
Chapter 4
Structural Defects

Crystals are like people: it is the defects in them which tend to make them interesting!

C.J. Humphreys, 1979 [260]

Abstract No crystal is perfect. Various point defects and their thermodynamics, diffusion and distri-
bution of defects are discussed. Also dislocations and extended defects such as cracks, stacking faults,
grain boundaries and antiphase domains are covered.

4.1 Introduction

In an ideal lattice each atom is at its designated position. Deviations from the ideal structure are called
defects. In the following, we will briefly discuss the most common defects. The electrical activity of
defects will be discussed in Sects. 7.5 and 7.7. For the creation (formation) of a defect a certain free
enthalpy Gf

D is necessary. At thermodynamical equilibrium a (point) defect density ∝ exp(−Gf
D/kT )

will always be present (cf. Sect. 4.2.2).
Point defects (Sect. 4.2) are deviations from the ideal structure involving essentially only one lattice

point. The formation energy for line defects (Sect. 4.3) or area defects (Sect. 4.4) scales with N 1/3

and N 2/3, respectively, N being the number of atoms in the crystal. Therefore, these defects are not
expected in thermodynamic equilibrium. However, the path into thermodynamical equilibrium might
be so slow that these defects are metastable and must be considered quasi-frozen. There may also
exist metastable point defects. By annealing the crystal, the thermodynamic equilibrium concentration
might be re-established. The unavoidable two-dimensional defect of the bulk structure is the surface,
discussed in Chap. 11.

4.2 Point Defects

4.2.1 Point Defect Types

The simplest point defect is a vacancy V, a missing atom at a given atomic position. If an atom is at
a position that does not belong to the crystal structure an interstitial I (or Frenkel defect) is formed.
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Fig. 4.1 Images of
occupied (upper frames)
and empty (lower frames)
density of states of typical
defects on Si-doped GaAs
(110) surfaces. (a1, a2)
show a Ga vacancy, (b1,
b2) a SiGa donor, (c1, c2) a
SiAs acceptor and (d1, d2)
a SiGa–VGa complex.
Adapted from [261]

Depending on the position of the interstitial different types are distinguished. An interstitial atom that
has the same chemical species as the crystal is called ‘self-interstitial’.

If an atom site is populated with an atom of different order number Z , an impurity is present. An
impurity can also sit on interstitial position. If the number of valence electrons is the same as for the
original (or correct) atom, then it is an isovalent impurity and quasi fits into the bonding scheme. If the
valence is different, the impurity adds extra (negative or positive) charge to the crystal bonds, which
is compensated by the extra, locally fixed charge in the nucleus. This mechanism will be discussed in
detail in the context of doping (Chap. 7). If in an AB compound an A atom sits on the B site, the defect
is called an antisite defect AB .

A Ga vacancy, a silicon impurity atom on Ga- and As-site and a SiGa-vacancy complex at the (110)
surface of Si doped GaAs are shown in Fig. 4.1 as observed with STM [261, 262]. Also antisite defects
in GaAs can be observed with STM [263, 264].

A point defect is typically accompanied by a relaxation of the surrounding host atoms. As an
example, we discuss the vacancy in Si (Fig. 4.2a). The missing atom leads to a lattice relaxation with
the next neighbors moving someway into the void (Fig. 4.2b). The bond lengths of the next and second-
next neighbor Si atoms around the neutral vacancy are shown in Fig. 4.2c. The lattice relaxation depends
on the charge state of the point defect (Jahn–Teller effect) which is discussed in more detail in Sect. 7.7.
In Fig. 4.2d the situation for the positively charged vacancy with one electron missing is shown. One of
the two bonds is weakened since it lacks an electron. The distortion is therefore different from that for
V 0. Also the (self-)interstitial is accompanied with a lattice relaxation as shown in Fig. 4.3 for a silicon
interstitial at tetrahedral place. Self-interstitials in silicon and germanium are reviewed and compared
in [265] for their various charge states.

4.2.2 Thermodynamics

For a given temperature, the free enthalpy G of a crystal (a closed system with regard to particle
exchange)

G = H − T S (4.1)

is minimum. H is the enthalpy and S the entropy. The enthalpy H = E + pV is the thermodynamic
potential for a system whose only external parameter is the volume V . It is used when the independent
variables of the system are the entropy S and pressure p. The free enthalpy is usedwhen the independent
parameters are T and p.G0 (H0) is the free energy (enthalpy) of the perfect crystal. H f is the formation
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(a) (b)

(c) (d)

Fig. 4.2 (a) Schematic diamond lattice with vacancy, i.e. a missing Si atom without relaxation. (b) Si with neutral
vacancy (V 0), lattice relaxation and formation of two new bonds. (c) Schematic diagram showing the (inward) relaxation
of the neighbors around the neutral Si vacancy defect site (empty circle) calculated by an ab initio method. The distances
of the outer shell of atoms (red circles) from the vacant site is labeled (in nm). The bond lengths of the two new bonds
and the second-neighbor (blue circles) distance are also indicated. The bond length in bulk Si is 0.2352nm, the second-
neighbor distance 0.3840nm. Adapted from [266]. (d) Si unit cell with positively charged vacancy (V+). Parts (a, b, d)
reprinted with permission from [267]

Fig. 4.3 Silicon
tetrahedral interstitial SiTi
and its next atoms in ideal
(white spheres) and relaxed
(black spheres) position.
Adapted from [175]

enthalpy of an isolated defect. This could be, e.g., the enthalpy of a vacancy, created by bringing an
atom from the (later) vacancy site to the surface, or an interstitial, created by bringing an atom from
the surface to the interstitial site. In the limit that the n defects do not interact with each other, i.e. their
concentration is sufficiently small, they can be considered independent and the enthalpy is given by

H = H0 + n H f . (4.2)

The increase of entropy due to increased disorder is split into the configurational disorder over the
possible sites, denoted as Sd, and the formation entropy Sf due to localized vibrational modes. The
total change �G of the free energy is
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Table 4.1 Formation enthalpy H f and entropy Sf of the interstitial (I ) and vacancy (V ) in Si and the Ga vacancy in
GaAs. Data for Si from [268, 269], for GaAs from [270]

Material Defect H f (eV) Sf (kB)

Si I 3.2 4.1

Si V 2.8 ∼ 1

GaAs VGa 3.2 9.6

�G = G − G0 = n (H f − T Sf) − T Sd = n Gf − T Sd , (4.3)

where Gf = H f − T Sf denotes the free enthalpy of formation of a single isolated defect. In Table 4.1
experimental values for the formation entropy and enthalpy are given for several defects. Surprisingly,
despite their fundamental importance in semiconductor defect physics, these numbers are not very well
known and disputed in the literature.

The defect concentration is obtained by minimizing �G, i.e.

∂�G

∂n
= Gf − T

∂Sd

∂n
= 0 . (4.4)

The entropy Sd due to disorder is given as

Sd = kB lnW , (4.5)

whereW is the complexion number, usually the number of distinguishable ways to distribute n defects
on N lattice sites

W =
(
N
n

)
= N !

n! (N − n)! . (4.6)

With Stirling’s formula ln x ! ≈ x(ln x − 1) for large x we obtain

∂Sd

∂n
= kB

[
N

n
ln

(
N

N − n

)
+ ln

(
N − n

n

)]
. (4.7)

If n � N , ∂N/∂n = 0 and the right side of (4.7) reduces to kB ln(N/n). The condition (4.4) reads
Gf + kBT ln(n/N ), or

n

N
= exp

(
−Gf

kT

)
. (4.8)

In the case of several different defects i with a degeneracy Zi , e.g. a spin degree of freedom or several
equivalent configurations, (4.8) can be generalized to

ni
Zi N

= exp

(
−Gf

i

kT

)
. (4.9)

In [271] the equilibrium concentration of interstitials Ceq
I in silicon has been given as

Ceq
I = (

1.0 × 1027 cm−3
)
exp

(
−3.8 eV

kT

)
, (4.10)
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about 1014 cm−3 at 1200 ◦C. The vacancy concentration has been investigated in [272]. Around a
temperature of 1200 ◦C it is in the 1014–1015 cm−3 range. Due to the reaction

0 � I + V , (4.11)

a mass action law holds for the concentrations of interstitials and vacancies

CI CV = Ceq
I Ceq

V . (4.12)

4.2.3 Diffusion

The diffusion of point defects is technologically very important, in particular for silicon as hostmaterial.
Typically a dopant profile should be stable under following technological processing steps and also
during device performance. Also defect annihilation is crucial after implantation processes. Diffusion
of an interstitial I and a vacancy V to the same site is prerequisite for recombination of defects (so
called bulk process) according to the scheme I + V → 0. We note that the process 0 → I + V is
calledFrenkel pair process.1 Also the self-diffusion of silicon has been studied, e.g. using radioactively
marked isotopes [271]. The diffusion of point defects including dopants in silicon has been reviewed in
[273, 274]. Usually Fick’s law is applied, stating how the flux J depends on the concentration gradient,
for an interstitial it reads:

JI = −DI ∇CI , (4.13)

DI being the interstitial diffusion coefficient. For interstitials in Si it was found [271] that

DI = 0.2 exp

(
−1.2 eV

kT

)
cm2/s . (4.14)

The diffusion of neutral vacancies occurs with [275]

DV = 0.0012 exp

(
−0.45 eV

kT

)
cm2/s . (4.15)

The temperature dependent diffusion coefficients of point defects and dopants in silicon are shown in
Fig. 4.4.

The self-diffusion coefficient of silicon has been determined from the annealing of isotope super-
lattices (Sect. 12.5) of sequence 28Sin/30Sin , n = 20 to be [276]

DSD
Si =

[
2175.4 exp

(
−4.95 eV

kT

)
+ 0.0023 exp

(
−3.6 eV

kT

)]
cm2/s , (4.16)

the first (second) term being due to interstitial (vacancy) mechanism, dominant for temperatures larger
(smaller) than 900 ◦C. The enthalpy in the exponent, e.g. HV = 3.6+0.3

−0.1 eV [276], consists of the
formation and migration enthalpies,

HV = H f
V + Hm

V . (4.17)

1At higher temperatures a silicon atom can occasionally acquire sufficient energy from lattice vibrations to leave its
lattice site and thus an interstitial and a vacancy are generated.
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Fig. 4.4 The temperature
dependent diffusion
coefficient of Si interstitials
I , vacancies V and various
impurities in silicon. Also
the self-diffusion
coefficient, labeled with
‘Si’ is shown. Based on
data from [273]

(d) (e)

Fig. 4.5 Configurations of boron in Si: (a) Substitutional boron and Si self-interstitial at ‘T’ site (BS–SiTi ). Interstitial
boron at (b) ‘H’ (BH

i ) and (c) ‘T’ site (B
T
i ), each with the Si atoms on the Si lattice sites. The large bright ball represents

the boron atom, large and small dark balls represent Si atoms. (d) Lowest energy barrier diffusion paths for positively
charged and neutral B–Si states, total energy vs. configuration. (e) Two diffusion pathways for positively charged B–Si,
kick-out (dashed line) and pair diffusion (solid line); the activation energy is labeled. Adapted from [279]

Using the experimental value H f
V = 2.8 ± 0.3eV [269] from Table 4.1, for the migration enthalpy a

value around Hm
V ≈ 0.8eV is obtained.

As an example for a dopant diffusion process that has been understood microscopically, we discuss
here boron in silicon. In Fig. 4.5a the lowest-energy configuration of a boron-related defect in silicon is
depicted, Bs–SiTi , i.e. boron on a substitutional site and a self-interstitial Si on the ‘T’ place with highest
symmetry2 (see Fig. 3.18). Due to its importance as an acceptor in Si, the configuration and diffusion

2The positive charge state is stable, the neutral charge state is metastable since the defect is a negative-U center (see
Sect. 7.7.5).
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of B in Si has found great interest [277–279]. The diffusion depends on the charge state of boron. The
diffusion of positively charged boron has been suggested [279] to occur via the following route: The
boron leaves its substitutional site and goes to the hexagonal site (‘H’) (Fig. 4.5b) with an activation
energy of about 1eV (Fig. 4.5d). It can then relax (∼ 0.1eV) without barrier to the tetrahedral ‘T’
position (Fig. 4.5c). The direct migration Bs–Si

T+
i →BT+

i has a higher activation energy of 1.12eV
and is thus unlikely. The boron atom can then diffuse through the crystal by going from ‘H’ to ‘T’ to ‘H’
and so on (Fig. 4.5e). However, long-range diffusion seems to be not possible in this way because the
kick-in mechanism will bring back the boron to its stable configuration. The pair diffusion mechanism
for neutral boron Bs–SiTi →BH

i →Bs–SiTi via the hexagonal site has an activation energy of about
0.5eV (Fig. 4.5d) while the path via BT

i has a larger 0.9eV barrier. The concentration dependence of
the diffusion mechanism has been discussed in [280].

Similarly, indium diffusion in silicon has been investigated suggesting a minimum energy Ins–
SiTi →InTi →Ins–SiTi diffusion pathway via the tetrahedral site with 0.8eV activation energy [281].
Microscopic modeling has been reported also for diffusion of phosphorus [282].

4.2.4 Dopant Distribution

The introduction of impurities into a semiconductor (or other materials such as glasses) is termed dop-
ing. The unavoidable incorporation of impurities in the nominally pure (nominally undoped) material
is called unintentional doping and leads to a residual or background impurity concentration. Several
methods are used for doping and the creation of particular doping profiles (in depth or lateral). All
doping profiles underly subsequent diffusion of dopants (Sect. 4.2.3).

Variousmethods of doping are used. A straightforwardmethod of doping is the incorporation during
crystal growth or epitaxy. For semiconductor wafers a homogeneous doping concentration is targeted,
both laterally and along the rod from which the wafer is cut (Sect. 12.2.2). When a crystal is grown
from melt, containing a concentration c0 of the impurity, the concentration in the solid is given by
(‘normal freezing’ case [283–285])3

c(x) = c0 k (1 − x)k−1 , (4.18)

where c(x) is the impurity concentration in the crystal at the freezing interface, x is the frozen melt
fraction (ratio of solid mass to total mass, 0 ≤ x ≤ 1). k is the distribution coefficient (or segregation
coefficient) which is the fraction of impurities that is built into the crystal at the liquid–solid interface.
Since the melt volume reduces during the solidification, the impurity concentration rises over time.
For small distribution coefficients (4.18) can be approximated to

c(x) ≈ c0
k

1 − x
, (4.19)

An experimental example for Ge:In is shown in Fig. 4.6a.
In Table 4.2 the distribution coefficients for various impurities in Si, Ge and GaAs is given. The

modification of distribution coefficients in SiGe alloys is discussed in [286]. Equilibrium values (keq)
are obtained for ‘slow’ crystal growth. For finite growth rates, k becomes a function of the growth rate

3Mass preservation of the impurities can bewritten at any time cm(1−x)+∫ x
0 c(x ′) dx ′ = c0, where cm is the (remaining)

concentration in the melt. At the beginning cm(0) = c0. At the interface c(x) = k cm(x). Putting this into the mass
preservation, building c′(x) and solving the resulting differential equation c′ = c(1− k)/(1− x) with c(0) = k c0 leads
to (4.18).
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(a) (b)

Fig. 4.6 (a) Relative concentration of indium along a CZ-grown germanium crystal. Absolute concentration is in the
1016 cm−3 range. Solid line follows (4.19) with k = 1.2×10−3. Symbols are experimental data from [288]. (b) Impurity
distribution (relative concentration c(x)/c0) for CZ (4.18) (solid lines) and FZ (4.20) (dashed lines, z = 0.01) silicon
crystals for B (blue), P (red), and Al (green). Distribution coefficients have been taken from Table 4.2. Note crossing of
B and P lines and possibly associated change from p-type to n-type (cmp. Fig. 1.7)

Table 4.2 Equilibrium distribution coefficients (at melting point) of various impurities in silicon, germanium and GaAs.
Data for Si from [285, 287], for Ge from [164, 288–290] and for GaAs from [164]

Impurity Si Ge GaAs

C 0.07 > 1.85 0.8

Si 5.5 0.1

Ge 0.33 0.03

N 7 × 10−4

O ≈ 1 0.3

B 0.8 12.2

Al 2.8 × 10−3 0.1 3

Ga 8 × 10−3 0.087

In 4 × 10−4 1.2 × 10−3 0.1

P 0.35 0.12 2

As 0.3 0.04

Sb 0.023 3.3 × 10−3 < 0.02

S 10−5 > 5 × 10−5 0.3

Fe 6.4 × 10−6 3 × 10−5 2 × 10−3

Ni ≈ 3 × 10−5 2.3 × 10−6 6 × 10−4

Cu 8 × 10−4 1.3 × 10−5 2 × 10−3

Ag ≈ 1 × 10−6 10−4 0.1

Au 2.5 × 10−5 1.5 × 10−5

Zn 2.5 × 10−5 6 × 10−4 0.1

and is then called the effective distribution coefficient. For k < 1, keff > keq. keff approaches 1 for high
growth rates, i.e. all impurities at the rapidly moving interface are incorporated.

Equation (4.18) applies to Czrochalski growth where the crystal is pulled out of the melt [291].
In float-zone (FZ) growth [291] a polycrystalline rod is transformed into a crystalline one while a
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(a) (b)

Fig. 4.7 (a) Depth of peak concentration of boron implanted in silicon for various acceleration voltages U . Data from
various sources, for U < 1keV from [299]. Dashed line is linear dependence. (b) Simulated depth profiles of impurity
concentration for B, P, As, and Sb implanted into crystalline silicon withU = 100keV and a dose of 1015 cm−2. Adapted
from [300]

RF-heated and liquid ‘float’ zone is moved through the crystal. In this case the impurity distribution is
given by4

c(x) = c0

[
1 − (1 − k) exp

(
−k x

z

)]
, (4.20)

where x is the ratio of the crystal mass to the total mass, i.e. crystal, liquid and feed rod. z is the relative
mass of the (liquid) float zone, i.e. the ratio of liquid mass to the total mass. The impurity distribution
for CZ and FZ crystals is compared in Fig. 4.6b. Obviously the FZ process can create much more
homogeneous profiles.5

Using epitaxy arbitrary doping profiles along the growth directions can be created by varying the
impurity supply during growth. Impurities can be introduced through the surface of the material by
diffusion from a solid or gas phase. In ion implantation [292] the impurity atoms are accelerated
towards the semiconductor and deposited with a certain depth profile due to multiple scattering and
energy loss events, depending on the acceleration voltage (increasing deposition depth with increasing
voltage, Fig. 4.7a) and ion mass (decreasing deposition depth with increasing mass, Fig. 4.7b). The
depth profile is often investigated using secondary ion mass spectrometry (SIMS) [293, 294]. The
profile also depends on the matrix material whose stopping power depends on its density and atomic
mass. While an implantation depth of about 50nm is reached for boron in silicon (A ≈ 28) for 10keV,
20keV are necessary in germanium (A ≈ 72.6) [295]. The mean path length6 dm depends also on the
crystallographic direction (channeling effects, Fig. 4.8) [296]. A simulation of the interaction of ions
and solids can be performed using the SRIM software [297, 298].

4When the float zone moves through the crystal, the change of mass of impurities mm = cmz in the liquid is m′
m =

c0 − kcm. The first term stems from the melting of the polycrystalline part, the second from the solidification of the
crystal. Solving the resulting differential equation c′

m = (c0 − kcm)/z with cm(0) = c0 and using c(x) = kcm(x) yields
(4.20).
5We note that during directed solidification of Si:(B,P) a pn-junction forms due to the different distribution coefficients
of boron and phosphorus. This has been used in [89].
6The mean path length is the distance integrated along the ion trajectory until its direction deviates by more than 4 ◦
from the incident direction.
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Fig. 4.8 Simulated mean
path length as a function of
implantation direction
(azimuthal angle φ and
polar angle θ) near [001]
for 5keV boron in silicon.
The [001] channeling peak
appears as a ridge at the
left side of the plot (θ = 0,
any value of φ). Adapted
from [296]
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4.2.5 Large Concentration Effects

4.2.5.1 Lattice Constant

At high doping concentration, a noticeable effect on the lattice constant a0 is found. For silicon the atom
density7 is NSi = 5×1022 cm−3. A doping level of N = 1019 cm−3 corresponds thus to a dopant fraction
of 0.02%. Such crystal could also be considered a very dilute alloy. About each (NSi/N )1/3 ≈ 17-th
atom in a given direction is a dopant.

The effect of high doping on the lattice constant is due to different ionic radius of the dopant and
the hydrostatic deformation potential of the band edge occupied by the free carriers [301]. In a linear
approach, the effect is summarized in the coefficient β via

β = 1

N

�a0
a0

. (4.21)

The effect due to charge carriers on β is negative (positive) for p-doping (n-doping). Experimental
data for Si, Ge, GaAs and GaP are compiled in [302, 303] and theoretically discussed. The effect
is in the order of β = ±(1–10)×10−24 cm3. For example, in the case of Si:B, the shrinkage of the
lattice constant is mostly due to the charge carrier effect, for Si:P both effects almost cancel. In [304]
it is shown that boron incorporation in silicon changes the lattice constant in various directions quite
differently, e.g. d333 is shrunk by 0.4% for a doping level of 1019 cm−3 while the {620} lattice constant
remains constant.

4.2.5.2 Clustering

Point defects can cluster, i.e. several point defects aggregate at neighboring sites. An example the
configuration of five nearby vacancies in silicon, the so-called V5 cluster is shown in Fig. 4.9a. In
[305] the ring-like hexavacancy in silicon is predicted a very stable defect. A large number of clustered
vacancies is equivalent to a void. An example is depicted in Fig. 4.9b for an In2O3 crystal which has
locally ’decomposed’ into an indium particle and a void as revealed by TEM [306]. Also impurities
can exhibit clustering.

7eight atoms per cubic unit cell of length a0 = 0.543nm.
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(a)

[001]

[110]

[110]

(b)

void

indium

In O2 3

Fig. 4.9 (a) Predicted configuration of the V5-cluster (five vacancies) in silicon. Yellow spheres indicate more distorted
atoms than the rest of the lattice atoms (white spheres). Adapted from [307]. (b) Indium particle with adjacent void
embedded in In2O3 (STEM image revealing Z -contrast in [001]). Adapted from [306]

Fig. 4.10 Minimum
energy path for the breakup
of a B3I2 cluster into B2I
and BI. Silicon (boron)
atoms are shown as yellow
(blue) spheres. Adapted
from [310]

Typically a random distribution of dopants in the host is assumed (cmp. Sect. 3.7.1 on random
alloys). The introduction of several impurities can lead to pairing effects, e.g. described for Se and
B, Ga, Al or In in silicon [308]. A high concentration of a single impurity makes the existence of
clusters, i.e. two or more neighboring dopant atoms, more probable. This effect has been extensively
studied for B in Si [309], showing that several boron atoms with interstitials I form thermodynamically
stable clusters, e.g. B3I2. This cluster forms from B2I and BI with only 0.2eV activation barrier [310]
as shown in Fig. 4.10. The formation is limited by diffusion of the smaller clusters to the same site.
The number of free carriers (here holes) released from such cluster is smaller than the number of
boron atoms since it forms a deep acceptor [309]. This autocompensation mechanism is thus limiting
the maximum achievable free carrier concentration due to doping and is technologically unfavorable.
Reactions between boron atoms and silicon self-interstitials often lead to boron clustering in the peak
region of an implantation profile and require detailed optimization of the annealing process [311].



80 4 Structural Defects

~Ei
-4

10

10

10

10

10

10

1016

22

21

20

19

18

17

-3

0.01 0.1 1.0
(eV)i

SiAs

P

B

Ga

Al
Li

Sb

Cu

Au

Fe

Fig. 4.11 Solubility limit for various impurities in silicon vs. their ionization energy. Adapted from [314]

Table 4.3 Maximum solubility Ns of some impurities in silicon. Data for B, P, As, Sb from [313], other data from [316]

Impurity Ns (1020 cm−3)

B 4

P 5

As 4

Sb 0.7

Al 0.13

Cu 1.4 × 10−2

Au 1.2 × 10−3

Fe 3 × 10−4

4.2.5.3 Solubility Limit

The steady-state impurity solubility can be defined as the maximum concentration of impurity atoms in
a crystal allowing thermodynamic balance between the crystal and another phase, e.g. a liquid phase,
an extended defect or a precipitate. Precipitates are small inclusions of a second phase in a crystal,
exhibiting a high concentration of ‘gathered’ impurities that cannot be solved in the crystal. Solubility
limits for impurities in silicon have been first determined in [312] with a bulk of subsequent research
[313] due to its practical relevance in device fabrication. The solubility limits for a few impurities in
silicon are listed in Table 4.3. It is related to the ionization energy of the defect (cmp. Sect. 7.4) as
shown in Fig. 4.11.

The temperature dependence of the solubility for a few dopants is depicted in Fig. 4.12a. The
solubility depends also on the present strain [315]. The simple empirical relation xs = 0.1 k (Fig. 4.12b)
between the maximum molar solubility xs and the distribution coefficient k in silicon and germanium
has been pointed out in [316].

A typical example for the formation of precipitates is Fe in InP, used for compensation of shallow
donors in order to produce semi-insulating material (Sect. 7.7.8). The solubility of Fe in InP is fairly
low, about 1017 cm−3 at growth temperature [317]. In Fig. 4.13 a high-resolution TEM image of a
precipitate in InP doped with 3 × 1018 cm−3 Fe is shown. The precipitate exhibits a lattice constant
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(a) (b)

Fig. 4.12 a Steady-state solubility of impurities (P, As, B and Sb as labeled) in silicon. Solid lines are theoretical
model matching various experimental data. Arrow denotes the melting point of silicon (1410 ◦). Adapted from [313].
b Maximum molar solid solubility xs vs. the distribution coefficient for various impurities in crystalline silicon and
germanium. Solid line follows xs = 0.1 k. Adapted from [316]

Fig. 4.13 High resolution
TEM image of a FeP
precipitate in iron-doped
InP. Adapted from [318]

of d111 = 0.240nm in [111]-direction, much different from that of InP (d InP
111 = 0.339nm). The angle

between the [101] and [111] direction is 50◦ instead of 35◦ for InP. This is consistent with orthorhombic
FeP [318]. Typically FeP and FeP2 precipitates are found in highly Fe-doped InP [319].

4.3 Dislocations

Dislocations are line defects along which the crystal lattice is shifted by a certain amount. The vector
along the dislocation line is called line vector L. A closed path around the dislocation core differs
from that in an ideal crystal. The difference vector is called the Burger’s vector b. Dislocations for
which the Burger’s vector is a vector of the lattice are called full dislocations. In contrast, dislocations
with Burger’s vectors that are not translation vectors of the lattice are called partial dislocations. The
history of dislocation theory is described in [320].
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(a) (b)

(c) (d)

Fig. 4.14 a High-resolution transmission electron microscopy image (HRTEM) in the 〈110〉 projection of a network of
misfit dislocations at a GaAs/CdTe/ZnTe interface. Substrate: GaAs (001), 2◦ off 〈110〉, ZnTe buffer layer is 2monolayers
thick. b Fourier transform with round mask around the (111) Bragg reflection. (c) Phase and d amplitude images for the
mask from (b). From [321]

Since the energy of a dislocation is proportional to b2, only dislocations with the shortest Burger’s
vector are stable. The plane spanned by L and b is called the glide plane. In Fig. 4.14 a high-resolution
image of the atoms around a dislocation and the phase and amplitude of the (111) reflection are shown.
The phase corresponds to the atomic columns, the amplitude to the displacement of the atoms at the
dislocation core (see also Fig. 4.14).

4.3.1 Dislocation Types

4.3.1.1 Edge Dislocations

For an edge dislocation (Fig. 4.15a) b and L are perpendicular to each other. An extra half-plane
spanned by L and b × L is inserted.
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(a)

L

b

(b)

Lb

Fig. 4.15 Model of a an edge and b a screw dislocation. The line vector L and the Burger’s vector b are indicated

(a) (b)

Fig. 4.16 a Atomic force microscopy image of growth spiral around a screw dislocation on a silicon surface; image
width: 4µm. (textbfb STM image (width: 75nm) of a screw-type dislocation with a Burgers vector of [000-1] on the
N-face of GaN. The reconstruction is c(6×12). The c(6×12) row directions correspond to 〈1̄100〉. Reprinted with
permission from [322], ©1998 AVS

4.3.1.2 Screw Dislocations

For a screw dislocation (Fig. 4.15b) b and L are collinear. The solid has been cut along a half-plane up
to the dislocation line, shifted along L by the amount b and reattached.

Around the intersection of a screw dislocation with a surface, the epitaxial growth occurs, typically
in the form of a growth spiral that images the lattice planes around the defect.

4.3.1.3 60◦ Dislocations

The most important dislocations in the zincblende lattice (Fig. 4.17) have the line vector along 〈110〉.
With the Burger’s vector a/2 〈110〉 three different types of dislocations can be formed: edge, screw
and 60◦ dislocations. The vicinity of the core of the latter is shown in more detail in Fig. 4.17d.We note
that the atomistic structure of 60◦ dislocations is different for L along [110] and [−1 10]; depending
on whether the cations or anions are in the core, they are labeled α or β dislocations.
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=60° =90°=0° (d)

b
L

Fig. 4.17 Dislocations in the zincblende structure. The line vector is along [100]. The Burger’s vector a/2 〈110〉 can
create an a edge dislocation, a b screw dislocation, and c a 60◦ dislocation. d Atomistic structure of a 60◦ dislocation

(a) (b)

Fig. 4.18 a Plan-view transmission electron microscopy image of a network of 〈110〉 dislocation lines in (In,Ga)As
on InP (001) with a lattice mismatch of about 0.1%. The TEM diffraction vector is g = [22̄0]. Adapted from [323]. b
Panchromatic cathodoluminescence image of partially relaxed Al0.13Ga0.87N on (303̄1) GaN heterostructure with in-
plane directions indicated. Adapted from [324], reprinted under a Creative Commons Attribution (CC BY 3.0) unported
licence

4.3.1.4 Misfit Dislocations

Whenmaterials with different lattice constants are grown on top of each other, the strain can plastically
relax via the formation of misfit dislocations. A typical network of such dislocations is shown in
Fig. 4.18a for (In,Ga)As on InP (001). Another example is given in Fig. 4.18b for the (Al,Ga)N/GaN
system on a semipolar (303̄1) lattice plane tilted to the c-axis. This leads to non-rectangular dislocation
directions which are universal for dislocations from glide on a- and m-planes in heterostructures of
trigonal and hexagonal materials [325] (Fig. 4.19).

4.3.1.5 Partial Dislocations

Partial dislocations, i.e. the Burger’s vector is not a lattice vector, must necessarily border a two-
dimensional defect, usually a stacking fault (Sect. 4.4.2). A typical partial dislocation in diamond or
zincblende material is the Shockley partial dislocation (or just Shockley partial) with Burger’s vector
b = (a0/6) 〈112〉. Another important partial is the Frank partial with b = (a0/3) 〈111〉. A perfect
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Fig. 4.19 Dislocation line orientation angle α (versus the projected c-axis direction) for the a-plane prismatic slip
system form-azimuth and vice versa (solid line) and them-plane prismatic slip system form-azimuth (and a/a) (dashed
line) as a function of interface inclination angle θ . Experimental data from epitaxy on semipolar planes are shown for
(Al,Ga)2O3/Al2O3 (square), (Al,Ga)N/GaN (diamond, cmp. Fig. 4.18b), (In,Ga)N/GaN (circles), GaN/Si (hexagon) and
(Mg,Zn)O/ZnO (star). Adapted from [325, 326]

dislocation can be dissociated into two partials. This is energetically favorable. As an example we
consider the reaction (Fig. 4.20a)

1

2

[
1̄01

] → 1

6

[
1̄1̄2

] + 1

6

[
2̄11

]
. (4.22)

The length of the full dislocation is a0/
√
2. The length of the Shockley partial is a0/

√
6. Thus the

energy E = G b2 of the full dislocation is E1 = Ga20/2 and the sum of the energies of the partials
is smaller, E2 = 2Ga20/6 = Ga20/3. In Fig. 4.20b a TEM image of a Ge/Si interface with a Shockley
partial is shown.

4.3.2 Visualization of Dislocations by Etching

Defects can be made visible using etching techniques. This is particularly popular for finding disloca-
tions. Many etches are anisotropic, i.e. the etch velocity varies for different crystal directions. As an
example the result of etching a silicon sphere in molten KOH and a germanium sphere in a HNO3/HF
solution are shown in Fig. 4.21. The remaining bodies exhibit those planes with low etching velocity.
The etch velocity of various etch solutions has been investigated in detail in particular for silicon
(Fig. 4.22).

In a planar geometry, etch pits indicate the presence of dislocations, as shown in Fig. 4.23 for Ge
of different orientation. The anisotropic etch prepares {111} planes. The dislocation core is at the
intersection of the planes. In Fig. 4.24 hexagonal etch pits stretched along [11̄0] are developed by
molten KOH [330, 331]. The sides of the base are along [110], 〈130〉 and 〈310〉. The depth and width
of the pits increases with increasing etching time. On the (001̄) surface, the orientation of the pits is
rotated by 90◦ because of the polar [111]-axis of the zincblende structure [330]. Such etch pit develops
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(a) (b)

Fig. 4.20 a Graphical representation of the dislocation reaction of (4.22). b TEM image of the interface of a Ge/Si
heterostructure with a

[
2̄11

]
/6 Shockley partial dislocation. The image is overlayed with empty rod positions (as

schematically shown in the lower left part of the figure) colored according to the stacking position (A: blue, B: red, C:
green). The arrows labeled ‘I’ denote the position of the interface. Based on [327]

at a dislocation with Burger’s vector a/2 [011] (inclined to the (001) surface) [332]. Other types of
etch pits indicate dislocations with other Burger’s vectors [332, 333]. Recipies how to wet chemically
etch various semiconductors can be found in [328, 334–337]. Other etching techniques include dry
processes such as plasma etching or reactive ion etching (RIE) [338–341].

Fig. 4.21 a Resulting shape of Si sphere (‘Lösungskörper’) after 3h at 100◦C in molten KOH. b Resulting shape of
Ge sphere after etching in HNO3:HF:CH3COOH, 35:30:35 weight percent. The octaedric form indicates {111} faces.
Markers are 1mm. Adapted from [328]
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(a) (b)

Fig. 4.22 a Etch rate of silicon for tetramethyl-ammonium-hydroxide (TMAH) water solution (25%) at 86◦C and 40%
KOH at 70 ◦C as a function of crystallographic direction. bDetail of the anisotropy around the (111) direction for TMAH
solutions with three different concentrations and 40% KOH, all at 86 ◦C. Adapted from [329]

Fig. 4.23 Etch pits on germaniumwith (a) (001) and (b) (111) surface orientation. In both cases {111} facets are prepared
by the etch. As etch in (b) a HNO3/HF/CH3COOH solution with AgNO3 additive has been used. Width of the triangular
etch pits is about 100µm. Adapted from [334]

Fig. 4.24 Etch pits on GaAs (001) after a 3min and b 10min etch time in molten KOH at 300◦C. Adapted from [330]



88 4 Structural Defects

Fig. 4.25 Dislocation
density (as revealed by etch
pits) for GaAs and InP as a
function of the carrier
concentration for various
concentrations of
impurities (S, Te, and Zn).
Adapted from [343]

4.3.3 Impurity Hardening

It has been found that the addition of impurities can lead to a substantial reduction of the dislocation
density. This effect is known as impurity hardening and is caused by a hardening of the lattice due
to an increase of the so-called critical resolved shear stress [342]. In Fig. 4.25 the dependence of the
dislocation density in GaAs and InP is shown as a function of the carrier density that is induced by the
incorporation of (electrically active) group-II or group-VI atoms (acceptors or donors, cf. Sect. 7.5).
The high carrier concentration is unwanted when semi-insulating substrates (cf. Sect. 7.7.8) or low
optical absorption (cf. Sect. 9.9.1) are needed. Thus the incorporation of isovalent impurities, such as
In, Ga or Sb in GaAs and Sb, Ga or As in InP, has been investigated and found to be remarkably
effective. Material containing such impurities in high concentration (>1019 cm−3) must be considered
a low-concentration alloy. The lattice constant is thus slightly changed, which can cause problems in
the subsequent (lattice-mismatched) epitaxy of pure layers.

4.4 Extended Defects

4.4.1 Micro-cracks

If the stress in a material becomes too big to be accommodated by dislocations, cracks may form
to release strain energy.8 In Fig. 4.26 an example is shown. In this case, micro-cracks have formed
in a bulk mercury indium telluride crystal upon incorporation of residual stress and thermal stress
during cooling of the material from growth temperature (about 1000K) to room temperature. See also
Fig. 12.19 for micro-cracks in an epitaxial layer.

8We note that in elasticity theory a continuous deformation is assumed. Obviously the separation (fracture) into two
unstrained blocks is the lowest strain energy state of a stressed piece of material.
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Fig. 4.26 Micro-cracks in
a mercury indium telluride
crystal. Adapted
from [344]

4.4.2 Stacking Faults

The ideal stacking of (111) planes in the zincblende structure, ABCABC. . ., can be disturbed in various
ways and creates area defects. If one plane is missing, i.e. the stacking is ABCACABC, an intrinsic
stacking fault is present. If an additional plane is present, the defect is called an extrinsic stacking fault,
i.e. ABCABACABC. An extended stacking fault in which the order of stacking is reversed is called
a twin lamella, e.g. ABCABCBACBABCABC. If two regions have inverted stacking order they are
called twins and their joint interface is called a twin boundary, e.g. . . .ABCABCABCBACBACBA. . .

(Fig. 4.29). The various types of stacking faults are shown in Fig. 4.27. In Fig. 4.28 a cross-sectional
image of stacking faults in GaAs on Si is shown. They block each other and thus partially annihilate
with increasing thickness.

A stacking fault is bounded by two partial dislocations (Sect. 4.3.1.5) formed by the dissociation of a
perfect dislocation. A full (or perfect) dislocation with Burger’s vector a/2[110] in a III–V compound
is dissociated into two Shockley partials according to (4.22) [348]. Since the dislocation energy is
proportional to |b|2, the dissociation is energetically favored (see Sect. 4.3.1.5).

The stacking-fault energy in pure silicon is γ = 47mJm−2 [349]. A similar value is found for Ge,
γ = 60mJm−2 [350] and undoped GaAs, γ = 45mJm−2 [351]. In diamond a much larger value is
found, γ = 285mJm−2 [352]. Impurity incorporation typically reduces the stacking fault energy. The
systematics of stacking fault energy for various III–V and II–VI compounds has been discussed [185,
353, 354]. It can be correlated with the s-parameter (2.11) as depicted in Fig. 4.30.

Fig. 4.27 HRTEM images
of a thin-film silicon with
intrinsic (labeled ‘ISF’)
and extrinsic (‘ESF’)
stacking faults and twin
boundary (‘Twin’). b Six
monolayer thick hexagonal
(wurtzite) CdTe layer in
cubic (zincblende) CdTe.
Stacking order (from
bottom to top) is:
ABCABABABABC. . .

Reprinted with permission
from [345]

(a) (b)
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Fig. 4.28 Cross-sectional
TEM image showing
stacking faults in
heteroepitaxial GaAs on Si.
Adapted from [346]

Fig. 4.29 High resolution
TEM image of ZnS
nanowire exhibiting
periodical twin structures.
Adapted from [347]

Fig. 4.30 Reduced
stacking fault energy
(stacking fault energy per
bond) γ ′ for various
compound semiconductors
plotted as a function of the
s-parameter. Dashed line is
guide to the eye. Data
from [185]

4.4.3 Grain Boundaries

The boundaries of crystal grains are called grain boundaries. They are defined by five parameters,
three rotation angles (e.g. Euler angles) to describe how the orientation of grain II results from grain I
and two parameters to define the boundary plane of the two grains in the coordinate system of reference
grain I.

Such defects can have a large impact on the electric properties. They can collect point defects and
impurities, act as barriers for transport (Sect. 8.3.8) or as carrier sinks due to (nonradiative) recom-
bination. Details of their structure and properties can be found in [355, 356]. The two crystal grains
meet each other with a relative tilt and/or twist. The situation is shown schematically in Fig. 4.31a for
a small angle between the two crystals. A periodic pattern of dislocations forms at the interface that
is called a small-angle grain boundary (SAGB) (Fig. 4.31b). In Fig. 4.32, experimental results for pure
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Fig. 4.31 Schemes of a–c
pure tilt and d–f pure twist
boundary, dislocation
formation in (c) pure tilt
and f twist boundaries (a) (b) (c)

(d) (e) (f)
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Fig. 4.32 a Scheme of a small-angle (pure tilt) grain boundary. b Model of edge dislocations in a {110} plane in Ge. c
Relation of dislocation distance d and tilt angle θ for various small-angle grain boundaries in Ge. Solid line is relation
d = 4.0 × 10−8/θ . d Optical image of an etched (CP–4 etch) Ge sample with a small-angle grain boundary. Adapted
from [359]. e HRTEM image of a small-angle grain boundary in Si with dislocations highlighted. From [360]

tilt SAGB are shown. The dislocation spacing is inversely proportional to the tilt angle θ . An image of
a twist SAGB is shown in Fig. 4.33.

Special large angle boundaries possess (for a certain angle) a coincident site lattice (CSL). Some of
these grain boundaries have a low energy and are thus commonly observed. The ratio of lattice points
of the CSL and the lattice unit cell is an odd integer number n; the corresponding grain boundary is
then labeled 	n. SAGB are also termed 	1. 	3 grain boundaries are always twin boundaries. An
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Fig. 4.33 Bright-field
TEM image of pure twist
boundary with network of
pure twist dislocations
fabricated by wafer
bonding of two Si (001)
surfaces with a relative
twist. Adapted from [361]

(a) (b)

Fig. 4.34 a Schematic of 	3 (111) twin boundary in a diamond or zincblende structure (cmp. Fig. 4.29). The grain
boundary is marked by a dashed line shown in side-view. The hexagonal and rectangular grey boxes have the same area.
The lattice points of the coincident site lattice (CSL) are shown with black circles in the lower part of the figure. The unit
cell of the CSL has three times the volume of the unit cell of the fcc lattice. b Schematic of a 	5 (001) grain boundary
in a (simple) cubic crystal shown in plane-view. The blue and the red lattice are rotated by 36.86◦, the lattice points of
the CSL are shown in black. The unit cell of the CSL lattice (dark grey) has five times the volume of the cubic unit cell
(light grey)

example with (111) grain boundary is schematically shown in an example in Fig. 4.34a. A 	3 (twin)
boundary in silicon with {112} grain boundary [357, 358] is depicted in Fig. 4.35 together with the
atomic arrangement of the grain boundary itself. A 	5 (001) grain boundary is schematically shown
in Fig. 4.34b; the special angle is θ = arctan 3/4 ≈ 36.87◦.

Real grain boundaries may not be flat, contain impurities or precipitates and even consist of a thin
amorphous layer.
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Fig. 4.35 TEM images in two magnifications of a 	3 {112} boundary in silicon together with a schematic of the atomic
arrangement. Adapted from [358]

Fig. 4.36 Monoatomic step on the Si (001) surface and subsequent formation of an antiphase boundary in InP
(zincblende)

4.4.4 Antiphase and Inversion Domains

Antiphase domains occur when one part of the crystal is shifted with respect to another by an antiphase
vector p. This does not form a twin. If the polar direction changes between two domains they are called
inversion domains.

In the zincblende structure the [110] and [1̄10] directions are not equivalent. In one case there is a
Zn-S lattice and in the other a S-Zn lattice. Both lattices vary by a 90◦ rotation or an inversion operation
(which is not a symmetry operation of the zincblende crystal). If, e.g., a zincblende crystal is grown on
a Si surface with monoatomic steps (Fig. 4.36, cmp. Fig. 11.6), adjoint regions have a different phase;
they are called antiphase domains (APD). The antiphase vector is (0, 0, 1) a0/4. At the boundaries a
two-dimensional defect, an antiphase domain boundary, develops. The APD boundary contains bonds
between identical atom species. In Fig. 4.37, intertwining APD boundaries are shown on the surface
of InP layers on Si. The antiphase domains can be visualized with an anisotropic etch.

In Fig. 4.38a, inversion domains in iron-doped ZnO are shown. Between domains the direction of the
c-axis is reversed. The iron is found preferentially in the inversion domain boundary (IDB) (Fig. 4.38b)
and plays an important role in its formation [364, 365].
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Fig. 4.37 Antiphase domains in InP on Si. HCl etchs InP anisotropically and prepares (111)A planes. The etch patterns
of layers with (without) APDs are cross-hatched (linear). Adapted from [362]

(a)

(0001)

(2115)

(b)
Fe

Fig. 4.38 Transmission electron microscopy of inversion domains in ZnO:Fe. a Inversion domains in iron-doped ZnO
(ZnO:Fe2O3 = 100:1). Arrows denote the orientation of the c-axis in the respective domains. b Top: bright field TEM,
bottom Fe distribution from energy-filtered image. Adapted from [363]

4.5 Disorder

Disorder is a general term for deviations from the ideal structure on a microscopic scale. Apart from
the various structural defects discussed in the previous chapters, further examples of disorder are

• The presence of various isotopes of an element. This introduces disorder with regard to the mass of
the atoms and impacts mostly phonon properties (see Fig. 8.28).

• The occupation of lattice sites in alloys (Sect. 3.7) ranging from a random alloy, clustering to (par-
tially) ordered phases.

• The (unavoidable) thermal and zero-point motion of atoms around their equilibrium position.
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