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1	 �Hypoxic Response

Oxygen is directly involved in a wide range of 
physiological pathways essential for maintaining 
and promoting homeostasis such as injury 
response and blood pressure adaptation [2], as 
well as in pathological processes such as inflam-
mation [3] and tumor formation. A key to under-
standing such regulations could be accomplished 
through elucidating the molecular mechanisms 
by which cells respond and adapt to insufficiency 
in oxygen supply, a phenomenon known as 
hypoxic response. Although hypoxia is charac-
terized by suppression in both ATP and protein 

production as mechanisms to reserve energy, 
interestingly, there is an abundance of a wide 
spectrum of genes during the low oxygen status 
[4, 5]; these genes are referred to as hypoxia-
responsive genes. It was reported that 2% of the 
entire human genome is involved in hypoxia 
response via interaction with what is known as 
hypoxia-inducible factors (HIFs), both in a direct 
and an indirect fashion [6]. Activation of the 
hypoxia-responsive genes serves to protect cells 
from the harmful ramifications of oxygen defi-
ciency such as ischemia, particularly that many 
metabolic and energy-related pathways are con-
trolled by these genes [7, 8]. In addition, hypoxia-
responsive genes were found to be heavily 
involved in the embryonic development. For 
instance, the deletion of HIF-1α in a mouse 
embryo leads to death at day 10 [9, 10]. 
Altogether, hypoxic response is responsible for 
the activation of a global network of genes that 
through diverse mechanisms aim to maintain tis-
sue integrity and promote cell survival [6, 11, 
12]. Once activated, HIF transcription factors 
binds to specific DNA sequences unique to their 
target genes. These DNA regions are called 
hypoxia-response elements (HREs) [13–16]. 
Many factors could determine the potential bind-
ing between HIFs and HRE, including HIF-1 
protein concentration, oxygen tension, availabil-
ity of cofactors, and posttranslational protein 
modifications [17, 18].
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2	 �Hypoxia-Inducible Factor

Hypoxia-inducible factors (HIFs) are members 
of a family of transcription factors that are 
involved in the adaptive responses to hypoxia. 
Structurally, all HIFs are composed of an alpha 
and a beta subunit with both subunits belong to 
the family of basic-helix-loop-helix PAS (Per-
Ahr/ ARNT-Sim) family of transcription factors. 
The three HIF members are named HIF-1, HIF-2, 
and HIF-3. Both HIF-1 and HIF-2 are heavily 
involved in the response to hypoxia through their 
transcriptional activities, whereas the role of 
HIF-3  in this context remains ill-defined [19]. 
This family is characterized by its conserved 
domains for both DNA binding and target speci-
ficity [20]. Many characteristics such as heterodi-
merization, hypoxia-mediated stabilization, and 
transcriptional activity are shared among all three 
isoforms [21–24].

HIF-1 transcription factor is a heterodimer 
consisting of two subunits: an oxygen-labile 
alpha subunit (HIF-1α) and a stable, 
constitutively-expressed, oxygen-independent 
beta subunit (HIF-1β). In hypoxia, HIF-1α is the 
primary responder, and so, its stability is of 
greater impact when compared to ARNT [25–
29]. Nevertheless, ARNT was shown to be 
required for the HIF1 overall activity such as 
binding to other bHLH proteins [30–33].

Structurally, HIF-1α contains two transactiva-
tional domains (TADs), the N-terminal (N-TAD) 
and the C-terminal (C-TAD), that drive the func-
tional interaction with RNA polymerase. TADs 
also are the sites where the interaction with coact-
ivators is established, a process that has an indis-
pensable role in HIF-1α transcriptional activity. 
Furthermore, TADs are the domains where post-
translational modifications take place [17, 25, 34, 
35]. Interestingly, upon hypoxia-mediated HIF1 
activation, only its protein levels increase, while 
mRNA expression remains unchanged. This 
observation highlights the direct proportional 
relation between oxygen concentration and pro-
tein translation and stability [25, 36]. Lastly, the 
oxygen-dependent degradation domain (ODD 
domain) serves as an oxygen sensor site where 
oxygen-dependent interactions take place [37].

HIF-2 proteins have had many names, such as 
endothelial PAS protein 1 (EPAS1), HIF-related 
factor (HRF), HIF-1α-like factor (HLF), and 
member of PAS family 2 (MOP2) [21–24]. On 
the level of the protein’s primary structure, 
HIF-2α is very similar to HIF-1α with almost half 
the amino acids being identical between the two. 
In particular, the two proteins are sharing 70% 
and 83% homology in their PAS and bHLH 
domains, respectively. Moreover, both isoforms 
are subjected to the same regulatory mechanism 
owing to the presence of two critical proline resi-
dues in their ODD domains [38–40]. Moreover, 
both HIF-1α and HIF-2α contain N-TAD and 
C-TAD, while HIF-1β contains only C-TAD 
(Fig. 1).

HIF-2 expression was thought initially to be 
exclusive to vascular endothelial cells, specifi-
cally in embryonic tissues [35, 42, 43]. Later, 
HIF-2 protein expression was confirmed in sev-
eral adult hypoxic tissues [42]. In cancer tissues, 
HIF-2 expression was also reported to be upregu-
lated, suggesting a potential role in cancer angio-
genesis [44] especially with the protein’s 
preference for vascular and stromal tissues [43, 
45]. As such, higher levels of HIF-1 are observed 
in tumor epithelial cells when compared with 
HIF-2, whereas the opposite is true in macro-
phages and endothelial cells [46]. In cancer, 
HIF-2 expression was shown to be directly pro-
portional to the pathological staging of a number 
of solid cancers such as non-Hodgkin lymphoma 
[45, 47] and bladder cancer [43]. One explana-
tion for such correlation is that the presence of 
HIF-2-positive macrophage populations in can-
cer tissues is beneficial to the tumor microenvi-
ronment (TME), therefore inversely affecting 
patient’s survival. Another explanation is related 
to the role played by HIF-2 in promoting cancer 
angiogenesis and vascularization [45], since 
VEGF, the master angiogenic protein, co-reside 
in stromal tissues as well [48]. Many studies have 
confirmed the correlation between the HIF-2 and 
VEGF proteins [43, 49–52].

Noteworthy, many studies reported a contra-
dicting role of HIF-2α in cancer. For example, 
loss of HIF-2α in KRAS lung tumor increased 
tumor aggressive behavior [53], whereas overex-
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pression and stabilization of HIF-2α protein in an 
identical tumor model promoted tumor angiogen-
esis and invasion by increasing the expression of 
VEGF and SNAIL [54], respectively. The obser-
vation that opposite HIF-2α expression profiles 
mediated tumor growth in the same tumor con-
text, albeit by different mechanisms, suggests 
that effective targeting of HIF-2α subunit in can-
cer treatment may be complicated.

The third isoform is referred to as HIF-3 [55], 
and although it shares a significant structural simi-
larity with the other two isoforms, it is reported 
that its main function is to inhibit HIF pathway 
[56]. On the other hand, other studies showed that 
HIF-3 has a dual action of both stimulating and 
suppressing other HIF members. Therefore, the 
role of HIF-3 in hypoxic and cancer tissues in par-
ticular is yet to be elucidated [57–60].

HIF β protein was first discovered in the neu-
ral tissues where involvement with neural devel-
opment was assumed [61]. It is also known as the 

aryl hydrocarbon receptor nuclear translocator 
(ARNT) [16, 62, 63]. There are two forms of 
ARNT termed ARNT1 and ARNT2 [64, 65] with 
both forms are capable of forming a heterodimer 
with the HIF α isoforms, an interaction crucial 
for HRE binding and subsequent downstream 
effector gene activation [65]. Currently, HIF-1α, 
HIF-2α, and ARNT1 are viewed as the key mol-
ecules involved in HIF pathway in response to 
hypoxia, especially in tumor tissues, while the 
function of both HIF-3α and ARNT2 is still under 
investigation. In this review, we will focus on the 
functional role of HIF-1α in driving hypoxia 
response in human cancer.

2.1	 �Discovery of HIF-1

HIF-1 was initially viewed as an essential and 
exclusive key element in the human erythropoie-
tin (EPO) gene in response to oxygen insuffi-

Fig. 1  Schematic of the structure of three HIFα and two 
HIFβ isoforms. NLS, nuclear localization signal; bHLH, 
basic helix-loop-helix domain; PAS, per-arnt-sim domain 
subdivided into PAS A and PAS B; ODD, oxygen-
dependent degradation domain; TAD, transactivation 

domain. HIF-1α and HIF-2α have two distinct TADs, in 
the C- (C-TAD) and N- (N-TAD) terminal domains. The 
PAS and bHLH domains are dedicated to dimerization 
and recognition of target DNA sequences. (Reprinted with 
permission from [41])
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ciency in renal tissues [66]. At that time, the 
concept of direct oxygen sensing, which cells can 
independently and directly sense and respond to 
changes in oxygen level, was still developing. 
Subsequently, the novel discovery that the func-
tion of HIF-1 is not EPO gene-restricted and that 
it regulates other genes is considered a milestone 
in the field of direct oxygen sensing. HIF-1 was 
later purified [14], and shortly, the protein mole-
cule was further characterized [62].

Afterward, a wide spectrum of HIF-1 target 
genes and microRNAs (miRNAs) that were 
involved in hypoxic response were identified on 
both genetic and protein levels [67]. Both HIF-1 
target gene’s activation and suppression were 
characterized as being tissue-specific [68]. 
Moreover, HIF-1-mediated activation of gene 
transcription may be in both direct and indirect 
fashion [6]. For instance, by activating miRNAs 
[67] and gene-suppressors such as DEC1/Stra13 
[69], HIF-1 is indirectly silencing certain down-
stream effector genes. Key biological pathways 
such as proliferation, energy metabolism, inva-
sion, and metastasis were found to be driven by 
HIF-1 downstream effector genes [70, 71] 
(Fig. 2), suggesting the important role of HIF-1-
mediated pathways in cancer development and 
progression.

2.2	 �Regulation of HIF-1α

It was reported that many oncogenes activate 
HIF-1α pathway mainly via phosphorylation cas-
cades through upregulating the transcription and 
translation of HIF-1α mRNA and protein, respec-
tively, and independently of oxygen levels [72]. 
Similarly, growth factors and cytokines such as 
epidermal and fibroblast growth factors and 
insulin-like growth factor could activate HIF-1α 
through the same phosphorylation mechanism 
[73–76]. This phosphorylation cascade could 
promote HIF-1α expression via several path-
ways. One example is the PI3K/Akt/mTOR-
mediated HIF-1α pathway activation as seen in 
many solid tumors such as in colon [77], prostate 
[78], and breast cancer [76]. Another mechanism 
is by enhancing the p300-HIF-1α-C-TAD activa-

tion complex [79] and favoring HIF-1α nuclear 
translocation as seen via MAPK-mediated phos-
phorylation [80]. MAPK-mediated phosphoryla-
tion also promotes HIF-1α transcriptional activity 
by blocking its nuclear export in an CRM1-
dependent fashion [80]. HIF-1α pathway can also 
be activated by growth factors via ERK-
dependent signaling [17]. In addition, vasoactive 
cytokines may promote HIF-1α transcriptional 
activity through diacylglycerol-sensitive protein 
kinase C [81]. Altogether, upregulation of HIF-1α 
exerted by growth factors and local hormones can 
overcome its oxygen-dependent degradation [76, 
77].

Other kinases such as casein kinase 1 (CK1) 
were also reported to be involved in HIF-1α 
phosphorylation [82]. Moreover, it was reported 
that the phosphorylation status of HIF-1α is 
linked to the protein’s ability to repair DNA dam-
age and reverse chromosomal instability, two 
characteristics that are extremely important in 
driving tumor progression and aggressiveness. 
For instance, dephosphorylation of HIF1α 
directly leads to repression of NBS1, a DNA mis-
match repair gene [83].

In addition to the kinase signaling pathways, 
loss of function of the gene suppressor von 
Hippel-Lindau (VHL) results in activation of 
HIF-1α protein due to the associated lack of 
protein-degradation suppression [84]. A dysregu-
lation of key carbohydrate metabolic intermedi-
ates was also shown to contribute to HIF-1α 
regulation independently to oxygen levels. For 
instance, α-ketoglutarate (α-KG) functions as a 
cofactor for PDH and FIH-1 (factor inhibiting 
HIF-1) hydroxylates [85] and is therefore directly 
involved in HIF-1α regulation.

Posttranslational modifications other than 
phosphorylation are also critical for HIF-1α pro-
tein activity. For instance, hydroxylation of 
HIF-1α protein by prolyl hydroxylase is viewed 
as the main regulatory mechanism that guards 
against HIF-1α protein activation in normoxic 
conditions. HIF hydroxylases exist in two forms: 
HIF-prolyl hydroxylase, also known as prolyl 
hydroxylase domain (PHD) proteins, and HIF-
asparaginyl hydroxylase, also known as FIH-1 
(factor inhibiting HIF-1) [86].
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There are three closely-related isoforms of 
the PHD protein known as PHD1, PHD2, and 
PHD3, where PHD2 is considered the most crit-
ical under normoxic conditions [87]. PHD 
enzymes function by hydroxylation of two pro-
lyl segments of HIF-1α protein, where oxygen 
concentration is an imperative determinant for 
the reaction initiation [34, 88–90]. This interac-
tion takes place at the ODD domain where the 
two propyl residues reside. Once hydroxylated, 
HIF-1α develops a strong binding affinity for a 
part of an E3 ubiquitin ligase complex VHL pro-
tein leading to HIF-1α protein degradation by a 
proteasome. The reversal of this oxygen-depen-
dent degradation process results in an observed 
increase in HIF-1α protein levels associated 
with hypoxia.

A second hydroxylation event targets the 
asparaginyl residue at the C-TAD of HIF-1α pro-
tein by FIH-1. FIH-1 reaction depends exclu-
sively on oxygen availability in the ambient 
environment [86]. This reaction changes HIF-1α 
protein’s physical properties, such as its water 
affinity, hindering the interaction between the 
hydroxylated C-TAD and its coactivators p300/
CREB binding protein (CBP) [91, 92]. This reac-
tion will result in C-TAD domain blockage and 
ultimately HIF-1α transactivation activity inhibi-
tion, but not stability, in an oxygen-dependent 
reversible fashion (Fig. 3).

Redox sensors are equally important to oxy-
gen sensors in the regulation of HIF-1α-mediated 
hypoxic response. An example is the SIRT1-
mediated acetylation process, which is another 
critical posttranslational modification of HIF-1α. 
SIRT1 deacetylates HIF-1α by targeting the 
lysine amino acid leading to the blocking of 
p300-recruitment and eventually HIF-1α inacti-
vation [94].

2.3	 �HIF-1α Stability

Although oxygen tension is considered the main 
factor governing HIF-1α protein stability during 
hypoxia through the hydroxylation events dis-
cussed earlier, mitochondria can also act as a sta-
bilizer of HIF-1α proteins via increased 
production of reactive oxygen species (ROS) 
[95–97]. ROS might play a role in protein stabili-
zation mainly through the inactivation of PHD 
leading to HIF-1α accumulation [98]. Lastly, 
reports on nitric oxide (NO) effect on HIF are 
contradictory, with some advocating for HIF-1α 
stabilization [99–102], whereas others demon-
strating an opposite effect on HIF-1α activity 
[103–105]. Once the protein is stabilized, nuclear 
translocated, and dimerized with ARNT, hypoxia-
responsive genes are activated through HIF-1α 
binding to a characteristic consensus sequence 
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Fig. 2  Representative target genes of HIF-1α and their functions
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5′-(A/G) CGTG-3 termed HRE [106] located in 
the upstream region of hypoxia-inducible genes 
[15, 107, 108].

3	 �HIF-1α and Metabolic 
Reprogramming

A shift from glucose metabolism coupled with 
mitochondrial oxidative to anabolic respiration, 
known as the Warburg effect, is a hallmark of 
hypoxia. This metabolic shift takes place 
through the upregulation of oxygen-indepen-
dent metabolic pathways, such as glycolysis and 
downregulation of the oxygen-dependent path-
ways such as mitochondrial respiration [109]. 
For instance, overexpression of key glycolytic 
enzymes such as the rate-limiting enzyme phos-
phofructokinase [110] and the glycolytic flux 
regulatory enzymes, 6- phosphofructo-2-kinase 
and fructose-2,6-bisphosphate, is HIF-1α-
mediated in hypoxia [37–40]. Other enzymes 
such as glucose transporter protein1 (GLUT1) 

and GLUT3 that are involved in glucose traf-
ficking processes are also the targets of HIF-1α 
in hypoxia [111, 112]. Noteworthy, there is a 
positive correlation among cancer pathological 
staging, GLUT3 and HIF-1α expression and 
activity levels, a measure that might serve as a 
prognostic tool [112]. HIF-1α activation also 
upregulates key enzymes that inhibit acetyl-
coenzyme A (acetyl-CoA) production from glu-
cose, therefore inhibiting oxidative 
phosphorylation. There are two isoforms of the 
enzyme pyruvate dehydrogenase kinase (PDK) 
known as PDK1 and PDK3 that directly inhibit 
acetyl-CoA production and entering into the 
TCA cycle leading to the shutdown of the oxi-
dative phosphorylation associated with hypoxia. 
Another approach for cells to shift away from 
oxidative metabolism is through the activation 
of mitochondrial autophagy by protein BCL2/
adenovirus E1B 19-kDa interacting protein 3 
(BNIP3) [113]. BNIP3 functions by activating 
lactose dehydrogenase A (LDHA) enzyme that 
converts pyruvate to lactate, therefore promot-
ing the anaerobic respiration.
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Fig. 3  HIF-1 signaling cascade. Synthesis and constitu-
tive expression of HIF-1α by a cascade involving a series 
of growth factors and signaling events are indicated. The 
major differences among the hypoxic and normoxic sig-
naling and sequence of events are also depicted clearly in 

the flowchart. Normoxia leads to HIF-1α protein degrada-
tion whereas hypoxia leads to HIF-1α-regulated target 
gene expression. The downstream sequence of events 
leading to tumorigenesis is also portrayed (Modified with 
permission from [93])
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Similarly, PDK1 and PDK3 were also found 
to play a role in mitochondrial autophagy [114–
116]. In addition, miRNA targets of HIF-1α were 
found to directly favor the metabolic shift through 
inhibiting genes that are critical for the mito-
chondria oxidation machinery and independently 
of the metabolic enzymes [117]. For instance, 
miR-210 activation [118] inhibits the iron-sulfur 
cluster assembly enzyme ISCU, which is essen-
tial for the mitochondrial electron transport com-
plex I activity [119, 120]. Noteworthy, due to the 
scarcity of acetyl-CoA in response to hypoxia, 
tissues with a high proliferation rate such as can-
cer will utilize glutamine, instead of glucose, to 
generate α-ketoglutarate essential for fatty acid 
synthesis [121, 122]. Glutamine utilization as the 
main source of energy for such high-energy-
demanding cells acts as another repelling force 
for the pyruvate away from the TCA cycle [121, 
122]. HIF-1α-mediated fatty acid metabolism 
dysregulation in cancer hypoxic tissues was asso-
ciated with poor survival in many solid tumors 
such as renal cancer [123]. The high-glycolytic-
flux signature in hypoxia serves a unique benefit 
for cancer tissues, other than solely energy bene-
fit, and that is providing precursors of the pyrimi-
dine/purine pathway needed for DNA synthesis 
for cell proliferation [124]. For example, it was 
reported that glucose utilization is directly pro-
portional to increased cancer tissue mass and 
invasion property [125], suggesting a critical role 
played by glucose metabolism in tumorigenesis.

HIF-1α significantly contributes to the acidic 
environment of cancer tissues through the activa-
tion of plasma membrane proteins [126] such as 
monocarboxylate transporter 4 (MCT4), encoded 
by SLC16A3 gene, through controlling lactic 
acid transport [127]. Another membranous pro-
tein named sodium-hydrogen exchanger 1 
(NHE1) that is encoded by the SLC9A gene reg-
ulates the pH of the environment through protons 
pumping [128], and the same mechanism is 
adopted by carbonic anhydrase 9 (CA9) [129]. In 
fact, the intracellular alkalinization and extracel-
lular acidification enhance cellular proliferation 
and invasion [130].

An interesting aspect of HIF-1α regulation 
lies in its activation loop with pyruvate kinase 

M2 (PKM2) enzyme. PKM2 is a glycolytic 
enzyme that may play an important role in cancer 
progression [131] by promoting glycolysis as 
well as acting as a coactivator for HIF-1α [132]. 
HIF-1α also activates the transcription of PKM2 
leading to the activation of key oncogenes such 
as STAT3 and its downstream genes, which fur-
ther enhances the progression of cancer [133].

4	 �Hypoxia and Cancer

Tumor hypoxia is an example of a chronic, patho-
physiological condition, in which response is 
insufficient to completely reverse the hypoxic 
insult [134]. Hypoxia in cancer could be defined 
on the basis of oxygen and energy levels present 
in tumors. For instance, a concomitant decrease 
in both oxygen partial pressure and ATP level 
occurs in a fibrosarcoma model [135]. A key 
player in cancer hypoxia dynamics is the hypoxia-
induced vascular endothelial growth factor 
(VEGF). Due to the constant hypoxic insult that 
cancer tissues are exposed to, VEGF-mediated 
new blood vessel formation to overcome the oxy-
gen deficiency is slow and disordered. This con-
tinuous cycle of defective blood vessel 
architecture and the activation of hypoxia-
mediated pathways is a hallmark for tumor 
microenvironment (TME) [136] as well as its 
aggressive phenotype [137]. Many solid tumors 
such as breast and lung, among others, respond to 
the decrease in oxygen tension by upregulation of 
HIF-1α [138–140]. Correlation between hypoxia 
and tumor malignant transformation had also 
been observed [141–143].

5	 �HIF-1α and Immune Cells 
in Cancer

Many solid tumors are characterized by hypoxia 
[144] and tumor-associated macrophage (TAM) 
infiltration [145]. For example, in breast cancer, 
HIF-1α knockout in TAM caused overstimulation 
of nitrous oxide (NO) [145, 146], a phenomenon 
that can put T lymphocytes into anergy status. 
Hypoxia can also increase the expression of the 
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immune checkpoint programmed death-ligand 1 
(PD-L1) on macrophages, dendritic cells, and 
tumor cells in an HIF-1α-dependent fashion lead-
ing to the suppression of effector T-lymphocyte 
recruitment and activation [147]. Another mecha-
nism that HIF-1α can dampen the antitumor 
effect of immunity through is the upregulation of 
regulatory T lymphocytes [148].

6	 �Role of HIF-1α in Key Cancer 
Pathways

6.1	 �Cell Adhesion

Adhesion molecules play a significant role in 
cancer initiation and progression through pro-
moting its interaction with both intracellular and 
extracellular environment [149]. HIF-1α is 
directly involved in the regulation of key adhe-
sion molecules such as β1 integrins and α5β3 and 
α5β5 expression [150–152]. E-cadherin is also 
regulated by HIF-1α via its direct regulation of 
TCF3, ZFHX1A, and ZFHX1B [153] and up-
regulation of Snail [154] which inhibits 
E-cadherin gene expression.

6.2	 �Cell Proliferation

One of the defining characteristics of cancer cells 
is their uncontrollable proliferation coupled with 
impairment of cell death pathways and signals 
awing to overexpression of survival and growth 
factors; such changes enable cancer cells to adapt 
to nutritional deprivation or to escape their unfa-
vorable environment. For instance, hypoxia stim-
ulation of VEGF transcription, via the HIF 
pathway, was shown to be strongly associated 
with cellular proliferation and metastasis in 
tumors [155]. Additionally, the expression of 
hypoxia-mediated telomerase reverse transcrip-
tase (TERT) promotes tumor cells’ immortal 
phenotype [156]. Simultaneously, hypoxia-
induced downregulation of membranous integ-
rins was reported to facilitate tumor cell 
detachment and new tumor growth [157]. A 
recent study of ARK5 expression in colon cancer 

showed that it was upregulated in a HIF-1α-
dependent manner and that ARK5 serves an 
important player in cancer proliferation and 
migration under hypoxic stress [158]; similar 
effects were also reported in other solid cancers 
[159–161].

6.3	 �Metastasis and Invasion

Hypoxia can activate epithelial-to-mesenchymal 
transition (EMT) via HIF-1α in various types of 
solid tumors [162–164]. HIF-1α can directly or 
indirectly regulate key EMT regulators, includ-
ing TWIST, Snail, carbonic anhydrase IX 
(CAIX), and GLUT-1 [165–168]. These mole-
cules then trans-activate EMT-related genes, 
including vimentin, E-cadherin and N-cadherin, 
to facilitate the progression of the EMT [169, 
170]. Matrix metalloproteinase MMP2 and 
MMP9 have also been reported to be regulated 
by HIF-1α. The impact of hypoxia-induced 
MMP-9 expression is extremely central for cel-
lular migration [171, 172]. Besides, two major 
components of the fibrinolysis system and thus 
metastasis, named urokinase-type plasminogen 
activator receptor (uPAR) and plasminogen acti-
vator inhibitor-1 (PAI-1), have also been shown 
to be targets of HIF-1α [173, 174]. TWIST, 
another essential transcription factor that is 
involved in hypoxia-mediated EMT and tumor 
metastasis, is directly regulated by HIF-1α [165]. 
Other significant HIF-1α target genes directly 
involved in cancer metastasis are CXC chemo-
kine receptor-4 (CXCR4), c-Met and CC chemo-
kine receptor 7 (CCR7) [175–177], lysyl oxidase 
(LOX) [6, 178], fibronectin, cathepsin D, and 
urokinase plasminogen activator [11]. HIF-1α 
also promotes cell invasion through the upregu-
lation of key invasion-promoting genes such as 
the autocrine motility factor [179], vimentin, and 
the receptor tyrosine kinase c-Met [175]. 
Meanwhile, the stromal-derived factor-1, kera-
tins 14, 18, and 19, the cytokine receptor 
CXCR4P [180, 181], caveolin-1 (CAV1) [182], 
uPAR, MMP2, cathepsin D, and fibronectin 1, 
among others, are transcriptionally upregulated 
by HIF-1α [183].
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6.4	 �Angiogenesis

Angiogenesis plays an essential role in tumori-
genesis. HIF-1α can stimulate an angiogenic 
response by activating a number of growth factor-
encoding genes, including VEGF, angiopoietin1 
(ANGPT1) and ANGPT2, placental growth fac-
tor (PGF), calcitonin receptor-like receptor 
(CRLR) [184], and platelet-derived growth factor 
B (PDGFB) [68, 185]. HIF-1α deletion was 
reported to be associated with abnormal vascula-
ture [186]. On the other hand, a recent report on 
pancreatic tumor revealed an alternative mecha-
nism by which cancer cells could maintain angio-
genesis in an HIF1α-independent manner [187]. 
Noteworthy, SUMO-specific protease 1 (SENP1), 
a HIF-1α target enzyme, is of great importance 
for HIF-1α stabilization in hypoxia. This positive 
feedback loop is significant for VEGF activation 
and angiogenesis [188, 189].

6.5	 �Apoptosis

Although programmed cell death can be directly 
triggered by deficiency in oxygen levels in both 
normal and cancer tissues [190], with accompa-
nying DNA damage [191], the direct effect of 
HIF pathway on apoptosis is reported to range 
from apposing cell death [192] to promoting 
apoptosis [193]. One explanation for this varia-
tion in HIF pathway response might be related to 
the degree for hypoxia and the variation in oxy-
gen tension [194]. A second factor for such fluc-
tuation is the presence of several apoptosis-related 
proteins, such as cyclin D1, p21, and p27 that are 
targeted by HIF-1α upon activation, and that 
apoptosis response depends on the expression 
profiles of these apoptotic molecules [195]. 
Lastly, the initial energy level of hypoxic tissues 
is inevitably a key factor in the apoptosis path-
way [196].

Other factors such as the mitochondrial mem-
brane integrity could also trigger an apoptotic 
response through activating key apoptotic media-
tors, such as caspase 9, independently of HIF-1α 
pathway [197]. Wild-type tumor-suppressor gene 
p53 also plays a critical role in hypoxia-induced 

apoptosis through caspase 9 and Apaf-1 down-
stream effector [198, 199]. Other key apoptotic 
molecules such as BNIP3, a member of the Bcl-2 
family [200], and Noxa which is a p53-downstream 
protein that could sense ROS levels [201] have 
also been identified as targets of HIF-1α.

7	 �Clinical Significance 
and HIF-1α Inhibitors 
for Cancer Therapy

HIF-1α expression levels were positively corre-
lated with tumor progression in a variety of solid 
tumors such as glioma and breast cancer, where 
HIF-1α correlates with tumor pathological grade 
and invasion in the former [202], and overall poor 
survival rate in the later [203, 204]. HIF-1α is 
used as a prognostic marker for different treat-
ment modalities in a variety of solid tumors 
[205–207].

The combination of HIF-1α expression with 
oncogenes or tumor suppressor genes is viewed 
as another powerful prognostic factor. For 
instance, in ovarian cancer, the coexistence of 
mutant p53 expression and HIF-1 overexpression 
was associated with a poor survival rate [208] 
and resistance to chemotherapy mainly due to 
p53-mediated activation of RAS signaling that 
leads to apoptosis impairment [209]. Recently, a 
correlation between HIF-1α and the tumor sup-
pressor NEDD4L levels in gastric cancer has 
been proposed as a prognostic marker [210]. In 
addition, HIF-1α upregulation combined with the 
antiapoptotic protein Bcl-2 downregulation in 
esophageal cancer is associated with treatment 
failure [211].

HIF-1α inhibition provides an innovative 
approach for modifying tumor niche with 
promising clinical results. Unfortunately, and 
awing to the complex network of genes that are 
regulated by HIF-1α as well as the multilayered 
HIF-1α regulation mechanisms, it is challeng-
ing to develop a specific HIF-1α inhibitor with 
a high specificity [212]. Another factor that 
might tremendously affect the drug discovery 
process is accuracy and sensitivity of the 
screening methods. Currently, there are several 
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anti-HIF-1α molecules that are classified 
according to their target site into direct and 
indirect inhibitors. Direct inhibitors refer to 
molecules that target the transcriptional activity 
of HIF-1α, whereas indirect inhibitors are mol-
ecules that target HIF-1α transcription and 
translation on the mRNA and protein levels, 
respectively [213]. HIF-1α inhibitors are also 
classified according to the targeted stage of 
HIF-1α ranging from the mRNA transcription 
to protein degradation [214]. In conclusion, the 
continuous search for the specific HIF-1α 
inhibitor with fewer side effects and better 
patient tolerance and survival rate is still ongo-
ing. Noteworthy, combination therapy with 
other target molecules such as antiangiogenic 
drugs is showing promising results in animal 
model studies [215, 216]. A comprehensive 
understanding of the structure, molecular biol-
ogy, and regulatory machinery of HIF-1α 
domains will undoubtedly aid in the develop-
ment of specific HIF-1α inhibitors.

8	 �Conclusion

It has been nearly three decades since the novel 
discovery of HIF-1α as a master regulator of 
hypoxic response as well as its implication in 
cancer progression and survival in many solid 
tumors. Since then, HIF-1α was regarded as a 
significant and promising target in anticancer 
therapy. A great deal of research in this area as 
well as the development of HIF-1α inhibitors 
have clearly translated such impact. 
Unfortunately, none of these therapies were 
proven to be precisely and exclusively targeting 
cancer, leading to undesirable side effects. 
Indeed, the involvement of HIF-1α in many 
aspects of physiological pathways seems to be 
the main obstacle for perfectly targeting it. 
Therefore, future research may emphasize more 
on unfolding all the genes and proteins involved 
in the HIF-1α pathway, elucidating the molecular 
mechanisms that regulate other HIF members, 
and finally aim to discover and target a novel 
cancer-specific molecule from the HIF-1α down-
stream effectors expanding pool.
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