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1  Introduction

Microbes, which are generally divided into five 
categories, namely, bacteria, viruses, fungi, 
archaea, and protozoa, are the pathogens respon-
sible for many infectious diseases that remain a 
leading cause of death worldwide due to the 
ongoing emergence of new pathogens and resur-
gence of previous pathogens. For instance, the 

gut microbiota is a contributing factor to the 
pathophysiology of obesity. Escherichia coli is 
the major pathogen of urinary tract infection 
(UTI), which has a high rate of recurrence. 
Hepatitis C virus (HCV) induces the develop-
ment of hepatitis C, and some other serious infec-
tious diseases, even cancer, are associated with 
microbes [1–4].

Conventionally, molecular and cellular bio-
logical methods are used to study infections at 
the gene and protein levels, but these methods 
cannot be used for precise and direct monitoring 
of minor changes in biological niches, let alone 
for pathogenic annotation. As the final down-
stream event of transcription and translation, 
metabolism will amplify these changes, which 
can then be traced back to easily identify the 
pathogenesis of infectious diseases [5]. To our 
knowledge, microbial metabolism refers to a 
series of chemical reactions that occur during the 
growth, proliferation, and differentiation of 
microbes and substrate degradation by microbes, 
including catabolism and anabolism, which are 
closely associated with pathogenesis and viru-
lence [6]. Therefore, microbial metabolomics 
provide a new opportunity to study the diagnosis, 
pathogenesis, and treatment of diverse 
infections.

Over the past few years, microbial metabolo-
mics, which is designated for global profiling of 
a large number of small molecules (molecular 
weight <1000) from a microbiological system, 
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has developed rapidly and been introduced into 
life science research. Owing to the development 
of techniques such as high-resolution mass spec-
trometry (MS), methods of sample preparation 
and biological annotation databases such as the 
Human Metabolome Database (HMDB), we can 
precisely target microbiological functions and 
then apply microbial metabolomics to study the 
diagnosis, pathogenesis, and treatment of many 
infections, such as type 1 diabetes (T1D), UTI, 
and cystic fibrosis (CF) [2].

In this chapter, we attempt to summarize 
microbial metabolomics from methods to appli-
cations in the study of diverse infectious diseases, 
allowing us to better understand how microbial 
metabolomics aids the study of the diagnosis, 
pathogenesis, and treatment of microbe-related 
infections (Fig. 1).

2  Methods in Microbial 
Metabolomics

2.1  Key Analytical Tools 
for Microbial Metabolomics

Microbial metabolomics strives to analyze the 
metabolomes of microbiological systems and 
then translates the metabolic differences to phe-

notypic differences, enhancing our knowledge 
about the molecular mechanisms of infectious 
diseases [7]. Accuracy, sensitivity, and high 
throughput are three basic characteristics that 
analytical instruments used for microbial metab-
olomics should possess. However, because the 
classes and concentrations of metabolites vary 
greatly and due to the presence of a large number 
of metabolites in biological samples, it is very 
challenging for only one analytical tool to meet 
all three requirements and detect all known and 
unknown metabolites [8]. Two types of instru-
mentation platforms based on nuclear magnetic 
resonance (NMR) and MS are currently pre-
ferred, although neither of these platforms can 
profile all the metabolites present in microbial 
samples in an unbiased manner.

NMR spectroscopy identifies chemical struc-
tures based on the absorption spectra of radio fre-
quency (RF) pulses from the nuclei of atoms in 
strong magnetic fields. The commonly employed 
atoms for analysis include 1H, 13C, and 31P, and 
this technique can analyze metabolites in sam-
ples both qualitatively and quantitatively at the 
same time. The applications of NMR spectros-
copy in metabolomics vary widely, with the most 
common application being qualitative and quan-
titative analysis of metabolites in body fluid sam-
ples. For example, 1H-NMR was applied to 

Fig. 1 Applications of metabolomics in the study of microbe-related infectious diseases
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compare metabolomes between biofilms, which 
are associated with many infections, and plank-
tonic cells of Staphylococcus aureus [9]. 
However, due to the complexity of metabolites 
from microbes and wide range of metabolite con-
centrations, as well as the relatively low sensitiv-
ity and high cost of NMR, the application of 
NMR in microbial metabolomics has been 
limited.

To overcome these problems, high-resolution 
MS has recently become an indispensable tool in 
metabolomics. Sample preparation techniques 
such as gas chromatography (GC), liquid chro-
matography (LC), or capillary electrophoresis 
(CE) coupled with high-resolution MS methods 
are broadly employed in microbial metabolomics 
[7].

GC-MS is a hyphenated technique in which 
the metabolites of the sample are first separated 
by GC and then detected and identified by MS 
[10]. GC-MS only detects volatile and thermally 
stable compounds, while a majority of microbial 
metabolites are nonvolatile and thermally labile, 
such as phosphorylated metabolites, which may 
degrade when placed at high temperatures in the 
GC oven. However, this method has been used to 
analyze microbial metabolites after derivatiza-
tion due to the advantages of GC, including the 
ability to efficiently distinguish isomeric com-
pounds, the ease of use, and the low cost com-
pared to other separation tools [8]. For example, 
a derivatization reaction combined with GC-MS 
analysis has been used to study numerous 
microbes, such as Propionibacterium freuden-
reichii, E. coli, and Bacillus subtilis [7].

LC-MS is another hyphenated technique that 
offers analyte separation via LC followed by ion-
ization and MS detection. There are two com-
monly used ionization methods for LC-MS, 
namely, electrospray ionization (ESI) and atmo-
spheric pressure chemical ionization (APCI), 
which are both very sensitive. However, ESI is 
more desirable in microbial metabolomics 
because ESI-MS preferentially detects polar 
compounds, while APCI-MS detects nonpolar 
compounds. In addition, in contrast to GC-MS, 
LC-MS does not require high temperatures and 
volatility of analytes, which increases the ease of 

sample preparation [10]. Furthermore, LC-MS is 
also highly sensitive with small sample volumes 
[11]. For example, myxoprincomide, a novel 
myxobacterial metabolite of Myxococcus xan-
thus DK1622, was discovered by LC coupled 
with high-resolution MS (LC-HRMS) [12]. 
Nevertheless, there remain some challenges asso-
ciated with LC-MS techniques, such as interfer-
ence by the high salt content in microbial media 
samples, ionization suppression, and the rela-
tively low resolution of high-performance LC 
(HPLC). Nevertheless, the emergence of 
ultrahigh- performance LC (UPLC) has improved 
chromatographic resolution greatly [10]. For 
instance, Marcobal and colleagues used an 
UPLC-MS method to examine the influence of 
the gut microbiota on the urinary and fecal 
metabolome of a humanized mouse [13]. CE-MS 
is another useful tool for metabolomic analysis, 
the advantages of which include exquisite separa-
tion efficiency, very small sample volumes (nL 
range), and low cost when compared to GC-MS 
and LC-MS. However, the major shortcoming of 
CE-MS is the difficulties at the interface between 
CE and MS [11].

In short, there are several platforms employed 
in microbial metabolomics (Fig.  2), and each 
type of instrument has advantages and disadvan-
tages. Researchers should choose the best method 
or combine the tools to analyze microbial metab-
olites based on the characteristics of compounds 
of interest and analytical tools (Fig. 2).

2.2  Sample Preparation and Data 
Mining of Microbial 
Metabolomics

Microbial metabolomics focuses on intracellular 
metabolites that change quickly over time. 
Therefore, the methods and conditions of sam-
pling and sample preparation, including time, 
storage condition, and other factors, greatly influ-
ence the reproducibility, precision, and accuracy 
of detection. In addition, the biological variabil-
ity tends to be larger than analytical variability, 
which enhances the importance of optimizing 
sampling and sample preparation methods.

Microbial Metabolomics: From Methods to Translational Applications
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Some metabolic processes are so rapid (usu-
ally less than 2 s) that quick collection of samples 
from the reactor to stop cell metabolism, espe-
cially enzymatic processes, is very crucial. Quick 
harvesting of metabolites followed by freezing in 
liquid nitrogen and then storing at −80  °C is 
commonly used by many researchers. Choosing 
an effective approach for instant quenching is 
also rather important for the harvesting of metab-
olites, and the approach should meet basic 
requirements such as absence of cell leakage or 
detection of any leaked metabolites. The use of 
acidic reagents such as nitric and perchloric acid 
drastically reduces the number of detected 
metabolites, and unstable compounds are 
severely degraded. Hot alcoholic polar (e.g., 
methanol/water) and nonpolar (e.g., chloroform) 
extractions are also employed. According to 
many related studies, prokaryotic microbes such 
as E. coli have a greater tendency to exhibit leak-
age of intracellular metabolites than eukaryotic 
microbes such as yeasts when treated with cold 
methanol, which might be due to the differences 
in cell wall and membrane structures between the 
two types of microorganisms. Therefore, cold 
methanol extraction may be promoted as a com-
mon quenching method for extraction of intracel-
lular metabolites from some prokaryotic microbes 

[14]. A detailed procedure for sampling and sam-
ple processing is shown in Fig. 3.

After analyzing the samples via MS-based 
platform, we obtained the raw data that were very 
complex. Therefore, data analysis requires the 
use of appropriate informatics tools for metabo-
lite identification and quantification (Fig.  3). 
First, pretreatment of raw data to exclude irrela-
tive factors is important and indispensable. 
Several major processes that involve noise filter-
ing, resolution of overlapping peaks, peak align-
ment, peak matching, and peak normalization are 
needed. Current software programs for perform-
ing data pretreatment include MetAlign, MET- 
IDEA, MZmine, Progenesis QI, XCMS, and 
MSFACTs. The first three can be used to pretreat 
all LC-MS and GC-MS raw data, while 
Progenesis QI and XCMS can only process data 
produced by LC-MS, and MSFACTs is a soft-
ware for GC-MS data processing. Among the 
tools mentioned above, MetAlign and MZmine 
cannot resolve overlapping peaks; MET-IDEA 
can extract semiquantitative information in addi-
tion to resolving overlapping peaks; and XCMS 
can perform alignment of nonlinear retention 
times, noise filtering, and other functions. 
STOCSY (statistical total correlation spectros-
copy) is a commonly used method for molecule 

Fig. 2 Platforms used for microbial metabolomics
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identification in microbial metabolomics based 
on NMR.  It takes advantage of the multicol-
linearity of the intensity variables in a set of spec-
tra to generate a pseudo-two-dimensional NMR 
spectrum that displays the correlation among the 
intensities of the various peaks across the whole 
sample. This method is not limited to the usual 
connectivities that are deducible from more stan-
dard two-dimensional NMR spectroscopic meth-
ods, such as TOCSY. Moreover, two or more 
molecules involved in the same pathway can also 
present high intermolecular correlations because 
of biological covariance or can even be anticor-
related. The combination of STOCSY with 
supervised pattern recognition and particularly 
orthogonal projection on latent structure- 
discriminant analysis (O-PLS-DA) offers a new 
powerful framework for analysis of metabolomic 
data. In a first step O-PLS-DA extracts the part of 
NMR spectra related to discrimination. This 
information is then cross-combined with the 
STOCSY results to help identify the molecules 
responsible for the metabolic variation [15].

In addition to data pretreatment, mining of 
useful information from a large amount of data 
and functional annotation of this data is another 
key challenge in microbial metabolomics. 
Multivariable data analysis (MVDA) is 
 commonly used to extract information from data 
sets, including analysis of variables that contrib-

ute to classification, identification of biomarkers 
associated with phenotypes, and annotation of 
regulatory mechanisms via metabolic pathways. 
Recently developed MVDA techniques comprise 
supervised and unsupervised methods as two 
main types. In microbial metabolomics, super-
vised methods include clustering analysis (CA) 
and principal component analysis (PCA), and 
unsupervised methods include linear discrimi-
nant analysis (LDA), partial least squares (PLS) 
analysis, partial least squares-discriminant analy-
sis (PLS-DA), and artificial neural network 
(ANN) analysis. Among these analytical meth-
ods, PCA and PLS-DA are the most commonly 
applied methods, yielding classification informa-
tion via a score plot and revealing metabolites 
that contribute to the classification as well as the 
determining the contribution of these metabolites 
via a loading plot [3, 16, 17].

2.3  Biological Annotation 
of Differential Metabolic 
Pathways Characterized by 
Microbial Metabolomics

After identification of the contributive molecules, 
the next important step is to identify relevant 
metabolic pathways that could explain the roles 
of these molecules in metabolism. Identification 

Fig. 3 Sample preparation and data mining of metabolites from E. coli
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of metabolic pathway has actually helped eluci-
date the connections among metabolites and 
proven to be effective for understanding pathway 
genes/enzymes and related molecular biology 
[18]. Over the past decade, many excellent online 
metabolic pathway databases have emerged to 
provide intuitive bioinformatic tools for the visu-
alization, interpretation, and analysis of path-
ways (Fig.  4), such as Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (https://www.
genome.jp/kegg/), BioCyc (https://biocyc.org/), 
Reactome (https://reactome.org/), Small 
Molecule Pathway Database (SMPDB) (http://
www.smpdb.ca/), and Metabolomics Pathway 
Analysis (MetPA) (http://metpa.metabolomics.
ca/) [18–24]. The KEGG pathway database is a 
reference database consisting of metabolic path-
way maps with functional significance [25]. 
BioCyc provides not only a reference for genomes 
and metabolic pathways but is also a powerful 
computational analytical tool for prediction of 
metabolic pathways and operons; BioCyc 

includes EcoCyc, which is a specific database for 
the bacterium E. coli K-12 MG1655. The 
Reactome database is based on reactions that are 
grouped into causal chains to form pathways in 
human systems [20].

Metabolic pathway analysis is usually based 
on high-throughput metabolomic data achieved 
by NMR- or MS-based analysis of biological 
samples. Correct mapping of metabolic pathways 
relies on robust data processing and analysis, 
such as identification and characterization of 
metabolites, and visualization of the results. In 
targeted metabolomics (quantitative metabolo-
mics), compound identification and quantifica-
tion are usually achieved by comparing analytical 
samples on the basis of a series of chemical stan-
dards [26]. For statistical analysis of targeted 
metabolomic data, openly accessible software/
database tools such as MetaboAnalyst (http://
www.metaboanalyst.ca/), MeltDB (https://
meltdb.cebitec.uni-bielefeld.de/), HMDB, and 
MeTPA are usually preferred [26–28]. In 

Fig. 4 Online metabolic pathway databases for biological annotation
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MetaboAnalyst, detailed and hyperlinked diagrams 
of pathways can be obtained after uploading a 
peak list and including information regarding the 
name and peak intensity of each identified metab-
olite. MeltDB is similar to MetaboAnalyst to 
some extent but is only used for MS-based 
metabolomics data analysis. All the results are 
linked to the HMDB, which is currently the most 
comprehensive database of human metabolites 
and related metabolisms [29]. MetPA is another 
powerful tool that helps identify the most rele-
vant metabolic pathways and visualizes pathway 
data.

Metabolic pathway analysis of untargeted 
metabolomic data is quite challenging because 
it requires confident identification of a large 
number of metabolites and building of complex 
relationships among the identified metabolites. 
Therefore, comprehensive databases such as the 
HMDB, METLIN (https://metlin.scripps.edu/), 
and Madison Metabolomics Consortium 
Database (MMCD) (http://mmcd.nmrfam.wisc.
edu/) [29, 30] are needed to provide the struc-
tural properties (e.g., MS/MS spectra) and func-
tional properties of metabolites. Such publicly 
accessible, web-based databases provide hyper-
links to other databases and share some infor-
mation in common. HMDB integrates 
information regarding compound description, 
chemical structure, and disease associations and 
reference NMR and MS spectra [29]. METLIN 
is centered on MS-based data, especially MS/
MS data. This database can be used to match 
metabolites based on MS and MS/MS data. 
Recently, isoMETLIN, a version for isotope-
labeled compounds, has facilitated untargeted 
global isotope-tracer experiments [30]. The 
MMCD database supports an extensive search 
using experimental MS or NMR data, and this 
database contains information for more than 
20,000 biologically relevant small molecules 
chosen from KEGG, BioCyc, HMDB, and oth-
ers [31]. These open-source databases allow 
their content and software infrastructures to be 
optimized and updated according to user feed-
back, greatly increasing the convenience and 
efficiency of metabolic pathway analysis of bio-
logical systems.

3  Translational Applications 
of Microbial Metabolomics

3.1  Diagnosis of Infectious 
Diseases Caused by 
Pathogenic Microbes

Many infectious diseases, such as UTI, spleen- 
yang- deficiency syndrome (SYDS), and 
CF-associated lung disease, cause serious issues 
to patients’ health. However, diagnosis of these 
diseases remains highly challenging due to the 
lack of effective biomarkers. Fortunately, the 
applications of microbial metabolomics have sig-
nificantly contributed to the diagnosis of infec-
tion diseases. UTI is a serious disease worldwide 
that mainly affects females, and the most com-
mon pathogen is E. coli [2]. LC-MS was used to 
globally profile the metabolites in urine from 
healthy controls and patients with UTI, and sev-
eral potential biomarkers were identified 
 successfully (Fig. 5) [32]. Lam et al. applied pro-
ton NMR spectroscopy to analyzing 88 urine 
samples from UTI patients and demonstrated that 
trimethylamine (TMA) could serve as a human-
microbial marker of UTI associated with E. coli, 
and NMR-based urinalysis could aid the etiologi-
cal diagnosis of this infectious disease [33].

SYDS is a typical syndrome in traditional 
Chinese medicine (TCM). Patients with SYDS 
can be distinguished from healthy controls by 
performing liquid chromatography/quadrupole 
time-of-flight mass spectrometry (LC-QTOF- 
MS)-based metabolomics and 16S rRNA 
sequencing because the number of Firmicutes 
and Clostridia bacteria that contribute to energy 
dysfunction is increased in the gut of SYDS 
patients. Therefore, Firmicutes and Clostridia 
bacteria may become new markers for the 
 diagnosis of SYDS via microbial metabolomics 
coupled with 16S rRNA sequencing [34]. 
Pseudomonas aeruginosa is one of the most 
common pathogens and causes CF-associated 
lung disease. By analyzing the metabolites of 
CF patients and non-CF patients via LC-MS/
MS, sphingolipids were found to be the most 
abundant molecules in the sputum of CF 
patients. This study showed that microbial 
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metabolomics could identify specific com-
pounds that are abundant in clinical samples to 
help diagnose the disease [35].

Microbial metabolomics could also improve 
the diagnosis of inflammatory bowel disease 
(IBD), Crohn’s disease (CD), and ulcerative coli-
tis (UC) caused by the gut microbiota by identi-
fying the altered metabolite signatures in 
biological samples [36]. For instance, GC-MS 
was performed to analyze the fecal samples from 

20 UC patients, 22 CD patients, 26 IBS patients, 
and 19 healthy controls and reveal the increased 
levels of ester and alcohol derivatives of short 
chain fatty acids (SCFAs) and indole in the CD 
group [27]. Based on 1H-NMR analysis, the lev-
els of 3-hydroxybutyrate, β-glucose, α-glucose, 
and phenylalanine were found to be significantly 
increased and lipid levels were significantly 
decreased in the serum samples of UC patients 
compared to healthy controls [4]. In addition, uri-

Fig. 5 LC-MS-based global metabolic profiling platform for human urine from healthy controls and patients with UTI
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nary metabolites, including those originating 
from the gut microbiota, such as hippurate, ace-
tate, methanol, methylamine and formate, TCA 
cycle intermediates, creatine, urea, taurine, and 
trigonelline, were identified as potential biomark-
ers to distinguish IBD patients from healthy con-
trols [38]. Ahmed et al. reported a comprehensive 
study of the fecal volatile organic metabolites 
(VOMs) in the patients with diarrhea- predominant 
IBS (IBS-D, n = 30), CD (n = 62) or UC (n = 48), 
and healthy controls (n = 109). Fecal VOMs were 
extracted by solid-phase microextraction and 
analyzed by GC-MS.  In total, 240 VOMs were 
identified. Esters of short chain fatty acids, cyclo-
hexanecarboxylic acid, and its ester derivatives 
were associated with IBS-D, while aldehydes 
were more abundant in IBD. A predictive model, 
developed by multivariate analysis, could differ-
entiate IBS-D from active CD, UC, and healthy 
controls with high sensitivity and specificity [39].

3.2  Pathogenesis Annotation 
of Microbial Infections

Although many drugs have been developed to treat 
infections, patients also experience side effects due 
to the nonspecificity of drug targets. In this regard, 

microbial metabolomics may be a useful tool to bet-
ter understand the pathogenesis of infectious dis-
eases and to promote precision treatment. Infections 
such as T1D, neonatal necrotizing enterocolitis 
(NEC), and UTI are increasingly prevalent condi-
tions associated with gut microbiota, and the early 
mechanism of these illnesses remains elusive. By 
profiling the serum metabolites from transgenic 
mice with a combined LC-MS and GC-MS 
approach, decreased levels of lysophosphatidylcho-
line (LPC) and methionine and accumulation of 
ceramides were observed, which may facilitate our 
understanding of early T1D pathogenesis [40]. 
NEC mainly leads to the mortality of infants with 
very low birth weight. Metabolomics and next-gen-
eration sequencing tools have been used to investi-
gate the contribution of intestinal microbes to NEC 
pathogenesis. The role of intestinal microbes was 
redefined and numerous evidences support the sup-
ported the hypothesis that NEC is a microbe- 
mediated disorder [41].

In addition, NMR has been used to determine 
the relationship between siderophores (second-
ary metabolites of microorganisms) and the 
pathogenesis of E. coli, the gut microorganism 
that causes UTI, demonstrating that the molecu-
lar interactions between the host and pathogen 
provide novel insight into pathogenesis (Fig. 6) 

Fig. 6 Urinary metabolites altered by siderophore treatment, as identified via NMR spectroscopy, and related meta-
bolic pathways
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[42]. Similarly, GC-MS was employed to explore 
the relationships among the host, Salmonella 
enterica serovar Typhimurium (S. Typhimurium), 
and the commensal gut bacteria during S. 
Typhimurium-mediated intestinal infection, and 
the data demonstrated the accumulation of 
metabolites consumed by commensal microbes. 
This result offers insights into the molecular 
interplay among the host, pathogen, and com-
mensal microbes during pathogenesis [43].

Liver disease is a serious illness worldwide, 
and HCV is the leading cause, but the pathogen-
esis of HCV is not fully understood. Fortunately, 
some progress has been made with the help of 
microbial metabolomics. For instance, Sun and 
colleagues applied UPLC/ESI-SYNAPT-HDMS 
to analysis of metabolites of an HCV animal 
model and identified 38 distinct compounds, such 
as hypotaurine, glycerophospholipid, and trypto-
phan, as effective biomarkers for HCV diagnosis 
and pathogenesis [44]. Another microbe, 
Mycobacterium leprae, causes leprosy, which 
mainly infects the skin and peripheral nervous 
system. UPLC-MS was used to investigate the 
serum samples from the patients with high bacte-
rial indices (BIs) and low BIs, and the levels of 
arachidonic acid, eicosapentaenoic acid, and doc-
osahexaenoic acid were found to significantly 
increase, particularly in high-BI patients, which 
may serve as potential biomarkers and facilitate 
the study of high-BI pathogenesis [45].

3.3  Development of Antibiotic 
Resistance Against Microbe- 
Associated Infections

Penicillin and sulfonamide were the first two 
effective antimicrobials, and the former has saved 
thousands of lives. A number of other prevalent 
antibiotics such as streptomycin, aureomycin, 
chloramphenicol, and kanamycin were subse-
quently discovered. However, antibiotic resis-
tance (AR) has emerged with misuse, overuse, 
and even underuse of antibiotics. In fact, the main 
reason for the lack of success in AR control is 
that the wide range of biochemical and physio-
logical mechanisms is poorly understood due to 

the complexity of the processes that contribute to 
the emergence and dissemination of resistance 
[46]. Nonetheless, microbial metabolomics may 
have potential applications in the control of AR 
because most AR processes consume cellular 
energy, which leads to clear downstream changes 
in microbial metabolism [47].

Biofilms are sessile communities of microbes, 
usually bacteria or fungi, on surfaces or liquid-air 
interfaces. Biofilms are closely associated with 
many health problems, such as UTI, dental  caries, 
chronic osteomyelitis, and CF-associated lung 
infection. However, these diseases are difficult to 
treat due to the resistance of biofilms to antibiot-
ics [2]. To overcome the resistance, both MS- and 
NMR-based metabolomics have recently been 
used to study biofilms. For instance, Stipetic 
et al. demonstrated a novel extraction method via 
bead beating in a chloroform/methanol/water 
extraction solvent, and the metabolites were then 
analyzed by LC-MS to detect metabolic altera-
tions between biofilm and planktonic cells of S. 
aureus. Significant changes in arginine biosyn-
thesis were identified [48]. Another study by 
Hess et  al. was performed on a biofilm of S. 
aureus with 1H NMR, and low oxygen concentra-
tions were found to inhibit biofilm formation and 
regulate the ability of gentamicin and vancomy-
cin. The results showed differential metabolomic 
profiles between aerobic and anaerobic biofilms 
and demonstrated that microbial metabolomics is 
an effective tool for identification of the main 
molecules involved in biofilm development [49]. 
In addition, mannoside was shown to potentiate 
the activity of trimethoprim-sulfamethoxazole in 
the treatment of UTI [50]. All these studies indi-
cate that microbial metabolomics may serve as a 
powerful tool to understand the mechanisms 
underlying the resistance of biofilms to 
antibiotics.

An untargeted metabolomics approach was 
used to quantify the short-term metabolic changes 
that occur in treating E. coli with several antibiot-
ics; this study was performed with QTOF-MS to 
understand the mechanisms of drug action and 
determine approaches to potentially address AR 
(Fig. 7). The results revealed that an imbalance of 
ammonium could improve chloramphenicol tox-

R. Guo et al.
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icity and the function of dTDP-rhamnose synthe-
sis in response to quinolone antibiotics [51]. 
Klebsiella pneumoniae, a major pathogen of 
bloodstream infections, is also an AR-associated 
strain. Rees and colleagues applied 
GC × GC-TOFMS to profiling the volatile com-
pounds produced by K. pneumoniae in human 
blood and identified 33 volatile metabolites that 
are abundant in the pathogenic strain [52]. In 
addition, Campylobacter jejuni (C. jejuni), a 
foodborne microbe, is a great burden on human 
health due to resistance to antibiotics. UPLC−
TOF/MS was used to profile metabolites and dis-
cover metabolic signatures associated with 
chloramphenicol and florfenicol resistance- 
causing mutations in C. jejuni. Up to 41 differen-
tial metabolites involved in glycerophospholipid 
metabolism, sphingolipid metabolism, and fatty 
acid metabolism were observed in a 

chloramphenicol- resistant mutant strain of C. 
jejuni. A panel of 40 features was identified in 
florfenicol-resistant mutants, demonstrating 
changes in glycerophospholipid metabolism, 
sphingolipid metabolism, and tryptophan metab-
olism. This study shows that the UPLC-MS- 
based metabolomics is a promising and valuable 
tool to generate new insights into the drug- 
resistant mechanism of C. jejuni [53].

3.4  Treatment of Infectious 
Diseases Caused by 
Pathogenic Microbes

Although traditional antibiotics have saved mil-
lions of lives and revolutionized the treatment of 
infectious diseases, side effects associated with 
the broad use of antibiotics, such as increased 

Fig. 7 Monitoring of short-term metabolic changes in E. coli after exposure to antibiotics by QTOF-MS
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emergence of AR and indiscriminate disruption 
of the beneficial microbiota, have stimulated the 
need for alternative treatment strategies [54, 55]. 
One approach is the development of a new gen-
eration of antimicrobials that mitigate the spread 
of AR. Microbial metabolomics could provide 
the opportunity to understand the biochemistry 
and pathogenesis of microbial pathogens and 
facilitate the discovery and development of novel 
anti-infective drugs [56]. Therefore, investigation 
of the targets and action modes of drugs via 
metabolomics can be used to predict the safety 
and efficacy of a drug (Fig. 8) [57]. For example, 
a quantitative metabolomics analysis of non-
mevalonate isoprenoid synthesis in Plasmodium 
falciparum identified the primary antiparasitic 
activity of fosmidomycin, and this study will 
guide future research on the chemical modifica-
tion of fosmidomycin for treating infections [58]. 
To investigate the activity of benznidazole, a drug 
proven to be effective against Chagas disease 
caused by Trypanosoma cruzi (T. cruzi), an untar-
geted LC-MS-based metabolomics approach was 
developed, and the results revealed that covalent 
binding of benznidazole with thiols is a primary 

cause of the drug’s activity, which helped us 
understand the natural variation in T. cruzi [59]. 
A multiomics analysis has facilitated our under-
standing of the molecular mechanism of eflorni-
thine resistance in African trypanosomes. 
Metabolic profiling of wild-type Trypanosoma 
brucei (T. brucei) and eflornithine-resistant T. 
brucei showed that eflornithine levels were 
greatly reduced in resistant cells compared to the 
wild type, and genetic analysis confirmed the role 
of TbAAT6 (T. brucei eflornithine transporter 
AAT6) in eflornithine action [60]. In addition, tri-
phenylbismuthdichloride (TPBC) has been 
proven to have toxic effects on many antibiotic- 
resistant strains, such as methicillin-resistant 
Staphylococcus aureus (S. aureus) and 
vancomycin- resistant enterococci. The use of 
exometabolomic approaches to monitor meta-
bolic changes in S. aureus treated with TPBC 
showed that this compound has potent antimicro-
bial activity against many bacterial pathogens, 
acting by blocking bacterial pyruvate catabolism. 
Enzymatic studies indicated that TPBC is a 
highly efficient inhibitor of the bacterial pyruvate 
dehydrogenase complex [61].

Fig. 8 Microbial metabolomics is applied to investigat-
ing the systems actions of antimicrobial drugs involving 
therapeutic efficiency and toxicology. Microorganisms 
are grown in the medium with and without drug. Medium 

is removed; metabolites are extracted from microorgan-
isms and detected by metabolomics methods based on 
LC-MS, GC-MS, or NMR spectroscopy
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In addition to the development of new anti-
microbials, there are alternative approaches for 
the treatment of infectious diseases, such as 
photodynamic therapy (PDT), radioimmuno-
therapy, and bacteriophage treatment. PDT is a 
technique that combines a nontoxic dye, photo-
sensitizer (PS), and low-intensity visible light in 
the presence of oxygen to produce cytotoxic 
species for killing cells [62]. PDT treatment 
using Green 2 W as the PS has been reported to 
have a significant effect against Aspergillus 

fumigatus in vitro [63]. Radioimmunotherapy is 
theoretically useful as an anti-infective therapy 
against any microbe (including bacteria, fungi, 
viruses, and parasites) susceptible to radiation. 
Studies have shown the applicability of radioim-
munotherapy to treat Streptococcus pneumoniae 
infections [64]. The efficacy of phages in the 
treatment of bacterial disease in animal models 
has been demonstrated, and bacteriophage treat-
ment is a feasible alternative treatment modality 
for microbe-infected diseases [65]. Nonetheless, 

Fig. 9 Overview of microbial metabolomics: from methods to applications
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although many therapeutic strategies against 
infectious diseases have been reported, these 
strategies remain in the stage of in vitro or ani-
mal model experiments.

4  Concluding Remarks 
and Future Perspective

Microbes contribute to serious infections, such as 
UTI, CF-associated lung disease, diabetes, and 
many other diseases, which remain a leading 
cause of death worldwide. Conventional methods 
to study infectious diseases, including genomics, 
transcriptomics, and even proteomics, have pre-
sented some shortcomings recently because 
minor changes in microbiological niches cannot 
be precisely and directly monitored by these 
methods. Targeting microbial metabolism has 
been considered as a promising strategy to solve 
these problems, because these small changes at 
gene/protein levels are amplified at metabolite 
level, which offers valuable information about 
the functional role of these small molecules in 
microbial systems. Metabolomics has been 
widely used to analyze metabolites in biological 
samples from many sources, including microor-
ganisms [66]. With the advances of MS- and 
NMR-based metabolomics platforms, microbial 
metabolomics has been demonstrated as a power-
ful tool to study microbe-associated infections, 
particularly the diagnostic biomarkers, patho-
genic mechanisms/pathways, antibiotic resis-
tance, and new antimicrobial treatment (Fig. 9).

However, current microbial metabolomics 
approach has certain limitations. First, the exist-
ing methods of metabolite extraction cannot 
extract all the metabolites of interest from 
 samples. Second, no single analytical instrument 
alone can perform whole-metabolome profiling. 
Third, there is no database that contains compre-
hensive information for all bioactive compounds. 
Last, but not least, there are challenges associ-
ated with the identification of metabolites. To 
overcome these challenges, combination of 
microbial metabolomics with other omics tech-
nologies, such as genomics, transcriptomics, and 

proteomics, may become a leading methodology 
in microbial research.

We hope that this critical review will inspire 
scientific communities to pay more attention to 
microbial metabolism from a metabolomics per-
spective and will significantly advance the dis-
covery and translational applications of microbial 
metabolomics in clinical diagnosis and patho-
genesis, as well as in the discovery of novel ther-
apeutics against a variety of complex infections 
caused by rapidly expanding microbes.

Acknowledgments This work was supported by the 
National Key R&D Program of China (No. 
2017YFC1308600 and 2017YFC1308605), the National 
Natural Science Foundation of China Grants (No. 
81274175 and 31670031), the Startup Funding for 
Specialized Professorship Provided by Shanghai Jiao 
Tong University (No. WF220441502), and the 
Fundamental Research Funds for the Central Universities 
(grant no. 106112015CDJZR468808).

Declarations of Interest None.

References

 1. Cani, P. D., & Jordan, B. F. (2018). Gut microbiota- 
mediated inflammation in obesity: A link with gastro-
intestinal cancer. Nature Reviews Gastroenterology & 
Hepatology, 15(11), 671–682.

 2. Chen, S.  L., Wu, M., Henderson, J.  P., Hooton, 
T.  M., Hibbing, M.  E., Hultgren, S.  J., & Gordon, 
J. I. (2013). Genomic diversity and fitness of E. Coli 
strains recovered from the intestinal and urinary 
tracts of women with recurrent urinary tract infection. 
Science Translational Medicine, 5, 160r–184r.

 3. Saccenti, E., & Timmerman, M. E. (2016). Approaches 
to sample size determination for multivariate data: 
Applications to PCA and PLS-DA of omics data. 
Journal of Proteome Research, 15, 2379–2393.

 4. Zhang, Y., Lin, L., Xu, Y., Lin, Y., Jin, Y., & Zheng, 
C. (2013). 1h NMR-based spectroscopy detects 
metabolic alterations in serum of patients with early- 
stage ulcerative colitis. Biochemical and Biophysical 
Research Communications, 433, 547–551.

 5. Mamas, M., Dunn, W. B., Neyses, L., & Goodacre, R. 
(2011). The role of metabolites and metabolomics in 
clinically applicable biomarkers of disease. Archives 
of Toxicology, 85, 5–17.

 6. Wang, J., Wang, C., Liu, H., Qi, H., Chen, H., & Wen, 
J. (2018). Metabolomics assisted metabolic network 
modeling and network wide analysis of metabolites in 

R. Guo et al.



111

microbiology. Critical Reviews in Biotechnology, 38, 
1–15.

 7. Koek, M. M., Muilwijk, B., van der Werf, M.  J., & 
Hankemeier, T. (2006). Microbial metabolomics with 
gas chromatography/mass spectrometry. Analytical 
Chemistry, 78, 1272–1281.

 8. Garcia, D. E., Baidoo, E. E., Benke, P. I., Pingitore, 
F., Tang, Y.  J., Villa, S., & Keasling, J.  D. (2008). 
Separation and mass spectrometry in microbial 
metabolomics. Current Opinion in Microbiology, 11, 
233–239.

 9. Wu, X., Yu, H., Ba, Z., Chen, J., Sun, H., & Han, B. 
(2010). Sampling methods for NMR-based metabo-
lomics of Staphylococcus Aureus. Biotechnology 
Journal, 5, 75–84.

 10. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: 
Current analytical platforms and methodolo-
gies. TrAC Trends in Analytical Chemistry, 24, 
285–294.

 11. Mashego, M.  R., Rumbold, K., De Mey, M., 
Vandamme, E., Soetaert, W., & Heijnen, J. J. (2007). 
Microbial metabolomics: Past, present and future 
methodologies. Biotechnology Letters, 29, 1–16.

 12. Cortina, N. S., Krug, D., Plaza, A., Revermann, O., 
& Müller, R. (2012). Myxoprincomide: A natural 
product from Myxococcus Xanthus discovered by 
comprehensive analysis of the secondary metabo-
lome. Angewandte Chemie International Edition, 51, 
811–816.

 13. Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, 
P. A., Donia, M. S., Spormann, A., Fischbach, M. A., 
& Sonnenburg, J.  L. (2013). A metabolomic view 
of how the human gut microbiota impacts the host 
metabolome using humanized and gnotobiotic mice. 
The ISME Journal, 7, 1933–1943.

 14. Southam, A. D., Weber, R. J., Engel, J., Jones, M. R., 
& Viant, M. R. (2016). A complete workflow for high- 
resolution spectral-stitching nanoelectrospray direct- 
infusion mass-spectrometry-based metabolomics and 
lipidomics. Nature Protocols, 12, 310–328.

 15. Cloarec, O., Dumas, M.-E., Craig, A., Barton, R. H., 
Trygg, J., Hudson, J., Blancher, C., Gauguier, D., 
Lindon, J.  C., Holmes, E., & Nicholson, J. (2005). 
Statistical total correlation spectroscopy: An explor-
atory approach for latent biomarker identifica-
tion from metabolic 1H NMR data sets. Analytical 
Chemistry, 77(5), 1282–1289.

 16. Lv, H. (2013). Mass spectrometry-based metabolo-
mics towards understanding of gene functions with 
a diversity of biological contexts. Mass Spectrometry 
Reviews, 32, 118–128.

 17. Wang, C., Li, M., Jiang, H., Tong, H., Feng, Y., Wang, 
Y., Pi, X., Guo, L., Nie, M., Feng, H., & Li, E. (2016). 
Comparative analysis of VOCs in exhaled breath of 
amyotrophic lateral sclerosis and cervical spondylotic 
myelopathy patients. Science Reports-UK, 6, 26120.

 18. Frolkis, A., Knox, C., Lim, E., Jewison, T., Law, V., 
Hau, D. D., Liu, P., Gautam, B., Ly, S., Guo, A. C., 
Xia, J., Liang, Y., Shrivastava, S., & Wishart, D.  S. 

(2010). SMPDB: The small molecule pathway data-
base. Nucleic Acids Research, 38, D480–D487.

 19. Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., 
Matthews, L., Caudy, M., Garapati, P., Gopinath, G., 
Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, 
B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, 
C., Birney, E., Hermjakob, H., D’Eustachio, P., & 
Stein, L. (2010). Reactome: A database of reactions, 
pathways and biological processes. Nucleic Acids 
Research, 39, D691–D697.

 20. Joshi-Tope, G. (2004). Reactome: A knowledgebase 
of biological pathways. Nucleic Acids Research, 33, 
D428–D432.

 21. Kanehisa, M. (2004). The KEGG resource for deci-
phering the genome. Nucleic Acids Research, 32, 
277D–280D.

 22. Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., 
Furumichi, M., & Tanabe, M. (2013). Data, informa-
tion, knowledge and principle: Back to metabolism in 
KEGG. Nucleic Acids Research, 42, D199–D205.

 23. Karp, P. D. (2005). Expansion of the biocyc collec-
tion of pathway/genome databases to 160 genomes. 
Nucleic Acids Research, 33, 6083–6089.

 24. Xia, J., & Wishart, D. S. (2010). MetPA: A web-based 
metabolomics tool for pathway analysis and visual-
ization. Bioinformatics, 26, 2342–2344.

 25. Krummenacker, M., Paley, S., Mueller, L., Yan, T., & 
Karp, P. D. (2005). Querying and computing with bio-
cyc databases. Bioinformatics, 21, 3454–3455.

 26. Xia, J., & Wishart, D.  S. (2011). Web-based infer-
ence of biological patterns, functions and pathways 
from metabolomic data using MetaboAnalyst. Nature 
Protocols, 6, 743–760.

 27. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., 
Bourque, G., Wishart, D.  S., & Xia, J. (2018). 
Metaboanalyst 4.0: Towards more transparent and 
integrative metabolomics analysis. Nucleic Acids 
Research, 46, W486–W494.

 28. Neuweger, H., Albaum, S. P., Dondrup, M., Persicke, 
M., Watt, T., Niehaus, K., Stoye, J., & Goesmann, A. 
(2008). MeltDB: A software platform for the analy-
sis and integration of metabolomics experiment data. 
Bioinformatics, 24, 2726–2732.

 29. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, 
A.  C., Young, N., Cheng, D., Jewell, K., Arndt, D., 
Sawhney, S., Fung, C., Nikolai, L., Lewis, M., 
Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, 
S., Jeroncic, K., Stothard, P., Amegbey, G., Block, 
D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., 
Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., 
MacInnis, G.  D., Weljie, A.  M., Dowlatabadi, R., 
Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., 
Sykes, B. D., Vogel, H. J., & Querengesser, L. (2007). 
HMDB the human metabolome database. Nucleic 
Acids Research, 35, D521–D526.

 30. Guijas, C., Montenegro-Burke, J.  R., Domingo- 
Almenara, X., Palermo, A., Warth, B., Hermann, 
G., Koellensperger, G., Huan, T., Uritboonthai, W., 
Aisporna, A. E., Wolan, D. W., Spilker, M. E., Benton, 

Microbial Metabolomics: From Methods to Translational Applications



112

H.  P., & Siuzdak, G. (2018). Metlin: A technology 
platform for identifying knowns and unknowns. 
Analytical Chemistry, 90, 3156–3164.

 31. Cui, Q., Lewis, I.  A., Hegeman, A.  D., Anderson, 
M. E., Li, J., Schulte, C. F., Westler, W. M., Eghbalnia, 
H.  R., Sussman, M.  R., & Markley, J.  L. (2008). 
Metabolite identification via the Madison metabolo-
mics consortium database. Nature Biotechnology, 26, 
162–164.

 32. Lv, H., Hung, C. S., Chaturvedi, K. S., Hooton, T. M., 
& Henderson, J. P. (2011). Development of an inte-
grated metabolomic profiling approach for infectious 
diseases research. The Analyst, 136, 4752.

 33. Lam, C., Law, C., Sze, K., & To, K.  K. (2015). 
Quantitative metabolomics of urine for rapid etiologi-
cal diagnosis of urinary tract infection: Evaluation of 
a microbial-mammalian co-metabolite as a diagnostic 
biomarker. Clinica Chimica Acta, 438, 24–28.

 34. Lin, Z., Ye, W., Zu, X., Xie, H., Li, H., Li, Y., & 
Zhang, W. (2018). Integrative metabolic and micro-
bial profiling on patients with spleen-yang-deficiency 
syndrome. Science Reports-UK, 8, 6619.

 35. Quinn, R. A., Phelan, V. V., Whiteson, K. L., Garg, N., 
Bailey, B. A., Lim, Y. W., Conrad, D. J., Dorrestein, 
P.  C., & Rohwer, F.  L. (2016). Microbial, host and 
xenobiotic diversity in the cystic fibrosis sputum 
metabolome. The ISME Journal, 10, 1483–1498.

 36. Preter, V. D., & Verbeke, K. (2013). Metabolomics as 
a diagnostic tool in gastroenterology. World Journal 
of Gastrointestinal Pharmacology and Therapeutics, 
4, 97.

 37. Walton, C., Fowler, D.  P., Turner, C., Jia, W., 
Whitehead, R. N., Griffiths, L., Dawson, C., Waring, 
R.  H., Ramsden, D.  B., Cole, J.  A., Cauchi, M., 
Bessant, C., & Hunter, J.  O. (2013). Analysis of 
volatile organic compounds of bacterial origin in 
chronic gastrointestinal diseases. Inflammatory Bowel 
Diseases, 19, 2069–2078.

 38. Stephens, N. S., Siffledeen, J., Su, X., Murdoch, T. B., 
Fedorak, R.  N., & Slupsky, C.  M. (2013). Urinary 
NMR metabolomic profiles discriminate inflamma-
tory bowel disease from healthy. Journal of Crohn’s 
and Colitis, 7, e42–e48.

 39. Ahmed, I., Greenwood, R., Costello, B. L., Ratcliffe, 
N. M., & Probert, C. S. (2013). An investigation of 
fecal volatile organic metabolites in irritable bowel 
syndrome. PLoS One, 8, e58204.

 40. Overgaard, A. J., Weir, J. M., De Souza, D. P., Tull, 
D., Haase, C., Meikle, P.  J., & Pociot, F. (2016). 
Lipidomic and metabolomic characterization of a 
genetically modified mouse model of the early stages 
of human type 1 diabetes pathogenesis. Metabolomics, 
12, 13.

 41. Morowitz, M. J., Poroyko, V., Caplan, M., Alverdy, J., 
& Liu, D. C. (2010). Redefining the role of intestinal 
microbes in the pathogenesis of necrotizing enteroco-
litis. Pediatrics, 125, 777–785.

 42. Su, Q., Guan, T., & Lv, H. (2016). Siderophore biosyn-
thesis coordinately modulated the virulence- associated 
interactive metabolome of uropathogenic Escherichia 
Coli and human urine. Science Reports-UK, 6, 24099.

 43. Deatherage, K. B., Li, J., Sanford, J. A., Kim, Y. M., 
Kronewitter, S.  R., Jones, M.  B., Peterson, C.  T., 
Peterson, S. N., Frank, B. C., Purvine, S. O., Brown, 
J. N., Metz, T. O., Smith, R. D., Heffron, F., & Adkins, 
J.  N. (2013). A multi-omic view of host-pathogen- 
commensal interplay in salmonella-mediated intesti-
nal infection. PLoS One, 8, e67155.

 44. Sun, H., Zhang, A., Yan, G., Piao, C., Li, W., Sun, 
C., Wu, X., Li, X., Chen, Y., & Wang, X. (2013). 
Metabolomic analysis of key regulatory metabolites 
in hepatitis C virus-infected tree shrews. Molecular & 
Cellular Proteomics, 12, 710–719.

 45. Al-Mubarak, R., Vander, H.  J., Broeckling, C.  D., 
Balagon, M., Brennan, P.  J., & Vissa, V.  D. (2011). 
Serum metabolomics reveals higher levels of polyun-
saturated fatty acids in lepromatous leprosy: Potential 
markers for susceptibility and pathogenesis. PLoS 
Neglected Tropical Diseases, 5, e1303.

 46. Davies, J., & Davies, D. (2010). Origins and evolution 
of antibiotic resistance. Microbiology and Molecular 
Biology Reviews, 74, 417–433.

 47. Lobritz, M. A., Belenky, P., Porter, C. B. M., Gutierrez, 
A., Yang, J. H., Schwarz, E. G., Dwyer, D. J., Khalil, 
A.  S., & Collins, J.  J. (2015). Antibiotic efficacy is 
linked to bacterial cellular respiration. Proceedings of 
the National Academy of Sciences, 112, 8173–8180.

 48. Stipetic, L. H., Dalby, M. J., Davies, R. L., Morton, 
F.  R., Ramage, G., & Burgess, K.  E. V. (2016). A 
novel metabolomic approach used for the comparison 
of Staphylococcus Aureus planktonic cells and biofilm 
samples. Metabolomics, 12, 1.

 49. Hess, D.  J., Henry-Stanley, M.  J., Lusczek, E.  R., 
Beilman, G. J., & Wells, C. L. (2013). Anoxia inhibits 
biofilm development and modulates antibiotic activ-
ity. The Journal of Surgical Research, 184, 488–494.

 50. Guiton, P.  S., Cusumano, C.  K., Kline, K.  A., 
Dodson, K. W., Han, Z., Janetka, J. W., Henderson, 
J.  P., Caparon, M.  G., & Hultgren, S.  J. (2012). 
Combinatorial small-molecule therapy prevents uro-
pathogenic Escherichia Coli catheter-associated uri-
nary tract infections in mice. Antimicrobial Agents 
Chemotherapy, 56, 4738–4745.

 51. Zampieri, M., Zimmermann, M., Claassen, M., & 
Sauer, U. (2017). Nontargeted metabolomics reveals 
the multilevel response to antibiotic perturbations. 
Cell Reports, 19, 1214–1228.

 52. Rees, C. A., Smolinska, A., & Hill, J. E. (2016). The 
volatile metabolome of Klebsiella Pneumoniae in 
human blood. Journal of Breath Research, 10, 27101.

 53. Li, H., Xia, X., Li, X., Naren, G., Fu, Q., Wang, 
Y., Wu, C., Ding, S., Zhang, S., Jiang, H., Li, J., & 
Shen, J. (2014). Untargeted metabolomic profil-
ing of amphenicol-resistant campylobacter jejuni by 
ultra-high-performance liquid chromatography-mass 
spectrometry. Journal of Proteome Research, 14, 
1060–1068.

 54. Aminov, R. (2017). History of antimicrobial drug dis-
covery: Major classes and health impact. Biochemical 
Pharmacology, 133, 4–19.

 55. Dodds, D. R. (2017). Antibiotic resistance: a current 
epilogue. Biochemical Pharmacology, 134, 139–146.

R. Guo et al.



113

 56. de la Fuente-Nunez, C., Torres, M. D., Mojica, F. J., 
& Lu, T.  K. (2017). Next-generation precision anti-
microbials: Towards personalized treatment of infec-
tious diseases. Current Opinion in Microbiology, 37, 
95–102.

 57. Vincent, I. M., & Barrett, M. P. (2015). Metabolomic- 
based strategies for anti-parasite drug discovery. 
Journal of Biomolecular Screening, 20, 44–55.

 58. Yoshikawa, T.  T. (2002). Antimicrobial resistance 
and aging: Beginning of the end of the antibiotic 
era? Journal of the American Geriatrics Society, 50, 
S226–S229.

 59. Sajjan, U.  S., Tran, L.  T., Sole, N., Rovaldi, C., 
Akiyama, A., Friden, P.  M., Forstner, J.  F., & 
Rothstein, D.  M. (2001). P-113d, an antimicrobial 
peptide active against Pseudomonas Aeruginosa, 
retains activity in the presence of sputum from 
cystic fibrosis patients. Antimicrobial Agents and 
Chemotherapy, 45, 3437–3444.

 60. Paton, A.  W., Morona, R., & Paton, J.  C. (2012). 
Bioengineered microbes in disease therapy. Trends in 
Molecular Medicine, 18, 417–425.

 61. Duan, F., & March, J. C. (2010). Engineered bacterial 
communication prevents vibrio cholerae virulence in 
an infant mouse model. Proceedings of the National 
Academy of Sciences, 107, 11260–11264.

 62. Hamblin, M. R., & Hasan, T. (2004). Photodynamic 
therapy: A new antimicrobial approach to infectious 
disease? Photochemical & Photobiological Sciences, 
3, 436–450.

 63. Friedberg, J.  S., Skema, C., Baum, E.  D., Burdick, 
J., Vinogradov, S.  A., Wilson, D.  F., Horan, A.  D., 
& Nachamkin, I. (2001). In vitro effects of photody-
namic therapy on Aspergillus Fumigatus. Journal of 
Antimicrobial Chemotherapy, 48, 105–107.

 64. Grellier, P., Santus, R., Mouray, E., Agmon, V., 
Maziere, J.  C., Rigomier, D., Dagan, A., Gatt, 
S., & Schrevel, J. (1997). Photosensitized inac-
tivation of plasmodium falciparum- and babesia 
divergens-infected erythrocytes in whole blood by 
lipophilic pheophorbide derivatives. Vox Sanguinis, 
72, 211–220.

 65. Cerveny, K.  E., DePaola, A., Duckworth, D.  H., & 
Gulig, P. A. (2002). Phage therapy of local and sys-
temic disease caused by vibrio vulnificus in iron- 
dextran- treated mice. Infection and Immunity, 70, 
6251–6262.

 66. Yan, L., Nie, W., Parker, T., Upton, Z., & Lu, H. 
(2013). MS-based metabolomics facilitates the dis-
covery of in  vivo functional small molecules with 
a diversity of biological contexts. Future Medicinal 
Chemistry, 5, 1953–1965.

Microbial Metabolomics: From Methods to Translational Applications


	Microbial Metabolomics: From Methods to Translational Applications
	1	 Introduction
	2	 Methods in Microbial Metabolomics
	2.1	 Key Analytical Tools for Microbial Metabolomics
	2.2	 Sample Preparation and Data Mining of Microbial Metabolomics
	2.3	 Biological Annotation of Differential Metabolic Pathways Characterized by Microbial Metabolomics

	3	 Translational Applications of Microbial Metabolomics
	3.1	 Diagnosis of Infectious Diseases Caused by Pathogenic Microbes
	3.2	 Pathogenesis Annotation of Microbial Infections
	3.3	 Development of Antibiotic Resistance Against Microbe-Associated Infections
	3.4	 Treatment of Infectious Diseases Caused by Pathogenic Microbes

	4	 Concluding Remarks and Future Perspective
	References


