs in the
skin, although in vivo evidence is lacking. As co-stimulatory molecules are not
required for the activation of effector T cells (Krummel et al. 1999),
non-professional APCs in the skin may carry out the APC function in a
context-dependent manner.

3.3 T Cell Recruitment to the Skin

To mediate their effector functions, most lymphocytes, except for B cells, need to
home into the affected peripheral tissues before their immunomodulatory functions
can be initiated. Upon inflammation, effector T cells are recruited to the skin with
limited antigen dependency (Honda et al. 2014). T cells migrate into the inflamed
tissues by scanning vascular endothelial cells displaying molecular signatures
required for precise spatial homing. After activation and differentiation within the
secondary lymphoid organs, the effector T cells downregulate lymph node homing
molecules like CD62L and CCR7 and upregulate molecules specific for their
homing into peripheral tissues (Masopust and Schenkel 2013).

Recent studies suggest that effector T cells express homing molecules specific
for organs from where the antigenic insult originated. T cells primed in the
skin-draining lymph nodes upregulate E- and P-selectin ligands (Tietz et al. 1998;
Hirata et al. 2002), CCR4 and/or CCR10, which are required for skin homing (Soler
et al. 2003; Masopust and Schenkel 2013). Analogous to vitamin A-mediated
upregulation of gut homing molecules (Mora et al. 2008), DCs can process vitamin
D present in the skin to its active metabolite 1,25-dihydroxyvitamin D3, which
facilitates the induction of CCR10, and concomitant downregulation of a4b7 and
CCR9 (Sigmundsdottir et al. 2007; Masopust and Schenkel 2013). Expression of
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CCL17 by skin venules and CCL27 by epidermal keratinocytes helps in homing
CCR4+ and CCR10+ T cells to the skin, respectively (Reiss et al. 2001; Homey
et al. 2002; Soler et al. 2003). These studies provide mechanistic insight into how
the site of priming can imprint homing molecules on effector T cells.

3.4 Antigen Survey by T Cells in the Skin

After homing into the inflamed tissue, T cells have to search for rare
antigen-bearing target cells before effector functions can be initiated. Intravital
imaging studies have revealed that effector T cells entering the interstitium of the
skin exhibit a polarized cell shape, characterized by the formation of a leading edge
and a uropod, and migrate at high velocities (Matheu et al. 2008; Egawa et al. 2011;
Honda et al. 2014). During interstitial migration, T cells constantly integrate
molecular cues provided by surrounding cells. Unlike neutrophils and DCs, T cells
are less dependent on chemoattractant gradients. During interstitial migration, they
demonstrate a “stop and go” behavior reminiscent of naïve T cells in the LNs
(Miller et al. 2002; Kawakami et al. 2005; Munoz et al. 2014; Weninger et al.
2014). This behavior may provide an effective strategy for screening large regions
of the tissue.

Once they encounter their cognate antigens, effector T cells initiate stable contact
with APCs and are activated to produce inflammatory cytokines. Upon activation,
effector CD4+ T cells can produce large-scale cytokine gradients. For example, in
the Leishmania major infection model, effector CD4+ T cells interact with infected
APCs, resulting in migratory arrest and T-cell-mediated production of interferon-c
(IFN-c), leading to the generation of IFN-c gradients up to 80 lm away from the T
cell-APC interaction site (Muller et al. 2012). On the other hand, cytotoxic effector
CD8+ T cells induce target cell apoptosis by different means, including the release
of cytokines and cytotoxic mediators such as perforin and granzymes. Although the
migratory behavior of effector CD8+ T cell populations within inflamed tissues is
best described as random migration, several studies have observed T cell navigation
along the extracellular matrix and other anatomical structures. Intravital imaging of
subcutaneous tumors has revealed that CD8+ T cells migrate along dermal collagen
fibers and blood vessels (Mrass et al. 2006; Boissonnas et al. 2007).

Of note, after infiltration into the skin, a part of the T cells returns back to the
draining LNs via afferent lymphatics. Classic lymph recirculation studies in sheep
have demonstrated that effector/memory CD4+ T cells comprise a major portion of
lymphocytes in afferent lymph (Mackay et al. 1988, 1990). T cell egress from the
skin is dependent on CCR7 (Bromley et al. 2005; Debes et al. 2005), similarly to
other leukocytes such as DCs or neutrophils (Randolph 2001; Ng et al. 2011).
Endothelial cells of the afferent lymph vessels constitutively express the
CCR7 ligand CCL21 (Debes et al. 2005). Moreover, a recent study employing
photo-convertible Kaede transgenic mice, which serves an in vivo cell-tracking
system, reported that the cell migration from peripheral tissues to the draining LNs
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was markedly increased after inflammation (Tomura et al. 2010). Importantly,
approximately half of the CD4+ T cells that return back from the inflamed site are
regulatory T cells (Tregs). These observations suggest that Tregs preferentially
infiltrate or are induced in peripheral tissue during the resolution phase of
inflammation.

3.5 Antigen Recognition by Resident Memory T Cells
in the Skin

Although T cells have a dynamic migratory nature, a number of studies suggested
that some of the tissue-infiltrating effector T cells never return to the circulation
(Shin and Iwasaki 2013; Mueller et al. 2014). This non-circulating memory T cell
subset is called tissue-resident memory T cells (TRM). TRM have been identified in
several non-lymphoid tissues, such as the skin, gut, lung, brain, and female
reproductive tract (Gebhardt et al. 2009; Masopust et al. 2010; Wakim et al. 2010),
although the longevity of TRM greatly differs among tissues. For example, skin TRM

in mice persist for over a year (Mackay et al. 2012), whereas lung TRM are
maintained for a few months (Wu et al. 2014).

Of note, the distribution and migration of CD4+ TRM and CD8+ TRM differ
significantly in the skin. Previous studies with herpes simplex virus (HSV) skin
infection elucidated that after pathogen clearance, antigen-specific CD4+ TRM

redistribute within the dermis, whereas CD8+ TRM localize to the epidermis
(Gebhardt et al. 2011; Mackay et al. 2012) (Fig. 2). CD4+ TRM have amoeboid
morphology and actively migrate throughout the dermis, whereas CD8+ TRM

exhibit a dendritic morphology and are almost sessile. However, during vaccinia
virus skin infections, CD8+ TRM were found in the dermis as well as the epidermis,
and these CD8+ TRM were found not only in the infected site, but also in the
non-infected regions within the tissue (Jiang et al. 2012).

There is evidence suggesting that rapid control of infection at peripheral sites
requires the presence of TRM. Upon viral re-infection, TRM respond to antigen and
produce proinflammatory cytokines, such as IFN-c, within hours, whereas circu-
lating memory T cells re-enter the infected site within 2 days but do not produce
IFN-c until 5 days after the challenge (Iijima and Iwasaki 2014). TRM-derived
cytokines activate local innate immunity by driving antiviral/antibacterial genes,
DC maturation, NK cells activation, and VCAM-1 expression on the blood
endothelium (Ariotti et al. 2014; Schenkel et al. 2014). Therefore, TRM function as
antigen-specific sensors and provide robust site-specific immunity. The presence of
TRM in epidermis should be important in maintaining immunity against HSV and
human immunodeficiency virus (HIV), as both of these viruses commonly begin as
local infections in the genital tract in a limited population of infected cells. In such
situations, TRM-mediated rapid initiation of the antiviral state at the site of entry is
essential for preventing re-infections.
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4 The Concept of iSALT

In contrast to mucosal boundary tissues, such as gut and bronchi, in which TLOs
can be observed even in the non-pathogenic condition, no lymphocytic cluster is
observed in normal skin. This is probably due to the anatomical difference between
the skin and mucosal boundary tissues; external antigens hardly reach the skin
through the thick physical barrier, the stratum corneum. Therefore, it has been
generally considered that skin-infiltrating T cells randomly migrate in the skin to
scan for cognate antigens, and that individual T cell-APC interaction is important
for T cell activation in the skin.

Recently, however, the formation of a leukocyte-clustering structure was found
during skin inflammation (Natsuaki et al. 2014). Unlike MALT, these leukocyte
clusters are not found in the steady state and are inducible during the development
of acquired immune response. Thus, this cluster was named inducible
skin-associated lymphoid tissue (iSALT), similar to inducible bronchus-associated
lymphoid tissue (iBALT) in the lung (Moyron-Quiroz et al. 2004). In this section,
we will overview the mechanism of iSALT formation, especially during the CHS
response.

Post HSV infectionNaïve lesion

DETC

CD4+ 

TRM

CD8+ TRM

T cells CD8+ T cells CD4+ T cells

Fig. 2 A schematic representation of the skin depicting the presence of different leukocyte subsets
before and after Herpes simplex virus (HSV) infection. In naïve skin, epidermis is populated with
sessile Langerhans cells and dendritic epithelial T cells (DETCs), whereas the dermis is populated
with dermal DCs, CD4+ T cells, dermal cd T cells, and a few CD8+ T cells. After the resolution of
HSV infection, a subset of antigen-specific CD8+ TRM cells resides in the epidermis, whereas
antigen-specific CD4+ TRM clusters reside in the dermis
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4.1 iSALT Formation in CHS

The CHS response is induced by the epicutaneous application of a hapten, a small
molecule that can bind to self-proteins in the skin and acquire antigenicity.
Intravital imaging studies have demonstrated that upon hapten application to the
skin, T cells and dermal DCs form a lymphocytic cluster, termed iSALT, within 6 h
(Natsuaki et al. 2014) (Fig. 3). iSALT disappears within days if there are no
antigen-specific effector T cells in the body (the sensitization phase). In contrast, in
the presence of antigen-specific effector T cells (the elicitation phase), iSALT
persists for weeks. In the presence of antigens, iSALT was able to induce CD8+ T
cell proliferation and reactivation.

iSALT is formed not only in response to hapten application, but also with other
stimuli such as tape-stripping and bacterial infections. Furthermore, it was
demonstrated that IL-1a produced by keratinocytes is essential for their induction
(Natsuaki et al. 2014), suggesting that iSALT formation itself is an innate response.

4.2 iSALT Formation Around Post-capillary Venules

Dermal blood vessels can be divided into four different parts with distinct functions:
arteries, capillaries, post-capillary venules (PCVs), and venules. Among them,
PCVs have a unique property that is particularly important during inflammation.
Adjacent blood endothelial cells are sealed with tight junctions and adherence
junctions, and limit the passage of plasma proteins larger than 70 kDa (Egawa et al.
2013). Importantly, this vascular permeability is variable only at PCVs. Upon
inflammation, hyper-permeability is induced on PCVs, leading to extravasation of
albumin (70 kDa) and immunoglobulins (150 kDa) into the dermal interstitium,
suggesting that PCVs are specific portal sites for humoral immunity into the skin
under inflammatory conditions (Fig. 4).

Intravital studies also demonstrated that PCVs are specific portal sites for cellular
immunity. In PCVs, blood endothelial cells are surrounded by pericytes and

Fig. 3 Intravital images of iSALT formation in a murine CHS model. Dermal DCs (green) and T
cell (red) form clusters in the dermis (white circles) within hours. Scale bar = 100 µm
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macrophages, and mast cells are located nearby. Previous studies using a mouse
Staphylococcus aureus infection model revealed that these cellular units around
PCVs are important for neutrophil extravasation in the dermis (Abtin et al. 2014).
As for T cells, intravital imaging studies and immunohistochemical analyses
revealed that most iSALT was formed around PCVs (Honda and Kabashima 2016;
Kogame et al. 2017) (Fig. 5) and in the absence of iSALT formation, T cell
infiltration to the skin is impaired. These findings suggest that cellular units around
PCVs play an import role in lymphocyte recruitment into the skim. In particular,
recent studies revealed indispensable roles of perivascular macrophages (PVMs) in
this process.

4.3 Indispensable Role of Perivascular Macrophages
in iSALT Formation

An intravital imaging study using DPE-GFP mice revealed that approximately 40%
of venules are surrounded by PVMs (Abtin et al. 2014). Upon S. aureus infection,
PVMs highly express the neutrophil-attracting chemokines Cxcl1 and Cxcl2, and
neutrophils extravasate in the vicinity of PVMs. PVMs are depleted when they are
exposed to S. aureus-producing exotoxin, a-hemolysin, and under this condition,
neutrophil recruitment to the skin is significantly suppressed (Abtin et al. 2014).

Stable state Inflammatory state

: Immunoglobulins
: Low molecular proteins (<70 kDa) such as cytokines
: High molecular proteins  (>70 kDa) such as albumin

Water

Water

Fig. 4 A scheme of hyper-permeabilization in PCVs. In the steady state, only plasma contents
having a molecular size less than 70 kDa can extravasate, whereas in the inflammatory state, large
plasma contents (>70 kDa), such as albumin and immunoglobulins, freely pass through the blood
vessel walls
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PCVs also play an essential role during iSALT formation and T cell activation in
the skin (Natsuaki et al. 2014). Cell-type specific depletion studies found that mast
cells, T cells, B cells, and basophils were dispensable for iSALT formation by
hapten application, but when macrophages were depleted, iSALT formation was
abrogated. Further analysis revealed that IL-1a produced by keratinocytes upon
external insults stimulates M2-like macrophages around PCVs, which then produce
Cxcl2 and recruit dermal DCs to the cluster to form iSALT. Leukotriene B4, a lipid
mediator, also mediates the cluster formation by promoting DC migration (Sawada
et al. 2015). Subsequently, effector T cells accumulated in the cluster are presented
antigens by dermal DCs and initiate proliferation and activation. In the cluster, both
dermal DC subsets (Kashem et al. 2017), i.e., CD103+ cDC1 and CD11b+ cDC2,
are detected (Okada et al. 2016). It is currently unclear, however, which dermal DC
subsets mediate antigen presentation in the cluster (Ono et al. 2018). Each DC
subset in the cluster may function in a compensatory manner like DCs in the
sensitization phase (Honda et al. 2010). The blockade of CXCL2 and IL-1 receptor
signaling impairs iSALT formation and effector T cell activation, suggesting that
iSALT is an essential structure for antigen presentation in the skin.

Hapten

IL-1

DCs

Hapten

IFN-

Blood vessel

DCs

CXCL2

DCs M2 macrophage Effector T cells

iSALT forma�on
Blood vessel

Fig. 5 A schema of iSALT formation during CHS. Keratinocytes contact with hapten induces the
release of IL-1 in the skin, which activates perivascular macrophages that subsequently attract
dermal DCs via CXCR2 to form clusters. In the absence of antigen-specific memory T cells, DC
clustering is a transient event, and hapten-carrying DCs migrate to the skin-draining LNs. In the
presence of antigen-specific effector T cells, T cells are activated and skin inflammation is
promptly induced
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5 iSALT Formation in Humans

It remains unclear whether iSALT formation and functions in T cell activation in
human skin are analogous to those in mice. In many inflammatory skin diseases,
including eczema, psoriasis, and drug eruptions, perivascular leukocyte infiltrations
are frequently observed by histological examination. In allergic contact dermatitis
in humans, T cell-DC clusters are found in the dermis and are accompanied by
vesicle formation in the epidermis, a marker of eczema, suggesting T cell activation
and subsequent cytokine production occur above the cluster (Natsuaki et al. 2014).

In psoriasis patients, the existence of high endothelial venules (HEV), a char-
acteristic structure of TLOs, has been reported (Lowe et al. 1995), and clusters of
DC-LAMP+ DCs and T cells have been detected in the dermis (Zaba et al. 2007)
with abundant expression of CCL19, a ligand for CR7, and CCL20 (Mitsui et al.
2012; Kim et al. 2014). CCL20 is implicated in the formation and function of
MALT via the chemoattraction of CCR6+ lymphocytes and DCs. This cluster
observed in psoriatic lesions disappears after treatment with TNF-a inhibitors (Zaba
et al. 2007), suggesting the fundamental role of TNF-a in the maintenance of the
cluster.

iSALT-like structures were also found in the skin lesions of secondary syphilis
infection (Kogame et al. 2017). Of note, these lymphatic clusters contain CXCL13+

cells. CXCL13 is a marker of follicular helper T cells and is an important che-
mokine responsible for the formation and maintenance of lymphatic clusters with B
cells. Indeed, spotty infiltration of B cells is observed in the skin lesions of sec-
ondary syphilis infection. In melanoma patients, clusters with TLO features, such as
the existence of HEV, T cells, B cells, and mature DCs, have been detected in the
extratumoral area with tumor regression or favorable overall survival (Ladanyi et al.
2007; Martinet et al. 2012). Lymphoid follicles are also reported in the lesional skin
of cutaneous lupus erythematosus (Arps and Patel 2013) and lymphoproliferative
diseases such as Kimura’s disease (Kung et al. 1984). Although the functional
significance of the leukocyte clusters/lymphoid follicles in the skin remains unclear,
these structures may play important roles in the promotion or regulation of disease
development.

6 Future Remarks

TLOs play important roles in host protection and the development of pathogenic
conditions in non-lymphoid peripheral tissues (Dieu-Nosjean et al. 2014; Pitzalis
et al. 2014; Colbeck et al. 2017). TLOs have not yet been clearly defined, but they
should fulfill several characteristics: (1) the existence of distinct T and B cell
compartments, (2) a follicular reticular cell (FRC) network, (3) peripheral node
addressins (PNAd)+ HEVs, (4) lymphatic vasculature, and (5) evidence of class
switching (Dieu-Nosjean et al. 2014). Most TLOs are not genetically programmed
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and do not develop postnatally. Lymphotoxin, lymphoid chemokines (CCL19,
CCL21, CXCL13), TNF-a, and the receptor activator of nuclear factor kappa-B
ligand (RANKL) play essential roles in the development of TLOs.

Based on these structural criteria, iSALT may not be classified as a typical TLO
because of the absence of B cells, naïve T cells, HEV, and the FRC network. In
addition, the involvement of lymphoid chemokines has not yet been fully clarified
in iSALT. From a functional point of view, however, iSALT possesses the key
features of a TLO in that it offers efficient sites for effector T cell activation; some
researchers thus use the term TLO for iSALT, focusing on this point (Neyt et al.
2012; Colbeck et al. 2017).

Although both MALT and iSALT provide defined sites for antigen presentation
within peripheral organs, there should be distinct functional differences between
these tissues. MALT contains significant numbers of B cells and forms lymph
follicles, whereas virtually all lymphocytes in the iSALT are T cells. MALT con-
tains HEVs and serves as an entry point for naïve T cells, suggesting that it is
equipped to provide a field for antigen presentation to naïve T cells and other SLOs.
In contrast, HEVs are rare in the skin and most of the T cells recruited to the skin
are considered to be antigen-experienced effector T cells. Thus, SALT may act as a
peripheral lymphoid tissue to provide a function distinct from other secondary/
tertiary lymphoid organs, including MALT.

Although studies on iSALT function have progressed, we lack a comprehensive
understanding of the skin in health and diseases. It is unclear which immune cells
and/or non-immune cells interact with each other at which immune response time
point (e.g., the acute, chronic, and resolution stages) and where in the skin.
Considering the fundamental differences between mouse and human skin is another
important challenge. Evaluation of these points may lead to a breakthrough in the
understanding of the immunological mechanisms of cutaneous immune responses
and healthy skin homeostasis.
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Abstract Development of front-line defenses in genital tissues is important to
inhibit viral/bacterial replication and to eliminate sexually transmitted diseases. In
this chapter, we discuss the cellular composition, location, and function of memory
lymphocyte clusters deployed in mucosal tissues and compare them with those in
secondary lymphoid organs and tertiary lymphoid structures.
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Blimp1 B lymphocyte-induced maturation protein-1
CLA Cutaneous lymphocyte-associated antigen
DC Dendritic cells
DLN Draining lymph nodes
FABP Fatty-acid-binding proteins
FcRn Neonatal Fc receptor
FDC Follicular dendritic cells
FRT Female reproductive tract
HBV Human hepatitis B virus
HEV High endothelial venules
HPV Human papilloma virus
HSV Herpes simplex virus
ICAM-1 Intercellular adhesion molecule-1
IFITM3 Interferon-induced transmembrane protein 3
Ig Immunoglobulin
KLF Kruppel-like factors
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LC Langerhans cells
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LTi Lymphoid tissue inducer cells
LTo Lymphoid tissue organizer cells
MAdCAM-1 Mucosal addressin cell adhesion molecule-1
MLC Memory lymphocyte clusters
NK Natural killer
pIgR Polymeric Ig receptor
RANK Receptor activator of nuclear factor jB
PNAd Peripheral node addressin
S1PR1 Sphingosine-1-phosphate receptor 1
SLO Secondary lymphoid organs
STD Sexually transmitted diseases
TCM Central memory T cells
TCR T cell receptor
TD Thoracic duct
TE Effector T cells
TEM Effector memory T cells
TF Transcription factor
TGF-b Transforming growth factor-beta
Th T helper cells
TK Thymidine kinase
TLS Tertiary lymphoid structures
TM Memory T cells
TNF Tumor necrosis factor
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Treg Regulatory T cells
TRM Tissue-resident memory T cells
VCAM-1 Vascular cell adhesion molecule-1
VEDC Vaginal epithelial DC
VEGFC Vascular endothelial growth factor C
WT Wild-type

1 Introduction

Over the past three decades, various types of lymphoid aggregates have been found
in the skin, mucosal tissues, and central nervous system. In contrast to secondary
lymphoid organs, lymphoid aggregates in peripheral tissues are not preprogramed
in early postnatal life. Instead, chronic inflammation, viral/bacterial infection, the
onset of autoimmune diseases, and tumorigenesis can trigger the genesis of lym-
phoid aggregates containing lymphocytes and stromal cells. These include memory
lymphocyte clusters (MLC) and tertiary lymphoid structures (TLS) such as indu-
cible Bronchus-associated lymphoid tissues (iBALT).

In this chapter, we will compare and contrast the cellular composition, distri-
bution, and function of MLC with that of TLS formation and secondary lymphoid
organs (SLO) containing lymph nodes (LN). Given that tissue-resident memory T
cells (TRM) accumulate in MLC, we will discuss current knowledge regarding the
function of TRM retained in peripheral tissues, including in MLCs, and consider the
implications of these cells for the development of next-generation medical
treatments.

2 Tertiary Lymphoid Structures and Memory
Lymphocyte Cluster-like Structures

SLO, including the white pulp of the spleen, LN, the appendix, and
mucosal-associated lymphoid tissues are required to initiate the generation of the
antigen-specific immunity mediated by T and B cells (van de Pavert and Mebius
2010). In this respect, SLO have all the functionality to maximize the adaptive
immune response in terms of the localization of immune cells (Schulz et al. 2016).
Stromal cells, antigen-presenting cells (APC) including dendritic cells (DC), fol-
licular DC (FDC), macrophages, and B cells and naïve T cells are strategically
deployed in SLO (Fig. 1a) (Randall et al. 2008). In addition, SLO are genetically
programmed to be generated in predetermined places within the body (Drayton
et al. 2006). During the development of SLO, CXCL13 produced by resident
mesenchymal cells initially tempts the precursors of CD45+ CD3− CD4+ CXCR5+
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lymphoid tissue inducer cells (LTi), also known as type 3 innate lymphoid cells
bearing RAR-related orphan receptor gamma t to the lymph node anlagen from
neighboring blood vessels. Thereafter, the accumulation of receptor activator of
nuclear factor jB (RANK)+ LTi facilitates the expression of lymphotoxin
(LT) a1b2 and tumor necrosis factor (TNF)-related activation-induced cytokine so
that LTi can activate LT b receptor (LTbR)+ stromal cells to differentiate into
lymphoid tissue organizer cells (LTo) (Chang and Turley 2015). As a consequence
of LTbR and RANK activation, LTo attract other hematopoietic cells, mainly
lymphocytes through the expression of CCL19 and CCL21 as well as further
recruitment of LTi for the development of LN tissue progenitors. Simultaneously,
LTo express adhesion molecules including intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and mucosal addressin
cell adhesion molecule-1 (MAdCAM-1) to adhere to infiltrating immune cells
(Denton et al. 2019). Thereafter, LTo give rise to various LN stromal subsets,
including FDC and marginal reticular cells (Barone et al. 2016). At this time, high
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Fig. 1 Schematic representation of LN, TLS, and MLC. a LN comprise organized cell
populations, including immune cells (T cells in T cell zones and B cells in B cell zones) and
stromal cells covered by a fibrous capsule and an underlying subcapsular sinus. In addition, LN
contain lymphatic vasculature (afferent and efferent lymphatics) and HEV. b The majority of TLS
are not encapsulated. Instead, TLS form lymphoid aggregates consisting of T cell zones containing
naïve T cells, TCM, DC, macrophages, HEV, and fibroblastic reticular cells and a B cell zone with
a germinal center, plasma cells, and FDC. c MLCs are formed beneath mucosal epithelial layers
with the clusters of CD4+ TRM, CD8

+ TRM and MHC class II+ APC
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endothelial venules (HEV) express MAdCAM-1 but not peripheral node addressin
(PNAd). During the maturation of LN, HEV become PNAd+ and down-regulate
MAdCAM-1 in the majority of peripheral LN, although in some LN (mesenteric,
sacral, cervical), HEV express both PNAd and MAdCAM-1 (Ager 2017; Bistrup
et al. 2004; Soderberg et al. 2004).

In some cases, acute inflammation within peripheral tissues results in prolonged
production of CXCL13 and IL-7 from stromal cells to attract LTi, which produce
IL-17 and LT a1b2 along with the production of TNF-alpha (TNFa) and LTa. In
response to the recruitment of LTi to the site of inflammation, the inflammatory
response of T helper cell 17 (Th17) cells, B cells, and macrophages is suggested to
initiate the generation of TLS in various pathological contexts (Guedj et al. 2014;
Lochner et al. 2011; Peters et al. 2011). At the site of inflammation, the TLS
initiator cells, including LTi and Th17 cells, interact with LTbR+ local stromal cells
through LTa1b2 secretion so that stromal cells produce vascular endothelial growth
factor C (VEGFC) to promote HEV development in peripheral tissues (Furtado
et al. 2007). Likewise, stromal cells also secrete CCL19, CCL21, CXCL12, and
CXCL13 and upregulate ICAM-1, VCAM-1, and MAdCAM-1 to recruit lym-
phocytes and promote TLS structural organization, including a T cell zone with
clusters of TCRb+ cells and a follicular CD20+ B cell zone (Fig. 1b) (Barone et al.
2016). FDC differentiation from local fibroblasts is especially critical for the
development of B cells in TLS (Sautes-Fridman et al. 2019). In these areas,
the majority of lymphocytes are CD62L+CD44− naïve T cells, naïve B cells, and
CD62L+CD44+ central memory T cells (TCM).

Draining LNs (DLN) are connected with peripheral tissues through afferent
lymphatics, providing entry sites for invading pathogens (Fig. 1a). There is no
doubt that SLO are indispensable for the induction of robust antigen-specific
immunity, while, in general, it takes 5–7 days to generate antigen-specific effector
T cells (TE) that are poised to migrate to the site of infection (Permanyer et al.
2018). Meanwhile, pathogens invading through mucosal tissues are able to replicate
and spread rapidly to various organs. In this regard, tertiary lymphoid structures
(TLS) in peripheral tissues are capable of immediately challenging invading
pathogens. It is well known that TLS-like structures appear in peripheral tissues
following local inflammation, viral or bacterial infection, tumor progression or the
onset of autoimmune diseases (Corsiero et al. 2019; Fleige et al. 2014; Fridman
et al. 2017; Kabashima et al. 2019; Lucchesi et al. 2014; Moyron-Quiroz et al.
2004). Compared with LN, the majority of TLS lack an organized clustering of
immune and stromal cells encapsulated by coated layers composed of a fibrous
capsule and a subcapsular sinus (Fig. 1b). In most cases, TLS represent a
non-encapsulated aggregation of immune and stromal cells confined in an organ or
peripheral tissues (Alsughayyir et al. 2017).

In peripheral tissues, MLC-like structures are found in the female reproductive
tract (FRT), skin, ocular tissue, and intestine in humans and rodents (Fig. 1c)
(Collins et al. 2016; Iijima et al. 2008a; Morrison and Morrison 2000; Reacher et al.
1991; Zhu et al. 2009). In contrast to typical TLS formation, PNAd+ HEV, CD35+

cells, and B cell areas are lacking within these MLC, indicating that naïve T cells,
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naïve B cells and CD62+ CD44+ TCM are largely absent. Instead, the center of all
known MLC consists of CD11b+ and/or CX3CR1

+ APC (Fig. 1c). In addition,
CD4+ TRM mainly form clusters with APC in close proximity to the mucosal
epithelium, whereas CD8+ TRM are scattered in the cluster. The majority of CD103+

CD8+ TRM are retained in the epidermis or mucosal epithelium, which is required
for signaling via the transforming growth factor-beta (TGF-b) cascade. In contrast,
CD8+ TRM in lymphoid clusters located in the intestine express CD103 at low
levels; therefore TGF-b signaling pathway is likely to be dispensable for the
maintenance of CD103− CD8+ TRM in the intestinal lamina propria (Bergsbaken
and Bevan 2015). Instead of TGF-b-mediated retention control, antigenic stimu-
lation appears to be involved in the residency of CD103− CD8+ TRM. In the vaginal
lamina propria and skin dermis, both IFN-c from CD4+ TRM and CCL5 from APC
are required for the integrity of MLC formation (Collins et al. 2016; Iijima and
Iwasaki 2014). However, the mechanisms of MLC development remain unknown,
although LTa-mediated pathways are not likely to be involved in the retention of
virus-specific TRM in genital tissues following immunization with attenuated HSV
(Roth et al. 2013).

3 Protective Immunity in Genital Mucosa

Both the female and male genital tracts are essential for fertilization and pregnancy.
Given that the secretion of sex hormones is tightly regulated during the menstrual
cycle, immune responses in the genital microenvironment are uniquely affected by
hormone control. At the timing of conception, the trophoblast cells of the embryo
adhere to the uterine lining and then invade into the maternal uterine decidua
(Schatz et al. 2016). Following trophoblast differentiation to form a mature pla-
centa, the immune response at the maternal-fetal interface establishes tolerance over
time (Munoz-Suano et al. 2011). Natural killer (NK) cells and APC, including DC
and macrophages in the decidua in close proximity to invading trophoblasts and
paternally-derived alloantigens, are detected in the developing placental and fetal
tissues (Houser et al. 2011). Their interaction triggers a sequence of immune
responses that are initiated prior to conception and persist through gestation and
delivery of the newborn. Among innate immune cells, CD56hi CD16lo NK cells,
which are unique to the uterus, accumulate in the decidua during the progestational
phase of the menstrual cycle after implantation is initiated (Koopman et al. 2003).
The uterine NK cells are essential for placental development through the provision
of growth factors and facilitation of adaptations to the uterine vasculature to help
trophoblast invasion (Beaman et al. 2014). In terms of APC, decidual macrophages
promote a tolerant microenvironment in healthy individuals through the expression
of PD-1 and M2-like characteristics, whereas PD-1 is down-regulated on decidual
macrophages that possess the M1 phenotype in patients of recurrent miscarriage
(Shimada et al. 2018; Zhang et al. 2018). DC that accumulate in the uterus par-
ticipate in decidual angiogenesis by secreting soluble fms-like tyrosine kinase-1 and
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TGF-b1, which is independent of immunological tolerance (Plaks et al. 2008).
Thereafter, Collins MK et al. (2009) demonstrated that DC enriched in the decidua
fail to migrate into DLN following exposure to fetal/placental antigens, indicating
that the decidual DC play a critical role in blocking immune rejection of the fetus
(Collins et al. 2009). In addition to innate immune cells, the adaptive immune
response based on regulatory T cells (Treg) and effector/memory T cells is also
important for pregnancy tolerance. In particular, to allow reproduction, Treg are
necessary to control inflammation in decidual tissues for embryo implantation and
progression of gestation (Robertson et al. 2018).

In the human uterine endometrium and cervix, lymphoid clusters containing
CD8+ T cells and B cells develop in the stratum basalis of the endometrium during
the proliferative phase of the menstrual cycle (Johansson et al. 1999; Wira et al.
2014; Yeaman et al. 2001). Given that the clusters are not found at menses or
during gestation, their formation is likely to be under the control of the menstrual
cycle (Yeaman et al. 1997). CD20+ B cells are located at the center of lymphoid
clusters and are surrounded by CD45RO+ CD8+ T cells and macrophages.
Remarkably, these CD45RO+ CD8+ T cells express high levels of CD69 (Yeaman
et al. 2001), suggesting that these memory CD8+ T cells are a tissue-resident
population. Similarly, structured lymphoid clusters are found in rats and mice and
they enlarge to form mural structures by day 10.5 of gestation. As for the devel-
opment of secondary lymphoid organs, LTa and/or LTb play essential roles in
initiating their organization. LTa is secreted from endometrial stromal cells and
transformed decidual cells in human pregnancy (Vince et al. 1992). LTa and LTb
are detected in placental cells, fetal trophoblasts, and decidual macrophages
(Phillips et al. 2001). In contrast, the formation of lymphoid clusters in the uterine
endometrium does not appear to be affected by the expression of LTa or LTb,
indicating that the clusters are typical tertiary lymphoid structures (Kather et al.
2003; Moyron-Quiroz et al. 2004). Given that the size and maintenance of these
lymphoid clusters are influenced by sex hormones, their formation in the uterus
indicates involvement from pregnancy to childbirth, although their exact function
remains unknown.

For genital tissues to perform their reproductive functions without problems, a
local immune response must protect against causative infectious agents of sexually
transmitted diseases (STD) (Iwasaki 2010). To this end, genitourinary tracts must
deploy highly robust and effective first-line of defenses against viral, bacterial,
fungal, and parasitic pathogens, while maintaining tolerance to allo-immune
responses against spermatozoa and the semi-allogeneic fetus (Wira et al. 2014).

In contrast to other mucosal tissues, the immune defense system in the FRT is
affected by its distinctive features of anatomy, hormonal control, mucus, micro-
biota, lymphatics, and cellular composition (Deruaz and Luster 2015; Iwasaki 2016;
Wira et al. 2015). In terms of vaginal microbiota, the FRT is dominated by
Lactovacillus species, which may play a role in protection against HIV-1 trans-
mission (Chen et al. 2017). In addition, reduced colonization of vaginal lactobacilli
is closely associated with the onset of opportunistic diseases and an increased risk
of HIV-1 infection (Quinn and Overbaugh 2005). As a potential mechanism of
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protection mediated by Lactovacillus species, vaginal Lactobacillus spp. is known
to secrete antimicrobial factors, such as bacteriocins and organic acid metabolites,
mainly lactic acid (LA). Protonated LA levels in cervicovaginal fluid inactivate
HIV-1 replication; while the exact mechanism of this remains unclear, and it is not
likely to be mediated by lactate anions or pH (Tyssen et al. 2018). Microbiota,
including vaginal lactobacilli, has distinct types of immunoregulatory properties
that have an impact on unique characteristics and functions of resident immune
cells (Song et al. 2018).

To drive the robust protective immunity mediated by antigen-specific T and B
cells, tissue-resident DC have highly potent antigen-presenting capacity to initiate
the antigen-specific immune response (Iwasaki 2007). Therefore, the phenotypic
and functional signatures of DC in genital tissues determine the quality of immune
protection. The phenotypic features of DC in genital tissues are quite distinct from
those of DC in other tissues (Iijima et al. 2008b; Parr et al. 1991). In particular,
vaginal epithelial DC (VEDC) consist of several distinct populations in mice (Iijima
et al. 2007) and humans (Ballweber et al. 2011; Duluc et al. 2013), whereas
Langerhans cells (LC) (CD207hi CD326+ CD11c+ MHCII+ DC) are predominantly
located in skin epidermis (Merad et al. 2002). Likewise, dendritic cell populations
in ocular and oral epithelia can be segregated into at least two distinct populations
based on the expression of CD11b and CD103 (F4/80−) (Capucha et al. 2015;
Hattori et al. 2011). These findings suggested the fate of dendritic cell differenti-
ation depending on whether stratified squamous epithelia is cornified or not. In fact,
in adult skin epidermis, LC are not replenished by circulating BM-derived pre-
cursors (Hovav 2018). Instead, Langerhans cell precursors enter the epidermis
during embryonic development and then self-renew there (Chorro et al. 2009;
Hoeffel et al. 2012). During early embryogenesis, yolk sac macrophages give rise to
LC. In addition, LC are likely to arise from liver monocytes (Hoeffel et al. 2012). In
contrast, VEDC develop from circulating BM-derived precursors, including
monocytes, common dendritic cell progenitors, and pre-DC (Capucha et al. 2015;
Iijima et al. 2007). As another hallmark of DC in epithelia, skin, oral, and ocular
DC expresses high levels of CD207, whereas VEDC express CD207 at low levels
(Capucha et al. 2015; Duluc et al. 2013), suggesting that CD207 expression in
vaginal tissues is influenced by unknown genital-specific factors. These findings
indicate that the final differentiation of genital DC is determined by the properties of
genital tissues. As for the function of DC in genital tissues, submucosal DC in the
vaginal lamina propria but not VEDC are required for the generation of Th1 cells in
DLN (Zhao et al. 2003), whereas VEDC appear to be involved in the differentiation
of Th17 cells in DLN (Anipindi et al. 2016; Hervouet et al. 2010). To control the
migration of these DC, CTLA4 expressed on FoxP3+ Treg is involved in the
recruitment of vaginal DC into DLN to initiate antigen-specific T cell responses
(Lund et al. 2008; Soerens et al. 2016). In addition, CD8a+ and CD8a− DC in DLN
present viral antigens to CD8+ T cells to differentiate into IFN-c producing cells,
whereas the origin of DC in vaginal tissues remains elusive (Lee et al. 2009). After
migratory DC leave genital tissues, rapid recruitment of Ly6Chi monocytes from the
blood occurs in vaginal tissues (Iijima et al. 2007). Thereafter, Ly6Chi monocytes
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capture viral antigens and upregulate MHC class II and costimulatory molecules
(Iijima et al. 2011). Furthermore, the monocyte-derived APC are able to present
antigens to effector Th1 cells that subsequently enter into vaginal tissues. In
addition, the reactivated Th1 cells are critical for inhibiting viral replication in the
vaginal epithelium (Iijima et al. 2011). With respect to the function of other den-
dritic cell subsets, topical application of aminoglycoside antibiotics (neomycin) to
vaginal tissues triggers the recruitment of CD103+ XCR1+ DC, which is responsible
for a significant upregulation of interferon-stimulated genes in vaginal tissues. This
contributes to the protection against vaginal HSV-2 and Zika virus infection in a
microbiota-independent manner (Gopinath et al. 2018).

More than 30 pathogens cause STD. With regard to bacterial infection, Neisseria
gonorrhoeae, Chlamydia trachomatis, Treponema pallidum, and Trichomonas
vaginalis lead to reproductive failure and possible death if untreated. In terms of
virus infection, human papillomavirus (HPV) infection causes cervical cancer. In
addition, HIV and genital herpes cause chronic infection and are difficult to com-
pletely cure. Thus, safe and effective vaccines to prevent sexually transmitted
infections are urgently needed. However, vaccines are currently only available for
two of pathogens causing STD (HPV and hepatitis B virus (HBV)), despite many of
vaccine trials having been conducted. Protection against HPV infection by the
prophylactic vaccine is thought to be largely mediated by antibodies (Ab); however,
the control of pathogens that replicate intracellularly is likely to require cellular
immunity, requiring the development of therapeutic vaccines. To block invading
pathogens binding with host cells, including epithelial cells, Ab must be secreted
from the mucosal lamina propria into the lumen. In FRT, the upper genital tract is
classified as a type I mucosal surface, which consists of simple columnar epithe-
lium. On type I mucosal epithelial cells, both neonatal Fc receptor (FcRn), which
plays a prominent role in the transport of immunoglobulin G (IgG) into the lumen,
and polymeric Ig receptor (pIgR), which binds dimeric IgA to transport it into the
lumen, are expressed. However, the lower genital tissues, including the ectocervix
and vagina, are classified as type II mucosal surfaces and are covered by stratified
squamous epithelial cells. On type II mucosal epithelia, FcRn but not pIgR is
expressed, indicating that IgG but not IgA is the main effector molecule inhibiting
the attachment of infectious agents to epithelial cells in the lower reproductive tract.
For IgG to exert a protective function against invading pathogens, Igs in the FRT
must be adequately delivered to the mucosal lumen. In addition, Ig levels in the
lumen of genital tissues are influenced by sex hormones. (Wira et al. 2015). In fact,
IgG levels in secretions from uterine tissues are much higher than those in the
fallopian tube during the periovulatory phase (Safaeian et al. 2009a). Furthermore,
following HPV vaccine immunization, transition to the mid-cycle during ovulatory
cycles causes a dramatic decrease in IgG levels that react to HPV virus-like par-
ticles in cervical secretions (Nardelli-Haefliger et al. 2003). Collectively, unique
immune defense systems that adapt to the estrous cycle are strategically deployed in
genital tissues.

It is currently unclear whether hormonal control affects the efficacy of HPV
vaccines, but licensed prophylactic vaccines against HPV infection are highly
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effective in preventing the infection (Joura et al. 2015). In contrast, no vaccine trials
for genital herpes have succeeded in blocking HSV-2 infection in vaginal tissues.
Following HPV vaccines or HSV vaccine candidate immunization, high titers of
antigen-specific Igs are maintained in peripheral blood for over years and long-term
antibody responses have also been observed (Belshe et al. 2012; Slifka and Amanna
2019). Contrary to serum antibody responses, IgA and IgG levels in cervical tissues
are not associated with levels in blood (Safaeian et al. 2009b). In addition, Ig levels
in genital tissues are markedly lower than those in peripheral blood, indicating that
passive transfer of IgA and IgG thorough pIgR and FcRn into the lumen of genital
tissues does not completely explain the mechanism of Ig transport. To establish
HPV infection, the virus must reach epithelial basal cells with stem cell-like
properties at the bottom of an epithelium. Following wound or epithelial trauma,
HPV viral particles are able to access to the epithelial stem cells (Egawa et al.
2015). HSV infection, however, does not need epithelial trauma to access epithelial
basal cells because it directly infects vaginal epithelial cells through viral entry
receptors, including nectin-1 (Linehan et al. 2004). Recently, Oh JE et al.
(2019) clearly demonstrated that the levels of antigen-specific Ab are significantly
increased in the murine vaginal lumen following epithelial barrier breach (Oh et al.
2019), indicating that following epithelial trauma, leakage of HPV-specific Ab into
the lumen blocks the establishment of HPV infection in individuals who received a
prophylactic HPV vaccine. Furthermore, the mouse model evidence explains why
the robust antibody responses induced by a prophylactic for HSV-2 vaccine are
entirely ineffective at preventing the infection.

4 Generation and Function of TRM in Peripheral Tissues

Following immunization or exposure of vaginal tissues to a pathogen, DC localized
in the vaginal epithelium and lamina propria capture the antigen and migrate into
DLN to generate antigen-specific TE (Deruaz and Luster 2015; Iwasaki 2010). Once
TE migrate from DLN to the infection site, including the mucosa, they have the
intrinsic capability to combat a replicating pathogen by means of cytotoxic activity
and cytokine production. However, after the clearance of an invading pathogen or a
few weeks after immunization, TE mostly lead to apoptosis during a contraction
phase (Badovinac et al. 2002). This process is likely to be preprogrammed to cease
an undesirable inflammatory response and tissue damage mediated by TE. However,
a small number of TE differentiate into long-lived memory T cells (TM). TM are able
to rapidly exert a powerful effector function based on cytokine production and
cytotoxic activity following reinfection with the same pathogen. This hallmark of
TM substantially contributes to combat against a secondary encounter with the same
pathogen. Therefore, the generation of TM following primary infection with a
pathogen or immunization with a vaccine is an important component in achieving
long-term protection and developing effective therapeutics. Two distinct types of
TM are generated: central memory T cells (TCM) and effector memory T cells (TEM)
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(Sallusto et al. 1999). TCM express LN homing receptors, including CCR7 and
CD62L, so that TM can access to LN, which consist of a network of CCL19+

stromal cells and PNAd+ endothelial cells. Given their phenotypic features, TCM are
able to circulate between the blood and LN by entering the efferent lymph and
returning to the circulation via the thoracic duct (TD) (Sigmundsdottir and Butcher
2008). In contrast, TEM barely express CCR7 and CD62L. Instead, TEM express
tissue-homing receptors including a4b7 and CCR9 (for intestine), a1b1 (VLA-1),
CXCR3 and CXCR6 (for lung tissues), CXCR3 and CCR5 (for genital tissues),
a4b1 (VLA-4), CXCR3 and CCR6 (for neuronal tissues) and E-selectin ligands,
P-selectin ligands, CCR4, cutaneous lymphocyte-associated antigen (CLA) and
CCR8 (for skin tissues) (Bromley et al. 2008; McCully et al. 2012). Accordingly, it
is conceivable that almost all TEM continuously circulate between the blood and
peripheral tissues. To elucidate the mechanism by which TEM move from tissues,
Bromley SK et al. (2005) and Debes GF et al. (2005) demonstrated that CCR7
expressed on T cells is involved in their exit from peripheral tissues, indicating that
CCR7 might be upregulated on TEM (Bromley et al. 2005; Debes et al. 2005).
However, in various experimental settings, including pathogen infection, asthma
and autoimmune diseases, CD44hi CD62L− TE in peripheral tissues are CCR7low

and direct evidence of continuous circulation was nearly lacking (Jameson and
Masopust 2018; Masopust and Soerens 2019). Similarly, sphingosine-1-phosphate
receptor 1 (S1PR1) guides naïve CD4+ T cells but not activated T cells toward
afferent lymphatic vessels (Ledgerwood et al. 2008). These data indicate that
S1PR1 rather than CCR7 signaling might regulate the movement of T cells to the
afferent lymphatics from tissues. However, the detailed mechanism by which T
cells enter the lymphatic system remains to be fully elucidated. As such, recent
findings of CD8+ TM subsets based on the expression of CX3CR1 provide a more
feasible classification of TM to extend the traditional concept regarding TCM and
TEM. Gerlach C et al. identified three distinct populations of murine TM: CX3CR1

lo

CXCR3+ CD8+ TCM, CX3CR1
int CXCR3+ CD8+ TM, and CX3CR1

hi CXCR3− TEM

(Gerlach et al. 2016). Both CX3CR1
lo CXCR3+ CD8+ TCM and CX3CR1

int

CXCR3+ CD8+ TM are CD62L+ CD27+; therefore, that they can access LN. In
contrast, surprisingly, CX3CR1

hi CXCR3− TEM are not found in peripheral tissues.
Instead, CX3CR1

int CXCR3+ CD8+ TM are able to survey peripheral tissues.
Furthermore, CX3CR1

int CXCR3+ CD8+ TM are responsive to CCL19 and are
detected in TD lymph regardless of CD62L expression, indicating that this popu-
lation is a genuine continuously circulating TM (Gerlach et al. 2016). In human
blood, CX3CR1

+ CD62L− and CX3CR1
+CD62L+ CD8+ TM are also characterized

(Bottcher et al. 2015). Both have the capability to secrete granzyme B and perforin,
which are identical to TEM, while CX3CR1

− CD62L+ CD8+ TM are able to produce
a high level of IL-2 which are analogous to TCM. As for continuously circulating
TM, CD69

− CD8+ TM, which resemble CX3CR1
int CXCR3+ CD8+ TM, recirculate

between skin tissues and blood under the control of TGF-b activation through
keratinocytes expressing avb6 and avb8 (Hirai et al. 2019). In peripheral tissues,
approximately 10%-20% of TM are CX3CR1

int CXCR3+ CD8+ TM, and the
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remaining population represents CX3CR1
− CD69+ CD62L− CD103+/− CD8+ TM,

which are distinct from TEM and TCM (Gerlach et al. 2016).
Over the past decade, many groups have tried to clarify whether TM detected in

the peripheral tissues are continuously circulating cells or tissue-resident popula-
tions (Clark et al. 2012; Masopust et al. 2001). To answer this question experi-
mentally, a parabiosis technique involving the sharing of blood circulation between
two mice confirmed that a distinct subset of TM representing the CD44+ CD62L−

CD69+ CD103+/− population are TRM that are largely disconnected from blood
circulation (Iijima and Iwasaki 2014; Jiang et al. 2012; Klonowski et al. 2004;
Schenkel et al. 2013; Teijaro et al. 2011). Furthermore, using photoconversion with
the parabiosis technique, Park et al. (2018a) elegantly demonstrated that a minority
of non-photoconverted circulating CD4+ TM, CCR7+ CD62L− CD69− cells is
completely segregated from CD4+ TRM in the skin dermis following Candida
albicans infection (Park et al. 2018a), which is consistent with a similar population
of previously reported circulating CX3CR1

int CXCR3+ TM (Bromley et al. 2005;
Debes et al. 2005; Gerlach et al. 2016; Hirai et al. 2019).

In human tissues, based on phenotypical and functional features of TRM, TM with
a similar phenotype to mouse TRM have been observed (Clark 2015). In a study of
patients with genital herpes, HSV-specific CD8aa memory T cells were identified
at the dermal-epidermal junction for a long time following resolution of HSV
reactivation (Zhu et al. 2013). Furthermore, following alemtuzumab treatment (an
anti-CD52 antibody), Watanabe R et al. (2015) elegantly demonstrated that a large
number of T cells with an effector function analogous to that of TRM remained in
the skin of leukemic cutaneous T cell lymphoma patients despite complete deple-
tion of all circulating T cells (Watanabe et al. 2015). These data directly confirmed
the existence of long-lived TRM in human peripheral tissues. In contrast to
long-term resident TRM, a minority population of CD103+ CLA+ CD69+ CD4+ TRM

down-regulates CD69 and then transits from the skin to the blood circulation
(Klicznik et al. 2019). In particular, CD103+ CLA+ CD4+ TRM have the capability
to produce IL-22 and IL-13 but not IL-17, IFN-c, IL-4 and GM-CSF, indicating that
control of retention is largely mediated by cytokine production from CD4+ TRM.

TRM are mainly found to be seeded in non-lymphoid tissues, particularly at
barrier tissues such as mucosal tissues and skin. As tissue-resident T cell popula-
tions, CD8+ TRM and CD4+ TRM are found in a variety of peripheral tissues, while
their location, differentiation process, phenotypical, and functional features differ as
described below.

4.1 The Role of CD8+ TRM in Barrier Tissues

Naïve CD8+ T cells have the capacity to migrate the blood circulation, lymphoid
tissues (LNs, spleen and Peyer’s patches), and return to the blood via the efferent
lymph. In contrast, CD8+ TM (CD44hi, CD62Llo) are distributed in peripheral tis-
sues, especially, in the epithelia but not in lamina propria or dermis, long after the
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clearance of a pathogen (Masopust et al. 2001). Based on their phenotypic char-
acteristics, the majority of CD8+ TRM in skin epithelium, vaginal epithelium, lung
tissues (airway, lung interstitium, and upper respiratory tract), brain, salivary grand,
liver, and kidney express high levels of CD103 and CD69 (Masopust and Soerens
2019). In particular, CD103 is required for CD8+ TRM retention in skin epidermis
(Mackay et al. 2013), and is likely to be involved in the survival of CD8+ TRM in
brain tissue following virus infection (Wakim et al. 2010). CD103 appears to
interact with E-cadherin expressed on epithelial cells; therefore, CD103 would be
essential for the retention of CD8+ TRM in squamous epithelia (type II mucosa) and
monolayer epithelium (type I mucosa) but not in brain tissues. To differentiate into
CD8+ TRM, TRM precursors in blood must enter peripheral tissues following some
sort of stimulus. Topical application of CXCR3 ligands or nonspecific inflamma-
tory stimuli were able to tempt TRM precursors from the blood into peripheral
tissues (Mackay et al. 2012; Shin and Iwasaki 2012); therefore, both CXCR3hi

CX3CR1− TCM and CXCR3hi CX3CR1int TM have the potential to differentiate into
TRM. Following transit into peripheral tissues, TGF-b signaling can control the
expression of CD103, which is indispensable for the maintenance of CD8+ TRM in
skin epidermis and gut tissues (Casey et al. 2012; Mackay et al. 2013; Sheridan
et al. 2014; Skon et al. 2013; Zhang and Bevan 2013). Furthermore, Mohammed J
et al. (2016) demonstrated that retention of CD8+ TRM requires avb6 and avb8
expressed on keratinocytes through latent TGF-b activation in the epidermis
(Mohammed et al. 2016). In the intestine, avb6 controls the residence of CD8+

TRM, indicating that avb6 plus avb8 or avb6 are necessary for CD8+ TRM to reside
in type II mucosa or type I mucosa, respectively.

With regard to factors for CD8+ TRM survival, the expression of Bcl2 is sig-
nificantly increased in CD8+ TRM in skin epidermis (Park et al. 2018b) and intestine
(Bergsbaken and Bevan 2015) indicating long-term persistence in tissue. Of note,
Wakim LM et al. (2013) demonstrated that CD8+ TRM maintain a high level of
interferon-induced transmembrane protein 3 (IFITM3) expression to survive in lung
parenchyma following influenza infection (Wakim et al. 2013). In skin epidermis,
IL-15 produced by radio-resistant cells is also essential for the long-term survival of
CD8+ TRM (Adachi et al. 2015; Mackay et al. 2015). Furthermore, fatty-acid-
binding proteins 4 and 5 (FABP4 and FABP5) and P2RX7 play pivotal roles in the
maintenance and function of long-lived CD8+ TRM mediated by regulating oxida-
tive metabolism through exogenous free fatty acid intake (Pan et al. 2017) or by
promoting mitochondrial homeostasis (Borges da Silva et al. 2018). However, it is
unclear whether Bcl2, IFITM3, IL-15, FABP4, FABP5, and P2RX7 share com-
monalities to control the survival of CD8+ TRM in mucosal tissues and skin.

In addition to CD103+ CD8+ TRM, long-lived CD103− CD8+ TRM have been
found in intestine (Bergsbaken and Bevan 2015), brain (Steinbach et al. 2016), liver
(Mackay et al. 2016), and secondary lymphoid organs (Beura et al. 2018; Schenkel
et al. 2014b). Although CD103+ CD8+ TRM need keratinocyte-mediated TGF-b
activation for their retention, CD103− CD8+ TRM appear to require interaction with
CD4+ T cells and CX3CR1

+ APC, which form clusters in the lamina propria of the
intestine (Bergsbaken and Bevan 2015), suggesting that the recognition of cognate
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antigen is involved in the retention. This is in contrast to CD103+ CD8+ TRM, which
maintain the residency in a local antigen-independent manner.

As is the case for CD103, upregulation of CD69 in CD8+ TRM has also been
reported in various tissues. At the beginning of an immune response, CD69 is an
early activation marker that is triggered by type-I interferon signaling in DLN.
Upon the upregulation of CD69 on activated T cells, receptor sphingosine
1-phosphate receptor 1 (S1PR1) is down-regulated so that these T cells are retained
in DLN and differentiate into TE (Matloubian et al. 2004). Once TE move to the
blood circulation, the level of CD69 expression is low, whereas, following
tissue-resident memory T cell differentiation in tissues, CD69 is re-expressed on
TRM. Skon et al. (2013) elegantly elucidated that repression of S1PR1 and the
transcriptional factor, KLF2 (Kruppel-like factors 2), which controls expression of
S1PR1, is required for the establishment of CD8+ TRM (Skon et al. 2013), indi-
cating that downregulation of S1PR1 expression is also critical for CD8+ TRM

generation. However, in various types of experimental setting, including influenza
infection, chronic virus infection and protein immunization, the requirement of
CD69 for the maintenance of CD8+ TRM varies according to the type of peripheral
tissue (Beura et al. 2018). This indicates that other factors also control the
expression of KLF2 and S1PR1 for retention (Walsh et al. 2019).

KLF2 downregulation has been extensively recognized as a hallmark of TRM.
Recently, homolog of B lymphocyte-induced maturation protein-1 (Blimp1) in T
cells (Hobit) was identified to be remarkably upregulated in skin-resident CD8+

TRM, NKT cells and liver-resident NK cells (Mackay et al. 2016). Both Hobit and
Blimp-1 control the expression of KLF2, S1PR1, CCR7, CD69, and cytotoxic
molecules including granzyme B and TRAIL. In contrast to skin epidermis,
Blimp-1 rather than Hobit is required for the establishment of CD8+ TRM in lung
tissues (Behr et al. 2019). Furthermore, in human, the level of Hobit expression in
TM in blood is higher than that in TRM in brain (Smolders et al. 2018). With regard
to other transcription factors related to the control of CD8+ TRM, RUNX3 also
regulates multiple targets that influence the retention of CD8+ TRM (Milner et al.
2017). Hence, CD8+ TRM development might be regulated by an intricate network
of transcription factor expression that is influenced by each tissue
microenvironment.

An intriguing feature of TRM is their ability to exert a rapid effector function
following re-encounter with the same pathogen at the site of infection. The presence
of CD8+ TRM facilitates the clearance of invading pathogens, including viruses,
bacteria, and fungi. Rapid secretion of cytokines (IFN-c and TNF-a) and cytotoxic
molecules, including granzyme B and perforin, directly blocks the replication of
previously encountered pathogen in infected cells. TRM therefore contribute sub-
stantially to prevent the spread of infectious agents (Mackay et al. 2013).
Furthermore, immediate production of IFN-c and TNF-a reinforces innate immu-
nity, including DC maturation and NK cell activation, and triggers robust pro-
duction of chemokines and rapid recruitment of leukocytes from blood circulation
(Schenkel et al. 2014a; Schenkel et al. 2013). Collectively, CD8+ TRM are able to
orchestrate immediate robust protective immunity as a front-line of defense.
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The topical application of chemokines including CXCL9, surfactants including
nonoxynol-9 or local antigen expression, recruits circulating CD8+ T cells to
mucosal tissues, leading to their retention as CD8+ TRM in the epithelium and
lamina propria (Cuburu et al. 2019; Mackay et al. 2012; Shin and Iwasaki 2012;
Takamura et al. 2016). These findings have important implications for the future
development of effective mucosal vaccines.

4.2 The Role of CD4+ TRM in Peripheral Tissues

Over the last few decades, the existence of CD4+ T cells in addition to CD8+ T cells
in local tissues has been observed (Reinhardt et al. 2001). At the same time,
tissue-tropic TEM-like cells circulate in blood until they are recruited to site of
inflammation, while non-inflamed local tissues contain very few T cells. T cells that
had migrated into tissues during infections were thought to either exit the tissue or
undergo apoptosis after clearance of the infection. However, CD4+ T cells and
CD8+ T cells that accumulate at the site of virus infection or protein immunization
have been observed (Masopust et al. 2001; Reinhardt et al. 2001). In addition,
activated CD4+ T cells (CD25+ and CD69+) persist in lung tissues for several
months following virus infection (Hogan et al. 2001). Furthermore, CD4+ T cells
that enter into peripheral tissues barely proliferated (Reinhardt et al. 2003), indi-
cating that CD4+ T cells that settle within peripheral tissues have a unique system to
control their retention (Schenkel and Masopust 2014).

Similar to CD8+ TRM, CD4
+ TRM localize to non-lymphoid tissues, such as skin

and mucosal tissues of the lung, small intestine, and FRT for a long period of time
(Collins et al. 2016; Glennie et al. 2015; Iijima and Iwasaki 2014; Iijima et al.
2008a; Stary et al. 2015; Steinfelder et al. 2017; Teijaro et al. 2011; Turner et al.
2018; Wilk et al. 2017). As is the case of CD8+ TRM, the majority of CD4+ TRM

express high levels of CD69, but CD103 expression varies according to tissue.
Contrary to CD8+ TRM that are retained in skin epidermis or mucosal epithelia, the
majority of CD4+ TRM are distributed in the skin dermis or mucosal lamina propria,
suggesting that the retention mechanism of CD4+ TRM is distinct from that of CD8+

TRM. TGF-b signaling contributes to the maintenance of CD8+ TRM in the epithelial
layer, whereas, for IFN-c+ CD4+ TRM, the formation of clusters with other resident
immune cells, including CD8+ T cells and APC such as macrophages and DC, is
required for the retention in the lamina propria of the FRT, lung, and skin dermis
(Acosta-Ramirez et al. 2016; Collins et al. 2016; Iijima and Iwasaki 2014). In
contrast, IL-17+ CD4+ TRM do not form clusters in skin dermis following Candida
albicans infection but these cells are retained in the superficial dermis (Park et al.
2018a). Following skin HSV infection, the localization of IFN-c+ CD4+ TRM is,
however, confined to lymphocyte clusters formed around hair follicles (Collins
et al. 2016). Therefore, each CD4+ TRM subset is suggested to have its own
retention-control system in peripheral tissues.
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Substantial advances have been made in understanding the differentiation of
CD8+ TRM; however, the detailed molecular mechanism of CD4+ TRM development
remains relatively elusive. Given the existence of functionally distinct effector Th
subsets, such as Th1, Th17, and Th2, identification of CD4+ TRM precursors is
much more complicated. Furthermore, both CD4+ TE and CD4+ TM exhibit sub-
stantial plasticity and easily convert to different linages (Hegazy et al. 2010).
Similarly, in CD8+ memory T cell development, KLRG1hi CD127lo cells were
identified as a terminal effector population, while the KLRG1lo CD127hi subset
contains memory precursor cells with the potential to differentiate into long-lived
CD8+ TM (Joshi et al. 2007). In contrast, Marshall HD et al. (2011) clearly
demonstrated that the expression of CD127, the IL-7 receptor a chain, does not
characterize memory precursors from CD4+ TE (Marshall et al. 2011). Instead,
PSGL1hi Ly6Clo T-betint CD4+ TE become long-lived TM, such as CCR7

hi CD62Lhi

TCM. Interestingly, the gene expression level of CX3CR1 in the PSGL1hi Ly6Clo

T-betint population is significantly lower than that in the PSGL1hi Ly6Chi T-bethi

population, which resembles TEM-like cells, indicating that the definition of CD4+

TM subsets can also be classified by CX3CR1 expression. It still remains unclear
whether the precursor for CD4+ TRM originates from TCM, TEM-like cells or another
type of memory T cell. A recent finding clearly demonstrated that effector Th17
cells reached in lung tissues differentiate into CD4+ TRM that have the capability to
produce IFN-c but not IL-17 (Amezcua Vesely et al. 2019), although it remains
unknown whether all CD4+ TRM originate from effector Th17 cells.

For long-term survival of CD4+ TRM in peripheral tissues, CD4+ TRM must
receive survival signals within the local microenvironment during their generation
and differentiation. The common gamma-chain cytokines, including IL-2, IL-7 and
IL-15 play pivotal roles in the generation of CD4+ TM. Among them, IL-2 receptor
signaling is necessary for the generation of CD4+ TRM in lung tissues following the
induction of allergic asthma or lymphocytic choriomeningitis virus infection
(Hondowicz et al. 2016, 2018). The generation of CD4+ TRM through an
IL-2-independent pathway has also been reported following lung influenza infec-
tion. Besides, IL-2-independent CD4+ TRM require IL-15 for T cell activation,
whereas IL-15 was redundant for the maintenance of CD4+ TRM (Strutt et al. 2018).
The maintenance of long-lived CD4+ TM, however, requires IL-7 signaling because
IL-7R is highly expressed on naïve CD4+ T cells and CD4+ TM (Seddon et al.
2003). In a skin model of contact hypersensitivity, CD4+ TM in skin tissues fail to
be retained following ablation of IL-7 from epidermal keratinocytes, indicating that
IL-7 signaling in the local microenvironment is essential for the entry or survival of
CD4+ TM (Adachi et al. 2015). Likewise, following lung Klebsiella pneumonia
infection, CD4+ TRM derived from Th17 cells express high levels of CD127 so that
the cells can be maintained in lung tissue through IL-7-mediated signaling
(Amezcua Vesely et al. 2019). In contrast, the expression of CD127 on CD4+ TRM

is comparable to that on circulating CD4+ TEM in Peyer’s patches (Ugur et al.
2014). Similarly, the expression of CD127 on CD4+ TRM was significantly lower
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than that on circulating CD4+ TEM in the FRT (Beura et al. 2018). Furthermore, a
parabiosis study demonstrated that the level of CD122 expression on CD4+ TRM is
almost identical to that on circulating CD4+ TEM in the FRT (Beura et al. 2018),
suggesting that IL-15 signaling is also dispensable for the retention of CD4+ TRM in
genital tissues. Thus, the requirement of IL-7 and IL-15 for the survival of CD4+

TRM appears to be dependent on the properties of peripheral tissues. Collectively,
the inflammatory status and immune responses in tissue microenvironments are
more likely to shape the retention and function of CD4+ TRM compared with CD8+

TRM.
For this reason, the topical application of any product is not able to generate

MLC formation containing CD4+ TRM. Currently, charge-switching synthetic
adjuvant particles containing UV-inactivated Chlamydia trachomatis is the only
topically applied artificial compound that has generated CD4+ TRM in the uterine
mucosa (Stary et al. 2015). This finding has profound implications for the devel-
opment of other vaccines, although it remains unknown whether the retention of
CD4+ TRM themselves is sufficient to inhibit the spreading of invading pathogens.

5 Generation and Maintenance of MLC in Genital Tissues

For almost two decades, lymphocyte aggregates, memory lymphocyte clusters
(MLC), have been reported in genital tissues following HSV-2 or Chlamydia tra-
chomatis infection; however, the exact function of MLC remained elusive until
fairly recently (Gillgrass et al. 2005; Morrison and Morrison 2000). In contrast to
TLS, CD62Lhi CD44lo naïve T cells are not found within the clusters of CD4+ T
cells, CD8+ T cells and APC. Similarly, the expression of PNAd, CD31, lymphatic
vessel endothelial hyaluronan receptor 1 and CD21/CD35 as the basal components
of TLS is not detected within MLC (Fig. 1c) (Table 1), indicating that MLC are not
the sites for induction of antigen-specific effector T cells from naïve T cells (Iijima
and Iwasaki 2014, 2015). Furthermore, the expression of CCL19, CCL21,
CXCL12, and CXCL13 is not found in MLC. Instead, CXCL9 and CCL5 were
detected after MLC formed in vaginal tissues (Iijima and Iwasaki 2014) (Table 1).
No MLC-like structure has been demonstrated to be affected by sex hormones,
except for lymphoid aggregates centered around CD20+ B cells in the uterine
endometrium.

At present, MLC are mainly observed in the lamina propria beneath vaginal
epithelial layers, which is the entry site of the HSV-2 virus. However, Chlamydia-
induced MLC are found in vaginal tissues, cervix, and fallopian tubes. Thus, the
mechanism of MLC generation and maintenance following HSV-2 infection and
Chlamydia trachomatis infection is shown separately as follows.
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5.1 MLC Formation Following HSV-2 Infection

HSV-2 is one of the most prevalent sexually transmitted pathogens with more than
400 million people infected worldwide. HSV-2 is a double-stranded DNA virus that
belongs to the Herpesviridae family and is a major cause of genital herpes,
symptoms of which include recurrent local inflammation along with severe pain in
genital tissues leading to reduced quality of life (Schiffer et al. 2018). Following
massive HSV-2 replication in the genital epithelium, the virus enters peripheral
nerve terminals and then travels to dorsal root ganglia to replicate and/or lead to
latency (Diefenbach et al. 2008). During latent infection in neuronal tissues, viral
particles and viral DNA are rarely detected in vaginal and neuronal tissues. Instead,
latency associated transcripts are abundantly localized in neuronal cell bodies but
not genital tissues. Despite the lack of HSV-2 replication in vaginal tissues, lym-
phoid aggregates have been observed in human and mice (Gillgrass et al. 2005;
Iijima et al. 2008a; Kiviat et al. 1990; Zhu et al. 2009), although their significance
remained unclear until recently. To prevent HSV-2 infection in genital tissues and
to treat HSV-2-mediated diseases, a large number of prophylactic vaccine trials
have been performed; however, none of these trials has succeeded in generating a
genital herpes vaccine (Awasthi et al. 2014; Belshe et al. 2012; Corey et al. 1999;
Stanberry et al. 2002). In a murine model of genital herpes infection, intravaginal
immunization with live attenuated HSV-2 was highly effective at inducing pro-
tective immune responses and the protection against HSV-2 (McDermott et al.
1984; Parr et al. 1994). Furthermore, at least four weeks after thymidine kinase
negative (TK−) HSV-2 intravaginal immunization, both T cells and IFN-cR sig-
naling were required to inhibit virus replication in murine vaginal tissues following
wild-type (WT) HSV-2 intravaginal challenge (Milligan and Bernstein 1997;

Table 1 Components, immune cells, and fibroblastic cells in secondary lymphoid organs, tertiary
lymphoid structures, or memory lymphocyte clusters

Encapsulated T
cell
zone

B
cell
zone

HEV Naive T
and B
cells

TCM TRM FDC Chemokines
and cytokines

SLO + + + + + + + + LT, IL-17,
CCL19,
CCL21,
CXCL13

TLS − + + + + + N/D + IL-17, CCL19,
CCL21,
CXCL13

MLC − + − − − − + − CCL5, CXCL9

N/D not determined
SLO secondary lymphoid organs; TLS tertiary lymphoid structures; MLC memory lymphocyte
clusters; HEV high endothelial venules; TCM central memory T cells; TRM tissue-resident memory
T cells; FDC follicular dendritic cells; LT lymphotoxin; CCL CC-chemokine ligand; CXCL
CXC-chemokine ligand
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Milligan et al. 1998; Parr and Parr 1998, 1999). Likewise, in a guinea pig model of
vaginal HSV-2 infection, CD4+ T cells were required to the control HSV recurrence
(Bourne et al. 2019). In contrast, intravaginal immunization with TK− HSV-2 in B
cell-deficient mice protected against HSV-2 secondary challenge, whereas intra-
nasal immunization with attenuated virus in B cell-deficient mice allowed WT
HSV-2 to invade neuronal tissues to replicate following intravaginal challenge
(Iijima and Iwasaki 2016; Milligan et al. 2004). Furthermore, HSV-2-specific Ab
required circulating CD4+ TM cells to achieve protection in neuronal tissues against
WT HSV-2 intravaginal challenge (Iijima and Iwasaki 2016; Morrison et al. 2001).
These findings suggested that tissue-resident immunity in vaginal tissues is critical
for rapid viral clearance to block viral spreading into neuronal tissues. Certainly,
HSV-specific CD4+ T cells are found to accumulate in lamina propria of vaginal
tissues four weeks after intravaginal immunization with TK− HSV-2 (Iijima et al.
2008a). Furthermore, CD4+ T cells form clusters beneath the vaginal epithelium
(Roth et al. 2013). To inhibit HSV-2 replication in vaginal tissues, MHC class II+

APC, including CD11c+ DC and CD20+ B cells are required for the
IFN-c-mediated but not cytotoxic function of CD4+ TM following HSV-2 sec-
ondary challenge (Iijima et al. 2008a). To dissect the mechanism for the mainte-
nance of CD4+ TM in vaginal tissues following TK− HSV-2 immunization,
immunized C57BL/6 mice were conjoined with immunized congenic C57BL/6
mice to examine whether vaginal CD4+ TM constitute a tissue-resident population
or a continuously circulating population. Two to seven weeks after surgery,
HSV-2-specific CD4+ TM were predominantly a host-derived and not a
blood-derived population (Iijima and Iwasaki 2014), indicating that these CD4+ TM

are identified as TRM. Furthermore, HSV-2-specific CD4+ TM bearing TCRVb1
accumulate within MLC, although viral antigen sequence recognized by TCRVb1
remains unclear. Regarding phenotypic features of CD4+ TRM in MLC, CD44,
CD69, and CD49d are highly expressed, while CD103 and CD62L are rarely
detected in HSV-2-specific CD4+ TRM. Remarkably, the expression of KLF2,
KLF13, CCL5, and S1PR1 is barely observed in CD4+ TRM in MLC. In contrast,
CD4+ TRM in MLC express T-bet, Bcl-xL and Bcl-2, indicating that
IFN-c-producing CD4+ TRM in MLC are a long-lived population (Iijima and
Iwasaki 2014) (unpublished data). To maintain the formation of MLC, CD11b+

macrophages within MLC are required and these cells secrete CCL5. Although viral
genomic DNA or RNA transcripts have not been detected in vaginal tissues of TK−

HSV-2 immunized mice, constitutive low level secretion of IFN-c from CD4+ TRM

is observed in vaginal tissues (Iijima and Iwasaki 2014), indicating that CD11b+

macrophages that stimulate CD4+ TRM to secrete IFN-c produce CCL5 as a feed-
back loop mechanism. One of the mechanisms regarding MLC maintenance has,
therefore, been elucidated but adhesion molecules and transcription factors that
define CD4+ TRM and APC within MLC remain unknown. In the lamina propria of
vaginal tissues, collagen type III, collagen type IV or desmin but not collagen type I
is broadly distributed as major constituents of basement membranes, connective
tissues and filaments (Fig. 2). In addition, PDPN/gp38+ fibroblastic reticular cells
and ER-TR7+ fibroblasts are not found within MLC (Fig. 2). Future studies may
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elucidate in more detail the interaction between CD4+ TRM and the network of
fibroblastic reticular cells in genital tissues.

5.2 MLC Formation Following Chlamydia Infection

Chlamydia trachomatis infection of the genital mucosa causes an STD that is
prevalent worldwide. Following invasion into the columnar epithelial cell lining of
the endocervix and endometrial epithelium of the fallopian tubes, Chlamydia tra-
chomatis triggers persistent inflammation leading to cause urethritis, proctitis,
cervicitis, endometritis, and salpingitis (Poston and Darville 2018). More than six
distinct types of curative antimicrobial drugs are available; however, there is no
effective vaccine to prevent Chlamydia infection because of several strategies to
evade the host immune response. Protective immunity against Chlamydia infection
develops in DLN and genital tissues (Johnson and Brunham 2016); however, there
is currently no critical target to exploit for development of an effective vaccine.
Several groups has demonstrated that mice deficient in CD4, MHC class II, IL-12 or
IFN-c have increased susceptibility to genital Chlamydia infection (Morrison et al.

Desmin CD4 DAPICollagen-I CD4 DAPI

Collagen-III CD4 DAPI PDPN CD4 DAPI

CollagenIV CD4 DAPI ERTR7 CD4 DAPI

Fig. 2 Expression of collagen I, collagen III, collagen IV, desmin, PDPN or ER-TR7 in the
lamina propria of vaginal tissues following immunization with attenuated HSV-2. C57BL/6 mice
were immunized intravaginally with attenuated HSV-2. Five weeks later, frozen sections of
vaginal tissue were stained with antibodies against collagen I, collagen III, collagen IV, desmin,
PDPN/gp38 or ER-TR7 (red) and CD4 (green). Nuclei were stained by 4′,6′-diamidino-
2-phenylindole (DAPI) (blue). Images were captured using a 10x or 40x objective lens. Scale bars
indicate 100 lm
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1995; Morrison et al. 2000; Perry et al. 1997; Wang et al. 1999), indicating that
IFN-c producing CD4+ T cells are required for the inhibition of Chlamydia repli-
cation. Similarly to genital HSV-2 infection, lymphoid aggregates containing CD4+

T cells beneath the epithelium have been observed after genital Chlamydia infection
(Kiviat et al. 1990; Morrison and Morrison 2000). Interestingly, in children with
active trachoma caused by ocular Chlamydia infection, lymphoid follicles also
develop in the conjunctiva, in which the majority of immune cells are B cells not T
cells (el-Asrar et al. 1989). In contrast, in adults infected with Chlamydia tra-
chomatis, along with conjunctival scarring, lymphoid aggregates were observed in
conjunctiva and a large number of CD4+ T cells but not B cells formed clusters
(Reacher et al. 1991), indicating that age-related factors might affect the compo-
sition of immune cells in lymphoid aggregates. It remains unknown whether
age-related factors also influence the generation of MLC following genital
Chlamydia infection. In a murine model of genital Chlamydia infection, CD11b+

cells in addition to CD4+ cells are the predominant cell populations within
MLC-like structures in uterine tissues, which are analogous to MLC in the con-
junctiva of adults (Morrison and Morrison 2000). Although the existence of MLC
following Chlamydia infection has been confirmed by several groups (Johnson and
Brunham 2016), it remains totally unknown whether CD4+ TM within MLC are a
tissue-resident population or if they maintain an effector function for some time
after Chlamydia infection. Stary G et al. (2015) elegantly demonstrated that
intrauterine and intranasal immunization with charge-switching synthetic adjuvant
particles containing UV-inactivated Chlamydia trachomatis succeeded in protecting
against a genital Chlamydia challenge by generating CD4+ TRM in the uterine
mucosa (Stary et al. 2015). Interestingly, immunization with UV-inactivated
Chlamydia through the intrauterine route failed to achieve the protection against
reinfection with Chlamydia because of massive accumulation of FoxP3+ regulatory
T cells in the uterine mucosa through the activation of tolerogenic CD103+ DC.
This study sheds light on the future development of an effective mucosal vaccine
against Chlamydia infection based on the generation of protective TRM in mucosal
tissues.

6 Functional Features of MLC Against Sexually
Transmitted Pathogens

There is currently no way to block the infection of genital epithelia by sexually
transmitted pathogens, except for two viruses, HPV and HBV. In the case of HSV-2
infection, HSV gD initially binds to nectin-1 expressed on vaginal epithelial cells
(Linehan et al. 2004). This interaction results in a conformational change in HSV
gD so that the gH/gL heterodimer with gD induces a conformational change in
HSV gB. Finally, HSV is able to fuse with nectin-1+ epithelia through HSV gB to
deliver the virion capsids containing HSV DNA (Eisenberg et al. 2012). These
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glycoproteins are potential targets for prophylactic and therapeutic vaccines to
induce durable memory responses of T cells and B cells. In a mouse model of
genital herpes, intravaginal immunization with TK− HSV-2 establishes complete
protection against vaginal HSV-2 challenge (Parr et al. 1994). In contrast, although
large numbers of T cells from TK− HSV-2 immunized mice, which include
HSV-2-specific TE from DLN, were adoptively transferred, the recipients were only
partially protected against genital herpes infection (McDermott et al. 1989), indi-
cating that the generation of genital immunity following intravaginal immunization
with TK− HSV-2 is required for the establishment of complete protection.
Subsequently, intravaginal immunization with TK− HSV-2 was found to maximize
the generation of a tissue-resident population in vaginal tissues, including MLC
formation for the retention of HSV-2-specific CD4+ TRM (Iijima and Iwasaki 2014).
To directly elucidate the requirement of tissue-resident immunity, TK− HSV-2
immunized mice were conjoined with naïve mice to share blood circulation. In
naïve pairs, HSV-2-specific cell populations, including memory T and B cells and
Ab, were observed in blood, while TRM were not established in vaginal tissues.
Following WT HSV-2 challenge of the naïve pair, viral clearance was significantly
delayed compared with challenge of the immune pair, indicating that TRM, espe-
cially CD4+ TRM, are required for rapid viral clearance (Iijima and Iwasaki 2014).

The majority of CD4+ TRM are localized in the lamina propria of mucosal tissues
or dermal tissues of the skin (Collins et al. 2016; Iijima and Iwasaki 2014), indi-
cating that CD4+ TRM also play a prominent role in the front-line of defense against
invading pathogens. Following re-encounter with the same pathogen, CD4+ TRM

secrete high levels of IFN-c within 12 h (Glennie et al. 2015; Iijima and Iwasaki
2014; Oh et al. 2019), suggesting that local antigen-presenting cells present viral
antigens to CD4+ TRM instead of migrating into DLN. In addition, CD4+ TRM also
trigger accumulation of monocytes, NK cells, and B cells from blood circulation
and induce local dendritic cell activation through IFN-c secretion and cytotoxic
activity (Beura et al. 2019). Furthermore, disruption of MLC formation by CD11b+

cell depletion reduced the level of CXCL9 expression in vaginal tissues following
WT HSV-2 challenge, causing failure of memory B cells to migrate into vaginal
tissues to secrete HSV-2-specific IgGs (Oh et al. 2019). This indicates that MLC
formation is a platform for the maintenance of TRM to rapidly exert their effector
functions upon reencountering of invading pathogens.

7 Summary and Outlook

The generation of a robust immune response in peripheral tissues has a substantial
impact on the protection against invading pathogens, the onset of autoimmune
diseases, and tumor progression. On the one hand, SLO including LN are pre-
programmed encapsulated organs that organize both innate and adaptive immune
responses to maximize the initiation of antigen-specific immunity. On the other
hand, TLS formation represents a non-encapsulated congregation of lymphocytes
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and stromal cells in peripheral tissues. In both SLO and TLS, stromal cell-derived
HEV develop to recruit CD62L+ naïve B and T cells and TCM so that these lym-
phocytes can undergo transition from blood circulation to B cell zones or T cell
zones (Fig. 1a and b) (Table 1). In contrast, MLC lack HEV and B cell areas, and
naïve T and B cells do not reside in MLC (Fig. 1c). Instead, MLC consist of
CD11b+ APC with CD44+ CD62L− CD69+ CD4+ TRM and CD8+ TRM beneath
mucosal epithelial layers. SLO and TLS are, therefore, suggested to be inductive
sites for antigen-specific immune responses upon encountering newly delivered
antigens, while MLC appear to be specialized in the maintenance of tissue-resident
memory populations in peripheral tissues to initiate rapid immune response at the
mucosal surface. Currently, the molecular mechanisms underlying the generation of
MLC are poorly understood. The cellular composition and distribution of MLC are
obviously distinct from those of SLO and TLS (Table 1). In association with the
deployment of immune cells in MLC, the findings regarding the neogenesis of
iBALT formation within or outside of B cell areas following repetitive inhalation of
heat-killed P. aeruginosa is significantly informative (Fleige et al. 2014). This study
demonstrated that BALT formation mainly lacks B cell areas containing CXCL12+

stromal cells in IL-17A and F deficient mice following inoculation of
heat-inactivated P. aeruginosa, the formation consisting entirely of CD3+ T cells.
Consequently, the BALT formation appears to resemble MLC formation, although
it remains unclear whether the B cell-deficient BALT contain PNAd+ HEV and
naïve T cells.

The following questions concerning MLC formation remain to be answered.

1. What type of cells initiates MLC formation in genital tissue?
2. What cytokines or chemokines are responsible for the generation of MLC?
3. Which integrins and adhesion molecules expressed on TRM are involved in the

interaction with stromal cells?
4. How do CD4+ TRM in the lamina propria attach to epithelial layers?
5. How is the effector function of TRM in MLC maintained?
6. What type of APC is responsible for reactivation of TRM in MLC?
7. How do antigen-captured APC reactivate TRM in MLC to exert effector

function?
8. How do reactivated TRM in MLC migrate to the site of viral/bacterial

replication?
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Abstract Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease.
RA mainly affects the joints, with inflammation of the synovial membrane, char-
acterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives
local inflammation and, if untreated, can lead to joint destruction and disability. In
parallel to the well-known clinical heterogeneity, the underlying synovitis can also
be significantly heterogeneous. In particular, in about 40% of patients with RA,
synovitis is characterized by a dense lymphocytic infiltrate that can acquire the
features of fully functional tertiary lymphoid organs (TLO). These structures
amplify autoimmunity and inflammation locally associated with worse prognosis
and potential implications for treatment response. Here, we will review the current
knowledge on TLO in RA, with a focus on their pathogenetic and clinical
relevance.
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1 Introduction

Rheumatoid Arthritis (RA) is the most common autoimmune disease, affecting up
to 1% of the population worldwide (Smolen et al. 2016). Although RA is well
recognized as a systemic disease, its main feature is the chronic inflammation of the
synovial membrane, which is characterized by infiltration of immune cells, cellular
hyperplasia, and neo-angiogenesis (McInnes and Schett 2011, 2017). Ongoing
synovitis and its corresponding clinical features of joint pain and swelling are the
main causes of functional disability in patients with RA. Despite the availability of
effective medications, in a large proportion of patients, the treatments fail to control
the inflammatory response. When un-optimally controlled, synovial inflammation
can progress and ultimately lead to joint destruction and permanent disability. Such
inconsistent response to treatment has been attributed at least in part to the clinical
and physiopathological heterogeneity of RA. In fact, similar to other autoimmune
diseases, under the umbrella of RA, we are grouping a diverse spectrum of patients
with different clinical features, which are mirrored by significant differences in
terms of pathogenesis and, therefore, variable response to targeted treatments. For
example, it is well recognized that the positivity for anti-citrullinated protein
antibodies (ACPA) identifies a group of patients—around 70%- with a clinical
phenotype of highly aggressive and destructive disease (Willemze et al. 2012). In
line with its marked clinical heterogeneity, a variable degree of immune cell
infiltration has been described in the synovia of RA patients and has been recently
linked to distinct clinical features, including disease severity, progression, and
treatment response.

2 The Synovial Membrane as Site of Inflammation in RA

The main physiopathological feature of RA is the inflammation of the synovial
membrane (SM). In physiological condition, the SM is a composed by an intimal
layer formed of synoviocytes, also known as fibroblast-like synoviocytes (FLS),
which are specialized fibroblast-like cells with the main function of producing the
synovial fluid that lubricates and nourish the avascular articular surfaces. Below the
thin layer of FLS, there is a sub-intimal layer composed by connective tissues,
scattered infiltrating macrophage-like cells, and blood vessels. During RA, the
synovial membrane undergoes the following changes: (i) infiltration of immune
cells, including cells of innate (e.g., macrophages, natural killer [NK] cells, innate
lymphoid cells, dendritic cells, mast cells) and adaptive immunity (e.g., B and T
lymphocytes, plasma cells); (ii) proliferation of FLS, leading to the thickening of
the intimal layer, and (iii) growth of new blood vessels (neo-angiogenesis) which
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further sustains the infiltration of immune cells, thus facilitating the perpetuation of
the inflammatory response. Despite the enormous advancements in our under-
standing of the pathogenesis of RA, leading us to recognize a number of genetic
and environmental factors contributing to its pathogenesis, the initial trigger of
synovial inflammation is currently unknown. Also, we do not know whether the
first hit happens directly in the joints or somewhere else, such as the lungs or other
organs. However, once the inflammatory response is triggered and gets perpetuated,
synovitis represents the main feature of RA, thus the study of synovial inflamma-
tion is of utmost importance to improve our understanding of RA (Pitzalis et al.
2013).

2.1 Histological Patterns of Synovial Inflammation

The infiltration of immune cells is one of the main features of RA synovitis. In line
with the clinical heterogeneity of the disease, a variable degree of immune cell
infiltration in synovia has been described. Despite the complexity and partial
overlap of immune cell infiltration, the parallel study of large numbers of synovial
samples from patients with early untreated RA (Humby et al. 2019) has allowed to
describe three distinct groups based on the patterns of immune cell infiltration in
synovia: (1) lympho-myeloid, dominated by lymphoid lineage infiltration (T cells,
B cells, plasma cells) in addition to myeloid cells; (2) diffuse-myeloid, with myeloid
lineage predominance but poor in B cells/plasma cells and (3) pauci-immune,
characterized by scanty immune cells and prevalent stromal cells. Within the
lympho-myeloid group, the infiltrating B cells, T cells, and plasma cells often
organize into aggregates that resemble the lymphoid follicles of secondary lym-
phoid organs, acquiring features such as segregation of T cells and B cells, the
presence of high endothelial venules (HEVs), and follicular dendritic cells (FDCs)
networks. Although TLO can also be detected at extra-articular sites, including the
lungs (Barone et al. 2015) and bone marrow (Bugatti et al. 2005) of RA patients,
they mainly form within the sublining of the synovial tissue, where they have been
described in about 40% of patients with early untreated RA (Pitzalis et al. 2013).
A representative example of TLO is offered in Fig. 1a–c, including a schematic
representation of their organization in Fig. 1d, with additional details in Fig. 2. In
the next paragraphs, we will describe the ontogeny of tertiary lymphoid organs in
RA, their functions, and their correlation with clinical features and disease prog-
nosis, including response to treatment.
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Fig. 1 Tertiary lymphoid organs in synovia. a Immunohistochemical staining of synovial
membrane, b color deconvolution of the images in (a), c overlap of the above images, and
d schematic representation of the organization of TLO in synovia, with FDC in yellow, B cells in
green, T cells in red, and plasma cells in blue
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3 Synovial Tertiary Lymphoid Organs in RA

3.1 The Development and Regulation of Synovial Tertiary
Lymphoid Organs in RA

3.1.1 Chemokine and Lymphotoxin Beta

One of the initial steps in the formation of TLO is the infiltration of lymphoid cells
into the synovia, which is driven by the inflammatory milieu produced by FLS and
innate immunity cells. As the inflammatory process becomes chronic, however, a
number of specific mediators are required for the formation of TLO, such as
lymphotoxin-b (LTb), CXCL13, CCL19, and CCL21 (Corsiero et al. 2012). The
development of TLO largely mirrors the ontogeny of secondary lymphoid organs,
thus most of our knowledge on TLO development is derived from the study of
secondary lymphoid organs, where animal models have identified a number of
stimuli which are essential for the development of secondary lymphoid organs
(Randall et al. 2008; Drayton et al. 2006). Among these stimuli, the primum movens
has been recognized to be the production of lymphotoxin-b from so-called lym-
phoid tissue inducer (LTi) cells (Bar-Ephraim and Mebius 2016), which in turns
leads to the production of lymphoid chemokines (CXCL13, CCL19, and CCL21)
from lymphoid tissue organizers and mesenchymal cells. Although the presence of
many of these lymphogenic stimuli has been confirmed in TLO in rheumatoid
synovium (Bugatti et al. 2014; Manzo et al. 2007), the initial trigger of TLO
formation in RA has not been identified. Several immune cells have been shown to
be a source of lymphoid chemokines, and some of these key cells are represented in
Fig. 2b. Among the various mediators, CXCL13 produced by follicular dendritic
cells (Takemura et al. 2001) and other immune cells plays a pivotal role in deter-
mining the spatial organization of TLO, inducing the segregation of B cells within
the germinal center, which is an essential drive for affinity maturation and antigenic
selection (De Silva and Klein 2015). In line with its pivotal role, serum levels of
CXCL13 have been associated with the presence of synovial TLO in patients with
RA (Bugatti et al. 2014; Dennis et al. 2014).

3.1.2 T Follicular Helper Cells

In recent years, a specialized class of T helper cells, named T follicular helper cells
(Tfh), has been recognized for their central role in sustaining B cell activation and
differentiation in the germinal center (GC) reactions in secondary lymphoid organs.
Tfh cells are specialized T helper cells that upon priming by antigen presenting cells
(APCs) acquire the expression of CXCR5, the receptor for CXCL13, enabling them
to migrate into the B cell area of GC.

The ectopic expression of CXCL13 has been described in RA synovium (Manzo
et al. 2005, 2008) and has been shown to induce TLO formation and recruits B cells
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to non-lymphoid tissues in mice (Luther et al. 2000). In fully formed GC, Tfh cells
support somatic hypermutation of auto-reactive B cells and plasmablast generation
directly in the diseased tissues mainly through the production of IL-21. The latter is
Tfh signature cytokine, known to be a potent cofactor for B cell survival, prolif-
eration and plasma cell differentiation, in particular in the context of CD40
co-stimulation and in synergy with B cell activating factor (Karnell and Ettinger
2012; Liu et al. 2015).

Importantly, because of the role of IL-21 and Tfh cells in supporting GC
response, they have been implicated in the development of TLO in rheumatic
autoimmune diseases, including RA, as represented in Fig. 2.

Data in animal models of arthritis identified a number of Tfh-associated markers
during the development of inflammatory arthritis. In particular, CXCR5 has been
shown to be an essential factor for the development of inflammatory arthritis:
CXCR5-deficient animals or lacking CXCR5 on T cells are resistant to RA,
showing impaired GC response (Moschovakis et al. 2017). Also, selective defi-
ciency in T helper cells of SLAM-associated protein (SAP), required for the B/T
cell interaction, thus essential for Tfh differentiation, protects mice from RA, further
supporting the pathogenic role of ectopic GC formation (McCausland et al. 2014).

In parallel, IL-21 and its receptor are highly expressed in synovial tissue of
patients with RA (Jüngel et al. 2004; Kwok et al. 2012), and increased IL-21
expression is associated with synovial TLO (Jones et al. 2015). IL-21R
up-regulation is mainly described on macrophages and fibroblast with an acti-
vated phenotype (Jüngel et al. 2004), and IL-21 has been involved in the devel-
opment of articular damage by promoting both osteoclastogenesis (Kwok et al.
2012) and metalloproteinase release by fibroblast-like synoviocytes (Xing et al.
2016). Finally, Tfh cells are also enriched in the synovia of patients with RA, while
almost absent in osteoarthritis and normal synovium (Penatti et al. 2017; Chu et al.
2014).

In addition to conventional CXCR5+ Tfh cells, a population of T helper cells
lacking CXCR5 expression and producing CXCL13 has been also described in the
synovia of RA patients (Manzo et al. 2008). A recent breakthrough publication has
shed new light on these cells, which have been re-named as PD1+ CXCR5—T
peripheral helper cells (Tph), since they have been found in the synovia but also in
the peripheral blood of patients with RA and their ability to induce the activation of
B cells has been confirmed in vitro (Rao et al. 2017). Similar to GC-Tfh, these cells
are an important source of CXCL13, support synovial B cell proliferation and
activation through IL-21 production and SLAMF5 receptor ligation, and co-localize
with B cells in synovial TLO (Rao et al. 2017). Although Tfh and Tph cells share
the main markers, the tissue localization, and the ability to support B cell activation,
it is unclear whether Tph in RA are Tfh cells with impaired CXCR5 expression, or a
more distantly related cell type. Despite the evidence of Tfh and Tph contribution to
the pathogenesis of RA, the functional link between these cells and TLO formation
remains to be elucidated, as well as their contribution to the local production of
autoantibodies within TLO.
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Additionally, although the enrichment of Tfh in RA synovium has been well
described, there are conflicting data regarding circulating Tfh cell frequency
[comprehensively reviewed in (Gensous et al. 2018)]. Some authors reported IL-21
directly correlating with the frequency of Tfh-like cells, with IL-21 level and
number of Tfh-like cells associated with higher titer of anti-CCP antibodies and
disease activity score in RA (Ma et al. 2012). The circulating counterpart shares
phenotypic and functional features with tissue Tfh cells, except for the expression
of prototypical Tfh transcription factor B cell lymphoma protein 6 (Bcl-6), but their
biology is still poorly defined. Data from SAP-deficient mice show how these cells
are committed to Tfh lineage and are generated prior the GC response (He et al.
2013; Tsai and Yu 2014). Moreover, it is still unclear if circulating Tfh can reflect
an ongoing humoral activity.

3.1.3 Other Pro-inflammatory Cytokines and Cells

It is now clear that a number of other pro-inflammatory cytokines, such as IL-17,
IL-21, IL-22, IL-23, and TNFa, are also critical for lymphoid neogenesis in
autoimmune diseases (Jones and Jones 2016).

The IL-23–IL-17 pathway has been involved in the initiation and perpetuation of
TLO, and several cells of the innate and adaptive immunity are able to produce
IL-17. In particular, a subset of adult innate lymphoid cells [type-3 innate lymphoid
cells (ILC3 cells)] can produce IL-17 in the initial phases of TLO formation (Sawa
et al. 2010). Accordingly, IL-17 positive cells are observed in the proximity of TLO
in RA synovia (Chabaud et al. 1999), and the activation of the IL-23–IL-17
pathway correlates with the presence of synovial TLO (Cañete et al. 2011).

Another important aspect is the potential plasticity between other T helper
subsets and the Tfh. In fact, several other subsets, including Th17 cells, Th1 and
Th2, have been described to acquire Tfh-like phenotype (Ueno et al. 2015). For
example, Tfh2 and Tfh17, but not Tfh1, are able to secrete IL-21 and induce naïve
B cells to secrete class-switched immunoglobulin (Ig) (Morita et al. 2011).

Within RA synovium, proliferation of fibroblast-like synoviocytes is sustained
by IL-22, a cytokine required for the development and maintenance of TLO. IL-22
role in ectopic lymphoneogenesis comes from data in experimental models of
inducible TLO in salivary glands, mimicking TLO formation in Sjogren’s syn-
drome salivary glands. In this animal model, IL-22 is able to directly induce
CXCL13 production in a subset of GP38+ stromal cells through phosphorylation of
signal transduced and activator of transcription 3 (STAT3) (Barone et al. 2015).
Once lymphocytes are recruited, IL-22, together with LTa1b2, supports also pro-
liferation of a population of podoplanin (pdpn)-positive stromal cells,
over-expressing IL21R, into a network of immunofibroblasts that are able to sup-
port the earliest phases of TLS establishment (Nayar et al. 2019) in the same model.
In RA synovium, IL-22 expression and IL-22 receptor on fibroblast-like synovio-
cytes have been reported (Ikeuchi et al. 2005), suggesting its contribution to the
maintenance of TLO. In particular, IL-22 expression is increased in cells expressing
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the long isoform of complement receptor type 2 (Cr2, also known as CD21) (Cañete
et al. 2011), usually present in networks of stromal-derived follicular dendritic cells
(FDCs), that contribute to the presentation of immune complexes necessary to
generate activated B cells, in TLO. In synovial tissue, IL-22 is also produced by NK
cells (Zhu et al. 2015). NK cells are innate immune lymphocytes with cytolytic and
immune-regulatory activities representing a significant proportion (8–25%) of
immune infiltration in synovial fluid of RA patients, identified in the joints in the
early stage of RA development (Tak et al. 1994). Initially, NK cells were described
in RA pathogenesis for their production of cytotoxic serin protease granzyme-A and
B and pro-inflammatory cytokines, such as IL-1 and TNFa as dominant mediators
of proliferative synovitis in RA (Klimiuk et al. 1997), supporting ocleoclastogen-
esis and thus involved in the development of articular damage (Kotake et al. 2001).
In fact, increased production of IFNc and TNFa characterizes synovial fluid NK
cells of erosive RA patients with joint damage in comparison with non-erosive RA
(Yamin et al. 2019). Recent evidence suggests that NK cells may support TLO
maintenance within RA synovium as a subset of NK cells expressing a natural
cytotoxicity receptor NKp44 which is able to produce IL-22 (Zhu et al. 2015).
NKp44+ NK cells are enriched in both peripheral blood and synovium of RA
patients secreting IL-22 and TNFa, which in vitro studies showed to support
RA FLS proliferation (Ren et al. 2011), through the activation of STAT3 pathway
(Zhu et al. 2015). IL-22 induced proliferation of synovial fibroblast, an effect that
was inhibited by neutralizing antibodies targeting IL-22 and TNFa (Ren et al.
2011). Thus, NK cells may participate in TLO organization supporting the prolif-
eration of synovial fibroblasts responsible for the local secretion of chemoattractant
molecules and, as consequence, lymphocytes recruitment.

In addition to cells of the adaptive immunity, many other innate immunity cells
and the stromal compartment have been shown to contribute to the development of
synovial TLO (Barone et al. 2016).

Fibroblast-like synoviocytes (FLS), for example, have been shown to produce
the T cell/dendritic cell chemoattractant CCL21 (Manzo et al. 2007) and express
CXCL12 and IL-7, involved in immune cell retention and lymphoid-like
microanatomical organization (Timmer et al. 2007; Bradfield et al. 2003).

Recently, we have also shown a strong association between synovial mast cells
(MCs) and the presence of TLO in a large cohort of patients with early RA
(Rivellese et al. 2018). MCs were also found to induce B cell activation and
differentiation in vitro, including the production of ACPA autoantibodies. Finally,
in animal models of inducible TLO (IL27R knockout), we confirmed the associa-
tion of MCs with TLO. Overall, this points out to the relevance of MCs as potential
contributors to the formation of TLO, although additional studies are needed to
confirm their functional relevance (Rivellese et al. 2017, 2019b).
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3.1.4 Negative Regulators of TLO Including Tfr

In addition to the mediators and pathways acting as positive regulators of TLO,
several cells and cytokines have been characterized as negative regulators of TLO
development.

For example, IL-27, an heterodimeric cytokines part of the IL-12 family
(Yoshida and Hunter 2015), has been recently identified as a negative regulator of
TLO. In fact, animals with knockout of the IL27Ra develop a severe form of
antigen-induced arthritis, including the development of synovial TLO (Jones et al.
2015). Importantly, synovial TLO are not normally produced in animal models of
arthritis; thus, the identification of these structures in IL-27Ra knockout animals
points to the relevance of IL-27 as a regulator of TLO development. Accordingly, in
patients with RA, IL-27 was found to be inversely correlated with TLO and with
TLO-related gene signatures. Finally, both in clinical and experimental arthritis,
synovial TLO coincided with an increased local expression of cytokines and
transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, where
IL-27 is able to inhibit the differentiation of Th17 cells, in line with previous
evidence (Stumhofer et al. 2006).

As local counterpart of the circulating T regulatory cells, T follicular regulatory
cells (Tfr) have been recently described within GCs, including GCs in TLO. Tfr
cells are able to prevent the differentiation of auto-reactive B cells (Wu et al. 2016;
Botta et al. 2017), by regulating Tfh cells, but also by directly inhibiting B cell
activation (Wing et al. 2014).

Although the relevance of Tfr cells in the regulation of GCs in animal models is
well established (Linterman et al. 2011), the involvement of Tfr cells in human
autoimmune disease, including RA, is still unclear.

Several studies have reported decreased levels of Tfr in patients with active RA
and, accordingly, negative correlations with autoantibodies and disease activity
(Romão et al. 2018; Niu et al. 2018). On the other hand, increased levels of Tfr
were found in patients who were in remission (Liu et al. 2018). Using animal
models of autoimmunity with spontaneous development of GCs, IL-21 was shown
to induce an unbalance between Tfh and Tfr, increasing the formation of GCs,
while administration of Tfr was able to restore Tfh:Tfr ration and suppress GC
responses (Ding et al. 2014).

Another group found that the resolution of collagen-induced arthritis following
administration of intravenous immunoglobulins was accompanied by an increase of
Tfr cells (Lee et al. 2014). Taken together, this suggests that the reduction of
circulating Tfr cells is associated to the development of RA and that restoration of
Tfr cells could potentially improve autoimmune responses.

In line with this, monitoring the ratio between Tfr and Tfr could be useful in
patients with RA, as confirmed by a several observations (Niu et al. 2018; Wang
et al. 2019).
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As for the function of Tfr in RA, these cells have been shown to have sup-
pressive effects in vitro, which were enhanced in patients in remission (Liu et al.
2018). However, it has also been speculated that Tfr in autoimmune diseases might
be functionally deficient (Fonseca et al. 2017).

3.2 The Function of Tertiary Lymphoid Organs in RA

As TLO mirrors secondary lymphoid organs in their ontogeny and maturation, it is
expected that they also recapitulate the main functions of secondary lymphoid
organs, which is supporting germinal centers (GC) reactions toward maturation of B
cells and antibody production.

Within a considerable proportion of TLO forming in rheumatoid synovium,
ectopic GC reactions take place similar to secondary lymphoid organs (Bombardieri
et al. 2017). Many of RA-associated autoantibodies are high affinity IgG (e.g.,
ACPA) (van Delft and Huizinga 2020), and B cells forming TLO are auto-reactive
and somatically mutated (Humby et al. 2009), indicating the involvement of a GC
response in RA progression. Indeed, TLO in RA synovium can display functional
features of germinal centers, like the expression of the enzyme activation-induced
cytidine deaminase (AID) involved in in situ B cell affinity maturation and clonal
selection (Humby et al. 2009).

Accordingly, the analysis of B cells isolated from the synovia of patients with
RA has confirmed the generation of synovial plasma cells from locally activated B
cells (Scheel et al. 2011), and the local production of class-switched autoantibodies
in rheumatoid synovium has been demonstrated (Humby et al. 2009). Also, we
have recently demonstrated that the presence of synovial TLO in early untreated
RA is associated with autoantibody positivity (Humby et al. 2019). Interestingly,
this is in contrast with previous data that failed to show an association between TLO
and autoantibody positivity (Thurlings et al. 2008). Recently, comparing two large
cohorts of patients with early and established RA, we were able to confirm the
strong association between TLO and autoantibody positivity in early RA that could
not be observed in established RA, thus explaining the previous findings, possibly
because of treatment effect or other biases from long-standing diseases (Rivellese
et al. 2019a).

Importantly, the initiation of a germinal center reaction requires antigen pre-
sentation to B cells. In RA, the aberrant immune response against citrullinated
proteins culminating in the production of anti-citrullinated protein antibodies
(ACPA) is well recognized as a key pathogenetic feature (Derksen et al. 2017).

Accordingly, citrullinated proteins have been described in the synovia of RA
patients (Baeten et al. 2001) together with PAD enzymes, which are responsible for
citrullination (De Rycke et al. 2005). The specificity of synovial citrullinated pro-
tein has been challenged (Vossenaar et al. 2004), but this does not come as a
surprise since citrullination and other post-translational modifications of proteins
are recognized as physiological processes (Trouw et al. 2017). On the contrary, the
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aberrant immune response to modified proteins represents the hallmark of RA, and
accordingly, the local production of ACPA in synovia has been confirmed (Humby
et al. 2009; Amara et al. 2013; Masson-Bessière et al. 2000). Finally, several groups
have been able to isolate ACPA-producing B cell clones from the synovia and
synovial fluid of patients with RA (Germar et al. 2019; Corsiero et al. 2016, 2018).

3.3 The Clinical Relevance of Tertiary Lymphoid Organs
in RA

3.3.1 TLO and Disease Severity

Early studies on the analysis of synovial membrane relied on the use arthroscopy to
obtain synovial samples. These analyses pointed out a marked heterogeneity in
terms of synovial inflammation, particularly in the degree of immune cell infiltra-
tion, with the description of aggregates of lymphoid cells in a proportion of patients.
However, when looking for an association with clinical features, these studies
yielded contradictory results: some found an association of lymphoid aggregates
with disease severity and autoantibody positivity (Humby et al. 2019; Bugatti et al.
2014; Orr et al. 2017) and others did not (Thurlings et al. 2008; Cantaert et al. 2008;
Van De Sande et al. 2011) (Table 1). These inconsistencies could be explained by a
number of biases: (i) the exclusive analysis of large joints, in which there can be
commonly overlapping osteoarthritis and are not the most representative of the
inflammatory process in RA (Linn-Rasker et al. 2007) (ii) the inclusion of patients
with long-standing disease, with the obvious bias of treatment and disease duration,
and (iii) the lack of a gold standard for the histological assessment of immune cell
infiltration (Humby et al. 2016).

The development of minimally invasive techniques such as ultrasound-guided
synovial biopsies has overcome most of these limitations, as it made possible to
obtain synovial tissues from small joints of a large cohort of patients with early RA
and, very importantly, prior to treatment start. Thus, it is not surprising that the
recently published analyses on this cohort highlighted a strong association with
disease severity and autoantibody positivity (Humby et al. 2019). Interestingly, a
direct comparison of early and established RA, using a validated semi-quantitative
score for the assessment of B cells, showed that while in early RA the presence of B
cell-rich synovitis was associated with disease severity, this was not the case in
established RA, possibly explaining the discrepancies from previous studies ana-
lyzing patient with different disease duration (Rivellese et al. 2019a).

When analyzing patients with early untreated RA, our group has recently shown
that patients with a synovial lympho-myeloid pathotype, characterized by the
presence of B and T cell aggregates, have significantly higher disease severity,
autoantibody positivity, and baseline erosive load (Humby et al. 2019).
Furthermore, molecular analyses showed that myeloid- and lymphoid-associated
genes strongly correlate with disease activity and acute phase reactants. Another
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more recent publication in early RA has further highlighted the value of synovial
tissue analyses in refining the diagnosis of RA vs undifferentiated arthritis
(Lliso-Ribera et al. 2019).

Moreover, deep phenotyping of synovial tissue by molecular analyses has
identified specific gene signatures associated with clinical phenotype. In particular,
for example, peripheral blood interferon response genes were associated with the
lymhpo-myeloid pathotype, while synovial plasma cell signature was associated
with progression of structural damage (Lewis et al. 2019). Additional analyses from
the Accelerating Medicine Partnership (AMP) group, by integrating single cell RNA
sequencing and mass cytometry, have recently identified unique cell population
expanded in RA synovia that allow to distinguish the degree of synovial inflam-
mation (Rao et al. 2017; Zhang et al. 2019). Specific cell populations included HY1
(CD90) +HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes,
ITGAX + TBX21 + autoimmune-associated B cells, and PDCD1+ peripheral
helper T (TPH) cells and follicular helper T (TFH) cells. The latter, in particular, are
essential for the formation of TLO and have been already discussed in the previous
paragraph. However, to date, little is known about the association of these cell types
with disease features, such as disease severity, progression, and response to treat-
ment. In the near future, it will be of utmost importance to confirm the relevance of
these immune populations, by studying their association with clinical phenotype in
larger cohorts of patients with RA.

3.3.2 TLO as Direct Therapeutic Targets

Because of their well-established relevance in driving the pathogenesis of RA and
their association with worse disease outcomes, several strategies aiming at targeting
TLO in RA have also been tested.

A number of studies have attempted to target mediators that are relevant in the
formation or maintenance of TLO. The modulation of the IL-21/IL-21R pathway as
a treatment strategy was first tested in experimental models of RA. IL-21R defi-
ciency in the K/BxN mouse model of inflammatory arthritis (Kim et al. 2009) and
antigen-induced arthritis (Roeleveld et al. 2017) is sufficient to block RA initiation,
while the blockade of the IL-21/IL-21R pathway ameliorates disease in
collagen-induced arthritis models treated with murine IL-21R Fc fusion protein
(Young et al. 2007). However, there are still no data in patients with RA on the
blockade of IL-21/IL-21R.

Some other molecules have been already tested in patients, but results have not
been particularly striking, as in the case of inhibiting LTb, which did not show
clinical efficacy (Bienkowska et al. 2014). Similarly, drugs inhibiting IL-17 and
IL-12/IL-23 showed little or no differences compared with placebo in RA
(Kerschbaumer et al. 2019). This is in contrast with data on seronegative arthritis,
where inhibition of IL-17 and its axis proved to be extremely effective, although it
has been suggested that the analysis of targeted expression of these molecules could
potentially help in predicting treatment response (Boutet et al. 2018).
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Importantly, none of the above studies targeting mediators involved in TLO
formation or maintenance in RA has stratified patients on the basis of TLO pres-
ence, which could have helped in selecting patients with higher chances of
response.

3.3.3 TLO as Predictors of Treatment Response

As highlighted in the previous paragraphs, the presence of TLO is able to identify a
subset of RA patients with a specific disease phenotype, specifically higher disease
activity and higher prevalence of autoantibodies. Therefore, it is plausible to
hypothesize that the presence of TLO could help to predict treatment response.
A number of studies have explored the analyses of synovial tissues to predict
treatment response. However, relatively few included the systematic analysis of
TLO. Futhermore, because of the relatively small number of patients, the incon-
sistency in the definition of TLO, and the use of different time points for repeated
biopsy, most of the results are fragmented and difficult to interpret.

Canete et al., for example, demonstrated significantly lower response in patients
who were TLO positive despite a significantly higher use of anti-TNFa agents.
(Cañete et al. 2009) By linear regression, TLO positive were found to predict lack
of response to anti-TNFa. In this study, however, patients started sequential treat-
ment with escalation to anti-TNFa in non-responders, and therefore, there could
have been a selection of TLO + patients as the most severe, thus non-responders.

On the contrary, Klaasen et al., by analyzing synovial samples obtained before
and after standardized treatment with infliximab in a cohort of 97 patients, found
that the presence of TLO at baseline was a highly significant predictor of the
clinical response to anti-TNF treatment (Klaasen et al. 2009).

More recently, Dennis et al. provided the molecular confirmation of the histo-
logical pathotypes previously described by histology. In addition, by analyzing the
data from a previous cohort undergoing treatment with infliximab, they were able to
identify TLO signature as predictor of response to TNFi (Dennis et al. 2014). The
limitation of this manuscript consisted in the analysis of synovial samples obtained
from arthroplasty, thus without standardization of treatment.

The observations published from our early RA cohort allowed to overcome such
limitations and have shown a reduction of lymphoid-associated genes in EULAR
good responders to csDMARDs (Humby et al. 2019). Similarly, molecular analyses
by RNAseq identified a number of cell modules, including B cells, in association
with B response to csDMARDs (Lewis et al. 2019). Importantly, these data come
from the analysis of synovial tissue obtained by US-guided synovial biopsies in
untreated patients with early Rheumatoid Arthritis, thus eliminating the bias of
long-standing disease, treatment or the exclusive inclusion of large joints in studies
based on arthroscopy.

In recent years, continuing on the same line, two international consortia have
driven the delivery of the first two large-scale biopsy-driven RCTs in Rheumatoid
Arthritis. As part of a study funded by the UK National Institute of Health
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Research, a randomized, open labeled study in anti-TNFa inadequate responders to
investigate the mechanisms for Response—resistance to rituximab versus tocili-
zumab in RA (R4-RA), a total of 165 patients failing treatment with TNFi have
been recruited. Promising preliminary results were presented at the ACR 2019,
while the trial is currently being analyzed and final results will be soon published.
Similarly, as part of the MRC and Versus Arthritis-funded consortium MAximizing
Therapeutic Utility in RA (MATURA), the Stratifying Therapies for Rheumatoid
Arthritis by Pathobiology (STRAP) RCT has enrolled a total of 226 patients who
failed csDMARDs and is due to being completed in the last quarter of 2020.

These studies have been appropriately powered and thus will hopefully give
clear answers on the utility of synovial biopsy analysis in predicting treatment
response in RA. Specifically, the studies aimed at understanding if patients lacking
synovial B cells have a lower response to B cell targeted treatment (Rituximab) as
opposed to other treatments. At the same time, the studies will provide invaluable
information to answer additional research questions, including the association of
TLO with disease severity, progression, and treatment response.

4 Conclusions

Here, we offered a comprehensive review on the relevance of synovial TLO in RA.
The data presented indicate that the ontogeny of TLO resembles the development of
secondary lymphoid organs, since many of the mediators known to be involved in
lymphoneogenesis have been identified in the synotia of RA patients. Importantly,
these structures are fully functional, as they induce the local maturation of B cells
toward the production of autoantibodies. Their presence has been described in
about 40% of patients with RA from early disease stages and has been strongly
associated with disease severity and progression. Despite the availability of several
drug treatments that can directly or indirectly target TLO and their components, a
stratified medicine approach is needed to fully appreciate the potential effect of such
treatments.
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Abstract Human-type lymphoid tissue organoids, which stably function in our
body for a certain period of time or longer, may have a great potential as
immune-stimulatory or immune-regulatory devices and could be utilized in the
future for the treatment of various diseases such as cancer, severe infection,
autoimmunity and congenital as well as acquired immunodeficiency resulting from
severe infections or aging. In this review, we discuss about rationality and trials of
the synthesis of immunologically functional lymphoid tissue organoids mainly in
mouse. We have been recently trying to construct immunologically functioning
human-type organoids, and the efforts are also briefly described.
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1 Introduction

The various types of immune organs/tissues are classified based on their ontogeny,
location and function. There are the primary lymphoid organs (PLOs: bone marrow
and thymus in mammals, bursa of Fabricius in chicken, appendix in rabbit, etc.), the
secondary lymphoid organs (SLOs: peripheral lymph nodes, spleen, tonsil, and
gut-associated lymphatic tissues (GALT), etc.) and the tertiary lymphoid organs/
structures (TLOs/TLSs). Immune cells, such as T cells, B cells and dendritic cells,
are produced and undergo differentiation in the PLOs, whereas the immune cells
initiate immune response to antigen stimulation in the SLOs. The PLOs and SLOs
develop mostly during the fetal period. On the other hand, the tertiary lymphoid
organs/structures (TLOs) are formed after birth at ectopic sites, often in response to
physiological insults such as in inflammation, infection, autoimmune disease,
allograft rejection and cancer. We previously reported the construction as well as
the immune function of “artificially-constructed peripheral lymphoid tissues (aLTs)/
organoids” in mice. Because aLTs are constructed after birth at ectopic sites such as
in the renal subcapsular space, they should technically also be classified as TLOs. In
this chapter, we discuss first the structure and function of TLOs including the aLTs.
Then, we discuss the significance of TLOs and aLTs in maintenance of immune
homeostasis, in particular, their role in conferring antitumor immunity. It is
expected that human-type aLTs/organoids may have great potential as
immune-stimulatory or -regulatory devices and could be utilized in the future for
treatment of human cancer, severe infection and congenital as well as acquired
immunodeficiency resulting from severe infections or aging. We have been recently
trying to construct such human-type aLTs/organoids, and our efforts are also briefly
described in this chapter.

2 TLO Formation

The formation of TLOs occurs postnatally or during adulthood, mainly at ectopic
sites, such as inflammatory sites in the peripheral tissues/organs and in cancer
tissues. In contrast to secondary lymphoid tissues, which are organized in the
absence of antigenic stimulation, TLOs appear to be induced mostly in the presence
of various antigens such as tumor antigens, allo-antigens and auto-antigens, or
mitogens, in addition to the various inflammatory reactions. TLOs and SLOs have a
similar fundamental structure, and the process of TLO formation recapitulates that
of SLOs (Randall et al. 2008; Fu and Chaplin 1999; Mebius 2003; Thaunat et al.
2010a; Carragher et al. 2008; Koning and Mebius 2012; Drayton et al. 2006). It also
depends on the presence of lymphoid tissue organizer (LTo) cells, also known as
lymphoid tissue-specific stromal cells, which ectopically appear and are capable of
forming lymphoid tissues at inflammatory sites or tumor tissues (Buckley et al.
2015; Turley et al. 2015; Johasson et al. 2016). At such sites, LTo like cells, which
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express lymphotoxin beta receptor (LTbR) and/or tumor necrosis factor alpha
receptor (TNFaR) on their cell surface, are derived possibly from the local mes-
enchymal cells, fibroblasts, blood vessel or lymphatic endothelial cells or smooth
muscle cells (Roozendaal and Mebius 2011; Fletcher et al. 2011; Bar-Ephraim et al.
2016; Chai et al. 2013; Ruddle 2014; Engelhard et al. 2018; Tschenig et al. 2018).
These tentative LTo stromal cells can be activated through LTbR by its ligand
lymphotoxin-alpha 1/beta 2 (LTa1b2), which is expressed on the bone
marrow-derived lymphoid tissue inducer cells (LTi cells), or by its alternate ligand,
LIGHT, also known as a tumor necrosis factor superfamily member 14 (TNFSF14),
expressed on activated T cells (Gommerman and Browning 2003; Scheu et al.
2002; Wang et al. 2009). The LTo stromal cells are also activated by soluble
ligands such as LTa or TNFa through TNFareceptor. The activated tentative LTo
stromal cells secrete various lymphocyte-tropic chemokines such as CCL19,
CCL20, CXCL12 and CXCL13 and express various adhesion molecules such as
VCAM1, ICAM1 and MadCAM1 on the cell surface. The ectopic expression of
these chemokines and cell-adhesive factors recruits immune cells such as T cells, B
cells and dendritic cells onto the stromal cells. Similar to SLOs, TLOs are mostly
composed of a T cell region, supported by distinct stromal cells, the fibroblastic
reticular cells (FRCs) and of a B cell region, supported by its own distinct stromal
cells, the follicular dendritic cells (FDCs). Upon LTbR stimulation, FRCs and
FDCs start to secrete chemokines that induce the accumulation of T cells and B
cells, respectively. The formation of TLOs is also accompanied by the formation of
high endothelial venules (HEVs) and lymphoid tissue-specific capillaries (Ager
2017; Ruddle 2014). Upon stimulation of LTbR expressed on HEVs with lym-
photoxin (LTa1b2) or LIGHT (TNFSF-14), HEV-specific cubic structures are
formed (Scheu et al. 2002; Wang et al. 2009; Johansson-Percival et al. 2015). HEVs
are structurally distinct blood vessels that develop in all secondary lymphoid organs
except the spleen. They express PNAd, which is a ligand for L selectin, and
accelerate the recruitment of lymphocytes by secretion of chemokines. HEVs are
critical for initiating and maintaining immune responses because they extract naïve
and memory lymphocytes from the bloodstream. HEVs also develop in TLOs in
cases of allografts and cancers. HEV neogenesis in TLOs is thought to facilitate the
generation of tissue-destroying lymphocytes inside chronically inflamed tissues and
cancers by promoting the migration of lymphocytes from the bloodstream into the
lymphoid tissues (Jones et al. 2018). Follicular helper T (Tfh) cells are major
components of the humoral immune response due to their pivotal role in germinal
center (GC) formation and antibody affinity maturation following B cell isotype
switching in the GC (46,89). Tfh cells in the TLO are often identified within sites of
inflammation as well as in the microenvironment of various cancers, indicating that
GC formation and affinity maturation of antibodies may occur also in TLOs
(Salomonsson et al. 2003; Couillault et al. 2018; Fonseca et al. 2018; Silina et al.
2018).
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3 TLOs for Immune Responses and Homeostasis
Maintenance

TLOs often function as powerhouses of disease immunity (Roco et al. 2019). The
typical sites at which the TLOs are formed include autoimmune disease sites, such as
the synovial membrane in rheumatoid arthritis (Shi et al. 2001; Takemura et al. 2001;
Young et al. 1984;Kobayashi et al. 2013), the aorta adventitia in aortic atherosclerosis
(Grabner et al. 2009; Lotzer et al. 2010; Hu et al. 2015), the salivary gland in Sjögren
syndrome (Salomonsson et al. 2003; Stott et al. 1998; Fonseca et al. 2018), the thymus
inmyasthenia gravis (Thomas et al. 1982;Weiss et al. 2013), the kidney pelvic well in
lupus nephritis (Tschenig et al. 2018), the inner bronchialwall in asthma (de Leur et al.
2018), the renal allograft in case of acute rejection (Lin et al. 2019) and so on. TLO
formation also occurs at infection sites (Neyt et al. 2012) or within and around cancer
tissues (Dieu-Nosjean et al. 2014; Joyce and Fearon 2015; Hiraoka et al. 2016; Yu
et al. 2007). Furthermore, TLO formation often occurs at graft rejection sites in
transplanted organs (Nasr et al. 2007; Thaunat et al. 2010b; Sicard et al. 2016), which
suggests that TLO might be also involved in regulating graft rejection.

For a long time, studies have mostly focused on the negative features of TLOs,
such as their involvement in the induction and progression of inflammation or their
potential as autoantibody production sites. Particularly in the case of autoimmune
diseases like systemic lupus erythematosus (SLE), TLOs are considered to be
possible sites of autoantibody diversification, which leads to pathological deterio-
ration in these diseases (Shi et al. 2001; Takemura et al. 2001; Young et al. 1984;
Kobayashi et al. 2013; Salomonsson et al. 2003; Stott et al. 1998; Thomas et al.
1982; Weiss et al. 2013; Neyt et al. 2012). However, recent studies have reported
some beneficial functions of TLOs, such as protection against infections (Carragher
et al. 2008; Halle et al. 2009; Hughes et al. 2016; Jones and Jones 2016), by
inducing an antigen-specific immune response, antitumor activity as described
below and regulation of inflammatory responses (Carragher et al. 2008). Thus, the
role of TLOs in delaying disease progression is gradually gaining attention. In cases
of patients with aortic sclerosis, LTbR is expressed by the vascular aortic
endothelium. It has been reported that the formation of TLOs in the aorta adventitia
through LTbR signaling inhibited the formation of aortic plaque, suggesting that
the formation of TLOs may protect from aortic disease progression (Kobayashi
et al. 2013; Grabner et al. 2009; Lotzer et al. 2010). Thus, these studies suggest that
TLOs may contribute to the maintenance of immune homeostasis.

4 TLO Formation and Anti-cancer Activity

Immune responses against tumors are typically observed upon infiltration of
immune cells, especially killer T cells (tumor tissue-infiltrating lymphocytes, TILs),
into cancer tissues, and the TILs have been expected to contribute to cancer
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suppression (Crotty 2011; Rosenberg and Dudley 1990). It has been reported that
the killer T cells can also be activated within the tumor tissues (Yu et al. 2004,
2007). It has been reported that TLO formation in tumors might give a favorable
prognosis in various types of human cancers (Hiraoka et al. 2016; Dieu-Nosjean
et al. 2016; Sautes-Fridman et al. 2019; Figenschau et al. 2015; Engelhard et al.
2018; Kuwabara et al. 2019). Concerning the suppressive effectiveness of TLOs
against cancer, several factors have been suggested. Those include the dependency
on the stage of the cancer (Colbeck et al. 2017), the extent of infiltrating CD8+ T
lymphocytes and regulatory T cells in TLOs (Kuwabara et al. 2019; de Leur et al.
2018), the appearance of tumor-infiltrating plasma cells (Solinas et al. 2017) or B
cells (Lin et al. 2019), the extent of checkpoint molecule expression (Weinstein
et al. 2019), the structure or location of TLOs in relation to the tumor, origin or
location of the tumor (Engelhard et al. 2018), the cytokine environment surrounding
cancer (Dorraji et al. 2018), etc. Moreover, preoperative treatments may influence
the efficiency of the TLOs. Recently, it has been reported that preoperative treat-
ment with neoadjuvant chemotherapy (NAC) strongly enhanced the anti-cancer
activity of TLOs within the tumor microenvironment (Kroeger et al. 2016). The
NAC-treated group of pancreatic ductal adenocarcinoma patients with extremely
poor prognoses demonstrated a more favorable outcome compared to
NAC-nontreated patients with TLOs. NAC induced a significantly higher propor-
tion of CD8+ T cells, PNAd+ high endothelial venules (HEVs), CD63+ macro-
ophages and Ki-67+ cells in TLOs but a much lower frequency of
immunosuppressive lymphocytes. These reports suggest that it should be possible
to improve and enhance the anti-cancer activity of TLOs by the conditioning and
manipulation of TLOs within the cancer (Sautes-Fridman et al. 2019).

Recently, genetically engineered killer T cells that have incorporated a tumor
antigen-specific antibody fragment into the T cell antigen receptor complex
(CAR-T cells) have been explored as an effective option for cancer treatment
(Eshhar et al. 2001; Maher et al. 2002; Kalos et al. 2011; Maude et al. 2014; Brown
et al. 2016). Furthermore, a novel technology to propagate tumor antigen-specific
killer T cells has been established by applying human iPS cells (Kawamoto et al.
2018; Kashima et al. 2020). However, it has sometimes been reported that the
homing and long-range maintenance of iPS-derived killer T cells or CAR-T cells
are not always possible, even in the presence of TILs in tumors. Hence, sufficient
sites might not always be available in vivo for the maintenance, propagation and
re-activation of either the endogenous TILs, CAR-T cells or iPS-derived killer T
cells for an extended period of time. Therefore, a therapeutic strategy must be
devised to ensure the presence of sites for immune cells, where the killer T cells can
continuously self-propagate and become re-activated in parallel with the frequent
and rapid mutation of tumor cells, which can alter their antigenicity to decrease the
antitumor response. Recent studies have reported that microenvironments, such as
the one provided by stromal cells in the cancer tissues, are suitable sites for immune
tissue construction (Dieu-Nosjean et al. 2016; Sautes-Fridman et al. 2019). The
formation of TLOs (not just the infiltration of killer T cells) is often clearly
observed in various human cancers, such as breast, colorectal, lung, pancreatic and
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kidney and in malignant melanoma and lymphoma (Dieu-Nosjean et al. 2014;
Joyce and Fearon 2015; Hiraoka et al. 2016; Yu et al. 2007; Figenschau et al. 2015;
Kuwabara et al. 2019). The comprehensive analysis presented in these studies
suggests that many clinical cases with TLO formation exhibit better prognosis than
cases without TLO formation, except for cases in which the TLO predominantly
comprises regulatory T cells (Hiraoka et al. 2016). This suggests that TLO for-
mation might play a crucial role in the prevention of cancer cell proliferation by
exhibiting antitumor activity.

5 Facilitation of Antitumor Effects by Active Induction
of TLO Formation

The formation of TLO can be induced in tumor-bearing mice by stimulating the
production of LIGHT protein (Scheu et al. 2002; Wang et al. 2009) in the
LTbR-positive stromal cells within the cancer tissues. This can be accomplished by
expressing the LIGHT gene in tumor tissues using expression vectors, such as
adenoviral vectors (Yu et al. 2004, 2007). In particular, the expression of LIGHT
protein in the TLOs at cancer sites promotes the differentiation, proliferation and
activation of tumor-specific CD8+ killer T cells, which inhibits tumor proliferation
and results in cancer regression. It should also be noted that TLO formation at tumor
sites aggressively inhibits tumor proliferation, not only at the primary site but also at
metastatic sites (Yu et al. 2007). The same antitumor effect of LIGHT protein has
also reported by expressing it within the tumor using genetically engineered inac-
tivated Salmonella encoding LIGHT (Loeffler et al. 2007). Additionally, LIGHT is
also known to bind to the herpesvirus entry mediator (HVEM). Since HVEM
(TNFRSF14) is a co-stimulator that promotes T cell activation, it is thought that the
strong antitumor effect LIGHT is mediated not only by promoting TLO formation
but also through multiple other pathways, including activation of T cells and den-
dritic cells (Scheu et al. 2002; Wang et al. 2009). Hence, LIGHT is essential for an
effective antitumor immune response. Another study demonstrated that a potent
antitumor response can be achieved by the administration of an LTbR agonistic
antibody at tumor sites, which activates the LTo stromal cells through LTbR
stimulation and results in TLO formation (Lukashev et al. 2006).

Blood vessels generated during neovascularization of the cancer tissues are
mostly turbulent. Hence, these blood vessels are not in a functional state to allow
the infiltration of immune cells, such as killer T cells, into the tumor tissues.
However, TLO formation promotes remodeling of turbulent blood vessels into
normal functional blood vessels, allowing infiltration of immune cells into the
tumor tissues. Therefore, fusion of the LIGHT molecule with vascular targeting
peptide (VTP) generates the LIGHT-VTP chimeric molecule that, through VTP,
brings LIGHT into the new blood vessels in tumor tissues. This then results in TLO
formation and vessel normalization in or in the vicinity of the tumor tissues
(Johansson-Percival et al. 2015; Johansson-Percival et al. 2017). This strategy could
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result in strong antitumor responses by effectively promoting killer T cell infiltra-
tion into the tumor tissues.

Checkpoint inhibitor therapy using the anti-PD-1, anti-PD-L1 or anti-CTLA4
antibodies is receiving considerable attention as a novel immunotherapy for cancer
(Brahmer et al. 2012; Topalian et al. 2012; Tang et al. 2016). This approach stably
suppresses tumors for a long period by inhibiting the exhaustion of killer T cells as
well as inactivating immune-suppressor T cells. However, recent studies have
revealed the existence of cancers that are resistant to checkpoint inhibitor therapies
such as anti-PD-L1 antibody. In addition to the anti-PD-L1 antibody, a chimeric
protein (LIGHT fused to anti-EGF receptor antibody), which was produced by the
fusion of the LIGHT protein to an antibody that targets a cancer cell surface antigen
(EGF receptor protein), was injected into such resistant tumor tissues. This com-
bined therapy resulted in the formation of TLOs in the tumor tissues and remarkably
suppressed tumor growth (Tang et al. 2016). The CD8+ killer T cells in TLOs,
which were induced by the accumulation of the LIGHT molecule at the tumor site,
were activated by the anti-PD-L1 antibody and induced a strong suppression of
tumor growth. While treatment with the anti-PD-L1 antibody alone or the
LIGHT-EGF receptor antibody chimeric molecule alone did not result in a strong
tumor regression effect, treatment with a combination of the two resulted in complete
tumor regression. As stated above, many studies have indicated that TLO formation
around or in cancer tissues is beneficial for suppression and regression of cancer.

6 Construction of Artificial Lymphoid Tissues (aLTs)/
Organoids

The construction of functional aLTs requires a detailed understanding of the process
involved in the formation of SLOs and TLOs. aLTs have to be structurally and
functionally similar to SLOs and capable of inducing antigen-specific secondary
immune responses. Additionally, aLTs must mimic the dynamic kinetics of immune
cells inside and outside the immune tissue. Although the formation of TLOs during
inflammation is usually transient, aLTs must remain structurally and functionally
stable for an extended period in the body. Furthermore, aLTsmust be constructed on a
scaffold structure so that their extraction can be smoothly executed for transplantation
into the recipients. Hence, it is important to select a suitable material for the scaffold
that has high biocompatibility and excellent operability for aLT construction.

The artificial construction of immune tissues has been proposed as a candidate for
treating immunological diseases (Cupedo et al. 2012). We have first succeeded in
constructing artificial lymph node-like lymphoid tissues (aLTs) in a mouse
(Suematsu and Watanabe 2004, Lenti et al. 2019). The aLT tissues were lymphoid
tissues similar to the secondary lymph nodes, exhibited a structure similar to the
natural lymph node and possessed potent immune activity. We have demonstrated
that this particular aLT not only produces antigen-specific antibodies but also facil-
itates enhanced antitumor responses (Okamoto et al. 2007; Kobayashi et al. 2011;
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Kobayashi and Watanabe 2010). We have also shown the feasibility of constructing
aLTs without using any stromal cells as described below. We have likewise suc-
ceeded in regenerating and reconstructing another secondary immune organ, the
spleen of mouse, which consisted of both white pulp as well as red pulp, similar to the
normal spleen. The re-constructed spleen could mount antigen-specific immune
responses (Tan and Watanabe 2014, 2017). In the following sections, we present the
method for artificial construction of lymphoid tissue in mice, which exhibits
promising immune-stimulatory activity and may be useful for the treatment of severe
infection, immunodeficiency and cancers (Suematsu and Watanabe 2004; Okamoto
et al. 2007).

7 Artificial Construction of aLTs by Applying Stromal
Cells in Mice

In order to construct aLTs with a structure similar to the natural secondary lymph
node in which immune cells such as B cells, T cells and dendritic cells are effi-
ciently accumulated and arranged, we first established a mouse lymphoid
tissue-specific stromal cells expressing LTbR and TNFaR (Suematsu and Watanabe
2004). As the three-dimensional scaffold, biocompatible high polymer materials,
such as collagen sponges or collagen sheets, were applied. The mixtures of mouse
lymphoid tissue-specific stromal cells and bone marrow-derived dendritic cells
were adsorbed into 2–3 mm square collagen sponges. Then, the collagen sponges
containing stromal cells and dendritic cells were implanted into the renal subcap-
sular space of naïve (BALB/c) mice (Fig. 1a). After 2–3 weeks, a lymphocyte mass
several millimeters in size was formed. The structure of the lymphocyte mass was
similar to that of natural lymph nodes, with clearly defined T and B cell zones. The
artificially constructed lymphoid tissues had the following characteristics (Suematsu
and Watanabe 2004; Okamoto et al. 2007). (1) They comprised of dendritic cells, T
cells and B cells. (2) The T and B cell zones were clearly segregated. (3) They had a
germinal center (GC), and active B cell proliferation was observed in response to
antigen stimulation, similar to the B cells in GCs of normal lymphoid tissue.
(4) Formation of FDC networks in the B cell zone was evident. (5) Formation of
HEVs with a well-developed capillary plexus and small functional veins was evi-
dent. (6) Formation of many functional lymph and blood capillaries around the aLT
was detected. (7) Two types of stromal cell networks supporting the lymph node
structure were clearly formed; the FDC network in B cell follicles and the FRC
network, minutely stretched around the T cell zone. It is important to note that the
structures of the FRC and FDC networks appeared to be formed prior to the influx
of T and B cells into the aLT. (8) The aLT structure was stable for an extended
period in the mouse. (9) The aLTs were easily extracted and transplanted into other
individuals. (10) As we discuss in the following section, aLT transplantation may
restore the immunocompetence of the recipient. However, it should be noted that
autoantibody production was not detected within aLT or in the aLT-implanted
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individuals. (11) The aLT should be categorized as a TLO as it does not form a
cortex/medulla structure and it does not have capsular structure to cover the external
surface.

8 Immune Function of the aLTs/Organoids

The aLT constructed in naïve (BALB/c) mice could induce a much stronger
antigen-specific responses than that in the spleen of recipient mice (Okamoto et al.
2007). After construction of aLTs in the renal subcapsular space of mice that had
been pre-sensitized with antigen, the aLTs were extracted and transplanted into the
renal subcapsular space of naïve mice. The mice carrying aLT were then immunized
with the same antigen. A strong secondary immune response was immediately
induced only in the aLT but not in the recipient spleen. The antigen-specific

(a)

(b)

Fig. 1 Artificial construction of lymphoid tissues (aLTs)/organoids in mouse and human.
a Antigen-specific high-affinity antibody-producing cells are effectively enriched in the aLTs and
the spleen of aLT-transplanted SCID mice upon antigen re-immunization. b The aLTs, constructed
in mice and pre-sensitized with tumor antigen, exhibit a strong suppressive activity against the
tumor growth when transplanted into tumor-bearing recipients. c Construction of aLTs in
previously tumor-bearing mice that had undergone surgical eradication of the tumor effectively
suppressed tumor relapse. d Strategy to construct human-type aLTs by combining human stromal
cell spheroids and human peripheral blood mononuclear cells (PMBCs)
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high-affinity IgG antibody-forming cells (AFCs) emerged with high efficiency in the
aLTs, and large quantities of antigen-specific high-affinity IgG antibodies were
detected in the recipient mouse serum. However, only IgM AFCs were detected in
the spleen or lymph nodes of the recipient mice due to the primary immune response
(Okamoto et al. 2007). The aLTs were also transplanted into renal subcapsular space
of SCID mice (an immunodeficient mouse model lacking B and T cells), and then,
the SCID mice were immunized with the same antigen. A strong secondary immune
response was immediately induced in the transplanted aLT, and antigen-specific
high-affinity IgG AFCs emerged in large quantities in the aLT. In parallel,
antigen-specific high-affinity AFCs gradually emerged in the spleen as well as in the
bone marrow of the aLT-implanted SCID mice (Fig. 1a). The numbers of
high-affinity AFCs produced in the spleen of the aLT-implanted SCID mice were
10–50 times higher than in the spleen of the aLT-implanted normal naïve mice
(Okamoto et al. 2007). A strong secondary immune response was induced locally at
the aLTs in the aLT-implanted normal as well as SCID mice. Surprisingly, in the
aLT-implanted immunodeficient SCID mice, the AFCs quickly moved to a “vacant”
lymphoid tissues (such as the spleen) from the aLTs and rapidly proliferated and
differentiated into antigen-specific ultra-high-affinity AFCs. It should be possible to
establish an antigen-specific ultra-high-affinity antibody by constructing
antibody-producing hybridomas using such spleen cells. These results suggest the
possibility of inducing an effective and strong immune response by transplanting the

� �

�

(c)

(d)

Fig. 1 (continued)
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aLT into individuals with severe infections or aberrant immune function to induce an
effective and strong immune response. The memory type helper T cells and memory
B cells were also concentrated selectively at high frequency in the aLT.

We then constructed the aLT by implanting stromal cells together with bone
marrow-derived dendritic cells (BM-DCs), which were enclosed in a collagen
sponge, into the renal subcapsular space of normal mice that had been
pre-immunized with tumor-specific antigen (Fig. 1b). The aLT was then trans-
planted into the renal subcapsular space of tumor-bearing SCID mice that had been
pre-transplanted with the same tumor. We observed that tumor proliferation was
suppressed in these mice (Kobayashi et al. 2011; Kobayashi and Watanabe 2010).
Various INFc-producing cells were observed in the aLT, mostly comprised of CD8
+ killer T cells, CD4+ helper T cells and NK cells, which probably promoted a
potent antitumor response. This finding indicates that the aLT is capable of strongly
inducing not only a humoral but also a cell-mediated immune response.

In another study, tumor cells were transplanted under the skin of naïve mice and
allowed to grow to form a tumor mass. The tumors were then surgically extirpated
when they reached a certain size, and the mice were then divided into two groups. An
aLT was constructed in one group but not the other group. After three to four weeks,
all mice without an aLT construction died from cancer recurrence. However, the
mice with the aLT all survived without cancer recurrence or with only a small
recurrence under strong suppression (Fig. 1c). Taken together, the aLT could induce
a strong humoral as well as a strong cell-mediated secondary immune reaction.

9 Construction of aLTs Without Using Stromal Cells

We also constructed aLT/organoid in vivo by using only humoral factors without
the use of stromal cells (Kobayashi and Watanabe 2016). Mixtures of the
chemokines, CCL19, CCL21, CXCL12 and CXCL13 that promote immune cell
migration, as well as the recombinant LTa1b2 protein, were absorbed in a
sustained-release gel (Medgel). The gels were enclosed in the collagen sponge to
which the adhesion molecule, recombinant VCAM1, was attached. Then, the col-
lagen sponge was transplanted into the renal subcapsular space of naïve (BALB/c)
mice. The formation of lymphoid tissue comprising T and B cell clusters was
observed in the graft with excellent reproducibility (Kobayashi and Watanabe 2016;
Kobayashi et al. 2016). The formation of the FRC stromal cell network, the dis-
tribution of various dendritic cells in the T cell cluster and the local existence of
FDCs in the B cell cluster was all evident. The aLT was constructed in BALB/c
mice pre-immunized with the antigen by using a sustained-release gel containing
chemokines. The aLT was then removed and re-implanted into the renal subcap-
sular space of immunodeficient SCID mice, which were subjected to secondary
immunization with the same antigen. Highly efficient induction of antigen-specific
high-affinity IgG AFCs was observed in the aLT as well as in the spleen of the
recipient SCID mice, similar to that observed using aLT tissue constructed with
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stromal cells. These results demonstrate that immunologically functioning and
stable aLTs can be constructed in mice without stromal cells, but by using only
soluble factors in combination with various chemokines and that the efficiency of
the immune function of the aLT was similar to that of the aLT constructed with
stromal cells.

10 Construction of Human-Type aLT/Organoid

Generation of functional human-type artificial lymphoid tissues/organoids should
be beneficial for clinical application as immunotherapy against severe infection,
cancer, autoimmune diseases or immunodeficiency caused by aging and also for
investigation of the functions of human lymphoid tissues. As stated above, the
immunologically active artificially lymphoid tissues are able to be stably generated
in mice by applying either lymphoid stromal cell-embedded biocompatible scaffold
or the chemokines/lymphokines gel-embedded scaffold (Suematsu and Watanabe
2004; Kobayashi and Watanabe 2016). Considering the various studies on the
SLOs and TLOs in human (Ruddle 2014; Dieu-Nosjean et al. 2014; Turley et al.
2015; Johasson et al. 2016; Tschenig et al. 2018; Fennema et al. 2013), it is clear
that the appropriate stromal cells are required also for the formation of human-type
artificial lymphoid tissues/organs. As a candidate human lymphoid stromal cell, we
established a stromal cell clone from the commercially available human bone
marrow-derived mesenchymal stem cell lines (RIKEN Institute, Japan). It expresses
LTb receptors and adhesion molecules such as VCAM-1, ICAM-1 and MadCAM-1
on the cell surface. The cloned stromal cell increased the expression of various
lymphoid chemokines, such as CXCL13, CCL19, CCL21 CXCL12 and adhesion
molecules in response to stimulation with retinoic acid and LTa1b2 ligand
(Fig. 1d). Next, the stromal cells were subjected to the spheroid formation (Yin
et al. 2017) to establish a three-dimensional structure. The stromal cell spheroids
were then placed on collagen sponges onto which human peripheral blood
mononuclear cells (PBMC) had been pre-absorbed. Formation of blood vessel and
lymphatic tracts in the spheroids enhanced the influx and accumulation of human
PBMCs into the stromal spheroids. The collagen sponges carrying stromal spher-
oids and human PBMCs were then transplanted into the renal subcapsular space of
immunodeficient NOG or SCID mice. After a few weeks, tertiary lymphoid tissues
containing clusters of the human T and B cells and scattered human DC cells were
formed (Fig. 1d). Immunodeficient mice carrying the human-type artificially made
lymphoid tissues (human-type aLTs) were then immunized with viral antigens.
Strong B cell proliferation and germinal center formation and appearance of
antigen-specific antibody-producing cells were observed in the aLTs as a result of
the immunization. Human IFNc production was also detected in the T cells of mice
harboring the aLTs. These data indicate that immunologically functional
human-type aLTs could be generated by directly applying human PBMC into the
human stromal spheroids. We are now planning to induce tumor-killing T cells by
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combining human aLTs with PDX (patient-derived xenografts) mice carrying
human cancers.

11 In Summary

We hope that aLT construction will be developed further and will be applied in the
future, not only as a novel clinical device but also as a new experimental system for
basic immunology research. Additionally, we believe that artificial restoration/
construction and use of immune tissues other than lymph node tissue, such as the
thymus, bone marrow or intestinal mucosa, will be challenging but important.

Our endeavor to artificially construct the immunologically functioning-lymphoid
tissue/organoid has just begun. We sincerely hope that more researchers will
contribute to the field of the reconstructive immunology or immune tissue engi-
neering in the future.
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