
Chapter 7
Electronic Defect States

Über Halbleiter sollte man nicht arbeiten, das ist eine Schweinerei, wer weiß ob es
überhaupt Halbleiter gibt.
One should not work on semiconductors. They are a mess. Who knows whether
semiconductors even exist.

W. Pauli, 1931[554]

Abstract After the carrier statistics for intrinsic conduction and general doping principles, donors
and acceptors, compensation and high doping effects are treated in detail. The concept of quasi-Fermi
levels is introduced. Finally for deep levels and their thermodynamics general remarks and several
examples are given.

7.1 Introduction

One cm3 of a semiconductor contains about 5 × 1022 atoms. It is practically impossible to achieve
perfect purity. Typical low concentrations of impurity atoms are in the 1012 − 1013 cm−3 regime. Such
a concentration corresponds to a purity of 10−10, corresponding to about one alien in the world’s
human population. In the beginning of semiconductor research the semiconductors were so impure
that the actual semiconducting properties could only be used inefficiently. Nowadays, thanks to large
improvements in high-purity chemistry, the most common semiconductors, in particular silicon, can be
made so pure that the residual impurity concentration plays no role in the physical properties. However,
the most important technological step for semiconductors is doping, the controlled incorporation of
impurities, in order to manage the semiconductor’s conductivity. Typical impurity concentrations used
in doping are 1015 − 1020 cm−3. A milestone in the understanding of doping and the spreading of
semiconductor technology was the 1950 textbook by Shockley [555].

7.2 Carrier Concentration

Generally, the density of electrons in the conduction band is given by

n =
∞∫

EC

De(E) fe(E) dE , (7.1)

© Springer Nature Switzerland AG 2021
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-51569-0_7

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51569-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-51569-0_7


180 7 Electronic Defect States

and accordingly the density of holes in the valence band is

p =
EV∫

−∞
Dh(E) fh(E) dE . (7.2)

The energy of the top of the valence band is denoted by EV, the bottom of the conduction band as
EC. We assume here parabolic band edges, i.e. effective masses mh and me for holes and electrons,
respectively. The density of states (per volume) in the conduction band De and valence bands Dh is
given by (6.74) and (6.75).

The statistical distribution function for electrons is denoted by fe is given in thermodynamical
equilibrium by the Fermi-Dirac distribution, (E.22),

fe(E) = 1

exp
( E−EF

kT

) + 1
. (7.3)

The distribution function for holes is fh = 1 − fe,

fh(E) = 1 − 1

exp
( E−EF

kT

) + 1
= 1

exp
(− E−EF

kT

) + 1
. (7.4)

If several hole bands (hh, lh, so) are considered, the same distribution is valid for all hole bands in
thermal equilibrium.

If the Boltzmann distribution (E.23) is a good approximation, the carrier distribution is called
nondegenerate. If the Fermi-Dirac distribution needs to be invoked, the carrier ensemble is called
degenerate. If the Fermi level is within the band, the ensemble is highly degenerate.

If the Boltzmann approximation (E.23) cannot be applied, i.e. at high temperatures or for very small
band gaps, the integral over Df cannot be analytically evaluated. In this case the Fermi integral is
needed that is defined1 as

Fn(x) = 2√
π

∞∫

0

yn

1 + exp(y − x)
dy . (7.5)

In the present case of bulk materials n = 1/2. For large negative argument, i.e. x < 0 and |x | � 1,
F1/2(x) ≈ exp(x), which is the Boltzmann approximation. F1/2(0) = 0.765 . . . ≈ 3/4. For large
argument, i.e. x � 1, F1/2(x) ≈ (2/

√
π)(2/3)x3/2. Such fairly simple approximations are plotted in

Fig. 7.1 in comparison with the Fermi integral. For computations, analytical [556–559] or numerical
approximations [560, 561] are used.

The derivative of the Fermi integral is given by F ′
n(x) = nFn−1(x), n > 0. For n = 0, i.e. a

two-dimensional system, the integral can be executed explicitly, F0(x) = (2/
√

π) ln[1 + exp(x)].
With the Fermi integral F1/2 (7.10) and (7.11) the free-carrier densities can be written as

n = NC F1/2

(
EF − EC

kT

)
(7.6)

p = NV F1/2

(
− EF − EV

kT

)
, (7.7)

1Equation (7.5) is restricted to n > −1. A form without restriction is Fn(x) = 1
�(n+1)

∫ ∞
0

yn

1+exp(y−x)dy. The factor

2/
√

π is often omitted but must be then added explicitly in, e.g., (7.6).
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(a) (b)

Fig. 7.1 Fermi integral F̂1/2 = (
√

π/2)F1/2 with approximations in three regions of the argument: A1(x) =
(
√

π/2) exp(x) for x < 2, A2(x) = (
√

π/2)(1/4 + exp(−x))−1 for −2 < x < 2, A3(x) = 2/3x3/2 for x > 2.
a linear, b semilogarithmic plot

Table 7.1 Band gap, intrinsic carrier concentration, conduction band and valence-band edge density of states at T =
300K for various semiconductors

Eg (eV) ni (cm−3) NC (cm−3) NV (cm−3)

InSb 0.18 1.6 × 1016

InAs 0.36 8.6 × 1014

Ge 0.67 2.4 × 1013 1.04 × 1019 6.0 × 1018

Si 1.124 1.0 × 1010 7.28 × 1019 1.05 × 1019

GaAs 1.43 1.8 × 106 4.35 × 1017 5.33 × 1018

GaP 2.26 2.7 × 100

GaN 3.3 �1

with

NC = 2

(
me kT

2π �2

)3/2

(7.8)

NV = 2

(
mh kT

2π �2

)3/2

, (7.9)

where NC (NV) is called the conduction-band (valence-band) edge density of states. The masses in
(7.8) and (7.9) are the density of states masses given in (6.72) and (6.73). Values of NC,V for Si, Ge
and GaAs are given in Table 7.1.

Now, we assume that the Boltzmann approximation (E.23) can be used, i.e. the probability that a
band state is populated is�1. Then, the integral (7.1) can be executed analytically and the concentration
n of electrons in the conduction band is given as

n = 2

(
mekT

2π�2

)3/2

exp

(
EF − EC

kT

)
= NC exp

(
EF − EC

kT

)
. (7.10)

For the Boltzmann approximation and a parabolic valence band, the density of holes is given by

p = 2

(
mhkT

2π�2

)3/2

exp

(
− EF − EV

kT

)
= NV exp

(
− EF − EV

kT

)
. (7.11)
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(a) (b)

Fig. 7.2 a np for silicon at T = 300K as a function of the position of the Fermi level. The valence-band edge EV is
chosen as E = 0. np is constant for the range of Fermi energies given by (7.13) (4kT ≈ 0.1eV). b n, p and

√
np as a

function of the Fermi level

Within the Boltzmann approximation, the product of the electron and hole density is

n p = NV NC exp

(
− EC − EV

kT

)
= NV NC exp

(
− Eg

kT

)
(7.12)

= 4

(
kT

2π�2

)3

(md,e md,h)
3/2 exp

(
− Eg

kT

)
.

Thus, the product n p is independent of the position of the Fermi level, as long as the Boltzmann
approximation is fulfilled. This is the case when the Fermi level lies within the band gap and it is
sufficiently far away from the band edges, fulfilling about

EV + 4 kT < EF < EC − 4 kT . (7.13)

The relation (7.12) is called the mass-action law.
In Fig. 7.2, the product np is shown for silicon over a wide range of Fermi energies. If EF is within

the band gap, np is essentially constant. If the Fermi level is in the valence or conduction band, np
decreases exponentially.

7.3 Intrinsic Conduction

First, we consider the conductivity of the intrinsic, i.e. an ideally pure, semiconductor. At T = 0 all
electrons are in the valence band, the conduction band is empty and thus the conductivity is zero (a
completely filled band cannot conduct current). Only at finite temperatures the electrons have a finite
probability to be in a conduction-band state and to contribute to the conductivity. Due to neutrality, the
electron and hole concentrations in the intrinsic semiconductors are the same, i.e. each electron in the
conduction band comes from the valence band,

− n + p = 0 , (7.14)

or ni = pi. Therefore
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(a) (b)

Fig. 7.3 a Band gap of silicon versus temperature. b Intrinsic carrier concentration of silicon versus temperature. Solid
line is (7.17) using Eg = 1.204 eV − (2.73 × 10−4 eV/K) T [564], symbols are experimental data from [565]

ni = pi = √
NV NC exp

(
− Eg

2kT

)
(7.15)

= 2

(
kT

2π�2

)3/2

(memh)
3/4 exp

(
− Eg

2kT

)
.

The mass-action law
n p = ni pi = n2i = p2i (7.16)

will be essential also for light andmoderately doped semiconductors. The intrinsic carrier concentration
is exponentially dependent on the band gap. Thus, in thermodynamic equilibrium intrinsic wide-gap
semiconductors have much smaller electron concentrations than intrinsic small-gap semiconductors
(see Table 7.1). The intrinsic carrier concentration of Si (in cm−3) has been determined to be (within
1%, T in K)

nSii = 1.640 × 1015 T 1.706 exp

(
− Eg(T )

2kT

)
(7.17)

for temperatures between 77 and 400K [562, 563] (Fig. 7.3).
As we will see later in Part II, many semiconductor devices rely on regions of low conductivity

(depletion layers) in which the carrier concentration is small. Since the carrier concentration cannot be
smaller than the intrinsic concentration (n + p ≥ 2ni), an increase of temperature leads to increasing
ohmic conduction in the depletion layers and thus to a reduction or failure of device performance. The
small band gap of Ge leads to degradation of bipolar device performance already shortly above room
temperature. For silicon, intrinsic conduction limits operation typically to temperatures below about
300 ◦C. For higher temperatures, as required for devices in harsh environments, such as close to motors
or turbines, other semiconductors with wider band gaps need to be used, such as GaN, SiC or even
diamond.

From the neutrality condition for the intrinsic semiconductor (7.14) and (7.10) and (7.11), the Fermi
level of the intrinsic semiconductor can be determined as

EF = Ei = EV + EC

2
+ kT

2
ln

(
NV

NC

)
= EV + EC

2
+ 3

4
kT ln

(
mh

me

)
. (7.18)

Since the hole mass is perhaps a factor of ten larger than the electron mass, the second term has the
order of kT . Thus, for typical semiconductors where Eg � kT , the intrinsic Fermi level, denoted by
Ei, is close to the middle of the band gap, i.e. Ei ≈ (EC + EV)/2.
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Fig. 7.4 Density of states
(left column), Fermi
distribution (center
column) and carrier
concentration (right
column) for a n-type, b
intrinsic and c p-type
semiconductors in thermal
equilibrium
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The situation for an intrinsic semiconductor is schematically shown in Fig. 7.4b. In the following we
will consider dopingwhich can shift theFermi level away from Ei.Within theBoltzmannapproximation
(also ni = pi),

n = ni exp

(
EF − Ei

kT

)
(7.19)

p = pi exp

(
− EF − Ei

kT

)
. (7.20)

7.4 Doping

7.4.1 Concept

The modification of the conductivity of a semiconductor using point defects is termed doping. In
1930 electrical conduction of semiconductors was attributed solely to impurities [566, 567]. However
‘chemically pure’ substances become conductive upon deviation from stoichiometry, e.g. historically
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Fig. 7.5 Comparison of
ZnO, NiO and MgO on a
common energy scale,
comparing conduction
band and valence band
edges and n-type (red) and
p-type (blue) pinning
energies (determined for
metal-rich and oxygen-rich
conditions, respectively).
Adapted from [571]

ZnO NiO MgO

E-
E V

found for changes in the anion concentration and conductivity in CuI [38] (p-type) and ZnO [80] (n-
type). The modification of CuI by exposure to different partial pressure of iodine in organic solutions
with different iodine concentration [41] and subsequently various concentrations of copper vacancies
[568] can be considered the first doping of a semiconductor (1909).

The electronic levels of a defect or an impurity can exist within the forbidden gap of the bulk host
material. These levels can lie close to the band edges or in the vicinity of the middle of the band gap.
In a simplified approach, the first stem from shallow defects (Sect. 7.5), the latter from deep defects
(Sect. 7.7).

7.4.2 Doping Principles

In [569] various doping principles are formulated. Essentially, the amount of impurities that lead to
electrically active dopants is limited by the increasingly probable formation of compensating defects.
In the case of donors, these are electron killers, e.g. n-type doping of Si:As is limited by the formation
of VSi [570]. In the case of acceptors, the compensating defects are hole killers. The so-called n-type
pinning energy En,pin

F is the Fermi level at which such killer defect (e.g. a cation vacancy) forms. When
the Fermi level reaches the pinning energy, no further progress in n-type doping can be made, since the
spontaneously generated electron killers will negate the introduced (impurity) donors. As a tendency,
materials with low lying conduction band, i.e. large electron affinity (difference between vacuum level
and conduction band) can be doped n-type. Similarly, p-type doping by acceptors, shifting the Fermi
level towards the valence band, will meet at some point Ep,pin

F , called p-type pinning energy, when
native hole killers, such as anion vacancies or cation interstitials form spontaneously. At this point,
further p-type doping is no longer possible. p-type doping is facilitated by materials whose valance
band maximum is close to the vacuum level [569].

A comparison of the wide gap materials ZnO, NiO and MgO is depicted in Fig. 7.5. The position of
the pinning levels ismarked on a common energy scale. From the position of En,pin

F it can be understood,
that ZnO can be highly n-doped while NiO and MgO cannot [571]. From Ep,pin

F , NiO can be doped
p-type, while MgO cannot be doped at all.

For dopability, generally, it is also important that the ionized charges from impurities are free and
thus contribute to the free charge carrier density and do not form localized states, e.g. due to polaronic
effects (Sect. 8.7).
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(a)

(b)

(c)

Fig. 7.6 Energetic position (ionization energy labeled in meV) of various impurities (A: acceptor, D: donor) in a Ge, b
Si and c GaAs. Based on [574]

7.5 Shallow Defects

In Fig. 7.6, the positions of the energy levels of a variety of impurities are shown for Ge, Si and GaAs.
An impurity for which the long-range Coulomb part of the ion-core potential determines the energetic
level is termed a shallow impurity. The extension of the wavefunction is given by the Bohr radius.
This situation is in contrast to a deep level where the short-range part of the potential determines the
energy level. The extension of the wavefunction is then of the order of the lattice constant. A view on
the history of the science of shallow impurity states is given in [572, 573].

We will consider first a group-IV semiconductor, Si, and (impurities) dopants from the groups III
and V of the periodic system. When these are incorporated on a lattice site (with tetrahedral bonds),
there is one electron too few (group III, e.g. B) or one electron too many (group V, e.g. As). The first
case is called an acceptor, the latter a donor. The doping of III–V semiconductors is detailed in [575].
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Fig. 7.7 Arsenic impurity
in silicon. Arsenic donates
one electron, and a fixed
positive charge remains

Si

Si Si

As

Si

Si

Si

Si

7.5.1 Donors

Silicon doped with arsenic is denoted as Si:As. The situation is schematically shown in Fig. 7.7. The
arsenic atom has, after satisfying the tetrahedral bonds, an extra electron. This electron is bound to
the arsenic atom via the Coulomb interaction since the ion core is positively charged compared to the
silicon cores. If the electron is ionized, a fixed positive charge remains at the As site.

Without being in the silicon matrix, an arsenic atom has an ionization energy of 9.81eV. However,
in the solid the Coulomb interaction is screened by the dielectric constant of the material, typically εr is
of the order of 10 for typical semiconductors. Additionally, the mass is renormalized (effective mass)
by the periodic potential to a value that is smaller than the free electron mass. Within effective-mass
theory (Appendix I) the hydrogen problem is scaled with the (isotropic) effective mass m∗

e and the
dielectric constant εr, the binding energy (ionization energy) Eb

D of the electron to the shallow donor
is (relative to the continuum given by the conduction-band edge EC)

Eb
D = m∗

e

m0

1

ε2r

m0 e4

2 (4πε0 �)2
. (7.21)

The scaling with 1/ε2 has been pointed out first in [576].
The absolute energy position of the level is ED = EC−Eb

D. The first factor in the right side of (7.21)
is the ratio of effective and free-electron mass, typically 1/10, the second factor is typically 1/100. The
third factor is the ionization energy of the hydrogen atom, i.e. the Rydberg energy of 13.6eV. Thus,
the binding energy in the solid is drastically reduced by a factor of about 10−3 to the 10meV regime.
The excited states of the hydrogen-like spectrum can also be investigated experimentally (Sect. 9.8).

The extension of the wavefunction of the electron bound to the fixed ion is given by the Bohr radius

aD = m0

m∗
e

εr aB , (7.22)

where aB = 0.053nm denotes the hydrogen Bohr radius. For GaAs aD = 10.3nm. A similar value has
been determined for InP [577]. For semiconductors with a nonisotropic band minimum, such as Si, Ge
or GaP, an ‘elliptically deformed’ hydrogen problem with the massesm l andm t has to be treated [578].

An impurity that fulfills (7.21) is called an effective-mass impurity. For GaAs, the effective-mass
donor has a binding energy of 5.715meV, which is closely fulfilled for several chemical species
(Table 7.3). In GaP, experimental values deviate considerably from the effective-mass donor (59meV).
For silicon, considering the anisotropic tensor of the effective masses, the result for the effective-
mass donor binding energy is 29meV [578]. Some experimentally observed values are summarized
in Table 7.2. Deviations from the effective-mass theory are due to modification of the potential in the
immediate vicinity of the impurity atom and breakdown of the effective-mass formalism.

Different impurities can have quite similar binding energies. They can be distinguished, e.g., by
electron spin resonance (ESR). At low temperatures the electron is localized on the impurity and the
hyperfine interaction with the nucleus can be resolved in ESR. In Fig. 7.8 data are shown for As and P
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Fig. 7.8 Electron spin
resonance signal from As
and P in Ge with the
magnetic field H parallel to
[100], T ≈ 1.3K. Adapted
from [579]

Table 7.2 Binding energies Eb
D of Li and group-V donors in elemental semiconductors. Data for carbon from [580].

All values in meV

Li N P As Sb

C 1700 ≈500

Si 33 45 49 39

Ge 9.3 12.0 12.7 9.6

Table 7.3 Binding energies Eb
D of donors in GaAs (data from [581]), GaP (data from [582]) and GaN (low concentration

limits, data from [583, 584]). All values in meV

V site III site

GaAs S 5.854 C 5.913

Se 5.816 Si 5.801

Te 5.786 Ge 5.937

GaP O 897 Si 85

S 107 Ge 204

Se 105 Sn 72

Te 93

GaN O 39 Si 22

Ge 19

in germanium. The multiplets distinguish the nuclear spins I = 3/2 for arsenic (75As) and I = 1/2
for phosphorus (31P) [579].

The donors are typically distributed statistically (randomly) in the solid. Otherwise their distribution
is called clustered. The concentration of donors is labeled ND and usually given in cm−3.

The concentration of donors populated with an electron (neutral donors) is denoted by N 0
D, the

concentration of ionized donors (positively charged) is N+
D . Other conventions in the literature label

the concentrations N1 and N0, respectively:

N1 = N 0
D = ND fe(ED) (7.23a)

N0 = N+
D = ND (1 − fe(ED)) , (7.23b)

with fe(ED) = [1 + exp(ED − EF)]−1. For the sum of these quantities the condition

ND = N+
D + N 0

D (7.24)

holds.
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The ratio of the two concentrations is first given as (caveat: this formula will be modified below)

N 0
D

N+
D

= N1

N0
= f

1 − f
= exp

(
EF − ED

kT

)
. (7.25)

Now, the degeneracy of the states has to be considered. The donor charged with one electron has a
2-fold degeneracy g1 = 2 since the electron can take the spin up and down states. The degeneracy of
the ionized (empty) donor is g0 = 1. Additionally, we assume here that the donor cannot be charged
with a second electron (cmp. Sect. 7.7.2). Due to Coulomb interaction, the energy level of the possible
N−
D state is in the conduction band. Otherwise, a multiply charged center would be present. We also

do not consider excited states of N 0
D that might be in the band gap as well. In the following, we will

continue with ĝD = g1/g0 = 2 as suggested in [585].2 We note that the definition of the degeneracy
factor for donors (and acceptors, see (7.38)) is not consistent in the literature as summarized in [586].
Considering now the degeneracy, (7.25) is modified to

N 0
D

N+
D

= N1

N0
= ĝD exp

(
EF − ED

kT

)
. (7.26)

This can be understood from thermodynamics (cf. Sect. 4.2.2), a rate analysis or simply the limit
T → ∞.

The probabilities f 1 and f 0 for a populated or empty donor, respectively, are

f 1 = N1

ND
= 1

ĝ−1
D exp

( ED−EF
kT

) + 1
(7.27a)

f 0 = N0

ND
= 1

ĝD exp
(− ED−EF

kT

) + 1
. (7.27b)

First, we assume that no carriers in the conduction band stem from the valence band (no intrinsic
conduction). This will be the case at sufficiently low temperatures when ND � ni. Then the number
of electrons in the conduction band is equal to the number of ionized donors, i.e.

n = f 0 ND = N0 = ND

1 + ĝD exp
( EF−ED

kT

) = 1

1 + n/n1
ND ,

with n1 = (NC/ĝD) exp(−Eb
D/kT ). The neutrality condition (its general from is given in equation

(7.40)) is
− n + N+

D = −n + N0 = 0 , (7.28)

leading to the equation (n is given by (7.10))

NC exp

(
EF − EC

kT

)
− ND

1 + ĝ exp
( EF−ED

kT

) = 0 . (7.29)

Solving this equation will yield the Fermi level (as a function of temperature T , doping level ED and
doping concentration ND).3 The solution is

2We do not agree with the treatment of the conduction band valley degeneracy in [585] for the donor degeneracy factor
for Ge and Si.
3As usual, the Fermi level is determined by the global charge neutrality, see also Sect. 4.2.2.
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EF = EC − Eb
D + kT ln

⎛
⎜⎝

[
1 + 4ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 − 1

2 ĝD

⎞
⎟⎠ . (7.30)

For T → 0 the Fermi level is, as expected, in the center between the populated and unpopulated states,
i.e. at EF = EC−Eb

D/2. In Fig. 7.9a the position of the Fermi is shown for a donor with 45meV binding
energy in Si. For low temperatures the solution can be approximated as (dashed curve in Fig. 7.9b)

EF
∼= EC − 1

2
Eb
D + 1

2
kT ln

(
ND

ĝD NC

)
. (7.31)

The freeze-out of carriers in n-type silicon has been discussed in detail in [587], taking into account
the effects of the fine structure of the donor states. We note that the fairly high donor binding energy
in silicon leads to freeze-out of carriers at about 40K and is thus limiting for the low-temperature
performance of devices. Ge has smaller donor ionization energies and subsequently a lower freeze-out
temperature of 20K. For n-type GaAs, conductivity is preserved down to even lower temperatures.

We note that the freeze-out of carriers involves the recombination of free electrons with the ionized
donors. This aspect is considered in Sect. 10.9. Microscopically this process is equal to the emission
of a (far infrared) photon [588, 589]. Similarly the release of an electron from the donor is due to the
absorption of a photon.

For higher temperatures, when the electron density saturates towards ND, the approximate solution
is (dash-dotted curve in Fig. 7.9a)

EF
∼= EC + kT ln

(
ND

NC

)
. (7.32)

The electron density n is given (still in the Boltzmann approximation) by

n = NC exp

(
− Eb

D

kT

) [
1 + 4 ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 − 1

2 ĝD
(7.33)

= 2 ND

1 +
[
1 + 4 ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 .

The theoretical electron density as a function of temperature is shown in Fig. 7.9b. It fits very well to
experimental data for arsenic doped germanium [594] as shown in Fig. 7.10 (Arrhenius plot, ln n vs.
1/T ).

For low temperatures, the solution (7.34) is close to

n ∼=
√

NDNC

ĝD
exp

(
− Eb

D

2kT

)
= √

n1 ND . (7.34)

For high temperatures, n ∼= ND. This regime is called exhaustion or saturation since all possible
electrons have been ionized from their donors. We note that even in this case np = ni pi holds,
however, n � p.

While the characteristic energy for the ionization of electrons from donors is Eb
D, at high enough

temperatures electrons are transferred also from the valence band into the conduction band. Thus, in
order to make the above consideration valid for all temperatures, the intrinsic conduction also has to
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(a) (b)

Fig. 7.9 a Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45meV, no acceptors) as a function of temperature

without consideration of intrinsic carriers. Zero energy refers to the (temperature-dependent, Table 6.4) conduction-band
edge EC with approximative solutions for low (dashed line, (7.31)) and high (dash-dotted line, (7.32)) temperatures. b
Corresponding density of conduction-band electrons as a function of temperature

Fig. 7.10 Electron
concentration as a function
of temperature for a Ge:As
sample with
ND ≈ 1013 cm−3. Solid
line is fit to the data with a
donor binding energy of
12.7meV. Adapted
from [594]
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be considered. The neutrality condition (still in the absence of any acceptors) is

− n + p + N+
D = 0 . (7.35)

Using (7.10) and p = n2i /n, the equation reads:

NC exp

(
EF − EC

kT

)
− n2i

NC exp(
EF−EC
kT )

− ND

1 + ĝD exp( EF−ED
kT )

= 0 . (7.36)

The solution can be given analytically but is more complicated4. The temperature-dependent position
of the Fermi level is shown in Fig. 7.11.

The three important regimes are the intrinsic conduction at high temperatures when ni � ND, the
exhaustion at intermediate temperatures when ni � ND and kT > Eb

D, and finally the freeze-out
regime for kT � Eb

D at low temperatures when the electrons condense back into the donors. The three

4It is given in the third edition of this book.
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Fig. 7.11 Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45meV, no acceptors) as a function of temperature.

The temperature dependence of the band gap (as given in Table 6.4) has been taken into account. Zero energy refers to
the conduction-band edge for all temperatures. The dotted curve shows Eg/2. The dashed (dash-dotted) line shows the
low- (high-) temperature limit according to (7.31) and (7.18), respectively. The corresponding electron concentration as
a function of temperature is shown in Fig. 7.9b

Fig. 7.12 Fermi level in
silicon as a function of
temperature for various
doping levels (n-type (blue
lines) and p-type (red
lines)) of
1012, 1013, . . . , 1018 cm−3.
The intrinsic Fermi level is
chosen as zero energy for
all temperatures. The
(temperature-dependent)
conduction and valence
band edges are shown as
dashed lines

regimes can be seen in the experimental data on carrier density of electrons in n-Ge (Fig. 7.10) and of
holes in p-Ge (Fig. 7.15).

A similar plot as in Fig. 7.11 is shown in Fig. 7.12 but for different doping levels. With increasing
temperature, the Fermi level shifts from close to the band edge towards the band center. At higher
doping, this shift begins at higher temperatures.

The electronic states of individual donors can be directly visualized by scanning tunneling
microscopy (STM) as shown in Fig. 7.13 for Si:P. For small negative bias, tunneling occurs through
the charged dopant that is located within the first three monolayers. At high negative bias the large
contribution from the filled valence band masks the effect of the donor. This image, however, shows
that the contrast attributed to the dopant atom is not due to surface defects or absorbates.

7.5.2 Acceptors

A group-III atom in Si has one electron too few for the tetrahedral bond. Thus, it ‘borrows’ an electron
from the electron gas (in the valence band) and thus leaves a missing electron (termed hole) in the
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Fig. 7.13 Filled-state
image of a phosphorus
atom underneath a Si (001)
surface at a tunneling
current of 110pA. The
doping level is
5 × 1017 cm−3. a Sample
bias −0.6V, b sample bias
−1.5V between Si:P and
tip. Image sizes are
22 × 22nm2. Reprinted
with permission from
[595], ©2004 APS. Lower
row under parts b, c:
Schematic band diagrams
for the two bias situations

(b)(a)

EF

EF

Si

D

tip

Fig. 7.14 Boron impurity
in silicon. Boron accepts
one electron and a fixed
negative charge remains

Si

Si Si

B

Si

Si

Si

Si

valence band (Fig. 7.14). The energy level of the impurity is in the gap close to the valence-band edge.
The latter consideration is made in the electron picture. In the hole picture, the acceptor ion has a hole
and the hole ionizes (at sufficient temperature) into the valence band. After ionization the acceptor
is charged negatively. Also, for this system a hydrogen-like situation arises that is, however, more
complicated than for donors because of the degeneracy of the valence bands and their warping.

In Table 7.4 the acceptor binding energies Eb
A for group-III atoms in C, Ge and Si are listed. The

absolute acceptor energy is given as EA = EV + Eb
A. In Table 7.5 acceptor binding energies are listed

for GaAs, GaP andGaN.While in GaAs some acceptors are close to the effectivemass value of 27meV,
in GaP the deviation from the effective-mass value ≈50meV is large.

When the conductivity is determined by holes or electrons, the material is called p-type or n-type,
respectively. We note that some metals also show hole conduction (e.g. Al). However, for metals the
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Table 7.4 Binding energies Eb
A of group-III acceptors in elemental semiconductors. Data for diamond from [596, 597].

All values in meV

B Al Ga In

C 369

Si 45 57 65 16

Ge 10.4 10.2 10.8 11.2

Table 7.5 Binding energies Eb
A of acceptors in GaAs, GaP and GaN (low concentration values, data from [598, 599]).

All values in meV

V site III site

GaAs C 27 Be 28

Si 34.8 Mg 28.8

Ge 40.4 Zn 30.7

Sn 167 Cd 34.7

GaP C 54 Be 57

Si 210 Mg 60

Ge 265 Zn 70

Cd 102

GaN C 230 Mg 220

Si 224 Zn 340

Cd 550

conductivity type is fixed, while the same semiconductor can be made n- or p-type with the appropriate
doping.

The acceptor concentration is denoted by NA. The concentration of neutral acceptors is N 0
A, the

concentration of charged acceptors is N−
A . Of course

NA = N 0
A + N−

A . (7.37)

The ratio of the degeneracy of the (singly) filled and empty acceptor level is ĝA. In Ge ĝA = 4 since
the localized hole wave function may be formed in EMA with four Bloch wave functions (heavy and
light holes) [600]. For Si with its small split-off energy (Table 6.6) ĝA = 6 according to [601]. For
doubly ionized acceptors, e.g. Zn in Si and Ge (see Sect. 7.7.3), the more shallow level (Zn− → Zn0)
has ĝA = 6/4 = 1.5 in Ge [601]. A more general discussion of the degeneracy factor for multiply
charged acceptors can be found in [585, 602]. Similar to the considerations for electrons and donors
we have

N 0
A

N−
A

= ĝA exp

(
− EF − EA

kT

)
. (7.38)

The population of the acceptor levels is given by

N−
A = NA

1 + ĝA exp
(− EF−EA

kT

) . (7.39)

The formulas for the position of the Fermi level and the hole density are analogous to those obtained
for electrons and donors and will not be explicitly given here. The analogue to Fig. 7.11b is shown for
data on p-doped Ge [603, 604] in Fig. 7.15. The acceptor activation energy is 11meV which could be
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Fig. 7.15 Carrier concentration as a function of temperature for p-type Ge. The net shallow level concentration is
2 × 1010 cm−3. Solid line is fit to the data, the dashed line indicates the intrinsic hole concentration pi. Adapted
from [604]

due to various impurities (cf. Table 7.4). The different impurities (B, Al, Ga) can be distinguished by
photothermal ionization spectroscopy [604] (cmp. Sect. 9.8).

In Fig. 7.12, the temperature dependence of the Fermi level is included for p-type Si.With increasing
temperature the Fermi level shifts from the valence-band edge (For T = 0, EF = EV + Eb

A/2) towards
the middle of the band gap (intrinsic Fermi level).

Also, the wavefunction at acceptors can be imaged using scanning tunneling microscopy [605].
In [606] images of ionized and neutral Mn in GaAs have been reported (Fig. 7.16b). The tunneling
I–V characteristics are shown in Fig. 7.16a. At negative bias, the acceptor is ionized and appears
spherically symmetric due to the effect of the A− ion Coulomb potential on the valence-band states.
At intermediate positive voltages, tunneling is through the neutral state. The wavefunction of A0 looks
like a bow-tie due to the admixture of d-wavefunctions [607]. The Mn atom is presumably in the third
subsurface atomic layer. At even higher positive bias the contrast due to the dopant is lost because the
image is dominated by a large tunneling current from the tip to the empty conduction band.

7.5.3 Compensation

When donors and acceptors are simultaneously present, some of the impurities will compensate each
other. Electrons from donors will recombine with holes on the acceptors. Depending on the quantitative
situation the semiconductor can be n- or p-type. This situation can be invoked by intentional doping
with donors or acceptors or by the unintentional background of donors (acceptors) in p-doped (n-doped)
material. Also the formation of pairs, exhibiting a new defect level different from the single donor or
single acceptor, has been described, e.g. for Se and B in silicon [308].

The charge-neutrality condition (now finally in its most general form) reads

− n + p − N−
A + N+

D = 0 . (7.40)

We will now discuss the case of the presence of donors and acceptors, but limit ourselves to sufficiently
low temperatures (orwide band gaps) such that the intrinsic carrier density can be neglected.We assume
Boltzmann statistics and assume here ND > NA. Then it is a very good approximation to use N−

A = NA
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(a)
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MnGa

UFB

GaAs:Mn

(c)(b)
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GaAs
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A

Fig. 7.16 a Tunneling I–V characteristic of GaAs:Mn sample. Solid (dashed) line is for pure GaAs (subsurface Mn on
Ga site).UFB denotes the simulated flat-band voltage. Adapted from [606]. (b, c) STM images of a Mn atom underneath
a GaAs (110) surface. The doping level is 3×1018 cm−3. b Sample bias−0.7V, c sample bias+0.6V. Below the images
are schematic band diagrams of GaAs:Mn and tip. Image sizes are b 8 × 8nm2 and c 5.6 × 5nm2. Reprinted with
permission from [606], ©2004 APS. Lower row under parts a, b: Schematic band diagrams for the two bias situations

since there are enough electrons from the donors to recombinewith (and thus compensate) all acceptors.
Under the given assumptions regarding the temperature p = 0 and the material is n-type. Thus, in
order to determine the position of the Fermi level, the charge-neutrality condition

n + NA − N+
D = 0 (7.41)

must be solved (compare to (7.29))

NC exp

(
EF − EC

kT

)
+ NA − ND

1 + ĝ exp( EF−ED
kT )

= 0 . (7.42)

We rewrite (7.41) and find ND−NA −n = N 0
D = N+

D ĝD exp
( EF−ED

kT

)
using (7.26). Using again (7.41)

and also (7.10), (7.42) can be written as

n (n + NA)

ND − NA − n
= NC

ĝD
exp

(
− Eb

D

kT

)
, (7.43)

a form given in [608]. Analogously for compensated p-type material

p (p + ND)

NA − ND − p
= NV

ĝA
exp

(
− Eb

A

kT

)
(7.44)

holds.
The solution of (7.42) is

EF = EC − Eb
D + kT ln

⎛
⎜⎝

[
α2 + 4ĝD

ND−NA
NC

exp
(

Eb
D

kT

)]1/2 − α

2 ĝD

⎞
⎟⎠ , (7.45)
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(a) (b)

Fig. 7.17 a Position of Fermi level in partially compensated Si:P,B (ND = 1015 cm−3, Eb
D = 45meV, Eb

A = 45meV,
solid line: NA = 1013 cm−3, dashed line: NA = 0, dash-dotted line: NA = 1012 cm−3, short-dashed line: NA =
1014 cm−3, dash-double dotted line: NA = 5 × 1014 cm−3) as a function of temperature. b Corresponding electron
concentration for NA = 1013 cm−3 as a function of temperature (neglecting intrinsic carriers), dashed line for NA = 0
according to (7.34), dash-dotted line approximation for n � NA as in (7.49)

with

α = 1 + ĝD
NA

NC
exp

(
Eb
D

kT

)
= 1 + NA

β
(7.46a)

β = NC

ĝD
exp

(
− Eb

D

kT

)
. (7.46b)

The carrier density is best obtained from (7.43),

2 n =
√

(NA − β)2 + 4 ND β − (NA + β) . (7.47)

For NA = 0 we have α = 1 and (7.30) is reproduced, as expected. For T = 0 (and NA 
= 0) the Fermi
energy lies at EF = ED since the donor level is partially filled (N 0

D = ND −NA). For low temperatures
the Fermi level is approximated by

EF
∼= EC − Eb

D + kT ln

(
ND/NA − 1

ĝD

)
. (7.48)

The corresponding carrier density at low temperatures is

n = NC

ĝD
exp

(
− Eb

D

kT

) (
ND

NA
− 1

)
. (7.49)

For higher temperatures (7.34) holds approximately for n > NA; the slope is now given by Eb
D/2 as in

the uncompensated case (Fig. 7.17b). For sufficiently high temperatures in the exhaustion regime (but
still ni < n) the electron density is given by

n ∼= ND − NA . (7.50)

At even higher temperatures the electron density will be determined by the intrinsic carrier concentra-
tion. Only in this case p 
= 0!
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Fig. 7.18 Hole density in p-type silicon (NA = 7.4× 1014 cm−3, Eb
A = 46meV (probably boron) and partial compen-

sation with ND = 1.0 × 1011 cm−3). Adapted from [609]

Fig. 7.19 Carrier concentration and conductivity type (red circles: p, blue squares: n) for MOVPE-grown
InxGa1−xAs1−yNy layers on GaAs (001) (layer thickness ≈ 1µm, x ≈ 5%, y ≈ 1.6%) doped with different amounts
of silicon. The ordinate is the ratio of the partial pressures of disilane and the group-III precursors (TMIn and TMGa) in
the gas phase entering the MOVPE reactor. Lines are guides to the eye. Experimental data from [610]

An experimental example is shown in Fig. 7.18 for partially compensated p-Si (with ND � NA).
The change of slope around p ≈ ND is obvious.

If donors are added to a p-type semiconductor, first the semiconductor remains p-conducting as
long as ND � NA. If the donor concentration becomes larger than the acceptor concentration, the
conductivity type switches from p- to n-conduction. If the impurities are exhausted at room temper-
ature, the lowest carrier concentration is reached for ND = NA. Such a scenario is shown for p-type
InxGa1−xAs1−yNy doped with various concentrations of Si in Fig. 7.19. At high Si incorporation, the
number of charge carriers saturates due to autocompensation (see Sect. 7.5.5) and the formation of Si
precipitates. Since the ionization energies of donors and acceptors are typically different, the situation
for ND ≈ NA needs, in general, to be investigated carefully and will depend on the temperature.
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7.5.4 Multiple Impurities

If more than one donor species is present, (7.42) can be generalized, e.g. for the case of two donors
D1 and D2 in the presence of compensating acceptors,

n + NA − ND1

1 + ĝ1 exp( EF−ED1
kT )

− ND2

1 + ĝ2 exp( EF−ED2
kT )

= 0 . (7.51)

This case is treated in [611]. Simple high and low temperature approximations can be found where
the trap with the larger and smaller activation energy, respectively, dominates. The case for multiple
acceptors (and compensating donors) is treated analogously. As detailed in [612], the function dn/dEF

has a maximum at the donor level position; this can be used to visualize the contribution of several
donors (with sufficiently different binding energies) from n(T ) as measured by Hall effect (Fig. 7.20).

7.5.5 Amphoteric Impurities

If an impurity atom can act as a donor and acceptor it is called amphoteric. This can occur if the impurity
has several levels in the band gap (such as Au in Ge or Si). In this case, the nature of the impurity
depends on the position of the Fermi level. Another possibility is the incorporation on different lattice
sites. For example, carbon in GaAs is a donor if incorporated on the Ga-site. On the As-site carbon
acts as an acceptor.

Thus, e.g., crystal growth kinetics can determine the conductivity type. In Fig. 7.21 the conductivity
due to carbon background is shown for GaAs grown using MOVPE under various growth conditions.
At high (low) arsine partial pressure incorporation of carbon on As-sites is less (more) probable, thus
the conductivity is n-type (p-type). Also, growth on different surfaces can evoke different impurity
incorporation, e.g., n-type on (001) GaAs and p-type on (311)A GaAs, since the latter is Ga-stabilized.

The charge density at an impurity nucleus can be investigated via the isomer shift as determined
by Mössbauer spectroscopy [614, 615]. The incorporation of the isotope 119Sn can be controlled in
III-V compounds to be on cation or anion site as donor or acceptor, respectively. This is accomplished
by introducing 119In or 119Sb on group-III and group-V site, respectively, both decaying into 119Sn

(a) (b)

Fig. 7.20 a Electron concentration versus temperature as determined from Hall effect for a CdTe sample doped with
indium. b−kT dn/dEF, as determined from the experimental Hall data (symbols). The solid line is theory for three donor
levels (ED1 = EC−0.37eV, ND1 = 2.5×1012 cm−3; ED2 = EC−0.24eV, ND2 = 7.0×1011 cm−3; ED3 = EC−0.18eV,
ND3 = 2.5 × 1011 cm−3) whose energy positions are indicated by dashed lines. Adapted from [612]
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without leaving their lattice site. The isomer shifts of 119Sn in various III-V compounds are shown in
Fig. 7.22. In [615] it is concluded from these data that the tin donor is formed by a positive tin ion and
the electron charge transfer to its neighboring (group-V) atoms is rather small. For tin as an acceptor,
for the present conditions an ionized, i.e. negatively charged acceptor, the isomer shift follows closely
the trend from substitution in group-IV semiconductors. Therefore four electrons form the tetrahedral
bond, while the extra electron is located rather at the (positively charged) group-III next neighbors and
not in the impurity cell. The difference to the point charge Coulomb distribution is called central-cell
correction.

Deviation from the ideal stoichiometry introduces point defects that can be electrically active and
change conductivity type and carrier concentration. In the case of CuInSe2, excess Cu could go on
interstitial positions or promote selenium vacancies, both leading to n-type behavior. This material
is particularly sensitive to deviations from ideal stoichiometry for both Cu/In ratio (Fig. 7.23) and Se
deficiency [616].

7.5.6 Autodoping

If intrinsic defects such as vacancies or interstitials, possibly as a result of non-stoichiometry, or anti-
site defects cause electronic levels relevant for conductivity one speaks of autodoping. An example is
the role of A-B antisites in AB2O4 spinels (Sect. 3.4.7). In the perfect crystal the A (B) atoms occupy
tetraeder (octaeder) places. Typical charges are A2+ and B3+. Thus (without charge transfer) the A

Fig. 7.21 Background
doping of GaAs due to
carbon in MOVPE for
different ratios of the
partial pressures of AsH3
and TMG
(trimethylgallium). The
conductivity type (blue
squares: n-type, red
circles: p-type) depends on
the incorporation of C from
CH3 radicals on Ga- or
As-site. Lines are guides to
the eye. Experimental data
from [613]

Fig. 7.22 Isomer shift
(relative to CaSnO3) of
119Sn in various group-IV
and III-V compound
semiconductors as labeled.
Dashed line is trend from
isoelectronic substitution.
Experimental data
from [615]
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Fig. 7.23 Carrier
concentration and
conductivity type (blue
squares: n-type, red circles:
p-type) as a function of
stoichiometry for CuInSe2
thin films. Lines are guides
to the eye. Experimental
data from [616]

Fig. 7.24 Schematic
position of electronic levels
of AB (blue, 0/− transition
level) and BA (red, +/0
transition level) defects in
AB2O4 spinels and
resulting material
properties (compensated,
n- or p-type or
semi-insulating).
After [617]

VB

CB

BTd

Aoh

EF

comp. p-type n-type s.i.

atom on octaeder site (AOh) acts like a donor and the B atom on a tetraeder site (BTd) as an acceptor.
Such defects have been classified in [617] as being able to create compensated, semi-insulating, n-
type or p-type material depending on the defect formation energies and the position of the electronic
levels of the AB and BA defects in the band gap (Fig. 7.24). An example for a p-type spinel oxide is
ZnCo2O4 [618].

7.5.7 High Doping

For low doping concentrations, the impurity atoms can be considered to be decoupled. At low temper-
ature, only hopping from one impurity to the next is possible due to thermal emission or tunneling and
the semiconductor becomes an insulator.
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With increasing concentration, the distance between impurities decreases and their wavefunctions
can overlap. Then, an impurity band develops (Fig. 7.25). A periodic arrangement of impurity atoms
would result inwell-defined band edges as found in theKronig-Penneymodel. Since the impurity atoms
are randomly distributed, the band edges exhibit tails. For high doping, the impurity band overlaps
with the conduction band. In the case of compensation, the impurity band is not completely filled
and contains (a new type of) holes. In this case, conduction can take place within the impurity band
even at low temperature, making the semiconductor a metal. This metal–insulator transition has been
discussed byMott [619]. Examples for highly doped semiconductors are transparent conductive oxides
(Sect. 20), the contact layer for an ohmic contact (Sect. 21.2.6) or the active layers in a tunneling diode
(Sect. 21.5.9). The physics, properties and preparation of highly doped semiconductors are treated in
detail in [620].

The formation of the impurity band leads to a reduction of the impurity ionization energy as known
from (7.21). Typical results are shown in Fig. 7.26a for n-type Ge [594] and Fig. 7.26b for p-type
ZnTe [621]. At the critical doping concentration of Nc = 1.5 × 1017, the activation energy for the
carrier concentration disappears. Similar effects have been observed for Si [622] and GaAs [623]. The
freeze-out of the carrier concentration (see Fig. 7.9) disappears as shown in Fig. 7.27. Critical doping
concentrations are listed in Table 7.6. The decrease of the ionization energy Eb (donor or acceptor)
follows the dependence [594, 622]

Eb = Eb
0 − α N 1/3

i = Eb
0

[
1 −

(
Ni

Nc

)1/3
]

, (7.52)

where Ni is the concentration of ionized dopants. A refined theory, considering screening, shift and
tails of the conduction band and most importantly broadening of the donor level has been presented
in [624].

The critical density can be estimated from the Mott criterion when the distance of the impurities
becomes comparable to their Bohr radius (7.22)

2aD = 3

2π
N 1/3
c . (7.53)

The pre-factor 3/(2π) stems from the random distribution of impurities and disappears for a periodic
arrangement. The Mott criterion is (rewriting (7.53))

D(E)

E V

E D

E

(a) (b) (c)

E C

D(E)

E V

E C

E

D(E)

E V

E

Fig. 7.25 Principle of the formation of a (donor) impurity band. a Small doping concentration and sharply defined
impurity state at ED, b increasing doping and development of an impurity band that c widens further and eventually
overlapswith the conduction band for high impurity concentration. The shaded areas indicate populated states at T = 0K
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Fig. 7.26 a Donor ionization energy in n-type Ge for various doping concentrations. Dashed line is a guide to the eye.
The arrow labeled Eb

D denotes the low-concentration limit (cf. Table 7.2). Experimental data from [594]. b Acceptor
ionization energy for ZnTe:Li and ZnTe:P as a function of the third root of the ionized acceptor concentration. Data
from [621]

Fig. 7.27 Electron
concentration versus
inverse temperature for
Si:P for three different
doping concentrations ((i):
1.2 × 1017 cm−3, (ii):
1.25 × 1018 cm−3, (iii):
1.8 × 1019 cm−3).
Experimental data
from [622]
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aD N 1/3
c ≈ 0.24 . (7.54)

ForGaAswith aD = 10.3nm, the criterion yields Nc = 1.2×1016 cm−3, in agreementwith experiment.
The achievablemaximum concentration of electrically active dopants is limited by the concentration

dependence of the diffusion coefficient, Coulomb repulsion, autocompensation and the solubility limit
[575]. In Table 7.7 the maximum carrier concentrations for GaAs with various dopants are listed.

As an example we show the Ga-doping of epitaxial ZnO layers on sapphire in Fig. 7.28. Under
slightly Zn-rich (O-polar) conditions the growthmode is two-dimensional and the carrier concentration
increases linearly with the Ga concentration, n ≈ cGa, up to high values in the 1020 cm−3 range
[630]. For O-rich (Zn-polar) conditions the growth mode changes to three-dimensional growth and
the activation ratio of Ga donors becomes low [631]. Above a gallium content of 2%, the octahedral
coordination of gallium and thus the partial segregation into a parasitic ZnGa2O4 spinel phase is
observed for [Ga]=4% [632].

The doping of semiconductors beyond the solubility limit is termed ‘hyperdoping’. It involves
non-equilibrium preparation methods [637, 638].
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Table 7.6 Critical doping concentration for various semiconductors (at room temperature)

Material Type Nc (cm−3) References

C:B p 2 × 1020 [597]

Ge:As n 1.5 × 1017 [594]

Si:P n 1.3 × 1018 [622]

Si:B p 6.2 × 1018 [622]

GaAs n 1.0 × 1016 [623]

GaP:Si n 6 × 1019 [625]

GaP:Zn p 2 × 1019 [626]

GaN:Si n 2 × 1018 [627]

GaN:Mg p 4 × 1020 [598]

Al0.23Ga0.77N:Si n 3.5 × 1018 [628]

ZnTe:Li p 4 × 1018 [621]

ZnTe:P p 6 × 1018 [621]

ZnO:Al n 8 × 1018 [629]

Table 7.7 Maximum electrically active doping concentration for GaAs

Material Type Nc (cm−3) References

GaAs:Te n 2.6 × 1019 [633]

GaAs:Si n 1.8 × 1019 [634]

GaAs:C p 1.5 × 1021 [635]

GaAs:Be p 2 × 1020 [636]

Fig. 7.28 Electron
concentration as a function
of gallium concentration in
MBE grown ZnO:Ga on
sapphire for the two
different polarities.
Adapted from [630, 631]

7.6 Quasi-fermi Levels

The carrier concentrations were given by (7.6) and (7.7). So far, we have only considered semicon-
ductors in thermodynamic equilibrium for which np = n2i . In a nonequilibrium situation, e.g. for
external excitation or carrier injection in a diode, the electron and hole densities can each take arbitrary
values, in principle. In particular, np will no longer be equal to n2i and there is no Fermi level constant
throughout the structure. In this case, however, quasi-Fermi levels Fn and Fp for electrons and holes,
respectively, are defined via
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n(r) =NC F1/2

(
Fn(r) − EC

kT

)
(7.55a)

p(r) =NV F1/2

(
− Fp(r) − EV

kT

)
. (7.55b)

A quasi-Fermi level is sometimes called imref5 and can also be denoted as EFn or EFp .We emphasize
that the quasi-Fermi levels are only a means to describe the local carrier density in a logarithmical way.
The quasi-Fermi levels can be obtained from the density via

Fn =EC + kT ln

(
n

NC

)
(7.56a)

Fp =EV − kT ln

(
p

NV

)
. (7.56b)

The quasi-Fermi levels do not imply that the carrier distribution is actually a Fermi distribution. This
is generally no longer the case in thermodynamical nonequilibrium. However, in ‘well-behaved’ cases
the carrier distribution in nonequilibrium can be approximated locally as a Fermi distribution using a
local quasi-Fermi level and a local temperature, i.e.

fe(r, E) ∼= 1

exp
(

E−Fn(r)
kT (r)

)
+ 1

. (7.57)

Using the quasi-Fermi levels, np is given by

n(r) p(r) = n2i exp

(
Fn(r) − Fp(r)

kT

)
. (7.58)

We note that for an inhomogeneous semiconductor or a heterostructure (cf. Chap.12), ni may also
depend on the spatial position. In the case of thermodynamic equilibrium the difference of the quasi-
Fermi levels is zero, i.e. Fn − Fp = 0 and Fn = Fp = EF.

7.7 Deep Levels

For deep levels the short-range part of the potential determines the energy level. The long-range
Coulomb part will only lead to a correction. The term ‘deep level’ implies that the level is within the
band gap and far from the band edges. However, some deep levels (in the sense of the potential being
determined by the ion core) have energy levels close to the band edges or even within a band. Details
can be found in [267, 639–642].

The wavefunction is strongly localized. Thus, it cannot be composed of Bloch functions, as has
been done for the shallow levels for the effective-mass impurity. The localization in r space leads to a
delocalization in k space. Examples are Si:S, Si:Cu or InP:Fe, GaP:N, ZnTe:O. Deep levels can also
be due to intrinsic defects such as vacancies or antisite defects.

Due to the larger distance to the band edges, deep levels are not efficient at providing free electrons
or holes. Quite the opposite, they rather capture free carriers and thus lead to a reduction of conductivity.

5W. Shockley had asked E. Fermi for permission to use his name reversed. Fermi was not too enthusiastic but granted
permission.
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Centers that can capture electrons and holes lead to nonradiative recombination of electrons through
the deep level into the valence band (see also Chap.10). This can be useful for the fabrication of
semi-insulating layers with low carrier concentration and fast time response of, e.g., switches and
photodetectors.

While the electronic properties of deep levels can be readily characterized, the microscopic origin
is not immediately apparent. Next to theoretical modeling of defects and correlation with experimental
results, paramagnetic hyperfine interactions have proven useful to identify the microscopic nature of
various defects [643].

7.7.1 Charge States

The deep level can have different charge states depending on the occupancy with electrons. The energy
position within the gap varies with the charge state due to the Coulomb interaction. Also, the lattice
relaxation around the defect depends on the charge state and modifies the energy level.

The localized charge qd at the defect is the integral over the change �ρ of the charge density
compared to the perfect crystal over a sufficiently large volume V∞ around the defect

qd =
∫

V∞

�ρ(r) d3r = n e

εr
. (7.59)

In semiconductors, the charge qdεr is an integer multiple of the elementary charge. The defect is said to
be in the nth charge state. Each charge state has a certain stable atomic configuration Rn . Each charge
state has a ground state and excited states that can each have different stable atomic configurations.

Now, we discuss how the concentration of the various charge states depends on the position of the
Fermi level. The overall constraint of global charge neutrality determines the chemical potential of the
electron, i.e. the Fermi level in Fermi–Dirac statistics. We use the approximation that the concentration
of defects is so small that the mutual interaction of defects becomes negligible.

As an example, we treat the possible reaction V 0 � V+ + e−, where V 0 denotes a neutral vacancy
and V+ is a positively charged vacancy, created by the ionization of an electron from the vacancy into
the conduction band. The free energy G depends on the numbers n0 of neutral and n+ of positively
charged vacancies. The minimum condition is met by

dG = ∂G

∂n0
dn0 + ∂G

∂n+
dn+ = 0 . (7.60)

The neutrality constraint is dn0 + dn+ = 0 and therefore the minimum condition reads

∂G

∂n0
= ∂G

∂n+
. (7.61)

For noninteracting defects and using (4.9) we write

∂G

∂n0
=Gf(V 0) + kT ln

(
n0
N0

)
(7.62a)

∂G

∂n+
=∂G(V+)

∂n+
+ ∂G(e−)

∂n+
= Gf

V+ + kT ln

(
n+
N+

)
+ μe− , (7.62b)
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(a) (b)

Fig. 7.29 a Silicon cubic unit cell with an interstitial iron atom (red) at tetrahedral site. b EPR intensity (at T = 95K
from interstitial iron in neutral state, Fe0 with S = 1) versus Fermi level position for iron-doped silicon with varying
Fermi level due to different amounts of shallow impurity levels from to Al, B and P as labeled. The shaded areas indicate
the valence and conduction band. The dashed line at Et = EV + 0.375eV indicates the trap level. The inset shows a
typical EPR spectrum of Fe0. Adapted from [649], inset adapted from [650]

where N0 = N Z0 and N+ = N Z+ are the number of available sites, given by the number N of atomic
sites and including possible internal degeneracies Z0 and Z+, respectively. Degeneracy factors of deep
levels are not a simple subject [601] and , e.g., the degeneracy factors of Au donor and acceptor levels
in Si are under discussion [644–646]. Gf denotes the free enthalpy of formation of the respective
defect, as in (4.3). We have written the free enthalpy of the separated pair V+ and e− as the sum
G(V+) + G(e−). μe− = ∂G(e−)/∂n+ is (by definition) the chemical potential of the electron, i.e. the
Fermi energy EF of Fermi–Dirac statistics.6 From (7.62a,b) we find for the ratio of the concentrations
of defects c0 = n0/N and c+ = n+/N

c0
c+

= Z+
Z0

exp

(
−Gf

V+ − Gf
V 0 + EF

kT

)
= Z+

Z0
exp

(
Et(V 0) − EF

kT

)
, (7.63)

where the trap level energy (for the particular charge transition), Et(V 0) = Gf
V 0 − Gf

V+ , is the free
enthalpy of ionization of V 0. We note that c0 can be obtained from (4.9) and EF is determined by the
charge-neutrality condition.

As example experimental data on the charge transition Fe0 � Fe+ + e− of interstitial iron (in
tetrahedral position, Fig. 7.29a, cmp. Fig. 3.18) in silicon is shown. The concentration of Fe0 is tracked
via the EPR signal from the neutral S = 1 state7 with g-factor g = 2.07 [647]. For n-type samples
the iron is in neutral state and the maximum EPR signal is found. For strongly p-type samples, the
Fermi energy is below the trap level and all iron is in Fe+ state, yielding no EPR signal at the given g-
factor. From the investigation of various silicon samples with different doping levels and consequently

6The chemical potential in a one-component system is μ = ∂G/∂n = G/n. In a multicomponent system it is, for the
i th component, μi = ∂G/∂ni 
= G/ni .
7The electron configuration is 3d8 with two paramagnetic electrons. Under uniaxial stress along [100] the EPR line splits
into a doublet [647]. Further details can be found in [648].
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Table 7.8 Binding energies (to conduction band) of double donor chalcogenide impurities in Si and Ge. All energies in
meV, data from [651, 652]

Host State S Se Te

Si D0 318 307 199

D+ 612 589 411

Ge D0 280 268 93

D+ 590 512 330

different position of the Fermi level, the trap (deep donor) energy is found to be EV + 0.375eV as
indicated in Fig. 7.29b.

7.7.2 Double Donors

An impurity that has two extra electrons available after bonding in the matrix may give rise to a
double donor. Typical examples are substitutional chalcogenide atoms (S, Se or Te) in silicon [651]
and germanium [652], interstitial impurities such as Mgi in Si [653], or group-V atoms on a group-III
site in a III–V compound (antisite defect), such as PGa in GaP [654] or AsGa in GaAs [655].

Thedouble donor is electronically similar to a heliumatom.Due to the repulsiveCoulomb interaction
of the two electrons on the neutral double donor, the (single) ionization energy E1 (also often labeled
E(0, 1) or E(0,+)) of D0 is smaller than that of D+ (E2, also labeled E(1, 2) or E(+,++)). For He
and He+ the ratio of ionization energies is 0.45; for chalcogenides in Si and Ge similar ratios have
mostly been found (Table 7.8).

The carrier statistics and the degeneracy factors for a double donor have been discussed in [585, 656].
Typically, the degeneracy factor for the ionization of the double donor D0 → D+ is ĝD = g2/g1 = 1/2
and for the ionization D+ → D++ is ĝD = g1/g0 = 2/1 = 2.

For the probabilities to find a neutral, single and double ionized donorwefind following the treatment
in [656]

d0 = N 0
D

ND
= exp 2 EF

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.64a)

d+ = N+
D

ND
= exp E1+E2

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.64b)

d++ =N++
D

ND
= 2 exp E1+EF

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.64c)

The probabilities are depicted in Fig. 7.30a. The maximum of d+ is at the energy (E1 + E2)/2. Its
value is

d+
(
E1 + E2

2

)
= 1

1 + exp
(− E1−E2

2kT

) (7.65)

and reaches a value close to one for (E1−E2)/kT � 1. In Fig. 7.30b the number of electrons per donor
ñ = (N+

D + 2 N++
D )/ND is shown as a function of the Fermi level; at (E1 + E2)/2, exactly ñ = 1. In

Fig.7.31 the temperature dependent electron concentration in Si:Te is depicted. Up to 570K the single
ionization is visible (other shallow impurities present in the sample in lower concentrations< 1014 cm−3



7.7 Deep Levels 209

(a) (b)

Fig. 7.30 a Population of states of a double donor (neutral: black, single ionized: red, double ionized: blue) according to
(7.64a–c) as a function of the Fermi level. The ionization energies have been chosen as E1 = −0.2eV and E2 = −0.4eV
and are indicated by dashed lines (kT = 25meV); these energies are similar to Si:Te (cmp. Table 7.8). The conduction
band edge is taken as zero energy. b depicts the according number of electrons ñ ionized from the donor
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Fig. 7.31 Temperature dependent electron concentration (from Hall data) for Si:Te. a Experimental data and fit with
double donor model using NTe = 5 × 1016 cm−3, E1 = 200meV and E2 = 440meV (solid line). Single donor models
would fail (NTe = 5× 1016 cm−3 and NTe = 2× 1017 cm−3, dashed lines). b Second ionization step in more detail with
fits using different values for E2; the solid line is for E2 = 440meV, the other dashed lines for E2 = 420 and 460meV.
Adapted from [657]

play no role). From the fit E1 = 200 ± 2.7meV is determined [657]. Single donor models would fail.
The second ionization step is somewhat masked by the onset of intrinsic conduction. According to
(7.15), the slope of ni is Eg/2 ≈ 500meV which is similar to E2 ≈ 440meV.

7.7.3 Double Acceptors

In analogy to double donor defects, double acceptors can introduce up to two holes into the valence
band. A typical example is Zn in silicon [658], exhibiting its ‘normal’ acceptor level (Zn0/Zn−) at
EV + 0.31eV. In moderately n-doped silicon another level (Zn−/Zn2−) is observed at EC − 0.55eV,
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Fig. 7.32 Inverse
(absolute) Hall coefficient
(cmp. Sect. 15.2.1) R−1

H ,
i.e. charge concentration,
for three Ge:Zn samples
with different degree of
compensation with Sb
donors as labeled. The
dash-dotted lines indicate
typical slopes. The dashed
lines sketch the
Zn0 → Zn− and the
Zn− → Zn−− processes.
Adapted from [659]

when the n-doping is sufficient to partially compensate the Zn and supply one electron for each Zn
atom but not two (2NZn > ND > NZn). A similar situation has been observed for Zn in germanium,
exhibiting the levels EV + 0.03eV and EV + 0.09eV [659]. In Fig. 7.32 three different Ge:Zn samples
are compared. If the additional Sb donor concentration (ND ≈ 3.4 × 1016 cm−3) is larger than 2NZn

(NZn ≈ 1.2 × 1016 cm−3), the sample is n-type (upper curve). The slope is similar to the Ge:Sb donor
binding energy (Table 7.2). If compensation with donors is weak (NZn > ND, middle curve) first the
shallow donor level with 0.03eV activation energy is activated and subsequently the deeper one with
0.09eV activation energy, creating p-conductionwith a saturated hole density of p ≈ 2NA−ND > NZn

(negative Hall coefficient). The two individual activation processes are sketched as dashed lines in
Fig. 7.32. If the Sb concentration is larger than NZn but smaller than 2NZn, the shallow acceptor
level is filled with electrons, leaving still the only partially filled deeper acceptor level available for
ionization (lower curve). In this case the sample is still p-type, but the saturation hole density is
p ≈ 2NA − ND < NZn. The degeneracy factors for Zn in Si and Ge have been discussed in [601].

7.7.4 Jahn–Teller Effect

The lattice relaxation can reduce the symmetry of the defect. Many defects, such as a vacancy, a
tetrahedral interstitial or an impurity, occupy initially tetrahedral sites in the zincblende structure. The
lattice relaxation reduces the symmetry, e.g. to tetragonal or trigonal, and therefore causes initially
degenerate levels to split. Such splitting is called the static Jahn–Teller effect [639, 660]. The energy
change in termsof the atomicdisplacementQ canbedenoted (usingperturbation theory for the simplest,
nondegenerate case) as −I Q (I > 0). Including the elastic contribution with a force constant C , the
energy of a configuration Q is

E = −I Q + 1

2
C Q2 . (7.66)

The stable configuration Qmin, for which the energy is minimal (Emin), is therefore given by
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Fig. 7.33 Charge states of
the vacancy in silicon. Left:
level scheme without
lattice relaxation, right:
level scheme including the
Jahn–Teller effect. For a
Fermi level below (above)
E(0, 2) the charge state
V++ (V 0) is dominant
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Qmin = I

C
(7.67a)

Emin = − I 2

2C
. (7.67b)

Several equivalent lattice relaxations may exist, e.g. a 3-fold minimum for remaining C3v symmetry.
The energy barrier between them has a finite height. Therefore, e.g. at sufficient temperature, the defect
can switch between different configurations and eventually again becomes isotropic (dynamic Jahn–
Teller effect). The experimental observation depends on the relation between the characteristic time of
the experiment and the reorientation time constant of the defect.

7.7.5 Negative-U Center

We explain the principle of a so-called negative-U center [661] for the Si vacancy [662] (cf. Fig. 4.2).
It was first proposed by Anderson to explain the properties of amorphous chalcogenide glasses [663].
Many defects in semiconductors exhibit negative-U behavior, e.g. also the boron interstitial in Si
[662, 664]. Coulomb energy and the Jahn–Teller effect compete for the position of the occupancy
level for different charge states. U refers to the additional energy upon charging of the defect with
an additional electron. The Coulomb repulsion of electrons leads to an increase of the energy, i.e.
positive U , which has been calculated to be 0.25eV for the Si vacancy [665] for all charge states.
The occupation level (cf. Sect. 4.2.2) E0(1, 2) (the index 0 indicates effects only due to many-electron
Coulomb interaction), separating the domination of V++ and V+ (Fig. 7.33) is 0.32eV above the
valance-band edge.Therefore, the occupation level E0(0, 1) is expected to lie at about 0.57eVabout EV.

The Jahn–Teller effectmay lead to a splitting of the otherwise 4-fold degenerate states of the vacancy.
A detailed experimental study using hyperfine interactions can be found in [666]. The schematic level
diagram for the Jahn–Teller splitting is shown in Fig. 7.34. The V++ state (A1 is always populated

V

T2

A1

V V0 V

Fig. 7.34 Jahn–Teller splitting for different charge states of the vacancy. A1 and T2 refer to irreducible representations
of the Td point symmetry group. A1 is nondegenerate and therefore does not exhibit a Jahn–Teller effect. T2 is triply
degenerate. The arrows represent electrons and their spin orientation
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with two electrons) is resonant with the valence band. The T2 state lies in the band gap. When the
Jahn–Teller effect (now on the T2 state) is included, the energies of the different charge states depend
on the configuration coordinate (a mostly tetragonal distortion in the case of the Si vacancy).

EV 0 = E(0, Q) =E(0, Q = 0) − 2I Q + 1

2
CQ2 (7.68a)

EV+ = E(1, Q) =E(1, Q = 0) − I Q + 1

2
CQ2 (7.68b)

EV++ = E(2, Q) =E(2, Q = 0) + 1

2
CQ2 . (7.68c)

For the n = 2 state the T2 gap state is empty and thus no degeneracy and Jahn–Teller term arises.
For n = 1 there is a linear Jahn–Teller term. The occupation with two electrons (V 0) causes an
approximately twice as large Jahn–Teller splitting for the n = 0 state. The force constant is assumed
to be independent of the charge state. The energies for the minimum configurations Qn

min are therefore

E(0, Q0
min) =E(0, Q = 0) − 4

I 2

2C
(7.69a)

E(1, Q1
min) =E(1, Q = 0) − I 2

2C
(7.69b)

E(2, Q2
min) =E(2, Q = 0) . (7.69c)

The Jahn–Teller energy EJT = I 2/2C lowers the position of the occupancy levels E0 calculated with
Coulomb terms only. The occupancy levels including the Jahn–Teller contribution are therefore given as

E(1, 2) = E0(1, 2) − EJT (7.70a)

E(0, 1) = E0(0, 1) − 3 EJT . (7.70b)

For the vacancy in silicon the Jahn–Teller energy EJT is about 0.19eV. Thus the E(1, 2) level is
lowered from 0.32eV to 0.13eV. The E(0,1) occupancy level, however, is reduced from 0.57eV to
0.05eV [662, 667] (see Fig. 7.33). The occupancy level E(0, 2) is in the middle between E(0, 1) and
E(1, 2) (E(0, 2) = (E(0, 1)+E(1, 2))/2) and indicated in Fig. 7.35a. At this energy, c(V 0) = c(V++)

and the value of c(V+) is small (≈ exp E1−E2
2kT ) since E(0, 1) < E(1, 2) (cmp. (7.65)).

The relative concentrations of the three charge states are determined by (7.63) (degeneracy and
entropy terms have been neglected)

c(V++)

c(V+)
= exp

(
E(1, 2) − EF

kT

)
(7.71a)

c(V+)

c(V 0)
= exp

(
E(0, 1) − EF

kT

)
. (7.71b)

They are depicted inFig. 7.35a in aplot related toFig. 7.30a.Therefore,V ++ dominates if EF < E(0, 1)
and V 0 dominates for EF > E(1, 2). In the intermediate range E(0, 1) < EF < E(1, 2) we know
from (7.71a, b) that V+ is dominated by V 0 and V++. However, at this point it is not clear whether
V++ or V 0 dominates overall. The ratio of the concentrations of V++ and V 0 is given by
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(a) (b)

Fig. 7.35 a Population of states of a negative-U defect (neutral: black, single ionized: red, double ionized: blue)
according to (7.64a–c) as a function of the Fermi level. The ionization energies have been chosen as E1 = −0.4eV
and E2 = −0.2eV (cmp. Fig. 7.30) and are indicated by dashed lines (kT = 25meV). The occupancy level E(0, 2) is
indicated with a dash-dotted line. The conduction band edge is taken as zero energy. b depicts the according number of
electrons ionized from the defect

c(V++)

c(V 0)
= exp

(
E(1, 2) + E(0, 1) − 2EF

kT

)
= e2 exp

(
E(0, 2) − EF

kT

)
. (7.72)

The occupancy level E(0, 2) is thus again given as

E(0, 2) = E(0, 1) + E(1, 2)

2
, (7.73)

and is shown in Fig. 7.33. V++ dominates if EF < E(0, 2) and V 0 dominates for EF > E(0, 2).
V+ is, for no position of the Fermi level, the dominating charge state of the Si vacancy. We note that
for n-doped Si the V− and V−− can also be populated. The population of the V 0 state with an extra
electron introduces another Jahn–Teller splitting (Fig. 7.34) that has trigonal symmetry.

Generally, the Jahn–Teller effect can make the addition of an electron cause an effectively negative
charging energy; in this case the center is termed a negative-U center.We note that the single vacancy in
germanium is not a negative-U center due to smaller Jahn–Teller distortion and smaller electron-lattice
coupling [668].

7.7.6 DX Center

The DX center is a deep level that was first investigated for n-doped (e.g. Si-doped) AlxGa1−xAs. It
dominates the transport properties of the alloy for x > 0.22. For smaller Al concentrations and GaAs
the DX level lies in the conduction band. DX-type deep levels have also been found for other alloys
and dopants, e.g. GaAsP:S.

It is experimentally found that the capture process of electrons into the DX center is thermally
activated. The capture energy Ec depends on the AlAs mole fraction (Fig. 7.36). The (average) barrier
for electron capture has a minimum of 0.21eV for x ≈ 0.35, near the crossover point between direct
and indirect band gap (cf. Fig. 6.24). For lower Al concentrations, the capture barrier increases to 0.4eV
for x = 0.27; for x > 0.35 the capture barrier increases to about 0.3eV for x around 0.7 [669]. The
barrier for thermally releasing carriers from the DX center has been determined to be about 0.43eV,
independent of the Al mole fraction [669].
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Carriers can be removed from theDX center by optical absorption of photonswith energy larger than
about 1.2eV. If carriers are removed by optical excitation at low temperatures the (re-)capture is so slow
(σ < 10−30 cm2) that the carriers remain in the conduction band and cause persistent photoconductivity
(PPC). The PPC is only reduced upon increasing the sample temperature. The concentration of the DX
center is about the same as the net doping concentration.

The properties of the DX center are reviewed in [670, 671]. So far, no definite microscopic model
of the DX center has been agreed on. Lang [672] proposed that the DX center involves a donor
and an unknown defect (probably a vacancy). It probably involves large lattice relaxation as in the
configuration coordinates model of Fig. 7.37 where the donor binding energy Eb

D with respect to the
conduction-band minimum, the barrier for electron capture Ec, the barrier for electron emission Ee and
the optical ionization energy Eo are labeled. The donor binding energy is measured with Hall effect
(cf. Sect. 15.2.1) at temperatures sufficient to overcome the capture and emission barriers, the emission
barrier is measured with deep level transient spectroscopy (DLTS). The capture barrier manifests itself
in PPC experiments. We note that the DX center is related to the L-conduction band. For small Al mole
fraction, the DX level is degenerate with the �-related conduction band (see Fig. 7.37b).

Theoretical models and experimental evidence hint at a vacancy-interstitial model for the Si-DX
center [673]. The donor (Si) is displaced along the 〈111〉 direction from the Ga substitution site. The
displacement is predicted to be 0.117nm and the distorted geometry can be viewed as a Ga vacancy and
a Si interstitial. The charge state of the (filled) DX center is proposed to be a two-electron negative-U
state.

7.7.7 EL2 Defect

The EL2 defect is a deep donor in GaAs. It is not related to impurities but occurs for intrinsic material,
in particular grown under As-rich conditions. It has physical properties similar to the DX center.
The bleaching of absorption due to EL2, i.e. the optical removal of electrons from the defect at low
temperatures, is shown in Fig. 7.38. The microscopic model [674] describes the EL2 defect as an
arsenic antisite defect, i.e. an arsenic atom on a Ga site, AsGa. In the charged state the arsenic atom is
displaced from the lattice position and a complex of a Ga vacancy (symmetry T3d ) and an interstitial
As (symmetryC3v) with 0.14nm displacement along 〈111〉 forms (VGa-Asi). The charged state is filled
with two electrons.

Fig. 7.36 Energy barrier
for electron capture Ec at
the Si-DX center in
AlxGa1−xAs for various
compositions.
Experimental data
from [669]
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Fig. 7.37 a Schematic configuration coordinate diagram for the DX level with large lattice relaxation. q0 is the con-
figuration of the empty defect, qt is the configuration of the filled defect. The donor binding energy Eb

D, the barrier for
electron capture Ec, the barrier for electron emission Ee and the optical ionization energy Eo are labeled. EC denotes the
conduction-band edge. We note that in (Al,Ga)As the DX level is associated with the L conduction band (see Fig. 6.24).
b Schematic configuration coordinate diagram for the DX level in Al0.14Ga0.86As with the DX level being degenerate
with the (�-related) conduction band
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Fig. 7.38 Absorption spectrum of GaAs at low temperatures (T = 10K) when cooled in the dark (solid line). The
dashed (dash-dotted) line is the absorption after illuminating the sample for 1min (10min) with white light, leading to
quenching of the EL2-related absorption. Adapted from [675]

7.7.8 Semi-insulating Semiconductors

Semiconductors with high resistivity (107–109 �cm) are called semi-insulating (‘s.i.’ or ‘si’). Semi-
insulating substrates are needed for high-speed devices. The high resistivity should stem from a small
free-carrier density at finite temperature and not from a small mobility due to poor crystal quality.
For sufficiently wide band gap, the intrinsic carrier concentration is small and such pure material is
semi-insulating, e.g. GaAs with ni = 1.47 × 106 cm−3 and 5.05 × 108 �cm [676]. Since shallow
impurities are hard to avoid, another route is used technologically. Impurities that form deep levels are
incorporated in the semiconductor in order to compensate free carriers. For example, a deep acceptor
compensates all electrons if NA > ND. Since the acceptor is deep (Eb

A � kT ), it does not release holes
for reasonable temperatures. Examples of suitable impurities for compensation of electrons are Si:Au
[677], GaAs:Cr [678] and InP:Fe [679]. A deep donor, e.g. InP:Cr [680], is necessary to compensate
p-type conductivity.

Figure 7.39a shows the terms of Fe in InP [681, 682]. An overview of transition metals in III–V
semiconductors can be found in [683]. The electron configuration of neutral Fe atoms is 3d64s2 (cf.
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Fig. 7.39 a Schematic band diagramof InPwith levels of Fe impurities in the 3+ and 2+ charge states at low temperature.
All energies are given in eV. The arrow denotes capture of an electron (from the conduction band or a shallow donor)
on the deep acceptor. Compare this figure also with Figs. 9.36 and 10.25. b Depth profile of electron concentration
in an InP:Sn/InP:Sn,Fe/InP:Sn structure. The change �n ≈ 4.5 × 1016 cm−3 of electron concentration is due to the
compensation by Fe and corresponds to the chemical iron concentration determined by SIMS, [Fe]= 4.9× 1019 cm−3.
Part b adapted from [688]

Table 17.2). The Fe is incorporated on the In site and thus has a Fe3+ state as a neutral acceptor (A0).
The Fe3+ state has the electron configuration 3d5. The arrow in Fig. 7.39a represents the capture of
an electron from the conduction band or from a shallow donor. The charge state of the Fe becomes
Fe2+ (charged acceptor, A−) with the electron configuration 3d6. The cubic crystal field (Td symmetry)
splits this 5D Fe state8 into two terms [684] that exhibit further fine structure [682]. The large thermal
activation energy of 0.64eV found in the Hall effect on semi-insulating InP:Fe [679] corresponds to
the energy separation of the 5E level and the conduction band.

The maximum electron concentration that can be compensated in this way is limited by the solu-
bility of Fe in InP [685], about 1× 1017 cm3. Higher Fe incorporation leads to the formation of Fe (or
FeP) precipitates and degrades the crystal quality. Only a fraction of the incorporated Fe may then be
electrically active and contribute to the compensation. The maximum electrically active Fe concentra-
tion is found to be 5–6×1016 cm−3 [686]. The compensation can be directly visualized via the depth
profile of the electron concentration in a n-si-n structure (Fig. 7.39b). The poor thermal stability of Fe,
i.e. high diffusion coefficient, has evoked proposals for more stable dopants such as InP:Ru [687].

7.7.9 Isoelectronic Impurities

Isoelectronic impurities, generally represent a deep level with a short range potential. The isoelectronic
trap introduces a bound state for an electron or a hole. Once a carrier has been captured, the defect
becomes charged. The other carrier type is then easily trapped, forming a bound exciton (Sect. 10.3.2).
The theory of isoelectronic impurities is outlined in [689]. A detailed theoretical treatment of N in
GaAs and GaP is given in [544].

In GaP:N, an electron is spatially localized on the N impurity. Most of the wave function is at the
X-point. The nitrogen-bound electron level in GaP (A1 symmetry) is close to the conduction band edge
and within the band gap. Important for the energy position is the lattice relaxation, leading to an inward
relaxation of the surrounding Ga atoms (Fig. 7.41). Due to the spatial localization of the wave function
it is delocalized in k-space (Fig. 7.40a) and obtains a sizeable component at the �-point, facilitating
zero-phonon absorption from the valence band. This effect is present only when the lattice relaxation
around the impurity is considered; without relaxation the �-component is zero, with relaxation about
1% [544]. The �-component of the wave-function is larger for localization at an isoelectronic impurity

8The notation is 2S+1 J (multiplicity), with S being the total spin and J being the total angular momentum.
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Fig. 7.40 a Model
calculation of the
wave-vector dependence of
the probability density of
an electron bound to a
10meV deep isoelectronic
trap (N) and to a 100meV
deep shallow donor (S) in
GaP. Adapted from [690].
bWavefunction (isosurface
at 20% of maximum) of
isolated nitrogen (N) and
neighboring N–N pair
(NN1) in GaP. Adapted
from [544] (a) (b)

Fig. 7.41 Energy levels of nitrogen impurity states in GaP (left) and GaAs (right). The energy scale is relative to the
bulk GaP valence band maximum, the conduction band minima (CBM) are thus shown relative to the vacuum level.
The conduction band is shown in grey. For both materials, (a) denotes the isolated N impurity level calculated without
lattice relaxation (dashed line), and (b) with lattice relaxation. (c) denotes the position of N–N pair levels, m denoting
the neighbor. (d) shows selected experimental data. NN1 denotes the direct neighbor NN-pair. The other NNn follow the
usual nomenclature as in [694]. Data taken from [544]

than at a shallow donor such as sulfur [690]. This way a large oscillator strength for optical transitions
occurs (Sects. 9.7.9, 10.3.2). The wavefunction of an isolated single N impurity and a neighboring N–N
pair (NN1) in GaP are shown in Fig. 7.40b.

Isolated nitrogen impurities in (unstrained) GaAs introduce states only within the conduction band
(Fig. 7.41). The reason is that the GaAs conduction band edge is further from the vacuum level than
that of GaP (see Fig. 12.21). Only the NN1 and NN4 pair levels are theoretically expected to be
within the GaAs band gap. The index denotes the nth neighbor position. The NN1 level has been
experimentally observed [691, 692]. The isolated nitrogen impurity level is forced into the GaAs band
gap upon hydrostatic pressure [692, 693] (Fig. 7.42). Further levels deeper within the band gap are due
to clusters containing more than two nitrogen atoms.

7.7.10 Surface States

The investigation of (semiconductor) surfaces is a large field with sophisticated methods that allow
real-space imaging with atomic resolution by scanning probe microscopy and highly depth resolved
electronic studies. The surface represents first of all a break in the periodic crystal potential and thus
a defect of the bulk crystal. The unsatisfied bonds partly rearrange, e.g. by building dimers, forming
a surface reconstruction or remain as dangling bonds. The surface exhibits a surface density of states.
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Fig. 7.42 Pressure dependence of the energy of excitons bound to isolated nitrogen impurities in GaAs (circles),
measured from the top of the GaAs valence band. The dashed lines are the pressure dependent GaAs bulk band gaps
(cmp. Fig. 6.49). The solid (dash-dotted) line is a theoretical model for the nitrogen-bound exciton (electron) level.
Adapted from [693]
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Fig. 7.43 Image of a topography (�z = 2.8nm) and b work function (�φ = 4.21–4.26eV) of a surface step along
[111] on a n-GaP(110) surface cleaved in UHV. Adapted from [696]. c and d show the corresponding linescans. Adapted
from [696]

Such states can lie in the band gap and capture electrons, leading to recombination and a depletion
layer. For a brief introduction on semiconductor surface physics see Chap.11; for more details we refer
to [695].

As an example of the formation of electronic states at surface defects we show in Fig. 7.43 the
comparison of topography and work function (measured by Kelvin probe force microscopy [696]) at
a surface step on a GaP(110) surface that has been prepared by cleaving in-situ in ultrahigh vacuum
(UHV). The depletion-type band bending of the surface is about 0.4eV. The further increase of the
position of the vacuum level at the step edge shows the presence of trap states in the band gap causing
the conduction band to bend upwards (cf. Sect. 21.2.1). Modeling of the effect shows that the charge
density at the surface is 6 × 1011 cm−2 and at the step edge 1.2 × 106 cm−1.
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7.8 The Charge Neutrality Level

The charge neutrality level (CNL) of a semiconductor is defined as the maximum occupied surface
state energy at a neutral surface. In this case it is identical with the Fermi level (which renders the
surface without a net charge). The CNL is also termed Fermi level stabilization energy [700] or
‘branch point energy’ [697] and marks the energy at which the character of intrinsic defects changes
from predominantly donor-like (below CNL) to predominantly acceptor-like (above CNL). If Fermi
level in the bulk and CNL deviate, surface charges appear; when the Fermi level is above (below) the
charge neutrality level, the surface is negatively (positively) charged. Whether this means a depletion
or accumulation layer depends on the conductivity type of the semiconductor. Band bending and space
charge regions are discussed in more detail further below (Sect. 12.3.4, Sect. 21.2.1). The position
of the CNL can be calculated from the Brillouin zone average of the conduction-to-valence band
difference [698, 699].

Experimentally, the Fermi level will be established at the CNL when a lot of deep defects are
introduced, e.g. by irradiation. For many semiconductors, the CNL is close to the middle of the band
gap (Si, GaAs). Notable exceptions are e.g. InAs or In2O3 with a CNL within the conduction band
leading to n-type surface conduction.

7.9 Hydrogen in Semiconductors

The role of hydrogen in semiconductors was first recognized in studies of ZnO [701]. It is now clear
that hydrogen plays an important role in the passivation of defects. As a ‘small’ atom, it can attach
easily to dangling bonds and form an electron-pair bond. Thus, surfaces, grain boundaries, dislocations
and shallow (donor and acceptor) and deep impurity levels become passivated. A good overview and
many details of the physics and technological use of hydrogen in semiconductors can be found in [702,
703]. The hydrogen must be typically introduced as atomic species into semiconductors, e.g. from a
plasma in the vicinity of the surface or by ion irradiation.

With regard to silicon it is important to note that the Si–H bond is stronger than the Si–Si bond. Thus
a silicon surface under atomic hydrogen exhibits Si–H termination rather than Si–Si dimers [704]. Due
to the stronger bond, the hydrogenation leads to an increase of the silicon band gap, which can be used
for surface passivation [705], leading to reduced reverse diode current.

The hydrogen concentration in amorphous Si (a-Si) can be as high as 50% [706]. Electronic grade
a-Si contains typically 10–30atomic% hydrogen and is thus rather a silicon–hydrogen alloy.

Hydrogen in crystalline silicon occupies the bond-center interstitial position (see Fig. 3.18b) as
shown in Fig. 7.44a. The complexes formed by hydrogen with shallow acceptors and donors have been
studied in detail. It is now generally accepted that for acceptors (e.g. boron) in silicon the hydrogen
is located close to the bond-center position of the Si–B pair (BM, bond minimum) as sketched in
Fig. 7.45a. The boron atom forms an electron-pair bond with three silicon atoms of the tetrahedra, the
fourth silicon bonds to the hydrogen atom. The complex therefore no longer acts as an acceptor. The
silicon atoms and the acceptor relax their positions. The adiabatic potential energy surface of hydrogen
in Si:B is shown in Fig. 7.44b. The hydrogen can sit on four equivalent sites (BM) along the 〈111〉
directions of the initial B–Si4 tetrahedron. This reduces the symmetry, e.g. of H–B vibrations [708].
The energetic barrier for the hydrogen orientation has been determined to be 0.2eV theoretically [707]
for a hydrogen motion along the path BM–C–BM in Fig. 7.44b. Stress (along [100] and [112]) reduces
the symmetry and leads to splitting of the local vibrational modes, now showing axial symmetry [709].
However, this preferential orientation disappears with an activation energy of 0.19eV, close to the
theoretical value.
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Fig. 7.44 a Energy for positions u of the hydrogen atom along the 〈111〉 direction for H+ in pure Si (Si atom at
u = −0.25) and neutral hydrogen (B atom at u = −0.25). u is measured in units of

√
3a0. For all positions of the

hydrogen atom the positions of the other atoms have been relaxed in the calculation. Data from [707]. b Adiabatic
potential energy in the (110) plane for hydrogen in Si:B. ‘BM’ denotes the bond minimum site (high valence electron
density), C and C’ are equivalent for pure Si. Reprinted with permission from [707], ©1989 APS

Fig. 7.45 Schematic model for hydrogen in silicon forming a complex with a a shallow acceptor (boron, empty orbital)
and b a shallow donor (phosphorus, double-filled orbital)

Hydrogen has experimentally been found to also passivate shallow donors. The microscopic config-
uration is sketched in Fig. 7.45b. The hydrogen atom sits on the Si–AB (antibonding) position and forms
an electron-pair bond with the silicon atom. The donor, e.g. phosphorus, is left with a double-filled
p-orbital (lone pair) whose level is in the valence band and thus no longer contributes to conductivity.

(a) [110]

[001]

[110]
(b)

Fig. 7.46 a Structure of the V–O complex (A center) in silicon. The black sphere represents the oxygen atom. Reprinted
with permission from [710], ©2004 APS. b Calculated ground-state structure for the V–O–H2 center in silicon. Oxygen
is over the C2 axis, and the two white spheres represent hydrogen. Reprinted with permission from [711], ©2000 APS
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Molecular hydrogen can passivate the so-called A center in Si, an oxygen–vacancy complex [711].
The atomistic configuration of the V–O–H2 complex is shown in Fig. 7.46. The deep double donor S
in Si with a level at 0.3 eV below the conduction-band edge can also be passivated by two hydrogen
atoms [712].
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