
Chapter 8
Transport

Um über den Temperaturverlauf des Widerstandes Rechenschaft geben zu können,
müssen andere Abweichungen von der strengen Periodizität entscheidend sein,
nämlich diejenigen, welche von den thermischen Eigenschwingungen des Kristalls
herrühren.
In order to be able to account for the temperature dependence of the resistivity, other
deviations from the strict periodicity must be decisive, namely those which result from
the thermal vibrations of the crystal.

F. Bloch, 1928 [61]

Abstract The physics of transport in semiconductors is treated foremost for charge transport. Band
transport and scattering, mobility, low field and high field effects as well as polarons and hopping
transport are covered. A short section mentions ionic transport before heat conduction and coupled
heat and charge transport including thermopower and Peltier effect are discussed.

8.1 Introduction

Charge and heat energy can be transported through the semiconductor in the presence of appropriate
(generalized) forces. Such a force can be an electric field or a temperature gradient. Both transport
phenomena are coupled since electrons transport energy and charge simultaneously through the crystal.
First, we will treat the charge transport as a consequence of a gradient in the Fermi level, then the heat
transport upon a temperature gradient and finally the coupled system, i.e. the Peltier and Seebeck
effects. Detailed treatments of carrier transport can be found in [713, 714].

Practically all important semiconductor devices are based on the transport of charge, such as diode,
transistor, photodetector, solar cell and laser.

Carriers move in the semiconductor driven by a gradient in the Fermi energy. We distinguish

• drift, as a consequence of an electric field E,
• diffusion, as a consequence of a concentration gradient ∇n or ∇ p.

In inhomogeneous semiconductors for which the position of the band edges is a function of position,
another force occurs. This will not be treated here, since later (cf. Chap. 12) it will be included as an
additional, internal electric field.
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In Sects. 8.2–8.5we treat band conductivity, i.e. the transport of charge carriers in extended states, the
conduction and valence bands characterized by an effective mass. Conductivity is then determined by
the carrier concentration (free electrons and holes) and scatteringmechanisms (mobility). In disordered
semiconductors such as amorphous material, the charge transport due to hopping between localized
states close to the Fermi level dominates the conductivity which is discussed in Sect. 8.8.

Many semiconductor properties, such as the carrier concentration and the band gap, depend on the
temperature. Thus, device properties will also depend on temperature. During operation of a device
typically heat is generated, e.g. by Joule heating due to finite resistivity. This heat leads to an increase
of the device temperature that subsequently alters the device performance, mostly for the worse.
Ultimately, the device can be destroyed. Thus cooling of the device, in particular of the active area of the
device, is essential.Mostly the thermalmanagement of device heating limits the achievable performance
(and lifetime) of the device. In high-power devices quite high energy densities can occur, e.g. the facet
of a high-power semiconductor laser has to withstand an energy density beyond 10MWcm−2.

8.2 Conductivity

Under the influence of an electric field the electrons accelerate according to (cf. (6.36))

F = m∗ dv
dt

= �
dk
dt

= q E = −eE . (8.1)

In the following, q denotes a general charge, while e is the (positive) elementary charge. We also
consider an isotropic effective massm∗ at first. After the time δt the k vector of all conduction electrons
(and the center of the Fermi sphere) has been shifted by δk

δk = −eE
�

δt . (8.2)

In the absence of scattering processes this goes on further (similar to an electron in vacuum). This regime
is called ballistic transport. In a (periodic) band structure, the electron will perform a closed cycle as
indicated in Fig. 8.1. Such motion is called a Bloch oscillation. However, in a bulk crystal the period T
of such an oscillation eET/� = 2π/a0 is of the order of 10−10 s for E = 104 V/cm. This time is much
longer than a typical scattering time of 10−14 s. Thus, in bulk material the Bloch electron cannot reach
the zone boundary. However, in artificial superlattices (cf. Chap. 12) with larger periodicity (≈10nm),
high electric fields (≈106 V/cm) and high quality (reduced collision time) such motion is possible. We
note that in the absence of scattering, electrons also perform a periodic oscillation in a magnetic field
(cyclotron motion).

Fig. 8.1 Schematic
representation of a Bloch
oscillation

/a/a
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In a real semiconductor, at finite temperatures, impurities, phonons and defects (finally also the
surface) will contribute to scattering. In the relaxation-time approximation it is assumed that the
probability for a scattering event, similar to friction, is proportional to the (average) carrier velocity.
The average relaxation time τ is introduced via an additional term v̇ = −v/τ that sums up all scattering
events.1 Thus, themaximumvelocity that can be reached in a static electric field is given by (steady-state
velocity)

v = −eE τ

m∗ . (8.3)

The current density per unit area is then linear in the field, i.e. fulfills Ohm’s law

j = n q v = n e2 E τ

m∗ = σ E . (8.4)

The conductivity σ in the relaxation-time approximation is given by

σ = 1

ρ
= n e2 τ

m∗ . (8.5)

In the case of a cylindrically symmetric mass such as for electrons in silicon or germanium, for the
effective mass in (8.5) the effective conductivity mass must be used,

1

m∗
σ

= 1

3

(
2

m t
+ 1

m l

)
. (8.6)

The specific resistivity is the inverse of the conductivity.Metals have a high conductivity (see Table 8.1),
e.g. for Cu at room temperature σ = 5.8 × 105 �−1 cm−1. At low temperatures (4K) the conductivity
is even a factor of 105 higher. The mean free path d = τvF is

d = σm∗vF
n e2

, (8.7)

vF being the Fermi velocity (EF = m∗v2F/2). For copper, d = 3mm at low temperature (and thus
susceptible to the sample geometry) while at room temperature the mean free path is only about 40nm.
However, this becomes an issue when the metal line width and height of interconnects in integrated
circuits approaches this length scale [715] (see Sect. 24.5.5).

In semiconductors, the carrier concentration depends strongly on the temperature. At zero tempera-
ture the conductivity is zero. Also, the scattering processes and thus the relaxation time constant exhibit
a temperature dependence. The conductivity spans a large range from insulating to almost metallic
conduction (see Table 8.1).

8.3 Low-Field Transport

First we consider only small electric fields. The real meaning of this will only become clear in Sect. 8.4
on high-field transport. In the low-field regime the velocity is proportional to the electric field.

1Going beyond the relaxation time approximation is discussed in Appendix J.
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Table 8.1 Conductivity at room temperature for various metals, semiconductors, insulators and liquids

Material σ (�−1 cm−1)

Ag 6.25 × 105

Al 3.6 × 105

Au 4.35 × 105

Cu 5.62 × 105

Fe 1.1 × 105

Pt 1.02 × 105

Ge pure (ND ∼ 1013 cm−3) 10−2

Ge (ND ∼ 1015 cm−3) 1

Ge (ND ∼ 1017 cm−3) 2 × 101

Ge (ND ∼ 1018 cm−3) 2 × 102

Si pure 4.5 × 10−6

Si:As (ND ∼ 3 × 1019 cm−3) 4 × 102

Si:B (NA ∼ 1.5 × 1019 cm−3) 1.2 × 102

GaAs pure 1.4 × 10−7

ZnO:Al (highly doped) ≈1 × 104

Pentacene 10−8 –10−4

SiO2 ≈10−15

Al2O3 ≈10−16

H2O pure 4 × 10−8

Hexane ≈10−18

8.3.1 Mobility

The mobility is defined (scalar terms) as

μ = v

E
. (8.8)

By definition, it is a negative number for electrons and positive for holes. However, the numerical value
is usually given as a positive number for both carrier types. In an intrinsic semiconductor the mobility
is determined by scattering with phonons. Further scattering is introduced by impurities, defects or
alloy disorder. The conductivity is (8.4)

σ = q n μ (8.9)

for each carrier type. Using (8.5) the mobility in the relaxation time approximation is

μ = q τ

m∗ . (8.10)

In the presence of both electrons and holes,

σ = σe + σh = −e n μn + e p μp , (8.11)

where μn and μp are the mobilities for electrons and holes, respectively. These are given by μn =
−e τn/m∗

e and μp = e τp/m∗
h.

As the unit for mobility, usually cm2/Vs is used. While Cu at room temperature has a mobility
of 35cm2/Vs, semiconductors can have much higher values. In two-dimensional electron gases (cf.
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Table 8.2 Mobilities of electrons and holes at room temperature for various semiconductors

Material −μn (cm2/Vs) μp (cm2/Vs)

Si 1300 500

Ge 4500 3500

GaAs 8800 400

GaN 300 180

InSb 77000 750

InAs 33000 460

InP 4600 150

ZnO 230 8

Chap.12), the mobility can reach several 107 cm2/Vs at low temperature (Fig. 12.37). In bulk semi-
conductors with small band gap, a high electron mobility is caused by its small effective mass. Some
typical values are given in Table 8.2.

8.3.2 Microscopic Scattering Processes

The relaxation time constant summarizes all scatteringmechanisms. If the relaxation times τi of various
processes are independent, the Matthiesen rule can be used to obtain the mobility (μi = q τi/m∗)

1

μ
=

∑
i

1

μi
. (8.12)

A more detailed book keeping is provided within the framework of the Boltzmann transport theory
(Appendix J).

The various scattering mechanisms have quite different temperature dependences such that the
mobility is a rather complicated function of temperature. In [716] the mechanisms determining the low
and high-field transport properties of (cubic) semiconductors are reviewed. A schematic overview of
the various carrier scattering processes discussed in the following is shown in Fig. 8.2.

8.3.3 Ionized Impurity Scattering

Theoretically, this problem is treated similar to Rutherford scattering. A screened Coulomb potential
is assumed, as the scattering potential

V (r) = − Z e

4πε0εr

1

r
exp

(
− r

lD

)
, (8.13)

where lD is the screening length. The problem has been treated classically by Conwell and Weisskopf
[717] and quantum mechanically by Brooks [718] and Herring. An expression for the mobility that
encompasses the Conwell–Weisskopf and Brooks–Herring results is derived in [719]. Further details
are given in [720, 721]. For the mobility it is found that
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Fig. 8.2 Scheme of microscopic carrier scattering mechanisms

μion.imp. = 27/2(4πε0εr)
2

π3/2 Z2 e3
√
m∗

(kT )3/2

Nion

1

ln(1 + b) − 1/(1 + 1/b)
, (8.14)

with b = 4(k/ lD)2 = 8m∗E (lD/�)2. In the Thomas-Fermi screening model

l2D = 4π
e2

ε0εr
N (EF) =

(
3

π

)1/3 4m∗e2

ε0εr�2
n1/3 . (8.15)

The formula (8.14) is valid only for b � 1, i.e. small carrier densities. A similar formula from [720] is

μion.imp. = 128
√
2π (ε0εr)

2 (kT )3/2

m∗1/2 Z2 Nion e3

[
ln

24m∗ ε0εr (kT )2

n e2 �2

]−1

. (8.16)

For large ionized impurity (and carrier) density (b � 1), the mobility is given by [555]

μion.imp. = 4 e

31/3 π2/3 h
n−2/3 , (8.17)

the value of the pre-factor being about 3 × 1014 (Vs)−1.
The scattering timedepends like τ ∝ (E/kT )s on the kinetic energy; formoderate orweak scattering

s = 3/2, for very strong scattering, s = −1/2 [714].
For typical substitutional impurities, the charge of the scattering center is |Z | = 1; in oxides, oxygen

vacancies may have Z = 2. At high impurity densities, impurity clusters may form with |Z | > 1; this
will have a strong influence on the scattering rate since it proportional to Z2. The decrease of mobility
for ND > 1020 cm−3 (Fig. 8.3a) is attributed to such effect which can be described with an effective
impurity clustering charge ZD (Fig. 8.3b) [722, 723].
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Fig. 8.3 a Electron mobility in highly doped silicon. Experimental data (symbols) from various sources and modeling
with ionized impurity scattering with (solid line) and without (dashed line) considering impurity clustering. b Effective
impurity cluster charge ZD. Adapted from [722]

8.3.4 Deformation Potential Scattering

Acoustic phonons with small wavevector, i.e. a wavelength large compared to the unit cell, can have
TA or LA character. The TA phonons represent a shear wave (with zero divergence), the LA phonons
are a compression wave (with zero rotation). The LA is a plane wave of displacement δR parallel to
the k-vector q,

δR = A sin (q · R − ωt) . (8.18)

The strain tensor is given by

εi j = 1

2

(
qi A j + q j Ai

)
cos (qR − ωt) . (8.19)

It has a diagonal form εi j = qiA j for q and ω → 0. Therefore, the LA phonon creates an oscillatory
volume dilatation (and compression) with amplitude q ·A. This volumemodulation affects the position
of the band edges. For the conduction-band edge the energy change is related to the volume change by
the hydrostatic deformation potential Eac.def. = V∂EC/∂V . Since the modulation is small compared
to the energy of the charge carriers, it is mostly an elastic scattering process. The Hamilton operator
for the LA scattering is

Ĥ = Eac.def. (q · A) . (8.20)

The size of the LA amplitude is given by the number of phonons in the mode that is given by the Bose–
Einstein distribution, Nph(�ω) = [exp(�ω

kT )]−1. The mobility due to acoustic deformation potential
scattering is found to be

μac.def. = 2
√
2π e �

4 cl
3m∗5/2 E2

ac.def.

(kT )−3/2 , (8.21)

where cl = ρcLAs , ρ being the density and cs being the sound velocity. The scattering time increases
like τ ∝ E−1/2 with the kinetic energy [714].

The acoustical deformation potential scattering is important at high temperatures. It is dominating
in nonpolar semiconductors (Ge, Si) at high temperatures (typically at and above room temperature).
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8.3.5 Piezoelectric Potential Scattering

In piezoelectric crystals (see Sect. 16.4), i.e. crystals that show an electric polarization upon strain,
certain acoustic phonons lead to piezoelectric fields. In GaAs, with 〈111〉 being the piezoelectric
directions, this is the case for shear waves. In strongly ionic crystals, e.g. II–VI semiconductors, the
piezoelectric scattering can be stronger than the deformation potential scattering. The mobility due to
piezoelectric potential scattering is

μpz.el. = 16
√
2π

3

� ε0εr

m∗3/2 e K 2
(kT )−1/2 , (8.22)

with K = e2p/cl
ε0εr+e2p/cl

, ep being the piezoelectric coefficient.

8.3.6 Polar Optical Scattering

LOphonons are connectedwith an electric field antiparallel to the displacement (9.29). In the scattering
mechanism the absorbed or emitted phonon energy �ω0 is comparable to the thermal energy of the
carriers. Therefore, the scattering is inelastic and the relaxation-time approximation does not work. The
general transport theory is complicated. If the temperature is low compared to the Debye temperature,
T � �D

μpol.opt. = e

2m∗ α ω0
exp

(
�D

T

)
, (8.23)

where α = 1
137

√
m∗c2
2k�D

(
1

ε(∞)
− 1

ε(0)

)
is the dimensionless polar constant.

8.3.7 Dislocation Scattering

Dislocations can contain charge centers and thus act as scattering centers citeyou. This has been first
demonstrated for n-Ge crystals that have been deformed [725, 726]. The deformation has introduced
acceptor-type defects reducing the mobility in particular at low temperatures (similar to ionized impu-
rity scattering). The mobility due to dislocation scattering in an n-type semiconductor is given by [727,
728]

μdisl. = 30
√
2π ε2 d2 (kT )3/2

Ndisl e3 f 2 LD
√
m∗ ∝

√
n

Ndisl
T , (8.24)

d being the average distance of acceptor centers along the dislocation line, f their occupation rate, Ndisl

the area density of dislocations and LD = (εkT/(e2n))1/2 the Debye screening length. The relation
μ ∝ √

n/Ndisl has been confirmed for various n-type GaN samples [729].
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(a) (b)

Fig. 8.4 a Electronic barrier (�Eb) for (hole) transport at a grain boundary (GB). b Average hole mobility in poly-
silicon, experimental data (symbols) and theoretical model (solid line). The dependence for monocrystalline silicon is
shown for comparison as dashed line. Adapted from [730]

8.3.8 Grain Boundary Scattering

The lowering of mobility due to transport across grain boundaries is an important effect in polycrys-
tallinematerials, such as poly-silicon for solar cells or thin film transistors [730–733]. Grain boundaries
contain electronic traps whose filling depends on the doping of the bulk of the grains. Charges will be
trapped in the grain boundaries and a depletion layer will be created.2 At low doping the grains are
fully depleted and all free carriers are trapped in the grain boundaries. This means low conductivity,
however, no electronic barrier to transport exists. At intermediate doping, traps are partially filled and
the partial depletion of the grain leads to the creation of an electronic barrier�Eb (Fig. 8.4a) hindering
transport since it must be overcome via thermionic emission. At high doping the traps are completely
filled and the barrier vanishes again. Accordingly the mobility goes through a minimum as a function
of the doping concentration (Fig. 8.4b) [730]. In [734] these data have been modeled with a 20nm
grain size, the value found in [730] from TEM analysis.

The expression for the limitation of the mobility due to scattering at grain boundaries is given by
[733, 735]

μGB = e LG√
8m∗πk

T−1/2 exp

(
−�Eb

kT

)
, (8.25)

where LG is the grain size.

8.3.9 Alloy Scattering

The random population of lattice sites represents disorder from a perfectly periodic lattice. The charge
carrier mobility in an alloy AxB1−x due to scattering in this potential is proportional to the alloy
scattering potential �U [590],

μalloy = 2 e �

3πm∗ � x (1 − x) (�U )2

kT

n

[
1 + exp(EF/kT )

]
, (8.26)

2The following arguments may only be followed once the concept of depletion layers and band bending is understood,
see Sect. 21.2.1.
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(a) (b)

Fig. 8.5 aTemperature dependence of the electronmobility in n-dopedGe (for various doping levels from ND ≈ 1018 for
sample A to 1013 cm−3 for sample F in steps of a factor of ten). Dashed line indicates T−3/2 dependence of deformation
potential scattering, solid lines are guides to the eye. Adapted from [594]. bμn(T ) for n-typeGaAs (ND ≈ 5×1013 cm−3,
NA ≈ 2 × 1013 cm−3). Solid lines are theoretical mobilities for various scattering mechanisms and combined mobility
according to (8.12). Adapted from [736]

�(x) being the volume of the unit cell over which the alloy-scattering potential is effective. Such effect
is present in any alloy such as InxGa1−xAs [591] of AlxGa1−xN [592]. For the latter material, see also
the following section.

8.3.10 Dipole Scattering

In alloys of polar semiconductors (Chap.16), i.e. lower-symmetric (non-cubic) semiconductorswith an
electric polarization, the additional potential due to the random variation of the polarization introduces
an additional scattering mechanism, the so-called dipole scattering [592]. Dipole scattering originally
has been studied in the context of scattering in highly compensated semiconductors due to ionized
donor-acceptor pairs [593].

8.3.11 Temperature Dependence

The sumof all scattering processes leads to a fairly complicated temperature dependence of themobility
μ(T ). In covalent semiconductors (Si, Ge) the most important processes are the ionized impurity
scattering (μ ∝ T 3/2) at low temperatures and the deformation potential scattering (μ ∝ T−3/2) at high
temperatures (Fig. 8.5a). In polar crystals (e.g. GaAs) at high temperatures the polar optical scattering
is dominant (Fig. 8.5b).

In Fig. 8.6 the electron mobility of bulk and thin-film ZnO is compared. Since ZnO is polar the
mobility at room temperature is limited by polar optical phonon scattering. In the thin film, grain-
boundary scattering (Sect. 8.3.8) additionally occurs and limits the mobility.

In Fig. 8.7 the temperature dependence of the mobility is depicted for an alloy of polar semicon-
ductors, namely Al0.25Ga0.75N. The contributions of alloy scattering and dipole scattering determine
the mobility [592].
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(a) (b)

Fig. 8.6 Temperature dependence of the electron mobility in n-type a bulk ZnO and b a PLD-grown ZnO thin film on
sapphire. In the latter, grain-boundary scattering is limiting the mobility. Squares are experimental data, solid lines are
theoretical mobilities for various scattering mechanisms and combined mobility according to (8.12). Experimental data
from [737]

Fig. 8.7 Calculated
temperature dependence of
the electron mobility in
n-type Al0.25Ga0.75N,
(ND = 5 × 1017 cm−3).
PO: polar optic scattering,
PE: piezoelectric
scattering, ADP: acoustic
deformation potential
scattering. Adapted
from [592]

Since the carrier concentration increases with increasing temperature and the mobility decreases,
the conductivity has a maximum, typically around 70K (see Fig. 8.8). At very high temperature, when
intrinsic conduction starts, σ shows a strong increase due to the increase in n.

At low temperature, the disorder due to doping (random positions of the impurity atoms) leads to a
temperature driven metal–insulator transition as depicted in Fig. 8.21.

8.3.12 Doping Dependence

The mobility decreases with increasing dopant concentration as already shown in Figs. 8.3 and 8.5a. In
Fig. 8.9a the low doping limit is due to deformation potential scattering; the decrease with doping is due
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(a) (b)

Fig. 8.8 a Carrier concentration and b conductivity of n-type Ge as a function of temperature. The doping level varies
from ND ≈ 1013 to 1018 (samples A–F as in Fig. 8.5a where the mobility of the same samples is shown). The dashed
lines are for intrinsic Ge. The solid lines are guides to the eye. Adapted from [594]

Fig. 8.9 a Electron mobility in Si:P at room temperature over a wide range of carrier concentrations. b Electron mobility
in Si:P and hole mobility in Si:B for various high carrier concentrations. Adapted from [739]

to ionized impurity scattering. At high doping level, it becomes more important at room temperature
than (acoustical or optical) phonon scattering [738]. The mobility of carriers in n- and p-type silicon
with very high carrier concentrations is depicted in Fig. 8.9b.

Thus, for bulk material high carrier density and high mobility are contrary targets and cannot be
achieved simultaneously. A solution will be provided with the concept of modulation doping where
the dopants and the (two-dimensional) carrier gas will be spatially separated in a heterostructure (cf.
Sect. 12.3.4).

At high doping, the substitutional character of the impurities may be lost and secondary phases
can arise, e.g. as observed for highly doped ZnO:Ga, exhibiting octahedral coordination of gallium
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Fig. 8.10 Conductivity of
B-doped diamond as a
function of temperature.
Adapted from [746]

in a parasitic ZnGa2O4 spinel phase for [Ga]=4% [632]. The onset of such segregation phenomena is
accompanied with the decrease of mobility and conductivity.

8.3.13 Superconductivity

It has been found that highly doped semiconductors do not only behave like metals in the sense that
the carrier concentration is largely independent of temperature but that they can also exhibit supercon-
ductivity. Theoretical and early experimental investigations suggested the possibility of such behavior
[740–743] even when the electron concentration is much smaller than one per atom. Experimentally,
robust superconductivity in semiconductors has been foundmore recently for a number of semiconduc-
tors [744, 745], namely boron-doped diamond (C:B) [746] (Fig. 8.10), Si:B [747] and Ge:Ga [748].
The preparation of superconducting semiconductors with critical temperature above 1K typically
involves hyperdoping with impurity concentrations of several atomic percent. The detailed physics of
these materials, such as the superconductor type (type-II behavior was found for C:B) or the electron
coupling mechanism (generally, phonon-assisted pairing is assumed), are still under debate.

Another type of superconducting semiconductor structure are twisted monolayers in Van-der-Waals
heterostructures for particular values of twist angle and carrier concentration (cf. Sect. 13.3).

8.3.14 Piezoresistivity

The dependence of resistivity on stress or strain is known as piezoresistive effect, first described in
[749]. It is a consequence of the modification of the band structure upon stress and the change of
effective masses (Sect. 6.12.2). In a cubic material, the resistivity ρi for transport in cartesian direction
i changes compared to the unstrained state in a phenomenological description according to

�ρi

ρi
= πi j σ j , (8.27)

where π is the piezoresistivity tensor (8.28) and the σ j form the six-component stress tensor (5.55),
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Fig. 8.11 Piezoresistive coefficient for current parallel (perpendicular) to the stress πl as blue lines (πt , red lines) for
uniaxially stressed Si (001) at room temperature, a for p-type Si, b for n-type Si. The upper (lower) halves of the graphs
show positive (negative) values of the piezoresistive coefficient, i.e. resistivity increases (decreases) with tensile stress.
The solid circle indicates the value of |π| = 10−9 Pa−1, the dashed circle half that value. Adapted from [752]

Table 8.3 Piezoresistivity coefficients (in 10−11 Pa−1) for Si, Ge and GaAs at room temperature

Material ρ (Ω cm) π11 π12 π44 References

p-Si 7.8 6.6 −1.1 138.1 [749]

n-Si 11.7 −102.2 53.4 −13.6 [749]

p-Ge (Ge:Ga) 15.0 −10.6 5.0 98.6 [749]

n-Ge (Ge:As) 9.9 −4.7 −5.0 −137.9 [749]

p-GaAs ∼10−3 −12.0 −0.6 46 [753]

n-GaAs ∼10−3 −3.2 −5.4 −2.5 [753, 754]

π =

⎛
⎜⎜⎜⎜⎜⎜⎝

π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.28)

Values for the piezoelectric coefficients are given in Table 8.3 for Si, Ge and GaAs.
The piezoelectric effect has been discussed in detail [750] and modeled for p-type Si [751].We shall

only give a simple example which is particularly relevant for advanced CMOS design (Sect. 24.5.5); the
directional dependence of the piezoresistive coefficient of silicon is shown for uniaxial stress within
in the (001) plane in Fig. 8.11. Uniaxial tensile stress increases hole resistivity along 〈110〉 stress
directions, compressive stress thus increases hole conductivity.

8.4 High-Field Transport

In the case of small electric fields the scattering events are elastic. The drift velocity is linearly pro-
portional to the electric field. The average thermal energy is close to its thermal value 3kT/2 and
the carriers are close to their band edges (Fig. 8.12a). The scattering efficiency, however, is reduced
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(a) (b) (c)

Fig. 8.12 Distribution of electrons in silicon in momentum space (cmp. Fig. 6.35c) for electric fields of a 10kV/cm, b
102 kV/cm and c 103 kV/cm. Adapted from [756]

already at moderate fields. Then, the electron temperature [755] becomes larger than the lattice temper-
ature. With increasing electrical field the carriers can gain more and more energy and will on average
populate higher states, assuming a non-Boltzmann (and non-Fermi) statistical distribution [756]. The
electron distribution in k-space is depicted for silicon for three different electric fields in Fig. 8.12b,c.
Hot carriers suffer additional scattering processes that are discussed in the following, namely optical
phonon emission, intervalley scattering and impact ionization.

8.4.1 Drift-Saturation Velocity

If the carrier energy is large enough it can transfer energy to the lattice by the emission of an optical
phonon. This mechanism is very efficient and limits the maximum drift velocity. Such behavior is
non-ohmic. The limiting value for the drift velocity is termed the drift-saturation velocity. It is given
by [757]

vs =
√

8

3π

√
�ωLO

m∗ . (8.29)

This relation can be obtained from an energy-balance consideration. The energy gain per unit time in
the electric field is equal to the energy loss by the emission of an optical phonon.

q v · E = �ωLO

τ
, (8.30)

where τ is the typical relaxation time constant for LO phonon emission. Together with (8.3) we find
(8.30) except for the pre-factor, which is close to 1. The exact pre-factor results from a quantum-
mechanical treatment. For Ge the drift-saturation velocity at room temperature is 6×106 cm/s, for Si it
is 1× 107 cm/s (Fig. 8.13a). The carrier velocity also depends on the crystallographic direction [758].

8.4.2 Negative Differential Resistivity

In GaAs, the initially linear regime (constant mobility) saturates at a maximum drift velocity of about
2 × 107 cm/s for about 3kV/cm; for higher fields, a reduction in drift velocity (with increasing field!)
is present (1.2 × 107 cm/s at 10kV/cm, 0.6 × 107 cm/s at 200kV/cm), as shown in Fig. 8.13a. This
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Fig. 8.13 Drift velocity at room temperature as a function of applied electric field for a high-purity Si, Ge, and GaAs
on a double-logarithmic plot and b on linear plots for Si [759], Ge [760], GaAs [676], InP [761], (In, Ga)As [762], GaN
and ZnO [763]

Table 8.4 Material parameters for multi-valley bandstructure of GaAs and InP. �E denotes the energetic separation of
the two lowest valleys of the conduction band, Ethr the threshold field for NDR and vP the peak velocity (at Ethr). Most
values from [766]

Material Lower valley (�) Upper valley (L)

Eg
(eV)

�E
(eV)

Ethr
(kV/cm)

vP
(107 cm/s)

m∗
(m0)

μn
(cm2/Vs)

m∗
(m0)

μn
(cm2/Vs)

GaAs 1.42 0.36 3.2 2.2 0.068 ≈8000 1.2 ≈180

InP 1.35 0.53 10.5 2.5 0.08 ≈5000 0.9 ≈100

regime, above the threshold field of Ethr = 3.2kV/cm in GaAs, is called negative differential resistivity
(NDR) and was predicted in [764]. This phenomenon can be used in microwave oscillators, e.g. the
Gunn element (Sect. 21.5.11).

The effect occurs in a multi-valley band structure (see Fig. 8.14, for values cf. Table 8.4), e.g. in
GaAs or InP, when the carrier energy is high enough to scatter (Fig. 8.14c,d) from the � minimum
(small mass and high mobility) into the L valley (large mass and low mobility) [765].

The temperature dependence of the saturation velocity is shown in Fig. 8.15. With increasing tem-
perature the saturation velocity decreases since the coupling with the lattice becomes stronger.

8.4.3 Velocity Overshoot

When the electric field is switched on, the carriers are at first in the � minimum (Fig. 8.14a). Only
after a few scattering processes are they scattered into the L minimum. This means that in the first
moments transport occurs with the higher mobility of the lowest minimum (Fig. 8.14e). The velocity is
then larger than the (steady-state) saturation velocity in a dc field. This phenomenon is called velocity
overshoot and is a purely dynamic effect (Fig. 8.16). Velocity overshoot in GaN is discussed in [769].
It is an important effect in small transistors.



8.4 High-Field Transport 239

Fig. 8.14 Charge-carrier distribution in a multi-valley band structure (e.g. GaAs, InP) for a zero, b small (E < Ea),
c intermediate and d large (E > Eb) field strength. The situation shown in e is reached temporarily during velocity
overshoot (see also Fig. 8.16)

Fig. 8.15 Temperature
dependence of the
saturation velocity for Si
(following vs = vs0 (1 +
0.8 exp(T/600 K ))−1 with
vs0 = 2.4 × 107 cm/s from
[759]) and GaAs [676,
767, 768]

8.4.4 Impact Ionization

If the energy gain in the field is large enough to generate an electron–hole pair, the phenomenon of
impact ionization occurs. The kinetic energy is∝ v2. Momentum and energy conservation apply. Thus,
at small energies (close to the threshold for impact ionization) the vectors are short and collinear to
fulfill momentum conservation. At higher energy, larger angles between the velocity vectors of the
impact partners can also occur. If the process is started by an electron (Fig. 8.17a) the threshold energy
is given by [770]

E thr
e =

(
1 + me

me + mhh

)
Eg . (8.31)

If the process starts with a heavy hole, the threshold [770],
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Fig. 8.16 Time
dependence of the electron
velocity at room
temperature upon a
step-like electric field
(40kV/cm) for GaAs
(dash-dotted line), InP
(dashed line) and
In0.53Ga0.47As (solid line)
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Fig. 8.17 Electron and
hole transitions for impact
ionization close to the
threshold energy.
Ionization is triggered by a
an electron and b a split-off
hole of velocity vi
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E thr
hh =

(
1 + mhh

me + mhh

)
Eg , (8.32)

is larger because of the larger hole mass.
The threshold for impact ionization triggered by a split-off hole (shown schematically in Fig. 8.17b)

is [771]

E thr
h =

(
1 + mso (1 − �0/Eg)

2mhh + me − mso

)
Eg . (8.33)
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Fig. 8.18 Impact
ionization rate as a function
of primary carrier energy
for electrons (solid line)
and holes (dashed line) in
silicon at room
temperature. The curves
are fit to results from a
Monte-Carlo simulation.
Adapted from [772, 773]
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Thus so-holes have typically the smaller threshold.3 At energies where impact ionization occurs, non-
parabolicities are typically important, thus (8.31)–(8.33) are only indicative. The threshold behavior
and the dependence of the scattering rate as a function of the primary carrier energy in Si, calculated
considering the detailed band structure, is shown in Fig. 8.18.

The generation rate G of electron–hole pairs during impact ionization is given by

G = αn n vn + αp p vp , (8.34)

where αn is the electron ionization coefficient. It describes the generation of electron–hole pairs per
incoming electron per unit length. αp denotes the hole ionization coefficient. The coefficients depend
strongly on the applied electric field. They are shown in Fig. 8.19. They also depend on the crystallo-
graphic direction.

The impact ionization initiated by electrons and holes in silicon has been calculated considering the
full band structure using a Monte Carlo technique in [772] and [773], respectively. In both cases the
impact ionization rate is anisotropic for excess energies smaller than 3eV and become isotropic above.
The average energies at the moment of generation of secondary generated carriers depends linearly on
the primary electron or hole energy.

The energy dependence of the electron initiated impact ionization rate has been calculated for GaAs,
GaN and ZnS considering details and anisotropy of the band structure in [774]. The rates averaged over
the Brillouin zone are compared in Fig. 8.20. Because of the large band gap of GaN, impact ionization
can only be generated by electrons in higher conduction bands. The sharp increase of ionization rate for
GaN around 5.75eV correlates with a large valence band DOS from hole states at the zone boundary.

8.5 High-Frequency Transport

The above consideration pertained to dc (or slowly varying) fields. Now, we consider an ac field. It
accelerates the carriers but at the same time the dissipative force in the relaxation-time approximation
is present, i.e. (for electrons)

m∗v̇ = −eE − m∗ v
τ

. (8.35)

3Assuming mso = me, me � mhh and �0 � Eg, E thr
so /E thr

e ≈ 1 − (me/mhh)(1 + �/Eg)/2 < 1.
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Fig. 8.19 Impact
ionization rates for
electrons and holes as a
function of the inverse
electric field for Si, Ge and
other compound
semiconductors at 300K.
Adapted from [574]

Fig. 8.20 Averaged rates
for electron initiated impact
ionization in GaAs (circles)
and GaN (squares).
Adapted from [774]

For a harmonic field E ∝ exp(−iωt) the complex conductivity (j = σE = nqv) is

σ = n e2 τ

m∗
1

1 − iωτ
= n e2

m∗
i

ω + iγ
, (8.36)

with γ = 1/τ being the damping constant. Splitting into real and imaginary parts yields

σ = n e2 τ

m∗

(
1

1 + ω2τ 2
+ i

ωτ

1 + ω2τ 2

)
. (8.37)

For small frequencies (ω → 0) the dc conductivity from (8.5) is recovered, i.e. σ = ne2τ/m∗. For
high frequencies (ωτ � 1)

σ = n e2 τ

m∗

(
1

ω2τ 2
+ i

1

ωτ

)
. (8.38)
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Fig. 8.21 Zero
temperature conductivity of
Si:P for various (donor)
doping concentrations.
Experimental data
(symbols) and guide to the
eye (dashed line). Adapted
from [781]
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8.6 Impurity Band Transport

In Sect. 7.5.7, the formation of an impurity band in the presence of high doping and overlap of impu-
rity wave functions was discussed. The hopping (tunneling) transport of carriers from impurity to
impurity leads to an additional transport channel termed ’impurity band conduction’[775–777]. The
phenomenon has been found for many doped semiconductors, among them more recently GaAs:Mn
[778] or Ga2O3:Sn [779] where at low temperatures a constant carrier concentration is attributed to
the impurity band conduction effect.

The random distribution of dopants essentially makes a doped semiconductor a disordered system.
The physics of electronic states in disordered systems has been reviewed in [780]. A metal–insulator
transition is observed at a certain value of doping (NP = 3.8 × 1018 cm−3), as shown in Fig. 8.21 for
Si:P [781]. For a certain value of disorder all states become localized (Anderson localization [782,
783], cmp. Sect. 8.9).

8.7 Polarons

In an ionic lattice, the electron polarizes the ions and causes a change of their equilibrium position.
Depending on the severity of this effect, the lattice polarization leads to a modification of carrier
(electron or hole) mass during band transport (Sect. 8.7.1) (large polarons) or the lattice deformation is
so strong that it leads to carrier localization on the length scale of the lattice constant. Such self-trapped
carriers are termed small polarons and discusssed in Sect. 8.7.1. Reviews are given in [784, 785].

8.7.1 Large Polarons

When the electron moves through the ionic crystal and must drag an ion displacement with it, the
effective electron mass changes to the ‘polaron mass’ mp,4

4For the calculation, many-particle theory and techniques are needed; the best solution is still given by Feynman’s path
integral calculation [786–788].
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Table 8.5 Fröhlich coupling constant α for various semiconductors. Data from [165]

GaSb GaAs GaP GaN InSb InAs InP InN

0.025 0.068 0.201 0.48 0.022 0.045 0.15 0.24

3C-SiC ZnO ZnS ZnSe ZnTe CdS CdSe CdTe

0.26 1.19 0.63 0.43 0.33 0.51 0.46 0.35

mp = m∗
(
1 + α

6
+ 0.025α2 + · · ·

)
, (8.39)

for α ≤ 1, withm∗ being the band mass as defined in Sect. 6.9.2 and α the Fröhlich coupling constant5

α = 1

2

e2

�

√
2m∗

�ωLO

(
1

ε∞
− 1

ε0

)
. (8.40)

This process it called the polaronic effect and requires additional energy [786, 789]. Often, the polaron
mass is given as mp = m∗/(1 − α/6) which is the result of perturbation theory [789] and an approxi-
mation to (8.39) for small α.

For large coupling parameter, α � 1, the polaron mass is given by [787]

mp = m∗ 16

81π4
α4 . (8.41)

The energy of the electron is lowered due to the interaction with the lattice. The energy E0 for k = 0
is given, relative to the uncoupled case, by

E0 = − (
α + 0.0098α2 + · · · ) �ω0 , α ≤ 1 (8.42a)

E0 = − (
2.83 + 0.106α2)

�ω0 , α � 1 (8.42b)

Numerical results are reported in [790].
Polarons in semiconductors are typically ‘large’ or Fröhlich-type polarons, i.e. the coupling constant

is small (Table 8.5). The dressing with phonons (as the ion displacement is called in a quantum-
mechanical picture) is then only a perturbative effect and the number of phonons per electron (≈α/2)
is small. If α becomes large (α > 1, α ∼ 6), as is the case for strongly ionic crystals such as
alkali halides, the polaron becomes localized by the electron–phonon interaction6 and hopping occurs
infrequently from site to site.

8.7.2 Small Polarons

In a polaron, the charge carrier (electron or hole) sits in a potential well resulting from the ionic
displacements it created. In some materials, the shape and strength of this potential well is such that
the charge is confined to a volume of approximately one unit cell or less. In this case, the polaron is

5This constant is part of the matrix element in the Hamiltonian of the electron–phonon interaction and is related to the
electric field created by LO phonons, as given in (9.29).
6One can think about it in the way that the electron strongly polarizes the lattice and digs itself a potential hole out of
which it can no longer move.
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Fig. 8.22 Hole from Nb
acceptor localized on Ti
site (small polaron) in rutile
TiO2. Adapted from [793]

Fig. 8.23 Simulated and
experimental TEM images
of β-Ga2O3 in (101)
projection. The arrow
denotes the position of a
polaron. Adapted
from [792]

simulation experiment

(101)

called a small polaron. An example of a hole polaron in rutile TiO2:Nb is depicted in Fig. 8.22. In
oxides often the hole from an acceptor is bound to oxygen, e.g. in BaTiO3:Na, as reviewed in [791]. In
Fig. 8.23 the lattice relaxation due to a hole bound to oxygen in the monoclinc unit cell of β-Ga2O3 is
depicted directly using aberration corrected TEM. The bonding of the hole to the oxygen atom breaks
the bond to a Ga atom which moves by 0.1nm from its equilibrium position [792].

A proper theoretical analysis of a small polaron requires ab initio techniques that account for the
motion of each atom in the few unit cells nearest the electron.7

The transport of small polarons occurs generally via thermally-activated hopping (cmp. Sect. 8.8).
Under certain conditions the following mobilities for drift and Hall effect have been given [784]:

μd ∝ T−1 exp(−W/(2kT )) , (8.43)

μH ∝ T−1/2 exp(−W/(6kT )) , (8.44)

W being the polaron binding energy. Generally, materials with small polaron transport exhibit high
carrier density, often due to structural defects, and low mobility.

8.8 Hopping Transport

Disordered solids such as amorphous semiconductors, films containing quantum dots or material with
many defects are characterized by a large density of localized states which can form band tails or a
large density of states within the band gap. Hopping conduction is the tunneling between localized
states and has been treated with various models [795–797].

7This paragraph has been taken from the concise tutorial by S.J.F. Byrnes [794].
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Fig. 8.24 Temperature
dependence of the planar
resistance for Si films
deposited at room
temperature. Solid line is
linear fit with
T0 = 8 × 107 K according
to (8.45) (s = 1/4).
Adapted from [798]
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A commonly observed phenomenon is the variable range hopping with a conductivity given by

σ = σ0 exp
(−(T0/T )s

)
(8.45)

with s = 1/4. Such law is fulfilled for amorphous silicon (Fig. 8.24). Mott has derived [799] the
exponent s = 1/4 using the following argument: The probability p to hop from one localized site to
another is proportional to

p ∝ exp(−2αR − W/kT ) . (8.46)

The first term stems from the probability to find the electron within radius R from its initial site, α
being the decay constant of its wave function, �(r) ∝ exp(−α r). The second term is the Boltzmann
factor for bridging the energy mismatch W between localized states with a phonon-assisted process,
assuming a low temperature limit (kT � W ). There is a trade-off between hopping to levels closer in
energy but spatially further away (on average), preferred at low temperature and the hopping to energy
levels with larger W but spatially closer at higher temperatures. Thus the hopping range changes with
temperature, giving the mechanism its name.

D(EF) shall be the (constant) density of localized states around the Fermi level. Within a radius
R, there is on average one state of energy between 0 and W (R) when (for three-dimensional bulk
material)

W (R) = 1

D(EF) (4π/3) R3
. (8.47)

Substituting (8.47) in (8.45) and searching for the maximum yields the most probable hopping distance

R ≈ (α kT D(EF))
−1/4 , (8.48)

showing again, the varying range of hopping with temperature. Thus we find for T0 in (8.45),

T0 ≈ α3

k D(EF)
. (8.49)

Other types of hopping mechanisms are the Efros–Shklovskii variable range hopping (s = 1/2),
emerging for an energy dependent density of states D(E) ∝ (E − EF)

2 due to Coulomb interaction
between hopping sites [800], or the next neighbor hopping (s = 1).
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Fig. 8.25 Temperature
dependence of conductivity
of a hydrogenated
amorphous Si thin film,
plotted as ln ξ vs. ln T
(8.50). Solid lines are linear
fits for constant s according
to (8.50) as labelled.
Adapted from [801]
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Fig. 8.26 Schematic
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From (8.45) one can rewrite for ξ = d(ln σ(T ))/d ln T ,

ln ξ = ln s + s ln T0 − s ln T . (8.50)

Thus in a plot of ln ξ vs. ln T , the exponent s can be determined from the slope. As can be seen in
Fig. 8.25, for the conductivity of a hydrogenated amorphous silicon thin film the transition of hopping
mechanism from Efros–Shklovskii variable range hopping (s ≈ 1/2) to next neighbor hopping (s ≈ 1)
takes place around T = 220K, as discussed in detail in [801].

8.9 Transport in Amorphous Semiconductors

Many models have been presented for the carrier transport in amorphous semiconductors [203]. The
most important concept is that of amobility edge, an energy separating localized from delocalized states
[547, 548, 802]. This is schematically depicted in Fig. 8.26. The carrier transport between localized
states is mediated via tunneling (hopping) which has been described in the previous section (Sect. 8.8).
The localization of carriers in random lattices has been treated by Anderson [782] and reviewed in
[780]. If the degree of disorder surpasses a certain value, diffusion is suppressed (at T = 0) and
conductivity vanishes altogether (Anderson metal–insulator transition).
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The transport in delocalized states is similar to band transport. The conductivity (for electrons) is
given as

σ = −e
∫ ∞

EC

De(E)μe(E) fe(E) dE . (8.51)

If the Fermi energy is close to the middle of the gap, pinned to deep states, the Fermi-Dirac distribution
can be replaced by the Boltzmann factor. Assuming a constant density of states and mobility for the
delocalized states,

σ = −e De(EC)μe(EC) kT exp

(
EC − EF

kT

)
. (8.52)

Charge carriers from localized states in the tails can be thermally excited into delocalized states and
contribute to conductivity (thermally activated hopping). The mobility then contains an exponential
thermal activation term [203].

8.10 Ionic Transport

Ionic transport is the movement of ions upon application of a voltage. Here, we discuss only solid
electrolytes. The transport can include the motion of one or several of the constituents of the lattice
and the transport of other ions (e.g. hydrogen ions (protons), oxygen ions) through the crystal. Related
to this is the diffusive ionic movement of impurities or defects through the crystal (cmp. Sect. 4.2.3).
Ionic conduction of the lattice constituents under dc voltage will eventually destroy the crystal.

In typical semiconductors like silicon or gallium arsenide, the conductivity is entirely due to elec-
tronic conduction. A typical solid electrolyte is zirconia (ZrO2) doped with yttria, so-called yttria-
stabilized zirconia (YSZ) that takes on a cubic fluorite lattice (see Sect. 3.4.8). It can conduct oxygen
ions via the mobility of oxygen vacancies for use in solid-oxide fuel cells (SOFC) [803]. The con-
ductivity is about 0.01S/cm at a temperature around 1000K, almost entirely due to ionic transport.
Doping with calcium oxide results in an oxygen conductor that is used in oxygen sensors in automo-
biles (lambda sensor). The ionic conductivity can be significantly increased, compared to bulkmaterial,
along interfaces [804, 805].

Other typical solid electrolytes are copper iodide (CuI) [568] and also AgI. In the high temperature
cubic phase (α-polymorph), the iodide ions form a fairly rigid cubic framework and the metal ions are
mobile; the copper diffusion pathways have been discussed [806, 807]. The temperature dependence
of conductivity of CuI is shown in Fig. 8.27.

8.11 Diffusion

A gradient of a particle concentration n leads to a particle current proportional to −∇n. This diffusion
law (Fick’s law) corresponds microscopically to a random walk. The gradients of the semiconductor
carrier densities ∇n or ∇ p thus lead to electron and hole currents, respectively:

jn = eDn∇n (8.53a)

jp = −eDp∇ p . (8.53b)

The coefficients Dn and Dp are called the electron and hole diffusion coefficient, respectively. Thus
the total electron and hole currents in the presence of an electric field E and diffusion are
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Fig. 8.27 Total (circles)
and electronic (squares)
conductivity of CuI
coexisting with copper.
Filled (empty) symbols
refer to polycrystalline
(single crystal) samples.
The different structural
phases (α (cubic), β
(wurtzite), γ (zincblende))
are indicated by shaded
areas as labeled. Dashed
lines are guides to the eye.
Adapted from [808]
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jn = −eμnn E + eDn ∇n (8.54a)

jp = eμp pE − eDp ∇ p . (8.54b)

This relation can also be deduced more generally from the gradient of the Fermi level as

jn = −eμnn E − nμn ∇EF (8.55a)

jp = eμp pE − pμp ∇EF . (8.55b)

Using (7.6) and (7.7) for the concentrations (valid also in the case of degeneracy) and using
dFj (x)/dx = Fj−1(x) we obtain

jn = −eμnn E − kTμn
F1/2(η)

F−1/2(η)
∇n (8.56a)

jp = eμp pE − kTμp
F1/2(ζ)

F−1/2(ζ)
∇ p , (8.56b)

with η = (EF−EC)/kT and ζ = −(EF−EV)/kT . If the pre-factor of the density gradient is identified
as the diffusion coefficient we find the (generalized) so-called ‘Einstein relations’ (β = e/(kT )) [608,
809]:

Dn = −β−1μn
F1/2(η)

F−1/2(η)
(8.57a)

Dp = β−1μp
F1/2(ζ)

F−1/2(ζ)
. (8.57b)

The effect of non-parabolicity has been included in [810].
Useful analytical approximations have been discussed in [811]. We note that, e.g., (8.57a) can also

be written as [812, 813]

Dn = −β−1μn n
∂η

∂n
. (8.58)
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In the case of nondegeneracy, i.e. when the Fermi level is within the band gap and not closer than
about 4kT to the band edges, η = ln(n/NC). Then ∂η/∂n = 1/n, and the equation simplifies to
D = (kT/q)μ, i.e. the ‘regular’ Einstein-relations,

Dn = −β−1μn (8.59a)

Dp = β−1μp . (8.59b)

In this case, (8.54a,b) read

jn = −eμnn E − kTμn ∇n (8.60a)

jp = eμp pE − kTμp ∇ p . (8.60b)

We recall that both diffusion coefficients are positive numbers, since μn is negative. Generally, the
diffusion coefficient depends on the density. A Taylor series of the Fermi integral yields

Dn = −β−1μn

[
1 + 0.35355

(
n

NC

)
− 9.9 × 10−3

(
n

NC

)2

+ · · ·
]

. (8.61)

8.12 Continuity Equation

The balance equation for the charge is called the continuity equation. The temporal change of the charge
in a volume element is given by the divergence of the current and any source (generation rate G), e.g.
an external excitation, or drain (recombination rate U ). Details about recombination mechanisms are
discussed in Chap. 10. Thus, we have

∂n

∂t
= Gn −Un − 1

q
∇· jn = Gn −Un + 1

e
∇· jn (8.62a)

∂ p

∂t
= Gp −Up − 1

e
∇· jp . (8.62b)

In the case of nondegeneracy we find, using (8.54ab)

∂n

∂t
= Gn −Un − μnn ∇· E − μn E∇n + Dn�n (8.63a)

∂ p

∂t
= Gp −Up − μp p∇· E − μp E∇ p + Dp�p . (8.63b)

In the case of zero electric field these read

∂n

∂t
= Gn −Un + Dn�n (8.64a)

∂ p

∂t
= Gp −Up + Dp�p , (8.64b)

and if the stationary case also applies:
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Dn�n = −Gn +Un (8.65a)

Dp�p = −Gp +Up . (8.65b)

8.13 Heat Conduction

We consider here the heat transport [814] due to a temperature gradient. The heat flow q, i.e. energy
per unit area per time in the direction q̂, is proportional to the local gradient of temperature. The
proportionality constant κ is called, heat conductivity,

q = −κ ∇T . (8.66)

In crystals, the heat conductivity can depend on the direction and thus κ is generally a tensor of rank 2.
In the following, κwill be considered as a scalar quantity. The quite generally validWiedemann–Franz
law connects the thermal and electrical conductivities

κ = π2

3

(
k

e

)2

Tσ . (8.67)

The balance (continuity) equation for the heat energy Q is

∇· q = −∂Q

∂t
= − ρC

∂T

∂t
+ A , (8.68)

where ρ denotes the density of the solid and C the heat capacity. A denotes a source or drain of heat,
e.g. an external excitation. Combining (8.66) and (8.68), we obtain the equation for heat conductivity

�T = ρC

κ

∂T

∂t
− A

κ
, (8.69)

which simply reads �T = 0 for a stationary situation without sources.
The random mixture of various atoms in natural elements represents a perturbation of the perfectly

periodic lattice. Since the mass of the nuclei varies, in particular lattice vibrations will be perturbed.
Thus we expect an effect on the heat conductivity. In Fig. 8.28, the thermal conductivity of crystals
from natural Ge and enriched 74Ge are compared [815], the latter having, as expected, the higher heat
conductivity, i.e. less scattering. The T 3-dependence of the heat conductivity at low temperature has
been attributed to scattering of phonons at the sample boundary [816]. The thermal conductivity of
isotopically pure 28Si thin films has been measured to be 60% greater than natural silicon at room
temperature and at least 40% greater at 100◦C, a typical chip operating temperature [817, 818].

8.14 Coupled Heat and Charge Transport

The standard effect of coupled charge and heat transport is that a current heats its conductor via Joule
heating. However, more intricate use of thermoelectric effects can also be employed to cool certain
areas of a device. For further details see [819, 820].

For the analysis of coupled charge and heat transport we first sum the electric field and the concen-
tration gradient to a new field Ê = E + ∇EF/e. Then, the heat flow and charge current are
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Fig. 8.28 Thermal
conductivity of Ge vs.
temperature. The enriched
Ge consists of 96% 74Ge
while the natural isotope
mix is 20% 70Ge, 27%
72Ge, 8% 73Ge, 27% 74Ge
and 8% 76Ge. The dashed
line shows a κ ∝ T 3

dependence at low
temperatures. Adapted
from [815]
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j = σ Ê + L ∇T (8.70)

q = M Ê + N ∇T , (8.71)

where Ê and ∇T are the stimulators for the currents. From the experimental point of view there is
interest to express the equations in j and∇T since these quantities aremeasurable.With newcoefficients
they read

Ê = ρ j + S ∇T (8.72)

q = � j − κ ∇T , (8.73)

where ρ, S and � are the specific resistance, thermoelectric power and Peltier coefficient (transported
energy per unit charge), respectively. The relations with the coefficients σ, L , M , and N are given by

ρ = 1

σ
(8.74a)

S = − L

σ
(8.74b)

� = M

σ
(8.74c)

κ = ML

σ
− N . (8.74d)

8.14.1 Thermopower and Seebeck Effect

A semiconductor shall have two ends at different temperatures T2 and T1 and a temperature gradient
in between in an open circuit, i.e. j = 0. Then a field Ê = S ∇T and a voltage U = S/(T2 − T1) will
arise. This effect is called the thermoelectric or Seebeck effect. S is termed the Seebeck coefficient or
the thermoelectric power, often also denoted as Q in the literature. The voltage can be measured and
used to determine the temperature at one end if the temperature at the other end is known, forming
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Fig. 8.29 a Seebeck coefficient S for n- and p-doped germanium. Experimental data (symbols) and theory (lines). NA −
ND is 5.7×1015 cm−3 (white circles), 1.7×1017 cm−3 (grey) and 7.2×1018 cm−3 (black); ND−NA is 3.3×1015 cm−3

(white squares), 1.1 × 1017 cm−3 (grey) and 6.2 × 1017 cm−3 (black). Adapted from [821]. b Thermoelectric force �

of lowly doped n- and p-silicon as a function of temperature. Solid line is from simple model calculation and symbols
represent data from silicon samples with the approximate doping of circles: 1 × 1015 cm−3 B, 2 × 1014 cm−3 donors,
squares: 4 × 1014 cm−3 P, 9 × 1013 cm−3 acceptors. Adapted from [822]

a thermometer. The Seebeck coefficient is positive if the electric field is in the same direction as the
temperature gradient.

A famous relation from irreversible thermodynamics connects it to the Peltier coefficient via

S = �

T
. (8.75)

The Seebeck coefficient is related to the energy transport by charge carriers. The heat (energy) flow is
obviously from the hot to the cold end (assuming here T2 > T1), so is the flow of charge carriers. In a
simple picture, if the energy is carried by (hot) holes, the current (by definition the direction of positive
charge carriers) is from the hot to the cold end (2 → 1); if the energy flow is carried by electrons, the
current flows from the cold to the hot end (1 → 2). Accordingly, energy transport by electrons and
holes gives rise to different signs of the thermoelectric coefficient (Fig. 8.29). If the cold (unheated)
substrate is grounded, the sign of the voltage at a hot solder tip pressed (carefully) on the surface of
the semiconductor yields the conductivity type, n-type (p-type) for a negative (positive) voltage.

However, the semiconductor should not be heated so strongly that intrinsic conduction arises. In this
case the conductivity and the thermoelectric power is determined by the carrier type with the higher
mobility; typically, and for the case of silicon shown in Fig. 8.29, these are the electrons thus yielding
a negative Seebeck coefficient in the intrinsic regime.

For band conduction the thermopower (J.29) is given for electrons (Sn) and holes (Sp) by [823] (for
a derivation see Appendix J.4)

Sn = −k

e

(
EC − EF

kT
+ AC

)
(8.76a)

Sp = k

e

(
EF − EV

kT
+ AV

)
, (8.76b)

where Ai are constants (J.31a) depending on the energy dependence of the density of states and the
mobility. The sign of the thermopower tells whether conduction takes place above (negative sign) or
below (positive sign) the Fermi level.
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Fig. 8.30 a Thermoelectric power S of highly doped n-type silicon as a function of temperature.Circles are experimental
data and dashed lines guides to the eye. The approximate doping of the samples is white: 2.7 × 1019 cm−3 As, grey:
2.2 × 1018 cm−3 As, black: 1.1 × 1018 cm−3 As and 1.0 × 1018 cm−3 B with ND − ND = 1.25 × 1017 cm−3 at room
temperature. Adapted from [822]. b Thermopower of doped n-type silicon at room temperature as a function of doping
concentration. Experimental data (symbols) from [822] and theory (solid line) from [824]

If the Fermi level is fixed and both electrons and holes contribute (two-band conduction), the
thermopower is (evaluating (J.32), b = σn/σp and the gap center energy EM = (EC − EV)/2)

S = k

e

(
1 − b

1 + b

Eg

2 kT
+ EF − EM

kT
+ AV − b AC

1 + b

)
. (8.77)

In the case of intrinsic conduction from (7.18) EF − EM = (kT/2) ln(NV/NC).
The thermoelectric power from some highly doped n-type silicon samples is depicted in Fig. 8.30a.

At low temperature the (low) conductivity is due to conduction in a donor impurity band (cmp.
Sect. 7.5.7). At high compensation of about 90% (grey data points in Fig. 8.30a), the band is only 10%
filled and acts like a valence band with positive thermopower at sufficiently low temperature when the
free carrier density is small.Without compensation, the thermopower remains negative since the almost
completely filled impurity band acts conduction band like. The dependence of thermopower on doping
has been simulated in [824] (Fig. 8.30); the decrease with increasing doping is mostly attributed to the
reduced mobility due to ionized impurity scattering. The increase of thermopower at low temperatures
is due to the phonon-drag effect which is discussed for the samples from [822] in [825].

As a figure of merit for the production of thermoelectric power the ZT -value is used, ZT =
σ S2 T/κ.

8.14.2 Peltier Effect

In a semiconductor with a temperature difference at its ends a current flow will be allowed now (short
circuit). The current leads via the charge transport also to a heat (or energy) transport. This effect is
called the Peltier effect. The Peltier coefficient is negative (positive) for electrons (holes). The total
amount of energy P that is transported consists of the generation term and the loss due to transport:

P = j · Ê − ∇· q . (8.78)

With (8.72) and (8.73) we find
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Fig. 8.31 Schematic
Peltier cooler. The heat
sinks (grey) and the cold
junction (black) on the left
are metals that make ohmic
contacts with the
semiconductors. The
current flow is such that
electrons move through the
n-type semiconductor from
right to left

p-type
heat
sink

T

n-type
heat
sink

j

j

P = j · j
σ

+ S j ·∇T − �∇· q + κ �T . (8.79)

The first term is Joule heating, the second term is Thomson heating. The third exists only when carriers
are generated or when they recombine. The fourth term is the heat conduction. In the Thomson term
S j ·∇T heat is generated in an n-type semiconductor if j and∇T are in the same direction. This means
that electrons that move from the hotter to the colder part transfer energy to the lattice. The effect
can be used to construct a thermoelectric cooler, as shown in Fig. 8.31, that generates a temperature
difference due to a current flow. For optimal performance σ should be large to prevent excess Joule
heating and κ should be small such that the generated temperature difference is not rapidly equalized.
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