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Chapter 7
Ecological Niche Modeling and Other 
Tools for the Study of Avian Malaria 
Distribution in the Neotropics: A Short 
Literature Review

David A. Prieto-Torres, Octavio Rojas-Soto, and Andrés Lira-Noriega

Abstract  Identifying the mechanisms driving the distribution, diversity, and struc-
ture of parasite assemblages is critical to understand host–parasite evolution, com-
munity dynamics, and disease transmission risk. However, despite their global 
distribution, the broad-scale environmental factors that can affect avian haemospo-
ridian transmission remain only partially understood across avian communities in 
the Neotropics. With the recent technological advances in satellite imagery, com-
puter modeling, and molecular biology, we are now capable of studying infectious 
diseases in an integrated fashion over diverse spatial scales. From this perspective, 
ecological niche modeling (ENM) and species distribution modeling (SDM) repre-
sent useful tools to study vector-borne diseases, emphasizing the role of environ-
mental factors in constraining their geographic distributions. Herein, we present a 
review of studies that have implemented modeling approaches, particularly correla-
tive methods commonly used in ENM and SDM, to assess questions of either para-
sites, vectors, or host species in avian malaria. We identify that most commonly 
approached topics include the description of geographic distributions (biogeogra-
phy), population demography, and structure of the host communities (ecology), and 
in low proportion, other important topics include climate change effects and poten-
tial risk for invasions. We observed that most studies were performed from local-to-
regional scales and were concentrated mainly on vectors, followed by a combination 
of parasites and hosts. The correlative algorithm used was mainly Maxent; however, 
other statistical analyses included spatial regressions, smoothing procedures, and 
more conventional multivariate regressions developed chiefly on environmental 
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dimensions. To date, applications of these approaches to the understanding of the 
geography and ecology of vector-borne diseases are in early stages. Diverse 
challenges related to theoretical and empirical advances, as well as the need for 
more (organized) data, still remain poorly explored. We present an adaptation of the 
Biotic-Abiotic-Mobility (BAM) framework to describe new potential arrangements 
in the context of this complex epidemiological/epizootiological systems. We hope 
this review can be useful to provide the basic knowledge and guidance for modeling 
of ecological niches on avian haemosporidian systems.

Keywords  Climate variability · Ecological niche · Environmental factors · 
Geographic distribution patterns · Spatial analyses · Vector-borne diseases

7.1  �Introduction

In a rapidly changing world with many newly emerging and geographically expand-
ing pathogens and parasites, we must investigate factors implicated in the distribu-
tion of such organisms (Doussang et al. 2019). Infectious diseases are increasingly 
important, as they contribute to declining populations and mortality events of wild-
life species (Jones et al. 2008; Ganser et al. 2016). Changes in climatic patterns will 
likely further impact in the distribution of disease vectors, increasing their fre-
quency, expanding their geographic distribution and, consequently, affecting the 
ecological integrity of ecosystems (Atkinson et al. 2014; Fortini et al. 2015, 2017; 
see Chaps. 6, 10, 11, 13 and 14) or particular species (Fortini et  al. 2017). For 
example, several cases of climate projections estimate a range loss higher than 50% 
for most species in the absence of effective vector controls, or increased disease 
resistance (e.g., Fortini et al. 2017). Likewise, previous studies have established a 
link between the deforestation patterns and the abundance of Anopheles darlingi, 
one of the most important malaria vectors in the Neotropics (e.g., Vittor et al. 2009, 
Herrera et al. 2012; see Chap. 6 for a review of vector ecology concerning avian 
haemosporidians of tropical regions). Indeed, there has been in recent years an 
increased interest in the development of accurate spatial predictions integrating 
environmental conditions conducive to pathogen proliferation (e.g., Daszak et al. 
2000; Woolhouse and Gowtage-Sequeria 2005; Sehgal et  al. 2011; Moens and 
Pérez-Tris 2016; see Chap. 14 for anthropogenic effects on vector-borne parasites). 
This information is also relevant to understand the evolution and ecology of para-
sites, as well as to determine hotspots of potential emerging infectious diseases 
(Daszak et al. 2000).

Despite an accelerated focus on describing host specificity for a multitude of 
parasites (e.g., Hellgren et al. 2009; Clark et al. 2018; Doña et al. 2018; Park et al. 
2018; see Chap. 11), there are few empirical studies accounting for the environmen-
tal dependency by considering the host–parasite contact areas or understanding the 
distribution patterns of vectors and parasites (Canard et al. 2014). Despite the vari-
ety of theoretical and methodological approaches that have been recently applied to 
the analysis of the distribution of diverse disease vectors (e.g., Escobar et al. 2016; 
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Alkishe et al. 2017; Altamiranda-Saavedra et al. 2017), little information is avail-
able regarding the broad-scale environmental factors that can affect (and predict) 
the distribution and transmission of many vector-borne diseases (Pérez-Tris and 
Bensch 2005; Sehgal et al. 2011; see also Chap. 9 for an application of macroecol-
ogy and networks to antagonistic interactions). This certainly seems to be the case 
for the haemosporidian parasites across avian communities in the Neotropics (Foley 
et al. 2010a; Galen and Witt 2014).

Ecological niche modeling (ENM) and species distribution modeling (SDM) are 
useful tools to predict the potential distribution of species (including parasites, vec-
tors, and hosts) based on the relation between environmental variables associated 
with the sites where the species have been observed. This approach produces suit-
ability maps that allow us to predict spatial predictions about the potential distribu-
tion of the target phenomenon or species (Peterson et al. 2011; Peterson 2014), as 
has been demonstrated in infectious diseases of birds (e.g., Ageep et  al. 2009; 
Doussang et al. 2019). This approach also allows the visualization of how natural 
landscapes and climatic variables are associated with parasite transmission (Fuller 
et al. 2012a, 2012b), particularly in largely unsampled regions. Predictive maps that 
explain the potential distribution of these diseases can be used as early warning 
surveillance systems and as guides for management decisions (Ganser et al. 2016). 
On the other hand, the recent technological advances in satellite imagery, computer 
capacities, and molecular biology for lineage identifications, allow the study of 
infectious diseases over different spatial scales, by modeling environmental factors 
associated with vectors, hosts, and parasites (Kitron 1998; Sehgal et al. 2011; Eisen 
and Eisen 2011; Atkinson et al. 2014; Altamiranda-Saavedra et al. 2017) (Box 7.1).

Box 7.1 The General Diagram About the Implementation of ENM 
Approach (Modified from Martínez-Meyer 2005)
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Both ENM and SDM are generated using two types of information (input 
data): (a) occurrence/absence records of species to be modeled and (b) 
descriptive variables that will define the species’ niche in “environmental” 
space (E-space), which correspond to those conditions where a species can 
potentially be distributed in “geographic” space (G-space). Standard ways to 
obtain occurrence data is by recording geographic coordinates during field-
work, bibliographic sources, and/or by retrieving information from digitized 
collections and open digital gazetteers like the Global Biodiversity Information 
Facility (GBIF). Likewise, the selection of environmental data to include as 
part of the models requires choosing an adequate number and that these vari-
ables are associated with the most important information for the species or 
natural entity analyzed; these, in turn, should correspond with the objectives 
of the study. There are mainly three types of variables that are commonly 
used: climatic and bioclimatic (i.e., variables derived from monthly tempera-
ture and rainfall values in order to generate more biologically meaningful 
variables), topographic-edaphic, and remote sensing-derived variables. Most 
often, models rely on environmental variables that are more stable in rela-
tively short periods of time and that are not directly modified or affected by 
the organism being modeled, which are called scenopoetic variables; instead, 
there are fine resolution and coupled variables to the demographic processes 
of the organisms being modeled which are known as bionomic variables. 
These represent two broad kinds of variables that can be used to classify the 
types of ecological niches being modeled (Peterson et al. 2011).

Once the information on the presences and variables has been defined, the 
most appropriate modeling technique should be selected. It is important to 
emphasize that there is no single best algorithm for all modeling purposes, 
and that choosing the right one may depend on the configuration of the analy-
sis and type of data (i.e., presence-only, presence-absence, or presence-back-
ground information;  Qiao et  al. 2015). Several types of models (including 
statistical approaches) and algorithms can be used to perform ENMs, such as: 
Generalized Linear Models (GLM), Generalized Additive Models (GAM), 
Random Forest (RF), Boosted regression trees (BRT), BIOCLIM, GARP, and 
Maxent, as well as one relatively new approach to obtain consensus models 
(i.e., ensemble prediction). The selected modeling technique or algorithm 
will establish a relationship between the presence or absence of information 
and the range of values of the set of variables where these points are located. 
This relationship is usually called the adjustment of the model or classifica-
tion rule, which allows us to define the environmental space where suitability 
conditions for species could be found.

The final step in the generation of ENM and SDM is the projection of the 
defined suitability conditions on geographical space to define the potential 
distribution areas on a map. This continuous output can be converted to a 
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binary prediction after imposing a threshold over the suitability values above 
and below which it is assumed that suitable conditions exist or not, respec-
tively. Models need to be evaluated statistically and geographically to test 
whether there is reliability. The process of model testing allows calculating 
indicators of model performance, such as the percentage of positives and neg-
atives (i.e., “real” absences and presences of species) that are correctly pre-
dicted by the models; such values are typically summarized in what is called 
the confusion matrix. Finally, a particular calibration of an ENM can be used 
to explore the relative magnitude of environmental variables (commonly 
known as model transferences) in time (e.g., future climate conditions) and 
space (e.g., different world regions). This procedure has been very useful for 
assessing the effects of climate change and invasive risk on species and 
ecosystems.

Glossary for Box 7.1
•	 Absence records: Datasets containing “records” of places where sampling 

has occurred but the species has not been documented. A locality where a 
species has been reported as absent, or assumed to be, despite sampling 
efforts (but note that the species may inhabit these sites, if sampling is 
present but inadequate).

•	 Algorithm: A specific sequence of instructions for solving a problem or 
developing a task. It usually refers to the software used to calibrate ENMs. 

•	 Bionomic variables: Variables of fine spatial and temporal resolutions that 
are typically  coupled with the demographic processes of the species or 
entity being modeled (e.g., species interactions).

•	 Confusion matrix: A matrix relating rows summarizing distinct combina-
tions of predicted presence (via a binary prediction) versus absence of a 
species (from occurrence records of the species, as well as absence, pseu-
doabsence, or background data), which are commonly used to calculate the 
omission error rate and commission error rate (including both true and 
apparent commission error).

•	 Distribution area: The geographical space that has been accessible to a 
species and where abiotic conditions and ecological interactions favor the 
individuals’ presence (with intrinsic growth rate greater than zero) at dif-
ferent scales.

•	 Ecological niche modeling (ENM): Estimation of the different niches 
(fundamental, existing, potential, and occupied), particularly those defined 
using scenopoetic conditions. In practice, it is carried out via estimation of 
abiotically suitable conditions from observations of the presence of a spe-
cies; such models can be used to estimate different distributional areas (the 
abiotically suitable area, potential distributional area, and occupied distri-
butional area) by stating assumptions about factors in B and M, the latter 
area being the goal of species distribution modeling (SDM).

7  Ecological Niche Modeling and Other Tools for the Study of Avian Malari…
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•	 Ensemble prediction: A consensus prediction of a niche or a distributional 
area made by combining results of different methods, alternative parame-
terizations of the same method, or multiple iterations of stochastic meth-
ods, to generate a composite value of suitability.

•	 Environmental data: Values for environmental variables (generally sceno-
poetic variables) used in ecological niche modeling. Typically, these vari-
ables must be a coincident raster grid for the study region employed in 
model calibration.

•	 Environmental space (E-space): A multi-dimensional space described by 
environmental variables and defined by “n” dimensional units or their 
transformations.

•	 GBIF—the Global Biodiversity Information Facility—is an international 
network and research infrastructure funded by the world’s governments 
and aimed at providing anyone, anywhere, open access to data about all 
types of life on Earth. This includes a database on geographic records for 
all types of organisms from different sources (including museums, her-
baria, and studies, among others).

•	 Geographic space (G-space): The space defined by latitude and longitude 
where environmental conditions and species are found.

•	 Model transferences: The application of a model (calibrated in one region) 
to another place in geography (G-space) and/or to another period (e.g., 
climate change conditions).

•	 Model: A simplified representation of some aspects of nature for the pur-
pose of research.

•	 Occurrence record: Records of species’ presence, especially voucher 
specimens in natural history museums and herbaria, but also including 
observational records from visual observations and auditory records (e.g., 
of birds, amphibians, bats).

•	 Scenopoetic variables (or conditions): Variables that are not consumed or 
affected by individuals of a species, which are typically limiting species 
distributions and metabolic requirements and are available at coarse reso-
lutions (e.g., temperature and precipitation).

•	 Species distribution modeling  (SDM): Application of niche theory to 
questions about real spatial distributions of species, typically in the present 
and obtained via estimation of the occupied distributional area from occur-
rence information for a species. It is supported by information of its rela-
tionship to environmental characteristics, along with their correlations 
with dispersal limitation and biotic interactions.

•	 Species niche: It is herein defined as the sum of all the environmental fac-
tors (including biotic and abiotic) of an “n” dimensional hyperspace acting 
on the organism distribution.

•	 Suitability: The degree to which the environment is appropriate for the 
species in question.
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In the particular case of vector-borne parasites, several authors have suggested 
that vectors and hosts may promote parasite diversification and permit the coexis-
tence of a larger range of parasite species (Krasnov et al. 2007; Poulin 2011; Clark 
et al. 2014; see Chaps. 11 and 12 for a thorough discussion on avian haemosporidian 
diversification). While much recent literature has focused on the spread of invasive 
vector species (such as Aedes aegypti, A. albopictus, and A. atropalpus), more stud-
ies are needed to understand vector–host–parasites distributions along climate gra-
dients (Murray et  al. 2015), as well as their relationship among different spatial 
scales. Although distributions of avian haemosporidian parasites can vary at macro 
and local scales (Wood et al. 2007; Cosgrove et al. 2008; Doussang et al. 2019), 
several uncertainties remain related to the role of the environment when vector and 
host distributions are considered at such scales. For example, analyzing how the 
environment influences the prevalence and diversity of haemosporidian parasites, 
including their interaction with hosts and vectors, will help to the understanding and 
prediction of their distributional and diversity patterns, including community assem-
blage and disease transmission risks (Pérez-Tris and Bensch 2005;  Sehgal et  al. 
2011; Eisen and Eisen 2011; Fuller et al. 2012a, 2012b; Atkinson et al. 2014; van 
Hoesel et al. 2019). This information is particularly essential when considering the 
effect of rapid reduction of native habitats and their conversion to agriculture, live-
stock, and mining uses (Atkinson et al. 2014; Altamiranda-Saavedra et al. 2017).

A growing body of ENM/SDM studies on human malaria vectors have improved 
the understanding of the ecology and biogeography of this pathogen system, includ-
ing the identification of suitable areas and environments (e.g., Foley et al. 2008, 
2010b; Lambin et  al. 2010; Sinka et  al. 2010; Fuller et  al. 2012a; Altamiranda-
Saavedra et al. 2017). For example, specific data and models might be well suited 
for understanding the assembly of vector–hosts communities in a particular region, 
while being limited for generalizing management decisions across taxonomic 
groups in several regions (Wood et al. 2007; Cosgrove et al. 2008; Doussang et al. 
2019). This means that appropriateness of a given dataset and modeling strategy 
needs to be analyzed based upon the type of question being addressed; therefore, 
best-practice standards and guidelines should be followed to support the evaluation, 
policy recommendations, and decisions (see, e.g., Araújo et al. 2019).

In Chaps. 5 and 6, the authors have reviewed current knowledge on the present 
taxonomic status, life cycle, and ecology of the dipteran vectors associated with 
avian haemosporidians. Herein, we present a review of studies focused on spatial 
and environmental questions assessed under correlative ecological approaches, 
including ENM and SDM and other statistical methodologies. Thus, we provide a 
general view on avian haemosporidian studies, based on the following questions: (i) 
How have different modeling approaches been implemented considering natural 
landscapes and climatic variables to understand parasite transmission? (ii) Which 
are the best-practice standards in ENM and SDM approaches? and (iii) What are 
current challenges and the future opportunities in modeling avian haemosporid-
ians? From the reviewed literature, we observed a poor knowledge related to theo-
retical and empirical advances, as well as the need for more (organized) data. 
Additionally, we present an adjustment of the Biotic-Abiotic-Mobility (BAM) 
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framework (see Soberón and Peterson 2005) to describe an alternative potential 
arrangement within this framework, based on this complex epidemiological system.

7.2  �Historical Implementation of ENM and SDM 
Approaches in Avian Malaria Studies

To analyze the current state of knowledge of ENM for these vector-borne patho-
gens, we performed a review of research articles on avian malaria. Literature search 
criteria included the keywords “avian malaria AND biogeography”, “avian malaria 
AND ecological niche model*”, “avian malaria AND species distribution model*”, 
“avian malaria AND Neotropics”, “modeling/modelling avian haemosporidians” 
including some of the cited references within articles found based on these key-
words. We found 59 articles published between 2006 and early 2019. Next, we 
compiled all the information from these articles in a table including the following 
information: (a) year; (b) entity of study (i.e., parasites, hosts, vectors, and combina-
tions of them); (c) geographic scale (i.e., local, national, regional, global), region 
and/or country; (d) theme addressed: biogeography and distribution, evolution, cli-
mate change, invasion risk, and ecology (e.g., community structure, habitat require-
ments, prevalence, dispersal, host range, host–parasite interaction, niche breadth); 
(e) algorithms (e.g., Maxent, GARP, GLM, GAM, GLMM); and (f) environmental 
variables used.

From our compilation of studies, we observed that research on avian malaria 
using ENM/SDM and other statistical methodologies has shown an increase in the 
last decade, where most contributions (54.2%) were published during the last 6 
years (2013–early 2019). However, in comparison with studies related to other 
vector-borne diseases (e.g., human malaria, dengue, and chagas), avian malaria and 
related genera have not received much attention, probably because avian malaria is 
not a human pathogen that can currently represent a potential emerging infectious 
disease.

The studied entities or focal units of study (i.e., vector, host, and parasite) varied 
in each case (Fig. 7.1). Most studies (45.8%) focused on vectors, followed by a 
combination of parasite and hosts (32.2%), and few were focused exclusively on the 
parasite (5.1%). Even though our search was focused on cases of Neotropical avian 
haemosporidians, it turned out that other regions are better studied. For example, 
studies in countries from Asia encompass 30.7% of cases, followed by North 
America (20.3%, highlighting that half of those were focused exclusively in 
Hawaiian birds), Europe and Africa (both cases with 14.0% of studies). Studies 
focused in Neotropical countries (i.e., from Mexico to Argentina and Brazil, includ-
ing the Caribbean islands) represented 17.4%, while only 3.5% of studies were 
performed in countries from Oceania. On the other hand, we observed that most 
studies (32.3%) were performed at local scales, followed by regional (23.7%) and 
national (22%) perspectives. The continental and worldwide levels of analysis rep-
resented only 15.3% and 6.7%, respectively (Fig. 7.1). This is quite relevant because 
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different conclusions emerge from analyzing the transmission or prevalence of 
avian haemosporidians as scale changes (see Sect. 7.3).

The range of topics being covered varied greatly (Fig. 7.2). Most articles were 
centered around questions touching on some aspects of biogeography and geo-
graphic distribution (55.8% of articles), followed by studies on ecology (27.4%), 
climate change (12.6%), and invasion risk (4.2%). Despite the importance of each 
one of these topics, several articles were multidisciplinary in nature and their 

Fig. 7.1  Number of avian malaria studies implementing statistical and ecological niche modeling 
approaches. Herein, we characterized the proportion of cases for each unit of study analyzed, the 
studies by countries, and the geographical scale used

Fig. 7.2  General description for the 59 avian malaria studies implementing ecological niche mod-
eling approaches analyzed herein, indicating the topic or focus of analysis, the modeling approach, 
and variables considered

7  Ecological Niche Modeling and Other Tools for the Study of Avian Malari…



260

approach combines more than one of these topics. The most frequent combination 
of topics and questions were those of biogeography and geographic distributions 
and ecology (28.9% of cases), followed by studies including the current geographic 
distribution and potential effects of climate change (15.3%) (Fig. 7.2).

Regarding different modeling approaches implemented by studies, 66.7% used 
correlative methods, while the rest used other statistical approaches such as 
ModelBuilderTM or Boosted Regression Trees. For those works implementing cor-
relative methods, 56.4% used Maxent (Phillips et  al. 2006) as a tool to perform 
ENMs, followed by other types of statistical approaches, mainly linear models 
(Fig.  7.2). Finally, in terms of the environmental variables used to model either 
some entities (i.e., parasites, vectors, hosts) or process (e.g., levels of anthropic 
impacts), bioclimatic layers were the most frequently used (49.5%), followed by 
vegetation-related variables, such as vegetation and Normalized Difference 
Vegetation Index [NDVI] (13.5%), land use, and anthropic information such as 
human population size or livestock (16.8%). Other biological variables were used 
such as the host presence information (11.2%), distance layers (e.g., distance to riv-
ers or roads; 4.4%), topographic (2.3%), and hydrology (2.3%) (Fig. 7.2). Aside 
from climatic variables, most studies used a combination of climate-related vari-
ables with others such as elevation and vegetation information.

7.3  �Implementing Best-Practice Standards in ENM/SDM 
for Avian Haemosporidian Studies: A Study Case 
with Neotropical Human Malaria

Despite the growing body of ENM/SDM literature, and the recent demand for their 
use in avian haemosporidian studies, no generally agreed-upon standards for best 
practices yet exist for guiding the building and evaluating the adequacy of these 
models. Thus, to provide a general perspective about the best-practice standards 
applicable to a variety of available data and modeling approaches, we show such a 
framework with detailed guidelines for scoring key aspects of the  ENM/SDM 
approach used in avian haemosporidian studies. For this, we analyzed the published 
study by Altamiranda-Saavedra et  al. (2017) about the “Potential distribution of 
mosquito vector species in a primary malaria endemic region of Colombia” to illus-
trate the implementation of ENM in this chapter. Although recommendations and 
best-practice standards for models in biodiversity assessments exist, it is important 
to recognize that the criteria for judging the data and models will differ according to 
the particular objectives (Schwartz et al. 2012; Araújo et al. 2019). Therefore, stan-
dards showed herein do not aim to govern or guide publishing of research on ENM 
and/or SDM in general, but rather focus on the applicability of these methods for 
avian haemosporidians assessments.

Altamiranda-Saavedra et al. (2017) applied ENM methods in order to estimate 
the potential distribution of three endemic human malaria vector species in northern 
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Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. In addition, 
authors applied a niche overlap assessing hypotheses of niche similarity among the 
three vector species. The authors concentrated on evaluating the hypothesis that 
environmental heterogeneity is a driver for allopatric distributions of possible com-
peting niche-related species (see Altamiranda-Saavedra et  al. 2017 for a more 
detailed explanation), arguing that the dispersion rates and their ability to occupy 
diverse environmental situations may facilitate sympatry among the species of mos-
quitoes across environmental and geographic contexts (e.g., Laporta et  al. 2011, 
2015). Therefore, results may be useful for the design of malaria species-specific 
vector control interventions optimized for this important malaria region, especially 
considering the limited resources available for regular monitoring of vector species, 
vector-borne diseases, and control in a country like Colombia. In fact, maps based 
on vectors to predict the distribution of vector-borne diseases have been frequently 
used at broad spatial scales, with relatively fine-scale environmental factors to pre-
dict transmission dynamics of pathogens across the landscape (Pérez-Tris and 
Bensch 2005; Khatchikian et al. 2011).

In terms of the modeling development (Fig. 7.3), the first step was to generate 
predictor variables that are important in defining species’ distribution, as well as the 
compilation of vectors’ occurrence data. For the characterization of environmental 
variables, they used NDVI index obtained from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Terra satellite, from 2012 to 2014 and 16-day tempo-
ral resolution. The decision to use these variables to characterize the environmental 
variation and predict the more suitable environments for the vectors across the study 
region was based on the idea that spatial and temporal dynamics of vegetation could 
influence indirectly the mosquito reproduction and development (see Lourenco 
et al. 2011). For the occurrences, authors conducted sampling of vectors in or near 
human residences between December 2012 and March 2015, and the identification 
of collected vectors was performed using a morphological key and/or by PCR-
RFLP-ITS2 and COI barcoding. They obtained a total of 40 localities of Urabaá – 
Bajo Cauca and Alto Sinuá region that were used to perform the ENM. It is important 
to clarify that there may be alternatives to retrieve occurrence information, such as 
records already available through the GBIF (https://www.gbif.org/) or VectorMap 
(http://vectormap.si.edu/). However, the use of alternative sources may be restricted 
by the availability and the quality of the information (Newbold 2010), which for 
cases such as malaria is scarcer than for other vector-borne human diseases.

It is important to note that authors discarded the use of alternative environmental 
information, such as bioclimatic variables from the WorldClim project (Hijmans 
et  al. 2005; www.worldclim.org/) or topographic features from HYDRO1k 
project(USGS 2001) owing to the coarse spatial resolution available (approximately 
1km2). Nevertheless, the authors specified that NDVI should properly reflect rainfall 
as part of the vegetation photosynthetic processes. This shows that the selection of 
environmental variables is an important step. In all, 69 NDVI images were used. 
Procedures for ENM using the large set of environmental variables have been dis-
cussed extensively, including the fact that there may exist correlations among cli-
mate variables (e.g., Graham 2003; Peterson et  al. 2011). In order to reduce 

7  Ecological Niche Modeling and Other Tools for the Study of Avian Malari…

https://www.gbif.org/
http://vectormap.si.edu/


262

F
ig

. 7
.3

 
Su

m
m

ar
y 

of
 s

te
ps

 a
nd

 c
ha

lle
ng

es
 in

 th
e 

ec
ol

og
ic

al
 n

ic
he

 m
od

el
in

g 
pr

oc
es

s 
im

pl
em

en
te

d 
by

 A
lta

m
ir

an
da

-S
aa

ve
dr

a 
et

 a
l. 

(2
01

7)
: e

st
im

at
io

n 
of

 p
ot

en
-

tia
l d

is
tr

ib
ut

io
n 

an
d 

te
st

 o
f 

ni
ch

e 
si

m
ila

ri
ty

 a
m

on
g 

th
re

e 
en

de
m

ic
 h

um
an

 m
al

ar
ia

 v
ec

to
r 

sp
ec

ie
s 

in
 n

or
th

er
n 

C
ol

om
bi

a.
 S

ee
 te

xt
 f

or
 a

 d
et

ai
le

d 
ex

pl
an

at
io

n

D. A. Prieto-Torres et al.



263

correlation among data layers, a principal components analysis (PCA) was per-
formed using all images as variables. In this sense, model calibration and perfor-
mance (steps 2 and 3 in Fig. 7.3) were tested for different combinations of principal 
components (PCs), considering only the first 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
and 55 components. Here, although authors did not discuss this point, it is important 
to consider that the use of PCA scores as variables in ENM represents an approach 
(which is not exempt from discussion) that facilitates the reduction of multicol-
linearity and model overfitting (Peterson et al. 2011). However, alternative methods 
could include the use of Pearson’s correlation coefficient, selecting only those with 
none or low correlation (e.g., r < 0.8), as well as the jackknife test of variable impor-
tance performed by Maxent, used frequently to identify those variables with impor-
tant individual effects (Wu 1986; Elith et al. 2011).

Having collated occurrence records and environmental variables, the next step 
was to calibrate the models (step 2 in Fig. 7.3) to characterize the species’ ecologi-
cal niche as a function of the environmental variables. This was performed using 
Maxent (Phillips et al. 2006), which estimates a target probability distribution by 
finding the probability distribution of maximum entropy (i.e., that which is most 
spread out, or closest to uniform), subject to a set of constraints that represent the 
incomplete nature of information about the target distribution. Detailed explana-
tions for the proper implementation and interpretation of Maxent can be found else-
where (e.g., Elith et al. 2011), and other algorithmic approaches exist that could 
have been used for this modeling problem, such as the Genetic Algorithm for Rule-
set Production (GARP; Stockwell 1999) and BIOCLIM (Booth et al. 2014).

A key step during the modeling process is the definition of a region for model 
calibration, which is particularly relevant in algorithms like Maxent where the envi-
ronmental background will highly impact the results (Barve et al. 2011). The model 
calibration region should include a relevant area in a biogeographic context for the 
species being modeled. In the example, the authors specified that based on the 
known distribution of the vector species across Colombia and considering the entire 
studied endemic region for human malaria, they would set the polygon for this 
country as hypothesis of the accessible area (or M sensu BAM framework; Soberón 
and Peterson 2005; Barve et al. 2011) for the three vector species. Nevertheless, in 
most of the ENM literature, it is frequently observed the use of a geographical mask 
based on the intersection of occurrence records with Terrestrial Ecoregions (Olson 
et al. 2001) or the Biogeographical Provinces (Morrone 2014) to define the areas for 
model calibration. Such consideration is based on the assumption that these regions 
may define the historical accessible area for each species in geographic space. Of 
interest and contrary to Altamiranda-Saavedra et al.’s work, we did not observe that 
the analyzed studies of avian malaria using ENM/SDM applied this hypothesis of 
the accessible area (M) in their models, which is opposite to following a good mod-
eling approach practice, especially when the exercise is conducted at large  geo-
graphic scales. Here, we propose an adaptation of the BAM framework that considers 
host traits as abiotic and biotic dimensions for avian haemosporidians (Box 7.2).

In the study by Altamiranda-Saavedra et al. (2017), models were calibrated for 
each species, with 10 bootstrapped replicates each and the median across replicates 
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Box 7.2 How Can the Biotic-Abiotic-Mobility Framework Be Incorporated 
in the Exploration of Avian Haemosporidians Distribution?

 

Initial discussions and models to represent the distribution of a species in 
space and then calculate the niches based on the environments were provided 
by Pulliam (2000) and Soberón and Peterson (2005). These last authors pub-
lished a framework (known as “BAM diagram”) describing the simultaneous 
influence of environmental abiotic conditions (or “A”), biotic interactions (or 
“B”), and dispersal (or “M”) in shaping species’ geographic distributions. In 
general terms, the set “A” represents regions in geographic space (or “G”) 
where scenopoetic conditions (and existing resources) allow species’ intrin-
sic growth rates to be positive; while set “B” represents those geographic 
regions where the interacting factors (mainly biotic interactions with other 
species) are favorable for the presence of the species. The third set, “M” 
(relating to movements of individuals of the species), corresponds to the 
accessibility areas to the species within a given time span. The intersections 
of these three factors produce two components defining the “potential distri-
butional area” (Gaston 2003) of the species: the “occupied distributional 
area” (Go; where the species is present [see occurrence records] representing 
a proxy of the species’ realized niche) and the “invadable distributional 
area” (Gi; where the species is absent despite the favorable conditions).

Nevertheless, it is important to highlight that delineation of “M” should be 
based on biological characteristics of the species under analysis and on the 
sampling available for that species. Each species and each geographic situation 
requires a more customized parameterization. Thus, the configuration of the 
BAM diagram for the situation under consideration and the relation of ele-
ments of the BAM diagram in environmental space become critically impor-
tant. From this perspective, and considering the complex epidemiological 
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system analyzed herein, we propose some considerations to adjust the BAM 
diagram for the study and definition of avian haemosporidian cases. These 
mainly consist in carefully interpreting the roles that vectors and hosts could 
represent for the abiotic, biotic and mobility sets, which have crucial theoreti-
cal and methodological implications while modeling avian haemosporidians.

As shown in the BAM diagram for the parasite case, Go depends on the 
biotic, abiotic, and mobility factors for both vectors and hosts (represented 
with white circles and lowercase letters; that is, “b” is the Biotic (B) compo-
nent considering the vertebrate host and the Diptera vector, which are at the 
same time embedded in the abiotic (A) environment as represented by “a”). 
The dotted line representing “b” is smaller than “a” given that avian haemo-
sporidians are not free-living organisms; thus, their biotic environment is 
restricted to the vertebrate and Diptera hosts, and consequently, the abiotic 
component “a” has an indirect effect on parasite occurrence via its hosts. 
Traditional ENM applications consider the B component to have negligent 
effects (the Eltonian noise hypothesis [Araújo et al. 2014]) when modeling 
species’ geographic distributions under the BAM framework. However, we 
argue that biotic interactions play a critical role in parasitic relationships in 
nature, so they should be considered with caution in disease ecology (Johnson 
et al. 2019). This is important because the congruence or amount of overlap 
among commonly shared factors between vectors and hosts is 1) critical at 
each stage of the parasite’s life cycle, its distribution, and transmission (see 
Rúa et al. 2005; Fuller et al. 2012b) and 2) easily affected by changes in scale.

Evidently, within A and M for both vectors and hosts, there is only a subset 
of areas where haemosporidian parasites could present positive intrinsic 
growth rates. Nevertheless, there will be areas that avian haemosporidians are 
not able to occupy because of present distributional constraints that cannot be 
overcome (e.g., elevation gradient that affects the life cycle, absence of vector 
or/and host). Barve et al. (2011) pointed out the crucial role of assumptions 
regarding M in niche modeling. These authors showed that models calibrated 
under different assumptions about M arrived at markedly different results, that 
the outcomes of model evaluations depended dramatically on which version 
of M was used; furthermore, the conclusions from model comparisons (Warren 
et al. 2008) were also dependent on assumptions regarding M. Thus, the mod-
eling exercise for avian haemosporidians will depend on carefully thinking 
about the scale at which vectors and hosts are distributed, and on how abiotic, 
biotic, and mobility in each of these can determine the presence of the parasite.

Glossary for Box 7.2:
•	 Accessibility areas (M): The biogeographic regions that individuals from 

a species have been capable of “testing” environmentally speaking; such 
regions are typically molded by factors that impede dispersal (movement) 
by individuals of a species (e.g., mountain chains or rivers).
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was used as a basis for further analysis. No clamping or extrapolation options were 
disabled and the remaining parameters (i.e., regularization multiplier, prevalence, 
and features) were left as default. However, it is important to note that the calibra-
tion phase of models is critical; thus, more recent applications (such as ENMval and 
kuenm R packages) are exploring these parameter values in considerable detail 
obtaining the best models based on significance, performance, and simplicity 
(Muscarella et al. 2014; Cobos et al. 2019). In a first approach, to explore the robust-
ness and predictive capabilities of the data (step 3  in Fig. 7.3), the models were 
generated using 50% of the locality records as training data (i.e., to calibrate the 
models), while the rest of data were used as testing points (i.e., for internal model 
evaluation). However, the final species’ models were performed using all available 
data. In this sense, the algorithm used localities of species records and environmen-
tal conditions to perform a certain number of iterations (500  in this case) before 
reaching a convergence limit. The logistic output produces a map of habitat suit-
ability, ranging from 0 (unsuitable) to 1 (perfectly adequate; Phillips et al. 2006; 
Phillips and Dubik 2008). All maps were converted to binary via a conservative 
least presence thresholding approach (i.e., “Minimum Training Presence”), 

•	 BAM diagram: A Venn diagram that displays the joint fulfillment in geo-
graphic space (G-space) of three sets of conditions that together determine 
a species’ distribution: B, for biotic conditions; A, for abiotic conditions; 
and M, for movement of the species.

•	 Biotic interactions (B): Interactions between and among species—for 
example, competition, mutualism, and predation.

•	 Fundamental niche (FN): The set of all environmental states that permit 
a species to exist. Herein, we distinguish Eltonian fundamental niches 
from Grinnellian fundamental niches. The latter is the set of scenopoetic 
(non-interacting and non-linked) conditions that the species can tolerate.

•	 Invadable distributional area (Gi): Corresponds to those areas in the geo-
graphic space that the species could occupy if current distributional con-
straints were to be overcome.

•	 Occupied distributional area (Go): Those areas where the subset of the 
accessible region in which both scenopoetic and biotic conditions permit 
the species to maintain populations, and is synonymous with the “realized 
range” of Gaston (2003).

•	 Potential distributional area: The union of the occupied distributional 
area and invadable distributional area for a species—that is, the regions 
where the abiotic and biotic conditions are suitable. (Note that much of 
literature uses potential distribution in a different way, however, as a syn-
onym of what we term the abiotically suitable area).

•	 Realized niche (RN): The set of all environmental states that would permit 
a species to exist in the presence of competitors or other negatively inter-
acting species and restrictive factors.
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consisting of the lowest predicted value corresponding to any occurrence record of 
the species in the calibration dataset. It is important to note that there is no rule to 
set these thresholds, because its selection depends on the quality of the data used, 
and will vary from species to species. Detailed explanations for the proper imple-
mentation and interpretation of thresholds options in ENM could be consulted in 
Peterson et al. (2011) and Liu et al. (2013).

Before model predictions can be interpreted or used for any application, the pre-
dictive performance and significance need to be evaluated (step 3 in Fig. 7.3). A test 
using the receiver operating characteristic (ROC) curve is implemented by default 
in Maxent where the area under the curve (AUC) is measured with values that range 
from 0 to 1. However, due to the diverse critics to this test (see Lobo et al. 2008; 
Peterson et al. 2008 for a detailed explanation), Peterson et al. (2008) proposed the 
use of a modification of this test named as partial ROC. This method gives greater 
weight to omission errors (i.e., a false negative) and measures model performance 
using AUC ratios with values ranging from zero to two, where values above one 
indicate that models performed better than a random model ratio (AUC ratios >1.0). 
Bootstrap resampling was performed with 1000 iterations and with replacement of 
50% of the original data points. In addition, omission rates were used as criteria to 
select optimal models for each species based on the evaluation of statistical signifi-
cance when compared with null expectations, which was achieved by resampling 
50% of the points. The partial-area ROC tests were performed using 50% of the 
unique occurrence data points for independent model evaluation (i.e., testing).

Finally, authors evaluated a hypothesis of niche similarity (step 4  in Fig. 7.3) 
among the three mosquito species following three approaches: (a) inspecting the 
loading values of each raw variable (16-day composite NDVI) on each of the first 
two principal components, and how they related to monthly rainfall averages in the 
study area; (b) using background similarity tests by overlaying predictions using the 
Schoener’s D metric, with values ranging from 0 (no overlap) to 1 (complete over-
lap) (see Warren et al. 2008); and (c) visualizing overall overlap based on minimum 
volume ellipsoids for the species in three PCA dimensions considering the Jaccard 
index as a numerical estimation of environmental overlap among species (see Qiao 
et al. 2016, 2017). These analyses allowed to obtain a better characterization of how 
vegetation dynamics contained in NDVI related to suitability for each species, and, 
at the same time, a better understanding of the dispersal capacity of these species 
and their ability to colonize different ecosystems across many environmental and 
geographic contexts.

7.4  �What Are Current Challenges and the Future 
Opportunities in Modelling Avian Haemosporidians?

The implementation of modeling approaches in studies of limiting factors and pre-
diction of distribution of avian haemosporidians, including the association with 
hosts and vectors, has seen increasing number of applications during the last years. 
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These recent studies have been conducted to answer multiple kinds of questions, 
mostly to characterize current distributions and the potential spread of disease, at 
multiple scales across several regions and ecosystems worldwide, mostly in North 
America, Eurasia, and several countries of South America. This is probably a con-
sequence of the broad applicability that ENMs possess to understand ecological 
requirements of species, aspects of their biogeography, predict geographic distribu-
tions, identify areas for potential risk, select areas for conservation, and forecast 
effects of environmental change, among others (Peterson et  al. 2011; Araújo 
et al. 2019).

From our review, we identify six major challenges in successfully modeling of 
avian haemosporidians that are quite relevant for adequately assessing vector-borne 
parasites. The first is the proper taxonomic identification of parasites, vectors, and 
hosts. This is crucial not only to identify the entity being modeled (see Peterson 
et al. 2011), but also to be able to understand correctly the ecological and evolution-
ary associations and trends in the interactions among hosts, parasites, and vectors. 
This is more challenging perhaps for the parasite, followed by the vectors and prob-
ably less problematic for vertebrate hosts. Some studies have shown the advantage 
of using molecular biology techniques for this purpose (e.g., Altamiranda-Saavedra 
et al. 2017; see Chaps. 2 and 4 for the case of avian haemosporidians); however, 
they depend on having good databases derived from type specimens (e.g., COI bar-
codes), something that is mostly unrealistic for tropical areas particularly for vec-
tors of nonhuman pathogens.

The second challenge is to have precise and complete information on occurrence 
databases (see Newbold 2010). A few efforts have been made on this aspect, mostly 
on the vectors (e.g., Foley et al. 2010a), but clearly there are also huge gaps on the 
parasites and hosts. Even if databases on birds are probably the most comprehensive 
among vertebrates worldwide, with highly accurate data, it is not enough to disen-
tangle the potential distribution of avian haemosporidians. Researchers should 
avoid the temptation to pile occurrence data and environmental data into a niche 
modeling algorithm, press the button, and see what comes out (see Anderson 2015). 
Rather, occurrence data must be assembled carefully and comprehensively, and 
biases, uncertainties, and temporal characteristics must be pondered. Once the input 
data are assembled, and the models calibrated appropriately, outputs become con-
siderably more rigorous.

Third and fourth challenges are the variables, and the scale and resolution that 
such variables better fit for the questions being asked. On this base are the conclu-
sions and generalizations that can be made. Interestingly, the scale of analyses on 
which ENMs have been applied most commonly based on our review is local-to-
regional, followed by larger scale analysis highlighting the broad applicability of 
these modeling techniques to look at the relationship between occurrence records 
and environmental characteristics at different scales (Overgaard et al. 2003; Foley 
et  al. 2010b; Sinka et  al. 2010; Fuller et  al. 2012a; Altamiranda-Saavedra et  al. 
2017). This is probably because many studies aim at explaining avian malaria and 
its correlation with some environmental factors, which is commonly at local scales, 
where highest-quality data are typically available for either vectors, parasites or 
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hosts. From this perspective, it is important to note that variables directly affecting 
a species’ physiology are preferred since their relationships with its geographic dis-
tribution are assumed to be stable across spatiotemporal scales (Foley et al. 2010b; 
Sinka et al. 2010; Fuller et al. 2012a; Anderson 2017). For instance, the slope and 
aspect of surface and the availability of water can be associated with anopheline 
habitats and their breeding sites in dry environments at local scales (Ageep et al. 
2009; Fuller et al. 2012b). Recent studies showed that temperature, precipitation, 
and elevation can explain much of the variation in the distribution of An. albimanus 
in Latin America and the Caribbean (Sinka et al. 2010; Fuller et al. 2012b). This 
aspect is currently seeing fast advances with the incorporation of remote sensing 
information (Zellweger et al. 2019). As was observed in several of the publications, 
incorporation of high-resolution environmental surrogates, such as NDVI layers, 
appears to be crucial for analyzing vector-borne diseases like malaria (Foley et al. 
2010b; Laporta et  al. 2011; Cornuault et  al. 2013a, 2013b; Ricklefs 2013; 
Altamiranda-Saavedra et al. 2017; Hundessa et al. 2018a, 2018b). Similarly, changes 
in land use and vegetation cover can also facilitate (or prevent) the spread of haemo-
sporidian vectors (Patz et al. 2004; Vittor et al. 2009; Stresman 2010; Fecchio et al. 
2018, 2019). According to Peterson (2014), ideal models of disease transmission 
should be based on remotely sensed datasets (e.g., Renner et al. 2016 who used laser 
ranging technology or LiDAR), rather than on climate data due to the lack of suffi-
cient detail to provide genuinely helpful information in health applications (see 
Pérez-Rodríguez et al. 2013). Under some circumstances, no alternatives are avail-
able, but satellite imagery is invariably richer in genuine information that is mea-
sured on real-world landscapes, rather than interpolated from frighteningly sparse 
weather station-based data.

Another important complication in the case of avian haemosporidians is that 
even if we have an idea on what environmental conditions favor the transmission of 
the disease, we lack knowledge on the influence of several environmental factors on 
host communities that determine the prevalence of the parasite. In fact, the assem-
blage of a host or vector community does not guarantee a good prediction of para-
site prevalence. Due to the complexity of the avian haemosporidian life cycles, it is 
difficult to draw an easy modeling framework, and even the reasoning and configu-
ration of the BAM diagram framework (Soberón and Peterson 2005, see Box 7.2) 
can be challenging, because the factors within each set of conditions in B, A or M 
may change depending on the unit being modeled and the scale of the study. It is 
even further complicated because the interactions among avian haemosporidians, 
hosts, and vectors remain poorly understood (see Chaps. 6, 10, 11, 14, 15, and 16). 
Such interaction processes may be even more complex if we think about the general 
processes governing host specificity, in which case, we should assess both ecologi-
cal and phylogenetic relationships of potential host species, in efforts to identify 
barriers to host range expansions (Poulin and Mouillot 2005; Hoberg and Brooks 
2008; Clark et al. 2014, 2018; see Chap. 11 for an in-depth synthesis of avian hae-
mosporidian specialization and dispersal). It seems possible to assume that this 
dynamic interplay may be influenced by the geography and evolutionary history of 
the landscape, where vector–host–parasite interactions take place (Ricklefs et  al. 
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2004, 2014; Rivero and Gandon 2018). Since biotic interactions lie at the core of 
disease systems, neglecting interacting species and their role in parasite dynamics 
(maintenance, reproduction, and transmission) may lead to failure to forecast dis-
ease distributions (see Johnson et al. 2019). Parasite transmission is strongly influ-
enced by interactions among infected and susceptible hosts, which can be altered by 
host behavior and demography (Peterson 2014; Johnson et al. 2019).

The statistical exploration of local environmental conditions linked to avian hae-
mosporidians can be the starting point to select environmental predictors at other 
scales (i.e., results from local scale studies can be used to inform and parameterize 
coarse scale studies). For instance, globally, Haemoproteus exhibits greater lineage 
diversity than Plasmodium; but this pattern differs in South America, where a higher 
avian host diversity coupled with low Plasmodium-host specificity leads to greater 
lineage diversity of Plasmodium than Haemoproteus (Clark et al. 2014). However, 
the actual mechanism of diversification (see Chap. 12) and the broad-scale environ-
mental factors that can affect their transmission remains only partially understood 
(Balls et al. 2004; Foley et al. 2010a, b; Lachish et al. 2011a, b). Opportunities exist 
for gaining a more comprehensive understanding of the interactions between envi-
ronmental change and vector potential invasion, using different types of space-time 
models that can simulate environmental change or species distributions (e.g., 
Peterson 2009; Chaves and Koenraadt 2010).

Historical studies about ecological requirements of species and the forecasting of 
distribution of vector-borne disease have mainly been used at local spatial scales 
with relatively fine-scale environmental factors (Khatchikian et  al. 2011; Ganser 
et al. 2016). Tools used for these analyses include spatial regressions, smoothing 
procedures, and more conventional multivariate regressions, all developed in “envi-
ronmental” dimensions. For instance, ENM analyses of anopheline species (subge-
nus Nyssorhynchus) in Amazonian Brazil revealed diversification in habitat use: An. 
triannulatus is a generalist, whereas An. oryzalimentes and An. janconnae are spe-
cialists (Mckeon et al. 2013). ENMs were also used to predict distributions of An. 
bellator, An. cruzii, and An. marajoara of the Riviera Valley in southern Brazil, 
which revealed specific associations with land cover types (Altamiranda-Saavedra 
et al. 2017). Finally, low tolerance to dry environments was documented for An. 
darlingi; projected climate change would significantly reduce its suitable habitat 
mainly in Amazonian biomes, influencing both its distribution and abundance, in 
contrast to species of the albitarsis complex (Laporta et al. 2015).

Another challenge remains on the lack of a clear hypothesis about the areas that 
have been accessible (i.e., M in the BAM framework; Soberón and Peterson 2005) 
to the species (or entity) being modeled. This problem is not particular of avian 
haemosporidians, but rather an overall challenge during modeling ecological niches. 
However, defining the right accessibility area for model calibration in avian haemo-
sporidians, given that it comprehends a series of interactions between hosts-
parasites-vectors, complicates things. As mentioned in Box 7.2, this area is quite 
important because it indicates what the relevant environmental background is, and 
because it has huge influence on the performance of several modeling algorithms 
and on the significance of the model (Barve et al. 2011; Owens et al. 2013). The 
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accessible area in the case of avian haemosporidians may change as the entity being 
modeled changes (i.e., parasite, host, and/or vector; Box 7.2). For example, if we 
focus on the parasite, this implies that its accessibility area must be restricted to 
some part of the accessible area of the host and some part of the accessible area of 
the vector. However, this accessible area may also change with the scale of analysis 
(Lira-Noriega et al. 2013). It is not the same to concentrate our modeling efforts at 
a particular landscape, as opposed to over a continental region; in the first case, most 
of the landscape can be assumed as accessible to either the vector or the host, but 
that may not be the case at the continental level. However, the definition of this 
accessible area will be crucial for the right interpretation of the model.

7.4.1  �Future Opportunities and Directions

The literature is full of examples of research on outbreaks of a given disease, in 
which the relative risk of infection is assessed for a series of potential risk factors 
(Daszak et al. 2000; Woolhouse and Gowtage-Sequeria 2005; Sehgal et al. 2011; 
Peterson 2014; Escobar et al. 2016; Alkishe et al. 2017; Altamiranda-Saavedra et al. 
2017). With the ecological and geographic perspectives explored in this chapter, a 
broader viewpoint should be possible. This perspective might be more than simply 
an examination of which environmental factors are important for the proper model-
ing of species’ niches and distributions. More in-depth studies might assess environ-
mental correlates of key vector species’ distributional ecology, including calculation 
of which factors are included (or excluded) in the geographical areas from the mod-
el’s development (Peterson 2014).

Several additional steps remain to be explored in order to create better predictive 
maps of haemosporidians distributional patterns and transmission risk. We empha-
size three crucial ones; although in all instances, good examples exist of what to do 
and what not to do, best practices are not always possible, feasible, or easy. First, 
wildlife-disease exploration requires the development of specific functionalities. 
One germane application is related to “time-specific” ecological niche models, 
which could begin to capture the essence of the temporal dynamics of species’ dis-
tributions including parasite-vectors and potential hosts (Pérez-Rodríguez et  al. 
2014). For these cases, occurrence data should be characterized in latitude, longi-
tude, and time, and the occurrences would be related to environmental datasets that 
are similarly specific in time to produce models for a particular point in time. 
However, it is important to note that a major bottleneck and challenge for this field 
is precisely the availability of high-quality occurrence data for vector species and 
avian haemosporidians––unlike for the case of human malaria (Foley et al. 2010a). 
Likewise, these models could then, in theory, be projected to other time periods to 
anticipate temporal dynamics of species’ distributions. Initial explorations have 
been developed successfully (e.g., Peterson 2009, 2014; Tonnang et al. 2010; Pérez-
Rodríguez et al. 2014; Alimi et al. 2015), but considerable additional exploration 
is needed.
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Second, the niche specialization for a multitude of organisms is not fixed, but it 
is predicted to vary in response to environmental heterogeneity (Fecchio et  al. 
2018, 2019). A growing body of anecdotal and theoretical evidence suggests that 
parasites are not the exception (Hoberg and Brooks 2008; Agosta et al. 2010; Araujo 
et al. 2015). However, the actual mechanism of diversification and the broad-scale 
environmental factors that can affect their transmission remains only partially 
understood (Balls et al. 2004; Lachish et al. 2011a, b; Pérez-Rodríguez et al. 2014). 
In this sense, studies focused on the effects of climate change on avian haemospo-
ridians, which would not be subject to the confounding patterns of human move-
ment and economics (e.g., Gwitira et al. 2015; Ren et al. 2015; Chahad-Ehlers et al. 
2018), would greatly contribute to our understanding of the impacts of changing 
ecological conditions on natural disease systems (Patz et al. 2004, 2008; Béguin 
et al. 2011; Mendenhall et al. 2013; Ren et al. 2015). It is a priority to identify which 
are the variables that determine and constrain distributions of disease vectors and 
host species, especially considering that risk of Plasmodium and Haemoproteus 
infection in birds is expected to increase with increasing temperatures on a global 
scale (Garamszegi 2011).

Finally, phylogenetic analyses are needed to reconstruct the evolutionary path-
ways of certain species (see Chaps. 3 and 12), and to assess whether or not current 
suspected hosts/reservoirs will expand in future scenarios, and whether this will 
result in transmission expansion (e.g., Ishtiaq et  al. 2009; Svensson-Coelho and 
Ricklefs 2011; Mata et al. 2015). This last fact is very important considering that 
these changes in distribution may also affect the complex and dynamic networks of 
biotic interactions (Garamszegi et al. 2007; see Chap. 9). For instance, it will be 
relevant to analyze whether areas of high parasite prevalence are indicators of an 
increased abundance of vectors, increased transmission capacity, or decreased host 
resistance/immunity (Galen and Witt 2014; Pérez-Rodríguez et al. 2014; Zélé et al. 
2014; Illera et al. 2017; Martínez et al. 2018; Pulgarín-R et al. 2018). The unre-
solved question that remains is whether, and to what extent, the characteristics of 
the landscape affect the prevalence of parasites transmitted by vectors, either 
directly or indirectly through the effects on hosts and/or vectors (Santiago-Alarcon 
et al. 2012; see Chaps. 9, 10, 13 and 14).

7.5  �Conclusion

One of the major concerns is that most of the vector-borne diseases are associated 
with tropical environments. However, and despite that distribution limits of many 
haemosporidian vectors and parasites are associated with climatic conditions of 
temperature and precipitation, it is noteworthy that there is a poor representation of 
studies on avian haemosporidians in the tropics. Several studies have shown that 
climate variation influences the reproduction rates of parasites and the development 
of vectors and hosts, which in turn could affect the transmission of parasites and the 
exposure of parasites to new host species. Thus, the incorporation of diverse 
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methodologies and practical considerations, such as ENM and SDM, is needed to 
address the diversity of questions and challenges in disease-related topics. As our 
literature review showed, there is an imbalance on studies addressing aspects of 
avian malaria, especially those including ENM and/or SDM approaches because 
most of them are focused only on geographic distribution patterns. Other important 
issues that remain poorly explored are those describing the environmental relation-
ships at different scales (in time and space), niche shift and specialization, as well 
as interactions among parasites, vectors, and hosts.

Although ENM/SDM approaches to the challenge of understanding the geogra-
phy and ecology of disease transmission (including avian haemosporidians) could 
be considered in an early stage (Peterson et al. 2011; Peterson 2014; Johnson et al. 
2019), several efforts show that niche modeling has a lot to offer to the field of both 
public and wildlife health and epidemiology. Typical spatial applications include 
mapping geographic patterns of disease transmission risk, identification of risk fac-
tors (spatially or not), and assessment of populations at risk of infection. However, 
ENM and SDM do not capture the full complexity of the phenomenon of disease 
transmission because they are fitted in purely geographic dimensions, and as such, 
the approach unravels complex ecological and distributional phenomena into broad 
spatial trends.

The ideas presented in this chapter are simply examples of a complex reality. In 
no case is a clear and detailed analysis available that crosses all the relevant scales 
and resolutions. Rather, the reader is left with tidbits and suggestive indications. As 
highlighted, most important to the authors are the fine delimitation of a BAM dia-
gram in which hypotheses of sets of factors affecting the distribution of haemospo-
ridians are established, including issues of scale. It is to be hoped that, as this field 
develops further, more and better examples will emerge. Overall, we hope that this 
review and conceptual essay can be useful to provide the basic knowledge and guid-
ance for modeling of ecological niches of avian haemosporidian systems.
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