
Chapter 19
Dielectric Structures

Abstract Dielectric structures, in particular periodic dielectric structures are treated. A general one-
dimensional model is developed describing Bragg mirrors. Examples for photonic band gap materials
in one, two and three dimensions are given. Different types of dielectric cavities and microscopic res-
onators including Fabry-Pérot and whispering gallery resonators are treated. Quantum electrodynamic
physical effects from light matter coupling such as Purcell effect and strong coupling are treated.

19.1 Photonic Band Gap Materials

Layered structures of dielectric materials with different index of refraction are used as optical elements
such as filters or reflection and anti-reflection coatings [1588]. In this section we discuss the use of
such concepts in one-, two- and three-dimensional photonic band gap materials.

19.1.1 Introduction

A structure with a so-called photonic band gap (PBG) exhibits an energy range (color range) in which
photons cannot propagate in any direction. In the photonic band gap, there are no optical modes, no
spontaneous emission and no vacuum (zero-field) fluctuations. We recollect that spontaneous emission
is not a necessary occurrence: Looking at Fermi’s golden rule (9.30) for the transition probability
integrated over all final states

w(E) = 2π

�
|M |2 ρf(E) , (19.1)

we see that the decay rate depends on the densityρf of final states at energy E . In the case of spontaneous
emission, this is the (vacuum) density Dem of electromagnetic modes (per energy per volume) that
varies ∝ ω2:

Dem(E) = 8π

(hc)3
E2 . (19.2)

In a homogeneous optical medium c must be replaced with c/n (cmp. Sect. 10.2.3).
If the band gap of a PBG is tuned to the electronic gap of a semiconductor, the spontaneous emission,

and also induced emission, can be suppressed. Thus, one mode has to be left by ‘doping’ the structure.
In this mode all emission will disappear and an efficient single-mode (monochromatic) LED or ‘zero-
threshold’ laser could be built. A schematic comparison of the band structure of electrons and photons
is given in Fig. 19.1.
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Fig. 19.1 Right:
electromagnetic dispersion
with a forbidden gap at the
wavevector of the
periodicity. Left:
Electron-wave dispersion
typical of a direct-gap
semiconductor. When the
photonic band gap
straddles the electronic
band gap, electron–hole
recombination into photons
is inhibited since the
photons have no place to go
(zero final density of states)

19.1.2 General 1D Scattering Theory

The formation of a photonic band gap in a one-dimensional dielectric can be calculated to a large extent
analytically and thus with direct insight. Let n(x) be the spatially varying index of refraction (no losses
or nonlinear optical effects). The one-dimensional wave equation (Helmholtz equation) reads for the
electric field E

∂2E(x)

∂x2
+ n2(x)

ω2

c2
E(x) = 0 . (19.3)

A comparison with a one-dimensional Schrödinger equation

∂2�(x)

∂x2
+ 2m

�2
[E − V (x)]�(x) = 0 (19.4)

shows that the Helmholtz equation corresponds to the quantum-mechanical wave equation of zero
external potential V and a spatially modulated mass, i.e. a case that is usually not considered.

Let us consider now the amplitude ak of the k eigenvector. The eigenvalue is then ωk . The one-
dimensional mode density ρ(ω) (per energy and per unit length) is

ρ(ω) = dk

dω
, (19.5)

which is the inverse of the group velocity.
We follow one-dimensional scattering theory as presented in [1589]. At this point we do not rely

on any specific form of n(x) (Fig. 19.2a). The (complex) transmission coefficient t for any index
structure is

t = x + iy = √
T exp(iφ) , (19.6)

where tan φ = y/x . φ is the total phase accumulated during propagation through the structure. It can
be written as the product of the physical thickness of the structure d and the effective wave number k.
Hence we have the dispersion relation

d

dω
tan(k d) = d

dω

( y

x

)
. (19.7)
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Fig. 19.2 1D scattering
problem: a General
scattering of an index of
refraction distribution, b
N -period stack, c two-layer
(quarter-wave) stack
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Evaluating the derivative we find

d

cos2(k d)

dk

dω
= y′x − x ′y

x2
, (19.8)

where the prime denotes derivation with respect to ω. Using the relation cos2 θ = (1 + tan2 θ)−1, we
obtain the general expression

ρ(ω) = dk

dω
= 1

d

y′x − x ′y
x2 + y2

. (19.9)

19.1.3 Transmission of an N-Period Potential

Now, the behavior of N periods of a given index distribution n(x) within a thickness d of one period
(Fig. 19.2b) is investigated. The scattering matrixM connects the intensity at x = 0 with that at x = d.
We use the column vector u = (u+, u−)T containing the right- and left-going waves (labeled ‘+’ and
‘−’, respectively), u± = f ± exp(±ik x),

u(0) = Mu(d) . (19.10)

Using the boundary conditions u(0) = (1, r) and u(d) = (t, 0), we find that M has the structure

M =
(
1/t r∗/t∗
r/t 1/t∗

)
. (19.11)
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The conservation of energy requires that detM = (1 − R)/T = 1. The eigenvalue equation for M is

μ2 − 2μRe(1/t) + 1 = 0 . (19.12)

The two eigenvalues μ± are related by μ+μ− = detM = 1. If we consider an infinite, periodic
structure, we know from Bloch’s theorem (cf. Sect. 6.2.1) that the eigenvector varies between unit cells
only via a phase factor, i.e. |μ| = 1. Therefore, the eigenvalues can be written as

μ± = exp(±iβ) , (19.13)

where β corresponds to the Bloch phase of a hypothetical infinite periodic structure. This phase β

should not be confused with φ defined earlier, which is associated with the unit cell transmission. We
find the condition

Re(1/t) = cosβ (19.14)

for the Bloch phase. Since every matrix obeys its own eigenvalue equation, we have also (1 being the
unity matrix)

M2 − 2M cosβ + 1 = 0 . (19.15)

By induction one can show that the N -period case has the scattering matrix

MN = M
sin(N β)

sin β
− 1

sin((N − 1) β)

sin β
. (19.16)

The solution for the finite period case can be written in terms of the Bloch phase of the infinite potential.
The transmission and reflection of the N -period system are given by

1

tn
= 1

t

sin(N β)

sin β
− sin((N − 1) β)

sin β
(19.17a)

rn
tn

= r

t

sin(N β)

sin β
. (19.17b)

The transmission of intensity can be written as (T = t∗t)

1

TN
= 1 + sin2(N β)

sin2 β

(
1

T
− 1

)
. (19.18)

Again, up to this point no specific distribution of the index of refraction within the unit cell has been
specified.

From (19.17a), a general formula for the mode density ρN (ω) of the N -stack can be obtained
as [1589]

ρN = 1

N d

sin(2Nβ)

2 sin β

(
η′ + η ξ ξ ′

1−ξ 2

)
− N η ξ ′

1−ξ 2

cos2(Nβ) + η2
(
sin(Nβ)

sin β

)2 , (19.19)

where ξ = x/T = cosβ and η = y/T .
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19.1.4 The Quarter-Wave Stack

Aquarter-wave stack, also known as aBraggmirror, exhibits a one-dimensional photonic band gap.One
period consists of two regions with thickness and index of refraction (d1, n1) and (d2, n2), respectively
(Fig. 19.2c). In the quarter-wave stack each region has an optical thickness ofλ/4 (thewave accumulates
in each region a phase of π/2) for a particular wavelength λ0 or (midgap) frequency ω0. Thus, the
condition reads

n1 d1 = n2 d2 = λ0

4
= π

2

c

ω0
. (19.20)

Using the Fresnel formulas, the transmission of an arbitrary two-layer cell is

t = T12 exp(i (p + q))

1 + R12 exp(2i q)
, (19.21)

where p = n1d1ω/c and q = n2d2ω/c are the phases accumulated in the two layers, respectively. The
values of T12 and R12 are given as

T12 = 4 n1 n2
(n1 + n2)2

(19.22)

R12 = (n1 − n2)2

(n1 + n2)2
. (19.23)

For the quarter-wave stack (p = q = π/2), we obtain for (19.21)

t = T12 exp(iπ ω̃)

1 + R12 exp(iπ ω̃)
, (19.24)

where ω̃ = ω/ω0 is the frequency scaled to the midgap value.
The transmission of a single two-layer cell is

T = T 2
12

1 − 2 R12 cos(π ω̃) + R2
12

, (19.25)

and the Bloch phase is given by

cosβ = ξ = cos(π ω̃) − R12

T12
(19.26)

η = sin(π ω̃)

T12
. (19.27)

For the N -period quarter-wave stack the transmission is given by

TN = 1 + cosβ

1 + cosβ + 2 (R12/T12) sin2(N β)
. (19.28)

A band gap forms. Within the band gap, the density of modes is lowered, at the edges it is enhanced
(Figs. 19.3 and 19.4). The transmission at midgap decreases ∝ (ni/n j )

2N , where ni < n j .



490 19 Dielectric Structures

(a)

(b)

Fig. 19.3 Quarter-wave stack with indices of refraction a n1, n2 = 1.0, 1.5 and b 1.0, 3.0. Solid lines: dimensionless
density of modes ρN (19.19), dashed lines: transmission TN (19.28) for two different numbers of pairs N = 5 (left
panels) and 10 (right panels) versus the dimensionless frequency ω̃

(a) (b)

Fig. 19.4 Quarter-wave stack with indices of refraction n1, n2 = 1.0, 1.5: a Transmission TN at midgap (ω̃ = 1, down
triangles) and at the band edge (ω̃ = 1 − 
ω̃/2, up triangles) versus number of pairs N . b Dimensionless density of
modes ρN at maximum near the band edge and at midgap versus number of pairs N

In the limit of large N the complete width 
ω̃ of the band gap is implicitly given by

cos
(π

2

ω̃

)
= 1 − 2

(
n1 − n2
n1 + n2

)2

. (19.29)

If |n1 − n2| � n1 + n2, we find


ω̃ ≈ 4

π

|n1 − n2|
n1 + n2

. (19.30)
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Fig. 19.5 Reflectance of various Bragg mirrors from YSZ/Al2O3 grown by pulsed laser deposition on sapphire. The
different layer thicknesses result in the design energies 0.43eV (N = 10.5, Rmax = 0.9812, red), 1.19eV (N = 10.5,
Rmax = 0.9779, orange), 2.11eV (N = 15.5, Rmax = 0.99953, green), 3.39eV (N = 15.5, Rmax = 0.99946, blue) and
4.54eV (N = 15.5, Rmax = 0.99989, purple)

(a) (b)

Fig. 19.6 a Index of refraction of YSZ and Al2O3 as a function of photon energy. b Reflectance spectra of the 2.11eV
(green), 3.39eV (blue) and 4.54eV (purple) Bragg mirrors of Fig. 19.5 replotted as a function of the scaled frequency
ω̃ = ω/ω0

The principle of the quarter-wave stack is scalable to frequencies other than visible light.1 In Fig. 19.5
the reflectance of various quarter-wave stacks from yttria-stabilized zirconia (YSZ [1590], high index
material, Fig. 19.6a) andAl2O3 are shown [1591]. The different designwavelengths have been achieved
solely by varying the layer thicknesses.

In Fig. 19.6b the three Bragg mirrors from Fig. 19.5 with N = 15.5 pairs are replotted in relative
frequency units ω̃. The spectra look very similar; subtle differences in the width of the reflectance band
are due to slightly larger index contrast at higher design energy (cmp. Fig. 19.6a). The width of the gap
is approximately 
ω̃ ≈ 0.18 in agreement with (19.30).

As further example, a Mo/Si Bragg mirror with a period of 6.7nm is shown in Fig. 19.7. Such a
mirror works in the extreme UV and is used for soft X-ray optics, possibly in advanced lithography

1This is a general property of Maxwell’s equations which do not contain a specific length scale.
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(a)

50nm

Si

Mo
Si

(b)

Fig. 19.7 a Cross-sectional TEM of Mo/Si superlattice with 2.7nm Mo (dark) and 4.0nm Si (bright) layers on Si(001)
substrate. From [1592]. b Reflection spectrum for a SL with nominal period of 6.5nm and 88.5◦ angle of incidence.
Data points are shown as circles, the solid line is a fit with a period of 6.45nm. Adapted from [1593]

systems. Dielectric thin films can also be designed for anti-reflection coatings, edge filters or pass and
stop band filters as detailed in [1588].

19.1.5 Formation of a 3D Band Structure

For other applications, e.g. waveguides with minimized footprint, 3D (or at least 2D) photonic band
gap structures are needed. Details can be found in dedicated textbooks [1594–1596]. In [1597] planar,
cylindrical and spherical Bragg mirrors are discussed.

Since we want a photonic band gap that is present for all directions of propagation, a Brillouin zone
with a shape close to a sphere is preferable. Then, the main directions are at similar k-values (Fig. 19.8).
One of the best suited is the fcc lattice. Since the L-point is centered at ≈14% lower frequency than
the X-point, the forbidden gaps for different directions must be, however, sufficiently wide to create a
forbidden frequency band overlapping at all points along the surface of the Brillouin zone. For example,
the bcc lattice has a Brillouin zone that is less symmetric than that of the fcc lattice (see Fig. 3.38) and
thus is less suited for the creation of an omnidirectional photonic band gap. However, the photonic

(a)

ky

kz

kx

W

K

L
U

X

X

(b)
k

X

L

X

L

Fig. 19.8 a The Brillouin zone of the fcc lattice. b Schematic forbidden gaps at the L- and X-points
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Table 19.1 Various photonic band gap structures and some of their properties. The band gap is between the n-th and
(n + 1)th band, 
ω̃ is given for air/silicon (ε ≈ 12)

Name Crystal type n 
ω̃ (%) Refs.

Diamond diamond 2 29 [1598]

Yablonovite fcc 2 19 [1602]

Woodpile fc tetragonal 2 20 [1603]

Spirals sc 4 17 [1604]

Square-spirals tetragonal 4 24 [1599]

Layered 3D bc orthorhombic 4 23 [1605]

Inverted scaffold sc 5 7 [1606]

Inverse opal fcc 8 4.25 [1607]

Inverse hcp hcp 16 2.8 [1608]

band gap must not arise above the first band, relaxing problems due to asymmetry of the Brillouin zone
(cf. Table 19.1).

Maxwell’s equations (zero charge density) for monochromatic waves ∝ exp(iωt) (and isotropic
dielectric function)

∇ · D = 0 (19.31)

∇ × E = i
μω

c
H (19.32)

∇ × H = i
ω

c
D (19.33)

∇(μH) = 0 , (19.34)

together with D(r) = ε(r)E(r) and μ = 1 they are combined into the wave equation

∇ × [
ε−1(ω, r)∇ × H(r)

] + ω2

c2
H(r) = 0 . (19.35)

This equation is numerically solved for planar waves with wavevector k.
In the following, results are shown for various structures. In a fcc lattice of air spheres in a dielectric

medium with n = 3.6 (a typical semiconductor), no band gap can be achieved (Fig. 19.9a), only a
pseudogap (Fig. 19.9b) appears.

In a diamond lattice (imagine as two fcc lattices shifted by 1/4 〈111〉), a complete photonic band
gap is possible [1598] (Fig. 19.10). Recently, a periodic array of spirals (Fig. 19.11) has been predicted
to exhibit a large photonic band gap [1599]. Glancing-angle deposition [1600] (GLAD) is a way
to realize such structures. Another method to fabricate structures with arbitrary geometry within a
material is two-photon lithography or two-photon holography. Another path to PBG structures are
so-called inverted opals. First, a close-packed structure of spheres, e.g. monodisperse silica spheres,
is fabricated by sedimentation or self-assembly. The gaps are filled with a high-index medium and the
template is subsequently removed, e.g. by etching or dissolving. The resulting structure is shown in
Fig. 19.12a. Such a structure has a photonic band gap (Fig. 19.12b) if the refractive index is sufficiently
high (> 2.85) [1601]. The band gap in this case is between the 4th and 5th band. Table 19.1 offers a
compilation of various PBG structures and their properties.
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(a) (b)

Fig. 19.9 a Calculated photonic band gap structure of a fcc dielectric structure composed of air spheres in a dielectric
background of refractive index n = 3.5. The filling ratio is 86% air and 14% dielectric material. Dotted and solid lines
represent coupling to s- and p-polarized light, respectively. bDensity of states for the band structure of part (a). Reprinted
from [1598] with permission, ©1990 APS

(a) (b)

Fig. 19.10 a Calculated photonic band structure for a diamond dielectric structure consisting of overlapping air spheres
in a dielectric material with n = 3.6. Filling ratio of air is 81%. The frequency is given in units of c/a, a being the
cubic lattice constant of the diamond lattice and c being the velocity of light. The gap is indicated as grayed rectangle.
b Gap-to-midgap frequency ratio for the diamond structure as a function of filling ratio for dielectric spheres n = 3.6 in
air (solid circles) and air spheres in dielectric n (open circles). Optimal case: air spheres with 82% filling ratio. Adapted
from [1598], reprinted with permission, ©1990 APS

19.1.6 Disorder

A real photonic band gap structure deviates from the ideal, perfectly periodic system by slight varia-
tions of the position and possibly also the size of the dielectric ‘atoms’. This is schematically shown
in Fig. 19.13a. The difference between the real and ideal structure is a (bipolar) spatial distribution
of 
ε(r) which acts as a source of scattering and hence exponential attenuation of coherent beams
propagating through photonic crystals over lengths l, named the ‘(extinction) mean free path’. After
propagating over such distance l, a light beam is converted to a diffuse glow that corrupts the func-
tionality of any photonic integrated circuit. Experimentally for opals a mean free path consistent with
5% fabrication accuracy has been found (Fig. 19.13b). For such disorder and a lattice constant a ≈ λ,
the mean free path is about only 10 wavelengths, l ≈ 10λ.

19.1.7 Defect Modes

Similar to a perfect periodic atomic arrangement leading to the formation of the electronic band
structure, a perfectly periodic dielectric structure leads to the photonic band structure. As we know
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(a) (b)

(c)

Fig. 19.11 a Tetragonal square-spiral photonic crystal. The crystal shown here has a solid filling fraction of 30%. For
clarity, spirals at the corners of the crystal are highlighted with a different shade and height. The tetragonal lattice is
characterized by lattice constants a and b. The geometry of the square spiral is illustrated in the insets and is characterized
by its width, L , cylinder radius, r , and pitch, c. The top left inset shows a single spiral coiling around four unit cells.
b Oblique and edge views of a tetragonal square spiral structure grown using the GLAD (glancing-angle deposition)
process. Both markers are 1µm. c Band structure for the direct structure crystal characterized by [L ,C ,r ]=[1.6,1.2,0.14]
and a spiral filling factor of 30%. The lengths are given in units of a, the lattice constant. The width of the PBG is 15.2%
relative to the center frequency for background dielectric constant of 1 and spiral material dielectric constant of 11.9.
The positions of high-symmetry points of the BZ are illustrated in the inset. Panel (a) reprinted and panel (c) adapted
and reprinted from [1599], with permission, ©2001 AAAS. Panel (b) reprinted from [1600] with permission, ©2002
ACS

from semiconductor physics, much of the interesting physics and numerous applications lie in defect
modes, i.e. localized electronic states due to doping and recombination at such centers. The equivalent
in PBG structures are point defects (one unit missing) or line defects (a line of units, straight, bend or
with sharp angles, missing). Such defects create localized states, i.e. regions for light localization. In
the case of line defects we deal with waveguides that can be conveniently designed and could help to
reduce the size of photonic and optoelectronic integrated circuits.

1D Model

We revisit our 1D scattering theory and create now a ‘defect’. A simple defect is the change of the
width of the center n2-region in a quarter-wave stack. For the numerical example, we choose N = 11,
n1 = 1, n2 = 2.
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(a)

(i) (ii)

(iii)

(iv)

(v)

(b)

(c)

Fig. 19.12 a Cartoon showing, in five steps, the fabrication of an inverse diamond structure with a full photonic band
gap. First, (i) a mixed body-centered cubic lattice is assembled (ii) after which the latex sublattice is removed; (iii) then
the structure is sintered to a filling fraction of ∼50% after that (iv) silicon or germanium infiltration takes place and
finally (v) silica elimination. b Photonic band diagrams of (upper panel) a silicon/silica composite diamond opal and
(lower panel) made of air spheres in silicon resulting from the removal of the silica spheres from the former. The filling
fraction for silicon is 50%. The inset shows the corresponding real space structures. Adapted from [1609], reprinted with
permission, ©2001 AIP. c SEM images of internal facets of silicon inverse opal: (i) (110) facet, (ii) (111) facet. Adapted
from [1610], reprinted with permission, ©2000, Springer Nature

In Fig. 19.14, the transmission curves are shown for the undisturbed quarter-wave stack and the
microcavity with n2 dcenter

2 = 2λ0/4 = λ0/2.A highly transmissive mode at ω = ω0 arises that is quite
sharp with 
ω = 3 × 10−4. Thus, the quality factor Q, also called the Q-factor or finesse,

Q = ω0


ω
, (19.36)

with ω0 being the resonance frequency and 
ω being the linewidth, is 3.3 × 103 in this case.
If the thickness is varied (Fig. 19.15), the mode shifts away from the center. A similar scenario arises

for higher-order nl/2-cavities, e.g. n2dcenter
2 = 4λ0/4 = λ0 (Fig. 19.16).

2D or 3D Defect Modes

An example of 2D waveguiding is shown in Fig. 19.17. Point defects can be used for high-finesse
wavelength filtering. Emitters surrounded by a photonic band gap material with a defect mode can
emit into the defect mode only, leading to spectrally filtered, highly directional emission.



19.1 Photonic Band Gap Materials 497

(a) (b)

Fig. 19.13 a Schematic photonic band gap structure with perfect (upper left) and disordered (upper right) periodicity.
In the lower left panel the disordered structure is overlayed with the ideal structure (red circles). In the lower right panel,
the difference between ideal and disordered structure is shown. b Optical mean free path in an opal photonic band gap
structure for various lattice constants. Solid line is theory for 5% fabrication accuracy. Adapted from [1611], reprinted
with permission, ©2005 APS

(a) (b)

Fig. 19.14 Defect mode in 1D photonic band gap: a Transmission of N = 11 quarter-wave stack exhibiting a photonic
band gap (n1 = 1, n2 = 2) (dashed line) and of microcavity (solid line) with center n2-region of width λ0/2 (instead of
λ0/4). b Relative width of mode is about 3 × 10−4

19.1.8 Topological Photonic Band Structures

A review of two-dimensional topological photonics can be found in [1613]. The idea of topologically
non-trivial 2D photonic band structures has been put forward in [1614] theoretically, employing a
Faraday-effect medium breaking time-reversal symmetry. The system is a two-dimensional photonic
crystals with an external magnetic field perpendicular to the plane of light propagation. A hexagonal
array of dielectric cylindrical rods is modeled. The degeneracy of the Dirac points (at the K-points) is
lifted by introducing the Faraday medium outside the rods. The bands close to the gap obtain non-zero
Chern numbersCn = ±1 (breaking inversion symmetry only creates a gap but does not lead to non-zero
Chern number). Reversal of the magnetic field inverts the bands to Cn = ∓1. The Berry curvature of
the photonic bands plays a role analogous to that of the magnetic field in the QHE. The calculations
show the existence of unidirectionally propagating photonic edge states between media with up and
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Fig. 19.15 Transmission of N = 11 quarter-wave stack (n1 = 1, n2 = 2) with center n2-region of widths 1.8λ0/4
(dashed line) and 2.2λ0/4 (solid line)

Fig. 19.16 Transmission of N = 11 quarter-wave stack (n1 = 1, n2 = 2) with center n2-regions of widths 3λ0/4 (solid
line), 3.5λ0/4 (dash-dotted line) and 4λ0/4 (dashed line)

down magnetic fields. An experimental system similar to this is based on yttrium iron garnet (YIG) as
gyrotropic material for breaking time reversal symmetry and exhibits topological edge modes [1615].

A non-magnetic versionwhich ismuchmore desirable in terms of fabrication and choice ofmaterials
is based on the idea of the Haldane model put forward in [1616]. A next-nearest neighbor coupling t ′
in the honeycomb lattice is considered and produces topological states if the phase φ′ of the (complex)
hopping parameter t ′ is not zero or π . Further theoretical considerations and modeling of such non-
magnetic, fully dielectric topological resonators were reported in [1617, 1618]. Such resonators have
been realized and investigated in [1619]. The system consists of a square lattice of ring resonators,
which are coupled to each other through link rings. These intermediary links are spatially shifted with
respect to the ring resonators, to introduce an asymmetric set of hopping phases controlling whether the
structure results in topologically trivial φ′ = 0 or non-trivial φ′ = π/2 situation. Lasing in edge modes
and light transport at the circumference of a 10×10 field of resonators have been demonstrated [1619].

A similar concept, also playing with the different hopping parameters to create topologically trivial
and non-trivial two-dimensional photonic band structures has been reported in [1620] (Fig. 19.18).
The dipole (odd parity) and quadrupole (even parity) character of the states changes (does not change)
within a band for the topologically non-trivial (trivial) parts. The optically pumped laser emission
stems from the topologically non-trivial 2D bulk area [1620]. This is attributed to the fact that the
band-inversion around the � point leads to a topology-induced mode selection with lower threshold,
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(a)

(b) (c)

Fig. 19.17 2D photonic band gap waveguide structure. a Fabrication principle, b SEM image of the structure, c light
guiding at a 90◦ bend. Reprinted with permission from [1612], ©2000 AIP

due to limitation of the number of cavity modes with efficient confinement; also the mode closer to
the band edge has a higher quality factor.

19.1.9 Coupling to an Electronic Resonance

In a vertical-cavity surface-emitting laser (cf. Sect. 23.4.14), an optical defect mode in a 1D dielectric
structure is coupled to an electronic excitation, such as an exciton in a quantum well or dot. In the
simplest picture, the oscillator must emit its radiation into the cavity mode since other modes do not
exist in the Bragg band. Thus, the emission energy is given and fixed by the cavity mode. However,
the photon mode (field oscillator) and the electronic oscillator form a coupled system that generally
must be described using quantum electrodynamics. Energy is periodically exchanged between the two
oscillators with the Rabi frequency. An analogous phenomenon is investigated in the field of atom–
cavity interactions. A necessary condition for the observation of such an oscillation is that the radiation
energy remains long enough in the cavity that can be expressed as [1621, 1622] (cf. (19.42))

α d � 1 − R ≈ π/Q , (19.37)

where α is the absorption coefficient of the electronic transition, d is the length of the absorbing
medium, R is the reflectance of the cavity mirror and Q is the finesse of the cavity given in (19.36).



500 19 Dielectric Structures

Fig. 19.18 a Schematic different hopping parameters for hexagonal dielectric structures with different aspect ratios of
medium and air. The boundary between the two parts is highlighted in red. bVisualization of the odd (even) parity dipole
(quadrupole) mode. c SEM image of the structure with the boundary between topologically trivial and non-trivial parts
highlighted in red. A magnified view of the area indicated with the dashed white rectangle is depicted in panel d. A
topologically trivial (non-trivial) hexagon is highlighted in green (blue). Adapted from [1620]

This situation is called the strong coupling regime since it leads to anticrossing behavior of the cavity
mode and electronic resonance. In theweak coupling regime for small absorption, the resonances cross
(within their linewidth). For resonance, the emission intensity of the oscillator into the cavity mode is
enhanced and its lifetime is reduced (Purcell effect, cf. Sect. 19.2.2).

The transmission T of a Fabry–Perot cavity with two (equal and lossless) mirrors of transmission
Tm = 1 − Rm is given by

T (ω) = T 2
m exp (−2 L α(ω))

|1 − Rm exp (i 2 n∗ L ω/c)|2 , (19.38)

with the complex index of refraction n∗ = nr + iκ = √
ε and α = 2ωκ/c (cf. (9.9)). For an empty

cavity, i.e. a (small) background absorption αB and a background index of refraction nr = nB, the
resonances occur when the phase shift 2nBLω/c is an integer multiple of 2π , i.e. for

ωm = m
π c

nB L
, (19.39)

with m ≥ 1 being a natural number. In the vicinity of the resonance, i.e. for ω = ωm + δω, we can
expand exp(2nBLω/c) ≈ 1 + i2nBLδω/c and obtain from (19.38) a Lorentzian for the transmission

T (ω) ≈ T 2
m exp (−2Lα(ω))

|1 − Rm(1 + i2nBL δω/c)|2 = (Tm/Rm)2 exp (2Lα(ω))

(δω)2 + γ 2
c

. (19.40)

The frequency width (HWHM) γc of the empty-cavity resonance is given by

γc = 1 − R′

R′
c

2 nB L
, (19.41)
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where R′ = Rm exp(−2Lα). Thus, the decay rate (photon loss from the cavity) is proportional to
Tm + αBL if both terms are small. The quality factor of the cavity resonance m is given by

Q = ωm

2 γc
≈ m π

1 − R
. (19.42)

Now, the electronic resonance is put into the cavity leading to a change in the dielectric function to (cf.
(D.11))

ε = n2B

[
1 + f

1 − (ω2 + iω�)/ω2
0

]
, (19.43)

where the index of refraction due to the electronic resonance is given by n(ω) = √
ε and (D.13a,b).

For resonance of the cavity mode and the electronic oscillator, i.e. ωm = ω0, the solution for the cavity
resonance condition 2nrωL/c = m2π is obtained, using (19.39), from

nr(ω) = m
π c

ω L
= nB

ωm

ω
. (19.44)

A graphical solution (Fig. 19.19a) yields three intersections of the left and right hands of (19.44). The
very high absorption at the central solution (ω = ω0) results in very low transmission. The other two
solutions2 yield the frequencies of the coupled normal mode peaks. For f � 1, we use (D.13a) in
(19.44) and find for the splitting ±�0/2 of the two modes

�2
0 = f ω2

0 − �2 . (19.45)

This frequency is called the Rabi frequency. If the dielectric function of the oscillator is put into (19.38),
the splitting is found to be

�2
0 = f ω2

0 − (� − γc)
2 . (19.46)

A splitting will only be observable if �0 � �, γc. If the two resonances ωc and ω0 are detuned by

 = ωc −ω0, the splitting � of the transmission peaks shows the typical anticrossing behavior of two
coupled oscillators

�2 = �2
0 + 
2 . (19.47)

In the experiment, typically the electronic resonance remains fixed at ω0 and the cavity resonance is
detuned by variation of the cavity length across the wafer (Fig. 19.19b).

A detailed theory of cavity polaritons is given in [1623]. The nonlinear optics of normal mode
coupling in semiconductor microcavities is reviewed in [1624].

The in-plane dispersion of the cavity polaritons depends on the coupling strength. First, the photon
dispersion is given by

Eph(k) = � ω = � c k = � c
(
k2‖ + k2z

)1/2
, (19.48)

where k‖ is the in-plane k-vector and kz is given by the resonance condition, kz = ωm/c with (19.39),

kz = m
π

nB L
. (19.49)

Thus the dispersion relation is no longer linear as for freely propagating light.

2These solutions only occur for sufficient oscillator strength f > (�/ω0)
2, i.e. in the strong coupling regime where

�2
0 > 0. The absorption coefficient at ω0 must be larger than �n∞/c.
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Fig. 19.19 a Graphical representation of (19.44) with the two solutions marked with circles for n∞ = 1 (dashed line),
f = 10−3, �/ω0 = 10−2 and ω0 = ωm. b Reflectance peak positions (experimental data (circles) at T = 5K) versus
cavity detuning ωc − ω0 for a cavity with two GaAs/(Al,Ga)As Bragg mirrors (24/33 pairs for the front/bottom mirror)
and five embedded quantum wells whose resonances are closely matched. Solid lines are a theoretical fit according to
(19.47) with �0 = 4.3meV. The dashed lines show the electronic resonance ω0 and the cavity resonance ωc. Part (b)
based on data from [1622]

For small k‖ this leads to an (in-plane) effective photon ‘rest mass’, applying (6.38),

1

m∗
ph

= 1

�2

∂2Eph

∂k2
. (19.50)

We find

m∗
ph = � kz

c
= � ω(k‖ = 0)

c2
. (19.51)

Now we assume the electronic oscillator to be in resonance with the photon dispersion at k‖ = 0, i.e.
Eel = �ω(k‖ = 0). The electronic resonance shall have vanishing dispersion for simplicity since the
exciton mass is much larger than (19.51). The eigenwert equation of the coupled system, resembling
(6.61), is ∣∣∣∣

E − Eph V
V E − Eel

∣∣∣∣ = 0 , (19.52)

with two solutions, called the upper and lower cavity polariton branch, visualized in Fig. 19.20. Their
splitting at k‖ = 0 is 2V . Thus the coupling parameter V = ��0/2 corresponds [1623] to the Rabi
frequency (19.45). Experimental values for the splitting of 3–15meV in (In,Al,Ga)As based [1622,
1625–1628], 17–44meV in (Cd,Zn)(Te,Se) based [1629], 6–60meV in (Al,In,Ga)N based [1630–
1634] and 78meV in ZnO based [1635] microcavities were found. It is possible to condensate cavity
polaritons in the minimum of the dispersion around k‖ = 0 (Bose-Einstein condensation). In [1636]
stimulated scattering and gain from cavity polaritons have been reported. Further details on cavity
polaritons can be found in [1637, 1638].

19.1.10 Hyperbolic Optical Metamaterials

A special class of uniaxial materials, termed hyperbolic metamaterials (HMM), has a (relative) dielec-
tric function of the form (cf. Table 9.2)



19.1 Photonic Band Gap Materials 503

Fig. 19.20 Dispersion of
cavity photon mode and
electronic resonance at
Eel = 3.0eV (dashed
lines) and coupled modes
(solid lines) for
2V = 40meV

Fig. 19.21 Equifrequency
surfaces (19.54) for a
‘normal’ isotropic
(ε‖ = ε⊥ > 0) and uniaxial
(ε‖ > 0, ε⊥ > 0, here
shown for ε⊥ > ε‖) optical
medium and type I (ε‖ < 0,
ε⊥ > 0) and type II
(ε‖ > 0, ε⊥ < 0)
hyberbolic metamaterials

ε =
⎛
⎝

ε‖ 0 0
0 ε‖ 0
0 0 ε⊥

⎞
⎠ (19.53)

with ε‖ε⊥ < 0. A negative dielectric function is known from metals below the plasma frequency
(cf. Sect. 9.9.1). From the conventional formula ω2 = k2c2/n2 in a isotropic medium, in an uniaxial
medium the isofrequency surface is given by

ω2

c2
= k2x + k2y

ε‖
+ k2z

ε⊥
(19.54)

and for ’normal’ uniaxial materials an ellipsoid (or a sphere for isotropic materials, cmp. to band
dispersions Fig. 6.35a, b). If one of the tensor elements is negative, two possible types of ’hyperbolic’
metamaterials develop with ε‖ < 0 (HMM type I) and with ε⊥ < 0 (HMM type II). Their isofrequency
surfaces (for TM waves) for the two types are depicted in Fig. 19.21.

Apart from homogeneousmedia, various geometries for HMMhave been proposed and investigated
[1639, 1640]. HMM can transport high-k waves andmay enable devices for sub-wavelength resolution
imaging. Also, the enhanced density of photonic states (within a restricted wavelength range) can be
used for enhancement of spontaneous recombination rates (Purcell effect, cf. Sect. 19.2.2) [1641]. A
possible epitaxial, almost perfectly lattice matched superlattice HMM system of alternating dielectric
and metallic materials is MgO/TiN [1642]. Also HMM involving the anisotropic magnetic permittivity
tensor have been considered [1643].



504 19 Dielectric Structures

19.2 Microscopic Resonators

19.2.1 Microdiscs

A microdisc is a cylindrical resonator with a thickness d that is small compared to the radius R. It can
be fabricated from semiconductors and semiconductor heterostructures using patterning and material-
selective etching. With underetching a mostly free-standing disc can be made that resides on a post
(Fig. 19.22).

The coordinate system is (ρ,φ, z) with the z direction being perpendicular to the disc area. Typically,
the disc is so thin that there is only one node along z. Solving the wave equation in this geometry
[1645], the modes are characterized by two numbers (m, l). m describes the number of zeros along
the azimuthal direction φ with the field amplitude being proportional to exp(±imφ). Thus, except
for m = 0, the modes are simply degenerate. Modes with Ez = 0 are called TE modes. This is the
preferred polarization of emission. The number l denotes the number of zeros in the radial direction.
Only for modes with |m| = 1, is the intensity nonzero on the axis, i.e. for ρ = 0. All other modes have
vanishing intensity in the disc center.

The light intensity in whispering gallery modes is preferentially concentrated along the circumfer-
ence of the disc as shown in Fig. 19.23a. Since the light can only escape via evanescent waves, the light
is well ‘captured’ in such a mode. The Q-factor (19.36) is extremely high and takes values of several

500nm
1µm(a) (b)

Fig. 19.22 a Side view of a 3-µm diameter disc containing one 10-nm InGaAs quantum well between 20-nm
(In,Ga)(As,P) barriers standing on an InP pillar that has been selectively underetched using HCl. b Top view SEM
image of a 5-µm diameter (In,Ga) (As,P) microdisc. The pedestal shape is a rhombus due to anisotropic etching of the
HCl. Adapted from [1644], reprinted with permission, ©1992 AIP

(a) (b)

6

5

4

3

2

1

0

4

0.0 0.05 0.1

Fig. 19.23 a Field intensity for whispering gallery mode (10, 0) (TM-polarized) for a circle with 1µm radius (shown as
white line) and n = 1.5. The image size is 4× 4µm2. b Theoretical quality factor of a 2-µm InP microdisc as a function
of the deformation parameter (19.56). The insets show (8,0) whispering gallery modes at a wavelength of 1.55µm for
n = 3.4. Part (b) adapted from [1647]
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Fig. 19.24 Strong coupling of a single QD exciton (due to monolayer fluctuation in a 13ML thick GaAs/Al0.33Ga0.67As
QW) with a WGM in a microdisk of 2µm diameter (inset). (a) Anti-crossing of upper and lower peak for various
temperatures. Symbols are data points, solid lines are theory considering coupling. The dashed (dash-dotted) line is the
expected temperature shift of the WGM mode (exciton energy). (b) Photoluminescence spectrum at the anti-crossing
point (T = 30K). Experimental data (squares) and fit with two peaks (solid line). Adapted from [1648]
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Fig. 19.25 aMicropillar with MBE-grown GaAs/AlAs DBRs and a cavity containing five layers of InAs quantum dots
as indicated. The pillar has been prepared by reactive ion etching. Reprinted with permission from [1650], ©1998 APS.
b Experimental decay time τ of on-resonance quantum dot luminescence scaled by off-resonance lifetime τ0 = 1.1ns
(close to lifetime in a QD in bulk) for a variety of micropillars with different Purcell factors FP. The error bars correspond
to the measurement accuracy of the decay time (±70ps), the dashed line is a guide to the eye. Adapted from [1650]

104. In order to couple light out of such a disc, deformed resonators, e.g. with a defect in the form of
protrusions [1646], were devised. Deformed resonators are discussed in more detail in the next section.

The strong coupling of a QD exciton to a whispering gallery mode is shown in Fig. 19.24 where
anti-crossing behavior is observed at low temperatures. Tuning is achieved by temperature variation.
Behavior of a similar system in the weak coupling regime is shown in Fig. 19.26.
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Fig. 19.26 aTemperature dependence of the energy positions of thewhispering gallerymode (WGM)of a 5-µmdiameter
(Al,Ga)As/GaAs microdisc (Q = 6500) and the single-exciton resonance of a single InAs quantum dot contained within
the disc. b Intensity ofWGMmode as a function of the detuning EWGM−EQD−X from the QD single exciton resonance.
The excitation density was 15Wcm−2 for all data. Adapted from [1651]

19.2.2 Purcell Effect

According to Fermi’s golden rule (19.1), the probability of an optical transition depends on the density
of available optical modes (final states). If the density of modes is enhanced compared to its vacuum
value (19.2) at a resonance of an optical cavity, the lifetime of the electronic state decreases by the
Purcell factor [1649],

FP = 3

4π2
Q

(λ/n)3

V
, (19.55)

where n is the refractive index of themedium, Q is the quality factor of the cavity resonance and V is the
effective mode volume.3 Experiments on the emission of quantum dots (that generally provide small
absorption and thus allow for theweak coupling regime) in etchedmicropillars containing amicrocavity
(Fig. 19.25a) have shown that indeed the luminescence decay is faster for cavities with large Purcell
factor (Fig. 19.25b) [1650]. The resonance of cavity mode and emitter leads to an enhanced emission
intensity as shown in Fig. 19.26 for the exciton emission of a single quantum dot in a microdisc [1651].

19.2.3 Deformed Resonators

Thewhispering gallerymodes in circular (or spherical) cavities are long-lived and emission goes into all
angles. Light escape is based only on the exponentially slow process of evanescent leakage (neglecting
disorder effects such as surface roughness). In order to overcome the isotropic light emission, the
resonator needs to be deformed. This can be accomplished with an ellipsoidal shape, i.e.

r(φ) = R [1 + ε cosφ] , (19.56)

where 1+2ε is the aspect ratio of the ellipse. The increased radiation leads to a decrease of the Q-factor
as shown in Fig. 19.23b. Also, a new decay process, refractive escape, becomes possible. A ray that is
initially in a whispering gallery trajectory diffuses in phase space until finally an angle smaller than the
critical angle for total reflection (9.11) is reached. The ray dynamics becomes partially chaotic [1652].

3V is given by the spatial integral of the vacuum field intensity for the cavity mode, divided by its maximum value.
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(a)

(b) (c)

Fig. 19.27 a SEM image of a quadrupolar cylinder laser with deformation parameter ε ≈ 0.16 on a sloped InP pedestal.
The light grey area in the top view is the electrical contact. b Simulated near-field intensity pattern of a chaotic whispering
gallery mode for ε = 0.06 and n = 3.3. c Simulated near-field intensity pattern of a bow-tie mode for ε = 0.15. The
length of the minor axis for (b) and (c) is 50µm. Reprinted with permission from [1653], ©1998 AAAS

One other possible deformation of the circular disc geometry is a ‘flattened quadrupole’ as shown
in Fig. 19.27a. This shape can be parameterized by a deformation parameter ε and the angle-dependent
radius r(φ) given by

r(φ) = R
[
1 + 2 ε cos2 (2φ)

]1/2
. (19.57)

For small deformation, the whispering gallery modes become chaotic and exhibit preferred emission
along the long axis of the resonator (Fig. 19.27b). For larger deformations (ε ≥ 0.14), a stronger and
qualitatively different directionality occurs in the shape of a bow-tie [1653] as shown in Fig. 19.27c.
The optical laser power extracted from deformed resonators was found to increase exponentially with
ε; for ε = 0.2 it was 50 times larger than for the circular resonator.

Another modification that can be applied to the microdisc in order to increase outcoupling of light,
is the spiral resonator [1654] as shown in Fig. 19.28a. The radius is parameterized by

r(φ) = R
[
1 + ε

2π
φ
]

. (19.58)

The experimental emission pattern is displayed in Fig. 19.28b. It exhibits a maximum along the
direction of the tangent at the radius step. The simulated near-field intensity of such an emission mode
is shown in Fig. 19.28c. In a spiral laser, ray dynamics is also chaotic [1655].
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(a) (b)

(c)

Fig. 19.28 a SEM image of a microcavity disc laser diode with a disc radius of 50µm. The p-contact ring electrode
defines the areas through which carriers are injected into the microdisc and where stimulated emission can take place. b
Radial distribution of the light output from the spiral-shaped microdisc laser diode measured below and above threshold.
The radius of the spiral microdisc was r0 = 250µm and the deformation parameters were ε = 0.05 (grey) and ε = 0.10
(black). An emission beam at an angle of α = 0◦ corresponds to a direction normal to the notch surface as shown in
the inset. Below the laser threshold, the emission pattern is essentially isotropic and independent of the deformation
parameter. Above the threshold, directional emission is clearly observed with the emission direction at a tilt angle
α ≈ 25◦. The measured divergence angle of the far-field pattern is ∼ 75◦ for ε = 0.10 and ∼ 60◦ for ε = 0.05.
Reprinted with permission from [1656], ©2004 AIP. c Simulated near-field intensity pattern of an emission mode with
nkR ≈ 200 for deformation ε = 0.10. Reprinted with permission from [1654], ©2003 AIP

19.2.4 Hexagonal Cavities

Hexagonal cavities develop, e.g., in microcrystals of wurtzite semiconductors (with the c-axis along
the longitudinal axis of the pillar). In Fig. 19.29a, a ZnO tapered hexagonal resonator (needle) is shown.
Whispering gallery modes modulate the intensity of the green ZnO luminescence [1657].4 In a simple
plane-wave model, the resonance condition is given by

6Ri = h c

n E

[
N + 6

π
arctan

(
β
√
3n2 − 4

)]
, (19.59)

where Ri is the radius of the inner circle (Fig. 19.29d), n is the index of refraction, N is the mode
number and β is given by βTM = 1/n (βTE = n) for TM (TE) polarization, respectively. Due to
birefringence, n‖ (n⊥) has to be used as the index of refraction for TM (TE) polarization.

4We note that besides the green luminescence as in Fig. 10.20, an unstructured green band also occurs that is observed
here. Its origin may be linked to the oxygen vacancy [1658].
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(d)

(e)

Fig. 19.29 a–c SEM images of ZnO nanoneedle fabricated by pulsed laser deposition. d Schematic geometry of cross-
sectional plane. Ri (R) is the radius of the incircle (circumscribing circle). The circumference of the inscribed white
hexagon, representing the path of a whispering gallery mode, has a length of 6Ri. e Two-dimensional plot of spectra
recorded along a linescan along the needle’s longitudinal axis. The left vertical axis shows the linescan position x , the
right one refers to the respective needle diameter D. The spectral maxima, i.e. the measured WGM energies, appear
as bright belts going from the bottom left corner to the right upper one. With decreasing diameter, all resonances shift
systematically to higher energies. The white dots give theoretical TM-resonance energy positions obtained from (19.59),
white crosses give the same for TE-polarization. Reprinted with permission from [1657], ©2004 APS

A N = 26 whispering gallery mode of a hexagonal resonator is shown in Fig. 19.30c,d. The 6-fold
symmetric emission stems from the edges of the hexagon. While whispering gallery resonators have
typically mode numbers N � 1, in such hexagonal resonators the whispering gallery modes could be
followed down to N = 1 [1657] as shown in Fig. 19.29a, b, e.

Under high optical pumping laser action occurs on thewhispering gallerymodes. The peak positions,
close to the band gap in the spectral region of the electron-hole plasma, follow (19.59) [1660], as
shown for various diameters in Fig. 19.31. Pumping threshold even at room temperature is below
100kW/cm−2 [1661].
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(a) (b)

(c) (d)

(e)

Fig. 19.30 Simulated near-field intensity pattern of modes in a cavity with hexagonal cross section (absolute value of
electric field in linear grey scale): Modes (N = 4) with (a) symmetry −a and (b) mode 4+ (nomenclature from [1659])
for n = 2.1 and kR = 3.1553− i0.0748. Modes (c) 26− and (d) 26+ for n = 1.466 and kR = 22.8725− i0.1064. The
displayed modes have a chiral pattern. Emission originates mostly from the corners. eMicro-photoluminescence spectra
of a single ZnO nanopillar. The three topmost curves are unpolarized. The curve labeled ‘bulk’ shows the unmodulated
luminescence of the green luminescence in bulk. The line labeled ‘exp.’ shows the experimental µ-PL spectrum of the
investigated nanopillar. The experimental spectra recorded for TM- and TE-polarization, respectively, are shown in the
lowest two curves. The curve labeled ‘theory’ displays the theoretical luminescence spectra. Dashed vertical lines are
guides to the eye referring to the spectral position of the dominating WGMs. The inset shows a SEM image of the
investigated pillar, the scale bar has a length of 500nm. The dotted lines show the position of the edges of the hexagonal
resonator obtained from topography contrast

(a) (b) (c)

Fig. 19.31 a Photoluminescence spectra of a ZnO microwire with hexagonal cross section for various pump power
densities (lowest curve: D = 60kW/cm2, top curve: D = 250kW/cm2) at T = 10K. The inset shows the scanning
electron microscopy image of a typical microwire (d = 6.40µm). bDependence of the emitted PL intensity of a selected
lasing peak (denoted by an arrow in the spectrum in part (a)) on the excitation density D. Lines are guide to the eye.
c Dependence of the resonant energies on the interference order N for wires with different diameters as labeled on top of
the graph. Lines are the predicted theoretical values calculated from (19.59) using diameter values obtained from SEM
measurements; the symbols represent the experimentally observed peaks. Adapted from [1660]
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