
Chapter 9
Optical Properties

Do not Bodies and Light act mutually upon one another.

Sir I. Newton, 1704 [826]

Abstract After introduction of the complex dielectric function, reflection, diffraction are briefly dis-
cussed. The focus lies on absorptionmechanisms; several transition types (direct and indirect band-band
transitions, impurity-related transitions, lattice absorption) are discussed including the effects of exci-
tons, polaritons and high carrier density. Also the various effects of the presence of free carriers are
given.

9.1 Spectral Regions and Overview

The interaction of semiconductors with light is of decisive importance for photonic and optoelectronic
devices aswell as for the characterization of semiconductor properties.When light hits a semiconductor,
reflection, transmission and absorption are considered, as for any dielectric material. The response of
the semiconductor largely depends on the photon energy (or wavelength) of the light and various
processes contribute to the dielectric function.

An overview of the electromagnetic spectrum in the optical range is given in Table 9.1. The energy
and wavelength of a photon are related by1 E = hν = hc/λ, i.e.

E [eV] = 1240

λ [nm] . (9.1)

In the infrared regime, energy is often measured in wave numbers (cm−1) for which the conversion
1meV= 8.056cm−1 holds.

1The more exact numerical value in (9.1) is 1239.84.
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Table 9.1 Spectral ranges with relevance to semiconductor optical properties

Range Wavelengths Energies

Deep ultraviolet DUV <250nm >5eV

Ultraviolet UV 250–400nm 3–5eV

Visible VIS 400–800nm 1.6–3eV

Near infrared NIR 800nm–2µm 0.6–1.6eV

Mid-infrared MIR 2–20µm 60meV–0.6eV

Far infrared FIR 20–80µm 1.6–60meV

THz region THz >80µm <1.6meV

9.2 Complex Dielectric Function

The dielectric function (DF) ε fulfills the relation between the displacement field D, the polarization
P and the electric field E,

D = ε0 E + P = ε0 εE , (9.2)

and is generally a tensor of rank 2 since D and E must not be collinear. For cubic materials, the DF
is isotropic and can be described with a (complex) scalar ε. Less symmetric crystals are optically
anisotropic and the DF must be used in tensor form. Also, external fields can induce optical anisotropy
in an otherwise isotropic material as discussed in Sect. 15.2.2 for magnetic fields or has been observed
for mechanical strain fields. The general form of the dielectric function tensor for various crystal
symmetries is compiled in Table 9.2.

In most cases in the following, εwill be used as scalar (isotropic case). The dielectric function is fre-
quency dependent ε(ω) due to the various oscillators playing a role and decreases (non-monotonically)
from its static value (for ω = 0) to 1 for ω → ∞. Major influence on the DF stems from (optical)

Table 9.2 General form of the tensor form of the dielectric function for the seven crystallographic systems

Crystal system Optical symmetry ε Examples

Cubic Isotropic

⎛
⎜⎝
a 0 0

0 a 0

0 0 a

⎞
⎟⎠ Si, GaAs, MgO, ZnSe, CuI

tetragonal

hexagonal

trigonal

uniaxial

⎛
⎜⎝
a 0 0

0 a 0

0 0 c

⎞
⎟⎠ CuGaSe2, GaN, ZnO,

Bi2Se3

orthorhombic biaxial

⎛
⎜⎝
a 0 0

0 b 0

0 0 c

⎞
⎟⎠ κ-Ga2O3, Sb2Se3

monoclinic biaxial

⎛
⎜⎝
a 0 d

0 b 0

d 0 c

⎞
⎟⎠ β-Ga2O3, anthracene

triclinic biaxial

⎛
⎜⎝
a d e

d b f

e f c

⎞
⎟⎠ K2Cr2O7, tetracene
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lattice vibrations (Sect. 9.5) and transitions within the electronic band structure (Sect. 9.6). In some
cases also its k-dependence is important, known as ’spatial dispersion’ (cmp. Sect. 9.7.8).

An optic axis in the transparency regime (all tensor elements of ε ∈ R) is the direction in which
the speed of light or the index of refraction is independent of polarization. Uniaxial (biaxial) materials
have one (two) of such axes. The anisotropy of the index of refraction and its polarization dependence
must be taken into account when light propagation is considered in birefringent semiconductors, e.g.
for Raman spectroscopy [827], unless the propagation is along an optic axis.

The dielectric function is generally complex and written as (scalar)

ε = ε′ + i ε′′ = ε1 + i ε2 . (9.3)

The real (ε′ or ε1) and imaginary (ε′′ or ε2) part of the dielectric function are related to each other via
the Kramers-Kronig relations (Appendix C).

The complex index of refraction n∗ is

n∗ = √
ε = nr + iκ . (9.4)

From n∗2 = ε follows

ε′ = n2r − κ2 (9.5)

ε′′ = 2 nr κ . (9.6)

From ε ε̄ = (n2r + κ2)2 and (9.5) follows

n2r = ε′ + √
ε′ 2 + ε′′ 2

2
(9.7)

κ = ε′′

2 nr
. (9.8)

The real part of the complex index of refraction nr is responsible for the dispersion, the imaginary part
κ is named extinction coefficient and is related to the absorption coefficient for a plane wave (damping
of the intensity ∝ E2) by

α = 2
ω

c
κ = 4π

λ
κ = 2 k κ . (9.9)

Here, k and λ denote the respective values in vacuum. Through the Kramers-Kronig relations
(Appendix C), birefringence, i.e. the orientational dependence of the index of refraction, is thus auto-
matically related to dichroism, i.e. the orientational dependence of the absorption coefficient.

As an example, in Fig. 9.1 the dielectric function of GaAs is shown in the vicinity of the band edge
and above. SinceGaAs is cubic, the dielectric function at each photon energy can represented by a single
complex number. The tensor character of the dielectric function is demonstrated in Fig. 9.2a where
the four independent tensor elements for (monoclinic) β-Ga2O3 are depicted [828]. The contributions
of various dipole oscillators (strength and orientation) to the dielectric function can be analyzed from
these data [829].

In the absorption regime, for biaxial crystals the two optic axes split into four singular optic axes
[830] as visualized for β-Ga2O3 in Fig. 9.2b [831]. It should be noted that optical activity [832] is not
considered in the following.
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(a) (b)

Fig. 9.1 a Complex dielectric function of GaAs at room temperature dashed (solid) line: real (imaginary) part of
dielectric constant. Peak labels relate to transitions shown in part b. b Band structure of GaAs with fundamental band
gap transition (E0) and higher transitions (E0 + �0, E1, E1 + �1, E ′

0, and E2) as indicated

(a) (b)

Fig. 9.2 a Experimental (generalized spectroscopic ellipsometry) tensor elements of the complex dielectric function of
β-Ga2O3 at room temperature. Adapted from [828]. b Stereographic projection of the angular orientation of the optic
and singular optic axes of β-Ga2O3. Some crystallographic orientations are indicated. The color refers to the photon
energy. The splitting of the two optic axes into four singular optic axes at the onset of absorption is denoted by two red
arrows. Adapted from [831]

9.3 Reflection and Diffraction

From Maxwell’s equations and the boundary conditions at a planar interface between two media with
different index of refraction for the components of the electric andmagnetic fields the laws for reflection
and diffraction are derived. We denote the index of refraction as n and also nr in the following. The
interface between two media with refractive indices n1 and n2 is depicted in Fig. 9.3. In the following
we assume first that no absorption occurs.

Snell’s law [833] for the angle of diffraction is

n1 sin φ = n2 sinψ . (9.10)
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When the wave enters the denser medium, it is diffracted towards the normal. If the wave propagates
into the less-dense medium (reversely to the situation shown in Fig. 9.3), a diffracted wave occurs only
up to a critical angle of incidence

sin φTR = n2
n1

. (9.11)

For larger angles of incidence, total internal reflection occurs and the wave remains in the denser
medium. Thus, the angle in (9.11) is called the critical angle for total reflection. For GaAs and air the
critical angle is rather small, φTR = 17.4◦.

The reflectance depends on the polarization (Fresnel formulas [834]). The index ‘p’ (‘s’) denotes
parallel polarized/TM (perpendicular polarized/TE) waves.

Rp =
(
tan(φ − ψ)

tan(φ + ψ)

)2
(9.12)

Rs =
(
sin(φ − ψ)

sin(φ + ψ)

)2
. (9.13)

The situation for GaAs and air is shown for both polarization directions and unpolarized radiation in
Fig. 9.4 for a wave going into and out of the GaAs.

When the reflected and the diffracted wave are perpendicular to each other, the reflectance of the
p-polarized wave is zero. This angle is the Brewster angle φB,

tan φB = n2
n1

. (9.14)

If a wave has vertical incidence from vacuum on a medium with index of refraction nr , the reflectance
is given (both polarizations are degenerate) as

Fig. 9.3 Reflection and
diffraction of an
electromagnetic wave at
the transition between
medium ‘1’ and ‘2’,
n2 > n1. The polarization
plane is defined by the
surface normal and the
k-vector of the light (plane
of incidence). The parallel
(‘p’) polarized wave
(TM-wave, electric field
vector oscillates in the
plane) is shown as ‘↔’;
perpendicular (‘s’)
polarization (TE-wave,
electric field vector is
perpendicular to plane) is
depicted as ‘·’
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Fig. 9.4 Reflectance of the GaAs/vacuum interface (close to the band gap, nr = 3.347) for radiation from vacuum/air
(left panel) and from the GaAs (right panel), respectively, as a function of incidence angle and polarization

R =
(
nr − 1

nr + 1

)2
. (9.15)

For GaAs, the reflectance for vertical incidence is 29.2%.

9.4 Absorption

In the absorption process, energy is transferred from the electromagnetic field to the semiconductor. In
the case of a linear absorption process, when the probability of light absorption is proportional to the
incoming intensity, the decrease of intensity in the absorbing medium is exponential (Lambert–Beer’s
law [835, 836]),2

I (x) = I (0) exp(−α x) . (9.16)

The quantity α is the absorption coefficient, its reverse the absorption depth.
The spectral dependence α(E), the absorption spectrum, contains the information of the possi-

ble absorption processes, their energy, momentum and angular momentum selection rules, and their
oscillator strength.

In Fig. 9.5 a schematic absorption spectrum of a semiconductor is depicted. The transition of elec-
trons from the valence to the conduction band begins at the band gap energy. The band gaps of Si,
Ge, GaAs, InP, InAs, InSb are in the IR, those of AlAs, GaP, AlP, InN in the VIS, those of GaN and
ZnO in the UV, MgO and AlN are in the deep UV. The Coulomb correlation of electrons and holes
leads to the formation of excitons that leads to absorption below the band gap. The typical exction
binding energy is in the range of 1–100meV (see Fig. 9.19). Optical transitions from valence-band
electrons into donors and from electrons on acceptors into the conduction band lead to band–impurity
absorption. In the region from 10–100meV the interaction with lattice vibrations (phonons) leads to
absorption if the phonons are infrared active. Further in the FIR lie transitions from impurities to the

2In [836], the absorption coefficient μ was defined via I (d)/I (0) = μd , i.e. μ = exp−α.



9.4 Absorption 263

Fig. 9.5 Schematic
absorption spectrum of a
typical semiconductor.
From [837]

closest band edge (donor to conduction and acceptor to valence band). A continuous background is
due to free-carrier absorption.

If absorption is considered, the reflectance (9.15) needs to be modified. Using the complex index
of refraction n∗ = nr + iκ, it is given as

R =
∣∣∣∣
n∗ − 1

n∗ + 1

∣∣∣∣
2

= (nr − 1)2 + κ2

(nr + 1)2 + κ2
. (9.17)

9.5 Dielectric Function due to Optical Phonons

In this section, the dielectric function around the resonance energy of optical phonons is developed.
Adjacent atoms oscillate with opposite phase in an optical phonon. If the bond has (partial) ionic
character, this leads to a time-dependent polarization and subsequently to a macroscopic electric
field. This additional field will influence the phonon frequencies obtained from a purely mechanical
approach.We consider in the following the casek ≈ 0. The phonon frequency for TOandLOvibrations
is given by

ω0 =
√
2C

Mr
, (9.18)

where Mr is the reduced mass of the two different atoms (cf. Sect. 5.2.2). u is the relative displacement
u1 − u2 of the two atoms in a diatomic base. When the interaction with the electric field E (which will
be calculated self-consistently in the following) is considered, the Hamiltonian for the long-wavelength
limit is given by [838]:

Ĥ(p,u) = 1

2

(
1

Mr
p2 + b11 u2 + 2b12 u · E + b22 E2

)
. (9.19)
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The first term is the kinetic energy (p stands for the momentum of the relative motion of the atoms 1
and 2 in the base, p = Mru̇), the second the potential energy, the third the dipole interaction and the
fourth the electric-field energy. The equation of motion for a plane wave u = u0 exp[−i(ωt − k · r)]
(ü = −ω2u) yields

Mr ω
2 u = b11 u + b12 E . (9.20)

Thus, the electric field is

E = (ω2 − ω2
TO)

Mr

b12
u . (9.21)

Here, the substitution ω2
TO = b11/Mr was introduced that is consistent with (9.18) and b11 = 2C .

ωTO represents the mechanical oscillation frequency of the atoms undisturbed by any electromagnetic
effects. Already now the important point is visible. If ω approaches ωTO, the system plus electric field
oscillates with the frequency it has without an electric field. Therefore the electric field must be zero.
Since the polarization P = (ε − 1)ε0E is finite, the dielectric constant ε thus diverges.

The polarization is
P = −∇E Ĥ = − (b12 u + b22 E) . (9.22)

The displacement field is

D = ε0 E + P = ε0 E −
(
b22 − b212/Mr

ω2
TO − ω2

)
E = ε0 ε(ω)E . (9.23)

Therefore, the dielectric function is

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − (ω/ωTO)2
. (9.24)

Here, ε(∞) = 1− b22/ε0 is the high-frequency dielectric constant and ε(0) = ε(∞) + b212/(b11ε0) the
static dielectric constant. The relation (9.24) is shown in Fig. 9.6.

From the Maxwell equation ∇ · D = 0 for zero free charge we obtain the relation

ε0 ε(ω)∇ · E = 0 . (9.25)

Thus, either ε(ω) = 0 or ∇ · E = 0, i.e. u is perpendicular to k. In the latter case we have a TO
phonon and, neglecting retardation effects, using ∇ × E = 0 we find E = 0 and therefore ω = ωTO,
justifying our notation. In the case of ε(ω) = 0, we call the related frequency ωLO and find the so-called
Lyddane–Sachs–Teller (LST) relation [839]

ω2
LO

ω2
TO

= ε(0)

ε(∞)
. (9.26)

This relation holds reasonably well for optically isotropic, heteropolar materials with two atoms in
the basis, such as NaI and also GaAs. Since at high frequencies, i.e. ω  ωTO, only the individual
atoms can be polarized, while for low frequencies the atoms can also be polarized against each other,
ε(0) > ε(∞) and therefore also ωLO > ωTO. For GaAs, the quotient of the two phonon energies is
1.07. Using the LST relation (9.26), we can write for the dielectric function

ε(ω) = ε(∞)

(
ω2
LO − ω2

ω2
TO − ω2

)
. (9.27)



9.5 Dielectric Function due to Optical Phonons 265

Fig. 9.6 Dielectric
function according to
(9.24) with ε(0) = 3 and
ε(∞) = 2 (without
damping). Grey area
denotes the region of
negative ε

4

2

0

3

1

2

3

0

1

2
Frequency ( )/ T

( )

(0)

1

The (long-wavelength) TO-phonon does not create a long-range electric field. Using ∇ · D = 0 and
(9.23) and looking at the longitudinal fields, we have

ε0 E = b12 u + b22 E . (9.28)

This can be rewritten as

E = −ωLO

√
Mr

ε0

√
1

ε(∞)
− 1

ε(0)
u ∝ −u . (9.29)

The (long-wavelength) LO-phonon thus creates a long-range electric field acting against the ion dis-
placement and represents an additional restoring force; this is consistent with the fact that ωLO > ωTO.

9.6 Electron–Photon Interaction

The absorption process within the band structure is quantum mechanically described by the coupling
of electrons and photons. The process is described with time-dependent perturbation theory. If Hem is
the perturbation operator (electromagnetic field), the transition probability per time wfi for electrons
from (unperturbed) state ‘i’ (initial) to state ‘f’ (final) is given (with certain approximations) by Fermi’s
golden rule

wfi(�ω) = 2π

�

∣∣H ′
fi

∣∣2 δ(Ef − Ei − �ω) , (9.30)

where �ω is the photon energy, Ei (Ef ) is the energy of the initial (final) state. H ′
fi is the matrix element

H ′
fi = 〈�f

∣∣H ′∣∣�i
〉

, (9.31)

where �i (�f ) are the wavefunctions of the unperturbed initial (final) state.
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A is the vector potential for the electromagnetic field, i.e. E = −Ȧ, μH = ∇ × A, ∇ · A = 0
(Coulomb gauge). The Hamiltonian of an electron in the electromagnetic field is

H = 1

2m
(�k − qA)2 . (9.32)

When terms in A2 are neglected (i.e. two-photon processes), the perturbation Hamiltonian is thus

Hem = − q

m
Ap = i �q

m
A · ∇ ≈ q r · E . (9.33)

The latter approximation is valid for small wavevectors of the electromagnetic wave and is termed the
electric dipole approximation.

In order to calculate the dielectric function of the semiconductor from its band structure we assume
that A is weak and we can apply (9.30). The transition probability R for the photon absorption rate at
photon energy �ω is then given by3

R(�ω) = 2π

�

∫

kc

∫

kv

|〈c|Hem|v〉|2 δ (Ec(kc) − Ev(kv) − �ω) d3kc d3kv , (9.34)

with the Bloch functions |c〉 and |v〉 of the conduction and valence band, respectively, as given in
(6.40b).

The vector potential is written as A = Aê with a unit vector ê parallel to A. The amplitude is
connected to the electric-field amplitude E via

A = − E

2ω

[
exp (i(qr − ωt)) + exp (−i(qr − ωt))

]
. (9.35)

In the electric-dipole approximation the momentum conservation q+kv = kc, q being the momentum
of the light wave is approximated by kv = kc. The matrix element is then given by

|〈c|Hem|v〉|2 = e2 |A|2
m2

∣∣〈c|ê · p|v〉∣∣2 , (9.36)

with

〈c ∣∣ê · p|v〉∣∣2 = 1

3
|pcv|2 = M2

b , (9.37)

and the momentum matrix element pcv given in (6.39). A k-independent matrix element |pcv|2 is often
used as an approximation. In Fig. 9.7 the matrix elements for valence to conduction band transitions
in GaN are shown as a function of k.

In terms of the electric-field amplitude E(ω) the transition probability is

R(�ω) = 2π

�

( e

m ω

)2 ∣∣∣∣
E(ω)

2

∣∣∣∣
2

|pcv|2
∫

k

δ (Ec(k) − Ev(k) − �ω) d3k . (9.38)

If the integration over k is restricted to those values allowed in unit volume, the power that is lost from
the field in unit volume is given by R �ω, leaving a 1/E factor. The dielectric function ε = ε′ + iε′′ is

3Here we assume that the valence-band states are filled and the conduction-band states are empty. If the conduction-band
states are filled and the valence-band states are empty, the rate is that of stimulated emission.
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Fig. 9.7 Theoretical momentum matrix elements |pcv|2 along high-symmetry directions in the Brillouin zone (see
Fig. 3.38d) for transitions between valence and conduction bands in GaN and light polarized perpendicular (left panel)
and parallel (right panel) to the c-axis. The transitions are A: �9(A)→ �7c, B: �7(B)→ �7c, C: �7(C)→ �7c (see
Fig. 6.44). Adapted from [840]

given by

ε′′ = 1

4πε0

(
2π e

m ω

)2
|pcv|2

∫

k

δ (Ec(k) − Ev(k) − �ω) d3k (9.39a)

ε′ = 1 +
∫

k

e2

ε0 m ω2
cv

2 |pcv|2
m �ωcv

1

1 − ω2/ω2
cv

d3k , (9.39b)

with �ωcv = Ec(k) − Ev(k). Equation (9.39b) has been obtained via the Kramers–Kronig relations4

(see Appendix C).
Comparison with (D.7) yields that the oscillator strength of the band–band absorption is given by

f = e2

ε0 m ω2
cv

2 |pcv|2
m �ωcv

= e2

ε0 m ω2
cv

Ncv , (9.40)

with the classical ’number’ of oscillators with the frequency ωcv,

Ncv = 2 |pcv|2
m �ωcv

. (9.41)

9.7 Band–Band Transitions

9.7.1 Joint Density of States

The strength of an allowed optical transitions between valence and conduction bands is proportional
to the joint density of states (JDOS) Dj(Ecv) (cf. (6.63), (6.64) and (9.39a))

4The real and imaginary parts of the dielectric function are generally related to each other via the Kramers–Kronig
relations.
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Table 9.3 Functional dependence of the joint density of states for critical points in 3, 2 and 1 dimensions. E0 denotes
the energy (band separation) at the critical point, C stands for a constant value. The type of critical point is given (min.:
minimum, saddle: saddle point, max.: maximum)

Dim. Label Type Dj for E < E0 Dj for E > E0

3D

M0

M1

M2

M3

min.

saddle

saddle

max.

0

C − √
E0 − E

C√
E0 − E

√
E − E0

C

C − √
E − E0

0

2D

M0

M1

M2

min.

saddle

max.

0

− ln(E0 − E)

C

C

− ln(E − E0)

0

1D
M0

M1

min.

max.

0√
E0 − E

√
E − E0

0

Dj(Ecv) = 2
∫

S(Ẽ)

d2S

(2π/L)3

1

|∇kEcv| , (9.42)

where Ecv is an abbreviation for Ec(k) − Ev(k) and d2S is a surface element of the constant energy
surface with Ẽ = Ecv. The spin is assumed to generate doubly degenerate bands and accounts for the
pre-factor 2. Singularities of the JDOS (van-Hove singularities or critical points) appear where ∇kEcv

vanishes. This occurs when the gradient for both bands is zero or when both bands are parallel. The
latter generates particularly large JDOS because the condition is valid at many points in k-space.

Generally, the (three-dimensional) energy dispersion E(k) around a three-dimensional critical point
(here developed at k = 0) can be written as

E(k) = E(0) + �
2k2x
2mx

+ �
2k2y
2my

+ �
2k2z
2mz

. (9.43)

The singularities are classified as M0, M1, M2 and M3 with the index being the number of masses mi

in (9.43) that are negative. M0 (M3) describes a minimum (maximum) of the band separation. M1 and
M2 are saddle points. For a two-dimensional k-space there exist M0, M1 and M2 points (minimum,
saddle point andmaximum, respectively). For a one-dimensional k-space, there existM0 andM1 points
(minimum and maximum, respectively). The functional dependence of the JDOS at the critical points
is summarized in Table 9.3. The resulting shape of the dielectric function is visualized in Fig. 9.8.

9.7.2 Direct Transitions

Transitions between states at the band edges at the � point are possible (Fig. 9.9). The k conservation
requires (almost) vertical transitions in the E(k) diagram because the length of the light k vector,
k = 2π/λ, is much smaller than the size of the Brillouin zone |k| ≤ π/a0. The ratio of the lengths of
the k vectors is of the order a0/λ and typically about 10−3 for NIR wavelengths.

For isotropic parabolic bands the band-band transition energy versus wavevector relation is

Ecv(k) = Eg + �
2

2

(
1

m∗
e

+ 1

m∗
h

)
k2 . (9.44)
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3D

2D

1D

M0 M1

M0 M1 M2 M3

M0 M1 M2 M0 M1 M2

M2 M3M0 M1

M0 M1

r i

Fig. 9.8 Shape of the real (left panel) and imaginary (right panel) parts of the dielectric function in the vicinity of
critical points in 3, 2 and 1 dimensions (for labels see Table 9.3). The dashed line in each graph indicates the energy
position of the critical point E0. Adapted from [841]

Fig. 9.9 a Direct optical
transition and b indirect
optical transitions between
valence and conduction
bands. The indirect
transition involves a
phonon with energy �ωph
(index a: phonon
absorption, e: phonon
emission) and wavevector
kph

(a)

E +EC g=EV

k

E

EV

h

(b)

E

k

h ph,a

kph

EV

E =E +EC V g

h ph,e

When the energydependenceof thematrix element is neglected, the absorption coefficient is determined
by the corresponding square-root joint density of states (M0 critical point):

α(E) ∝
√
E − Eg

E
≈∝ √E − Eg . (9.45)

The approximation is valid if the considered energy interval, e.g. around a band edge, is small.
Absorption spectra of (InxGa1−x )2O3 alloy thin films at room temperature are shown in Fig. 9.10a.

The α2 versus photon energy so-called Tauc plot shows a linear dependence with broadening and
additional states at the band edge due to disorder effects. The extrapolation of the linear part yields the
absorption edge (Fig. 9.10b).

Absorption spectra of GaAs are shown in Fig. 9.11a for photon energies close to the band gap at
various temperatures. The rapid increase, typical for direct semiconductors, is obvious. In particular at
low temperatures, however, the absorption lineshape close to the band gap is dominated by an excitonic
feature, discussed in Sect. 9.7.6.

Due to the increasing density of states, the absorption increases with the photon energy (Fig. 9.11c).
At 1.85eV there is a step in the absorption spectrum of GaAs due to the beginning of the contribution
of transitions between the s-o hole band and the conduction band (see E0 +�0 transition in Fig. 9.1b).
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(a) (b)

Fig. 9.10 a Absorption spectra of (InxGa1−x )2O3 alloy thin films on Al2O3, plotted as α2 versus photon energy. b Band
edge determined from extrapolation of linear parts
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Fig. 9.11 a Absorption of GaAs close to the band gap at different temperatures. Adapted from [842]. b High-resolution
absorption spectrum of highly pure GaAs at T = 1.2K in the exciton region. Dashed line is theory without excitonic
correlation. Adapted from [843]. c Absorption spectrum of GaAs at T = 21K in the vicinity of the band gap. Adapted
from [842]
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Fig. 9.12 Optical selection
rules for band–band
transitions in bulk material
for a single photon
transitions and b
two-photon transitions
(with photon energy equal
to half the transition
energy)
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When bands run in parallel, i.e. with the same separation, in the E(k) diagram, the absorption processes
accumulate at the same transition energy. In this way peaks at higher energy in the complex part of the
dielectric function and in the absorption spectrum due to the E1 or E ′

0 transitions originate as shown
in Fig. 9.1.

The selection rules for transitions fromvalence to conduction bandmust take into account the angular
momentum and spin states of the wavefunctions. The optical transitions for circularly polarized light
are shown in Fig. 9.12a, fulfilling the selection rule�m j = ±1. A lifting of the energetic degeneracies
of these states occurs, e.g. bymagnetic fields (cmp. Fig.15.12) or spatial confinement (cmp. Fig. 12.30).
For two-photon absorption (Chap.9.7.14), the selection rule is�m j = ±2 as shown in Fig. 9.12b [844].

We note that in some materials the direct transition between certain bands is forbidden. An example
is SnO2 where the direct transition from the topmost valence band into the lowest conduction band (at
�) is forbidden (cmp. Fig. 9.48). If the matrix element increases linearly with E − Eg, the absorption
coefficient varies like

α(E) ∝ (E − Eg)
3/2 . (9.46)

9.7.3 Indirect Transitions

In an indirect band structure the missing k difference (across the Brillouin zone) between valence- and
conduction-band state needs to be provided by a second quantum. A phonon can provide the necessary
momentum and additionally contributes a small amount of energy �ωph. There are several steps in the
absorption spectrum due to various involved phonons (or combinations of them). At low temperature
(T = 1.6K, Fig. 9.13) phonons can only be generated and the absorption starts at energies above the
band gap. At higher temperatures (typically above 40K [845], Fig. 9.13), acoustical phonons assisting
the optical absorption transition can also be absorbed from the crystal; in this case due to energy
conservation the absorption starts already at an energy Eg − �ωph below the band gap. At even higher
temperatures (> 200K, Fig. 9.13), also optical phonons can be absorbed.

The perturbation calculation yields an absorption coefficient with a quadratic dependence on energy
(9.47a) [846]. Essentially, for the absorption into a specific (empty) conduction band state (with square-
root density of states) various initial (filled) valence band states (also with square-root density of states)
are possible, making the probability depend on the product of theDOS and thus on the energy to the first
power. Integrating over all energy states with energy separation E ± �ωph, yields an E2-dependence.5

5A flat optical phonon dispersion is assumed.
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Fig. 9.13 Absorption edge
of GaP (

√
α versus E) at

various temperatures. The
index ‘e’ (‘a’) indicates
phonon emission
(absorption) during the
optical absorption process.
The theoretical excitonic
gap (EgX) at T = 77K is
indicated. Adapted
from [845]
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Considering the temperature dependent population of the phonon density of states (Bose statistics,
(E.3)) the absorption coefficients for transitions with phonon emission (αe) and phonon absorption
(αa) are:

αe(E) ∝ (E − (Eg + �ωph))
2

1 − exp(−�ωph/kT )
(9.47a)

αa(E) ∝ (E − (Eg − �ωph))
2

exp(�ωph/kT ) − 1
. (9.47b)

The two-particle process is less probable than the direct absorption that only involves one photon. The
strength of indirect absorption close to the band gap is about 10−3 smaller than for the direct transition.

An 11-parameter formula based on terms like (9.47a) can describe the room temperature absorption
spectrum of silicon in the visible with a precision of a few percent [847].

The absorption spectra close to the absorption edge are shown forGaP (Fig. 9.13) and Si (Fig. 9.14a).
According to (9.47a), the plot of

√
α versus energy (Macfarlane–Roberts plot [848]) yields a straight

line beyond the spectral region of phonon effects. The complicated form close to the (indirect) gap
energy is due to the contribution of different phonons. The phonon energies found to contribute to the
silicon absorption edge [849] agree with the TA and TO energy at the X minimum [850] (Fig. 9.14b).
Also multiple phonons can contribute (Fig. 9.13). The momentum conservation can also be achieved
by impurity scattering or electron-electron scattering [851].

We note also that the indirect semiconductors have an optical transition between � valence- and
conduction-band states. However, this transition is at higher energies than the fundamental band gap,
e.g. for Si (Eg = 1.12eV) at 3.4eV (see Fig. 6.9a). In Fig. 9.15, the absorption scheme for indirect and
direct absorption processes starting with an electron at the top of the valence band is shown together
with an experimental absorption spectrum for Ge with the direct transition (�8 → �7) at 0.89eV,
0.136eV above the fundamental band gap.

In Fig. 9.16, the absorption edge of BaTiO3 is shown. An indirect transition with an increase of
(weak) absorption ∝ E2 and an indirect gap of Ei = 2.66eV and a direct transition with an increase
of (strong) absorption ∝ E1/2 and a direct gap of Ed = 3.05eV are observed. These transitions could
be due to holes at the M (indirect gap) and � (direct gap) points (cf. Sect. 6.3.11), respectively.
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(a) (b)

Fig. 9.14 aAbsorption edge of Si at two different temperatures. Adapted from [849]. b Phonon energies in silicon along
[001] obtained from neutron scattering (black: unidentified, green: TA, purple: LA, blue: LO, red: TO). The vertical
grey bar indicates the position of the conduction band minimum, the horizontal grey bars the energies of the phonons
observed at the indirect optical absorption edge. The dark grey overlap areas indicate that TO and TA phonons contribute.
Adapted from [850]
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Fig. 9.15 a Scheme of indirect and direct optical transitions starting at the top of the valence band in Ge. Vertical solid
lines represent the involved photon, the horizontal dashed line the involved phonon. b Experimental absorption spectrum
of Ge (T = 20K). Adapted from [849]

9.7.4 Urbach Tail

Instead of the ideal (E − Eg)
1/2 dependence of the direct band-edge absorption, often an exponential

tail is observed (see Fig. 9.17). This tail is called the Urbach tail [853] and follows the functional
dependence (for E < Eg)

α(E) ∝ exp

(
E − Eg

E0

)
, (9.48)

where E0 is the characteristic width of the absorption edge, the so-called Urbach parameter.
The Urbach tail is attributed to transitions between band tails below the band edges. Such tails

can originate from disorder of the perfect crystal, e.g. from defects or doping, and the fluctuation of
electronic energy bands due to lattice vibrations. The temperature dependence of the Urbach parameter
E0 is thus related to that of the band gap as discussed in [854, 855].
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Fig. 9.16 Absorption of BaTiO3 at room temperature. Experimental data (circles) from [852] with fits (dashed lines)
∝ E2 and ∝ E1/2, respectively
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Fig. 9.17 a Experimental absorption spectrum (circles) of GaAs at room temperature on a semilogarithmic plot. The
exponential tail below the band gap is called the Urbach tail (the dash-dotted line corresponds to E0 = 10.3meV in
(9.48)). The dashed line is the theoretical dependence from (9.45). Adapted from [856]. b Temperature dependence
of Urbach parameter E0 for two GaAs samples. Experimental data for undoped (solid circles) and Si-doped (n =
2 × 1018 cm−3, empty circles) GaAs and theoretical fits (solid lines) with one-phonon model. Adapted from [854]

9.7.5 Amorphous Semiconductors

The sharp features in the dielectric function due to critical points in the band structure of crystalline
semiconductors are washed out in amorphous material. As an example the spectra of the imaginary
part of the dielectric function for crystalline (trigonal) and amorphous selenium are shown in Fig. 9.18.

9.7.6 Excitons

An electron in the conduction band and a hole in the valence band form a hydrogen-like state due to the
mutual Coulomb interaction. Such a state is called an exciton. The center-of-mass motion is separated
and has a dispersion E = �

2

2MK2, where M = me + mh is the total mass and �K is the center-of-mass
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Fig. 9.18 Imaginary part
of the dielectric function of
amorphous (solid line) and
crystalline (trigonal)
selenium (dash-dotted lines
for two different
polarization directions).
From [857]
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Table 9.4 Exciton (Eb
X) and biexciton (E

b
XX, see Sect. 9.7.10) binding energies in various bulk semiconductors. Values

for 10nm GaAs/15nm Al0.3Ga0.7As quantum well (QW) are taken from [861]

Material Eb
X (meV) Eb

XX (meV) Eb
XX/Eb

X

GaAs 4.2

GaAs QW 9.2 2.0 0.22

ZnSe 17 3.5 0.21

GaN 25 5.6 0.22

CdS 27 5.4 0.20

ZnS 37 8.0 0.22

ZnO 59 15 0.25

momentum
K = ke + kh . (9.49)

The relative motion yields hydrogen-like quantized states En ∝ n−2(n≥1):

En
X = −m∗

r

m0

1

ε2r

m0e4

2(4πε0�)2

1

n2
, (9.50)

where m∗
r denotes the reduced effective mass m∗−1

r = m∗−1
e + m∗−1

h . The third factor is the atomic
Rydberg energy (13.6eV). The exciton binding energy Eb

X = −E1
X is scaled by (m∗/m0) ε−2

r ≈ 10−3.
A more detailed theory of excitons beyond the simple hydrogen model presented here, taking into
account the valence-band structure, can be found in [858] for direct and [859] for indirect cubic and in
[860] for wurtzite semiconductors. The exciton binding energies for various semiconductors are listed
in Table 9.4 and shown in Fig. 9.19a versus the band gap.

The radius of the exciton is
rnX = n2

m0

m∗
r

εr aB , (9.51)

where aB = 0.053 nm denotes the hydrogen Bohr radius.6 The Bohr radius of the exciton is aX = r1X
(14.6nm for GaAs, ∼ 2nm for ZnO). The exciton moves with the center-of-mass K-vector through

6Cf. (7.22); an electron bound to a donor can be considered as an exciton with an infinite hole mass.
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Fig. 9.19 a Exciton
binding energy versus band
gap for various
semiconductors. b
Schematic dispersion of
excitonic levels. The
K -vector refers to the
center-of-mass motion
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Fig. 9.20 One-photon (top) and two-photon (bottom) absorption spectra ofCu2Oat T = 4.2K.Arrows denote theoretical
peak positions. Adapted from [864]

the crystal. The complete dispersion is (see Fig. 9.19b)

E = Eg + En
X + �

2

2M
K2 . (9.52)

The oscillator strength of the exciton states decays ∝ n−3. The absorption due to excitons is visible
in Fig. 9.11a for GaAs at low temperatures. If inhomogeneities are present, typically only the n = 1
transition is seen. However, under special conditions also higher transitions of the exciton Rydberg
series are seen (e.g. n = 2 and 3 in Fig. 9.11b).

The exciton concept was introduced first for absorption in Cu2O [862]. The J = 1/2 absorp-
tion spectrum (‘yellow series’) is shown in Fig. 9.20. In this particular material both the valence and
conduction bands have s character, thus the 1s transition of the exciton is forbidden and the np transi-
tions are observed in normal (one-photon) absorption. With two-photon absorption also the s (and d)
transitions can be excited. On a piece of natural Cu2O, the Rydberg series has been measured up to
n = 25 [863] (Fig. 9.21a). The peak energy and the oscillator strength follow the n−2 (Eb

X = 92meV,
Eg = 2.17208eV) and n−3 laws, respectively, expected from a hydrogen model (Fig. 9.21b). The
deviation from the n−3-dependence for the oscillator strength at large n is due to interaction effects of
excitons with large radius at finite exciton density.
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Fig. 9.21 (One photon) Absorption spectrum of Cu2O (thickness 34µm) at T = 1.2K with transitions labelled n =
2 . . . 25. Adapted from [863]

The scattering (unbound) states of the exciton [865] for E > Eg contribute to absorption above the
band gap. The factor by which the absorption spectrum is changed is called the Sommerfeld factor.
For bulk material it is

S(η) = η
exp(η)

sinh(η)
, (9.53)

with η = π[Eb
X/(E − Eg)]1/2. The change of the absorption spectrum due to the Coulomb correlation

is shown in Fig. 9.22. There is a continuous absorption between the bound and unbound states. At the
band gap there is a finite absorption (S(E → Eg) → ∞). The detail to which exciton peaks can be
resolved depends on the spectral broadening.

In Fig. 9.23 the energy separations of the A-, B-, and C-excitons in GaN are shown [540]. Thus, the
ordering of the valence bands depends on the strain state of the semiconductor.

9.7.7 Phonon Broadening

The scattering with phonons and the related dephasing leads to homogeneous broadening �hom of
absorption (and recombination) lines. Acoustic and optical phonons contribute to the broadening
according to the dependence [867]

�hom(T ) = �0 + γAC T + γLO
1

exp(�ωLO/kT ) − 1
, (9.54)

where �ωLO is the optical phonon energy and the last factor is the Bose function (E.24). �0 is a
temperature-independent contribution, �0 = �(T = 0). The increasing broadening with increasing
temperature is obvious, e.g., in absorption spectra (Fig. 9.24a). In Fig. 9.24b experimental data for
GaAs, ZnSe and GaN are assembled. The data have been fitted with (9.54); the resulting phonon
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(a) (b)

(c) (d)

Fig. 9.22 Modification of the absorption edge of a direct transition by excitonic effects for different spectral (Lorentzian)
broadening (∝ (E2 + �2/4)−1), a � = 0.01Eb

X, b � = 0.1Eb
X, c � = Eb

X. d is c in linear scale. Dashed lines are
electron–hole plasma absorption according to (9.45)

Fig. 9.23 Theoretical
dependency (lines) for the
the differences of the
C-line and A-line as well as
B-line and A-line exciton
transition energies in GaN
as a function of the c-axis
strain. Symbols are
experimental data from
[866]. Adapted from [540]

broadening parameters are listed in Table 9.5.7 The optical transitions in polar semiconductors exhibit
stronger coupling to optical phonons. The phonon coupling parameters from different measurements
on GaN are discussed and compared in [870].

7Such parameter can be directly determined from spectroscopic broadening (as in [868]) or a time-resolvedmeasurement
of the decay of the coherent polarization (four-wave mixing) as in [869]. In the latter, the decay constant of the dephasing
T2 is related to the decay constant τ of the FWM-signal by T2 = 2τ for homogeneous broadening. The Fourier transform
of exp−t/(2τ ) is a Lorentzian of the type ∝ ((E − E0)

2 + �2/4)−1 with � = 1/τ being the FWHM.
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(a) (b)

Fig. 9.24 a Absorption spectra of GaN bulk (0.38µm thick epilayer on sapphire) for various temperatures T = 100,
200, 300, 350, 400, 450, and 475K. Adapted from [868] b Homogeneous broadening as a function of temperature,
symbols are experimental data, solid lines are fits, rf. Table 9.5

Table 9.5 Phonon broadening parameters (FWHM) of various bulk semiconductors. Values from fits with (9.54) to
experimental data for GaAs [871], ZnSe [869], GaN [868], ZnO [872] (phonon energy fitted) as shown in Fig. 9.25b

Material �ωLO (meV) �0 (meV) γAC (µeV/K) γLO (meV)

GaAs 36.8 0 4 ± 2 16.8 ± 2

ZnSe 30.5 1.9 0 ± 7 84 ± 8

GaN 92 10 15 ± 4 408 ± 30

ZnO 33 1.2 32 ± 26 96 ± 24

9.7.8 Exciton Polariton

Electrons and holes are particles with spin 1/2. Thus, the exciton can form states with total spin S = 0
(para-exciton, singlet) and S = 1 (ortho-exciton, triplet). The exchange interaction leads to a splitting
of these states, the singlet being the energetically higher. The singlet state splits into the longitudinal
and transverse exciton with respect to the orientation of the polarization carried by the Bloch functions
and the center-of-massmotionK of the exciton. Dipole transitions are only possible for singlet excitons
(bright excitons). The triplet excitons couple only weakly to the electromagnetic field and are thus also
called dark excitons.

The coupling of these states to the electromagnetic field creates new quasi-particles, the exciton
polaritons [873, 874]. The dielectric function of the exciton (with background dielectric constant εb) is

ε(ω) = εb

[
1 + β

1 − (ω2/ωX)2

]
∼= εb

[
1 + β

1 − (ω2/ωT)2 + � K 2/(M ωT)

]
, (9.55)

where β is the oscillator strength and the energy is �ωX = �ωT + �
2 K 2/2M . �ωT is the energy of the

transverse exciton at K = 0. With this dispersion the wave dispersion must be fulfilled, i.e.

c2 k2 = ω2 ε(ω) , (9.56)

where k is the k-vector of the light that needs to be k = K due to momentum conservation. The
dependence of the dielectric function on k is called spatial dispersion [875]. Generally, up to terms in
k2 it is written as
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Table 9.6 Exciton energy (low temperature), LT splitting and exciton polariton oscillator strength for various semicon-
ductors. Values for ZnO from [878], values for GaAs from [879], all other values from [880]

CdS A CdS B ZnO A ZnO B ZnSe GaN A GaN B GaAs

�ωT (eV) 2.5528 2.5681 3.3776 3.3856 2.8019 3.4771 3.4816 1.5153

�LT (meV) 2.2 1.4 1.45 5 1.45 1.06 0.94 0.08

β (10−3) 1.7 1.1 0.9 3.0 1.0 0.6 0.5 0.11

ε(ω) = εb

[
1 + β

1 − (ω2/ω0)2 + D k2

]
. (9.57)

The term k2 with curvature D (for the exciton polariton D = �/(M ωT)) plays a role in particular when
ω2
T − ω2 = 0. For k �= 0 even a cubic material is anisotropic. The dimensionless curvature D̂ = Dk

′2

should fulfill D̂ = �/(Mc) � 1 in order to make k4 terms unimportant. For exciton polaritons8

typically D̂ = �ωT/(m c2) ≈ 2 × 10−5 for �ωT = 1eV and m∗ = 0.1.
From (9.56) together with (9.57) two solutions result:

2ω2 = c2k2 + (1 + β + Dk2)ω2
0 (9.58)

± [−4c2k2(1 + Dk2)ω2
0 + (c2k2 + (1 + β + Dk2)ω2

0)
2
]1/2

.

The two branches are shown schematically in Fig. 9.25a. Depending on the k value they have a photonic
(linear dispersion) or excitonic (quadratic dispersion) character. The anticrossing behavior at k ′ ≈ ωT/c
(for �ωT = 1eV, k ′ ≈ 0.5×10−5 cm−1) creates a bottleneck region in the lower polariton branch. This
name stems from the small emission rate of acoustic phonons (i.e. cooling) in that region, as predicted
in [876] and experimentally found, e.g. in CdS [877]. The polaritons decay into a photon when they hit
the surface. The effect of the oscillator strength of the dispersion is shown in Fig. 9.26 for two-exciton
resonance. In the case of several excitons (9.57) reads

ε(ω) = εb

[
1 +

n∑
i=1

βi

1 − (ω2/ω0,i )2 + Di k2

]
. (9.59)

For k = 0 either ω = 0 (lower polariton branch) or ε(ωL) = 0. For the latter we find from (9.57)

ωL = √1 + β ωT . (9.60)

Therefore, the energy splitting �ELT, mostly denoted as �LT, between the L- and T-exciton energy
given by

�ELT = �(ωL − ωT) =
[√

1 + β − 1
]

�ωT ≈ β �ωT/2 (9.61)

is proportional to the exciton oscillator strength (for experimental values see Table 9.6). We note that
if (D.9) is used for the dielectric function, β in (9.61) needs to be replaced by β/εb.

The effect of spatial dispersion on the reflection at the fundamental exciton resonance is depicted in
Fig. 9.25b. For non-normal incidence an additional feature due to the longitudinal wave is observed for
p-polarization [875]. For a detailed discussion additional effects due to anisotropy in wurtzite crystals,

8The dependence of the optical-phonon energies on k is typically too small to make spatial dispersion effects important.
According to (5.19) D̂ = −(a0ωTO/4c)2 ≈ 4× 10−11 for typical material parameters (lattice constant a0 = 0.5nm, TO
phonon frequency ωTO = 15THz).
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Fig. 9.25 a Schematic dispersion of exciton polaritons. The lower polariton branch (‘LPB’) is at small k photon-like,
at large k exciton-like. The upper branch (‘UPB’) is exciton-like at small k and photon-like at larger k. The limit of the
UPB for k → 0 is the energy of the longitudinal exciton. The dashed lines represent the pure exciton dispersions. b
Theoretical effect of spatial dispersion on the reflectance at the fundamental exciton resonance at normal incidence for
ZnSe material parameters (�ωT =2.8eV, β = 1.0×10−3 and a background dielectric constant of εb = 8.1, damping was
set to � = 10−5ωT). The arrow denotes the position of ωL. The solid (dashed) line is with (without) spatial dispersion
for D̂ = 0.6 × 10−5 (D̂ = 0). Data from [875]
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Fig. 9.26 Schematic polariton dispersion for a two-exciton resonance (curvature of exciton dispersion greatly exag-
gerated, D̂ = 10−2) at ωT,1 = 1 and ωT,2 = 1.5 for three different oscillator strengths a f = 10−3, b f = 10−2, c
f = 10−1. The dashed lines in c represent the pure exciton dispersions

an exciton free layer at the semiconductor surface, additional boundary conditions and damping need
to be considered [881, 882]. The polariton dispersions of ZnO and GaN are shown in Fig. 9.27.

9.7.9 Bound-Exciton Absorption

Excitons can localize at impurities or inhomogeneities. Such excitons are called bound excitons. Here,
the absorption due to such complexes is discussed. The recombination is discussed in Sect. 10.3.2.
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Fig. 9.27 a Exciton polariton dispersion (k ⊥ c) of ZnO with experimental data (T = 1.8K). Solid (dotted) lines are
for polaritons withE ‖ c (E ⊥ c). The dashed lines refer to excitons. Adapted from [883]. b Exciton polariton dispersion
(T = 2K) in GaN (on sapphire) for E ⊥ c. Adapted from [884]

Table 9.7 Index of nitrogen pairs NNn and energy separation �E of bound-exciton transitions from the free-exciton
line for n = 1 . . . 10 and the ‘A’ line

n 1 2 3 4 5 6 7 8 9 10 ∞ (A)

�E
(meV)

143 138 64 39 31 25 22 20 18 17 11

In GaP:N excitons are bound to isoelectronic N impurities (substituting P), resulting in the ‘A’ line
at 2.3171eV (at T = 4.2K).9 The absorption due to A excitons is well resolved in the spectrum
of Fig. 9.28b. At sufficiently high nitrogen doping, there exist nitrogen pairs, i.e. a complex where a
nitrogen impurity has a second nitrogen impurity in the vicinity. The pairs are labeled NNn . It was
believed that the second nitrogen atom is in the nth shell around the first one. However, the proper
level asignment is probably different in the view of modern theory [544]. Also clusters with more
than two nitrogen atoms may exist. NN1 is a prominent level and relates to a N–Ga–N complex
having 12 equivalent sites for the second N atom on the next neighbor anion site. The transitions due
to excitons bound to NNn , as shown in Fig. 9.28a, give a series of lines (see Table 9.7) that fulfill
limn→∞ NNn = A. Although GaP has an indirect band structure, the absorption coefficient of N-
related transitions is large, about 105 cm−1 for a nitrogen doping level of 1019 cm−3.10 This is due to
the fact that the electron spatially localized at the nitrogen isoelectronic trap (Sect. 7.7.9) has a sizeable
k = 0-component of its wave-function (Fig. 7.40), leading to a large transition probability for �-point
holes with an oscillator strength of 0.09 [885].

9The A line is due to excitons with J = 1, resulting of coupling of the electron spin 1/2 with the hole angular momentum
of 3/2. The B-line is a dipole forbidden line due to ‘dark’ excitons with J = 2.
10Also the recombination (Sect. 10.3.2) is efficient and allows green GaP:N and yellow GaAsP:N light emitting diodes.
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Fig. 9.28 a Transmission
spectrum of GaP:N with a
nitrogen concentration of
about 1019 cm−3 at 1.6K
(thickness: 1.1mm). n is
indicated for the first eight
transitions due to excitons
bound to nitrogen pairs.
NNn’ indicate phonon
replica. The ‘A’ line
denotes the position of the
transition due to excitons
bound to a single nitrogen
atom (observable for
samples with low N
doping). The ‘B’ line is
forbidden and due to the
J = 2 exciton. Adapted
from [694]. b Absorption
spectra of N-doped
(NN = 7 × 1018 cm−3) and
intrinsic GaP (T = 2K).
Adapted from [690]
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9.7.10 Biexcitons

Similar to two hydrogen atoms forming a hydrogen molecule, two excitons can also form a bound
complex, the biexciton involving twoelectrons and twoholes. Thebiexcitonbinding energy is defined as

Eb
XX = 2 EX − EXX . (9.62)

Biexcitons are binding in bulk material. Accordingly, the biexciton recombination or absorption occurs
at lower energy than that of the exciton. Values of the biexciton binding energy are listed in Table 9.4
for various semiconductors. The ratio of biexciton and exciton binding energies is fairly constant
about 0.2. In semiconductors with small exciton binding energy, such as GaAs, biexcitons are hard to
observe in bulk material but show up in heterostructures that provide additional carrier confinement
(see also Sect. 14.4.4). While the exciton density increases linearly with external excitation, the density
of biexcitons increases quadratically.

9.7.11 Trions

The complexes ‘eeh’ and ‘ehh’ are called trions. Also, the notation X− and X+ is common. X−
is typically stable in bulk material but hard to observe. In quantum wells or dots, trions are easier
to observe. In quantum dots excitons with higher charge, e.g. X2−, have also been observed (see
Fig. 14.45).
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Fig. 9.29 a Theoretical exchange and correlation energies in units of the exciton Rydberg energy as a function of the
dimensionless variable rs for Ge, Si and a model system (with one isotropic conduction and valence band each). The
solid line is a fit according to (9.64). Adapted from [886]. b Band gap renormalization in terms of the excitonic Rydberg
for various II–VI semiconductors. Solid line is the relation according to (9.64), dashed line is the dependence predicted
in [887] for T = 30K. Data are compiled in [888]

9.7.12 Band Gap Renormalization

The band structure theory has been developed so far for small carrier densities. If the carrier density
is large the interaction of free carriers has to be considered. The first step was exciton formation.
However, at high temperatures (ionization) and at large carrier density (screening) the exciton is not
stable. Exchange and correlation energy leads to a decrease of the optical absorption edge that is called
band gap renormalization (BGR).

An effect due to significant carrier density is to be expected when the density is of the order of the
exciton volume, i.e. n ∼ a−3

B . For aB ∼ 15nm (GaAs) thismeans n ∼ 3×1017cm−3. The dimensionless
radius rs is defined via

4π

3
r3s = 1

n a3B
. (9.63)

The sum of exchange and correlation energies Exc is found to be mostly independent of material
parameters [886] (Fig. 9.29a) and follows the form

Exc = a + b rs
c + d rs + r2s

, (9.64)

with a = −4.8316, b = −5.0879, c = 0.0152 and d = 3.0426. Thus the density dependence of the
band gap at small carrier density is ∝ n1/3. Experimental data for a number of II–VI semiconductors
roughly follow such a dependence (Fig. 9.29b).

In Fig. 9.30, a theoretical calculation of the absorption spectrum of bulk GaAs for various carrier
densities (n=p) [889] is shown.With increasing density, the excitonic resonance broadens and vanishes.
The shape approaches the electron–hole plasma shape. The absorption edge shifts to smaller energies.
At high carrier density, the absorption becomes negative in a spectral range before absorption sets
in. In this spectral region, the material exhibits gain and an incoming light wave is amplified (cmp.
Sect. 10.2.6).
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Fig. 9.30 Absorption of
GaAs (low temperature,
T = 10K) as a function of
the electron–hole density n
(theory). Adapted
from [889]
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Fig. 9.31 a Temperature–density phase diagram of electrons and holes in Ge. The regions of electron–hole gas (EHG)
and liquid (EHL) and the droplet phase are labeled. Solid line is theoretical calculation, symbols are experimental data
from [892]. The dash-dotted line denoted ρsp is the experimentally obtained temperature dependence of the liquid density
due to single-particle excitations. ρexpc and T exp

c denote the experimental critical density and temperature, respectively.
Adapted from [893]. b Photographic image of radiative recombination (at 1.75µmwavelength) from a 300-µm diameter
droplet of electron–hole liquid (EHL) in a stressed (001) Ge disk (diameter 4mm, thickness 1.8mm) at T = 2K. The
stress is applied from the top by a nylon screw along a 〈110〉 direction. Adapted from [894], reprinted with permission,
©1977 APS

9.7.13 Electron–Hole Droplets

At low temperature and high density, electron–hole pairs in Ge and Si can undergo a phase transition
into a liquid state. This electron–hole liquid (EHL) was suggested in [890] and is a Fermi liquid
exhibiting the high conductivity of a metal and the surface and density of a liquid. The condensation is
due to exchange interaction and correlation. The formation is fostered by the band structure of Ge [891]
and the long lifetime of carriers in the indirect band structure. In unstressed Ge typically a cloud of
electron–hole droplets with diameter in theµm range exists. The phase diagram is shown in Fig. 9.31a.
In suitably stressed Ge electron–hole droplets with several hundredµmdiameter form around the point
of maximum shear strain in inhomogeneously strained crystals, as shown in Fig. 9.31b. The pair density
in such a liquid is of the order of 1017 cm−3.

We note that the metallic EHL state hinders observation of the Bose–Einstein condensation (BEC)
of (bosonic) excitons. The light-exciton mass offers a high condensation temperature in the 1K range
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Fig. 9.32 Experimental
two-photon absorption
spectrum of GaAs
(T = 4K) (dots) plotted as
a function of the difference
of the double-photon
energy 2�ω from the GaAs
band edge Eg. The solid
line is a theoretical
calculation, the dashed
lines represent slopes with
exponent 1/2 and 3/2,
respectively. Adapted
from [901]
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(compared to the mK range for atoms). Recent experiments with spatially indirect excitons in coupled
quantum wells lead towards BEC [895, 896]. A sufficiently long lifetime ensures cooling of the
excitons close to the lattice temperature. Another potential candidate for BEC are long-living excitons
(ms-range) in Cu2O [897]. The condensation of polaritons (cf. Sect. 9.7.8) in microcavities to well-
defined regions of k-space has been discussed in [898] and compared to bosonic condensation in
bulk.

9.7.14 Two-Photon Absorption

So far, only absorption processes that involve one photon have been considered. The attenuation of the
intensity I of a light beam (of frequency ω0) along the z direction can be written as

dI

dz
= −α I − β I 2 , (9.65)

where α is due to the (linear) absorption coefficient (and possibly scattering) and β is the two-photon
absorption coefficient. A two-photon process can occur in two steps, e.g. via a midgap level, which is
not considered any further here. Here, we consider two-photon absorption (TPA) via the population of a
state at 2�ω0 higher energy than the initial state with a nonlinear optical process. The TPA coefficient is
related to the nonlinear third-order electric dipole susceptibility tensor [899]χi jkl . Within the two-band
approximation theory predicts [900]

β ∝ (2 �ω0 − Eg
)3/2

. (9.66)

The exponent 3/2 is indeed found experimentally, as shown in Fig. 9.32 for GaAs. The strength of
absorption depends on the relative orientation of the light polarization with respect to the main crys-
tallographic directions, e.g. TPA for polarization along 〈110〉 is about 20% larger than for the 〈100〉
orientation.
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9.8 Impurity Absorption

9.8.1 Shallow Levels

For charge carriers bound to shallow impurities long range Coulomb forces are most important and
they exhibit a hydrogen-like term scheme

En = m∗

m0

1

ε2r

1

n2
× 13.6 eV , (9.67)

with the ionization limit E∞ being the conduction (valence) band edge for donors (acceptors), respec-
tively. They can be excited by light to the nearest band edge. Such absorption is typically in the FIR
region and can be used for photodetectors in this wavelength regime. The optical absorption cross
section of impurity absorption can be related to the carrier capture cross section [588, 589].

The actual transition energies can deviate from (9.67) due to deviation of the potential close to the
impurity from the pure Coulomb potential. Such an effect is known as the chemical shift or central
cell correction (cf. Sect. 7.5.5) and is characteristic of the particular impurity. In GaAs such shifts are
small (∼100µeV) [902].

The term scheme for P inSi is shown inFig. 9.33a. Theground state (1s) is split because of a reduction
of the tetrahedral symmetry due to intervalley coupling. The anisotropic mass at the X-valley in Si
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Fig. 9.33 a Term scheme of phosphorus donor in silicon, all energies in meV. After [903]. b Schematic sequence for
photothermal ionization, here absorption of a photon with �ω = E3p − E1s and subsequent absorption of a phonon with
energy �ωph ≥ E∞ − E3p
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Fig. 9.34 a Far-infrared photoconductivity response (Lyman-type s→p series) of not intentionally doped GaAs with
residual donors Pb, Sn, and Si, NA = 2.6 × 1013 cm−3, ND − NA = 8 × 1012 cm−3. The upper (lower) curve is
for a magnetic field of 0 (1.9)T. Measurement temperature is 4.2K. b Photoconductive response of a (different) GaAs
sample with the same impurities (ND = 1× 1013 cm−3) with (upper curve) and without (lower curve) illumination with
above-bandgap light (B = 1.9T, T = 4.2K). Adapted from [905]

causes the p states (and states with higher orbital angular momentum) to split into p0 and p± states.
Such an effect is absent in a direct semiconductor with an isotropic conduction-band minimum such
as GaAs (Fig. 9.34). Optical transitions between the 1s and various p states can be directly observed
in absorption, e.g. for Si:P in [904]. These transitions are also observed in photoconductivity because
the missing energy to the ionization into the continuum is supplied by a phonon at finite temperature
(photothermal ionization) (Fig. 9.33b) [903]. The splitting of the 2p transition in Fig. 9.34a is the
chemical shift due to different donors incorporated in the GaAs (Si, Sn, and Pb). Peak broadening is
mostly due to Stark broadening due to neighboring charged impurities. The application of a magnetic
field induces Zeeman-like splittings and increases the sharpness of the peaks. The peak width can be
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Fig. 9.35 Low-temperature (T = 1.35K) absorption spectra of highly doped n-typeGaAs:Tewith doping concentrations
as labeled (circles: ND = 2.1×1016 cm−3, stars: 6.7×1014, triangles: 1.0×1015). A sharp photoconductivity spectrum
(in arbitrary units) from low-doped GaAs:Te (crosses, ND = 1.0× 1014 cm−3) is shown for comparison (cf. Fig. 9.34a).
The energy of the 1s→2p transition and the donor binding energy (onset of continuum absorption) are indicated. Adapted
from [906]
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further increased by illuminating the sample with light having a higher energy than the band gap. The
additional charge carriers neutralize charged impurities and allow higher resolution (Fig. 9.34b).

In Fig. 9.35 absorption spectra of highly doped n-type GaAs are shown. For doping concentrations
larger than the critical concentration of∼1×1016 cm−3 (cf. Table 7.6) significant broadening is observed
due to the formation of an impurity band.

9.8.2 Deep Levels

The absorption of deep levels is typically in the infrared. In Fig. 9.36a the possible optical absorption
processes involving the Fe levels in InP (cf. Sect. 7.7.8) during the charge transfer Fe3+ → Fe2+
are shown. These transitions and their fine structure (Fig. 9.36b) have been observed in calorimetric
absorption spectroscopy (CAS) experiments [682].

InFig. 9.37 photoproductivity of Si:Mg is shown.The sharp peaks are due to transitions of interstitial,
singly ionized Mg, Mg+

i [907]. Mg in Si is a double donor [653] (see Sect. 7.7.2). Above the ionization
limit of about 256meV, the peaks are replicated, shifted by the LO phonon energy of 59.1meV.
However, now they rather appear as dips. This behavior is typical for a discrete state interacting with
a continuum, also called Fano resonance[908, 909] with its characteristic lineshape, going below the
continuum level.

The absorption spectra due to various deep acceptors in GaAs are compared in Fig. 9.38. The
density of states in the band increases with k (proportional to

√
E − Ec). The carrier on the impurity is

strongly localized and described with a wave packet centered around �, its k-components decreasing
with increasing k. Thus the maximum absorption will be at an intermediate k-value and an associated
energy larger than the ionization energy Ei (lowest transition to continuum at for k = 0). The lineshapes
in Fig. 9.38 fit to a model with a δ-potential (zero range model, neglecting long range Coulomb terms)
[910] with maximum absorption close to 2 Ei,

α(E) ∝ E1/2
i (E − Ei)

3/2

E3
. (9.68)
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Fig. 9.36 a Schematic band diagramof InPwith levels of Fe impurities in the 3+ and 2+ charge states at low temperature.
All energies are given in eV. The arrows denote the optical transition of a valence-band electron to the Fe center,
Fe3+ + �ω → Fe2+ + h. b Calorimetric absorption spectra (at T = 1.3K) of InP:Fe, [Fe]=5 × 1016 cm−3. Part b
Adapted from [682]
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Fig. 9.37 Photocurrent
spectrum of Si:Mg.
Transitions are due to Mg+

i
from its 1s state to excited
states as labeled and
indicated by vertical lines.
CB denotes the conduction
band edge (ionization
limit). Above the CB edge
(shaded area)
phonon-assisted absorption
occurs (Fano resonances).
For comparison the
absorption spectrum below
CB is shown shifted by the
phonon energy (dashed
line). Above the plot, the
transition mechanisms
(photothermal ionization
and Fano resonance) are
schematically shown.
Adapted from [907]
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Fig. 9.38 Absorption spectra (σ = α/p) due to various deep impurities in GaAs as labeled. The dashed line is a
theoretical lineshape assuming a hole bound to a δ-potential. The energy axis is scaled by the ionization energy. The
kink for Mn at 3.5 Ei ≈ 450meV is due to the onset of absorption into the split-off valence band. Adapted from [314]
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9.9 Absorption in the Presence of Free Charge Carriers

In the presence of charge carriers, various absorption processes can occur. First, the dissipative motion
of carriers leads to infrared absorption, termed the free carrier absorption (Sect. 9.9.1). Filling of a band
with carriers leads to a shift of the band-band absorption edge, the Burstein-Moss shift (Sect. 9.9.2).
Besides the free-carrier absorption, free carriers present in the semiconductor can lead to further
absorption processes with transition energies below the band gap. These processes are due to transitions
within the band structure and can be

• inter-valence band transitions of holes (Sect. 9.9.3),
• phonon-assisted inter-valley transitions of electrons (Sect. 9.9.4),
• phonon-assisted intra-band transitions of electrons (Sect. 9.9.5).

9.9.1 Absorption Coefficient, Plasma Frequency

The absorption due to free carriers in the infrared spectral range (away from phonon resonances) can
be described with the Drude model [911].

A time-dependent electric field accelerates the charge carriers within a band. The excess energy
is subsequently transferred to the lattice via scattering with phonons. A review of the effect of free
carriers on optical properties can be found in [912]. In the relaxation-time approximation energy is
relaxed with a time constant τ . Thus energy is absorbed from the electromagnetic wave and dissipated.
Effectively, this process represents an intra-band excitation.

The complex conductivity (8.37) is given by

σ∗ = σr + iσi = n e2 τ

m∗

(
1

1 + ω2τ 2
+ i

ωτ

1 + ω2τ 2

)
. (9.69)

We note that a static magnetic field introduces birefringence as discussed in more detail in Sect. 15.2.2.
The wave equation for the electric field is

∇2E = εr ε0 μ0 Ë + σ∗ μ0 Ė . (9.70)

For a plane wave ∝ exp[i(kr − ωt)] the wavevector obeys

k = ω

c

√
εr + i

σ∗

ε0 ω
, (9.71)

where c = (ε0μ0)
−1/2 is the velocity of light in vacuum, εr is the background dielectric constant (for

large ω).
The part εFC of the dielectric function due to free carriers is

εFC = i

ε0 ω
σ∗ . (9.72)

The complex index of refraction is

n∗ = nr + iκ =
√

εr + i
σ∗

ε0 ω
. (9.73)
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Taking the square of this equation yields

n2r − κ2 = εr + i
σi

ε0 ω
= εr − n e2

ε0 m∗
τ 2

1 + ω2τ 2
(9.74a)

2 nr κ = σr

ε0ω
= n e2

ε0 ωm∗
τ

1 + ω2τ 2
. (9.74b)

The absorption coefficient is related to κ by (9.9). For the case of higher frequencies, i.e. ωτ  1, the
absorption is

α = n e2

ε0 c nr m∗ τ

1

ω2
∝ λ2 . (9.75)

The absorption decreaseswith increasing frequency likeω−r . The classicalDrude treatment as followed
here results in an exponent of r = 2. This is the case for neutral impurity scattering and also for
small frequencies �ω � EF. A more detailed discussion of the energy dependence of free-carrier
absorption can be found in [913]. Other exponents have been derived for scattering by acoustical
phonons (r = 3/2), LO phonons (r = 5/2) and ionized impurities (r = 7/2). More detailed quantum
mechanical treatments of free-carrier absorption in the presence of impurities and phonons can be
found in [914–916].

For semiconductors free-carrier absorption is particularly important in the mid- and far-infrared
regions when carriers are present due to doping or thermal excitation. In Fig. 9.39a absorption spectra
of n-typeGe for various doping concentrations are shown.The absorption coefficient in the transparency
regime varies proportionally to λ2 as predicted in (9.75). In Fig. 9.39a, the absorption can be seen to
rise for photon energy above 0.7eV due to absorption in the band structure. Electrons are excited from
the valence band across the fundamental band gap into the conduction band (cmp. Sect. 9.7.3), which
is an indirect transition in Ge.

In Fig. 9.39b the absorption coefficient due to free carrier absorption at fixed wavelength is shown
as a function of dopant concentration.11 The slope is slightly overlinear, indicating a weak dependence
τ (n). A sub-linear relation has been found for heavily p-doped GaAs [917].

The index of refraction is given by (also for ωτ  1)

n2r = εr − ne2

ε0m∗ω2
+ κ2 = εr

[
1 −
(ωp

ω

)2]+ ε2r
4n2r

(ωp

ω

)4 1

ω2τ 2
(9.76)

≈ εr

[
1 −
(ωp

ω

)2]
,

where

ωp =
√

n e2

εr ε0 m∗ (9.77)

is the plasma frequency. The approximation is valid for small absorption and when (ωτ )−2 can be
neglected. A graphical representation is given in Fig. 9.40a. For coupling to electromagnetic waves
(still ωτ  1)

ε(ω) = εr

[
1 −
(ωp

ω

)2] = c2 k2

ω2
(9.78)

must be fulfilled. It follows that the dispersion relation in the presence of free carriers (Fig. 9.40b) is

11Even at low temperature, n ≈ ND since ND  Nc (cf. [594] and Sect. 7.5.7).
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(a) (b)

Fig. 9.39 a Optical absorption spectra (at T = 4.2K) of n-type Ge for various As dopant concentrations as labeled. The
arrow denotes the band edge of undoped Ge, the vertical dashed line the energy for which the free-carrier absorption
is measured in part b. The inclined dashed line visualizes the slope ∝ λ2. Curved dashed lines are guides to the eye.
Adapted from [851]. b Free-carrier absorption at λ = 2.4µm as determined from part a of the figure (blue squares) as a
function of As dopant concentration. Additionally data at 300K (red circles) from the same samples are included [851].
The dashed lines visualizes the slope ∝ N 1.25

D

Fig. 9.40 a Dielectric
constant for plasmon
oscillations. Shaded area
represents region of
attenuation (negative ε). b
Dispersion relation (k in
units of ωp/c, ω in units of
ωp) in the presence of free
carriers (9.79, for εr = 1).
Shaded area represents
forbidden frequency range
for propagating solutions.
Dashed line is photon
dispersion ω = ck
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For ω > ωp, ε > 0, thus waves can propagate. For ω < ωp, however, the dielectric constant is negative,
i.e. ε < 0. For such frequencies waves are exponentially damped and cannot propagate or penetrate
a layer. This effect can be used in a plasmon waveguide or in metamaterials (cf. Sect. 19.1.10). The
expected dependence of the plasmon wavelength on the carrier density λp = 2πc/ωp ∝ n−1/2 is
depicted in Fig. 9.41 for GaAs. For semiconductors the plasmon frequency is in the mid-or far-infrared
spectral region.12

12The much higher free-electron density in metals shifts the plasma frequency to the UV, explaining the reflectivity of
metals in the visible and their UV transparency.
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Fig. 9.41 Plasma
wavelength λp for n-type
GaAs with various electron
concentrations due to
different doping levels.
Filled circles: experimental
values, dashed line: n−1/2

dependence; the deviation
is due to nonparabolicity of
the electron mass (cf.
Fig. 9.53b). Data
from [918]

Fig. 9.42 Burstein–Moss
effect at InSb
(Eg = 0.18eV) at room
temperature. Theoretical
dependence and data points
for intrinsic InSb and
5× 1018 cm−3 n-type. Data
from [919]
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9.9.2 Burstein–Moss Shift

In the discussion so far it has been assumed that all target states in the conduction band are empty. In
the presence of free carriers the absorption is modified by the

• change of the distribution function
• many-body effects (band gap renormalization).

The latter is discussed in the next section. For a degenerate electron distribution all states close to
the conduction-band edge are populated. Thus a transition from the valence band cannot take place
into such states. This shift of the absorption edge to higher energies is called the Burstein–Moss shift
[919, 920]. Originally, the Burstein–Moss shift was evoked to explain the absorption shift in InSb with
varying carrier concentration (Fig. 9.42).

k-conserving optical transitions between parabolic hole and electron bands have the dependence

E = Eg + �
2k2

2me
+ �

2k2

2mh
= Eg + �

2k2

2mr
, (9.80)

where mr is the reduced mass of electron and hole. About 4kT below the Fermi level all levels in the
conduction band are populated (Fig. 9.43). Thus the k value at which the absorption starts is given as

k̂ =
√
2me

�2
(EF − EC − 4kT ) . (9.81)
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Fig. 9.43 Principle of
Burstein–Moss shift. Left
panel: Schematic band
structure with completely
filled electron states shown
in grey. The k-vector for
the lowest photon energy
optical absorption process
is indicated as k̂. Right
panel: Electron distribution
function for a degenerate
electron gas with Fermi
level in the conduction
band

EC

k

E

EV

fe

E

EF

EF-4kT

k

Besides the energy shift in the conduction band, the corresponding energy shift in the valence band
�k̂2/(2mh) must be considered. Thus, the Burstein–Moss shift of the absorption edge is

�E = �ω − Eg = (EF − 4kT − EC)

(
1 + me

mh

)
. (9.82)

The relation between n and the Fermi level is given by (7.6). If EF − EC  kT the Fermi integral can

be approximated by 2√
π
2
3

( EF−EC
kT

)3/2
. Using (7.8) for NC, the Burstein–Moss shift can be written for

this case as

�E = n2/3
h2

8me

(
3

π

)2/3 (
1 + me

mh

)
≈ 0.97

h2

8mr
n2/3 . (9.83)

The n2/3 dependence of the energy shift is found, e.g., for CdO13 with different carrier concentrations
(due to different deposition temperature, no intentional doping) [921] and depicted in Fig. 9.44a. Similar
behavior is found for ITO (indium-tin-oxide) thin films, deposited at different sputtering conditions,
leading to different carrier concentrations (9.44b).

9.9.3 Inter-Valenceband Transitions

Transitions within the valence band can occur between three bands, i.e. lh→hh, so→hh, and so→lh,
as schematically depicted in Fig. 9.45. Theoretical treatments have been given in [923, 924]. For
GaAs, such intravalence-band absorption occurs at photon energies close to �0 as shown in Fig. 9.46a
for p-type GaAs:Zn [925]. For p-type GaSb, the absorption coefficient below the fundamental band
gap is found almost entirely due to inter-valence band transitions, as shown in Fig. 9.46b for a hole
concentration of p = 3.2 × 1016 cm−3 [926].

13CdO is an indirect semiconductor, the optical band gap is the energy of the direct transition at the �-point, typically
obtained from extrapolation in the α2 versus energy plot. The indirect transitions involve holes from other points in the
Brillouin zone (cmp. Fig. 6.13).
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(a) (b)

Fig. 9.44 a Burstein–Moss effect in CdO. The linear fit is for Eg = 2.22(8)eV and mr = 0.113(11)me. The dashed
lines indicate the confidence interval of±0.08eV. Adapted from [921]. bBurstein–Moss effect in ITO (indium-tin-oxide)
versus the ’optical’ carrier density determined from the position of the plasma edge. The dashed line is guide to the eye.
Data from [922]
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Fig. 9.45 Schematic optical transitions within the valence band
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Fig. 9.46 a Optical absorption spectrum of GaAs:Zn with p = 2.7 × 1017 cm−3 at T = 84K. The absorption above
the split-off energy �0 is due to the hh/lh → s-o process. Adapted from [925]. a Optical absorption coefficient of GaSb
with p = 3.2 × 1016 cm−3. Experimental data (solid line) and calculation of inter-valence band contribution (squares).
The free carrier contribution is less than 5cm−1 in the considered spectral range. Adapted from [926]
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Fig. 9.47 a Schematic of inter-valley conduction band transitions involving a photon (solid line arrow) and a phonon
(dashed line arrow). b Optical absorption coefficient of InP with n = 1.65 × 1018 cm−3. Experimental data (solid
line) and calculation of inter-valley band contribution (dashed line). The extrapolated free carrier contribution is shown
as dash-dotted line and the difference of experimental absorption and extrapolated free carrier contribution as circles.
Adapted from [927]

9.9.4 Inter-Valley Transitions

Electrons at the conduction band minimum can undergo optical transitions to the same band at a
different point of the Brillouin zone. Such intervalley transition, as sketched in Fig. 9.47a, is phonon-
assisted to fulfill momentum conservation and occurs around the energy difference �E between the
two valleys (cmp. Table 8.4).

For InP with an electron concentration of n = 1.65 × 1018 cm−3, below the fundamental band
edge at 1.4eV, an additional contribution starting around 0.8–0.9eV is found besides the free carrier
absorption (Fig. 9.47b) [927]. Taking into account the filling of the bottom of the conduction band,
an energy separation for the two valleys of �E = 0.90 ± 0.02eV was found for various values
of the electron concentrations. This energy corresponds to the energy difference of conduction band
minima at � and X in InP. The lineshape of this absorption processes can be modeled and fits well the
difference of measured absorption and extrapolated free-carrier absorption spectra. Transitions to the
lower minimum at L (�E = 0.6eV) are not observed, possibly masked by the free-carrier absorption.

9.9.5 Intra-Band Transitions

Phonon-assisted transitions within the lowest conduction band (not to a different valley), as indicated
schematically in Fig. 9.48a for the SnO2 band structure [928], can cause absorption at photon energies
below the fundamental absorption edge. Actually in SnO2, the optical transition across the fundamental
band gap is only weakly dipole-allowed and leads to small absorption coefficient below 100cm−1

directly above the fundamental band gap of about 3.6eV. The strong dipole-allowed transition with
absorption coefficient around 105 cm−1 begins at about 4.3eV and stems from electrons in a lower
valence band [929]. The free-carrier absorption due to transitions within the lowest conduction band
are calculated to dominate below 2.8eV (Fig. 9.48b) and thus can also impact transparency in the
visible spectral range. The calculated slope is close to α ∝ λ3 (cmp. (9.75)), expected from the linear
dispersion of the conduction band away from the �-point [928]. A similar effect with the contribution
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Fig. 9.48 a Band structure of SnO2 and indirect intra-band absorption process; the transition from the topmost valence
band (dashed arrow) is forbidden. b Calculated free-carrier absorption(σ = α/n) for SnO2. The solid and dashed lines
are results including phonon-assisted transitions for two light polarizations. The dotted lines are fits of the Drude model
to the infrared regime. Adapted from [928]

Fig. 9.49 Calculated room
temperature absorption
coefficient Ga2O3 as a
function of energy (for
light polarized along the z
direction) for
undoped/intrinsic material
and three different electron
concentrations as labelled.
Adapted from [930]

of inter-band and intra-band transitions leading to absorption within the band gap transparency regime
has been calculated for Ga2O3 as shown in Fig. 9.49 for various doping levels [930].

9.10 Lattice Absorption

Due to the lack of a dipole moment of the optical phonons, no first order interaction of optical phonons
and (infrared) light exists in the diamond structure for Si and Ge due to crystal structure symmetry
[931]. However, higher order processes contribute to lattice absorption in these materials [932, 933].
E.g., two-photon bands are due to a dipole moment that is of second order in the nuclear displacement.
Strong absorption effects are present for compound semiconductors. A review can be found in [934].

9.10.1 Dielectric Constant

The (relative) dielectric constant (with damping parameter �) in the vicinity of the optical phonon
energies is given by (cf. (9.27))
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Fig. 9.50 Lattice absorption oscillator strength f from (9.86) for various elemental, III–V and II–VI semiconductors
as a function of their ionicity fi (cf. Table 2.1). Dashed line is linear dependence on ionicity for similar (reduced) mass,
dash-dotted lines are guides to the eye for similar ionicity and varying mass

ε(ω) = ε(∞)

(
ω2
TO − ω2 − iω�

ω2
TO − ω2 − iω�

)
. (9.84)

The dispersion relation (without damping) can be rewritten as

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − (ω/ωTO)2
= ε(∞)

[
1 + f

1 − (ω/ωTO)2

]
. (9.85)

Thus the dimensionless oscillator strength (compare with (D.10)) is f = (ε(0)/ε(∞) − 1. With the
LST relation (9.26) the oscillator strength is

f = ε(0) − ε(∞)

ε(∞)
= ω2

LO − ω2
TO

ω2
TO

≈ 2
ωLO − ωTO

ωTO
, (9.86)

and thus proportional to the splitting�LT = ωLO−ωTO between the longitudinal and transverse optical
phonon frequency. The approximation in (9.86) is valid for �LT � ωTO.

The oscillator strength increases with the ionicity, i.e. the electronegativity difference of the atoms
in the base (Fig. 9.50). Additionally, the oscillator strength depends on the reduced mass and the high-
frequency polarizability; this can be seen, e.g., for the series of the Zn compounds that all have similar
ionicity. For the series of the nitrides, the mass effect is small since the reduced mass is dominated
by the light N mass. We refer to Fig. 5.23 for the change of phonon oscillator strength in an (Al,Ga)N
alloy.

9.10.2 Reststrahlenbande

The absorption of electromagnetic radiation by optical phonons is governed by the dielectric function
that has been derived in (9.84). For small damping, i.e. � � �LT, the dielectric constant is negative
between ωTO and ωLO. From εr = n2r − κ2 it follows that κ2 is much larger than n2r . Therefore,
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0 5025
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Fig. 9.51 Far-infrared absorption (linear scale) of GaAs. In the region around 35meV is the reststrahlenbande with high
absorption due to optical phonons. The sharp little peak at 45meV is a LVM, probably from AlGa. Adapted from [935]

the reflectance (9.17) will be close to 1. This energy range is the so-called reststrahlenbande. This
term stems from multiple reflections in this wavelength regime that suppresses neighboring spectral
regions and thus achieves a certain monochromatization in the far-infrared spectral region. Within the
semiconductor the absorption is large in the reststrahlenbande (Fig. 9.51).

9.10.3 Polaritons

The coupled propagation of phonons and electromagnetic radiation is (without phonon damping)
related to the dielectric function given in (9.27),

ε(ω) = ε(∞)

(
ω2
LO − ω2

ω2
TO − ω2

)
= c2 k2

ω2
. (9.87)

There are two branches of propagating waves (real k):

ω2 = 1

2

(
ω2
LO + c2k2

ε(∞)

)
±
√
1

4

(
ω2
LO + c2k2

ε(∞)

)2
−
(
c2k2ω2

TO

ε(∞)

)2
. (9.88)

For k = 0 we find the solutions ω = ωLO and ω = k c/
√

ε(0). For large k we find ω = ωTO

and ω = k c/
√

ε(∞). These solutions are shown in Fig. 9.52. Both branches have a phonon- and a
photon-like part. The coupled state between the phonon and the photon field is called the (phonon-)
polariton.

In the interval [ωTO,ωLO] the wavevector is purely imaginary, i.e. k = ik̃ with real k̃. For this case
there is only one solution that is also depicted in Fig. 9.52,

ω2 = 1

2

(
ω2
LO + c2k̃2

ε(∞)

)
+
√√√√1

4

(
ω2
LO + c2k̃2

ε(∞)

)2

+
(
c2k̃2ω2

TO

ε(∞)

)2

. (9.89)

9.10.4 Phonon–Plasmon Coupling

The coupling of phonons and plasmons in the spectral region of the reststrahlenbande leads to the
development of two new branches, the longitudinal phonon plasmon modes (LPP+ and LPP−), in the
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Fig. 9.52 Dispersion of the polariton. The dotted line displays the dispersion for a purely imaginary wavevector with
the absolute value k

(a) (b)

Fig. 9.53 a Frequency of the coupled longitudinal-phonon plasmon (LPP) modes (lower (upper) polariton branch in
blue (red)) as a function of the plasma frequency. Dashed line shows uncoupled plasmon frequency (ω = ωp), grey area
indicates spectral region between TO and LO modes. b Experimental data on the polariton energies in n-type GaAs with
different carrier concentration ωp ∝ √

n m∗ (9.77). Dashed (dash-dotted) line is plasmon frequency ωp without (with)
consideration of conduction band non-parabolicity (cf. Fig. 6.37b). Data from [918, 936]

common dispersion. The dielectric function is

ε(ω) = ε(∞)

(
1 + ω2

LO − ω2

ω2
TO − ω2

− ω2
p

ω2

)
. (9.90)

For ε(ω) = 0 for k = 0 (coupling to photons) the two solutions ωLPP+ and ωLPP− do not cross as a
function of ωp (Fig. 9.53),

ωLPP± = 1

2

[
ω2
LO + ω2

p ±
√

(ω2
LO + ω2

p)
2 − 4ω2

TO ω2
p

]
. (9.91)

For small plasma frequencies ωLPP+ = ωLO, i.e. the optical phonons couple to the electromagnetic
field without change. Also ωLPP− = ωp. For large carrier density, i.e. ωp  ωLO, we find ωLPP− = ωTO

and ωLPP+ = ωp. Thus, the carriers have effectively screened the electric field of the phonon that had
led to the increase of the TO to the LO frequency.
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