
Chapter 2
Bonds

Protons give an atom its identity, electrons its personality.

B. Bryson [168]

Abstract A little bit of solid state physics... The schemes of covalent, ionic and mixed bonds are
explained which are the basis for the atomic arrangement and crystal structures of semiconductors.

2.1 Introduction

The positively charged atomic nuclei and the electrons in the atomic shells of the atoms making up
the semiconductor (or any other solid) are in a binding state. Several mechanisms can lead to such
cohesiveness. First, we will discuss the homopolar, electron-pair or covalent bond, then the ionic bond
and subsequently themixed bond.Wewill only briefly touch on themetallic bond and the van-der-Waals
bond. A classical book on bonds in semiconductors is [169, 170].

2.2 Covalent Bonds

Covalent bonds are formed due to quantum-mechanical forces. The prototype covalent bond is the
bonding of the hydrogen molecule due to overlapping of the atomic shells. If several electron pairs are
involved, directional bonds can be formed in various spatial directions, eventually making up a solid.

2.2.1 Electron-Pair Bond

The covalent bond of two hydrogen atoms in a H2 molecule can lead to a reduction of the total energy
of the system, compared to two single (distant) atoms (Fig. 2.1). For fermions (electrons have spin
1/2) the two-particle wavefunction of the two (indistinguishable) electrons A and B must be antisym-
metric, i.e. �(A, B) = −�(B, A) (Pauli principle). The wavefunction of each electron has degrees
of freedom in real space (r) and spin (σ ), �(A) = �r(A)�σ (A). The two-particle wavefunction
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Fig. 2.1 Binding of the hydrogen molecule. a Dashed line: classical calculation (electrostatics), ‘S’, ‘A’: quantum-
mechanical calculation taking into account Pauli’s principle (S: symmetric orbital, antiparallel spins, A: antisymmetric
orbital, parallel spins). The distance of the nuclei (protons) is given in units of the Bohr radius aB = 0.053nm, the energy
is given in Rydberg units (13.6eV). b Schematic contour plots of the probability distribution (�∗�) for the S and A
states

of the molecule is nonseparable and has the form �(A, B) = �r(rA, rB)�σ (σA, σB). The binding
state has a wavefunction with a symmetric orbital and antiparallel spins, i.e. �r(rA, rB) = �r(rB, rA)
and �σ(σA, σB) = −�σ (σB, σA). The antisymmetric orbital with parallel spins is antibinding for all
distances of the nuclei (protons).

2.2.2 sp3 Bonds

Elements from group IV of the periodic system (C, Si, Ge, . . .) have 4 electrons on the outer shell.
Carbon has the electron configuration 1s22s22p2. For an octet configuration bonding to four other
electrons would be optimal (Fig. 2.2). This occurs through the mechanism of sp3 hybridization.1 First,
one electron of the ns2np2 configuration is brought into a p orbital, such that the outermost shell
contains one s, px , py , and pz orbital each (Fig. 2.3a–e). The energy necessary for this step is less than
regained in the subsequent formation of the covalent bonds. The four orbitals can be reconfigured into
four other wavefunctions, the sp3 hybrids (Figs. 2.3f–i), i.e.

�1 = (s + px + py + pz)/2 (2.1a)

�2 = (s + px − py − pz)/2 (2.1b)

�3 = (s − px + py − pz)/2 (2.1c)

�4 = (s − px − py + pz)/2 . (2.1d)

These orbitals have a directed form along tetrahedral directions. The binding energy (per atom) of the
covalent bond is large, for H–H 4.5eV, for C–C 3.6eV, for Si–Si 1.8eV, and for Ge–Ge 1.6eV. Such
energy is, for neutral atoms, comparable to the ionic bond, discussed in the next section.

1It is debated in femtosecond chemistrywhether the bond really forms in thisway.However, it is a picture of overwhelming
simplicity.
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Fig. 2.2 Octet, the favorite card game of the ‘Atomis’ (trying to reach octet configuration in a bond by swapping
wavefunctions). The bubble says: ‘Do you have a 2p?’. Reprinted with permission from [171], ©2002 Wiley-VCH
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Fig. 2.3 a s orbital, b, c, d px , py and pz orbital, e hybridization, f, g, h, i orbitals of the sp3 hybridization: f
(s+px+py+pz)/2, g) (s+px−py−pz)/2, h (s−px+py−pz)/2, (i) (s−px−py+pz)/2

In Fig. 2.4a the energy of a crystalmade up from silicon atoms is shown for various crystal structures2

or phases (cf. Chap. 3). We note that the crystal energy of further silicon structures are discussed in
[175]. The lattice constant with the lowest total energy determines the lattice spacing for each crystal
structure. The thermodynamically stable configuration is the phase with the lowest overall energy for
given external conditions.

The covalent bond of a group-IV atom to other group-IV atoms has a tetrahedral configuration
with electron-pair bonds, similar to the hydrogen molecule bond. In Fig. 2.4b the energy states of the
n = 2 shell for tetrahedrally bonded carbon (diamond, see Chap. 3.4.3) are shown as a function of

2Hexagonal diamond is wurtzite structure with identical atoms in the base.
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Fig. 2.4 a Energy per atom in silicon for various crystal structures. Adapted from [172]. b Electron energy levels in
(diamond structure) carbon as a function of the distance of the atomic nuclei (schematic). Adapted from [173, 174]

Fig. 2.5 Schematic of the origin of valence and conduction band from the atomic s and p orbitals. The band gap Eg and
the position of the Fermi level EF are indicated

Fig. 2.6 Schematic representation of a bonding and b antibinding p orbitals. The signs denote the phase of the wave-
function

the distance from the nuclei. First, the energetically sharp states become a band due to the overlap
and coupling of the atomic wavefunctions (cf. Sect. 6). The mixing of the states leads to the formation
of the filled lower valence band (binding states) and the empty upper conduction band (antibinding
states). This principle is valid for most semiconductors and is shown schematically also in Fig. 2.5. The
configuration of bonding and antibinding p orbitals is depicted schematically in Fig. 2.6. The bonding
and antibinding sp3 orbitals are depicted in Figs. 2.7a, b and 2.13. We note that the energy of the crystal
does not only depend on the distance from the nuclei but also on their geometric arrangement (crystal
structure).

Per carbon atom there are (in the second shell) four electrons and four unoccupied states, altogether
eight. These are redistributed into four states (filled) per atoms in the valence band and four states
per atom (empty) in the conduction band. Between the top of the valence band and the bottom of the
conduction band there is an energy gap, later called the band gap (cf. Chap.6).
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Fig. 2.7 Schematic representation of a, c bonding and b, d antibinding symmetric a, b and nonsymmetric c, d sp3

orbitals

(a) (b) (c)

Fig. 2.8 Schematic representation of the a σ and b π bonds in benzene, c schematic symbol for benzene

2.2.3 sp2 Bonds

Organic semiconductors (see Chap.18) are made up from carbon compounds. While for inorganic
semiconductors the covalent (or mixed, cf. Sect. 2.4) bond with sp3 hybridization is important, the
organic compounds are based on the sp2 hybridization. This bonding mechanism, which is present
in graphite, is stronger than the sp3-bond present in diamond. The prototype organic molecule is the
benzene ring3 (C6H6), shown in Fig. 2.8. The benzene ring is the building block for small organic
molecules and polymers.

In the benzene molecule neighboring carbon atoms are bonded within the ring plane via the binding
σ states of the sp2 orbitals (Fig. 2.8a). The wavefunctions (Fig. 2.9) are given by (2.2ac).

�1 = (s + √
2 px )/

√
3 (2.2a)

�2 = (s − √
1/2 px + √

3/2 py)/
√
3 (2.2b)

�3 = (s − √
1/2 px − √

3/2 py)/
√
3 . (2.2c)

The ‘remaining’ pz orbitals do not directly take part in the binding (Fig. 2.8b) and form bonding (π ,
filled) and antibinding (π*, empty) orbitals (see Fig. 2.10). The π and π* states are delocalized over
the ring. A more in-depth view considers the alternating ’staggered’ spin configuration around the ring
[177]. Between the highest populated molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) is typically an energy gap (Fig. 2.11). The antibinding σ ∗ orbitals are energetically
above the π* states.

3Supposedly, the chemist Friedrich August Kekulé von Stadonitz had a dream about dancing carbon molecules and thus
came up with the ring-like molecule structure [176].
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Fig. 2.9 a s orbital, b,c,d px , py and pz orbital, e hybridization, f,g,h orbitals of the sp2 hybridization: f (s+
√
2px )/

√
3,

g (s−√
1/2px + √

3/2py)/
√
3, h (s−√

1/2px − √
3/2py)/

√
3

Fig. 2.10 Orbitals due to
binding and antibinding
configurations of various π

orbitals
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Fig. 2.11 Schematic
energy terms of the
benzene molecule
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2.3 Ionic Bonds

Ionic crystals are made up from positively and negatively charged ions. The heteropolar or ionic bond
is the consequence of the electrostatic attraction between the ions. However, the possibly repulsive
character of next neighbors has to be considered.

For I–VII compounds, e.g. LiF or NaCl, the shells of the singly charged ions are complete: Li: 1s22s1

→ Li+: 1s2, F: 1s22s22p5 → F−: 1s22s22p6. Compared to ions in a gas, a Na–Cl pair in the crystal
has a binding energy of 7.9eV that mostly stems from the electrostatic energy (Madelung energy).
Van-der-Waals forces (cf. Sect. 2.6) only contribute 1–2%. The ionization energy of Na is 5.14eV, the
electron affinity of Cl is 3.61eV. Thus the energy of the NaCl pair in the solid is 6.4 (=7.9−5.1+3.6) eV
smaller than in a gas of neutral atoms.

The interaction of two ions with distance vector ri j is due to the Coulomb interaction

UC
i j = qi q j

4πε0

1

ri j
= ± e2

4πε0

1

ri j
(2.3)

and a repulsive contribution due to the overlap of (complete) shells. This contribution is typically
approximated by a radially symmetric core potential

U core
i j = λ exp(−λ/ρ) (2.4)

that only acts on next neighbors. λ describes the strength of this interaction and ρ parameterizes its
range.

The distance of ions is denoted as ri j = pi j R, where R denotes the distance of next neighbors and
the pi j are suitable coefficients. The electrostatic interaction of an ion with all its neighbors is then
written as

UC
i j = −α

e2

4πε0

1

R
, (2.5)

where α is the Madelung constant. For an attractive interaction (as in a solid), α is positive. It is given
(calculated for the i-th ion) as

α =
∑

i j

±1

pi j
. (2.6)

For a one-dimensional chain α = 2 ln 2. For the rocksalt (NaCl) structure (cf. Sect. 3.4.1) it is α ≈
1.7476, for the CsCl structure (see Sect. 3.4.2) it is α ≈ 1.7627, and for the zincblende structure (see
Sect. 3.4.4) it is α ≈ 1.6381. This shows that ionic compounds prefer the NaCl or CsCl structure.
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Fig. 2.12 a Experimental and b theoretical charge distribution in the (100) plane of NaCl. The lowest contour in the
interstitial region corresponds to a charge density of 7e/nm3 and adjacent contours differ by

√
2. Differences are mainly

due to the fact that the X-ray experiments have been made at room temperature. Adapted from [178]

The charge distribution for NaCl is shown in Fig. 2.12. For tetragonal and orthorhombic structures, the
Madelung constant has been calculated in [179].

2.4 Mixed Bonds

The group-IV crystals are of perfectly covalent nature, the I–VII are almost exclusively ionically
bonded. For III–V (e.g. GaAs, InP) and II–VI compounds (e.g. CdS, ZnO) we have a mixed case.

The (screened) Coulomb potentials of the A and B atoms (in the AB compound) shall be denoted
VA and VB . The origin of the coordinate system is in the center of the A and B atom (i.e. for the
zincblende structure (cf. Sect. 3.4.4) at (1/8, 1/8, 1/8)a. The valence electrons then see the potential

Vcrystal =
∑

α

VA(r − rα) +
∑

β

VB(r − rβ) , (2.7)

where the sum α (β) runs over all A (B) atoms. This potential can be split into a symmetric (Vc,
covalent) and an antisymmetric (Vi, ionic) part (2.8b), i.e. Vcrystal = Vc + Vi

Vc = 1

2

{
∑

α

VA(r − rα) +
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) +
∑

β

VA(r − rβ)

⎫
⎬

⎭
(2.8a)

Vi = 1

2

{
∑

α

VA(r − rα) −
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) −
∑

β

VA(r − rβ)

⎫
⎬

⎭
. (2.8b)



2.4 Mixed Bonds 29

(a) (b)

Fig. 2.13 Schematic representation of a bonding and b antibinding sp3 orbitals. From [169]

For homopolar bonds Vi = 0 and the splitting between bonding and antibinding states is Eh, which
mainly depends on the bond length lAB (and the related overlap of atomic wavefunctions). In a partially
ionic bond the orbitals are not symmetric along A–B, but the center is shifted towards the more
electronegative material (Figs. 2.7c, d and 2.13).

The band splitting4 between the (highest) bonding and (lowest) antibinding state Eba is then writ-
ten as

Eba = Eh + iC , (2.9)

where C denotes the band splitting due to the ionic part of the potential and depends only on VA − VB .
C is proportional to the difference of the electronegativities X of the A and B atoms, C(A, B) =
5.75(XA − XB). A material thus takes a point in the (Eh,C) plane (Fig. 2.14). The absolute value for
the band splitting is given as E2

ba = E2
h + C2.

The ionicity of the bond is described with the ionicity (after Phillips) fi, defined as [181, 182]

fi = C2

E2
h + C2

. (2.10)

The covalent part is 1 − fi. In Table 2.1 the ionicity is given for a number of binary compounds. The
ionicity can also be interpreted as the angle tan(φ) = C/Eh in the (Eh ,C) diagram. The critical value
of fi = 0.785 for the ionicity separates quite exactly (for about 70 compounds) the 4-fold (diamond,
zincblende and wurtzite) from the 6-fold (rocksalt) coordinated substances ( fi = 0.785 is indicated
by a dashed line in Fig. 2.14).

For ionic compounds, an effective ionic charge e∗ is defined connecting the displacement u of
negative and positive ions and the resulting polarization P = (e∗/2a3)u [183]. Connected with the
ionicity is the so-called s-parameter, describing the change of the charge upon change of bond length
b from its equilibrium value b0 [184]

e∗(b) = e∗(b0)
(
b

b0

)s

≈ e∗
0 (1 + s ε) , (2.11)

ε being the strain of the bond length, b/b0 = 1 + ε. It seems justified to assume that e∗(b0) is always
positive at the metal atom in III–V and II–VI compounds. The relation of s with the ionicity fi is shown
in Fig. 2.15 for various compound semiconductors.

4This energy should not be confused with the band gap�Ecv, the energy separation of the highest valence-band state and
the lowest conduction-band state. The energy splitting Eba is the energy separation between the centers of the valence
and conduction bands. Mostly, the term Eg is used for �Ecv.
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Fig. 2.14 Values of Eh and C for various AN B8−N compounds. The dashed line fi = 0.785 separates 4-fold from
6-fold coordinated structures. Most data taken from [180]

Table 2.1 Ionicity fi (2.10) for various binary compounds

C 0.0 AlAs 0.27 BeO 0.60 CuCl 0.75

Si 0.0 BeS 0.29 ZnTe 0.61 CuF 0.77

Ge 0.0 AlP 0.31 ZnO 0.62 AgI 0.77

Sn 0.0 GaAs 0.31 ZnS 0.62 MgS 0.79

BAs 0.002 InSb 0.32 ZnSe 0.63 MgSe 0.79

BP 0.006 GaP 0.33 HgTe 0.65 CdO 0.79

BeTe 0.17 InAs 0.36 HgSe 0.68 HgS 0.79

SiC 0.18 InP 0.42 CdS 0.69 MgO 0.84

AlSb 0.25 AlN 0.45 CuI 0.69 AgBr 0.85

BN 0.26 GaN 0.50 CdSe 0.70 LiF 0.92

GaSb 0.26 MgTe 0.55 CdTe 0.72 NaCl 0.94

BeSe 0.26 InN 0.58 CuBr 0.74 RbF 0.96

Fig. 2.15 s-Parameter as
defined in (2.11) as a
function of the ionicity fi
(2.10) for various
compound semiconductors.
Dashed lines are guides to
the eye. Data from [185],
value for CuCl from [184]
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2.5 Metallic Bonding

In a metal, the positively charged atomic cores are embedded in a more or less homogeneous sea of
electrons. The valence electrons of the atoms become the conduction electrons of the metal. These
are freely moveable and at T = 0K there is no energy gap between filled and empty states. The
bonding is mediated by the energy reduction for the conduction electrons in the periodic potential of
the solid compared to free atoms. This will be clearer when the band structure is discussed (Chap.6).
In transition metals the overlap of inner shells (d or f) can also contribute to the bonding.

2.6 Van-der-Waals Bonds

The van-der-Waals bond is a dipole bond that leads to bonding in the noble-gas crystals (at low
temperature). Ne, Ar, Kr and Xe crystallize in the densely packed fcc lattice (cf. Sect. 3.3.2.1). He3

and He4 represent an exception. They do not solidify at zero pressure at T = 0 K due to the large
zero-point energy. This quantum-mechanical effect is especially strong for oscillators with small mass.

When two neutral atoms come near to each other (distance of the nuclei R), an attractive dipole–
dipole interaction −AR−6 arises (London interaction) the van-der-Waals interaction. The quantum-
mechanical overlap of the (filled) shells leads to a strong repulsion +BR−12. Altogether, a binding
energy minimum results for the Lennard–Jones potential VLJ (see Fig. 2.16)

VLJ(R) = − A

R6
+ B

R12
. (2.12)

The energy minimum Emin = −A2/(2B) is at R = (2B/A)1/6.
The origin of the attractive dipole–dipole interaction can be understood from a one-dimensional

(1D) model as follows: Two atoms are modeled by their fixed positively charged nuclei in a distance
R and their negatively charged electron shells that are polarizable, i.e. can be displaced along one
direction x . Additionally, we assume (two identical) 1D harmonic oscillators for the electron motion
at the positions 0 and R. Then, the Hamilton operator H0 of the system without interaction (R is very
large)

H0 = 1

2m
p21 + C x21 + 1

2m
p22 + C x22 . (2.13)

Fig. 2.16 Lennard–Jones
potential (2.12) for A = 1
and two values of B
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The indices 1 and 2 denote the two electrons of atoms. x1 and x2 are the displacements of the electrons.
Both harmonic oscillators have a resonance frequency ω0 = √

C/m, and the zero-point energy is
�ω0/2.

Taking into account the Coulomb interaction of the four charges, an additional term H1 arises

H1 = e2

R
+ e2

R + x1 + x2
− e2

R + x1
− e2

R − x2
≈ −2e2

R3
x1 x2 . (2.14)

The approximation is valid for small amplitudes xi � R. A separation of variables can be achieved
by transformation to the normal modes

xs = x1 + x2√
2

, xa = x1 − x2√
2

. (2.15)

Then we find

H = H0 + H1

=
[

1

2m
p2s +

1

2

(
C− 2e2

R3

)
x2s

]
+

[
1

2m
p2a + 1

2

(
C − 2e2

R3

)
x2a

]
. (2.16)

This equation is the Hamiltonian of two decoupled harmonic oscillators with the normal frequencies

ω± =
√(

C ± 2e2

R3

)
/m ≈ ω0

[

1 ± 1

2

(
2e2

C R3

)
− 1

8

(
2e2

C R3

)2

+ . . .

]

. (2.17)

The coupled system thus has a lower (zero-point) energy than the uncoupled. The energy difference
per atom is (in lowest order) proportional to R−6.

�U = �ω0 − 1

2
(ω+ − ω−) ≈ −�ω0

1

8

(
2e2

C R3

)2

= − A

R6
. (2.18)

The interaction is a true quantum-mechanical effect, i.e. the reduction of the zero-point energy of
coupled oscillators.

2.7 Hamilton Operator of the Solid

The total energy of the solid, including kinetic and potential terms, is

H =
∑

i

p2i
2mi

+
∑

j

P2
j

2Mj

+1

2

∑

j, j ′

Z j Z j ′ e2

4πε0 |R j − R j ′ | + 1

2

∑

i,i ′

e2

4πε0 |ri − ri ′ |

−
∑

i, j

Z j e2

4πε0 |R j − ri | , (2.19)
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where ri and Ri are the position operators and pi and Pi are the momentum operators of the electrons
and nuclei, respectively. The first term is the kinetic energy of the electrons, the second term is the
kinetic energy of the nuclei. The third term is the electrostatic interaction of the nuclei, the fourth term
is the electrostatic interaction of the electrons. In the third and fourth terms the summation over the
same indices is left out. The fifth term is the electrostatic interactions of electrons and nuclei.

In the following, the usual approximations in order to treat (2.19) are discussed. First, the nuclei
and the electrons tightly bound to the nuclei (inner shells) are united with ion cores. The remaining
electrons are the valence electrons.

The next approximation is the Born–Oppenheimer (or adiabatic) approximation. Since the ion cores
are much heavier than the electrons (factor ≈ 103) they move much slower. The frequencies of the
ion vibrations are typically in the region of several tens of meV (phonons, cf. Sect. 5.2), the energy
to excite an electron is typically 1eV. Thus, the electrons always ‘see’ the momentary position of the
ions, the ions, however, ‘see’ the electron motions averaged over many periods. Thus, the Hamiltonian
(2.19) is split into three parts:

H = Hions(R j ) + He(ri ,R j0) + He−ion(ri , δR j ) . (2.20)

The first term contains the ion cores with their potential and the time-averaged contribution of the
electrons. The second term is the electron motion around the ion cores at their averaged positions
R j0 . The third term is the Hamiltonian of the electron–phonon interaction that depends on the electron
positions and the deviation of the ions from their average position δR j = R j − R j0 . The electron–
phonon interaction is responsible for such effects as electrical resistance and superconductivity.
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