
Chapter 14
Nanostructures

The principles of physics, as far as I can see, do not speak against the possibility of
maneuvering things atom by atom.

R.P. Feynman, 1959 [1338]

Abstract One-dimensional nanostructures (quantum wires) and zero-dimensional ones (quantum
dots) are discussed with regard to their various fabrication methods and the tunable physical prop-
erties in such systems. Main effects covered are the modified density of states, confined energy levels,
(envelope) wave-function symmetry and the resulting novel electrical and optical properties.

14.1 Introduction

When the structural size of functional elements enters the size rangeof the deBrogliematterwavelength,
the electronic and optical properties are dominated by quantum-mechanical effects. The most drastic
impact can be seen from the density of states (Fig. 14.1). The quantization in a potential is ruled by the
Schrödinger equation with appropriate boundary conditions. These are simplest if an infinite potential
is assumed. For finite potentials, the wavefunction leaks out into the barrier. Besides making the
calculation more complicated (and more realistic), this allows electronic coupling of nanostructures.
Via the Coulomb interaction, a coupling is even given if there is no wavefunction overlap. In the
following, we will discuss some of the fabrication techniques and properties of quantum wires (QWR)
andquantumdots (QD). In particular for the latter, several textbooks can also be consulted [1339, 1340].

14.2 QuantumWires

14.2.1 V-Groove Quantum Wires

Quantum wires with high optical quality, i.e. high recombination efficiency and well-defined spectra,
can be obtained by employing epitaxial growth on corrugated substrates. The technique is shown
schematically in Fig. 14.2. A V-groove is etched, using, e.g., an anisotropic wet chemical etch, into a
GaAs substrate. The groove direction is along

[
11̄0

]
. Even when the etched pattern is not very sharp

on the bottom, subsequent growth of AlGaAs sharpens the apex to a self-limited radius ρl of the order
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Fig. 14.1 Schematic geometry and density of states for 3D, 2D, 1D and 0D electronic systems

Fig. 14.2 Schematic cross
section of a GaAs/AlGaAs
heterostructure grown on a
channeled substrate,
illustrating the concept of
self-ordered quantum-wire
fabrication. Adapted from
[1341], reprinted with
permission, ©1992,
Elsevier Ltd

of 10nm. The side facets of the groove are {111}A. Subsequent deposition of GaAs leads to a larger
upper radius ρu > ρl of the heterostructure. The GaAs QWR formed in the bottom of the groove is
thus crescent-shaped as shown in Fig. 14.3a. A thin GaAs layer also forms on the side facets (sidewall
quantum well) and on the top of the ridges. Subsequent growth of AlGaAs leads to a resharpening
of the V-groove to the initial, self-limited value ρl. The complete resharpening after a sufficiently
thick AlGaAs layer allows vertical stacking of crescent-shaped QWRs of virtually identical size and
shape, as shown in Fig. 14.3b. In this sense, the self-limiting reduction of the radius of curvature and its
recovery during barrier-layer growth leads to self-ordering of QWR arrays whose structural parameters
are determined solely by growth parameters. The lateral pitch of such wires can be down to 240nm.

To directly visualize the lateral modulation of the band gap, a lateral cathodoluminescence (CL)
linescan perpendicular across the wire is displayed in Fig. 14.4. In Fig. 14.4a, the secondary electron
(SE) image of the sample from Fig. 14.3a is shown in plan view. The top ridge is visible in the upper
and lower parts of the figure, while in the middle the sidewalls with the QWR in the center are apparent.
In Fig. 14.4b, the CL spectrum along a linescan perpendicular to the wire (as indicated by the white
line in Fig. 14.4a) is displayed. The x-axis is now the emission wavelength, while the y-axis is the
lateral position along the linescan. The CL intensity is given on a logarithmic scale to display the full
dynamic range. The top QW shows almost no variation in band gap energy (λ = 725nm); only directly
at the edge close to the sidewall does a second peak at lower energy (λ = 745nm) appear, indicating
a thicker region there. The sidewall QW exhibits a recombination wavelength of 700nm at the edge
to the top QW, which gradually increases to about 730nm at the center of the V-groove. This directly
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(a) (b)

Fig. 14.3 aTransmission electronmicroscopy cross-sectional image of a crescent-shaped singleGaAs/AlGaAs quantum
wire. From [1342], reprinted with permission, ©1994 IOP. (b) TEM cross-sectional image of a vertical stack of identical
GaAs/AlGaAs crescent-shaped QWRs. From [1341], reprinted with permission, ©1992, Elsevier Ltd

Fig. 14.4 a Plan-view SE image of single QWR, showing top and sidewall with QWR in the center. The white dashed
line indicates the position of the linescan on which the CL spectra linescan b has been taken at T = 5K. The CL intensity
is given on a logarithmic false color scale to display the full dynamic range as a function of wavelength and position.
Adapted from [1342], reprinted with permission, ©1994 IOP

visualizes a linear tapering of the sidewall QW from about 2.1nm thickness at the edge to 3nm in the
center. The QWR luminescence itself appears at about 800nm.

After fast capture from the barrier into the QWs and, to a much smaller extent corresponding to
its smaller volume, into the QWR, excess carriers will diffuse into the QWR via the adjacent sidewall
QW and the vertical QW. The tapering of the sidewall QW induces an additional drift current.

14.2.2 Cleaved-Edge Overgrowth Quantum Wires

Another method to create quantum wires of high structural perfection is cleaved-edge overgrowth
(CEO) [1343], shown schematically in Fig. 14.5. First, a layered structure is grown (single or multiple
quantum wells or superlattice). Then, a {110} facet is fabricated by cleaving (in vacuum) and epitaxy
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Fig. 14.5 Principle of CEO quantum wires and 2-fold CEO quantum dots. Part (a) depicts a layered structure (quantum
wells or superlattice, blue), (b) describes the growth on the cleaved facet used for fabrication of quantum wires. In (c) a
second cleave and growth on top of the plane allows the fabrication of quantum dots. From [1344]. (d) Cross-sectional
TEM image of CEOGaAs/AlGaAs quantumwires. Two quantumwells (QW) and the QWR at their junction are labeled.
The first epitaxy was from left to right. The second epitaxy step was on top of the cleavage plane (dashed line) in the
upward direction. Adapted from [1345], reprinted with permission, ©1997 APS

is continued on the cleaved facet. At the junctures of the {110} layer and the original quantum wells
QWRs form. Due to their cross-sectional form they are also called T-shaped QWRs. A second cleave
and another growth step allow fabrication of CEO quantum dots [1344, 1345] (Fig. 14.5c).

14.2.3 Nanowhiskers

Whiskers are primarily known as thin metal spikes and have been investigated in detail [1346]. Semi-
conductor whiskers can be considered as (fairly short) quantum wires. They have been reported for
a number of materials, such as Si, GaAs, InP and ZnO [1347]. A field of ZnO whiskers is shown in
Fig. 14.6. If heterostructures are incorporated along the whisker axis [1348], quantum dots or tunneling
barriers can be created (Fig. 14.7a). The growth mode relies often a VLS (vapor-liquid-solid) mecha-
nism in which the wire materials are first incorporated into a liquid catalyzer (most often gold) drop
at the tip and then used to build up the nanocrystal. In [1349], the layer-by-layer growth of a GaAs
nanowire via this mechanism has been observed in-situ by TEM (Fig. 14.7b) and is also available as
an impressive video. Another nanowire growth mechanism is the VSS (vapor-solid-solid) mechanism
that works without liquid drop on top of the wire.
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(a) (b)

Fig. 14.6 a Array of ZnO nanowhiskers on sapphire, fabricated using thermal evaporation. Adapted from [1353]. b
Single, free-standing ZnO nanowire fabricated using PLD. Adapted from [1354]

(a)

Au

InAs

InAs

InAs

InP

InP

(b)

Fig. 14.7 a TEM image of a part of an InAs whisker 40nm in diameter that contains InP barriers. The zooms show
sharp interfaces. On top of the whisker is a gold droplet from the so-called vapor–liquid–solid growth mechanism. The
whisker axis is [001], the viewing direction is [110]. Adapted from [1348], reprinted with permission, ©2002 AIP. b
Subsequent growth stages of the tip of a GaAs nanowire with Au cap; times at which (in-situ) TEM image has been taken
are labelled. The arrows indicate the position of the growth front. Adapted from [1349], reprinted with permission,
©2018 APS

Such nanocrystals can also act as a nanolaser [1350, 1351]. In ZnO nanowhiskers the conversion
of mechanical energy into electrical energy has been demonstrated [1352] based on the piezoelectric
effect (Sect. 16.4).

The critical thickness hc in nanowire heterostructure is strongly modified from the 2D situation
(Sect. 5.4.1). Based on the strain distribution of a misfitted slab in a cylindrical wire [1355] the depen-
dence of critical thickness on the nanowhisker radius r was developed [1356, 1357]. For given misfit
ε there is a critical radius rc for which hc is infinite for r < rc (Fig. 14.8).
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Fig. 14.8 Critical radius rc
above which an infinitely
thick layer with misfit ε
grows coherently on a
cylindrical nanowire
(relaxation by 60◦
dislocations, b = 0.4nm,
ν = 1/3). Adapted
from [1357]

Fig. 14.9 a SEM image of
an ensemble of ZnO
nanobelts. b HRTEM
image of a single ZnO
nanobelt, viewing direction
is [00.1]. The inset shows
the diffraction pattern.
Adapted from [1358],
reprinted with permission,
©2004 AIP

Fig. 14.10 a Bright field
and b dark field TEM
image of a ZnO nanoring
formed by the ‘slinky’-like
growth of a nanobelt. c
SEM image of an open
ZnO nanospiral. The insets
in (a, c) show
schematically the surface
charge distribution.
Adapted from [1359],
©2006 IOP

14.2.4 Nanobelts

A number of belt-shaped nanostructures has been reported [1347]. These are wire-like, i.e. very long in
one dimension. The cross-section is rectangular with a high aspect ratio. In Fig. 14.9a ZnO nanobelts
are shown. The wire direction is [21̄.0]. The large surface is (00.1), the thickness of the belt extends
in [01.0]-direction. High resolution transmission microscopy (Fig. 14.9b) shows that these structures
are defect-free. The pyroelectric charges on the ZnO (0001) surfaces (Sect. 16.2) lead to the formation
of open (Fig. 14.10c) spirals. Closed spirals (Fig. 14.10a) occur if the short dimension is along [00.1]
and alternating charges become compensated in a ‘slinky’-like ring (Fig. 14.10b).
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Fig. 14.11 Electron
wavefunctions (|�|2 on
logarithmic grey scale) for
the first three confined
levels for the QWR of
Fig. 14.3a. From [1342]

n=1

n=2

n=3

Fig. 14.12 a
Three-dimensional view of
the electron and (heavy)
hole part of the excitonic
wavefunction in a 4nm ×
5nm T-shaped
In0.2Ga0.8As/GaAs QWR.
The orbitals correspond to
70% probability inside. b
Cross section through the
electron and hole orbitals
in their center along the
wire direction. Reprinted
with permission from
[1361], ©1998 APS

hhe

(a)

(b)
[110]
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[110]
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14.2.5 Quantization in Two-Dimensional Potential Wells

The motion of carriers along the quantum wire is free. In the cross-sectional plane the wavefunction is
confined in two dimensions. The simplest case is for constant cross section along the wire. However,
generally the cross section along the wire may change and therefore induce a potential variation along
the wire. Such potential variation will impact the carrier motion along the longitudinal direction. Also,
a twist of the wire along its axis is possible.

In Fig. 14.11, the electron wavefunctions in a V-groove GaAs/AlGaAs QWR are shown. Further
properties of V-groove QWRs have been reviewed in [1360]. In Fig. 14.12, the excitonic electron and
hole wavefunctions are shown for a (strained) T-shaped QWR.

In Fig. 14.13a the atomic structure of a very thin ZnO nanowhisker with a cross-section consisting
of seven hexagonal unit cells is shown. The theoretical one-dimensional band structure [1362] is shown
in Fig. 14.13b together with the charge density of the lowest conduction band state (LUMO) and the
highest valence band state (HOMO). The band gap is generally too small because of the LDA method
used.1 In [1362] also the properties of nanowires with various diameters are compared. The HOMO
at � lies only 80meV above the top of valence band of bulk ZnO, and its position changes little with

1The LDA in [1362] yields Eg = 0.63eV for the bulk ZnO band gap; its experimental value is 3.4eV.
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Fig. 14.13 a Atomic
arrangement of a 1nm
wide ZnO nanowire. b
Theoretical band structure
and charge density of the c
lowest conduction band
and d highest valence band
state. Adapted from
[1362], reprinted with
permission, ©2006 AIP

the wire diameter. It is mainly composed by surface oxygen 2p like dangling bonds (Fig. 14.13d).
The LUMO (Fig. 14.13c) is delocalized in the whole nanowire, indicating that it is a bulk state. The
delocalized distribution is also responsible for the large dispersion of the LUMO from � to A. The
energy of the LUMO increases substantially with decreasing diameter due to the radial confinement.

14.3 Carbon Nanotubes

14.3.1 Structure

A carbon nanotube (CNT) is a part of a graphene sheet (cf. Sect. 13.1) rolled up to form a cylinder.
CNTs were first described as multi-walled nanotubes by Iijima [1363] in 1991 (Fig. 14.14b) and in
their single-walled form (Fig. 14.14a) in 1993 [1364]. Reviews can be found in [1247, 1365].

The chirality and diameter of a nanotube are uniquely described by the chiral vector

Fig. 14.14 a TEM image of single-walled carbon nanotubes (SWNT). b TEM images of various multi-walled carbon
nanotubes (MWNT). Adapted from [1363], reprinted with permission, ©1991, SpringerNature
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Fig. 14.15 Schematic
atomic arrangement in
graphene; the C–C bond
length is dC−C = 0.142nm.
Several vectors for making
carbon nanotubes (cf.
Sect. 14.3) are shown

Fig. 14.16 Structure of
different types of carbon
nanotubes that have
similiar diameter of 0.8nm.
a Armchair (6, 6), b zigzag
(8, 0) and c chiral
symmetry. Adapted
from [1247]

ch = n1 a1 + n2 a2 ≡ (n1, n2) , (14.1)

wherea1 anda2 are the unit vectors of the graphene sheet. The chiral vector denotes two crystallographic
equivalent sites which are brought together along the circumference of the nanotube. The possible
vectors are visualized in Fig. 14.15 for −30◦ ≤ θ ≤ 0◦. The fiber diameter is given by

d = |ch|
π

= a

π

(
n21 + n1 n2 + n22

)
, (14.2)

with the graphene lattice constant a = √
3 dC−C = 0.246nm. Ab-initio calculations show that the

diameter becomes a function of the chiral angle below 0.8nm; deviations from (14.2) are below 2%
for tube diameters d > 0.5nm [1366]. The (n, 0) tubes (θ = 0) are termed ‘zig-zag’ and an example
is depicted in Fig. 14.16b. Nanotubes with θ = ±π/6, i.e. of the (n, n) (and (2n,−n)) type, are called
‘armchair’. All others are termed ‘chiral’.

The extension along the wire axis is large compared to the diameter. The tip of a nanotube is part of
a buckminster-fullerene type molecule (Fig. 14.17). When the nanotube if formed by rolling a single
sheet of graphene (SLG), a single-walled nanotube (SWNT) is formed. A FLG sheet creates a multi-
walled nanotube (MWNT). For small number of layers they are called double-walled, triple-walled
and so forth.
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Fig. 14.17 A chiral nanotube (chiral vector is (10, 5), θ = −19.11◦) with hemispherical caps at both ends based on an
icosahedral C140 fullerene. The tube diameter is 1.036nm. Adapted from [1367]

The mechanical strength of carbon nanotubes is very large. For SWNT Young’s moduli of 103 GPa
have been found experimentally [1368] in agreement with theoretical predictions [1369].

14.3.2 Band Structure

In carbon nanotubes there is some mixing of the π (2pz) and σ (2s and 2pz) carbon orbitals due to the
radial curvature. This mixing is, however, small and can be neglected near the Fermi level [1370]. The
band structure of a nanotube is mainly determined by zone-folding of the graphene band structure.
The vector along the (infinitely extended) wire kz is continuous. The vector k⊥ around the nanotube is
discrete with the periodic boundary condition

ch · g⊥ = 2π m , (14.3)

where m is an integer. The distance of allowed k⊥-values is (5.5)

�k⊥ = 2π

π d
= 2

d
. (14.4)

The character of the nanotube band structure depends on how the allowed k-values lie relative to the
graphene Brillouin zone and its band structure. This is visualized in Fig. 14.18. For the case of an
armchair tube (n, n), as shown in Fig. 14.18a, the K-point of the graphene band structure always lies
on an allowed k-point. Therefore, the nanotube is metallic, i.e. zero-gap, as seen in the bandstructure
in Fig. 14.18b. The Dirac point is between � and X. For a zig-zag nanotube, the k-space is shown in
Fig. 14.18c for a (6, 0) nanotube. The corresponding band structure for a (6, 0) nanotube is also metallic
(Fig. 14.18d) with the Dirac point at the � point.

In Fig. 14.19c the band structure of another metallic (12, 0) zig-zag nanotube is shown. However,
only for (3m, 0) the K-point is on an allowed state and thus the tube metallic. For the other cases, as
shown for the k-space of a (8, 0) nanotube in Fig. 14.19b, this is not the case. The corresponding band
structure (Fig. 14.19c for (13, 0)) has a gap and thus the nanotube is a semiconductor. Generally, the
condition for a nanotube to be metallic is with an integer m

n1 − n2 = 3m . (14.5)

There are two semiconducting ‘branches’ with ν = (n1 − n2)mod 3 = ±1. The tubes with ν = +1
have a small band gap, those with ν = −1 have a larger band gap.

The density of states is a series of one-dimensional DOS, proportional to
√
E (6.79). It is compared

in Fig. 14.20 for a metallic and a semiconducting nanotube. Within 1eV from the Fermi energy the
DOS can be expressed in an universal term [1373].
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Fig. 14.18 a Brillouin
zone of the graphene lattice
(bold line) and allowed
k-values for a (6, 6)
armchair nanotube. b Band
structure of a (6, 6) carbon
nanotube. Adapted from
[1371]. c Brillouin zone of
the graphene lattice (bold
line) and allowed k-values
for a (6, 0) zig-zag carbon
nanotube. In the lower part
the real space structure is
visualized. (d) Band
structure of graphene (left)
and a (6, 6) nanotube
(right). Adapted
from [1372]

Fig. 14.19 a, b Brillouin
zone of the graphene lattice
(bold line) and allowed
k-values for a (a) (6, 0) and
a (b) (8, 0) zig-zag
nanotube. c Band structures
of a (12,0) metallic and
(13, 0) semiconducting
armchair carbon nanotube.
Adapted from [1371]

14.3.3 Optical Properties

Optical transitions occur with high probability between the van-Hove singularities of the DOS. The
theoretical absorption spectrum of a (10, 0) nanotube is shown in Fig. 14.21.

In an ensemble of nanotubes various types and sizes occur. The transition energies of all possible
nanotubes sorted by diameter are assembled in the Kataura plot (Fig. 14.22a). Experimental data are
shwon in Fig. 14.22b. The two branches of semiconducting nanotubes ν = ±1 yield different transition
energies. The overall dependence of the transition energy follows a 1/d-law.
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Fig. 14.20 Density of
states for a (9, 0) metallic
and (10, 0) semiconducting
zig-zag carbon nanotube
within the tight-binding
approximation (13.2). The
energy scale is given in
units of the tight-binding
parameter T ≈ 3eV. The
dashed lines are the DOS
of graphene. Adapted
from [1367]

Fig. 14.21 Calculated
absorption spectra for a
(semiconducting) (10, 0)
carbon nanotube for
parallel (solid line) and
perpendicular (dotted line)
polarization. The thick
(thin) lines are calculated
with (without) the matrix
element included. Adapted
from [1374]

14.3.4 Other Anorganic Nanotubes

Structures similar to carbon nanotubes have been reported for BN [1378, 1379]. A boron nitride
nanotube is a cylindrically rolled part of a BN sheet. BN tubes are always semiconducting (Fig. 14.23)
and have a band gap beyond 5eV similar to hexagonal BN which is mostly independent on chirality
and diameter [1380]. Thus, while carbon nanotubes appear black since they absorb within 0–4eV,
BN is transparent (or white if scattering). For high energies larger than 10eV C and BN tubes are
quite similar since they are isoelectronic and the high-lying unoccupied states are less sensitive to the
difference in the nuclear charges than the states at and below the Fermi energy [1381].
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Fig. 14.22 a Theoretical transition energies of semiconducting (filled symbols) and metallic (open symbols) carbon
nanotubes as a function of tube diameter (Kataura plot). Energies are calculated from van-Hove singularities in the JDOS
within the third-order tight-binding approximation [1252]. b Experimental Kataura plot for the first two semiconducting
(S, closed symbols) and the first metallic (M, open symbols) transition.Dashed lines connect the (near-to) armchair tubes;
full lines connect tubes in a branch, ν = (n1 − n2)mod 3. Data from photoluminescence [1375] and resonant Raman
scattering [1376]. Adapted from [1377]

Fig. 14.23 Band structure and density of states (DOS) of C(3,3) and BN(3,3) nanotubes, calculated with DFT-LDA.
Adapted from [1381]

14.4 Quantum Dots

14.4.1 Quantization in Three-Dimensional Potential Wells

The solutions for the d-dimensional (d = 1, 2, or 3) harmonic oscillator, i.e. the eigenenergies for the
Hamiltonian

Ĥ = p2

2m
+

d∑

i=1

1

2
m ω2

0 x
2
i (14.6)

are given by

En =
(
n + d

2

)
�ω0 , (14.7)

with n = 0, 1, 2, . . .. More detailed treatments can be found in quantum-mechanics textbooks.
Next, we discuss the problem of a particle in a centrosymmetric finite potential well with different

masses m1 in the dot and m2 in the barrier. The Hamiltonian and the potential are given by
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Ĥ = ∇ �
2

2m
∇ + V (r) (14.8)

V (r) =
{−V0 , r ≤ R0

0 , r > R0
. (14.9)

The wavefunction can be separated into radial and angular components �(r) = Rnlm(r) Ylm(θ, φ),
where Ylm are the spherical harmonic functions. For the ground state (n = 1) the angular momentum
l is zero and the solution for the wavefunction (being regular at r = 0) is given by

R(r) =
{

sin(k r)
k r , r ≤ R0

sin(k R0)

k R0
exp (−κ (r − R0)) , r > R0

(14.10a)

k2 = 2m1 (V0 + E)

�2
(14.10b)

κ2 = −2m2 E

�2
. (14.10c)

From the boundary conditions that both R(r) and 1
m

∂R(r)
∂r are continuous across the interface at

r = R0, the transcendental equation

k R0 cot (k R0) = 1 − m1

m2
(1 + κ R0) (14.11)

is obtained. From this formula the energy of the single particle ground state in a spherical quantum dot
can be determined. For a given radius, the potential needs a certain strength V0,min to confine at least
one bound state; this condition can be written as

V0,min = π2
�
2

8m∗ R2
0

(14.12)

for m1 = m2 = m∗. For a general angular momentum l, the wavefunctions are given by spherical
Bessel functions jl in the dot and spherical Hankel functions hl in the barrier. Also, the transcendental
equation for the energy of the first excited level can be given:

k R0 cot (k R0) = 1 + k2 R2
0

m1
m2

2+2κ R0+κ2 R2
0

1+κ R0
− 2

. (14.13)

In the case of infinite barriers (V0 → ∞), the wavefunction vanishes outside the dot and is given by
(normalized)

Rnml(r) =
√

2

R3
0

jl(knl r)

jl+1(knl R0)
, (14.14)

where knl is the n-th zero of the Bessel function jl , e.g. kn0 = nπ . With two-digit precision the lowest
levels are determined by

knl l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

n = 0 3.14 4.49 5.76 6.99 8.18 9.36
n = 1 6.28 7.73 9.10 10.42
n = 2 9.42
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Fig. 14.24 Isosurface plots (25% of maximum value) of the total probability densities a, b and valence-band projections
(c)–(e) of bound electron (a) and hole (b)–(e) states in a model pyramidal InAs/GaAs quantum dot with base length
b = 11.3 nm. The percentages are the integrals of the projections to the bulk heavy, light and split-off hole bands,
respectively, and the isosurfaces show the corresponding projection shapes. For each valence-band state the difference
from 100% is the integral

∫ ∞
−∞ |ψs↑|2+|ψs↓|2d3r of the s-type (conduction band) Bloch function projection (not shown).

Reprinted with permission from [1385], ©2002, Springer

The (2l+1) degenerate energy levels Enl are (V0 = ∞, m = m1):

Enl = �
2

2m
k2nl

1

R2
0

. (14.15)

The 1s, 1p, and 1d states have smaller eigenenergies than the 2s state.
A particularly simple solution is given for a cubic quantum dot of side length a0 and infinite potential

barriers. One finds the levels Enxnynz :

Enxnynz = �
2

2m

(
n2x + n2y + n2z

) π2

a20
, (14.16)

with nx , ny , nz = 1, 2, . . . . For a sphere, the separation between the ground and first excited state is
E1 − E0 ≈ E0, for a cube and a two-dimensional harmonic oscillator it is exactly E0. For a three-
dimensional harmonic oscillator this quantity is E1 − E0 = 2E0/3.

For realistic quantum dots a full three-dimensional simulation of strain, piezoelectric fields and
the quantum-mechanical confinement must be performed [1382, 1383]. In Fig. 14.24, the lowest four
electron and hole wavefunctions in a pyramidal InAs/GaAs quantum dot (for the strain distribution see
Fig. 5.34 and for the piezoelectric fields see Fig. 16.16) are shown. The figure shows that the lowest
hole states have dominantly heavy-hole character and contain admixtures of the other hole bands. The
wavefunction in such quantum dots can be imaged using scanning tunneling microscopy [1384].
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(a) (b)

Fig. 14.25 a Schematic drawing of a quantum dot (QD) with tunnel contacts and gate electrode. The inset depicts an
equivalent circuit with capacitances. b Realization with an in-plane gate structure. The distance between ‘F’ and ‘C’
(gate electrode) is 1µm. Electron transport occurs from a 2DEG between 3/F to 4/F through the quantum points contacts
1/3 and 2/4. Part (b) from [1386], reprinted with permission, ©1991, Springer Nature

14.4.2 Electrical and Transport Properties

The classical electrostatic energy of a quantum dot with capacitance CG that is capacitively coupled
to a gate (Fig. 14.25) at a bias voltage VG is given by

E = Q2

2CG
− Q α VG , (14.17)

where α is a dimensionless factor relating the gate voltage to the potential of the island and Q is the
charge of the island.

Mathematically, minimum energy is reached for a charge Qmin = α CG VG. However, the charge
has to be an integer multiple of e, i.e. Q = N e. If Vg has a value, such that Qmin/e = Nmin is an
integer, the charge cannot fluctuate as long as the temperature is low enough, i.e.

kT � e2

2CG
. (14.18)

Tunneling into or out of the dot is suppressed by the Coulomb barrier e2/2CG, and the conductance is
very low. Analogously, the differential capacitance is small. This effect is called Coulomb blockade.
Peaks in the tunneling current (Fig. 14.26b), conductivity (Fig. 14.26a) and the capacitance occur, when
the gate voltage is such that the energies for N and N + 1 electrons are degenerate, i.e. Nmin = N + 1

2 .
The expected level spacing is

e α �VG = e2

CG
+ �εN , (14.19)

where �εN denotes the change in lateral (kinetic) quantization energy for the added electron. e2/C
will be called the charging energy in the following.

A variation of the source–drain voltage (for a given gate voltage) leads to a so-called Coulomb
staircase since more and more channels of conductivity contribute to the current through the device
(Fig. 14.27). In Fig. 14.28 the tunneling current is shown as a function of the potential of a dot, formed
by gates on a WSe2 flake [1388], and the source-drain voltage. The iso-current lines form so-called
‘Coulomb blockade diamonds’.

The charge Q on the QD is determined by the charges on the gate, source and drain capacities,
Q = QG − QS + QD. Together with QS = CS VS, QD = CD VD and VSD = VS + VD and QG =
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Fig. 14.26 a Conductivity (Coulomb oscillations) and b current–voltage diagram at different gate voltages (Coulomb
staircase, shifted vertically for better readability) of a tunnel junction with a quantum dot as in Fig. 14.25. Adapted from
[1386], reprinted with permission, ©1991, SpringerNature

Fig. 14.27 Chemical
potentials of source and
drain and of a quantum dot
in between them. a, b, and
c show the sequence for a
variation of the gate voltage
and visualize the origin of
the Coulomb oscillations
(see Fig. 14.26a). d, e and f
visualize a variation of the
source–drain voltage and
the origin of the Coulomb
staircase (cf. Fig. 14.26b)

CG (VG − VS), we find (C� = CG + CS + CD),

VS = 1

C�

(Q + CG VG + CD VSD) (14.20)

VD = 1

C�

(−Q − CG VG + (C� − CD) VSD) . (14.21)

Now, if for a given pair of (VG, VSD) in a diagram like Fig. 14.28b the current is Coulomb-blocked
and low, then it is for all voltages with the same charge Q on the dot and either the same VS or
VD. The derivatives of (14.20) and (14.21) yield the slopes ∂VSD/∂VG = γ1 = −CG/CD and γ2 =
+CG/(CG + CS), respectively, that defined the borders of the diamond in the schematic stability
diagram as depicted in Fig. 14.29. We note that such analysis is allowed when |VS|, |VD| � e/2C�

and the quantum dot circuit can be treated as a system of capacitors (inset in Fig. 14.25a). Changing
Q to Q − e requires VG to increase by e/CG for the same VS,D, yielding the periodicity of the stability
diagram.

Single electron tunneling (SET) circuits [1387] are investigated with respect to metrology for a
novel ampere standard [1389].
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(a) (b)

Fig. 14.28 a Top: Sketch of WSe2 flake with gate structure, defining a lateral quantum dot. Bottom: SEM image of the
structure. The outline of the WSe2 flake (thickness 4.5nm) is indicated as dotted line. BG: back gate, PG: plunger gate.
b Current (in false colors) as a function of the back gate voltage VBG and the source-drain voltage VSD (T = 240mK).
On the top is a current trace as a function of VG (for VSD = 0, along the red dashed line in the diagram). SEM image in
panel (a) and panel (b) adapted from [1388] with permission from RSC

Fig. 14.29 Schematic
Coulomb diamond stability
diagram. The slopes γ1 and
γ2 are discussed in the text.
The periodicity in the gate
voltage is given by e/CG.
The charge on the dot is
Q = (−e) n

A lot of research so far has been done on lithographically defined systemswhere the lateral quantiza-
tion energies are small and smaller than the Coulomb charging energy. In this case, periodic oscillations
are observed, especially for large N . A deviation from periodic oscillations for small N and a charac-
teristic shell structure (at N = 2, 6, 12) consistent with a harmonic oscillator model (�ω0 ≈ 3meV)
has been reported for≈500-nm diameter mesas (Fig. 14.30b,c). In this structure, a small mesa has been
etched and contacted (top contact, substrate back contact and side gate). The quantum dot consists of
a 12-nm In0.05Ga0.95As quantum well that is laterally constricted by the 500-nm mesa and vertically
confined due to 9- and 7.5-nm thick Al0.22Ga0.68As barriers (Fig. 14.30a). By tuning the gate voltage,
the number of electrons can be varied within 0 and 40. Measurements are typically carried out at a
sample temperature of 50mK.

In the sample shown in Fig. 14.31, self-assembled QDs are positioned in the channel under a split-
gate structure. In a suitable structure, tunneling through a single QD is resolved.

In small self-assembled quantum dots single-particle level separations can be larger than or similar
to the Coulomb charging energy. Classically, the capacitance for a metal sphere of radius R0 is given as

C0 = 4π ε0 εr R0 , (14.22)

e.g.. C0 ≈ 6aF for R0 = 4nm in GaAs, resulting in a charging energy of 26meV. Quantum mechani-
cally, the charging energy is given in first-order perturbation theory by
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Fig. 14.30 a Schematic sample geometry for side-gated In0.05Ga0.95As/Al0.22Ga0.68As disk-shaped quantum dot. b
Coulomb oscillations in the current versus gate voltage at B = 0T observed for a D = 0.5µm disk-shaped dot. c
Addition energy versus electron number for two different dots with D = 0.50 and 0.44µm. Adapted from [1391]

Fig. 14.31 a Schematic layer sequence of epitaxial structure comprising a n-AlGaAs/GaAs heterointerface with a two-
dimensional electron gas and a layer of InAs/GaAs quantum dots. b and c are corresponding band diagrams with no gate
bias and gate voltage below the critical value, respectively. d Experimental dependence of drain current on gate voltage
in a split-gate structure at a drain source voltage of 10µV. Inset: Dependence of valley current on temperature (squares)
with theoretical fit. Reprinted with permission from [1392], ©1997 AIP

E21 = 〈00|Wee|00〉 =
∫∫

�2
0 (r

1
e)Wee(r1e , r

2
e )�2

0 (r
2
e ) d

3r1e d
3r2e , (14.23)

where Wee denotes the Coulomb interaction of the two electrons and �0 the ground state (single
particle) electron wavefunction. The matrix element gives an upper bound for the charging energy
since the wavefunctions will rearrange to lower their overlap and the repulsive Coulomb interaction.
For lens-shaped InAs/GaAs quantum dots with radius 25nm a charging energy of about 30meV has
been predicted.
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Fig. 14.32 Lithography
and etching techniques for
the fabrication of
semiconductor structures

14.4.3 Self-Assembled Preparation

The preparation methods for QDs split into top-down (lithography and etching) and bottom-up (self-
assembly)methods. The latter achieve typically smaller sizes and require less effort (at least concerning
the machinery).

Artificial Patterning

Using artificial patterning, based on lithography and etching (Fig. 14.32), quantum dots of arbitrary
shape can be made (Fig. 14.33). Due to defects introduced by high-energy ions during reactive ion
etching the quantum efficiency of such structures is very low when they are very small. Using wet-
chemical etching techniques the damage can be significantly lowered but not completely avoided.
Since the QDs have to compete with other structures that can be made structurally perfect, this is not
acceptable.

Template Growth

Template growth is another technique for the formation of nanostructures. Here, a mesoscopic structure
is fabricated by conventional means. The nanostructure is created using size-reduction mechanisms,
e.g., faceting, (Fig. 14.34). This method can potentially suffer from low template density, irregularities
of the template, and problems of reproducibility.

Colloids

Another successful route to nanocrystals is the doping of glasses with subsequent annealing (color
filters). When nanocrystals are prepared in a sol-gel process, the nanoparticles are present as a colloid
inwet solution.With the help of suitable stabilizing agents they are prevented fromsticking to each other
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Fig. 14.33 Quantum dots
of various shapes created
by lithography and etching
techniques. From [1393]

Fig. 14.34 a Schematic
representation of growth on
top of a predefined
template, b cross-sectional
TEM of quantum dot
formation at the apex.
Reprinted with permission
from [1394], ©1992 MRS

(a) (b)

and can be handled in ensembles and also individually. Such nanocrystals have been synthesized and
investigated in particular for II–VI (Fig. 14.35a) and halide perovskite (Fig. 14.35b) semiconductors.

Mismatched Epitaxy

The self-assembly (or self-organization) relies on strained heterostructures that achieve energy mini-
mization by island growth on a wetting layer (Stranski-Krastanow growth mode, see Sect. 12.2.3 and
[1339]). Additional ordering mechanisms [1397, 1398] lead to ensembles that are homogeneous in
size2 [1399] and shape [1400] (Fig. 14.36).

When a thin layer of a semiconductor is grown on top of a flat substratewith different lattice constant,
the layer suffers a tetragonal distortion (Sect. 5.3.3). Strain can only relax along the growth direction
(Fig. 14.37). If the strain energy is too large (highly strained layer or large thickness), plastic relaxation
via dislocation formation occurs. If there is island geometry, strain can relax in all three directions and
about 50% more strain energy can relax, thus making this type of relaxation energetically favorable.
When the island is embedded in the host matrix, the strain energy is similar to the 2D case and the
matrix becomes strained (metastable state).

When such QD layers are vertically stacked, the individual quantum dots grow on top of each
other (Fig. 14.38) if the separation is not too large (Fig. 14.40). This effect is due to the effect of the
underlying QD. In the case of InAs/GaAs (compressive strain), the buried QD stretches the surface
above it (tensile surface strain). Thus, atoms impinging in the next QD layer find a smaller strain right
on top of the buried QDs. In STM images of the cross section through (XSTM) such a stack (Fig. 14.39)
individual indium atoms are visible and the shape can be analyzed in detail [1402].

2The ordering in size is remarkable. Typically Ostwald ripening (due to the Gibbs-Thomson effect; smaller droplets have
larger vapor pressure and dissolve, larger droplets accordingly grow) occurs in an ensemble of droplets or nuclei. In the
case of strained QDs, surface energy terms stabilize a certain QD size.
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(a) (b)

Fig. 14.35 a CdSe colloidal (hexagonal) nanoparticles. From [1395]. b CsPbBr3 perovskite (cubic) colloidal nanocrys-
tals. Adapted from [1396] under Creative Commons Attribution (CC BY 4.0) license

Fig. 14.36 Self-organized formation of InGaAs/GaAs quantum dots during epitaxy. Left: Plan-view and cross-sectional
transmission electron micrographs. Right: Histogram of vertical and lateral size of the quantum dots. Reprinted with
permission from [1401], ©1993 AIP
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Fig. 14.37 Distribution of strain energy for (left) uncapped island and (right) island embedded in host matrix. Numerical
values are for InAs/GaAs
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Fig. 14.38 Cross-sectional TEM image of a stack of five layers of quantum dots. Due to strain effects, vertical arrange-
ment is achieved

Fig. 14.39 Cross-sectional
STM image of a stack of
five InAs quantum dots in a
GaAs matrix. Individual In
atoms can be observed
in-between the wetting
layers and the quantum
dots. Each quantum dot
layer was formed by
growing 2.4ML of InAs.
The intended distance
between the quantum dot
layers was 10nm. Image
size is 55 × 55nm2.
Reprinted with permission
from [1402], ©2003 AIP

Fig. 14.40 Experimentally
observed pairing
probability in MBE-grown
stacks of InAs/GaAs
quantum dots as a function
of the spacer-layer
thickness. Data are taken
from (a) (110) and (b)
(1–10) cross-sectional
TEM images. The filled
circles are fit to data from
theory of correlated island
formation under strain
fields. Reprinted with
permission from [1403],
©1995 APS
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Fig. 14.41 Lateral
ordering of QD array. d
Plan-view TEM of QD
array on which the
statistical evaluation is
based. a Two-dimensional
histogram of QDs as a
function of the
nearest-neighbor distance
and direction, (b, c)
projections of part (a).
Solid lines in (b) and (c)
are theory for square array
with σ = 20% deviation
from ideal position.
Adapted from [1339, 1397]

Fig. 14.42 a AFM image
of a Si (001) substrate after
960min of ion sputtering
(1.2keV Ar+, normal
incidence). b
Two-dimensional
autocorrelation function
from a 400 × 400nm2 area
of image in part (a).
Adapted from [1406] with
permission, ©2001 AIP

The vertical arrangement can lead to further ordering since a homogenization in lateral position
takes place. If two QDs in the first layers are very close, their strain fields overlap and the second layer
‘sees’ only one QD.

The lateral (in-plane) ordering of the QDs with respect to each other occurs in square or hexagonal
patterns and is mediated via strain interaction through the substrate. The interaction energy is fairly
small, leading only to short-range in-plane order [1397] as shown in Fig. 14.41. The in-plane ordering
can be improved up to the point that regular one- or two-dimensional arrays form or individual quantum
dots are placed on designated positions using directed self-assembly [1339]. Among others, dislocation
networks buried under the growth surface of the nanostructure, surface patterning and modification
have been used to direct the QD positioning.

Ion-Beam Erosion

During the erosion of a surface with low-energy ion beam sputtering ordered patterns of dots appear
[1404–1407]. Isotropic [1408] and hexagonal [1404, 1406] (Fig. 14.42) near-range ordering has been
observed. The pattern formation mechanism is based on the morphology-dependent sputter yield and
further mechanisms of mass redistribution [1409]. Also linear patterns have been reported [1410].
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Fig. 14.43 Optical
emission spectra
(T = 2.3K) of a single
InGaAs/GaAs quantum dot
at different laser excitation
levels P as labeled. The
single exciton (X) and
biexciton (XX) lines are
indicated. Adapted
from [1411]

14.4.4 Optical Properties

The optical properties of QDs are related to their electronic density of states. In particular, optical
transitions are allowed only at discrete energies due to the zero-dimensional density of states.

Photoluminescence froma singleQD is shown inFig. 14.43.The δ-like sharp transition is strictly true
only in the limit of small carrier numbers (� 1 exciton per dot on average) since otherwise many-body
effects come into play that can encompass recombination from charged excitons or multiexcitons. At
very low excitation density the recombination spectrum consists only of the one-exciton (X) line. With
increasing excitation density small satellites on either side of the X-line develop that are attributed to
charged excitons (trions) X+ and X−. On the low-energy side, the biexciton (XX) appears. Eventually,
the excited states are populated and a multitude of states contribute with rich fine structure. In bulk
material the biexciton (Sect. 9.7.10) is typically a bound state, i.e. its recombination energy EXX is lower
than that of the exciton EX. A similar situation is present in Fig. 14.43. It was pointed out in [1412] that
in QDs the biexciton recombination energy can also be larger than the exciton recombination energy.
In [1413] the modification of the QD confinement potential of InAs/GaAs QDs by annealing was
reported. The exciton binding energy (EX-EXX) is tuned from positive (‘normal’) to negative values
upon annealing (Fig. 14.44).

The charging state of the exciton can be controlled in a field-effect structure. The recombination
energy is modified due to Coulomb and exchange effects with the additional carriers. In charge-tunable
quantum dots [1414] and rings [1415] exciton emission has been observed in dependence of the number
of additional electrons. The electron population can be controlled in a Schottky-diode-like structure
through the manipulation of the Fermi level with the bias voltage. At high negative bias all charge
carriers tunnel out of the ring and no exciton emission is observed. A variation of the bias then leads to
an average population with N = 1, 2, 3, . . . electrons. The recombination of additional laser-excited
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Fig. 14.44 Biexciton
binding energy determined
for a single InAs/GaAs
quantum dot for various
annealing times. Data
from [1413]

Fig. 14.45 Luminescence
of charged excitons from a
single quantum ring at
T = 4.2K versus the bias
voltage with which the
number of electrons in the
quantum dot N is tuned
from zero to N > 3.
Adapted from [1415],
reprinted with permission,
©2000, Springer Nature

excitons depends (due to the Coulomb interaction) on the number of the electrons present (Fig. 14.45).
The singly negatively charged exciton X− is also called a trion.

The interaction of a spin with an exciton in a CdTe quantum dot has been observed in [1416]. If
the CdTe quantum dot is pure, a single line arises. If the dot contains a single Mn atom, the exchange
interaction of the exciton with the Mn S = 5/2 spin leads to a six-fold splitting of the exciton line
(Fig. 14.46. In an external magnetic field a splitting into a total of twelve lines due to Zeeman effect at
the Mn spin is observed.

In a QD ensemble, optical transitions are inhomogeneously broadened due to fluctuations in the QD
size and the size dependence of the confinement energies (Fig. 14.47). Interband transitions involving
electrons and holes suffer from the variation of the electron and hole energies:

σE ∝
(∣∣∣∣

∂Ee

∂L

∣∣∣∣ +
∣∣∣∣
∂Eh

∂L

∣∣∣∣

)
δL . (14.24)

A typical relative size inhomogeneity of σL/L of 7% leads to several tens of meV broadening. Addi-
tional to broadening due to different sizes fluctuations of the quantum dot shape can also play a role.
The confinement effect leads to an increase of the recombination energy with decreasing quantum-
dot size. This effect is nicely demonstrated with colloidal quantum dots of different size as shown in
Fig. 14.48.
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Fig. 14.46 Photoluminescence
spectrum of a single
CdTe/ZnSe quantum dot
containing a single Mn
atom (T = 5K). Adapted
from [1416], reprinted with
permission, ©2004 APS

Fig. 14.47 Ensemble
photoluminescence
spectrum (T = 293K,
excitation density
500W/cm2) of InAs/GaAs
QDs

Fig. 14.48 Luminescence
(under UV excitation) from
flasks of colloidal CdTe
quantum dots with
increasing size (from left to
right). From [1395]
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