
Chapter 10
Recombination

Les hommes discutent, la nature agit.
Men argue, nature acts.

Voltaire

Abstract The various mechanisms and statistics of carrier recombination in semiconductors includ-
ing band-band, excitonic, band-impurity (Shockley-Read-Hall kinetics) and Auger recombination
are explained. Also recombination at extended defects and surfaces is treated. Using the diffusion-
recombination theory, the one-dimensional carrier profiles for typical situations in experiments and
devices are derived.

10.1 Introduction

In thermodynamic nonequilibrium excess charges can be present in the semiconductor. They can be
created by carrier injection through contacts, an electronbeamor the absorptionof lightwithwavelength
smaller than the band gap.After the external excitation is turned off, the semiconductorwill return to the
equilibrium state. The relaxation of carriers into energetically lower states (and energy release) is called
recombination. The term stems from the electron recombining with the hole created after absorption
of a photon. However, there are other recombination mechanisms. A dedicated textbook is [937].

In the simplest picture an excitation generates carriers with a rate G (carriers per unit volume and
unit time). In the steady state (after all turn-on effects) a constant excess charge n carrier density
is present. Then the generation exactly compensates the recombination processes. The principle of
detailed balance even says that each microscopic process is balanced by its reverse process. If the time
constant of the latter is τ , n is given by n = G τ . This follows from the steady-state solution ṅ = 0 of

dn

dt
= G − n

τ
. (10.1)

In the literature two limiting cases have been discussed, the relaxation and the lifetime semiconductor,
depending on the relation of two time constants. The one time constant τ0 is the relaxation time constant
due to recombination as discussed in the following. The smaller τ0 is, the faster excited electrons
and holes recombine and ‘disappear’. Fast lifetimes are typically present in direct semiconductors
(compared to indirect ones), semiconductors with high defect density and amorphous semiconductors.
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Fig. 10.1 Processes of
band–band recombination:
a spontaneous emission, b
absorption and c stimulated
emission. A full (empty)
circle represents an
occupied (unoccupied)
electron state
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The other time constant is τD = ε/σ, the dielectric relaxation time; it describes the transport of carriers
due to mobility (and diffusion). Large dielectric relaxation times are present in semiconductors with
high mobility (low defect density, small carrier mass), small τD typically for hopping conduction.
The relaxation case is given for τ0 � τD; carriers will recombine quickly and it is hard to build up
non-equilibrium carriers and separate them with an applied electric field. In the recombination case
τD � τ0, non-equilibrium carriers can assume non-uniform distributions and an applied electrical field
generates separate quasi-Fermi levels for electrons and holes.1 (cmp. Sect. 7.6).

10.2 Band–Band Recombination

The band–band recombination is the relaxation from an electron in the conduction band into the valence
(the empty state there is the hole). In a direct semiconductor, electrons can make an optical transition
between the bottom of the conduction band to the top of the valence band. In an indirect semiconductor,
this process is only possible with the assistance of a phonon and is thus much less probable.

10.2.1 Spontaneous Emission

We consider the spontaneous recombination of an electron of energy Ee and a hole of energy Eh

(Fig. 10.1a). C(Ee, Eh) is a constant proportional to the matrix element of the optical transition (cf.
Sect. 9.6). The spontaneous recombination rate rsp at photon energy E ≥ EC − EV = Eg is (assuming
energy conservation, i.e. E = Ee − Eh, but without k-conservation in a dense plasma [938]),

rsp(E) =
∞∫

EC

dEe

EV∫

−∞
dEh C(Ee, Eh) × (10.2)

De(Ee) fe(Ee) Dh(Eh) fh(Eh) δ(E − Ee + Eh)

=
E+EV∫

EC

dEe C(Ee, Ee − E) ×

De(Ee) fe(Ee) Dh(Ee − E) fh(Ee − E) ,

where fh denotes the hole occupation fh = 1 − fe.

1In the relaxation case, the separation of quasi-Fermi levels is � kT .
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Fig. 10.2 a Photoluminescence spectrum of an undoped LPE-grown epitaxial GaAs layer at room temperature and low
cw (λ = 647nm) excitation density (10W/cm2). The solid line is a lineshape fit with (10.3) and Eg =1.423eV and
T = 293K. (b) Room temperature, direct (e�–h�) recombination from heavily n-doped (1019 cm−3) germanium (1µm
thick Ge layer on silicon (001)) with biaxial (thermal) tensile strain. The strain-split valence band edge (Fig. 6.50) causes
the e–hh and e–lh transitions (individual contributions with lineshape according to (10.3) shown as dashed lines) to occur
at different energies. Adapted from [939]

Fig. 10.3 Carrier
temperature TC in GaAs as
a function of excitation
density at a lattice
temperature of 1.6K. The
dashed line is guide to the
eye, the solid line
corresponds to an
activation energy of
33meV, similar to the
GaAs optical phonon
energy. Adapted
from [940]
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The lineshape of the band–band recombination with k-conservation2 is proportional to the joint
density of states (9.42) and the Fermi distribution function. At small excitation and at low doping it
can be approximated by the Boltzmann distribution function and the lineshape is given as

I (E) ∝ √
E − Eg exp

(
− E

kT

)
. (10.3)

An experimental spectrum is shown in Fig. 10.2 together with a fit according to (10.3). The expected
FWHM of the peak is 1.7954 kT , which is about 46meV at T = 300K. At low sample temperature,
the temperature of the carrier gas is typically higher than the lattice temperature, depending on the
cooling mechanisms (carrier–carrier scattering, optical phonon emission, acoustic phonon emission,
recombination, . . .) and the excitation rate. The carrier temperature in GaAs, determined from the
Boltzmann tail of spontaneous emission (photoluminescence) is depicted in Fig. 10.3 as a function of
excitation density; clearly it increases with increasing excitation.

The recombination rate in indirect semiconductors is small since the transition is phonon-assisted.
For silicon, an internal quantum efficiency in the 10−6-range has been reported [941]. For germanium,

2Excitonic effects are neglected here, e.g. for temperatures kT � Eb
X. Such effects are discussed in Sect. 10.3.
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the direct transition is energetically fairly close to the fundamental, indirect L–� band edge transition
(Fig. 9.15). The energy difference can be reduced from its bulk value of 136meV by tensile strain.
Additionally, the direct transition can be favored by heavily n-doping and filling the L conduction
band minimum states (see Sect. 9.9.2). In this case, direct recombination from the conduction band
�-minimum can be observed [939] and the effective energy difference has been lowered to about
100meV.

10.2.2 Absorption

A similar consideration is made for the absorption process (Fig. 10.1b). An electron is transferred upon
light absorption from a valence-band state (occupied) to a conduction-band state that must be empty.
The coefficient is B1. Also, the process is proportional to the light intensity, represented by the density
of occupied photon states Nph(E),

rabs(E) =
E+EV∫

EC

dEe B1(Ee, Ee − E) × (10.4)

De(Ee) (1 − fe(Ee)) Dh(Ee − E) (1 − fh(Ee − E)) Nph(E) .

10.2.3 Stimulated Emission

In this case, an incoming photon ‘triggers’ the transition of an electron in the conduction band into an
empty state in the valence band. The emitted photon is in phase with the initial photon (Fig. 10.1c).
The rate is (with coefficient B2):

rst(E) =
E+EV∫

EC

dEe B2(Ee, Ee − E) × (10.5)

De(Ee) fn(Ee) Dh(Ee − E) fh(Ee − E) Nph(E) .

The photon density Nph at a given energy is given by Planck’s law and the Bose–Einstein distribution
(Appendix E)

Nph(E) = N0
1

exp (E/kT ) − 1
. (10.6)

The pre-factor is the density of states of the electromagnetic field3 N0(E) = 8π E2 (nr/hc)3.

10.2.4 Net Recombination Rate

In thermodynamical equilibrium the rates fulfill

3The total number of photon states in vacuum between the frequencies zero and ν is N (ν) = 8πν3/(3c3). With ν = E/h
and N0 = dN (E)/dE and considering c → c/nr we obtain the given value for N0.
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rsp(E) + rst(E) = rabs(E) . (10.7)

Since for absorption and stimulated emission the same quantum-mechanical matrix element is respon-
sible, B1 = B2. If the population functions are Fermi-Dirac distributions with quasi-Fermi levels Fn

and Fp (Sect. 7.6), the detailed balance (10.7) yields

C(E1, E2) = B1(E1, E2) Nph

[
exp

(
E − (Fn − Fp)

kT

)
− 1

]
. (10.8)

In thermodynamic equilibrium, i.e. Fn = Fp,

C(E1, E2) = N0 B1(E1, E2) = B . (10.9)

If the constant B, the bimolecular recombination coefficient, is independent of the energy E , the
integration for the net bimolecular recombination rate rB can be executed analytically and we find

rB =
∞∫

Eg

[
rsp(E) + rst(E) − rabs(E)

]
dE (10.10)

= B n p

[
1 − exp

(
− Fn − Fp

kT

)]
.

In thermodynamic equilibrium, of course, rB = 0. The recombination rate Bnp is then equal to the
thermal generation rate G th

G th = B n0 p0 . (10.11)

The bimolecular recombination rate typically used in Shockley–Read–Hall (SRH) [942, 943] kinetics is

rB = B (n p − n0 p0) . (10.12)

Values for the coefficient B are given in Table10.1. In the case of carrier injection, np is larger than
in thermodynamical equilibrium, i.e. n p > n0 p0, and the recombination rate is positive, i.e. light
is emitted. If the carrier density is smaller than in thermodynamical equilibrium, e.g.. in a depletion
region, absorption is larger than emission. This effect is also known as ‘negative luminescence’ [944]
and plays a role particularly at elevated temperatures and in the infrared spectral region.

Table 10.1 Bimolecular recombination coefficient at room temperature for a number of semiconductors. Data for GaN
from [945], Si from [946], SiC from [947], other values from [948]

Material B (cm3/s)

GaN 1.1 ×10−8

GaAs 1.0 ×10−10

AlAs 7.5 ×10−11

InP 6.0 ×10−11

InAs 2.1 ×10−11

4H-SiC 1.5 ×10−12

Si 1.1 ×10−14

GaP 3.0 ×10−15
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10.2.5 Recombination Dynamics

The carrier densities n and p, are decomposed into the densities n0 and p0 in thermodynamic equilib-
rium and the excess-carrier densities δn and δ p, respectively

n = n0 + δn (10.13a)

p = p0 + δ p . (10.13b)

Here, only neutral excitations are considered, i.e. δn = δ p. Obviously the time derivative fulfills
∂n
∂t = ∂ δn

∂t , and correspondingly for the hole density. The equation for the dynamics

ṅ = ṗ = −Bnp + G th = −B (n p − n0 p0) = −B (n p − n2i ) (10.14)

can be written as
∂ δ p

∂t
= −B (n0 δ p + p0 δn + δn δ p) . (10.15)

The general solution of (10.15) is given by

δ p(t) = (n0 + p0) δ p(0)

[n0 + p0 + δ p(0)] exp [B t (n0 + p0)] − δ p(0)
. (10.16)

In the following, we discuss some approximate solutions of (10.15). First, we treat the case of a small
(neutral) excitation, i.e. δn = δ p � n0, p0. The dynamic equation is in this case

∂ δ p

∂t
= −B (n0 + p0) δ p . (10.17)

Then the decay of the excess-carrier density is exponential with a time constant (lifetime) τ given by

τ = 1

B (n0 + p0)
. (10.18)

In an n-type semiconductor additionally n0 � p0, and thus the minority carrier lifetime τp is

τp = 1

B n0
. (10.19)

If the nonequilibrium carrier densities are large, i.e. n ≈ p � n0, p0, e.g. for strong injection, the
kinetics obeys

∂ δ p

∂t
= −B (δ p)2 , (10.20)

and the transient has the form

δ p(t) = δ p(0)

1 + B t δ p(0)
, (10.21)

where δ p(0) is the excess hole density at time t = 0. Such a decay is called hyperbolic and the
recombination is bimolecular. The exponential decay time is formally τ−1 = Bδ p(t) and is thus time
and density dependent. A detailed discussion of minority carrier lifetime is given in [949].
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10.2.6 Lasing

The net rate for stimulated emission and absorption is

rst(E) − rabs(E) =
[
1 − exp

(
E − (Fn − Fp)

kT

)]
(10.22)

×
E+EV∫

EC

dEe B De(Ee) fe(Ee) Dh(Ee − E) fh(Ee − E) Nph(E) .

The net rate at photon energy E = �ω is only larger than zero (i.e. dominating stimulated emission)
when

Fn − Fp > E ≥ Eg . (10.23)

When the difference of the quasi-Fermi levels is larger than the band gap, the carrier population is
inverted, i.e. close to the band edges the conduction-band states are more strongly populated with
electrons than the valence-band states, as shown in Fig. 10.4. An incoming optical wave of energy E
will then be net amplified by stimulated emission. Equation (10.23) is also called the thermodynamic
laser condition. We note that lasing requires further conditions as discussed in Sect. 23.4.

10.3 Exciton Recombination

10.3.1 Free Excitons

The observation of free-excitons is limited for semiconductors with a small exciton binding energies
(such as in GaAs) to low temperatures. However, for large exciton binding energy, recombination from
free-excitons is observed even at room temperature, as shown in Fig. 10.5 for ZnO.

Fig. 10.4 Charge-carrier
distribution during
inversion, necessary for
lasing. Shaded areas are
populated with electrons. A
stimulated transition
between an electron and a
hole is indicated

D(E)

EV

EC

E

Fn

Fp
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Fig. 10.5 Temperature-dependent luminescence spectra of aZnO thinfilm (on sapphire).At low temperatures, the spectra
are dominated by donor-bound exciton transitions (Al0,X)). The vertical dashed line indicates the low-temperature
position of the donor-bound exciton transition (D0,X). The curved dashed line visualizes the energy position of the
free-exciton transition (XA) that becomes dominant at room temperature

Fig. 10.6 Low temperature recombination spectra from silicon with low (solid lines) and sizeable (dashed line) phos-
phorus dopant concentration. Spectrum for NP = 2×1014 cm−3 (NP = 8×1016 cm−3) taken at 26K (15K). Transitions
in pure Si are label with ‘I’, transitions involving P donors are labeled with ‘P’. Q indicates the dissociation energy of
the bound exciton. Adapted from [950]

A low temperature recombination spectrum of silicon is shown in Fig. 10.6. In pure silicon, phonon-
assisted exciton recombination (cmp. Sect. 10.4) is observed involving acoustic (ITA) and optical (ITO)
phonons. The weakly observed no-phonon line (I0) is forbidden in perfect Si.

10.3.2 Bound Excitons

Excitons can localize at impurities, defects or other potential fluctuations and subsequently recombine
[951, 952]. Excitons can be bound to neutral or ionized donors and acceptors impurities [953]. Also
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Fig. 10.7 Energy Q required to remove an exciton from a neutral impurity (10.24) as a function of the ionization energy
Eb
D (open circles) or Eb

A (solid circles) of the involved impurity in (a) silicon (experimental data from [965]) and (b)
ZnO (experimental data from [966])

they can be bound to isoelectronic impurities, the most prominent example being N in GaP [954] (cmp.
Sect. 9.7.9) or isoelectronic clusters [955]. The recombination of excitons localized in quantum wells
(Sect. 12.4) and quantum dots (Sect. 14.4.4) is discussed later.

The transition energy �ω of an exciton bound to a neutral impurity is

�ω = Eg − EX
b − Q , (10.24)

where Q is the binding (or localization) energy of the exciton to the impurity. The binding energy of
an exciton to an ionized impurity is denoted with Q∗. A transition involving an exciton bound to a
neutral donor is denoted (D0,X); correspondingly (D+,X), also denoted as (h,D0), and (A0,X). Values
for donor-bound excitons in various semiconductors are listed in Table10.2. The (D0,X) complex is
stable for 0 < σ = m∗

e/m
∗
h < 0.43 according to [956]. The (D+,X) peak can occur on the low- or

high-energy side of the (D0,X) recombination. Whether Q∗ < Q or Q∗ > Q depends on σ being
smaller or larger than 0.2, respectively [956], and is fulfilled for many semiconductors, e.g. GaAs,
GaN, CdS, and ZnSe.

Recombination in silicon due to excitons involving phosphorus donors is depicted in Fig. 10.6. The
(D0,X) transition in Si:P is labeled ‘P0’ (Q = 6meV). Other P-related transitions are discussed in
[950]. In Si, the binding energy to the impurity is about one tenth of the binding energy of the impurity
(Haynes’s rule [951, 965]), i.e. Q/Eb

D and Q/Eb
A ≈ 0.1 (Fig. 10.7a). In GaP the approximate relations

Q = 0.26Eb
D − 7meV and Q = 0.056Eb

A + 3meV have been found [954]. For donors in ZnO, the
relation Q = 0.365Eb

D − 3.8meV holds (Fig. 10.7b) [966]. In Fig. 10.8, the recombination spectrum
of GaAs:C is shown that exhibits recombination from excitons bound to the acceptor (carbon) and
shallow donors. The exciton is more strongly bound to an ionized donor (D+) than to a neutral donor.

Varying the concentration of a specific impurity and observing the corresponding change in the
intensity of the (D0,X) transition allows to identify the chemical species to which the exciton is
bound. This can be achieved via the comparison of different samples or more elegantly by introducing
radioactive isotopes. This is shown in Fig. 10.9 for In in ZnO; the (111In0,X) transition disappears with
the characteristic time constant close to that (97h) of the nuclear decay of 111In into stable 111Cd.
However, in such experiments it should be considered that the decay product and accompanying high-
energy radiation can create new electronic and structural defects, respectively.

The peak labeled (D0,X)2s in Fig. 10.8 is called a two-electron satellite (TES) [968]. High-resolution
spectra of the TES in GaAs [581, 969] are shown in Fig. 10.10a. The TES recombination is a (D0,X)
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Table 10.2 Localization energy Q (Q∗) of excitons on selected impurities (ionized impurities, D+ or A−, respectively)
in various semiconductors. σ is the ratio of effective electron and hole (polaron) masses. EMD: effective mass donor

host donor Q (meV) Q∗ (meV) Q∗/Q σ Ref.

GaAs
EMD

Zn

0.88

8.1

1.8

31.1

2.0

3.8
0.28 [957]

GaN
EMD

Mg

6.8

20

11.2 1.6

0.36
[959]

AlN
Si

Mg

16

40
[960]

CdS EMD 6.6 3.8 0.6 0.17 [961]

Al 4.9 5.4 1.1

ZnSe Ga 5.1 6.6 1.3 0.27 [962, 963]

In 5.4 7.5 1.4

Al 15.5 3.4 0.21

ZnO Ga 16.1 4.1 0.25 0.3 [964]

In 19.2 8.5 0.44

1.50 1.51 1.521.49

GaAs:CAs

(e,A )0

(D ,A )0 0 (D ,X)0
2s

(h,D )0

(A ,X)0

(h,D )2s
0

(D ,X)0

20

Fig. 10.8 Photoluminescence spectrum (T = 2K, D = 10mWcm−2) of GaAs:CAs (NA = 1014 cm−3) with donor-
and acceptor-related bound-exciton recombination around 1.512eV, (e,A0), (h,D0) and (D0,A0) pair and free-exciton
recombination. Adapted from [957]

recombination that leaves the donor in an excited state as schematically shown in Fig. 10.10b. Therefore
a hydrogen-like series with n = 2, 3, . . . is observed with energies

En
TES = E(D0,X) − Eb

D

(
1 − 1

n2

)
. (10.25)

The effect of isotope disorder on the sharpness and splitting of impurity states has been investigated
in [970, 971]. The recombination of excitons bound to Al, Ga and In in natural silicon (92.23% 28Si,
4.67% 29Si, 3.10% 30Si) is split into three lines due to the valley-orbit splitting [972] of electron states
at the band minimum (Fig. 10.11). Each of these (A0,X) lines is split by 0.01cm−1 for Si:Al due to a
symmetry reduction of the 4-fold degenerate A0 ground state, as observed in the presence of applied
axial strain or an electric field. The comparison to spectra from enriched 28Si shows that the observed
splitting without external perturbation is due to isotope disorder that causes random strains and splits
the A0 ground state into two doublets [971] (Fig. 10.11). Similarly, the (unsplit) phosphorus-induced
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Fig. 10.9 a Low-temperature photoluminescence spectrum of ZnO implanted with 111In featuring the so-called I9-line.
Spectra are recorded at various times after implantation as labeled. b Intensity of I9-line as a function of time. Adapted
from [967]
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TES (D ,X)0
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EC

n=1ED

EV

n=2
n=3

D0 X D0*

Fig. 10.10 a Photoluminescence spectrum (T = 1.5K, D = 50mWcm−2) of high-purity GaAs with two donors (Ge
and Se/Sn). The lower spectrum has been excited 6meV above the band gap, the upper spectrum has been resonantly
excited with the laser set to the (D0,X) transition and exhibits n = 2, 3, 4, and 5 TES transitions. α,β,γ denote excited
(hole rotational) states of the (D0,X) complex. Adapted from [969]. b Schematic representation of the n = 2 TES process,
left: initial, right: final state

(D0,X) transition in enriched Si is found to be much sharper (< 40µeV) than in natural Si (330µeV)
[970]. At higher resolution, a hyperfine splitting of 485neV due to the 31P nuclear spin I = 1/2
(2× 1012 cm−3) in isotopically pure (99.991%) 28Si (I = 0) is observed for the (P0,X) recombination
[973]. In a magnetic field, the Zeeman-split lines have a FWHM of about 150neV.

In Fig. 10.12 the recombination of excitons bound to the N isoelectronic impurity in lowly doped
GaP is shown. The efficient recombination of nitrogen-bound electrons with holes at the � point is
due to the wave-function component of the localized electron at k = 0 [690] (Fig. 7.40). The decay
time of the A exciton is about 40ns [974] and thus larger than the typical lifetime of excitons in direct
semiconductors (ns-range). The forbidden B exciton has a much longer lifetime of 4µs [974].

In the case of In in GaAs it has been found that down to the regime of NIn < 1019 cm−3 the indium
does not act as a substitutional isoelectronic impurity but still fully participates in the composition
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Si:Al

28Si

1.1508 1.1509 1.1510

natural
Si

A0

A0X

Fig. 10.11 High-resolution photoluminescence (PL) spectra of (A0,X) recombination in natural and 28Si-enriched
silicon doped with aluminum (T = 1.8K). The 28Si PL spectrum is shifted up in energy by 0.114meV, as indicated
by the arrow, to compensate for the shift in band gap. The inset shows a level scheme for the recombination in natural
silicon. Adapted from [971], reprinted with permission, ©(2002) APS

Fig. 10.12 Photoluminescence
spectrum (T = 4.2K) of
GaP:N
(NN ≈ 5 × 1016 cm−3).
The A exciton is bound to
an isolated nitrogen
impurity, cmp. to Fig. 9.28.
Adapted from [690]

Fig. 10.13 Spectral
position of neutral donor-
and acceptor-bound exciton
photoluminescence
transition (T = 2K) in
GaAs doped with different
amounts of indium relative
to the donor-bound exciton
luminescence in pure GaAs
(1.5146eV). Adapted
from [975]

of a pseudo-binary system (Sect. 6.5). Recombination from excitons bound to single indium atoms or
In–In pairs could not be found. The energy shift of donor- and acceptor-bound excitons in the dilute
limit (Fig. 10.13) follows the band-gap dependence established for larger indium concentrations. The
non-occurrence of localization effects is attributed to the small effective electron mass in InAs [544].
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Fig. 10.14 (Temperature
dependent PL intensity of
(D0,X) in GaN and (A0,X)
in AlN:Mg recombination.
Solid lines are fits with
(10.26). Data from [960,
978]

The luminescence intensity I (T ) of bound exciton lines is quenched with increasing temperature
due to ionization of the excitons from the impurities. The temperature dependence can be modeled
using the relation [976]

I (T )

I (T = 0)
= 1

1 + C exp(−EA/kT )
, (10.26)

EA being the thermal activation energy and C a pre-factor. Often the activation energy is found equal
to the localization energy, EA = Q (Fig. 10.14, cmp. Table10.2). If several processes contribute,
additional exponential terms can be addedwith further activation energies. For acceptor-bound excitons
in GaAs two processes are found to contribute, the ionization from the impurity into a free exciton
(E1

A ≈ Q) and into an electron-hole pair (E2
A ≈ Q + Eb

X) [976]. In [977] the model is refined by
considering the temperature dependence of the parameterC due to the ionization of the impurity itself.

So far single excitons bound to a center have been discussed. Also bound exciton complexes [979]
containing up to six excitons have been observed at sufficient excitation density, e.g. for substitutional
boron [980] or phosphorus [981] and interstitial Li [982] in silicon. In a multi-valley semiconductor
several electrons are available to form bound excitons which follow approximately a shell model and
exhibit further fine structure.

10.3.3 Alloy Broadening

The bound-exciton recombination peak in a binary compound is spectrally fairly sharp (Sect. 10.3.2),
even in the presence of isotope disorder (Fig. 10.11). In an alloy (see Sect. 3.7), the random distribution
of atoms (with different atomic order number Z ) causes a significant broadening effect of the lumi-
nescence (and absorption) line, the so-called alloy broadening [983, 984]. As an example, we treat
AlxGa1−xAs. The exciton samples, at different positions of the lattice, different coordinations of Ga
and Al atoms. If the experiment averages over these configurations, an inhomogeneously broadened
line is observed.

The cation concentration cc for the zincblende lattice is given as cc = 4/a30 , for the wurtzite lattice
as cc = 4/(

√
3 a2c). For example, cc = 2.2 × 1022 cm−3 for AlxGa1−xAs in the entire composition

range 0 ≤ x ≤ 1 since the lattice constant does not vary significantly, and cc = 4.2 × 1022 cm−3 for
wurtzite MgxZn1−xO [985]. In a random alloy, the probability p(N ) to find exactly N Ga atoms in a
given volume V (with a total of ccV cations) is given by the binomial distribution
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(a) (b)

Fig. 10.15 a Spectral width of the photoluminescence from CdSxSe1−x alloys. Solid line is theory according to (10.30).
Adapted from [983]. (b) Spectral width of the bound exciton recombination in AlxGa1−xAs with various Al content
within the direct-bandgap regime. Solid line is (10.30) with (10.28), dashed line with pre-factor 4π/3 instead of 10 π.
Adapted from [987]

p(N ) =
(
cc V
N

)
xN (1 − x)ccV−N . (10.27)

The sampling volume for a luminescence event is the exciton volume (cf. (9.51)) that is given for the
free-exciton (in 1s hydrogen state) as [983, 986]

Vex = 10 π a3X = 10 π

(
m0

m∗
r

εs aB

)3

. (10.28)

One should note that due to the variation of the involved material parameters Vex depends itself on
x . In GaAs there are about 1.2 × 106 cations in the exciton volume. In AlxGa1−xAs, there are on
average xccVex Al atoms in the exciton volume. The fluctuation is given by the standard deviation of
the binomial distribution [986]

σ2
x = x (1 − x)

cc Vex
. (10.29)

The corresponding energetic broadening (full width at half-maximum) of the spectral line is given by
�E = 2.36σ with

σ = ∂Eg

∂x
σx = ∂Eg

∂x

√
x (1 − x)

ccVex
. (10.30)

We note that instead of the quantum mechanically correct factor 10 π [983, 986], often the factor 4π/3
[984] is used, resulting in larger theoretical broadening.

Experimental data for CdxSe1−x in Fig. 10.15a are consistent with (10.30). The theoretical depen-
dence (10.30) is shown in Fig. 10.15b also for AlxGa1−xAs together with experimental data and found
to disagree [987]. Since the exciton volume is much smaller (cf. Sect. 9.7.6) than in AlxGa1−xAs, alloy
broadening in MgxZn1−xO is much larger for a given for given x .

The spectral broadening due to alloy disordermasks the fine structure of recombination lines near the
band edge present for binary semiconductors. Often for all temperatures only a single recombination
line appears for alloys. Spectra for three different MgxZn1−xO alloys are shown in Fig. 10.16a. The
increasing inhomogeneous broadening is obvious, causing a single peak for x > 0.03. The temperature
dependence of the peak positions is shown in Fig. 10.17 for the same samples. For x = 0.005 the bound
exciton (Al-donor) (D0,X) and free exciton (XA) recombination lines can still be resolved despite
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(a) (b)

Fig. 10.16 a Photoluminescence spectra (T = 80K, scaled) of three MgxZn1−xO alloy layers on sapphire with three
different Mg-contents, x = 0.005, x = 0.03, and x = 0.06 as labeled. The energy positions of (D0,X) and XA peaks
are marked. Adapted from [977]. b Peak energy of the photoluminescence spectrum (T = 2K) of ZnO (I6-line, star)
and various MgxZn1−xO alloys (circles). For x ≤ 0.03 (filled circles) the (D0,X) recombination peak (Al donor) can be
spectrally separated from the free exciton (XA) recombination. For the samples with higher Mg content (empty circles)
a single recombination peak is present at all temperatures. The dashed line is a linear least square fit for the alloys with
0 ≤ x ≤ 0.03, showing that also for x > 0.03 the low temperature recombination peak is due to donor-bound excitons.
Adapted from [988]

Fig. 10.17 Temperature dependence of the shift of energy position of (D0,X) and XA photoluminescence peak in
MgxZn1−xO alloys with three different Mg-contents, (a) x = 0.005, (b) x = 0.03, (c) x = 0.06. The energy positions
are given relative to the low temperature position of the respective (D0,X) peaks. Adapted from [977]

the inhomogeneous broadening of σ = 2.6meV. At low temperature the luminescence intensity is
dominated by (D0,X) recombination, at room temperature by free exciton (XA) recombination. Both
peaks are present at low temperatures and exhibit a red-shift with increasing temperatures due to the
shrinking of the band gap (Fig. 10.17a). The (D0,X) peak vanishes at about 180K due to ionization of
the excitons from the donors (Q ≈ 15meV, similar as in pure ZnO).

For larger Mg-content of x = 0.03 the two peaks can still mostly be separated (σ = 6.0meV).
The (D0,X) energy position shows a small dip (about 2meV) due to exciton localization in the alloy
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Fig. 10.18 Schematic
representation of 1LO
exciton scattering of an
exciton at K �= 0 to an
intermediate state with
K ≈ 0 and subsequent
radiative decay. �ω
represents the phonon
energy and E1 the energy
of the emitted photon

K
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n=2

n=3

h ph

E1
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disorder potential (arrow in Fig. 10.17b). At low temperatures excitons are frozen in local potential
minima and have a non-thermal (non-Boltzmann) population. With increasing temperature they can
overcome energy barriers and thermalize, leading to a shift of the recombination peak to lower energies.
Further increase of temperature populates higher levels and leads to a shift of the recombination peak to
higher energies. Superimposed is the red-shift due to the band gap shrinkage. This so-called “S”-shape
effect of E(T ) is discussed in Sect. 12.4 in detail with regard to exciton localization in a quantum well
disorder potential.

For x = 0.06 only a single photoluminescence peak is observed for the alloy (σ = 8.5meV). The
(D0,X) peak is the dominant for the MgxZn1−xO alloys at low temperatures even in the presence of
large alloy broadening (Fig. 10.16(b)). The peak changes its nature from (D0,X) at low temperatures
to XA at room temperature. In between, first exciton thermalization (red-shift) in the disorder potential
and subsequently exciton ionization from the donors (blue-shift, arrow in Fig. 10.17c) are observed
[977]. Such exciton ionization from impurities has also been observed for (Al,Ga)N:Si [628, 989].

10.4 Phonon Replica

The momentum selection rule for free-exciton recombination allows only excitons with K ≈ 0 (for
K, cf. (9.49)) to recombine. The fine structure of this recombination is connected to polariton effects
(cf. Sect. 9.7.8). Excitons with large K can recombine if a phonon or several phonons are involved
[990] that provide the necessary momentum q = K1 − K2, with K1 (K2) being the wavevector of
the initial (intermediate) exciton state (Fig. 10.18). A so-called zero-phonon line at energy E0 is then
accompanied by phonon replica below E0 at integer multiples (at low temperature) of the (LO) phonon
energy �ωph

En = E0 − n �ωph . (10.31)

Phonon replicas have been observed in many polar semiconductors such as CdS [991] and ZnSe [992].
A sequence of such phonon replica, as observed in GaN [993], is depicted in Fig. 10.19a.

The lineshape of the n-th phonon-assisted line is proportional to the exciton population at a given
excess energy, which is proportional to the density of states and the Boltzmann distribution func-
tion [994]

In(Eex) ∝ √
Eex exp

(
− Eex

kT

)
wn(Eex) . (10.32)
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Fig. 10.19 a Photoluminescence spectrum of GaN (grown on SiC substrate) at T = 50K. In addition to emission from
free (FE) and bound (BE) excitons several phonon replica (labeled as 1LO–5LO) are observed. Vertical dashed lines
indicate energy positions of multiple LO-phonon energies (�ωLO = 92meV) below the FE peak. Adapted from [993].
b Photoluminescence spectrum of 1LO phonon-assisted recombination peak at T = 103K (from the data of Fig. 10.5).
Data points (dots) and lineshape fit (solid line) according to (10.32) with the parameters L1 = 0.9 and E1 = 3.2955eV
(and background)

Here, Eex represents the exciton kinetic energy. The factor wn(Eex) accounts for the q-dependence of
the matrix element. It is typically expressed as

wn(Eex) ∝ ELn
ex . (10.33)

Accordingly, as temperature dependent refinement of (10.31), the energy separation�En of the energy
of the peak maximum of phonon replica from E0 is given by

�En = En − E0 = −n �ωph +
(
Ln + 1

2

)
kT . (10.34)

It is found theoretically that L1 = 1 and L2 =0 [994]. These relations are approximately fulfilled for
GaN [995]. A lineshape fit for the 1LO phonon-assisted transition in ZnO is shown in Fig. 10.19b.

In Fig. 10.20a the ‘green band’ emission of ZnO is shown as presented in [996]. This band is mostly
attributed to a Cu impurity; recently, evidence has grown from isotope decay and annealing studies that
it is related to the zinc vacancy [997] (Fig. 10.20b). The zero phonon line is followed by many replica
with a maximum at about 6 LO phonons. The intensity IN of the N -th replica is given by [998, 999]

IN ∝ exp(−S)
SN

N ! , (10.35)

where S is the so-called Huang–Rhys parameter. In [997], a coupling parameter of S = 6.9 has been
determined.

Equation (10.35) is obtained from the consideration of transitions in the configuration diagram [998,
1000] (Fig. 10.21), using the Born–Oppenheimer approximation. Here the electronic wavefunctions
are separated from the vibrational wavefunctions, leading to the Franck–Condon principle, that optical
transitions occur with the positions of the nuclei fixed and thus vertical in the configuration diagram
Fig. 10.21. Assuming low temperatures, only the lowest state is (partially) occupied. The Huang–Rhys
parameter, the average number of phonons involved in the transition, is related to the displacement
δq = q1 − q0 of the two configurations
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Fig. 10.20 a Luminescence spectrum of ZnO in the visible. The arrow denotes the zero-phonon line at 2.8590eV. The
numbers of the phonon replica are labeled. Adapted from [996]. b Luminescence spectra (solid lines) of a ZnO bulk
crystal before (‘untreated’) and after annealing in O2 atmosphere at T = 1073K. After annealing in Zn atmosphere at
the same temperature, the green band disappears again (dashed line). From [997]

S = C δq2

2 �ωph
, (10.36)

where C is the ‘spring constant’ of the parabola, C = d2E/dq2.
For small S � 1, we are in the weak coupling regime and the zero-phonon line is the strongest. In

the strong coupling regime, S > 1, the maximum is (red-) shifted from the zero-phonon line. We note
that in absorption, phonon replica occur on the high-energy side of the zero-phonon absorption. For
large S the peak intensities are close to a Gaussian. The correspondence of emission and absorption is
nicely seen for excitons on isoelectronic oxygen traps in ZnTe [1001]. The oxygen is on substitutional
Te site. Up to seven phonon replica are visible in Fig. 10.22 around the zero-phonon or A-line with a

(a) q0 q1

E0
q

E

E1

h
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0

E
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4
8
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Fig. 10.21 a Configuration diagram of two states that differ in their configuration coordinate by δq = q1 − q0. Both
are coupled to phonons of energy �ω. The absorption maximum (solid vertical line) and emission maximum (dashed
vertical line) are shifted with respect to the zero-phonon line (dotted vertical line) with energy E1−E0. The Huang–Rhys
parameter is S ∼ 4. (b) Intensity of zero-phonon line (‘ZPL’) and phonon replica (10.35) for emission and absorption
processes with different values of the Huang–Rhys parameter S as labeled
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Fig. 10.22 Photoluminescence (solid line) and absorption (dashed line) spectra of excitons bound to substitutional
oxygen in ZnTe at T = 20K. The energy position is relative to the A-line at 1.9860eV. The vertical dashed lines have a
separation of 25.9meV. Adapted from [1001]

separation of about 26meV, the optical phonon energy in ZnTe. The Huang-Rhys parameter is about
3–4. Other peaks are due to acoustic phonons.

10.5 Self-Absorption

Luminescence that is emitted within the semiconductor can be (re-)absorbed before it may reach the
surface and can leave the crystal. This effect is called self-absorption. It is particularly strong for
radiation with an energy where the absorption α(�ω) is high, i.e. above the band gap of a direct
semiconductor. Similarly to the penetration depth 1/α for radiation entering the crystal, emission
approximately occurs only from a layer of such thickness. For typical values of α in the range of
105 cm−1, the ‘skin’ of the semiconductor that emits light with energy above the band gap is 100nm.
For light at the low energy side of the band gap or with energy within the band gap (deep levels), the
emission depth can be much larger.

After re-absorption, the energy has another chance to relax non-radiatively, thus reducing the quan-
tum efficiency. Alternatively it can be reemitted, either at the same energy or at a lower energy. Possibly
several re-absorption processes occur before a photon eventually leaves the semiconductor (‘photon
recycling’). Such processes are important in LED structures where photon extraction has to be opti-
mized (Sect. 23.3.4). Emission on phonon replica (Sect. 10.4) is red-shifted from the energy range of
strong absorption and thus suffers no (or only little) self-absorption. This can be seen from the spec-
trum of a thick ZnO crystal excited homogeneously (via two-photon absorption with a red Ruby laser),
Fig. 10.23. The zero phonon line (at EX), originating from the ≈100nm skin of the samples and being
by far the strongest in thin films (Fig. 10.5), is practically absent and emission on the phonon replica
collected from the entire volume dominates the spectrum.

10.6 Donor–Acceptor Pair Transitions

Optical transitions can occur between neutral donors and acceptors. The (spatially indirect) donor–
acceptor pair (DAP) recombination is present in (partially) compensated semiconductors and follows
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Fig. 10.23 Photoluminescence
spectrum (at T = 55K)
from bulk ZnO excited
homogeneously via
two-photon excitation by a
Q-switched ruby laser
(pulse width 40ns).
Adapted from [1002]

the scheme D0A0 → D+A−eh → D+A− + γ, where γ is a photon with the energy �ω. The energy
of the emitted photon is given by

�ω = Eg − Eb
D − Eb

A + 1

4πε0

e2

εrR
, (10.37)

where R is the distance between the donor and the acceptor for a specific pair. Since R is discrete, the
DAP recombination spectrum consists of several discrete lines. If the donor and acceptor occupy the
same sublattice, e.g.. O and C both substituting P sites in GaP, the spatial distance of the donor and
acceptor is R(n) = a0

√
n/2, where a0 is the lattice constant and n is an integer. However, for certain

‘magic’ numbers n = 14, 30, 46, . . . no lattice points exist and therefore the corresponding lines are
missing (labeled ‘G’ in Fig. 10.24). No such gaps exist in DA spectra where donors and acceptors
occupy different sublattices, e.g. GaP:O,Zn (see also Fig. 10.24). In this case, the spatial separation is
given by R(n) = a0

√
n/2 − 5/16. If significant broadening is present, the lines are washed out and a

donor–acceptor pair band forms.

10.7 Inner-Impurity Recombination

The transitions of electrons between different states of an impurity level can be nonradiative or radiative.
As an example, the radiative transition of electrons in the Fe2+ state in InP 5T2 → 5E (Fig. 10.25) and
its fine structure were observed first in [1005] at around 0.35eV.

Certain defects, also termed ‘color centers’, have been investigated towards their ability to act as
efficient single photon source. If a single defect is optically excited, it can emit a photon. However, it
cannot be excited further. Also, it cannot emit another photon before it has been excited again. This can
be measured through the correlation function for the time difference of emitted photons going to zero
for zero time difference. A popular example of such center is the NV center in diamond, the complex of
a vacancy and a nitrogen impurity [1006, 1007]. The emission rate saturates at about 2×105 photons/s
(pick up with microscope objective). The sensitivity of the spectrum to magnetic fields makes the NV
center a nanoscopic magnetic field sensor [1008]. Also the spins on the center are fairly isolated and
can be manipulated coherently.

10.8 Auger Recombination

In competition with the radiative, bimolecular recombination is the Auger recombination (Fig. 10.26).
In the Auger process, the energy that is released during the recombination of an electron and hole is
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Fig. 10.24 Transition energies in GaP (T = 1.6K) of the donor–acceptor recombination involving the deep oxygen
donor and C, Zn, and Cd acceptors, respectively. The lines follow (10.37) for EGaP
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Fig. 10.25 a Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge states at low
temperature. All energies are given in eV. The arrow denotes the optical transition from an excited Fe2+ state to the
Fe2+ ground state. (b) Photoluminescence spectrum (at T = 4.2K) of InP:Fe sample with [Fe]=5× 1016 cm−3. Part (b)
adapted from [1004]

not emitted with a photon but, instead, transferred to a third particle. This can be an electron (eeh,
Fig. 10.26a) or a hole (hhe, Fig. 10.26b). The energy is eventually transferred nonradiatively from the
hot third carrier via phonon emission to the lattice. The probability for such process is ∝ n2 p if two
electrons are involved and ∝ np2 if two holes are involved. The Auger process is a three-particle
process and becomes likely for high carrier density, either through doping, in the presence of many
excess carriers, or in semiconductors with small band gap. Auger recombination is the inverse of
the impact ionization (cf. Sect. 8.4.4). Phonon-assisted Auger recombination relaxes the momentum
conservation rule for the involved charge carriers at the cost of an additional particle being involved in
the scattering process. It has been pointed out that this process is dominating in bulk material [1010,
1011] and quantum wells [1012].

In thermodynamic equilibrium the rates for Auger recombination and thermal Auger generation
must be equal, thus
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Fig. 10.26 Schematic
representation of Auger
recombination. An electron
recombines with a hole and
transfers the energy to a
another electron in the
conduction band, b another
electron in the valence band
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Table 10.3 Auger recombination coefficients for some semiconductors. Data for InSb from [1013], SiC from [947],
others from [948]

material Cn (cm6/s) Cp (cm6/s)

4H-SiC 5 ×10−31 2 ×10−31

Si, Ge 2.8 ×10−31 9.9 ×10−32

GaAs, InP 5.0 ×10−30 3.0 ×10−30

InSb 1.2 × 10−26

G th = Cn n
2
0 p0 + Cp n0 p

2
0 , (10.38)

where Cn and Cp denote the Auger recombination coefficients. The equation for the dynamics in the
presence of excess carriers (if solely Auger recombination is present) is given as

∂ δn

∂t
= G th − R = −Cn (n2 p − n20 p0) − Cp (n p2 − n0 p

2
0) . (10.39)

The Auger recombination rate typically used in SRH kinetics is

rAuger = (Cn n + Cp p) (np − n0 p0) . (10.40)

Typical values for the Auger recombination coefficients are given in Table10.3.
In Fig. 10.27a the electron lifetime in heavily p-doped (In,Ga)As (lattice matched to InP) is shown

[1014]. It follows τ−1
n = Cp N 2

A as expected from (10.39) for p-type material. The Auger process in
silicon has been discussed in detail [1015]. In Fig. 10.27b experimental data for n-type and p-type Si
are summarized. Auger theory can predict the lifetimes in n-type material. The predicted rate in p-type
material is too small, thus a phonon-assisted process is evoked [1015].
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(a) (b)

Fig. 10.27 a Experimental values of the electron lifetime in heavily p-doped (In,Ga)As on InP at room temperature.
The dashed lines show dependencies of Auger (∝ N−2

A , Cp = 8.1 × 10−29 cm−6 s−1) and band-band recombination
(∝ N−1

A , B = 1.43× 10−10 cm−3 s−1). Adapted from [1014]. (b) Experimental Auger lifetimes in p-type (squares) and
n-type (circles) silicon at 300K. The dashed (solid) line is theory for p-type (n-type) material. Adapted from [1015]

10.9 Band–Impurity Recombination

A very important recombination process is the capture of carriers by impurities. This process is in
competition with all other recombination processes, e.g. the radiative recombination and the Auger
mechanism. The band–impurity recombination is the inverse process to the carrier release from impu-
rities and intimately related to carriers statistics (Chap. 7). It is particularly important at low carrier
densities, for high dopant concentration and in indirect semiconductors since for these the bimolecular
recombination is slow. This process is generally considered to be non-radiative since no photons close
to the band edge are emitted.4

10.9.1 Shockley–Read–Hall Kinetics

The theory of capture on and recombination involving impurities is called Shockley–Read–Hall (SRH)
kinetics [942]. An example of radiative band–impurity recombination (of the type shown in Fig. 10.28a)
is shown in Fig. 10.8 for the (e,A0) recombination at the carbon acceptor in GaAs.

We consider electron traps [1016] (see Fig. 10.28) with a concentration Nt with an energy level Et .
In thermodynamic equilibrium they have an electron population

f 0t = 1

exp
( Et−EF

kT

) + 1
, (10.41)

where ft is the nonequilibrium population of the trap. Then the capture rate rc is proportional to the
unoccupied traps and the electron concentration, rc ∝ nNt(1 − ft). The proportionality factor has the
form vthσn, where vth is the thermal velocity vth = √

3kT/m∗ ≈ 107 cm/s and σn is the capture cross
section that is of atomic scale, typically ∼ 10−15cm2. The capture cross section can be related to the
optical absorption cross section [588, 589].

In order tomake the following calculationmore transparent,we put the effective-mass ratio
√
m0/m∗

into σ in the following and thus have the same thermal velocity vth = √
3kT/m0 for electrons and

4Depending on the energetic depth of the trap, mid or far infrared photons can be emitted.



326 10 Recombination

holes. The capture rate of electrons is

rc = vth σn n Nt (1 − ft) . (10.42)

The emission rate from filled traps is
gc = en Nt ft , (10.43)

where en denotes the emission probability. In a similar way, the emission and capture rates for holes
can be written:

rv = vth σp p Nt ft (10.44)

gv = ep Nt (1 − ft) . (10.45)

In thermodynamical equilibrium, capture and generation rates are equal, i.e. rc = gc and rv = gv.
Thus, the emission probability is

en = vth σn n0
1 − f 0t

f 0t
. (10.46)

Using 1− f 0t
f 0t

= exp
( Et−EF

kT

)
, (7.10) and (7.11) the emission probabilities can be written as

en = vth σn nt (10.47)

ep = vth σp pt , (10.48)

with

nt = NC exp

(
Et − EC

kT

)
(10.49)

pt = NV exp

(
− Et − EV

kT

)
. (10.50)

We note that nt pt = n0 p0 (cf. (7.15)).
The temperature dependence of the thermal velocity is ∝ T 1/2, the temperature dependence of the

band-edge density of states is∝ T 3/2 (7.8) and (7.9). Thus, the temperature dependence of the emission

(a) (b) (c) (d)

EC

EV

Et

Fig. 10.28 Band-to-impurity processes at an impuritywith one level (left: initial, right: final state in each part): a electron
capture (from conduction band), b electron emission (into conduction band), c hole capture (from valence band), d hole
emission (into valence band). The arrows indicate the transition of the electron
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rate en is (apart from the exponential term) ∝ T 2 if σ is temperature independent. Charge conservation
requires in nonequilibrium (and of course in equilibrium) rc − rv = gc − gv. From this we obtain the
population of the trap in nonequilibrium:

ft = σn n + σp pt
σn (n + nt) + σp (p + pt)

. (10.51)

The recombination rate rb−i of the band–impurity recombination is then

rb−i = −∂δn

∂t
= rc − gc (10.52)

= σn σp vth Nt

σn (n + nt) + σp (p + pt)
(n p − n0 p0) .

Using the ‘lifetimes’

τn0 = (σn vth Nt)
−1 (10.53)

τp0 = (σp vth Nt)
−1 , (10.54)

this is typically written as

rb−i = 1

τp0 (n + nt) + τn0 (p + pt)
(n p − n0 p0) . (10.55)

For an n-type semiconductor the Fermi level is above Et and the traps are mostly full. Thus hole capture
is the dominating process. The equation for the dynamics simplifies to

∂δ p

∂t
= − p − p0

τp0
. (10.56)

Thus, an exponential decay with minority-carrier lifetime τp0 (or τn0 for p-type material) occurs.
A recombination center is most effective when it is close to the middle of the band gap (midgap

level). The condition ∂rb−i/∂Et = 0 leads to the trap energy Emax
t with the maximum recombination

rate being located at

Emax
t = EC + EV

2
− kT ln

(
σn NC

σp NV

)
. (10.57)

The curvature ∂2rb−i/∂E2
t at E

max
t is proportional to −(np − n0 p0) and thus indeed is negative in the

presence of excess carriers. However, the maximum can be fairly broad.
The SRH kinetic presented here is valid for low densities of recombination centers. A more detailed

discussion and a more general model can be found in [1018].
A typical example for a recombination center is gold in silicon. The minority carrier lifetime

decreases from 2×10−7 s to 2×10−10 s upon increase of the Au concentration from 1014 to 1017 cm−3.
The incorporation of recombination centers is an important measure for the design of high-frequency
devices [1019]. Due to importance in silicon technology the recombination properties of many metals
in silicon have been investigated, in particular Fe-contamination and the role of FeB-complexes [1020–
1022].

A reduction inminority-carrier lifetimecan alsobe achievedby irradiationwith high-energyparticles
and the subsequent generation of point defects with energy levels at midgap.
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Fig. 10.29 Minority
carrier lifetime at room
temperature as a function
of majority carrier
concentration in n-type and
p-type silicon. The dashed
lines have the slopes N−1

and N−2. Data
from [1024]

In Fig. 10.29 various data on minority carrier lifetime in silicon are compiled. Over some doping
range, a dependence of the lifetime ∝ N−1 as in (10.54) prevails. For doping beyond the 1019 cm−3

range, Auger recombination (Sect. 10.8) with τ ∝ N−2 is dominant. A more detailed discussion can
be found in [1023, 1024]. Generally the lifetimes are temperature dependent [1025] as expected from
(10.52).

10.9.2 Multilevel Traps

Traps with multiple levels in the band gap have generally similar but more complicated dynamics as
compared to single-level traps. Lifetimes are an average over negatively and positively charged states
of the trap.

10.10 ABC Model

Summarizing the results on band-impurity recombination (Sect. 10.9), bimolecular recombination
(Sect. 10.2) and Auger recombination (Sect. 10.8), the total recombination rate R can be written sim-
plified as

R = A n + B n2 + C n3 , (10.58)

where A is the coefficient for the band-impurity recombination, B the bimolecular recombination
coefficient and C the Auger recombination coefficient; n denotes the carrier density. This model is
known as the ‘ABC’ model. It can be refined separating effects of electrons and holes and including
higher terms.Often suchmodel is used to investigate recombination in devices as a function of injection,
e.g. [1026, 1027].

The internal radiative quantum efficiency ηint is given by ratio of the radiative recombination rate
and the total recombination rate,
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ηint = B n2

A n + B n2 + C n3
= B n

A + B n + C n2
. (10.59)

10.11 Field Effect

The emission of electrons from a trap is thermally activated with an ionization energy Ei = EC− Et . If
the trap is in a strong electric field E , the emission probability can change. An acceptor-like trap after
removal of the electron is neutral and its potential is short range. A donor has a long-range Coulomb
potential after ionization. In an electric field, these potentials are modified as visualized in Fig. 10.30.
Various additional processes can now occur.

10.11.1 Thermally Activated Emission

For the δ-like potential the ionization energy remains unchanged. For the Coulomb potential the barrier
in the field direction is lowered by

�Ei = e

√
e

π ε0 εr

√
E . (10.60)

The emission rate en is increased in the field by exp(�Ei/kT ). This effect is called the Poole–Frenkel
effect [1028] and can be quite important. For silicon and E = 2 × 105 V/cm and �Ei = 100meV a
50-fold increase of the emission rate at room temperature is expected. As an example the Poole–Frenkel
effect for the electron emission from (neutral) interstitial boron in silicon (B0

i → B+
i + e−) is shown

in Fig. 10.31, following the enhancement of en ∝ exp(
√
E). The extrapolation to E = 0 agrees with

the EPR result [275, 1029].5

10.11.2 Direct Tunneling

Carriers can tunnel from the trap level through the barrier in the field direction into the conduction band.
This process is temperature independent. The transmission factor of a barrier is (in WKB approxima-
tion) proportional to exp[−(2/�)

∫ √
2m [V (x) − E] dE]. The emission probability for a triangular

Fig. 10.30 Field effect at
a a δ-like potential and b a
Coulomb potential

Ei

Ei

(a) (b)

5The slope of the line in Fig. 10.31 is slightly smaller than expected from (10.60).
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Fig. 10.31 Field effect for
electron emission from
interstitial boron in silicon
(T = 65K). The filled
circles represent
experimental data from
DLTS, the data point
marked with an empty
circle is from EPR (zero
field). The line is a linear fit
and extrapolation. Adapted
from [1029]

103

102

110

010E
le

ct
ro

n 
em

is
si

on
 r

at
e 

e
(s

)
n

-1

0 50 100 150 200
E ( (V/cm) )1/2 1/2

Si:B

E (V/cm)

1042 103 2 1040 4 104

barrier is then

en = e E

4
√
2m∗Ei

exp

(
−4

√
2m∗ E3/2

i

3 e � E

)
. (10.61)

In the case of a Coulomb-like potential the argument of the exponent in (10.61) needs to be multiplied
by a factor 1 − (�Ei/Ei)

5/3 with �Ei from (10.60).

10.11.3 Assisted Tunneling

In a thermally assisted tunneling process the electron on the trap level is first excited to a virtual level
Et + Eph by phonon absorption and then tunnels out of the trap (photon-assisted tunneling). From the
energetically higher level the tunneling rate is higher. The probability is proportional to exp(Eph/kT ).
The additional energy can also be supplied by a photon (photon-assisted tunneling).

10.12 Recombination at Extended Defects

10.12.1 Surfaces

A surface (cmp. Chap.11) is typically a source of recombination, e.g. through midgap levels induced
by the break of crystal symmetry. The recombination at surfaces is modeled as a recombination current

js = −e S (ns − n0) , (10.62)

where ns is the carrier density at the surface and S is the so-called surface recombination velocity.
The surface recombination velocity for GaAs is shown in Fig. 10.32. For InP, if the surface Fermi

level is pinned close to midgap, the surface recombination velocity increases from ∼ 5× 103 cm/s for
a doping level of n ∼ 3 × 1015 cm−3 to ∼ 106 cm/s for a doping level of n ∼ 3 × 1018 cm−3 [1030].
For Si, the surface recombination rate depends on the treatment of the surface and lies in the range
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between 1–104 cm/s [1031, 1032]. The Si-SiO2 interface can exhibit S ≤ 0.5cm/s. Time-resolved
measurements and detailed modeling for Si have been reported in [1033].

The recombination velocity at surfaces can be reduced using suitable passivation schemes. Typically
inert layers or chemical treatments are used. Surface passivation can be accomplished in two fundamen-
tally different ways: Either the surface defect states themselves are removed or an internal electrical
field is established that screens excess charge carriers from the surface defects. Sulfur chemistry is a
popular treatment of GaAs surfaces. A review of the passivation schemes for III–V semiconductors
can be found in [1035].

10.12.2 Grain Boundaries

Grain boundaries can be a source of non-radiative recombination. This is technologically important for
solar cells made from polycrystalline silicon (cf. Sect. 22.4.6). The grain boundary can be understood
as an inner surface in the crystal. Modeling of recombination at a grain boundary can be done using
an interface recombination velocity [1036, 1037] or considering deep traps [1038]. The minority
carrier lifetime decreases with decreasing grain boundary area A (Fig. 10.33a). The carrier loss at
a grain boundary can be imaged directly via the efficiency of the collection of an electron beam
induced current (EBIC) as shown in Fig. 10.33b. The minority carrier lifetime is only unaffected when
the average distance to a grain boundary is much larger than the minority carrier diffusion length,√
A � LD, otherwise the entire grain volume is subject to non-radiative recombination.
The recombination velocity at grain boundaries can be reduced, similar to that at surfaces, using

suitable passivation schemes. A famous one is the chlorine treatment of polycrystalline CdTe used in
thin film solar cells [1041].

10.12.3 Dislocations

Also dislocations typically act as recombination centers, sometimes called carrier sinks. In Fig. 10.34
it can be seen that the minority carrier lifetime depends on the dislocation density nd and follows a
τ−1 ∝ nd law, as if each dislocation is a recombination center [1042]. The non-radiative recombination

GaAs

1016 1017 1018 1019

105

106

104

107

1015

-3

Fig. 10.32 Surface recombination velocity forGaAs as a function of n-type doping concentration.Different experimental
points correspond to different surface treatmentmethods.Dashed line is a guide to the eye. Experimental data from [1034]
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makes dislocations appear as ‘dark line defects’ in luminescence imaging [1043]. In [1044] also the
decrease of carrier lifetime around (misfit) dislocations has been imaged. The effect of dislocations on
the radiative recombination efficiency depends on the diffusion length [1044].

10.13 Excess-Carrier Profiles

In this section, some typical excess-carrier profiles (in one-dimensional geometry) are discussed that
arise from certain excitation conditions. The excess-carrier density �p (here holes in an n-type semi-
conductor, i.e. �p = pn − pn0 ) is determined by the diffusion equation (cf. (8.65a))

Dp
∂2�p

∂x2
= −G(x) + �p

τp
. (10.63)

(a) (b)

Fig. 10.33 a Minority carrier lifetime in (p-type) silicon as a function of grain boundary size. The dashed line has the
slope ∝ A. Data from [1039]. b Linescan of the electron beam induced current (EBIC) perpendicular to a single grain
boundary in silicon. The arrow denotes the position of the grain boundary. Compiled from [1040]

Fig. 10.34 Inverse
minority carrier lifetime in
n-type silicon (40�cm),
low resistivity Ge
(3–5�cm) and high
resistivity Ge
(30–40�cm). Data
from [1042]
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10.13.1 Generation at Surface

First, the generation of excess carriers in a semi-infinite piece of semiconductor shall occur only at the
surface at x = 0 (strong absorption limit). The generation is zero everywhere else and the excitation is
incorporated via the boundary condition�p(x = 0) = �p0. The general solution for the homogeneous
equation (10.63), i.e. G = 0, is

�p(x) = C1 exp

(
− x

Lp

)
+ C2 exp

(
x

Lp

)
, (10.64)

with the diffusion length Lp = √
Dpτp. Taking the boundary condition �p(x → ∞) = 0 the solution

is (C2 = 0)

�p(x) = �p0 exp

(
− x

Lp

)
. (10.65)

In order to connect �p0 with the total generation rate per unit area G tot, we calculate

G tot =
∞∫

0

�p(x)

τp
dx = �p0

Lp

τp
= �p0

√
Dp

τp
. (10.66)

If a slab of finite thickness d is considered, the boundary condition on the back surface comes into play.
Assuming a contact that extracts all excess charge carriers, �p(d) = 0. In conjunction with (10.64),
we find

�p(x) = �p0
2

[(
1 + coth

(
d

Lp

))
exp

(
− x

Lp

)

+
(
1 − coth

(
d

Lp

))
exp

(
x

Lp

)]
, (10.67)

with

G tot =
d∫

0

�p(x)

τp
dx = �p0

Lp

τp
tanh

(
d

2 Lp

)
. (10.68)

Generally, the excited electrons and holes diffuse into the bulk at different speed due to their different
diffusion length (or mobility). As consequence, a spatial separation of electrons and hole densities
occurswhich leads to an electric field, theDember field [1045–1047]. The illuminated surface becomes
positive compared to the dark case since Dn > Dp. A treatment of the non-neutral diffusion situation
is given in [1048]. As shown in Fig. 10.35, the non-equal electron and hole densities create locally
a non-zero charge density δρ and an associated potential δφ; for a silicon material parameters (ni =
1010 cm−3), the Dember voltage is calculated as VDem = δφ(0) = 1.84meV for a generation rate of
G = 2×1010/(cm2 s). Extensions of the theory have been given considering traps [1049] and the effect
of finite sample thickness and surface recombination [1050] (under certain conditions, the sign of the
field can be reverse).



334 10 Recombination

Fig. 10.35 Charge carrier
density profiles (in a
semi-infinite slab) for
electrons and holes as well
as their difference
p − n = δρ/e, as well as
the associated Dember
potential δφ. The ratio of
electron and hole mobility
in this model calculation
(using silicon material
parameters) was 5.
Adapted from [1048]

10.13.2 Generation in the Bulk

Now, a generation rate following (9.16), realistic for photodiodes and solar cells, is considered,

G(x) = G0 exp (−α x) , (10.69)

i.e. due to light absorption with the (wavelength-dependent) absorption coefficient α. The total gener-
ation rate is

G tot =
∞∫

0

G(x) dx = G0

α
. (10.70)

The total generation rate is equal to the number of photons per second�0 that enter the semiconductor.
The solution of (10.63) is the sum of the homogeneous solution (10.64) and a particular solution

that is given by
�p(x) = C exp (−α x) . (10.71)

The constant C is determined to be

C = G0 τp

1 − α2 L2
p

. (10.72)

Therefore, the solution is

�p(x) = C1 exp

(
− x

Lp

)
+ C2 exp

(
x

Lp

)
+ G0 τp

1 − α2 L2
p

exp (−α x) . (10.73)

Using again�p(x → ∞) = 0 (leading to C2 = 0) and a recombination velocity S at the front surface,
i.e.
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(a) (b)

Fig. 10.36 Excess carrier density profile (10.75) in a linear and b semi-logarithmic plot for S = 0 and S = ∞. Other
parameters are given in panel (a)

− e S �p0 = −e Dp
∂�p

∂x

∣∣∣∣
x=0

. (10.74)

The solution is given as

�p(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − S + α Dp

S + Dp/Lp
exp

(
− x

Lp

)]
. (10.75)

For vanishing surface recombination, S = 0, the solution is (Fig. 10.36)

�p(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − α Lp exp

(
− x

Lp

)]
. (10.76)

For αLp � 1, (10.65) is recovered. This dependence is the excess-carrier profile if the absorption is
strong, which is a tendency for short wavelengths. The current at the surface, j (x = 0) ∝ ∇�p, is
zero.

In the case of very strong surface recombination, S → ∞, (10.75) becomes

�p(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − exp

(
− x

Lp

)]
, (10.77)

with �p(0) = 0 (Fig. 10.36). The current at the surface is (Dp τp = L2
p)

j (x = 0) = −e D
∂�p

∂x

∣∣∣∣
x=0

= −e
G0 Lp

1 + α Lp
= −e�0

α Lp

1 + α Lp
. (10.78)
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