
Chapter 6
Band Structure

Silicon is a metal.

A.H. Wilson, 1931 [74]

Abstract A treatment of electron states in one-dimensional potentials introduces into the concepts
of band gap and effective mass. The band structures of various semiconductors are reviewed. The
systematics of band gaps, symmetry considerations, band gaps in alloys, amorphous semiconductors
and the effect of strain and temperature are discussed. Electron and hole dispersions are treated and
the density of states in various dimensions is derived.

6.1 Introduction

Valence electrons that move in the crystals feel a periodic potential

U (r) = U (r + R) (6.1)

for all vectors R of the direct lattice. The potential1 is due to the effect of the ion cores and all
other electrons. Thus a serious many-body problem is present. In principle, the band structure can be
calculated from the periodic arrangements of the atoms and their atomic order number. We note that
for some problems, e.g. the design of optimal solar cells, a certain band structure is known to be ideal
and a periodic atomic arrangement, i.e. a material, needs to be found that generates the optimal band
structure. This problem is called the inverse band structure problem.

6.2 Electrons in a Periodic Potential

6.2.1 Bloch’s Theorem

First, we will deduce some general conclusions about the structure of the solution as a consequence of
the periodicity of the potential. We first investigate the solution of a Schrödinger equation of the type

1In this book the form of the potential will never be explicitly given.
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Fig. 6.1 Zone schemes for a band structure: a extended, b reduced and c repetitive zone scheme

H �(r) =
[
− �

2

2m
∇2 +U (r)

]
�(r) = E �(r) (6.2)

for an electron. U will be periodic with the lattice, i.e. it will obey (6.1).
Bloch’s theorem says that the eigenstates � of a one-particle Hamiltonian as in (6.2) can be written

as the product of plane waves and a lattice-periodic function, i.e.

�nk(r) = A exp(i k r) unk(r) . (6.3)

The normalization constant A is often omitted. If unk(r) is normalized, A = 1/
√
V , where V is the

integration volume. The wavefunction is indexed with a quantum number n and the wavevector k. The
key is that the function unk(r), the so-called Bloch function, is periodic with the lattice, i.e.

unk(r) = unk (r + R) (6.4)

for all vectors R of the direct lattice. The proof is simple in one dimension and more involved in three
dimensions with possibly degenerate wavefunctions, see [451].

If Enk is an energy eigenvalue, then Enk+G is also an eigenvalue for all vectors G of the reciprocal
lattice, i.e.

En(k) = En (k + G) . (6.5)

Thus the energy values are periodic in reciprocal space. The proof is simple, since thewavefunction (for
k + G) exp(i(k + G)r)un(k+G)(r) is for un(k+G)(r) = exp(−iGr)unk(r) obviously an eigenfunction
to k.

A band structure along one k-direction can be displayed in various zone schemes as depicted in
Fig. 6.1. The most frequently used scheme is the reduced zone scheme. In three dimensions, the band
structure is typically shown along particular paths in the Brillouin zone, as depicted, e.g., in Fig. 6.2c.

6.2.2 Free-Electron Dispersion

If the entire wavefunction (from (6.3)) obeys the Schrödinger equation (6.2), the Bloch function unk
fulfills the equation
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Fig. 6.2 Dispersion of free electrons (empty lattice calculation, U = 0, shown in the first Brillouin zone) in a a one-
dimensional lattice (G = n 2π/a), b a simple cubic lattice (G = (h, k, l) 2π/a) and c in a fcc lattice. The energy is
measured in units of the energy at the X-point, EX = (�2/2m)(π/a)2. The shaded circle in (c) represents the region
where the band gap develops for finite periodic potential U �= 0

[
1

2m
(p + �k)2 +U (r)

]
unk(r) = Enk unk(r) , (6.6)

which is easy to see from p = −i�∇.
First, we discuss the simplest case of a periodic potential,U ≡ 0. This calculation is also called the

empty lattice calculation. The solution of (6.6) is then just constant, i.e. uk = c and�k(r) = c exp(ikr).
The dispersion of the free electron is then given by

E(k) = �
2

2m
k2 , (6.7)

where k is an arbitrary vector in the reciprocal space. k′ is a vector from the Brillouin zone such that
k = k′ +G with a suitable reciprocal lattice vector G. Because of (6.5) the dispersion relation can be
written also as

E(k) = �
2

2m
(k′ + G)2 , (6.8)

where k′ denotes a vector from the Brillouin zone. Thus, many branches of the dispersion relation arise
from using various reciprocal lattice vectors in (6.8).

The resulting dispersion relation for the free electron is shown in Fig. 6.2a for a one-dimensional
system (k′ and G are parallel) and in Fig. 6.2b for the simple cubic lattice (in the so-called reduced
zone scheme). In Fig. 6.2c, the (same) dispersion of the free electron is shown for the fcc lattice.

6.2.3 Non-Vanishing Potential

Now the effect of a non-vanishing periodic potential on electron motion will be discussed. A simple,
analytically solvable model that visualizes the effect of a periodic potential on the dispersion relation of
the electrons and the formation of a (one-dimensional) band structure with gaps is the Kronig-Penney
model [71] which is discussed in the Appendix F.
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6.2.3.1 General Wave Equation

In this section, we will discuss the solution of a general wave equation for electrons in a periodic
potential. The solution is investigated particularly at the zone boundary. The potential U is periodic
with the lattice (6.1). It can be represented as a Fourier series with the reciprocal lattice vectors (lattice
vector expansion, cf. (3.19)):

U (r) =
∑
G

UG exp (iGr) . (6.9)

Since U is a real function, U−G = U ∗
G. The deeper reason for the success of such an approach is that

for typical crystal potentials, the Fourier coefficients decrease rapidly with increasing G, e.g. for the
unscreened Coulomb potential UG ∝ 1/G2. The wavefunction is expressed as a Fourier series (or
integral) over all allowed (Bloch) wavevectors K,

�(r) =
∑
K

CK exp (iK r) . (6.10)

The kinetic and potential energy terms in the Schrödinger equation (6.6) are

∇2� = −
∑
K

K2 CK exp (iK r) (6.11a)

U� =
∑
G

∑
K

UG CK exp (i (G + K) r) . (6.11b)

With K′ = K + G, (6.11b) can be rewritten as

U� =
∑
G

∑
K′

UG CK′−G exp
(
iK′ r

)
. (6.12)

Now, the Schrödinger equation can be written as an (infinite) system of algebraic equations:

(λK − E)CK +
∑
G

UG CK−G = 0 , (6.13)

with λK = �
2 K2/(2m).

6.2.3.2 Solution for One Fourier Coefficient

The simplest (non-trivial) potential energy has only one important Fourier coefficient −U (U > 0)
for the shortest reciprocal lattice vector G. Also, we have U−G = UG. Thus, the (one-dimensional)
potential has the formU (x) = −2U cos(Gx). Then the equation system (6.13) has only two equations
for CK and CK−G, leading to the condition

∣∣∣∣λK − E −U
−U λK−G − E

∣∣∣∣ = 0 . (6.14)

We find two solutions

E± = λK + λK−G

2
±

√(
λK − λK−G

2

)2

+U 2 . (6.15)
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Fig. 6.3 Periodic potential
U (one-dimensional cosine,
black) and the squares of
the wavefunctions �−
(red) and �+ (blue) for the
wavevector at the zone
boundary,
K = G/2 = π/a

6.2.3.3 Solution at the Zone Boundary

We consider the solution at the zone boundary, i.e. at K = G/2. The kinetic energy is then the same
for K = ±G/2, i.e. λK = λK−G = (�2/2m) (G2/4) = λ. The determinant (6.14) reads then

(λ − E)2 −U 2 = 0 . (6.16)

Thus the energy values at the zone boundary are

E± = λ ±U = �
2

2m

G2

4
±U . (6.17)

At the zone boundary, a splitting of the size E+−E− = 2U occurs. The center of the energy gap is given
by the energy λK of the free-electron dispersion. The ratio of the coefficients is CG/2/C−G/2 = ∓1.
The ‘−’ solution of (6.17) (lower energy) is a standing cosine wave (�−), the ‘+’ solution (�+) is
a standing sine wave as visualized in Fig. 6.3. For the lower-energy (binding) state the electrons are
localized at the potential minima, i.e. at the atoms, for the upper state (antibinding) the electrons are
localized between the atoms. Both wavefunctions have the same periodicity since they belong to the
same wavevector K = G/2. We note that the periodicity of � is 2a, while the periodicity of �2 is
equal to the lattice constant a.

6.2.3.4 Gap States

For energies within the gap, solutions with a complex wavevector K = G/2+ i q exist. Solving (6.16)
results (in terms of q ′2 = (�2/2m) q2) to

E± = λ − q ′2 ±
√

−4 λ q ′2 +U 2 . (6.18)

For energies E = λ + ε with −U ≤ ε ≤ U , the complex part of the wavevector is given by

q ′2 = −(ε + 2λ) +
√
4λ (ε + λ) +U 2 . (6.19)

The maximum value of q is in the center of the band gap (ε = 0); for |U | � 2 λ, it is q ′2
max ≈ U 2/(4λ).

At the band edges (ε = ±U ), q = 0. q is the characteristic length of an exponentially decaying wave
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Fig. 6.4 Complex band
structure q ′(ε) according to
(6.19) for two different
values of λ/U
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function. Such solutions occur at surfaces or interfaces. For larger band gaps, the localization length
is smaller (larger q) (Fig. 6.4).

6.2.3.5 Solution in the Vicinity of the Zone Boundary

For K in the vicinity of the zone boundary the solutions (6.15) can be developed. Therefore, we use
the (small) distance from the zone boundary K̃ = K − G/2. With λ = (�2/2m) (G2/4) we rewrite
still exactly (6.15):

E±
(
K̃
) = �

2

2m

(
1

4
G2 + K̃2

)
±

(
4λ

�
2K̃2

2m
+U 2

)1/2

. (6.20)

For small K̃ with �
2GK̃
2m � |U |, the energy is then approximately given by

E±
(
K̃
) ∼= λ ±U + �

2K̃2

2m

(
1 ± 2 λ

U

)
. (6.21)

Thus the energy dispersion in the vicinity of the zone boundary is parabolic. The lower state has a
negative curvature, the upper state a positive curvature. The curvature is

m∗ = m
1

1 ± 2λ/U
≈ ±m

U

2λ
, (6.22)

and will be later related to the effective mass. The approximation in (6.22) is valid for |U | � 2λ. We
note that in our simple model m∗ increases linearly with increasing band gap 2U (see Fig. 6.34 for
experimental data).

6.2.4 Kramer’s Degeneracy

En(k) is the dispersion in a band. The time-reversal symmetry (Kramer’s degeneracy) implies

En↑(k) = En↓(−k) , (6.23)
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Fig. 6.5 Theoretical
calculation of the spin
splitting of a the three
lowest conduction bands
(CB1, CB2, and CB3) and
b the top three valence
bands (VB1, VB2, and
VB3) of GaAs. Adapted
from [453]
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where the arrow refers to the direction of the electron spin. If the crystal is symmetric under inversion,
we have additionally

En↑(k) = En↑(−k) . (6.24)

With both time reversal and inversion symmetry the band structure fulfills

En↑(k) = En↓(k) . (6.25)

The inversion symmetry is particularly important for the spin-orbit interaction. In the absence of inver-
sion symmetry, e.g. in (non-centrosymmetric) zincblende crystals (Fig. 3.16b) or in heterostructures
(Fig. 12.35b), a spin splitting, e.g. En↑(k) �= En↓(k), is present. It can be thought of as provoked by
an effective magnetic field. Bulk inversion asymmetry (BIA) leads to the Dresselhaus spin splitting
[452, 453] that is shown in Fig. 6.5 for GaAs (cmp. Fig. 6.10a). The spin splitting due to structural
inversion asymmetry (SIA) is described by the Bychkov-Rashba Hamiltonian [454, 455]. A review on
these topics can be found in [456].

6.2.5 Symmetry Considerations

In general the symmetry of the lattice is a symmetry of the system’s Hamiltonian and thus transfers into
the electronic (and other) properties of the semiconductor. The means to formulate this mathematically
is group theory and representation theory. At a given reciprocal lattice point, the wave function must
fulfill the given spatial symmetry. Additional symmetry due to spin and spin-orbit interaction enters
via the double-group scheme. This problem has been treated for the 32 point groups (cmp. Table B.2)
in [457] and in [458] particularly for the pc, fcc, bcc and hcp lattices. A detailed treatment for the
zincblende [459] and wurtzite [460] structures have been given. The most popular Hamiltonians are
treated in [461].

The symmetry at particular points in direct or reciprocal space is denoted by the irreducible repre-
sentations of the symmetry (point) group, e.g. by the�i -symbols used in Figs. 6.9, 6.10 or also Fig. 6.44.
As an example, base functions with the symmetry of the irreducible representations of tetraeder group
Td are listed in Table 6.1. With the knowledge of the wave functions at the points of high symmetry, it
is possible to deduce the general nature of the energy bands in the vicinity of such symmetry points.
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Table 6.1 Representations of the tetraeder group (zincblende structure) in molecular, BSW [462] and Koster [457]
notation and (examples of) corresponding base functions (c.p.: cyclic permutations)

molecular BSW Koster base functions

A1 �1 �1 x y z, x2 + y2 + z2

A2 �2 �2 x4 (y2 − z2) + c.p.

E �12 �3 2 z2 − (x2 + y2), (x2 − y2)

T2 �15 �4 x , y, z, xy, xz, yz

T1 �25 �5 z (x2 − y2) and c.p.

6.2.6 Topological Considerations

Starting with research on the quantum Hall effect and based on previous mathematical theorems, it has
become clear that the band structure of ‘insulators’ has topological properties which in turn lead to a
elegant classification of materials (and many effects/phases) [370, 463, 464]. In this context, the term
‘insulator’ means a material with gap between filled and empty states, i.e. semiconductors are exactly
like this if the temperature is not too high (related to the gap divided by kB). We recall the discussion
of the diatomic linear chain in Sect. 5.2.3 where the bands turned out to have different topological
properties depending on the ratio of sporing constants.

Topology is a branch of mathematics where objects that are related to each other by a smooth
deformation are classified as the same. For example, a sphere and an ellipsoid are topologically the
same. Also, a doughnut and a cup are the same since they have one hole. A quantity that is independent
of such smooth transformations is termed ‘topological invariant’. Such a number is the genus g of a
surface that counts the number of holes. According to the Gauss-Bonnet theorem, the integral of the
Gaussian curvature K over a closed surface S is given by

∫
S
K dA = 2π (2 − 2 g) . (6.26)

The Gaussian curvature K = κ1 κ2 of a (differentiable) surface in 3D is the product of the principal
curvatures κ1 and κ2 (maximum and minimum curvature of the curves from all normal planes that
contain the normal vector intersectingwith the surface). For a sphere of radius r , the Gaussian curvature
is 1/r2 everywhere and the integral in (6.26) is 4π , making g = 0. For a topologically different example
we look at a torus (all points that have the fixed distance r from a circle of radius R, r < R). It is
parametrized by

r = R

⎛
⎝ cosφ

sin φ

0

⎞
⎠ + r

⎛
⎝ cosφ cos θ

sin φ cos θ

sin θ

⎞
⎠ , (6.27)

with both the angles φ and θ running between 0 and 2π . The principal curvature κ1 along the θ -
direction is 1/r (for all φ). The other principal curvature κ2 in azimuthal (φ) direction changes sign
with θ (positive outside, negative inside) and is also independent of φ. Its integral over the outer and
inner part cancel exactly, thus the integral of κ1 κ2 over the entire torus is zero and therefore g = 1.

Next, we connect the periodicity of the Brillouin zone in two dimensions with variables on a torus
in 3D as shown in Fig. 6.6 (cmp. Fig. 5.3 for the 1D case). This concept can be generalized for a 3D
band structure and a torus in four dimensions.

If a constant function f = n a b/(2π) is integrated over the Brillouin zone (X is at ±π/a, Y is at
±π/b), the integral is
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Fig. 6.6 Brillouin zone of a two-dimensional rectangular lattice and mapping to a torus

Fig. 6.7 Brillouin zone of
a rectangular lattice with a
a constant function and b a
function that changes sign.
On the right the topology of
the situation is visualized

1

2π

∫
BZ

f (k) d2k = n . (6.28)

If for example another function f that is independent of kx and changes sign in ky-direction with∫
f dky = 0, similar to the curvature of the torus, is integrated over the Brillouin zone, the results will

be zero. This is schematically shown in Fig. 6.7 if the integrand is interpreted as curvature.
The generalization of the Berry phase [369] to Bloch states has been made in [465, 466]. For a two-

dimensional systemwith Bloch bands and with Bloch functions um(k) as in (6.3), the integrand leading
to a topological invariant is given by the Berry connection (cmp. (5.29)) Am = 〈um(k)|ı ∇k|um(k)〉
and its Berry curvature or Berry flux in three-dimensional notationFm = ∇k ×Am . The Chern number
Cm for a band (separated by gaps from other bands), defined as integral over the Brillouin zone,

Cm = 1

2π

∫
BZ

Fm d2k , (6.29)

takes only integer values and is a topological invariant. Thatmeans that small variations of theHamilton
operator behind the band structure do not change its value. In the case of degeneracies, still the sum of
Chern numbers over all occupied bands, n = ∑

m nm , is a topological invariant as long as the empty
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Fig. 6.8 Schematic band structures with (a) topologically trivial wave functions and c topologically non-trivial wave
functions where within one band the character changes from s (blue, ‘+’ for positive parity) to p (red, ‘−’ for negative
parity). In b the crossing point is visualized

states are separated by a gap. For a three-dimensional crystal and k-space several topological invariants
exist but a Chern number can be assigned to the Fermi surface or surface states (cmp. Sect. 11.6.3).

As an schematic example we show Fig. 6.8 for a topological trivial and non-trivial band structure.
In the trivial bandstructure (as most semiconductors), the phase character of the wavefunction changes
only little within the Brillouin zone, mostly p-type (negative parity) for the valence band and mostly s-
type (positive parity) for the conduction band (Fig. 6.8a). In the topologically non-trivial bandstructure,
band inversion takes place and the character of the wave function changes within a band (Fig. 6.8c).
This sketch should be compared to Fig. 5.8 where a similar situation had been discussed for the lattice
vibrations. An example for a semiconductor with band inversion is HgTe while CdTe or MnTe have
trivial topology. Alloying leads at the transition from trivial to non-trivial (Fig. 6.8b) to zero-gap
semiconductors (cf. Sect. 6.11).

6.3 Band Structures of Selected Semiconductors

In the following, the band structures of various important and prototype semiconductors are discussed.
The band below the energy gap is called the valence band; the band above the gap is the conduction
band. The band gap
Ecv, mostly denoted as Eg, is the energy separation between the highest valence-
band state and the lowest conduction-band state. The maximum of the valence band is for most
semiconductors at the � point.

6.3.1 Silicon

For silicon, an elemental semiconductor, (Fig. 6.9a) the minimum of the conduction band is located
close to the X-point at 0.85π/a in the 〈100〉 direction. Thus, it is not at the same point in k space as the
top of the valence band. Such a band structure is called indirect. Since there are six equivalent 〈100〉
directions, there are six equivalent minima of the conduction band.
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Fig. 6.9 Band structure of a silicon (indirect) and b germanium (indirect). In Si, the minima of the conduction band are
in the 〈100〉 direction, for germanium in the 〈111〉 direction. Adapted from [164], based on [467]
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Fig. 6.10 Band structure of a GaAs (direct) and b GaP (indirect). For GaAs the minimum of the conduction band is at
�, for GaP in the 〈100〉 direction. Adapted from [164], based on [467]

6.3.2 Germanium

Germanium, another elemental semiconductor, (Fig. 6.9b) also has an indirect band structure. The
conduction minima are at the L point in the 〈111〉 direction. Due to symmetry there are eight equivalent
conduction-band minima.

6.3.3 GaAs

GaAs (Fig. 6.10a) is a compound semiconductor with a direct band gap since the top of the valence
band and the bottom of the conduction band are at the same position in k space (at the �-point). The
next highest (local) minimum in the conduction band is close to the L point.
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6.3.4 GaP

GaP (Fig. 6.10b) is an indirect compound semiconductor. The conduction-band minima are along the
〈100〉 directions.

6.3.5 GaN

GaN (Fig. 6.11) is a direct semiconductor that has wurtzite structure but can also occur in themetastable
cubic (zincblende) phase.

6.3.6 Lead Salts

The band gap of PbS (Fig. 6.12), PbSe and PbTe is direct and located at the L point. The lead chalco-
genide system shows the anomaly that with increasing atomic weight the band gap does not decrease
monotonically. At 300K, the band gaps are 0.41, 0.27 and 0.31eV for PbS, PbSe and PbTe, respectively.
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Fig. 6.11 Band structure of GaN (direct) in zincblende (zb) modification (left) and wurtzite (w) modification (right),
both displayed in the wurtzite Brillouin zone to facilitate comparison

Fig. 6.12 Calculated band
structure of PbS (direct).
The energy gap is at the L
point. The forbidden band
is shown in grey. Adapted
from [468]
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Fig. 6.13 Calculated indirect band structure of CdO. The top of the valence band is at E = 0. Adapted from [470]

6.3.7 MgO, ZnO, CdO

Cadmium oxide is a cubic semiconductor in the rocksalt structure. Due to symmetry considerations,
coupling (repulsion) of oxygen 2p- and cadmium 3d-orbitals does not occur at the zone center in the
rocksalt structure. Repulsion occurs though away from the �-point and therefore the valence band
maximum is not located at the zone center (Fig. 6.13). Thus CdO is an indirect semiconductor. A
similar effect would occur in rs-ZnO due to zinc 3d orbitals; however, ZnO has wurtzite structure for
which p–d coupling at the �-point is allowed; thus ZnO is direct. In MgO,Mg of course only possesses
populated s- and p-orbitals and no such repulsion is present; thus MgO even with its rocksalt structure
is also direct [469].

6.3.8 Chalcopyrites

The experimental band gaps of a number of chalcopyrite semiconductors are listed in Table 6.2. The
band structures of CuAlS2, CuAlSe2, and CuGaSe2 are compared in Fig. 6.14.

In Fig. 6.15, the theoretical band structure of GaN and its closest related chalcopyrite ZnGeN2 are
compared, both shown in the chalcopyrite (orthorhombic) Brillouin zone. The band gap of ZnGeN2

is smaller than that of GaN and the difference of 0.4eV is fairly well reproduced by the calculation2

(giving 0.5eV).

2Due to the local density approximation (LDA) the absolute values of the band gaps are too small by about 1eV.
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Table 6.2 Band gaps of various chalcopyrite semiconductors

Material Eg (eV) Eg (eV) Eg (eV)

CuAlS2 3.5 CuGaS2 2.5 CuInS2 1.53

CuAlSe2 2.71 CuGaSe2 1.7 CuInSe2 1.0

CuAlTe2 2.06 CuGaTe2 1.23 CuInTe2 1.0–1.15

AgAlS2 3.13 AgGaS2 2.55 AgInS2 1.87

AgAlSe2 2.55 AgGaSe2 1.83 AgInSe2 1.24

AgAlTe2 2.2 AgGaTe2 1.1–1.3 AgInTe2 1.0

ZnSiP2 2.96 ZnGeP2 2.34 ZnSnP2 1.66

ZnSiAs2 2.12 ZnGeAs2 1.15 ZnSnAs2 0.73

CdSiP2 2.45 CdGeP2 1.72 CdSnP2 1.17

CdSiAs2 1.55 CdGeAs2 0.57 CdSnAs2 0.26

CuAlSe2CuAlS2 CuGaSe2

T N T N T N

Fig. 6.14 Calculated band structures of CuAlS2, CuAlSe2, and CuGaSe2. The absolute values of the gap energies are
incorrect due to LDA calculation. Adapted from [471]
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Fig. 6.15 Calculated (within LDA) band structures of ZnGeN2 and its related III–V compound GaN, both displayed in
the chalcopyrite (orthorhombic) Brillouin zone to facilitate comparison. Adapted from [472]
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Fig. 6.16 Calculated band structures of ZnCo2O4 and ZnIr2O4. Adapted from [470]

6.3.9 Spinels

The band structure of spinels (in particular CdIn2S4) has been discussed in [473], the band structure
of ZnM2O4 has been calculated in [470] for (M = Co, Rh, Ir) (Fig. 6.16) and in [474] for (M = Al,
Ga, In).

6.3.10 Delafossites

In Fig. 6.17, the theoretical band structures of the delafossites CuAlO2, CuGaO2, and CuInO2 are
shown. The maximum of the valence band is not at � but near the F point. The direct band gap at �

decreases for the sequence Al → Ga → In, similar to the trend for AlAs, GaAs and InAs. The direct
band gap at F and L, causing the optical absorption edge, increases, however (experimental values are
3.5, 3.6, and 3.9eV).

6.3.11 Perovskites

The calculated band structure of BaTiO3 in the tetragonal phase is shown in Fig. 6.18. The minimum
of the conduction band is at the �-point. The maximum of the valence band is not at the �-point but at
the M point. The band gap of the LDA3 calculation is too small (2.2 eV) compared to the experimental
value ∼ 3.2eV.

The band structure of the halide perovskites has been calculated for hybrid organic-inorganic com-
pounds like MAPbI3 and FAPbI3 [476] and fully inorganic compounds APbI3 (A = Li, Na, K, Rb,
and Cs) [477]. Density of states and energy positions of (MA,FA,Cs)(Pb,Sn)(Cl,Br,I)3 compounds are

3local density approximation.
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Fig. 6.17 Band structures of CuAlO2, CuGaO2, and CuInO2, calculated with LDA (underestimating the absolute value
of the band gaps). The arrows denote the maximum of the valence band that has been set to zero energy for each material.
Adapted from [226]

Fig. 6.18 Calculated energy band structure of BaTiO3 along the major symmetry directions. The Fermi level (EF) is
set at zero energy. Adapted from [475]

discussed in [478]. The trends are summarized in Fig. 6.19. The band gap of halide perovskites can be
varied across the visible range, e.g. within the CsPb(Cl,Br,I)3 the system (Fig. 6.20).

6.4 Systematics of Semiconductor Band Gaps

The trends with regard to the size of the band gap for elemental, III–V and II–VI semiconductors can
essentially be understood in terms of the bond strength and ionicity. In Fig. 6.21, the band gaps of many
important semiconductors are shown as a function of the lattice constant. For elemental semiconductors,
the band gap decreases with reduced bond strength, i.e. lattice constant (C→Si→Ge). A similar trend
exists both for the III–V and the II–VI semiconductors.
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Fig. 6.19 Schematic energy levels in ABX3 perovskites. Arrows indicate the shift of energy levels upon substitution of
atoms or small organic molecules. Adapted from [478]

(a) (b)

Fig. 6.20 a Photoluminescence of CsPbX3 nanocrystals of halide perovskites with various anions (colloidal solutions
in toluene under UV lamp (λ = 365nm)). Adapted from [479]. b Position of conduction and valence band edges of
CsPbX3 halide perovskites (relative to vacuum level at zero). Adapted from [480]

Fig. 6.21 Band gaps as a function of the lattice constant for various elemental, III–V and II–VI semiconductors. The
lattice constant of wurtzite semiconductors has been recalculated for a cubic cell (a3cubic = √

3 a2 c)

For the same lattice constant, the band gap increases with increasing ionicity, i.e. IV–IV→
III–V→II–VI→I–VII. A typical example is the sequence Ge→ GaAs→ZnSe→ CuBr, for which all
materials have almost the same lattice constant, and thebandgaps increase 0.66eV→1.42eV→2.7eV→
2.91eV.
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Fig. 6.22 Kronig-Penney model (along 〈111〉, b/a = 3) for a a IV–IV semiconductor and b for a III–V (or II–VI)
semiconductor, c resulting band structure (P0 = −3). d denotes the lattice constant (d = b + a). Adapted from [481]

Fig. 6.23 Optical image of
two inch wafers of GaAs
(left), GaP (center) and
ZnO (right). A GaN wafer
would look like the ZnO
wafer

This behavior can be understood within the framework of a modified Kronig-Penney model [481]
(Appendix F). Double potential wells (b/a = 3) are chosen to mimic the diatomic planes along the
〈111〉 direction in the zincblende structure (Fig. 6.22a). The first investigation of such diatomic one-
dimensional bandstructure was reported in [482]. Symmetric wells (depth P0) are chosen to model
covalent semiconductors and asymmetric wells with depths P0 ± 
P to model partially ionic semi-
conductors. Results are shown in Fig. 6.22a for P0 = −3. With increasing asymmetry, i.e. increasing
ionicity, the band gap increases, mostly due to a downward shift of the valence band. The case of III–V
(II–VI) semiconductors is reached for 
P ≈ 2 (4). The calculation of effective masses in [481] is
incorrect and has been rectified in [483]; the effective mass increases monotonically with 
P .

In Fig. 6.23, the visual impression of 2" wafers of GaAs, GaP and GaN on white paper is shown.
GaAs (and GaSb) is opaque since the band gap is below the visible spectral range. GaP has a band
gap in the green and appears red, GaN has a band gap in the ultra-violet and thus appears transparent.
As can be seen from Table 6.3, the anion sequence Sb, As, P, and N leads to smaller lattice constant
and higher ionicity. A notable deviation from this rule is InN whose band gap (0.7eV) is much smaller
than that of InP [484].

6.5 Alloy Semiconductors

In alloy semiconductors [166], the size of the band gap and the character of the band gap will depend on
the composition. The dependence of the band gap on the ternary composition is mostly nonlinear and
can usually be expressed with a bowing parameter b that is mostly positive. For a compound AxB1−xC
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Table 6.3 Comparison of band gap, lattice constant and ionicity of gallium–group V semiconductors for various anions.
Lattice constant for GaN has been recalculated for a cubic cell

Anion Eg (eV) a0 (nm) fi

N 3.4 0.45 0.50

P 2.26 0.545 0.33

As 1.42 0.565 0.31

Sb 0.72 0.61 0.26

the band gap is written as

Eg(AxB1−xC) = Eg(BC) + x
[
Eg(AC) − Eg(BC)

] − b x (1 − x) . (6.30)

Even on the virtual crystal approximation (VCA) level (Sect. 3.7.3) a nonzero bowing parameter b
is predicted. However, a more thorough analysis shows that the bowing cannot be treated adequately
within VCA and is due to the combined effects of volume deformation of the band structure with
the alloy lattice constant, charge exchange in the alloy with respect to the binary end components, a
structural contribution due to the relaxation of the cation–anion bond lengths in the alloy and a small
contribution due to disorder [485]. The discussion of Sect. 6.12.3 is related.

The SixGe1−x alloy has diamond structure for all concentrations and the position of the conduction-
band minimum in k-space switches from L to X at about x = 0.15 (Fig. 6.24a). However, for all
concentrations the band structure is indirect. The InxGa1−xAs alloy has zincblende structure for all
compositions. The band gap is direct and decreases with a bowing parameter of b = 0.6eV [486]
(Fig. 6.24b). This means that for x = 0.5 the band gap is 0.15eV smaller than expected from a linear
interpolation between GaAs and InAs, as reported by various authors [487].

If one binary end component has a direct band structure and the other is indirect, a transition occurs
from direct to indirect at a certain composition. An example is AlxGa1−xAs where GaAs is direct and
AlAs is indirect. For all concentrations the crystal has zincblende structure. In Fig. 6.24c, the �, L and
X conduction-band minima for ternary AlxGa1−xAs are shown. Up to an aluminum concentration of
x = 0.4 the band structure is direct. Above this value the band structure is indirect with the conduction-
bandminimumbeing at theX-point. The particularity ofAlxGa1−xAs is that its lattice constant is almost
independent of x . For other alloys lattice match to GaAs or InP substrates is only obtained for specific
compositions, as shown in Fig. 6.25. The band gap bowing in the group-III–nitride system has been
discussed in [488].

If the two binary end components have different crystal structure, a phase transition occurs at a
certain composition (range). An example is MgxZn1−xO, where ZnO has wurtzite structure and MgO
has rocksalt structure. The band gap is shown in Fig. 6.24d. In this case, each phase has its own bowing
parameter.

All alloys of Fig. 6.24b–d have mixed cations. The band gap also varies upon anion substitution in
a similar way as shown in Fig. 6.26 for ternary alloys with the cation Zn and the chalcogenides S, Se,
Te and O.

6.6 Amorphous Semiconductors

Since the crystal lattice in an amorphous semiconductor is not periodic, the concept of k-space and
the related concepts such as band structure E(k) break down at least partially. The density of states,
however, remains a meaningful and useful quantity (Sect. 6.13.2).
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In a perfectly crystalline semiconductor the eigenenergies of the states in the bands are real. An
amorphous semiconductor can be modeled using a spectrum of complex energies [495]. In Fig. 6.27
the band structure of crystalline silicon is shown next to that calculated for amorphous silicon with
α = 0.05.

6.7 Temperature Dependence of the Band Gap

The band gap of a semiconductor typically decreases with increasing temperature. A direct visual
impression can be obtained from the same LED chain at room temperature and dipped into liquid
nitrogen (Fig. 6.28). Experimental data of band gap versus temperature are shown in Fig. 6.29 for bulk
Si and ZnO.

The reasons for the temperature variation of the band gap are the change of electron–phonon
interaction and the expansion of the lattice. The temperature coefficient may be written as

Fig. 6.24 a Band gap of
SixGe1−x alloy
(T = 296K) with a change
from the conduction-band
minimum at L (Ge-rich) to
X. The inset depicts the
transition energy of the
indirect (�–L) and direct
(�–�) absorption edge for
low Si content. Adapted
from [489]. b Band gap (at
room temperature) of
InxGa1−xAs. The solid line
is an interpolation with
bowing (b = 0.6eV) and
the dashed line is the linear
interpolation. Data from
[486]. c Band gap (at room
temperature) in the ternary
system AlxGa1−xAs. For
x < 0.4 the alloy is a
direct, for x > 0.4 an
indirect, semiconductor.
Edd denotes the energy
position of a deep donor
(cf. Sect. 7.7.6). Adapted
from [490]. d Band gap (at
room temperature) in the
ternary system
MgxZn1−xO. Data (from
spectroscopic ellipsometry
[491, 492]) are for
hexagonal wurtzite phase
(circles), and Mg-rich
cubic rocksalt phase
(squares). Dashed lines are
fits to data with a different
bowing parameter for each
phase
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Fig. 6.25 Band gap versus
lattice constant for
Gax In1−xP and Alx In1−xP
(lattice matched to GaAs)
as well as for InxAl1−xAs
and InxGa1−xAs alloys
(lattice matched to InP)

Fig. 6.26 Band gap of
various Zn-based alloys
with mixing in the anion
sublattice. The lines are fits
with (6.30), the bowing
parameter b is labeled.
Data for Zn(S,Se,Te) from
[493], for Zn(O,Se/Te)
from [494]

Fig. 6.27 a Calculated
band structure of
crystalline silicon. b
Calculated band structure
of amorphous silicon with
α = 0.05 (cf. (3.7)). The
solid lines denote the real
part of the energy, the
shaded areas denote the
regions with a width of
twice the imaginary part of
the energies centered
around the real part.
Adapted from [496]
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Fig. 6.28 LED chain with part at room temperature (left) and a part in a dewar filled with liquid nitrogen (right)
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Fig. 6.29 Temperature dependence of the band gap of a Si (data from [498]) and b ZnO (experimental data from
photoluminescence (triangles) and ellipsometry (circles)). The solid lines are fits with (6.34) and the parameters given
in Table 6.4

(
∂Eg

∂T

)
p

=
(

∂Eg

∂T

)
V

− α

β

(
∂Eg

∂p

)
T

, (6.31)

where α is the volume coefficient of thermal expansion and β is the volume compressibility. A rec-
ommendable discussion of the thermodynamic role of the band gap as chemical potential for the mass
action law (7.12), entropy contributions and its temperature dependence can be found in [497].

An anomaly is present for the lead salts (PbS, PbSe, PbTe) for which the temperature coefficient is
positive (Fig. 6.30a). Theoretical calculations [499] show that both terms in (6.31) are positive for the
lead salts. The L+

6 and L−
6 levels (see Fig. 6.12) shift as a function of temperature in such a way that

their separation increases (Fig. 6.30b).
Also in copper and silver halides [500, 501] (Fig. 6.31a) and chalcopyrites [502] (Fig. 6.31b) the

increase of band gap with increasing temperature has been found, sometimes only for a certain tem-
perature range. This effect is attributed to the p-d electron hybridization in the valence band with Cu
3d electrons and to even stronger effect with Ag 4d electrons.

For many semiconductors the temperature dependence can be described with the empirical, three-
parameter Varshni formula [503],
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Fig. 6.30 a Band gap versus temperature for PbS. b Theoretical position of L+
6 and L−

6 as a function of temperature for
PbTe. Adapted from [468]
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Fig. 6.31 a Band gap versus temperature for zincblende CuI1−xBrx alloys with various compositions x (including
binary CuI and CuBr) as labeled. Dashed lines are guide to the eye. Adapted from [500]. b Band gap vs. temperature
for chalcopyrite AgGaSe2. Solid line is fit with two-oscillator Bose-Einstein model. Adapted from [502]

Eg(T ) = Eg(0) − α T 2

T + β
, (6.32)

where Eg(0) is the band gap at zero temperature. A more precise and physically motivated formula
(based on a Bose-Einstein phonon model [504]) has been given in [505]

Eg(T ) = Eg(0) − αB �B

2

[
coth

(
�B

2T

)
− 1

]
= Eg(0) − αB �B

exp(�B/T ) − 1
, (6.33)

where αB is a coupling constant and k�B is a typical phonon energy; typical values are given in
Table 6.4. This model reaches a better description of the fairly flat dependence at low temperatures.

The more elaborate model of [506] takes into account a more variable phonon dispersion, including
optical phonons, and proposes the four-parameter formula

Eg(T ) = Eg(0) − α �

[
1 − 3
2

exp (2/γ ) − 1
+ 3
2

2

(
6
√
1 + β − 1

)]
(6.34)
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Table 6.4 Parameters for the temperature dependence of the band gap according to 6.33 (Si, GaAs: [505], GaN: [507],
ZnO: [508]) and (6.34) for various semiconductors

α � 
 αB �B

(10−4 eV/K) (K) (10−4 eV/K) (K)

Si 3.23 446 0.51 2.56 296

Ge 4.13 253 0.49

GaAs 4.77 252 0.43 5.16 310

GaN 6.14 586 0.40 4.05 370

InP 3.96 274 0.48

InAs 2.82 147 0.68

ZnSe 5.00 218 0.36

ZnO 3.8 659 0.54 5.9 616

Fig. 6.32 Band gap of
GaAs (at T = 10K) as a
function of the Ga isotope
content. Dashed line is
linear fit. Adapted
from [509]

β = π2

3 (1 + 
2)
γ 2 + 3
2 − 1

4
γ 3 + 8

3
γ 4 + γ 6

γ = 2 T/� ,

where α is the high-temperature limiting magnitude of the slope (of the order of several 10−4 eV/K),�
is an effective average phonon temperature and
 is related to the phonon dispersion.
 takes typically
values between zero (Bose-Einstein model) and 3/4 [506].

6.8 Isotope Dependence of the Band Gap

The band edge slightly depends on the isotope composition of semiconductor, as shown for GaAs in
Fig. 6.32. The effect is discussed in detail in [509].

6.9 Electron Dispersion

6.9.1 Equation of Electron Motion

The equation of motion for the electron in the band structure is no longer given by Netwon’s law
F = d(mv)/dt as in vacuum. Instead, the propagation of quantum-mechanical electron wave packets
has to be considered. Their group velocity is given by (vg = ∂ω/∂k)
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v = 1

�
∇kE(k) , (6.35)

where ∇k is the gradient with respect to k. Through the dispersion relation the influence of the crystal
and its periodic potential on the motion enters the equation.

An electric field E acts on an electron during the time δt the work δE = −eEvg δt . This change in
energy is related to a change in k via δE = dE/dk δk = �vg δk. Thus, we arrive at � dk/dt = −eE.
For an external force we thus have

�
dk
dt

= −eE = F . (6.36)

Thus, the crystal momentum p = �k takes the role of the momentum. A more rigorous derivation can
be found in [451].

In the presence of a magnetic field B the equation of motion is

�
dk
dt

= −e v × B = − e

�
(∇kE) × B . (6.37)

The motion in a magnetic field is thus perpendicular to the gradient of the energy, i.e. the energy of the
electron does not change. It oscillates therefore on a surface of constant energy perpendicular to B.

6.9.2 Effective Mass of Electrons

From the free-electron dispersion E = �
2k2/(2m) the mass of the particle is inversely proportional to

the curvature of the dispersion relation, i.e. m = �
2/(d2E/dk2). This relation will now be generalized

for arbitrary dispersion relations. The (inverse) tensor of the effective mass is defined as

(m∗−1)i j = 1

�2

∂2E

∂ki ∂k j
. (6.38)

The equation F = m∗ v̇ must be understood as a tensor equation, i.e. for the components of the force
Fi = m∗

i j a j . Force and acceleration must no longer be collinear. In order to find the acceleration from
the force, the inverse of the effective-mass tensor must be used, a = (m∗)−1 F.

In Fig. 6.33 the energy dispersion of the (lowest) conduction band in a typical semiconductor, the
related electron velocity and the effective mass are shown schematically.

In (6.22) the ratio of the effective mass and the free-electron mass is of the order of m∗/m ≈ U/λ,
the ratio of the free particle energy and the band gap. For typical semiconductors, the width of the
(valence) band is of the order of 20eV, and the gap is about 0.2–2eV. Thus, the effective mass is
expected to be 10–100 times smaller than the free-electron mass. Additionally, the relation m∗ ∝ Eg

is roughly fulfilled (Fig. 6.34).
From so-called k · p theory [510] (see Appendix H) the effective electron mass is predicted to be

related to the momentum matrix element pcv

pcv = 〈c|p|v〉 =
∫

�0

u∗
c,k(r)p uc, k(r) d

3r , (6.39)

with �0 being the unit cell volume and the Bloch functions |c〉 and |v〉 of the conduction and valence
band, respectively, given as
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Fig. 6.33 Schematic
diagram of the electron
dispersion E(k) in a
typical semiconductor
(blue) and corresponding
carrier velocity (∝ ∂E/∂k)
(red) and effective mass
(∝ 1/(∂2E/∂k2)) (green)

Fig. 6.34 Effective
electron mass (in units of
the free-electron mass m0)
as a function of the
(low-temperature) band
gap for several (direct band
gap) semiconductors. The
dashed line fulfills
m∗/m0 = Eg/20 eV

|c〉 = uc,kc(r) exp (i kcr) (6.40a)

|v〉 = uv,kv(r) exp (i kvr) . (6.40b)

Typically, the k-dependence of the matrix element is small and neglected. The momentum matrix ele-
mentwill also be important for optical transitions between the valence and conduction bands (Sect. 9.6).
Other related quantities that are often used are the energy parameter EP

EP = 2 |pcv|2
m0

, (6.41)

and the bulk momentum matrix element M2
b that is given by

M2
b = 1

3
|pcv|2 = m0

6
EP . (6.42)
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Fig. 6.35 Energy
isosurfaces in k-space in
the vicinity of the
conduction-band minima
for a GaAs with isotropic
(spehrical) minimum at
�-point, b ZnO with
anisotropic (ellipsoidal)
minimum at �-point
(anisotropy exaggerated), c
silicon with six equivalent
anisotropic minima
(ml/mt = 5 not to scale)
along 〈100〉 and d
germanium with eight
equivalent anisotropic
minima along 〈111〉. The
cube indicates the 〈100〉
directions for the cubic
materials. For the wurtzite
material (part b) the
vertical direction is along
[00.1]

(a) (b)

(c) (d)

The electron mass is given by4

m0

m∗
e

= 1 + EP

3

(
2

Eg
+ 1

Eg + 
0

)
(6.43)

= 1 + EP
Eg + 2
0/3

Eg
(
Eg + 
0

) ≈ 1 + EP

Eg + 
0/3
≈ EP

Eg
.

Comparison with the fit from Fig. 6.34 yields that EP is similar for all semiconductors [511] and of the
order of 20eV (InAs: 22.2eV, GaAs: 25.7eV, InP: 20.4eV, ZnSe: 23eV, CdS: 21eV).

In silicon there are six equivalent conduction-band minima. The surfaces of equal energy are
schematically shown in Fig. 6.35c. The ellipsoids are extended along the 〈100〉 direction because
the longitudinal mass (along the 
 path) is larger than the transverse mass in the two perpendicular
directions (Table 6.5). For example, the dispersion relation in the vicinity of one of the minima is given
as (k0x denotes the position of one of the conduction-band minima close to a X-point)

E(k) = �
2

(
(kx − k0x )

2

2m l
+ k2y + k2z

2m t

)
. (6.44)

For germanium surfaces of constant energy around the eight conduction-band minima in the 〈111〉
directions are depicted in Fig. 6.35d. The longitudinal and the transverse masses are again different.
For GaAs, the conduction-band dispersion around the � point is isotropic, thus the surface of constant
energy is simply a sphere (Fig. 6.35a). In wurtzite semiconductors the conduction-band minimum is at
the �-point. The mass along the c-axis is typically smaller than the mass within the (00.1) plane [512]

4
0 is the spin-orbit splitting discussed in Sect. 6.10.2.
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Table 6.5 Longitudinal direction of effective mass ellipsoid, longitudinal and transverse effective electron mass in
several semiconductors. For the density of states mass md,e see (6.72). Mass values in units of the free electron mass m0

Long. dir. ml mt ml/mt md,e Ref.

C 〈100〉 1.4 0.36 3.9 1.9 [514]

Si 〈100〉 0.98 0.19 5.16 1.08 [515]

Ge 〈111〉 1.59 0.082 19.4 0.88 [515]

ZnO [00.1] 0.21 0.25 0.88 [516]

CdS [00.1] 0.15 0.17 0.9 [517]

Fig. 6.36 Effective
electron mass from
cyclotron resonance
experiments (at T = 4K)
on a Si and b Ge for the
magnetic field in the (110)
plane and various
azimuthal directions θ .
Experimental data
(symbols) and fits (solid
lines) using (6.45) with a
ml = 0.98, mt = 0.19 and
b ml = 1.58, mt = 0.082.
Adapted from [515]

(a) (b)

(m l/m t ≈ 0.8 for ZnO [513]), see Fig. 6.35b. In [512] also an anisotropy within the (00.1) plane is
predicted.

The directional dependence of the mass can be measured with cyclotron resonance experiments
with varying direction of the magnetic field. In Fig. 6.36, the field B is in the (110) plane with different
azimuthal directions. When the (static) magnetic field makes an angle ϑ with the longitudinal axis of
the energy surface, the effective mass is given as [518]

1

m∗ =
√
cos2 ϑ

m2
t

+ sin2 ϑ

m t m l
. (6.45)

6.9.3 Nonparabolicity of Electron Mass

The dispersion around the conduction-band minimum is only parabolic for small k. The further away
the wavevector is from the extremum, the more the actual dispersion deviates from the ideal parabola
(see, e.g., Fig. 6.10). This effect is termed nonparabolicity. Typically, the energy increases less quickly
with k than in the parabolic model. This can be described in a so-called two-level model with the
dispersion relation
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�
2k2

2m∗
0

= E

(
1 + E

E∗
0

)
, (6.46)

where E∗
0 > 0 parameterizes the amount of nonparabolicity (a parabolic band corresponds to E∗

0 = ∞).
The nonparabolic dispersion for GaAs is shown in Fig. 6.37a. The curvature is reduced for larger k
and thus the effective mass is energy dependent and increases with the energy. Equation (6.46) leads
to the energy-dependent effective mass

m∗(E) = m∗
0

(
1 + 2E

E∗
0

)
, (6.47)

where m∗
0 denotes here the effective mass at k = 0. Theory and experimental data for the effective

electron mass of GaAs are shown in Fig. 6.37b.

6.10 Holes

6.10.1 Hole Concept

Holes are missing electrons in an otherwise filled band. A Schrödinger-type wave-equation for holes
(unoccupied electron states) was derived by Heisenberg [70] to interpret Hall effect data. The hole
concept is useful to describe the properties of charge carriers at the top of the valence band. The hole
is a new quasi-particle whose dispersion relation is schematically shown in Fig. 6.38 in relation to the
dispersion of electrons in the valence band.

The wavevector of the hole (filled circle in Fig. 6.38) is related to that of the ‘missing’ electron
(empty circle in Fig. 6.38) by kh = −ke. The energy is Eh(kh) = −Ee(ke), assuming that EV = 0,
otherwise Eh(kh) = −Ee(ke) + 2EV. The hole energy is larger for holes that are further away from
the top of the valence band, i.e. the lower the energy state of the missing electron. The velocity of the
hole, vh = �

−1 dEh/dkh, is the same, vh = ve, and the charge is positive, +e. The effective mass of the
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m
*/m
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Fig. 6.37 a Dispersion relations for the conduction band of GaAs. The solid line is parabolic dispersion (constant
effective mass). The dashed (dash-dotted) line denotes the dispersion for k along [001] ([111]) from a five-level k · p
model (5LM). bCyclotron resonance effective mass of electrons in GaAs as a function of the Fermi level (upper abscissa)
and the corresponding electron concentration (lower abscissa). The dashed line is from a 2LM according to (6.47) with
E∗
0 = 1.52eV. The solid lines are for a 5LM for the three principal directions of the magnetic field. The symbols represent

experimental data from different sources. Data from [519]
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Fig. 6.38 Hole dispersion
dashed line in relation to
the electron dispersion in
the valence band (solid
line)

k

E

ke
kh

hole is positive at the top of the valence band, m∗
h = −m∗

e . Therefore, the drift velocities of an electron
and hole are opposite to each other. The resulting current, however, is the same.

6.10.2 Hole Dispersion Relation

The valence band at the �-point is 3-fold degenerate. The band developed from the atomic (bonding)
p states; the coupling of the spin s = 1/2 electrons with the orbital angular momentum l = 1 leads to
a total angular momentum j = 1/2 and j = 3/2. The latter states are degenerate at � in zincblende
bulk material and are called heavy holes (hh) for m j = ±3/2 and light holes (lh) for m j = ±1/2
due to their different dispersion (Fig. 6.39a). The two (m j = ±/2) states of the j = 1/2 state are
split-off from these states by an energy 
0 due to spin-orbit interaction and are called split-off (s-o)
holes. The spin-orbit interaction increases with increasing atomic order number Z of the anion since
the electrons are located preferentially there (Fig. 6.40). A detailed discussion of the spin-orbit splitting
in zincblende semiconductors is given in [520].

All three holes have different mass. In the vicinity of the �-point the dispersion for heavy and light
holes can be described with (+:hh, −:lh)

Fig. 6.39 a Simplified
band structure with
conduction band and three
valence bands and (b)
three-dimensional
visualization (E versus
(kx, ky)) of the valence
bands of Ge (including
warping). Part b from [521]

(a) (b)
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Fig. 6.40 Spin-orbit
splitting 
0 for elemental
(diamonds) and various
III–V and II–VI (circles)
semiconductors. The data
are plotted as empty (filled)
circles as a function of the
cation (anion) order
number. Obviously, 
0
correlates with the anion Z .
The dashed line is
proportional to Z2

Fig. 6.41 Dispersion at the
valence band edge of GaAs
for a, b heavy holes and
c,d light holes. a,c
Constant energy surfaces
and b,d isolines in the
(kx , ky)-plane (b and d
have different energy
scales)
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E(k) = A k2 ±
√
B2 k4 + C2

(
k2x k

2
y + k2y k

2
z + k2x k

2
z

)
. (6.48)

For heavy and light holes there is a dependence of the dispersion, i.e. the mass, in the (001) plane. This
effect, sketched in Fig. 6.39b, is called warping. The warping at the GaAs valence-band edge is shown
in Fig. 6.41. Equation (6.48) can also be expressed in terms of angular coordinates [522].

The s-o holes have the dispersion

E(k) = −
0 + A k2 . (6.49)
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Table 6.6 Valence-band parameters (for (6.48)) A and B in units of (�2/2m0), C2 in units of (�2/2m0)
2, and 
0 in eV.

From [164, 523, 524]

Material A B C2 
0

C −4.24 −1.64 9.5 0.006

Si −4.28 −0.68 24 0.044

Ge −13.38 −8.5 173 0.295

GaAs −6.9 −4.4 43 0.341

InP −5.15 −1.9 21 0.11

InAs −20.4 −16.6 167 0.38

ZnSe −2.75 −1.0 7.5 0.43

Values for A, B, C2 and 
0 for a number of semiconductors are given in Table 6.6. The valence-band
structure is often described with the Luttinger parameters γ1, γ2, and γ3 that can be represented through
A, B, and C via

�
2

2m0
γ1 = − A (6.50a)

�
2

2m0
γ2 = − B

2
(6.50b)

�
2

2m0
γ3 =

√
B2 + C2/3

2
. (6.50c)

The mass of holes in various directions can be derived from (6.48). The mass along the [001] direction,
i.e. �2/(∂2E(k)/∂k2x ) for ky = 0 and kz = 0, is

1

m100
hh

= 2

�2
(A + B) (6.51a)

1

m100
lh

= 2

�2
(A − B) . (6.51b)

The anisotropy of hole masses has been investigated with cyclotron resonance experiments (Fig. 6.42).
For θ being the angle between the magnetic field and the [001] direction, the effective heavy hole
(upper sign) and light hole (lower sign) mass in cubic semiconductors is given by [515]

m∗ = �
2

2

1

A ± √
B2 + C2/4

(6.52)

×
⎧⎨
⎩

C2 (1 − 3 cos2 θ)2

64
√
B2 + C2/4

[
A ± √

B2 + C2/4
] + . . .

⎫⎬
⎭ .

For C2 = 0 the hole bands are isotropic, as is obvious from (6.48). In this case γ2 = γ3, the so-called
spherical approximation. The average of the hole masses over all directions is

1

mav
hh

= 2

�2

(
A + B

[
1 + 2C2

15 B2

])
(6.53a)
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(a) (b)

Fig. 6.42 Effective hole masses from cyclotron resonance experiments (T = 4K) for heavy and light holes in a Si and
b Ge for the magnetic field in the (110) plane and various azimuthal directions θ . Experimental data (symbols) and fits
(solid lines) using (6.52). Adapted from [515]

(a) (b)

Fig. 6.43 Luttinger parameters for various III-V semiconductors versus their band gap. a Inverse values of γ1 (squares)
and γ2 (diamonds). Dashed lines are guides to the eye. b γ3 − γ2 versus band gap

1

mav
lh

= 2

�2

(
A − B

[
1 + 2C2

15 B2

])
. (6.53b)

Similar to the correlation of the electron mass with the band gap (Fig. 6.34), the Luttinger parameters
are correlated with the band gap as shown in Fig. 6.43. The parameters 1/γ1 and 1/γ2 increase about
linearly with Eg. The parameter γ3 − γ2, which is responsible for the valence band warping, decreases
with increasing band gap.
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6.10.3 Valence-Band Fine Structure

In Fig. 6.44, the schematic structure of the band edges for zincblende structure semiconductors is
shown. The s-o holes in the zincblende structure are split-off due to the spin-orbit interaction 
so, the
�8 band is degenerate (heavy and light holes). Degeneracies for the holes are removed in the wurtzite
and chalcopyrite structures by the additional crystal field splitting 
cf due to the anisotropy between
the a- and c-axes. Typically, e.g. for CdS, the topmost valence band in the wurtzite structure has �9

symmetry (allowed optical transitions only for E ⊥ c); an exception is ZnO for which the two upper
bands are believed to be reversed. In the chalcopyrite structure optical transitions involving the�6 band
are only allowed for E ⊥ c. The three hole bands are usually labeled A, B, and C from the top of the
valence band.

The energy positions of the three bands (with respect to the position of the �15 band) in the presence
of spin-orbit interaction and crystal field splitting are given within the quasi-cubic approximation
[525] by

E1 = 
so + 
cf

2
(6.54a)

E2,3 = ±
√(


so + 
cf

2

)2

− 2

3

so 
cf . (6.54b)

In chalcopyrites the crystal field splitting is typically negative (Fig. 6.45). It is approximately linearly
related to 1 − η (for η = c/2a see Sect. 3.4.6).

Fig. 6.44 Schematic band structure of zincblende and the valence-band splitting due to spin-orbit interaction 
so and
crystal field splitting
cf for chalcopyrites (typically
cf < 0, see Fig. 6.45) and wurtzites. For the wurtzites the situation
is schematically shown for CdS (
so = 67meV, 
cf = 27meV) (or GaN) and ZnO (
so = −8.7meV, 
cf = 41meV)
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Fig. 6.45 Crystal field
splitting 
cf for various
chalcopyrite compounds
versus the tetragonal
distortion
2 − c/a = 2 (1 − η).
Dash-dotted line represents

cf = 1.5 b (2 − c/a) for
b = 1eV. Data from [526]
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Fig. 6.46 Schematic band
structure of zincblende
with vanishing energy gap
for the ternary compounds
MnxHg1−xTe. Note the
linear dispersion for the
zero-gap case at x ≈ 0.07

6.11 Band Inversion

In certain compounds, typically mixing a semiconductor with a semimetal [527, 528], the band gap
can shrink to zero (zero-gap semiconductor) and even become negative in the sense that the s-type �6

symmetry (conduction) band is inverted below the �8 (p-type) valence-band edge. HgTe is a classical
example for such material as shown in Fig. 6.46, but similar effects are also present in other semicon-
ductors, for example various chalcopyrites [529]. Remember that such band structures are topologically
non-trivial (cf. Sect. 6.2.6).

For the zero-gap case, the dispersion of the two crossing bands is linear (like for graphene, cf.
Sect. 13.1.2). The dielectric function of zero-gap semiconductors is discussed in [530].

For theCdxHg1−xTe system, around the zero-gap concentration of x ≈ 0.16, the change fromnormal
to inverted band structure will occur also as a function of temperature [531] as shown in Fig. 6.47. Such
effect had been described already 50 years ago for (Pb,Sn)Te at the L-point (cf. Sect. 6.3.6) in [532].
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Fig. 6.47 Band gap of
CdxHg1−xTe for various
alloy compositions and
temperatures. On the right,
the schematic band
structure of (Hg,Cd)Te with
positive, zero and negative
band gap is shown.
Adapted from [531],
reprinted under a Creative
Commons Attribution (CC
BY 4.0) licence

6.12 Strain Effects on the Band Structure

Amechanical strain (or equivalently stress) causes changes in the bond lengths. Accordingly, the band
structure is affected. These effects have been exhaustively treated in [533, 534]. For small strain,
typically ε � 0.01 the shift of the band edges is linear with the strain, for large strain it becomes
nonlinear [535]. Often homogeneous strain is assumed, the effect of inhomogeneous strain is discussed
in [536].

6.12.1 Strain Effect on Band Edges

In a direct-gap zincblende material the position of the conduction-band edge is only affected by the
hydrostatic component of the strain

EC = E0
C + ac

(
εxx + εyy + εzz

) = E0
C + ac Tr(ε) , (6.55)

where ac < 0 is the conduction-band hydrostatic deformation potential and E0
C is the conduction-band

edge of the unstrained material. Similarly, the valence-band edge is

EV = E0
V + av Tr(ε) , (6.56)

where av > 0 is the valence-band hydrostatic deformation potential. Therefore the band gap
increases by


Eg = a Tr(ε) = a
(
εxx + εyy + εzz

)
, (6.57)

with a = aC − aV. Such linear behavior upon hydrostatic pressure has been found for many semicon-
ductors and is shown in Fig. 6.48a for Ga0.92In0.08As. The anomaly for N-doping is discussed below
in Sect. 6.12.3. In Fig. 6.49 the dependence of the direct and indirect gaps of GaAs is shown. The
dependence of the direct gap on pressure is non-linear, that on the density is linear [537].

Biaxial and shear strains affect the valence bands and lead to shifts and splitting of the heavy and
light holes at the �-point:

Ev,hh/lh = E0
v ± Eεε (6.58a)
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Fig. 6.48 a Dependence of the band gap of Ga0.92In0.08As alloy (squares) and nitrogen-doped (Ga,In)As on (compres-
sive) hydrostatic pressure, determined by photomodulated transmission at T = 295K. b Pressure dependence of band
gap for two (Ga,In)(As,N) samples together with model calculation (6.62). The coupling parameter is V = 0.12eV
(0.4eV) for a nitrogen content of 0.9% (2.3%). Adapted from [538]

Fig. 6.49 Dependence of the direct �V
15–�

C
1 and indirect �V

15–X
C
1 band gap of GaAs (T = 300K) on pressure. Solid

lines are interpolations of experimental data, dashed line is extrapolation to p = 0. The crossing of the direct and indirect
band gap occurs at 4.2GPa. The arrow denotes the pressure of the phase transition from zincblende to an orthorhomic
structure around 17GPa. Adapted from [537]

E2
εε = b2/2

[(
εxx − εyy

)2 + (
εyy − εzz

)2 + (εxx − εzz)
2
]

+ d2
[
ε2xy + ε2yz + ε2xz

]
,

where E0
v denotes the bulk valence-band edge. b and d are the optical deformation potentials. For

compressive strain the heavy-hole band is above the light-hole band. For tensile strain there is strong
mixing of the bands (Fig. 6.50). In Table 6.7 the deformation potentials for some III–V semiconductors
are listed. Typical values are in the eV regime.

In a wurtzite crystal, seven (or eight) deformation potentials are needed that are termed a (for the
change of band gap with hydrostatic strain, again a = aC − aV) and D1–D6 (for the valence band
structure) [539, 540].

In Si and Ge, three deformation potentials, termed a, b, d, are needed for the valence band and two
for each conduction band minimum,�u and�d [541]. The energy position of the i-th conduction-band
edge (with unit vector ai pointing to the valley) is
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Fig. 6.50 Schematic band
structure of GaAs in
unstrained state (center)
and under compressive and
tensile biaxial strain as
labeled. Dashed lines
indicate shift of band edges
due to hydrostatic part of
strain

electrons

k

unstrained

k

E

k

EE

unstrainedcompressive tensile

m=3/2j

m=1/2j m=3/2j

m=1/2j

m=1/2jm=3/2j

Table 6.7 Deformation potentials for some III–V semiconductors. All values in eV

Material a b d

GaAs −9.8 −1.7 −4.6

InAs −6.0 −1.8 −3.6

Table 6.8 Deformation potentials for silicon and germanium. All values in eV from [542]

material �
(
)
d �

(
)
u �

(L)
d �

(L)
u a b d

Si 1.1 10.5 −7.0 18.0 2.1 −2.33 −4.75

Ge 4.5 9.75 −4.43 16.8 2.0 −2.16 −6.06

EC,i = E0
C,i + �d Tr(ε) + �u ai ε ai , (6.59)

where E0
C,i denotes the energy of the unstrained conduction-band edge. The deformation potentials for

Si and Ge are given in Table 6.8.

6.12.2 Strain Effect on Effective Masses

In the presence of strain the band edges are shifted (cf. Sect. 6.12). Since the electron mass is related
to the band gap, it is expected that the mass will also be effected. In the presence of hydrostatic strain
εH the electron mass is [543] (cf. to (6.43) for εH → 0)

m0

m∗
e

= 1 + EP

Eg + 
0/3

[
1 − εH

(
2 + 3a

Eg + 
0/3

)]
, (6.60)

with a being the hydrostatic deformation potential and εH = Tr(ε). In [543], formulas are also given for
biaxial and shear strain and also for hole masses. Since the effective mass enters the mobility, the elec-
trical conductivity depends on the stress state of the semiconductor (piezoresistivity, see Sect. 8.3.14).
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Fig. 6.51 Bandgap of
GaAs1−xNx , experimental
data from various sources
(symbols) and model
(curve) according to (6.62)
with V = V0

√
x for

V0 = 2.7eV. Adapted
from [545]
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6.12.3 Interaction With a Localized Level

The normal dependence of the band gap on hydrostatic pressure is linear and given by (6.57). (Ga,In)As
containing nitrogen exhibits a remarkable deviation from this behavior as shown in Fig. 6.48a. This
is due to the interaction of the continuum states of the conduction band with the electron level of
the isoelectronic nitrogen impurity (Sect. 7.7.9) EN, being within the conduction band. For GaAs it
is 0.2 eV above the conduction band edge EC. This phenomenon has been investigated theoretically
within microscopic detail [544]. Within a simple ‘band anticrossing’ two-level model, the coupling
of the pressure-dependent conduction band edge EC and the nitrogen level can be obtained from the
Eigenwert equation ∣∣∣∣ E − EC V

V E − EN

∣∣∣∣ = 0 , (6.61)

V being the coupling constant. The determinant vanishes for

E± = 1

2

(
EC + EN ±

√
(EC − EN)2 + 4V 2

)
. (6.62)

Here the weak pressure dependence of EN is neglected for simplicity. This model can explain the
pressure dependence of the band gap of (Ga,In)As:N fairly well [538] (Fig. 6.48b). The coupling
parameter V is in the order of a few 0.1eV for small nitrogen content. In photomodulated reflection
also the E+ levels can be observed [545]. The anti-crossing model can also model the dependence of
the GaAs1−xNx bandgap on the nitrogen concentration [545] (Fig. 6.51).

6.13 Density of States

6.13.1 General Band Structure

The dispersion relation yields how the energy of a (quasi-) particle depends on the k vector. Now we
want to know how many states are at a given energy. This quantity is called the density of states (DOS)
and is written as D(E). It is defined in an infinitesimal sense such that the number of states between
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E and E + δE is D(E)δE . In the vicinity of the extrema of the band structure many states are at the
same energy such that the density of states is high.

The dispersion relation of a band will be given as E = E(k). If several bands overlap, the densities
of state of all bands need to be summed up. The density of states at the energy Ẽ for the given band is

D(Ẽ) dE = 2
∫

d3k
(2π/L)3

δ(Ẽ − E(k)) , (6.63)

where, according to (5.5), (2π/L)3 is the k-space volume for one state. The factor 2 is for spin
degeneracy. The integral runs over the entire k-space and selects only those states that are at Ẽ .
The volume integral can be converted to a surface integral over the isoenergy surface S(Ẽ) with
E(k) = Ẽ . The volume element d3k is written as d2S dk⊥. The vector dk⊥ is perpendicular to S(Ẽ)

and proportional to ∇kE(k), i.e. dE = |∇kE(k)| dk⊥.

D(Ẽ) = 2
∫
S(Ẽ)

d2S

(2π/L)3

1

|∇kE(k)| . (6.64)

In this equation, the dispersion relation is explicitly contained. At band extrema the gradient diverges,
however, in three dimensions the singularities are integrable and the density of states takes a finite
value. The corresponding peak is named a van-Hove singularity. The concept of the density of states
is valid for all possible dispersion relations, e.g. for electrons, phonons or photons.

The density of states for the silicon band structure (see Fig. 6.9a) is shown in Fig. 6.52.

6.13.2 Amorphous Semiconductors

If disorder is introduced, the density of states is modified as shown in Fig. 6.53 for amorphous germa-
nium using a calculation with complex eigenenergies. The defects, as compared to the perfect lattice,
introduced states in the band gap and generally wash out the sharp features from the crystalline DOS.

Several models exist for the defect level distributions within the band gap. The first model was
the Mott model which has band tails at the valence and conduction band edges [547]. In the Cohen-
Fritzsche-Ovshinsky (CFO) model [548], the band tails are more severe and overlap; the Fermi energy
lies at the minimum of the density of states. In the Davis–Mott model [549] deep states were added in
the gap and eventually the Marshall-Owen model [550] assumes band tails and donor- and acceptor-
like deep states. The four models are schematically shown in Fig. 6.54. These model densities of states
allow also the interpretation of carrier transport in amorphous semiconductors, taking into account
localized and delocalized states (see Sect. 8.9).

The density of states for an amorphous semiconductor is best calculated from atomistic models,
possibly averaging over many configurations. The typical features, compared to the clear band gap of
a similar ordered material, are band tails due to disorder (cmp. Sect. 5.2.9) and deep levels within the
gap due to specific atomic arrangements not present in ordered bulk. The most investigated system is
amorphous silicon; in Fig. 6.55 a numerical calculation of the density of states is shown together with
charge distribution of four states at selected energies [551]. The further the states are in the band tail,
the stronger their localization is. The two most right states shown in Fig. 6.55 are not conducting.

As another example, simulations of ZnSnO3 are shown in Fig. 6.56. The band tail between 0 and
0.5eV is due to disorder of oxygen 2p orbitals [552]. At 0.9eV a level due to under-coordinated oxygen
appears. Deep levels are due to metal-metal bonds. Band tails due to chemically disordered oxygen
have been experimentally observed for amorphous GIZO [553].
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Fig. 6.52 Density of states
in the silicon valence-
(blue) and conduction-band
(red) as obtained from
theoretical calculation
using empirical
pseudopotentials. Grey
regions denotes the band
gap. Critical points (cf.
Fig. 6.9a) are labeled. In
the lower three graphs, the
DOS is decomposed into
contributions from different
angular momentum states
(s (green), p (orange) and d
(purple)). Top part adapted
from [546], bottom part
adapted from [175]

6.13.3 Free-Electron Gas

In M dimensions, the energy states of a free-electron gas are given as

Fig. 6.53 Theoretical
calculation for the density
of states of amorphous Ge
models as obtained for
various degrees of disorder
α (3.7). α = 0.09
corresponds to a mean
short-range order distance
of about 2.4 lattice
constants (cmp. Fig. 3.14b).
Adapted from [204]
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Fig. 6.54 Model density
of states in amorphous
semiconductors (solid
lines) according to Mott
[547], Cohen-Fritzsche-
Ovshinsky [548],
Davis–Mott [549] and
Marshall–Owen [550].
Dashed lines represent the
DOS of the same material
without disorder
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Fig. 6.55 Theoretical calculation of the density of electronic states of amorphous silicon. The charge distribution in four
selected states at the indicated energies is shown, from right to left with decreasing localization. Adapted from [551]

E(k) = �
2

2m∗

M∑
i=1

k2i . (6.65)

The ki can take the values±πn/L (in the first Brillouin zone) with n ≤ N , N being the number of unit
cells in one dimension. These values are equidistant in k-space. Each M-dimensional k-point takes a
volume of (2π/L)M . The number of states N (EF) up to the energy EF = �

2

2m k
2
F (later used as Fermi

energy EF and Fermi vector kF) is

N (EF) = 2

(2π/L)M

∫ |k|=kF

k=0
dMk . (6.66)
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Fig. 6.56 Theoretical
calculation for the density
of states of crystalline
(dashed lines, conduction
and valence bands
indicated by greay areas)
and amorphous ZnSnO3
with different
configurations (solid lines).
States due to
under-coordinated oxygen
(Ouc) and metal-metal
bonds are labelled.
Adapted from [552]
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The factor 2 is for spin degeneracy, the integration runs over M dimensions. The density of states is
the derivative

D(E) = dN

dE
. (6.67)

In the following, the density of states for M = 3, 2, 1 and zero dimensions is derived. A visualization
is given in Fig. 14.1.

6.13.3.1 M = 3

This case relates to bulkmaterial inwhich electrons are free tomove in all three dimensions. Performing
the integral (6.66) for M = 3 yields for an isotropic mass,

N 3D = V

3π2
k3F = V

3π2

(
2m EF

�2

)3/2

. (6.68)

Therefore, kF and EF are given by

kF =
(
3π2 N

V

)1/3

(6.69)

EF = �
2

2m∗

(
3π2 N

V

)2/3

, (6.70)

and the density of states in three dimensions is

D3D(E) = V

2π2

(
2m∗

�2

)3/2 √
E . (6.71)

Mostly the density of states is used as density of states per volume, then the factor V in (6.71) is
omitted.

If a conduction-band minimum is degenerate, a factor gv (valley degeneracy) must be included in
the density of states, i.e. gv = 6 for Si and gv = 8 for Ge (gv = 1 for GaAs). This factor is typically
included in the mass used in (6.71) that then becomes the density of states massmd,e. If the conduction-
band minimum has cylindrical symmetry in k-space, such as for Si and Ge, the mass that has to be
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used is
md,e = g2/3v

(
m2

t m l
)1/3

. (6.72)

In the case of a degeneracy of the valence band, the states of several bands need to be summed. In bulk
material, typically the heavy and light hole bands are degenerate at the �-point. If the split-off band is
not populated because of insufficient temperature, the valence-band edge density of states is expressed
by the density of states hole mass

md,h =
(
m3/2

hh + m3/2
lh

)2/3
. (6.73)

The density of states (per volume) at the conduction and valence band edges are thus given by

D3D
e (E) = 1

2π2

(
2md,e

�2

)3/2 √
E − EC , E > EC (6.74)

D3D
h (E) = 1

2π2

(
2md,h

�2

)3/2 √
EV − E , E < EV . (6.75)

6.13.3.2 M = 2

This case is important for thin layers in which the electron motion is confined in one direction and free
in a plane. Such structures are called quantum wells (see Sect. 12.3.2). We find for the 2D density of
states (for each subband over which it is not summed here, including spin degeneracy)

N 2D = A

2π
k2F = A

π

m∗

�2
E , (6.76)

where A is the area of the layer. The density of states is thus constant and given by

D2D(E) = A

π

m∗

�2
. (6.77)

6.13.3.3 M = 1

The case M = 1 describes a quantum wire in which the electron motion is confined in two dimensions
and free in only one dimension. For this case, we find for a wire of length L

N 1D = 2L

π
kF = 2L

π

(
2m∗E

�2

)1/2

. (6.78)

The density of states becomes singular at E = 0 and is given by (for one subband)

D1D(E) = L

π

(
2m∗

�2

)1/2 1√
E

. (6.79)

6.13.3.4 M = 0

In this case electrons have no degrees of freedom, as, e.g., in a quantum dot (Sect. 14.4), and each state
has a δ-like density of states at each of the quantized levels.
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