
Chapter 15
External Fields

Abstract The effects of external electric and magnetic fields on the electronic and optical properties
of bulk materials and quantum wells are discussed including the Stark effect and quantum-confined
Stark effect, the Hall effect and Quantized Hall Effects. The energy levels of the solid and its optical
and electronic properties depend on external electric and magnetic fields. In high magnetic fields and
at low temperatures the quantum Hall effects give evidence for new states of matter in many-body
systems.

15.1 Electric Fields

15.1.1 Bulk Material

The center-of-mass motion of the exciton is not influenced by a homogeneous electric field. The
Hamilton operator for the relative motion of an electron-hole pair of reduced mass μ along z in the
presence of an electric field E along the z direction is

Ĥ = − �
2

2μ
� − e E z . (15.1)

Here, the Coulomb interaction, leading to the formation of bound exciton states, is neglected. In the
plane perpendicular to the field (here the z direction) the solutions for the relative motion are just plane
waves.

In the electric field the bands are tilted (Fig. 15.1), i.e. there is no longer an overall band gap.
Accordingly, the wavefunctions are modified and have exponential tails in the energy gap.

After separation of the motion in the (x ,y) plane the Schrödinger equation for the motion in the z
direction is (

− �
2

2μ

d2

dz2
− e E z − Ez

)
φ(z) = 0 , (15.2)

which is of the type
d2 f (ξ)

dξ 2
− ξ f (ξ) = 0 , (15.3)
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Fig. 15.1 Impact of an electric field on a bulk material (tilt of bands) and b a quantum well (quantum confined Stark
effect, QCSE)
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Fig. 15.2 a Airy function Ai(x), b Ai’(x)

with ξ = Ez

�
− z

( 2μ
�2 e E

)1/3
and the optoelectronic energy � =

(
e2E2

�
2

2μ

)1/3
. The solution of (15.3) is

given by the Airy function Ai (cf. Fig. 15.2):

φEz (ξ) =
√
e E

�
Ai(ξ) . (15.4)

The pre-factor guaranties the orthonormality (with regard to the Ez). The absorption spectrum is then
given by

α(ω, E) ∝ 1

ω

√
� π

[
Ai

′2(η) − η Ai2(η)
]

, (15.5)

with η = (Eg − E)/� and Ai ′(x) = dAi(x)/dx .
Optical transitions below the band gap become possible that are photon-assisted tunneling processes.

The below-bandgap transitions have the form of an exponential tail. Additionally, oscillations develop
above the band gap, the so-called Franz-Keldysh oscillations (FKO) [1417, 1418] (Fig. 15.3a).

The absorption spectrum scales with the optoelectronic energy �. The energy position of the FKO
peaks En is periodic with (ν ∼ 0.5)

(
En − Eg

)3/2 ∝ (n − ν) E
√

μ . (15.6)
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Fig. 15.3 a Theoretical
absorption (top panel) with
(solid line) and without
(dash-dotted line) electric
field for a volume
semiconductor (without
Coulomb interaction) and
theoretical change of
absorption (bottom panel).
b Experimental absorption
spectra of (In,Ga)As on InP
at T = 15K for various
applied voltages as labeled.
Adapted from [1421]
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Amore detailed theory including interband coupling and excitonic effects can be found in [1419]. The
effect is best determined with modulation spectroscopy can measuring the difference of absorption
with and without field [1420] since it exhibits more defined features (Fig. 15.3a, lower panel).

A nonperiodicity can indicate a nonparabolicity of the mass. Also, the contributions of heavy and
light holes merge. For a given mass the electric field strength can be determined. Well-pronounced
oscillations are only present for homogeneous fields.

Experimental spectra show additionally the peaks due to excitonic correlation (Fig. 15.3b) at low
field strength. At higher fields the FKO evolve and the amplitude of the excitonic peaks decreases
because the excitons are ionized in the field.

15.1.2 Quantum Wells

In a quantum well an electric field along the confinement direction (z direction) causes electrons and
holes to shift their mean position to opposite interfaces (Fig. 15.1b). However, excitons are not ionized
due to the electric field. With increasing field (for both field directions) the energy position of the
absorption edge and the recombination energy is reduced. This is the quantum confined Stark effect
(QCSE). Corresponding experimental data are shown in Fig. 15.4i–v. The shift depends quadratically
on the electric field since the exciton has no permanent dipolemoment (mirror symmetry of the quantum
well). Thus, only the second-order Stark effect is present (as for the hydrogen atom) in which the field
first induces a dipole p = αE. This dipole interacts with the field with an energy E = −p ·E = −αE2.
The carrier separation in opposite sides of the quantum well (Fig. 15.4b) leads to a reduced overlap
of the electron and hole wavefunctions and subsequently to an increased recombination lifetime (see
Fig. 12.43).

If the field is within the quantum-well interface plane, the field leads to the ionization of excitons
without shift of the energy position. The loss of the excitonic peak is visualized in the spectra in
Fig. 15.4a–c.
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Fig. 15.4 Impact of electric fields on the absorption spectrum of n × (9.5nm GaAs/9.8nm Al0.32Ga0.68As) multiple
quantum well structures. a Electric field along the [001] growth direction (n = 50), (i)–(v) E = 0, 0.6, 1.1, 1.5, and
2 × 105 V/cm. b Electric field within the interface plane (n = 60), (i, ii, iii) E = 0, 1.1, and 2×105 V/cm. Adapted
from [1422]

15.2 Magnetic Fields

In magnetic fields, electrons (or holes) perform a cyclotron motion with frequency ωc = eB/m∗, i.e.
a motion perpendicular to the magnetic field on a line of constant energy in k-space. This line is the
intersection of a plane perpendicular to the magnetic field and the respective isoenergy surface in k-
space. For semiconductors with anisotropic mass, such as Si and Ge, the quantum theory of cyclotron
resonance has been given in [1423]. The physics of semiconductors in magnetic fields is covered in
detail in [1424].

The ballistic cyclotron motion can only occur between two scattering events. Thus, a significantly
long path along the cyclotron trajectory (classically speaking) and the connected magnetotransport
properties are only possible when

– ωcτ � 1, i.e. when the average scattering time τ is sufficiently large. This requires high mobility.
– the magnetic field is sufficiently strong and the temperature sufficiently low, i.e. �ωc � kT , such
that thermal excitations do not scatter electrons between different Landau levels.

– the cyclotron path is free of geometric obstructions.

An external magnetic field also produces a Zeeman-like splitting of the spin states. For the electron,
the energy splitting �E is given by

�E = g∗
e μB B , (15.7)

where B is the magnetic-field amplitude and g∗
e the (effective) electron g-factor. This value differs

from the free-electron value in vacuum of ge = 2.0023 due to the presence of spin-orbit interaction
(see Sect. 15.2.3). Values for g∗

e at low carrier density and low temperatures are 2 for Si, 1.2 for InP and
ZnSe, −1.65 for CdTe, −0.44 for GaAs, −15 in InAs, and −50 for InSb. In [1425] the temperature
dependence of g∗

e in GaAs, InP and CdTe is also measured and discussed. The electron g-factor
increases in thin GaAs/(Al,Ga)As quantum wells [1426].

15.2.1 Classical Hall Effect

Anelectrical current along the x (longitudinal) direction in a perpendicularmagnetic fieldB = (0, 0, B)

along z causes an electric field Ey along the transverse (y) direction (Fig. 15.5). The charge accumu-
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Fig. 15.5 Scheme of the Hall-effect geometry. The movement of one electron in the longitudinal electric current I is
shown schematically. The coordinate system (x , y, z) and the directions of the magnetic field B, the drift velocity of an
electron v and the resulting Lorentz force F are given. The transverse field Ey is given by VH/w

Fig. 15.6 Hallbar
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lation is due to the Lorentz force. The related transverse voltage is called the Hall voltage and the
resistivity ρxy = Ey/jx the Hall resistivity [28, 31, 32]. Many aspects of the Hall effect are discussed
in [1427]. For thin-film samples typically Hall bars [1428] (see Fig. 15.6 and also Fig. 15.19, for a
reasonable measurement of the Hall voltage the ratio of length and width of the Hall bar should be at
least 3) or the van-der-Pauw geometry (Fig. 15.7) and method are used [1429–1431].

For band transport in the relaxation time approximation (Chap. 8.2), the steady-state equation of
motion is (in the vicinity of an isotropic extremum)

m∗ v
τ

= q (E + v × B) . (15.8)

We note that this equation of motion is also valid for holes, given the convention of Sect. 6.10.1, i.e.
positive effective mass and charge. With the cyclotron frequency ωc = qB/m∗ the conductivity tensor
is (j = qnv = σ E)

σ =
⎛
⎝σxx σxy 0

σyx σyy 0
0 0 σzz

⎞
⎠ (15.9a)

σxx = σyy = σ0
1

1 + ω2
c τ 2

= σ0
1

1 + μ2 B2
(15.9b)

σxy = −σyx = σ0
ωcτ

1 + ω2
c τ 2

= σ0
μ B

1 + μ2 B2
(15.9c)
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(c) (d) (e)

Fig. 15.7 a–d Geometry for van-der-Pauw Hall measurements. a Best geometry (cloverleaf), b acceptable square
geometry with small contacts on the corners, c,d not recommended geometries with contacts on the edge centers or
inside the square, respectively. e Current distribution, as visualized by lock-in thermography [1432], in epitaxial ZnO
layer on sapphire with Hall geometry as in part b. Grey dashed line indicates the outline of the 10 × 10mm2 substrate,
grey areas indicate gold ohmic contacts

σzz = σ0 = q2 n τ

m∗ = q n μ . (15.9d)

Perpendicular to the magnetic field, the conductivity (σzz) is given by (8.5). If only one type of carrier
(charge q, density n) is considered, the condition jy = 0 leads to Ey = μB Ex and jx = σ0 Ex . The
Hall coefficient is defined as RH = Ey/( jx B) or more precisely as

RH = ρxy

B
, (15.10)

where the resistivity tensor ρ is the inverse of the conductivity tensor σ ,

ρ = σ−1 =
⎛
⎝ρxx ρxy 0

ρyx ρyy 0
0 0 ρzz

⎞
⎠ (15.11a)

ρxx = ρyy = σxx

σ 2
xx + σ 2

xy

(15.11b)

ρxy = −ρyx = σxy

σ 2
xx + σ 2

xy

(15.11c)

ρzz = 1

σzz
= 1

σ0
. (15.11d)

For a single type of carriers, the Hall coefficient is therefore given by

RH = μ

σ0
= 1

q n
. (15.12)

It is negative (positive) for electron (hole) conduction. We note that electrons and holes are deflected
in the same y-direction by the magnetic field and collect at the same electrode. Thus the Hall effect
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allows the determination of the carrier type and the carrier density.1

If both types of carriers are present simultaneously, the conductivity (two-band conduction) is given
by the sum of electron and hole conductivity (8.11),

σ = σ e + σ h . (15.13)

The Hall constant (15.10) is then

RH = 1

e

−n μ2
e (1 + μ2

h B
2) + pμ2

h (1 + μ2
e B

2)

n2 μ2
e (1 + μ2

h B
2) − 2 n pμe μh (1 + μe μh B2) + p2 μ2

h (1 + μ2
e B

2)
. (15.14)

Under the assumption of small magnetic fields,2 i.e. μB � 1, the Hall coefficient is

RH = 1

e

[ −n μ2
e + pμ2

h

(−n μe + pμh)2
+ n p (−n + p) μ2

e μ2
h (μe − μh)

2

(−n μe + pμh)4
B2 + . . .

]
. (15.15)

For small magnetic field this can be written as

RH = 1

e

p − n β2

(p − n β)2
, (15.16)

with β = μe/μh < 0. For large magnetic fields, i.e. μB � 1, the Hall coefficient is given by

RH = 1

e

1

p − n
. (15.17)

In Fig. 15.8, the absolute value of the Hall coefficient for InSb samples with different doping con-
centrations is shown. The p-doped samples exhibit a reverse of the sign of the Hall coefficient upon
increase of temperature when intrinsic electrons contribute to the conductivity. The zero in RH occurs
for n = pμ2

h/μ
2
e = ni/|β|. For high temperatures, the Hall coefficient for n- and p-doped samples is

dominated by the electrons that have much higher mobility (Table 8.2).
The simultaneous conduction in a band and an impurity band (cmp. Sect. 8.6) has been separated

with a suitable model assuming two conduction channels for holes [1434] (Fig. 15.9).
In (15.8) an isotropicmasswas considered. For semiconductorswithmultiple valleys and anisotropic

extrema, in particular the conduction bands of Si and Ge (cf. Sect. 6.9.2), the Hall coefficient has been
derived in [1435, 1436]. With K = m l/m t being the mass anisotropy (cmp. Table 6.5), the Hall
coefficient (15.12) changes to,

RH = 1

q n

3 K (K + 2)

(2K + 1)2
. (15.18)

In the derivation of the (unipolar) Hall coefficient we had assumed that all carriers involved in the
transport have the same properties, in particular that they are subject to the same scattering time. This
assumption is generally not the case (cmp. Chap. J) and we need to operate with the ensemble average
of the discussed quantities. The ensemble average of an energy-dependent quantity ζ(E) over the

1Using the Hall effect, the net free charge carrier concentration is determined. We note that the concentration of fixed
charges in semiconductors can be investigated by depletion layer spectroscopy (Sect. 21.2.4).
2We note that for a mobility of 104 cm2/Vs, μ−1 is a field of B = 1T.
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Fig. 15.8 a Conductivity and b absolute value of the Hall coefficient versus inverse temperature for four p-doped (A–D)
and two n-doped (E, F) InSb samples. The doping levels are given in (a). Adapted from [1433]

Fig. 15.9 Carrier densities
in valence band (circles)
and impurity band
(triangles) from evaluating
the Hall effect on GaAs
doped with lithium (and
annealed) taking into
account two conduction
channels. Adapted
from [1434]
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(electron) distribution function f (E) is denoted as 〈ζ 〉 and is given as3

〈ζ 〉 =
∫

ζ(e) f (E) dE∫
f (E) dE

. (15.19)

In particular, the average 〈τ 〉2 is now different from 〈τ 2〉. Considering the equation 〈j〉 = 〈σ 〉E for the
ensemble-averaged current density we find (for one type of carrier, cf. (15.12))

3For this consideration it is assumed that the energy dependence is the decisive one. Generally, averaging may have to
be performed over other degrees of freedom as well, such as the spin or, in the case of anisotropic bands, the orbital
direction.
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RH = 1

q n
rH , (15.20)

with the so-called Hall factor rH given by

rH = γ

α2 + ω2
c γ 2

,

α =
〈

τ

1 + ω2
c τ 2

〉
, γ =

〈
τ 2

1 + ω2
c τ 2

〉
. (15.21)

The Hall factor depends on the scattering mechanisms and is of the order of 1. For large magnetic
fields the Hall factor approaches 1. For small magnetic fields we have

RH = 1

q n

〈τ 2〉
〈τ 〉2 . (15.22)

The mobility calculated from (cf. (15.9d)) σ0RH is called the Hall mobility μH and is related to the
mobility via

μH = rH μ . (15.23)

It is assumed so far that the free carrier density and mobility are homogeneous within the volume
of current transport. Multi-layer models can be fitted to experimental Hall data in order to account
for different conduction channels in different layered parts of the sample [1437]. E.g., in a two-layer
model, contributions from bulk and surface/interface conduction can be separated [1438–1440].

The magnetic field dependence of σ can be used in a general case to separate contributions of
carriers with different density and mobility (including its sign) without assumptions and obtain the
mobility spectrum s(μ) (MSA, mobility spectral analysis),

σxx =
∞∫

−∞
s(μ)

1

1 + μ2B2
dμ (15.24a)

σxy =
∞∫

−∞
s(μ)

μB

1 + μ2B2
dμ , (15.24b)

as a generalization of (15.13), (15.9b) and (15.9c) [1441–1443]. Examples are the separation of elec-
tron conductivity in (GaAs-) �- and (InAs-) X-Minima in a GaAs/(Al,Ga)As/InAs double quantum
well structures [1441] (Fig. 15.10a), substrate and 2DEG electron conductivity in (Al,Ga)N/GaN het-
erostructures [1444], and electrons and holes in an InAs/GaSb quantum well [1442] (Fig. 15.10b).

In the case of hopping conduction (Chap. 8.8), the theory of Hall effect is more involved [1445,
1446]. If carriers are transported by hopping, generally, they may not be free to move as expected by
(15.8) in response to the applied magnetic field and the Lorentz force. A Hall effect occurs only at
the junction of three (or more) hopping sites [1445]. The sign of the experimentally determined Hall
coefficient is often opposite to the one expected from the carrier type according to (15.12), e.g., as
studied in a-Si [1447, 1448]. The sign anomaly depends on intricacies such as the local site geometry
and interference processes taking place among bonding and antibonding orbitals of various numbers
as summarized in [1449].
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Fig. 15.10 a Mobility spectrum of GaAs/(Al,Ga)As/InAs double quantum well structure. Adapted from [1441]. b
Mobility spectrum of InAs/GaSb quantum well structure. Adapted from [1442]

15.2.2 Free-Carrier Absorption

The absorption of free carriers was treated in Sect. 9.9.1 without the presence of a static magnetic field.
Solving (15.8) for a static magnetic field B = μ0 H with H = H (hx , hy, hz) and a harmonic electric
field E ∝ exp(−iωt) yields for the dielectric tensor (cf. (9.72))

ε = i

ε0 ω
σ , (15.25)

and by comparing to j = σ E = q n v,

ε(ω) = −ω∗2
p

⎡
⎣(ω2 + iω γ ) 1 − iω2

c

⎛
⎝ 0 −hz hy

hz 0 −hx

−hy hx 0

⎞
⎠

⎤
⎦

−1

, (15.26)

where 1 denotes the (3 by 3) unity matrix and γ = 1/τ = q/(m∗μ) is the damping parameter with μ

representing the optical carrier mobility (in the non-isotropic case a tensor γ needs to be used). The
(unscreened) plasma frequency is given by (cmp. (9.77))

ω∗
p =

√
n

e2

ε0 m∗ . (15.27)

The free-carrier cyclotron frequency is

ωc = e
μ0 H

m∗ . (15.28)

If the effective mass is treated as a tensor, 1/m∗ is replaced by m∗−1 in (15.27) and (15.28). For zero
magnetic field the classical Drude theory for one carrier species is recovered (cf. (9.74a))

ε(ω) = − ω∗2
p

ω (ω + iγ )
. (15.29)
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With the magnetic field perpendicular to the sample surface, i.e. B = μ0 (0, 0, H) the magneto-optic
dielectric tensor simplifies to (cf. (15.9d))

ε(ω) = −ω∗2
p

ω2

⎛
⎝ ε̃xx iε̃xy 0

−iε̃xy ε̃xx 0
0 0 ε̃zz

⎞
⎠ (15.30a)

ε̃xx = 1 + iγ /ω

(1 + iγ /ω)2 − (ωc/ω)2
(15.30b)

ε̃zz = 1

(1 + iγ /ω)
(15.30c)

ε̃xy = ωc/ω

(1 + iγ /ω)2 − (ωc/ω)2
. (15.30d)

The in-plane component εxx provides information about ω∗
p and γ , i.e. two of the three parameters n,μ

andm∗ are known. Additionally, the antisymmetric tensor component εxy is linear in the cyclotron fre-
quency and providesq/m∗. This subtle but finite birefringence depends on the strength (and orientation)
of the magnetic field and can be experimentally determined in the infrared using magneto-ellipsometry
[1450, 1451]. Such ‘optical Hall effect’ experiment allows the determination of the carrier density n,
the mobility μ, the carrier mass4 m∗ and the sign of the carrier charge sgn(q) with optical means. The
electrical Hall effect (Sect. 15.2.1) can reveal n, μ and sgn(q) but cannot reveal the carrier mass.

15.2.3 Energy Levels in Bulk Crystals

In a 3D electron gas (the magnetic field is along z, i.e.B = B (0, 0, 1)) the motion in the (x, y) plane is
described by Landau levels. Quantum mechanically they correspond to levels of a harmonic oscillator.
The magnetic field has no impact on the motion of electrons along z, such that in this direction a free
dispersion relation ∝ k2z is present. The energy levels are given as

Enkz =
(
n + 1

2

)
�ωc + �

2

2m
k2z . (15.31)

Thus, the states are on concentric cylinders in k-space (Fig. 15.11a). The populated states of the 3D
electron gas (at 0K) lie within the Fermi vector of length kF. For the 3D system the density of states
at the Fermi energy is a square root function of the Fermi energy (6.71). In the presence of a magnetic
field the density of states diverges every time that a new cylinder (with a one-dimensional density
of states, (6.79)) touches the Fermi surface at EF. In real systems, the divergence will be smoothed,
however, a pronounced peak or the periodic nature of the density of states is often preserved.

The period is given by the number nm of cyclotron orbits (Landau levels) within the Fermi surface.

(
nm + 1

2

)
�ωc = EF . (15.32)

If the number of carriers is constant, the density of states at the Fermi energy at varying magnetic field
varies periodically with 1/B. From the conditions (nm + 1

2 )�eB1/m = EF and (nm +1+ 1
2 )�eB2/m =

EF with 1/B2 = 1/B1 + 1/�B we find,

4We note that mobility and effective mass defined and measured in this way may be referred to as ‘optical’. Other
definitions and approaches to the mobility or effective mass may give different results.
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Fig. 15.11 3D electron gas in an external magnetic field. a Allowed states in k-space for magnetic field along the z
direction. b Density of states (DOS) ρ versus energy (in units of �ωc). Dashed line is three-dimensional DOS without
magnetic field. Based on [1123]

1

�B
= e �

m∗ EF
. (15.33)

This periodicity is used to determine experimentally, e.g., the properties of the Fermi surface in metals
using the Shubnikov-de Haas oscillations (of the magnetoresistance) or the de Haas-van Alphén effect
(oscillation of the magnetic susceptibility).

Equation (15.31) needs to be extended to account for the splitting (15.7) of the Landau level due to
the electron spin. According to [1452], the electron Landau level energy can be written as

En =
(
n + 1

2

)
� e B

m∗(E)
± g∗

e (E) μB B , (15.34)

with energy dependent effective mass and g-factor

1

m∗(E)
= 1

m∗(0)
Eg (Eg + �0)

3Eg + 2�0

(
2

E + Eg
+ 1

E + Eg + �0

)
(15.35a)

g∗
e (E) = g∗

e (0)
Eg(Eg + �0)

�0

(
1

E + Eg
− 1

E + Eg + �0

)
(15.35b)

The band edge value m∗(0) of the effective mass is given by (6.43) and that of the g-factor by

g∗
e (0) = 2

[
1 − 2�0

3 Eg (Eg + �0)
EP

]
. (15.36)

For large spin-orbit splitting, the value of the g-factor deviates strongly from 2 and becomes negative.

15.2.4 Magnetic Field Effect on Impurities

The Zeeman effect is the magnetic field dependence (and the lifting of degeneracies) of spectral
lines. For semiconductor physics this is a tool to investigate properties of defect related states with
sufficiently sharp spectral features. As example we refer to the investigation of the Si:P donor system
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(cmp. Fig. 9.33) and its linear and quadratic Zeeman effect [1453] as visualized in Fig. 15.12. The
difference in transition energies for lines 4 and 1 depends linearly on the magnetic field and is equal to
the electron spin splitting. The quadratic Zeeman effect is also termed ‘diamagnetic shift’ and allows
a determination of the wavefunction size. In the present case, the electron Bohr radius at the neutral
phosphorus donor in Si was found to be aD = 1.33(5)nm (cmp. (7.22)) [1453].

15.2.5 Magnetic Field Effect on Excitons

The effect of an magnetic field on excitons is similar to that on the wave function at an impurity, except
that the electron and hole are effected simultaneously. The effect is two-fold: The Zeeman-like effect
on the spin states leads to a splitting of the exciton lines which become circularly polarized; for ‘weak’
fields the splitting is linear with the field. Additionally, themagnetic field leads to a reduction of exciton
size leading to a quadratic shift of the line center to larger energies, the so-called diamagnetic shift.
Calculations for various confinement geometries have been given in [1454]. The change of exciton
size leads also to modification of localization effects in disordered quantum wells [1455]. As example
the magnetic field dependence of quasi two-dimensional excitons in a WS2 monolayer is shown in
Fig. 15.13 (cf. Sect. 13.2.4).

15.2.6 Energy Levels in a 2DEG

In a 2D electron gas (2DEG), e.g., in a quantum well or a potential well at a modulation-doped
heterointerface, a free motion in z is not possible and kz is quantized. The energy levels (for each 2D
subband) are only given by the cyclotron energy (Fig. 15.14a). The density of states is a sequence of
δ-like peaks (Fig. 15.14b). Each peak contributes (degeneracy ĝ of a Landau level) a total number of

ĝ = e B

h
(15.37)

(a) (b)

Fig. 15.12 a Schematic level scheme and transitions (and their polarization) of donor bound excitons at Si:P. b Experi-
mental magnetic field dependent shift of photoluminescence transition energies (from about E = 1.150eV at B = 0T)
(symbols) together with fits for heavy (dashed lines) and light (solid lines) hole transitions. Adapted from [1453]
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Fig. 15.13 Magnetic field effect on excitons in WS2 monolayer. a Normalized transmission spectra. b Energy position
of Eσ+ and Eσ− of (circularly polarized) spectral lines of the 1–5s exciton lines. c Calculated energy (Eσ+ + Eσ− )/2,
showing the diamagnetic shift. Solid lines are model calculation with reduced exciton mass m∗

r = 0.175 (and further
parameters), d Zeeman splitting Eσ+ −Eσ− of the 1–3s states together with linear fits (dashed line), g-factors are around
4, as labelled. Adapted from [1313], reprinted under Creative Commons Attribute (CC BY 4.0) license

Fig. 15.14 2D electron gas
in an external magnetic
field. a Allowed states in
k-space. b Density of states
(DOS) ρ versus energy.
Dashed line is
two-dimensional DOS
without magnetic field.
Thick vertical lines: δ-like
DOS without broadening,
curves: broadened DOS.
Based on [1123]
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states (per unit area without spin degeneracy and without the degeneracy of the band extremum). In
reality, disorder effects lead to an inhomogeneous broadening of these peaks. The states in the tails of
the peaks correspond to states that are localized in real space.

Also, in a 2D system several physical properties exhibit an oscillatory behavior as a function of
Fermi level, i.e. with varying electron number, and as a function of the magnetic field at fixed Fermi
energy, i.e. at fixed electron number (Fig. 15.15).

15.2.7 Shubnikov-De Haas Oscillations

From the 2D density of states (per unit area including spin degeneracy) D2D(E) = m∗/π�
2 the sheet

density of electrons ns can be expressed as a function of the Fermi level (at T = 0K without spin
degeneracy)

ns = m∗

2π �2
EF . (15.38)

Using (15.33) we thus find (without spin degeneracy, without valley degeneracy), that the period of
1/B is ∝ ns:
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Fig. 15.15 Oscillatory
(theory, T = 6K) behavior
of a 2DEG
(GaAs/(Al,Ga)As) in a
magnetic field: a Fermi
level, b magnetization, c
specific heat, d
thermoelectric power. A
Gaussian broadening of
0.5meV was assumed.
Adapted from [1123, 1456]
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The carrier density of a 2DEG can therefore be determined from the oscillations of magnetoresistance,
and is proportional to the density of states at the Fermi level (Shubnikov-de Haas effect). A correspond-
ing measurement with varying field and fixed electron density is shown in Fig. 15.16. The periodicity
with 1/B is obvious. Since only the component of the magnetic field perpendicular to the layer affects
the (x, y) motion of the carriers, no effect is observed for the magnetic field parallel to the layer.

In another experiment the carrier density was varied at constant field (Fig. 15.17). The electron
density in an inversion layer in p-type silicon is (linearly) varied with the gate voltage of a MOS
(metal-oxide-semiconductor) structure (inset in Fig. 15.17, for MOS diodes cf. Sect. 24.5). In this
experiment, the Fermi level was shifted through the Landau levels. The equidistant peaks show that
indeed each Landau level contributes the same number of states.
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Fig. 15.16 Shubnikov-de
Haas oscillations at a
modulation-doped
(Al,Ga)As/GaAs
heterostructure with a
2DEG,
n = 1.7 × 1017 cm−2 and
μ = 11 400cm2/Vs. Data
from [1457]

Fig. 15.17 Shubnikov-de
Haas oscillations of a
2DEG at the (100) surface
of p-type silicon
(100�cm) at a magnetic
field of B = 3.3T and
T = 1.34K. The inset
shows schematically the
contact geometry. Data
from [1458]
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15.2.8 Quantum Hall Effect

In highmagnetic fields, at low temperatures and for high-mobility, 2D electron gases exhibit a deviation
from the classical behavior. We recall that the classical Hall effect (i.e. considering the Lorentz force,
classical Drude theory), the generation of a field Ey perpendicular to a current flow jx (cf. Sect. 15.2.1),
was described with the conductivity tensor σ (here, for the (x, y)-plane only)

σ = σ0

1 + ω2
c τ 2

(
1 ωc τ

−ωc τ 1

)
(15.40a)

σxx = σ0
1

1 + ω2
c τ 2

→ 0 (15.40b)

σxy = σ0
ωc τ

1 + ω2
c τ 2

→ n e

B
, (15.40c)

where σ0 is the zero-field conductivity σ0 = ne2τ/m∗ (8.5). The arrows denote the limit forωcτ → ∞,
i.e. large fields. The resistivity tensor ρ = σ−1 is given by

ρ =
(

ρxx ρxy

−ρxy ρxx

)
(15.41a)

ρxx = σxx

σ 2
xx + σ 2

xy

→ 0 (15.41b)
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Fig. 15.18 Hall resistivity ρxy and longitudinal resistivity ρxx for a modulation-doped GaAs/(Al,Ga)As heterostructure
(n = 4 × 1011 cm−2, μ = 8.6 × 104 cm2/Vs) at 50mK as a function of magnetic field (10kG=1T). The numbers refer
to the quantum number and spin polarization of the Landau level involved. The inset shows schematically the Hall bar
geometry, VL (VH) denotes the longitudinal (Hall) voltage drop. Reprinted with permission from [1459], ©1982 APS

ρxy = −σxy

σ 2
xx + σ 2

xy

→ − B

n e
. (15.41c)

15.2.8.1 Integer QHE

Experiments yield strong deviations from the linear behavior of the transverse resistivity ρxy ∝ B
(15.41c) for large magnetic fields at low temperatures for samples with high carrier mobility, i.e.
ωcτ � 1 (Fig. 15.18). In Fig. 15.19a, b, Hall bars are shown for 2DEGs in silicon metal-oxide-
semiconductor field-effect transistor (Si-MOSFET) electron inversion layers and at GaAs/(Al,Ga)As
heterostructures, respectively.

The Hall resistivity exhibits extended Hall plateaus with resistivity values that are given by

1

ρxy
= ν

e2

h
, (15.42)
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(a) (b)

Fig. 15.19 a Silicon MOS (metal-oxide-semiconductor) structure of K.v.Klitzing’s et al. original experiments. b
GaAs/(Al,Ga)As heterostructure sample grown with molecular beam epitaxy for QHE measurements, chip carrier and
bond wires. Reprinted with permission from [1460]

with ν ∈ N, i.e. integer fractions of the quantized resistance ρ0 = h/e2 = 25812.807…�, which is
also called the von-Klitzing constant. In Fig. 15.18, a spin splitting is seen for the n = 1 Landau level
(and a small one for the n = 2). We note that the topmost Hall plateau is due to the completely filled
n = 0 Landau level; the resistance is ρ0/2 due to the spin degeneracy of 2.

The integer quantum Hall effect, first reported in [1461, 1462], and the value for ρ0 are found for a
wide variety of samples and conditions regarding sample temperature, electron density or mobility of
the 2DEG and the materials of the heterostructure. Besides the Hall effect in Si-based structures and
recordmobility (Al,Ga)As/GaAsheterostructures (cf. Fig. 12.37), also (Mg,Zn)O/ZnOheterostructures
exhibit the effect [1463, 1464] in the same fashion.

Within the plateau, the resistivity is well defined within 10−7 or better up to the 10−9 regime. A
precise determination allows for a new normal for the unit Ohm [1389, 1465], being two orders of
magnitude more precise than the realization in the SI system, and an independent value for the fine-
structure constant α = (e2/h)/(2 c ε0). At the same time, the longitudinal resistivity, starting from the
classical value for small magnetic fields, exhibits oscillations and eventually it is close to zero for the
plateaus in ρxy . For ρxx values of 10−10 �/� have been measured, which corresponds to 10−16 �/cm
for bulk material, a value three orders of magnitude smaller than for any non-superconductor.

The interpretation of the quantum Hall effect(s) is discussed in [1466] among many other treatises.
The simplest explanation is that the conductivity is zero when a Landau level is completely filled and
the next is completely empty, i.e. the Fermi level lies between them. The temperature is small, i.e.
kT � �ωc, such that no scattering between Landau levels can occur. Thus no current, similar to a
completely filled valence band, can flow. The sheet carrier density ns is given by counting the i filled
Landau levels (degeneracy according to (15.37)) as

ns = i
e B

h
. (15.43)

In the transverse direction energy dissipation takes place and the Hall resistivity ρxy = B/(nse) takes
the (scattering-free) values given in (15.42).

However, this argument is too simple as it will not explain the extension of the plateaus. As soon
as the system has one electron more or less, the Fermi energy will (for a system with δ-like density of
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states) be located in the upper or lower Landau level, respectively. Then, the longitudinal conductivity
should no longer be zero and the Hall resistivity deviates from the integer fraction of ρ0. In general, a
single particle picture is insufficient to model the IQHE.

The accepted model for the explanation of the QHE, supported now with plenty of experimental
evidence, is the edge state model where quantized one-dimensional conductivity of edge channels, i.e.
the presence of conductive channels along the sample boundaries, is evoked [1475].

The most fundamental arguments for the origin of the IQHE come from gauge invariance and the
presence of a macroscopic quantum state of electrons and magnetic flux quanta [1468]. This model
holds as long as there are any extended states at all in the inhomogeneously broadened density of
states (Landau levels) (Fig. 15.14). These edge states arise from the fact that the quantum Hall state
has another topology than the (topologically trivial) surrounding [463, 1469, 1470]. Each plateau
corresponds to a distinct topological phase characterized by a Chern number (cmp. (6.29)) related to
the ‘Hofstadter butterfly’ [1471, 1472] (cf. Sect.G.3.1).

It is remarkable that the classical Hall effect is based on homogeneous conduction for a proper
evaluation (cf. Fig. 15.7e), while the quantum Hall effect involves electrical transport only along the
edges. A detailed microscopic picture of the edge channels is also of interest. Due to depletion at the
boundary of the sample, the density of the 2DEG varies at the edge of the sample and ‘incompressible’
stripes develop for which ∂μ/∂ns → ∞. When the filling factor is far from an integer, the Hall voltage
is found to vary linearly across the conductive channel and the current is thus homogeneous over the
sample (Fig. 15.20d). In the Hall plateau, the Hall voltage is flat in the center of the channel and exhibits
drops at the edges, indicating that the current flows along the boundary of the sample (edge current)
[1473] in agreement with predictions from [1476]. Although the current pattern changes with varying
magnetic field, the Hall resistivity remains at its quantized value.

In graphene, the IQHE plateaus take on the resistance values [1249, 1477],

1

ρxy
= ±4

(
n + 1

2

)
e2

h
, (15.44)

with n ∈ N0. This new ‘half integer’ quantization condition can be translated into the quantized filling
factor ν = ±4 (n + 1/2) in the usual QHE formalism of (15.42). The condition (15.44) is due to
the different nature of Landau levels for a linear dispersion (Dirac spectrum) [1478]. The +/−-sign
denotes the QHE for electrons and holes, respectively. The factor g = 4 stems from the degeneracy of
the Landau levels, accounting for spin degeneracy (when the Landau level separation is much larger
than the Zeeman spin splitting) and for the sublattice degeneracy. The two n = 0 Hall plateaus have
even been observed (for B = 45T) at room temperature [1479].

15.2.8.2 Fractional QHE

For very low temperatures and in the extreme quantum limit, novel effects are observed when the
kinetic energy of the electrons is smaller than their Coulomb interaction. New quantum Hall plateaus
are observed at various fractional filling factors ν = p/q. We note that the effects of the fractional
quantum Hall effect (FQHE) in Fig. 15.21 mostly arise for magnetic fields beyond the n = 1 IQHE
plateau. The filling factor ν = n/(eB/h) is now interpreted as the number of electrons per magnetic
flux quantum φ0 = h/e.

The effects of the FQHE cannot be explained by single-electron physics. The plateaus at fractional
fillings ν occur when the Fermi energy lies within a highly degenerate Landau (or spin) level and imply
the presence of energy gaps due to many-particle interaction and the result of correlated 2D electron
motion in the magnetic field.
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Fig. 15.20 Normalized
Hall potential profile for
different magnetic fields
around filling factor ν = 2.
The overall voltage drop
corresponds to 20mV. The
insets show the sample
geometry and transport
data. The 2DEG is from a
GaAs/Al0.33Ga0.67As
modulation-doped
heterostructure,
ns = 4.3 × 1011 cm−2,
μ = 5 × 105 cm2/Vs,
T = 1.4K. Adapted
from [1473]

A decisive role is played by themagnetic flux quanta. The presence of themagnetic field requires the
many-electron wavefunction to assume as many zeros per unit area as there are flux quanta penetrating
it. The decay of the wavefunction has a length scale of the magnetic length l0 = √

�/(eB). Since the
magnetic field implies a 2π phase shift around the zero, such an object is also termed a vortex, being
the embodiment of the magnetic flux quanta in the electron system. Such a vortex represents a charge
deficit (compared to a homogeneous charge distribution) and thus electrons and vortices attract each
other. If a vortex and an electron are placed onto each other, considerable Coulomb energy is gained.
At ν = 1/3, there are three times more vortices than there are electrons, each vortex representing
a charge deficit of 1/3 e. Such a system is described with many-particle wavefunctions, such as the
Laughlin theory for ν = 1/q [1468] and novel quasi-particles called composite fermions [1481, 1482]
for other fractional fillings. For further reading we refer readers to [1483] and references therein.
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Fig. 15.21 Hall resistance Rxy and magnetoresistance Rxx of a two-dimensional electron system (GaAs/(Al,Ga)As
heterostructure) of density n = 2.33× 1011 cm−2 at a temperature of 85mK, versus magnetic field B. Numbers identify
the filling factor ν, which indicates the degree to which the sequence of Landau levels is filled with electrons. Plateaus
are due to the integral (ν = i) quantum Hall effect (IQHE) and fractional (ν = p/q) quantum Hall effect (FQHE).
Adapted from [1480], reprinted with permission, ©1990 AAAS

(a)

(a)

(b)

(b)

Fig. 15.22 Weiss oscillations: a magnetoresistance and b Hall resistance of an antidot lattice (inset in (a)) with pattern
(solid lines) and without pattern (dashed lines) at T = 1.5K. b Schematic of the different orbits: (‘p’: pinned, ‘d’:
drifting, ‘s’: scattered). Reprinted with permission from [1484], ©1991 APS
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15.2.8.3 Weiss Oscillations

In Fig. 15.22, measurements are shown for a Hall bar in which an array of antidots (in which no
conduction is possible) has been introduced by dry etc.hing. The antidot size is 50nm (plus depletion
layer) and the period is 300nm. These obstructions for the cyclotron motion lead to a modification of
the magnetotransport properties.

Before etc.hing of the antidot array the 2DEG has a mean free path length of 5–10µm at 4K for
the mobility of ≈ 106 cm2/Vs. At low magnetic fields there is a strong deviation of the Hall resistivity
from the straight line to which the QHE levels converge. Similarly, ρxx shows a strong effect as well.

These effects are related to commensurability effects between the antidot lattice and the cyclotron
resonance path. When the cyclotron orbit is equal to the lattice period, electrons can fulfill a circular
motion around one antidot (pinned orbit, Fig. 15.22b) that leads to a reduction of conductivity. At high
fields, drifting orbits for which the cyclotron orbit is much smaller than the lattice period occur. At
small fields, scattering orbits also contribute for which the cyclotron radius is large and the electron
has antidots from time to time. Resonances in the Hall resistivity have been found due to pinned orbits
enclosing 1, 2, 4, 9 or 21 antidots.
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