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Preface

Semiconductor electronics is commonplace in every household. Semiconductor devices have enabled
economically reasonable fiber-based optical communication, optical storage and high-frequency
amplification and have recently revolutionized photography, display technology and lighting. By now
solar energy harvesting with photovoltaics contributes a significant portion to the energy mix. Along
with these tremendous technological developments, semiconductors have changed the way we work,
communicate, entertain and think. The technological progress of semiconductor materials and devices
is evolving continuously with a large worldwide effort in human and monetary capital. For students,
semiconductors offer a rich and exciting field with a great tradition, offering diverse fundamental and
applied topics [1] and a bright future.

This book introduces students to semiconductor physics and semiconductor devices. It brings them
to the point where they can specialize and enter supervised laboratory research. It is based on the two
semester semiconductor physics course taught at Universität Leipzig in its Master of Science physics
curriculum. Since the book can be followed with little or no pre-existing knowledge in solid-state
physics and quantum mechanics, it is also suitable for undergraduate students. For the interested
reader many additional topics are included in the book that can be covered in subsequent, more
specialized courses. The material is selected to provide a balance between aspects of solid-state and
semiconductor physics, the concepts of various semiconductor devices and modern applications in
electronics and photonics.

The first semester contains the fundamentals of semiconductor physics (Part I, Chaps. 1–10) and
selected topics from Part II (Chaps. 11–20). Besides important aspects of solid-state physics such as
crystal structure, lattice vibrations and band structure, semiconductor specifics such as technologically
relevant materials and their properties, doping and electronic defects, recombination, surfaces, hetero-
and nanostructures are discussed. Semiconductors with electric polarization and magnetization are
introduced. The emphasis is put on inorganic semiconductors, but a brief introduction to organic
semiconductors is given in Chap. 18. Dielectric structures (Chap. 19) serve as mirrors, cavities and
microcavities and are a vital part of many semiconductor devices. Other sections give introductions to
2D materials (Chap. 13) and transparent conductive oxides (TCOs) (Chap. 20). The third part
(Part III—Chaps. 21–24) is dedicated to semiconductor applications and devices that are taught in the
second semester of the course. After a general and detailed discussion of various diode types and their
physical mechanisms, their applications in electrical circuits, photodetectors, solar cells,
light-emitting diodes and lasers are treated. Finally, bipolar and field-effect transistors including thin
film transistors are discussed.

In the present text of the fourth edition many passages have been revised and updated, e.g. lead
halide perovskites, dipole scattering, anisotropic dielectric function, valley polarization, Dember field,
new CMOS image sensors. A new chapter is devoted to 2D semiconductors and an appendix on
tight-binding theory has been added. The concept of topological properties now permeates the book;
it is introduced for mechanical vibrations in the diatomic linear chain model and appears in chapters
on band structure and photonic dielectric structures. Last but not least a few errors and misprints have
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been corrected. More than 300 additional references, some old and many brand new, have been
included (compared to the third edition) and doi's for most of them are provided for easy retrieval.
The references have been selected to (i) cover important historical and milestone papers, (ii) direct to
reviews and topical books for further reading and (iii) give access to original literature and up-to-date
research. In Fig. 1, a histogram of the references by year is shown. Roughly four phases of semi-
conductor physics and technology can be seen. Before the realization of the first transistor in 1947,
only a few publications are noteworthy. Then an intense phase of understanding the physics of
semiconductors and developing semiconductor technology and devices based on bulk semiconductors
(mostly Ge, Si, GaAs) followed. At the end of the 1970s, a new era began with the advent of quantum
wells and heterostructures, and later nanostructures (nanotubes, nanowires and quantum dots) and
new materials (e.g. organic semiconductors, nitrides or graphene). Another peak develops with
emerging topics such as 2D materials, topological insulators or novel amorphous semiconductors.

I would like to thank numerous colleagues for their various contributions to this book, in
alphabetical order (if no affiliation is given, at the time at Universität Leipzig): Gabriele Benndorf,
Klaus Bente, Rolf Böttcher, Matthias Brandt, Christian Czekalla, Christof Peter Dietrich, Pablo
Esquinazi, Heiko Frenzel, Volker Gottschalch, Helena Hilmer, Axel Hoffmann (TU Berlin), Alois
Krosty (Otto-von-Guericke Universität Magdeburg), Evgeny Krüger, Michael Lorenz, Stefan Müller,
Thomas Nobis, Rainer Pickenhain, Hans-Joachim Queisser (Max-Planck-Institut für
Festkörperforschung, Stuttgart), Bernd Rauschenbach, Bernd Rheinländer, Heidemarie Schmidt,
Mathias Schmidt, Rüdiger Schmidt-Grund, Matthias Schubert, Jan Sellmann, Oliver Stier (TU
Berlin), Chris Sturm, Florian Tendille (CNRS-CRHEA), Gerald Wagner, Eicke Weber (UC
Berkeley), Holger von Wenckstern, Michael Ziese and Gregor Zimmermann. This book has bene-
fitted from their comments, proof reading, experimental data and graphic material. Also, numerous
helpful comments from my students on my lectures and the previous editions of this book are
gratefully acknowledged.

I am also indebted to many other colleagues, in particular to (in alphabetical order) Gerhard
Abstreiter, Zhores Alferovy, Martin Allen, Levon Asryan, Günther Bauer, Manfred Bayer, Friedhelm
Bechstedt, Dieter Bimberg, Otto Breitenstein, Len Brillson, Fernando Briones, Immanuel Brosery,
Jean-Michel Chauveau, Jürgen Christen, Philippe De Mierry, Steve Durbin, Laurence Eaves, Klaus
Ellmer, Guy Feuillet, Elvira Fortunato, Ulrich Göseley, Alfred Forchel, Manus Hayne, Frank
Heinrichsdorff, Fritz Hennebergery, Detlev Heitmann, Robert Heitzy, Evamarie Hey-Hawkins, Detlef
Hommel, Evgeni Kaidashev, Eli Kapon, Nils Kirstaedter, Claus Klingshirn, Fred Kochy, Jörg
Kotthaus, Nikolai Ledentsov, Peter Littlewood, Dave Look, Axel Lorke, Anupam Madhukar, Jan

Fig. 1 Histogram of references in this book together with simplified fits visualizing major developments
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Meijer, Ingrid Mertig, Bruno Meyery, David Mowbray, Hisao Nakashima, Jörg Neugebauer, Michael
Oestreich, Louis Piper, Mats-Erik Pistol, Fred Pollaky, Emil V. Prodan, Volker Riedey, Bernd
Rosenow, Hiroyuki Sakaki, Lars Samuelson, Darrell Schlom, Vitali Shchukin, Maurice Skolnick,
Robert Suris, Volker Türck, Konrad Ungery, Victor Ustinov, Borge Vinter, Leonid Vorob’jev,
Richard Warburton, Alexander Weber, Peter Werner, Wolf Widdra, Ulrike Woggon, Roland
Zimmermann, Arthur Zrenner, Alex Zunger and Jesús Zúñiga-Pérez, with whom I have worked
closely, had enjoyable discussions with and who have posed questions that stimulated me. It is my
distinct privilege and joy that this list becomes longer as I pursue studies in semiconductor physics
but sadly the number of y-symbols increases too rapidly from edition to edition.

Leipzig, Germany Marius Grundmann
May 2020
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SAGB Small-angle grain boundary
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SEM Scanning electron microscopy
SET Single-electron transistor, single electron tunneling
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Chapter 1
Introduction

The proper conduct of science lies in the pursuit of Nature’s puzzles, wherever they
may lead.

J.M. Bishop [2]

Abstract Important dates and events in the history of semiconductors are chronologically listed, from
the early days (Volta, Seebeck and Faraday) to the latest achievements like the blue and white LED.
Many known and not so well known scientists are mentioned. Also a list of semiconductor related
Nobel prizes and their winners is given.

The historic development of semiconductor physics and technology began in the second half of the
19th century. Interesting discussions of the history of the physics and chemistry of semiconductors can
be found in [3–5]. The development of crystal growth is covered in [6]. The history of semiconductor
industry can be followed in [7, 8]. In [9] 141 pioneering papers on semiconductor devices are com-
piled. In 1947, the commercial realization of the transistor was the impetus to a fast-paced development
that created the electronics and photonics industries. Products founded on the basis of semiconductor
devices such as computers (CPUs, memories), optical-storage media (lasers for CD, DVD), communi-
cation infrastructure (lasers and photodetectors for optical-fiber technology, high frequency electronics
formobile communication), displays (thin film transistors, LEDs), projection (laser diodes) and general
lighting (LEDs) are commonplace. Thus, fundamental research on semiconductors and semiconductor
physics and its offspring in the form of devices has contributed largely to the development of modern
civilization and culture.

1.1 Timetable and Key Achievements

In this section important milestones in semiconductor physics and technology are listed.

1782
A. Volta—coins the phrase ‘semicoibente’ (semi-insulating) which was translated then into English as
‘semiconducting’ [10].
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Fig. 1.1 Current through a
silver–CuFeS2–silver
structure as a function of
the current through the
metal only, 1874. Data
points are for different
applied voltages.
Experimental data
from [24]

1821
T.J. Seebeck—discovery of thermopower (electrical phenomena upon temperature difference) inmetals
and PbS, FeS2, CuFeS2 [11, 12].

1833
M. Faraday—discovery of the temperature dependence of the conductivity of Ag2S (sulphuret of silver,
negative dR/dT ) [13].

1839
A.E. Becquerel1—photoelectric effect (production of a photocurrent when electrodes covered by cop-
per or silver halides salts (in an electrolyte) were illuminated by solar light) [14–17].

1834
J. Peltier—discovery of the Peltier effect (cooling by current) [18].

1873
W. Smith—discovery of photoconductivity in selenium [19, 20]. Early work on photoconductivity in
Se is reviewed in [21, 22].

1874
F. Braun2—discovery of rectification in metal–sulfide semiconductor contacts [24], e.g. for CuFeS2
and PbS. The current through a metal–semiconductor contact is nonlinear (as compared to that through
a metal, Fig. 1.1), i.e. a deviation from Ohm’s law. Braun’s structure is similar to a MSM diode.

1876
W.G. Adams and R.E. Day—discovery of the photovoltaic effect in selenium [25].
W. Siemens—large response from selenium photoconductor [26], made by winding two thin platinum
wires to the surface of a sheet ofmica, and then covering the surfacewith a thin film ofmolten selenium.
Resistance ratio between dark and illuminated by sunlight was larger than ten [26] and measured to
14.8 in [27].

1879
E.H. Hall—measurement of the transverse potential difference in a thin gold leaf on glass [28, 29].
Experiments were continued by his mentor H.A. Rowland [30]. A detailed account of the discovery of
the Hall efect is given in [31, 32].

1This is EdmondBecquerel; his sonHenri Becquerel received theNobel Prize in Physics for the discovery of radioactivity.
2F. Braun made his discoveries on metal–semiconductor contacts in Leipzig while a teacher at the Thomasschule zu
Leipzig [23]. He conducted his famous work on vacuum tubes later as a professor in Strasbourg, France.
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Fig. 1.2 Circuit diagram
for a radio receiver with a
point-contact diode (TJ).
Adapted from [34]

1883
Ch. Fritts—first solar cell, based on an gold/selenium rectifier [27]. The efficiency was below 1%.

1901
J.C. Bose—point contact detector for electromagnetic waves based on galena (PbS) [33]. At the time,
the term semiconductor was not introduced yet and Bose speaks about ‘substances of a certain class (...)
presenting a decreasing resistance to the passage of the electric current with an increasing impressed
electromotive force’.

1906
G.W. Pickard—rectifier based on point contact (cat’s whisker) diode on silicon [34–36]. Erroneously,
the rectifying effect was attributed to a thermal effect, however, the drawing of the ‘thermo-junction’
(TJ in Fig. 1.2) developed into the circuit symbol for a diode (cmp. Fig. 21.63a).

1907
H.J. Round—discovery of electroluminescence investigating yellow and blue light emission from
SiC [37].
K. Bädeker—preparation of metal (e.g. Cd, Cu) oxides and sulfides and also CuI from metal layers
using a vapor phase transport method [38]3. CuI is reported transparent (∼ 200nm thick films) with
a specific resistivity of ρ = 4.5 × 10−2 �cm, the first transparent conductor.4 Also CdO (films of
thickness 100–200nm) is reported to be highly conductive, ρ = 1.2 × 10−3 �cm, and orange-yellow
in color, the first reported TCO (transparent conductive oxide).

1909
K. Bädeker—discovery of doping. Controlled variation of the conductivity of CuI by dipping into
iodine solutions (e.g. in chloroform) of different concentrations [41].

1910
W.H. Eccles—negative differential resistance of contacts with galena (PbS), construction of crystal
oscillators5 [45].

3This work was conducted as Habilitation in the Physics Institute of Universität Leipzig. Bädeker became subsequently
professor in Jena and fell in WW I. His scientific contribution to semiconductor physics is discussed in [39, 40]
4CuI is actually a p-type transparent conductor; at that time the positive sign of the Hall effect [41, 42] could not be
interpreted as hole conduction yet.
5Historical remarks on Eccles’ contributions to radio technology can be found in [43, 44]
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Fig. 1.3 Laue images of ’regular’ (cubic) ZnS along three major crystallographic directions, directly visualizing their
4-, 3- and 2-fold symmetry. Adapted from [48]

Fig. 1.4 Sketch of a
field-effect transistor, 1926.
From [53]

1911
The term ‘Halbleiter’ (semiconductor) is introduced for the first time by J. Weiss [46] and J. Königs-
berger and J. Weiss [47]. Königsberger preferred the term ‘Variabler Leiter’ (variable conductor).

1912
M. von Laue—X-ray diffraction of bulk crystals including ZnS (Fig. 1.3) [48, 49].

1925
J.E. Lilienfeld6—proposal of the metal-semiconductor field-effect transistor (MESFET) [53], with
suggested copper sulfide thin film channel and aluminum gate.7 (Fig. 1.4). Lilienfeld was also awarded
patents for a depletion mode MOSFET [55] with proposed copper sulfide, copper oxide or lead oxide
channel and current amplification with nppn- and pnnp-transistors [56]. Due to the lack of other
publications of Lilienfeld on transistors, it is under discussion whether Lilienfeld just patented ideas
or also build working devices with mounting evidence for the latter [51, 54, 57].

1927
A. Schleede, H. Buggisch—synthesis of pure, stoichiometric PbS, influence of sulphur excess and
impurities [58].
A. Schleede, E. Körner—activation of luminescence of ZnS [59, 60].

6After obtaining his PhD in 1905 from the Friedrich-Wilhelms-Universität Berlin, Julius Edgar Lilienfeld joined the
Physics Department of Universität Leipzig and worked on gas liquefaction and with Lord Zeppelin on hydrogen-filled
blimps. In 1910 he became professor at the Universität Leipzig where he mainly researched on X-rays and vacuum tubes
[50]. To the surprise of his colleagues he left in 1926 to join a US industrial laboratory [51, 52].
7In [51] it is suggested that the device works as a npn transistor, in [54] it is suggested to be a JFET.
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(a) (b)

Fig. 1.5 a I–V characteristic of SiC/steel wire light emitting diode. The dotted curve is the flipped curve for negative
voltage (3rd quadrant). b Recording of current modulated (at 500Hz) LED on moving photographic plate. Adapted
from [65]

Fig. 1.6 First band
structure calculation from
Peierls (ξ = k a). Adapted
from [69]

1928
F. Bloch—quantum mechanics of electrons in a crystal lattice, ‘Bloch functions’ [61].
O.V. Losev—description of the light emitting diode8 (SiC) [65]; light emissionwas observed in forward
direction and close to breakdown (Fig. 1.5a). Also current modulation of LED light output was reported
(Fig. 1.5b) [65].

1929
R. Peierls—explanation of positive (anomalous) Hall effect with unoccupied electron states [66, 67].

1930
R. Peierls—first calculation of a band structure and band gap9 (Fig. 1.6) [69].

1931
W. Heisenberg—theory of hole (‘Löcher’) states [70].
R. de L. Kronig and W.G. Penney—properties of periodic potentials in solids [71].

8The historic role of Losev regarding the invention of the LED and oscillators is discussed in [62–64].
9Peierls performed this work at suggestion of W. Pauli at ETH Zürich. The mathematical problem of Schrödinger’s
equation with a sinusoidal potential had been already treated by M.J.O Strutt in 1928 [68]
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(a) (b)

Fig. 1.7 a Optical image of directionally solidified silicon. The lower part contains predominantly boron, the upper
part contains predominantly phosphorous. First the growth is porous and subsequently columnar. Adapted from [90].
b Spectral response of silicon pn-junction photoelement, 1940. The inset depicts schematically a Si slab with built-in
pn-junction formed during directed solidification as shown in panel (a). The arrow denotes the direction of solidification
(cmp. Fig. 4.6). Adapted from [89]

A.H. Wilson10—development of band-structure theory [74, 75].

1933
C.Wagner—excess (‘Elektronenüberschuss-Leitung’, n-type) and defect (‘Elektronen-Defektleitung’,
p-type) conduction [76–79]. Anion deficiency in ZnO causes conducting behavior [80].

1934
C. Zener—Zener tunneling [81].

1936
J. Frenkel—description of excitons [82].

1938
B. Davydov—theoretical prediction of rectification at pn-junction [83] and in Cu2O [84].
W. Schottky—theory of the boundary layer in metal–semiconductor contacts [85], being the basis for
Schottky contacts and field-effect transistors.
N.F. Mott—metal–semiconductor rectifier theory [86, 87].
R. Hilsch and R.W. Pohl—three-electrode crystal (KBr) [88].

1940
R.S. Ohl—Silicon-based photoeffect (solar cell, Fig. 1.7) [89] from a pn-junction formed within a slab
of polycrystalline Si fabricated with directed solidification due to different distribution coefficients of
p- and n-dopants (boron and phosphorus, cmp. Fig. 4.6b) (J. Scaff and H. Theurer) [90, 91].

10Wilson was theoretical physicist in Cambridge, who spent a sabbatical with Heisenberg in Leipzig and applied the
brand new field of quantum mechanics to issues of electrical conduction, first in metals and then in semiconductors.
When he returned to Cambridge,Wilson urged that attention be paid to germanium but, as he expressed it long afterward,
’the silence was deafening’ in response. He was told that devoting attention to semiconductors, those messy entities,
was likely to blight his career among physicists. He ignored these warnings and in 1939 brought out his famous book
’Semiconductors andMetals’ [72] which explained semiconductor properties, including the much-doubted phenomenon
of intrinsic semiconductivity, in terms of electronic energy bands. His academic career seems indeed to have been
blighted, because despite his great intellectual distinction, he was not promoted in Cambridge (he remained an assistant
professor year after year) [73]. Compare the remark of W. Pauli (p. 179)
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Fig. 1.8 Characteristics of
a silicon rectifier, 1941.
Adapted from [92]

1941
R.S. Ohl—Silicon rectifier with point contact [92, 93] (Fig. 1.8), building on work from G.W. Pickard
(1906) and using metallurgically refined and intentionally doped silicon (J. Scaff and H. Theurer) [90].

1942
K. Clusius, E. Holz and H. Welker—rectification in germanium [94].

1945
H. Welker—patents for JFET and MESFET [95].

1947
W. Shockley, J. Bardeen and W. Brattain fabricate the first transistor in the AT&T Bell Laboratories,
Holmdel, NJ in an effort to improve hearing aids [96].11 Strictly speaking the structure was a point-
contact transistor. A 50-µmwide slit was cut with a razor blade into gold foil over a plastic (insulating)
triangle and pressed with a spring on n-type germanium (Fig. 1.9a) [97]. The surface region of the
germanium is p-type due to surface states and represents an inversion layer. The two gold contacts
form emitter and collector, the large-area back contact of the germanium the base contact [98]. For the
first time, amplification was observed [99]. Later models use two close point contacts made from wires
with their tips cut into wedge shape (Fig. 1.9b) [98].12 More details about the history and development
of the semiconductor transistor can be found in [100], written on the occasion of the 50th anniversary
of its invention.

1948
W. Shockley—invention of the bipolar (junction) transistor [101].

1952
H. Welker—fabrication of III–V compound semiconductors13 [104–107].

11Subsequently, AT&T, under pressure from the US Justice Department’s antitrust division, licensed the transistor for
$25,000. This action initiated the rise of companies like Texas Instruments, Sony and Fairchild.
12The setup of Fig. 1.9b represents a common base circuit. In a modern bipolar transistor, current amplification in this
case is close to unity (Sect. 24.2.2). In the 1948 germanium transistor, the reversely biased collector contact is influenced
by the emitter current such that current amplification ∂ IC/∂ IE for constantUC was up to 2–3. Due to the collector voltage
being much larger than the emitter voltage, a power gain of ∼ 125 was reported [98].
13An early concept for III–V semiconductors was developed in [102, 103].
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(a) (b)

Fig. 1.9 a The first transistor, 1947 (length of side of wedge: 32mm). bCutawaymodel of a 1948 point contact transistor
(‘TypeA’) based on n-type bulkGe (n = 5×1014 cm−3) and common base circuit diagram. The surface region (∼ 100nm
depth) of the Ge is p-type due to surface states and represents an inversion layer. The two wires are made from phosphor
bronze. Adapted from [98]

W. Shockley—description of today’s version of the (J)FET [108].

1953
G.C. Dacey and I.M. Ross—first realization of a JFET [109].
D.M. Chapin, C.S. Fuller and G.L. Pearson—invention of the silicon solar cell at Bell Laboratories
[110]. A single 2cm2 photovoltaic cell from Si, Si:As with an ultrathin layer of Si:B, with about 6%
efficiency generated 5mW of electrical power.14 Previously existing solar cells based on selenium had
very low efficiency (< 0.5%).

1958
J.S. Kilby made the first integrated circuit at Texas Instruments. The simple 1.3MHz RC-oscillator
consisted of one transistor, three resistors and a capacitor on a 11 × 1.7mm2 Ge platelet (Fig. 1.10a).
J.S. Kilby filed in 1959 for aUS patent forminiaturized electronic circuits [111]. At practically the same
time R.N. Noyce from Fairchild Semiconductors, the predecessor of INTEL, invented the integrated
circuit on silicon using planar technology [112]. A detailed and (very) critical view on the invention
of the integrated circuit can be found in [113].
Figure 1.10b shows a flip-flop with four bipolar transistors and five resistors. Initially, the invention of
the integrated circuit15 met scepticism because of concerns regarding yield and the achievable quality
of the transistors and the other components (such as resistors and capacitors).

14A solar cell with 1W power cost $300 in 1956 ($3 in 2004). Initially, ‘solar batteries’ were only used for toys and were
looking for an application. H. Ziegler proposed the use in satellites in the ‘space race’ of the late 1950s.
15The two patents led to a decade-long legal battle between Fairchild Semiconductors and Texas Instruments. Eventually,
the US Court of Customs and Patent Appeals upheld R.N. Noyce’s claims on interconnection techniques but gave
J.S. Kilby and Texas Instruments credit for building the first working integrated circuit.
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(a) (b)

Fig. 1.10 a The first integrated circuit, 1958 (germanium, 11 × 1.7mm2). b The first planar integrated circuit, 1959
(silicon, diameter: 1.5mm)

Fig. 1.11 (a) Optical image of planar pnp silicon transistor (2N1613 [120]), 1959. The contacts are Al surfaces (not
bonded). (b) Housing of such transistor cut open

1959
J. Hoerni16 and R. Noyce—first realization of a planar transistor (in silicon) (Fig. 1.11) [115–119].

1960
D. Kahng and M.M. Atalla—first realization of a MOSFET [121, 122].

1962
The first semiconductor laser on GaAs basis at 77K at GE [123, 124] (Fig. 1.12) and at IBM [125] and
MIT [126].
First visible laser diode [127].17

1963
Proposal of a double heterostructure laser (DH laser) by Zh.I. Alferov [130, 131] and H. Kroemer [132,
133].
J.B. Gunn—discovery of the Gunn effect, the spontaneous microwave oscillations in GaAs and InP at
sufficiently large applied electric field (due to negative differential resistance) [134].

16The Swiss born Jean Hoerni also contributed $12000 for the building of the first school in the Karakoram Mountain
area in Pakistan and has continued to build schools in Pakistan and Afghanistan as described in [114].
17Remarks on the discovery and further development of the laser diode can be found in [128, 129].
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Fig. 1.12 Schematics of
GaAs-based laser diode.
The active layer is
highlighted in red.
Adapted from [124]

1966
C.A. Mead—proposal of the MESFET (‘Schottky Barrier Gate FET’) [135].

1967
Zh.I. Alferov—report of the first DH laser on the basis of Ga(As,P) at 77K [136, 137].
W.W. Hooper and W.I. Lehrer—first realization of a MESFET [138].

1968
DHlaser on thebasis ofGaAs/(Al,Ga)As at room temperature, independently developedbyZh.I.Alferov
[139] and I. Hayashi [140].
GaP:N LEDs with yellow-green emission (550nm) and 0.3% efficiency [141].

1968
SiC blue LED with efficiency of 0.005% [142].

1970
W.S. Boyle and G.E. Smith—invention of the charge coupled device (CCD) [143, 144].

1971
R.F. Kazarinov and R.A. Suris—proposal of the quantum cascade laser [145].

1975
R.S. Pengelly and J.A. Turner—first monolithic microwave integrated circuit (MMIC) (Fig. 1.13) [146]

1992
S. Nakamura—growth of high-quality group-III–nitride thin films [147], blue nitride heterostructure
LED with efficiency exceeding 10% (1995) [148] (Fig. 1.14a). Later the white LED was built by
combining a blue LED with yellow phosphors (Fig. 1.14b, c).
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Fig. 1.13 Equivalent circuit and optical image of first monolithic microwave integrated circuit (exhibiting gain (4.5 ±
0.9dB) in the frequency range 7.0–11.7GHz). Adapted from [146]

Fig. 1.14 a Blue LED (standard housing). 50W, 4000 lm, b warm white and c cold white LED (45 × 45mm2)

1994
J. Faist and F. Capasso—quantum cascade laser [149].
N. Kirstaedter, N.N. Ledentsov, Zh.I. Alferov and D. Bimberg—quantum dot laser [150].

2004
H. Hosono and T. Kamiya—thin film transistor (TFT) from amorphous oxide semiconductor [151].
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1.2 Nobel Prize Winners

Several Nobel Prizes18 have been awarded for discoveries and inventions in the field of semiconductor
physics (Fig. 1.15).

1909
Karl Ferdinand Braun
‘in recognition of his contributions to the development of wireless telegraphy’

1914
Max von Laue ‘for his discovery of the diffraction of X-rays by crystals’

1915
Sir William Henry Bragg
William Lawrence Bragg
‘for their services in the analysis of crystal structure by means of X-rays’

1946
Percy Williams Bridgman
‘for the invention of an apparatus to produce extremely high pressures, and for the discoveries he made
therewith in the field of high pressure physics’

1953
William Bradford Shockley
John Bardeen
Walter Houser Brattain
‘for their researches on semiconductors and their discovery of the transistor effect’

1973
Leo Esaki
‘for his experimental discoveries regarding tunneling phenomena in semiconductors’

1985
Klaus von Klitzing
‘for the discovery of the quantized Hall effect’

1998
Robert B. Laughlin
Horst L. Störmer
Daniel C. Tsui
‘for their discovery of a new form of quantum fluid with fractionally charged excitations’

2000
Zhores I. Alferov
Herbert Kroemer
‘for developing semiconductor heterostructures used in high-speed and optoelectronics’
Jack St. Clair Kilby
‘for his part in the invention of the integrated circuit’

2009
Willard S. Boyle
George E. Smith
‘for the invention of an imaging semiconductor circuit—the CCD sensor’

18www.nobel.se
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Fig. 1.15 Winners of Nobel Prize in Physics and year of award with great importance for semiconductor physics
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Fig. 1.15 (continued)

2010
Andre Geim
Konstantin Novoselov
‘for groundbreaking experiments regarding the two-dimensional material graphene’

2014
Isamu Akasaki
Hiroshi Amano
Shuji Nakamura
‘for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving
white light sources’

1.3 General Information

In Fig. 1.16, the periodic table of elements is shown.
InTable 1.1 the physical properties of various semiconductors are summarized.Data on semiconductors
can be found in [152–166].



1.3 General Information 15

Fig. 1.16 Periodic table of
elements. From [167]
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Table 1.1 Physical properties of various (bulk) semiconductors at room temperature. ‘S’ denotes the crystal structure
(d: diamond, w: wurtzite, zb: zincblende, ch: chalcopyrite, rs: rocksalt)

S a0 Eg m∗
e m∗

h ε0 nr μe μh

(nm) (eV) (cm2/Vs) (cm2/Vs)

C d 0.3567 5.45 (�) 5.5 2.42 2200 1600

Si d 0.5431 1.124 (X) 0.98 (ml) 0.16 (mlh) 11.7 3.44 1350 480

0.19 (mt ) 0.5 (mhh)

Ge d 0.5658 0.67 (L) 1.58 (ml) 0.04 (mlh) 16.3 4.00 3900 1900

0.08 (mt ) 0.3 (mhh)

α-Sn d 0.64892 0.08 (�) 0.02 2000 1000

3C-SiC zb 0.436 2.4 9.7 2.7 1000 50

4H-SiC w 0.3073 (a) 3.26 9.6 2.7 120

1.005 (c)

6H-SiC w 0.30806
(a)

3.101 10.2 2.7 1140 850

1.5117 (c)

AlN w 0.3111 (a) 6.2 8.5 3.32

0.4978 (c)

AlP zb 0.54625 2.43 (X) 0.13 9.8 3.0 80

AlAs zb 0.56605 2.16 (X) 0.5 0.49 (mlh) 12 1000 80

1.06
(mhh)

AlSb zb 0.61335 1.52 X) 0.11 0.39 11 3.4 200 300

GaN w 0.3189 (a) 3.4 (�) 0.2 0.8 12 2.4 1500

0.5185 (c)

GaP zb 0.54506 2.26 (�) 0.13 0.67 10 3.37 300 150

GaAs zb 0.56533 1.42 (�) 0.067 0.12 (mlh) 12.5 3.4 8500 400

0.5 (mhh)

GaSb zb 0.60954 0.72 (�) 0.045 0.39 15 3.9 5000 1000

InN w 0.3533 (a) 0.69 (�)

0.5693 (c)

InP zb 0.58686 1.35 (�) 0.07 0.4 12.1 3.37 4000 600

InAs zb 0.60584 0.36 (�) 0.028 0.33 12.5 3.42 22600 200

InSb zb 0.64788 0.18 (�) 0.013 0.18 18 3.75 100000 1700

ZnO w 0.325 (a) 3.4 (�) 0.24 0.59 6.5 2.2 220

0.5206 (c)

ZnS zb 0.54109 3.6 (�) 0.3 8.3 2.4 110

ZnSe zb 0.56686 2.58 (�) 0.17 8.1 2.89 600

ZnTe zb 0.61037 2.25 (�) 0.15 9.7 3.56

CdO rs 0.47 2.16

(continued)
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Table 1.1 (continued)

S a0 Eg m∗
e m∗

h ε0 nr μe μh

(nm) (eV) (cm2/Vs) (cm2/Vs)

CdS w 0.416 (a) 2.42 (�) 0.2 0.7 8.9 2.5 250

0.6756 (c)

CdSe zb 0.650 1.73 (�) 0.13 0.4 10.6 650

CdTe zb 0.64816 1.50 (�) 0.11 0.35 10.9 2.75 1050 100

S a0 Eg m∗
e m∗

h ε0 nr μe μh

(nm) (eV) (cm2/Vs) (cm2/Vs)

MgO rs 0.421 7.3

HgS zb 0.5852 2.0 (�) 50

HgSe zb 0.6084 −0.15 (�) 0.045 25 18500

HgTe zb 0.64616 −0.15 (�) 0.029 0.3 20 3.7 22000 100

PbS rs 0.5936 0.37 (L) 0.1 0.1 170 3.7 500 600

PbSe rs 0.6147 0.26 (L) 0.07 (mlh) 0.06 (mlh) 250 1800 930

0.039
(mhh)

0.03
(mhh)

PbTe rs 0.645 0.29 (L) 0.24 (mlh) 0.3 (mlh) 412 1400 1100

0.02
(mhh)

0.02
(mhh)

ZnSiP2 ch 0.54 (a) 2.96 (�) 0.07

1.0441 (c)

ZnGeP2 ch 0.5465 (a) 2.34 (�) 0.5

1.0771 (c)

ZnSnP2 ch 0.5651 (a) 1.66 (�)

1.1302 (c)

CuInS2 ch 0.523 (a) 1.53 (�)

1.113 (c)

CuGaS2 ch 0.5347 (a) 2.5 (�)

1.0474 (c)

CuInSe2 ch 0.5784 (a) 1.0 (�)

1.162 (c)

CuGaSe2 ch 0.5614 (a) 1.7 (�)

1.103 (c)



Part I
Fundamentals



Chapter 2
Bonds

Protons give an atom its identity, electrons its personality.

B. Bryson [168]

Abstract A little bit of solid state physics... The schemes of covalent, ionic and mixed bonds are
explained which are the basis for the atomic arrangement and crystal structures of semiconductors.

2.1 Introduction

The positively charged atomic nuclei and the electrons in the atomic shells of the atoms making up
the semiconductor (or any other solid) are in a binding state. Several mechanisms can lead to such
cohesiveness. First, we will discuss the homopolar, electron-pair or covalent bond, then the ionic bond
and subsequently themixed bond.Wewill only briefly touch on themetallic bond and the van-der-Waals
bond. A classical book on bonds in semiconductors is [169, 170].

2.2 Covalent Bonds

Covalent bonds are formed due to quantum-mechanical forces. The prototype covalent bond is the
bonding of the hydrogen molecule due to overlapping of the atomic shells. If several electron pairs are
involved, directional bonds can be formed in various spatial directions, eventually making up a solid.

2.2.1 Electron-Pair Bond

The covalent bond of two hydrogen atoms in a H2 molecule can lead to a reduction of the total energy
of the system, compared to two single (distant) atoms (Fig. 2.1). For fermions (electrons have spin
1/2) the two-particle wavefunction of the two (indistinguishable) electrons A and B must be antisym-
metric, i.e. �(A, B) = −�(B, A) (Pauli principle). The wavefunction of each electron has degrees
of freedom in real space (r) and spin (σ ), �(A) = �r(A)�σ (A). The two-particle wavefunction

© Springer Nature Switzerland AG 2021
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-51569-0_2
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A

S

(a) (b)

Fig. 2.1 Binding of the hydrogen molecule. a Dashed line: classical calculation (electrostatics), ‘S’, ‘A’: quantum-
mechanical calculation taking into account Pauli’s principle (S: symmetric orbital, antiparallel spins, A: antisymmetric
orbital, parallel spins). The distance of the nuclei (protons) is given in units of the Bohr radius aB = 0.053nm, the energy
is given in Rydberg units (13.6eV). b Schematic contour plots of the probability distribution (�∗�) for the S and A
states

of the molecule is nonseparable and has the form �(A, B) = �r(rA, rB)�σ (σA, σB). The binding
state has a wavefunction with a symmetric orbital and antiparallel spins, i.e. �r(rA, rB) = �r(rB, rA)
and �σ(σA, σB) = −�σ (σB, σA). The antisymmetric orbital with parallel spins is antibinding for all
distances of the nuclei (protons).

2.2.2 sp3 Bonds

Elements from group IV of the periodic system (C, Si, Ge, . . .) have 4 electrons on the outer shell.
Carbon has the electron configuration 1s22s22p2. For an octet configuration bonding to four other
electrons would be optimal (Fig. 2.2). This occurs through the mechanism of sp3 hybridization.1 First,
one electron of the ns2np2 configuration is brought into a p orbital, such that the outermost shell
contains one s, px , py , and pz orbital each (Fig. 2.3a–e). The energy necessary for this step is less than
regained in the subsequent formation of the covalent bonds. The four orbitals can be reconfigured into
four other wavefunctions, the sp3 hybrids (Figs. 2.3f–i), i.e.

�1 = (s + px + py + pz)/2 (2.1a)

�2 = (s + px − py − pz)/2 (2.1b)

�3 = (s − px + py − pz)/2 (2.1c)

�4 = (s − px − py + pz)/2 . (2.1d)

These orbitals have a directed form along tetrahedral directions. The binding energy (per atom) of the
covalent bond is large, for H–H 4.5eV, for C–C 3.6eV, for Si–Si 1.8eV, and for Ge–Ge 1.6eV. Such
energy is, for neutral atoms, comparable to the ionic bond, discussed in the next section.

1It is debated in femtosecond chemistrywhether the bond really forms in thisway.However, it is a picture of overwhelming
simplicity.
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Fig. 2.2 Octet, the favorite card game of the ‘Atomis’ (trying to reach octet configuration in a bond by swapping
wavefunctions). The bubble says: ‘Do you have a 2p?’. Reprinted with permission from [171], ©2002 Wiley-VCH
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Fig. 2.3 a s orbital, b, c, d px , py and pz orbital, e hybridization, f, g, h, i orbitals of the sp3 hybridization: f
(s+px+py+pz)/2, g) (s+px−py−pz)/2, h (s−px+py−pz)/2, (i) (s−px−py+pz)/2

In Fig. 2.4a the energy of a crystalmade up from silicon atoms is shown for various crystal structures2

or phases (cf. Chap. 3). We note that the crystal energy of further silicon structures are discussed in
[175]. The lattice constant with the lowest total energy determines the lattice spacing for each crystal
structure. The thermodynamically stable configuration is the phase with the lowest overall energy for
given external conditions.

The covalent bond of a group-IV atom to other group-IV atoms has a tetrahedral configuration
with electron-pair bonds, similar to the hydrogen molecule bond. In Fig. 2.4b the energy states of the
n = 2 shell for tetrahedrally bonded carbon (diamond, see Chap. 3.4.3) are shown as a function of

2Hexagonal diamond is wurtzite structure with identical atoms in the base.
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(a) (b)
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conduction band
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Fig. 2.4 a Energy per atom in silicon for various crystal structures. Adapted from [172]. b Electron energy levels in
(diamond structure) carbon as a function of the distance of the atomic nuclei (schematic). Adapted from [173, 174]

Fig. 2.5 Schematic of the origin of valence and conduction band from the atomic s and p orbitals. The band gap Eg and
the position of the Fermi level EF are indicated

Fig. 2.6 Schematic representation of a bonding and b antibinding p orbitals. The signs denote the phase of the wave-
function

the distance from the nuclei. First, the energetically sharp states become a band due to the overlap
and coupling of the atomic wavefunctions (cf. Sect. 6). The mixing of the states leads to the formation
of the filled lower valence band (binding states) and the empty upper conduction band (antibinding
states). This principle is valid for most semiconductors and is shown schematically also in Fig. 2.5. The
configuration of bonding and antibinding p orbitals is depicted schematically in Fig. 2.6. The bonding
and antibinding sp3 orbitals are depicted in Figs. 2.7a, b and 2.13. We note that the energy of the crystal
does not only depend on the distance from the nuclei but also on their geometric arrangement (crystal
structure).

Per carbon atom there are (in the second shell) four electrons and four unoccupied states, altogether
eight. These are redistributed into four states (filled) per atoms in the valence band and four states
per atom (empty) in the conduction band. Between the top of the valence band and the bottom of the
conduction band there is an energy gap, later called the band gap (cf. Chap.6).
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Fig. 2.7 Schematic representation of a, c bonding and b, d antibinding symmetric a, b and nonsymmetric c, d sp3

orbitals

(a) (b) (c)

Fig. 2.8 Schematic representation of the a σ and b π bonds in benzene, c schematic symbol for benzene

2.2.3 sp2 Bonds

Organic semiconductors (see Chap.18) are made up from carbon compounds. While for inorganic
semiconductors the covalent (or mixed, cf. Sect. 2.4) bond with sp3 hybridization is important, the
organic compounds are based on the sp2 hybridization. This bonding mechanism, which is present
in graphite, is stronger than the sp3-bond present in diamond. The prototype organic molecule is the
benzene ring3 (C6H6), shown in Fig. 2.8. The benzene ring is the building block for small organic
molecules and polymers.

In the benzene molecule neighboring carbon atoms are bonded within the ring plane via the binding
σ states of the sp2 orbitals (Fig. 2.8a). The wavefunctions (Fig. 2.9) are given by (2.2ac).

�1 = (s + √
2 px )/

√
3 (2.2a)

�2 = (s − √
1/2 px + √

3/2 py)/
√
3 (2.2b)

�3 = (s − √
1/2 px − √

3/2 py)/
√
3 . (2.2c)

The ‘remaining’ pz orbitals do not directly take part in the binding (Fig. 2.8b) and form bonding (π ,
filled) and antibinding (π*, empty) orbitals (see Fig. 2.10). The π and π* states are delocalized over
the ring. A more in-depth view considers the alternating ’staggered’ spin configuration around the ring
[177]. Between the highest populated molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) is typically an energy gap (Fig. 2.11). The antibinding σ ∗ orbitals are energetically
above the π* states.

3Supposedly, the chemist Friedrich August Kekulé von Stadonitz had a dream about dancing carbon molecules and thus
came up with the ring-like molecule structure [176].
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Fig. 2.9 a s orbital, b,c,d px , py and pz orbital, e hybridization, f,g,h orbitals of the sp2 hybridization: f (s+
√
2px )/

√
3,

g (s−√
1/2px + √

3/2py)/
√
3, h (s−√
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√
3

Fig. 2.10 Orbitals due to
binding and antibinding
configurations of various π

orbitals
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Fig. 2.11 Schematic
energy terms of the
benzene molecule
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2.3 Ionic Bonds

Ionic crystals are made up from positively and negatively charged ions. The heteropolar or ionic bond
is the consequence of the electrostatic attraction between the ions. However, the possibly repulsive
character of next neighbors has to be considered.

For I–VII compounds, e.g. LiF or NaCl, the shells of the singly charged ions are complete: Li: 1s22s1

→ Li+: 1s2, F: 1s22s22p5 → F−: 1s22s22p6. Compared to ions in a gas, a Na–Cl pair in the crystal
has a binding energy of 7.9eV that mostly stems from the electrostatic energy (Madelung energy).
Van-der-Waals forces (cf. Sect. 2.6) only contribute 1–2%. The ionization energy of Na is 5.14eV, the
electron affinity of Cl is 3.61eV. Thus the energy of the NaCl pair in the solid is 6.4 (=7.9−5.1+3.6) eV
smaller than in a gas of neutral atoms.

The interaction of two ions with distance vector ri j is due to the Coulomb interaction

UC
i j = qi q j

4πε0

1

ri j
= ± e2

4πε0

1

ri j
(2.3)

and a repulsive contribution due to the overlap of (complete) shells. This contribution is typically
approximated by a radially symmetric core potential

U core
i j = λ exp(−λ/ρ) (2.4)

that only acts on next neighbors. λ describes the strength of this interaction and ρ parameterizes its
range.

The distance of ions is denoted as ri j = pi j R, where R denotes the distance of next neighbors and
the pi j are suitable coefficients. The electrostatic interaction of an ion with all its neighbors is then
written as

UC
i j = −α

e2

4πε0

1

R
, (2.5)

where α is the Madelung constant. For an attractive interaction (as in a solid), α is positive. It is given
(calculated for the i-th ion) as

α =
∑

i j

±1

pi j
. (2.6)

For a one-dimensional chain α = 2 ln 2. For the rocksalt (NaCl) structure (cf. Sect. 3.4.1) it is α ≈
1.7476, for the CsCl structure (see Sect. 3.4.2) it is α ≈ 1.7627, and for the zincblende structure (see
Sect. 3.4.4) it is α ≈ 1.6381. This shows that ionic compounds prefer the NaCl or CsCl structure.
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(a) NaNa

NaNa Cl

Cl

Cl

Cl

(b) NaNa

NaNa Cl

Cl

Cl

Cl

Fig. 2.12 a Experimental and b theoretical charge distribution in the (100) plane of NaCl. The lowest contour in the
interstitial region corresponds to a charge density of 7e/nm3 and adjacent contours differ by

√
2. Differences are mainly

due to the fact that the X-ray experiments have been made at room temperature. Adapted from [178]

The charge distribution for NaCl is shown in Fig. 2.12. For tetragonal and orthorhombic structures, the
Madelung constant has been calculated in [179].

2.4 Mixed Bonds

The group-IV crystals are of perfectly covalent nature, the I–VII are almost exclusively ionically
bonded. For III–V (e.g. GaAs, InP) and II–VI compounds (e.g. CdS, ZnO) we have a mixed case.

The (screened) Coulomb potentials of the A and B atoms (in the AB compound) shall be denoted
VA and VB . The origin of the coordinate system is in the center of the A and B atom (i.e. for the
zincblende structure (cf. Sect. 3.4.4) at (1/8, 1/8, 1/8)a. The valence electrons then see the potential

Vcrystal =
∑

α

VA(r − rα) +
∑

β

VB(r − rβ) , (2.7)

where the sum α (β) runs over all A (B) atoms. This potential can be split into a symmetric (Vc,
covalent) and an antisymmetric (Vi, ionic) part (2.8b), i.e. Vcrystal = Vc + Vi

Vc = 1

2

{
∑

α

VA(r − rα) +
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) +
∑

β

VA(r − rβ)

⎫
⎬

⎭
(2.8a)

Vi = 1

2

{
∑

α

VA(r − rα) −
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) −
∑

β

VA(r − rβ)

⎫
⎬

⎭
. (2.8b)
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(a) (b)

Fig. 2.13 Schematic representation of a bonding and b antibinding sp3 orbitals. From [169]

For homopolar bonds Vi = 0 and the splitting between bonding and antibinding states is Eh, which
mainly depends on the bond length lAB (and the related overlap of atomic wavefunctions). In a partially
ionic bond the orbitals are not symmetric along A–B, but the center is shifted towards the more
electronegative material (Figs. 2.7c, d and 2.13).

The band splitting4 between the (highest) bonding and (lowest) antibinding state Eba is then writ-
ten as

Eba = Eh + iC , (2.9)

where C denotes the band splitting due to the ionic part of the potential and depends only on VA − VB .
C is proportional to the difference of the electronegativities X of the A and B atoms, C(A, B) =
5.75(XA − XB). A material thus takes a point in the (Eh,C) plane (Fig. 2.14). The absolute value for
the band splitting is given as E2

ba = E2
h + C2.

The ionicity of the bond is described with the ionicity (after Phillips) fi, defined as [181, 182]

fi = C2

E2
h + C2

. (2.10)

The covalent part is 1 − fi. In Table 2.1 the ionicity is given for a number of binary compounds. The
ionicity can also be interpreted as the angle tan(φ) = C/Eh in the (Eh ,C) diagram. The critical value
of fi = 0.785 for the ionicity separates quite exactly (for about 70 compounds) the 4-fold (diamond,
zincblende and wurtzite) from the 6-fold (rocksalt) coordinated substances ( fi = 0.785 is indicated
by a dashed line in Fig. 2.14).

For ionic compounds, an effective ionic charge e∗ is defined connecting the displacement u of
negative and positive ions and the resulting polarization P = (e∗/2a3)u [183]. Connected with the
ionicity is the so-called s-parameter, describing the change of the charge upon change of bond length
b from its equilibrium value b0 [184]

e∗(b) = e∗(b0)
(
b

b0

)s

≈ e∗
0 (1 + s ε) , (2.11)

ε being the strain of the bond length, b/b0 = 1 + ε. It seems justified to assume that e∗(b0) is always
positive at the metal atom in III–V and II–VI compounds. The relation of s with the ionicity fi is shown
in Fig. 2.15 for various compound semiconductors.

4This energy should not be confused with the band gap�Ecv, the energy separation of the highest valence-band state and
the lowest conduction-band state. The energy splitting Eba is the energy separation between the centers of the valence
and conduction bands. Mostly, the term Eg is used for �Ecv.
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Fig. 2.14 Values of Eh and C for various AN B8−N compounds. The dashed line fi = 0.785 separates 4-fold from
6-fold coordinated structures. Most data taken from [180]

Table 2.1 Ionicity fi (2.10) for various binary compounds

C 0.0 AlAs 0.27 BeO 0.60 CuCl 0.75

Si 0.0 BeS 0.29 ZnTe 0.61 CuF 0.77

Ge 0.0 AlP 0.31 ZnO 0.62 AgI 0.77

Sn 0.0 GaAs 0.31 ZnS 0.62 MgS 0.79

BAs 0.002 InSb 0.32 ZnSe 0.63 MgSe 0.79

BP 0.006 GaP 0.33 HgTe 0.65 CdO 0.79

BeTe 0.17 InAs 0.36 HgSe 0.68 HgS 0.79

SiC 0.18 InP 0.42 CdS 0.69 MgO 0.84

AlSb 0.25 AlN 0.45 CuI 0.69 AgBr 0.85

BN 0.26 GaN 0.50 CdSe 0.70 LiF 0.92

GaSb 0.26 MgTe 0.55 CdTe 0.72 NaCl 0.94

BeSe 0.26 InN 0.58 CuBr 0.74 RbF 0.96

Fig. 2.15 s-Parameter as
defined in (2.11) as a
function of the ionicity fi
(2.10) for various
compound semiconductors.
Dashed lines are guides to
the eye. Data from [185],
value for CuCl from [184]
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2.5 Metallic Bonding

In a metal, the positively charged atomic cores are embedded in a more or less homogeneous sea of
electrons. The valence electrons of the atoms become the conduction electrons of the metal. These
are freely moveable and at T = 0K there is no energy gap between filled and empty states. The
bonding is mediated by the energy reduction for the conduction electrons in the periodic potential of
the solid compared to free atoms. This will be clearer when the band structure is discussed (Chap.6).
In transition metals the overlap of inner shells (d or f) can also contribute to the bonding.

2.6 Van-der-Waals Bonds

The van-der-Waals bond is a dipole bond that leads to bonding in the noble-gas crystals (at low
temperature). Ne, Ar, Kr and Xe crystallize in the densely packed fcc lattice (cf. Sect. 3.3.2.1). He3

and He4 represent an exception. They do not solidify at zero pressure at T = 0 K due to the large
zero-point energy. This quantum-mechanical effect is especially strong for oscillators with small mass.

When two neutral atoms come near to each other (distance of the nuclei R), an attractive dipole–
dipole interaction −AR−6 arises (London interaction) the van-der-Waals interaction. The quantum-
mechanical overlap of the (filled) shells leads to a strong repulsion +BR−12. Altogether, a binding
energy minimum results for the Lennard–Jones potential VLJ (see Fig. 2.16)

VLJ(R) = − A

R6
+ B

R12
. (2.12)

The energy minimum Emin = −A2/(2B) is at R = (2B/A)1/6.
The origin of the attractive dipole–dipole interaction can be understood from a one-dimensional

(1D) model as follows: Two atoms are modeled by their fixed positively charged nuclei in a distance
R and their negatively charged electron shells that are polarizable, i.e. can be displaced along one
direction x . Additionally, we assume (two identical) 1D harmonic oscillators for the electron motion
at the positions 0 and R. Then, the Hamilton operator H0 of the system without interaction (R is very
large)

H0 = 1

2m
p21 + C x21 + 1

2m
p22 + C x22 . (2.13)

Fig. 2.16 Lennard–Jones
potential (2.12) for A = 1
and two values of B



32 2 Bonds

The indices 1 and 2 denote the two electrons of atoms. x1 and x2 are the displacements of the electrons.
Both harmonic oscillators have a resonance frequency ω0 = √

C/m, and the zero-point energy is
�ω0/2.

Taking into account the Coulomb interaction of the four charges, an additional term H1 arises

H1 = e2

R
+ e2

R + x1 + x2
− e2

R + x1
− e2

R − x2
≈ −2e2

R3
x1 x2 . (2.14)

The approximation is valid for small amplitudes xi � R. A separation of variables can be achieved
by transformation to the normal modes

xs = x1 + x2√
2

, xa = x1 − x2√
2

. (2.15)

Then we find

H = H0 + H1

=
[

1

2m
p2s +

1

2

(
C− 2e2

R3

)
x2s

]
+

[
1

2m
p2a + 1

2

(
C − 2e2

R3

)
x2a

]
. (2.16)

This equation is the Hamiltonian of two decoupled harmonic oscillators with the normal frequencies

ω± =
√(

C ± 2e2

R3

)
/m ≈ ω0

[

1 ± 1

2

(
2e2

C R3

)
− 1

8

(
2e2

C R3

)2

+ . . .

]

. (2.17)

The coupled system thus has a lower (zero-point) energy than the uncoupled. The energy difference
per atom is (in lowest order) proportional to R−6.

�U = �ω0 − 1

2
(ω+ − ω−) ≈ −�ω0

1

8

(
2e2

C R3

)2

= − A

R6
. (2.18)

The interaction is a true quantum-mechanical effect, i.e. the reduction of the zero-point energy of
coupled oscillators.

2.7 Hamilton Operator of the Solid

The total energy of the solid, including kinetic and potential terms, is

H =
∑

i

p2i
2mi

+
∑

j

P2
j

2Mj

+1

2

∑

j, j ′

Z j Z j ′ e2

4πε0 |R j − R j ′ | + 1

2

∑

i,i ′

e2

4πε0 |ri − ri ′ |

−
∑

i, j

Z j e2

4πε0 |R j − ri | , (2.19)
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where ri and Ri are the position operators and pi and Pi are the momentum operators of the electrons
and nuclei, respectively. The first term is the kinetic energy of the electrons, the second term is the
kinetic energy of the nuclei. The third term is the electrostatic interaction of the nuclei, the fourth term
is the electrostatic interaction of the electrons. In the third and fourth terms the summation over the
same indices is left out. The fifth term is the electrostatic interactions of electrons and nuclei.

In the following, the usual approximations in order to treat (2.19) are discussed. First, the nuclei
and the electrons tightly bound to the nuclei (inner shells) are united with ion cores. The remaining
electrons are the valence electrons.

The next approximation is the Born–Oppenheimer (or adiabatic) approximation. Since the ion cores
are much heavier than the electrons (factor ≈ 103) they move much slower. The frequencies of the
ion vibrations are typically in the region of several tens of meV (phonons, cf. Sect. 5.2), the energy
to excite an electron is typically 1eV. Thus, the electrons always ‘see’ the momentary position of the
ions, the ions, however, ‘see’ the electron motions averaged over many periods. Thus, the Hamiltonian
(2.19) is split into three parts:

H = Hions(R j ) + He(ri ,R j0) + He−ion(ri , δR j ) . (2.20)

The first term contains the ion cores with their potential and the time-averaged contribution of the
electrons. The second term is the electron motion around the ion cores at their averaged positions
R j0 . The third term is the Hamiltonian of the electron–phonon interaction that depends on the electron
positions and the deviation of the ions from their average position δR j = R j − R j0 . The electron–
phonon interaction is responsible for such effects as electrical resistance and superconductivity.



Chapter 3
Crystals

La science cristallographique ne consiste donc point à décrire scrupuleusement tous
les accidens des formes cristallines; mais à spécifier, en décrivant ces formes, les
rapports plus ou moins immédiats qu’elles ont entre elles.
Crystallographic science does not consist in the scrupulous description of all the
accidental crystalline forms, but in specifying, by the description of these forms, the
more or less close relationship they have with each other.

J.-B. Romé de l’Isle, 1783 [186]

Abstract A little bit of crystallography. The concepts of the direct and reciprocal lattice, point and
space groups, unit and elementary cells and the Wigner- Seitz cell are laid out. The important crystal
structures for semiconductors (diamond, sphalerite, wurtzite, chalcopyrite, ...) are discussed in some
detail. Also alloys and ordering are covered.

3.1 Introduction

The economically most important semiconductors have a relatively simple atomic arrangement and
are highly symmetric. The symmetry of the atomic arrangement is the basis for the classification of
the various crystal structures. Using group theory [187], basic and important conclusions can be drawn
about the physical properties of the crystal, such as its elastic and electronic properties. The presence of
highly symmetric planes is obvious from the crystal shape of the minerals and their cleavage behavior.

Polycrystalline semiconductors consist of grains of finite size that are structurally perfect but have
various orientations. The grain boundaries are a lattice defect (see also Sect. 4.4.3). Amorphous semi-
conductors are disordered on the atomic scale, see Sect. 3.3.7.

3.2 Crystal Structure

A crystal is built up by the (quasi-) infinite periodic repetition of identical building blocks. This
translation lattice [188–190] is generated by the three fundamental translation vectors a1, a2 and a3.
These three vectors may not lie in a common plane. The lattice (Fig. 3.1) is the set of all points R

R = n1 a1 + n2 a2 + n3 a3 . (3.1)

© Springer Nature Switzerland AG 2021
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-51569-0_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51569-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-51569-0_3


36 3 Crystals

(a) (b)

Fig. 3.1 a Two-dimensional lattice. It can be generated by various pairs of translation vectors. b Elementary cells of the
lattice. Primitive elementary cells are shaded

Fig. 3.2 Crystal structure,
consisting of a lattice and a
base

Base

The crystal structure is made up by the lattice and the building block that is attached to each lattice
point. This building block is called the base (Fig. 3.2). In the simplest case, e.g. for crystals like Cu,
Fe or Al, this is just a single atom (monoatomic base). In the case of C (diamond), Si or Ge, it is a
diatomic base with two identical atoms (e.g. Si–Si or Ge–Ge), in the case of zincblende compound
semiconductors, such as GaAs or InP, it is a diatomic base with nonidentical atoms such as Ga–As or
In–P. For wurtzite crystals such as GaN or ZnO the base has four atoms like Ga–N–Ga–N. There exist
far more involved structures, e.g. NaCd2 where the smallest cubic cell contains 1192 atoms. In protein
crystals, the base of the lattice can contain 10,000 atoms.

In summary: Crystal structure = Lattice × Base.

3.3 Lattice

As described in Sect. 3.2 the lattice is spanned by three vectors ai . The lattice symmetry is decisive for
the physical properties of the semiconductor. It is described by the appropriate groups of the symmetry
operations.

3.3.1 2D Bravais Lattices

There are five two-dimensional (2D) Bravais lattices (Fig. 3.3) which are distinct and fill all (2D) space.
These are very important for the description of symmetries at surfaces. The 2D Bravais lattices are the
square, hexagonal, rectangular and centered-rectangular lattice.
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Fig. 3.3 The
two-dimensional Bravais
lattices with the primitive
unit cells: a square lattice
(a = b, φ = 90◦), b
hexagonal lattice (a = b,
φ = 60◦), c rectangular
lattice (a �= b, φ = 90◦), d
centered-rectangular lattice
(a �= b, φ = 90◦, for the
(nonprimitive) rectangular
unit cell shown on the
right)

a

b
a

b

a
b

a

b

a

b

(a) (b)

(c) (d)

3.3.2 3D Bravais Lattices

In three dimensions, the operations of the point group results in fourteen 3D Bravais lattices (Fig. 3.4),
that are categorized into seven crystal classes (trigonal, monoclinic, rhombic, tetragonal, cubic, rhom-
bohedral and hexagonal). These classes are discerned by the conditions for the lengths and the mutual
angles of the vectors that span the lattice (Table 3.1). Some classes have several members. The cubic
crystal can have a simple (sc), face-centered (fcc) or body-centered (bcc) lattice.

In the following, some of the most important lattices, in particular those most relevant to semicon-
ductors, will be treated in some more detail.

3.3.2.1 Cubic fcc and bcc Lattices

The primitive translation vectors for the cubic face-centered (fcc) and the cubic body-centered (bcc)
lattice are shown in Fig. 3.5 and Fig. 3.6, respectively. Many metals crystallize in these lattices, e.g.
copper (fcc) and tungsten (bcc).

Table 3.1 Conditions for lengths and angles for the 7 crystal classes. Note that only the positive conditions are listed.
The rhombohedral system is a special case of the trigonal class. Conditions for the trigonal and hexagonal classes are
the same, however, trigonal symmetry includes a single C3 or S6 axis, while hexagonal symmetry includes a single C6
or S5

6 axis

System # Lattice Conditions for the

symbol usual unit cell

Triclinic 1 None

Monoclinic 2 s, c α = γ = 90◦ or
α = β = 90◦

Orthorhombic 4 s, c, bc, fc α = β = γ = 90◦

Tetragonal 2 s, bc a = b , α = β = γ = 90◦

Cubic 3 s, bc, fc a = b = c ,
α = β = γ = 90◦

Trigonal 1 a = b , α = β = 90◦,
γ = 120◦

(Rhombohedral) 1 a = b = c , α = β = γ

Hexagonal 1 a = b , α = β = 90◦,
γ = 120◦



38 3 Crystals

Fig. 3.4 The 14
three-dimensional Bravais
lattices: cubic (sc: simple
cubic, bcc: body-centered
cubic, fcc: face-centered
cubic), tetragonal (simple
and body-centered),
orthorhombic (simple,
centered, body-centered
and face-centered),
monoclinic (simple and
centered), triclinic,
rhombohedral and
hexagonal

fccbcc

tetragonal

monoclinic

rhombohedral

orthorhombic

triclinic

hexagonal

In the fcc lattice, one lattice point sits in the center of each of the six faces of the usual cubic unit
cell. The vectors spanning the primitive unit cell are

a1 = a

2
(1, 1, 0) , a2 = a

2
(0, 1, 1) , a3 = a

2
(1, 0, 1) . (3.2)

In the bcc lattice, one extra lattice point sits at the intersection of the three body diagonals at (a1 +
a2 + a3)/2. The vectors spanning the primitive unit cell are

a1 = a

2
(1, 1,−1) , a2 = a

2
(−1, 1, 1) , a3 = a

2
(1,−1, 1) . (3.3)
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Fig. 3.5 Primitive
translations of the fcc
lattice. These vectors
connect the origin with the
face-center points. The
primitive unit cell is the
rhombohedron spanned by
these vectors. The primitive
translations a′, b′ and c′ are
given in (3.2). The angle
between the vectors is 60◦

a'

b'
c'

a

Fig. 3.6 Primitive
translations of the bcc
lattice. These vectors
connect the origin with the
lattice points in the cube
centers. The primitive unit
cell is the rhombohedron
spanned by these vectors.
The primitive translations
a′, b′ and c′ are given in
(3.3). The angle between
the vectors is ≈ 70.5◦

a'

b'a c'

3.3.2.2 Hexagonally Close Packed Structure (hcp)

The 2D hexagonal Bravais lattice fills a plane with spheres (or circles) with maximum filling factor.
There are two ways to fill space with spheres and highest filling factor. One is the fcc lattice, the other
is the hexagonally close packed (hcp) structure.1 Both fcc and hcp have a filling factor of 74%.

For the hcp, we start with a hexagonally arranged layer of spheres (A), see Fig. 3.7. Each sphere has
six next-neighbor spheres. This could, e.g., be a plane in the fcc perpendicular to the body diagonal.
the next plane B is put on top in such a way that each new sphere touches three spheres of the previous
layer. The third plane can now be added in two different ways: If the spheres of the third layer are
vertically on top of the spheres of layer A, a plane A’ identical to A has been created that is shifted
from A along the stacking direction (normally called the c-axis) by

chcp = √
8/3 a ≈ 1.633 a . (3.4)

The vectors spanning the primitive unit cell are

a1 = a

2

(
1,−√

3, 0
)

, a2 = a

2

(
1,

√
3, 0

)
, a3 = c (0, 0, 1) . (3.5)

1The hcp structure is not a Bravais lattice since the individual lattice sites are not completely equivalent.
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Fig. 3.7 Structure of the a
hcp and b fcc lattice. For
hcp the stacking (along the
c-axis) is ABABAB. . ., for
fcc (along the body
diagonal) it is
ABCABCABC. . .

(a) (b)

The hcp stacking order is ABABAB. . . for hcp, the coordination number is 12. In the fcc structure,
the third layer is put on the thus far unfilled positions and forms a new layer C. Only the forth layer is
again identical to A and is shifted by

cfcc = √
6 a ≈ 2.45 a . (3.6)

The fcc stacking order is ABCABCABC. . .

In the hexagonal plane of the fcc lattice (which will later be called a {111} plane) the distance
between lattice points is a = a0/

√
2, where a0 is the cubic lattice constant. Thus c = √

3 a0, just what
is expected for the body diagonal.

For real materials with hexagonal lattice the ratio c/a deviates from the ideal value given in (3.4).
Helium comes very close to the ideal value, for Mg it is 1.623, for Zn 1.861. Many hcp metals exhibit
a phase transition to fcc at higher temperatures.

3.3.3 Unit Cell

The choice of the vectors ai making up the lattice is not unique (Fig. 3.1). The volume that is enclosed
in the parallelepiped spanned by the vectors a1, a2 and a3 is called the elementary cell. A primitive
elementary cell is an elementary cell with the smallest possible volume (Fig. 3.1b). In each primitive
elementary cell there is exactly one lattice point. The coordination number is the number of next-
neighbor lattice points. A primitive cubic (pc) lattice, e.g. has a coordination number of 6.

The typically chosen primitive elementary cell is the Wigner–Seitz (WS) cell that reflects the sym-
metry of the lattice best. The Wigner–Seitz cell around a lattice point R0 contains all points that are
closer to this lattice point than to any other lattice point. Since all points fulfill such a condition for
some lattice point Ri, the Wigner–Seitz cells fill the volume completely. The boundary of the Wigner–
Seitz cell is made up by points that have the same distance to R0 and some other lattice point(s). The
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(a) (b)

Fig. 3.8 a Construction of a two-dimensional Wigner–Seitz cell, b filling of space with WS cells

Wigner–Seitz cell around R0 is constructed by drawing lines from R0 to the next neighbors Rj, taking
the point at half distance and erecting a perpendicular plane at (Rj+R0)/2. TheWS cell is the smallest
polyhedron, circumscribed by these planes. A two-dimensional construction is shown in Fig. 3.8.

3.3.4 Point Group

Besides the translations there are other operations under which the lattice is invariant, i.e. the lattice is
imaged into itself. These are:

Identity. The neutral element of any point group is the identity that does not change the crystal. It
is denoted as 1 (E) in international (Schönfließ) notation.

Rotation. The rotation around an axis may have a rotation angle of 2π , 2π /2, 2π /3, 2π /4 or 2π /6 or
their integer multiples. The axis is then called n = 1-, 2-, 3-, 4- or 6-fold, respectively2, and denoted
as n (international notation) or Cn (Schönfließ). Objects with Cn symmetry are depicted in Fig. 3.9.

Mirror operationwith respect to a plane through a lattice point. Differentmirror planes are discerned
(Fig. 3.10) (after Schönfließ) σh : a mirror plane perpendicular to a rotational axis, σv: a mirror plane
that contains a rotational axis, and σd : a mirror plane that contains a rotational axis and bisects the
angle between two C2 axes. The international notation is 2̄.

Inversion. All points around the inversion center r are replaced by −r. The inversion is denoted 1̄
(i) in international (Schönfließ) notation.

Improper rotation. The improper rotation Sn is a rotation Cn followed immediately by the inversion
operation i denoted as n̄ in international notation. There are 3̄, 4̄ and 6̄ and their powers. Only the
combined operation n̄ is a symmetry operation, while the individual operations Cn and i alone are not
symmetry operations. In the Schönfließ notation the improper rotation is defined as Sn = σhCn , with
σh being a mirror operation with a plane perpendicular to the axis of the Cn rotation, denoted as Sn .

C3 C4 C6C1 C2

Fig. 3.9 Two-dimensional objects with perpendicular rotation axis Cn . Note that the circles do not exhibit σh symmetry
with respect to the paper plane, i.e. they are different on the top and bottom side

25-fold periodic symmetry is geometrically impossible. However, quasicrystals with aperiodic five-fold symmetry exist
[191, 192], some of them possibly being semiconducting [193, 194].
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(a)

v

HH
O

C2

v

(b)
F H

H F

C2

(c)

C2

d

C4

C2

Fig. 3.10 Mirror planes: a σv (at H2O molecule), b σh (at F2H2 molecule) and c σd

S6 S4 S3S1 S2

Fig. 3.11 Two-dimensional objects with perpendicular improper rotation axis Sn . Note that the white and black circles
do not exhibit σh symmetry with respect to the paper plane, i.e. they are white on the top and black on the bottom. The
circles with a dot in the center exhibit σh symmetry, i.e. they look the same from top and bottom

There are S3, S4 and S6 and 3̄ = S5
6 , 4̄ = S3

4 and 6̄ = S5
3 . For successive applications, the Sn yield

previously known operations, e.g. S2
4 = C2, S4

4 = E , S2
6 = C3, S3

6 = i , S2
3 = C2

3 , S3
3 = σh, S4

3 = C3,
S6
3 = E . We note that formally S1 is the inversion i and S2 is the mirror symmetry σ . Objects with Sn

symmetry are schematically shown in Fig. 3.11.
These symmetry operations form 32 point groups. These groups are shown (with their different

notations and elements) in Table B.2. The highest symmetry is the cubic symmetry Oh = O × i . The
tetraeder group Td (methane molecule) is a subgroup of Oh , lacking the inversion operation.

Important for surface symmetries, there are ten two-dimensional point groups (Sect. 11.2 and
Table B.1).

3.3.5 Space Group

The space group is formed by the combination of the elements of the point group with translations.
The combination of a translation along a rotational axis with a rotation around this axis creates a screw
axis nm . In Fig. 3.12a, a so-called 41 screw axis is shown. The first index n indicates the rotation angle,
i.e. 2π/n, the second index indicates the translation, i.e. c m/n, c being the periodicity along the axis.
There are eleven crystallographically allowed screw rotations.3

The combination of the mirror operation at a plane that contains a rotational axis with a translation
along this axis creates a glide reflection (Fig. 3.12b). For an axial glide (or b-glide) the translation
is parallel to the reflection plane. A diagonal glide (or d-glide) involves translation in two or three
directions. A third type of glide is the diamond glide (or d-glide). There are 230 different space groups,
listed in Appendix B. A detailed treatment can be found in [195].4

Important for surface symmetries, there are 17 two-dimensional space groups (Sect. 11.2).

321, 31, 32, 41, 42, 43, 61, 62, 63, 64, 65.
4One should in particular consider the pitfalls pointed out in Appendix 10 of this reference.
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(a)

c

c/4

41 42

c/2

(b)

c/2

21glide

Fig. 3.12 a Schematic drawing of a 41 and 42 screw axis. b Schematic drawing of an axial glide reflection. The mirror
plane is shown with dashed outline. Opposite faces of the cube have opposite color. For comparison a 21 screw axis is
shown

(a) (b) (c)

Fig. 3.13 Transmission electron micrographs of polycrystalline silicon (poly-Si). a As-deposited material from low-
pressure chemical vapor deposition (LPCVD) at about 620 ◦C, grain size is about 30nm. bAfter conventional processing
(annealing at 1150 ◦C), average grain size is about 100nm. c After annealing in HCl that provides enhanced point defect
injection (and thus increased possibility to form larger grains), average grain size is about 250nm. Adapted from [196]

3.3.6 Polycrystalline Semiconductors

A polycrystalline material consists of crystal grains that are randomly oriented with respect to each
other. Between two grains a (large-angle) grain boundary (see also Sect. 4.4.3) exists. An important
parameter is the grain size and its distribution. It can be influenced via processing steps such as
annealing. Polycrystalline semiconductors are used in cheap, large-area applications such as solar
cells (e.g. polysilicon, CuInSe2) or thin-film transistors (poly-Si) or as n-conducting contact material
in MOS diodes (poly-Si) as shown in Fig. 3.13 (see also Fig. 21.29). Polycrystalline material can be
fabricated from amorphous material using annealing procedures as discussed in Sect. 24.6.1 for silicon.

3.3.7 Amorphous Semiconductors

An amorphous material lacks the long-range order of the direct lattice. It is disordered on the atomic
scale. Historically, amorphous Se (a-Se) has been investigated first; since the 1950’s amorphous chalco-
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(a) (b)

Fig. 3.14 a Radial atomic distribution functions of crystalline (c-Ge, solid line) and amorphous (a-Ge, dashed line)
germanium, determined from EXAFS (extended X-ray absorption fine structure [201]). Adapted from [202]. b A con-
tinuous random network model of amorphous silicon containing a dangling bond in the center of the figure. Reprinted
with permission from [203]

genides and a-Ge [197] and since the late 1960s a-Si [198] are researched. The field of amorphous
oxides started in the mid 1950s with vanadate glasses [199] and is currently very active with mixed-
metal-based oxides [200] (cmp. Chap.20).

The local quantum mechanics provides almost rigorous requirements for the bond length to next
neighbors. The constraints for the bond angle are less strict. Covalently bonded atoms arrange in an
open network with the next-neighbor distance essentially preserved and correlations up to the third and
fourth neighbors (Fig. 3.14a). The short-range order is responsible for the observation of semiconductor
properties such as an optical absorption edge and also thermally activated conductivity. In Fig. 3.14b
a model of a continuous random network (with a bond-angle distortion of less than about 20%) of
a-Si is depicted. The diameter dSR of the short-range order region is related to a disorder parameter α

via [204]

dSR = a

2α
, (3.7)

where a is the next-neighbor interatomic distance. For a diamond structure it is related to the lattice
constant by a = √

3 a0/4.
Typically, a significant number of dangling bonds exists. Bonds try to pair but if an odd number of

broken bonds exists locally, an unsaturated, dangling bond remains. This configuration can be passi-
vated by a hydrogen atom. Thus, the hydrogenation of amorphous semiconductors is very important,
in particular for a-Si. A hydrogen atom can also break an overlong (and therefore weak) bond, saturate
one side and eventually leave a dangling bond.

Amorphous material can be (re-)crystallized into crystalline, mostly polycrystalline material upon
annealing. This is technologically very important for a-Si (see Sect. 24.6.1).

3.4 Important Crystal Structures

Now the crystal structures that are important for semiconductor physics will be discussed. These are
mainly the rocksalt (PbS, CdO, . . .), diamond (C, Si, Ge), zincblende (GaAs, InP, . . .) and wurtzite
(GaN, ZnO, . . .) structures.
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Fig. 3.15 a Rocksalt
(NaCl) structure, b CsCl
structure

(a) (b)

Fig. 3.16 a Diamond
structure and b zincblende
structure (red spheres: A
atoms, green spheres: B
atoms). The tetragonal
bonds are indicated

(a) (b)

3.4.1 Rocksalt Structure

The rocksalt (rs, NaCl, space group 225, Fm3̄m) structure (Fig. 3.15a) consists of a fcc lattice with
the period a and a diatomic base in which the Cl atom is positioned at (0,0,0) and the Na atom
at (1/2,1/2,1/2)a with a distance

√
3 a/2. Materials that crystallize (under normal conditions) in the

rocksalt lattice are, e.g., KCl, KBr, PbS (galena), PbSe, PbTe, AgBr, MgO, CdO, MnO. AlN, GaN and
InN undergo, under high pressure, a phase transition from the wurtzite into the rocksalt structure.

3.4.2 CsCl Structure

The CsCl structure (space group 221, Pm3̄m) (Fig. 3.15b) consists of a simple cubic lattice. Similar
as for the rocksalt structure, the base consists of different atoms at (0,0,0) and (1/2,1/2,1/2)a. Typical
crystals with CsCl-structure are TlBr, TlI, CuZn (β-brass), AlNi.

3.4.3 Diamond Structure

The diamond structure (C, space group 227, Fd3̄m) (Fig. 3.16a) has the fcc lattice. The base consists
of two identical atoms at (0,0,0) and (1/4,1/4,1/4)a. Each atom has a tetrahedral configuration. The
packing density is only about 0.34. The ABC-type stacking along the [111]-direction is visualized in
Fig. 3.17a. The materials that crystallize in the diamond lattice are C, Ge, Si and α-Sn. Silicon as the
most important semiconductor is particularly well researched [205].

The diamond structure (point group Oh) has an inversion center, located between the two atoms of
the base, i.e. at (1/8,1/8,1/8)a. The radii of the wavefunctions for various group-IV elements increases
with the order number (Table 3.2), and accordingly the lattice constant increases.

In Fig. 3.18a the unit cell with tetragonal symmetry of three places along the 〈111〉 direction is
shown. In Fig. 3.18b the arrangement of atoms along 〈111〉 is depicted. The symmetry along this line is
at leastC3v. At the atoms sites it is Oh . The bond center (BC) and the hexagonal (H) position are a center
of inversion and have D3d symmetry. The unoccupied ‘T’ positions have Td symmetry. High-pressure
phases of silicon are already found in indentation experiments [206].
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diamond wurtzite

A B
ABC

(a) (b)

[111] [00.1]

Fig. 3.17 HRTEM images of a diamond structure (Si, {110} cross section) and b wurtzite structure (GaN, 〈10.0〉
azimuth). The ABC and AB stacking is indicated

Table 3.2 Radii of the wavefunctions in the diamond structure, rs and rp are related to s1p3, rd to s1p2d1 and lattice
constant a0

rs (nm) rp (nm) rd (nm) a0 (nm)

C 0.121 0.121 0.851 0.3567

Si 0.175 0.213 0.489 0.5431

Ge 0.176 0.214 0.625 0.5646

(a) (b)

Fig. 3.18 a Unit cell of the zincblende structure with the indication of tetragonal symmetries. The position of the small
yellow (blue) sphere is the tetrahedrally configured unoccupied positions of the A (B) sublattice, denoted with ‘T’ in
part (b). b Line along [111] in the zincblende structure. The positions of the A and B atoms are denoted by red and
green circles as labeled. Other positions are called the bond center (‘BC’), antibonding (‘AB’) relative to A and B atoms
(‘A–AB’, ‘B–AB’), hexagonal (‘H’) and tetrahedral position (‘T’, blue and yellow circles)

We note that α-Sn has little current importance. The diamond structure α–Sn phase is stable below
13.2 ◦C. The addition of Ge inhibits the retransformation to metallic tin up to higher temperatures (e.g.
60 ◦C for 0.75 weight percent Ge). The properties of gray tin are reviewed in [207].

3.4.4 Zincblende Structure

The zincblende (sphalerite,5 ZnS, space group 216, F4̄3m) structure (Fig. 3.16b) has a fcc lattice with
a diatomic base. The metal (A) atom is at (0, 0, 0) and the nonmetal (B) atom is at (1/4, 1/4, 1/4)a.

5Zincblende technically means the material ZnS which occurs in sphalerite (cubic) and wurtzite (hexagonal) phase.
However, in the literature the term ‘zincblende’ for the sphalerite structure is common and used throughout this book.
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Fig. 3.19 a Top view
(along the c-axis) and b
side view of the wurtzite
structure with the
tetragonal bonds indicated.
The top (bottom) surface of
the depicted structure is
termed the Zn-face, (00.1)
(O-face, (00.1̄))

(a) (b)

Fig. 3.20 Comparison of
the tetragonal bonds in the
a zincblende and b wurtzite
structure (i : inversion
center, m: symmetry plane)

Thus the cation and anion sublattices are shifted with respect to each other by a quarter of the body
diagonal of the fcc lattice. The atoms are tetrahedrally coordinated, a Zn atom is bonded to four S atoms
and vice versa. However, no inversion center is present any longer (point group Td ). In the zincblende
structure the stacking order of diatomic planes along the body diagonal is aAbBcCaAbBcC. . .

Many important compound semiconductors, such as GaAs, InAs, AlAs, InP, GaP and their alloys
(cf. Sect. 3.7), but also the II–VI compounds ZnS, ZnSe, ZnTe, HgTe and CdTe and halides, including
AgI, CuF, CuCl, CuBr, and CuI, crystallize in the zincblende structure.

Four-fold coordinated materials (zincblende and wurtzite) typically undergo a phase transition into
6-fold coordinated structures upon hydrostatic pressure [208]. For GaAs under pressure see [209].

3.4.5 Wurtzite Structure

The wurtzite structure (ZnS, space group 186, P63mc) is also called the hexagonal ZnS structure
(because ZnS has both modifications). It consists of a hexagonal lattice with a unit cell of four atoms
(Fig. 3.19). Typically, it is thought of as a hcp structure with a diatomic base. The c/a ratio typically
deviates from the ideal value ζ0 = √

8/3 ≈ 1.633 (3.4) as listed in Table 3.3. The c-axis is a 63 screw
axis.

The Zn atom is located at (0, 0, 0), the S atom at (0, 0,
√
3/8)a. This corresponds to a shift of 3/8 c

along the c-axis. This factor is called the cell-internal parameter u. For real wurtzite crystals u deviates
from its ideal value u0 = 3/8 = 0.375, e.g. for group-III nitrides u > u0. The diatomic planes have a
stacking order of aAbBaAbB. . . along the [00.1]-direction as visualized in Fig. 3.17b.

In Fig. 3.20 the different local structural environment of the atoms in the zincblende and wurtzite
structure is shown.
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Table 3.3 c/a ratio of various wurtzite semiconductors. Listed is ξ = (c/a − ζ0)/ζ0. Data based on [210]

Material ξ (%) Material ξ(%) Material ξ (%) Material ξ (%)

AlN −2.02 CdS −0.61 CuBr 0.43 BeO −0.61

GaN −0.49 CdSe −0.18 CuCl 0.55 ZnO −1.9

InN −1.35 CdTe 0.25 CuI 0.74 6H-SiC 0.49

ZnS 0.25 MgS −0.80 AgI 0.12 BN 0.74

ZnSe 0.06 MgSe −0.67 ZnTe 0.74 MgTe −0.67

Many important semiconductors with large band gap crystallize in the wurtzite structure, such as
GaN, AlN, InN, [211] ZnO, [212] SiC, [213], CdS und CdSe.

3.4.6 Chalcopyrite Structure

The chalcopyrite [214] (ABC2, named after ‘fool’s gold’ CuFeS2, space group 122, I4̄2d) structure is
relevant for I–III–VI2 (with chalcogenide anions) and II–IV–V2 (with pnictide anions) semiconductors
such as, e.g., (Cu,Ag)(Al,Ga,In)(S,Se,Te)2 and (Mg,Zn,Cd)(Si,Ge,Sn)(As,P,Sb)2.

In Fig. 3.21, the derivation of zincblende and chalcopyrite compounds is shown schematically,
including the kesterite materials of type I2-II-IV-VI6.

In the chalcopyrite structure, a nonmetallic anion atom (‘C’) is tetrahedrally bonded to two different
types of cation atoms (‘A’ and ‘B’) as shown in Fig. 3.22. The local surrounding of each anion is
identical, two of both the A and B atoms. The structure is tetragonal. The aspect ratio η = c/(2a)

deviates from its ideal value 1; typically η < 1 [215, 216].
If the C atom is in the tetrahedral center of the two A and two B atoms, the bond lengths RAC and

RBC of the A–C and B–C bonds, respectively, are equal. Since the ideal A–C and B–C bond lengths
dAC and dBC are typically unequal, this structure is strained. The common atomC is therefore displaced

Fig. 3.21 Scheme of II–VI
zincblende and related
chalcopyrite and kesterite
compounds

Fig. 3.22 Chalcopyrite
structure, red and yellow
spheres denote the metal
species. The bigger green
spheres represent the
nonmetal anion
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Table 3.4 Lattice nonideality parameters η and u (from (3.10)) of various chalcopyrite compounds and their experimen-
tally observed disorder stability (+/− indicates compound with/without order–disorder (D–O) transition, respectively).
Data from [216]

η u D–O η u D–O

CuGaSe2 0.983 0.264 + ZnSiAs2 0.97 0.271 −
CuInSe2 1.004 0.237 + ZnGeAs2 0.983 0.264 +
AgGaSe2 0.897 0.287 − CdSiAs2 0.92 0.294 −
AgInSe2 0.96 0.261 + CdGeAs2 0.943 0.287

CuGaS2 0.98 0.264 ZnSiP2 0.967 0.272 −
CuInS2 1.008 0.236 + ZnGeP2 0.98 0.264 +
AgGaS2 0.895 0.288 − CdSiP2 0.92 0.296 −
AgInS2 0.955 0.262 CdGeP2 0.939 0.288 −

along [100] and [010] such that it is closer (if dAC < dBC) to the pair of A atoms and further away from
the B atoms. The displacement parameter is

u = 1

4
+ R2

AC − R2
BC

a2
(3.8)

and it deviates from the ideal value u0 = 1/4 for the zincblende structure as listed in Table 3.4 for a
number of chalcopyrite compounds. In the chalcopyrite structure

RAC = a

√

u2 + 1 + η2

16
(3.9a)

RBC = a

√(
u − 1

2

)2

+ 1 + η2

16
. (3.9b)

The minimization of the microscopic strain yields (in first order) [217]

u ∼= 1

4
+ 3

8

d2
AC − d2

BC

d2
AC + d2

BC

. (3.10)

Compounds with u > uc, uc = 0.265 being a critical displacement parameter, (or u < 1/2 − uc =
0.235) are stable with regard to cation disorder [216]. In Fig. 3.23 the correlation of the calculated
value for u according to (3.10) and the experimental values is shown.

3.4.7 Spinel Structure

A large variety of ternary compounds of type AIIBIII
2CVI

4 crystallize inb the cubic spinel structure
(spinel, MgAl2O4, space group 227, Fd3m). Typical elements are A: Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Cd, Sn, B: Al, Ga, In, Ti, V, Cr, Mn, Fe, Co, Rh, Ni, and C: O, S, Se, Te.

As an example ZnGa2O4 (zinc gallate) has received attention as interfacial layer in ZnO/GaAs epi-
taxy [218], luminescentmaterial [219], and as ferromagnetic semiconductor [220]. Also the (unwanted)
appearance of zinc gallate inclusions is in competition with the formation of highly doped wurtzite
ZnO:Ga; in the (normal) spinel cubic structure of ZnGa2O4 the Zn2+ ions still occupy tetrahedral
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Fig. 3.23 Experimental
values uexp of the
displacement parameter for
various chalcopyrites vs.
the calculated value ucalc
according to (3.10). The
dashed line indicates
uexp = ucalc. Adapted
from [217]

Fig. 3.24 Spinel AB2C4
crystal structure, the
cations are depicted as
yellow (A atoms) and silver
(B atoms) spheres, the
anions (C atoms) as blue
spheres

sites, but the Ga3+ ions occupy octahedral sites instead of tetrahedral sites in doped wurtzite ZnO:Ga.
(Sc,Al)MgO4 (SCAM) is available as substrate material. Also AVIBII

2CVI
4 compounds exist, e.g.

GeB2O4 (with B=Mg, Fe, Co, Ni).
The anion atoms (C2−) sit on a fcc lattice. The A atoms fill 1/8 of all tetraeder spaces and the B

atoms fill half of all octaeder places (Fig. 3.24). Often the cations are charged A2+ and B3+, e.g. in
ZnAl2O4, MgCr2O4 or ZnCo2O4. Also A6+ and B1− exists, e.g. in WNa2O4.

The cubic lattice constant is denoted as a. In real spinels, the anions deviate from the ideal fcc array
which is accounted for by the parameter u, measuring the displacement of anions along the [111]-
direction [221]; if the A-site cation is at (0,0,0), an anion is at (u, u, u). The cation-anion distances are
given by [222]

RAC = a
√
3 (u − 1/8) , (3.11a)

RBC = a
√
3 u2 − 2 u − 3/8 . (3.11b)

The ideal value is u = 1/4; examples are u = 0.2624 for MgAl2O4, u = 0.2617 for ZnGa2O4 and
u = 0.2409 for SiFe2O4 [222].

In the inverted spinel structure, for AIIBIII
2CVI

4 compounds, the cations are distributed like
B(AB)C4, i.e. the B cations occupy tetraeder and octaeder places, e.g. in Mg2+(Mg2+Ti4+)O2−

4 or
Fe3+(Ni2+Fe3+)O2−

4 . Examples are magnetite (Fe3O4), a material with high spin polarization, or
MgFe2O4. Also AVIBII

2CVI
4 compounds exist in this structure, e.g. SnB2O4 (with B = Mg, Mn,

Co, Zn), TiB2O4 (with B = Mg, Mn, Fe, Co, Zn), and VB2O4 (with B = Mg, Co, Zn).
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Fig. 3.25 Fluorite crystal
structure, the cations are
depicted as red spheres, the
anions as blue spheres

Fig. 3.26 Hexagonal unit
cell of delafossite CuGaO2.
Oxygen atoms are bonded
to the Cu in a dumbbell
(‘DB’) configuration. In
the edge-sharing (‘ES’)
layer the Ga atoms are
octahedrally configured as
GaO6

O

a

2uc

c

ES

DB

Ga

Cu

ES

3.4.8 Fluorite Structure

Named after the minerale fluorite (CaF2, space group 225, Fm3m), this structure for binary ionic
compounds occurs when the cation valence is twice the anion valence, e.g. for (cubic) ZrO2 (zirconia)
or HfO2. The lattice is fcc with a triatomic base. At (0,0,0) is the cation (e.g. Zr4+), the anions (e.g. O2−)
are at (1/4, 1/4, 1/4) a (as in the zincblende structure) and (3/4, 3/4, 3/4) a (Fig. 3.25). The anion
atom positions are on a simple cubic lattice with lattice constant a/2. Zirconia can crystallize in various
phases [223], the most prominent being the monoclinic, tetragonal and cubic phases. The cubic phase
can be extrinsically stabilized using yttrium [224, 225] (YSZ, yttria-stabilized zirconia). Hafnium
oxide has the remarkable property that the HfO2/Si interface is stable and allows the fabrication of
transistor gate oxides with high dielectric constant (see Sect. 24.5.5).

3.4.9 Delafossite Structure

The I–III–O2 materials crystallize in the trigonal delafossite (CuFeO2, space group 166, R3̄m) structure
(Fig. 3.26). This structure is also called caswellsilverite (NaCrS2). In Table 3.5 the lattice parameters of
some delafossite compounds are given. The (Cu,Ag) (Al,Ga,In)O2 materials are transparent conductive
oxides (TCO). We note that Pt and Pd as group-I component create metal-like compounds because of
the d9 configuration as opposed to the d10 configuration of Cu and Ag.
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3.4.10 Perovskite Structure

The perovskite structure for ABO3 materials (calcium titanate, CaTiO3, space group 62, Pnma)
(Fig. 3.27) is relevant for ferroelectric semiconductors (cf. Sect. 16.3). It is cubic with the Ca (or
Ba, Sr) ions (charge state 2+) on the corners of the cube, the O ions (2−) on the face centers and
the Ti (4+) in the body center. The lattice is simple cubic, the base is Ca at (0,0,0), O at (1/2,1/2,0),
(1/2,0,1/2) and (0,1/2,1/2) and Ti at (1/2,1/2,1/2). The ferroelectric polarization is typically evoked by
a shift of the negatively and positively charged ions relative to each other. LaAlO3 (lanthanium alumi-
nate) is available as substrate material (space group 226, Fm3̄c [227]). Perovskites are also important
for materials for high temperature superconductivity.

Another group of ABX3 perovskites is formed by halogen atoms (Cl, Br, I) instead of oxygen
on the X-site (in −1 charge state). The B-site (former Ti-position) is taken up by lead (Pb) or other
elements of same +2 valence. The A-site (former Ba-position) is populated with an organic molecule
(+1) such as CH3NH3 (methylammonium, or MA) [228] or HC(NH2)2 (formamidinium, or FA). In
a purely inorganic version of such halogen perovskite, the A-site site is populated with Cs [229]. In
order to avoid Pb, CsSnX3 has been investigated. Various phases are observed next to the cubic phase
(α-CsPbI3) such as orthorhombic (δ-CsPbBr3) or tetragonal [230]. Also, angular distortions of the
PbX6 octahedrons are common and depend on material composition (Fig. 3.28).

The phase stability depends on the octahedral factor μ = RB/RX and the tolerance factor t ,

t = RA + RX√
2(RB + RX)

, (3.12)

with RA, RB and RX denoting the radius of the A-site and B-site cation, and X-site anion, respec-
tively. The stability of 138 different halide perovskites has been calculated in terms of μ and t [231]
(Fig. 3.29) and stability criteria have been given. A stable cubic phase requires 0.44 < μ < 0.9 and 0.8
≤ t ≤ 1 [232].

Table 3.5 Lattice parameters a, c, and u of some delafossite compounds. Theoretical values are shown with asterisk.
Data from [226]

a (nm) c (nm) u (nm)

CuAlO2 0.2858 1.6958 0.1099

CuGaO2 0.2980 1.7100 0.1073∗

CuInO2 0.3292 1.7388 0.1056∗

Fig. 3.27 Perovskite
structure (BaTiO3), a A
cell with 12-fold
(cuboctahedrally)
configured Ba, b B cell
with octahedrally
configured Ti

(a)

Ba
O

Ti

(b) Ba2+

O2-

Ti4+
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Fig. 3.28 Schematic
molecular models of
orthorhombic- and
cubic-phase CsPbBr3
perovskites with and
without PbCl2 and Cl2
doping. Adapted
from [232]

Fig. 3.29 Stability of
ABX3 halide perovskites in
terms of octahedral factor
μ and tolerance factor t .
Red (black) dots indicate
stable (unstable)
compounds. The region of
unstable materials is shown
in grey. Adapted
from [231]

3.4.11 NiAs Structure

The NiAs structure (space group 194, P63/mmc) (Fig. 3.30) is relevant for magnetic semiconductors,
such as MnAs, and also occurs in the formation of Ni/GaAs Schottky contacts [233]. The structure is
hexagonal. The arsenic atoms form a hcp structure and are trigonal prismatically configured with six
nearest metal atoms. The metal atoms form hcp planes and fill all octahedral holes of the As lattice.
For a cubic close packed, i.e. fcc, structure this would correspond to the rocksalt crystal. The stacking
is ABACABAC... (A: Ni, B,C: As).

3.4.12 Further Structures

There are many other crystal structures that have relevance for semiconductor materials. Among them
are the
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Fig. 3.30 NiAs structure,
metal atoms: dark grey,
chalcogenide atoms: light
grey

(a) (b)

• corundum structure (Al2O3, space group 167, R3̄c) occurring, e.g., for sapphire substrates used in
epitaxy or for gallium oxide α-Ga2O3 (Ga2O3 is a multiphase material [234, 235])

• bixbyite structure (In2O3, δ-Ga2O3, space group 206, Ia3̄) (see Fig. 20.3)
• β-Ga2O3 monoclinic structure (space group 12, C2/m) [235]
• quartz (SiO2) structures, α-quartz (space group 154, P3221) and β-quartz (space group 180, P6222)

Space does not permit to discuss these and other structures in more detail here. The reader should
refer to textbooks on crystallography, e.g. [236–238], and space groups [195, 239]. A good source for
information and images of crystal structures on the web is [240].

3.5 Polytypism and Polymorphism

In polytype materials, several stacking orders are possible. One of them represents the thermodynamic
ground state but others have very similar energy. An example is GaN which has been extensively
investigated in its (equilibrium) wurtzite and also in its (zincblende) cubic form. But not only hcp
or fcc but many different sequences, such as, e.g., ACBCABAC as the smallest unit cell along the
stacking direction, are possible. A typical example is SiC, for which besides hcp and fcc many other
(>40) stacking sequences are known. The largest primitive unit cell of SiC [213] contains 594 layers.
Some of the smaller polytypes are sketched in Fig. 3.31. In Fig. 3.32 cubic diamond crystallites and
metastable hexagonal and orthorhombic phases (in silicon) are shown.

For the ternary alloy (cf. Sect. 3.7) Zn1−xCdxS the numbers nh of diatomic layers with hexagonal
stacking (AB) and nc of layers with cubic stacking (ABC) have been investigated. CdS has wurtzite
structure and ZnS mostly zincblende structure. The hexagonality index α as defined in (3.13) is shown
in Fig. 3.33 for Zn1−xCdxS

α = nh

nh + nc
. (3.13)

Some semiconductormaterials possess several crystal phases (polymorphs) that can be readily prepared
under various (non-equilibrium) conditions. Due to their different physical properties, eventually they
can be employed for different device applications. GaN with its hexagonal and cubic phases can be
counted as such material. A prominent example of a multi-phase semiconductor is Ga2O3 that exhibits,
next to its monoclinic equilibrium structure, various other phases such as a rhombohedral (corundum,
α-Ga2O3) and an orthorhombic (κ-Ga2O3) phase [244].
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Fig. 3.31 a Polytypes of the zincblende and wurtzite lattice (found in SiC), the letters A, B and C denote the three
possible positions of the diatomic layers (see Fig. 3.7). b High resolution TEM image of 6H-SiC. For the enlarged view
on the left, the unit cell and the stacking sequence are indicated. Adapted from [241]

(a) (b) (c)

Fig. 3.32 Polytypes of diamond found in crystallites (metastable phases in silicon). a cubic type (3C)with stackingABC,
inset shows a diffractogram and the alignment of the C and Si lattice, b rhombohedral 9R crystallite withABCBCACABA
stacking, c 9Rphasewith interface to a hexagonal 2H (AB stacking) phase. Reprinted from [242]with permission,©2001,
Springer Nature
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(a) (b)

Fig. 3.33 a Hexagonality index α (3.13) of Zn1−xCdxS for various ternary compositions. Dashed line is a guide to the
eye. b Regions of different polytypes in ZnSexS1−x . Adapted from [243]

3.6 Reciprocal Lattice

The reciprocal lattice is of utmost importance for the description and investigation of periodic structures,
in particular for X-ray diffraction [245], surface electron diffraction, phonon dispersion or scattering
and the electronic band structure. It is the quasi-Fourier transformation of the crystal lattice. The crystal
lattice is also called the direct lattice, in order to distinguish it from the reciprocal lattice.

3.6.1 Reciprocal Lattice Vectors

When R denotes the set of vectors of the direct lattice, the set G of the reciprocal lattice vectors is
given by the condition6

exp (iG · R) = 1 (3.14)

for all R ∈ R and G ∈ G. Therefore, for all vectors r and a reciprocal lattice vector G

exp (iG · (r + R)) = exp (iG · r) . (3.15)

Each Bravais lattice has a certain reciprocal lattice. The reciprocal lattice is also a Bravais lattice, since
when G1 and G2 are two reciprocal lattice vectors, then this is obviously true also for G1 + G2. For
the primitive translation vectors a1, a2 and a3 of the direct lattice, the vectors b1, b2 and b3 that span
the reciprocal lattice are given directly for any lattice as

b1 = 2π

Va
(a2 × a3) (3.16a)

b2 = 2π

Va
(a3 × a1) (3.16b)

b3 = 2π

Va
(a1 × a2) , (3.16c)

where Va = a1 · (a2 × a3) is the volume of the unit cell spanned by the vectors ai . The volume of the
unit cell in reciprocal space is V ∗

a = (2π)3/Va .

6The dot product a · b of two vectors shall also be denoted as ab.
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The vectors bi fulfill the conditions

ai · b j = 2π δi j . (3.17)

Thus, it is clear that (3.14) is fulfilled. For an arbitrary reciprocal lattice vectorG = k1b1+k2b2+k3b3
and a vector R = n1a1 + n2a2 + n3a3 in direct space we find

G · R = 2π (n1 k1 + n2 k2 + n3 k3) . (3.18)

The number in brackets is an integer. Additionally, we note that the reciprocal lattice of the reciprocal
lattice is again the direct lattice. The reciprocal lattice of the fcc is bcc and vice versa. The reciprocal
lattice of hcp is hcp (rotated by 30◦ with respect to the direct lattice).

For later, we note two important theorems. A (sufficiently well behaved) function f (r) that is
periodic with the lattice, i.e. f (r) = f (r+R) can be expanded into a Fourier series with the reciprocal
lattice vectors according to

f (r) =
∑

aG exp (iG · r) , (3.19)

where aG denotes the Fourier component of the reciprocal lattice vectorG, aG = ∫
V f (r) exp(−iG ·r)

d3r. If f (r) is lattice periodic, the integral given in (3.20) is zero unlessG is a reciprocal lattice vector.

∫

V
f (r) exp (−iG · r) d3r =

{
aG

0,G /∈ G . (3.20)

3.6.2 Miller Indices

The Miller indices [246] form a triplet of integer numbers to denote directions and lattice planes in
the crystal. A vector R in direct space is denoted with its components h, k, and l relative to the lattice
vectors ai , i.e. h = a1 ·R and so forth. In order to arrive at the set of smallest possible integer numbers,
the values possibly must be divided by a suitable fraction. Directions are denoted in square brackets
[hkl], and go into the direction of ha1 + ka2 + la3. A set of crystallographically equivalent directions
is denoted with 〈hkl〉. For negative indices, [−1 00] can also be written with a bar, [1̄00].

A lattice plane is the set of all lattice points in a plane spanned by two independent lattice vectorsR1

andR2. Lattice planes are denoted as (hkl)with parentheses; a set of equivalent planes is denoted with
curly brackets as {hkl}. The lattice points on that plane form a two-dimensional Bravais lattice. The
entire lattice can be generated by shifting the lattice plane along its normal n = (R1 ×R2)/|R1 ×R2|.
The plane belongs to the reciprocal lattice vector Gn = 2πn/d, d being the distance between planes.

This correspondence between reciprocal lattice vectors and sets of planes allows the orientation of
planes to be described in a simple manner. The shortest reciprocal lattice vector perpendicular to the
plane is used. The coordinates with respect to the primitive translation vectors of the reciprocal space bi

form a triplet of integer numbers and are calledMiller indices of the plane, i.e.Gn = h b1+k b2+ l b3.
The plane described byGn ·r = A fulfills the condition for a suitable value of A. The plane intersects

the axes ai at the points x1 a1, x2 a2 and x3 a3. Thus we findGn xi ai = A for all i . From (3.18) follows
Gn · a1 = 2π h, Gn · a2 = 2π k and Gn · a3 = 2π l, where h, k and l are integers. The Miller indices
(hkl) are thus proportional to the reciprocal values 1/xi of the axis intersections of the plane with the
lattice vectors of the direct lattice. An example is shown in Fig. 3.34.
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Fig. 3.34 The plane
intersects the axes at 3, 2,
and 2. The inverse of these
numbers is 1/3, 1/2, and
1/2. The smallest integer
numbers of this ratio form
the Miller indices (233)

Fig. 3.35 a Miller indices
of important planes for the
simple cubic (and fcc, bcc)
lattice. (b) Directions
within three low index
planes of cubic crystals
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In a cubic lattice, the faces of the cubic unit cell are {001} and the planes perpendicular to the area
(body) diagonals are {110} ({111}) (Fig. 3.35a). For example, in the simple cubic lattice (100), (010),
(001), (−1 00), (0−1 0) are (00−1 ) equivalent and are denoted by {100}.

In the zincblende lattice, the {111} planes consist of diatomic planes with Zn and S atoms. It depends
on the direction whether the metal or the nonmetal is on top. These two cases are denoted by A and B.
We follow the convention that the (111) plane is (111)A and the metal is on top (as in Fig. 3.16b). For
each change of sign the type changes from A to B and vice versa, e.g. (111)A, (11̄ 1)B and (1̄ 1̄ 1̄)B. In
Fig. 3.35b the in-plane directions for the (001), (110) and (111) planes are visualized.

We note that for orthogonal lattices, the (outward) normal direction of a plane (hkl) is the same
direction as [hkl]. Caveat: in non-rectangular lattices this is not the case! This can be easily seen for a
monoclinic lattice, depicted as example in Fig. 3.36.
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Fig. 3.36 Sketch of lattice
directions and planes in a
monoclinic lattice. The
[100] direction and the
normal of the (100) plane
are not parallel

Fig. 3.37 (a, b) Miller
indices for the wurtzite (or
hcp) structure. (c)
Orientation of the a-, r-,
m-, and c-plane in the
wurtzite structure
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In the wurtzite lattice, the Miller indices are denoted as [hklm] (Fig. 3.37). Within the (0001) plane
three indices hkl are used that are related to the three vectors a1, a2 and a3 (see Fig. 3.37a) rotated with
respect to each other by 120◦. Of course, the four indices are not independent and l = −(h + k). The
third (redundant) index can be denoted as a dot. The c-axis [0001] is then denoted as [00.1]. Wurtzite
(and trigonal, e.g. sapphire) substrates are available typically with (polished) a (11.0), m (01.0) and
r (01.2), c (00.1) surfaces (Fig. 3.37b).

The distance of lattice planes d = 2π/|G| can be expressed via the Miller indices for cubic (3.21a),
tetragonal (3.21b) and hexagonal (3.21c) crystals as

dc
hkl = a√

h2 + k2 + l2
(3.21a)

d t
hkl = a

√
h2 + k2 + l2 (a/c)2

(3.21b)

dh
hkl = a

√
4 (h2 + hk + k2)/3 + l2 (a/c)2

(3.21c)

Useful formulas for the angle θ between a [hk.l]-plane and the [00.1]-direction in the cubic, tetragonal
and wurtzite structures are:

cos θ c = l√
h2 + k2 + l2

(3.22a)
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Table 3.6 High symmetry points and directions from �-point in the Brillouin zone of the fcc lattice

Point k ( 2π
a ) Direction Multiplicity

� (0, 0, 0) 1

X (0, 1, 0) � 6

K 3/4 (1, 1, 0) � 12

L 1/2 (1, 1, 1) � 8

W (1, 1/2, 0) 24

U (1, 1/4, 1/4) 24

Table 3.7 High symmetry points and directions from �-point in the Brillouin zone of the hcp lattice

Point k (2π ) Direction Multiplicity

� (0, 0, 0) 1

A (0, 0, 1
2 c ) � 2

L (0, 1√
3 a

, 1
2 c ) 12

M (0, 1√
3 a

, 0) � 6

H (− 1
3 a , 1√

3 a
, 1
2 c ) 12

K (− 1
3 a , 1√

3 a
, 0) T 6

cos θ t = l
√

l2 + c2
a2 (h2 + k2)

(3.22b)

cos θh = l
√

l2 + 4
3

c2
a2 (h2 + h k + k2)

. (3.22c)

3.6.3 Brillouin Zone

The Wigner–Seitz cell in reciprocal space is called the (first) Brillouin zone. In Fig. 3.38, the Brillouin
zones for the most important lattices are shown. High symmetry points in the Brillouin zone are labeled
with dedicated letters. The � point always denotes k = 0 (zone center). High symmetry paths in the
Brillouin zone are labeled with dedicated Greek symbols.

In the Brillouin zone of the fcc lattice (Si, Ge, GaAs, ...) the X point denotes the point at the zone
boundary in 〈001〉-directions (at distance 2π/a from �), K for 〈110〉-directions (at distance 3π/

√
2 a

from �) and L for the 〈111〉-directions (at distance √
3π/a from �) (see Table 3.6). The straight paths

from � to X, K, and L are denoted as �, �, and �, respectively. High symmetry points and directions
of the Brillouin zone of the hcp lattice are given in Table 3.7.

3.7 Alloys

When different semiconductors are mixed various cases can occur:

• The semiconductors are not miscible and have a so-called miscibility gap. They will tend to form
clusters that build up the crystal. The formation of defects is probable.
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Fig. 3.38 Brillouin zones and special k points for the a primitive cubic (pc), (b) fcc, c bcc, and d hcp lattice. e Brillouin
zone for chalcopyrite structure with fcc Brillouin zone shown as dashed outline f Brillouin zone for orthorhombic lattice
with one quadrant shown with dashed lines

• They form an ordered (periodic) structure that is called a superlattice.
• They form a random alloy.

3.7.1 Random Alloys

Alloys for which the probability to find an atom at a given lattice site is given by the fraction of these
atoms (i.e. the stoichiometry), independent of the surrounding, are called random alloys. Deviations
from the random population of sites is termed clustering.
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For a GexSi1−x alloy this means that any given atom site has the probability x to have a Ge atom
and 1 − x to have a Si atom. The probability pn that a Si atom has n next-neighbor Ge atoms is

pn =
(
4
n

)
xn (1 − x)4−n , (3.23)

and is depicted in Fig. 3.39 as a function of the alloy composition. The symmetry of the Si atom is
listed in Table 3.8. If it is surrounded by four of the same atoms (either Ge or Si), the symmetry is Td .
If one atom is different from the other three next neighbors, the symmetry is reduced to C3v since one
bond is singled out. For two atoms each the symmetry is lowest (C2v).

In an alloy from binary compound semiconductors such as AlxGa1−xAs the mixing of the Al and
Ga metal atoms occurs only on the metal (fcc) sublattice. Each As atom is bonded to four metal atoms.
The probability that it is surrounded by n Al atoms is given by (3.23). The local symmetry of the As
atom is also given by Table 3.8. For AlAsxP1−x the mixing occurs on the nonmetal (anion) sublattice.
If the alloy contains three atom species it is called a ternary alloy. In Fig. 3.40 the (11̄0) surface (UHV
cleave) of an In0.05Ga0.95As alloy is shown. Indium atoms in the first layer show up as brighter round
dots [247]. Along the [001]-direction the positions are uncorrelated, along [110] an anti-correlation is

Fig. 3.39 Probability that
a Si atom has n
next-neighbor Ge atoms in
a random GexSi1−x alloy

Fig. 3.40 a STM empty-state image (17.5 × 17.5nm2) of the (11̄0) surface of an MBE-grown In0.05Ga0.95As alloy
on GaAs, b curvature-enhanced image. c Schematic atomic arrangement of the first and second atomic layer. Adapted
from [248]
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Table 3.8 Probability pn (3.23) and symmetry of an A atom being surrounded by n B atoms in a tetrahedrally configured
BxA1−x random alloy

n pn Symmetry

0 x4 Td

1 4 x3 (1 − x) C3v

2 6 x2 (1 − x)2 C2v

3 4 x (1 − x)3 C3v

4 (1 − x)4 Td

found, corresponding to an effective repulsive pair interaction energy of 0.1eV for the nearest neighbor
In–In pairs along the [110]-direction due to strain effects [248].

If the binary end components have different crystal structure, the alloy shows a transition (or
compositional transition range) fromone structure to the other at a particular concentration.An example
is the alloy between wurtzite ZnO and rocksalt MgO. MgxZn1−xO alloy thin films exhibits wurtzite
structure up to about x = 0.5 and rocksalt structure for x > 0.6 [249] (cmp. Fig. 3.43).

If the alloy contains four atom species it is called quaternary. A quaternary zincblende alloy can
have themixing of three atom species on one sublattice, such as AlxGayIn1−x−yAs or GaAsxPySb1−x−y

or the mixing of two atom species on both of the two sublattices, such as InxGa1−xAsyN1−y .
The random placement of different atoms on the (sub)lattice in an alloy represents a perturbation of

the ideal lattice and causes additional scattering (alloy scattering). In the context of cluster formation,
the probability of an atom having a direct neighbor of the same kind on its sublattice is important.
Given a AxB1−xC alloy, the probability pS to find a single A atom surrounded by B atoms is given by
(3.24a). The probability pD1 to find a cluster of two neighbored A atoms surrounded by B atoms is
given by (3.24b).

pS = (1 − x)12 (3.24a)

pD1 = 12 x (1 − x)18 . (3.24b)

These formulas are valid for fcc and hcp lattices. For larger clusters [250, 251], probabilities in fcc
and hcp structures differ.

3.7.2 Phase Diagram

The mixture AxB1−x with average composition x between two materials A and B can result in a single
phase (alloy), a two-phase system (phase separation) or a metastable system. The molar free enthalpy
�G of the mixed system is approximated by

�G = � x (1 − x) + kT [x ln(x) + (1 − x) ln(1 − x)] . (3.25)

The first term on the right-hand side of (3.25) is the (regular solution) enthalpy of mixing with the
interaction parameter �, which can depend on x . The second term is the ideal configurational entropy
based on a random distribution of the atoms. The function is shown for various ratios of kT/� in
Fig. 3.41a. In an equilibrium phase diagram (see Fig. 3.41b) the system is above the binodal curve in
one phase (miscible). On the binodal line Tb(x) in the (x , T ) diagram the A- and B-rich disordered
phases have equal chemical potentials, i.e. ∂G/∂x = 0. For � independent of x the temperature Tb
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is given by (3.26a). A critical point is at the maximum temperature Tmg and concentration xmg of the
miscibility gap. For � independent of x it is given by Tmg = �/2 and xmg = 1/2. In the region
below the spinodal boundary, the system is immiscible and phases immediately segregate (by spinodal
decomposition). On the spinodal line Tsp(x) the condition ∂2G/∂x2 = 0 is fulfilled. For� independent
of x the temperature Tsp is given by (3.26b). The region between the binodal and spinodal curves is
the metastable region, i.e. the system is stable to small fluctuations of concentration or temperature but
not for larger ones.

kTb(x) = �
2x − 1

ln(x) − ln(1 − x)
(3.26a)

kTsp(x) = 2� x (1 − x) . (3.26b)

In Fig. 3.42 calculated diagrams for GaAs-AlAs and GaAs-GaP [252] are shown. The arrows denote
the critical point. These parameters and the interaction parameters for a number of ternary alloys are
given in Table 3.9. For example, for AlxGa1−xAs complete miscibility is possible for typical growth
temperatures (> 700K), but for InxGa1−xN the In solubility at a typical growth temperature of 1100K
is only 6% [253].

The alloy system (Al,Ga,In)(As,P,Sb) always crystallizes in the zincblende structure and (Al,Ga,In)N
always in the wurtzite structure. If the binary end components of a ternary alloy have a different crystal
structure things become more complicated and the crystal phase has to be determined experimentally
(andmodelled) for each composition. As an example the energy of the wurtzite, hexagonal and rocksalt

(a) (b)

Fig. 3.41 a Free enthalpy �G of mixed binary system (3.25) in units of � for � =const. and various values of kT/�

as labeled. b Schematic phase diagram for binary mixture. The temperature is given in units of �/k. The solid (dashed)
line denotes the binodal (spinodal) line
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Fig. 3.42 Calculated phase diagrams for a AlxGa1−xAs and b GaPxAs1−x . The binodal (spinodal) curve is shown as
solid (dashed) line. Adapted from [252]
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Table 3.9 Calculated interaction parameter �(x) (at T = 800K, 1kcal/mol= 43.39meV), miscibility-gap temperature
Tmg and concentration xmg for various ternary alloys. Data for (In,Ga)N from [253], other data from [252]

Alloy Tmg xmg �(0) �(0.5) �(1)

(K) (kcal/mol) (kcal/mol) (kcal/mol)

AlxGa1−xAs 64 0.51 0.30 0.30 0.30

GaPxAs1−x 277 0.603 0.53 0.86 1.07

Gax In1−xP 961 0.676 2.92 3.07 4.60

GaSbxAs1−x 1080 0.405 4.51 3.96 3.78

HgxCd1−xTe 84 0.40 0.45 0.80 0.31

ZnxHg1−xTe 455 0.56 2.13 1.88 2.15

ZnxCd1−xAs 605 0.623 2.24 2.29 2.87

InxGa1−xN 1505 0.50 6.32 5.98 5.63

Fig. 3.43 Calculated
energy vs. volume of the
formula unit for
MgxZn1−xO in the
wurtzite (WZ), hexagonal
(HX) and rocksalt phase
(RS). The separations
between the three phase are
denoted by straight bold
lines. Adapted from [254]
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structure of MgxZn1−xO has been calculated [254] as depicted in Fig. 3.43 (cmp. Fig. 2.4 for silicon).
The transition between wurtzite and rocksalt structure is predicted for x = 0.33.

3.7.3 Virtual Crystal Approximation

In the virtual crystal approximation (VCA) the disordered alloy ABxC1−x is replaced by an ordered
binary compound AD with D being a ‘pseudoatom’ with properties that are configuration averaged
over the properties of the B and C atoms, e.g. their masses or charges. Such an average is weighted
with the ternary composition, e.g. the mass is MD = x MB + (1 − x)MC. For example, the A–D force
constant would be taken as the weighted average over the A–B and A–C force constants.

3.7.4 Lattice Parameter

In the VCA for an alloy a new sort of effective atom is assumed that has an averaged bond length that
depends linearly on the composition. Typically, Vegard’s law (3.27), which predicts that the lattice
constant of a ternary alloy AxB1−xC depends linearly on the lattice constants of the binary alloys AC
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(a) (b)

Fig. 3.44 a Near-neighbor distance (
√
3 a0/4) of InxGa1−xAs as measured by standard X-ray diffraction (Bragg reflec-

tion, solid squares) andVCA approximation (dash-dotted line). Near-neighbor Ga–As and In–As distances as determined
byEXAFS (extendedX-ray absorptionfine structure, solid squares).Dashed lines are guides to the eye.Data from [255].b
Second-neighbor distances for InxGa1−xAs as determined from EXAFS, top: anion–anion distance (for As–As), bottom:
cation–cation distance (for In–In, Ga–Ga, and Ga–In). Solid lines in both plots are the VCA (a0/

√
2). Data from [256]

Fig. 3.45 Theoretical
values (T = 0K) for the
cell-internal parameter u as
a function of the
composition for group-III
nitride alloys. The solid
lines are quadratic curves
(bowing parameter b is
shown) through the points
for x = 0, 0.5, and 1.0.
Data from [257]

and BC, is indeed fulfilled

a0(AxB1−xC) = a0(BC) + x [a0(AC) − a0(BC)] . (3.27)

In reality, the bond length of the AC and BC bonds changes rather little (Fig. 3.44a) such that the
atoms in the alloy suffer a displacement from their average position and the lattice is deformed on
the nanoscopic scale. In a lattice of the type InxGa1−xAs the anions suffer the largest displacement
since their position adjusts to the local cation environment. For InxGa1−xAs a bimodal distribution,
according to the As–Ga–As and As–In–As configurations, is observed (Fig. 3.44b). The cation–cation
second-neighbor distances are fairly close to the VCA.

While the average lattice parameter in alloys changes linearly with composition, the cell-internal
parameter u (for wurtzite structures, see Sect. 3.4.5) exhibits a nonlinear behavior as shown in Fig. 3.45.
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Fig. 3.46 CuPt-ordered
ternary alloy In0.5Ga0.5P;
the lattice symmetry is
reduced from Td to C3v

In

Ga

P

Td C3v

(a) (b)

Fig. 3.47 (a) Cross-sectional transmission electron microscope image along the [110] zone axis of a Cd0.68Zn0.32Te
epilayer on GaAs showing ordered domains having a doublet periodicity on the {111} and {001} lattice planes. Two
different {111} variants are labeled ‘a’ and ‘b’. The doublet periodicity in the [001] is seen in the ‘c’ region. (b) Selected-
area diffraction pattern along the [110] zone. Strong peaks are fundamental peaks of the zincblende crystal, weak peaks
are due to CuPt ordering, labeled A and B, and CuAu-I ordering, labeled C and D. The latter are the weakest due to a
small volume fraction of CuAu-ordered domains. Adapted from [259]

Therefore physical properties connected to u, such as the spontaneous polarization, will exhibit a
bowing.

3.7.5 Ordering

Some alloys have the tendency for the formation of a superstructure [258]. Growth kinetics at the
surface can lead to specific adatom incorporation leading to ordering. For example, in In0.5Ga0.5P the
In and Ga atoms can be ordered in subsequent (111) planes (CuPt structure) instead of being randomly
mixed (Fig. 3.46). This impacts fundamental properties such as the phonon spectrum or the band gap.
CuPt ordering on (111) and (1̄1̄1) planes is called CuPtA, on (1̄11) and (11̄1) planes CuPtB ordering. In
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(a)

Cd
Zn
Se[110]

[001]

(b) (c)

Fig. 3.48 Schematic diagrams of zincblende CdxZn1−xTe along [110] with (a) CuAu-I type ordering and (b, c) two
types of the CuPtB type ordering. Doublet periodicity is along (a) [001] and [1̄10], (b) [11̄1] and (c) [1̄11]. Adapted
from [259]

Fig. 3.47, a TEM image of a Cd0.68Zn0.32Te epilayer is shown with simultaneous ordering in the CuPt
structure (doublet periodicity along [11̄1] and [1̄11]) and in the CuAu-I structure7 (doublet periodicity
along [001] and [1̄10]).

7The CuAu-I structure has tetragonal symmetry. There exists also the CuAu-II structure that is orthorhombic.



Chapter 4
Structural Defects

Crystals are like people: it is the defects in them which tend to make them interesting!

C.J. Humphreys, 1979 [260]

Abstract No crystal is perfect. Various point defects and their thermodynamics, diffusion and distri-
bution of defects are discussed. Also dislocations and extended defects such as cracks, stacking faults,
grain boundaries and antiphase domains are covered.

4.1 Introduction

In an ideal lattice each atom is at its designated position. Deviations from the ideal structure are called
defects. In the following, we will briefly discuss the most common defects. The electrical activity of
defects will be discussed in Sects. 7.5 and 7.7. For the creation (formation) of a defect a certain free
enthalpy Gf

D is necessary. At thermodynamical equilibrium a (point) defect density ∝ exp(−Gf
D/kT )

will always be present (cf. Sect. 4.2.2).
Point defects (Sect. 4.2) are deviations from the ideal structure involving essentially only one lattice

point. The formation energy for line defects (Sect. 4.3) or area defects (Sect. 4.4) scales with N 1/3

and N 2/3, respectively, N being the number of atoms in the crystal. Therefore, these defects are not
expected in thermodynamic equilibrium. However, the path into thermodynamical equilibrium might
be so slow that these defects are metastable and must be considered quasi-frozen. There may also
exist metastable point defects. By annealing the crystal, the thermodynamic equilibrium concentration
might be re-established. The unavoidable two-dimensional defect of the bulk structure is the surface,
discussed in Chap. 11.

4.2 Point Defects

4.2.1 Point Defect Types

The simplest point defect is a vacancy V, a missing atom at a given atomic position. If an atom is at
a position that does not belong to the crystal structure an interstitial I (or Frenkel defect) is formed.
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Fig. 4.1 Images of
occupied (upper frames)
and empty (lower frames)
density of states of typical
defects on Si-doped GaAs
(110) surfaces. (a1, a2)
show a Ga vacancy, (b1,
b2) a SiGa donor, (c1, c2) a
SiAs acceptor and (d1, d2)
a SiGa–VGa complex.
Adapted from [261]

Depending on the position of the interstitial different types are distinguished. An interstitial atom that
has the same chemical species as the crystal is called ‘self-interstitial’.

If an atom site is populated with an atom of different order number Z , an impurity is present. An
impurity can also sit on interstitial position. If the number of valence electrons is the same as for the
original (or correct) atom, then it is an isovalent impurity and quasi fits into the bonding scheme. If the
valence is different, the impurity adds extra (negative or positive) charge to the crystal bonds, which
is compensated by the extra, locally fixed charge in the nucleus. This mechanism will be discussed in
detail in the context of doping (Chap. 7). If in an AB compound an A atom sits on the B site, the defect
is called an antisite defect AB .

A Ga vacancy, a silicon impurity atom on Ga- and As-site and a SiGa-vacancy complex at the (110)
surface of Si doped GaAs are shown in Fig. 4.1 as observed with STM [261, 262]. Also antisite defects
in GaAs can be observed with STM [263, 264].

A point defect is typically accompanied by a relaxation of the surrounding host atoms. As an
example, we discuss the vacancy in Si (Fig. 4.2a). The missing atom leads to a lattice relaxation with
the next neighbors moving someway into the void (Fig. 4.2b). The bond lengths of the next and second-
next neighbor Si atoms around the neutral vacancy are shown in Fig. 4.2c. The lattice relaxation depends
on the charge state of the point defect (Jahn–Teller effect) which is discussed in more detail in Sect. 7.7.
In Fig. 4.2d the situation for the positively charged vacancy with one electron missing is shown. One of
the two bonds is weakened since it lacks an electron. The distortion is therefore different from that for
V 0. Also the (self-)interstitial is accompanied with a lattice relaxation as shown in Fig. 4.3 for a silicon
interstitial at tetrahedral place. Self-interstitials in silicon and germanium are reviewed and compared
in [265] for their various charge states.

4.2.2 Thermodynamics

For a given temperature, the free enthalpy G of a crystal (a closed system with regard to particle
exchange)

G = H − T S (4.1)

is minimum. H is the enthalpy and S the entropy. The enthalpy H = E + pV is the thermodynamic
potential for a system whose only external parameter is the volume V . It is used when the independent
variables of the system are the entropy S and pressure p. The free enthalpy is usedwhen the independent
parameters are T and p.G0 (H0) is the free energy (enthalpy) of the perfect crystal. H f is the formation
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(a) (b)

(c) (d)

Fig. 4.2 (a) Schematic diamond lattice with vacancy, i.e. a missing Si atom without relaxation. (b) Si with neutral
vacancy (V 0), lattice relaxation and formation of two new bonds. (c) Schematic diagram showing the (inward) relaxation
of the neighbors around the neutral Si vacancy defect site (empty circle) calculated by an ab initio method. The distances
of the outer shell of atoms (red circles) from the vacant site is labeled (in nm). The bond lengths of the two new bonds
and the second-neighbor (blue circles) distance are also indicated. The bond length in bulk Si is 0.2352nm, the second-
neighbor distance 0.3840nm. Adapted from [266]. (d) Si unit cell with positively charged vacancy (V+). Parts (a, b, d)
reprinted with permission from [267]

Fig. 4.3 Silicon
tetrahedral interstitial SiTi
and its next atoms in ideal
(white spheres) and relaxed
(black spheres) position.
Adapted from [175]

enthalpy of an isolated defect. This could be, e.g., the enthalpy of a vacancy, created by bringing an
atom from the (later) vacancy site to the surface, or an interstitial, created by bringing an atom from
the surface to the interstitial site. In the limit that the n defects do not interact with each other, i.e. their
concentration is sufficiently small, they can be considered independent and the enthalpy is given by

H = H0 + n H f . (4.2)

The increase of entropy due to increased disorder is split into the configurational disorder over the
possible sites, denoted as Sd, and the formation entropy Sf due to localized vibrational modes. The
total change �G of the free energy is
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Table 4.1 Formation enthalpy H f and entropy Sf of the interstitial (I ) and vacancy (V ) in Si and the Ga vacancy in
GaAs. Data for Si from [268, 269], for GaAs from [270]

Material Defect H f (eV) Sf (kB)

Si I 3.2 4.1

Si V 2.8 ∼ 1

GaAs VGa 3.2 9.6

�G = G − G0 = n (H f − T Sf) − T Sd = n Gf − T Sd , (4.3)

where Gf = H f − T Sf denotes the free enthalpy of formation of a single isolated defect. In Table 4.1
experimental values for the formation entropy and enthalpy are given for several defects. Surprisingly,
despite their fundamental importance in semiconductor defect physics, these numbers are not very well
known and disputed in the literature.

The defect concentration is obtained by minimizing �G, i.e.

∂�G

∂n
= Gf − T

∂Sd

∂n
= 0 . (4.4)

The entropy Sd due to disorder is given as

Sd = kB lnW , (4.5)

whereW is the complexion number, usually the number of distinguishable ways to distribute n defects
on N lattice sites

W =
(
N
n

)
= N !

n! (N − n)! . (4.6)

With Stirling’s formula ln x ! ≈ x(ln x − 1) for large x we obtain

∂Sd

∂n
= kB

[
N

n
ln

(
N

N − n

)
+ ln

(
N − n

n

)]
. (4.7)

If n � N , ∂N/∂n = 0 and the right side of (4.7) reduces to kB ln(N/n). The condition (4.4) reads
Gf + kBT ln(n/N ), or

n

N
= exp

(
−Gf

kT

)
. (4.8)

In the case of several different defects i with a degeneracy Zi , e.g. a spin degree of freedom or several
equivalent configurations, (4.8) can be generalized to

ni
Zi N

= exp

(
−Gf

i

kT

)
. (4.9)

In [271] the equilibrium concentration of interstitials Ceq
I in silicon has been given as

Ceq
I = (

1.0 × 1027 cm−3
)
exp

(
−3.8 eV

kT

)
, (4.10)
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about 1014 cm−3 at 1200 ◦C. The vacancy concentration has been investigated in [272]. Around a
temperature of 1200 ◦C it is in the 1014–1015 cm−3 range. Due to the reaction

0 � I + V , (4.11)

a mass action law holds for the concentrations of interstitials and vacancies

CI CV = Ceq
I Ceq

V . (4.12)

4.2.3 Diffusion

The diffusion of point defects is technologically very important, in particular for silicon as hostmaterial.
Typically a dopant profile should be stable under following technological processing steps and also
during device performance. Also defect annihilation is crucial after implantation processes. Diffusion
of an interstitial I and a vacancy V to the same site is prerequisite for recombination of defects (so
called bulk process) according to the scheme I + V → 0. We note that the process 0 → I + V is
calledFrenkel pair process.1 Also the self-diffusion of silicon has been studied, e.g. using radioactively
marked isotopes [271]. The diffusion of point defects including dopants in silicon has been reviewed in
[273, 274]. Usually Fick’s law is applied, stating how the flux J depends on the concentration gradient,
for an interstitial it reads:

JI = −DI ∇CI , (4.13)

DI being the interstitial diffusion coefficient. For interstitials in Si it was found [271] that

DI = 0.2 exp

(
−1.2 eV

kT

)
cm2/s . (4.14)

The diffusion of neutral vacancies occurs with [275]

DV = 0.0012 exp

(
−0.45 eV

kT

)
cm2/s . (4.15)

The temperature dependent diffusion coefficients of point defects and dopants in silicon are shown in
Fig. 4.4.

The self-diffusion coefficient of silicon has been determined from the annealing of isotope super-
lattices (Sect. 12.5) of sequence 28Sin/30Sin , n = 20 to be [276]

DSD
Si =

[
2175.4 exp

(
−4.95 eV

kT

)
+ 0.0023 exp

(
−3.6 eV

kT

)]
cm2/s , (4.16)

the first (second) term being due to interstitial (vacancy) mechanism, dominant for temperatures larger
(smaller) than 900 ◦C. The enthalpy in the exponent, e.g. HV = 3.6+0.3

−0.1 eV [276], consists of the
formation and migration enthalpies,

HV = H f
V + Hm

V . (4.17)

1At higher temperatures a silicon atom can occasionally acquire sufficient energy from lattice vibrations to leave its
lattice site and thus an interstitial and a vacancy are generated.



74 4 Structural Defects

Fig. 4.4 The temperature
dependent diffusion
coefficient of Si interstitials
I , vacancies V and various
impurities in silicon. Also
the self-diffusion
coefficient, labeled with
‘Si’ is shown. Based on
data from [273]

(d) (e)

Fig. 4.5 Configurations of boron in Si: (a) Substitutional boron and Si self-interstitial at ‘T’ site (BS–SiTi ). Interstitial
boron at (b) ‘H’ (BH

i ) and (c) ‘T’ site (B
T
i ), each with the Si atoms on the Si lattice sites. The large bright ball represents

the boron atom, large and small dark balls represent Si atoms. (d) Lowest energy barrier diffusion paths for positively
charged and neutral B–Si states, total energy vs. configuration. (e) Two diffusion pathways for positively charged B–Si,
kick-out (dashed line) and pair diffusion (solid line); the activation energy is labeled. Adapted from [279]

Using the experimental value H f
V = 2.8 ± 0.3eV [269] from Table 4.1, for the migration enthalpy a

value around Hm
V ≈ 0.8eV is obtained.

As an example for a dopant diffusion process that has been understood microscopically, we discuss
here boron in silicon. In Fig. 4.5a the lowest-energy configuration of a boron-related defect in silicon is
depicted, Bs–SiTi , i.e. boron on a substitutional site and a self-interstitial Si on the ‘T’ place with highest
symmetry2 (see Fig. 3.18). Due to its importance as an acceptor in Si, the configuration and diffusion

2The positive charge state is stable, the neutral charge state is metastable since the defect is a negative-U center (see
Sect. 7.7.5).
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of B in Si has found great interest [277–279]. The diffusion depends on the charge state of boron. The
diffusion of positively charged boron has been suggested [279] to occur via the following route: The
boron leaves its substitutional site and goes to the hexagonal site (‘H’) (Fig. 4.5b) with an activation
energy of about 1eV (Fig. 4.5d). It can then relax (∼ 0.1eV) without barrier to the tetrahedral ‘T’
position (Fig. 4.5c). The direct migration Bs–Si

T+
i →BT+

i has a higher activation energy of 1.12eV
and is thus unlikely. The boron atom can then diffuse through the crystal by going from ‘H’ to ‘T’ to ‘H’
and so on (Fig. 4.5e). However, long-range diffusion seems to be not possible in this way because the
kick-in mechanism will bring back the boron to its stable configuration. The pair diffusion mechanism
for neutral boron Bs–SiTi →BH

i →Bs–SiTi via the hexagonal site has an activation energy of about
0.5eV (Fig. 4.5d) while the path via BT

i has a larger 0.9eV barrier. The concentration dependence of
the diffusion mechanism has been discussed in [280].

Similarly, indium diffusion in silicon has been investigated suggesting a minimum energy Ins–
SiTi →InTi →Ins–SiTi diffusion pathway via the tetrahedral site with 0.8eV activation energy [281].
Microscopic modeling has been reported also for diffusion of phosphorus [282].

4.2.4 Dopant Distribution

The introduction of impurities into a semiconductor (or other materials such as glasses) is termed dop-
ing. The unavoidable incorporation of impurities in the nominally pure (nominally undoped) material
is called unintentional doping and leads to a residual or background impurity concentration. Several
methods are used for doping and the creation of particular doping profiles (in depth or lateral). All
doping profiles underly subsequent diffusion of dopants (Sect. 4.2.3).

Variousmethods of doping are used. A straightforwardmethod of doping is the incorporation during
crystal growth or epitaxy. For semiconductor wafers a homogeneous doping concentration is targeted,
both laterally and along the rod from which the wafer is cut (Sect. 12.2.2). When a crystal is grown
from melt, containing a concentration c0 of the impurity, the concentration in the solid is given by
(‘normal freezing’ case [283–285])3

c(x) = c0 k (1 − x)k−1 , (4.18)

where c(x) is the impurity concentration in the crystal at the freezing interface, x is the frozen melt
fraction (ratio of solid mass to total mass, 0 ≤ x ≤ 1). k is the distribution coefficient (or segregation
coefficient) which is the fraction of impurities that is built into the crystal at the liquid–solid interface.
Since the melt volume reduces during the solidification, the impurity concentration rises over time.
For small distribution coefficients (4.18) can be approximated to

c(x) ≈ c0
k

1 − x
, (4.19)

An experimental example for Ge:In is shown in Fig. 4.6a.
In Table 4.2 the distribution coefficients for various impurities in Si, Ge and GaAs is given. The

modification of distribution coefficients in SiGe alloys is discussed in [286]. Equilibrium values (keq)
are obtained for ‘slow’ crystal growth. For finite growth rates, k becomes a function of the growth rate

3Mass preservation of the impurities can bewritten at any time cm(1−x)+∫ x
0 c(x ′) dx ′ = c0, where cm is the (remaining)

concentration in the melt. At the beginning cm(0) = c0. At the interface c(x) = k cm(x). Putting this into the mass
preservation, building c′(x) and solving the resulting differential equation c′ = c(1− k)/(1− x) with c(0) = k c0 leads
to (4.18).
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(a) (b)

Fig. 4.6 (a) Relative concentration of indium along a CZ-grown germanium crystal. Absolute concentration is in the
1016 cm−3 range. Solid line follows (4.19) with k = 1.2×10−3. Symbols are experimental data from [288]. (b) Impurity
distribution (relative concentration c(x)/c0) for CZ (4.18) (solid lines) and FZ (4.20) (dashed lines, z = 0.01) silicon
crystals for B (blue), P (red), and Al (green). Distribution coefficients have been taken from Table 4.2. Note crossing of
B and P lines and possibly associated change from p-type to n-type (cmp. Fig. 1.7)

Table 4.2 Equilibrium distribution coefficients (at melting point) of various impurities in silicon, germanium and GaAs.
Data for Si from [285, 287], for Ge from [164, 288–290] and for GaAs from [164]

Impurity Si Ge GaAs

C 0.07 > 1.85 0.8

Si 5.5 0.1

Ge 0.33 0.03

N 7 × 10−4

O ≈ 1 0.3

B 0.8 12.2

Al 2.8 × 10−3 0.1 3

Ga 8 × 10−3 0.087

In 4 × 10−4 1.2 × 10−3 0.1

P 0.35 0.12 2

As 0.3 0.04

Sb 0.023 3.3 × 10−3 < 0.02

S 10−5 > 5 × 10−5 0.3

Fe 6.4 × 10−6 3 × 10−5 2 × 10−3

Ni ≈ 3 × 10−5 2.3 × 10−6 6 × 10−4

Cu 8 × 10−4 1.3 × 10−5 2 × 10−3

Ag ≈ 1 × 10−6 10−4 0.1

Au 2.5 × 10−5 1.5 × 10−5

Zn 2.5 × 10−5 6 × 10−4 0.1

and is then called the effective distribution coefficient. For k < 1, keff > keq. keff approaches 1 for high
growth rates, i.e. all impurities at the rapidly moving interface are incorporated.

Equation (4.18) applies to Czrochalski growth where the crystal is pulled out of the melt [291].
In float-zone (FZ) growth [291] a polycrystalline rod is transformed into a crystalline one while a
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(a) (b)

Fig. 4.7 (a) Depth of peak concentration of boron implanted in silicon for various acceleration voltages U . Data from
various sources, for U < 1keV from [299]. Dashed line is linear dependence. (b) Simulated depth profiles of impurity
concentration for B, P, As, and Sb implanted into crystalline silicon withU = 100keV and a dose of 1015 cm−2. Adapted
from [300]

RF-heated and liquid ‘float’ zone is moved through the crystal. In this case the impurity distribution is
given by4

c(x) = c0

[
1 − (1 − k) exp

(
−k x

z

)]
, (4.20)

where x is the ratio of the crystal mass to the total mass, i.e. crystal, liquid and feed rod. z is the relative
mass of the (liquid) float zone, i.e. the ratio of liquid mass to the total mass. The impurity distribution
for CZ and FZ crystals is compared in Fig. 4.6b. Obviously the FZ process can create much more
homogeneous profiles.5

Using epitaxy arbitrary doping profiles along the growth directions can be created by varying the
impurity supply during growth. Impurities can be introduced through the surface of the material by
diffusion from a solid or gas phase. In ion implantation [292] the impurity atoms are accelerated
towards the semiconductor and deposited with a certain depth profile due to multiple scattering and
energy loss events, depending on the acceleration voltage (increasing deposition depth with increasing
voltage, Fig. 4.7a) and ion mass (decreasing deposition depth with increasing mass, Fig. 4.7b). The
depth profile is often investigated using secondary ion mass spectrometry (SIMS) [293, 294]. The
profile also depends on the matrix material whose stopping power depends on its density and atomic
mass. While an implantation depth of about 50nm is reached for boron in silicon (A ≈ 28) for 10keV,
20keV are necessary in germanium (A ≈ 72.6) [295]. The mean path length6 dm depends also on the
crystallographic direction (channeling effects, Fig. 4.8) [296]. A simulation of the interaction of ions
and solids can be performed using the SRIM software [297, 298].

4When the float zone moves through the crystal, the change of mass of impurities mm = cmz in the liquid is m′
m =

c0 − kcm. The first term stems from the melting of the polycrystalline part, the second from the solidification of the
crystal. Solving the resulting differential equation c′

m = (c0 − kcm)/z with cm(0) = c0 and using c(x) = kcm(x) yields
(4.20).
5We note that during directed solidification of Si:(B,P) a pn-junction forms due to the different distribution coefficients
of boron and phosphorus. This has been used in [89].
6The mean path length is the distance integrated along the ion trajectory until its direction deviates by more than 4 ◦
from the incident direction.
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Fig. 4.8 Simulated mean
path length as a function of
implantation direction
(azimuthal angle φ and
polar angle θ) near [001]
for 5keV boron in silicon.
The [001] channeling peak
appears as a ridge at the
left side of the plot (θ = 0,
any value of φ). Adapted
from [296]
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4.2.5 Large Concentration Effects

4.2.5.1 Lattice Constant

At high doping concentration, a noticeable effect on the lattice constant a0 is found. For silicon the atom
density7 is NSi = 5×1022 cm−3. A doping level of N = 1019 cm−3 corresponds thus to a dopant fraction
of 0.02%. Such crystal could also be considered a very dilute alloy. About each (NSi/N )1/3 ≈ 17-th
atom in a given direction is a dopant.

The effect of high doping on the lattice constant is due to different ionic radius of the dopant and
the hydrostatic deformation potential of the band edge occupied by the free carriers [301]. In a linear
approach, the effect is summarized in the coefficient β via

β = 1

N

�a0
a0

. (4.21)

The effect due to charge carriers on β is negative (positive) for p-doping (n-doping). Experimental
data for Si, Ge, GaAs and GaP are compiled in [302, 303] and theoretically discussed. The effect
is in the order of β = ±(1–10)×10−24 cm3. For example, in the case of Si:B, the shrinkage of the
lattice constant is mostly due to the charge carrier effect, for Si:P both effects almost cancel. In [304]
it is shown that boron incorporation in silicon changes the lattice constant in various directions quite
differently, e.g. d333 is shrunk by 0.4% for a doping level of 1019 cm−3 while the {620} lattice constant
remains constant.

4.2.5.2 Clustering

Point defects can cluster, i.e. several point defects aggregate at neighboring sites. An example the
configuration of five nearby vacancies in silicon, the so-called V5 cluster is shown in Fig. 4.9a. In
[305] the ring-like hexavacancy in silicon is predicted a very stable defect. A large number of clustered
vacancies is equivalent to a void. An example is depicted in Fig. 4.9b for an In2O3 crystal which has
locally ’decomposed’ into an indium particle and a void as revealed by TEM [306]. Also impurities
can exhibit clustering.

7eight atoms per cubic unit cell of length a0 = 0.543nm.
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(a)

[001]

[110]

[110]

(b)

void

indium

In O2 3

Fig. 4.9 (a) Predicted configuration of the V5-cluster (five vacancies) in silicon. Yellow spheres indicate more distorted
atoms than the rest of the lattice atoms (white spheres). Adapted from [307]. (b) Indium particle with adjacent void
embedded in In2O3 (STEM image revealing Z -contrast in [001]). Adapted from [306]

Fig. 4.10 Minimum
energy path for the breakup
of a B3I2 cluster into B2I
and BI. Silicon (boron)
atoms are shown as yellow
(blue) spheres. Adapted
from [310]

Typically a random distribution of dopants in the host is assumed (cmp. Sect. 3.7.1 on random
alloys). The introduction of several impurities can lead to pairing effects, e.g. described for Se and
B, Ga, Al or In in silicon [308]. A high concentration of a single impurity makes the existence of
clusters, i.e. two or more neighboring dopant atoms, more probable. This effect has been extensively
studied for B in Si [309], showing that several boron atoms with interstitials I form thermodynamically
stable clusters, e.g. B3I2. This cluster forms from B2I and BI with only 0.2eV activation barrier [310]
as shown in Fig. 4.10. The formation is limited by diffusion of the smaller clusters to the same site.
The number of free carriers (here holes) released from such cluster is smaller than the number of
boron atoms since it forms a deep acceptor [309]. This autocompensation mechanism is thus limiting
the maximum achievable free carrier concentration due to doping and is technologically unfavorable.
Reactions between boron atoms and silicon self-interstitials often lead to boron clustering in the peak
region of an implantation profile and require detailed optimization of the annealing process [311].
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Fig. 4.11 Solubility limit for various impurities in silicon vs. their ionization energy. Adapted from [314]

Table 4.3 Maximum solubility Ns of some impurities in silicon. Data for B, P, As, Sb from [313], other data from [316]

Impurity Ns (1020 cm−3)

B 4

P 5

As 4

Sb 0.7

Al 0.13

Cu 1.4 × 10−2

Au 1.2 × 10−3

Fe 3 × 10−4

4.2.5.3 Solubility Limit

The steady-state impurity solubility can be defined as the maximum concentration of impurity atoms in
a crystal allowing thermodynamic balance between the crystal and another phase, e.g. a liquid phase,
an extended defect or a precipitate. Precipitates are small inclusions of a second phase in a crystal,
exhibiting a high concentration of ‘gathered’ impurities that cannot be solved in the crystal. Solubility
limits for impurities in silicon have been first determined in [312] with a bulk of subsequent research
[313] due to its practical relevance in device fabrication. The solubility limits for a few impurities in
silicon are listed in Table 4.3. It is related to the ionization energy of the defect (cmp. Sect. 7.4) as
shown in Fig. 4.11.

The temperature dependence of the solubility for a few dopants is depicted in Fig. 4.12a. The
solubility depends also on the present strain [315]. The simple empirical relation xs = 0.1 k (Fig. 4.12b)
between the maximum molar solubility xs and the distribution coefficient k in silicon and germanium
has been pointed out in [316].

A typical example for the formation of precipitates is Fe in InP, used for compensation of shallow
donors in order to produce semi-insulating material (Sect. 7.7.8). The solubility of Fe in InP is fairly
low, about 1017 cm−3 at growth temperature [317]. In Fig. 4.13 a high-resolution TEM image of a
precipitate in InP doped with 3 × 1018 cm−3 Fe is shown. The precipitate exhibits a lattice constant
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(a) (b)

Fig. 4.12 a Steady-state solubility of impurities (P, As, B and Sb as labeled) in silicon. Solid lines are theoretical
model matching various experimental data. Arrow denotes the melting point of silicon (1410 ◦). Adapted from [313].
b Maximum molar solid solubility xs vs. the distribution coefficient for various impurities in crystalline silicon and
germanium. Solid line follows xs = 0.1 k. Adapted from [316]

Fig. 4.13 High resolution
TEM image of a FeP
precipitate in iron-doped
InP. Adapted from [318]

of d111 = 0.240nm in [111]-direction, much different from that of InP (d InP
111 = 0.339nm). The angle

between the [101] and [111] direction is 50◦ instead of 35◦ for InP. This is consistent with orthorhombic
FeP [318]. Typically FeP and FeP2 precipitates are found in highly Fe-doped InP [319].

4.3 Dislocations

Dislocations are line defects along which the crystal lattice is shifted by a certain amount. The vector
along the dislocation line is called line vector L. A closed path around the dislocation core differs
from that in an ideal crystal. The difference vector is called the Burger’s vector b. Dislocations for
which the Burger’s vector is a vector of the lattice are called full dislocations. In contrast, dislocations
with Burger’s vectors that are not translation vectors of the lattice are called partial dislocations. The
history of dislocation theory is described in [320].
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(a) (b)

(c) (d)

Fig. 4.14 a High-resolution transmission electron microscopy image (HRTEM) in the 〈110〉 projection of a network of
misfit dislocations at a GaAs/CdTe/ZnTe interface. Substrate: GaAs (001), 2◦ off 〈110〉, ZnTe buffer layer is 2monolayers
thick. b Fourier transform with round mask around the (111) Bragg reflection. (c) Phase and d amplitude images for the
mask from (b). From [321]

Since the energy of a dislocation is proportional to b2, only dislocations with the shortest Burger’s
vector are stable. The plane spanned by L and b is called the glide plane. In Fig. 4.14 a high-resolution
image of the atoms around a dislocation and the phase and amplitude of the (111) reflection are shown.
The phase corresponds to the atomic columns, the amplitude to the displacement of the atoms at the
dislocation core (see also Fig. 4.14).

4.3.1 Dislocation Types

4.3.1.1 Edge Dislocations

For an edge dislocation (Fig. 4.15a) b and L are perpendicular to each other. An extra half-plane
spanned by L and b × L is inserted.
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(a)

L

b

(b)

Lb

Fig. 4.15 Model of a an edge and b a screw dislocation. The line vector L and the Burger’s vector b are indicated

(a) (b)

Fig. 4.16 a Atomic force microscopy image of growth spiral around a screw dislocation on a silicon surface; image
width: 4µm. (textbfb STM image (width: 75nm) of a screw-type dislocation with a Burgers vector of [000-1] on the
N-face of GaN. The reconstruction is c(6×12). The c(6×12) row directions correspond to 〈1̄100〉. Reprinted with
permission from [322], ©1998 AVS

4.3.1.2 Screw Dislocations

For a screw dislocation (Fig. 4.15b) b and L are collinear. The solid has been cut along a half-plane up
to the dislocation line, shifted along L by the amount b and reattached.

Around the intersection of a screw dislocation with a surface, the epitaxial growth occurs, typically
in the form of a growth spiral that images the lattice planes around the defect.

4.3.1.3 60◦ Dislocations

The most important dislocations in the zincblende lattice (Fig. 4.17) have the line vector along 〈110〉.
With the Burger’s vector a/2 〈110〉 three different types of dislocations can be formed: edge, screw
and 60◦ dislocations. The vicinity of the core of the latter is shown in more detail in Fig. 4.17d.We note
that the atomistic structure of 60◦ dislocations is different for L along [110] and [−1 10]; depending
on whether the cations or anions are in the core, they are labeled α or β dislocations.
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L

(b) (c)(a)

[110]

=60° =90°=0° (d)

b
L

Fig. 4.17 Dislocations in the zincblende structure. The line vector is along [100]. The Burger’s vector a/2 〈110〉 can
create an a edge dislocation, a b screw dislocation, and c a 60◦ dislocation. d Atomistic structure of a 60◦ dislocation

(a) (b)

Fig. 4.18 a Plan-view transmission electron microscopy image of a network of 〈110〉 dislocation lines in (In,Ga)As
on InP (001) with a lattice mismatch of about 0.1%. The TEM diffraction vector is g = [22̄0]. Adapted from [323]. b
Panchromatic cathodoluminescence image of partially relaxed Al0.13Ga0.87N on (303̄1) GaN heterostructure with in-
plane directions indicated. Adapted from [324], reprinted under a Creative Commons Attribution (CC BY 3.0) unported
licence

4.3.1.4 Misfit Dislocations

Whenmaterials with different lattice constants are grown on top of each other, the strain can plastically
relax via the formation of misfit dislocations. A typical network of such dislocations is shown in
Fig. 4.18a for (In,Ga)As on InP (001). Another example is given in Fig. 4.18b for the (Al,Ga)N/GaN
system on a semipolar (303̄1) lattice plane tilted to the c-axis. This leads to non-rectangular dislocation
directions which are universal for dislocations from glide on a- and m-planes in heterostructures of
trigonal and hexagonal materials [325] (Fig. 4.19).

4.3.1.5 Partial Dislocations

Partial dislocations, i.e. the Burger’s vector is not a lattice vector, must necessarily border a two-
dimensional defect, usually a stacking fault (Sect. 4.4.2). A typical partial dislocation in diamond or
zincblende material is the Shockley partial dislocation (or just Shockley partial) with Burger’s vector
b = (a0/6) 〈112〉. Another important partial is the Frank partial with b = (a0/3) 〈111〉. A perfect
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Fig. 4.19 Dislocation line orientation angle α (versus the projected c-axis direction) for the a-plane prismatic slip
system form-azimuth and vice versa (solid line) and them-plane prismatic slip system form-azimuth (and a/a) (dashed
line) as a function of interface inclination angle θ . Experimental data from epitaxy on semipolar planes are shown for
(Al,Ga)2O3/Al2O3 (square), (Al,Ga)N/GaN (diamond, cmp. Fig. 4.18b), (In,Ga)N/GaN (circles), GaN/Si (hexagon) and
(Mg,Zn)O/ZnO (star). Adapted from [325, 326]

dislocation can be dissociated into two partials. This is energetically favorable. As an example we
consider the reaction (Fig. 4.20a)

1

2

[
1̄01

] → 1

6

[
1̄1̄2

] + 1

6

[
2̄11

]
. (4.22)

The length of the full dislocation is a0/
√
2. The length of the Shockley partial is a0/

√
6. Thus the

energy E = G b2 of the full dislocation is E1 = Ga20/2 and the sum of the energies of the partials
is smaller, E2 = 2Ga20/6 = Ga20/3. In Fig. 4.20b a TEM image of a Ge/Si interface with a Shockley
partial is shown.

4.3.2 Visualization of Dislocations by Etching

Defects can be made visible using etching techniques. This is particularly popular for finding disloca-
tions. Many etches are anisotropic, i.e. the etch velocity varies for different crystal directions. As an
example the result of etching a silicon sphere in molten KOH and a germanium sphere in a HNO3/HF
solution are shown in Fig. 4.21. The remaining bodies exhibit those planes with low etching velocity.
The etch velocity of various etch solutions has been investigated in detail in particular for silicon
(Fig. 4.22).

In a planar geometry, etch pits indicate the presence of dislocations, as shown in Fig. 4.23 for Ge
of different orientation. The anisotropic etch prepares {111} planes. The dislocation core is at the
intersection of the planes. In Fig. 4.24 hexagonal etch pits stretched along [11̄0] are developed by
molten KOH [330, 331]. The sides of the base are along [110], 〈130〉 and 〈310〉. The depth and width
of the pits increases with increasing etching time. On the (001̄) surface, the orientation of the pits is
rotated by 90◦ because of the polar [111]-axis of the zincblende structure [330]. Such etch pit develops
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(a) (b)

Fig. 4.20 a Graphical representation of the dislocation reaction of (4.22). b TEM image of the interface of a Ge/Si
heterostructure with a

[
2̄11

]
/6 Shockley partial dislocation. The image is overlayed with empty rod positions (as

schematically shown in the lower left part of the figure) colored according to the stacking position (A: blue, B: red, C:
green). The arrows labeled ‘I’ denote the position of the interface. Based on [327]

at a dislocation with Burger’s vector a/2 [011] (inclined to the (001) surface) [332]. Other types of
etch pits indicate dislocations with other Burger’s vectors [332, 333]. Recipies how to wet chemically
etch various semiconductors can be found in [328, 334–337]. Other etching techniques include dry
processes such as plasma etching or reactive ion etching (RIE) [338–341].

Fig. 4.21 a Resulting shape of Si sphere (‘Lösungskörper’) after 3h at 100◦C in molten KOH. b Resulting shape of
Ge sphere after etching in HNO3:HF:CH3COOH, 35:30:35 weight percent. The octaedric form indicates {111} faces.
Markers are 1mm. Adapted from [328]
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(a) (b)

Fig. 4.22 a Etch rate of silicon for tetramethyl-ammonium-hydroxide (TMAH) water solution (25%) at 86◦C and 40%
KOH at 70 ◦C as a function of crystallographic direction. bDetail of the anisotropy around the (111) direction for TMAH
solutions with three different concentrations and 40% KOH, all at 86 ◦C. Adapted from [329]

Fig. 4.23 Etch pits on germaniumwith (a) (001) and (b) (111) surface orientation. In both cases {111} facets are prepared
by the etch. As etch in (b) a HNO3/HF/CH3COOH solution with AgNO3 additive has been used. Width of the triangular
etch pits is about 100µm. Adapted from [334]

Fig. 4.24 Etch pits on GaAs (001) after a 3min and b 10min etch time in molten KOH at 300◦C. Adapted from [330]



88 4 Structural Defects

Fig. 4.25 Dislocation
density (as revealed by etch
pits) for GaAs and InP as a
function of the carrier
concentration for various
concentrations of
impurities (S, Te, and Zn).
Adapted from [343]

4.3.3 Impurity Hardening

It has been found that the addition of impurities can lead to a substantial reduction of the dislocation
density. This effect is known as impurity hardening and is caused by a hardening of the lattice due
to an increase of the so-called critical resolved shear stress [342]. In Fig. 4.25 the dependence of the
dislocation density in GaAs and InP is shown as a function of the carrier density that is induced by the
incorporation of (electrically active) group-II or group-VI atoms (acceptors or donors, cf. Sect. 7.5).
The high carrier concentration is unwanted when semi-insulating substrates (cf. Sect. 7.7.8) or low
optical absorption (cf. Sect. 9.9.1) are needed. Thus the incorporation of isovalent impurities, such as
In, Ga or Sb in GaAs and Sb, Ga or As in InP, has been investigated and found to be remarkably
effective. Material containing such impurities in high concentration (>1019 cm−3) must be considered
a low-concentration alloy. The lattice constant is thus slightly changed, which can cause problems in
the subsequent (lattice-mismatched) epitaxy of pure layers.

4.4 Extended Defects

4.4.1 Micro-cracks

If the stress in a material becomes too big to be accommodated by dislocations, cracks may form
to release strain energy.8 In Fig. 4.26 an example is shown. In this case, micro-cracks have formed
in a bulk mercury indium telluride crystal upon incorporation of residual stress and thermal stress
during cooling of the material from growth temperature (about 1000K) to room temperature. See also
Fig. 12.19 for micro-cracks in an epitaxial layer.

8We note that in elasticity theory a continuous deformation is assumed. Obviously the separation (fracture) into two
unstrained blocks is the lowest strain energy state of a stressed piece of material.
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Fig. 4.26 Micro-cracks in
a mercury indium telluride
crystal. Adapted
from [344]

4.4.2 Stacking Faults

The ideal stacking of (111) planes in the zincblende structure, ABCABC. . ., can be disturbed in various
ways and creates area defects. If one plane is missing, i.e. the stacking is ABCACABC, an intrinsic
stacking fault is present. If an additional plane is present, the defect is called an extrinsic stacking fault,
i.e. ABCABACABC. An extended stacking fault in which the order of stacking is reversed is called
a twin lamella, e.g. ABCABCBACBABCABC. If two regions have inverted stacking order they are
called twins and their joint interface is called a twin boundary, e.g. . . .ABCABCABCBACBACBA. . .

(Fig. 4.29). The various types of stacking faults are shown in Fig. 4.27. In Fig. 4.28 a cross-sectional
image of stacking faults in GaAs on Si is shown. They block each other and thus partially annihilate
with increasing thickness.

A stacking fault is bounded by two partial dislocations (Sect. 4.3.1.5) formed by the dissociation of a
perfect dislocation. A full (or perfect) dislocation with Burger’s vector a/2[110] in a III–V compound
is dissociated into two Shockley partials according to (4.22) [348]. Since the dislocation energy is
proportional to |b|2, the dissociation is energetically favored (see Sect. 4.3.1.5).

The stacking-fault energy in pure silicon is γ = 47mJm−2 [349]. A similar value is found for Ge,
γ = 60mJm−2 [350] and undoped GaAs, γ = 45mJm−2 [351]. In diamond a much larger value is
found, γ = 285mJm−2 [352]. Impurity incorporation typically reduces the stacking fault energy. The
systematics of stacking fault energy for various III–V and II–VI compounds has been discussed [185,
353, 354]. It can be correlated with the s-parameter (2.11) as depicted in Fig. 4.30.

Fig. 4.27 HRTEM images
of a thin-film silicon with
intrinsic (labeled ‘ISF’)
and extrinsic (‘ESF’)
stacking faults and twin
boundary (‘Twin’). b Six
monolayer thick hexagonal
(wurtzite) CdTe layer in
cubic (zincblende) CdTe.
Stacking order (from
bottom to top) is:
ABCABABABABC. . .

Reprinted with permission
from [345]

(a) (b)
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Fig. 4.28 Cross-sectional
TEM image showing
stacking faults in
heteroepitaxial GaAs on Si.
Adapted from [346]

Fig. 4.29 High resolution
TEM image of ZnS
nanowire exhibiting
periodical twin structures.
Adapted from [347]

Fig. 4.30 Reduced
stacking fault energy
(stacking fault energy per
bond) γ ′ for various
compound semiconductors
plotted as a function of the
s-parameter. Dashed line is
guide to the eye. Data
from [185]

4.4.3 Grain Boundaries

The boundaries of crystal grains are called grain boundaries. They are defined by five parameters,
three rotation angles (e.g. Euler angles) to describe how the orientation of grain II results from grain I
and two parameters to define the boundary plane of the two grains in the coordinate system of reference
grain I.

Such defects can have a large impact on the electric properties. They can collect point defects and
impurities, act as barriers for transport (Sect. 8.3.8) or as carrier sinks due to (nonradiative) recom-
bination. Details of their structure and properties can be found in [355, 356]. The two crystal grains
meet each other with a relative tilt and/or twist. The situation is shown schematically in Fig. 4.31a for
a small angle between the two crystals. A periodic pattern of dislocations forms at the interface that
is called a small-angle grain boundary (SAGB) (Fig. 4.31b). In Fig. 4.32, experimental results for pure
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Fig. 4.31 Schemes of a–c
pure tilt and d–f pure twist
boundary, dislocation
formation in (c) pure tilt
and f twist boundaries (a) (b) (c)

(d) (e) (f)

(a) (b) (c)
0 1 3 24 5
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(d) (e)

Fig. 4.32 a Scheme of a small-angle (pure tilt) grain boundary. b Model of edge dislocations in a {110} plane in Ge. c
Relation of dislocation distance d and tilt angle θ for various small-angle grain boundaries in Ge. Solid line is relation
d = 4.0 × 10−8/θ . d Optical image of an etched (CP–4 etch) Ge sample with a small-angle grain boundary. Adapted
from [359]. e HRTEM image of a small-angle grain boundary in Si with dislocations highlighted. From [360]

tilt SAGB are shown. The dislocation spacing is inversely proportional to the tilt angle θ . An image of
a twist SAGB is shown in Fig. 4.33.

Special large angle boundaries possess (for a certain angle) a coincident site lattice (CSL). Some of
these grain boundaries have a low energy and are thus commonly observed. The ratio of lattice points
of the CSL and the lattice unit cell is an odd integer number n; the corresponding grain boundary is
then labeled 	n. SAGB are also termed 	1. 	3 grain boundaries are always twin boundaries. An
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Fig. 4.33 Bright-field
TEM image of pure twist
boundary with network of
pure twist dislocations
fabricated by wafer
bonding of two Si (001)
surfaces with a relative
twist. Adapted from [361]

(a) (b)

Fig. 4.34 a Schematic of 	3 (111) twin boundary in a diamond or zincblende structure (cmp. Fig. 4.29). The grain
boundary is marked by a dashed line shown in side-view. The hexagonal and rectangular grey boxes have the same area.
The lattice points of the coincident site lattice (CSL) are shown with black circles in the lower part of the figure. The unit
cell of the CSL has three times the volume of the unit cell of the fcc lattice. b Schematic of a 	5 (001) grain boundary
in a (simple) cubic crystal shown in plane-view. The blue and the red lattice are rotated by 36.86◦, the lattice points of
the CSL are shown in black. The unit cell of the CSL lattice (dark grey) has five times the volume of the cubic unit cell
(light grey)

example with (111) grain boundary is schematically shown in an example in Fig. 4.34a. A 	3 (twin)
boundary in silicon with {112} grain boundary [357, 358] is depicted in Fig. 4.35 together with the
atomic arrangement of the grain boundary itself. A 	5 (001) grain boundary is schematically shown
in Fig. 4.34b; the special angle is θ = arctan 3/4 ≈ 36.87◦.

Real grain boundaries may not be flat, contain impurities or precipitates and even consist of a thin
amorphous layer.
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Fig. 4.35 TEM images in two magnifications of a 	3 {112} boundary in silicon together with a schematic of the atomic
arrangement. Adapted from [358]

Fig. 4.36 Monoatomic step on the Si (001) surface and subsequent formation of an antiphase boundary in InP
(zincblende)

4.4.4 Antiphase and Inversion Domains

Antiphase domains occur when one part of the crystal is shifted with respect to another by an antiphase
vector p. This does not form a twin. If the polar direction changes between two domains they are called
inversion domains.

In the zincblende structure the [110] and [1̄10] directions are not equivalent. In one case there is a
Zn-S lattice and in the other a S-Zn lattice. Both lattices vary by a 90◦ rotation or an inversion operation
(which is not a symmetry operation of the zincblende crystal). If, e.g., a zincblende crystal is grown on
a Si surface with monoatomic steps (Fig. 4.36, cmp. Fig. 11.6), adjoint regions have a different phase;
they are called antiphase domains (APD). The antiphase vector is (0, 0, 1) a0/4. At the boundaries a
two-dimensional defect, an antiphase domain boundary, develops. The APD boundary contains bonds
between identical atom species. In Fig. 4.37, intertwining APD boundaries are shown on the surface
of InP layers on Si. The antiphase domains can be visualized with an anisotropic etch.

In Fig. 4.38a, inversion domains in iron-doped ZnO are shown. Between domains the direction of the
c-axis is reversed. The iron is found preferentially in the inversion domain boundary (IDB) (Fig. 4.38b)
and plays an important role in its formation [364, 365].
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Fig. 4.37 Antiphase domains in InP on Si. HCl etchs InP anisotropically and prepares (111)A planes. The etch patterns
of layers with (without) APDs are cross-hatched (linear). Adapted from [362]

(a)

(0001)

(2115)

(b)
Fe

Fig. 4.38 Transmission electron microscopy of inversion domains in ZnO:Fe. a Inversion domains in iron-doped ZnO
(ZnO:Fe2O3 = 100:1). Arrows denote the orientation of the c-axis in the respective domains. b Top: bright field TEM,
bottom Fe distribution from energy-filtered image. Adapted from [363]

4.5 Disorder

Disorder is a general term for deviations from the ideal structure on a microscopic scale. Apart from
the various structural defects discussed in the previous chapters, further examples of disorder are

• The presence of various isotopes of an element. This introduces disorder with regard to the mass of
the atoms and impacts mostly phonon properties (see Fig. 8.28).

• The occupation of lattice sites in alloys (Sect. 3.7) ranging from a random alloy, clustering to (par-
tially) ordered phases.

• The (unavoidable) thermal and zero-point motion of atoms around their equilibrium position.



Chapter 5
Mechanical Properties

If you want to find the secrets of the universe, think in terms of energy, frequency and
vibration.

N. Tesla

Abstract Lattice vibrations and phonons are treated with one-dimensional models and examples
for real phonon dispersions for several semiconductors including phonons in alloys and disordered
materials are given. Then the theory of linear elasticity and its application to semiconductors with
regard to epitaxial strain, substrate bending and sheet-scrolling is given. Finally plastic relaxation
effects such as critical thickness and wafer breakage are discussed.

5.1 Introduction

The atoms making up the solid have an average position from which they can deviate since they are
elastically bonded. The typical atomic interaction potential looks like the one shown in Fig. 2.1. The
atoms thus perform a vibrational motion (including zero point fluctuations) and the solid is elastic.
The potential is essentially asymmetric, being steeper for small distances due to quantum-mechanical
overlap of orbitals. However, for small amplitudes around the minimum a harmonic oscillator can be
assumed (harmonic approximation). Beyond the elastic regime, plastic deformation occurs such as
generation of defects, e.g. dislocations. Eventually also the crystal can break.

5.2 Lattice Vibrations

In the following we will discuss the dispersion relations for lattice vibrations, i.e. the connection
between the frequency ν (or energy hν = �ω) of the wave and its wavelength λ (or k-vector k = 2π/λ).
Acoustic and optical vibrations are introduced in one-dimensional models. A detailed treatment of the
physics of lattice vibrations is given in [366].
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Fig. 5.1 Schematic linear
chain models with a same
masses and spring
constants, b different
masses and same spring
constants, c same masses
and different spring
constants, d different
masses and different spring
constants. Mirror operation
X (S) exchanges the A–B
atoms in the dimer (the
spring constants)

5.2.1 Monoatomic Linear Chain

The essential physics of lattice vibrations can best be seen from a one-dimensional model that is called
the linear chainmodel. Themechanical vibrations will also be called phonons, although technically this
term is reserved for the quantized lattice vibrations resulting from the quantum-mechanical treatment.

In the monoatomic linear chain the atoms of mass M are positioned along a line (x-axis) with a
period (lattice constant) a at the positions xn0 = na. This represents a one-dimensional Bravais lattice.
The Brillouin zone of this system is [−π/a, π/a].

The atoms will interact with a harmonic potential, i.e. the energy is proportional to the displacement
un = xn − xn0 to the second power. This can be thought of as if the atoms are coupled by massless
springs (Fig. 5.1a). The total (mechanical) energy of the system is then:

U = 1

2
C
∑

n

(un − un+1)
2 . (5.1)

Themodel assumes that themass points are connected viamassless, ideal springswith a spring constant
C . If φ(x) is the interaction energy between two atoms, C is given byC = φ′′(a). Again, the harmonic
approximation is only valid for small displacements, i.e. un � a. The displacement of the atoms can
be along the chain (longitudinal wave) or perpendicular to the chain (transverse wave), see Fig. 5.2.
We note that for these two types of waves the elastic constant C must not be the same.

When the sum in (5.1) has a finite number of terms (n = 0, . . . , N − 1), the boundary conditions
have to be considered. There are typically two possibilities: The boundary atoms are fixed, i.e. u0 =
uN−1 = 0, the boundary conditions are periodic (Born–von Karman), i.e. ui = uN+i . If N � 1, the
boundary conditions play no significant role anyway, thus those with the greatest ease for subsequent
math are chosen. In solid-state physics typically periodic boundary conditions are used. Boundary
phenomena, such as at surfaces, are then treated separately (see Sect. 11.6.1).

The equations of motion derived from (5.1) are

Mün = Fn = − ∂U

∂un
= −C (2un − un−1 − un+1) . (5.2)

We solve for solutions that are periodic in time (harmonic waves), i.e. un(x, t) = un exp(−iωt). Then
the time derivative can be executed immediately as ün = −ω2un and we obtain:
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Fig. 5.2 Visualization of
transverse (‘T’) and
longitudinal (‘L’) waves in
a linear monoatomic chain
at different wavevectors
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L

T

L

T

L

k a=1/2 /

k a= /

a

k a=1/4 /

Mω2 un = C (2un − un−1 − un+1) . (5.3)

If, also, the solution is periodic in space, i.e. is a (one-dimensional) plane wave, i.e. un(x, t) =
v0 exp(i(kx−ωt))with x = n a, we find from the periodic boundary condition exp(ikNa) = 1 and thus

k = 2π

a

n

N
, n ∈ N . (5.4)

It is important that, when k is altered by a reciprocal space vector, i.e. k ′ = k+2πn/a, the displacements
un are unaffected. This property means that there are only N values for k that generate independent
solutions. These can be chosen as k = −π/a, . . . , π/a, so that k lies in the Brillouin zone of the lattice
(Fig. 5.3). Since the properties are periodic with the Brillouin zone, the k-values can be imagined being
on a circle as visualized in Fig. 5.3; the angle φ = k a run from 0 to 2π or from −π to +π as you like.

In the Brillouin zone there is a total number of N k-values, i.e. one for each lattice point. The
distance between adjacent k-values is

2π

Na
= 2π

L
, (5.5)

L being the lateral extension of the system.
The displacements at the lattice points n and n + m are now related to each other via

un+m = v0 exp(ik (n + m) a) (5.6)

= v0 exp(ikna) exp(i k m a) = exp(i k m a) un .
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Fig. 5.3 Brillouin zone of
a one-dimensional lattice
from −π/a to +π/a and
mapping to a circle with
angles from −π over 0
(at �) to +π

Fig. 5.4 Dispersion
relation for a monoatomic
linear chain

-1 0 1
0
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)

/a)

MC /4

Thus, the equation of motion (5.3) reads

Mω2un = C
[
2 − exp(−i k a) − exp(i k a)

]
un . (5.7)

Using the identity exp(i ka) + exp(−i ka) = 2 cos(k a), we find the dispersion relation of the
monoatomic linear chain (Fig. 5.4):

ω2(k) = 4C

M

1 − cos(k a)

2
= 4C

M
sin2

(
k a

2

)
. (5.8)

The solutions describe plane waves that propagate in the crystal with a phase velocity c = ω/k and a
group velocity vg = dω/dk,

vg = ±
√
4C

M

a

2
cos

( |k| a
2

)
. (5.9)

In the vicinity of the � point, i.e. k � π/a the dispersion relation is linear in k

ω(k) = a

√
C

M
|k| . (5.10)
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We are used to such linear relations for sound (and also light) waves. The phase and group velocity are
the same and do not depend on k. Thus, such solutions are called acoustic. The sound velocity of the
medium (vg(k = 0) in (5.9)) is given by vs = a

√
C/M .

It is characteristic of the non-continuousmedium that for k approaching the boundary of theBrillouin
zone, the behavior of the wave is altered. For k = π/a the wavelength is just λ = 2π/k = 2a, and
thus samples the granularity of the medium. The maximum phonon frequency ωm is

ωm =
√
4C

M
. (5.11)

The group velocity is zero at the zone boundary, thus a standing wave is present.
Since the force constants of the longitudinal and transverse waves can be different, the dispersion

relations are different. The transverse branch of the dispersion relation is two-fold degenerate when
the two directions perpendicular to k are equivalent.

5.2.2 Diatomic Linear Chain

Now we consider the case that the system is made up from two different kinds of atoms (Fig. 5.5).
This will be a model for semiconductors with a diatomic base, such as zincblende. We note that the
diamond structure also needs to be modeled in this way, although both atoms in the base are the same.

The lattice will be the same and the lattice constant will be a. Alternating atoms of sort 1 and 2 with
a relative distance of a/2 are on the chain. The displacements of the two atoms are labeled u1n and u

2
n ,

both belonging to the lattice point n. The atoms have the masses M1 and M2. The force constants are
C1 (for the 1–2 bond within the base) and C2 (for the 2–1 bond between different bases) (Fig. 5.1d).

The total energy of the system is then given as

U = 1

2
C1

∑

n

(
u1n − u2n

)2 + 1

2
C2

∑

n

(
u2n − u1n+1

)2
. (5.12)

The equations of motion are

Fig. 5.5 Visualization of
acoustic and optical waves
in a diatomic linear chain
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M1 ü
1
n = −C1

(
u1n − u2n

)− C2
(
u1n − u2n−1

)
(5.13a)

M2 ü
2
n = −C1

(
u2n − u1n

)− C2
(
u2n − u1n+1

)
. (5.13b)

With the plane-wave ansatz u1n(x, t) = v1 exp(i(kna − ωt)) and u2n(x, t) = v2 exp(i(kna − ωt)) and
periodic boundary conditions we find

0 = −M1 ω2 v1 + C1 (v1 − v2) + C2 [v1 − v2 exp(−ika)] (5.14a)

0 = −M2 ω2 v2 + C1 (v2 − v1) + C2 [v2 − v1 exp(ika)] . (5.14b)

These equations for v1 and v2 can only be solved nontrivially if the determinant vanishes, i.e.

0 =
∣∣∣∣
M1 ω2 − (C1 + C2) C1 + e−ika C2

C1 + eika C2 M2 ω2 − (C1 + C2)

∣∣∣∣ (5.15)

= M1M2 ω4 − (M1 + M2)(C1 + C2) ω2 + 2C1C2 [1 − cos(k a)] .

Using the substitutions C+ = (C1 + C2)/2, C× = √
C1 C2, the arithmetic and geometrical averages,

and accordingly for M+ and M×, the solution is

ω2
±(k) = ω2

max

2

[
1 ±

√
1 − γ 2 sin2(k a/2)

]
, (5.16)

with

0 < γ = C× M×
C+M+

≤ 1 , (5.17)

and the maximum frequency ωmax (for the upper branch (‘+’ sign in (5.16)) at the zone center (k = 0),

ωmax =
√

4C×
γ M×

= 2

√
C+ M+
M2×

. (5.18)

The dispersion relation, as shown in Fig. 5.6, now has (for each longitudinal and transverse mode) two
branches. The lower branch (‘−’ sign in (5.16)) is related to the acoustic mode; neighboring atoms
have the same phase for k = 0 (Fig. 5.5). For the acoustic mode ω = 0 at the � point and the frequency
increases towards the zone boundary.

The upper branch is called the optical mode (since it can interact strongly with light, see Sect. 9.10)
and neighboring atoms have opposite phase at k = 0. In the vicinity of the � point, the dispersion of
optical phonons is parabolic with negative curvature:

ω(k) ∼= ωmax

[
1 − 1

2

(γ

4

)2
(k a)2

]
. (5.19)

Thus, four different vibrations exist that are labeled TA, LA, TO, and LO. Both the TA and TO branches
are degenerate.

At the zone boundary (X point) a frequency gap exists (for γ 	= 1). The gap center is at

ωX = ωmax√
2

√
1 + γ

2
, (5.20)

and the total width of the gap is



5.2 Lattice Vibrations 101


ωX = ωmax

√
1 − γ . (5.21)

The group velocity is zero for optical and acoustic phonons at k = ±π/a and for optical phonons at
the � point.

Usually two special cases are treated explicitly: (i) atoms with equal mass (M = M1 = M2)
and different force constants [367] or (ii) atoms with unequal mass and identical force constants
C = C1 = C2 [368]. For the case C1 = C2 and M1 = M2, γ = 1 and thus 
ωX = 0. Then the
dispersion relation is the same as for the monoatomic chain, except that the k space has been folded
since the actual lattice constant is now a/2.

5.2.3 Mode Patterns and Topological States

First, we chose M1 = M2. In this case (Fig. 5.1c), M+ = M× = M and the dispersion relation is

ω2
± = 2C+

M

[
1 ±

√

1 − C2×
C2+

sin2(k a/2)

]
. (5.22)

The frequencies for the lower (acoustic) and upper (optical) branch at the zone boundary k = ±π/a
are

ω2
±(X) = C1 + C2 ± |C1 − C2|

M
, (5.23)

or ω−(X) = √
2min(C1,C2)/M and ω+(X) = √

2max(C1,C2)/M . The softer spring determines the
top of the lower branch, the harder spring determines the bottom of the upper branch.

The eigenstates for the lower and upper branch (upper sign for the upper band) are given by (without
the exp[ı(k na − ω t)] periodicity in time and space),

v±(k) =
(
v±,1(k)
v±,2(k)

)
=
(

1
∓ C1+C2 exp(ı k a)√

C2
1+C2

2+2C1 C2 cos k a

)
. (5.24)

Fig. 5.6 Dispersion
relation for a diatomic
linear chain with acoustic
(blue) and optical (green)
branch
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In the zone center, we find v−,2(�) = +v−,1(�) in the lower branch and v+,2(�) = −v+,1(�) in the
upper branch. Thus the two atoms in the base oscillate in phase (out of phase) for long wavelengths in
the acoustic (optical) branch as said before.

At the border of the Brillouin zone, k = ±π/a (and for C1 	= C2),

v−,2(X) = +v−,1(X) sgn(C1 − C2) (5.25)

v+,2(X) = −v+,1(X) sgn(C1 − C2) . (5.26)

Now, the relative phase of the two atoms in the base depends on the ratio of C2/C1 ≷ 1! For C1 > C2,
the top of the acoustic branch has v−,2(X) = v−,1(X) and thus the same as at the �-point, preserving
the ‘acoustic’ nature of the band. For C2 > C1, however, v−,2(X) = −v−,1(X) and thus out-of-phase,
resembling an optical mode. For the upper branch the situation is vice versa.

The situation can be visualized by plotting the relative phase of v2 and v1, as expressed by

δφ±(k) = arg

[
v±,2(k)

v±,1(k)

]
, (5.27)

for the two cases C2/C1 ≷ 1 (note that |v2| = 1 for all cases) for the lower branch in Fig. 5.7. The
dispersions for the two casesC2/C1 ≷ 1 with the phase δφ± depicted as color are compared in Fig. 5.8.

For all cases ofC2/C1 > 1, v±,2(π/a)−v±,2(−π/a) = 0. For all cases ofC2/C1 < 1, v±,2(π/a)−
v±,2(−π/a) = 2π . Thus this number is a ‘topological invariant’ since it cannot be changed by smooth
changes of the system, i.e. small and slow variations of C1/C2, unless one goes through the gapless
state (C1/C2 = 1). The case C1 = C2, δφ− = k a/2 and δφ+ = π + k a/2 is shown as dotted lines in
Fig. 5.7. It should be noted that the phase difference in (5.27) and the curves in Fig. 5.7 are independent
of the mass ratio.

Generally, the symmetry of a mode vwith respect to the operation X that exchanges A- and B-sites,

X v = X
(
v1
v2

)
=
(
v2
v1

)
= exp(ı δφ)

(
v1
v2

)
, (5.28)

can be expressed by the phase δφ. X is a unitary transformation since XH X = 1. For a well defined
parity-like symmetry, we demand X2 = 1; it is present for a phase factor of 1 (δ = 0, positive

(a) (b)

Fig. 5.7 Relative phase of the B-site to theA-site in the a lower (acoustic, δφ−) branch and b upper (optical, δφ+) branch,
expressed by arg(v2/v1) from (5.27). The case C1/C2 = 2 is shown as solid line; the inverted case of C1/C/2 = 1/2 is
shown as dashed line. The case C1 = C2 is shown as dotted lines
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parity) and a phase factor of −1 (δ = ±π , negative parity). In Fig. 5.8b, for the non-trivial phase, the
parity changes twice within the Brillouin zone, while for the trivial case it does not. In view of later
discussions of electronic band structure we remind the reader that electronic s-states (p-states) have
positive (negative) parity.

The phase change summed up when going through the entire Brillouin zone must a multiple of
2π since the physical properties are periodic with the Brillouin zone. The property to calculate for
obtaining a proper topological invariant here is the Berry phase [369, 370] γn for a branch n with the
more general recipe,

γn = ı
∫

C

v∗
n ·
(

∂

∂k
vn

)
dk , (5.29)

where C is a closed loop in parameter space, here it is the integral over the entire Brillouin zone. The
integrand is the one-dimensional equivalent to the ‘Berry connection’.1 For the diatomic linear chain,
the integral yields

γ± =
⎧
⎨

⎩

0 C2 < C1

−π C2 = C1

−2π C2 > C1

. (5.30)

One should think also about the following: The situation for C2 > C1 means that the A–B inter-dimer
spring constant is larger than the intra-dimer one. But our choice of unit cell is free and the situation can
be thought of differently in terms of B–A dimers where then, for exactly the same physical situation,
the inter-dimer spring constant (now C1) is smaller than the intra-dimer one (C2). Thus, the two bulk
situations will not be much different per se and cannot be distinguished, in particular when the A- und
B-sites are equivalent (here M1 = M2). However, when two media with different topology have an
interface, edge states develop according to the bulk-boundary correspondence; this will be shown for
the DLCM in Sect. 5.2.10.

In the case C1 = C2 (Fig. 5.1b), C+ = C× = C and the dispersion relation can be simplified to

Fig. 5.8 Phonon dispersion with the phase of the wavefunction (relative phase between B- and A-sites) shown in false
colors. Left: C1/C2 = 2, right: C1/C2 = 1/2. The parity symmetry of the mode with respect to exchange of A- and
B-sites is indicated with ‘+’ (in-phase) and ‘−’ (out-of-phase)

1For higher dimensions, the integral over a closed path (or surface) can be replaced via Stokes’ theorem with an area (or
volume) integral of the Berry flux. Also it is invariant under a ‘gauge transformation’ where vn is replaced by exp(i θ) vn.
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ω2
± = 2C M+

M2×

[
1 ±

√

1 − M2×
M2+

sin2(k a/2)

]
. (5.31)

At the zone boundary the frequencies for the acoustic and the optical branch are, assuming M2 < M1,
ωX,1 = √

2C/M1 with v2 = 0 (oscillation of the larger mass) and ωX,2 = √
2C/M2 with v1 = 0

(oscillation of the smaller mass), respectively. In the vibrations at the X-point thus only one atom
species oscillates, the other does not move. Close to the � point, the atoms are in phase in the acoustic
branch with v2 = v1. For the optical branch, the frequency at the � point is given by ω = √

2C/Mr

(with the reduced mass M−1
r = M−1

1 +M−1
2 = 2M+/M2×) and the amplitude ratio is given by the mass

ratio: v2/v1 = −M1/M2, i.e. the atoms are out of phase and the heavier atom has the smaller amplitude.
It should be repeated that the relative phase of v2 and v1, as defined in (5.27), is the same for all

masses (dotted line in Fig. 5.7). The situation C1 = C2 is therefore for all masses topologically the
same as the gapless state and the gap has different character when due to different spring constants or
due to different masses.

Finally, we consider the symmetry classification looking at Fig. 5.1 again. The monoatomic chain
has two mirror-like symmetries, indicated by vertical dashed lines; it is symmetric with respect to
exchange X of the A- and B-atoms and to the exchange S of the springs. The cases Fig. 5.1b, c
preserve only one such symmetry while the general diatomic chain Fig. 5.1d preserves none of them
individually but still possesses the so-called chiral symmetry which is the combination X S. In terms
of the ‘periodic system’ of the CAZ classification of topological systems the diatomic linear chain is
a BDI-type system [371] and the topological invariant is, derived from (5.30), an integer of the form,
γ /2π ∈ Z.

5.2.4 Lattice Vibrations of a Three-Dimensional Crystal

When calculations are executed for a three-dimensional crystal with a monoatomic base, there are 3N
equations of motion. These are transformed to normal coordinates and represent 3 acoustic branches
(1 LA phonon mode and 2 TA phonon modes) of the dispersion relation. In a crystal with a base with p

Fig. 5.9 Phonon
dispersion in Si,
experimental data and
theory (solid lines: bond
charge model, dashed lines:
valence force field model).
Adapted from [164]
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Fig. 5.10 Phonon dispersion in a GaP and b GaAs. Experimental data (symbols) and theory (solid lines, 14-parameter
shell model). ‘L’ and ‘T’ refer to longitudinal and transverse modes, respectively. ‘I’ and ‘II’ (along [ζ, ζ, 0]) are modes
whose polarization is in the (11̄0) plane. The grey area in (a) denotes the gap between acoustical and optical states. a
Adapted from [375], b Adapted from [373]

atoms, there are also 3 acoustic branches and 3(p− 1) optical branches. For a diatomic base (as in the
zincblende structure) there are 3 optical phononbranches (1LOphononmode and 2TOphononmodes).
The total number of modes is 3p. The dispersion ω(k) now has to be calculated for all directions of k.

In Figs. 5.9 and 5.10, the phonon dispersion in silicon, GaAs and GaP is shown along particular
lines in the Brillouin zone (cf. Fig. 3.38). A detailed treatment can be found in [372]. The degeneracy of
the LO and TO energies at the � point for the covalent group-IV semiconductor is lifted for the III–V
semiconductors due to the ionic character of the bond and the macroscopic electric field connected
with the long-wavelength LO phonon (see Sect. 9.5). Comparing GaAs [373] and GaP [374], the quite
different mass of Ga- and P-atoms (M×/M+ ≈ 0.92) leads to the formation of a clear gap between the
acoustic and optical branches, while for GaAs M×/M+ ≈ 0.9994 is close to 1 and no gap forms.

We note that the degeneracy of the TA phonon is lifted for propagation along the 〈110〉 directions
(�) because the two transverse directions 〈001〉 and 〈11̄0〉 are not equivalent.

In boron nitride themasses of the two constituents are so similar that no gap exists between acoustical
and optical branches (Fig. 5.11). Also the density of states (averaged over the entire Brillouin zone) is
depicted (see the next chapter).

The displacement of atoms is shown inFig. 5.12 for the different phononmodes present in zincblende
crystals. In Fig. 5.13 the optical phonon modes for wurtzite crystals are depicted. The E-modes with
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Fig. 5.11 Phonon dispersion in BN (left panel), experimental data (symbols) and theory (solid lines, first principles
pseudopotential model). In the right panel the density of states is depicted. Adapted from [376]

A 1 E E

T2

(1)
T2

(1)
T2

(1)

T2

(2)
T2

(2)
T2

(2)

Fig. 5.12 Displacement of atoms for various phonon modes in zincblende crystals. Adapted from [377]

displacement perpendicular to the c-axis are double degenerate such that there are nine modes (the
primitive unit cell has p = 4 atoms (Sect. 3.4.5)). The modes are labeled with their symmetry (in
molecular notation) according to group theory (see remark in Sect. 6.2.5).



5.2 Lattice Vibrations 107

Fig. 5.13 Displacement of atoms for various phonon modes in wurtzite crystals. Adapted from [378]

(a) (b)

Fig. 5.14 a Raman spectra of GaAs with different isotope content as labeled. b Energy of optical phonons in GaAs with
different isotope content [using the Raman spectra shown in (a)]. Reprinted with permission from [379], c©1999 APS

The dependence of the phonon frequency on the mass of the atoms (∝ 1/
√
M) can be demonstrated

with the isotope effect, visualized for GaAs in Fig. 5.14. The dependence of the phonon frequencies
on the stiffness of the spring can be seen from Fig. 5.15; the smaller lattice constant provides the stiffer
spring.

5.2.5 Density of States

The density of states (DOS) tells howmany of the total number of modes are in a given energy interval.
The states are spaced equally in k-space but not on the energy scale (see also Sect. 6.13).

For the monoatomic linear chain model, the number of states N (E ′) from E = 0 up to E = � ω =
E ′(k ′) for the dispersion of the acoustic phonons (5.8) is given as

N (E ′) = k ′ N

π/a
= L

π
k ′ . (5.32)
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Fig. 5.15 Optical phonon
frequencies (TO: filled
squares, LO: empty
squares) for a number of
III–V compounds with
different lattice constant
a0. 1meV corresponds to
8.065 wave numbers (or
cm−1). Adapted from [380]

Using (5.8), we find for one polarization (Em = � ωm)

N (E) = 2N

π
arcsin

(
E

Em

)
. (5.33)

The DOS D(E) is given by

D(E) = dN (E)

dE
= 2 N

π Em

1√
1 − (E/Em)2

. (5.34)

Often the density of states is scaled by the (irrelevant) system size and given per atom (D/N ) or per
volume (D/L3), per area (D/L2) or per length (D/L) for three-, two- or one-dimensional systems,
respectively.

In the diatomic linear chain model, additionally the optical phonons contribute to the density of
states. In Fig. 5.16 the phonon density of states is shown for γ = 0.9 and for comparison for γ = 1
(gapless phonon dispersion). For small wavevector, the density of states is 4N/(π Em).2 Within the
gap the density of states vanishes. At the edges of the band gap the density of states is enhanced. The
total number of states for both dispersions is the same.

In a three-dimensional solid the total number of modes is 3 p N (N � 1, p is the number of atoms
in the base). Then (5.32) is modified to (for three degenerate polarizations)

N (E ′) = 4π

3

3

(2π/L)3
k ′3 , (5.35)

taking into account all states within a sphere in k-space of radius k ′. Assuming a linear dispersion
ω = vs k (for sufficiently small wave vector), we obtain

2The factor 2 compared to (5.34) stems from the folded Brillouin zone compared to the monoatomic chain model.
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N (E) = V

2π2

E3

�3 v3s
. (5.36)

Thus the density of states is approximately3 proportional to E2,

D(E) = 3 V

2π2

E2

�3 v3s
. (5.37)

As realistic example for the phonon density of states, the DOS of bulk BN is depicted next to the
dispersion in Fig. 5.11.

5.2.6 Phonons

Phonons are the quantized quasi-particles of the lattice vibrations (normal modes). The energy of a
phonon can take the discrete values of a harmonic oscillator

Eph =
(
n + 1

2

)
�ω , (5.38)

where n denotes the quantum number of the state, which corresponds to the number of energy quanta
�ω in the vibration. The amplitude of the vibration can be connected to n via the following discussion.
For the classical oscillation u = u0 exp i(kx − ωt) the space and time average for the kinetic energy
yields

Ekin = 1

2
ρ V

(
∂u

∂t

)2

= 1

8
ρ V ω2 u20 , (5.39)

where ρ is the density and V the volume of the (homogeneous) solid. The energy of the oscillation is
split in half between kinetic and potential energy. From 2Ekin = Eph we find

(a) (b)

Fig. 5.16 a Phonon dispersion for the diatomic linear chain model for γ = 1 (black line) and γ = 0.9 (blue lines). b
Corresponding density of states (in units of N/Em)

3This dependence is the base for Debye law for the T 3 temperature dependence of the heat capacity at low temperatures
when only states with sufficiently small wave vector are thermally populated.
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u20 =
(
n + 1

2

)
4�

ρ V ω
. (5.40)

The number of phonons with which a vibrational mode is populated is thus directly related to the
classical amplitude square.

Phonons act with a momentum �k, the so-called crystal momentum. When phonons are created,
destroyed or scattered the crystal momentum is conserved, except for an arbitrary reciprocal-space
vector G. Scattering with G = 0 is called a normal process, otherwise (for G 	= 0) it is called an
umklapp process.

5.2.7 Localized Vibrational Modes

A defect in the crystal can induce localized vibrational modes (LVM). The defect can be a mass defect,
i.e. one of the masses M is replaced by Md, or the force constants in the neighborhood are modified to
Cd. A detailed treatment can be found in [381]. LVM are discussed, e.g., in [382–384].

First we consider the LVM for the one-dimensional, monoatomic chain. If the mass at lattice point
i = 0 is replaced by Md = M + 
M (εM = 
M/M), the displacements are given by ui = AK |i |, A
being an amplitude, with

K = −1 + εM

1 − εM
, (5.41)

and the defect phonon frequency ωd is

ωd = ωm

√
1

1 − ε2M
. (5.42)

A real frequency is obtained for |εM| < 1. ωd is then higher than the highest frequency of the bulk
modes ωm = √

4C/M (5.11). For εM < 0, i.e. the mass of the defect is smaller than the mass of the
host atoms, K is negative and |K | < 1. Thus, the displacement can be written as

ui ∝ (−|K |)|i | = (−1)|i | exp (+ |i | log |K |) . (5.43)

The numerical value of the exponent is negative, thus the amplitude decreases exponentially from the
defect and indeed makes a localized vibrational mode. For small mass Md � M (5.42) yields approx-
imately ωd = √

2C/Md. This approximation is the so-called one-oscillator model. Since typically the
extension of the localized mode is only a few lattice constants, the picture of LVM remains correct for
impurity concentrations up to∼1018–1020 cm−3. For higher concentrations the concept of alloy modes
has to be invoked (cf. Sect. 5.2.8).

For the case of group-III or -V substitutional impurities in group-IV semiconductors the change in
force constants (treated below) can be neglected to some extent. For silicon (M = 28) and germanium
(M = 73) the effect of various substitutions is shown in Fig. 5.17.

Now, additionally the force constants left and right of the defect are replaced by Cd = C + 
C
(εC = 
C/C). The displacements are still given by ui = AK |i |, now with

K = − (1 + εM) (1 + εC)

1 − εM − 2εC
. (5.44)
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An exponential decrease of the LVM amplitude occurs for negative K that is ensured for εM +2εC < 0
(and εM > −1 and εC > −1). The defect frequency is given by

ωd = ωm

√
(1 + εC) (2 + εC (3 + εM))

2(1 + εM) (2εC + 1 − εM)
. (5.45)

We note that for εC = 0 (5.41) and (5.42) are recovered.
For a given mass defect, the change of frequency with 
C is (in linear order, i.e. for εC � 1)

∂ωd(εM, εC)

∂εC
= 1 − 4 εM − ε2M

4 (1 − εM)

√
1 − ε2M

εC . (5.46)

The linear coefficient diverges for εM → −1. For εM between −0.968 and 0 the linear coefficient
varies between 2 and 1/4. Therefore, a larger force constant (εC > 0) increases the LVM frequency of
the defect, as expected for a stiffer spring.

In a binary compound the situation is more complicated. We assume here that the force constants
remain the same and only the mass of the substitution atom Md is different from the host. The host
has the atom masses M1 and M2 with M1 < M2. Substitution of the heavy atom with a lighter one
creates a LVM above the optical branch for Md < M2. Additionally, a level in the gap between the
optical and acoustic branch is induced. Such LVM is called a gap mode. Substitution of the lighter
atom of the binary compound induces a LVM above the optical branch for Md < M1. A gap mode
is induced for Md > M1. The situation for GaP is depicted in Fig. 5.18. LVM in GaAs have been
reviewed in [382].

The energy position of a local vibrational mode is sensitive to the isotope mass of the sur-
rounding atoms. In Fig. 5.19, a high-resolution (0.03cm−1) spectrum of the 12CAs LVM in GaAs
is shown together with a theoretical simulation. The various theoretical peak positions are given
as vertical bars, their height indicating the oscillator strength. Five experimental peaks are obvi-
ous that are due to a total of nine different transitions. The C atom can experience five different

Fig. 5.17 Energy of local
vibrational modes in Si and
Ge. Experimental values at
T = 300K (B in Ge:
T =80K) taken from
[381] and references
therein and from [385]
(C in Ge). The dashed lines
are the mass dependence
according to (5.42) scaled
to the experimental
frequency of the 10B LVM
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surroundings (see Table 3.8) with the four neighbors being 69Ga or 71Ga. The natural isotope mix
is an ‘alloy’ 69Gax 71Ga1−xAs with x = 0.605. The configurations with Td symmetry contribute
one peak each, the lowest (71Ga surrounding) and highest (69Ga surrounding) energy transitions.
The configurations with C3v and C2v symmetry contribute each with 2 and 3 nondegenerate modes,
respectively.

The vibrations of impurity complexes have been discussed in [387].

5.2.8 Phonons in Alloys

In an alloy of the type AB1−xCx , the phonon frequencies will depend qualitatively and quantitatively on
the ternary composition [388]. For the binary end materials AB and AC clearly TO and LO frequencies
exist. The simplest behavior of the alloy is the one-mode behavior (Fig. 5.20d) where the mode fre-
quencies vary continuously (and approximately linearly) with the composition. The oscillator strength
(LO–TO splitting, (9.86)) remains approximately constant. In many cases, the two-mode behavior is
observed where the LO–TO gap closes (accompanied by decreasing oscillator strength) and a localized
vibrational mode and a gap mode occur for the binary end materials (Fig. 5.20a). Also, a mixed-mode
behavior (Fig. 5.20b, c) can occur.

The masses of the three constituent atoms will be MA, MB, and MC. Without limiting the generality
of our treatment, we assume MB < MC. From the considerations in Sect. 5.2.7 on LVM and gapmodes,
the condition

MB < MA, MC (5.47)

for two-mode behavior can be deduced. This ensures a LVM of atom B in the compound AC and a gap
mode of atom C in the compound AB. However, it turns out that this condition is not sufficient, e.g.
Na1−xKxCl fulfills (5.47) but exhibits one-mode behavior. From a modified REI4 model (for k ∼ 0
modes) it has been deduced that

(a) (b)
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Fig. 5.18 a Numerical simulation of a linear chain model for GaP (M1 = 31, M2 = 70). Energy of local vibrational
modes (dashed (solid) line): substitution on P (Ga) site) in units of the optical phonon frequency at � (�ωm = 45.4meV,
cf. Fig. 5.10a). The grey areas indicate the acoustic and optical phonon bands. Solid squares are experimental data
(from [381]), scaled to the theoretical curve for the 27AlGa LVM frequency. bDifferential transmission spectrum of GaP
structure (nitrogen-doped layer on zinc-doped compensated substrate) against pure crystal (T = 77K). Data from [386]

4Random element isodisplacement.
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-1

12
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GaAs
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Th.

Fig. 5.19 Experimental (Exp., T = 4.2K, resolution 0.03cm−1) and theoretical (Th., artificial Lorentzian broadening)
infrared spectra of LVM of 12CAs in GaAs. The positions and oscillator strengths of the theoretical transitions involving
different configurations with 69Ga and 71Ga isotopes are shown as vertical bars. Data from [382]
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Fig. 5.20 Schematic behavior of phonon modes in an alloy. a Two-mode behavior with gap mode and localized mode,
(b, c) mixed-mode behavior, b only localized mode allowed, c only gap mode allowed, d one-mode behavior with neither
localized mode nor gap mode allowed

MB < μAC = MA MC

MA + MC
< MA, MC (5.48)

is a necessary and sufficient condition (unless the force constants between A–B and A–C are signifi-
cantly different) for two-mode behavior [389]. A detailed discussion is given in [390]. Equation (5.48)
is a stronger condition than the previous one (5.47). If (5.48) is not fulfilled the compound exhibits
one-mode behavior. As an example, we show the mass relations for CdS1−xSex and CdxZn1−xS in
Table 5.1 and the experimental phonon energies inFig. 5.21.Also inTable 5.1 themasses forGaP1−xAsx
(GaAs1−xSbx ) exhibiting two- (one-) mode behavior are shown.
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Table 5.1 Atomic masses (MB < MC) of the constituents of various ternary compounds of type A(B,C), reduced mass
μAC (5.48), fulfillment of the relation from (5.48) (‘+’: fulfilled, ‘−’: not fulfilled) and experimental mode behavior
(‘2’: two-mode, ‘1’: one-mode)

Alloy A B C MA MB MC μAC Rel. Modes

GaP1−xAsx Ga P As 69.7 31.0 74.9 36.1 + 2

GaAs1−xSbx Ga As Sb 69.7 74.9 121.8 44.3 − 1

CdS1−xSex Cd S Se 112.4 32.1 79.0 46.4 + 2

CdxZn1−xS S Zn Cd 32.1 65.4 112.4 25.0 − 1

MgxZn1−xO O Mg Zn 16.0 24.3 65.4 12.9 − 1

AlxGa1−xN N Al Ga 14.0 27.0 69.7 11.7 − 2(!)

Fig. 5.21 Phonon energies
of CdxZn1−xS and
CdS1−xSex as a function of
the ternary composition.
Experimental data (solid
circles) are from [389],
dashed lines are guides to
the eye
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If the binary end components of a ternary alloy have different crystal structure, a transition between
the two occurs which is reflected in the phonon structure (energies and mode symmetries). As an
example, the optical phonon energies of MgxZn1−xO are depicted in Fig. 5.22 (cmp. Fig. 3.43).

An example for the variation of phonon oscillator strength (as defined in (9.86)) with alloy compo-
sition is depicted in Fig. 5.23 for (Al,Ga)N [392].5

5.2.9 Disorder

An example of local disorder are the localized vibrational modes due to a single defect. Here we
consider in our one-dimensional model random fluctuations of the model parameters. To that avail
we set up a numerical implementation of an one-dimensional chain with masses M1 = M2 = 1
and spring constants C1 	= C2, here C2 = 2C1. Now each mass varies randomly by a factor with a

5The oscillator strengths f shown here have been calculated from the values S given in [392] divided by ε(∞).
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Fig. 5.22 LO (solid lines)
and TO (dashed lines)
phonon energies of
MgxZn1−xO in the
wurtzite structure (A1
symmetry: blue lines, E1
symmetry: red lines) and in
the rocksalt phase (F1u
symmetry: black lines).
Experimental data are
shown as symbols. Adapted
from data of [391]
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Fig. 5.23 Oscillator
strength f (cf. (9.86)) of
alloy phonons in (Al,Ga)N
thin films on c-Al2O3.
Based on data from [392]

statistical distribution of mean M̄ = 1 and a standard deviation6 σM. The density of states is displayed
for σM/M̄ = 0.1–0.5. The effects as shown in Fig. 5.24 are broadening of the peaks in the DOS,
broadening of the band edges, the development of band tails into the gap and eventually a closing of
the gap. This is a typical behavior that also exists for electronic states (cmp. Fig. 6.53).

5.2.10 Topological Edge States of the Diatomic Linear Chain

Here we treat a finite diatomic linear chain with N unit cells, i.e. A–B dimers. In case of periodic
boundary conditions, the rightmost B-atom is ‘connected’ to the leftmost A-atom, but now we chose
N to be finite.

The system of 2N equations of the type ω2 un = (∂U/∂un)/Mn (like (5.13a) or (5.13b)) is written
in matrix form and the eigenproblem M − ω2 1 = 0 is solved numerically [393]. Also, we fix both
ends, i.e. the displacements uA0 and uBN are forced to be zero (Fig. 5.25). We set M1 = M2 and find two
quite different situations for the cases (i) C1 > C2 and (ii) C1 < C2. Case (i) is similar to the bulk case

6In order to avoid negative values for themasses, not a normal or Gaussian distribution is used but the Gamma distribution
with the parameters G(1/σ 2, 1/σ 2).
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Fig. 5.24 Density of states versus energy (in units of maximum phonon energy Em = � ωmax according to (5.18)) for
the diatomic linear chain model (M1 = M2, C2 = 2C1, 27 dimers, average over 212 configurations) for various levels of
random relative variations of the masses (solid lines). The forbidden energy ranges for the ideal chain are shown in light
grey. The DOS has been normalized such that its integral over all energies is 1 (the energy bins have a width of 0.01 Em)

Fig. 5.25 a Diatomic linear chain model (DLCM) with A–B dimers (one unit cell shown in grey) in an infinite chain;
A-sites (B-sites) are shown in red (blue); the connecting springs have force constants C1 (green) and C2 (orange),
respectively. b DLCM with finite number of dimers (shown for N = 6) with both end sites fixed (shown in black). The
movable sites now consist of B–A dimers (one unit cell shown in grey)

(i.e. for periodic boundary conditions) where a ‘clean’ gap is present; for C1 = C2 of course no gap
appears. In case (ii), two states appear within the gap with energy ωg = ωmax/

√
2. The eigenvalues of

the problem are shown as a function of C2/C1 in Fig. 5.26a. The mode pattern for the two gap states
are depicted in Fig. 5.27a (for C2/C1 = 1/2). All other states follow bulk like vibration patterns as
expected from a vibrating string. For M1 = M2 the gap states are degenerate, otherwise split as shown
in Fig. 5.26c. For the case of C2 > C1, the patterns for the highest mode of the lower band and the
lowest mode of the top band are depicted in Fig. 5.27b; the are obviously bulk-like as all others and no
localized states exist.

The appearance of end states in one of the cases is the expression of the fact that the two bulk band
structures for C1 > C2 and C1 < C2 are topologically different7 (cmp. Sect. 5.2.3). The general effect
is the so-called ‘bulk-boundary’ correspondence where edge states appear at the interface between
different topological phases (one of these phases can be the topologically trivial vacuum outside the
solid). Such edge states are termed more precisely end-states for (quasi-) one-dimensional systems.

7Since the two outer atoms are fixed, the movable parts of the chain consists of B–A dimers (Fig. 5.25b), thus the
topologically non-trivial case occurs here for C2 < C1.
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(a) (b)

(c) (d)

Fig. 5.26 a Eigenvalues of a diatomic chain with N = 32 unit cells (64atoms) as a function of the ratio C2/C1
(M1 = M2). The frequency is normalized (to ωmax from (5.18)). The abzissa is logarithmic. b Same calculation as for
panel (a) but M1/M2 = 1.5 (would look the same for M2/M1 = 1.5). c Same calculation as for panel (a) but as a
function of M2/M1 (for C2/C1 = 2). d Same calculation as for panel (c) but for C2/C1 = 0.5

(a) (b)

Fig. 5.27 Mode patterns for two states of the diatomic linear chain (N = 32 unit cells, M1 = M2) a within the gap for
C2/C1 = 1/2 and b closest to the gap for C2/C1 = 2. The amplitudes of A-sites (B-sites) are shown in red (blue)
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Fig. 5.28 Linear thermal expansion coefficient of silicon (solid circles) and germanium (open circles). Adapted from
[394] based on experimental data from various sources. Dashed lines are guide to the eye

5.3 Elasticity

The elastic properties of the semiconductor are important if the semiconductor is subjected to external
forces (pressure, temperature) or to lattice mismatch during heteroepitaxy.

5.3.1 Thermal Expansion

The lattice constant depends on temperature. The (linear) thermal expansion coefficient is defined as

α(T0) = ∂a0(T )

∂T

∣∣∣∣
T=T0

(5.49)

and is temperature dependent. The temperature dependence of α for silicon and germanium is shown
in Fig. 5.28. α is approximately proportional to the heat capacity (CV) except at low temperatures.
The negative values are due to negative Grüneisen parameters [394]. These anharmonicity effects are
discussed in detail in [366].

5.3.2 Stress–Strain Relation

In this section, we recall the classical theory of elasticity [395]. The solid is treated as a continuous
medium (piecewise homogeneous) and the displacement vector is thus a continuous function u(r) of
the spatial coordinates. When the spatial variation∇u of u is small, the elastic energy can be written as
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(b) (c) (d)(a)

Fig. 5.29 Deformation of a square (a). (b) Pure hydrostatic deformation (εxx = εyy = 0.2, εxy = 0), (c) pure shear
deformation (εxx = εyy = 0, εxy = 0.2), and (d) mixed deformation (εxx = εyy = 0.1, εxy = 0.1)

U = 1

2

∫
∂ul
∂xk

Cklmn
∂un
∂xm

d3r , (5.50)

where C is the (macroscopic) tensor of the elastic coefficients. 21 components of this tensor can be
independent. For crystals with cubic symmetry the number of independent constants is reduced to 3.
An exchange k ↔ l and m ↔ n does not matter, only six indices have to be considered (xx , yy, zz,
yz, xz, and xy). The strain components εi j are symmetrized according to

εi j = 1

2

(
∂u j

∂xi
+ ∂ui

∂x j

)
. (5.51)

The strains εxx are along the main axes of the crystal as visualized in Fig. 5.29.
The stresses8 σkl are then given by

σkl = Cklmn εmn . (5.52)

The inverse relation is mediated by the stiffness tensor S.

εkl = Sklmn σmn . (5.53)

Typically, the strain components ei j or ei are used with the convention xx → 1, yy → 2, zz → 3,
yz → 4, xz → 5, and xy → 6 (Voigt notation):

ei j = εi j (2 − δi j ) . (5.54)

Then, σm = Cmnen with the Ci j being the elastic constants. The x , y, and z directions are the main
axes of the cubic solid, i.e. the 〈100〉 directions.

For zincblende material, the stress–strain relation reads9

⎛

⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

e1
e2
e3
e4
e5
e6

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.55)

Values of the compliances for several semiconductors are given in Table 5.2. The inverse relation is
given by the matrix

8The stress is a force per unit area and has the dimensions of a pressure.
9C11 = C1111, C12 = C1122 and C44 = C1212 = C1221 = C2121 = C2112.
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Table 5.2 Elastic constants (in GPa) of some cubic semiconductors at room temperature. IK refers to the Keating
criterion (5.59)

Material C11 C12 C44 IK

C 1076.4 125.2 577.4 1.005

Si 165.8 63.9 79.6 1.004

Ge 128.5 48.3 66.8 1.08

BN 820 190 480 1.11

GaAs 119 53.4 59.6 1.12

InAs 83.3 45.3 39.6 1.22

AlAs 120.5 46.86 59.4 1.03

ZnS 104.6 65.3 46.3 1.33

MgO 297 156 95.3 0.80

⎛

⎜⎜⎜⎜⎜⎜⎝

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

⎞

⎟⎟⎟⎟⎟⎟⎠
, (5.56)

with the stiffness coefficients in this notation given by

S11 = C11 + C12

(C11 − C12) (C11 + 2C12)
(5.57a)

S12 = C12

−C2
11 − C11C12 + 2C2

12

(5.57b)

S44 = 1

C44
. (5.57c)

We emphasize that in this convention (also called the engineering convention), e.g. e1 = εxx and
e4 = 2 εyz . There is also another convention (the physical convention) without this factor of two; in
this case the matrix in (5.55) contains the elements 2C44. We introduce

C0 = 2C44 + C12 − C11 , (5.58)

and note that C0 = 0 for an isotropic material. The relation

IK = 2C44 (C11 + C12)

(C11 − C12) (C11 + 3C12)
= 1 (5.59)

known as the Keating criterion [396, 397], stems from the consideration of bending and stretching
of the tetrahedral bonds in the valence force field (VFF) model. It is closely fulfilled (Table 5.2)
for many tetrahedrally bonded semiconductors, in particular for the covalent ones. For MgO, the
Keating criterion is not fulfilled because it has (six-fold coordinated) rocksalt structure and is thus not
tetrahedrally bonded.

The Young’s modulus Y ,
σnn = Y (n) εnn , (5.60)
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Fig. 5.30 Elastic constants as a function of ionicity for various semiconductors with diamond or zincblende (circles) and
wurtzite (squares) structure. Constants are normalized by themodulusC0 = e2/d4, d being the average nearest-neighbor
distance. a Bulk modulus, B∗ = (C11 + 2C12)/(3C0), (b, c) shear moduli, b C∗

S = (C11 − C12)/C0, c C∗
44 = C44/C0.

Solid lines are a simple model as discussed in [402]. Adapted from [403]

generally depends on the normal direction n of a strain. It is equivalent to 1/S11 of (5.57a).
For isotropic material Y and the Poisson ratio ν are related to the elastic constants of cubic

material by

Y = C11 − 2C2
12

C11 + C12
(5.61a)

ν = C12

C11 + C12
. (5.61b)

For isotropic materials also Lamé’s constants λ and μ are used. They are given by10 C11 = λ + 2μ,
C12 = λ and C44 = μ (note that C0 according to (5.58) is zero).

The bulk modulus B (inverse of the compressibility),

1

B
= − 1

V

∂V

∂p
, (5.62)

for the zincblende crystal is given as

B = C11 + 2C12

3
. (5.63)

We note that Y , ν and Ci j of typical materials are both positive. Materials with negative Poisson ratio
are called auxetic [398–400]. Also materials with negative compressibility are possible [401].

Beyond the dependence of the elastic constants on the bond length (as materialized in the phonon
frequencies in Fig. 5.15), they depend on the ionicity. In Fig. 5.30, the elastic constants of various
zincblende semiconductors are shown as a function of the ionicity fi. The values for the elastic constants
are normalized by e2/a4, a being the average nearest-neighbor distance.

For wurtzite crystals, five elastic constant are necessary for the stress–strain relation that reads11

10For an isotropic material, Ci jkl = λ δi j δkl + μ (δik δ jl + δil δ jk).
11(C11 − C12)/2 = C1212, C44 = C1313 = C2323.
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Ci j =

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.64)

Experimental values for wurtzite materials are given in Table 5.3. The relation of the elastic tensor of
wurtzite and zincblende materials, in particular viewed along the 〈111〉-direction has been discussed
in [403, 404].

The bulk modulus of the wurtzite crystal is given by

B = (C11 + C12)C33 − 2C2
13

C11 + C12 + 2C33 − 4C13
. (5.65)

5.3.3 Biaxial Stress

In heteroepitaxy (cf. Sect. 12.2.6), a biaxial stress situation arises, i.e. layered material is compressed
(or expanded in the case of tensile strain) in the interface plane and is expanded (compressed) in the
perpendicular direction.12 Here, we assume that the substrate is infinitely thick, i.e. that the interface
remains planar. Substrate or wafer bending is discussed in Sect. 5.3.5.

The simplest case is epitaxy on the (001) surface, i.e. e1 = e2 = ε‖. The component e3 is found
from the condition σ3 = 0 (no forces in the z direction). All shear strains are zero. For zincblende
material it follows

ε100⊥ = e3 = −C12

C11
(e1 + e2) = −2C12

C11
ε‖ . (5.66)

In Fig. 5.31 the ratio ε⊥/ε‖ is depicted for GaAs and various crystal orientations; the formulas for other
orientations are more involved [409]:

ε110⊥ = −2C12 − C0/2

C11 + C0/2
ε‖ (5.67)

ε111⊥ = −2C12 − 2C0/3

C11 + 2C0/3
ε‖ . (5.68)

Table 5.3 Elastic constants (in GPa) of some wurtzite semiconductors

Material C11 C12 C13 C33 C44 Refs.

GaN 391 143 108 399 103 [405]

AlN 410 149 99 389 125 [406]

ZnS 124 60.2 45.5 140 28.6 [407]

ZnO 206 118 118 211 44 [408]

12In a large amount of literature and in previous editions of this book, this situation has been labelled ‘biaxial strain’.
However, there is in-plane and out-of-plane strain, thus the strain along all directions is non-zero. Since the out-of-plane
stress is zero (for zero ambient pressure), it is actually a ‘biaxial stress’ situation.
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(a) (b)

Fig. 5.31 Ratio −ε⊥/ε‖ for GaAs under symmetric biaxial stress. The angle θ denotes the surface normal in the 〈110〉-
azimuth (θ = 0: [001], θ = 90◦: [110], the maximum of ε⊥/ε‖ is for [111]). (b) is a three-dimensional visualization

For wurtzite crystals and pseudomorphic growth along [00.1] the strain along the epitaxial direction
(c-axis) is given by

ε⊥ = −C13

C33
(e1 + e2) = −2C13

C33
εa , (5.69)

where ε⊥ = εc = (c − c0)/c0 and εa = (a − a0)/a0. For symmetric biaxial in-plane stress, the ratio
ε⊥/ε‖ is shown in Fig. 5.32 for GaN and varying angle θ of the c-axis against the epitaxy direction. For
the growth of wurtzite on wurtzite for θ 	= 0, the epitaxial strain is actually asymmetric in the interface
plane. For θ = 90◦, e.g. the epitaxy on m-plane substrate (cmp. Fig. 3.37) (c-axis lies in-plane), the
in-plane strains are e1 = εa and e2 = εc. For θ = 90◦, we find

ε⊥ = −C12 εa + C13 εc

C11
. (5.70)

The situation for pseudomorphic growth in the (Al,Ga,In)N system has been discussed for various
interface orientations in [410] (cmp. also Fig. 16.14). The strains ε⊥ along the epitaxy direction and
εc along the c-direction are depicted for Al0.17Ga0.83N/GaN and Mg0.3Ga0.7O/ZnO in Fig. 5.33. The
different behavior of the nitride and the oxide system, e.g. regarding the sign change of εc, is due to the
fact that εa is negative (positive) for AlxGa1−xN/GaN (MgxGa1−xO/ZnO) (εc < 0 for both cases) [411].

We note that pseudomorphic growth and biaxial stress of rhombohedral/trigonal (e.g. Al2O3) and
monoclinic (e.g. β-Ga2O3) thin films has been discussed as well [412–414]. A general treatment for
all crystal symmetries and orientations has been provided in [415].

5.3.4 Three-Dimensional Stress

The strain distribution in two-dimensional or three-dimensional objects such as quantum wires and
dots (see also Sect. 14) is more complicated.

A simple analytical solution for the problem of a strained inclusion is only possible for isotropic
material parameters [416].

The solution for a sphere can be extended to yield the strain distribution of an inclusion of arbitrary
shape. This scheme applies only for isotropic materials and identical elastic properties of the inclusion
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(a) (b)

Fig. 5.32 Ratio −ε⊥/ε‖ for GaN under symmetric biaxial stress. In a θ denotes the angle of the c-axis with respect to
the surface normal, b is a three-dimensional visualization, showing the in-plane isotropy

Fig. 5.33 Strains εc
(dashed lines) and ε⊥
(solid lines) for
Al0.17Ga0.83N/GaN (blue)
and Mg0.3Ga0.7O/ZnO
(red) as a function of the
interface tilt angle θ with
respect to [00.1]

and the surrounding matrix. The solution will be given in terms of a surface integral of the boundary
of the inclusion, which is fairly easy to handle. Several disconnected inclusions can be treated by a
sequence of surface integrals.

The strain distribution for the inner and outer parts of a sphere with radius ρ0 is given (in spherical
coordinates) by

εinρρ = 2

3
ε0

1 − 2ν

1 − ν
= εinθθ = εinφφ (5.71)

εoutρρ = 2

3
ε0

1 + ν

1 − ν

(
ρ0

ρ

)3

= −2εoutθθ = −2εoutφφ , (5.72)

where ρ denotes the radius, ν the Poisson ratio, and ε0 the relative lattice mismatch of the inclusion
and the matrix. The radial displacements are

uinρ = 2

3
ε0

1 − 2ν

1 − ν
ρ (5.73)

uoutρ = 2

3
ε0

1 − 2ν

1 − ν
ρ3
0

1

ρ2
. (5.74)
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Fig. 5.34 Strain components in an InAs pyramid (quantum dot with {101} faces), embedded in GaAs. The cross section
is through the center of the pyramid. The lattice mismatch between InAs and GaAs amounts to ≈ −7%. Reprinted with
permission from [417], c©1995 APS

Dividing the displacement by the sphere’s volume, we obtain the displacement per unit volume of the
inclusion. From the displacement we can derive the stress σ 0

i j per unit volume.

σ 0
i i = 1

4π

Y ε0

1 − ν

2x2i − x j − xk
ρ5

(5.75)

σ 0
i j = 3

2

1

4π

Y ε0

1 − ν

xi x j

ρ5
, (5.76)

where i , j and k are pairwise unequal indices. Due to the linear superposition of stresses, the stress
distribution σ V

i j for the arbitrary inclusion of volume V can be obtained by integrating over V

σ V
i j =

∫

V

σ 0
i j (r − r0) d3r . (5.77)

The strains can be calculated from the stresses.
When ε0 is constant within V , the volume integral can be readily transformed into an integral over

the surface ∂V of V using Gauss’ theorem. With the ‘vector potentials’ Ai j we fulfill divAi j = σi j .

Ai i = − 1

4π

Y ε0

1 − ν

xiei
ρ3

(5.78)

Ai j = −1

2

1

4π

Y ε0

1 − ν

xi e j + x j ei
ρ3

. (5.79)

Equation (5.79) is valid for the case i 	= j . ei is the unit vector in the i-th direction. However, special
caremust be taken at the singularity r = r0 if r0 lies within V because the stress within the ‘δ-inclusion’
is not singular (in contrast to the electrostatic analog of a δ-charge). Thus, we find

σ V
i j (r0) =

∮

∂V

Ai j dS + δi j
Y ε0

1 − ν

∫

V

δ(r − r0) d3r . (5.80)

As an example, we show in Fig. 5.34 the numerically calculated strain components [417] (taking
into account the different elastic properties of the dot and matrix materials) in the cross section of
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a pyramidal InAs quantum dot in a GaAs matrix on top of a two-dimensional InAs layer. The strain
component εzz is positive in the 2D layer, as expected from (5.66). However, in the pyramid εzz exhibits
a complicated dependence and even takes negative values at the apex.

5.3.5 Substrate Bending

If a lattice-mismatched layer is pseudomorphically grown on top of a substrate it suffers biaxial strain.
For finite substrate thickness part of the strainwill relax via substrate bending. If the substrate is circular,
a spherical cap is formed. If the lattice constant of the film is larger (smaller) than that of the substrate,
the film is under compressive (tensile) strain and the curvature is convex (concave) with respect to the
outward normal given by the growth direction (Fig. 5.35a). Substrate bending can also be induced by a
mismatch of the thermal expansion coefficients αf

th and αs
th of the film and substrate, respectively. If a

film/substrate system is flat at a given temperature, e.g. growth temperature, a decrease of temperature,
e.g. during cooling, will lead to compressive (tensile) strain if αf

th is smaller (larger) than αs
th.

In a curved structure, the lattice constant in the tangential direction increases from ati at the inner
surface (r = R = κ−1) to atu at the outer surface (r = R + d). Thus, the tangential lattice constant
varies with the radial position

at(r) = ati (1 + r κ) , (5.81)

where d is the layer thickness (Fig. 5.35b). Therefore au = ai(1 + d/R). We note that (5.81) holds in
all layers of a heterostructure, i.e. the film and the substrate.

The lattice constant in the radial direction ar , however, depends on the lattice constant a0 of the
local material and is calculated from the biaxial strain condition, such as (5.66). The in-plane strain is
ε‖ = (at − a0)/a0 (we assume a spherical cap with ε‖ = εθθ = εφφ). For an isotropic material we find
ar = a0 (1 + ε⊥) with ε⊥ = −2νε‖/(1 − ν). The local strain energy density U is given by

U = Y

1 − ν
ε2‖ . (5.82)

The total strain energy per unit areaU ′ of a system of two layers with lattice constants a1, a2, Young’s
moduli Y1, Y2 and thickness d1, d2 (we assume the same Poisson constant ν in both layers) is

U ′ =
d1∫

0

U1 dr +
d2∫

d1

U2 dr . (5.83)

The total strain energy needs to be minimized with respect to ai and R in order to find the equilibrium
curvature κ . We find

(a)

tensilecompressive

(b)

ai

au

R

d

Fig. 5.35 aSchematic bending of a film/substrate system for compressive (left) and tensile (right) film strain.bSchematic
deformation of curved film of thickness d. The lattice constants at the inner and outer surface are ai and au, respectively
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Fig. 5.36 Curvature of the middle of a Si wafer during GaN growth on an AlN interlayer grown at low temperatures
on GaN and subsequent cooling. During growth the decrease in curvature indicates convex bowing due to compressive
stress; during cooling the wafer flattens and becomes concave due to thermally induced tensile stress. Adapted from [422]

κ = 6a1a2 (a2 − a1) d1d2 (d1 + d2) Y1Y2
a32 d

4
1 Y

2
1 + α Y1Y2 + a31 d

4
2 Y

4
2

(5.84)

α = a1a2 d1d2
[−a2d1(2d1 + 3d2) + a1(6d

2
1 + 9d1d2 + 4d2

2 )
]

.

For a2 = a1 (1 + ε) we develop κ to first order of ε and find (χ = Y2/Y1) [418, 419]

κ = 6χ d1 d2 (d1 + d2)

d4
1 + 4χ d3

1 d2 + 6χ d2
1 d

2
2 + 4χ d1 d3

2 + χ2 d4
2

ε . (5.85)

In the case of a substrate (ds) with a thin epitaxial layer (df � ds), the radius of curvature is approxi-
mately (Stoney’s formula [420])

κ = 6 ε
df
d2
s

Yf
Ys

. (5.86)

Conversely, if the radius of curvature is measured [421], e.g. optically, the film curvature (and through
models also the film strain) can be determined during epitaxy as depicted in Fig. 5.36.

5.3.6 Scrolling

In some cases cylindrically scrolled structures are important, e.g. for thin-film flexible electronics,
nanotubes, nanoscrolls or nanohelixes. The scrolling of thin layers must be avoided by suitable strain
management for thin layers that are lifted off from their substrate for transfer to another flat substrate. If
the film remains attached to its substrate, a scroll can be fabricated as schematically shown in Fig. 5.37.
Such structures were first reported in [423], a review can be found in [424]. The shape of such scroll
is investigated in [425] without a priori assumptions on its shape.
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(a) (b) (c)

Fig. 5.37 Schematic representation of nanoscroll formation. a Strained heterostructure (blue/green) that is planar due
to large substrate thickness, b starting removal of sacrificial layer (black), c release of thin film into nanoscroll geometry

(a)

y
t

r

(b)

Fig. 5.38 a Schematic representation of a cylindrically rolled sheet with radial direction r , tangential direction t and
direction along the cylinder axis y. b SEM images of multiwall (In,Ga)As/GaAs nanoscroll rolled up over about 50µm.
Part (b) from [426]

If bending strain occurs only in one of the tangential directions, the energy density is given by

U = Y

2 (1 − ν2)
(ε2t + ε2y + 2ν εt εy) , (5.87)

where εy is the strain in the unbent direction (cylinder axis) as shown in Fig. 5.38a. For a strained
heterostructure made up from two layers the curvature is given by (calculated analogous to (5.85),
χ = Y2/Y1 [419])

κ = 6(1 + ν) χ d1 d2 (d1 + d2)

d4
1 + 4χ d3

1 d2 + 6χ d2
1 d

2
2 + 4χ d1 d3

2 + χ2 d4
2

ε , (5.88)

which differs from (5.85) only by the factor 1 + ν in the nominator.
For cubic material and a (001) surface the energy is given as

U100 = C11 − C12

2C11

[
C11 (ε2t + ε2y + C12 (εt + εy)

2)
]

(5.89)

for a scrolling direction along 〈100〉. When the (001)-oriented film winds up along a direction 〈hk0〉
having an angle φ with the [100] direction (φ = 45◦ for 〈110〉), the strain energy is given by (C0 is
given by (5.58))

Uφ = U100 + C0

(
εt − εy

2

)2

sin2(2φ) . (5.90)
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(a) (b)

[010]
=14°

[100]

Fig. 5.39 a Strain energy (in units of the strain energy of the flat pseudomorphic layers) of a scroll of a 4-layer SiGe
structure (Si0.3Ge0.7, Si0.6Ge0.4 and Si0.8Ge0.2, each 3nm thick and a 1nm Si cap) as a function of radius for winding
directions along 〈100〉 and 〈110〉. Top (bottom) curves without (with complete) strain relaxation along the cylinder axis.
Vertical lines indicate the positions of the respective energy minima [419]. b SEM image of curled (In, Ga)As/GaAs
nanoscroll rolled φ = 14◦ off 〈100〉. The stripe from which the film was rolled off is indicated by white dashed lines.
Part (b) from [429]

The strain energy versus bending radius (= κ−1) is shown for a SiGe nanoscroll in Fig. 5.39. First,
the relaxation along the cylinder axis plays a minor role. The smallest strain energy is reached for
scrolling along 〈100〉, also yielding the smaller bending radius (larger curvature). Therefore, the film
preferentially scrolls along 〈100〉. This explains the observed ‘curl’ behavior of scrolls winding up for
φ 	= 0 [423, 427] (Fig. 5.39b). The effect of surface strain needs to be included to yield improved
quantitative agreement with experimental values of κ(ε, d) [428].

5.4 Plasticity

5.4.1 Critical Thickness

Strained epitaxial films are called pseudomorphic when they do not contain defects and the strain
relaxes elastically, e.g. by tetragonal distortion. When the layer thickness increases, however, strain
energy is accumulated that will lead at some point to plastic relaxation via the formation of defects. In
many cases, a grid of misfit dislocations forms at the interface (Figs. 4.18 and 5.40).

In Fig. 5.41 the strain around misfit dislocations at a GaAs/CdTe heterointerface, as calculated from
a TEM image (Fig. 4.14), is shown.

The average distance p of the dislocations is related to the misfit f = (a1 − a2)/a2 and the edge
component b⊥of the Burger’s vector (for a 60◦ dislocation b⊥ = a0/

√
8)

p = b⊥
f

. (5.91)

Twomechanisms have been proposed for the formation ofmisfit dislocations (Fig. 5.42), the elongation
of a grown-in threading dislocation [432, 433] and the nucleation and growth of dislocation half-loops
[434]. For the modeling of such systems a mechanical approach based on the forces on dislocations
[432] or an energy consideration based on the minimum strain energy necessary for defect formation
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[434–437] can be followed. Both approaches have been shown to be equivalent [438] (if a periodic
array of dislocations is considered). In [439] it was pointed out that the finite speed of plastic flow also
has to be considered to explain experimental data. Temperature affects the observed critical thickness
and a kinetic model is needed. Another way of introducing dislocations is the plastic relaxation at the
edge of coherent strained islands (cmp. Fig. 14.37).

In the following, isotropic materials and identical elastic constants of substrate and thin film are
assumed, following [438]. The interface plane is the (x ,y)-plane, the growth direction is z. The energy
Ed of a periodic dislocation array with period p and Burgers vector b = (b1, b2, b3) is

Ed = Y

8π (1 − ν2)
β2 (5.92)

β2 = [b21 + (1 − ν) b22 + b23
]
ln

(
p
[
1 − exp(−4πh/p)

]

2π q

)

+ (b21 − b23
) 4πh

p

exp(−4πh/p)

1 − exp(−4πh/p)

−1

2

(
b21 + b23

) (4πh
p

)2 exp(−4πh/p)
[
1 − exp(−4πh/p)

]2

+b23
2πh

p

exp(−2πh/p)

1 − exp(−2πh/p)
,

where h is the film thickness and q denotes the cutoff length for the dislocation core, taken as q = b.
The misfit strain including the relaxation due to dislocations with Burger’s vectors b and b̂ in the
two orthogonal interface 〈110〉 directions n and n̂. We chose the coordinate system such that n =
(1, 0, 0) and n̂ = (0, 1, 0) (the z direction remains). With respect to these axes the Burger’s vectors are(
± 1

2 ,
1
2 ,

1√
2

)
a0/

√
2. The misfit strain εmi j is reduced due to the dislocation formation to the ‘relaxed’

misfit strain εri j with

εri j = εmi j + bi n j + b j ni
2p

+ b̂i n̂ j + b̂ j n̂i
2p

, (5.93)

(a) (b)
g

002

Fig. 5.40 a Series of cross-sectional TEM images of 100nm thick GexSi1−x layers on Si(001) with different ternary
compositions x = 0.1, 0.2, 0.5, and 1.0. The growth temperature was 550 ◦C. The transition from commensurate
to incommensurate growth is obvious. Adapted from [430]. b Plan view 〈022〉 TEM bright field image of a 250nm
Ge0.15Si0.85 layer on Si (001), annealed at about 700 ◦C. The arrow denotes the position of a dislocation loop. Reprinted
with permission from [431], c©1989 AVS
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Fig. 5.41 Components
(

εxx εxz
εzx εzz

)
of the strain tensor (with respect to the GaAs lattice constant) of the dislocation array

shown in Fig. 4.14, red/blue: positive/negative value, white: zero. From [321]
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Fig. 5.42 Schematic formation of misfit dislocations by a elongation of a grown-in threading dislocation and b by the
nucleation and growth of dislocation half-loops. a depicts a threading dislocation. Initially, for thickness h1 the interface
is coherent ‘a’, for larger thickness h2 the interface is critical and the force of the interface on the dislocation is equal
to the tension in the dislocation line, ‘b’. For larger thickness, e.g. h3, the dislocation line is elongated in the plane of
the interface, ‘c’. In b ‘a’ denotes a subcritical dislocation half-loop, ‘b’ depicts a half-loop being stable under the misfit
stress and for ‘c’ the loop has grown under the misfit stress into a misfit dislocation line along the interface

with an associated stress σi j . The strain energy Es of the layer due to the relaxed misfit is then

Es = 1

2
h σi j ε

r
i j (5.94)

lim
p→∞ Es = 2h

Y (1 + ν)

1 − ν
f 2 . (5.95)

The total strain energy E is given by

pE = 2Ed + 2Ec + p Es (5.96)

E∞ = lim
p→∞ E , (5.97)

with the core energy Ec of the dislocation that needs to be calculated with an atomistic model (not con-
sidered further here). This energy is shown inFig. 5.43a for thematerial parameters ofGe0.1Si0.9/Si(001)
(misfit −0.4%) for various layer thicknesses as a function of 1/p. This plot looks similar to that for
a first-order phase transition (with 1/p as the order parameter). For a certain critical thickness hc1 the
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energy of the layer without any dislocation and the layer with a particular dislocation density p1 are
identical (E − E∞ = 0) and additionally ∂E/∂p|p=p1 = 0. However, between p → ∞ and p = p0
there is an energy barrier. The critical thickness hc2 is reached when

∂E/∂p |p→∞ = 0 , (5.98)

i.e. the energy decreases monotonically for increasing dislocation density up to the global energy
minimum at a certain equilibrium dislocation spacing p2. Equation (5.98) leads to the following
implicit equation for the determination of hc2:

hc2 = b
[−16 + 3b2 + 8 (−4 + ν) ln (2hc2/q)

]

128 f π (1 + ν)
, (5.99)

with the length of the Burgers vector b = a0/
√
2.

The theoretical dependence of hc2 for GexSi1−x /Si(001) with varying composition is shown in
Fig. 5.43b together with experimental data. The critical thickness for a fairly high growth temperature
is much closer to the energetic equilibrium than that deposited at lower temperature. This shows
that there are kinetic limitations for the system to reach the mechanical equilibrium state. Also, the
experimental determination of the critical thickness is affected by finite resolution for large dislocation
spacing, leading generally to an overestimate of hc.

In zincblende materials, two types of dislocations are possible, α and β, with Ga- and As-based
cores, respectively. They have [1̄10] and [110] line directions for a compressively strained interface.
The α dislocation has the larger glide velocity. Therefore, strain relaxation can be anisotropic with
regard to the 〈110〉 directions for zincblende material, e.g. (In,Ga)As/GaAs [441, 442].

A more complicated relaxation situation is visualized in Fig. 4.18 for an Al0.13Ga0.87N/GaN het-
erostructure on (303̄1) substrate. Below the critical thickness only threading dislocations stemming
from the substrate are visible. Above the critical thickness, misfit dislocations have developed along
three directions which related to the intersections of the basal c-plane (00.1) and two prismaticm-plane
{10.1} glide systems with the (303̄1) interface plane [324, 443]. We like to mention that cathodolumi-

(a) (b)

Fig. 5.43 a Theoretical calculation for the strain energy versus inverse dislocation density for various thicknesses of
Ge0.1Si0.9 layers on Si (001). The ordinate is b/2p, b/2 being the edge component of the Burgers vector and p being the
dislocation spacing. The abscissa is the strain energy E scaled with E∞ (5.97). (b) Critical thickness for GexSi1−x layers
on Si (001). The solid line is theory (hc2) according to (5.99). Data points are from [440] (squares, growth temperature
of 750 ◦C) and from [430] (triangles for growth temperature of 550 ◦C)
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Fig. 5.44 Cleaving planes
of the a diamond and b
zincblende lattice

(a) (b)

Fig. 5.45 Scanning
tunneling microscopy
images of a cleaved GaAs
(110) surface with a good
cleave and b bad cleave
with defects dominating.
Adapted from [446]

10 nm

(a) (b)

nescence (or X-ray imaging) offer a quite high sensitivity for plastic relaxation since a small number
of dislocations can be detected in relatively large areas (while TEM finds defects but only within small
areas and X-ray diffraction looks at large area but has only a low strain sensitivity).

5.4.2 Cleaving

The cleavage planes of the diamond structure are {111} planes (Fig. 5.44a). It is easiest to break the
bonds connecting the double layers in the 〈111〉 directions.

The cleavage planes of the zincblende structure are {110} planes (Fig. 5.44b). Due to the ionic
character, breaking the bonds connecting the double layers in the 〈111〉 directions would leave charged
surfaces, which is energetically unfavorable. The {100} planes contain only one sort of atom and would
also leave highly charged surfaces. The {110} planes contain equal amounts of A- and B-atoms and are
neutral. Ideally, the cleaving plane is atomically flat (Fig. 5.45a) or exhibits large mono-atomically flat
terraces. However, certain dopants in high concentrations, e.g. GaAs:Te, can induce a rough surface
due to lattice distortion [444].

The natural cleavage planes of wurtzite (GaN) are {11̄.0} (m-type) planes [445].

5.4.3 Wafer Breakage

The thickness and thus strength of wafers for semiconductor production (cmp. Sect. 12.2.2) is an
important issue. The wafer should be as thin as possible for saving expensive materials but thick
enough to avoid loss due to stress during handling, in particular during the later steps in a process since
the value of a wafer increases with number of process steps it has undergone.
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Reasons for wafer breakage is the mechanical handling (pick, place, transport) [447], stress loads
due to processing (dielectrics, metals, asymmetric structures) and stress during processing for example
due to thermal loads in annealing or deposition steps and cutting/dicing. The problem is less important
in microelectronics but especially severe in photovoltaics (PV) industry, handling large total areas;
on the other hand the profit loss per broken wafer is much higher in the microelectronics industry.
An additional problem poses the grain structure of multicrystalline silicon wafers used for PV [448]
and the effect of surface cracks and irregularities at wafer edges and corners. Just going from a wafer
thickness of 270µm to 250µm can more than double the breakage rate at certain process steps [449].
The minimum strength of a wafer with surface cracks is about 100MPa, while the strength of wafers
with cracks at the edge can reach rather low values around 20MPa. Also the careful shaping of the
wafer edge is important to avoid breakage [450].



Chapter 6
Band Structure

Silicon is a metal.

A.H. Wilson, 1931 [74]

Abstract A treatment of electron states in one-dimensional potentials introduces into the concepts
of band gap and effective mass. The band structures of various semiconductors are reviewed. The
systematics of band gaps, symmetry considerations, band gaps in alloys, amorphous semiconductors
and the effect of strain and temperature are discussed. Electron and hole dispersions are treated and
the density of states in various dimensions is derived.

6.1 Introduction

Valence electrons that move in the crystals feel a periodic potential

U (r) = U (r + R) (6.1)

for all vectors R of the direct lattice. The potential1 is due to the effect of the ion cores and all
other electrons. Thus a serious many-body problem is present. In principle, the band structure can be
calculated from the periodic arrangements of the atoms and their atomic order number. We note that
for some problems, e.g. the design of optimal solar cells, a certain band structure is known to be ideal
and a periodic atomic arrangement, i.e. a material, needs to be found that generates the optimal band
structure. This problem is called the inverse band structure problem.

6.2 Electrons in a Periodic Potential

6.2.1 Bloch’s Theorem

First, we will deduce some general conclusions about the structure of the solution as a consequence of
the periodicity of the potential. We first investigate the solution of a Schrödinger equation of the type

1In this book the form of the potential will never be explicitly given.
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(a) (b) (c)

Fig. 6.1 Zone schemes for a band structure: a extended, b reduced and c repetitive zone scheme

H �(r) =
[
− �

2

2m
∇2 +U (r)

]
�(r) = E �(r) (6.2)

for an electron. U will be periodic with the lattice, i.e. it will obey (6.1).
Bloch’s theorem says that the eigenstates � of a one-particle Hamiltonian as in (6.2) can be written

as the product of plane waves and a lattice-periodic function, i.e.

�nk(r) = A exp(i k r) unk(r) . (6.3)

The normalization constant A is often omitted. If unk(r) is normalized, A = 1/
√
V , where V is the

integration volume. The wavefunction is indexed with a quantum number n and the wavevector k. The
key is that the function unk(r), the so-called Bloch function, is periodic with the lattice, i.e.

unk(r) = unk (r + R) (6.4)

for all vectors R of the direct lattice. The proof is simple in one dimension and more involved in three
dimensions with possibly degenerate wavefunctions, see [451].

If Enk is an energy eigenvalue, then Enk+G is also an eigenvalue for all vectors G of the reciprocal
lattice, i.e.

En(k) = En (k + G) . (6.5)

Thus the energy values are periodic in reciprocal space. The proof is simple, since thewavefunction (for
k + G) exp(i(k + G)r)un(k+G)(r) is for un(k+G)(r) = exp(−iGr)unk(r) obviously an eigenfunction
to k.

A band structure along one k-direction can be displayed in various zone schemes as depicted in
Fig. 6.1. The most frequently used scheme is the reduced zone scheme. In three dimensions, the band
structure is typically shown along particular paths in the Brillouin zone, as depicted, e.g., in Fig. 6.2c.

6.2.2 Free-Electron Dispersion

If the entire wavefunction (from (6.3)) obeys the Schrödinger equation (6.2), the Bloch function unk
fulfills the equation
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(a) (b) (c)
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Fig. 6.2 Dispersion of free electrons (empty lattice calculation, U = 0, shown in the first Brillouin zone) in a a one-
dimensional lattice (G = n 2π/a), b a simple cubic lattice (G = (h, k, l) 2π/a) and c in a fcc lattice. The energy is
measured in units of the energy at the X-point, EX = (�2/2m)(π/a)2. The shaded circle in (c) represents the region
where the band gap develops for finite periodic potential U �= 0

[
1

2m
(p + �k)2 +U (r)

]
unk(r) = Enk unk(r) , (6.6)

which is easy to see from p = −i�∇.
First, we discuss the simplest case of a periodic potential,U ≡ 0. This calculation is also called the

empty lattice calculation. The solution of (6.6) is then just constant, i.e. uk = c and�k(r) = c exp(ikr).
The dispersion of the free electron is then given by

E(k) = �
2

2m
k2 , (6.7)

where k is an arbitrary vector in the reciprocal space. k′ is a vector from the Brillouin zone such that
k = k′ +G with a suitable reciprocal lattice vector G. Because of (6.5) the dispersion relation can be
written also as

E(k) = �
2

2m
(k′ + G)2 , (6.8)

where k′ denotes a vector from the Brillouin zone. Thus, many branches of the dispersion relation arise
from using various reciprocal lattice vectors in (6.8).

The resulting dispersion relation for the free electron is shown in Fig. 6.2a for a one-dimensional
system (k′ and G are parallel) and in Fig. 6.2b for the simple cubic lattice (in the so-called reduced
zone scheme). In Fig. 6.2c, the (same) dispersion of the free electron is shown for the fcc lattice.

6.2.3 Non-Vanishing Potential

Now the effect of a non-vanishing periodic potential on electron motion will be discussed. A simple,
analytically solvable model that visualizes the effect of a periodic potential on the dispersion relation of
the electrons and the formation of a (one-dimensional) band structure with gaps is the Kronig-Penney
model [71] which is discussed in the Appendix F.
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6.2.3.1 General Wave Equation

In this section, we will discuss the solution of a general wave equation for electrons in a periodic
potential. The solution is investigated particularly at the zone boundary. The potential U is periodic
with the lattice (6.1). It can be represented as a Fourier series with the reciprocal lattice vectors (lattice
vector expansion, cf. (3.19)):

U (r) =
∑
G

UG exp (iGr) . (6.9)

Since U is a real function, U−G = U ∗
G. The deeper reason for the success of such an approach is that

for typical crystal potentials, the Fourier coefficients decrease rapidly with increasing G, e.g. for the
unscreened Coulomb potential UG ∝ 1/G2. The wavefunction is expressed as a Fourier series (or
integral) over all allowed (Bloch) wavevectors K,

�(r) =
∑
K

CK exp (iK r) . (6.10)

The kinetic and potential energy terms in the Schrödinger equation (6.6) are

∇2� = −
∑
K

K2 CK exp (iK r) (6.11a)

U� =
∑
G

∑
K

UG CK exp (i (G + K) r) . (6.11b)

With K′ = K + G, (6.11b) can be rewritten as

U� =
∑
G

∑
K′

UG CK′−G exp
(
iK′ r

)
. (6.12)

Now, the Schrödinger equation can be written as an (infinite) system of algebraic equations:

(λK − E)CK +
∑
G

UG CK−G = 0 , (6.13)

with λK = �
2 K2/(2m).

6.2.3.2 Solution for One Fourier Coefficient

The simplest (non-trivial) potential energy has only one important Fourier coefficient −U (U > 0)
for the shortest reciprocal lattice vector G. Also, we have U−G = UG. Thus, the (one-dimensional)
potential has the formU (x) = −2U cos(Gx). Then the equation system (6.13) has only two equations
for CK and CK−G, leading to the condition

∣∣∣∣λK − E −U
−U λK−G − E

∣∣∣∣ = 0 . (6.14)

We find two solutions

E± = λK + λK−G

2
±

√(
λK − λK−G

2

)2

+U 2 . (6.15)
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Fig. 6.3 Periodic potential
U (one-dimensional cosine,
black) and the squares of
the wavefunctions �−
(red) and �+ (blue) for the
wavevector at the zone
boundary,
K = G/2 = π/a

6.2.3.3 Solution at the Zone Boundary

We consider the solution at the zone boundary, i.e. at K = G/2. The kinetic energy is then the same
for K = ±G/2, i.e. λK = λK−G = (�2/2m) (G2/4) = λ. The determinant (6.14) reads then

(λ − E)2 −U 2 = 0 . (6.16)

Thus the energy values at the zone boundary are

E± = λ ±U = �
2

2m

G2

4
±U . (6.17)

At the zone boundary, a splitting of the size E+−E− = 2U occurs. The center of the energy gap is given
by the energy λK of the free-electron dispersion. The ratio of the coefficients is CG/2/C−G/2 = ∓1.
The ‘−’ solution of (6.17) (lower energy) is a standing cosine wave (�−), the ‘+’ solution (�+) is
a standing sine wave as visualized in Fig. 6.3. For the lower-energy (binding) state the electrons are
localized at the potential minima, i.e. at the atoms, for the upper state (antibinding) the electrons are
localized between the atoms. Both wavefunctions have the same periodicity since they belong to the
same wavevector K = G/2. We note that the periodicity of � is 2a, while the periodicity of �2 is
equal to the lattice constant a.

6.2.3.4 Gap States

For energies within the gap, solutions with a complex wavevector K = G/2+ i q exist. Solving (6.16)
results (in terms of q ′2 = (�2/2m) q2) to

E± = λ − q ′2 ±
√

−4 λ q ′2 +U 2 . (6.18)

For energies E = λ + ε with −U ≤ ε ≤ U , the complex part of the wavevector is given by

q ′2 = −(ε + 2λ) +
√
4λ (ε + λ) +U 2 . (6.19)

The maximum value of q is in the center of the band gap (ε = 0); for |U | � 2 λ, it is q ′2
max ≈ U 2/(4λ).

At the band edges (ε = ±U ), q = 0. q is the characteristic length of an exponentially decaying wave
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Fig. 6.4 Complex band
structure q ′(ε) according to
(6.19) for two different
values of λ/U
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function. Such solutions occur at surfaces or interfaces. For larger band gaps, the localization length
is smaller (larger q) (Fig. 6.4).

6.2.3.5 Solution in the Vicinity of the Zone Boundary

For K in the vicinity of the zone boundary the solutions (6.15) can be developed. Therefore, we use
the (small) distance from the zone boundary K̃ = K − G/2. With λ = (�2/2m) (G2/4) we rewrite
still exactly (6.15):

E±
(
K̃
) = �

2

2m

(
1

4
G2 + K̃2

)
±

(
4λ

�
2K̃2

2m
+U 2

)1/2

. (6.20)

For small K̃ with �
2GK̃
2m � |U |, the energy is then approximately given by

E±
(
K̃
) ∼= λ ±U + �

2K̃2

2m

(
1 ± 2 λ

U

)
. (6.21)

Thus the energy dispersion in the vicinity of the zone boundary is parabolic. The lower state has a
negative curvature, the upper state a positive curvature. The curvature is

m∗ = m
1

1 ± 2λ/U
≈ ±m

U

2λ
, (6.22)

and will be later related to the effective mass. The approximation in (6.22) is valid for |U | � 2λ. We
note that in our simple model m∗ increases linearly with increasing band gap 2U (see Fig. 6.34 for
experimental data).

6.2.4 Kramer’s Degeneracy

En(k) is the dispersion in a band. The time-reversal symmetry (Kramer’s degeneracy) implies

En↑(k) = En↓(−k) , (6.23)
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Fig. 6.5 Theoretical
calculation of the spin
splitting of a the three
lowest conduction bands
(CB1, CB2, and CB3) and
b the top three valence
bands (VB1, VB2, and
VB3) of GaAs. Adapted
from [453]
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where the arrow refers to the direction of the electron spin. If the crystal is symmetric under inversion,
we have additionally

En↑(k) = En↑(−k) . (6.24)

With both time reversal and inversion symmetry the band structure fulfills

En↑(k) = En↓(k) . (6.25)

The inversion symmetry is particularly important for the spin-orbit interaction. In the absence of inver-
sion symmetry, e.g. in (non-centrosymmetric) zincblende crystals (Fig. 3.16b) or in heterostructures
(Fig. 12.35b), a spin splitting, e.g. En↑(k) �= En↓(k), is present. It can be thought of as provoked by
an effective magnetic field. Bulk inversion asymmetry (BIA) leads to the Dresselhaus spin splitting
[452, 453] that is shown in Fig. 6.5 for GaAs (cmp. Fig. 6.10a). The spin splitting due to structural
inversion asymmetry (SIA) is described by the Bychkov-Rashba Hamiltonian [454, 455]. A review on
these topics can be found in [456].

6.2.5 Symmetry Considerations

In general the symmetry of the lattice is a symmetry of the system’s Hamiltonian and thus transfers into
the electronic (and other) properties of the semiconductor. The means to formulate this mathematically
is group theory and representation theory. At a given reciprocal lattice point, the wave function must
fulfill the given spatial symmetry. Additional symmetry due to spin and spin-orbit interaction enters
via the double-group scheme. This problem has been treated for the 32 point groups (cmp. Table B.2)
in [457] and in [458] particularly for the pc, fcc, bcc and hcp lattices. A detailed treatment for the
zincblende [459] and wurtzite [460] structures have been given. The most popular Hamiltonians are
treated in [461].

The symmetry at particular points in direct or reciprocal space is denoted by the irreducible repre-
sentations of the symmetry (point) group, e.g. by the�i -symbols used in Figs. 6.9, 6.10 or also Fig. 6.44.
As an example, base functions with the symmetry of the irreducible representations of tetraeder group
Td are listed in Table 6.1. With the knowledge of the wave functions at the points of high symmetry, it
is possible to deduce the general nature of the energy bands in the vicinity of such symmetry points.
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Table 6.1 Representations of the tetraeder group (zincblende structure) in molecular, BSW [462] and Koster [457]
notation and (examples of) corresponding base functions (c.p.: cyclic permutations)

molecular BSW Koster base functions

A1 �1 �1 x y z, x2 + y2 + z2

A2 �2 �2 x4 (y2 − z2) + c.p.

E �12 �3 2 z2 − (x2 + y2), (x2 − y2)

T2 �15 �4 x , y, z, xy, xz, yz

T1 �25 �5 z (x2 − y2) and c.p.

6.2.6 Topological Considerations

Starting with research on the quantum Hall effect and based on previous mathematical theorems, it has
become clear that the band structure of ‘insulators’ has topological properties which in turn lead to a
elegant classification of materials (and many effects/phases) [370, 463, 464]. In this context, the term
‘insulator’ means a material with gap between filled and empty states, i.e. semiconductors are exactly
like this if the temperature is not too high (related to the gap divided by kB). We recall the discussion
of the diatomic linear chain in Sect. 5.2.3 where the bands turned out to have different topological
properties depending on the ratio of sporing constants.

Topology is a branch of mathematics where objects that are related to each other by a smooth
deformation are classified as the same. For example, a sphere and an ellipsoid are topologically the
same. Also, a doughnut and a cup are the same since they have one hole. A quantity that is independent
of such smooth transformations is termed ‘topological invariant’. Such a number is the genus g of a
surface that counts the number of holes. According to the Gauss-Bonnet theorem, the integral of the
Gaussian curvature K over a closed surface S is given by

∫
S
K dA = 2π (2 − 2 g) . (6.26)

The Gaussian curvature K = κ1 κ2 of a (differentiable) surface in 3D is the product of the principal
curvatures κ1 and κ2 (maximum and minimum curvature of the curves from all normal planes that
contain the normal vector intersectingwith the surface). For a sphere of radius r , the Gaussian curvature
is 1/r2 everywhere and the integral in (6.26) is 4π , making g = 0. For a topologically different example
we look at a torus (all points that have the fixed distance r from a circle of radius R, r < R). It is
parametrized by

r = R

⎛
⎝ cosφ

sin φ

0

⎞
⎠ + r

⎛
⎝ cosφ cos θ

sin φ cos θ

sin θ

⎞
⎠ , (6.27)

with both the angles φ and θ running between 0 and 2π . The principal curvature κ1 along the θ -
direction is 1/r (for all φ). The other principal curvature κ2 in azimuthal (φ) direction changes sign
with θ (positive outside, negative inside) and is also independent of φ. Its integral over the outer and
inner part cancel exactly, thus the integral of κ1 κ2 over the entire torus is zero and therefore g = 1.

Next, we connect the periodicity of the Brillouin zone in two dimensions with variables on a torus
in 3D as shown in Fig. 6.6 (cmp. Fig. 5.3 for the 1D case). This concept can be generalized for a 3D
band structure and a torus in four dimensions.

If a constant function f = n a b/(2π) is integrated over the Brillouin zone (X is at ±π/a, Y is at
±π/b), the integral is
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Fig. 6.6 Brillouin zone of a two-dimensional rectangular lattice and mapping to a torus

Fig. 6.7 Brillouin zone of
a rectangular lattice with a
a constant function and b a
function that changes sign.
On the right the topology of
the situation is visualized

1

2π

∫
BZ

f (k) d2k = n . (6.28)

If for example another function f that is independent of kx and changes sign in ky-direction with∫
f dky = 0, similar to the curvature of the torus, is integrated over the Brillouin zone, the results will

be zero. This is schematically shown in Fig. 6.7 if the integrand is interpreted as curvature.
The generalization of the Berry phase [369] to Bloch states has been made in [465, 466]. For a two-

dimensional systemwith Bloch bands and with Bloch functions um(k) as in (6.3), the integrand leading
to a topological invariant is given by the Berry connection (cmp. (5.29)) Am = 〈um(k)|ı ∇k|um(k)〉
and its Berry curvature or Berry flux in three-dimensional notationFm = ∇k ×Am . The Chern number
Cm for a band (separated by gaps from other bands), defined as integral over the Brillouin zone,

Cm = 1

2π

∫
BZ

Fm d2k , (6.29)

takes only integer values and is a topological invariant. Thatmeans that small variations of theHamilton
operator behind the band structure do not change its value. In the case of degeneracies, still the sum of
Chern numbers over all occupied bands, n = ∑

m nm , is a topological invariant as long as the empty
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Fig. 6.8 Schematic band structures with (a) topologically trivial wave functions and c topologically non-trivial wave
functions where within one band the character changes from s (blue, ‘+’ for positive parity) to p (red, ‘−’ for negative
parity). In b the crossing point is visualized

states are separated by a gap. For a three-dimensional crystal and k-space several topological invariants
exist but a Chern number can be assigned to the Fermi surface or surface states (cmp. Sect. 11.6.3).

As an schematic example we show Fig. 6.8 for a topological trivial and non-trivial band structure.
In the trivial bandstructure (as most semiconductors), the phase character of the wavefunction changes
only little within the Brillouin zone, mostly p-type (negative parity) for the valence band and mostly s-
type (positive parity) for the conduction band (Fig. 6.8a). In the topologically non-trivial bandstructure,
band inversion takes place and the character of the wave function changes within a band (Fig. 6.8c).
This sketch should be compared to Fig. 5.8 where a similar situation had been discussed for the lattice
vibrations. An example for a semiconductor with band inversion is HgTe while CdTe or MnTe have
trivial topology. Alloying leads at the transition from trivial to non-trivial (Fig. 6.8b) to zero-gap
semiconductors (cf. Sect. 6.11).

6.3 Band Structures of Selected Semiconductors

In the following, the band structures of various important and prototype semiconductors are discussed.
The band below the energy gap is called the valence band; the band above the gap is the conduction
band. The band gap
Ecv, mostly denoted as Eg, is the energy separation between the highest valence-
band state and the lowest conduction-band state. The maximum of the valence band is for most
semiconductors at the � point.

6.3.1 Silicon

For silicon, an elemental semiconductor, (Fig. 6.9a) the minimum of the conduction band is located
close to the X-point at 0.85π/a in the 〈100〉 direction. Thus, it is not at the same point in k space as the
top of the valence band. Such a band structure is called indirect. Since there are six equivalent 〈100〉
directions, there are six equivalent minima of the conduction band.
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Fig. 6.9 Band structure of a silicon (indirect) and b germanium (indirect). In Si, the minima of the conduction band are
in the 〈100〉 direction, for germanium in the 〈111〉 direction. Adapted from [164], based on [467]
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Fig. 6.10 Band structure of a GaAs (direct) and b GaP (indirect). For GaAs the minimum of the conduction band is at
�, for GaP in the 〈100〉 direction. Adapted from [164], based on [467]

6.3.2 Germanium

Germanium, another elemental semiconductor, (Fig. 6.9b) also has an indirect band structure. The
conduction minima are at the L point in the 〈111〉 direction. Due to symmetry there are eight equivalent
conduction-band minima.

6.3.3 GaAs

GaAs (Fig. 6.10a) is a compound semiconductor with a direct band gap since the top of the valence
band and the bottom of the conduction band are at the same position in k space (at the �-point). The
next highest (local) minimum in the conduction band is close to the L point.
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6.3.4 GaP

GaP (Fig. 6.10b) is an indirect compound semiconductor. The conduction-band minima are along the
〈100〉 directions.

6.3.5 GaN

GaN (Fig. 6.11) is a direct semiconductor that has wurtzite structure but can also occur in themetastable
cubic (zincblende) phase.

6.3.6 Lead Salts

The band gap of PbS (Fig. 6.12), PbSe and PbTe is direct and located at the L point. The lead chalco-
genide system shows the anomaly that with increasing atomic weight the band gap does not decrease
monotonically. At 300K, the band gaps are 0.41, 0.27 and 0.31eV for PbS, PbSe and PbTe, respectively.
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Fig. 6.11 Band structure of GaN (direct) in zincblende (zb) modification (left) and wurtzite (w) modification (right),
both displayed in the wurtzite Brillouin zone to facilitate comparison

Fig. 6.12 Calculated band
structure of PbS (direct).
The energy gap is at the L
point. The forbidden band
is shown in grey. Adapted
from [468]
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Fig. 6.13 Calculated indirect band structure of CdO. The top of the valence band is at E = 0. Adapted from [470]

6.3.7 MgO, ZnO, CdO

Cadmium oxide is a cubic semiconductor in the rocksalt structure. Due to symmetry considerations,
coupling (repulsion) of oxygen 2p- and cadmium 3d-orbitals does not occur at the zone center in the
rocksalt structure. Repulsion occurs though away from the �-point and therefore the valence band
maximum is not located at the zone center (Fig. 6.13). Thus CdO is an indirect semiconductor. A
similar effect would occur in rs-ZnO due to zinc 3d orbitals; however, ZnO has wurtzite structure for
which p–d coupling at the �-point is allowed; thus ZnO is direct. In MgO,Mg of course only possesses
populated s- and p-orbitals and no such repulsion is present; thus MgO even with its rocksalt structure
is also direct [469].

6.3.8 Chalcopyrites

The experimental band gaps of a number of chalcopyrite semiconductors are listed in Table 6.2. The
band structures of CuAlS2, CuAlSe2, and CuGaSe2 are compared in Fig. 6.14.

In Fig. 6.15, the theoretical band structure of GaN and its closest related chalcopyrite ZnGeN2 are
compared, both shown in the chalcopyrite (orthorhombic) Brillouin zone. The band gap of ZnGeN2

is smaller than that of GaN and the difference of 0.4eV is fairly well reproduced by the calculation2

(giving 0.5eV).

2Due to the local density approximation (LDA) the absolute values of the band gaps are too small by about 1eV.
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Table 6.2 Band gaps of various chalcopyrite semiconductors

Material Eg (eV) Eg (eV) Eg (eV)

CuAlS2 3.5 CuGaS2 2.5 CuInS2 1.53

CuAlSe2 2.71 CuGaSe2 1.7 CuInSe2 1.0

CuAlTe2 2.06 CuGaTe2 1.23 CuInTe2 1.0–1.15

AgAlS2 3.13 AgGaS2 2.55 AgInS2 1.87

AgAlSe2 2.55 AgGaSe2 1.83 AgInSe2 1.24

AgAlTe2 2.2 AgGaTe2 1.1–1.3 AgInTe2 1.0

ZnSiP2 2.96 ZnGeP2 2.34 ZnSnP2 1.66

ZnSiAs2 2.12 ZnGeAs2 1.15 ZnSnAs2 0.73

CdSiP2 2.45 CdGeP2 1.72 CdSnP2 1.17

CdSiAs2 1.55 CdGeAs2 0.57 CdSnAs2 0.26

CuAlSe2CuAlS2 CuGaSe2

T N T N T N

Fig. 6.14 Calculated band structures of CuAlS2, CuAlSe2, and CuGaSe2. The absolute values of the gap energies are
incorrect due to LDA calculation. Adapted from [471]
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Fig. 6.15 Calculated (within LDA) band structures of ZnGeN2 and its related III–V compound GaN, both displayed in
the chalcopyrite (orthorhombic) Brillouin zone to facilitate comparison. Adapted from [472]
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Fig. 6.16 Calculated band structures of ZnCo2O4 and ZnIr2O4. Adapted from [470]

6.3.9 Spinels

The band structure of spinels (in particular CdIn2S4) has been discussed in [473], the band structure
of ZnM2O4 has been calculated in [470] for (M = Co, Rh, Ir) (Fig. 6.16) and in [474] for (M = Al,
Ga, In).

6.3.10 Delafossites

In Fig. 6.17, the theoretical band structures of the delafossites CuAlO2, CuGaO2, and CuInO2 are
shown. The maximum of the valence band is not at � but near the F point. The direct band gap at �

decreases for the sequence Al → Ga → In, similar to the trend for AlAs, GaAs and InAs. The direct
band gap at F and L, causing the optical absorption edge, increases, however (experimental values are
3.5, 3.6, and 3.9eV).

6.3.11 Perovskites

The calculated band structure of BaTiO3 in the tetragonal phase is shown in Fig. 6.18. The minimum
of the conduction band is at the �-point. The maximum of the valence band is not at the �-point but at
the M point. The band gap of the LDA3 calculation is too small (2.2 eV) compared to the experimental
value ∼ 3.2eV.

The band structure of the halide perovskites has been calculated for hybrid organic-inorganic com-
pounds like MAPbI3 and FAPbI3 [476] and fully inorganic compounds APbI3 (A = Li, Na, K, Rb,
and Cs) [477]. Density of states and energy positions of (MA,FA,Cs)(Pb,Sn)(Cl,Br,I)3 compounds are

3local density approximation.



150 6 Band Structure

6

4

2

0

-2

CuGaO2 CuInO2CuAlO2

Fig. 6.17 Band structures of CuAlO2, CuGaO2, and CuInO2, calculated with LDA (underestimating the absolute value
of the band gaps). The arrows denote the maximum of the valence band that has been set to zero energy for each material.
Adapted from [226]

Fig. 6.18 Calculated energy band structure of BaTiO3 along the major symmetry directions. The Fermi level (EF) is
set at zero energy. Adapted from [475]

discussed in [478]. The trends are summarized in Fig. 6.19. The band gap of halide perovskites can be
varied across the visible range, e.g. within the CsPb(Cl,Br,I)3 the system (Fig. 6.20).

6.4 Systematics of Semiconductor Band Gaps

The trends with regard to the size of the band gap for elemental, III–V and II–VI semiconductors can
essentially be understood in terms of the bond strength and ionicity. In Fig. 6.21, the band gaps of many
important semiconductors are shown as a function of the lattice constant. For elemental semiconductors,
the band gap decreases with reduced bond strength, i.e. lattice constant (C→Si→Ge). A similar trend
exists both for the III–V and the II–VI semiconductors.
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Fig. 6.19 Schematic energy levels in ABX3 perovskites. Arrows indicate the shift of energy levels upon substitution of
atoms or small organic molecules. Adapted from [478]

(a) (b)

Fig. 6.20 a Photoluminescence of CsPbX3 nanocrystals of halide perovskites with various anions (colloidal solutions
in toluene under UV lamp (λ = 365nm)). Adapted from [479]. b Position of conduction and valence band edges of
CsPbX3 halide perovskites (relative to vacuum level at zero). Adapted from [480]

Fig. 6.21 Band gaps as a function of the lattice constant for various elemental, III–V and II–VI semiconductors. The
lattice constant of wurtzite semiconductors has been recalculated for a cubic cell (a3cubic = √

3 a2 c)

For the same lattice constant, the band gap increases with increasing ionicity, i.e. IV–IV→
III–V→II–VI→I–VII. A typical example is the sequence Ge→ GaAs→ZnSe→ CuBr, for which all
materials have almost the same lattice constant, and thebandgaps increase 0.66eV→1.42eV→2.7eV→
2.91eV.
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Fig. 6.22 Kronig-Penney model (along 〈111〉, b/a = 3) for a a IV–IV semiconductor and b for a III–V (or II–VI)
semiconductor, c resulting band structure (P0 = −3). d denotes the lattice constant (d = b + a). Adapted from [481]

Fig. 6.23 Optical image of
two inch wafers of GaAs
(left), GaP (center) and
ZnO (right). A GaN wafer
would look like the ZnO
wafer

This behavior can be understood within the framework of a modified Kronig-Penney model [481]
(Appendix F). Double potential wells (b/a = 3) are chosen to mimic the diatomic planes along the
〈111〉 direction in the zincblende structure (Fig. 6.22a). The first investigation of such diatomic one-
dimensional bandstructure was reported in [482]. Symmetric wells (depth P0) are chosen to model
covalent semiconductors and asymmetric wells with depths P0 ± 
P to model partially ionic semi-
conductors. Results are shown in Fig. 6.22a for P0 = −3. With increasing asymmetry, i.e. increasing
ionicity, the band gap increases, mostly due to a downward shift of the valence band. The case of III–V
(II–VI) semiconductors is reached for 
P ≈ 2 (4). The calculation of effective masses in [481] is
incorrect and has been rectified in [483]; the effective mass increases monotonically with 
P .

In Fig. 6.23, the visual impression of 2" wafers of GaAs, GaP and GaN on white paper is shown.
GaAs (and GaSb) is opaque since the band gap is below the visible spectral range. GaP has a band
gap in the green and appears red, GaN has a band gap in the ultra-violet and thus appears transparent.
As can be seen from Table 6.3, the anion sequence Sb, As, P, and N leads to smaller lattice constant
and higher ionicity. A notable deviation from this rule is InN whose band gap (0.7eV) is much smaller
than that of InP [484].

6.5 Alloy Semiconductors

In alloy semiconductors [166], the size of the band gap and the character of the band gap will depend on
the composition. The dependence of the band gap on the ternary composition is mostly nonlinear and
can usually be expressed with a bowing parameter b that is mostly positive. For a compound AxB1−xC
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Table 6.3 Comparison of band gap, lattice constant and ionicity of gallium–group V semiconductors for various anions.
Lattice constant for GaN has been recalculated for a cubic cell

Anion Eg (eV) a0 (nm) fi

N 3.4 0.45 0.50

P 2.26 0.545 0.33

As 1.42 0.565 0.31

Sb 0.72 0.61 0.26

the band gap is written as

Eg(AxB1−xC) = Eg(BC) + x
[
Eg(AC) − Eg(BC)

] − b x (1 − x) . (6.30)

Even on the virtual crystal approximation (VCA) level (Sect. 3.7.3) a nonzero bowing parameter b
is predicted. However, a more thorough analysis shows that the bowing cannot be treated adequately
within VCA and is due to the combined effects of volume deformation of the band structure with
the alloy lattice constant, charge exchange in the alloy with respect to the binary end components, a
structural contribution due to the relaxation of the cation–anion bond lengths in the alloy and a small
contribution due to disorder [485]. The discussion of Sect. 6.12.3 is related.

The SixGe1−x alloy has diamond structure for all concentrations and the position of the conduction-
band minimum in k-space switches from L to X at about x = 0.15 (Fig. 6.24a). However, for all
concentrations the band structure is indirect. The InxGa1−xAs alloy has zincblende structure for all
compositions. The band gap is direct and decreases with a bowing parameter of b = 0.6eV [486]
(Fig. 6.24b). This means that for x = 0.5 the band gap is 0.15eV smaller than expected from a linear
interpolation between GaAs and InAs, as reported by various authors [487].

If one binary end component has a direct band structure and the other is indirect, a transition occurs
from direct to indirect at a certain composition. An example is AlxGa1−xAs where GaAs is direct and
AlAs is indirect. For all concentrations the crystal has zincblende structure. In Fig. 6.24c, the �, L and
X conduction-band minima for ternary AlxGa1−xAs are shown. Up to an aluminum concentration of
x = 0.4 the band structure is direct. Above this value the band structure is indirect with the conduction-
bandminimumbeing at theX-point. The particularity ofAlxGa1−xAs is that its lattice constant is almost
independent of x . For other alloys lattice match to GaAs or InP substrates is only obtained for specific
compositions, as shown in Fig. 6.25. The band gap bowing in the group-III–nitride system has been
discussed in [488].

If the two binary end components have different crystal structure, a phase transition occurs at a
certain composition (range). An example is MgxZn1−xO, where ZnO has wurtzite structure and MgO
has rocksalt structure. The band gap is shown in Fig. 6.24d. In this case, each phase has its own bowing
parameter.

All alloys of Fig. 6.24b–d have mixed cations. The band gap also varies upon anion substitution in
a similar way as shown in Fig. 6.26 for ternary alloys with the cation Zn and the chalcogenides S, Se,
Te and O.

6.6 Amorphous Semiconductors

Since the crystal lattice in an amorphous semiconductor is not periodic, the concept of k-space and
the related concepts such as band structure E(k) break down at least partially. The density of states,
however, remains a meaningful and useful quantity (Sect. 6.13.2).
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In a perfectly crystalline semiconductor the eigenenergies of the states in the bands are real. An
amorphous semiconductor can be modeled using a spectrum of complex energies [495]. In Fig. 6.27
the band structure of crystalline silicon is shown next to that calculated for amorphous silicon with
α = 0.05.

6.7 Temperature Dependence of the Band Gap

The band gap of a semiconductor typically decreases with increasing temperature. A direct visual
impression can be obtained from the same LED chain at room temperature and dipped into liquid
nitrogen (Fig. 6.28). Experimental data of band gap versus temperature are shown in Fig. 6.29 for bulk
Si and ZnO.

The reasons for the temperature variation of the band gap are the change of electron–phonon
interaction and the expansion of the lattice. The temperature coefficient may be written as

Fig. 6.24 a Band gap of
SixGe1−x alloy
(T = 296K) with a change
from the conduction-band
minimum at L (Ge-rich) to
X. The inset depicts the
transition energy of the
indirect (�–L) and direct
(�–�) absorption edge for
low Si content. Adapted
from [489]. b Band gap (at
room temperature) of
InxGa1−xAs. The solid line
is an interpolation with
bowing (b = 0.6eV) and
the dashed line is the linear
interpolation. Data from
[486]. c Band gap (at room
temperature) in the ternary
system AlxGa1−xAs. For
x < 0.4 the alloy is a
direct, for x > 0.4 an
indirect, semiconductor.
Edd denotes the energy
position of a deep donor
(cf. Sect. 7.7.6). Adapted
from [490]. d Band gap (at
room temperature) in the
ternary system
MgxZn1−xO. Data (from
spectroscopic ellipsometry
[491, 492]) are for
hexagonal wurtzite phase
(circles), and Mg-rich
cubic rocksalt phase
(squares). Dashed lines are
fits to data with a different
bowing parameter for each
phase
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Fig. 6.25 Band gap versus
lattice constant for
Gax In1−xP and Alx In1−xP
(lattice matched to GaAs)
as well as for InxAl1−xAs
and InxGa1−xAs alloys
(lattice matched to InP)

Fig. 6.26 Band gap of
various Zn-based alloys
with mixing in the anion
sublattice. The lines are fits
with (6.30), the bowing
parameter b is labeled.
Data for Zn(S,Se,Te) from
[493], for Zn(O,Se/Te)
from [494]

Fig. 6.27 a Calculated
band structure of
crystalline silicon. b
Calculated band structure
of amorphous silicon with
α = 0.05 (cf. (3.7)). The
solid lines denote the real
part of the energy, the
shaded areas denote the
regions with a width of
twice the imaginary part of
the energies centered
around the real part.
Adapted from [496]
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Fig. 6.28 LED chain with part at room temperature (left) and a part in a dewar filled with liquid nitrogen (right)
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Fig. 6.29 Temperature dependence of the band gap of a Si (data from [498]) and b ZnO (experimental data from
photoluminescence (triangles) and ellipsometry (circles)). The solid lines are fits with (6.34) and the parameters given
in Table 6.4

(
∂Eg

∂T

)
p

=
(

∂Eg

∂T

)
V

− α

β

(
∂Eg

∂p

)
T

, (6.31)

where α is the volume coefficient of thermal expansion and β is the volume compressibility. A rec-
ommendable discussion of the thermodynamic role of the band gap as chemical potential for the mass
action law (7.12), entropy contributions and its temperature dependence can be found in [497].

An anomaly is present for the lead salts (PbS, PbSe, PbTe) for which the temperature coefficient is
positive (Fig. 6.30a). Theoretical calculations [499] show that both terms in (6.31) are positive for the
lead salts. The L+

6 and L−
6 levels (see Fig. 6.12) shift as a function of temperature in such a way that

their separation increases (Fig. 6.30b).
Also in copper and silver halides [500, 501] (Fig. 6.31a) and chalcopyrites [502] (Fig. 6.31b) the

increase of band gap with increasing temperature has been found, sometimes only for a certain tem-
perature range. This effect is attributed to the p-d electron hybridization in the valence band with Cu
3d electrons and to even stronger effect with Ag 4d electrons.

For many semiconductors the temperature dependence can be described with the empirical, three-
parameter Varshni formula [503],
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Fig. 6.30 a Band gap versus temperature for PbS. b Theoretical position of L+
6 and L−

6 as a function of temperature for
PbTe. Adapted from [468]
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Fig. 6.31 a Band gap versus temperature for zincblende CuI1−xBrx alloys with various compositions x (including
binary CuI and CuBr) as labeled. Dashed lines are guide to the eye. Adapted from [500]. b Band gap vs. temperature
for chalcopyrite AgGaSe2. Solid line is fit with two-oscillator Bose-Einstein model. Adapted from [502]

Eg(T ) = Eg(0) − α T 2

T + β
, (6.32)

where Eg(0) is the band gap at zero temperature. A more precise and physically motivated formula
(based on a Bose-Einstein phonon model [504]) has been given in [505]

Eg(T ) = Eg(0) − αB �B

2

[
coth

(
�B

2T

)
− 1

]
= Eg(0) − αB �B

exp(�B/T ) − 1
, (6.33)

where αB is a coupling constant and k�B is a typical phonon energy; typical values are given in
Table 6.4. This model reaches a better description of the fairly flat dependence at low temperatures.

The more elaborate model of [506] takes into account a more variable phonon dispersion, including
optical phonons, and proposes the four-parameter formula

Eg(T ) = Eg(0) − α �

[
1 − 3
2

exp (2/γ ) − 1
+ 3
2

2

(
6
√
1 + β − 1

)]
(6.34)
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Table 6.4 Parameters for the temperature dependence of the band gap according to 6.33 (Si, GaAs: [505], GaN: [507],
ZnO: [508]) and (6.34) for various semiconductors

α � 
 αB �B

(10−4 eV/K) (K) (10−4 eV/K) (K)

Si 3.23 446 0.51 2.56 296

Ge 4.13 253 0.49

GaAs 4.77 252 0.43 5.16 310

GaN 6.14 586 0.40 4.05 370

InP 3.96 274 0.48

InAs 2.82 147 0.68

ZnSe 5.00 218 0.36

ZnO 3.8 659 0.54 5.9 616

Fig. 6.32 Band gap of
GaAs (at T = 10K) as a
function of the Ga isotope
content. Dashed line is
linear fit. Adapted
from [509]

β = π2

3 (1 + 
2)
γ 2 + 3
2 − 1

4
γ 3 + 8

3
γ 4 + γ 6

γ = 2 T/� ,

where α is the high-temperature limiting magnitude of the slope (of the order of several 10−4 eV/K),�
is an effective average phonon temperature and
 is related to the phonon dispersion.
 takes typically
values between zero (Bose-Einstein model) and 3/4 [506].

6.8 Isotope Dependence of the Band Gap

The band edge slightly depends on the isotope composition of semiconductor, as shown for GaAs in
Fig. 6.32. The effect is discussed in detail in [509].

6.9 Electron Dispersion

6.9.1 Equation of Electron Motion

The equation of motion for the electron in the band structure is no longer given by Netwon’s law
F = d(mv)/dt as in vacuum. Instead, the propagation of quantum-mechanical electron wave packets
has to be considered. Their group velocity is given by (vg = ∂ω/∂k)
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v = 1

�
∇kE(k) , (6.35)

where ∇k is the gradient with respect to k. Through the dispersion relation the influence of the crystal
and its periodic potential on the motion enters the equation.

An electric field E acts on an electron during the time δt the work δE = −eEvg δt . This change in
energy is related to a change in k via δE = dE/dk δk = �vg δk. Thus, we arrive at � dk/dt = −eE.
For an external force we thus have

�
dk
dt

= −eE = F . (6.36)

Thus, the crystal momentum p = �k takes the role of the momentum. A more rigorous derivation can
be found in [451].

In the presence of a magnetic field B the equation of motion is

�
dk
dt

= −e v × B = − e

�
(∇kE) × B . (6.37)

The motion in a magnetic field is thus perpendicular to the gradient of the energy, i.e. the energy of the
electron does not change. It oscillates therefore on a surface of constant energy perpendicular to B.

6.9.2 Effective Mass of Electrons

From the free-electron dispersion E = �
2k2/(2m) the mass of the particle is inversely proportional to

the curvature of the dispersion relation, i.e. m = �
2/(d2E/dk2). This relation will now be generalized

for arbitrary dispersion relations. The (inverse) tensor of the effective mass is defined as

(m∗−1)i j = 1

�2

∂2E

∂ki ∂k j
. (6.38)

The equation F = m∗ v̇ must be understood as a tensor equation, i.e. for the components of the force
Fi = m∗

i j a j . Force and acceleration must no longer be collinear. In order to find the acceleration from
the force, the inverse of the effective-mass tensor must be used, a = (m∗)−1 F.

In Fig. 6.33 the energy dispersion of the (lowest) conduction band in a typical semiconductor, the
related electron velocity and the effective mass are shown schematically.

In (6.22) the ratio of the effective mass and the free-electron mass is of the order of m∗/m ≈ U/λ,
the ratio of the free particle energy and the band gap. For typical semiconductors, the width of the
(valence) band is of the order of 20eV, and the gap is about 0.2–2eV. Thus, the effective mass is
expected to be 10–100 times smaller than the free-electron mass. Additionally, the relation m∗ ∝ Eg

is roughly fulfilled (Fig. 6.34).
From so-called k · p theory [510] (see Appendix H) the effective electron mass is predicted to be

related to the momentum matrix element pcv

pcv = 〈c|p|v〉 =
∫

�0

u∗
c,k(r)p uc, k(r) d

3r , (6.39)

with �0 being the unit cell volume and the Bloch functions |c〉 and |v〉 of the conduction and valence
band, respectively, given as
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Fig. 6.33 Schematic
diagram of the electron
dispersion E(k) in a
typical semiconductor
(blue) and corresponding
carrier velocity (∝ ∂E/∂k)
(red) and effective mass
(∝ 1/(∂2E/∂k2)) (green)

Fig. 6.34 Effective
electron mass (in units of
the free-electron mass m0)
as a function of the
(low-temperature) band
gap for several (direct band
gap) semiconductors. The
dashed line fulfills
m∗/m0 = Eg/20 eV

|c〉 = uc,kc(r) exp (i kcr) (6.40a)

|v〉 = uv,kv(r) exp (i kvr) . (6.40b)

Typically, the k-dependence of the matrix element is small and neglected. The momentum matrix ele-
mentwill also be important for optical transitions between the valence and conduction bands (Sect. 9.6).
Other related quantities that are often used are the energy parameter EP

EP = 2 |pcv|2
m0

, (6.41)

and the bulk momentum matrix element M2
b that is given by

M2
b = 1

3
|pcv|2 = m0

6
EP . (6.42)
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Fig. 6.35 Energy
isosurfaces in k-space in
the vicinity of the
conduction-band minima
for a GaAs with isotropic
(spehrical) minimum at
�-point, b ZnO with
anisotropic (ellipsoidal)
minimum at �-point
(anisotropy exaggerated), c
silicon with six equivalent
anisotropic minima
(ml/mt = 5 not to scale)
along 〈100〉 and d
germanium with eight
equivalent anisotropic
minima along 〈111〉. The
cube indicates the 〈100〉
directions for the cubic
materials. For the wurtzite
material (part b) the
vertical direction is along
[00.1]

(a) (b)

(c) (d)

The electron mass is given by4

m0

m∗
e

= 1 + EP

3

(
2

Eg
+ 1

Eg + 
0

)
(6.43)

= 1 + EP
Eg + 2
0/3

Eg
(
Eg + 
0

) ≈ 1 + EP

Eg + 
0/3
≈ EP

Eg
.

Comparison with the fit from Fig. 6.34 yields that EP is similar for all semiconductors [511] and of the
order of 20eV (InAs: 22.2eV, GaAs: 25.7eV, InP: 20.4eV, ZnSe: 23eV, CdS: 21eV).

In silicon there are six equivalent conduction-band minima. The surfaces of equal energy are
schematically shown in Fig. 6.35c. The ellipsoids are extended along the 〈100〉 direction because
the longitudinal mass (along the 
 path) is larger than the transverse mass in the two perpendicular
directions (Table 6.5). For example, the dispersion relation in the vicinity of one of the minima is given
as (k0x denotes the position of one of the conduction-band minima close to a X-point)

E(k) = �
2

(
(kx − k0x )

2

2m l
+ k2y + k2z

2m t

)
. (6.44)

For germanium surfaces of constant energy around the eight conduction-band minima in the 〈111〉
directions are depicted in Fig. 6.35d. The longitudinal and the transverse masses are again different.
For GaAs, the conduction-band dispersion around the � point is isotropic, thus the surface of constant
energy is simply a sphere (Fig. 6.35a). In wurtzite semiconductors the conduction-band minimum is at
the �-point. The mass along the c-axis is typically smaller than the mass within the (00.1) plane [512]

4
0 is the spin-orbit splitting discussed in Sect. 6.10.2.
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Table 6.5 Longitudinal direction of effective mass ellipsoid, longitudinal and transverse effective electron mass in
several semiconductors. For the density of states mass md,e see (6.72). Mass values in units of the free electron mass m0

Long. dir. ml mt ml/mt md,e Ref.

C 〈100〉 1.4 0.36 3.9 1.9 [514]

Si 〈100〉 0.98 0.19 5.16 1.08 [515]

Ge 〈111〉 1.59 0.082 19.4 0.88 [515]

ZnO [00.1] 0.21 0.25 0.88 [516]

CdS [00.1] 0.15 0.17 0.9 [517]

Fig. 6.36 Effective
electron mass from
cyclotron resonance
experiments (at T = 4K)
on a Si and b Ge for the
magnetic field in the (110)
plane and various
azimuthal directions θ .
Experimental data
(symbols) and fits (solid
lines) using (6.45) with a
ml = 0.98, mt = 0.19 and
b ml = 1.58, mt = 0.082.
Adapted from [515]

(a) (b)

(m l/m t ≈ 0.8 for ZnO [513]), see Fig. 6.35b. In [512] also an anisotropy within the (00.1) plane is
predicted.

The directional dependence of the mass can be measured with cyclotron resonance experiments
with varying direction of the magnetic field. In Fig. 6.36, the field B is in the (110) plane with different
azimuthal directions. When the (static) magnetic field makes an angle ϑ with the longitudinal axis of
the energy surface, the effective mass is given as [518]

1

m∗ =
√
cos2 ϑ

m2
t

+ sin2 ϑ

m t m l
. (6.45)

6.9.3 Nonparabolicity of Electron Mass

The dispersion around the conduction-band minimum is only parabolic for small k. The further away
the wavevector is from the extremum, the more the actual dispersion deviates from the ideal parabola
(see, e.g., Fig. 6.10). This effect is termed nonparabolicity. Typically, the energy increases less quickly
with k than in the parabolic model. This can be described in a so-called two-level model with the
dispersion relation
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�
2k2

2m∗
0

= E

(
1 + E

E∗
0

)
, (6.46)

where E∗
0 > 0 parameterizes the amount of nonparabolicity (a parabolic band corresponds to E∗

0 = ∞).
The nonparabolic dispersion for GaAs is shown in Fig. 6.37a. The curvature is reduced for larger k
and thus the effective mass is energy dependent and increases with the energy. Equation (6.46) leads
to the energy-dependent effective mass

m∗(E) = m∗
0

(
1 + 2E

E∗
0

)
, (6.47)

where m∗
0 denotes here the effective mass at k = 0. Theory and experimental data for the effective

electron mass of GaAs are shown in Fig. 6.37b.

6.10 Holes

6.10.1 Hole Concept

Holes are missing electrons in an otherwise filled band. A Schrödinger-type wave-equation for holes
(unoccupied electron states) was derived by Heisenberg [70] to interpret Hall effect data. The hole
concept is useful to describe the properties of charge carriers at the top of the valence band. The hole
is a new quasi-particle whose dispersion relation is schematically shown in Fig. 6.38 in relation to the
dispersion of electrons in the valence band.

The wavevector of the hole (filled circle in Fig. 6.38) is related to that of the ‘missing’ electron
(empty circle in Fig. 6.38) by kh = −ke. The energy is Eh(kh) = −Ee(ke), assuming that EV = 0,
otherwise Eh(kh) = −Ee(ke) + 2EV. The hole energy is larger for holes that are further away from
the top of the valence band, i.e. the lower the energy state of the missing electron. The velocity of the
hole, vh = �

−1 dEh/dkh, is the same, vh = ve, and the charge is positive, +e. The effective mass of the
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Fig. 6.37 a Dispersion relations for the conduction band of GaAs. The solid line is parabolic dispersion (constant
effective mass). The dashed (dash-dotted) line denotes the dispersion for k along [001] ([111]) from a five-level k · p
model (5LM). bCyclotron resonance effective mass of electrons in GaAs as a function of the Fermi level (upper abscissa)
and the corresponding electron concentration (lower abscissa). The dashed line is from a 2LM according to (6.47) with
E∗
0 = 1.52eV. The solid lines are for a 5LM for the three principal directions of the magnetic field. The symbols represent

experimental data from different sources. Data from [519]
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Fig. 6.38 Hole dispersion
dashed line in relation to
the electron dispersion in
the valence band (solid
line)

k

E

ke
kh

hole is positive at the top of the valence band, m∗
h = −m∗

e . Therefore, the drift velocities of an electron
and hole are opposite to each other. The resulting current, however, is the same.

6.10.2 Hole Dispersion Relation

The valence band at the �-point is 3-fold degenerate. The band developed from the atomic (bonding)
p states; the coupling of the spin s = 1/2 electrons with the orbital angular momentum l = 1 leads to
a total angular momentum j = 1/2 and j = 3/2. The latter states are degenerate at � in zincblende
bulk material and are called heavy holes (hh) for m j = ±3/2 and light holes (lh) for m j = ±1/2
due to their different dispersion (Fig. 6.39a). The two (m j = ±/2) states of the j = 1/2 state are
split-off from these states by an energy 
0 due to spin-orbit interaction and are called split-off (s-o)
holes. The spin-orbit interaction increases with increasing atomic order number Z of the anion since
the electrons are located preferentially there (Fig. 6.40). A detailed discussion of the spin-orbit splitting
in zincblende semiconductors is given in [520].

All three holes have different mass. In the vicinity of the �-point the dispersion for heavy and light
holes can be described with (+:hh, −:lh)

Fig. 6.39 a Simplified
band structure with
conduction band and three
valence bands and (b)
three-dimensional
visualization (E versus
(kx, ky)) of the valence
bands of Ge (including
warping). Part b from [521]

(a) (b)
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Fig. 6.40 Spin-orbit
splitting 
0 for elemental
(diamonds) and various
III–V and II–VI (circles)
semiconductors. The data
are plotted as empty (filled)
circles as a function of the
cation (anion) order
number. Obviously, 
0
correlates with the anion Z .
The dashed line is
proportional to Z2

Fig. 6.41 Dispersion at the
valence band edge of GaAs
for a, b heavy holes and
c,d light holes. a,c
Constant energy surfaces
and b,d isolines in the
(kx , ky)-plane (b and d
have different energy
scales)
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E(k) = A k2 ±
√
B2 k4 + C2

(
k2x k

2
y + k2y k

2
z + k2x k

2
z

)
. (6.48)

For heavy and light holes there is a dependence of the dispersion, i.e. the mass, in the (001) plane. This
effect, sketched in Fig. 6.39b, is called warping. The warping at the GaAs valence-band edge is shown
in Fig. 6.41. Equation (6.48) can also be expressed in terms of angular coordinates [522].

The s-o holes have the dispersion

E(k) = −
0 + A k2 . (6.49)
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Table 6.6 Valence-band parameters (for (6.48)) A and B in units of (�2/2m0), C2 in units of (�2/2m0)
2, and 
0 in eV.

From [164, 523, 524]

Material A B C2 
0

C −4.24 −1.64 9.5 0.006

Si −4.28 −0.68 24 0.044

Ge −13.38 −8.5 173 0.295

GaAs −6.9 −4.4 43 0.341

InP −5.15 −1.9 21 0.11

InAs −20.4 −16.6 167 0.38

ZnSe −2.75 −1.0 7.5 0.43

Values for A, B, C2 and 
0 for a number of semiconductors are given in Table 6.6. The valence-band
structure is often described with the Luttinger parameters γ1, γ2, and γ3 that can be represented through
A, B, and C via

�
2

2m0
γ1 = − A (6.50a)

�
2

2m0
γ2 = − B

2
(6.50b)

�
2

2m0
γ3 =

√
B2 + C2/3

2
. (6.50c)

The mass of holes in various directions can be derived from (6.48). The mass along the [001] direction,
i.e. �2/(∂2E(k)/∂k2x ) for ky = 0 and kz = 0, is

1

m100
hh

= 2

�2
(A + B) (6.51a)

1

m100
lh

= 2

�2
(A − B) . (6.51b)

The anisotropy of hole masses has been investigated with cyclotron resonance experiments (Fig. 6.42).
For θ being the angle between the magnetic field and the [001] direction, the effective heavy hole
(upper sign) and light hole (lower sign) mass in cubic semiconductors is given by [515]

m∗ = �
2

2

1

A ± √
B2 + C2/4

(6.52)

×
⎧⎨
⎩

C2 (1 − 3 cos2 θ)2

64
√
B2 + C2/4

[
A ± √

B2 + C2/4
] + . . .

⎫⎬
⎭ .

For C2 = 0 the hole bands are isotropic, as is obvious from (6.48). In this case γ2 = γ3, the so-called
spherical approximation. The average of the hole masses over all directions is

1

mav
hh

= 2

�2

(
A + B

[
1 + 2C2

15 B2

])
(6.53a)
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(a) (b)

Fig. 6.42 Effective hole masses from cyclotron resonance experiments (T = 4K) for heavy and light holes in a Si and
b Ge for the magnetic field in the (110) plane and various azimuthal directions θ . Experimental data (symbols) and fits
(solid lines) using (6.52). Adapted from [515]

(a) (b)

Fig. 6.43 Luttinger parameters for various III-V semiconductors versus their band gap. a Inverse values of γ1 (squares)
and γ2 (diamonds). Dashed lines are guides to the eye. b γ3 − γ2 versus band gap

1

mav
lh

= 2

�2

(
A − B

[
1 + 2C2

15 B2

])
. (6.53b)

Similar to the correlation of the electron mass with the band gap (Fig. 6.34), the Luttinger parameters
are correlated with the band gap as shown in Fig. 6.43. The parameters 1/γ1 and 1/γ2 increase about
linearly with Eg. The parameter γ3 − γ2, which is responsible for the valence band warping, decreases
with increasing band gap.
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6.10.3 Valence-Band Fine Structure

In Fig. 6.44, the schematic structure of the band edges for zincblende structure semiconductors is
shown. The s-o holes in the zincblende structure are split-off due to the spin-orbit interaction 
so, the
�8 band is degenerate (heavy and light holes). Degeneracies for the holes are removed in the wurtzite
and chalcopyrite structures by the additional crystal field splitting 
cf due to the anisotropy between
the a- and c-axes. Typically, e.g. for CdS, the topmost valence band in the wurtzite structure has �9

symmetry (allowed optical transitions only for E ⊥ c); an exception is ZnO for which the two upper
bands are believed to be reversed. In the chalcopyrite structure optical transitions involving the�6 band
are only allowed for E ⊥ c. The three hole bands are usually labeled A, B, and C from the top of the
valence band.

The energy positions of the three bands (with respect to the position of the �15 band) in the presence
of spin-orbit interaction and crystal field splitting are given within the quasi-cubic approximation
[525] by

E1 = 
so + 
cf

2
(6.54a)

E2,3 = ±
√(


so + 
cf

2

)2

− 2

3

so 
cf . (6.54b)

In chalcopyrites the crystal field splitting is typically negative (Fig. 6.45). It is approximately linearly
related to 1 − η (for η = c/2a see Sect. 3.4.6).

Fig. 6.44 Schematic band structure of zincblende and the valence-band splitting due to spin-orbit interaction 
so and
crystal field splitting
cf for chalcopyrites (typically
cf < 0, see Fig. 6.45) and wurtzites. For the wurtzites the situation
is schematically shown for CdS (
so = 67meV, 
cf = 27meV) (or GaN) and ZnO (
so = −8.7meV, 
cf = 41meV)
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Fig. 6.45 Crystal field
splitting 
cf for various
chalcopyrite compounds
versus the tetragonal
distortion
2 − c/a = 2 (1 − η).
Dash-dotted line represents

cf = 1.5 b (2 − c/a) for
b = 1eV. Data from [526]
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Fig. 6.46 Schematic band
structure of zincblende
with vanishing energy gap
for the ternary compounds
MnxHg1−xTe. Note the
linear dispersion for the
zero-gap case at x ≈ 0.07

6.11 Band Inversion

In certain compounds, typically mixing a semiconductor with a semimetal [527, 528], the band gap
can shrink to zero (zero-gap semiconductor) and even become negative in the sense that the s-type �6

symmetry (conduction) band is inverted below the �8 (p-type) valence-band edge. HgTe is a classical
example for such material as shown in Fig. 6.46, but similar effects are also present in other semicon-
ductors, for example various chalcopyrites [529]. Remember that such band structures are topologically
non-trivial (cf. Sect. 6.2.6).

For the zero-gap case, the dispersion of the two crossing bands is linear (like for graphene, cf.
Sect. 13.1.2). The dielectric function of zero-gap semiconductors is discussed in [530].

For theCdxHg1−xTe system, around the zero-gap concentration of x ≈ 0.16, the change fromnormal
to inverted band structure will occur also as a function of temperature [531] as shown in Fig. 6.47. Such
effect had been described already 50 years ago for (Pb,Sn)Te at the L-point (cf. Sect. 6.3.6) in [532].
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Fig. 6.47 Band gap of
CdxHg1−xTe for various
alloy compositions and
temperatures. On the right,
the schematic band
structure of (Hg,Cd)Te with
positive, zero and negative
band gap is shown.
Adapted from [531],
reprinted under a Creative
Commons Attribution (CC
BY 4.0) licence

6.12 Strain Effects on the Band Structure

Amechanical strain (or equivalently stress) causes changes in the bond lengths. Accordingly, the band
structure is affected. These effects have been exhaustively treated in [533, 534]. For small strain,
typically ε � 0.01 the shift of the band edges is linear with the strain, for large strain it becomes
nonlinear [535]. Often homogeneous strain is assumed, the effect of inhomogeneous strain is discussed
in [536].

6.12.1 Strain Effect on Band Edges

In a direct-gap zincblende material the position of the conduction-band edge is only affected by the
hydrostatic component of the strain

EC = E0
C + ac

(
εxx + εyy + εzz

) = E0
C + ac Tr(ε) , (6.55)

where ac < 0 is the conduction-band hydrostatic deformation potential and E0
C is the conduction-band

edge of the unstrained material. Similarly, the valence-band edge is

EV = E0
V + av Tr(ε) , (6.56)

where av > 0 is the valence-band hydrostatic deformation potential. Therefore the band gap
increases by


Eg = a Tr(ε) = a
(
εxx + εyy + εzz

)
, (6.57)

with a = aC − aV. Such linear behavior upon hydrostatic pressure has been found for many semicon-
ductors and is shown in Fig. 6.48a for Ga0.92In0.08As. The anomaly for N-doping is discussed below
in Sect. 6.12.3. In Fig. 6.49 the dependence of the direct and indirect gaps of GaAs is shown. The
dependence of the direct gap on pressure is non-linear, that on the density is linear [537].

Biaxial and shear strains affect the valence bands and lead to shifts and splitting of the heavy and
light holes at the �-point:

Ev,hh/lh = E0
v ± Eεε (6.58a)
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Fig. 6.48 a Dependence of the band gap of Ga0.92In0.08As alloy (squares) and nitrogen-doped (Ga,In)As on (compres-
sive) hydrostatic pressure, determined by photomodulated transmission at T = 295K. b Pressure dependence of band
gap for two (Ga,In)(As,N) samples together with model calculation (6.62). The coupling parameter is V = 0.12eV
(0.4eV) for a nitrogen content of 0.9% (2.3%). Adapted from [538]

Fig. 6.49 Dependence of the direct �V
15–�

C
1 and indirect �V

15–X
C
1 band gap of GaAs (T = 300K) on pressure. Solid

lines are interpolations of experimental data, dashed line is extrapolation to p = 0. The crossing of the direct and indirect
band gap occurs at 4.2GPa. The arrow denotes the pressure of the phase transition from zincblende to an orthorhomic
structure around 17GPa. Adapted from [537]

E2
εε = b2/2

[(
εxx − εyy

)2 + (
εyy − εzz

)2 + (εxx − εzz)
2
]

+ d2
[
ε2xy + ε2yz + ε2xz

]
,

where E0
v denotes the bulk valence-band edge. b and d are the optical deformation potentials. For

compressive strain the heavy-hole band is above the light-hole band. For tensile strain there is strong
mixing of the bands (Fig. 6.50). In Table 6.7 the deformation potentials for some III–V semiconductors
are listed. Typical values are in the eV regime.

In a wurtzite crystal, seven (or eight) deformation potentials are needed that are termed a (for the
change of band gap with hydrostatic strain, again a = aC − aV) and D1–D6 (for the valence band
structure) [539, 540].

In Si and Ge, three deformation potentials, termed a, b, d, are needed for the valence band and two
for each conduction band minimum,�u and�d [541]. The energy position of the i-th conduction-band
edge (with unit vector ai pointing to the valley) is
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Fig. 6.50 Schematic band
structure of GaAs in
unstrained state (center)
and under compressive and
tensile biaxial strain as
labeled. Dashed lines
indicate shift of band edges
due to hydrostatic part of
strain

electrons

k

unstrained

k

E

k

EE

unstrainedcompressive tensile

m=3/2j

m=1/2j m=3/2j

m=1/2j

m=1/2jm=3/2j

Table 6.7 Deformation potentials for some III–V semiconductors. All values in eV

Material a b d

GaAs −9.8 −1.7 −4.6

InAs −6.0 −1.8 −3.6

Table 6.8 Deformation potentials for silicon and germanium. All values in eV from [542]

material �
(
)
d �

(
)
u �

(L)
d �

(L)
u a b d

Si 1.1 10.5 −7.0 18.0 2.1 −2.33 −4.75

Ge 4.5 9.75 −4.43 16.8 2.0 −2.16 −6.06

EC,i = E0
C,i + �d Tr(ε) + �u ai ε ai , (6.59)

where E0
C,i denotes the energy of the unstrained conduction-band edge. The deformation potentials for

Si and Ge are given in Table 6.8.

6.12.2 Strain Effect on Effective Masses

In the presence of strain the band edges are shifted (cf. Sect. 6.12). Since the electron mass is related
to the band gap, it is expected that the mass will also be effected. In the presence of hydrostatic strain
εH the electron mass is [543] (cf. to (6.43) for εH → 0)

m0

m∗
e

= 1 + EP

Eg + 
0/3

[
1 − εH

(
2 + 3a

Eg + 
0/3

)]
, (6.60)

with a being the hydrostatic deformation potential and εH = Tr(ε). In [543], formulas are also given for
biaxial and shear strain and also for hole masses. Since the effective mass enters the mobility, the elec-
trical conductivity depends on the stress state of the semiconductor (piezoresistivity, see Sect. 8.3.14).
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Fig. 6.51 Bandgap of
GaAs1−xNx , experimental
data from various sources
(symbols) and model
(curve) according to (6.62)
with V = V0

√
x for

V0 = 2.7eV. Adapted
from [545]
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6.12.3 Interaction With a Localized Level

The normal dependence of the band gap on hydrostatic pressure is linear and given by (6.57). (Ga,In)As
containing nitrogen exhibits a remarkable deviation from this behavior as shown in Fig. 6.48a. This
is due to the interaction of the continuum states of the conduction band with the electron level of
the isoelectronic nitrogen impurity (Sect. 7.7.9) EN, being within the conduction band. For GaAs it
is 0.2 eV above the conduction band edge EC. This phenomenon has been investigated theoretically
within microscopic detail [544]. Within a simple ‘band anticrossing’ two-level model, the coupling
of the pressure-dependent conduction band edge EC and the nitrogen level can be obtained from the
Eigenwert equation ∣∣∣∣ E − EC V

V E − EN

∣∣∣∣ = 0 , (6.61)

V being the coupling constant. The determinant vanishes for

E± = 1

2

(
EC + EN ±

√
(EC − EN)2 + 4V 2

)
. (6.62)

Here the weak pressure dependence of EN is neglected for simplicity. This model can explain the
pressure dependence of the band gap of (Ga,In)As:N fairly well [538] (Fig. 6.48b). The coupling
parameter V is in the order of a few 0.1eV for small nitrogen content. In photomodulated reflection
also the E+ levels can be observed [545]. The anti-crossing model can also model the dependence of
the GaAs1−xNx bandgap on the nitrogen concentration [545] (Fig. 6.51).

6.13 Density of States

6.13.1 General Band Structure

The dispersion relation yields how the energy of a (quasi-) particle depends on the k vector. Now we
want to know how many states are at a given energy. This quantity is called the density of states (DOS)
and is written as D(E). It is defined in an infinitesimal sense such that the number of states between
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E and E + δE is D(E)δE . In the vicinity of the extrema of the band structure many states are at the
same energy such that the density of states is high.

The dispersion relation of a band will be given as E = E(k). If several bands overlap, the densities
of state of all bands need to be summed up. The density of states at the energy Ẽ for the given band is

D(Ẽ) dE = 2
∫

d3k
(2π/L)3

δ(Ẽ − E(k)) , (6.63)

where, according to (5.5), (2π/L)3 is the k-space volume for one state. The factor 2 is for spin
degeneracy. The integral runs over the entire k-space and selects only those states that are at Ẽ .
The volume integral can be converted to a surface integral over the isoenergy surface S(Ẽ) with
E(k) = Ẽ . The volume element d3k is written as d2S dk⊥. The vector dk⊥ is perpendicular to S(Ẽ)

and proportional to ∇kE(k), i.e. dE = |∇kE(k)| dk⊥.

D(Ẽ) = 2
∫
S(Ẽ)

d2S

(2π/L)3

1

|∇kE(k)| . (6.64)

In this equation, the dispersion relation is explicitly contained. At band extrema the gradient diverges,
however, in three dimensions the singularities are integrable and the density of states takes a finite
value. The corresponding peak is named a van-Hove singularity. The concept of the density of states
is valid for all possible dispersion relations, e.g. for electrons, phonons or photons.

The density of states for the silicon band structure (see Fig. 6.9a) is shown in Fig. 6.52.

6.13.2 Amorphous Semiconductors

If disorder is introduced, the density of states is modified as shown in Fig. 6.53 for amorphous germa-
nium using a calculation with complex eigenenergies. The defects, as compared to the perfect lattice,
introduced states in the band gap and generally wash out the sharp features from the crystalline DOS.

Several models exist for the defect level distributions within the band gap. The first model was
the Mott model which has band tails at the valence and conduction band edges [547]. In the Cohen-
Fritzsche-Ovshinsky (CFO) model [548], the band tails are more severe and overlap; the Fermi energy
lies at the minimum of the density of states. In the Davis–Mott model [549] deep states were added in
the gap and eventually the Marshall-Owen model [550] assumes band tails and donor- and acceptor-
like deep states. The four models are schematically shown in Fig. 6.54. These model densities of states
allow also the interpretation of carrier transport in amorphous semiconductors, taking into account
localized and delocalized states (see Sect. 8.9).

The density of states for an amorphous semiconductor is best calculated from atomistic models,
possibly averaging over many configurations. The typical features, compared to the clear band gap of
a similar ordered material, are band tails due to disorder (cmp. Sect. 5.2.9) and deep levels within the
gap due to specific atomic arrangements not present in ordered bulk. The most investigated system is
amorphous silicon; in Fig. 6.55 a numerical calculation of the density of states is shown together with
charge distribution of four states at selected energies [551]. The further the states are in the band tail,
the stronger their localization is. The two most right states shown in Fig. 6.55 are not conducting.

As another example, simulations of ZnSnO3 are shown in Fig. 6.56. The band tail between 0 and
0.5eV is due to disorder of oxygen 2p orbitals [552]. At 0.9eV a level due to under-coordinated oxygen
appears. Deep levels are due to metal-metal bonds. Band tails due to chemically disordered oxygen
have been experimentally observed for amorphous GIZO [553].
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Fig. 6.52 Density of states
in the silicon valence-
(blue) and conduction-band
(red) as obtained from
theoretical calculation
using empirical
pseudopotentials. Grey
regions denotes the band
gap. Critical points (cf.
Fig. 6.9a) are labeled. In
the lower three graphs, the
DOS is decomposed into
contributions from different
angular momentum states
(s (green), p (orange) and d
(purple)). Top part adapted
from [546], bottom part
adapted from [175]

6.13.3 Free-Electron Gas

In M dimensions, the energy states of a free-electron gas are given as

Fig. 6.53 Theoretical
calculation for the density
of states of amorphous Ge
models as obtained for
various degrees of disorder
α (3.7). α = 0.09
corresponds to a mean
short-range order distance
of about 2.4 lattice
constants (cmp. Fig. 3.14b).
Adapted from [204]
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Fig. 6.54 Model density
of states in amorphous
semiconductors (solid
lines) according to Mott
[547], Cohen-Fritzsche-
Ovshinsky [548],
Davis–Mott [549] and
Marshall–Owen [550].
Dashed lines represent the
DOS of the same material
without disorder
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Fig. 6.55 Theoretical calculation of the density of electronic states of amorphous silicon. The charge distribution in four
selected states at the indicated energies is shown, from right to left with decreasing localization. Adapted from [551]

E(k) = �
2

2m∗

M∑
i=1

k2i . (6.65)

The ki can take the values±πn/L (in the first Brillouin zone) with n ≤ N , N being the number of unit
cells in one dimension. These values are equidistant in k-space. Each M-dimensional k-point takes a
volume of (2π/L)M . The number of states N (EF) up to the energy EF = �

2

2m k
2
F (later used as Fermi

energy EF and Fermi vector kF) is

N (EF) = 2

(2π/L)M

∫ |k|=kF

k=0
dMk . (6.66)



6.13 Density of States 177

Fig. 6.56 Theoretical
calculation for the density
of states of crystalline
(dashed lines, conduction
and valence bands
indicated by greay areas)
and amorphous ZnSnO3
with different
configurations (solid lines).
States due to
under-coordinated oxygen
(Ouc) and metal-metal
bonds are labelled.
Adapted from [552]
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The factor 2 is for spin degeneracy, the integration runs over M dimensions. The density of states is
the derivative

D(E) = dN

dE
. (6.67)

In the following, the density of states for M = 3, 2, 1 and zero dimensions is derived. A visualization
is given in Fig. 14.1.

6.13.3.1 M = 3

This case relates to bulkmaterial inwhich electrons are free tomove in all three dimensions. Performing
the integral (6.66) for M = 3 yields for an isotropic mass,

N 3D = V

3π2
k3F = V

3π2

(
2m EF

�2

)3/2

. (6.68)

Therefore, kF and EF are given by

kF =
(
3π2 N

V

)1/3

(6.69)

EF = �
2

2m∗

(
3π2 N

V

)2/3

, (6.70)

and the density of states in three dimensions is

D3D(E) = V

2π2

(
2m∗

�2

)3/2 √
E . (6.71)

Mostly the density of states is used as density of states per volume, then the factor V in (6.71) is
omitted.

If a conduction-band minimum is degenerate, a factor gv (valley degeneracy) must be included in
the density of states, i.e. gv = 6 for Si and gv = 8 for Ge (gv = 1 for GaAs). This factor is typically
included in the mass used in (6.71) that then becomes the density of states massmd,e. If the conduction-
band minimum has cylindrical symmetry in k-space, such as for Si and Ge, the mass that has to be



178 6 Band Structure

used is
md,e = g2/3v

(
m2

t m l
)1/3

. (6.72)

In the case of a degeneracy of the valence band, the states of several bands need to be summed. In bulk
material, typically the heavy and light hole bands are degenerate at the �-point. If the split-off band is
not populated because of insufficient temperature, the valence-band edge density of states is expressed
by the density of states hole mass

md,h =
(
m3/2

hh + m3/2
lh

)2/3
. (6.73)

The density of states (per volume) at the conduction and valence band edges are thus given by

D3D
e (E) = 1

2π2

(
2md,e

�2

)3/2 √
E − EC , E > EC (6.74)

D3D
h (E) = 1

2π2

(
2md,h

�2

)3/2 √
EV − E , E < EV . (6.75)

6.13.3.2 M = 2

This case is important for thin layers in which the electron motion is confined in one direction and free
in a plane. Such structures are called quantum wells (see Sect. 12.3.2). We find for the 2D density of
states (for each subband over which it is not summed here, including spin degeneracy)

N 2D = A

2π
k2F = A

π

m∗

�2
E , (6.76)

where A is the area of the layer. The density of states is thus constant and given by

D2D(E) = A

π

m∗

�2
. (6.77)

6.13.3.3 M = 1

The case M = 1 describes a quantum wire in which the electron motion is confined in two dimensions
and free in only one dimension. For this case, we find for a wire of length L

N 1D = 2L

π
kF = 2L

π

(
2m∗E

�2

)1/2

. (6.78)

The density of states becomes singular at E = 0 and is given by (for one subband)

D1D(E) = L

π

(
2m∗

�2

)1/2 1√
E

. (6.79)

6.13.3.4 M = 0

In this case electrons have no degrees of freedom, as, e.g., in a quantum dot (Sect. 14.4), and each state
has a δ-like density of states at each of the quantized levels.



Chapter 7
Electronic Defect States

Über Halbleiter sollte man nicht arbeiten, das ist eine Schweinerei, wer weiß ob es
überhaupt Halbleiter gibt.
One should not work on semiconductors. They are a mess. Who knows whether
semiconductors even exist.

W. Pauli, 1931[554]

Abstract After the carrier statistics for intrinsic conduction and general doping principles, donors
and acceptors, compensation and high doping effects are treated in detail. The concept of quasi-Fermi
levels is introduced. Finally for deep levels and their thermodynamics general remarks and several
examples are given.

7.1 Introduction

One cm3 of a semiconductor contains about 5 × 1022 atoms. It is practically impossible to achieve
perfect purity. Typical low concentrations of impurity atoms are in the 1012 − 1013 cm−3 regime. Such
a concentration corresponds to a purity of 10−10, corresponding to about one alien in the world’s
human population. In the beginning of semiconductor research the semiconductors were so impure
that the actual semiconducting properties could only be used inefficiently. Nowadays, thanks to large
improvements in high-purity chemistry, the most common semiconductors, in particular silicon, can be
made so pure that the residual impurity concentration plays no role in the physical properties. However,
the most important technological step for semiconductors is doping, the controlled incorporation of
impurities, in order to manage the semiconductor’s conductivity. Typical impurity concentrations used
in doping are 1015 − 1020 cm−3. A milestone in the understanding of doping and the spreading of
semiconductor technology was the 1950 textbook by Shockley [555].

7.2 Carrier Concentration

Generally, the density of electrons in the conduction band is given by

n =
∞∫

EC

De(E) fe(E) dE , (7.1)
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and accordingly the density of holes in the valence band is

p =
EV∫

−∞
Dh(E) fh(E) dE . (7.2)

The energy of the top of the valence band is denoted by EV, the bottom of the conduction band as
EC. We assume here parabolic band edges, i.e. effective masses mh and me for holes and electrons,
respectively. The density of states (per volume) in the conduction band De and valence bands Dh is
given by (6.74) and (6.75).

The statistical distribution function for electrons is denoted by fe is given in thermodynamical
equilibrium by the Fermi-Dirac distribution, (E.22),

fe(E) = 1

exp
( E−EF

kT

) + 1
. (7.3)

The distribution function for holes is fh = 1 − fe,

fh(E) = 1 − 1

exp
( E−EF

kT

) + 1
= 1

exp
(− E−EF

kT

) + 1
. (7.4)

If several hole bands (hh, lh, so) are considered, the same distribution is valid for all hole bands in
thermal equilibrium.

If the Boltzmann distribution (E.23) is a good approximation, the carrier distribution is called
nondegenerate. If the Fermi-Dirac distribution needs to be invoked, the carrier ensemble is called
degenerate. If the Fermi level is within the band, the ensemble is highly degenerate.

If the Boltzmann approximation (E.23) cannot be applied, i.e. at high temperatures or for very small
band gaps, the integral over Df cannot be analytically evaluated. In this case the Fermi integral is
needed that is defined1 as

Fn(x) = 2√
π

∞∫

0

yn

1 + exp(y − x)
dy . (7.5)

In the present case of bulk materials n = 1/2. For large negative argument, i.e. x < 0 and |x | � 1,
F1/2(x) ≈ exp(x), which is the Boltzmann approximation. F1/2(0) = 0.765 . . . ≈ 3/4. For large
argument, i.e. x � 1, F1/2(x) ≈ (2/

√
π)(2/3)x3/2. Such fairly simple approximations are plotted in

Fig. 7.1 in comparison with the Fermi integral. For computations, analytical [556–559] or numerical
approximations [560, 561] are used.

The derivative of the Fermi integral is given by F ′
n(x) = nFn−1(x), n > 0. For n = 0, i.e. a

two-dimensional system, the integral can be executed explicitly, F0(x) = (2/
√

π) ln[1 + exp(x)].
With the Fermi integral F1/2 (7.10) and (7.11) the free-carrier densities can be written as

n = NC F1/2

(
EF − EC

kT

)
(7.6)

p = NV F1/2

(
− EF − EV

kT

)
, (7.7)

1Equation (7.5) is restricted to n > −1. A form without restriction is Fn(x) = 1
�(n+1)

∫ ∞
0

yn

1+exp(y−x)dy. The factor

2/
√

π is often omitted but must be then added explicitly in, e.g., (7.6).
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(a) (b)

Fig. 7.1 Fermi integral F̂1/2 = (
√

π/2)F1/2 with approximations in three regions of the argument: A1(x) =
(
√

π/2) exp(x) for x < 2, A2(x) = (
√

π/2)(1/4 + exp(−x))−1 for −2 < x < 2, A3(x) = 2/3x3/2 for x > 2.
a linear, b semilogarithmic plot

Table 7.1 Band gap, intrinsic carrier concentration, conduction band and valence-band edge density of states at T =
300K for various semiconductors

Eg (eV) ni (cm−3) NC (cm−3) NV (cm−3)

InSb 0.18 1.6 × 1016

InAs 0.36 8.6 × 1014

Ge 0.67 2.4 × 1013 1.04 × 1019 6.0 × 1018

Si 1.124 1.0 × 1010 7.28 × 1019 1.05 × 1019

GaAs 1.43 1.8 × 106 4.35 × 1017 5.33 × 1018

GaP 2.26 2.7 × 100

GaN 3.3 �1

with

NC = 2

(
me kT

2π �2

)3/2

(7.8)

NV = 2

(
mh kT

2π �2

)3/2

, (7.9)

where NC (NV) is called the conduction-band (valence-band) edge density of states. The masses in
(7.8) and (7.9) are the density of states masses given in (6.72) and (6.73). Values of NC,V for Si, Ge
and GaAs are given in Table 7.1.

Now, we assume that the Boltzmann approximation (E.23) can be used, i.e. the probability that a
band state is populated is�1. Then, the integral (7.1) can be executed analytically and the concentration
n of electrons in the conduction band is given as

n = 2

(
mekT

2π�2

)3/2

exp

(
EF − EC

kT

)
= NC exp

(
EF − EC

kT

)
. (7.10)

For the Boltzmann approximation and a parabolic valence band, the density of holes is given by

p = 2

(
mhkT

2π�2

)3/2

exp

(
− EF − EV

kT

)
= NV exp

(
− EF − EV

kT

)
. (7.11)
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(a) (b)

Fig. 7.2 a np for silicon at T = 300K as a function of the position of the Fermi level. The valence-band edge EV is
chosen as E = 0. np is constant for the range of Fermi energies given by (7.13) (4kT ≈ 0.1eV). b n, p and

√
np as a

function of the Fermi level

Within the Boltzmann approximation, the product of the electron and hole density is

n p = NV NC exp

(
− EC − EV

kT

)
= NV NC exp

(
− Eg

kT

)
(7.12)

= 4

(
kT

2π�2

)3

(md,e md,h)
3/2 exp

(
− Eg

kT

)
.

Thus, the product n p is independent of the position of the Fermi level, as long as the Boltzmann
approximation is fulfilled. This is the case when the Fermi level lies within the band gap and it is
sufficiently far away from the band edges, fulfilling about

EV + 4 kT < EF < EC − 4 kT . (7.13)

The relation (7.12) is called the mass-action law.
In Fig. 7.2, the product np is shown for silicon over a wide range of Fermi energies. If EF is within

the band gap, np is essentially constant. If the Fermi level is in the valence or conduction band, np
decreases exponentially.

7.3 Intrinsic Conduction

First, we consider the conductivity of the intrinsic, i.e. an ideally pure, semiconductor. At T = 0 all
electrons are in the valence band, the conduction band is empty and thus the conductivity is zero (a
completely filled band cannot conduct current). Only at finite temperatures the electrons have a finite
probability to be in a conduction-band state and to contribute to the conductivity. Due to neutrality, the
electron and hole concentrations in the intrinsic semiconductors are the same, i.e. each electron in the
conduction band comes from the valence band,

− n + p = 0 , (7.14)

or ni = pi. Therefore
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(a) (b)

Fig. 7.3 a Band gap of silicon versus temperature. b Intrinsic carrier concentration of silicon versus temperature. Solid
line is (7.17) using Eg = 1.204 eV − (2.73 × 10−4 eV/K) T [564], symbols are experimental data from [565]

ni = pi = √
NV NC exp

(
− Eg

2kT

)
(7.15)

= 2

(
kT

2π�2

)3/2

(memh)
3/4 exp

(
− Eg

2kT

)
.

The mass-action law
n p = ni pi = n2i = p2i (7.16)

will be essential also for light andmoderately doped semiconductors. The intrinsic carrier concentration
is exponentially dependent on the band gap. Thus, in thermodynamic equilibrium intrinsic wide-gap
semiconductors have much smaller electron concentrations than intrinsic small-gap semiconductors
(see Table 7.1). The intrinsic carrier concentration of Si (in cm−3) has been determined to be (within
1%, T in K)

nSii = 1.640 × 1015 T 1.706 exp

(
− Eg(T )

2kT

)
(7.17)

for temperatures between 77 and 400K [562, 563] (Fig. 7.3).
As we will see later in Part II, many semiconductor devices rely on regions of low conductivity

(depletion layers) in which the carrier concentration is small. Since the carrier concentration cannot be
smaller than the intrinsic concentration (n + p ≥ 2ni), an increase of temperature leads to increasing
ohmic conduction in the depletion layers and thus to a reduction or failure of device performance. The
small band gap of Ge leads to degradation of bipolar device performance already shortly above room
temperature. For silicon, intrinsic conduction limits operation typically to temperatures below about
300 ◦C. For higher temperatures, as required for devices in harsh environments, such as close to motors
or turbines, other semiconductors with wider band gaps need to be used, such as GaN, SiC or even
diamond.

From the neutrality condition for the intrinsic semiconductor (7.14) and (7.10) and (7.11), the Fermi
level of the intrinsic semiconductor can be determined as

EF = Ei = EV + EC

2
+ kT

2
ln

(
NV

NC

)
= EV + EC

2
+ 3

4
kT ln

(
mh

me

)
. (7.18)

Since the hole mass is perhaps a factor of ten larger than the electron mass, the second term has the
order of kT . Thus, for typical semiconductors where Eg � kT , the intrinsic Fermi level, denoted by
Ei, is close to the middle of the band gap, i.e. Ei ≈ (EC + EV)/2.
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Fig. 7.4 Density of states
(left column), Fermi
distribution (center
column) and carrier
concentration (right
column) for a n-type, b
intrinsic and c p-type
semiconductors in thermal
equilibrium
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The situation for an intrinsic semiconductor is schematically shown in Fig. 7.4b. In the following we
will consider dopingwhich can shift theFermi level away from Ei.Within theBoltzmannapproximation
(also ni = pi),

n = ni exp

(
EF − Ei

kT

)
(7.19)

p = pi exp

(
− EF − Ei

kT

)
. (7.20)

7.4 Doping

7.4.1 Concept

The modification of the conductivity of a semiconductor using point defects is termed doping. In
1930 electrical conduction of semiconductors was attributed solely to impurities [566, 567]. However
‘chemically pure’ substances become conductive upon deviation from stoichiometry, e.g. historically
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Fig. 7.5 Comparison of
ZnO, NiO and MgO on a
common energy scale,
comparing conduction
band and valence band
edges and n-type (red) and
p-type (blue) pinning
energies (determined for
metal-rich and oxygen-rich
conditions, respectively).
Adapted from [571]

ZnO NiO MgO

E-
E V

found for changes in the anion concentration and conductivity in CuI [38] (p-type) and ZnO [80] (n-
type). The modification of CuI by exposure to different partial pressure of iodine in organic solutions
with different iodine concentration [41] and subsequently various concentrations of copper vacancies
[568] can be considered the first doping of a semiconductor (1909).

The electronic levels of a defect or an impurity can exist within the forbidden gap of the bulk host
material. These levels can lie close to the band edges or in the vicinity of the middle of the band gap.
In a simplified approach, the first stem from shallow defects (Sect. 7.5), the latter from deep defects
(Sect. 7.7).

7.4.2 Doping Principles

In [569] various doping principles are formulated. Essentially, the amount of impurities that lead to
electrically active dopants is limited by the increasingly probable formation of compensating defects.
In the case of donors, these are electron killers, e.g. n-type doping of Si:As is limited by the formation
of VSi [570]. In the case of acceptors, the compensating defects are hole killers. The so-called n-type
pinning energy En,pin

F is the Fermi level at which such killer defect (e.g. a cation vacancy) forms. When
the Fermi level reaches the pinning energy, no further progress in n-type doping can be made, since the
spontaneously generated electron killers will negate the introduced (impurity) donors. As a tendency,
materials with low lying conduction band, i.e. large electron affinity (difference between vacuum level
and conduction band) can be doped n-type. Similarly, p-type doping by acceptors, shifting the Fermi
level towards the valence band, will meet at some point Ep,pin

F , called p-type pinning energy, when
native hole killers, such as anion vacancies or cation interstitials form spontaneously. At this point,
further p-type doping is no longer possible. p-type doping is facilitated by materials whose valance
band maximum is close to the vacuum level [569].

A comparison of the wide gap materials ZnO, NiO and MgO is depicted in Fig. 7.5. The position of
the pinning levels ismarked on a common energy scale. From the position of En,pin

F it can be understood,
that ZnO can be highly n-doped while NiO and MgO cannot [571]. From Ep,pin

F , NiO can be doped
p-type, while MgO cannot be doped at all.

For dopability, generally, it is also important that the ionized charges from impurities are free and
thus contribute to the free charge carrier density and do not form localized states, e.g. due to polaronic
effects (Sect. 8.7).
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(a)

(b)

(c)

Fig. 7.6 Energetic position (ionization energy labeled in meV) of various impurities (A: acceptor, D: donor) in a Ge, b
Si and c GaAs. Based on [574]

7.5 Shallow Defects

In Fig. 7.6, the positions of the energy levels of a variety of impurities are shown for Ge, Si and GaAs.
An impurity for which the long-range Coulomb part of the ion-core potential determines the energetic
level is termed a shallow impurity. The extension of the wavefunction is given by the Bohr radius.
This situation is in contrast to a deep level where the short-range part of the potential determines the
energy level. The extension of the wavefunction is then of the order of the lattice constant. A view on
the history of the science of shallow impurity states is given in [572, 573].

We will consider first a group-IV semiconductor, Si, and (impurities) dopants from the groups III
and V of the periodic system. When these are incorporated on a lattice site (with tetrahedral bonds),
there is one electron too few (group III, e.g. B) or one electron too many (group V, e.g. As). The first
case is called an acceptor, the latter a donor. The doping of III–V semiconductors is detailed in [575].
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Fig. 7.7 Arsenic impurity
in silicon. Arsenic donates
one electron, and a fixed
positive charge remains

Si

Si Si

As

Si

Si

Si

Si

7.5.1 Donors

Silicon doped with arsenic is denoted as Si:As. The situation is schematically shown in Fig. 7.7. The
arsenic atom has, after satisfying the tetrahedral bonds, an extra electron. This electron is bound to
the arsenic atom via the Coulomb interaction since the ion core is positively charged compared to the
silicon cores. If the electron is ionized, a fixed positive charge remains at the As site.

Without being in the silicon matrix, an arsenic atom has an ionization energy of 9.81eV. However,
in the solid the Coulomb interaction is screened by the dielectric constant of the material, typically εr is
of the order of 10 for typical semiconductors. Additionally, the mass is renormalized (effective mass)
by the periodic potential to a value that is smaller than the free electron mass. Within effective-mass
theory (Appendix I) the hydrogen problem is scaled with the (isotropic) effective mass m∗

e and the
dielectric constant εr, the binding energy (ionization energy) Eb

D of the electron to the shallow donor
is (relative to the continuum given by the conduction-band edge EC)

Eb
D = m∗

e

m0

1

ε2r

m0 e4

2 (4πε0 �)2
. (7.21)

The scaling with 1/ε2 has been pointed out first in [576].
The absolute energy position of the level is ED = EC−Eb

D. The first factor in the right side of (7.21)
is the ratio of effective and free-electron mass, typically 1/10, the second factor is typically 1/100. The
third factor is the ionization energy of the hydrogen atom, i.e. the Rydberg energy of 13.6eV. Thus,
the binding energy in the solid is drastically reduced by a factor of about 10−3 to the 10meV regime.
The excited states of the hydrogen-like spectrum can also be investigated experimentally (Sect. 9.8).

The extension of the wavefunction of the electron bound to the fixed ion is given by the Bohr radius

aD = m0

m∗
e

εr aB , (7.22)

where aB = 0.053nm denotes the hydrogen Bohr radius. For GaAs aD = 10.3nm. A similar value has
been determined for InP [577]. For semiconductors with a nonisotropic band minimum, such as Si, Ge
or GaP, an ‘elliptically deformed’ hydrogen problem with the massesml andm t has to be treated [578].

An impurity that fulfills (7.21) is called an effective-mass impurity. For GaAs, the effective-mass
donor has a binding energy of 5.715meV, which is closely fulfilled for several chemical species
(Table 7.3). In GaP, experimental values deviate considerably from the effective-mass donor (59meV).
For silicon, considering the anisotropic tensor of the effective masses, the result for the effective-
mass donor binding energy is 29meV [578]. Some experimentally observed values are summarized
in Table 7.2. Deviations from the effective-mass theory are due to modification of the potential in the
immediate vicinity of the impurity atom and breakdown of the effective-mass formalism.

Different impurities can have quite similar binding energies. They can be distinguished, e.g., by
electron spin resonance (ESR). At low temperatures the electron is localized on the impurity and the
hyperfine interaction with the nucleus can be resolved in ESR. In Fig. 7.8 data are shown for As and P
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Fig. 7.8 Electron spin
resonance signal from As
and P in Ge with the
magnetic field H parallel to
[100], T ≈ 1.3K. Adapted
from [579]

Table 7.2 Binding energies Eb
D of Li and group-V donors in elemental semiconductors. Data for carbon from [580].

All values in meV

Li N P As Sb

C 1700 ≈500

Si 33 45 49 39

Ge 9.3 12.0 12.7 9.6

Table 7.3 Binding energies Eb
D of donors in GaAs (data from [581]), GaP (data from [582]) and GaN (low concentration

limits, data from [583, 584]). All values in meV

V site III site

GaAs S 5.854 C 5.913

Se 5.816 Si 5.801

Te 5.786 Ge 5.937

GaP O 897 Si 85

S 107 Ge 204

Se 105 Sn 72

Te 93

GaN O 39 Si 22

Ge 19

in germanium. The multiplets distinguish the nuclear spins I = 3/2 for arsenic (75As) and I = 1/2
for phosphorus (31P) [579].

The donors are typically distributed statistically (randomly) in the solid. Otherwise their distribution
is called clustered. The concentration of donors is labeled ND and usually given in cm−3.

The concentration of donors populated with an electron (neutral donors) is denoted by N 0
D, the

concentration of ionized donors (positively charged) is N+
D . Other conventions in the literature label

the concentrations N1 and N0, respectively:

N1 = N 0
D = ND fe(ED) (7.23a)

N0 = N+
D = ND (1 − fe(ED)) , (7.23b)

with fe(ED) = [1 + exp(ED − EF)]−1. For the sum of these quantities the condition

ND = N+
D + N 0

D (7.24)

holds.
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The ratio of the two concentrations is first given as (caveat: this formula will be modified below)

N 0
D

N+
D

= N1

N0
= f

1 − f
= exp

(
EF − ED

kT

)
. (7.25)

Now, the degeneracy of the states has to be considered. The donor charged with one electron has a
2-fold degeneracy g1 = 2 since the electron can take the spin up and down states. The degeneracy of
the ionized (empty) donor is g0 = 1. Additionally, we assume here that the donor cannot be charged
with a second electron (cmp. Sect. 7.7.2). Due to Coulomb interaction, the energy level of the possible
N−
D state is in the conduction band. Otherwise, a multiply charged center would be present. We also

do not consider excited states of N 0
D that might be in the band gap as well. In the following, we will

continue with ĝD = g1/g0 = 2 as suggested in [585].2 We note that the definition of the degeneracy
factor for donors (and acceptors, see (7.38)) is not consistent in the literature as summarized in [586].
Considering now the degeneracy, (7.25) is modified to

N 0
D

N+
D

= N1

N0
= ĝD exp

(
EF − ED

kT

)
. (7.26)

This can be understood from thermodynamics (cf. Sect. 4.2.2), a rate analysis or simply the limit
T → ∞.

The probabilities f 1 and f 0 for a populated or empty donor, respectively, are

f 1 = N1

ND
= 1

ĝ−1
D exp

( ED−EF
kT

) + 1
(7.27a)

f 0 = N0

ND
= 1

ĝD exp
(− ED−EF

kT

) + 1
. (7.27b)

First, we assume that no carriers in the conduction band stem from the valence band (no intrinsic
conduction). This will be the case at sufficiently low temperatures when ND � ni. Then the number
of electrons in the conduction band is equal to the number of ionized donors, i.e.

n = f 0 ND = N0 = ND

1 + ĝD exp
( EF−ED

kT

) = 1

1 + n/n1
ND ,

with n1 = (NC/ĝD) exp(−Eb
D/kT ). The neutrality condition (its general from is given in equation

(7.40)) is
− n + N+

D = −n + N0 = 0 , (7.28)

leading to the equation (n is given by (7.10))

NC exp

(
EF − EC

kT

)
− ND

1 + ĝ exp
( EF−ED

kT

) = 0 . (7.29)

Solving this equation will yield the Fermi level (as a function of temperature T , doping level ED and
doping concentration ND).3 The solution is

2We do not agree with the treatment of the conduction band valley degeneracy in [585] for the donor degeneracy factor
for Ge and Si.
3As usual, the Fermi level is determined by the global charge neutrality, see also Sect. 4.2.2.
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EF = EC − Eb
D + kT ln

⎛
⎜⎝

[
1 + 4ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 − 1

2 ĝD

⎞
⎟⎠ . (7.30)

For T → 0 the Fermi level is, as expected, in the center between the populated and unpopulated states,
i.e. at EF = EC−Eb

D/2. In Fig. 7.9a the position of the Fermi is shown for a donor with 45meV binding
energy in Si. For low temperatures the solution can be approximated as (dashed curve in Fig. 7.9b)

EF
∼= EC − 1

2
Eb
D + 1

2
kT ln

(
ND

ĝD NC

)
. (7.31)

The freeze-out of carriers in n-type silicon has been discussed in detail in [587], taking into account
the effects of the fine structure of the donor states. We note that the fairly high donor binding energy
in silicon leads to freeze-out of carriers at about 40K and is thus limiting for the low-temperature
performance of devices. Ge has smaller donor ionization energies and subsequently a lower freeze-out
temperature of 20K. For n-type GaAs, conductivity is preserved down to even lower temperatures.

We note that the freeze-out of carriers involves the recombination of free electrons with the ionized
donors. This aspect is considered in Sect. 10.9. Microscopically this process is equal to the emission
of a (far infrared) photon [588, 589]. Similarly the release of an electron from the donor is due to the
absorption of a photon.

For higher temperatures, when the electron density saturates towards ND, the approximate solution
is (dash-dotted curve in Fig. 7.9a)

EF
∼= EC + kT ln

(
ND

NC

)
. (7.32)

The electron density n is given (still in the Boltzmann approximation) by

n = NC exp

(
− Eb

D

kT

) [
1 + 4 ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 − 1

2 ĝD
(7.33)

= 2 ND

1 +
[
1 + 4 ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 .

The theoretical electron density as a function of temperature is shown in Fig. 7.9b. It fits very well to
experimental data for arsenic doped germanium [594] as shown in Fig. 7.10 (Arrhenius plot, ln n vs.
1/T ).

For low temperatures, the solution (7.34) is close to

n ∼=
√

NDNC

ĝD
exp

(
− Eb

D

2kT

)
= √

n1 ND . (7.34)

For high temperatures, n ∼= ND. This regime is called exhaustion or saturation since all possible
electrons have been ionized from their donors. We note that even in this case np = ni pi holds,
however, n � p.

While the characteristic energy for the ionization of electrons from donors is Eb
D, at high enough

temperatures electrons are transferred also from the valence band into the conduction band. Thus, in
order to make the above consideration valid for all temperatures, the intrinsic conduction also has to
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(a) (b)

Fig. 7.9 a Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45meV, no acceptors) as a function of temperature

without consideration of intrinsic carriers. Zero energy refers to the (temperature-dependent, Table 6.4) conduction-band
edge EC with approximative solutions for low (dashed line, (7.31)) and high (dash-dotted line, (7.32)) temperatures. b
Corresponding density of conduction-band electrons as a function of temperature

Fig. 7.10 Electron
concentration as a function
of temperature for a Ge:As
sample with
ND ≈ 1013 cm−3. Solid
line is fit to the data with a
donor binding energy of
12.7meV. Adapted
from [594]
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be considered. The neutrality condition (still in the absence of any acceptors) is

− n + p + N+
D = 0 . (7.35)

Using (7.10) and p = n2i /n, the equation reads:

NC exp

(
EF − EC

kT

)
− n2i

NC exp(
EF−EC
kT )

− ND

1 + ĝD exp( EF−ED
kT )

= 0 . (7.36)

The solution can be given analytically but is more complicated4. The temperature-dependent position
of the Fermi level is shown in Fig. 7.11.

The three important regimes are the intrinsic conduction at high temperatures when ni � ND, the
exhaustion at intermediate temperatures when ni � ND and kT > Eb

D, and finally the freeze-out
regime for kT � Eb

D at low temperatures when the electrons condense back into the donors. The three

4It is given in the third edition of this book.
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Fig. 7.11 Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45meV, no acceptors) as a function of temperature.

The temperature dependence of the band gap (as given in Table 6.4) has been taken into account. Zero energy refers to
the conduction-band edge for all temperatures. The dotted curve shows Eg/2. The dashed (dash-dotted) line shows the
low- (high-) temperature limit according to (7.31) and (7.18), respectively. The corresponding electron concentration as
a function of temperature is shown in Fig. 7.9b

Fig. 7.12 Fermi level in
silicon as a function of
temperature for various
doping levels (n-type (blue
lines) and p-type (red
lines)) of
1012, 1013, . . . , 1018 cm−3.
The intrinsic Fermi level is
chosen as zero energy for
all temperatures. The
(temperature-dependent)
conduction and valence
band edges are shown as
dashed lines

regimes can be seen in the experimental data on carrier density of electrons in n-Ge (Fig. 7.10) and of
holes in p-Ge (Fig. 7.15).

A similar plot as in Fig. 7.11 is shown in Fig. 7.12 but for different doping levels. With increasing
temperature, the Fermi level shifts from close to the band edge towards the band center. At higher
doping, this shift begins at higher temperatures.

The electronic states of individual donors can be directly visualized by scanning tunneling
microscopy (STM) as shown in Fig. 7.13 for Si:P. For small negative bias, tunneling occurs through
the charged dopant that is located within the first three monolayers. At high negative bias the large
contribution from the filled valence band masks the effect of the donor. This image, however, shows
that the contrast attributed to the dopant atom is not due to surface defects or absorbates.

7.5.2 Acceptors

A group-III atom in Si has one electron too few for the tetrahedral bond. Thus, it ‘borrows’ an electron
from the electron gas (in the valence band) and thus leaves a missing electron (termed hole) in the
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Fig. 7.13 Filled-state
image of a phosphorus
atom underneath a Si (001)
surface at a tunneling
current of 110pA. The
doping level is
5 × 1017 cm−3. a Sample
bias −0.6V, b sample bias
−1.5V between Si:P and
tip. Image sizes are
22 × 22nm2. Reprinted
with permission from
[595], ©2004 APS. Lower
row under parts b, c:
Schematic band diagrams
for the two bias situations
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Fig. 7.14 Boron impurity
in silicon. Boron accepts
one electron and a fixed
negative charge remains
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Si Si
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valence band (Fig. 7.14). The energy level of the impurity is in the gap close to the valence-band edge.
The latter consideration is made in the electron picture. In the hole picture, the acceptor ion has a hole
and the hole ionizes (at sufficient temperature) into the valence band. After ionization the acceptor
is charged negatively. Also, for this system a hydrogen-like situation arises that is, however, more
complicated than for donors because of the degeneracy of the valence bands and their warping.

In Table 7.4 the acceptor binding energies Eb
A for group-III atoms in C, Ge and Si are listed. The

absolute acceptor energy is given as EA = EV + Eb
A. In Table 7.5 acceptor binding energies are listed

for GaAs, GaP andGaN.While in GaAs some acceptors are close to the effectivemass value of 27meV,
in GaP the deviation from the effective-mass value ≈50meV is large.

When the conductivity is determined by holes or electrons, the material is called p-type or n-type,
respectively. We note that some metals also show hole conduction (e.g. Al). However, for metals the
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Table 7.4 Binding energies Eb
A of group-III acceptors in elemental semiconductors. Data for diamond from [596, 597].

All values in meV

B Al Ga In

C 369

Si 45 57 65 16

Ge 10.4 10.2 10.8 11.2

Table 7.5 Binding energies Eb
A of acceptors in GaAs, GaP and GaN (low concentration values, data from [598, 599]).

All values in meV

V site III site

GaAs C 27 Be 28

Si 34.8 Mg 28.8

Ge 40.4 Zn 30.7

Sn 167 Cd 34.7

GaP C 54 Be 57

Si 210 Mg 60

Ge 265 Zn 70

Cd 102

GaN C 230 Mg 220

Si 224 Zn 340

Cd 550

conductivity type is fixed, while the same semiconductor can be made n- or p-type with the appropriate
doping.

The acceptor concentration is denoted by NA. The concentration of neutral acceptors is N 0
A, the

concentration of charged acceptors is N−
A . Of course

NA = N 0
A + N−

A . (7.37)

The ratio of the degeneracy of the (singly) filled and empty acceptor level is ĝA. In Ge ĝA = 4 since
the localized hole wave function may be formed in EMA with four Bloch wave functions (heavy and
light holes) [600]. For Si with its small split-off energy (Table 6.6) ĝA = 6 according to [601]. For
doubly ionized acceptors, e.g. Zn in Si and Ge (see Sect. 7.7.3), the more shallow level (Zn− → Zn0)
has ĝA = 6/4 = 1.5 in Ge [601]. A more general discussion of the degeneracy factor for multiply
charged acceptors can be found in [585, 602]. Similar to the considerations for electrons and donors
we have

N 0
A

N−
A

= ĝA exp

(
− EF − EA

kT

)
. (7.38)

The population of the acceptor levels is given by

N−
A = NA

1 + ĝA exp
(− EF−EA

kT

) . (7.39)

The formulas for the position of the Fermi level and the hole density are analogous to those obtained
for electrons and donors and will not be explicitly given here. The analogue to Fig. 7.11b is shown for
data on p-doped Ge [603, 604] in Fig. 7.15. The acceptor activation energy is 11meV which could be
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Fig. 7.15 Carrier concentration as a function of temperature for p-type Ge. The net shallow level concentration is
2 × 1010 cm−3. Solid line is fit to the data, the dashed line indicates the intrinsic hole concentration pi. Adapted
from [604]

due to various impurities (cf. Table 7.4). The different impurities (B, Al, Ga) can be distinguished by
photothermal ionization spectroscopy [604] (cmp. Sect. 9.8).

In Fig. 7.12, the temperature dependence of the Fermi level is included for p-type Si.With increasing
temperature the Fermi level shifts from the valence-band edge (For T = 0, EF = EV + Eb

A/2) towards
the middle of the band gap (intrinsic Fermi level).

Also, the wavefunction at acceptors can be imaged using scanning tunneling microscopy [605].
In [606] images of ionized and neutral Mn in GaAs have been reported (Fig. 7.16b). The tunneling
I–V characteristics are shown in Fig. 7.16a. At negative bias, the acceptor is ionized and appears
spherically symmetric due to the effect of the A− ion Coulomb potential on the valence-band states.
At intermediate positive voltages, tunneling is through the neutral state. The wavefunction of A0 looks
like a bow-tie due to the admixture of d-wavefunctions [607]. The Mn atom is presumably in the third
subsurface atomic layer. At even higher positive bias the contrast due to the dopant is lost because the
image is dominated by a large tunneling current from the tip to the empty conduction band.

7.5.3 Compensation

When donors and acceptors are simultaneously present, some of the impurities will compensate each
other. Electrons from donors will recombine with holes on the acceptors. Depending on the quantitative
situation the semiconductor can be n- or p-type. This situation can be invoked by intentional doping
with donors or acceptors or by the unintentional background of donors (acceptors) in p-doped (n-doped)
material. Also the formation of pairs, exhibiting a new defect level different from the single donor or
single acceptor, has been described, e.g. for Se and B in silicon [308].

The charge-neutrality condition (now finally in its most general form) reads

− n + p − N−
A + N+

D = 0 . (7.40)

We will now discuss the case of the presence of donors and acceptors, but limit ourselves to sufficiently
low temperatures (orwide band gaps) such that the intrinsic carrier density can be neglected.We assume
Boltzmann statistics and assume here ND > NA. Then it is a very good approximation to use N−

A = NA
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(a)

40
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MnGa
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GaAs:Mn

(c)(b)

negative bias

EF

EF

GaAs

A

tip

A

Fig. 7.16 a Tunneling I–V characteristic of GaAs:Mn sample. Solid (dashed) line is for pure GaAs (subsurface Mn on
Ga site).UFB denotes the simulated flat-band voltage. Adapted from [606]. (b, c) STM images of a Mn atom underneath
a GaAs (110) surface. The doping level is 3×1018 cm−3. b Sample bias−0.7V, c sample bias+0.6V. Below the images
are schematic band diagrams of GaAs:Mn and tip. Image sizes are b 8 × 8nm2 and c 5.6 × 5nm2. Reprinted with
permission from [606], ©2004 APS. Lower row under parts a, b: Schematic band diagrams for the two bias situations

since there are enough electrons from the donors to recombinewith (and thus compensate) all acceptors.
Under the given assumptions regarding the temperature p = 0 and the material is n-type. Thus, in
order to determine the position of the Fermi level, the charge-neutrality condition

n + NA − N+
D = 0 (7.41)

must be solved (compare to (7.29))

NC exp

(
EF − EC

kT

)
+ NA − ND

1 + ĝ exp( EF−ED
kT )

= 0 . (7.42)

We rewrite (7.41) and find ND−NA −n = N 0
D = N+

D ĝD exp
( EF−ED

kT

)
using (7.26). Using again (7.41)

and also (7.10), (7.42) can be written as

n (n + NA)

ND − NA − n
= NC

ĝD
exp

(
− Eb

D

kT

)
, (7.43)

a form given in [608]. Analogously for compensated p-type material

p (p + ND)

NA − ND − p
= NV

ĝA
exp

(
− Eb

A

kT

)
(7.44)

holds.
The solution of (7.42) is

EF = EC − Eb
D + kT ln

⎛
⎜⎝

[
α2 + 4ĝD

ND−NA
NC

exp
(

Eb
D

kT

)]1/2 − α

2 ĝD

⎞
⎟⎠ , (7.45)
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(a) (b)

Fig. 7.17 a Position of Fermi level in partially compensated Si:P,B (ND = 1015 cm−3, Eb
D = 45meV, Eb

A = 45meV,
solid line: NA = 1013 cm−3, dashed line: NA = 0, dash-dotted line: NA = 1012 cm−3, short-dashed line: NA =
1014 cm−3, dash-double dotted line: NA = 5 × 1014 cm−3) as a function of temperature. b Corresponding electron
concentration for NA = 1013 cm−3 as a function of temperature (neglecting intrinsic carriers), dashed line for NA = 0
according to (7.34), dash-dotted line approximation for n � NA as in (7.49)

with

α = 1 + ĝD
NA

NC
exp

(
Eb
D

kT

)
= 1 + NA

β
(7.46a)

β = NC

ĝD
exp

(
− Eb

D

kT

)
. (7.46b)

The carrier density is best obtained from (7.43),

2 n =
√

(NA − β)2 + 4 ND β − (NA + β) . (7.47)

For NA = 0 we have α = 1 and (7.30) is reproduced, as expected. For T = 0 (and NA = 0) the Fermi
energy lies at EF = ED since the donor level is partially filled (N 0

D = ND −NA). For low temperatures
the Fermi level is approximated by

EF
∼= EC − Eb

D + kT ln

(
ND/NA − 1

ĝD

)
. (7.48)

The corresponding carrier density at low temperatures is

n = NC

ĝD
exp

(
− Eb

D

kT

) (
ND

NA
− 1

)
. (7.49)

For higher temperatures (7.34) holds approximately for n > NA; the slope is now given by Eb
D/2 as in

the uncompensated case (Fig. 7.17b). For sufficiently high temperatures in the exhaustion regime (but
still ni < n) the electron density is given by

n ∼= ND − NA . (7.50)

At even higher temperatures the electron density will be determined by the intrinsic carrier concentra-
tion. Only in this case p = 0!
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Fig. 7.18 Hole density in p-type silicon (NA = 7.4× 1014 cm−3, Eb
A = 46meV (probably boron) and partial compen-

sation with ND = 1.0 × 1011 cm−3). Adapted from [609]

Fig. 7.19 Carrier concentration and conductivity type (red circles: p, blue squares: n) for MOVPE-grown
InxGa1−xAs1−yNy layers on GaAs (001) (layer thickness ≈ 1µm, x ≈ 5%, y ≈ 1.6%) doped with different amounts
of silicon. The ordinate is the ratio of the partial pressures of disilane and the group-III precursors (TMIn and TMGa) in
the gas phase entering the MOVPE reactor. Lines are guides to the eye. Experimental data from [610]

An experimental example is shown in Fig. 7.18 for partially compensated p-Si (with ND � NA).
The change of slope around p ≈ ND is obvious.

If donors are added to a p-type semiconductor, first the semiconductor remains p-conducting as
long as ND � NA. If the donor concentration becomes larger than the acceptor concentration, the
conductivity type switches from p- to n-conduction. If the impurities are exhausted at room temper-
ature, the lowest carrier concentration is reached for ND = NA. Such a scenario is shown for p-type
InxGa1−xAs1−yNy doped with various concentrations of Si in Fig. 7.19. At high Si incorporation, the
number of charge carriers saturates due to autocompensation (see Sect. 7.5.5) and the formation of Si
precipitates. Since the ionization energies of donors and acceptors are typically different, the situation
for ND ≈ NA needs, in general, to be investigated carefully and will depend on the temperature.
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7.5.4 Multiple Impurities

If more than one donor species is present, (7.42) can be generalized, e.g. for the case of two donors
D1 and D2 in the presence of compensating acceptors,

n + NA − ND1

1 + ĝ1 exp( EF−ED1
kT )

− ND2

1 + ĝ2 exp( EF−ED2
kT )

= 0 . (7.51)

This case is treated in [611]. Simple high and low temperature approximations can be found where
the trap with the larger and smaller activation energy, respectively, dominates. The case for multiple
acceptors (and compensating donors) is treated analogously. As detailed in [612], the function dn/dEF

has a maximum at the donor level position; this can be used to visualize the contribution of several
donors (with sufficiently different binding energies) from n(T ) as measured by Hall effect (Fig. 7.20).

7.5.5 Amphoteric Impurities

If an impurity atom can act as a donor and acceptor it is called amphoteric. This can occur if the impurity
has several levels in the band gap (such as Au in Ge or Si). In this case, the nature of the impurity
depends on the position of the Fermi level. Another possibility is the incorporation on different lattice
sites. For example, carbon in GaAs is a donor if incorporated on the Ga-site. On the As-site carbon
acts as an acceptor.

Thus, e.g., crystal growth kinetics can determine the conductivity type. In Fig.7.21 the conductivity
due to carbon background is shown for GaAs grown using MOVPE under various growth conditions.
At high (low) arsine partial pressure incorporation of carbon on As-sites is less (more) probable, thus
the conductivity is n-type (p-type). Also, growth on different surfaces can evoke different impurity
incorporation, e.g., n-type on (001) GaAs and p-type on (311)A GaAs, since the latter is Ga-stabilized.

The charge density at an impurity nucleus can be investigated via the isomer shift as determined
by Mössbauer spectroscopy [614, 615]. The incorporation of the isotope 119Sn can be controlled in
III-V compounds to be on cation or anion site as donor or acceptor, respectively. This is accomplished
by introducing 119In or 119Sb on group-III and group-V site, respectively, both decaying into 119Sn

(a) (b)

Fig. 7.20 a Electron concentration versus temperature as determined from Hall effect for a CdTe sample doped with
indium. b−kT dn/dEF, as determined from the experimental Hall data (symbols). The solid line is theory for three donor
levels (ED1 = EC−0.37eV, ND1 = 2.5×1012 cm−3; ED2 = EC−0.24eV, ND2 = 7.0×1011 cm−3; ED3 = EC−0.18eV,
ND3 = 2.5 × 1011 cm−3) whose energy positions are indicated by dashed lines. Adapted from [612]
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without leaving their lattice site. The isomer shifts of 119Sn in various III-V compounds are shown in
Fig. 7.22. In [615] it is concluded from these data that the tin donor is formed by a positive tin ion and
the electron charge transfer to its neighboring (group-V) atoms is rather small. For tin as an acceptor,
for the present conditions an ionized, i.e. negatively charged acceptor, the isomer shift follows closely
the trend from substitution in group-IV semiconductors. Therefore four electrons form the tetrahedral
bond, while the extra electron is located rather at the (positively charged) group-III next neighbors and
not in the impurity cell. The difference to the point charge Coulomb distribution is called central-cell
correction.

Deviation from the ideal stoichiometry introduces point defects that can be electrically active and
change conductivity type and carrier concentration. In the case of CuInSe2, excess Cu could go on
interstitial positions or promote selenium vacancies, both leading to n-type behavior. This material
is particularly sensitive to deviations from ideal stoichiometry for both Cu/In ratio (Fig. 7.23) and Se
deficiency [616].

7.5.6 Autodoping

If intrinsic defects such as vacancies or interstitials, possibly as a result of non-stoichiometry, or anti-
site defects cause electronic levels relevant for conductivity one speaks of autodoping. An example is
the role of A-B antisites in AB2O4 spinels (Sect. 3.4.7). In the perfect crystal the A (B) atoms occupy
tetraeder (octaeder) places. Typical charges are A2+ and B3+. Thus (without charge transfer) the A

Fig. 7.21 Background
doping of GaAs due to
carbon in MOVPE for
different ratios of the
partial pressures of AsH3
and TMG
(trimethylgallium). The
conductivity type (blue
squares: n-type, red
circles: p-type) depends on
the incorporation of C from
CH3 radicals on Ga- or
As-site. Lines are guides to
the eye. Experimental data
from [613]

Fig. 7.22 Isomer shift
(relative to CaSnO3) of
119Sn in various group-IV
and III-V compound
semiconductors as labeled.
Dashed line is trend from
isoelectronic substitution.
Experimental data
from [615]
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Fig. 7.23 Carrier
concentration and
conductivity type (blue
squares: n-type, red circles:
p-type) as a function of
stoichiometry for CuInSe2
thin films. Lines are guides
to the eye. Experimental
data from [616]

Fig. 7.24 Schematic
position of electronic levels
of AB (blue, 0/− transition
level) and BA (red, +/0
transition level) defects in
AB2O4 spinels and
resulting material
properties (compensated,
n- or p-type or
semi-insulating).
After [617]

VB

CB

BTd

Aoh

EF

comp. p-type n-type s.i.

atom on octaeder site (AOh) acts like a donor and the B atom on a tetraeder site (BTd) as an acceptor.
Such defects have been classified in [617] as being able to create compensated, semi-insulating, n-
type or p-type material depending on the defect formation energies and the position of the electronic
levels of the AB and BA defects in the band gap (Fig. 7.24). An example for a p-type spinel oxide is
ZnCo2O4 [618].

7.5.7 High Doping

For low doping concentrations, the impurity atoms can be considered to be decoupled. At low temper-
ature, only hopping from one impurity to the next is possible due to thermal emission or tunneling and
the semiconductor becomes an insulator.
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With increasing concentration, the distance between impurities decreases and their wavefunctions
can overlap. Then, an impurity band develops (Fig. 7.25). A periodic arrangement of impurity atoms
would result inwell-defined band edges as found in theKronig-Penneymodel. Since the impurity atoms
are randomly distributed, the band edges exhibit tails. For high doping, the impurity band overlaps
with the conduction band. In the case of compensation, the impurity band is not completely filled
and contains (a new type of) holes. In this case, conduction can take place within the impurity band
even at low temperature, making the semiconductor a metal. This metal–insulator transition has been
discussed byMott [619]. Examples for highly doped semiconductors are transparent conductive oxides
(Sect. 20), the contact layer for an ohmic contact (Sect. 21.2.6) or the active layers in a tunneling diode
(Sect. 21.5.9). The physics, properties and preparation of highly doped semiconductors are treated in
detail in [620].

The formation of the impurity band leads to a reduction of the impurity ionization energy as known
from (7.21). Typical results are shown in Fig. 7.26a for n-type Ge [594] and Fig. 7.26b for p-type
ZnTe [621]. At the critical doping concentration of Nc = 1.5 × 1017, the activation energy for the
carrier concentration disappears. Similar effects have been observed for Si [622] and GaAs [623]. The
freeze-out of the carrier concentration (see Fig. 7.9) disappears as shown in Fig. 7.27. Critical doping
concentrations are listed in Table 7.6. The decrease of the ionization energy Eb (donor or acceptor)
follows the dependence [594, 622]

Eb = Eb
0 − α N 1/3

i = Eb
0

[
1 −

(
Ni

Nc

)1/3
]

, (7.52)

where Ni is the concentration of ionized dopants. A refined theory, considering screening, shift and
tails of the conduction band and most importantly broadening of the donor level has been presented
in [624].

The critical density can be estimated from the Mott criterion when the distance of the impurities
becomes comparable to their Bohr radius (7.22)

2aD = 3

2π
N 1/3
c . (7.53)

The pre-factor 3/(2π) stems from the random distribution of impurities and disappears for a periodic
arrangement. The Mott criterion is (rewriting (7.53))

D(E)

E V

E D

E

(a) (b) (c)

E C

D(E)

E V

E C

E

D(E)

E V

E

Fig. 7.25 Principle of the formation of a (donor) impurity band. a Small doping concentration and sharply defined
impurity state at ED, b increasing doping and development of an impurity band that c widens further and eventually
overlapswith the conduction band for high impurity concentration. The shaded areas indicate populated states at T = 0K
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Fig. 7.26 a Donor ionization energy in n-type Ge for various doping concentrations. Dashed line is a guide to the eye.
The arrow labeled Eb

D denotes the low-concentration limit (cf. Table 7.2). Experimental data from [594]. b Acceptor
ionization energy for ZnTe:Li and ZnTe:P as a function of the third root of the ionized acceptor concentration. Data
from [621]

Fig. 7.27 Electron
concentration versus
inverse temperature for
Si:P for three different
doping concentrations ((i):
1.2 × 1017 cm−3, (ii):
1.25 × 1018 cm−3, (iii):
1.8 × 1019 cm−3).
Experimental data
from [622]
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aD N 1/3
c ≈ 0.24 . (7.54)

ForGaAswith aD = 10.3nm, the criterion yields Nc = 1.2×1016 cm−3, in agreementwith experiment.
The achievablemaximum concentration of electrically active dopants is limited by the concentration

dependence of the diffusion coefficient, Coulomb repulsion, autocompensation and the solubility limit
[575]. In Table 7.7 the maximum carrier concentrations for GaAs with various dopants are listed.

As an example we show the Ga-doping of epitaxial ZnO layers on sapphire in Fig. 7.28. Under
slightly Zn-rich (O-polar) conditions the growthmode is two-dimensional and the carrier concentration
increases linearly with the Ga concentration, n ≈ cGa, up to high values in the 1020 cm−3 range
[630]. For O-rich (Zn-polar) conditions the growth mode changes to three-dimensional growth and
the activation ratio of Ga donors becomes low [631]. Above a gallium content of 2%, the octahedral
coordination of gallium and thus the partial segregation into a parasitic ZnGa2O4 spinel phase is
observed for [Ga]=4% [632].

The doping of semiconductors beyond the solubility limit is termed ‘hyperdoping’. It involves
non-equilibrium preparation methods [637, 638].
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Table 7.6 Critical doping concentration for various semiconductors (at room temperature)

Material Type Nc (cm−3) References

C:B p 2 × 1020 [597]

Ge:As n 1.5 × 1017 [594]

Si:P n 1.3 × 1018 [622]

Si:B p 6.2 × 1018 [622]

GaAs n 1.0 × 1016 [623]

GaP:Si n 6 × 1019 [625]

GaP:Zn p 2 × 1019 [626]

GaN:Si n 2 × 1018 [627]

GaN:Mg p 4 × 1020 [598]

Al0.23Ga0.77N:Si n 3.5 × 1018 [628]

ZnTe:Li p 4 × 1018 [621]

ZnTe:P p 6 × 1018 [621]

ZnO:Al n 8 × 1018 [629]

Table 7.7 Maximum electrically active doping concentration for GaAs

Material Type Nc (cm−3) References

GaAs:Te n 2.6 × 1019 [633]

GaAs:Si n 1.8 × 1019 [634]

GaAs:C p 1.5 × 1021 [635]

GaAs:Be p 2 × 1020 [636]

Fig. 7.28 Electron
concentration as a function
of gallium concentration in
MBE grown ZnO:Ga on
sapphire for the two
different polarities.
Adapted from [630, 631]

7.6 Quasi-fermi Levels

The carrier concentrations were given by (7.6) and (7.7). So far, we have only considered semicon-
ductors in thermodynamic equilibrium for which np = n2i . In a nonequilibrium situation, e.g. for
external excitation or carrier injection in a diode, the electron and hole densities can each take arbitrary
values, in principle. In particular, np will no longer be equal to n2i and there is no Fermi level constant
throughout the structure. In this case, however, quasi-Fermi levels Fn and Fp for electrons and holes,
respectively, are defined via
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n(r) =NC F1/2

(
Fn(r) − EC

kT

)
(7.55a)

p(r) =NV F1/2

(
− Fp(r) − EV

kT

)
. (7.55b)

A quasi-Fermi level is sometimes called imref5 and can also be denoted as EFn or EFp .We emphasize
that the quasi-Fermi levels are only a means to describe the local carrier density in a logarithmical way.
The quasi-Fermi levels can be obtained from the density via

Fn =EC + kT ln

(
n

NC

)
(7.56a)

Fp =EV − kT ln

(
p

NV

)
. (7.56b)

The quasi-Fermi levels do not imply that the carrier distribution is actually a Fermi distribution. This
is generally no longer the case in thermodynamical nonequilibrium. However, in ‘well-behaved’ cases
the carrier distribution in nonequilibrium can be approximated locally as a Fermi distribution using a
local quasi-Fermi level and a local temperature, i.e.

fe(r, E) ∼= 1

exp
(

E−Fn(r)
kT (r)

)
+ 1

. (7.57)

Using the quasi-Fermi levels, np is given by

n(r) p(r) = n2i exp

(
Fn(r) − Fp(r)

kT

)
. (7.58)

We note that for an inhomogeneous semiconductor or a heterostructure (cf. Chap.12), ni may also
depend on the spatial position. In the case of thermodynamic equilibrium the difference of the quasi-
Fermi levels is zero, i.e. Fn − Fp = 0 and Fn = Fp = EF.

7.7 Deep Levels

For deep levels the short-range part of the potential determines the energy level. The long-range
Coulomb part will only lead to a correction. The term ‘deep level’ implies that the level is within the
band gap and far from the band edges. However, some deep levels (in the sense of the potential being
determined by the ion core) have energy levels close to the band edges or even within a band. Details
can be found in [267, 639–642].

The wavefunction is strongly localized. Thus, it cannot be composed of Bloch functions, as has
been done for the shallow levels for the effective-mass impurity. The localization in r space leads to a
delocalization in k space. Examples are Si:S, Si:Cu or InP:Fe, GaP:N, ZnTe:O. Deep levels can also
be due to intrinsic defects such as vacancies or antisite defects.

Due to the larger distance to the band edges, deep levels are not efficient at providing free electrons
or holes. Quite the opposite, they rather capture free carriers and thus lead to a reduction of conductivity.

5W. Shockley had asked E. Fermi for permission to use his name reversed. Fermi was not too enthusiastic but granted
permission.
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Centers that can capture electrons and holes lead to nonradiative recombination of electrons through
the deep level into the valence band (see also Chap. 10). This can be useful for the fabrication of
semi-insulating layers with low carrier concentration and fast time response of, e.g., switches and
photodetectors.

While the electronic properties of deep levels can be readily characterized, the microscopic origin
is not immediately apparent. Next to theoretical modeling of defects and correlation with experimental
results, paramagnetic hyperfine interactions have proven useful to identify the microscopic nature of
various defects [643].

7.7.1 Charge States

The deep level can have different charge states depending on the occupancy with electrons. The energy
position within the gap varies with the charge state due to the Coulomb interaction. Also, the lattice
relaxation around the defect depends on the charge state and modifies the energy level.

The localized charge qd at the defect is the integral over the change �ρ of the charge density
compared to the perfect crystal over a sufficiently large volume V∞ around the defect

qd =
∫

V∞

�ρ(r) d3r = n e

εr
. (7.59)

In semiconductors, the charge qdεr is an integer multiple of the elementary charge. The defect is said to
be in the nth charge state. Each charge state has a certain stable atomic configuration Rn . Each charge
state has a ground state and excited states that can each have different stable atomic configurations.

Now, we discuss how the concentration of the various charge states depends on the position of the
Fermi level. The overall constraint of global charge neutrality determines the chemical potential of the
electron, i.e. the Fermi level in Fermi–Dirac statistics. We use the approximation that the concentration
of defects is so small that the mutual interaction of defects becomes negligible.

As an example, we treat the possible reaction V 0 � V+ + e−, where V 0 denotes a neutral vacancy
and V+ is a positively charged vacancy, created by the ionization of an electron from the vacancy into
the conduction band. The free energy G depends on the numbers n0 of neutral and n+ of positively
charged vacancies. The minimum condition is met by

dG = ∂G

∂n0
dn0 + ∂G

∂n+
dn+ = 0 . (7.60)

The neutrality constraint is dn0 + dn+ = 0 and therefore the minimum condition reads

∂G

∂n0
= ∂G

∂n+
. (7.61)

For noninteracting defects and using (4.9) we write

∂G

∂n0
=Gf(V 0) + kT ln

(
n0
N0

)
(7.62a)

∂G

∂n+
=∂G(V+)

∂n+
+ ∂G(e−)

∂n+
= Gf

V+ + kT ln

(
n+
N+

)
+ μe− , (7.62b)
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(a) (b)

Fig. 7.29 a Silicon cubic unit cell with an interstitial iron atom (red) at tetrahedral site. b EPR intensity (at T = 95K
from interstitial iron in neutral state, Fe0 with S = 1) versus Fermi level position for iron-doped silicon with varying
Fermi level due to different amounts of shallow impurity levels from to Al, B and P as labeled. The shaded areas indicate
the valence and conduction band. The dashed line at Et = EV + 0.375eV indicates the trap level. The inset shows a
typical EPR spectrum of Fe0. Adapted from [649], inset adapted from [650]

where N0 = N Z0 and N+ = N Z+ are the number of available sites, given by the number N of atomic
sites and including possible internal degeneracies Z0 and Z+, respectively. Degeneracy factors of deep
levels are not a simple subject [601] and , e.g., the degeneracy factors of Au donor and acceptor levels
in Si are under discussion [644–646]. Gf denotes the free enthalpy of formation of the respective
defect, as in (4.3). We have written the free enthalpy of the separated pair V+ and e− as the sum
G(V+) + G(e−). μe− = ∂G(e−)/∂n+ is (by definition) the chemical potential of the electron, i.e. the
Fermi energy EF of Fermi–Dirac statistics.6 From (7.62a,b) we find for the ratio of the concentrations
of defects c0 = n0/N and c+ = n+/N

c0
c+

= Z+
Z0

exp

(
−Gf

V+ − Gf
V 0 + EF

kT

)
= Z+

Z0
exp

(
Et(V 0) − EF

kT

)
, (7.63)

where the trap level energy (for the particular charge transition), Et(V 0) = Gf
V 0 − Gf

V+ , is the free
enthalpy of ionization of V 0. We note that c0 can be obtained from (4.9) and EF is determined by the
charge-neutrality condition.

As example experimental data on the charge transition Fe0 � Fe+ + e− of interstitial iron (in
tetrahedral position, Fig. 7.29a, cmp. Fig. 3.18) in silicon is shown. The concentration of Fe0 is tracked
via the EPR signal from the neutral S = 1 state7 with g-factor g = 2.07 [647]. For n-type samples
the iron is in neutral state and the maximum EPR signal is found. For strongly p-type samples, the
Fermi energy is below the trap level and all iron is in Fe+ state, yielding no EPR signal at the given g-
factor. From the investigation of various silicon samples with different doping levels and consequently

6The chemical potential in a one-component system is μ = ∂G/∂n = G/n. In a multicomponent system it is, for the
i th component, μi = ∂G/∂ni = G/ni .
7The electron configuration is 3d8 with two paramagnetic electrons. Under uniaxial stress along [100] the EPR line splits
into a doublet [647]. Further details can be found in [648].
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Table 7.8 Binding energies (to conduction band) of double donor chalcogenide impurities in Si and Ge. All energies in
meV, data from [651, 652]

Host State S Se Te

Si D0 318 307 199

D+ 612 589 411

Ge D0 280 268 93

D+ 590 512 330

different position of the Fermi level, the trap (deep donor) energy is found to be EV + 0.375eV as
indicated in Fig. 7.29b.

7.7.2 Double Donors

An impurity that has two extra electrons available after bonding in the matrix may give rise to a
double donor. Typical examples are substitutional chalcogenide atoms (S, Se or Te) in silicon [651]
and germanium [652], interstitial impurities such as Mgi in Si [653], or group-V atoms on a group-III
site in a III–V compound (antisite defect), such as PGa in GaP [654] or AsGa in GaAs [655].

Thedouble donor is electronically similar to a heliumatom.Due to the repulsiveCoulomb interaction
of the two electrons on the neutral double donor, the (single) ionization energy E1 (also often labeled
E(0, 1) or E(0,+)) of D0 is smaller than that of D+ (E2, also labeled E(1, 2) or E(+,++)). For He
and He+ the ratio of ionization energies is 0.45; for chalcogenides in Si and Ge similar ratios have
mostly been found (Table 7.8).

The carrier statistics and the degeneracy factors for a double donor have been discussed in [585, 656].
Typically, the degeneracy factor for the ionization of the double donor D0 → D+ is ĝD = g2/g1 = 1/2
and for the ionization D+ → D++ is ĝD = g1/g0 = 2/1 = 2.

For the probabilities to find a neutral, single and double ionized donorwefind following the treatment
in [656]

d0 = N 0
D

ND
= exp 2 EF

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.64a)

d+ = N+
D

ND
= exp E1+E2

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.64b)

d++ =N++
D

ND
= 2 exp E1+EF

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.64c)

The probabilities are depicted in Fig. 7.30a. The maximum of d+ is at the energy (E1 + E2)/2. Its
value is

d+
(
E1 + E2

2

)
= 1

1 + exp
(− E1−E2

2kT

) (7.65)

and reaches a value close to one for (E1−E2)/kT � 1. In Fig. 7.30b the number of electrons per donor
ñ = (N+

D + 2 N++
D )/ND is shown as a function of the Fermi level; at (E1 + E2)/2, exactly ñ = 1. In

Fig.7.31 the temperature dependent electron concentration in Si:Te is depicted. Up to 570K the single
ionization is visible (other shallow impurities present in the sample in lower concentrations< 1014 cm−3
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(a) (b)

Fig. 7.30 a Population of states of a double donor (neutral: black, single ionized: red, double ionized: blue) according to
(7.64a–c) as a function of the Fermi level. The ionization energies have been chosen as E1 = −0.2eV and E2 = −0.4eV
and are indicated by dashed lines (kT = 25meV); these energies are similar to Si:Te (cmp. Table 7.8). The conduction
band edge is taken as zero energy. b depicts the according number of electrons ñ ionized from the donor
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Fig. 7.31 Temperature dependent electron concentration (from Hall data) for Si:Te. a Experimental data and fit with
double donor model using NTe = 5 × 1016 cm−3, E1 = 200meV and E2 = 440meV (solid line). Single donor models
would fail (NTe = 5× 1016 cm−3 and NTe = 2× 1017 cm−3, dashed lines). b Second ionization step in more detail with
fits using different values for E2; the solid line is for E2 = 440meV, the other dashed lines for E2 = 420 and 460meV.
Adapted from [657]

play no role). From the fit E1 = 200 ± 2.7meV is determined [657]. Single donor models would fail.
The second ionization step is somewhat masked by the onset of intrinsic conduction. According to
(7.15), the slope of ni is Eg/2 ≈ 500meV which is similar to E2 ≈ 440meV.

7.7.3 Double Acceptors

In analogy to double donor defects, double acceptors can introduce up to two holes into the valence
band. A typical example is Zn in silicon [658], exhibiting its ‘normal’ acceptor level (Zn0/Zn−) at
EV + 0.31eV. In moderately n-doped silicon another level (Zn−/Zn2−) is observed at EC − 0.55eV,
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Fig. 7.32 Inverse
(absolute) Hall coefficient
(cmp. Sect. 15.2.1) R−1

H ,
i.e. charge concentration,
for three Ge:Zn samples
with different degree of
compensation with Sb
donors as labeled. The
dash-dotted lines indicate
typical slopes. The dashed
lines sketch the
Zn0 → Zn− and the
Zn− → Zn−− processes.
Adapted from [659]

when the n-doping is sufficient to partially compensate the Zn and supply one electron for each Zn
atom but not two (2NZn > ND > NZn). A similar situation has been observed for Zn in germanium,
exhibiting the levels EV + 0.03eV and EV + 0.09eV [659]. In Fig. 7.32 three different Ge:Zn samples
are compared. If the additional Sb donor concentration (ND ≈ 3.4 × 1016 cm−3) is larger than 2NZn

(NZn ≈ 1.2 × 1016 cm−3), the sample is n-type (upper curve). The slope is similar to the Ge:Sb donor
binding energy (Table 7.2). If compensation with donors is weak (NZn > ND, middle curve) first the
shallow donor level with 0.03eV activation energy is activated and subsequently the deeper one with
0.09eV activation energy, creating p-conductionwith a saturated hole density of p ≈ 2NA−ND > NZn

(negative Hall coefficient). The two individual activation processes are sketched as dashed lines in
Fig. 7.32. If the Sb concentration is larger than NZn but smaller than 2NZn, the shallow acceptor
level is filled with electrons, leaving still the only partially filled deeper acceptor level available for
ionization (lower curve). In this case the sample is still p-type, but the saturation hole density is
p ≈ 2NA − ND < NZn. The degeneracy factors for Zn in Si and Ge have been discussed in [601].

7.7.4 Jahn–Teller Effect

The lattice relaxation can reduce the symmetry of the defect. Many defects, such as a vacancy, a
tetrahedral interstitial or an impurity, occupy initially tetrahedral sites in the zincblende structure. The
lattice relaxation reduces the symmetry, e.g. to tetragonal or trigonal, and therefore causes initially
degenerate levels to split. Such splitting is called the static Jahn–Teller effect [639, 660]. The energy
change in termsof the atomicdisplacementQ canbedenoted (usingperturbation theory for the simplest,
nondegenerate case) as −I Q (I > 0). Including the elastic contribution with a force constant C , the
energy of a configuration Q is

E = −I Q + 1

2
C Q2 . (7.66)

The stable configuration Qmin, for which the energy is minimal (Emin), is therefore given by



7.7 Deep Levels 211

Fig. 7.33 Charge states of
the vacancy in silicon. Left:
level scheme without
lattice relaxation, right:
level scheme including the
Jahn–Teller effect. For a
Fermi level below (above)
E(0, 2) the charge state
V++ (V 0) is dominant

V

V
V0

V

V0
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Qmin = I

C
(7.67a)

Emin = − I 2

2C
. (7.67b)

Several equivalent lattice relaxations may exist, e.g. a 3-fold minimum for remaining C3v symmetry.
The energy barrier between them has a finite height. Therefore, e.g. at sufficient temperature, the defect
can switch between different configurations and eventually again becomes isotropic (dynamic Jahn–
Teller effect). The experimental observation depends on the relation between the characteristic time of
the experiment and the reorientation time constant of the defect.

7.7.5 Negative-U Center

We explain the principle of a so-called negative-U center [661] for the Si vacancy [662] (cf. Fig. 4.2).
It was first proposed by Anderson to explain the properties of amorphous chalcogenide glasses [663].
Many defects in semiconductors exhibit negative-U behavior, e.g. also the boron interstitial in Si
[662, 664]. Coulomb energy and the Jahn–Teller effect compete for the position of the occupancy
level for different charge states. U refers to the additional energy upon charging of the defect with
an additional electron. The Coulomb repulsion of electrons leads to an increase of the energy, i.e.
positive U , which has been calculated to be 0.25eV for the Si vacancy [665] for all charge states.
The occupation level (cf. Sect. 4.2.2) E0(1, 2) (the index 0 indicates effects only due to many-electron
Coulomb interaction), separating the domination of V++ and V+ (Fig. 7.33) is 0.32eV above the
valance-band edge.Therefore, the occupation level E0(0, 1) is expected to lie at about 0.57eVabout EV.

The Jahn–Teller effectmay lead to a splitting of the otherwise 4-fold degenerate states of the vacancy.
A detailed experimental study using hyperfine interactions can be found in [666]. The schematic level
diagram for the Jahn–Teller splitting is shown in Fig. 7.34. The V++ state (A1 is always populated

V

T2

A1

V V0 V

Fig. 7.34 Jahn–Teller splitting for different charge states of the vacancy. A1 and T2 refer to irreducible representations
of the Td point symmetry group. A1 is nondegenerate and therefore does not exhibit a Jahn–Teller effect. T2 is triply
degenerate. The arrows represent electrons and their spin orientation
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with two electrons) is resonant with the valence band. The T2 state lies in the band gap. When the
Jahn–Teller effect (now on the T2 state) is included, the energies of the different charge states depend
on the configuration coordinate (a mostly tetragonal distortion in the case of the Si vacancy).

EV 0 = E(0, Q) =E(0, Q = 0) − 2I Q + 1

2
CQ2 (7.68a)

EV+ = E(1, Q) =E(1, Q = 0) − I Q + 1

2
CQ2 (7.68b)

EV++ = E(2, Q) =E(2, Q = 0) + 1

2
CQ2 . (7.68c)

For the n = 2 state the T2 gap state is empty and thus no degeneracy and Jahn–Teller term arises.
For n = 1 there is a linear Jahn–Teller term. The occupation with two electrons (V 0) causes an
approximately twice as large Jahn–Teller splitting for the n = 0 state. The force constant is assumed
to be independent of the charge state. The energies for the minimum configurations Qn

min are therefore

E(0, Q0
min) =E(0, Q = 0) − 4

I 2

2C
(7.69a)

E(1, Q1
min) =E(1, Q = 0) − I 2

2C
(7.69b)

E(2, Q2
min) =E(2, Q = 0) . (7.69c)

The Jahn–Teller energy EJT = I 2/2C lowers the position of the occupancy levels E0 calculated with
Coulomb terms only. The occupancy levels including the Jahn–Teller contribution are therefore given as

E(1, 2) = E0(1, 2) − EJT (7.70a)

E(0, 1) = E0(0, 1) − 3 EJT . (7.70b)

For the vacancy in silicon the Jahn–Teller energy EJT is about 0.19eV. Thus the E(1, 2) level is
lowered from 0.32eV to 0.13eV. The E(0,1) occupancy level, however, is reduced from 0.57eV to
0.05eV [662, 667] (see Fig. 7.33). The occupancy level E(0, 2) is in the middle between E(0, 1) and
E(1, 2) (E(0, 2) = (E(0, 1)+E(1, 2))/2) and indicated in Fig. 7.35a. At this energy, c(V 0) = c(V++)

and the value of c(V+) is small (≈ exp E1−E2
2kT ) since E(0, 1) < E(1, 2) (cmp. (7.65)).

The relative concentrations of the three charge states are determined by (7.63) (degeneracy and
entropy terms have been neglected)

c(V++)

c(V+)
= exp

(
E(1, 2) − EF

kT

)
(7.71a)

c(V+)

c(V 0)
= exp

(
E(0, 1) − EF

kT

)
. (7.71b)

They are depicted inFig. 7.35a in a plot related toFig. 7.30a.Therefore,V ++ dominates if EF < E(0, 1)
and V 0 dominates for EF > E(1, 2). In the intermediate range E(0, 1) < EF < E(1, 2) we know
from (7.71a, b) that V+ is dominated by V 0 and V++. However, at this point it is not clear whether
V++ or V 0 dominates overall. The ratio of the concentrations of V++ and V 0 is given by
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(a) (b)

Fig. 7.35 a Population of states of a negative-U defect (neutral: black, single ionized: red, double ionized: blue)
according to (7.64a–c) as a function of the Fermi level. The ionization energies have been chosen as E1 = −0.4eV
and E2 = −0.2eV (cmp. Fig. 7.30) and are indicated by dashed lines (kT = 25meV). The occupancy level E(0, 2) is
indicated with a dash-dotted line. The conduction band edge is taken as zero energy. b depicts the according number of
electrons ionized from the defect

c(V++)

c(V 0)
= exp

(
E(1, 2) + E(0, 1) − 2EF

kT

)
= e2 exp

(
E(0, 2) − EF

kT

)
. (7.72)

The occupancy level E(0, 2) is thus again given as

E(0, 2) = E(0, 1) + E(1, 2)

2
, (7.73)

and is shown in Fig. 7.33. V++ dominates if EF < E(0, 2) and V 0 dominates for EF > E(0, 2).
V+ is, for no position of the Fermi level, the dominating charge state of the Si vacancy. We note that
for n-doped Si the V− and V−− can also be populated. The population of the V 0 state with an extra
electron introduces another Jahn–Teller splitting (Fig. 7.34) that has trigonal symmetry.

Generally, the Jahn–Teller effect can make the addition of an electron cause an effectively negative
charging energy; in this case the center is termed a negative-U center.We note that the single vacancy in
germanium is not a negative-U center due to smaller Jahn–Teller distortion and smaller electron-lattice
coupling [668].

7.7.6 DX Center

The DX center is a deep level that was first investigated for n-doped (e.g. Si-doped) AlxGa1−xAs. It
dominates the transport properties of the alloy for x > 0.22. For smaller Al concentrations and GaAs
the DX level lies in the conduction band. DX-type deep levels have also been found for other alloys
and dopants, e.g. GaAsP:S.

It is experimentally found that the capture process of electrons into the DX center is thermally
activated. The capture energy Ec depends on the AlAs mole fraction (Fig. 7.36). The (average) barrier
for electron capture has a minimum of 0.21eV for x ≈ 0.35, near the crossover point between direct
and indirect band gap (cf. Fig. 6.24). For lower Al concentrations, the capture barrier increases to 0.4eV
for x = 0.27; for x > 0.35 the capture barrier increases to about 0.3eV for x around 0.7 [669]. The
barrier for thermally releasing carriers from the DX center has been determined to be about 0.43eV,
independent of the Al mole fraction [669].
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Carriers can be removed from theDX center by optical absorption of photonswith energy larger than
about 1.2eV. If carriers are removed by optical excitation at low temperatures the (re-)capture is so slow
(σ < 10−30 cm2) that the carriers remain in the conduction band and cause persistent photoconductivity
(PPC). The PPC is only reduced upon increasing the sample temperature. The concentration of the DX
center is about the same as the net doping concentration.

The properties of the DX center are reviewed in [670, 671]. So far, no definite microscopic model
of the DX center has been agreed on. Lang [672] proposed that the DX center involves a donor
and an unknown defect (probably a vacancy). It probably involves large lattice relaxation as in the
configuration coordinates model of Fig. 7.37 where the donor binding energy Eb

D with respect to the
conduction-band minimum, the barrier for electron capture Ec, the barrier for electron emission Ee and
the optical ionization energy Eo are labeled. The donor binding energy is measured with Hall effect
(cf. Sect. 15.2.1) at temperatures sufficient to overcome the capture and emission barriers, the emission
barrier is measured with deep level transient spectroscopy (DLTS). The capture barrier manifests itself
in PPC experiments. We note that the DX center is related to the L-conduction band. For small Al mole
fraction, the DX level is degenerate with the �-related conduction band (see Fig. 7.37b).

Theoretical models and experimental evidence hint at a vacancy-interstitial model for the Si-DX
center [673]. The donor (Si) is displaced along the 〈111〉 direction from the Ga substitution site. The
displacement is predicted to be 0.117nm and the distorted geometry can be viewed as a Ga vacancy and
a Si interstitial. The charge state of the (filled) DX center is proposed to be a two-electron negative-U
state.

7.7.7 EL2 Defect

The EL2 defect is a deep donor in GaAs. It is not related to impurities but occurs for intrinsic material,
in particular grown under As-rich conditions. It has physical properties similar to the DX center.
The bleaching of absorption due to EL2, i.e. the optical removal of electrons from the defect at low
temperatures, is shown in Fig. 7.38. The microscopic model [674] describes the EL2 defect as an
arsenic antisite defect, i.e. an arsenic atom on a Ga site, AsGa. In the charged state the arsenic atom is
displaced from the lattice position and a complex of a Ga vacancy (symmetry T3d ) and an interstitial
As (symmetryC3v) with 0.14nm displacement along 〈111〉 forms (VGa-Asi). The charged state is filled
with two electrons.

Fig. 7.36 Energy barrier
for electron capture Ec at
the Si-DX center in
AlxGa1−xAs for various
compositions.
Experimental data
from [669]
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Fig. 7.37 a Schematic configuration coordinate diagram for the DX level with large lattice relaxation. q0 is the con-
figuration of the empty defect, qt is the configuration of the filled defect. The donor binding energy Eb

D, the barrier for
electron capture Ec, the barrier for electron emission Ee and the optical ionization energy Eo are labeled. EC denotes the
conduction-band edge. We note that in (Al,Ga)As the DX level is associated with the L conduction band (see Fig. 6.24).
b Schematic configuration coordinate diagram for the DX level in Al0.14Ga0.86As with the DX level being degenerate
with the (�-related) conduction band
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Fig. 7.38 Absorption spectrum of GaAs at low temperatures (T = 10K) when cooled in the dark (solid line). The
dashed (dash-dotted) line is the absorption after illuminating the sample for 1min (10min) with white light, leading to
quenching of the EL2-related absorption. Adapted from [675]

7.7.8 Semi-insulating Semiconductors

Semiconductors with high resistivity (107–109 �cm) are called semi-insulating (‘s.i.’ or ‘si’). Semi-
insulating substrates are needed for high-speed devices. The high resistivity should stem from a small
free-carrier density at finite temperature and not from a small mobility due to poor crystal quality.
For sufficiently wide band gap, the intrinsic carrier concentration is small and such pure material is
semi-insulating, e.g. GaAs with ni = 1.47 × 106 cm−3 and 5.05 × 108 �cm [676]. Since shallow
impurities are hard to avoid, another route is used technologically. Impurities that form deep levels are
incorporated in the semiconductor in order to compensate free carriers. For example, a deep acceptor
compensates all electrons if NA > ND. Since the acceptor is deep (Eb

A � kT ), it does not release holes
for reasonable temperatures. Examples of suitable impurities for compensation of electrons are Si:Au
[677], GaAs:Cr [678] and InP:Fe [679]. A deep donor, e.g. InP:Cr [680], is necessary to compensate
p-type conductivity.

Figure 7.39a shows the terms of Fe in InP [681, 682]. An overview of transition metals in III–V
semiconductors can be found in [683]. The electron configuration of neutral Fe atoms is 3d64s2 (cf.
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Fig. 7.39 a Schematic band diagramof InPwith levels of Fe impurities in the 3+ and 2+ charge states at low temperature.
All energies are given in eV. The arrow denotes capture of an electron (from the conduction band or a shallow donor)
on the deep acceptor. Compare this figure also with Figs. 9.36 and 10.25. b Depth profile of electron concentration
in an InP:Sn/InP:Sn,Fe/InP:Sn structure. The change �n ≈ 4.5 × 1016 cm−3 of electron concentration is due to the
compensation by Fe and corresponds to the chemical iron concentration determined by SIMS, [Fe]= 4.9× 1019 cm−3.
Part b adapted from [688]

Table 17.2). The Fe is incorporated on the In site and thus has a Fe3+ state as a neutral acceptor (A0).
The Fe3+ state has the electron configuration 3d5. The arrow in Fig. 7.39a represents the capture of
an electron from the conduction band or from a shallow donor. The charge state of the Fe becomes
Fe2+ (charged acceptor, A−) with the electron configuration 3d6. The cubic crystal field (Td symmetry)
splits this 5D Fe state8 into two terms [684] that exhibit further fine structure [682]. The large thermal
activation energy of 0.64eV found in the Hall effect on semi-insulating InP:Fe [679] corresponds to
the energy separation of the 5E level and the conduction band.

The maximum electron concentration that can be compensated in this way is limited by the solu-
bility of Fe in InP [685], about 1× 1017 cm3. Higher Fe incorporation leads to the formation of Fe (or
FeP) precipitates and degrades the crystal quality. Only a fraction of the incorporated Fe may then be
electrically active and contribute to the compensation. The maximum electrically active Fe concentra-
tion is found to be 5–6×1016 cm−3 [686]. The compensation can be directly visualized via the depth
profile of the electron concentration in a n-si-n structure (Fig. 7.39b). The poor thermal stability of Fe,
i.e. high diffusion coefficient, has evoked proposals for more stable dopants such as InP:Ru [687].

7.7.9 Isoelectronic Impurities

Isoelectronic impurities, generally represent a deep level with a short range potential. The isoelectronic
trap introduces a bound state for an electron or a hole. Once a carrier has been captured, the defect
becomes charged. The other carrier type is then easily trapped, forming a bound exciton (Sect. 10.3.2).
The theory of isoelectronic impurities is outlined in [689]. A detailed theoretical treatment of N in
GaAs and GaP is given in [544].

In GaP:N, an electron is spatially localized on the N impurity. Most of the wave function is at the
X-point. The nitrogen-bound electron level in GaP (A1 symmetry) is close to the conduction band edge
and within the band gap. Important for the energy position is the lattice relaxation, leading to an inward
relaxation of the surrounding Ga atoms (Fig. 7.41). Due to the spatial localization of the wave function
it is delocalized in k-space (Fig. 7.40a) and obtains a sizeable component at the �-point, facilitating
zero-phonon absorption from the valence band. This effect is present only when the lattice relaxation
around the impurity is considered; without relaxation the �-component is zero, with relaxation about
1% [544]. The �-component of the wave-function is larger for localization at an isoelectronic impurity

8The notation is 2S+1 J (multiplicity), with S being the total spin and J being the total angular momentum.
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Fig. 7.40 a Model
calculation of the
wave-vector dependence of
the probability density of
an electron bound to a
10meV deep isoelectronic
trap (N) and to a 100meV
deep shallow donor (S) in
GaP. Adapted from [690].
bWavefunction (isosurface
at 20% of maximum) of
isolated nitrogen (N) and
neighboring N–N pair
(NN1) in GaP. Adapted
from [544] (a) (b)

Fig. 7.41 Energy levels of nitrogen impurity states in GaP (left) and GaAs (right). The energy scale is relative to the
bulk GaP valence band maximum, the conduction band minima (CBM) are thus shown relative to the vacuum level.
The conduction band is shown in grey. For both materials, (a) denotes the isolated N impurity level calculated without
lattice relaxation (dashed line), and (b) with lattice relaxation. (c) denotes the position of N–N pair levels, m denoting
the neighbor. (d) shows selected experimental data. NN1 denotes the direct neighbor NN-pair. The other NNn follow the
usual nomenclature as in [694]. Data taken from [544]

than at a shallow donor such as sulfur [690]. This way a large oscillator strength for optical transitions
occurs (Sects. 9.7.9, 10.3.2). The wavefunction of an isolated single N impurity and a neighboring N–N
pair (NN1) in GaP are shown in Fig. 7.40b.

Isolated nitrogen impurities in (unstrained) GaAs introduce states only within the conduction band
(Fig. 7.41). The reason is that the GaAs conduction band edge is further from the vacuum level than
that of GaP (see Fig. 12.21). Only the NN1 and NN4 pair levels are theoretically expected to be
within the GaAs band gap. The index denotes the nth neighbor position. The NN1 level has been
experimentally observed [691, 692]. The isolated nitrogen impurity level is forced into the GaAs band
gap upon hydrostatic pressure [692, 693] (Fig. 7.42). Further levels deeper within the band gap are due
to clusters containing more than two nitrogen atoms.

7.7.10 Surface States

The investigation of (semiconductor) surfaces is a large field with sophisticated methods that allow
real-space imaging with atomic resolution by scanning probe microscopy and highly depth resolved
electronic studies. The surface represents first of all a break in the periodic crystal potential and thus
a defect of the bulk crystal. The unsatisfied bonds partly rearrange, e.g. by building dimers, forming
a surface reconstruction or remain as dangling bonds. The surface exhibits a surface density of states.
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Fig. 7.42 Pressure dependence of the energy of excitons bound to isolated nitrogen impurities in GaAs (circles),
measured from the top of the GaAs valence band. The dashed lines are the pressure dependent GaAs bulk band gaps
(cmp. Fig. 6.49). The solid (dash-dotted) line is a theoretical model for the nitrogen-bound exciton (electron) level.
Adapted from [693]
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Fig. 7.43 Image of a topography (�z = 2.8nm) and b work function (�φ = 4.21–4.26eV) of a surface step along
[111] on a n-GaP(110) surface cleaved in UHV. Adapted from [696]. c and d show the corresponding linescans. Adapted
from [696]

Such states can lie in the band gap and capture electrons, leading to recombination and a depletion
layer. For a brief introduction on semiconductor surface physics see Chap.11; for more details we refer
to [695].

As an example of the formation of electronic states at surface defects we show in Fig. 7.43 the
comparison of topography and work function (measured by Kelvin probe force microscopy [696]) at
a surface step on a GaP(110) surface that has been prepared by cleaving in-situ in ultrahigh vacuum
(UHV). The depletion-type band bending of the surface is about 0.4eV. The further increase of the
position of the vacuum level at the step edge shows the presence of trap states in the band gap causing
the conduction band to bend upwards (cf. Sect. 21.2.1). Modeling of the effect shows that the charge
density at the surface is 6 × 1011 cm−2 and at the step edge 1.2 × 106 cm−1.
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7.8 The Charge Neutrality Level

The charge neutrality level (CNL) of a semiconductor is defined as the maximum occupied surface
state energy at a neutral surface. In this case it is identical with the Fermi level (which renders the
surface without a net charge). The CNL is also termed Fermi level stabilization energy [700] or
‘branch point energy’ [697] and marks the energy at which the character of intrinsic defects changes
from predominantly donor-like (below CNL) to predominantly acceptor-like (above CNL). If Fermi
level in the bulk and CNL deviate, surface charges appear; when the Fermi level is above (below) the
charge neutrality level, the surface is negatively (positively) charged. Whether this means a depletion
or accumulation layer depends on the conductivity type of the semiconductor. Band bending and space
charge regions are discussed in more detail further below (Sect. 12.3.4, Sect. 21.2.1). The position
of the CNL can be calculated from the Brillouin zone average of the conduction-to-valence band
difference [698, 699].

Experimentally, the Fermi level will be established at the CNL when a lot of deep defects are
introduced, e.g. by irradiation. For many semiconductors, the CNL is close to the middle of the band
gap (Si, GaAs). Notable exceptions are e.g. InAs or In2O3 with a CNL within the conduction band
leading to n-type surface conduction.

7.9 Hydrogen in Semiconductors

The role of hydrogen in semiconductors was first recognized in studies of ZnO [701]. It is now clear
that hydrogen plays an important role in the passivation of defects. As a ‘small’ atom, it can attach
easily to dangling bonds and form an electron-pair bond. Thus, surfaces, grain boundaries, dislocations
and shallow (donor and acceptor) and deep impurity levels become passivated. A good overview and
many details of the physics and technological use of hydrogen in semiconductors can be found in [702,
703]. The hydrogen must be typically introduced as atomic species into semiconductors, e.g. from a
plasma in the vicinity of the surface or by ion irradiation.

With regard to silicon it is important to note that the Si–H bond is stronger than the Si–Si bond. Thus
a silicon surface under atomic hydrogen exhibits Si–H termination rather than Si–Si dimers [704]. Due
to the stronger bond, the hydrogenation leads to an increase of the silicon band gap, which can be used
for surface passivation [705], leading to reduced reverse diode current.

The hydrogen concentration in amorphous Si (a-Si) can be as high as 50% [706]. Electronic grade
a-Si contains typically 10–30atomic% hydrogen and is thus rather a silicon–hydrogen alloy.

Hydrogen in crystalline silicon occupies the bond-center interstitial position (see Fig. 3.18b) as
shown in Fig. 7.44a. The complexes formed by hydrogen with shallow acceptors and donors have been
studied in detail. It is now generally accepted that for acceptors (e.g. boron) in silicon the hydrogen
is located close to the bond-center position of the Si–B pair (BM, bond minimum) as sketched in
Fig. 7.45a. The boron atom forms an electron-pair bond with three silicon atoms of the tetrahedra, the
fourth silicon bonds to the hydrogen atom. The complex therefore no longer acts as an acceptor. The
silicon atoms and the acceptor relax their positions. The adiabatic potential energy surface of hydrogen
in Si:B is shown in Fig. 7.44b. The hydrogen can sit on four equivalent sites (BM) along the 〈111〉
directions of the initial B–Si4 tetrahedron. This reduces the symmetry, e.g. of H–B vibrations [708].
The energetic barrier for the hydrogen orientation has been determined to be 0.2eV theoretically [707]
for a hydrogen motion along the path BM–C–BM in Fig. 7.44b. Stress (along [100] and [112]) reduces
the symmetry and leads to splitting of the local vibrational modes, now showing axial symmetry [709].
However, this preferential orientation disappears with an activation energy of 0.19eV, close to the
theoretical value.
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Fig. 7.44 a Energy for positions u of the hydrogen atom along the 〈111〉 direction for H+ in pure Si (Si atom at
u = −0.25) and neutral hydrogen (B atom at u = −0.25). u is measured in units of

√
3a0. For all positions of the

hydrogen atom the positions of the other atoms have been relaxed in the calculation. Data from [707]. b Adiabatic
potential energy in the (110) plane for hydrogen in Si:B. ‘BM’ denotes the bond minimum site (high valence electron
density), C and C’ are equivalent for pure Si. Reprinted with permission from [707], ©1989 APS

Fig. 7.45 Schematic model for hydrogen in silicon forming a complex with a a shallow acceptor (boron, empty orbital)
and b a shallow donor (phosphorus, double-filled orbital)

Hydrogen has experimentally been found to also passivate shallow donors. The microscopic config-
uration is sketched in Fig. 7.45b. The hydrogen atom sits on the Si–AB (antibonding) position and forms
an electron-pair bond with the silicon atom. The donor, e.g. phosphorus, is left with a double-filled
p-orbital (lone pair) whose level is in the valence band and thus no longer contributes to conductivity.

(a) [110]

[001]

[110]
(b)

Fig. 7.46 a Structure of the V–O complex (A center) in silicon. The black sphere represents the oxygen atom. Reprinted
with permission from [710], ©2004 APS. b Calculated ground-state structure for the V–O–H2 center in silicon. Oxygen
is over the C2 axis, and the two white spheres represent hydrogen. Reprinted with permission from [711], ©2000 APS
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Molecular hydrogen can passivate the so-called A center in Si, an oxygen–vacancy complex [711].
The atomistic configuration of the V–O–H2 complex is shown in Fig. 7.46. The deep double donor S
in Si with a level at 0.3 eV below the conduction-band edge can also be passivated by two hydrogen
atoms [712].



Chapter 8
Transport

Um über den Temperaturverlauf des Widerstandes Rechenschaft geben zu können,
müssen andere Abweichungen von der strengen Periodizität entscheidend sein,
nämlich diejenigen, welche von den thermischen Eigenschwingungen des Kristalls
herrühren.
In order to be able to account for the temperature dependence of the resistivity, other
deviations from the strict periodicity must be decisive, namely those which result from
the thermal vibrations of the crystal.

F. Bloch, 1928 [61]

Abstract The physics of transport in semiconductors is treated foremost for charge transport. Band
transport and scattering, mobility, low field and high field effects as well as polarons and hopping
transport are covered. A short section mentions ionic transport before heat conduction and coupled
heat and charge transport including thermopower and Peltier effect are discussed.

8.1 Introduction

Charge and heat energy can be transported through the semiconductor in the presence of appropriate
(generalized) forces. Such a force can be an electric field or a temperature gradient. Both transport
phenomena are coupled since electrons transport energy and charge simultaneously through the crystal.
First, we will treat the charge transport as a consequence of a gradient in the Fermi level, then the heat
transport upon a temperature gradient and finally the coupled system, i.e. the Peltier and Seebeck
effects. Detailed treatments of carrier transport can be found in [713, 714].

Practically all important semiconductor devices are based on the transport of charge, such as diode,
transistor, photodetector, solar cell and laser.

Carriers move in the semiconductor driven by a gradient in the Fermi energy. We distinguish

• drift, as a consequence of an electric field E,
• diffusion, as a consequence of a concentration gradient ∇n or ∇ p.

In inhomogeneous semiconductors for which the position of the band edges is a function of position,
another force occurs. This will not be treated here, since later (cf. Chap. 12) it will be included as an
additional, internal electric field.

© Springer Nature Switzerland AG 2021
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In Sects. 8.2–8.5we treat band conductivity, i.e. the transport of charge carriers in extended states, the
conduction and valence bands characterized by an effective mass. Conductivity is then determined by
the carrier concentration (free electrons and holes) and scatteringmechanisms (mobility). In disordered
semiconductors such as amorphous material, the charge transport due to hopping between localized
states close to the Fermi level dominates the conductivity which is discussed in Sect. 8.8.

Many semiconductor properties, such as the carrier concentration and the band gap, depend on the
temperature. Thus, device properties will also depend on temperature. During operation of a device
typically heat is generated, e.g. by Joule heating due to finite resistivity. This heat leads to an increase
of the device temperature that subsequently alters the device performance, mostly for the worse.
Ultimately, the device can be destroyed. Thus cooling of the device, in particular of the active area of the
device, is essential.Mostly the thermalmanagement of device heating limits the achievable performance
(and lifetime) of the device. In high-power devices quite high energy densities can occur, e.g. the facet
of a high-power semiconductor laser has to withstand an energy density beyond 10MWcm−2.

8.2 Conductivity

Under the influence of an electric field the electrons accelerate according to (cf. (6.36))

F = m∗ dv
dt

= �
dk
dt

= q E = −eE . (8.1)

In the following, q denotes a general charge, while e is the (positive) elementary charge. We also
consider an isotropic effective massm∗ at first. After the time δt the k vector of all conduction electrons
(and the center of the Fermi sphere) has been shifted by δk

δk = −eE
�

δt . (8.2)

In the absence of scattering processes this goes on further (similar to an electron in vacuum). This regime
is called ballistic transport. In a (periodic) band structure, the electron will perform a closed cycle as
indicated in Fig. 8.1. Such motion is called a Bloch oscillation. However, in a bulk crystal the period T
of such an oscillation eET/� = 2π/a0 is of the order of 10−10 s for E = 104 V/cm. This time is much
longer than a typical scattering time of 10−14 s. Thus, in bulk material the Bloch electron cannot reach
the zone boundary. However, in artificial superlattices (cf. Chap. 12) with larger periodicity (≈10nm),
high electric fields (≈106 V/cm) and high quality (reduced collision time) such motion is possible. We
note that in the absence of scattering, electrons also perform a periodic oscillation in a magnetic field
(cyclotron motion).

Fig. 8.1 Schematic
representation of a Bloch
oscillation

/a/a
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In a real semiconductor, at finite temperatures, impurities, phonons and defects (finally also the
surface) will contribute to scattering. In the relaxation-time approximation it is assumed that the
probability for a scattering event, similar to friction, is proportional to the (average) carrier velocity.
The average relaxation time τ is introduced via an additional term v̇ = −v/τ that sums up all scattering
events.1 Thus, themaximumvelocity that can be reached in a static electric field is given by (steady-state
velocity)

v = −eE τ

m∗ . (8.3)

The current density per unit area is then linear in the field, i.e. fulfills Ohm’s law

j = n q v = n e2 E τ

m∗ = σ E . (8.4)

The conductivity σ in the relaxation-time approximation is given by

σ = 1

ρ
= n e2 τ

m∗ . (8.5)

In the case of a cylindrically symmetric mass such as for electrons in silicon or germanium, for the
effective mass in (8.5) the effective conductivity mass must be used,

1

m∗
σ

= 1

3

(
2

m t
+ 1

m l

)
. (8.6)

The specific resistivity is the inverse of the conductivity.Metals have a high conductivity (see Table 8.1),
e.g. for Cu at room temperature σ = 5.8 × 105 �−1 cm−1. At low temperatures (4K) the conductivity
is even a factor of 105 higher. The mean free path d = τvF is

d = σm∗vF
n e2

, (8.7)

vF being the Fermi velocity (EF = m∗v2F/2). For copper, d = 3mm at low temperature (and thus
susceptible to the sample geometry) while at room temperature the mean free path is only about 40nm.
However, this becomes an issue when the metal line width and height of interconnects in integrated
circuits approaches this length scale [715] (see Sect. 24.5.5).

In semiconductors, the carrier concentration depends strongly on the temperature. At zero tempera-
ture the conductivity is zero. Also, the scattering processes and thus the relaxation time constant exhibit
a temperature dependence. The conductivity spans a large range from insulating to almost metallic
conduction (see Table 8.1).

8.3 Low-Field Transport

First we consider only small electric fields. The real meaning of this will only become clear in Sect. 8.4
on high-field transport. In the low-field regime the velocity is proportional to the electric field.

1Going beyond the relaxation time approximation is discussed in Appendix J.
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Table 8.1 Conductivity at room temperature for various metals, semiconductors, insulators and liquids

Material σ (�−1 cm−1)

Ag 6.25 × 105

Al 3.6 × 105

Au 4.35 × 105

Cu 5.62 × 105

Fe 1.1 × 105

Pt 1.02 × 105

Ge pure (ND ∼ 1013 cm−3) 10−2

Ge (ND ∼ 1015 cm−3) 1

Ge (ND ∼ 1017 cm−3) 2 × 101

Ge (ND ∼ 1018 cm−3) 2 × 102

Si pure 4.5 × 10−6

Si:As (ND ∼ 3 × 1019 cm−3) 4 × 102

Si:B (NA ∼ 1.5 × 1019 cm−3) 1.2 × 102

GaAs pure 1.4 × 10−7

ZnO:Al (highly doped) ≈1 × 104

Pentacene 10−8 –10−4

SiO2 ≈10−15

Al2O3 ≈10−16

H2O pure 4 × 10−8

Hexane ≈10−18

8.3.1 Mobility

The mobility is defined (scalar terms) as

μ = v

E
. (8.8)

By definition, it is a negative number for electrons and positive for holes. However, the numerical value
is usually given as a positive number for both carrier types. In an intrinsic semiconductor the mobility
is determined by scattering with phonons. Further scattering is introduced by impurities, defects or
alloy disorder. The conductivity is (8.4)

σ = q n μ (8.9)

for each carrier type. Using (8.5) the mobility in the relaxation time approximation is

μ = q τ

m∗ . (8.10)

In the presence of both electrons and holes,

σ = σe + σh = −e n μn + e p μp , (8.11)

where μn and μp are the mobilities for electrons and holes, respectively. These are given by μn =
−e τn/m∗

e and μp = e τp/m∗
h.

As the unit for mobility, usually cm2/Vs is used. While Cu at room temperature has a mobility
of 35cm2/Vs, semiconductors can have much higher values. In two-dimensional electron gases (cf.
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Table 8.2 Mobilities of electrons and holes at room temperature for various semiconductors

Material −μn (cm2/Vs) μp (cm2/Vs)

Si 1300 500

Ge 4500 3500

GaAs 8800 400

GaN 300 180

InSb 77000 750

InAs 33000 460

InP 4600 150

ZnO 230 8

Chap.12), the mobility can reach several 107 cm2/Vs at low temperature (Fig. 12.37). In bulk semi-
conductors with small band gap, a high electron mobility is caused by its small effective mass. Some
typical values are given in Table 8.2.

8.3.2 Microscopic Scattering Processes

The relaxation time constant summarizes all scatteringmechanisms. If the relaxation times τi of various
processes are independent, the Matthiesen rule can be used to obtain the mobility (μi = q τi/m∗)

1

μ
=

∑
i

1

μi
. (8.12)

A more detailed book keeping is provided within the framework of the Boltzmann transport theory
(Appendix J).

The various scattering mechanisms have quite different temperature dependences such that the
mobility is a rather complicated function of temperature. In [716] the mechanisms determining the low
and high-field transport properties of (cubic) semiconductors are reviewed. A schematic overview of
the various carrier scattering processes discussed in the following is shown in Fig. 8.2.

8.3.3 Ionized Impurity Scattering

Theoretically, this problem is treated similar to Rutherford scattering. A screened Coulomb potential
is assumed, as the scattering potential

V (r) = − Z e

4πε0εr

1

r
exp

(
− r

lD

)
, (8.13)

where lD is the screening length. The problem has been treated classically by Conwell and Weisskopf
[717] and quantum mechanically by Brooks [718] and Herring. An expression for the mobility that
encompasses the Conwell–Weisskopf and Brooks–Herring results is derived in [719]. Further details
are given in [720, 721]. For the mobility it is found that
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Fig. 8.2 Scheme of microscopic carrier scattering mechanisms

μion.imp. = 27/2(4πε0εr)
2

π3/2 Z2 e3
√
m∗

(kT )3/2

Nion

1

ln(1 + b) − 1/(1 + 1/b)
, (8.14)

with b = 4(k/ lD)2 = 8m∗E (lD/�)2. In the Thomas-Fermi screening model

l2D = 4π
e2

ε0εr
N (EF) =

(
3

π

)1/3 4m∗e2

ε0εr�2
n1/3 . (8.15)

The formula (8.14) is valid only for b � 1, i.e. small carrier densities. A similar formula from [720] is

μion.imp. = 128
√
2π (ε0εr)

2 (kT )3/2

m∗1/2 Z2 Nion e3

[
ln

24m∗ ε0εr (kT )2

n e2 �2

]−1

. (8.16)

For large ionized impurity (and carrier) density (b � 1), the mobility is given by [555]

μion.imp. = 4 e

31/3 π2/3 h
n−2/3 , (8.17)

the value of the pre-factor being about 3 × 1014 (Vs)−1.
The scattering timedepends like τ ∝ (E/kT )s on the kinetic energy; formoderate orweak scattering

s = 3/2, for very strong scattering, s = −1/2 [714].
For typical substitutional impurities, the charge of the scattering center is |Z | = 1; in oxides, oxygen

vacancies may have Z = 2. At high impurity densities, impurity clusters may form with |Z | > 1; this
will have a strong influence on the scattering rate since it proportional to Z2. The decrease of mobility
for ND > 1020 cm−3 (Fig. 8.3a) is attributed to such effect which can be described with an effective
impurity clustering charge ZD (Fig. 8.3b) [722, 723].
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Fig. 8.3 a Electron mobility in highly doped silicon. Experimental data (symbols) from various sources and modeling
with ionized impurity scattering with (solid line) and without (dashed line) considering impurity clustering. b Effective
impurity cluster charge ZD. Adapted from [722]

8.3.4 Deformation Potential Scattering

Acoustic phonons with small wavevector, i.e. a wavelength large compared to the unit cell, can have
TA or LA character. The TA phonons represent a shear wave (with zero divergence), the LA phonons
are a compression wave (with zero rotation). The LA is a plane wave of displacement δR parallel to
the k-vector q,

δR = A sin (q · R − ωt) . (8.18)

The strain tensor is given by

εi j = 1

2

(
qi A j + q j Ai

)
cos (qR − ωt) . (8.19)

It has a diagonal form εi j = qiA j for q and ω → 0. Therefore, the LA phonon creates an oscillatory
volume dilatation (and compression) with amplitude q ·A. This volumemodulation affects the position
of the band edges. For the conduction-band edge the energy change is related to the volume change by
the hydrostatic deformation potential Eac.def. = V∂EC/∂V . Since the modulation is small compared
to the energy of the charge carriers, it is mostly an elastic scattering process. The Hamilton operator
for the LA scattering is

Ĥ = Eac.def. (q · A) . (8.20)

The size of the LA amplitude is given by the number of phonons in the mode that is given by the Bose–
Einstein distribution, Nph(�ω) = [exp(�ω

kT )]−1. The mobility due to acoustic deformation potential
scattering is found to be

μac.def. = 2
√
2π e �

4 cl
3m∗5/2 E2

ac.def.

(kT )−3/2 , (8.21)

where cl = ρcLAs , ρ being the density and cs being the sound velocity. The scattering time increases
like τ ∝ E−1/2 with the kinetic energy [714].

The acoustical deformation potential scattering is important at high temperatures. It is dominating
in nonpolar semiconductors (Ge, Si) at high temperatures (typically at and above room temperature).
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8.3.5 Piezoelectric Potential Scattering

In piezoelectric crystals (see Sect. 16.4), i.e. crystals that show an electric polarization upon strain,
certain acoustic phonons lead to piezoelectric fields. In GaAs, with 〈111〉 being the piezoelectric
directions, this is the case for shear waves. In strongly ionic crystals, e.g. II–VI semiconductors, the
piezoelectric scattering can be stronger than the deformation potential scattering. The mobility due to
piezoelectric potential scattering is

μpz.el. = 16
√
2π

3

� ε0εr

m∗3/2 e K 2
(kT )−1/2 , (8.22)

with K = e2p/cl
ε0εr+e2p/cl

, ep being the piezoelectric coefficient.

8.3.6 Polar Optical Scattering

LOphonons are connectedwith an electric field antiparallel to the displacement (9.29). In the scattering
mechanism the absorbed or emitted phonon energy �ω0 is comparable to the thermal energy of the
carriers. Therefore, the scattering is inelastic and the relaxation-time approximation does not work. The
general transport theory is complicated. If the temperature is low compared to the Debye temperature,
T � �D

μpol.opt. = e

2m∗ α ω0
exp

(
�D

T

)
, (8.23)

where α = 1
137

√
m∗c2
2k�D

(
1

ε(∞)
− 1

ε(0)

)
is the dimensionless polar constant.

8.3.7 Dislocation Scattering

Dislocations can contain charge centers and thus act as scattering centers citeyou. This has been first
demonstrated for n-Ge crystals that have been deformed [725, 726]. The deformation has introduced
acceptor-type defects reducing the mobility in particular at low temperatures (similar to ionized impu-
rity scattering). The mobility due to dislocation scattering in an n-type semiconductor is given by [727,
728]

μdisl. = 30
√
2π ε2 d2 (kT )3/2

Ndisl e3 f 2 LD
√
m∗ ∝

√
n

Ndisl
T , (8.24)

d being the average distance of acceptor centers along the dislocation line, f their occupation rate, Ndisl

the area density of dislocations and LD = (εkT/(e2n))1/2 the Debye screening length. The relation
μ ∝ √

n/Ndisl has been confirmed for various n-type GaN samples [729].
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(a) (b)

Fig. 8.4 a Electronic barrier (�Eb) for (hole) transport at a grain boundary (GB). b Average hole mobility in poly-
silicon, experimental data (symbols) and theoretical model (solid line). The dependence for monocrystalline silicon is
shown for comparison as dashed line. Adapted from [730]

8.3.8 Grain Boundary Scattering

The lowering of mobility due to transport across grain boundaries is an important effect in polycrys-
tallinematerials, such as poly-silicon for solar cells or thin film transistors [730–733]. Grain boundaries
contain electronic traps whose filling depends on the doping of the bulk of the grains. Charges will be
trapped in the grain boundaries and a depletion layer will be created.2 At low doping the grains are
fully depleted and all free carriers are trapped in the grain boundaries. This means low conductivity,
however, no electronic barrier to transport exists. At intermediate doping, traps are partially filled and
the partial depletion of the grain leads to the creation of an electronic barrier�Eb (Fig. 8.4a) hindering
transport since it must be overcome via thermionic emission. At high doping the traps are completely
filled and the barrier vanishes again. Accordingly the mobility goes through a minimum as a function
of the doping concentration (Fig. 8.4b) [730]. In [734] these data have been modeled with a 20nm
grain size, the value found in [730] from TEM analysis.

The expression for the limitation of the mobility due to scattering at grain boundaries is given by
[733, 735]

μGB = e LG√
8m∗πk

T−1/2 exp

(
−�Eb

kT

)
, (8.25)

where LG is the grain size.

8.3.9 Alloy Scattering

The random population of lattice sites represents disorder from a perfectly periodic lattice. The charge
carrier mobility in an alloy AxB1−x due to scattering in this potential is proportional to the alloy
scattering potential �U [590],

μalloy = 2 e �

3πm∗ � x (1 − x) (�U )2

kT

n

[
1 + exp(EF/kT )

]
, (8.26)

2The following arguments may only be followed once the concept of depletion layers and band bending is understood,
see Sect. 21.2.1.
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(a) (b)

Fig. 8.5 aTemperature dependence of the electronmobility in n-dopedGe (for various doping levels from ND ≈ 1018 for
sample A to 1013 cm−3 for sample F in steps of a factor of ten). Dashed line indicates T−3/2 dependence of deformation
potential scattering, solid lines are guides to the eye. Adapted from [594]. bμn(T ) for n-typeGaAs (ND ≈ 5×1013 cm−3,
NA ≈ 2 × 1013 cm−3). Solid lines are theoretical mobilities for various scattering mechanisms and combined mobility
according to (8.12). Adapted from [736]

�(x) being the volume of the unit cell over which the alloy-scattering potential is effective. Such effect
is present in any alloy such as InxGa1−xAs [591] of AlxGa1−xN [592]. For the latter material, see also
the following section.

8.3.10 Dipole Scattering

In alloys of polar semiconductors (Chap.16), i.e. lower-symmetric (non-cubic) semiconductorswith an
electric polarization, the additional potential due to the random variation of the polarization introduces
an additional scattering mechanism, the so-called dipole scattering [592]. Dipole scattering originally
has been studied in the context of scattering in highly compensated semiconductors due to ionized
donor-acceptor pairs [593].

8.3.11 Temperature Dependence

The sumof all scattering processes leads to a fairly complicated temperature dependence of themobility
μ(T ). In covalent semiconductors (Si, Ge) the most important processes are the ionized impurity
scattering (μ ∝ T 3/2) at low temperatures and the deformation potential scattering (μ ∝ T−3/2) at high
temperatures (Fig. 8.5a). In polar crystals (e.g. GaAs) at high temperatures the polar optical scattering
is dominant (Fig. 8.5b).

In Fig. 8.6 the electron mobility of bulk and thin-film ZnO is compared. Since ZnO is polar the
mobility at room temperature is limited by polar optical phonon scattering. In the thin film, grain-
boundary scattering (Sect. 8.3.8) additionally occurs and limits the mobility.

In Fig. 8.7 the temperature dependence of the mobility is depicted for an alloy of polar semicon-
ductors, namely Al0.25Ga0.75N. The contributions of alloy scattering and dipole scattering determine
the mobility [592].
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(a) (b)

Fig. 8.6 Temperature dependence of the electron mobility in n-type a bulk ZnO and b a PLD-grown ZnO thin film on
sapphire. In the latter, grain-boundary scattering is limiting the mobility. Squares are experimental data, solid lines are
theoretical mobilities for various scattering mechanisms and combined mobility according to (8.12). Experimental data
from [737]

Fig. 8.7 Calculated
temperature dependence of
the electron mobility in
n-type Al0.25Ga0.75N,
(ND = 5 × 1017 cm−3).
PO: polar optic scattering,
PE: piezoelectric
scattering, ADP: acoustic
deformation potential
scattering. Adapted
from [592]

Since the carrier concentration increases with increasing temperature and the mobility decreases,
the conductivity has a maximum, typically around 70K (see Fig. 8.8). At very high temperature, when
intrinsic conduction starts, σ shows a strong increase due to the increase in n.

At low temperature, the disorder due to doping (random positions of the impurity atoms) leads to a
temperature driven metal–insulator transition as depicted in Fig. 8.21.

8.3.12 Doping Dependence

The mobility decreases with increasing dopant concentration as already shown in Figs. 8.3 and 8.5a. In
Fig. 8.9a the low doping limit is due to deformation potential scattering; the decrease with doping is due
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(a) (b)

Fig. 8.8 a Carrier concentration and b conductivity of n-type Ge as a function of temperature. The doping level varies
from ND ≈ 1013 to 1018 (samples A–F as in Fig. 8.5a where the mobility of the same samples is shown). The dashed
lines are for intrinsic Ge. The solid lines are guides to the eye. Adapted from [594]

Fig. 8.9 a Electron mobility in Si:P at room temperature over a wide range of carrier concentrations. b Electron mobility
in Si:P and hole mobility in Si:B for various high carrier concentrations. Adapted from [739]

to ionized impurity scattering. At high doping level, it becomes more important at room temperature
than (acoustical or optical) phonon scattering [738]. The mobility of carriers in n- and p-type silicon
with very high carrier concentrations is depicted in Fig. 8.9b.

Thus, for bulk material high carrier density and high mobility are contrary targets and cannot be
achieved simultaneously. A solution will be provided with the concept of modulation doping where
the dopants and the (two-dimensional) carrier gas will be spatially separated in a heterostructure (cf.
Sect. 12.3.4).

At high doping, the substitutional character of the impurities may be lost and secondary phases
can arise, e.g. as observed for highly doped ZnO:Ga, exhibiting octahedral coordination of gallium
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Fig. 8.10 Conductivity of
B-doped diamond as a
function of temperature.
Adapted from [746]

in a parasitic ZnGa2O4 spinel phase for [Ga]=4% [632]. The onset of such segregation phenomena is
accompanied with the decrease of mobility and conductivity.

8.3.13 Superconductivity

It has been found that highly doped semiconductors do not only behave like metals in the sense that
the carrier concentration is largely independent of temperature but that they can also exhibit supercon-
ductivity. Theoretical and early experimental investigations suggested the possibility of such behavior
[740–743] even when the electron concentration is much smaller than one per atom. Experimentally,
robust superconductivity in semiconductors has been foundmore recently for a number of semiconduc-
tors [744, 745], namely boron-doped diamond (C:B) [746] (Fig. 8.10), Si:B [747] and Ge:Ga [748].
The preparation of superconducting semiconductors with critical temperature above 1K typically
involves hyperdoping with impurity concentrations of several atomic percent. The detailed physics of
these materials, such as the superconductor type (type-II behavior was found for C:B) or the electron
coupling mechanism (generally, phonon-assisted pairing is assumed), are still under debate.

Another type of superconducting semiconductor structure are twisted monolayers in Van-der-Waals
heterostructures for particular values of twist angle and carrier concentration (cf. Sect. 13.3).

8.3.14 Piezoresistivity

The dependence of resistivity on stress or strain is known as piezoresistive effect, first described in
[749]. It is a consequence of the modification of the band structure upon stress and the change of
effective masses (Sect. 6.12.2). In a cubic material, the resistivity ρi for transport in cartesian direction
i changes compared to the unstrained state in a phenomenological description according to

�ρi

ρi
= πi j σ j , (8.27)

where π is the piezoresistivity tensor (8.28) and the σ j form the six-component stress tensor (5.55),



236 8 Transport

Fig. 8.11 Piezoresistive coefficient for current parallel (perpendicular) to the stress πl as blue lines (πt , red lines) for
uniaxially stressed Si (001) at room temperature, a for p-type Si, b for n-type Si. The upper (lower) halves of the graphs
show positive (negative) values of the piezoresistive coefficient, i.e. resistivity increases (decreases) with tensile stress.
The solid circle indicates the value of |π| = 10−9 Pa−1, the dashed circle half that value. Adapted from [752]

Table 8.3 Piezoresistivity coefficients (in 10−11 Pa−1) for Si, Ge and GaAs at room temperature

Material ρ (Ω cm) π11 π12 π44 References

p-Si 7.8 6.6 −1.1 138.1 [749]

n-Si 11.7 −102.2 53.4 −13.6 [749]

p-Ge (Ge:Ga) 15.0 −10.6 5.0 98.6 [749]

n-Ge (Ge:As) 9.9 −4.7 −5.0 −137.9 [749]

p-GaAs ∼10−3 −12.0 −0.6 46 [753]

n-GaAs ∼10−3 −3.2 −5.4 −2.5 [753, 754]

π =

⎛
⎜⎜⎜⎜⎜⎜⎝

π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.28)

Values for the piezoelectric coefficients are given in Table 8.3 for Si, Ge and GaAs.
The piezoelectric effect has been discussed in detail [750] and modeled for p-type Si [751].We shall

only give a simple example which is particularly relevant for advanced CMOS design (Sect. 24.5.5); the
directional dependence of the piezoresistive coefficient of silicon is shown for uniaxial stress within
in the (001) plane in Fig. 8.11. Uniaxial tensile stress increases hole resistivity along 〈110〉 stress
directions, compressive stress thus increases hole conductivity.

8.4 High-Field Transport

In the case of small electric fields the scattering events are elastic. The drift velocity is linearly pro-
portional to the electric field. The average thermal energy is close to its thermal value 3kT/2 and
the carriers are close to their band edges (Fig. 8.12a). The scattering efficiency, however, is reduced
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(a) (b) (c)

Fig. 8.12 Distribution of electrons in silicon in momentum space (cmp. Fig. 6.35c) for electric fields of a 10kV/cm, b
102 kV/cm and c 103 kV/cm. Adapted from [756]

already at moderate fields. Then, the electron temperature [755] becomes larger than the lattice temper-
ature. With increasing electrical field the carriers can gain more and more energy and will on average
populate higher states, assuming a non-Boltzmann (and non-Fermi) statistical distribution [756]. The
electron distribution in k-space is depicted for silicon for three different electric fields in Fig. 8.12b,c.
Hot carriers suffer additional scattering processes that are discussed in the following, namely optical
phonon emission, intervalley scattering and impact ionization.

8.4.1 Drift-Saturation Velocity

If the carrier energy is large enough it can transfer energy to the lattice by the emission of an optical
phonon. This mechanism is very efficient and limits the maximum drift velocity. Such behavior is
non-ohmic. The limiting value for the drift velocity is termed the drift-saturation velocity. It is given
by [757]

vs =
√

8

3π

√
�ωLO

m∗ . (8.29)

This relation can be obtained from an energy-balance consideration. The energy gain per unit time in
the electric field is equal to the energy loss by the emission of an optical phonon.

q v · E = �ωLO

τ
, (8.30)

where τ is the typical relaxation time constant for LO phonon emission. Together with (8.3) we find
(8.30) except for the pre-factor, which is close to 1. The exact pre-factor results from a quantum-
mechanical treatment. For Ge the drift-saturation velocity at room temperature is 6×106 cm/s, for Si it
is 1× 107 cm/s (Fig. 8.13a). The carrier velocity also depends on the crystallographic direction [758].

8.4.2 Negative Differential Resistivity

In GaAs, the initially linear regime (constant mobility) saturates at a maximum drift velocity of about
2 × 107 cm/s for about 3kV/cm; for higher fields, a reduction in drift velocity (with increasing field!)
is present (1.2 × 107 cm/s at 10kV/cm, 0.6 × 107 cm/s at 200kV/cm), as shown in Fig. 8.13a. This
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Fig. 8.13 Drift velocity at room temperature as a function of applied electric field for a high-purity Si, Ge, and GaAs
on a double-logarithmic plot and b on linear plots for Si [759], Ge [760], GaAs [676], InP [761], (In, Ga)As [762], GaN
and ZnO [763]

Table 8.4 Material parameters for multi-valley bandstructure of GaAs and InP. �E denotes the energetic separation of
the two lowest valleys of the conduction band, Ethr the threshold field for NDR and vP the peak velocity (at Ethr). Most
values from [766]

Material Lower valley (�) Upper valley (L)

Eg
(eV)

�E
(eV)

Ethr
(kV/cm)

vP
(107 cm/s)

m∗
(m0)

μn
(cm2/Vs)

m∗
(m0)

μn
(cm2/Vs)

GaAs 1.42 0.36 3.2 2.2 0.068 ≈8000 1.2 ≈180

InP 1.35 0.53 10.5 2.5 0.08 ≈5000 0.9 ≈100

regime, above the threshold field of Ethr = 3.2kV/cm in GaAs, is called negative differential resistivity
(NDR) and was predicted in [764]. This phenomenon can be used in microwave oscillators, e.g. the
Gunn element (Sect. 21.5.11).

The effect occurs in a multi-valley band structure (see Fig. 8.14, for values cf. Table 8.4), e.g. in
GaAs or InP, when the carrier energy is high enough to scatter (Fig. 8.14c,d) from the � minimum
(small mass and high mobility) into the L valley (large mass and low mobility) [765].

The temperature dependence of the saturation velocity is shown in Fig. 8.15. With increasing tem-
perature the saturation velocity decreases since the coupling with the lattice becomes stronger.

8.4.3 Velocity Overshoot

When the electric field is switched on, the carriers are at first in the � minimum (Fig. 8.14a). Only
after a few scattering processes are they scattered into the L minimum. This means that in the first
moments transport occurs with the higher mobility of the lowest minimum (Fig. 8.14e). The velocity is
then larger than the (steady-state) saturation velocity in a dc field. This phenomenon is called velocity
overshoot and is a purely dynamic effect (Fig. 8.16). Velocity overshoot in GaN is discussed in [769].
It is an important effect in small transistors.
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Fig. 8.14 Charge-carrier distribution in a multi-valley band structure (e.g. GaAs, InP) for a zero, b small (E < Ea),
c intermediate and d large (E > Eb) field strength. The situation shown in e is reached temporarily during velocity
overshoot (see also Fig. 8.16)

Fig. 8.15 Temperature
dependence of the
saturation velocity for Si
(following vs = vs0 (1 +
0.8 exp(T/600 K ))−1 with
vs0 = 2.4 × 107 cm/s from
[759]) and GaAs [676,
767, 768]

8.4.4 Impact Ionization

If the energy gain in the field is large enough to generate an electron–hole pair, the phenomenon of
impact ionization occurs. The kinetic energy is∝ v2. Momentum and energy conservation apply. Thus,
at small energies (close to the threshold for impact ionization) the vectors are short and collinear to
fulfill momentum conservation. At higher energy, larger angles between the velocity vectors of the
impact partners can also occur. If the process is started by an electron (Fig. 8.17a) the threshold energy
is given by [770]

E thr
e =

(
1 + me

me + mhh

)
Eg . (8.31)

If the process starts with a heavy hole, the threshold [770],
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Fig. 8.16 Time
dependence of the electron
velocity at room
temperature upon a
step-like electric field
(40kV/cm) for GaAs
(dash-dotted line), InP
(dashed line) and
In0.53Ga0.47As (solid line)
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Fig. 8.17 Electron and
hole transitions for impact
ionization close to the
threshold energy.
Ionization is triggered by a
an electron and b a split-off
hole of velocity vi
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E thr
hh =

(
1 + mhh

me + mhh

)
Eg , (8.32)

is larger because of the larger hole mass.
The threshold for impact ionization triggered by a split-off hole (shown schematically in Fig. 8.17b)

is [771]

E thr
h =

(
1 + mso (1 − �0/Eg)

2mhh + me − mso

)
Eg . (8.33)
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Fig. 8.18 Impact
ionization rate as a function
of primary carrier energy
for electrons (solid line)
and holes (dashed line) in
silicon at room
temperature. The curves
are fit to results from a
Monte-Carlo simulation.
Adapted from [772, 773]
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Thus so-holes have typically the smaller threshold.3 At energies where impact ionization occurs, non-
parabolicities are typically important, thus (8.31)–(8.33) are only indicative. The threshold behavior
and the dependence of the scattering rate as a function of the primary carrier energy in Si, calculated
considering the detailed band structure, is shown in Fig. 8.18.

The generation rate G of electron–hole pairs during impact ionization is given by

G = αn n vn + αp p vp , (8.34)

where αn is the electron ionization coefficient. It describes the generation of electron–hole pairs per
incoming electron per unit length. αp denotes the hole ionization coefficient. The coefficients depend
strongly on the applied electric field. They are shown in Fig. 8.19. They also depend on the crystallo-
graphic direction.

The impact ionization initiated by electrons and holes in silicon has been calculated considering the
full band structure using a Monte Carlo technique in [772] and [773], respectively. In both cases the
impact ionization rate is anisotropic for excess energies smaller than 3eV and become isotropic above.
The average energies at the moment of generation of secondary generated carriers depends linearly on
the primary electron or hole energy.

The energy dependence of the electron initiated impact ionization rate has been calculated for GaAs,
GaN and ZnS considering details and anisotropy of the band structure in [774]. The rates averaged over
the Brillouin zone are compared in Fig. 8.20. Because of the large band gap of GaN, impact ionization
can only be generated by electrons in higher conduction bands. The sharp increase of ionization rate for
GaN around 5.75eV correlates with a large valence band DOS from hole states at the zone boundary.

8.5 High-Frequency Transport

The above consideration pertained to dc (or slowly varying) fields. Now, we consider an ac field. It
accelerates the carriers but at the same time the dissipative force in the relaxation-time approximation
is present, i.e. (for electrons)

m∗v̇ = −eE − m∗ v
τ

. (8.35)

3Assuming mso = me, me � mhh and �0 � Eg, E thr
so /E thr

e ≈ 1 − (me/mhh)(1 + �/Eg)/2 < 1.
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Fig. 8.19 Impact
ionization rates for
electrons and holes as a
function of the inverse
electric field for Si, Ge and
other compound
semiconductors at 300K.
Adapted from [574]

Fig. 8.20 Averaged rates
for electron initiated impact
ionization in GaAs (circles)
and GaN (squares).
Adapted from [774]

For a harmonic field E ∝ exp(−iωt) the complex conductivity (j = σE = nqv) is

σ = n e2 τ

m∗
1

1 − iωτ
= n e2

m∗
i

ω + iγ
, (8.36)

with γ = 1/τ being the damping constant. Splitting into real and imaginary parts yields

σ = n e2 τ

m∗

(
1

1 + ω2τ 2
+ i

ωτ

1 + ω2τ 2

)
. (8.37)

For small frequencies (ω → 0) the dc conductivity from (8.5) is recovered, i.e. σ = ne2τ/m∗. For
high frequencies (ωτ � 1)

σ = n e2 τ

m∗

(
1

ω2τ 2
+ i

1

ωτ

)
. (8.38)
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Fig. 8.21 Zero
temperature conductivity of
Si:P for various (donor)
doping concentrations.
Experimental data
(symbols) and guide to the
eye (dashed line). Adapted
from [781]
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8.6 Impurity Band Transport

In Sect. 7.5.7, the formation of an impurity band in the presence of high doping and overlap of impu-
rity wave functions was discussed. The hopping (tunneling) transport of carriers from impurity to
impurity leads to an additional transport channel termed ’impurity band conduction’[775–777]. The
phenomenon has been found for many doped semiconductors, among them more recently GaAs:Mn
[778] or Ga2O3:Sn [779] where at low temperatures a constant carrier concentration is attributed to
the impurity band conduction effect.

The random distribution of dopants essentially makes a doped semiconductor a disordered system.
The physics of electronic states in disordered systems has been reviewed in [780]. A metal–insulator
transition is observed at a certain value of doping (NP = 3.8 × 1018 cm−3), as shown in Fig. 8.21 for
Si:P [781]. For a certain value of disorder all states become localized (Anderson localization [782,
783], cmp. Sect. 8.9).

8.7 Polarons

In an ionic lattice, the electron polarizes the ions and causes a change of their equilibrium position.
Depending on the severity of this effect, the lattice polarization leads to a modification of carrier
(electron or hole) mass during band transport (Sect. 8.7.1) (large polarons) or the lattice deformation is
so strong that it leads to carrier localization on the length scale of the lattice constant. Such self-trapped
carriers are termed small polarons and discusssed in Sect. 8.7.1. Reviews are given in [784, 785].

8.7.1 Large Polarons

When the electron moves through the ionic crystal and must drag an ion displacement with it, the
effective electron mass changes to the ‘polaron mass’ mp,4

4For the calculation, many-particle theory and techniques are needed; the best solution is still given by Feynman’s path
integral calculation [786–788].
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Table 8.5 Fröhlich coupling constant α for various semiconductors. Data from [165]

GaSb GaAs GaP GaN InSb InAs InP InN

0.025 0.068 0.201 0.48 0.022 0.045 0.15 0.24

3C-SiC ZnO ZnS ZnSe ZnTe CdS CdSe CdTe

0.26 1.19 0.63 0.43 0.33 0.51 0.46 0.35

mp = m∗
(
1 + α

6
+ 0.025α2 + · · ·

)
, (8.39)

for α ≤ 1, withm∗ being the band mass as defined in Sect. 6.9.2 and α the Fröhlich coupling constant5

α = 1

2

e2

�

√
2m∗

�ωLO

(
1

ε∞
− 1

ε0

)
. (8.40)

This process it called the polaronic effect and requires additional energy [786, 789]. Often, the polaron
mass is given as mp = m∗/(1 − α/6) which is the result of perturbation theory [789] and an approxi-
mation to (8.39) for small α.

For large coupling parameter, α � 1, the polaron mass is given by [787]

mp = m∗ 16

81π4
α4 . (8.41)

The energy of the electron is lowered due to the interaction with the lattice. The energy E0 for k = 0
is given, relative to the uncoupled case, by

E0 = − (
α + 0.0098α2 + · · · ) �ω0 , α ≤ 1 (8.42a)

E0 = − (
2.83 + 0.106α2)

�ω0 , α � 1 (8.42b)

Numerical results are reported in [790].
Polarons in semiconductors are typically ‘large’ or Fröhlich-type polarons, i.e. the coupling constant

is small (Table 8.5). The dressing with phonons (as the ion displacement is called in a quantum-
mechanical picture) is then only a perturbative effect and the number of phonons per electron (≈α/2)
is small. If α becomes large (α > 1, α ∼ 6), as is the case for strongly ionic crystals such as
alkali halides, the polaron becomes localized by the electron–phonon interaction6 and hopping occurs
infrequently from site to site.

8.7.2 Small Polarons

In a polaron, the charge carrier (electron or hole) sits in a potential well resulting from the ionic
displacements it created. In some materials, the shape and strength of this potential well is such that
the charge is confined to a volume of approximately one unit cell or less. In this case, the polaron is

5This constant is part of the matrix element in the Hamiltonian of the electron–phonon interaction and is related to the
electric field created by LO phonons, as given in (9.29).
6One can think about it in the way that the electron strongly polarizes the lattice and digs itself a potential hole out of
which it can no longer move.
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Fig. 8.22 Hole from Nb
acceptor localized on Ti
site (small polaron) in rutile
TiO2. Adapted from [793]

Fig. 8.23 Simulated and
experimental TEM images
of β-Ga2O3 in (101)
projection. The arrow
denotes the position of a
polaron. Adapted
from [792]

simulation experiment

(101)

called a small polaron. An example of a hole polaron in rutile TiO2:Nb is depicted in Fig. 8.22. In
oxides often the hole from an acceptor is bound to oxygen, e.g. in BaTiO3:Na, as reviewed in [791]. In
Fig. 8.23 the lattice relaxation due to a hole bound to oxygen in the monoclinc unit cell of β-Ga2O3 is
depicted directly using aberration corrected TEM. The bonding of the hole to the oxygen atom breaks
the bond to a Ga atom which moves by 0.1nm from its equilibrium position [792].

A proper theoretical analysis of a small polaron requires ab initio techniques that account for the
motion of each atom in the few unit cells nearest the electron.7

The transport of small polarons occurs generally via thermally-activated hopping (cmp. Sect. 8.8).
Under certain conditions the following mobilities for drift and Hall effect have been given [784]:

μd ∝ T−1 exp(−W/(2kT )) , (8.43)

μH ∝ T−1/2 exp(−W/(6kT )) , (8.44)

W being the polaron binding energy. Generally, materials with small polaron transport exhibit high
carrier density, often due to structural defects, and low mobility.

8.8 Hopping Transport

Disordered solids such as amorphous semiconductors, films containing quantum dots or material with
many defects are characterized by a large density of localized states which can form band tails or a
large density of states within the band gap. Hopping conduction is the tunneling between localized
states and has been treated with various models [795–797].

7This paragraph has been taken from the concise tutorial by S.J.F. Byrnes [794].
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Fig. 8.24 Temperature
dependence of the planar
resistance for Si films
deposited at room
temperature. Solid line is
linear fit with
T0 = 8 × 107 K according
to (8.45) (s = 1/4).
Adapted from [798]
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A commonly observed phenomenon is the variable range hopping with a conductivity given by

σ = σ0 exp
(−(T0/T )s

)
(8.45)

with s = 1/4. Such law is fulfilled for amorphous silicon (Fig. 8.24). Mott has derived [799] the
exponent s = 1/4 using the following argument: The probability p to hop from one localized site to
another is proportional to

p ∝ exp(−2αR − W/kT ) . (8.46)

The first term stems from the probability to find the electron within radius R from its initial site, α
being the decay constant of its wave function, �(r) ∝ exp(−α r). The second term is the Boltzmann
factor for bridging the energy mismatch W between localized states with a phonon-assisted process,
assuming a low temperature limit (kT � W ). There is a trade-off between hopping to levels closer in
energy but spatially further away (on average), preferred at low temperature and the hopping to energy
levels with larger W but spatially closer at higher temperatures. Thus the hopping range changes with
temperature, giving the mechanism its name.

D(EF) shall be the (constant) density of localized states around the Fermi level. Within a radius
R, there is on average one state of energy between 0 and W (R) when (for three-dimensional bulk
material)

W (R) = 1

D(EF) (4π/3) R3
. (8.47)

Substituting (8.47) in (8.45) and searching for the maximum yields the most probable hopping distance

R ≈ (α kT D(EF))
−1/4 , (8.48)

showing again, the varying range of hopping with temperature. Thus we find for T0 in (8.45),

T0 ≈ α3

k D(EF)
. (8.49)

Other types of hopping mechanisms are the Efros–Shklovskii variable range hopping (s = 1/2),
emerging for an energy dependent density of states D(E) ∝ (E − EF)

2 due to Coulomb interaction
between hopping sites [800], or the next neighbor hopping (s = 1).
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Fig. 8.25 Temperature
dependence of conductivity
of a hydrogenated
amorphous Si thin film,
plotted as ln ξ vs. ln T
(8.50). Solid lines are linear
fits for constant s according
to (8.50) as labelled.
Adapted from [801]
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From (8.45) one can rewrite for ξ = d(ln σ(T ))/d ln T ,

ln ξ = ln s + s ln T0 − s ln T . (8.50)

Thus in a plot of ln ξ vs. ln T , the exponent s can be determined from the slope. As can be seen in
Fig. 8.25, for the conductivity of a hydrogenated amorphous silicon thin film the transition of hopping
mechanism from Efros–Shklovskii variable range hopping (s ≈ 1/2) to next neighbor hopping (s ≈ 1)
takes place around T = 220K, as discussed in detail in [801].

8.9 Transport in Amorphous Semiconductors

Many models have been presented for the carrier transport in amorphous semiconductors [203]. The
most important concept is that of amobility edge, an energy separating localized from delocalized states
[547, 548, 802]. This is schematically depicted in Fig. 8.26. The carrier transport between localized
states is mediated via tunneling (hopping) which has been described in the previous section (Sect. 8.8).
The localization of carriers in random lattices has been treated by Anderson [782] and reviewed in
[780]. If the degree of disorder surpasses a certain value, diffusion is suppressed (at T = 0) and
conductivity vanishes altogether (Anderson metal–insulator transition).
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The transport in delocalized states is similar to band transport. The conductivity (for electrons) is
given as

σ = −e
∫ ∞

EC

De(E)μe(E) fe(E) dE . (8.51)

If the Fermi energy is close to the middle of the gap, pinned to deep states, the Fermi-Dirac distribution
can be replaced by the Boltzmann factor. Assuming a constant density of states and mobility for the
delocalized states,

σ = −e De(EC)μe(EC) kT exp

(
EC − EF

kT

)
. (8.52)

Charge carriers from localized states in the tails can be thermally excited into delocalized states and
contribute to conductivity (thermally activated hopping). The mobility then contains an exponential
thermal activation term [203].

8.10 Ionic Transport

Ionic transport is the movement of ions upon application of a voltage. Here, we discuss only solid
electrolytes. The transport can include the motion of one or several of the constituents of the lattice
and the transport of other ions (e.g. hydrogen ions (protons), oxygen ions) through the crystal. Related
to this is the diffusive ionic movement of impurities or defects through the crystal (cmp. Sect. 4.2.3).
Ionic conduction of the lattice constituents under dc voltage will eventually destroy the crystal.

In typical semiconductors like silicon or gallium arsenide, the conductivity is entirely due to elec-
tronic conduction. A typical solid electrolyte is zirconia (ZrO2) doped with yttria, so-called yttria-
stabilized zirconia (YSZ) that takes on a cubic fluorite lattice (see Sect. 3.4.8). It can conduct oxygen
ions via the mobility of oxygen vacancies for use in solid-oxide fuel cells (SOFC) [803]. The con-
ductivity is about 0.01S/cm at a temperature around 1000K, almost entirely due to ionic transport.
Doping with calcium oxide results in an oxygen conductor that is used in oxygen sensors in automo-
biles (lambda sensor). The ionic conductivity can be significantly increased, compared to bulkmaterial,
along interfaces [804, 805].

Other typical solid electrolytes are copper iodide (CuI) [568] and also AgI. In the high temperature
cubic phase (α-polymorph), the iodide ions form a fairly rigid cubic framework and the metal ions are
mobile; the copper diffusion pathways have been discussed [806, 807]. The temperature dependence
of conductivity of CuI is shown in Fig. 8.27.

8.11 Diffusion

A gradient of a particle concentration n leads to a particle current proportional to −∇n. This diffusion
law (Fick’s law) corresponds microscopically to a random walk. The gradients of the semiconductor
carrier densities ∇n or ∇ p thus lead to electron and hole currents, respectively:

jn = eDn∇n (8.53a)

jp = −eDp∇ p . (8.53b)

The coefficients Dn and Dp are called the electron and hole diffusion coefficient, respectively. Thus
the total electron and hole currents in the presence of an electric field E and diffusion are
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Fig. 8.27 Total (circles)
and electronic (squares)
conductivity of CuI
coexisting with copper.
Filled (empty) symbols
refer to polycrystalline
(single crystal) samples.
The different structural
phases (α (cubic), β
(wurtzite), γ (zincblende))
are indicated by shaded
areas as labeled. Dashed
lines are guides to the eye.
Adapted from [808]
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jn = −eμnn E + eDn ∇n (8.54a)

jp = eμp pE − eDp ∇ p . (8.54b)

This relation can also be deduced more generally from the gradient of the Fermi level as

jn = −eμnn E − nμn ∇EF (8.55a)

jp = eμp pE − pμp ∇EF . (8.55b)

Using (7.6) and (7.7) for the concentrations (valid also in the case of degeneracy) and using
dFj (x)/dx = Fj−1(x) we obtain

jn = −eμnn E − kTμn
F1/2(η)

F−1/2(η)
∇n (8.56a)

jp = eμp pE − kTμp
F1/2(ζ)

F−1/2(ζ)
∇ p , (8.56b)

with η = (EF−EC)/kT and ζ = −(EF−EV)/kT . If the pre-factor of the density gradient is identified
as the diffusion coefficient we find the (generalized) so-called ‘Einstein relations’ (β = e/(kT )) [608,
809]:

Dn = −β−1μn
F1/2(η)

F−1/2(η)
(8.57a)

Dp = β−1μp
F1/2(ζ)

F−1/2(ζ)
. (8.57b)

The effect of non-parabolicity has been included in [810].
Useful analytical approximations have been discussed in [811]. We note that, e.g., (8.57a) can also

be written as [812, 813]

Dn = −β−1μn n
∂η

∂n
. (8.58)
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In the case of nondegeneracy, i.e. when the Fermi level is within the band gap and not closer than
about 4kT to the band edges, η = ln(n/NC). Then ∂η/∂n = 1/n, and the equation simplifies to
D = (kT/q)μ, i.e. the ‘regular’ Einstein-relations,

Dn = −β−1μn (8.59a)

Dp = β−1μp . (8.59b)

In this case, (8.54a,b) read

jn = −eμnn E − kTμn ∇n (8.60a)

jp = eμp pE − kTμp ∇ p . (8.60b)

We recall that both diffusion coefficients are positive numbers, since μn is negative. Generally, the
diffusion coefficient depends on the density. A Taylor series of the Fermi integral yields

Dn = −β−1μn

[
1 + 0.35355

(
n

NC

)
− 9.9 × 10−3

(
n

NC

)2

+ · · ·
]

. (8.61)

8.12 Continuity Equation

The balance equation for the charge is called the continuity equation. The temporal change of the charge
in a volume element is given by the divergence of the current and any source (generation rate G), e.g.
an external excitation, or drain (recombination rate U ). Details about recombination mechanisms are
discussed in Chap. 10. Thus, we have

∂n

∂t
= Gn −Un − 1

q
∇· jn = Gn −Un + 1

e
∇· jn (8.62a)

∂ p

∂t
= Gp −Up − 1

e
∇· jp . (8.62b)

In the case of nondegeneracy we find, using (8.54ab)

∂n

∂t
= Gn −Un − μnn ∇· E − μn E∇n + Dn�n (8.63a)

∂ p

∂t
= Gp −Up − μp p∇· E − μp E∇ p + Dp�p . (8.63b)

In the case of zero electric field these read

∂n

∂t
= Gn −Un + Dn�n (8.64a)

∂ p

∂t
= Gp −Up + Dp�p , (8.64b)

and if the stationary case also applies:
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Dn�n = −Gn +Un (8.65a)

Dp�p = −Gp +Up . (8.65b)

8.13 Heat Conduction

We consider here the heat transport [814] due to a temperature gradient. The heat flow q, i.e. energy
per unit area per time in the direction q̂, is proportional to the local gradient of temperature. The
proportionality constant κ is called, heat conductivity,

q = −κ ∇T . (8.66)

In crystals, the heat conductivity can depend on the direction and thus κ is generally a tensor of rank 2.
In the following, κwill be considered as a scalar quantity. The quite generally validWiedemann–Franz
law connects the thermal and electrical conductivities

κ = π2

3

(
k

e

)2

Tσ . (8.67)

The balance (continuity) equation for the heat energy Q is

∇· q = −∂Q

∂t
= − ρC

∂T

∂t
+ A , (8.68)

where ρ denotes the density of the solid and C the heat capacity. A denotes a source or drain of heat,
e.g. an external excitation. Combining (8.66) and (8.68), we obtain the equation for heat conductivity

�T = ρC

κ

∂T

∂t
− A

κ
, (8.69)

which simply reads �T = 0 for a stationary situation without sources.
The random mixture of various atoms in natural elements represents a perturbation of the perfectly

periodic lattice. Since the mass of the nuclei varies, in particular lattice vibrations will be perturbed.
Thus we expect an effect on the heat conductivity. In Fig. 8.28, the thermal conductivity of crystals
from natural Ge and enriched 74Ge are compared [815], the latter having, as expected, the higher heat
conductivity, i.e. less scattering. The T 3-dependence of the heat conductivity at low temperature has
been attributed to scattering of phonons at the sample boundary [816]. The thermal conductivity of
isotopically pure 28Si thin films has been measured to be 60% greater than natural silicon at room
temperature and at least 40% greater at 100◦C, a typical chip operating temperature [817, 818].

8.14 Coupled Heat and Charge Transport

The standard effect of coupled charge and heat transport is that a current heats its conductor via Joule
heating. However, more intricate use of thermoelectric effects can also be employed to cool certain
areas of a device. For further details see [819, 820].

For the analysis of coupled charge and heat transport we first sum the electric field and the concen-
tration gradient to a new field Ê = E + ∇EF/e. Then, the heat flow and charge current are
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Fig. 8.28 Thermal
conductivity of Ge vs.
temperature. The enriched
Ge consists of 96% 74Ge
while the natural isotope
mix is 20% 70Ge, 27%
72Ge, 8% 73Ge, 27% 74Ge
and 8% 76Ge. The dashed
line shows a κ ∝ T 3

dependence at low
temperatures. Adapted
from [815]
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j = σ Ê + L ∇T (8.70)

q = M Ê + N ∇T , (8.71)

where Ê and ∇T are the stimulators for the currents. From the experimental point of view there is
interest to express the equations in j and∇T since these quantities aremeasurable.With newcoefficients
they read

Ê = ρ j + S ∇T (8.72)

q = � j − κ ∇T , (8.73)

where ρ, S and � are the specific resistance, thermoelectric power and Peltier coefficient (transported
energy per unit charge), respectively. The relations with the coefficients σ, L , M , and N are given by

ρ = 1

σ
(8.74a)

S = − L

σ
(8.74b)

� = M

σ
(8.74c)

κ = ML

σ
− N . (8.74d)

8.14.1 Thermopower and Seebeck Effect

A semiconductor shall have two ends at different temperatures T2 and T1 and a temperature gradient
in between in an open circuit, i.e. j = 0. Then a field Ê = S ∇T and a voltage U = S/(T2 − T1) will
arise. This effect is called the thermoelectric or Seebeck effect. S is termed the Seebeck coefficient or
the thermoelectric power, often also denoted as Q in the literature. The voltage can be measured and
used to determine the temperature at one end if the temperature at the other end is known, forming
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Fig. 8.29 a Seebeck coefficient S for n- and p-doped germanium. Experimental data (symbols) and theory (lines). NA −
ND is 5.7×1015 cm−3 (white circles), 1.7×1017 cm−3 (grey) and 7.2×1018 cm−3 (black); ND−NA is 3.3×1015 cm−3

(white squares), 1.1 × 1017 cm−3 (grey) and 6.2 × 1017 cm−3 (black). Adapted from [821]. b Thermoelectric force �

of lowly doped n- and p-silicon as a function of temperature. Solid line is from simple model calculation and symbols
represent data from silicon samples with the approximate doping of circles: 1 × 1015 cm−3 B, 2 × 1014 cm−3 donors,
squares: 4 × 1014 cm−3 P, 9 × 1013 cm−3 acceptors. Adapted from [822]

a thermometer. The Seebeck coefficient is positive if the electric field is in the same direction as the
temperature gradient.

A famous relation from irreversible thermodynamics connects it to the Peltier coefficient via

S = �

T
. (8.75)

The Seebeck coefficient is related to the energy transport by charge carriers. The heat (energy) flow is
obviously from the hot to the cold end (assuming here T2 > T1), so is the flow of charge carriers. In a
simple picture, if the energy is carried by (hot) holes, the current (by definition the direction of positive
charge carriers) is from the hot to the cold end (2 → 1); if the energy flow is carried by electrons, the
current flows from the cold to the hot end (1 → 2). Accordingly, energy transport by electrons and
holes gives rise to different signs of the thermoelectric coefficient (Fig. 8.29). If the cold (unheated)
substrate is grounded, the sign of the voltage at a hot solder tip pressed (carefully) on the surface of
the semiconductor yields the conductivity type, n-type (p-type) for a negative (positive) voltage.

However, the semiconductor should not be heated so strongly that intrinsic conduction arises. In this
case the conductivity and the thermoelectric power is determined by the carrier type with the higher
mobility; typically, and for the case of silicon shown in Fig. 8.29, these are the electrons thus yielding
a negative Seebeck coefficient in the intrinsic regime.

For band conduction the thermopower (J.29) is given for electrons (Sn) and holes (Sp) by [823] (for
a derivation see Appendix J.4)

Sn = −k

e

(
EC − EF

kT
+ AC

)
(8.76a)

Sp = k

e

(
EF − EV

kT
+ AV

)
, (8.76b)

where Ai are constants (J.31a) depending on the energy dependence of the density of states and the
mobility. The sign of the thermopower tells whether conduction takes place above (negative sign) or
below (positive sign) the Fermi level.



254 8 Transport

(a)

500

0

-500

-1000

-1500

-2000T
he

rm
oe

le
ct

ric
 p

ow
er

 S
 (

m
V

/K
)

Temperature (K)

Si

0 10 20 30 40 50 60
(b)

0

-500

-1000

1014 1015 1016 1017 1018 1019

N -N (cm )D A
-3

Si

T
he

rm
oe

le
ct

ric
 p

ow
er

  S
  (

V
/K

)

Fig. 8.30 a Thermoelectric power S of highly doped n-type silicon as a function of temperature.Circles are experimental
data and dashed lines guides to the eye. The approximate doping of the samples is white: 2.7 × 1019 cm−3 As, grey:
2.2 × 1018 cm−3 As, black: 1.1 × 1018 cm−3 As and 1.0 × 1018 cm−3 B with ND − ND = 1.25 × 1017 cm−3 at room
temperature. Adapted from [822]. b Thermopower of doped n-type silicon at room temperature as a function of doping
concentration. Experimental data (symbols) from [822] and theory (solid line) from [824]

If the Fermi level is fixed and both electrons and holes contribute (two-band conduction), the
thermopower is (evaluating (J.32), b = σn/σp and the gap center energy EM = (EC − EV)/2)

S = k

e

(
1 − b

1 + b

Eg

2 kT
+ EF − EM

kT
+ AV − b AC

1 + b

)
. (8.77)

In the case of intrinsic conduction from (7.18) EF − EM = (kT/2) ln(NV/NC).
The thermoelectric power from some highly doped n-type silicon samples is depicted in Fig. 8.30a.

At low temperature the (low) conductivity is due to conduction in a donor impurity band (cmp.
Sect. 7.5.7). At high compensation of about 90% (grey data points in Fig. 8.30a), the band is only 10%
filled and acts like a valence band with positive thermopower at sufficiently low temperature when the
free carrier density is small.Without compensation, the thermopower remains negative since the almost
completely filled impurity band acts conduction band like. The dependence of thermopower on doping
has been simulated in [824] (Fig. 8.30); the decrease with increasing doping is mostly attributed to the
reduced mobility due to ionized impurity scattering. The increase of thermopower at low temperatures
is due to the phonon-drag effect which is discussed for the samples from [822] in [825].

As a figure of merit for the production of thermoelectric power the ZT -value is used, ZT =
σ S2 T/κ.

8.14.2 Peltier Effect

In a semiconductor with a temperature difference at its ends a current flow will be allowed now (short
circuit). The current leads via the charge transport also to a heat (or energy) transport. This effect is
called the Peltier effect. The Peltier coefficient is negative (positive) for electrons (holes). The total
amount of energy P that is transported consists of the generation term and the loss due to transport:

P = j · Ê − ∇· q . (8.78)

With (8.72) and (8.73) we find
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Fig. 8.31 Schematic
Peltier cooler. The heat
sinks (grey) and the cold
junction (black) on the left
are metals that make ohmic
contacts with the
semiconductors. The
current flow is such that
electrons move through the
n-type semiconductor from
right to left

p-type
heat
sink

T

n-type
heat
sink

j

j

P = j · j
σ

+ S j ·∇T − �∇· q + κ �T . (8.79)

The first term is Joule heating, the second term is Thomson heating. The third exists only when carriers
are generated or when they recombine. The fourth term is the heat conduction. In the Thomson term
S j ·∇T heat is generated in an n-type semiconductor if j and∇T are in the same direction. This means
that electrons that move from the hotter to the colder part transfer energy to the lattice. The effect
can be used to construct a thermoelectric cooler, as shown in Fig. 8.31, that generates a temperature
difference due to a current flow. For optimal performance σ should be large to prevent excess Joule
heating and κ should be small such that the generated temperature difference is not rapidly equalized.



Chapter 9
Optical Properties

Do not Bodies and Light act mutually upon one another.

Sir I. Newton, 1704 [826]

Abstract After introduction of the complex dielectric function, reflection, diffraction are briefly dis-
cussed. The focus lies on absorptionmechanisms; several transition types (direct and indirect band-band
transitions, impurity-related transitions, lattice absorption) are discussed including the effects of exci-
tons, polaritons and high carrier density. Also the various effects of the presence of free carriers are
given.

9.1 Spectral Regions and Overview

The interaction of semiconductors with light is of decisive importance for photonic and optoelectronic
devices aswell as for the characterization of semiconductor properties.When light hits a semiconductor,
reflection, transmission and absorption are considered, as for any dielectric material. The response of
the semiconductor largely depends on the photon energy (or wavelength) of the light and various
processes contribute to the dielectric function.

An overview of the electromagnetic spectrum in the optical range is given in Table 9.1. The energy
and wavelength of a photon are related by1 E = hν = hc/λ, i.e.

E [eV] = 1240

λ [nm] . (9.1)

In the infrared regime, energy is often measured in wave numbers (cm−1) for which the conversion
1meV= 8.056cm−1 holds.

1The more exact numerical value in (9.1) is 1239.84.
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Table 9.1 Spectral ranges with relevance to semiconductor optical properties

Range Wavelengths Energies

Deep ultraviolet DUV <250nm >5eV

Ultraviolet UV 250–400nm 3–5eV

Visible VIS 400–800nm 1.6–3eV

Near infrared NIR 800nm–2µm 0.6–1.6eV

Mid-infrared MIR 2–20µm 60meV–0.6eV

Far infrared FIR 20–80µm 1.6–60meV

THz region THz >80µm <1.6meV

9.2 Complex Dielectric Function

The dielectric function (DF) ε fulfills the relation between the displacement field D, the polarization
P and the electric field E,

D = ε0 E + P = ε0 εE , (9.2)

and is generally a tensor of rank 2 since D and E must not be collinear. For cubic materials, the DF
is isotropic and can be described with a (complex) scalar ε. Less symmetric crystals are optically
anisotropic and the DF must be used in tensor form. Also, external fields can induce optical anisotropy
in an otherwise isotropic material as discussed in Sect. 15.2.2 for magnetic fields or has been observed
for mechanical strain fields. The general form of the dielectric function tensor for various crystal
symmetries is compiled in Table 9.2.

In most cases in the following, εwill be used as scalar (isotropic case). The dielectric function is fre-
quency dependent ε(ω) due to the various oscillators playing a role and decreases (non-monotonically)
from its static value (for ω = 0) to 1 for ω → ∞. Major influence on the DF stems from (optical)

Table 9.2 General form of the tensor form of the dielectric function for the seven crystallographic systems

Crystal system Optical symmetry ε Examples

Cubic Isotropic

⎛
⎜⎝
a 0 0

0 a 0

0 0 a

⎞
⎟⎠ Si, GaAs, MgO, ZnSe, CuI

tetragonal

hexagonal

trigonal

uniaxial

⎛
⎜⎝
a 0 0

0 a 0

0 0 c

⎞
⎟⎠ CuGaSe2, GaN, ZnO,

Bi2Se3

orthorhombic biaxial

⎛
⎜⎝
a 0 0

0 b 0

0 0 c

⎞
⎟⎠ κ-Ga2O3, Sb2Se3

monoclinic biaxial

⎛
⎜⎝
a 0 d

0 b 0

d 0 c

⎞
⎟⎠ β-Ga2O3, anthracene

triclinic biaxial

⎛
⎜⎝
a d e

d b f

e f c

⎞
⎟⎠ K2Cr2O7, tetracene
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lattice vibrations (Sect. 9.5) and transitions within the electronic band structure (Sect. 9.6). In some
cases also its k-dependence is important, known as ’spatial dispersion’ (cmp. Sect. 9.7.8).

An optic axis in the transparency regime (all tensor elements of ε ∈ R) is the direction in which
the speed of light or the index of refraction is independent of polarization. Uniaxial (biaxial) materials
have one (two) of such axes. The anisotropy of the index of refraction and its polarization dependence
must be taken into account when light propagation is considered in birefringent semiconductors, e.g.
for Raman spectroscopy [827], unless the propagation is along an optic axis.

The dielectric function is generally complex and written as (scalar)

ε = ε′ + i ε′′ = ε1 + i ε2 . (9.3)

The real (ε′ or ε1) and imaginary (ε′′ or ε2) part of the dielectric function are related to each other via
the Kramers-Kronig relations (Appendix C).

The complex index of refraction n∗ is

n∗ = √
ε = nr + iκ . (9.4)

From n∗2 = ε follows

ε′ = n2r − κ2 (9.5)

ε′′ = 2 nr κ . (9.6)

From ε ε̄ = (n2r + κ2)2 and (9.5) follows

n2r = ε′ + √
ε′ 2 + ε′′ 2

2
(9.7)

κ = ε′′

2 nr
. (9.8)

The real part of the complex index of refraction nr is responsible for the dispersion, the imaginary part
κ is named extinction coefficient and is related to the absorption coefficient for a plane wave (damping
of the intensity ∝ E2) by

α = 2
ω

c
κ = 4π

λ
κ = 2 k κ . (9.9)

Here, k and λ denote the respective values in vacuum. Through the Kramers-Kronig relations
(Appendix C), birefringence, i.e. the orientational dependence of the index of refraction, is thus auto-
matically related to dichroism, i.e. the orientational dependence of the absorption coefficient.

As an example, in Fig. 9.1 the dielectric function of GaAs is shown in the vicinity of the band edge
and above. SinceGaAs is cubic, the dielectric function at each photon energy can represented by a single
complex number. The tensor character of the dielectric function is demonstrated in Fig. 9.2a where
the four independent tensor elements for (monoclinic) β-Ga2O3 are depicted [828]. The contributions
of various dipole oscillators (strength and orientation) to the dielectric function can be analyzed from
these data [829].

In the absorption regime, for biaxial crystals the two optic axes split into four singular optic axes
[830] as visualized for β-Ga2O3 in Fig. 9.2b [831]. It should be noted that optical activity [832] is not
considered in the following.
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(a) (b)

Fig. 9.1 a Complex dielectric function of GaAs at room temperature dashed (solid) line: real (imaginary) part of
dielectric constant. Peak labels relate to transitions shown in part b. b Band structure of GaAs with fundamental band
gap transition (E0) and higher transitions (E0 + �0, E1, E1 + �1, E ′

0, and E2) as indicated

(a) (b)

Fig. 9.2 a Experimental (generalized spectroscopic ellipsometry) tensor elements of the complex dielectric function of
β-Ga2O3 at room temperature. Adapted from [828]. b Stereographic projection of the angular orientation of the optic
and singular optic axes of β-Ga2O3. Some crystallographic orientations are indicated. The color refers to the photon
energy. The splitting of the two optic axes into four singular optic axes at the onset of absorption is denoted by two red
arrows. Adapted from [831]

9.3 Reflection and Diffraction

From Maxwell’s equations and the boundary conditions at a planar interface between two media with
different index of refraction for the components of the electric andmagnetic fields the laws for reflection
and diffraction are derived. We denote the index of refraction as n and also nr in the following. The
interface between two media with refractive indices n1 and n2 is depicted in Fig. 9.3. In the following
we assume first that no absorption occurs.

Snell’s law [833] for the angle of diffraction is

n1 sin φ = n2 sinψ . (9.10)
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When the wave enters the denser medium, it is diffracted towards the normal. If the wave propagates
into the less-dense medium (reversely to the situation shown in Fig. 9.3), a diffracted wave occurs only
up to a critical angle of incidence

sin φTR = n2
n1

. (9.11)

For larger angles of incidence, total internal reflection occurs and the wave remains in the denser
medium. Thus, the angle in (9.11) is called the critical angle for total reflection. For GaAs and air the
critical angle is rather small, φTR = 17.4◦.

The reflectance depends on the polarization (Fresnel formulas [834]). The index ‘p’ (‘s’) denotes
parallel polarized/TM (perpendicular polarized/TE) waves.

Rp =
(
tan(φ − ψ)

tan(φ + ψ)

)2
(9.12)

Rs =
(
sin(φ − ψ)

sin(φ + ψ)

)2
. (9.13)

The situation for GaAs and air is shown for both polarization directions and unpolarized radiation in
Fig. 9.4 for a wave going into and out of the GaAs.

When the reflected and the diffracted wave are perpendicular to each other, the reflectance of the
p-polarized wave is zero. This angle is the Brewster angle φB,

tan φB = n2
n1

. (9.14)

If a wave has vertical incidence from vacuum on a medium with index of refraction nr , the reflectance
is given (both polarizations are degenerate) as

Fig. 9.3 Reflection and
diffraction of an
electromagnetic wave at
the transition between
medium ‘1’ and ‘2’,
n2 > n1. The polarization
plane is defined by the
surface normal and the
k-vector of the light (plane
of incidence). The parallel
(‘p’) polarized wave
(TM-wave, electric field
vector oscillates in the
plane) is shown as ‘↔’;
perpendicular (‘s’)
polarization (TE-wave,
electric field vector is
perpendicular to plane) is
depicted as ‘·’
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Fig. 9.4 Reflectance of the GaAs/vacuum interface (close to the band gap, nr = 3.347) for radiation from vacuum/air
(left panel) and from the GaAs (right panel), respectively, as a function of incidence angle and polarization

R =
(
nr − 1

nr + 1

)2
. (9.15)

For GaAs, the reflectance for vertical incidence is 29.2%.

9.4 Absorption

In the absorption process, energy is transferred from the electromagnetic field to the semiconductor. In
the case of a linear absorption process, when the probability of light absorption is proportional to the
incoming intensity, the decrease of intensity in the absorbing medium is exponential (Lambert–Beer’s
law [835, 836]),2

I (x) = I (0) exp(−α x) . (9.16)

The quantity α is the absorption coefficient, its reverse the absorption depth.
The spectral dependence α(E), the absorption spectrum, contains the information of the possi-

ble absorption processes, their energy, momentum and angular momentum selection rules, and their
oscillator strength.

In Fig. 9.5 a schematic absorption spectrum of a semiconductor is depicted. The transition of elec-
trons from the valence to the conduction band begins at the band gap energy. The band gaps of Si,
Ge, GaAs, InP, InAs, InSb are in the IR, those of AlAs, GaP, AlP, InN in the VIS, those of GaN and
ZnO in the UV, MgO and AlN are in the deep UV. The Coulomb correlation of electrons and holes
leads to the formation of excitons that leads to absorption below the band gap. The typical exction
binding energy is in the range of 1–100meV (see Fig. 9.19). Optical transitions from valence-band
electrons into donors and from electrons on acceptors into the conduction band lead to band–impurity
absorption. In the region from 10–100meV the interaction with lattice vibrations (phonons) leads to
absorption if the phonons are infrared active. Further in the FIR lie transitions from impurities to the

2In [836], the absorption coefficient μ was defined via I (d)/I (0) = μd , i.e. μ = exp−α.
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Fig. 9.5 Schematic
absorption spectrum of a
typical semiconductor.
From [837]

closest band edge (donor to conduction and acceptor to valence band). A continuous background is
due to free-carrier absorption.

If absorption is considered, the reflectance (9.15) needs to be modified. Using the complex index
of refraction n∗ = nr + iκ, it is given as

R =
∣∣∣∣
n∗ − 1

n∗ + 1

∣∣∣∣
2

= (nr − 1)2 + κ2

(nr + 1)2 + κ2
. (9.17)

9.5 Dielectric Function due to Optical Phonons

In this section, the dielectric function around the resonance energy of optical phonons is developed.
Adjacent atoms oscillate with opposite phase in an optical phonon. If the bond has (partial) ionic
character, this leads to a time-dependent polarization and subsequently to a macroscopic electric
field. This additional field will influence the phonon frequencies obtained from a purely mechanical
approach.We consider in the following the casek ≈ 0. The phonon frequency for TOandLOvibrations
is given by

ω0 =
√
2C

Mr
, (9.18)

where Mr is the reduced mass of the two different atoms (cf. Sect. 5.2.2). u is the relative displacement
u1 − u2 of the two atoms in a diatomic base. When the interaction with the electric field E (which will
be calculated self-consistently in the following) is considered, the Hamiltonian for the long-wavelength
limit is given by [838]:

Ĥ(p,u) = 1

2

(
1

Mr
p2 + b11 u2 + 2b12 u · E + b22 E2

)
. (9.19)
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The first term is the kinetic energy (p stands for the momentum of the relative motion of the atoms 1
and 2 in the base, p = Mru̇), the second the potential energy, the third the dipole interaction and the
fourth the electric-field energy. The equation of motion for a plane wave u = u0 exp[−i(ωt − k · r)]
(ü = −ω2u) yields

Mr ω
2 u = b11 u + b12 E . (9.20)

Thus, the electric field is

E = (ω2 − ω2
TO)

Mr

b12
u . (9.21)

Here, the substitution ω2
TO = b11/Mr was introduced that is consistent with (9.18) and b11 = 2C .

ωTO represents the mechanical oscillation frequency of the atoms undisturbed by any electromagnetic
effects. Already now the important point is visible. If ω approaches ωTO, the system plus electric field
oscillates with the frequency it has without an electric field. Therefore the electric field must be zero.
Since the polarization P = (ε − 1)ε0E is finite, the dielectric constant ε thus diverges.

The polarization is
P = −∇E Ĥ = − (b12 u + b22 E) . (9.22)

The displacement field is

D = ε0 E + P = ε0 E −
(
b22 − b212/Mr

ω2
TO − ω2

)
E = ε0 ε(ω)E . (9.23)

Therefore, the dielectric function is

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − (ω/ωTO)2
. (9.24)

Here, ε(∞) = 1− b22/ε0 is the high-frequency dielectric constant and ε(0) = ε(∞) + b212/(b11ε0) the
static dielectric constant. The relation (9.24) is shown in Fig. 9.6.

From the Maxwell equation ∇ · D = 0 for zero free charge we obtain the relation

ε0 ε(ω)∇ · E = 0 . (9.25)

Thus, either ε(ω) = 0 or ∇ · E = 0, i.e. u is perpendicular to k. In the latter case we have a TO
phonon and, neglecting retardation effects, using ∇ × E = 0 we find E = 0 and therefore ω = ωTO,
justifying our notation. In the case of ε(ω) = 0, we call the related frequency ωLO and find the so-called
Lyddane–Sachs–Teller (LST) relation [839]

ω2
LO

ω2
TO

= ε(0)

ε(∞)
. (9.26)

This relation holds reasonably well for optically isotropic, heteropolar materials with two atoms in
the basis, such as NaI and also GaAs. Since at high frequencies, i.e. ω  ωTO, only the individual
atoms can be polarized, while for low frequencies the atoms can also be polarized against each other,
ε(0) > ε(∞) and therefore also ωLO > ωTO. For GaAs, the quotient of the two phonon energies is
1.07. Using the LST relation (9.26), we can write for the dielectric function

ε(ω) = ε(∞)

(
ω2
LO − ω2

ω2
TO − ω2

)
. (9.27)
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Fig. 9.6 Dielectric
function according to
(9.24) with ε(0) = 3 and
ε(∞) = 2 (without
damping). Grey area
denotes the region of
negative ε
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The (long-wavelength) TO-phonon does not create a long-range electric field. Using ∇ · D = 0 and
(9.23) and looking at the longitudinal fields, we have

ε0 E = b12 u + b22 E . (9.28)

This can be rewritten as

E = −ωLO

√
Mr

ε0

√
1

ε(∞)
− 1

ε(0)
u ∝ −u . (9.29)

The (long-wavelength) LO-phonon thus creates a long-range electric field acting against the ion dis-
placement and represents an additional restoring force; this is consistent with the fact that ωLO > ωTO.

9.6 Electron–Photon Interaction

The absorption process within the band structure is quantum mechanically described by the coupling
of electrons and photons. The process is described with time-dependent perturbation theory. If Hem is
the perturbation operator (electromagnetic field), the transition probability per time wfi for electrons
from (unperturbed) state ‘i’ (initial) to state ‘f’ (final) is given (with certain approximations) by Fermi’s
golden rule

wfi(�ω) = 2π

�

∣∣H ′
fi

∣∣2 δ(Ef − Ei − �ω) , (9.30)

where �ω is the photon energy, Ei (Ef ) is the energy of the initial (final) state. H ′
fi is the matrix element

H ′
fi = 〈�f

∣∣H ′∣∣�i
〉

, (9.31)

where �i (�f ) are the wavefunctions of the unperturbed initial (final) state.
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A is the vector potential for the electromagnetic field, i.e. E = −Ȧ, μH = ∇ × A, ∇ · A = 0
(Coulomb gauge). The Hamiltonian of an electron in the electromagnetic field is

H = 1

2m
(�k − qA)2 . (9.32)

When terms in A2 are neglected (i.e. two-photon processes), the perturbation Hamiltonian is thus

Hem = − q

m
Ap = i �q

m
A · ∇ ≈ q r · E . (9.33)

The latter approximation is valid for small wavevectors of the electromagnetic wave and is termed the
electric dipole approximation.

In order to calculate the dielectric function of the semiconductor from its band structure we assume
that A is weak and we can apply (9.30). The transition probability R for the photon absorption rate at
photon energy �ω is then given by3

R(�ω) = 2π

�

∫

kc

∫

kv

|〈c|Hem|v〉|2 δ (Ec(kc) − Ev(kv) − �ω) d3kc d3kv , (9.34)

with the Bloch functions |c〉 and |v〉 of the conduction and valence band, respectively, as given in
(6.40b).

The vector potential is written as A = Aê with a unit vector ê parallel to A. The amplitude is
connected to the electric-field amplitude E via

A = − E

2ω

[
exp (i(qr − ωt)) + exp (−i(qr − ωt))

]
. (9.35)

In the electric-dipole approximation the momentum conservation q+kv = kc, q being the momentum
of the light wave is approximated by kv = kc. The matrix element is then given by

|〈c|Hem|v〉|2 = e2 |A|2
m2

∣∣〈c|ê · p|v〉∣∣2 , (9.36)

with

〈c ∣∣ê · p|v〉∣∣2 = 1

3
|pcv|2 = M2

b , (9.37)

and the momentum matrix element pcv given in (6.39). A k-independent matrix element |pcv|2 is often
used as an approximation. In Fig. 9.7 the matrix elements for valence to conduction band transitions
in GaN are shown as a function of k.

In terms of the electric-field amplitude E(ω) the transition probability is

R(�ω) = 2π

�

( e

m ω

)2 ∣∣∣∣
E(ω)

2

∣∣∣∣
2

|pcv|2
∫

k

δ (Ec(k) − Ev(k) − �ω) d3k . (9.38)

If the integration over k is restricted to those values allowed in unit volume, the power that is lost from
the field in unit volume is given by R �ω, leaving a 1/E factor. The dielectric function ε = ε′ + iε′′ is

3Here we assume that the valence-band states are filled and the conduction-band states are empty. If the conduction-band
states are filled and the valence-band states are empty, the rate is that of stimulated emission.



9.6 Electron–Photon Interaction 267

30

20

10

0

|p
|

(e
V

)
cv

2

A AL M H K

60

40

20

0
A AL M H K

E||cE c
C
B
A

GaN

Fig. 9.7 Theoretical momentum matrix elements |pcv|2 along high-symmetry directions in the Brillouin zone (see
Fig. 3.38d) for transitions between valence and conduction bands in GaN and light polarized perpendicular (left panel)
and parallel (right panel) to the c-axis. The transitions are A: �9(A)→ �7c, B: �7(B)→ �7c, C: �7(C)→ �7c (see
Fig. 6.44). Adapted from [840]

given by

ε′′ = 1

4πε0

(
2π e

m ω

)2
|pcv|2

∫

k

δ (Ec(k) − Ev(k) − �ω) d3k (9.39a)

ε′ = 1 +
∫

k

e2

ε0 m ω2
cv

2 |pcv|2
m �ωcv

1

1 − ω2/ω2
cv

d3k , (9.39b)

with �ωcv = Ec(k) − Ev(k). Equation (9.39b) has been obtained via the Kramers–Kronig relations4

(see Appendix C).
Comparison with (D.7) yields that the oscillator strength of the band–band absorption is given by

f = e2

ε0 m ω2
cv

2 |pcv|2
m �ωcv

= e2

ε0 m ω2
cv

Ncv , (9.40)

with the classical ’number’ of oscillators with the frequency ωcv,

Ncv = 2 |pcv|2
m �ωcv

. (9.41)

9.7 Band–Band Transitions

9.7.1 Joint Density of States

The strength of an allowed optical transitions between valence and conduction bands is proportional
to the joint density of states (JDOS) Dj(Ecv) (cf. (6.63), (6.64) and (9.39a))

4The real and imaginary parts of the dielectric function are generally related to each other via the Kramers–Kronig
relations.
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Table 9.3 Functional dependence of the joint density of states for critical points in 3, 2 and 1 dimensions. E0 denotes
the energy (band separation) at the critical point, C stands for a constant value. The type of critical point is given (min.:
minimum, saddle: saddle point, max.: maximum)

Dim. Label Type Dj for E < E0 Dj for E > E0

3D

M0

M1

M2

M3

min.

saddle

saddle

max.

0

C − √
E0 − E

C√
E0 − E

√
E − E0

C

C − √
E − E0

0

2D

M0

M1

M2

min.

saddle

max.

0

− ln(E0 − E)

C

C

− ln(E − E0)

0

1D
M0

M1

min.

max.

0√
E0 − E

√
E − E0

0

Dj(Ecv) = 2
∫

S(Ẽ)

d2S

(2π/L)3

1

|∇kEcv| , (9.42)

where Ecv is an abbreviation for Ec(k) − Ev(k) and d2S is a surface element of the constant energy
surface with Ẽ = Ecv. The spin is assumed to generate doubly degenerate bands and accounts for the
pre-factor 2. Singularities of the JDOS (van-Hove singularities or critical points) appear where ∇kEcv

vanishes. This occurs when the gradient for both bands is zero or when both bands are parallel. The
latter generates particularly large JDOS because the condition is valid at many points in k-space.

Generally, the (three-dimensional) energy dispersion E(k) around a three-dimensional critical point
(here developed at k = 0) can be written as

E(k) = E(0) + �
2k2x
2mx

+ �
2k2y
2my

+ �
2k2z
2mz

. (9.43)

The singularities are classified as M0, M1, M2 and M3 with the index being the number of masses mi

in (9.43) that are negative. M0 (M3) describes a minimum (maximum) of the band separation. M1 and
M2 are saddle points. For a two-dimensional k-space there exist M0, M1 and M2 points (minimum,
saddle point andmaximum, respectively). For a one-dimensional k-space, there existM0 andM1 points
(minimum and maximum, respectively). The functional dependence of the JDOS at the critical points
is summarized in Table 9.3. The resulting shape of the dielectric function is visualized in Fig. 9.8.

9.7.2 Direct Transitions

Transitions between states at the band edges at the � point are possible (Fig. 9.9). The k conservation
requires (almost) vertical transitions in the E(k) diagram because the length of the light k vector,
k = 2π/λ, is much smaller than the size of the Brillouin zone |k| ≤ π/a0. The ratio of the lengths of
the k vectors is of the order a0/λ and typically about 10−3 for NIR wavelengths.

For isotropic parabolic bands the band-band transition energy versus wavevector relation is

Ecv(k) = Eg + �
2

2

(
1

m∗
e

+ 1

m∗
h

)
k2 . (9.44)
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Fig. 9.8 Shape of the real (left panel) and imaginary (right panel) parts of the dielectric function in the vicinity of
critical points in 3, 2 and 1 dimensions (for labels see Table 9.3). The dashed line in each graph indicates the energy
position of the critical point E0. Adapted from [841]

Fig. 9.9 a Direct optical
transition and b indirect
optical transitions between
valence and conduction
bands. The indirect
transition involves a
phonon with energy �ωph
(index a: phonon
absorption, e: phonon
emission) and wavevector
kph
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When the energydependenceof thematrix element is neglected, the absorption coefficient is determined
by the corresponding square-root joint density of states (M0 critical point):

α(E) ∝
√
E − Eg

E
≈∝ √E − Eg . (9.45)

The approximation is valid if the considered energy interval, e.g. around a band edge, is small.
Absorption spectra of (InxGa1−x )2O3 alloy thin films at room temperature are shown in Fig. 9.10a.

The α2 versus photon energy so-called Tauc plot shows a linear dependence with broadening and
additional states at the band edge due to disorder effects. The extrapolation of the linear part yields the
absorption edge (Fig. 9.10b).

Absorption spectra of GaAs are shown in Fig. 9.11a for photon energies close to the band gap at
various temperatures. The rapid increase, typical for direct semiconductors, is obvious. In particular at
low temperatures, however, the absorption lineshape close to the band gap is dominated by an excitonic
feature, discussed in Sect. 9.7.6.

Due to the increasing density of states, the absorption increases with the photon energy (Fig. 9.11c).
At 1.85eV there is a step in the absorption spectrum of GaAs due to the beginning of the contribution
of transitions between the s-o hole band and the conduction band (see E0 +�0 transition in Fig. 9.1b).
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(a) (b)

Fig. 9.10 a Absorption spectra of (InxGa1−x )2O3 alloy thin films on Al2O3, plotted as α2 versus photon energy. b Band
edge determined from extrapolation of linear parts
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Fig. 9.11 a Absorption of GaAs close to the band gap at different temperatures. Adapted from [842]. b High-resolution
absorption spectrum of highly pure GaAs at T = 1.2K in the exciton region. Dashed line is theory without excitonic
correlation. Adapted from [843]. c Absorption spectrum of GaAs at T = 21K in the vicinity of the band gap. Adapted
from [842]
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Fig. 9.12 Optical selection
rules for band–band
transitions in bulk material
for a single photon
transitions and b
two-photon transitions
(with photon energy equal
to half the transition
energy)
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When bands run in parallel, i.e. with the same separation, in the E(k) diagram, the absorption processes
accumulate at the same transition energy. In this way peaks at higher energy in the complex part of the
dielectric function and in the absorption spectrum due to the E1 or E ′

0 transitions originate as shown
in Fig. 9.1.

The selection rules for transitions fromvalence to conduction bandmust take into account the angular
momentum and spin states of the wavefunctions. The optical transitions for circularly polarized light
are shown in Fig. 9.12a, fulfilling the selection rule�m j = ±1. A lifting of the energetic degeneracies
of these states occurs, e.g. bymagnetic fields (cmp. Fig.15.12) or spatial confinement (cmp. Fig. 12.30).
For two-photon absorption (Chap.9.7.14), the selection rule is�m j = ±2 as shown in Fig. 9.12b [844].

We note that in some materials the direct transition between certain bands is forbidden. An example
is SnO2 where the direct transition from the topmost valence band into the lowest conduction band (at
�) is forbidden (cmp. Fig. 9.48). If the matrix element increases linearly with E − Eg, the absorption
coefficient varies like

α(E) ∝ (E − Eg)
3/2 . (9.46)

9.7.3 Indirect Transitions

In an indirect band structure the missing k difference (across the Brillouin zone) between valence- and
conduction-band state needs to be provided by a second quantum. A phonon can provide the necessary
momentum and additionally contributes a small amount of energy �ωph. There are several steps in the
absorption spectrum due to various involved phonons (or combinations of them). At low temperature
(T = 1.6K, Fig. 9.13) phonons can only be generated and the absorption starts at energies above the
band gap. At higher temperatures (typically above 40K [845], Fig. 9.13), acoustical phonons assisting
the optical absorption transition can also be absorbed from the crystal; in this case due to energy
conservation the absorption starts already at an energy Eg − �ωph below the band gap. At even higher
temperatures (> 200K, Fig. 9.13), also optical phonons can be absorbed.

The perturbation calculation yields an absorption coefficient with a quadratic dependence on energy
(9.47a) [846]. Essentially, for the absorption into a specific (empty) conduction band state (with square-
root density of states) various initial (filled) valence band states (also with square-root density of states)
are possible, making the probability depend on the product of theDOS and thus on the energy to the first
power. Integrating over all energy states with energy separation E ± �ωph, yields an E2-dependence.5

5A flat optical phonon dispersion is assumed.
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Fig. 9.13 Absorption edge
of GaP (

√
α versus E) at

various temperatures. The
index ‘e’ (‘a’) indicates
phonon emission
(absorption) during the
optical absorption process.
The theoretical excitonic
gap (EgX) at T = 77K is
indicated. Adapted
from [845]

Energy (eV)

8

6

4

2

0

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
(c

m
)

-1
/2

2.15 2.18 2.272.21 2.24 2.30 2.362.33 2.39 2.42

GaP 296K

77K

1.6K

TAe

LAe

TOe

LAa

TAa

EgX
77K

216K

TAe

LAe

LAa

TAa

TOa(LO+TA)a

Considering the temperature dependent population of the phonon density of states (Bose statistics,
(E.3)) the absorption coefficients for transitions with phonon emission (αe) and phonon absorption
(αa) are:

αe(E) ∝ (E − (Eg + �ωph))
2

1 − exp(−�ωph/kT )
(9.47a)

αa(E) ∝ (E − (Eg − �ωph))
2

exp(�ωph/kT ) − 1
. (9.47b)

The two-particle process is less probable than the direct absorption that only involves one photon. The
strength of indirect absorption close to the band gap is about 10−3 smaller than for the direct transition.

An 11-parameter formula based on terms like (9.47a) can describe the room temperature absorption
spectrum of silicon in the visible with a precision of a few percent [847].

The absorption spectra close to the absorption edge are shown forGaP (Fig. 9.13) and Si (Fig. 9.14a).
According to (9.47a), the plot of

√
α versus energy (Macfarlane–Roberts plot [848]) yields a straight

line beyond the spectral region of phonon effects. The complicated form close to the (indirect) gap
energy is due to the contribution of different phonons. The phonon energies found to contribute to the
silicon absorption edge [849] agree with the TA and TO energy at the X minimum [850] (Fig. 9.14b).
Also multiple phonons can contribute (Fig. 9.13). The momentum conservation can also be achieved
by impurity scattering or electron-electron scattering [851].

We note also that the indirect semiconductors have an optical transition between � valence- and
conduction-band states. However, this transition is at higher energies than the fundamental band gap,
e.g. for Si (Eg = 1.12eV) at 3.4eV (see Fig. 6.9a). In Fig. 9.15, the absorption scheme for indirect and
direct absorption processes starting with an electron at the top of the valence band is shown together
with an experimental absorption spectrum for Ge with the direct transition (�8 → �7) at 0.89eV,
0.136eV above the fundamental band gap.

In Fig. 9.16, the absorption edge of BaTiO3 is shown. An indirect transition with an increase of
(weak) absorption ∝ E2 and an indirect gap of Ei = 2.66eV and a direct transition with an increase
of (strong) absorption ∝ E1/2 and a direct gap of Ed = 3.05eV are observed. These transitions could
be due to holes at the M (indirect gap) and � (direct gap) points (cf. Sect. 6.3.11), respectively.
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(a) (b)

Fig. 9.14 aAbsorption edge of Si at two different temperatures. Adapted from [849]. b Phonon energies in silicon along
[001] obtained from neutron scattering (black: unidentified, green: TA, purple: LA, blue: LO, red: TO). The vertical
grey bar indicates the position of the conduction band minimum, the horizontal grey bars the energies of the phonons
observed at the indirect optical absorption edge. The dark grey overlap areas indicate that TO and TA phonons contribute.
Adapted from [850]
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Fig. 9.15 a Scheme of indirect and direct optical transitions starting at the top of the valence band in Ge. Vertical solid
lines represent the involved photon, the horizontal dashed line the involved phonon. b Experimental absorption spectrum
of Ge (T = 20K). Adapted from [849]

9.7.4 Urbach Tail

Instead of the ideal (E − Eg)
1/2 dependence of the direct band-edge absorption, often an exponential

tail is observed (see Fig. 9.17). This tail is called the Urbach tail [853] and follows the functional
dependence (for E < Eg)

α(E) ∝ exp

(
E − Eg

E0

)
, (9.48)

where E0 is the characteristic width of the absorption edge, the so-called Urbach parameter.
The Urbach tail is attributed to transitions between band tails below the band edges. Such tails

can originate from disorder of the perfect crystal, e.g. from defects or doping, and the fluctuation of
electronic energy bands due to lattice vibrations. The temperature dependence of the Urbach parameter
E0 is thus related to that of the band gap as discussed in [854, 855].
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Fig. 9.16 Absorption of BaTiO3 at room temperature. Experimental data (circles) from [852] with fits (dashed lines)
∝ E2 and ∝ E1/2, respectively
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Fig. 9.17 a Experimental absorption spectrum (circles) of GaAs at room temperature on a semilogarithmic plot. The
exponential tail below the band gap is called the Urbach tail (the dash-dotted line corresponds to E0 = 10.3meV in
(9.48)). The dashed line is the theoretical dependence from (9.45). Adapted from [856]. b Temperature dependence
of Urbach parameter E0 for two GaAs samples. Experimental data for undoped (solid circles) and Si-doped (n =
2 × 1018 cm−3, empty circles) GaAs and theoretical fits (solid lines) with one-phonon model. Adapted from [854]

9.7.5 Amorphous Semiconductors

The sharp features in the dielectric function due to critical points in the band structure of crystalline
semiconductors are washed out in amorphous material. As an example the spectra of the imaginary
part of the dielectric function for crystalline (trigonal) and amorphous selenium are shown in Fig. 9.18.

9.7.6 Excitons

An electron in the conduction band and a hole in the valence band form a hydrogen-like state due to the
mutual Coulomb interaction. Such a state is called an exciton. The center-of-mass motion is separated
and has a dispersion E = �

2

2MK2, where M = me + mh is the total mass and �K is the center-of-mass
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Fig. 9.18 Imaginary part
of the dielectric function of
amorphous (solid line) and
crystalline (trigonal)
selenium (dash-dotted lines
for two different
polarization directions).
From [857]
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Table 9.4 Exciton (Eb
X) and biexciton (E

b
XX, see Sect. 9.7.10) binding energies in various bulk semiconductors. Values

for 10nm GaAs/15nm Al0.3Ga0.7As quantum well (QW) are taken from [861]

Material Eb
X (meV) Eb

XX (meV) Eb
XX/Eb

X

GaAs 4.2

GaAs QW 9.2 2.0 0.22

ZnSe 17 3.5 0.21

GaN 25 5.6 0.22

CdS 27 5.4 0.20

ZnS 37 8.0 0.22

ZnO 59 15 0.25

momentum
K = ke + kh . (9.49)

The relative motion yields hydrogen-like quantized states En ∝ n−2(n≥1):

En
X = −m∗

r

m0

1

ε2r

m0e4

2(4πε0�)2

1

n2
, (9.50)

where m∗
r denotes the reduced effective mass m∗−1

r = m∗−1
e + m∗−1

h . The third factor is the atomic
Rydberg energy (13.6eV). The exciton binding energy Eb

X = −E1
X is scaled by (m∗/m0) ε−2

r ≈ 10−3.
A more detailed theory of excitons beyond the simple hydrogen model presented here, taking into
account the valence-band structure, can be found in [858] for direct and [859] for indirect cubic and in
[860] for wurtzite semiconductors. The exciton binding energies for various semiconductors are listed
in Table 9.4 and shown in Fig. 9.19a versus the band gap.

The radius of the exciton is
rnX = n2

m0

m∗
r

εr aB , (9.51)

where aB = 0.053 nm denotes the hydrogen Bohr radius.6 The Bohr radius of the exciton is aX = r1X
(14.6nm for GaAs, ∼ 2nm for ZnO). The exciton moves with the center-of-mass K-vector through

6Cf. (7.22); an electron bound to a donor can be considered as an exciton with an infinite hole mass.
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Fig. 9.19 a Exciton
binding energy versus band
gap for various
semiconductors. b
Schematic dispersion of
excitonic levels. The
K -vector refers to the
center-of-mass motion
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Fig. 9.20 One-photon (top) and two-photon (bottom) absorption spectra ofCu2Oat T = 4.2K.Arrows denote theoretical
peak positions. Adapted from [864]

the crystal. The complete dispersion is (see Fig. 9.19b)

E = Eg + En
X + �

2

2M
K2 . (9.52)

The oscillator strength of the exciton states decays ∝ n−3. The absorption due to excitons is visible
in Fig. 9.11a for GaAs at low temperatures. If inhomogeneities are present, typically only the n = 1
transition is seen. However, under special conditions also higher transitions of the exciton Rydberg
series are seen (e.g. n = 2 and 3 in Fig. 9.11b).

The exciton concept was introduced first for absorption in Cu2O [862]. The J = 1/2 absorp-
tion spectrum (‘yellow series’) is shown in Fig. 9.20. In this particular material both the valence and
conduction bands have s character, thus the 1s transition of the exciton is forbidden and the np transi-
tions are observed in normal (one-photon) absorption. With two-photon absorption also the s (and d)
transitions can be excited. On a piece of natural Cu2O, the Rydberg series has been measured up to
n = 25 [863] (Fig. 9.21a). The peak energy and the oscillator strength follow the n−2 (Eb

X = 92meV,
Eg = 2.17208eV) and n−3 laws, respectively, expected from a hydrogen model (Fig. 9.21b). The
deviation from the n−3-dependence for the oscillator strength at large n is due to interaction effects of
excitons with large radius at finite exciton density.
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Fig. 9.21 (One photon) Absorption spectrum of Cu2O (thickness 34µm) at T = 1.2K with transitions labelled n =
2 . . . 25. Adapted from [863]

The scattering (unbound) states of the exciton [865] for E > Eg contribute to absorption above the
band gap. The factor by which the absorption spectrum is changed is called the Sommerfeld factor.
For bulk material it is

S(η) = η
exp(η)

sinh(η)
, (9.53)

with η = π[Eb
X/(E − Eg)]1/2. The change of the absorption spectrum due to the Coulomb correlation

is shown in Fig. 9.22. There is a continuous absorption between the bound and unbound states. At the
band gap there is a finite absorption (S(E → Eg) → ∞). The detail to which exciton peaks can be
resolved depends on the spectral broadening.

In Fig. 9.23 the energy separations of the A-, B-, and C-excitons in GaN are shown [540]. Thus, the
ordering of the valence bands depends on the strain state of the semiconductor.

9.7.7 Phonon Broadening

The scattering with phonons and the related dephasing leads to homogeneous broadening �hom of
absorption (and recombination) lines. Acoustic and optical phonons contribute to the broadening
according to the dependence [867]

�hom(T ) = �0 + γAC T + γLO
1

exp(�ωLO/kT ) − 1
, (9.54)

where �ωLO is the optical phonon energy and the last factor is the Bose function (E.24). �0 is a
temperature-independent contribution, �0 = �(T = 0). The increasing broadening with increasing
temperature is obvious, e.g., in absorption spectra (Fig. 9.24a). In Fig. 9.24b experimental data for
GaAs, ZnSe and GaN are assembled. The data have been fitted with (9.54); the resulting phonon
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(a) (b)

(c) (d)

Fig. 9.22 Modification of the absorption edge of a direct transition by excitonic effects for different spectral (Lorentzian)
broadening (∝ (E2 + �2/4)−1), a � = 0.01Eb

X, b � = 0.1Eb
X, c � = Eb

X. d is c in linear scale. Dashed lines are
electron–hole plasma absorption according to (9.45)

Fig. 9.23 Theoretical
dependency (lines) for the
the differences of the
C-line and A-line as well as
B-line and A-line exciton
transition energies in GaN
as a function of the c-axis
strain. Symbols are
experimental data from
[866]. Adapted from [540]

broadening parameters are listed in Table 9.5.7 The optical transitions in polar semiconductors exhibit
stronger coupling to optical phonons. The phonon coupling parameters from different measurements
on GaN are discussed and compared in [870].

7Such parameter can be directly determined from spectroscopic broadening (as in [868]) or a time-resolvedmeasurement
of the decay of the coherent polarization (four-wave mixing) as in [869]. In the latter, the decay constant of the dephasing
T2 is related to the decay constant τ of the FWM-signal by T2 = 2τ for homogeneous broadening. The Fourier transform
of exp−t/(2τ ) is a Lorentzian of the type ∝ ((E − E0)

2 + �2/4)−1 with � = 1/τ being the FWHM.
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(a) (b)

Fig. 9.24 a Absorption spectra of GaN bulk (0.38µm thick epilayer on sapphire) for various temperatures T = 100,
200, 300, 350, 400, 450, and 475K. Adapted from [868] b Homogeneous broadening as a function of temperature,
symbols are experimental data, solid lines are fits, rf. Table 9.5

Table 9.5 Phonon broadening parameters (FWHM) of various bulk semiconductors. Values from fits with (9.54) to
experimental data for GaAs [871], ZnSe [869], GaN [868], ZnO [872] (phonon energy fitted) as shown in Fig. 9.25b

Material �ωLO (meV) �0 (meV) γAC (µeV/K) γLO (meV)

GaAs 36.8 0 4 ± 2 16.8 ± 2

ZnSe 30.5 1.9 0 ± 7 84 ± 8

GaN 92 10 15 ± 4 408 ± 30

ZnO 33 1.2 32 ± 26 96 ± 24

9.7.8 Exciton Polariton

Electrons and holes are particles with spin 1/2. Thus, the exciton can form states with total spin S = 0
(para-exciton, singlet) and S = 1 (ortho-exciton, triplet). The exchange interaction leads to a splitting
of these states, the singlet being the energetically higher. The singlet state splits into the longitudinal
and transverse exciton with respect to the orientation of the polarization carried by the Bloch functions
and the center-of-massmotionK of the exciton. Dipole transitions are only possible for singlet excitons
(bright excitons). The triplet excitons couple only weakly to the electromagnetic field and are thus also
called dark excitons.

The coupling of these states to the electromagnetic field creates new quasi-particles, the exciton
polaritons [873, 874]. The dielectric function of the exciton (with background dielectric constant εb) is

ε(ω) = εb

[
1 + β

1 − (ω2/ωX)2

]
∼= εb

[
1 + β

1 − (ω2/ωT)2 + � K 2/(M ωT)

]
, (9.55)

where β is the oscillator strength and the energy is �ωX = �ωT + �
2 K 2/2M . �ωT is the energy of the

transverse exciton at K = 0. With this dispersion the wave dispersion must be fulfilled, i.e.

c2 k2 = ω2 ε(ω) , (9.56)

where k is the k-vector of the light that needs to be k = K due to momentum conservation. The
dependence of the dielectric function on k is called spatial dispersion [875]. Generally, up to terms in
k2 it is written as
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Table 9.6 Exciton energy (low temperature), LT splitting and exciton polariton oscillator strength for various semicon-
ductors. Values for ZnO from [878], values for GaAs from [879], all other values from [880]

CdS A CdS B ZnO A ZnO B ZnSe GaN A GaN B GaAs

�ωT (eV) 2.5528 2.5681 3.3776 3.3856 2.8019 3.4771 3.4816 1.5153

�LT (meV) 2.2 1.4 1.45 5 1.45 1.06 0.94 0.08

β (10−3) 1.7 1.1 0.9 3.0 1.0 0.6 0.5 0.11

ε(ω) = εb

[
1 + β

1 − (ω2/ω0)2 + D k2

]
. (9.57)

The term k2 with curvature D (for the exciton polariton D = �/(M ωT)) plays a role in particular when
ω2
T − ω2 = 0. For k �= 0 even a cubic material is anisotropic. The dimensionless curvature D̂ = Dk

′2

should fulfill D̂ = �/(Mc) � 1 in order to make k4 terms unimportant. For exciton polaritons8

typically D̂ = �ωT/(m c2) ≈ 2 × 10−5 for �ωT = 1eV and m∗ = 0.1.
From (9.56) together with (9.57) two solutions result:

2ω2 = c2k2 + (1 + β + Dk2)ω2
0 (9.58)

± [−4c2k2(1 + Dk2)ω2
0 + (c2k2 + (1 + β + Dk2)ω2

0)
2
]1/2

.

The two branches are shown schematically in Fig. 9.25a. Depending on the k value they have a photonic
(linear dispersion) or excitonic (quadratic dispersion) character. The anticrossing behavior at k ′ ≈ ωT/c
(for �ωT = 1eV, k ′ ≈ 0.5×10−5 cm−1) creates a bottleneck region in the lower polariton branch. This
name stems from the small emission rate of acoustic phonons (i.e. cooling) in that region, as predicted
in [876] and experimentally found, e.g. in CdS [877]. The polaritons decay into a photon when they hit
the surface. The effect of the oscillator strength of the dispersion is shown in Fig. 9.26 for two-exciton
resonance. In the case of several excitons (9.57) reads

ε(ω) = εb

[
1 +

n∑
i=1

βi

1 − (ω2/ω0,i )2 + Di k2

]
. (9.59)

For k = 0 either ω = 0 (lower polariton branch) or ε(ωL) = 0. For the latter we find from (9.57)

ωL = √1 + β ωT . (9.60)

Therefore, the energy splitting �ELT, mostly denoted as �LT, between the L- and T-exciton energy
given by

�ELT = �(ωL − ωT) =
[√

1 + β − 1
]

�ωT ≈ β �ωT/2 (9.61)

is proportional to the exciton oscillator strength (for experimental values see Table 9.6). We note that
if (D.9) is used for the dielectric function, β in (9.61) needs to be replaced by β/εb.

The effect of spatial dispersion on the reflection at the fundamental exciton resonance is depicted in
Fig. 9.25b. For non-normal incidence an additional feature due to the longitudinal wave is observed for
p-polarization [875]. For a detailed discussion additional effects due to anisotropy in wurtzite crystals,

8The dependence of the optical-phonon energies on k is typically too small to make spatial dispersion effects important.
According to (5.19) D̂ = −(a0ωTO/4c)2 ≈ 4× 10−11 for typical material parameters (lattice constant a0 = 0.5nm, TO
phonon frequency ωTO = 15THz).
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Fig. 9.25 a Schematic dispersion of exciton polaritons. The lower polariton branch (‘LPB’) is at small k photon-like,
at large k exciton-like. The upper branch (‘UPB’) is exciton-like at small k and photon-like at larger k. The limit of the
UPB for k → 0 is the energy of the longitudinal exciton. The dashed lines represent the pure exciton dispersions. b
Theoretical effect of spatial dispersion on the reflectance at the fundamental exciton resonance at normal incidence for
ZnSe material parameters (�ωT =2.8eV, β = 1.0×10−3 and a background dielectric constant of εb = 8.1, damping was
set to � = 10−5ωT). The arrow denotes the position of ωL. The solid (dashed) line is with (without) spatial dispersion
for D̂ = 0.6 × 10−5 (D̂ = 0). Data from [875]
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Fig. 9.26 Schematic polariton dispersion for a two-exciton resonance (curvature of exciton dispersion greatly exag-
gerated, D̂ = 10−2) at ωT,1 = 1 and ωT,2 = 1.5 for three different oscillator strengths a f = 10−3, b f = 10−2, c
f = 10−1. The dashed lines in c represent the pure exciton dispersions

an exciton free layer at the semiconductor surface, additional boundary conditions and damping need
to be considered [881, 882]. The polariton dispersions of ZnO and GaN are shown in Fig. 9.27.

9.7.9 Bound-Exciton Absorption

Excitons can localize at impurities or inhomogeneities. Such excitons are called bound excitons. Here,
the absorption due to such complexes is discussed. The recombination is discussed in Sect. 10.3.2.
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Fig. 9.27 a Exciton polariton dispersion (k ⊥ c) of ZnO with experimental data (T = 1.8K). Solid (dotted) lines are
for polaritons withE ‖ c (E ⊥ c). The dashed lines refer to excitons. Adapted from [883]. b Exciton polariton dispersion
(T = 2K) in GaN (on sapphire) for E ⊥ c. Adapted from [884]

Table 9.7 Index of nitrogen pairs NNn and energy separation �E of bound-exciton transitions from the free-exciton
line for n = 1 . . . 10 and the ‘A’ line

n 1 2 3 4 5 6 7 8 9 10 ∞ (A)

�E
(meV)

143 138 64 39 31 25 22 20 18 17 11

In GaP:N excitons are bound to isoelectronic N impurities (substituting P), resulting in the ‘A’ line
at 2.3171eV (at T = 4.2K).9 The absorption due to A excitons is well resolved in the spectrum
of Fig. 9.28b. At sufficiently high nitrogen doping, there exist nitrogen pairs, i.e. a complex where a
nitrogen impurity has a second nitrogen impurity in the vicinity. The pairs are labeled NNn . It was
believed that the second nitrogen atom is in the nth shell around the first one. However, the proper
level asignment is probably different in the view of modern theory [544]. Also clusters with more
than two nitrogen atoms may exist. NN1 is a prominent level and relates to a N–Ga–N complex
having 12 equivalent sites for the second N atom on the next neighbor anion site. The transitions due
to excitons bound to NNn , as shown in Fig. 9.28a, give a series of lines (see Table 9.7) that fulfill
limn→∞ NNn = A. Although GaP has an indirect band structure, the absorption coefficient of N-
related transitions is large, about 105 cm−1 for a nitrogen doping level of 1019 cm−3.10 This is due to
the fact that the electron spatially localized at the nitrogen isoelectronic trap (Sect. 7.7.9) has a sizeable
k = 0-component of its wave-function (Fig. 7.40), leading to a large transition probability for �-point
holes with an oscillator strength of 0.09 [885].

9The A line is due to excitons with J = 1, resulting of coupling of the electron spin 1/2 with the hole angular momentum
of 3/2. The B-line is a dipole forbidden line due to ‘dark’ excitons with J = 2.
10Also the recombination (Sect. 10.3.2) is efficient and allows green GaP:N and yellow GaAsP:N light emitting diodes.
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Fig. 9.28 a Transmission
spectrum of GaP:N with a
nitrogen concentration of
about 1019 cm−3 at 1.6K
(thickness: 1.1mm). n is
indicated for the first eight
transitions due to excitons
bound to nitrogen pairs.
NNn’ indicate phonon
replica. The ‘A’ line
denotes the position of the
transition due to excitons
bound to a single nitrogen
atom (observable for
samples with low N
doping). The ‘B’ line is
forbidden and due to the
J = 2 exciton. Adapted
from [694]. b Absorption
spectra of N-doped
(NN = 7 × 1018 cm−3) and
intrinsic GaP (T = 2K).
Adapted from [690]
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9.7.10 Biexcitons

Similar to two hydrogen atoms forming a hydrogen molecule, two excitons can also form a bound
complex, the biexciton involving twoelectrons and twoholes. Thebiexcitonbinding energy is defined as

Eb
XX = 2 EX − EXX . (9.62)

Biexcitons are binding in bulk material. Accordingly, the biexciton recombination or absorption occurs
at lower energy than that of the exciton. Values of the biexciton binding energy are listed in Table 9.4
for various semiconductors. The ratio of biexciton and exciton binding energies is fairly constant
about 0.2. In semiconductors with small exciton binding energy, such as GaAs, biexcitons are hard to
observe in bulk material but show up in heterostructures that provide additional carrier confinement
(see also Sect. 14.4.4). While the exciton density increases linearly with external excitation, the density
of biexcitons increases quadratically.

9.7.11 Trions

The complexes ‘eeh’ and ‘ehh’ are called trions. Also, the notation X− and X+ is common. X−
is typically stable in bulk material but hard to observe. In quantum wells or dots, trions are easier
to observe. In quantum dots excitons with higher charge, e.g. X2−, have also been observed (see
Fig. 14.45).
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Fig. 9.29 a Theoretical exchange and correlation energies in units of the exciton Rydberg energy as a function of the
dimensionless variable rs for Ge, Si and a model system (with one isotropic conduction and valence band each). The
solid line is a fit according to (9.64). Adapted from [886]. b Band gap renormalization in terms of the excitonic Rydberg
for various II–VI semiconductors. Solid line is the relation according to (9.64), dashed line is the dependence predicted
in [887] for T = 30K. Data are compiled in [888]

9.7.12 Band Gap Renormalization

The band structure theory has been developed so far for small carrier densities. If the carrier density
is large the interaction of free carriers has to be considered. The first step was exciton formation.
However, at high temperatures (ionization) and at large carrier density (screening) the exciton is not
stable. Exchange and correlation energy leads to a decrease of the optical absorption edge that is called
band gap renormalization (BGR).

An effect due to significant carrier density is to be expected when the density is of the order of the
exciton volume, i.e. n ∼ a−3

B . For aB ∼ 15nm (GaAs) thismeans n ∼ 3×1017cm−3. The dimensionless
radius rs is defined via

4π

3
r3s = 1

n a3B
. (9.63)

The sum of exchange and correlation energies Exc is found to be mostly independent of material
parameters [886] (Fig. 9.29a) and follows the form

Exc = a + b rs
c + d rs + r2s

, (9.64)

with a = −4.8316, b = −5.0879, c = 0.0152 and d = 3.0426. Thus the density dependence of the
band gap at small carrier density is ∝ n1/3. Experimental data for a number of II–VI semiconductors
roughly follow such a dependence (Fig. 9.29b).

In Fig. 9.30, a theoretical calculation of the absorption spectrum of bulk GaAs for various carrier
densities (n=p) [889] is shown.With increasing density, the excitonic resonance broadens and vanishes.
The shape approaches the electron–hole plasma shape. The absorption edge shifts to smaller energies.
At high carrier density, the absorption becomes negative in a spectral range before absorption sets
in. In this spectral region, the material exhibits gain and an incoming light wave is amplified (cmp.
Sect. 10.2.6).



9.7 Band–Band Transitions 285

Fig. 9.30 Absorption of
GaAs (low temperature,
T = 10K) as a function of
the electron–hole density n
(theory). Adapted
from [889]
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Fig. 9.31 a Temperature–density phase diagram of electrons and holes in Ge. The regions of electron–hole gas (EHG)
and liquid (EHL) and the droplet phase are labeled. Solid line is theoretical calculation, symbols are experimental data
from [892]. The dash-dotted line denoted ρsp is the experimentally obtained temperature dependence of the liquid density
due to single-particle excitations. ρexpc and T exp

c denote the experimental critical density and temperature, respectively.
Adapted from [893]. b Photographic image of radiative recombination (at 1.75µmwavelength) from a 300-µm diameter
droplet of electron–hole liquid (EHL) in a stressed (001) Ge disk (diameter 4mm, thickness 1.8mm) at T = 2K. The
stress is applied from the top by a nylon screw along a 〈110〉 direction. Adapted from [894], reprinted with permission,
©1977 APS

9.7.13 Electron–Hole Droplets

At low temperature and high density, electron–hole pairs in Ge and Si can undergo a phase transition
into a liquid state. This electron–hole liquid (EHL) was suggested in [890] and is a Fermi liquid
exhibiting the high conductivity of a metal and the surface and density of a liquid. The condensation is
due to exchange interaction and correlation. The formation is fostered by the band structure of Ge [891]
and the long lifetime of carriers in the indirect band structure. In unstressed Ge typically a cloud of
electron–hole droplets with diameter in theµm range exists. The phase diagram is shown in Fig. 9.31a.
In suitably stressed Ge electron–hole droplets with several hundredµmdiameter form around the point
of maximum shear strain in inhomogeneously strained crystals, as shown in Fig. 9.31b. The pair density
in such a liquid is of the order of 1017 cm−3.

We note that the metallic EHL state hinders observation of the Bose–Einstein condensation (BEC)
of (bosonic) excitons. The light-exciton mass offers a high condensation temperature in the 1K range
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Fig. 9.32 Experimental
two-photon absorption
spectrum of GaAs
(T = 4K) (dots) plotted as
a function of the difference
of the double-photon
energy 2�ω from the GaAs
band edge Eg. The solid
line is a theoretical
calculation, the dashed
lines represent slopes with
exponent 1/2 and 3/2,
respectively. Adapted
from [901]

10-210-3 10-1 1

1020

1021

1019

1022

T

GaAs

g
1/2

g

g
3/2

(compared to the mK range for atoms). Recent experiments with spatially indirect excitons in coupled
quantum wells lead towards BEC [895, 896]. A sufficiently long lifetime ensures cooling of the
excitons close to the lattice temperature. Another potential candidate for BEC are long-living excitons
(ms-range) in Cu2O [897]. The condensation of polaritons (cf. Sect. 9.7.8) in microcavities to well-
defined regions of k-space has been discussed in [898] and compared to bosonic condensation in
bulk.

9.7.14 Two-Photon Absorption

So far, only absorption processes that involve one photon have been considered. The attenuation of the
intensity I of a light beam (of frequency ω0) along the z direction can be written as

dI

dz
= −α I − β I 2 , (9.65)

where α is due to the (linear) absorption coefficient (and possibly scattering) and β is the two-photon
absorption coefficient. A two-photon process can occur in two steps, e.g. via a midgap level, which is
not considered any further here. Here, we consider two-photon absorption (TPA) via the population of a
state at 2�ω0 higher energy than the initial state with a nonlinear optical process. The TPA coefficient is
related to the nonlinear third-order electric dipole susceptibility tensor [899]χi jkl . Within the two-band
approximation theory predicts [900]

β ∝ (2 �ω0 − Eg
)3/2

. (9.66)

The exponent 3/2 is indeed found experimentally, as shown in Fig. 9.32 for GaAs. The strength of
absorption depends on the relative orientation of the light polarization with respect to the main crys-
tallographic directions, e.g. TPA for polarization along 〈110〉 is about 20% larger than for the 〈100〉
orientation.
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9.8 Impurity Absorption

9.8.1 Shallow Levels

For charge carriers bound to shallow impurities long range Coulomb forces are most important and
they exhibit a hydrogen-like term scheme

En = m∗

m0

1

ε2r

1

n2
× 13.6 eV , (9.67)

with the ionization limit E∞ being the conduction (valence) band edge for donors (acceptors), respec-
tively. They can be excited by light to the nearest band edge. Such absorption is typically in the FIR
region and can be used for photodetectors in this wavelength regime. The optical absorption cross
section of impurity absorption can be related to the carrier capture cross section [588, 589].

The actual transition energies can deviate from (9.67) due to deviation of the potential close to the
impurity from the pure Coulomb potential. Such an effect is known as the chemical shift or central
cell correction (cf. Sect. 7.5.5) and is characteristic of the particular impurity. In GaAs such shifts are
small (∼100µeV) [902].

The term scheme for P inSi is shown inFig. 9.33a. Theground state (1s) is split because of a reduction
of the tetrahedral symmetry due to intervalley coupling. The anisotropic mass at the X-valley in Si
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Fig. 9.33 a Term scheme of phosphorus donor in silicon, all energies in meV. After [903]. b Schematic sequence for
photothermal ionization, here absorption of a photon with �ω = E3p − E1s and subsequent absorption of a phonon with
energy �ωph ≥ E∞ − E3p



288 9 Optical Properties

(a)

4

40 50 60
-1

2p
2p0

3p 4p

ED

2p

3p2s 3p0

Si

Sn
Pb

GaAs

30

5 6 7

2p

1.9T

0T

(b)
48 50 52 54

)-1

GaAs

1s-3p

1s-3p0

dark

illumi-
nated

Fig. 9.34 a Far-infrared photoconductivity response (Lyman-type s→p series) of not intentionally doped GaAs with
residual donors Pb, Sn, and Si, NA = 2.6 × 1013 cm−3, ND − NA = 8 × 1012 cm−3. The upper (lower) curve is
for a magnetic field of 0 (1.9)T. Measurement temperature is 4.2K. b Photoconductive response of a (different) GaAs
sample with the same impurities (ND = 1× 1013 cm−3) with (upper curve) and without (lower curve) illumination with
above-bandgap light (B = 1.9T, T = 4.2K). Adapted from [905]

causes the p states (and states with higher orbital angular momentum) to split into p0 and p± states.
Such an effect is absent in a direct semiconductor with an isotropic conduction-band minimum such
as GaAs (Fig. 9.34). Optical transitions between the 1s and various p states can be directly observed
in absorption, e.g. for Si:P in [904]. These transitions are also observed in photoconductivity because
the missing energy to the ionization into the continuum is supplied by a phonon at finite temperature
(photothermal ionization) (Fig. 9.33b) [903]. The splitting of the 2p transition in Fig. 9.34a is the
chemical shift due to different donors incorporated in the GaAs (Si, Sn, and Pb). Peak broadening is
mostly due to Stark broadening due to neighboring charged impurities. The application of a magnetic
field induces Zeeman-like splittings and increases the sharpness of the peaks. The peak width can be
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Fig. 9.35 Low-temperature (T = 1.35K) absorption spectra of highly doped n-typeGaAs:Tewith doping concentrations
as labeled (circles: ND = 2.1×1016 cm−3, stars: 6.7×1014, triangles: 1.0×1015). A sharp photoconductivity spectrum
(in arbitrary units) from low-doped GaAs:Te (crosses, ND = 1.0× 1014 cm−3) is shown for comparison (cf. Fig. 9.34a).
The energy of the 1s→2p transition and the donor binding energy (onset of continuum absorption) are indicated. Adapted
from [906]
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further increased by illuminating the sample with light having a higher energy than the band gap. The
additional charge carriers neutralize charged impurities and allow higher resolution (Fig. 9.34b).

In Fig. 9.35 absorption spectra of highly doped n-type GaAs are shown. For doping concentrations
larger than the critical concentration of∼1×1016 cm−3 (cf. Table 7.6) significant broadening is observed
due to the formation of an impurity band.

9.8.2 Deep Levels

The absorption of deep levels is typically in the infrared. In Fig. 9.36a the possible optical absorption
processes involving the Fe levels in InP (cf. Sect. 7.7.8) during the charge transfer Fe3+ → Fe2+
are shown. These transitions and their fine structure (Fig. 9.36b) have been observed in calorimetric
absorption spectroscopy (CAS) experiments [682].

InFig. 9.37 photoproductivity of Si:Mg is shown.The sharp peaks are due to transitions of interstitial,
singly ionized Mg, Mg+

i [907]. Mg in Si is a double donor [653] (see Sect. 7.7.2). Above the ionization
limit of about 256meV, the peaks are replicated, shifted by the LO phonon energy of 59.1meV.
However, now they rather appear as dips. This behavior is typical for a discrete state interacting with
a continuum, also called Fano resonance[908, 909] with its characteristic lineshape, going below the
continuum level.

The absorption spectra due to various deep acceptors in GaAs are compared in Fig. 9.38. The
density of states in the band increases with k (proportional to

√
E − Ec). The carrier on the impurity is

strongly localized and described with a wave packet centered around �, its k-components decreasing
with increasing k. Thus the maximum absorption will be at an intermediate k-value and an associated
energy larger than the ionization energy Ei (lowest transition to continuum at for k = 0). The lineshapes
in Fig. 9.38 fit to a model with a δ-potential (zero range model, neglecting long range Coulomb terms)
[910] with maximum absorption close to 2 Ei,

α(E) ∝ E1/2
i (E − Ei)

3/2

E3
. (9.68)
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Fig. 9.36 a Schematic band diagramof InPwith levels of Fe impurities in the 3+ and 2+ charge states at low temperature.
All energies are given in eV. The arrows denote the optical transition of a valence-band electron to the Fe center,
Fe3+ + �ω → Fe2+ + h. b Calorimetric absorption spectra (at T = 1.3K) of InP:Fe, [Fe]=5 × 1016 cm−3. Part b
Adapted from [682]
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Fig. 9.37 Photocurrent
spectrum of Si:Mg.
Transitions are due to Mg+

i
from its 1s state to excited
states as labeled and
indicated by vertical lines.
CB denotes the conduction
band edge (ionization
limit). Above the CB edge
(shaded area)
phonon-assisted absorption
occurs (Fano resonances).
For comparison the
absorption spectrum below
CB is shown shifted by the
phonon energy (dashed
line). Above the plot, the
transition mechanisms
(photothermal ionization
and Fano resonance) are
schematically shown.
Adapted from [907]
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Fig. 9.38 Absorption spectra (σ = α/p) due to various deep impurities in GaAs as labeled. The dashed line is a
theoretical lineshape assuming a hole bound to a δ-potential. The energy axis is scaled by the ionization energy. The
kink for Mn at 3.5 Ei ≈ 450meV is due to the onset of absorption into the split-off valence band. Adapted from [314]
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9.9 Absorption in the Presence of Free Charge Carriers

In the presence of charge carriers, various absorption processes can occur. First, the dissipative motion
of carriers leads to infrared absorption, termed the free carrier absorption (Sect. 9.9.1). Filling of a band
with carriers leads to a shift of the band-band absorption edge, the Burstein-Moss shift (Sect. 9.9.2).
Besides the free-carrier absorption, free carriers present in the semiconductor can lead to further
absorption processes with transition energies below the band gap. These processes are due to transitions
within the band structure and can be

• inter-valence band transitions of holes (Sect. 9.9.3),
• phonon-assisted inter-valley transitions of electrons (Sect. 9.9.4),
• phonon-assisted intra-band transitions of electrons (Sect. 9.9.5).

9.9.1 Absorption Coefficient, Plasma Frequency

The absorption due to free carriers in the infrared spectral range (away from phonon resonances) can
be described with the Drude model [911].

A time-dependent electric field accelerates the charge carriers within a band. The excess energy
is subsequently transferred to the lattice via scattering with phonons. A review of the effect of free
carriers on optical properties can be found in [912]. In the relaxation-time approximation energy is
relaxed with a time constant τ . Thus energy is absorbed from the electromagnetic wave and dissipated.
Effectively, this process represents an intra-band excitation.

The complex conductivity (8.37) is given by

σ∗ = σr + iσi = n e2 τ

m∗

(
1

1 + ω2τ 2
+ i

ωτ

1 + ω2τ 2

)
. (9.69)

We note that a static magnetic field introduces birefringence as discussed in more detail in Sect. 15.2.2.
The wave equation for the electric field is

∇2E = εr ε0 μ0 Ë + σ∗ μ0 Ė . (9.70)

For a plane wave ∝ exp[i(kr − ωt)] the wavevector obeys

k = ω

c

√
εr + i

σ∗

ε0 ω
, (9.71)

where c = (ε0μ0)
−1/2 is the velocity of light in vacuum, εr is the background dielectric constant (for

large ω).
The part εFC of the dielectric function due to free carriers is

εFC = i

ε0 ω
σ∗ . (9.72)

The complex index of refraction is

n∗ = nr + iκ =
√

εr + i
σ∗

ε0 ω
. (9.73)
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Taking the square of this equation yields

n2r − κ2 = εr + i
σi

ε0 ω
= εr − n e2

ε0 m∗
τ 2

1 + ω2τ 2
(9.74a)

2 nr κ = σr

ε0ω
= n e2

ε0 ωm∗
τ

1 + ω2τ 2
. (9.74b)

The absorption coefficient is related to κ by (9.9). For the case of higher frequencies, i.e. ωτ  1, the
absorption is

α = n e2

ε0 c nr m∗ τ

1

ω2
∝ λ2 . (9.75)

The absorption decreaseswith increasing frequency likeω−r . The classicalDrude treatment as followed
here results in an exponent of r = 2. This is the case for neutral impurity scattering and also for
small frequencies �ω � EF. A more detailed discussion of the energy dependence of free-carrier
absorption can be found in [913]. Other exponents have been derived for scattering by acoustical
phonons (r = 3/2), LO phonons (r = 5/2) and ionized impurities (r = 7/2). More detailed quantum
mechanical treatments of free-carrier absorption in the presence of impurities and phonons can be
found in [914–916].

For semiconductors free-carrier absorption is particularly important in the mid- and far-infrared
regions when carriers are present due to doping or thermal excitation. In Fig. 9.39a absorption spectra
of n-typeGe for various doping concentrations are shown.The absorption coefficient in the transparency
regime varies proportionally to λ2 as predicted in (9.75). In Fig. 9.39a, the absorption can be seen to
rise for photon energy above 0.7eV due to absorption in the band structure. Electrons are excited from
the valence band across the fundamental band gap into the conduction band (cmp. Sect. 9.7.3), which
is an indirect transition in Ge.

In Fig. 9.39b the absorption coefficient due to free carrier absorption at fixed wavelength is shown
as a function of dopant concentration.11 The slope is slightly overlinear, indicating a weak dependence
τ (n). A sub-linear relation has been found for heavily p-doped GaAs [917].

The index of refraction is given by (also for ωτ  1)

n2r = εr − ne2

ε0m∗ω2
+ κ2 = εr

[
1 −
(ωp

ω

)2]+ ε2r
4n2r

(ωp

ω

)4 1

ω2τ 2
(9.76)

≈ εr

[
1 −
(ωp

ω

)2]
,

where

ωp =
√

n e2

εr ε0 m∗ (9.77)

is the plasma frequency. The approximation is valid for small absorption and when (ωτ )−2 can be
neglected. A graphical representation is given in Fig. 9.40a. For coupling to electromagnetic waves
(still ωτ  1)

ε(ω) = εr

[
1 −
(ωp

ω

)2] = c2 k2

ω2
(9.78)

must be fulfilled. It follows that the dispersion relation in the presence of free carriers (Fig. 9.40b) is

11Even at low temperature, n ≈ ND since ND  Nc (cf. [594] and Sect. 7.5.7).
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(a) (b)

Fig. 9.39 a Optical absorption spectra (at T = 4.2K) of n-type Ge for various As dopant concentrations as labeled. The
arrow denotes the band edge of undoped Ge, the vertical dashed line the energy for which the free-carrier absorption
is measured in part b. The inclined dashed line visualizes the slope ∝ λ2. Curved dashed lines are guides to the eye.
Adapted from [851]. b Free-carrier absorption at λ = 2.4µm as determined from part a of the figure (blue squares) as a
function of As dopant concentration. Additionally data at 300K (red circles) from the same samples are included [851].
The dashed lines visualizes the slope ∝ N 1.25

D

Fig. 9.40 a Dielectric
constant for plasmon
oscillations. Shaded area
represents region of
attenuation (negative ε). b
Dispersion relation (k in
units of ωp/c, ω in units of
ωp) in the presence of free
carriers (9.79, for εr = 1).
Shaded area represents
forbidden frequency range
for propagating solutions.
Dashed line is photon
dispersion ω = ck
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For ω > ωp, ε > 0, thus waves can propagate. For ω < ωp, however, the dielectric constant is negative,
i.e. ε < 0. For such frequencies waves are exponentially damped and cannot propagate or penetrate
a layer. This effect can be used in a plasmon waveguide or in metamaterials (cf. Sect. 19.1.10). The
expected dependence of the plasmon wavelength on the carrier density λp = 2πc/ωp ∝ n−1/2 is
depicted in Fig. 9.41 for GaAs. For semiconductors the plasmon frequency is in the mid-or far-infrared
spectral region.12

12The much higher free-electron density in metals shifts the plasma frequency to the UV, explaining the reflectivity of
metals in the visible and their UV transparency.
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Fig. 9.41 Plasma
wavelength λp for n-type
GaAs with various electron
concentrations due to
different doping levels.
Filled circles: experimental
values, dashed line: n−1/2

dependence; the deviation
is due to nonparabolicity of
the electron mass (cf.
Fig. 9.53b). Data
from [918]

Fig. 9.42 Burstein–Moss
effect at InSb
(Eg = 0.18eV) at room
temperature. Theoretical
dependence and data points
for intrinsic InSb and
5× 1018 cm−3 n-type. Data
from [919]
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9.9.2 Burstein–Moss Shift

In the discussion so far it has been assumed that all target states in the conduction band are empty. In
the presence of free carriers the absorption is modified by the

• change of the distribution function
• many-body effects (band gap renormalization).

The latter is discussed in the next section. For a degenerate electron distribution all states close to
the conduction-band edge are populated. Thus a transition from the valence band cannot take place
into such states. This shift of the absorption edge to higher energies is called the Burstein–Moss shift
[919, 920]. Originally, the Burstein–Moss shift was evoked to explain the absorption shift in InSb with
varying carrier concentration (Fig. 9.42).

k-conserving optical transitions between parabolic hole and electron bands have the dependence

E = Eg + �
2k2

2me
+ �

2k2

2mh
= Eg + �

2k2

2mr
, (9.80)

where mr is the reduced mass of electron and hole. About 4kT below the Fermi level all levels in the
conduction band are populated (Fig. 9.43). Thus the k value at which the absorption starts is given as

k̂ =
√
2me

�2
(EF − EC − 4kT ) . (9.81)
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Fig. 9.43 Principle of
Burstein–Moss shift. Left
panel: Schematic band
structure with completely
filled electron states shown
in grey. The k-vector for
the lowest photon energy
optical absorption process
is indicated as k̂. Right
panel: Electron distribution
function for a degenerate
electron gas with Fermi
level in the conduction
band
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Besides the energy shift in the conduction band, the corresponding energy shift in the valence band
�k̂2/(2mh) must be considered. Thus, the Burstein–Moss shift of the absorption edge is

�E = �ω − Eg = (EF − 4kT − EC)

(
1 + me

mh

)
. (9.82)

The relation between n and the Fermi level is given by (7.6). If EF − EC  kT the Fermi integral can

be approximated by 2√
π
2
3

( EF−EC
kT

)3/2
. Using (7.8) for NC, the Burstein–Moss shift can be written for

this case as

�E = n2/3
h2

8me

(
3

π

)2/3 (
1 + me

mh

)
≈ 0.97

h2

8mr
n2/3 . (9.83)

The n2/3 dependence of the energy shift is found, e.g., for CdO13 with different carrier concentrations
(due to different deposition temperature, no intentional doping) [921] and depicted in Fig. 9.44a. Similar
behavior is found for ITO (indium-tin-oxide) thin films, deposited at different sputtering conditions,
leading to different carrier concentrations (9.44b).

9.9.3 Inter-Valenceband Transitions

Transitions within the valence band can occur between three bands, i.e. lh→hh, so→hh, and so→lh,
as schematically depicted in Fig. 9.45. Theoretical treatments have been given in [923, 924]. For
GaAs, such intravalence-band absorption occurs at photon energies close to �0 as shown in Fig. 9.46a
for p-type GaAs:Zn [925]. For p-type GaSb, the absorption coefficient below the fundamental band
gap is found almost entirely due to inter-valence band transitions, as shown in Fig. 9.46b for a hole
concentration of p = 3.2 × 1016 cm−3 [926].

13CdO is an indirect semiconductor, the optical band gap is the energy of the direct transition at the �-point, typically
obtained from extrapolation in the α2 versus energy plot. The indirect transitions involve holes from other points in the
Brillouin zone (cmp. Fig. 6.13).
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(a) (b)

Fig. 9.44 a Burstein–Moss effect in CdO. The linear fit is for Eg = 2.22(8)eV and mr = 0.113(11)me. The dashed
lines indicate the confidence interval of±0.08eV. Adapted from [921]. bBurstein–Moss effect in ITO (indium-tin-oxide)
versus the ’optical’ carrier density determined from the position of the plasma edge. The dashed line is guide to the eye.
Data from [922]
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Fig. 9.45 Schematic optical transitions within the valence band

(a)
0.1

-1

0.2 0.40.3 0.5 0.6

GaAs:Zn

400

200

100

60

40

20

10

0

(b)

-1 p-GaSb

Fig. 9.46 a Optical absorption spectrum of GaAs:Zn with p = 2.7 × 1017 cm−3 at T = 84K. The absorption above
the split-off energy �0 is due to the hh/lh → s-o process. Adapted from [925]. a Optical absorption coefficient of GaSb
with p = 3.2 × 1016 cm−3. Experimental data (solid line) and calculation of inter-valence band contribution (squares).
The free carrier contribution is less than 5cm−1 in the considered spectral range. Adapted from [926]
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Fig. 9.47 a Schematic of inter-valley conduction band transitions involving a photon (solid line arrow) and a phonon
(dashed line arrow). b Optical absorption coefficient of InP with n = 1.65 × 1018 cm−3. Experimental data (solid
line) and calculation of inter-valley band contribution (dashed line). The extrapolated free carrier contribution is shown
as dash-dotted line and the difference of experimental absorption and extrapolated free carrier contribution as circles.
Adapted from [927]

9.9.4 Inter-Valley Transitions

Electrons at the conduction band minimum can undergo optical transitions to the same band at a
different point of the Brillouin zone. Such intervalley transition, as sketched in Fig. 9.47a, is phonon-
assisted to fulfill momentum conservation and occurs around the energy difference �E between the
two valleys (cmp. Table 8.4).

For InP with an electron concentration of n = 1.65 × 1018 cm−3, below the fundamental band
edge at 1.4eV, an additional contribution starting around 0.8–0.9eV is found besides the free carrier
absorption (Fig. 9.47b) [927]. Taking into account the filling of the bottom of the conduction band,
an energy separation for the two valleys of �E = 0.90 ± 0.02eV was found for various values
of the electron concentrations. This energy corresponds to the energy difference of conduction band
minima at � and X in InP. The lineshape of this absorption processes can be modeled and fits well the
difference of measured absorption and extrapolated free-carrier absorption spectra. Transitions to the
lower minimum at L (�E = 0.6eV) are not observed, possibly masked by the free-carrier absorption.

9.9.5 Intra-Band Transitions

Phonon-assisted transitions within the lowest conduction band (not to a different valley), as indicated
schematically in Fig. 9.48a for the SnO2 band structure [928], can cause absorption at photon energies
below the fundamental absorption edge. Actually in SnO2, the optical transition across the fundamental
band gap is only weakly dipole-allowed and leads to small absorption coefficient below 100cm−1

directly above the fundamental band gap of about 3.6eV. The strong dipole-allowed transition with
absorption coefficient around 105 cm−1 begins at about 4.3eV and stems from electrons in a lower
valence band [929]. The free-carrier absorption due to transitions within the lowest conduction band
are calculated to dominate below 2.8eV (Fig. 9.48b) and thus can also impact transparency in the
visible spectral range. The calculated slope is close to α ∝ λ3 (cmp. (9.75)), expected from the linear
dispersion of the conduction band away from the �-point [928]. A similar effect with the contribution
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Fig. 9.48 a Band structure of SnO2 and indirect intra-band absorption process; the transition from the topmost valence
band (dashed arrow) is forbidden. b Calculated free-carrier absorption(σ = α/n) for SnO2. The solid and dashed lines
are results including phonon-assisted transitions for two light polarizations. The dotted lines are fits of the Drude model
to the infrared regime. Adapted from [928]

Fig. 9.49 Calculated room
temperature absorption
coefficient Ga2O3 as a
function of energy (for
light polarized along the z
direction) for
undoped/intrinsic material
and three different electron
concentrations as labelled.
Adapted from [930]

of inter-band and intra-band transitions leading to absorption within the band gap transparency regime
has been calculated for Ga2O3 as shown in Fig. 9.49 for various doping levels [930].

9.10 Lattice Absorption

Due to the lack of a dipole moment of the optical phonons, no first order interaction of optical phonons
and (infrared) light exists in the diamond structure for Si and Ge due to crystal structure symmetry
[931]. However, higher order processes contribute to lattice absorption in these materials [932, 933].
E.g., two-photon bands are due to a dipole moment that is of second order in the nuclear displacement.
Strong absorption effects are present for compound semiconductors. A review can be found in [934].

9.10.1 Dielectric Constant

The (relative) dielectric constant (with damping parameter �) in the vicinity of the optical phonon
energies is given by (cf. (9.27))
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Fig. 9.50 Lattice absorption oscillator strength f from (9.86) for various elemental, III–V and II–VI semiconductors
as a function of their ionicity fi (cf. Table 2.1). Dashed line is linear dependence on ionicity for similar (reduced) mass,
dash-dotted lines are guides to the eye for similar ionicity and varying mass

ε(ω) = ε(∞)

(
ω2
TO − ω2 − iω�

ω2
TO − ω2 − iω�

)
. (9.84)

The dispersion relation (without damping) can be rewritten as

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − (ω/ωTO)2
= ε(∞)

[
1 + f

1 − (ω/ωTO)2

]
. (9.85)

Thus the dimensionless oscillator strength (compare with (D.10)) is f = (ε(0)/ε(∞) − 1. With the
LST relation (9.26) the oscillator strength is

f = ε(0) − ε(∞)

ε(∞)
= ω2

LO − ω2
TO

ω2
TO

≈ 2
ωLO − ωTO

ωTO
, (9.86)

and thus proportional to the splitting�LT = ωLO−ωTO between the longitudinal and transverse optical
phonon frequency. The approximation in (9.86) is valid for �LT � ωTO.

The oscillator strength increases with the ionicity, i.e. the electronegativity difference of the atoms
in the base (Fig. 9.50). Additionally, the oscillator strength depends on the reduced mass and the high-
frequency polarizability; this can be seen, e.g., for the series of the Zn compounds that all have similar
ionicity. For the series of the nitrides, the mass effect is small since the reduced mass is dominated
by the light N mass. We refer to Fig. 5.23 for the change of phonon oscillator strength in an (Al,Ga)N
alloy.

9.10.2 Reststrahlenbande

The absorption of electromagnetic radiation by optical phonons is governed by the dielectric function
that has been derived in (9.84). For small damping, i.e. � � �LT, the dielectric constant is negative
between ωTO and ωLO. From εr = n2r − κ2 it follows that κ2 is much larger than n2r . Therefore,
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Fig. 9.51 Far-infrared absorption (linear scale) of GaAs. In the region around 35meV is the reststrahlenbande with high
absorption due to optical phonons. The sharp little peak at 45meV is a LVM, probably from AlGa. Adapted from [935]

the reflectance (9.17) will be close to 1. This energy range is the so-called reststrahlenbande. This
term stems from multiple reflections in this wavelength regime that suppresses neighboring spectral
regions and thus achieves a certain monochromatization in the far-infrared spectral region. Within the
semiconductor the absorption is large in the reststrahlenbande (Fig. 9.51).

9.10.3 Polaritons

The coupled propagation of phonons and electromagnetic radiation is (without phonon damping)
related to the dielectric function given in (9.27),

ε(ω) = ε(∞)

(
ω2
LO − ω2

ω2
TO − ω2

)
= c2 k2

ω2
. (9.87)

There are two branches of propagating waves (real k):

ω2 = 1

2

(
ω2
LO + c2k2

ε(∞)

)
±
√
1

4

(
ω2
LO + c2k2

ε(∞)

)2
−
(
c2k2ω2

TO

ε(∞)

)2
. (9.88)

For k = 0 we find the solutions ω = ωLO and ω = k c/
√

ε(0). For large k we find ω = ωTO

and ω = k c/
√

ε(∞). These solutions are shown in Fig. 9.52. Both branches have a phonon- and a
photon-like part. The coupled state between the phonon and the photon field is called the (phonon-)
polariton.

In the interval [ωTO,ωLO] the wavevector is purely imaginary, i.e. k = ik̃ with real k̃. For this case
there is only one solution that is also depicted in Fig. 9.52,

ω2 = 1

2

(
ω2
LO + c2k̃2

ε(∞)

)
+
√√√√1

4

(
ω2
LO + c2k̃2

ε(∞)

)2

+
(
c2k̃2ω2

TO

ε(∞)

)2

. (9.89)

9.10.4 Phonon–Plasmon Coupling

The coupling of phonons and plasmons in the spectral region of the reststrahlenbande leads to the
development of two new branches, the longitudinal phonon plasmon modes (LPP+ and LPP−), in the
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Fig. 9.52 Dispersion of the polariton. The dotted line displays the dispersion for a purely imaginary wavevector with
the absolute value k

(a) (b)

Fig. 9.53 a Frequency of the coupled longitudinal-phonon plasmon (LPP) modes (lower (upper) polariton branch in
blue (red)) as a function of the plasma frequency. Dashed line shows uncoupled plasmon frequency (ω = ωp), grey area
indicates spectral region between TO and LO modes. b Experimental data on the polariton energies in n-type GaAs with
different carrier concentration ωp ∝ √

n m∗ (9.77). Dashed (dash-dotted) line is plasmon frequency ωp without (with)
consideration of conduction band non-parabolicity (cf. Fig. 6.37b). Data from [918, 936]

common dispersion. The dielectric function is

ε(ω) = ε(∞)

(
1 + ω2

LO − ω2

ω2
TO − ω2

− ω2
p

ω2

)
. (9.90)

For ε(ω) = 0 for k = 0 (coupling to photons) the two solutions ωLPP+ and ωLPP− do not cross as a
function of ωp (Fig. 9.53),

ωLPP± = 1

2

[
ω2
LO + ω2

p ±
√

(ω2
LO + ω2

p)
2 − 4ω2

TO ω2
p

]
. (9.91)

For small plasma frequencies ωLPP+ = ωLO, i.e. the optical phonons couple to the electromagnetic
field without change. Also ωLPP− = ωp. For large carrier density, i.e. ωp  ωLO, we find ωLPP− = ωTO

and ωLPP+ = ωp. Thus, the carriers have effectively screened the electric field of the phonon that had
led to the increase of the TO to the LO frequency.



Chapter 10
Recombination

Les hommes discutent, la nature agit.
Men argue, nature acts.

Voltaire

Abstract The various mechanisms and statistics of carrier recombination in semiconductors includ-
ing band-band, excitonic, band-impurity (Shockley-Read-Hall kinetics) and Auger recombination
are explained. Also recombination at extended defects and surfaces is treated. Using the diffusion-
recombination theory, the one-dimensional carrier profiles for typical situations in experiments and
devices are derived.

10.1 Introduction

In thermodynamic nonequilibrium excess charges can be present in the semiconductor. They can be
created by carrier injection through contacts, an electronbeamor the absorptionof lightwithwavelength
smaller than the band gap.After the external excitation is turned off, the semiconductorwill return to the
equilibrium state. The relaxation of carriers into energetically lower states (and energy release) is called
recombination. The term stems from the electron recombining with the hole created after absorption
of a photon. However, there are other recombination mechanisms. A dedicated textbook is [937].

In the simplest picture an excitation generates carriers with a rate G (carriers per unit volume and
unit time). In the steady state (after all turn-on effects) a constant excess charge n carrier density
is present. Then the generation exactly compensates the recombination processes. The principle of
detailed balance even says that each microscopic process is balanced by its reverse process. If the time
constant of the latter is τ , n is given by n = G τ . This follows from the steady-state solution ṅ = 0 of

dn

dt
= G − n

τ
. (10.1)

In the literature two limiting cases have been discussed, the relaxation and the lifetime semiconductor,
depending on the relation of two time constants. The one time constant τ0 is the relaxation time constant
due to recombination as discussed in the following. The smaller τ0 is, the faster excited electrons
and holes recombine and ‘disappear’. Fast lifetimes are typically present in direct semiconductors
(compared to indirect ones), semiconductors with high defect density and amorphous semiconductors.
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Fig. 10.1 Processes of
band–band recombination:
a spontaneous emission, b
absorption and c stimulated
emission. A full (empty)
circle represents an
occupied (unoccupied)
electron state
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The other time constant is τD = ε/σ, the dielectric relaxation time; it describes the transport of carriers
due to mobility (and diffusion). Large dielectric relaxation times are present in semiconductors with
high mobility (low defect density, small carrier mass), small τD typically for hopping conduction.
The relaxation case is given for τ0 � τD; carriers will recombine quickly and it is hard to build up
non-equilibrium carriers and separate them with an applied electric field. In the recombination case
τD � τ0, non-equilibrium carriers can assume non-uniform distributions and an applied electrical field
generates separate quasi-Fermi levels for electrons and holes.1 (cmp. Sect. 7.6).

10.2 Band–Band Recombination

The band–band recombination is the relaxation from an electron in the conduction band into the valence
(the empty state there is the hole). In a direct semiconductor, electrons can make an optical transition
between the bottom of the conduction band to the top of the valence band. In an indirect semiconductor,
this process is only possible with the assistance of a phonon and is thus much less probable.

10.2.1 Spontaneous Emission

We consider the spontaneous recombination of an electron of energy Ee and a hole of energy Eh

(Fig. 10.1a). C(Ee, Eh) is a constant proportional to the matrix element of the optical transition (cf.
Sect. 9.6). The spontaneous recombination rate rsp at photon energy E ≥ EC − EV = Eg is (assuming
energy conservation, i.e. E = Ee − Eh, but without k-conservation in a dense plasma [938]),

rsp(E) =
∞∫

EC

dEe

EV∫

−∞
dEh C(Ee, Eh) × (10.2)

De(Ee) fe(Ee) Dh(Eh) fh(Eh) δ(E − Ee + Eh)

=
E+EV∫

EC

dEe C(Ee, Ee − E) ×

De(Ee) fe(Ee) Dh(Ee − E) fh(Ee − E) ,

where fh denotes the hole occupation fh = 1 − fe.

1In the relaxation case, the separation of quasi-Fermi levels is � kT .
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Fig. 10.2 a Photoluminescence spectrum of an undoped LPE-grown epitaxial GaAs layer at room temperature and low
cw (λ = 647nm) excitation density (10W/cm2). The solid line is a lineshape fit with (10.3) and Eg =1.423eV and
T = 293K. (b) Room temperature, direct (e�–h�) recombination from heavily n-doped (1019 cm−3) germanium (1µm
thick Ge layer on silicon (001)) with biaxial (thermal) tensile strain. The strain-split valence band edge (Fig. 6.50) causes
the e–hh and e–lh transitions (individual contributions with lineshape according to (10.3) shown as dashed lines) to occur
at different energies. Adapted from [939]

Fig. 10.3 Carrier
temperature TC in GaAs as
a function of excitation
density at a lattice
temperature of 1.6K. The
dashed line is guide to the
eye, the solid line
corresponds to an
activation energy of
33meV, similar to the
GaAs optical phonon
energy. Adapted
from [940]
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The lineshape of the band–band recombination with k-conservation2 is proportional to the joint
density of states (9.42) and the Fermi distribution function. At small excitation and at low doping it
can be approximated by the Boltzmann distribution function and the lineshape is given as

I (E) ∝ √
E − Eg exp

(
− E

kT

)
. (10.3)

An experimental spectrum is shown in Fig. 10.2 together with a fit according to (10.3). The expected
FWHM of the peak is 1.7954 kT , which is about 46meV at T = 300K. At low sample temperature,
the temperature of the carrier gas is typically higher than the lattice temperature, depending on the
cooling mechanisms (carrier–carrier scattering, optical phonon emission, acoustic phonon emission,
recombination, . . .) and the excitation rate. The carrier temperature in GaAs, determined from the
Boltzmann tail of spontaneous emission (photoluminescence) is depicted in Fig. 10.3 as a function of
excitation density; clearly it increases with increasing excitation.

The recombination rate in indirect semiconductors is small since the transition is phonon-assisted.
For silicon, an internal quantum efficiency in the 10−6-range has been reported [941]. For germanium,

2Excitonic effects are neglected here, e.g. for temperatures kT � Eb
X. Such effects are discussed in Sect. 10.3.
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the direct transition is energetically fairly close to the fundamental, indirect L–� band edge transition
(Fig. 9.15). The energy difference can be reduced from its bulk value of 136meV by tensile strain.
Additionally, the direct transition can be favored by heavily n-doping and filling the L conduction
band minimum states (see Sect. 9.9.2). In this case, direct recombination from the conduction band
�-minimum can be observed [939] and the effective energy difference has been lowered to about
100meV.

10.2.2 Absorption

A similar consideration is made for the absorption process (Fig. 10.1b). An electron is transferred upon
light absorption from a valence-band state (occupied) to a conduction-band state that must be empty.
The coefficient is B1. Also, the process is proportional to the light intensity, represented by the density
of occupied photon states Nph(E),

rabs(E) =
E+EV∫

EC

dEe B1(Ee, Ee − E) × (10.4)

De(Ee) (1 − fe(Ee)) Dh(Ee − E) (1 − fh(Ee − E)) Nph(E) .

10.2.3 Stimulated Emission

In this case, an incoming photon ‘triggers’ the transition of an electron in the conduction band into an
empty state in the valence band. The emitted photon is in phase with the initial photon (Fig. 10.1c).
The rate is (with coefficient B2):

rst(E) =
E+EV∫

EC

dEe B2(Ee, Ee − E) × (10.5)

De(Ee) fn(Ee) Dh(Ee − E) fh(Ee − E) Nph(E) .

The photon density Nph at a given energy is given by Planck’s law and the Bose–Einstein distribution
(Appendix E)

Nph(E) = N0
1

exp (E/kT ) − 1
. (10.6)

The pre-factor is the density of states of the electromagnetic field3 N0(E) = 8π E2 (nr/hc)3.

10.2.4 Net Recombination Rate

In thermodynamical equilibrium the rates fulfill

3The total number of photon states in vacuum between the frequencies zero and ν is N (ν) = 8πν3/(3c3). With ν = E/h
and N0 = dN (E)/dE and considering c → c/nr we obtain the given value for N0.
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rsp(E) + rst(E) = rabs(E) . (10.7)

Since for absorption and stimulated emission the same quantum-mechanical matrix element is respon-
sible, B1 = B2. If the population functions are Fermi-Dirac distributions with quasi-Fermi levels Fn

and Fp (Sect. 7.6), the detailed balance (10.7) yields

C(E1, E2) = B1(E1, E2) Nph

[
exp

(
E − (Fn − Fp)

kT

)
− 1

]
. (10.8)

In thermodynamic equilibrium, i.e. Fn = Fp,

C(E1, E2) = N0 B1(E1, E2) = B . (10.9)

If the constant B, the bimolecular recombination coefficient, is independent of the energy E , the
integration for the net bimolecular recombination rate rB can be executed analytically and we find

rB =
∞∫

Eg

[
rsp(E) + rst(E) − rabs(E)

]
dE (10.10)

= B n p

[
1 − exp

(
− Fn − Fp

kT

)]
.

In thermodynamic equilibrium, of course, rB = 0. The recombination rate Bnp is then equal to the
thermal generation rate G th

G th = B n0 p0 . (10.11)

The bimolecular recombination rate typically used in Shockley–Read–Hall (SRH) [942, 943] kinetics is

rB = B (n p − n0 p0) . (10.12)

Values for the coefficient B are given in Table10.1. In the case of carrier injection, np is larger than
in thermodynamical equilibrium, i.e. n p > n0 p0, and the recombination rate is positive, i.e. light
is emitted. If the carrier density is smaller than in thermodynamical equilibrium, e.g.. in a depletion
region, absorption is larger than emission. This effect is also known as ‘negative luminescence’ [944]
and plays a role particularly at elevated temperatures and in the infrared spectral region.

Table 10.1 Bimolecular recombination coefficient at room temperature for a number of semiconductors. Data for GaN
from [945], Si from [946], SiC from [947], other values from [948]

Material B (cm3/s)

GaN 1.1 ×10−8

GaAs 1.0 ×10−10

AlAs 7.5 ×10−11

InP 6.0 ×10−11

InAs 2.1 ×10−11

4H-SiC 1.5 ×10−12

Si 1.1 ×10−14

GaP 3.0 ×10−15
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10.2.5 Recombination Dynamics

The carrier densities n and p, are decomposed into the densities n0 and p0 in thermodynamic equilib-
rium and the excess-carrier densities δn and δ p, respectively

n = n0 + δn (10.13a)

p = p0 + δ p . (10.13b)

Here, only neutral excitations are considered, i.e. δn = δ p. Obviously the time derivative fulfills
∂n
∂t = ∂ δn

∂t , and correspondingly for the hole density. The equation for the dynamics

ṅ = ṗ = −Bnp + G th = −B (n p − n0 p0) = −B (n p − n2i ) (10.14)

can be written as
∂ δ p

∂t
= −B (n0 δ p + p0 δn + δn δ p) . (10.15)

The general solution of (10.15) is given by

δ p(t) = (n0 + p0) δ p(0)

[n0 + p0 + δ p(0)] exp [B t (n0 + p0)] − δ p(0)
. (10.16)

In the following, we discuss some approximate solutions of (10.15). First, we treat the case of a small
(neutral) excitation, i.e. δn = δ p � n0, p0. The dynamic equation is in this case

∂ δ p

∂t
= −B (n0 + p0) δ p . (10.17)

Then the decay of the excess-carrier density is exponential with a time constant (lifetime) τ given by

τ = 1

B (n0 + p0)
. (10.18)

In an n-type semiconductor additionally n0 � p0, and thus the minority carrier lifetime τp is

τp = 1

B n0
. (10.19)

If the nonequilibrium carrier densities are large, i.e. n ≈ p � n0, p0, e.g. for strong injection, the
kinetics obeys

∂ δ p

∂t
= −B (δ p)2 , (10.20)

and the transient has the form

δ p(t) = δ p(0)

1 + B t δ p(0)
, (10.21)

where δ p(0) is the excess hole density at time t = 0. Such a decay is called hyperbolic and the
recombination is bimolecular. The exponential decay time is formally τ−1 = Bδ p(t) and is thus time
and density dependent. A detailed discussion of minority carrier lifetime is given in [949].
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10.2.6 Lasing

The net rate for stimulated emission and absorption is

rst(E) − rabs(E) =
[
1 − exp

(
E − (Fn − Fp)

kT

)]
(10.22)

×
E+EV∫

EC

dEe B De(Ee) fe(Ee) Dh(Ee − E) fh(Ee − E) Nph(E) .

The net rate at photon energy E = �ω is only larger than zero (i.e. dominating stimulated emission)
when

Fn − Fp > E ≥ Eg . (10.23)

When the difference of the quasi-Fermi levels is larger than the band gap, the carrier population is
inverted, i.e. close to the band edges the conduction-band states are more strongly populated with
electrons than the valence-band states, as shown in Fig. 10.4. An incoming optical wave of energy E
will then be net amplified by stimulated emission. Equation (10.23) is also called the thermodynamic
laser condition. We note that lasing requires further conditions as discussed in Sect. 23.4.

10.3 Exciton Recombination

10.3.1 Free Excitons

The observation of free-excitons is limited for semiconductors with a small exciton binding energies
(such as in GaAs) to low temperatures. However, for large exciton binding energy, recombination from
free-excitons is observed even at room temperature, as shown in Fig. 10.5 for ZnO.

Fig. 10.4 Charge-carrier
distribution during
inversion, necessary for
lasing. Shaded areas are
populated with electrons. A
stimulated transition
between an electron and a
hole is indicated

D(E)

EV

EC

E

Fn

Fp
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Fig. 10.5 Temperature-dependent luminescence spectra of aZnO thinfilm (on sapphire).At low temperatures, the spectra
are dominated by donor-bound exciton transitions (Al0,X)). The vertical dashed line indicates the low-temperature
position of the donor-bound exciton transition (D0,X). The curved dashed line visualizes the energy position of the
free-exciton transition (XA) that becomes dominant at room temperature

Fig. 10.6 Low temperature recombination spectra from silicon with low (solid lines) and sizeable (dashed line) phos-
phorus dopant concentration. Spectrum for NP = 2×1014 cm−3 (NP = 8×1016 cm−3) taken at 26K (15K). Transitions
in pure Si are label with ‘I’, transitions involving P donors are labeled with ‘P’. Q indicates the dissociation energy of
the bound exciton. Adapted from [950]

A low temperature recombination spectrum of silicon is shown in Fig. 10.6. In pure silicon, phonon-
assisted exciton recombination (cmp. Sect. 10.4) is observed involving acoustic (ITA) and optical (ITO)
phonons. The weakly observed no-phonon line (I0) is forbidden in perfect Si.

10.3.2 Bound Excitons

Excitons can localize at impurities, defects or other potential fluctuations and subsequently recombine
[951, 952]. Excitons can be bound to neutral or ionized donors and acceptors impurities [953]. Also
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Fig. 10.7 Energy Q required to remove an exciton from a neutral impurity (10.24) as a function of the ionization energy
Eb
D (open circles) or Eb

A (solid circles) of the involved impurity in (a) silicon (experimental data from [965]) and (b)
ZnO (experimental data from [966])

they can be bound to isoelectronic impurities, the most prominent example being N in GaP [954] (cmp.
Sect. 9.7.9) or isoelectronic clusters [955]. The recombination of excitons localized in quantum wells
(Sect. 12.4) and quantum dots (Sect. 14.4.4) is discussed later.

The transition energy �ω of an exciton bound to a neutral impurity is

�ω = Eg − EX
b − Q , (10.24)

where Q is the binding (or localization) energy of the exciton to the impurity. The binding energy of
an exciton to an ionized impurity is denoted with Q∗. A transition involving an exciton bound to a
neutral donor is denoted (D0,X); correspondingly (D+,X), also denoted as (h,D0), and (A0,X). Values
for donor-bound excitons in various semiconductors are listed in Table10.2. The (D0,X) complex is
stable for 0 < σ = m∗

e/m
∗
h < 0.43 according to [956]. The (D+,X) peak can occur on the low- or

high-energy side of the (D0,X) recombination. Whether Q∗ < Q or Q∗ > Q depends on σ being
smaller or larger than 0.2, respectively [956], and is fulfilled for many semiconductors, e.g. GaAs,
GaN, CdS, and ZnSe.

Recombination in silicon due to excitons involving phosphorus donors is depicted in Fig. 10.6. The
(D0,X) transition in Si:P is labeled ‘P0’ (Q = 6meV). Other P-related transitions are discussed in
[950]. In Si, the binding energy to the impurity is about one tenth of the binding energy of the impurity
(Haynes’s rule [951, 965]), i.e. Q/Eb

D and Q/Eb
A ≈ 0.1 (Fig. 10.7a). In GaP the approximate relations

Q = 0.26Eb
D − 7meV and Q = 0.056Eb

A + 3meV have been found [954]. For donors in ZnO, the
relation Q = 0.365Eb

D − 3.8meV holds (Fig. 10.7b) [966]. In Fig. 10.8, the recombination spectrum
of GaAs:C is shown that exhibits recombination from excitons bound to the acceptor (carbon) and
shallow donors. The exciton is more strongly bound to an ionized donor (D+) than to a neutral donor.

Varying the concentration of a specific impurity and observing the corresponding change in the
intensity of the (D0,X) transition allows to identify the chemical species to which the exciton is
bound. This can be achieved via the comparison of different samples or more elegantly by introducing
radioactive isotopes. This is shown in Fig. 10.9 for In in ZnO; the (111In0,X) transition disappears with
the characteristic time constant close to that (97h) of the nuclear decay of 111In into stable 111Cd.
However, in such experiments it should be considered that the decay product and accompanying high-
energy radiation can create new electronic and structural defects, respectively.

The peak labeled (D0,X)2s in Fig. 10.8 is called a two-electron satellite (TES) [968]. High-resolution
spectra of the TES in GaAs [581, 969] are shown in Fig. 10.10a. The TES recombination is a (D0,X)
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Table 10.2 Localization energy Q (Q∗) of excitons on selected impurities (ionized impurities, D+ or A−, respectively)
in various semiconductors. σ is the ratio of effective electron and hole (polaron) masses. EMD: effective mass donor

host donor Q (meV) Q∗ (meV) Q∗/Q σ Ref.

GaAs
EMD

Zn

0.88

8.1

1.8

31.1

2.0

3.8
0.28 [957]

GaN
EMD

Mg

6.8

20

11.2 1.6

0.36
[959]

AlN
Si

Mg

16

40
[960]

CdS EMD 6.6 3.8 0.6 0.17 [961]

Al 4.9 5.4 1.1

ZnSe Ga 5.1 6.6 1.3 0.27 [962, 963]

In 5.4 7.5 1.4

Al 15.5 3.4 0.21

ZnO Ga 16.1 4.1 0.25 0.3 [964]

In 19.2 8.5 0.44

1.50 1.51 1.521.49

GaAs:CAs

(e,A )0

(D ,A )0 0 (D ,X)0
2s

(h,D )0

(A ,X)0

(h,D )2s
0

(D ,X)0

20

Fig. 10.8 Photoluminescence spectrum (T = 2K, D = 10mWcm−2) of GaAs:CAs (NA = 1014 cm−3) with donor-
and acceptor-related bound-exciton recombination around 1.512eV, (e,A0), (h,D0) and (D0,A0) pair and free-exciton
recombination. Adapted from [957]

recombination that leaves the donor in an excited state as schematically shown in Fig. 10.10b. Therefore
a hydrogen-like series with n = 2, 3, . . . is observed with energies

En
TES = E(D0,X) − Eb

D

(
1 − 1

n2

)
. (10.25)

The effect of isotope disorder on the sharpness and splitting of impurity states has been investigated
in [970, 971]. The recombination of excitons bound to Al, Ga and In in natural silicon (92.23% 28Si,
4.67% 29Si, 3.10% 30Si) is split into three lines due to the valley-orbit splitting [972] of electron states
at the band minimum (Fig. 10.11). Each of these (A0,X) lines is split by 0.01cm−1 for Si:Al due to a
symmetry reduction of the 4-fold degenerate A0 ground state, as observed in the presence of applied
axial strain or an electric field. The comparison to spectra from enriched 28Si shows that the observed
splitting without external perturbation is due to isotope disorder that causes random strains and splits
the A0 ground state into two doublets [971] (Fig. 10.11). Similarly, the (unsplit) phosphorus-induced
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Fig. 10.9 a Low-temperature photoluminescence spectrum of ZnO implanted with 111In featuring the so-called I9-line.
Spectra are recorded at various times after implantation as labeled. b Intensity of I9-line as a function of time. Adapted
from [967]

(a)
1.510 1.515

1

20
4

40

exc.

TES (D ,X)0

(b)

EC

n=1ED

EV

n=2
n=3

D0 X D0*

Fig. 10.10 a Photoluminescence spectrum (T = 1.5K, D = 50mWcm−2) of high-purity GaAs with two donors (Ge
and Se/Sn). The lower spectrum has been excited 6meV above the band gap, the upper spectrum has been resonantly
excited with the laser set to the (D0,X) transition and exhibits n = 2, 3, 4, and 5 TES transitions. α,β,γ denote excited
(hole rotational) states of the (D0,X) complex. Adapted from [969]. b Schematic representation of the n = 2 TES process,
left: initial, right: final state

(D0,X) transition in enriched Si is found to be much sharper (< 40µeV) than in natural Si (330µeV)
[970]. At higher resolution, a hyperfine splitting of 485neV due to the 31P nuclear spin I = 1/2
(2× 1012 cm−3) in isotopically pure (99.991%) 28Si (I = 0) is observed for the (P0,X) recombination
[973]. In a magnetic field, the Zeeman-split lines have a FWHM of about 150neV.

In Fig. 10.12 the recombination of excitons bound to the N isoelectronic impurity in lowly doped
GaP is shown. The efficient recombination of nitrogen-bound electrons with holes at the � point is
due to the wave-function component of the localized electron at k = 0 [690] (Fig. 7.40). The decay
time of the A exciton is about 40ns [974] and thus larger than the typical lifetime of excitons in direct
semiconductors (ns-range). The forbidden B exciton has a much longer lifetime of 4µs [974].

In the case of In in GaAs it has been found that down to the regime of NIn < 1019 cm−3 the indium
does not act as a substitutional isoelectronic impurity but still fully participates in the composition
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Si:Al

28Si

1.1508 1.1509 1.1510

natural
Si

A0

A0X

Fig. 10.11 High-resolution photoluminescence (PL) spectra of (A0,X) recombination in natural and 28Si-enriched
silicon doped with aluminum (T = 1.8K). The 28Si PL spectrum is shifted up in energy by 0.114meV, as indicated
by the arrow, to compensate for the shift in band gap. The inset shows a level scheme for the recombination in natural
silicon. Adapted from [971], reprinted with permission, ©(2002) APS

Fig. 10.12 Photoluminescence
spectrum (T = 4.2K) of
GaP:N
(NN ≈ 5 × 1016 cm−3).
The A exciton is bound to
an isolated nitrogen
impurity, cmp. to Fig. 9.28.
Adapted from [690]

Fig. 10.13 Spectral
position of neutral donor-
and acceptor-bound exciton
photoluminescence
transition (T = 2K) in
GaAs doped with different
amounts of indium relative
to the donor-bound exciton
luminescence in pure GaAs
(1.5146eV). Adapted
from [975]

of a pseudo-binary system (Sect. 6.5). Recombination from excitons bound to single indium atoms or
In–In pairs could not be found. The energy shift of donor- and acceptor-bound excitons in the dilute
limit (Fig. 10.13) follows the band-gap dependence established for larger indium concentrations. The
non-occurrence of localization effects is attributed to the small effective electron mass in InAs [544].
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Fig. 10.14 (Temperature
dependent PL intensity of
(D0,X) in GaN and (A0,X)
in AlN:Mg recombination.
Solid lines are fits with
(10.26). Data from [960,
978]

The luminescence intensity I (T ) of bound exciton lines is quenched with increasing temperature
due to ionization of the excitons from the impurities. The temperature dependence can be modeled
using the relation [976]

I (T )

I (T = 0)
= 1

1 + C exp(−EA/kT )
, (10.26)

EA being the thermal activation energy and C a pre-factor. Often the activation energy is found equal
to the localization energy, EA = Q (Fig. 10.14, cmp. Table10.2). If several processes contribute,
additional exponential terms can be addedwith further activation energies. For acceptor-bound excitons
in GaAs two processes are found to contribute, the ionization from the impurity into a free exciton
(E1

A ≈ Q) and into an electron-hole pair (E2
A ≈ Q + Eb

X) [976]. In [977] the model is refined by
considering the temperature dependence of the parameterC due to the ionization of the impurity itself.

So far single excitons bound to a center have been discussed. Also bound exciton complexes [979]
containing up to six excitons have been observed at sufficient excitation density, e.g. for substitutional
boron [980] or phosphorus [981] and interstitial Li [982] in silicon. In a multi-valley semiconductor
several electrons are available to form bound excitons which follow approximately a shell model and
exhibit further fine structure.

10.3.3 Alloy Broadening

The bound-exciton recombination peak in a binary compound is spectrally fairly sharp (Sect. 10.3.2),
even in the presence of isotope disorder (Fig. 10.11). In an alloy (see Sect. 3.7), the random distribution
of atoms (with different atomic order number Z ) causes a significant broadening effect of the lumi-
nescence (and absorption) line, the so-called alloy broadening [983, 984]. As an example, we treat
AlxGa1−xAs. The exciton samples, at different positions of the lattice, different coordinations of Ga
and Al atoms. If the experiment averages over these configurations, an inhomogeneously broadened
line is observed.

The cation concentration cc for the zincblende lattice is given as cc = 4/a30 , for the wurtzite lattice
as cc = 4/(

√
3 a2c). For example, cc = 2.2 × 1022 cm−3 for AlxGa1−xAs in the entire composition

range 0 ≤ x ≤ 1 since the lattice constant does not vary significantly, and cc = 4.2 × 1022 cm−3 for
wurtzite MgxZn1−xO [985]. In a random alloy, the probability p(N ) to find exactly N Ga atoms in a
given volume V (with a total of ccV cations) is given by the binomial distribution
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(a) (b)

Fig. 10.15 a Spectral width of the photoluminescence from CdSxSe1−x alloys. Solid line is theory according to (10.30).
Adapted from [983]. (b) Spectral width of the bound exciton recombination in AlxGa1−xAs with various Al content
within the direct-bandgap regime. Solid line is (10.30) with (10.28), dashed line with pre-factor 4π/3 instead of 10 π.
Adapted from [987]

p(N ) =
(
cc V
N

)
xN (1 − x)ccV−N . (10.27)

The sampling volume for a luminescence event is the exciton volume (cf. (9.51)) that is given for the
free-exciton (in 1s hydrogen state) as [983, 986]

Vex = 10 π a3X = 10 π

(
m0

m∗
r

εs aB

)3

. (10.28)

One should note that due to the variation of the involved material parameters Vex depends itself on
x . In GaAs there are about 1.2 × 106 cations in the exciton volume. In AlxGa1−xAs, there are on
average xccVex Al atoms in the exciton volume. The fluctuation is given by the standard deviation of
the binomial distribution [986]

σ2
x = x (1 − x)

cc Vex
. (10.29)

The corresponding energetic broadening (full width at half-maximum) of the spectral line is given by
�E = 2.36σ with

σ = ∂Eg

∂x
σx = ∂Eg

∂x

√
x (1 − x)

ccVex
. (10.30)

We note that instead of the quantum mechanically correct factor 10 π [983, 986], often the factor 4π/3
[984] is used, resulting in larger theoretical broadening.

Experimental data for CdxSe1−x in Fig. 10.15a are consistent with (10.30). The theoretical depen-
dence (10.30) is shown in Fig. 10.15b also for AlxGa1−xAs together with experimental data and found
to disagree [987]. Since the exciton volume is much smaller (cf. Sect. 9.7.6) than in AlxGa1−xAs, alloy
broadening in MgxZn1−xO is much larger for a given for given x .

The spectral broadening due to alloy disordermasks the fine structure of recombination lines near the
band edge present for binary semiconductors. Often for all temperatures only a single recombination
line appears for alloys. Spectra for three different MgxZn1−xO alloys are shown in Fig. 10.16a. The
increasing inhomogeneous broadening is obvious, causing a single peak for x > 0.03. The temperature
dependence of the peak positions is shown in Fig. 10.17 for the same samples. For x = 0.005 the bound
exciton (Al-donor) (D0,X) and free exciton (XA) recombination lines can still be resolved despite
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(a) (b)

Fig. 10.16 a Photoluminescence spectra (T = 80K, scaled) of three MgxZn1−xO alloy layers on sapphire with three
different Mg-contents, x = 0.005, x = 0.03, and x = 0.06 as labeled. The energy positions of (D0,X) and XA peaks
are marked. Adapted from [977]. b Peak energy of the photoluminescence spectrum (T = 2K) of ZnO (I6-line, star)
and various MgxZn1−xO alloys (circles). For x ≤ 0.03 (filled circles) the (D0,X) recombination peak (Al donor) can be
spectrally separated from the free exciton (XA) recombination. For the samples with higher Mg content (empty circles)
a single recombination peak is present at all temperatures. The dashed line is a linear least square fit for the alloys with
0 ≤ x ≤ 0.03, showing that also for x > 0.03 the low temperature recombination peak is due to donor-bound excitons.
Adapted from [988]

Fig. 10.17 Temperature dependence of the shift of energy position of (D0,X) and XA photoluminescence peak in
MgxZn1−xO alloys with three different Mg-contents, (a) x = 0.005, (b) x = 0.03, (c) x = 0.06. The energy positions
are given relative to the low temperature position of the respective (D0,X) peaks. Adapted from [977]

the inhomogeneous broadening of σ = 2.6meV. At low temperature the luminescence intensity is
dominated by (D0,X) recombination, at room temperature by free exciton (XA) recombination. Both
peaks are present at low temperatures and exhibit a red-shift with increasing temperatures due to the
shrinking of the band gap (Fig. 10.17a). The (D0,X) peak vanishes at about 180K due to ionization of
the excitons from the donors (Q ≈ 15meV, similar as in pure ZnO).

For larger Mg-content of x = 0.03 the two peaks can still mostly be separated (σ = 6.0meV).
The (D0,X) energy position shows a small dip (about 2meV) due to exciton localization in the alloy
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Fig. 10.18 Schematic
representation of 1LO
exciton scattering of an
exciton at K �= 0 to an
intermediate state with
K ≈ 0 and subsequent
radiative decay. �ω
represents the phonon
energy and E1 the energy
of the emitted photon

K

n=1
n=2

n=3

h ph

E1

E

continuum

disorder potential (arrow in Fig. 10.17b). At low temperatures excitons are frozen in local potential
minima and have a non-thermal (non-Boltzmann) population. With increasing temperature they can
overcome energy barriers and thermalize, leading to a shift of the recombination peak to lower energies.
Further increase of temperature populates higher levels and leads to a shift of the recombination peak to
higher energies. Superimposed is the red-shift due to the band gap shrinkage. This so-called “S”-shape
effect of E(T ) is discussed in Sect. 12.4 in detail with regard to exciton localization in a quantum well
disorder potential.

For x = 0.06 only a single photoluminescence peak is observed for the alloy (σ = 8.5meV). The
(D0,X) peak is the dominant for the MgxZn1−xO alloys at low temperatures even in the presence of
large alloy broadening (Fig. 10.16(b)). The peak changes its nature from (D0,X) at low temperatures
to XA at room temperature. In between, first exciton thermalization (red-shift) in the disorder potential
and subsequently exciton ionization from the donors (blue-shift, arrow in Fig. 10.17c) are observed
[977]. Such exciton ionization from impurities has also been observed for (Al,Ga)N:Si [628, 989].

10.4 Phonon Replica

The momentum selection rule for free-exciton recombination allows only excitons with K ≈ 0 (for
K, cf. (9.49)) to recombine. The fine structure of this recombination is connected to polariton effects
(cf. Sect. 9.7.8). Excitons with large K can recombine if a phonon or several phonons are involved
[990] that provide the necessary momentum q = K1 − K2, with K1 (K2) being the wavevector of
the initial (intermediate) exciton state (Fig. 10.18). A so-called zero-phonon line at energy E0 is then
accompanied by phonon replica below E0 at integer multiples (at low temperature) of the (LO) phonon
energy �ωph

En = E0 − n �ωph . (10.31)

Phonon replicas have been observed in many polar semiconductors such as CdS [991] and ZnSe [992].
A sequence of such phonon replica, as observed in GaN [993], is depicted in Fig. 10.19a.

The lineshape of the n-th phonon-assisted line is proportional to the exciton population at a given
excess energy, which is proportional to the density of states and the Boltzmann distribution func-
tion [994]

In(Eex) ∝ √
Eex exp

(
− Eex

kT

)
wn(Eex) . (10.32)
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Fig. 10.19 a Photoluminescence spectrum of GaN (grown on SiC substrate) at T = 50K. In addition to emission from
free (FE) and bound (BE) excitons several phonon replica (labeled as 1LO–5LO) are observed. Vertical dashed lines
indicate energy positions of multiple LO-phonon energies (�ωLO = 92meV) below the FE peak. Adapted from [993].
b Photoluminescence spectrum of 1LO phonon-assisted recombination peak at T = 103K (from the data of Fig. 10.5).
Data points (dots) and lineshape fit (solid line) according to (10.32) with the parameters L1 = 0.9 and E1 = 3.2955eV
(and background)

Here, Eex represents the exciton kinetic energy. The factor wn(Eex) accounts for the q-dependence of
the matrix element. It is typically expressed as

wn(Eex) ∝ ELn
ex . (10.33)

Accordingly, as temperature dependent refinement of (10.31), the energy separation�En of the energy
of the peak maximum of phonon replica from E0 is given by

�En = En − E0 = −n �ωph +
(
Ln + 1

2

)
kT . (10.34)

It is found theoretically that L1 = 1 and L2 =0 [994]. These relations are approximately fulfilled for
GaN [995]. A lineshape fit for the 1LO phonon-assisted transition in ZnO is shown in Fig. 10.19b.

In Fig. 10.20a the ‘green band’ emission of ZnO is shown as presented in [996]. This band is mostly
attributed to a Cu impurity; recently, evidence has grown from isotope decay and annealing studies that
it is related to the zinc vacancy [997] (Fig. 10.20b). The zero phonon line is followed by many replica
with a maximum at about 6 LO phonons. The intensity IN of the N -th replica is given by [998, 999]

IN ∝ exp(−S)
SN

N ! , (10.35)

where S is the so-called Huang–Rhys parameter. In [997], a coupling parameter of S = 6.9 has been
determined.

Equation (10.35) is obtained from the consideration of transitions in the configuration diagram [998,
1000] (Fig. 10.21), using the Born–Oppenheimer approximation. Here the electronic wavefunctions
are separated from the vibrational wavefunctions, leading to the Franck–Condon principle, that optical
transitions occur with the positions of the nuclei fixed and thus vertical in the configuration diagram
Fig. 10.21. Assuming low temperatures, only the lowest state is (partially) occupied. The Huang–Rhys
parameter, the average number of phonons involved in the transition, is related to the displacement
δq = q1 − q0 of the two configurations
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Fig. 10.20 a Luminescence spectrum of ZnO in the visible. The arrow denotes the zero-phonon line at 2.8590eV. The
numbers of the phonon replica are labeled. Adapted from [996]. b Luminescence spectra (solid lines) of a ZnO bulk
crystal before (‘untreated’) and after annealing in O2 atmosphere at T = 1073K. After annealing in Zn atmosphere at
the same temperature, the green band disappears again (dashed line). From [997]

S = C δq2

2 �ωph
, (10.36)

where C is the ‘spring constant’ of the parabola, C = d2E/dq2.
For small S � 1, we are in the weak coupling regime and the zero-phonon line is the strongest. In

the strong coupling regime, S > 1, the maximum is (red-) shifted from the zero-phonon line. We note
that in absorption, phonon replica occur on the high-energy side of the zero-phonon absorption. For
large S the peak intensities are close to a Gaussian. The correspondence of emission and absorption is
nicely seen for excitons on isoelectronic oxygen traps in ZnTe [1001]. The oxygen is on substitutional
Te site. Up to seven phonon replica are visible in Fig. 10.22 around the zero-phonon or A-line with a

(a) q0 q1

E0
q

E

E1

h

hS

E

(b)
ZPL

absorption

S=
0

E

2

1

4
8

emission

Fig. 10.21 a Configuration diagram of two states that differ in their configuration coordinate by δq = q1 − q0. Both
are coupled to phonons of energy �ω. The absorption maximum (solid vertical line) and emission maximum (dashed
vertical line) are shifted with respect to the zero-phonon line (dotted vertical line) with energy E1−E0. The Huang–Rhys
parameter is S ∼ 4. (b) Intensity of zero-phonon line (‘ZPL’) and phonon replica (10.35) for emission and absorption
processes with different values of the Huang–Rhys parameter S as labeled



10.5 Self-Absorption 321

Fig. 10.22 Photoluminescence (solid line) and absorption (dashed line) spectra of excitons bound to substitutional
oxygen in ZnTe at T = 20K. The energy position is relative to the A-line at 1.9860eV. The vertical dashed lines have a
separation of 25.9meV. Adapted from [1001]

separation of about 26meV, the optical phonon energy in ZnTe. The Huang-Rhys parameter is about
3–4. Other peaks are due to acoustic phonons.

10.5 Self-Absorption

Luminescence that is emitted within the semiconductor can be (re-)absorbed before it may reach the
surface and can leave the crystal. This effect is called self-absorption. It is particularly strong for
radiation with an energy where the absorption α(�ω) is high, i.e. above the band gap of a direct
semiconductor. Similarly to the penetration depth 1/α for radiation entering the crystal, emission
approximately occurs only from a layer of such thickness. For typical values of α in the range of
105 cm−1, the ‘skin’ of the semiconductor that emits light with energy above the band gap is 100nm.
For light at the low energy side of the band gap or with energy within the band gap (deep levels), the
emission depth can be much larger.

After re-absorption, the energy has another chance to relax non-radiatively, thus reducing the quan-
tum efficiency. Alternatively it can be reemitted, either at the same energy or at a lower energy. Possibly
several re-absorption processes occur before a photon eventually leaves the semiconductor (‘photon
recycling’). Such processes are important in LED structures where photon extraction has to be opti-
mized (Sect. 23.3.4). Emission on phonon replica (Sect. 10.4) is red-shifted from the energy range of
strong absorption and thus suffers no (or only little) self-absorption. This can be seen from the spec-
trum of a thick ZnO crystal excited homogeneously (via two-photon absorption with a red Ruby laser),
Fig. 10.23. The zero phonon line (at EX), originating from the ≈100nm skin of the samples and being
by far the strongest in thin films (Fig. 10.5), is practically absent and emission on the phonon replica
collected from the entire volume dominates the spectrum.

10.6 Donor–Acceptor Pair Transitions

Optical transitions can occur between neutral donors and acceptors. The (spatially indirect) donor–
acceptor pair (DAP) recombination is present in (partially) compensated semiconductors and follows
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Fig. 10.23 Photoluminescence
spectrum (at T = 55K)
from bulk ZnO excited
homogeneously via
two-photon excitation by a
Q-switched ruby laser
(pulse width 40ns).
Adapted from [1002]

the scheme D0A0 → D+A−eh → D+A− + γ, where γ is a photon with the energy �ω. The energy
of the emitted photon is given by

�ω = Eg − Eb
D − Eb

A + 1

4πε0

e2

εrR
, (10.37)

where R is the distance between the donor and the acceptor for a specific pair. Since R is discrete, the
DAP recombination spectrum consists of several discrete lines. If the donor and acceptor occupy the
same sublattice, e.g.. O and C both substituting P sites in GaP, the spatial distance of the donor and
acceptor is R(n) = a0

√
n/2, where a0 is the lattice constant and n is an integer. However, for certain

‘magic’ numbers n = 14, 30, 46, . . . no lattice points exist and therefore the corresponding lines are
missing (labeled ‘G’ in Fig. 10.24). No such gaps exist in DA spectra where donors and acceptors
occupy different sublattices, e.g. GaP:O,Zn (see also Fig. 10.24). In this case, the spatial separation is
given by R(n) = a0

√
n/2 − 5/16. If significant broadening is present, the lines are washed out and a

donor–acceptor pair band forms.

10.7 Inner-Impurity Recombination

The transitions of electrons between different states of an impurity level can be nonradiative or radiative.
As an example, the radiative transition of electrons in the Fe2+ state in InP 5T2 → 5E (Fig. 10.25) and
its fine structure were observed first in [1005] at around 0.35eV.

Certain defects, also termed ‘color centers’, have been investigated towards their ability to act as
efficient single photon source. If a single defect is optically excited, it can emit a photon. However, it
cannot be excited further. Also, it cannot emit another photon before it has been excited again. This can
be measured through the correlation function for the time difference of emitted photons going to zero
for zero time difference. A popular example of such center is the NV center in diamond, the complex of
a vacancy and a nitrogen impurity [1006, 1007]. The emission rate saturates at about 2×105 photons/s
(pick up with microscope objective). The sensitivity of the spectrum to magnetic fields makes the NV
center a nanoscopic magnetic field sensor [1008]. Also the spins on the center are fairly isolated and
can be manipulated coherently.

10.8 Auger Recombination

In competition with the radiative, bimolecular recombination is the Auger recombination (Fig. 10.26).
In the Auger process, the energy that is released during the recombination of an electron and hole is
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Fig. 10.24 Transition energies in GaP (T = 1.6K) of the donor–acceptor recombination involving the deep oxygen
donor and C, Zn, and Cd acceptors, respectively. The lines follow (10.37) for EGaP

g = 2.339eV, εr = 11.1 and (Eb
D)O =

893meV, (Eb
A)C = 48.5meV, (Eb

A)Zn = 64meV, and (Eb
A)Cd = 96.5meV. Predicted missing modes for GaP:C,O are

labeled with ‘G’. Adapted from [1003]
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Fig. 10.25 a Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge states at low
temperature. All energies are given in eV. The arrow denotes the optical transition from an excited Fe2+ state to the
Fe2+ ground state. (b) Photoluminescence spectrum (at T = 4.2K) of InP:Fe sample with [Fe]=5× 1016 cm−3. Part (b)
adapted from [1004]

not emitted with a photon but, instead, transferred to a third particle. This can be an electron (eeh,
Fig. 10.26a) or a hole (hhe, Fig. 10.26b). The energy is eventually transferred nonradiatively from the
hot third carrier via phonon emission to the lattice. The probability for such process is ∝ n2 p if two
electrons are involved and ∝ np2 if two holes are involved. The Auger process is a three-particle
process and becomes likely for high carrier density, either through doping, in the presence of many
excess carriers, or in semiconductors with small band gap. Auger recombination is the inverse of
the impact ionization (cf. Sect. 8.4.4). Phonon-assisted Auger recombination relaxes the momentum
conservation rule for the involved charge carriers at the cost of an additional particle being involved in
the scattering process. It has been pointed out that this process is dominating in bulk material [1010,
1011] and quantum wells [1012].

In thermodynamic equilibrium the rates for Auger recombination and thermal Auger generation
must be equal, thus
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Fig. 10.26 Schematic
representation of Auger
recombination. An electron
recombines with a hole and
transfers the energy to a
another electron in the
conduction band, b another
electron in the valence band

(a)

e

hhlh

k

E

Eg

(b)

e

hhlh

k

E

Eg

Table 10.3 Auger recombination coefficients for some semiconductors. Data for InSb from [1013], SiC from [947],
others from [948]

material Cn (cm6/s) Cp (cm6/s)

4H-SiC 5 ×10−31 2 ×10−31

Si, Ge 2.8 ×10−31 9.9 ×10−32

GaAs, InP 5.0 ×10−30 3.0 ×10−30

InSb 1.2 × 10−26

G th = Cn n
2
0 p0 + Cp n0 p

2
0 , (10.38)

where Cn and Cp denote the Auger recombination coefficients. The equation for the dynamics in the
presence of excess carriers (if solely Auger recombination is present) is given as

∂ δn

∂t
= G th − R = −Cn (n2 p − n20 p0) − Cp (n p2 − n0 p

2
0) . (10.39)

The Auger recombination rate typically used in SRH kinetics is

rAuger = (Cn n + Cp p) (np − n0 p0) . (10.40)

Typical values for the Auger recombination coefficients are given in Table10.3.
In Fig. 10.27a the electron lifetime in heavily p-doped (In,Ga)As (lattice matched to InP) is shown

[1014]. It follows τ−1
n = Cp N 2

A as expected from (10.39) for p-type material. The Auger process in
silicon has been discussed in detail [1015]. In Fig. 10.27b experimental data for n-type and p-type Si
are summarized. Auger theory can predict the lifetimes in n-type material. The predicted rate in p-type
material is too small, thus a phonon-assisted process is evoked [1015].
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(a) (b)

Fig. 10.27 a Experimental values of the electron lifetime in heavily p-doped (In,Ga)As on InP at room temperature.
The dashed lines show dependencies of Auger (∝ N−2

A , Cp = 8.1 × 10−29 cm−6 s−1) and band-band recombination
(∝ N−1

A , B = 1.43× 10−10 cm−3 s−1). Adapted from [1014]. (b) Experimental Auger lifetimes in p-type (squares) and
n-type (circles) silicon at 300K. The dashed (solid) line is theory for p-type (n-type) material. Adapted from [1015]

10.9 Band–Impurity Recombination

A very important recombination process is the capture of carriers by impurities. This process is in
competition with all other recombination processes, e.g. the radiative recombination and the Auger
mechanism. The band–impurity recombination is the inverse process to the carrier release from impu-
rities and intimately related to carriers statistics (Chap. 7). It is particularly important at low carrier
densities, for high dopant concentration and in indirect semiconductors since for these the bimolecular
recombination is slow. This process is generally considered to be non-radiative since no photons close
to the band edge are emitted.4

10.9.1 Shockley–Read–Hall Kinetics

The theory of capture on and recombination involving impurities is called Shockley–Read–Hall (SRH)
kinetics [942]. An example of radiative band–impurity recombination (of the type shown in Fig. 10.28a)
is shown in Fig. 10.8 for the (e,A0) recombination at the carbon acceptor in GaAs.

We consider electron traps [1016] (see Fig. 10.28) with a concentration Nt with an energy level Et .
In thermodynamic equilibrium they have an electron population

f 0t = 1

exp
( Et−EF

kT

) + 1
, (10.41)

where ft is the nonequilibrium population of the trap. Then the capture rate rc is proportional to the
unoccupied traps and the electron concentration, rc ∝ nNt(1 − ft). The proportionality factor has the
form vthσn, where vth is the thermal velocity vth = √

3kT/m∗ ≈ 107 cm/s and σn is the capture cross
section that is of atomic scale, typically ∼ 10−15cm2. The capture cross section can be related to the
optical absorption cross section [588, 589].

In order tomake the following calculationmore transparent,we put the effective-mass ratio
√
m0/m∗

into σ in the following and thus have the same thermal velocity vth = √
3kT/m0 for electrons and

4Depending on the energetic depth of the trap, mid or far infrared photons can be emitted.
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holes. The capture rate of electrons is

rc = vth σn n Nt (1 − ft) . (10.42)

The emission rate from filled traps is
gc = en Nt ft , (10.43)

where en denotes the emission probability. In a similar way, the emission and capture rates for holes
can be written:

rv = vth σp p Nt ft (10.44)

gv = ep Nt (1 − ft) . (10.45)

In thermodynamical equilibrium, capture and generation rates are equal, i.e. rc = gc and rv = gv.
Thus, the emission probability is

en = vth σn n0
1 − f 0t

f 0t
. (10.46)

Using 1− f 0t
f 0t

= exp
( Et−EF

kT

)
, (7.10) and (7.11) the emission probabilities can be written as

en = vth σn nt (10.47)

ep = vth σp pt , (10.48)

with

nt = NC exp

(
Et − EC

kT

)
(10.49)

pt = NV exp

(
− Et − EV

kT

)
. (10.50)

We note that nt pt = n0 p0 (cf. (7.15)).
The temperature dependence of the thermal velocity is ∝ T 1/2, the temperature dependence of the

band-edge density of states is∝ T 3/2 (7.8) and (7.9). Thus, the temperature dependence of the emission

(a) (b) (c) (d)

EC

EV

Et

Fig. 10.28 Band-to-impurity processes at an impuritywith one level (left: initial, right: final state in each part): a electron
capture (from conduction band), b electron emission (into conduction band), c hole capture (from valence band), d hole
emission (into valence band). The arrows indicate the transition of the electron
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rate en is (apart from the exponential term) ∝ T 2 if σ is temperature independent. Charge conservation
requires in nonequilibrium (and of course in equilibrium) rc − rv = gc − gv. From this we obtain the
population of the trap in nonequilibrium:

ft = σn n + σp pt
σn (n + nt) + σp (p + pt)

. (10.51)

The recombination rate rb−i of the band–impurity recombination is then

rb−i = −∂δn

∂t
= rc − gc (10.52)

= σn σp vth Nt

σn (n + nt) + σp (p + pt)
(n p − n0 p0) .

Using the ‘lifetimes’

τn0 = (σn vth Nt)
−1 (10.53)

τp0 = (σp vth Nt)
−1 , (10.54)

this is typically written as

rb−i = 1

τp0 (n + nt) + τn0 (p + pt)
(n p − n0 p0) . (10.55)

For an n-type semiconductor the Fermi level is above Et and the traps are mostly full. Thus hole capture
is the dominating process. The equation for the dynamics simplifies to

∂δ p

∂t
= − p − p0

τp0
. (10.56)

Thus, an exponential decay with minority-carrier lifetime τp0 (or τn0 for p-type material) occurs.
A recombination center is most effective when it is close to the middle of the band gap (midgap

level). The condition ∂rb−i/∂Et = 0 leads to the trap energy Emax
t with the maximum recombination

rate being located at

Emax
t = EC + EV

2
− kT ln

(
σn NC

σp NV

)
. (10.57)

The curvature ∂2rb−i/∂E2
t at E

max
t is proportional to −(np − n0 p0) and thus indeed is negative in the

presence of excess carriers. However, the maximum can be fairly broad.
The SRH kinetic presented here is valid for low densities of recombination centers. A more detailed

discussion and a more general model can be found in [1018].
A typical example for a recombination center is gold in silicon. The minority carrier lifetime

decreases from 2×10−7 s to 2×10−10 s upon increase of the Au concentration from 1014 to 1017 cm−3.
The incorporation of recombination centers is an important measure for the design of high-frequency
devices [1019]. Due to importance in silicon technology the recombination properties of many metals
in silicon have been investigated, in particular Fe-contamination and the role of FeB-complexes [1020–
1022].

A reduction inminority-carrier lifetimecan alsobe achievedby irradiationwith high-energyparticles
and the subsequent generation of point defects with energy levels at midgap.
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Fig. 10.29 Minority
carrier lifetime at room
temperature as a function
of majority carrier
concentration in n-type and
p-type silicon. The dashed
lines have the slopes N−1

and N−2. Data
from [1024]

In Fig. 10.29 various data on minority carrier lifetime in silicon are compiled. Over some doping
range, a dependence of the lifetime ∝ N−1 as in (10.54) prevails. For doping beyond the 1019 cm−3

range, Auger recombination (Sect. 10.8) with τ ∝ N−2 is dominant. A more detailed discussion can
be found in [1023, 1024]. Generally the lifetimes are temperature dependent [1025] as expected from
(10.52).

10.9.2 Multilevel Traps

Traps with multiple levels in the band gap have generally similar but more complicated dynamics as
compared to single-level traps. Lifetimes are an average over negatively and positively charged states
of the trap.

10.10 ABC Model

Summarizing the results on band-impurity recombination (Sect. 10.9), bimolecular recombination
(Sect. 10.2) and Auger recombination (Sect. 10.8), the total recombination rate R can be written sim-
plified as

R = A n + B n2 + C n3 , (10.58)

where A is the coefficient for the band-impurity recombination, B the bimolecular recombination
coefficient and C the Auger recombination coefficient; n denotes the carrier density. This model is
known as the ‘ABC’ model. It can be refined separating effects of electrons and holes and including
higher terms.Often suchmodel is used to investigate recombination in devices as a function of injection,
e.g. [1026, 1027].

The internal radiative quantum efficiency ηint is given by ratio of the radiative recombination rate
and the total recombination rate,
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ηint = B n2

A n + B n2 + C n3
= B n

A + B n + C n2
. (10.59)

10.11 Field Effect

The emission of electrons from a trap is thermally activated with an ionization energy Ei = EC− Et . If
the trap is in a strong electric field E , the emission probability can change. An acceptor-like trap after
removal of the electron is neutral and its potential is short range. A donor has a long-range Coulomb
potential after ionization. In an electric field, these potentials are modified as visualized in Fig. 10.30.
Various additional processes can now occur.

10.11.1 Thermally Activated Emission

For the δ-like potential the ionization energy remains unchanged. For the Coulomb potential the barrier
in the field direction is lowered by

�Ei = e

√
e

π ε0 εr

√
E . (10.60)

The emission rate en is increased in the field by exp(�Ei/kT ). This effect is called the Poole–Frenkel
effect [1028] and can be quite important. For silicon and E = 2 × 105 V/cm and �Ei = 100meV a
50-fold increase of the emission rate at room temperature is expected. As an example the Poole–Frenkel
effect for the electron emission from (neutral) interstitial boron in silicon (B0

i → B+
i + e−) is shown

in Fig. 10.31, following the enhancement of en ∝ exp(
√
E). The extrapolation to E = 0 agrees with

the EPR result [275, 1029].5

10.11.2 Direct Tunneling

Carriers can tunnel from the trap level through the barrier in the field direction into the conduction band.
This process is temperature independent. The transmission factor of a barrier is (in WKB approxima-
tion) proportional to exp[−(2/�)

∫ √
2m [V (x) − E] dE]. The emission probability for a triangular

Fig. 10.30 Field effect at
a a δ-like potential and b a
Coulomb potential

Ei

Ei

(a) (b)

5The slope of the line in Fig. 10.31 is slightly smaller than expected from (10.60).
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Fig. 10.31 Field effect for
electron emission from
interstitial boron in silicon
(T = 65K). The filled
circles represent
experimental data from
DLTS, the data point
marked with an empty
circle is from EPR (zero
field). The line is a linear fit
and extrapolation. Adapted
from [1029]
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barrier is then

en = e E

4
√
2m∗Ei

exp

(
−4

√
2m∗ E3/2

i

3 e � E

)
. (10.61)

In the case of a Coulomb-like potential the argument of the exponent in (10.61) needs to be multiplied
by a factor 1 − (�Ei/Ei)

5/3 with �Ei from (10.60).

10.11.3 Assisted Tunneling

In a thermally assisted tunneling process the electron on the trap level is first excited to a virtual level
Et + Eph by phonon absorption and then tunnels out of the trap (photon-assisted tunneling). From the
energetically higher level the tunneling rate is higher. The probability is proportional to exp(Eph/kT ).
The additional energy can also be supplied by a photon (photon-assisted tunneling).

10.12 Recombination at Extended Defects

10.12.1 Surfaces

A surface (cmp. Chap.11) is typically a source of recombination, e.g. through midgap levels induced
by the break of crystal symmetry. The recombination at surfaces is modeled as a recombination current

js = −e S (ns − n0) , (10.62)

where ns is the carrier density at the surface and S is the so-called surface recombination velocity.
The surface recombination velocity for GaAs is shown in Fig. 10.32. For InP, if the surface Fermi

level is pinned close to midgap, the surface recombination velocity increases from ∼ 5× 103 cm/s for
a doping level of n ∼ 3 × 1015 cm−3 to ∼ 106 cm/s for a doping level of n ∼ 3 × 1018 cm−3 [1030].
For Si, the surface recombination rate depends on the treatment of the surface and lies in the range
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between 1–104 cm/s [1031, 1032]. The Si-SiO2 interface can exhibit S ≤ 0.5cm/s. Time-resolved
measurements and detailed modeling for Si have been reported in [1033].

The recombination velocity at surfaces can be reduced using suitable passivation schemes. Typically
inert layers or chemical treatments are used. Surface passivation can be accomplished in two fundamen-
tally different ways: Either the surface defect states themselves are removed or an internal electrical
field is established that screens excess charge carriers from the surface defects. Sulfur chemistry is a
popular treatment of GaAs surfaces. A review of the passivation schemes for III–V semiconductors
can be found in [1035].

10.12.2 Grain Boundaries

Grain boundaries can be a source of non-radiative recombination. This is technologically important for
solar cells made from polycrystalline silicon (cf. Sect. 22.4.6). The grain boundary can be understood
as an inner surface in the crystal. Modeling of recombination at a grain boundary can be done using
an interface recombination velocity [1036, 1037] or considering deep traps [1038]. The minority
carrier lifetime decreases with decreasing grain boundary area A (Fig. 10.33a). The carrier loss at
a grain boundary can be imaged directly via the efficiency of the collection of an electron beam
induced current (EBIC) as shown in Fig. 10.33b. The minority carrier lifetime is only unaffected when
the average distance to a grain boundary is much larger than the minority carrier diffusion length,√
A � LD, otherwise the entire grain volume is subject to non-radiative recombination.
The recombination velocity at grain boundaries can be reduced, similar to that at surfaces, using

suitable passivation schemes. A famous one is the chlorine treatment of polycrystalline CdTe used in
thin film solar cells [1041].

10.12.3 Dislocations

Also dislocations typically act as recombination centers, sometimes called carrier sinks. In Fig. 10.34
it can be seen that the minority carrier lifetime depends on the dislocation density nd and follows a
τ−1 ∝ nd law, as if each dislocation is a recombination center [1042]. The non-radiative recombination

GaAs

1016 1017 1018 1019

105

106

104

107

1015

-3

Fig. 10.32 Surface recombination velocity forGaAs as a function of n-type doping concentration.Different experimental
points correspond to different surface treatmentmethods.Dashed line is a guide to the eye. Experimental data from [1034]
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makes dislocations appear as ‘dark line defects’ in luminescence imaging [1043]. In [1044] also the
decrease of carrier lifetime around (misfit) dislocations has been imaged. The effect of dislocations on
the radiative recombination efficiency depends on the diffusion length [1044].

10.13 Excess-Carrier Profiles

In this section, some typical excess-carrier profiles (in one-dimensional geometry) are discussed that
arise from certain excitation conditions. The excess-carrier density �p (here holes in an n-type semi-
conductor, i.e. �p = pn − pn0 ) is determined by the diffusion equation (cf. (8.65a))

Dp
∂2�p

∂x2
= −G(x) + �p

τp
. (10.63)

(a) (b)

Fig. 10.33 a Minority carrier lifetime in (p-type) silicon as a function of grain boundary size. The dashed line has the
slope ∝ A. Data from [1039]. b Linescan of the electron beam induced current (EBIC) perpendicular to a single grain
boundary in silicon. The arrow denotes the position of the grain boundary. Compiled from [1040]

Fig. 10.34 Inverse
minority carrier lifetime in
n-type silicon (40�cm),
low resistivity Ge
(3–5�cm) and high
resistivity Ge
(30–40�cm). Data
from [1042]
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10.13.1 Generation at Surface

First, the generation of excess carriers in a semi-infinite piece of semiconductor shall occur only at the
surface at x = 0 (strong absorption limit). The generation is zero everywhere else and the excitation is
incorporated via the boundary condition�p(x = 0) = �p0. The general solution for the homogeneous
equation (10.63), i.e. G = 0, is

�p(x) = C1 exp

(
− x

Lp

)
+ C2 exp

(
x

Lp

)
, (10.64)

with the diffusion length Lp = √
Dpτp. Taking the boundary condition �p(x → ∞) = 0 the solution

is (C2 = 0)

�p(x) = �p0 exp

(
− x

Lp

)
. (10.65)

In order to connect �p0 with the total generation rate per unit area G tot, we calculate

G tot =
∞∫

0

�p(x)

τp
dx = �p0

Lp

τp
= �p0

√
Dp

τp
. (10.66)

If a slab of finite thickness d is considered, the boundary condition on the back surface comes into play.
Assuming a contact that extracts all excess charge carriers, �p(d) = 0. In conjunction with (10.64),
we find

�p(x) = �p0
2

[(
1 + coth

(
d

Lp

))
exp

(
− x

Lp

)

+
(
1 − coth

(
d

Lp

))
exp

(
x

Lp

)]
, (10.67)

with

G tot =
d∫

0

�p(x)

τp
dx = �p0

Lp

τp
tanh

(
d

2 Lp

)
. (10.68)

Generally, the excited electrons and holes diffuse into the bulk at different speed due to their different
diffusion length (or mobility). As consequence, a spatial separation of electrons and hole densities
occurswhich leads to an electric field, theDember field [1045–1047]. The illuminated surface becomes
positive compared to the dark case since Dn > Dp. A treatment of the non-neutral diffusion situation
is given in [1048]. As shown in Fig. 10.35, the non-equal electron and hole densities create locally
a non-zero charge density δρ and an associated potential δφ; for a silicon material parameters (ni =
1010 cm−3), the Dember voltage is calculated as VDem = δφ(0) = 1.84meV for a generation rate of
G = 2×1010/(cm2 s). Extensions of the theory have been given considering traps [1049] and the effect
of finite sample thickness and surface recombination [1050] (under certain conditions, the sign of the
field can be reverse).
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Fig. 10.35 Charge carrier
density profiles (in a
semi-infinite slab) for
electrons and holes as well
as their difference
p − n = δρ/e, as well as
the associated Dember
potential δφ. The ratio of
electron and hole mobility
in this model calculation
(using silicon material
parameters) was 5.
Adapted from [1048]

10.13.2 Generation in the Bulk

Now, a generation rate following (9.16), realistic for photodiodes and solar cells, is considered,

G(x) = G0 exp (−α x) , (10.69)

i.e. due to light absorption with the (wavelength-dependent) absorption coefficient α. The total gener-
ation rate is

G tot =
∞∫

0

G(x) dx = G0

α
. (10.70)

The total generation rate is equal to the number of photons per second�0 that enter the semiconductor.
The solution of (10.63) is the sum of the homogeneous solution (10.64) and a particular solution

that is given by
�p(x) = C exp (−α x) . (10.71)

The constant C is determined to be

C = G0 τp

1 − α2 L2
p

. (10.72)

Therefore, the solution is

�p(x) = C1 exp

(
− x

Lp

)
+ C2 exp

(
x

Lp

)
+ G0 τp

1 − α2 L2
p

exp (−α x) . (10.73)

Using again�p(x → ∞) = 0 (leading to C2 = 0) and a recombination velocity S at the front surface,
i.e.
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(a) (b)

Fig. 10.36 Excess carrier density profile (10.75) in a linear and b semi-logarithmic plot for S = 0 and S = ∞. Other
parameters are given in panel (a)

− e S �p0 = −e Dp
∂�p

∂x

∣∣∣∣
x=0

. (10.74)

The solution is given as

�p(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − S + α Dp

S + Dp/Lp
exp

(
− x

Lp

)]
. (10.75)

For vanishing surface recombination, S = 0, the solution is (Fig. 10.36)

�p(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − α Lp exp

(
− x

Lp

)]
. (10.76)

For αLp � 1, (10.65) is recovered. This dependence is the excess-carrier profile if the absorption is
strong, which is a tendency for short wavelengths. The current at the surface, j (x = 0) ∝ ∇�p, is
zero.

In the case of very strong surface recombination, S → ∞, (10.75) becomes

�p(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − exp

(
− x

Lp

)]
, (10.77)

with �p(0) = 0 (Fig. 10.36). The current at the surface is (Dp τp = L2
p)

j (x = 0) = −e D
∂�p

∂x

∣∣∣∣
x=0

= −e
G0 Lp

1 + α Lp
= −e�0

α Lp

1 + α Lp
. (10.78)
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Chapter 11
Surfaces

Gott schuf das Volumen, der Teufel die Oberfläche.
God created the bulk; surfaces were made by the devil.

attributed to W. Pauli

Abstract The specifics of semiconductors surfaces, their symmetry, equilibrium crystal shape, recon-
structions, steps and faceting are summarized, being important for epitaxy. Physical surface properties
such as vibrational and electronic states are discussed.

11.1 Introduction

Obviously every crystal has a surface all around it, connecting it to the surrounding world. This
represents a brutal perturbation of the bulk periodicity with the consequence of a whole new world of
physics at the surface. With regard to semiconductor technology, the surface properties are of large
importance in a number of instances:

• The crystal growth of semiconductors always occurs at a surface. This subject will be discussed in
Chap.12.

• The surface is subject to interaction with the chemistry of the surrounding atmosphere. This is
of essential importance for catalysis, e.g., oxidation of CO at noble metals or photocatalytic water
splitting, e.g., usingTiO2, into oxygen and hydrogen [1051, 1052]. Photocatalysis is briefly discussed
in Sect. 22.1. The interaction and reaction with the surrounding atmosphere can lead modifications
of the semiconductor such as change of conductivity, e.g.., in SnO2, which can be used in the
construction of gas detectors [1053–1055].

• Surface passivation and barriers, e.g., using photoresist, silicon oxides or nitrides, are often necessary
in practical devices in order to avoid surface recombination (Sect. 10.12.1) or the interaction with
atmospheric oxygen or water.

But surface physics is interesting in its own right, investigating the properties of a complex mostly
two-dimensional system. ‘Pure’ surfaces are studied using crystals cleaved in ultra-high vacuum or
carefully prepared atomically clean surfaces. A special case are two-dimensional materials, also termed
atomic sheets, such as graphene; these will be discussed in Sect. 13.1.

At the surface the atoms rearrange, compared to their bulk positions, vertically and laterally, also
forming new bonds (surface reconstructions). The mechanical properties (surface phonons) and elec-
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tronic properties (surface states) are different from the bulk modes. Detailed treatments of surface
physics and its experimental methods can be found in [695, 1056–1058].

11.2 Surface Crystallography

The surface symmetry, i.e. the two-dimensional spatial periodicity of the constituent atoms, is described
with the ten two-dimensional point groups (TableB.1). The point symmetries are 1-, 2-, 3-, 4-, and 6-fold
rotational symmetry (Fig. 3.9) with or without mirror plane(s). The two-dimensional point symmetries
of popular substrate orientations are compiled in Table 11.1; the different symmetry of the first layer
and the half-space are notable. The combination of five 2D Bravais lattices (cmp. Sect. 3.3.1) with the
10 2D point groups leads to the 17 two-dimensional space groups (wallpaper groups) [1059].

For the treatment of surface in reciprocal space, the three-dimensional k-vector is split into the
two-dimensional component k|| parallel and the one-dimensional component k⊥ perpendicular to the
surface,

k = k|| + k⊥ . (11.1)

The three most important Brillouin zones in two-dimensional k-space are depicted in Fig. 11.1. Often
the special points of the 2D Brillouin zones are denoted with a bar over the letter.

Table 11.1 Two-dimensional point symmetries of common substrates with ideal low-index surfaces

Crystal Surface 1st layer 1st & 2nd layers Half space

Rocksalt (001) 4mm 4mm 4mm

(110) 2mm 2mm 2mm

(111) 6mm 3m 3m

Diamond (001) 4mm 2mm 2mm

(110) 2mm 2mm 2mm

(111) 6mm 3m 3m

Zincblende (001) 4mm 2mm 2mm

(110) 1m 1m 1m

(111) 6mm 3m 3m

Wurtzite (00.1) 6mm 3m 3m

(10.1) 2mm 2mm 1m

(11.0) 2mm 2mm 1m

MJ'

J

(a)

K M

(c)

'X M

X

(b)

Fig. 11.1 Two-dimensional Brillouin zones for a square, b rectangular and c hexagonal surface symmetry. Special
points are labelled and the grey areas indicate the smallest irreducible area
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11.3 Surface Energy

The surface energy, more precisely the surface energy per area γ, is related to the work that is necessary
to split a crystal in two parts. Such process will leave broken (‘dangling’) bonds. This energy will
depend on the crystal orientation as is already clear from the fact that there are easy cleaving planes
(Sect. 5.4.2). The surface energy will also depend on the surface reconstruction (see Sect. 11.4), i.e. the
rearrangement of surface bonds and atoms. Generally, the reduction of the number of dangling bonds
on a surface lowers its energy, while the distortion of bonds increases its energy.

The anisotropy of the surface energy for a given orientation hkl, γ(hkl), determines the equilibrium
crystal shape (ECS) at a given temperature (below melting temperature). The crystallite is assumed
to be of at least mesoscopic size such that energy effects due to edges and apexes can be neglected
compared to the surface energy terms. As an example theoretically calculated surface energy values for
covalent semiconductors are listed in Table 11.2. The equilibrium shape of silicon has been observed
for µm-sized bulbs as shown in Fig. 11.2a for T = 1323 K ; the experimental anisotropy of surface
energy of silicon is shown in Fig. 11.2b.

11.4 Surface Reconstruction

When in a Gedankenexperiment the bulk crystal is split such that a surface with defined orienta-
tion develops, many bonds are cut. These dangling bonds can be saturated with other atoms such as
hydrogen. In particular under vacuum conditions, the dangling bonds will rearrange and form new

Table 11.2 Surface energy (in J/m2) for various C, Si and Ge surfaces. Data from [1060]

Material {111} {110} {100} {311}
C 8.12 7.48 9.72 8.34

Si 1.82 2.04 2.39 2.12

Ge 1.32 1.51 1.71 1.61

(a)

(111) (113) (001)

(110)

(110)

(1
11

)

(111)
(113)

(b)

1.02

1.01

1.00

0.99

0.98

0.97

0.96

/
(1

11
)

03- 006-09- 0903 06

Si

(111) (113) (001) (113)(110)(111)

Angle (degree)

Fig. 11.2 a Equilibrium crystal shape (cross section in 〈110〉 azimuth) of 1.06µm diameter Si bulb at T = 1323K with
facet orientations as labelled. a Anisotropy of surface energy (relative to γ(111)) for Si, the dashed line is guide to the
eye. Adapted from [1061]
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bonds such as dimers along the surface, lowering the total energy. This surface reconstruction displays
two-dimensional periodicity of a surface unit cell.

Since the forces from the split-away half-space are missing, the atomic planes will rearrange verti-
cally1 and the surface-near layers will exhibit slightly different lattice spacing than in bulk. In [1062]
the surface reconstructions of many semiconductors are reviewed. In Fig. 11.3a the rearrangement of
surface atoms on GaAs(110) is depicted as an example. The anion is moved up, the cation moved
down, preserving the bond length, rotating the bond by about γ = 30◦ for various III–V semicon-
ductors [1063] (Fig. 11.3b). The height difference of the top anion and cation �1 scales with the bulk
lattice constant (Fig. 11.3c). The details are specific to materials and orientations.

Different reconstructions occur for different thermodynamical conditions, some of them being
metastable, as depicted for GaAs(100) in Fig. 11.4. Several different surface reconstructions can also
be present simultaneously at a surface within different domains.

The stable reconstruction of the Si(111) surface is the somewhat complicated 7 × 7 reconstruction
which is schematically depicted in Fig. 11.5a as proposed in [1066] (‘DAS’ dimer-adatom-stacking
faultmodel’). ASTM image of this surface has been reported first in [1067] and is depicted in Fig. 11.5b.
Details of this surface are also recently a subject of interest [1068].

(a)

Ga As
ideal reconstructed

(b) [100]

[110]

(c)

Fig. 11.3 a Schematic drawing of the GaAs(110) surface after cutting bonds (‘ideal’) and actual atomic rearrangement
with asymmetric dimer in the reconstructed state. Adapted from [1064]. b Schematic of the III–V (110) surface relaxation
(red circles: anions, blue circles: cations) with bond rotation ω and atom shift �. c Experimental values for he relaxation
�1 as shown in panel (b) for various semiconductors vs. their bulk lattice constant a0; dashed line is straight line as
guide to the eye. Data from [1063]

1Typically the distance between the first and second layer is reduced, and the distance between the second and third layer
a little bit increased.
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(a)

c(4 4)

2(2 4)2(2 4)

(4 2)

(2 6)mixed dimer

[110]

[110]

(b)

0.2

0.1
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 (e

V)

Ga chemical potential (eV)
0-0.5

GaAs(100)

Fig. 11.4 a Various reconstructions of the GaAs(100) surface. Filled (empty) circles represent As (Ga) atoms. Atom
positions in the top two atomic layers are indicated by larger symbols. b The relative formation energy per (1 × 1) unit
cell of various reconstructions as a function of the Ga chemical potential. Vertical dashed lines mark the approximate
anion- and cation-rich limits of the thermodynamically allowed range of �μ. Adapted from [1065]

(a)

[112]

[110]

[111]

1nm

(b)

Fig. 11.5 a Schematic drawing of the 7× 7 reconstruction of Si(111) surface. The large grey circles represent adatoms,
the small balck circles rest atoms.Adapted from [1066]bSTMimage (empty states) of such surface. Adapted from [1067]

11.5 Surface Morphology

The surface reconstruction is related to the local atomic arrangement of the surface atoms. On larger
length scales, surfaces can exhibit roughness in general and various specific morphologies, among
them steps, step bunches, facets, hillocks or pits. When atomically flat terraces are separated by steps
of equal heights, the surface is termed vicinal. The step height can be an atomic monolayer or more.
The step edges can be straight, smoothly curved or rugged, depending on the formation energy of
kinks. If the substrate surface is inclined by a small ‘off-cut’ angle θ with respect to a low index plane,
for a step height h the average terrace width L is given by

L = h

tan θ
≈ h

θ
. (11.2)

The Si(001) surface (under certain conditions) exhibits monoatomic steps between the A-type 1×2 and
B-type 2×1 terraces [1069]; clearly also the step edges between A–B and B–A are quite different, one
being much rougher than the other (Fig. 11.6). The surface is thus a two domain surface, the symmetry
of both A- and B-type terraces being 2mm, rotated by 90◦ against each other.
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Fig. 11.6 STM image of
Si(001) surface with an
off-cut θ = 0.5◦. Adapted
from [1069]

(a)
10nm

(b)

Fig. 11.7 a STM images a ZnO(00.1) O-terminated surface, left (right) panel with zero (about 1.3◦) off-cut, exhibiting
monolayer step heights of 0.27nm. a LEED pattern of such surface (recorded at 70eV). Adapted from [1070]

A similar example is the Zn(00.1) surface. The found step height of the monoatomic steps is 0.27nm
and corresponds c/2 [1070]. The terrace width is about 12nm (Fig. 11.7a), yielding an off-cut (11.2)
of about 1.3◦. The surface pattern shows triangular features in two orientations, rotated by 60◦. The
3m symmetry of the surface, although the first monolayer has 6m point symmetry (Table 11.1), occurs
in two domains rotated against each other by 60◦. The LEED pattern from each individual terrace
is expected to have three-fold symmetry; the mixed character of the surface yields a six-fold pattern
(Fig. 11.7b).

Steps can gather and form step bunches with a height much larger than a monolayer (Fig. 11.8).
Faceting of higher index planes occurs when it is energetically favorable to form alternating facets of
low energy low index planes, for example Si(223) exhibits periodic ridges with (111) and (113) facets
[1071]. The faceting of a surface close to (113), exhibiting smooth (113) and rough (114) planes, is
depicted in Fig. 11.9.
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5µm

Fig. 11.8 SEM image of the surface of a 4H–SiC layer on [00.1]-oriented substrate with 8◦ misorientation towards
[11.0]. Adapted from [1072]

100nm

(114) (113)

(114) (113)

10nm

Fig. 11.9 STM images of a silicon surface close to (113), 21.5◦ from (001) towards (111), i.e. (113)-3.7◦. Adapted
from [1073]

11.6 Surface Physical Properties

11.6.1 Surface Phonons

As a model for surface vibrational states, the diatomic one-dimensional chain model discussed in
Sect. 5.2.2 can be modified to allow for a different surface spring constant Cs instead of C1 or C2. Such
model can be solved numerically for finite chain length. The bulk dispersion is found with an extra
mode in the gap or above the maximum frequency for a range of values of Cs as depicted in Fig. 11.10.
When the spring constant of the surface atom is smaller than the larger of the two spring constants
C1 and C2 (in our model calculation C2 > C1), a state in the gap forms; for a surface spring constant
larger than C2, first the surface vibration lies within the optical bulk band and then forms a state above
the maximum optical frequency ωm, given by (5.18).2

In order to display the dispersion of surface states together with the bulk band structure, the latter is
projected to the surface k||-vector: En(k) is considered as En,k⊥(k||) = Eν(k||), where ν = n,k⊥ is a
new, continuous index. In the plot of E surf

n vs. k||, for each value of k|| a range of energies reflects the

2The appearance of states within the gap and above ωm resembles that of localized vibrational modes of substitutional
masses (Sect. 5.2.7).
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Fig. 11.10 One-dimensional model calculation of surface vibrational state frequency (in units of the maximum bulk
optical phonon frequency ωm) as a function of the spring constant Csurface of the surface atom replacing C1 (blue curve)
or C2 (black curves). As model parameters we use equal masses and C2 = 2C1 (γ = 0.943 from (5.17)). The grey areas
represent the energy range of the acoustic and optical phonon bulk bands
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Fig. 11.11 Surface phonon dispersion for GaAs(110) (solid lines) with the surface projected bulk band structure (light
grey area). The symboles are experimental data from two different methods. The dark grey areas at about 10meV indicate
regions where the A1-peak is present in the calculated scattering cross-section. Adapted from [1063]

bulk band structure (Fig. 11.11). This concept pertains to phonon dispersion as well as to electronic
states.

11.6.2 Surface Plasmons

Free-carrier oscillations in the bulk had been discussed in Sect. 9.9.1. A surface plasmon is the quantum
of a surface-bound plasma oscillation. Such effect has been discussed in [1074] and reviewed in
[1075, 1076]. A metal (or conductive semiconductor) with dielectric constant according to (9.77)
ε1 = εm = εr (ωp/ω)2 and a dielectric (or vacuum) with ε2 = εd are assumed (Fig. 11.12).
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Fig. 11.12 Sketc.h of
surface plasmon field
distribution. Adapted
from [1077]

Fig. 11.13 Surface
plasmon polariton
dispersion for ZnO:Ga/air
for three different carrier
concentrations as labelled,
experimental data
(symbols) and theory
(lines). Adapted
from [1078]
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The surface plasmon (polariton) (SPP) is a wave localized at the surface with evanescent parts into
the metal and the dielectric. The dispersion of the surface plasmon (polariton) is given by

kSPP = ω

c

√
ε1 ε2

ε1 + ε2
. (11.3)

For large k, the limiting frequency is the SPP frequency (from ε1 = ε2)

ωSPP = ωp√
1 + εd/εr

< ωp , (11.4)

which is smaller than the plasma frequency. For a metal against vacuum, ωSPP = ωp/
√
2. The SPP

dispersion for a ZnO:Ga/air interface is depicted in Fig. 11.13 for three different doping concentrations.

11.6.3 Electronic Surface States

The bulk band structure is given by the energy eigenvalues En(k). The surface adds its own states
E surf
n (k||), many of them in the gap. The calculation of gap states has been already briefly discussed

in Sect. 6.2.3. The nature of bulk states is oscillatory in the bulk and exponentially decaying in the
outside (Fig. 11.14a), the nature of surface states is localized at the surface and decaying both towards
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Fig. 11.14 Schematic
wavefunction versus
coordinate for a bulk state
in the vicinity of the surface
(its position indicated by
the vertical dashed line), b
surface state and c surface
resonance state

(a)

(b)

(c)

Fig. 11.15 Surface band
structure of
Si(100)-(2 × 1), lines
denote a theoretical
quasi-particle calculation,
symbols represent
experimental data. The grey
areas indicate the projected
bulk band structure.
Adapted from [1079]
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the bulk and the outside (Fig. 11.14b). A third type of states is a surface resonance which is oscillatory
in the bulk and has enhanced probability at the surface, of course also decaying towards the outside
(Fig. 11.14c); such states are surface related but energetically degenerate with states of the bulk band
structure.

Surface states for Si(100) in 2 × 1 reconstruction are shown in Fig. 11.15. The surface bands arise
from (filled and unfilled) π- and π∗-orbitals from the dangling bonds on the threefold-coordinated
surface atoms [1079]. A calculation for the ideal (unreconstructed) (100), (110) and (111) surfaces
of Si, Ge and GaAs can be found in [1080]. Further work on silicon surface states (clean and with
adsorbates) is compiled in [1081].

For a conventional insulating material (with gap) the states of conduction and valence band have
defined s- and p-type symmetry (cmp. Fig. 2.5) and the surface states can be populated with spin up
and down electrons as is schematically drawn in Fig. 11.16a. Such ‘normal’ surface states are thus not
spin-polarized. This has been shown, e.g., for the well-known surface states of Si(111)-(7× 7) [1082]
in [1083].

In a so-called topological insulator [464], a band inversion is present (cf. Sect. 6.2.6). In HgTe-like
materials, s- and p-type bands are inverted at the � point (cmp. Sect. 6.11). In layered (orthorhombic)
Bi2Se3-like tri-chalcogenide materials two pz-orbitals with opposite parity are inverted at the � point.
Reasons for the band inversion are spin-orbit interaction but also scalar relativistic effects and lattice
distortions [1084]. The spin-orbit interaction is responsible for opening a gap; the associated surface
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Fig. 11.16 a ‘Normal’ band structure with surface states, the valence band states are antisymmetric (‘–’) from p-states,
the conduction band states are symmetric (‘+’) from s-states. The arrows denote the electron spin orientation of the
states. b ‘Topological’ band structure with surface states crossing the gap and electrons in the two surface states having
unique spin orientations

Fig. 11.17 Density of
states for Bi2Se3 (111)
surface. Adapted
from [1086]
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states cross the band gap (Fig. 11.16b) and are spin-polarized (Fig. 11.16c) [1085, 1086]. A review
of various systems is given in [463]. Charge transport in such spin-polarized surface states suffers no
scattering (thus these states are called ‘topologically protected’) unless by a center that breaks time
reversal symmetry (magnetic impurity). The more or less linear dispersion of these states forms a
‘Dirac cone’ (cmp. Sect. 13.1.2 for the band structure of graphene with six Dirac cones) (Fig. 11.17).

Topological surface states have been observed in various systems [463]. As an example we show
data on bulk Bi2Se3 [1087] for which the surface states are found to cross the band gap (Fig. 11.18a)
and spin-polarized measurements (Fig. 11.18b) show a strong spin polarization (about 50%) of the
two branches. Another situation where topological edge states appear is the interface between two
semiconductors with bands of different topology, such as HgTe and CdTe (cf. Sect. 6.11).
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Fig. 11.18 a Angle-resolved photoemission spectra from Bi2Se3 (111) surface along two different k-space directions.
The Fermi level is at energy zero. The blue dashed line indicates the angular scan displayed in panel (b). b Spin-polarized
momentum distribution curve at a binding energy of −140meV, measured along the ky-direction. Adapted from [1088]



Chapter 12
Heterostructures

The interface is the device.

H. Kroemer [133]

Abstract Heterostructures are the most important basis for modern devices and are covered regarding
various aspects including heteroepitaxy on planar and patterned substrates, surfactants, heterostructure
band lineup as well as energy levels and recombination in planar confined systems (quantum wells and
two-dimensional electron gases).

12.1 Introduction

Heterostructures consist of (at least two) different materials. The geometry of the interfaces between
the two materials can be complicated. The simplest case is a planar interface, i.e., a layered system.
A metal–semiconductor junction is generally a heterostructure. However, we will use the term mostly
for structures of various semiconductors. Most of the heterostructures discussed here are epitaxial, i.e.,
fabricated by the successive epitaxy of the various layers on a substrate. Another method to fabricate
heterostructures of different (and dissimilar) materials is wafer bonding that is briefly discussed in
Sect. 12.6.

Many modern semiconductor devices rely on heterostructures, such as the heterobipolar transistor
(HBT), the high electron mobility transistor (HEMT), lasers and nowadays also light-emitting diodes.
Shockley had already considered heterostructures in his 1951 patent for pn-junctions. For the devel-
opment and the realization of heterostructures H. Kroemer and Zh.I. Alferov were awarded the 2000
Physics Nobel Prize. The properties of charge carriers in layers that are part of heterostructures can be
quite different from those in bulk material, e.g., extremely high mobility, high radiative recombination
efficiency or novel states of matter, as revealed in the quantum Hall effects.

© Springer Nature Switzerland AG 2021
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
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12.2 Heteroepitaxy

12.2.1 Growth Methods

Since the thickness of layers in the active part of heterostructures has to be controlled to monolayer
precision and the thickness of layers can go down to the singlemonolayer range, special growthmethods
have been developed [1089–1091]. Among these molecular beam epitaxy (MBE [1092]), chemical
vapor deposition (CVD [1093, 1094]) and metalorganic vapor phase epitaxy (MOVPE [1095]) are the
most common for Si, Ge, III–V and II–VI semiconductors. Thin films for many materials can also be
fabricated by atomic layer deposition (ALD [1096, 1097]). In particular oxide semiconductors (and
superconductors) are also fabricated with pulsed laser deposition (PLD [1098]). Liquid phase epitaxy
(LPE [1099]) used to be very important for the fabrication of LEDs but has lost its role largely to
MOVPE.

MBE is performed in an ultrahigh vacuum (UHV) chamber, pumped by getter pumps and cryo-
shrouds. The source materials are evaporated from effusion cells and directed towards the heated
substrate. If the source materials are supplied as a gas stream, the method is called gas-source MBE
(GSMBE). If metalorganic compounds are used as precursors, the method is denoted as MOMBE.
The atoms impinge on the substrate with thermal energy and are first physisorbed. After diffusion on
the surface they either desorb or they are chemisorbed, i.e., incorporated into the crystal. In order to
obtain high spatial homogeneity of material properties such as composition, thickness and doping, the
substrate is rotated during deposition.

During CVD and MOVPE the heated substrate is in a gaseous environment. The transport gas is
typically H2, N2 or O2. Precursor materials are hydrides such as silane, germane, arsine or phosphine
(SiH4, GeH4, AsH3, PH3) and (for MOVPE) metalorganic compounds, such as, e.g., trimethylgallium
(TMG). Due to the toxicity of the hydrides, alternative, i.e., less-toxic and less-volatile compounds
are used, such as TBAs ((CH3)3CAsH2). The crystal growth occurs after pyrolysis and catalysis of the
compounds close to or on the substrate surface. All remaining C and H atoms (and whatever else that
is not incorporated into the crystal) leave the reactor and are neutralized and stopped in a scrubber.
In ALD alternating injections of molecular precursors and purge cycles build up the thin film atomic
layer by atomic layer; this method is particularly advantageous for achieving conformal coatings.

In-situ monitoring is of importance to obtain information about the growth process while it is under-
way. Using the information in a feedback loop it is possible to achieve in-situ control of the process,
e.g., for precise determination of growth rates or layer thickness. Techniques are RHEED (reflec-
tion high-energy electron diffraction) [1100] (only for UHV systems) and RAS (reflection anisotropy
spectroscopy) [1101, 1102].

12.2.2 Substrates

Thin-film epitaxy is mostly performed on wafers, i.e., thin circular slices of substrate material. The
most common substrate materials are Si (currently up to 400mm diameter [1103, 1104]), Ge (also
up to 300mm [1105]), GaAs (up to 6 inch), InP (up to 4 inch) and sapphire (up to 6 inch). Typical wafer
thickness is 300–500µm. Also, very thin, flexible Si wafers (8–10µm) have been developed [1106].
A wafer is cut from a large single cylindrical crystal that is fabricated with suitable growth techniques
such as Czochralski (CZ) growth [1107, 1108] modified by Teal and Little [1109–1111]. In CZ growth
the crystal, starting with a small seed crystal, is pulled out of a melt of previously polycrystalline, pure
or doped material. All dislocations stop in the narrow neck between the seed and the main body of
the cylinder. The diameter of the crystal is controlled by the pulling rate (matching the crystallization
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(a)

(b)

(c)

Fig. 12.1 aSilicon single crystal for 300-mmdiameterwafers after opening of the crucible. From [1114]with permission.
b Historic development (first year of larger production) of silicon wafer diameter and ingot mass. Data from [1104]. c
GaAs single crystal (boule) for 4-inch wafers and some cut and polished wafers

Fig. 12.2 Schematic
semiconductor wafer
geometry for various
orientations and doping
with the primary (P) and
secondary (S) flats
indicated

S
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speed of thematerial) and the heating power. For the growth of III–V compound semiconductors, liquid
encapsulated CZ (LEC) growth has been developed to counteract the high volatility of the group-V
component. During LEC growth the melt is completely covered with molten boric oxide (B2O3). The
keys to optimization of the crystal growth process are numerical modeling and computer control.
In Fig. 12.1a,c a large CZ silicon crystal and a smaller LEC GaAs crystal (boule) are shown. Over
time wafer size and ingot mass have increased remarkably (Fig. 12.1b). For details on other important
fabrication methods for bulk crystals, including float-zone (FZ [291, 1112]) or vertical gradient freeze
(VGF), we refer to the literature [1113]. Significant expertise is necessary for cutting, grinding and
polishing (lapping) wafers for epitaxy.

For semiconductors, the wafer is marked with flats to indicate orientation and doping. In Fig. 12.2
the standard flats are shown for (100)- and (111)-oriented material. The primary (major) flat (OF,
orientation flat) defines the crystallographic orientation1 is longer than the secondary (minor) flat which
defines the conductivity type (IF, identification flat). For a 4-inch (100mm) diameter wafer the OF is
32 and the IF 12mm long. The front surface, on which the epitaxy is performed, typically undergoes

1In the ‘US’ flat definition, the primary flat is the (011̄) surface, in the ‘EJ’ definition, the primary flat is (01̄1̄).
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Fig. 12.3 a AFM images of an as-received ZnO wafer, exhibiting small terraces and nm deep scratches from polishing.
(b, c) Two ZnO (0001̄) wafers with vicinal surfaces after thermal treatment (1000 ◦C for 2h in O2), exhibiting atomically
flat terraces with c/2 monoatomic step heights. Two different substrates with different off-cut (misorientation direction
and angle) are shown. Adapted from [1122]

(a) (b)

Fig. 12.4 Cross-sectional TEM of MBE-grown AlxGa1−xAs/GaAs heterostructures for (a) x = 0.41 and (b) x = 1.0.
Using an AlAs/GaAs superlattice an excellent flattening of substrate roughness is achieved. From [1123]

an elaborate cleaning and polishing process. Silicon processes [1115, 1116] are based on the RCA
cleaning procedure [1117] and the related Shiraki etch [1118] and can achieve clean, atomically flat
surfaces [1119]. III-V semiconductors are typically prepared using a polishing etch [1120, 1121], often
solutions containing bromine. It is possible to create compound semiconductor surfaces that exhibit
large, essentially monoatomically flat terraces between individual surface steps. Polishing or other
surface damage can also be removed prior to epitaxy with thermal (Fig. 12.3) or ion beam treatments.

One prerequisite for making high-quality heterostructures with thin layers is a flat surface. Even if
the polished substrate is not perfect, flat interfaces can be achievedwith the growth of appropriate super-
lattice buffer layers (Fig. 12.4). Roughness can exist on all length scales and is typically investigated
using atomic force microscopy scans.

High throughput demands and the advent of multi-wafer reactors make prior cleaning and etch-
ing procedures tedious. For this purpose, substrates for well-developed material systems are offered
‘epiready’. Epiready wafers are often covered with a very thin protective film that can be released using
a thermal treatment at or below typical growth temperature in the growth reactor immediately prior to
epitaxy. The protective film separates the polished semiconductor wafer from the ambient. Examples
are a few monolayers of arsenic on GaAs or two monolayers GaN on SiC. However, the suitability of
a purchased substrate may depend on the duration and conditions of its storage.
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Fig. 12.5 Growth rate of
GaAs in vapor phase
transport at 725◦ as a
function of crystal
orientation. The dashed
line is guide to the eye.
Adapted from [1128]
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A special case is the use of curved substrates which allow the study of growth on different crystal
orientations in a continuous fashion. Such experiments have beenperformedusing cylindrical substrates
[1124] and hemispherical crystals. For the latter homoepitaxy has been reported for Si [1125, 1126],
SiC [1127] or GaAs [1128]. Also heteroepitaxy has been investigated, for example for GaP and GaAs
on Ge [1129] (cmp. Fig. 12.12). Using such curved substrates, the growth rate can be determined as a
function of crystal orientation as shown for GaAs (on GaAs) in Fig. 12.5; large differences are found
for (111)A and (111)B surfaces. For growth of silicon the variations with angle are much smaller in
the range of 10% [1124].

12.2.3 Growth Modes

The growth of a material A on a material B can occur via three fundamental growth modes (Fig. 12.6),
the layer-by-layer or Frank-van der Merwe (FvdM) growth mode [435], the island or Volmer-Weber
(VW) growth mode [1130] and the Stranski-Krastanow (SK) growth mode [1131, 1132]. In [1132] the
possibility of island formation on an initially flat heteroepitaxial surface was proposed for the growth
of lattice-matched ionic crystals that have different charges. The term SK growth is now typically used
in lattice-mismatched heteroepitaxy for the island formation (and related relaxation of strain energy,
cmp. Fig. 14.37) on an initially two-dimensional layer (wetting layer).2 Also growth of islands relaxed
by misfit dislocations in strained heteroepitaxy has been termed SK growth [1133].

The growth mode is determined by the relation of the free energies (per area) of the surface σs,
interface σi and film σf . Wetting of the substrate and growth of a coherent film (FvdM-growth) occurs
for

σs > σi + σf . (12.1)

If the inequality has the opposite sign, Volmer-Weber or Stranski-Krastanow growth occurs. Addition-
ally the strain energy of the film must be considered. The SK growth generally occurs when there is
wetting of the substrate but layer strain is unfavorable and leads to islanding.

Layer-by-layer growth typically involves nucleation of two-dimensional islands and ‘filling’ of
the remaining monolayer before the next one is started. Another growth mode resulting in smooth

2This is the growth mode of self-assembled epitaxial quantum dots as discussed in Sect. 14.4.3.
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Fig. 12.6 Schematic of the
three different fundamental
epitaxial growth modes

epitaxial layers is step-flow growth where adatoms are incorporated mainly at step edges. A more
detailed discusion can be found in [1134]. Further details on crystal growth can be found in [1135].

The nucleation and the initial film growth are important and determine the film quality. Several
techniques have been developed to overcome common problems. A typical strategy is the growth of a
low-temperature nucleation layer.

12.2.4 Heterosubstrates

If homosubstrates are not available or very expensive, semiconductors are grown on dissimilar sub-
strates, e.g., (Al,Ga)N and ZnO on sapphire (Al2O3) or SiC.3 In Fig. 12.7 the interface region of hexag-
onal AlN on 6H-SiC (cmp. Fig. 3.31b) is shown. The change of crystallographic phase is obvious; the
perfect atomic arrangement justifies the term ‘epitaxy’, literally meaning ‘order on top’.

In many cases, the integration of III–V- or II–VI-based semiconductors for optoelectronic applica-
tions on silicon for electronic devices is desirable, such as GaAs/Si, InP/Si, GaN/Si or the growth on
economic substrates is attractive such as GaN/Al2O3 and ZnO/Al2O3. For all such combinations the
epitaxial relationship, i.e., the alignment of the crystallographic directions of both materials, which
can have different space groups, has to be considered. Some examples for epitaxial relationships are
given in Table 12.1. The epitaxial relation is determined by the energetically favorite formation of the
interface and the early stages of growth.

In Fig. 12.8, X-ray diffraction data are shown from a ZnO layer on c-oriented sapphire. The hexag-
onal ZnO lattice is rotated by 30◦ with respect to the trigonal sapphire lattice. In the case of growth
of ZnO on Si(111) an amorphous SiO2 layer can form at the interface such that the crystallographic
information of the substrate is lost. The ZnO grains exhibit random in-plane orientation (Fig. 12.9).

Fig. 12.7 HRTEM cross
section of the interface
region of MOVPE grown
hexagonal AlN on 6H-SiC
substrate. Adapted
from [1137]

2H-AlN

6H-SiC
1nm

3For ZnO, homosubstrates have recently been produced with 3-inch diameter [1136].
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Table 12.1 Epitaxial relationship for various film/substrate combinations, ZnO (or GaN) on c-, a- and r -sapphire and
Si(111)

ZnO Al2O3 ZnO Al2O3 ZnO Al2O3 ZnO/GaN Si

[00.1] [11.0] [1̄0.2] [111]
[00.1] [00.1] [00.1] [11.0] [11.0] [1̄0.2] [00.1] [111]
[11.0] [01.0] [11.0] [00.1] [00.1] [01̄.1] —/ [21̄.0] [1̄10]

Fig. 12.8 X-ray
diffraction intensity from
the asymmetric ZnO (10.4)
(upper panel) and the
sapphire (10.10) (lower
panel) reflections as a
function of the azimuthal
sample orientation
(rotation angle φ around
the [00.1] axis). The peaks
appear at different tilt
angles ω due to an overall
tilt of the mounted sample
(dashed sinusoidal lines).
The ZnO [00.1] axis is not
tilted with respect to the
sapphire [00.1] direction
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If substrate and epilayer have different space groups, the formation of domains can occur [1139].
The two-dimensional symmetries of various substrates are listed in Table 11.1. The group theoretical
minimum number of domains NRD in dependence of the two-dimensional symmetries of substrate and
epilayer with rotational symmetries Cn and Cm , respectively, is given by [1140]

NRD = lcm(n,m)

m
, (12.2)

where lcm denotes the least common multiple. The values are listed in Table 12.2 and visualized in
Fig. 12.10.

If the main symmetry axes of substrate and epilayer are not aligned, mirror domains appear. An
example is the growth ofGaN(00.1) onGe(111), for which it has been reported that themajor symmetry
directions do not align exactly. There is a 4◦ in-plane rotation of the lattices with respect to the usual
[11.0] ‖ [11̄0] in-plane relationship [1141] (cmp. the exact alignment for GaN/Si(111) in Table 12.1).
Due to 3m mirror symmetry of the substrate, the misaligment is equivalent for clockwise and counter-
clockwise rotation. Therefore two domains with an angle of 8◦ occur (Fig. 12.11).

Another well-known domain effect in heteroepitaxy is the occurence of antiphase domains of
zincblende semiconductors (e.g., GaAs, GaP, InP, . . .) grown on Si(001) with monoatomic steps;
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Fig. 12.9 a Plan-view
TEM image (inset: electron
diffraction diagram
averaged over several
grains) of ZnO on Si(111).
b Cross-sectional TEM of
the same sample. c
High-resolution
cross-sectional image of
the ZnO/SiO2/Si interface
region. Adapted
from [1138]

(a)

(b)
Si

ZnO

(c)

SiOxSi ZnO

Fig. 12.10 Visualization
of the minimum number of
rotational domains for
different substrate and
epilayer symmetries
according to Table 12.2
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Table 12.2 Number of rotational (or mirror) domains NRD for all 2D point groups of substrate (GS) (rows) and epilayer
(GE ) (columns). When two numbers are given (x |y), the first (second) number represents the number of domains if
mirror symmetry planes of substrate and epilayer align (misalign)

GS\GE 1 m 2 2mm 3 3m 4 4mm 6 6mm

1 1 1 1 1 1 1 1 1 1 1

m 2 1|2 2 1|2 2 1|2 2 1|2 2 1|2
2 2 2 1 1 2 2 1 1 1 1

2mm 4 2|4 2 1|2 4 2|4 2 1|2 2 1|2
3 3 3 3 3 1 1 3 3 1 1

3m 6 3|6 6 3|6 2 1|2 6 3|6 2 1|2
4 4 4 2 2 4 4 1 1 2 2

4mm 8 4|8 4 2|4 8 4|8 2 1|2 4 2|4
6 6 6 3 3 2 2 3 3 1 1

6mm 12 6|12 6 3|6 4 2|4 6 3|6 2 1|2

Fig. 12.11 X-ray
diffraction φ-scans of
GaN(00.1)/Ge(111).
Adapted from [1141]
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such surface actually exhibits two kind of terraces (1 × 2 and 2 × 1 reconstructions) and is thus itself
not homogeneous. The formation of antiphase domains can be avoided by using an off-cut of the
surface against the (001)-planes promoting double-atomic steps [1142]. In Fig. 12.12a the growth of
GaP on a Ge hemisphere with [111]-pole is depicted; spherical triangles meeting at the 〈100〉 poles can
be seen. In a similar experiment GaAs was grown in a spherical depression in Ge(001) (Fig. 12.12b),
allowing a more detailed look at the [001]-pole. Close to the it, within an approximately square area,
antiphase domains (cmp. Sect. 4.4.4) form. Along the connection lines between different 〈001〉-poles,
an antiphase domain boundary forms, microscopially broken up into domains [1129].

Details of the initial deposition steps can determine the orientation in polar materials. GaN directly
grown on c-Al2O3 grows with N-face orientation (see Fig. 3.19). The high surface mobility of Ga
allows nitrogen to take its preferred position in the first atomic layer. Even under Ga-rich conditions
the N atoms can kick-off the Ga from its favorite site on the surface. If an AlN buffer is used the strong
bond between Al and oxygen leads to an Al atomic layer at the interface and subsequent GaN grows
with a Ga-face [1143]. Also for the epitaxy of ZnO on on c-Al2O3 the polarity of the epilayer can be
controlled, e.g., via the details of an MgO buffer layer [1144].

12.2.5 Patterned Substrates

Using patterning of the substrate certain growth modes and crystallographic directions of the growth
front can be evoked.
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Fig. 12.12 The
morphology of a GaP
grown on a Ge hemisphere
with [111]-pole and b
GaAs grown in a Ge(001)
spherical depression.
Adapted from [1129]

(a) (b)
10µm

Fig. 12.13 Side view of
the heterointerfaces
between AlN and
c-oriented sapphire with
nitrogen (a) and Al (b)
being the first layer.
Adapted from [1143]. c
Phase image of
piezoresponse force
microscopy (PFM) of
lateral polarity GaN
heterostructure and d
linescan of phase signal
along white line in part (c).
Adapted from [1146], part
(c) reprinted with
permission, ©2002 AIP

(b)

(a)

(d)

(c)

Returning to the discussion of [00.1] or [00.1̄] growth of wurtzites, on a sapphire substrate with
lateral AlN patterns, laterally orientation-modulated GaN can be grown (Fig. 12.13). At the juncture
of the phases an inversion domain boundary forms [1145].

The defect density can be reduced in parts of the structure using pendeo-epitaxy [1147] or epitaxial
lateral overgrowth (ELO) [1148]. The defects thread only from the limited contact area of the layer
with the substrate and the part of the layer away from the mask (‘wing’) is free of defects (Fig. 12.14).

While the patterning of a mask may be cumbersome and require interruption of growth, the in-
situ deposition of a random SiN mask with small holes has been found beneficial in the epitaxy of
GaN [1149]. GaN islands nucleate selectively in the mask openings (Fig. 12.15a). The nucleation and
subsequent coalescence of islands (Fig. 12.15b) leads to defect annihilation and eventually again to a
flat film (Fig. 12.15c). The reduction of defect density is evident (Fig. 12.15d) and leads to improved
optical properties [1150].
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Fig. 12.14 SEM
cross-sectional image of
GaN grown on a structured
Si(111) substrate. The
laterally grown wings
extend about 2.5µm over
the grooves. The thickness
of the GaN layer is 0.5µm
on the bottom of the
grooves, while it is 1.4µm
on top of the ridges.
Reprinted with permission
from [1148], ©2001 AIP

(a) (b) (c)

(d)

GaN

sapphire

GaN

SiN mask

Fig. 12.15 SEM images of GaN a growing through the openings of a random SiN mask, b laterally overgrowing the
mask and coalescing and c eventually forming a flat film. Bar widths are 2µm, 1µm and 10µm. d Cross-section TEM
image. Adapted from [1149]

Using patterned substrates with stripe-like mesas and promoting the growth on a sidewall of the
mesa, the direction of GaN growth front can be steered into a semipolar direction (cmp. Sect. 16.4.3).
The r-plane sapphire substrate with etched mesa stripes oriented along the [11.0] direction exposes
[00.1]-oriented sidewall facets on which the GaN grows along its c-axis; The angle of 57.6◦ between
the r- and the c-planes of sapphire is very close to the angle (3.22c) of 58.4◦ between the GaN semipolar
(11.2) and the (00.1) plane. The flat growth front represents a (11.2) facet [1151] (Fig. 12.16). After
coalescence of grains from various mesas, a flat (11.2) surface arises, allowing the reduction of various
defects including basal stacking faults [1152, 1153].
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Fig. 12.16 SEM
cross-sectional image of
MOVPE GaN grown on
patterned r-sapphire
exposing a (11.2) growth
front. Based on SEM
image courtesy of F.
Tendille

r-Al O2 3

GaN

A [11.0]

C [00.1]
R [11.2]

M [11.0]

C [00.1]
[11.2]

[11.3]

1 µm

Fig. 12.17 Optical image
of the surface of a
supercritical, plastically
relaxed InxGa1−xAs film
on GaAs. Image width is
about 1mm. The
cross-hatch pattern is due
to misfit dislocations along
[110] and [11̄0]. A
pseudomorphic layer
would exhibit no contrast
under the given conditions

12.2.6 Pseudomorphic Structures

Heterostructures can generally be made from any sequence of materials. However a mismatch in lattice
constant (or a different crystal structure) leads to strains and stresses that are of the order of 103 atmos
for strains of 1% (σ ∼ Cε, C ≈ 5 × 1010 Pa) as discussed in Sect. 5.3.3. The total strain energy is
∝ Cε2. Above a critical thickness hc ∝ ε−1 (cf. Sect. 5.4.1) defects, e.g., misfit dislocations (relaxing
strain with their edge components), are generated (Sect. 12.2.7). There are a number of semiconductor
combinations that are lattice matched and thus can be grown with arbitrary thickness. AlxGa1−xAs is
closely lattice matched to GaAs for all Al concentrations. See Fig. 6.25 for lattice-matched pairs, e.g.,
In0.53Ga0.47As/InP. Often, thin layers of lattice-mismatched materials with thickness smaller than the
critical thickness are used.

For many device applications the ability to grow pseudomorphic layers thicker than the critical
layer thickness would be beneficial. The use of compliant substrates was proposed in [1154] to meet
this demand. A recent review on compliant substrate technologies can be found in [445]. Schemes
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Fig. 12.18 Average film strain (measured in-situ via substrate curvature) of In0.15Ga0.85As/GaAs grown at 450 ◦C as a
function of film thickness (determined from growth time× deposition rate). Relaxation for three different growth modes
are shown (as labeled): continuous growth, employment of several growth interruptions (GRI) and GRI with annealing
step (to 550◦). Adapted from [1155]

to accommodate part of the mismatch strain in the substrate include the use of cantilevered mem-
branes, silicon-on-insulator, twist bonding, glass bonding or trenched substrates. In this sense also
nanowhiskers (Sect. 14.2.3) represent a compliant substrate, enabling the growth of coherent (laterally
confined) layers thicker than the critical thickness of a 2D layer (cmp. Fig. 14.8).

12.2.7 Plastic Relaxation

Above the critical thickness, a filmwill relax plastically by forming defects, oftenmisfit dislocations. A
cross-hatch pattern at the surface due tomisfit dislocations is shown in Fig. 12.17 (cf. also Sect. 4.3.1.4).

The strain relaxation in mismatched heteroepitaxy can be determined experimentally via the wafer
curvature of the heterostructure (Sect. 5.3.5). Data for the thickness dependent relaxation ε(d) of
In0.15Ga0.85As on GaAs (mismatch ≈ 1%) are shown in Fig. 12.18. Growth interruptions lead to larger
relaxation at smaller thickness. Therefore relaxation at early times or small thickness (above hc) is
kinetically hindered, i.e., the available dislocation density and glide velocity are not sufficient to relieve
the strain. At large thickness the strain does not go to zero (saturation regime) and the film remains in
a metastable, incompletely relaxed state as discussed in more detail in [1155].

An extreme case of plastic relaxation is cracking (Sect. 4.4.1) which can occur for example in thick
films during cooling due to themismatch of the thermal expansion coefficients of substrate and epilayer
(Fig. 12.19). Such cracking can be avoided by the introduction of suitable stress-relaxing layers and
growth on predefined mesas [1156, 1157].

12.2.8 Surfactants

The condition (12.1) allows layer-by-layer growth (cf. Sect. 12.2.3), i.e., the substrate surface free
energy is higher than the than the total of interface and film surface free energy. This makes wetting
energetically favorable. For two elements A and B, one of them must have the lower surface free
energy. If A can be grown on B in Frank-van der Merwe (or Stranski-Krastanow) growth mode, then
(12.1) does not hold for B on A and the growth will occur in Volmer-Weber mode, i.e., with islands.
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Fig. 12.19 1× 1mm2 top view with a differential interference contrast microscope of a 1.3µm thick GaN layer grown
on Si(111). Reproduced with permission from [1156], ©2000 IPAP

Fig. 12.20 a, b 10nm thick Ge layer on Si (100) deposited at room temperature with MBE and annealed up to 770 ◦C
without (a) and with (b) Sb surfactant. Adapted from [1165]. c Cross-section TEM image of a heterostructure of 70
monolayers germanium on Si (111), grown by MBE with Sb surfactant. The horizontal arrow labeled ‘I’ denotes the
position of the interface. The arrows labeled ‘D1’ and ‘D2’ denote the positions of partial dislocations (cmp. Fig. 4.20).
Adapted from [327]

This is a serious problem for the growth of embedded layers of the type A–B–A. If the embedded film
grows well, the capping does not and vice versa.

In the case of Ge on Si, Ge has the lower surface free energy than Si. Ge grows on Si in Stranski-
Krastanow mode [1158] (Fig. 12.20a). Si grows both on Ge(001) and Ge/Si(001) in a Volmer-Weber
mode [1159] causing severe problems for the fabrication of Si/Ge/Si quantum wells or superlattices. A
substantial modification of growth mode can be achieved by using a third element C as a capping layer,
saturating surface bonds. It lowers the surface free energy of both materials A and B, thus favoring
wetting of the substrate. Such element C is called surfactant (surface-active species) [1160, 1161].
Typical examples are As [1160] or Sb [327] on Si and Ge (Fig. 12.20b). Also the surfactant modifies
defect nucleation and can lead to defect-free epitaxial Ge/Si layers (Fig. 12.20c). Surfactants have also
been described for the growth of compound semiconductors, e.g., In [1162] or Sb [1163, 1164] for
GaAs.
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12.3 Energy Levels in Heterostructures

12.3.1 Band Lineup in Heterostructures

In heterostructures, semiconductors with different band gaps are combined. The relative position of
conduction and valence band (band alignment) is determined by the electron affinities χ as shown in
Fig. 12.21. For a semiconductor, the electron affinity is the (positive) energy difference between vacuum
level and conduction band edge. It can lead to different types of heterostructures. Early perspectives of
semiconductor heterostructures are discussed in [1166]. The band alignment can be estimated from the
position of the branch point energies (Sect. 7.8) of the two constituents [699] but additional interface
dipoles may have to be considered.

In Fig. 12.22, the band alignment for type-I, type-II and type-III heterostructures are shown. In the
type-I structure (straddled band lineup) the lower conduction-band edge and the higher valence-band
edge are both in the material with smaller band gap. Thus, electrons and holes will localize there. In
the type-II structure a staggered lineup is present and electrons and holes will localize in different
materials. In the type-III structure, also termed ‘broken gap’ structure, the conduction band of one
material is below the valence band of the other material. The technologically most relevant are type-I
structures. The design of heterostructures to fulfill a certain device functionality or to have certain
physical properties is called ‘band gap engineering’.

Fig. 12.21 Position of
conduction and
valence-band edges for a
variety of semiconductors
(relative to a common
vacuum level at E = 0eV).
Based on values from
[1167], and from Al2O3
(on InP) [1168], InN on
diamond [1169], InN on
MgO [1170], Ga2O3 on
GaN from [1171], and
In2O3 on Si from [1172,
1173]. On the right hand
side, the work functions of
several metals are shown
for comparison

Fig. 12.22 Position of
band edges (band
alignment) in a type-I, b
type-II and c type-III
heterostructure
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(a) (b)

Fig. 12.23 a XPS measurements of InN and GaN and a InN/GaN heterostructure. The vertical dashed lines indicate
the core level positions in the bulk (black) and the heterostructure (red). The valence band offset is given by �EV =
�Ecore,HS − �Ecore,bulk (when EV is set to zero for both the bulk materials). b Schematic band lineup of the type-I
InN/GaN heterojunction (all energies in eV). Adapted from [1174]

In a type-I heterostructure, the conduction- and valence-band discontinuities are given, respec-
tively, by

�EC = χ1 − χ2 (12.3a)

�EV = (χ1 + Eg1) − (χ2 + Eg2) . (12.3b)

Experimentally, the valence band offset can be determined using X-ray photoelectron spectroscopy
(XPS) probing the filled states; together with the band gap then also the conduction band offsets are
obtained. As example, in Fig. 12.23a the binding energies of an indium and a gallium core level are
shown with the valence band edges of InN and GaN, respectively, set to zero energy. Both core levels
are then also investigated in a 5nm InN on GaN heterostructure (the InN layer is sufficiently thin to
allow photoelectrons to escape from the GaN underneath). The sum of the shifts represents the valence
band offset (�EV = 0.58(8)eV from the analysis of several core levels [1174]). Together with the band
gaps, the conduction band offset results in �EV = 2.22eV as schematically depicted in Fig. 12.23b.

Depending on the layer sequence of high- and low-bandgap materials various configurations, as
shown in Fig. 12.24 have obtained special names, such as single heterointerface, quantum well (QW),
multiple quantum well (MQW), superlattice (SL). In the extreme case the layer is only one monolayer
thick (Fig. 12.25) and the concept of layer and interface blurs. Such atomically precise layer sequences
aremastered nowadays for a variety of material systems such as (Al,Ga)As/GaAs/InAs, InP/(In,Ga)As,
Si/SiGe, ZnO/(Mg,Zn)O and also BaTiO3/SrTiO3.

The abruptness of interfaces is determined by the epitaxial machine through the switching precision
of the incoming material flux and fundamentally limited by segregation phenomena which can be
modeled with a segregation coefficient [1175] (cmp. Sect. 4.2.4). As shown in Fig. 12.25c, In has
the tendency to be carried into the following GaAs layer. A quantitative evaluation is possible using
aberration-corrected scanning transmission electron microscopy [1176].
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(a) (b) (c)

(d) (e)

Fig. 12.24 Heterostructures with different layer sequences (band gap engineering). a quantum well (QW), b multiple
quantum well (MQW), c superlattice (SL), d single-barrier tunneling structure, e double-barrier tunneling structure

Fig. 12.25 Ultrathin
heterostructures: a
Cross-sectional TEM of a
MOVPE-grown
short-period superlattice
(SPS) of InAs layers in
GaAs1−xNx ). In high
resolution (right image),
the individual rows of
atoms can be seen. From
[1177]. b, c Cross-section
STM image of 2ML InAs
on GaAs; the segregation
of In into the top layer is
visible atom by atom.
Adapted from [1178]

(a)

InAs
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Fig. 12.26 Schematic
energy levels and
wavefunctions in a
potential well with a
infinite barriers, and b
finite barrier height

(a) Lz

n=1

n=2

n=3

(b) Lz

n=1

n=2

12.3.2 Quantum Wells

The energy in a single quantumwell of thickness Lz (along the growth direction z) can be calculatedwith
the quantum-mechanical particle-in-a-boxmodel. In the envelope function approximation (Appendix I)
the wavefunction is written as a product of the Bloch function and the envelope function χ(z).

�A,B(r) = exp (i k⊥ r) unk(r)χn(z) , (12.4)

where ‘A’ and ‘B’ denote the two different materials. The envelope function χ fulfills, approximately,
the one-dimensional Schrödinger-type equation,

[
− �

2

2m∗
∂2

∂z2
+ Vc(z)

]
χn(z) = En χn(z) , (12.5)

where m∗ denotes the effective mass. Vc is the confinement potential determined by the band discon-
tinuities. Typically, Vc = 0 in the well and V0 > 0 outside in the barrier. En are the resulting energy
values of the quantized levels. In the case of infinite barriers (V0 → ∞, Fig. 12.26a) the boundary
conditions χ(0) = χ(Lz) = 0 yield

En = �
2

2m∗

(
n π

Lz

)2

(12.6)

χn(z) = An sin

(
n π

Lz
z

)
, (12.7)

where En is called the confinement energy.
For finite barrier height V0 (Fig. 12.26b) the calculation leads to a transcendental equation. The

wavefunction tunnels into the barrier. While for infinite barrier height the lowest level diverges for
Lz → 0, for finite barrier height E1 → V0. A complication arises from the different effective mass
in the well and barrier material. This is taken into account by forcing the continuity of χ and χ′/m∗
across the interfaces4 (‘BenDaniel-Duke’ boundary conditions [1180]). The Schrödinger equation and

4The kinetic energy term in (12.5) is written as �
2

2
∂
∂z

1
m∗(z)

∂χ
∂z for varying mass across the structure [1179].
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Fig. 12.27 Schematic representation of the development of hole levels in a quantum well: a degenerate bulk levels at
�, b splitting at the subband edge (due to different quantized values of kz), c in-plane dispersion (mass reversal), d
anticrossing behavior. Based on [1123]

(semi-)analytical solutions for special and numerical methods for arbitrary potential distributions are
discussed in [1181]. The application of k · p theory (Appendix H) to heterostructures is discussed
in [1182].

The motion of carriers in the plane is still free and has a two-dimensional dispersion. Thus, each
quantized level contributes m∗/(π�

2) to the density of states at each subband edge En .
For holes, the situation is a little more complicated than for electrons (Fig. 12.27). First, the degen-

eracy of heavy and light holes is lifted since their mass enters the confinement energy. The effective
hole masses along the z direction, i.e., those that enter (12.5), are

1

mz
hh

= γ1 − 2 γ2 (12.8a)

1

mz
lh

= γ1 + 2 γ2 . (12.8b)

The light holes have the higher quantization energy. The angular momentum is quantized along the z
direction. The transverse masses for the dispersion in the interface plane are

1

mxy
hh

= γ1 + γ2 (12.9a)

1

mxy
lh

= γ1 − γ2 . (12.9b)

Now the heavy hole, i.e., the Jz = ± 3
2 state, has the smallermass and the light hole (Jz = ± 1

2 ) the larger
(Fig. 12.27c). However, this consideration is only an approximation since the lifting of degeneracy and
the dispersion have to be treated on the same level. Higher terms of the perturbation calculation lead
to band mixing and remove the band crossing that seems to originate from the situation at the � point.
In reality, the bands show anticrossing behavior and are strongly deformed. The hole dispersion in a
superlattice and the anticrossing behavior is shown in Fig. 12.28.

Experimentally observed transition energies in quantum wells of varying thickness are shown in
Fig. 12.29 and are in good agreement with the theoretical calculation. We note that for infinite barriers
optical transitions are only allowed between confined electron and hole states with the same quantum
number n. For finite barriers this selection rule becomes relaxed, and other transitions become partially
allowed, e.g., e1–hh3. The optical matrix element from the Bloch part of the wavefunction, which was
isotropic for (cubic) bulk material (9.37), is anisotropic for quantum wells. TE (TM) polarization is
defined with the electromagnetic field in (perpendicular to) the plane of the quantumwell (Fig. 12.30a).
At the subband edge, i.e., for in-plane wavevector k|| = 0 the matrix elements for the various polariza-
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Fig. 12.28 Hole dispersion
in a 68-ML GaAs/71 ML
Al0.25Ga0.75As superlattice
(numerical calculation).
The double curves
originate from a lifting of
time-reversal symmetry at
k �= 0. Reprinted with
permission from [1183],
©1985 APS
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Fig. 12.29 Observed
electron–hole transitions
(energy difference to the
first e–h transition from
excitation spectroscopy) in
GaAs/(Al,Ga)As quantum
wells of varying thickness.
Symbols are experimental
data, solid lines are
theoretical model. Data
from [1184]

tions and propagation directions are given in Table 12.3. Thematrix elements averaged over all in-plane
directions for TE-polarization are 3/2M2

b (1/2M
2
b ) for the electron to heavy (light) hole transition. For

TM polarization the values are 0 and 2M2
b , respectively [1185]. The optical selection rules are shown

in Fig. 12.30 (see Fig. 9.12 for bulk material). For propagation along the quantum-well plane, the ratio
between the strength of the TE polarized e–hh and e–lh transitions is 3:1.

The confinement potential squeezes charge carriers bound to impurities closer to the ion. Therefore,
the binding energy increases as shown in Fig. 12.31. This behavior can be modeled theoretically with
good precision. It makes a difference whether the impurity is located at the center or the interface of
the quantum well.

The confinement potential also squeezes electrons and holes in the exciton closer together and thus
increases their Coulomb interaction. The binding energy of the quantum-well exciton is thus larger
than in bulk material and depends on the well width (Fig. 12.32). In the simple hydrogen-like model
with infinite barriers the exciton binding energy is 4 times the bulk binding energy in the limit Lz → 0.
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Fig. 12.30 aDirections of electric-field vector relative to the quantum-well plane for TE and TM polarization. bOptical
selection rules for band–band transitions in a quantum well. If the (in-plane averaged) relative strength of the e–hh
transitions (solid lines) is 1, the relative strength of the TE-polarized e–lh transitions (dashed lines) is 1/3 and that of the
TM-polarized e–lh transitions (dash-dotted lines) is 4/3

Table 12.3 Squared momentum matrix elements |〈c|ê · p|v〉|2 in a quantum well for various propagation directions in
units of M2

b . The quantum-well normal is along z

Propagation êx (TE) êy (TE) êz (TM)

e–hh x – 1/2 0

y 1/2 – 0

z 1/2 1/2 –

e–lh x – 1/6 2/3

y 1/6 – 2/3

z 1/6 1/6 –

e–so x – 1/3 1/3

y 1/3 – 1/3

z 1/3 1/3 –

5 0 53035251 0201

40

35

30

25

5

GaAs/Al Ga As

Fig. 12.31 Experimental values for the acceptor binding energy in GaAs/Al0.3Ga0.7As quantum wells (solid circles)
from [1186] as a function of well width. Solid line is theory (variational calculation) for the well-center acceptor
including top four valence bands and finite barriers, dashed line is hydrogen-like model with infinite barrier height.
Adapted from [1187]



372 12 Heterostructures

(a)

15

10

5

5 10 15
z

0

Al Ga As/GaAs0.60.4

m mb w

m m
m =m
m =m

b w

b w

b w

, b w

,
,

, =

=

b w

b w

b w

(b)
0 5 10

W

10

9

8

7

6

InGaAs/
GaAs

Fig. 12.32 a Theoretical (variational) calculation (solid line) of the heavy-hole exciton binding energy versus QW
thickness in a GaAs/Al0.4Ga0.6As quantumwell (using also different approximations, other lines). Adapted from [1188].
b Experimental exciton binding energy in InxGa1−xAs/GaAs quantum wells of different thickness. Circles: data and
error bars from [1189], x unspecified, squares: data from [1190], x = 0.18
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Fig. 12.33 Band structure of a superlattice with a potential depth of 0.4eV and well and barrier widthw (LQW = Lbarr).
Adapted from [1191]

In a realistic calculation the effect of different dielectric constants in the well and barrier (image charge
effect) need to be considered.

12.3.3 Superlattices

In a superlattice, the barrier thickness is so small that carriers can tunnel in neighboring wells or, in
other terms, that there exists a significant wavefunction overlap between adjacent wells. This leads to
a band structure (Fig. 12.33), similar to the Kronig-Penney model (Appendix F). For the superlattice
the bands are called minibands, the gaps are called minigaps. The density of states does not make a
step at the subband edge but follows an arccos function. The modification of the density of states, as
seen in the absorption spectrum, are shown in Fig. 12.34 for 1, 2, 3 and 10 coupled wells.
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Fig. 12.34 Absorption spectra of a single, double, triple and ten coupled quantum wells. Theoretically predicted tran-
sitions with heavy (light) holes are labeled with filled (empty) bars at their respective transition energies. Adapted
from [1192]

Fig. 12.35 Schematic
formation of a triangular
potential well in a
n-(Al,Ga)As/n-GaAs
heterostructure, a before
and b after equilibration of
Fermi levels

(a)

GaAsAlGaAs

E v

E c

(b)

E v

E c

12.3.4 Heterointerface Between Doped Materials

Weconsider a single heterointerface between n-dopedmaterials.As an examplewe take n-(Al,Ga)As/n-
GaAs (Fig. 12.35). First, we consider the materials without contact, forming a type-I structure. In ther-
modynamic equilibrium the system must have a constant Fermi level. Thus, charge is transferred from
the region close to the interface from (Al,Ga)As to GaAs. This results in the formation of a triangular
potential well in the GaAs close to the interface. A two-dimensional electron gas (2DEG) forms in this
potential well (Fig. 12.36). The charge transfer in thermodynamic equilibrium adjusts the band bend-
ing and the charge density (quantized levels in the well) in such a way that they are self-consistent.
The Poisson equation and the Schrödinger equation are simultaneously fulfilled. Numerically, both
equations are iteratively solved and the solution is altered until it is self-consistent, i.e., it fulfills both
equations.
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If the region of the 2DEG is not doped, the electron gas exists without any dopant atoms and
ionized impurity scattering no longer exists. This concept is called modulation doping. Mobilities
up to 3.1 × 107 cm2/Vs have been realized (Fig. 12.37). The theoretical limits of mobility in a 2DEG
at modulation-doped (Al,Ga)As/GaAs heterointerfaces are discussed in detail in [1194].

12.3.5 Heterointerface Between Semiconductors with Band Structures of
Different Topology

Let us remember the situation of the topological linear chain developing end states when sandwiched
between trivial material (cf. Sect. 5.2.10). Also surface states develop between a material with non-
trivial topological band structure and vacuum (which is trivial) (cf. Sect. 11.6.3). These effects are
expression of the bulk-boundary correspondence, which says that at the interface of topologically
different materials, edge states develop.

If now a semiconductor heterointerface is made up from two topologically differnt materials, a
conductive interface channel is expected. This effect has been found for the HgTe/CdTe system where
HgTe represents the non-trivial material with inverted band structure. (cf. Sect. 6.11). A quantum well
structure was proposed where HgTe is sandwiched between layers of HgxCd1−xTe [1196]. Taking
the electron and hole quantization effects into account, normal band order is present for thickness of
the HgTe layer up to a critical thickness of dc = 6.35nm (for x = 0.32) and the sample should be
insulating. For thicker QWs, the two-dimensional bands invert and edge states arise. The quantized
electrical conductance due to the edge states was indeed found and measured [1197, 1198].

Fig. 12.36 a Conduction-band edge at a GaAs/Al0.3Ga0.7As heterointerface (T = 0K) with two confined states at E0
and E1 marked with solid horizontal lines. In the GaAs channel there are 5 × 1011 cm−2 electrons. The barrier height
is 300meV, NGaAs

D = 3 × 1014 cm−3. The position of the Fermi level EF is at E = 0 and indicated with a dash-dotted
line. b Envelope wavefunctions φ0 and φ1 of the two confined states, dash-dotted line: calculation without exchange and
correlation for state at E0. Adapted from [1193]
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Fig. 12.37 Progress in the
achievement of high
electron mobility in GaAs,
annotated with the
technical innovation
responsible for the
improvement. Adapted
from [1195], reprinted with
permission, ©2003
Elsevier B.V

12.4 Recombination in QuantumWells

12.4.1 Thickness Dependence

The energy of exciton recombination in quantum wells is blue-shifted with respect to that in bulk
material due to the quantum-confinement energies of electrons and holes (Fig. 12.38). The electron–
hole recombination lineshape in quantum wells is given by the product of the joint density of states
and the Boltzmann function (when Boltzmann statistics apply). The JDOS is given by a step function
(Heavyside function H(E)).

I (E) ∝ H(E − E11) exp

(
− E

kT

)
, (12.10)

where E11 = Eg+ Ee1 + Eh1 represents the energy of the E1–H1 subband edge as shown in Fig. 12.38.
An experimental spectrum (Fig. 12.40a) shows that excitonic effects influence the recombination line-
shape in a GaAs quantum well even at room temperature [1199].

The recombination decay constant of excitons decreases with decreasing well width, partly due to
the increase of exciton binding energy as discussed in [1200].

12.4.2 Broadening Effects

Many-Body Effects

At high carrier densities when the electron (quasi-) Fermi level is above the electron subband edge,
the spectrum broadens and reflects the Fermi–Dirac distribution (Fig. 12.40b). At low temperatures
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Fig. 12.38 a Schematic energy diagram of a quantum well with confined electron (e1, e2) and hole (h1, h2) states
and recombination between them at energies E11 and E22. b Schematic sample structure with two GaAs/AlxGa1−xAs
quantum wells with thicknesses 3nm and 6nm. c Photoluminescence spectrum (T = 300K) of the structure from part
(b). A small amount of barrier luminescence appears at 1.88eV, according to x = 0.37 (cf. Fig. 6.24c)

a many-body effect, multiple electron–hole scattering with electrons at the Fermi edge, leads to an
additional peak, termed Fermi-edge singularity that is discussed in [1201].

Homogeneous Broadening

The temperature dependence of the homogeneous broadening of quantum well luminescence has
been investigated in [1202]. It follows the dependence of the broadening known from bulk mate-
rial (Sect. 9.7.7) with similar values for the LO broadening parameter. In Fig. 12.39a the reflectance
spectra for different temperatures of a 17nm GaAs/Al0.3Ga0.7As QW are shown. The optical phonon
broadening parameter for various well widths is shown in Fig. 12.39b and coincides with the bulk
value.

The homogeneous broadening leads to excitons with in-plane center-of-mass wave-vector K �= 0
being allowed to recombine radiatively. This leads to a linear increase of exciton lifetime as demon-
strated for GaAs quantumwells up to 50K in [1200]. In [1203] all exciton wave-vectors within the light
cone are considered, explaining the linear increase of exciton lifetime in (non-polar) ZnO quantum
wells up to room temperature.



12.4 Recombination in Quantum Wells 377

Fig. 12.39 a Reflectance
spectra at various
temperatures from a 17nm
thick GaAs/Al0.3Ga0.7As
quantum well. The inset
shows the temperature
dependence of the
homogeneous linewidth. b
LO phonon broadening
parameter (FWHM) for
various quantum well
widths. Adapted
from [1202] (a) (b)
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Fig. 12.40 a Photoluminescence spectrum of a 5-nm GaAs/(Al,Ga)As quantum well at T = 300K. The solid (dashed)
line is fit with (without) excitonic effects. The two peaks are due to transitions involving heavy and light holes. Adapted
from [1199]. b Photoluminescence spectra at three different temperatures as labeled of a 10-nm modulation-doped
(In, Ga)As/InP quantum well with an electron sheet density ns = 9.1 × 1011 cm−2. The electron quasi-Fermi level is
Fn − (EC + Ee1) = 44.1meV from the subband edge. The dashed line in the T = 80K spectrum is the lineshape from
JDOS and a Fermi–Dirac distribution without enhancement at the Fermi edge. Adapted from [1201]

Inhomogeneous Broadening

Inhomogeneous broadening affects the recombination lineshape. Since the interfaces of the QWare not
ideally flat, the exciton averages over different quantum-well thicknesses within its volume. Also, e.g.,
for the GaAs/(Al,Ga)As system, the wavefunction in the (binary) quantumwell tunnels into the barrier,
the amount depending on the QW width, and there ‘sees’ the alloy broadening (see Sect. 10.3.3). The
problem of exciton dynamics in a potential with random fluctuations has been treated in detail [1204,
1205].

A simplified picture is as follows: At low temperatures the excitons populate preferentially the
potential minima. A simple lineshape5 of the QW absorption or joint density of states is given by a
step function (cf. Table 9.3) at the QW band edge E0. The inhomogeneous broadening has a Gaussian

5neglecting excitonic enhancement.
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Fig. 12.41 a
Recombination spectra
(solid lines, scaled to same
height) of a model quantum
well for different
temperatures as labeled and
complete thermalization,
dashed (dash-dotted) line
is unperturbed
(inhomogeneously
broadened by σ = 20meV)
shape of the QW
absorption edge. The
energy scale is relative to
the energy position of the
unperturbed QW
absorption edge at E0. b
Theoretical energy position
and c linewidth of exciton
recombination from a
model disordered quantum
well. The high-temperature
limits are marked by
arrows. Parts (b, c) adapted
from [1204]

(a)

(b) (c)

probability distribution p(δE) ∝ exp[−(δE)2/2σ2)] with δE being the deviation from the QW band
edge δE = E − E0. The resulting lineshape is given by the convolution of the Gaussian with the
unperturbed absorption spectrum yielding an error-function-like spectrum6 as shown in Fig. 12.41a.

For complete thermalization the level population is given by the Boltzmann function. The recom-
bination spectrum is given by the product of the absorption spectrum (or JDOS) and the Boltzmann
function. It is (red-) shifted with respect to E0 by about7

�E(T ) = − σ2

kT
= γ(T ) kT . (12.11)

This shift between emission and absorption is also called the Stokes shift.
Within their lifetime, limited at least by radiative recombination, the excitons are typically unable

to reach the energy position required by the Boltzmann function, but only a local minimum. Thus, their
thermalization may be incomplete due to insufficient lateral diffusion. This effect is particularly impor-
tant at low temperatures when thermal emission into adjacent deeper potential minima is suppressed. In
this case, the red-shift is smaller than expected from (12.11). A numerical simulation [1204] yields such
behavior of the energy position of the recombination line as shown in Fig. 12.41b. Simultaneously, the
width of the recombination spectrumalso exhibits aminimum (Fig. 12.41c). These findings are in agree-
ment with experiments [1206, 1207]. An analytical model for temperature dependent exciton local-
ization in the presence of disorder has been given in [1208], yielding a value 0 ≤ γ ≤ γ0 = (σ/kT )2

in (12.11).

6The error function is defined as erf(x) = (2/
√

π)
∫ z
0 exp−t2 dt .

7Formula (12.11) is exact for the product of a Gaussian and the Boltzmann function.
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Fig. 12.42 Photoluminescence spectrum (T = 2K) (dots) of GaAs/ (Al,Ga)As quantum well grown by MBE with
120s growth interruptions. Recombination is due to excitons in islands of 19, 18, and 17 monolayers (a0/2) height.
The solid line is a lineshape fit including lifetime broadening (� = 1.34meV) and residual inhomogeneous broadening
(σ = 0.04meV) due to (Al,Ga)As barrier alloy fluctuations. Note that the energy separation of the peaks is much larger
than kT . The peak doublet structure is discussed in [1199]. Adapted from [1199]

A potential fluctuation can localize an exciton laterally at low temperatures [1199] and behave like
a quantum dot (cf. Sect. 14.4). Localized and delocalized excitons are separated by a boundary called
the mobility edge [1209]. The transition between the two regimes is a Mott transition [1210].
Monolayer Growth Islands

Under certain growth conditions, quantum wells with piecewise very flat interfaces can be fabricated.
The thickness difference between such regions (with lateral extension in the µm range) is an integer
monolayer. Accordingly, the recombination spectrum yields several, typically two or three, discrete
lines (Fig. 12.42).

12.4.3 Quantum Confined Stark Effect

The quantum confined Stark effect (QCSE, Sect. 15.1.2) in quantum wells shifts energy levels when
electric fields are present along the width of the quantum well. A strong effect exists for pyro-
and piezoelectric material combinations such as c-axis oriented (In,Ga)N/(Al,Ga)N [1211, 1212] or
(Cd,Zn)O/(Mg,Zn)O [1213, 1214] quantum wells due to the built-in electric field (cf. Sect. 16.2). The
QCSE induced red-shift is larger in thicker quantum wells and goes beyond the bulk band gap of the
quantum well material (Fig. 12.43b). Also the wavefunction overlap is reduced with increasing well
width, leading to an increase of the radiative recombination lifetime as shown in Fig. 12.43. The pyro-
electric field and the related modification of lifetime are absent in quantum wells grown on non-polar
directions such as [11.0] (Fig. 12.43a).
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(a) (b)

Fig. 12.43 a Radiative lifetime of electron-hole pairs in polar [00.1]-oriented In0.2Ga0.8 N/GaN (circles) and non-polar
[11.0]-orientedGaN/Al0.2Ga0.8N (squares) quantumwells of varying thickness. Experimental data are shown in symbols.
The solid line is the (scaled) theoretical dependence of the electron-hole overlap for (In,Ga)N/GaN QWs. The dashed
line is guide to the eye. The arrow denotes the recombination time constant in bulk GaN. Adapted from [1215, 1216].
b Low temperature PL peak recombination energy (solid squares) for ZnO/Mg0.3Zn0.7O quantum wells for various well
widths Lz (barrier width LB = 5nm). Dashed line indicates dependence for internal field of 0.9MV/cm, horizontal
dashed line indicates recombination energy in ZnO bulk. Carrier lifetime determined from PL (circles), dashed line is
guide to the eye. Adapted from [1214]

Fig. 12.44 Measured (full
circles) and theoretical
(solid lines) confined LO
phonon energies in
70Gen /74Gen superlattices
versus the layer thickness
(number of monolayers) n.
The dashed lines represent
a calculation that considers
intermixing at the
interfaces. On the right, the
energies of bulk modes for
isotopically pure 70Ge and
74Ge are shown together
with that of an
70Ge0.570Ge0.5 alloy.
Adapted from [1217]

320

310

300

290

280

270
200 30 4010

-1

70LO170LO3
70LO5
70LO7
74LO174LO3
74LO5

70Ge /n n
74Ge SL

74Ge

alloy

bulk

70Ge

12.5 Isotope Superlattices

A special type of heterostructure is the modulation of the isotope content. The first kind of heterostruc-
tures made like this were 70Gen/74Gen symmetric superlattices [1217]. Figure12.44 shows phonon
energies determined from Raman spectroscopy for various layer numbers n. The modes are classi-
fied by 70LOm and 74LOm denoting the material in which the amplitude is maximal and m being the
number of maxima in that medium.8 Such modes are visualized in Fig. 12.45a for a 69GaP16/71GaP16
superlattice. Theoretical mode energies as a function of the superlattice period are shown in Fig. 12.45b.

8Only modes with odd m are Raman-active.
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Fig. 12.45 aAtomic displacements [Ga (filled dots) and P (open circles)] of odd-index LOmodes in a 69Ga16P/71Ga16P
superlattice unit cell. These modes have even parity with respect to midlayer planes, which are at atom numbers 16
and 48 in this example. The labels on the left identify the predominant character of the mode, those on the right give
the relative Raman intensities with respect to that of the 69LO1 mode. The tick marks on the vertical axis indicate zero
displacement of the respective mode. b Upper panel: Energies and characters of odd-index LO phonon modes in GaP
isotope SLs as calculated within the planar bond charge model for the case of ideal interfaces. 69LOm modes are shown
as open symbols; 71LOm modes as full symbols. The shaded area marks n = 16 for which the atomic displacements of
the modes are shown in part (a). Lower panel: Calculated intensities of the modes relative to that of the 69LO1 phonon
mode. Adapted from [379], reprinted with permission, ©1999 APS

12.6 Wafer Bonding

Wafer bonding is a fairly recently developed method to join different and dissimilar materials. Two
wafers of the respective materials are put together face to face and are adequately fused. The idea is to
not only ‘glue’ the wafers together with a sticky (and compliant) organic material, but to form strong
atomic bonds between the two materials with possibly a perfect interface. In some cases, the interface
needs to allow charge-carrier transport through it. Less stringent conditions need to be met for photon
transport.

Mechanical deficiencies such as surface roughness, dust particles and the like must be avoided in
the wafer-bonding process since they result in voids. Several methods have been developed for bonding
various materials [1220–1222]. Such processes are successful for large substrate sizes. With proper
processing, ideal interfaces can be created, as shown in Fig. 12.46. Such structures, if made between a
p-doped and a n-doped semiconductor, show diode characteristics.
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Fig. 12.46 High-
resolution TEM images of
wafer-bonded a Si–Si and
b GaAs–Si interfaces.
White circles indicate the
position of misfit
dislocations. Part (a)
reprinted from [1218],
©2003, with permission
from Elsevier. Part (b)
reprinted with permission
from [1219], ©1998 AIP
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Chapter 13
Two-Dimensional Semiconductors

Introducing a new experimental system is generally more rewarding than trying to
find new phenomena within crowded areas. [...] Of course, the fantastic results one
originally hopes for are unlikely to materialise, but, in the process of studying any
new system, something original inevitably shows up.

A.K. Geim, 2010 [1223]

Abstract 2D materials or atomic sheets are materials without a bulk. They offer unique physics and
properties, but also challenges in preparation and stability. Stacking of such 2D materials in van-der-
Waals heterostructures extends the possibilities.

2D materials are the ultimate thickness limit for semiconductors. While the thickness of quantum
wells can be controlled to the sub-atomic average thickness, they are still impacted by the roughness
or undulation of the underlying substrate. 2D materials are more like free two-dimensional molecules
with giant lateral extension and a vertical structure well defined by atomic bonding. Paper collections
and textbooks are available for this topic, e.g. [1224–1226].

13.1 Graphene and Related Materials

Graphene, its name proposed in [1227], is the ultimately thin material, a single sheet of carbon atoms
in honeycomb arrangement; this is not a hexagonal (cf. Fig. 3.3b) but a trigonal lattice with a two-atom
basis (Fig. 13.1). Graphene possesses unique physical properties such as a linear dispersion around the
Fermi energy, making it a solid-state analogue to ultra-relativistic physics [1228]. Graphene does not
possess a band gap in its ideal form. An account of the history of graphene research, starting in 1840,
is given in [1229].

Many applications for graphene and graphene-based composites have been envisioned in electron-
ics such as superior conductor or transistor material [1230, 1231] as well as applications in energy,
biomedical, membranes and sensors [1232, 1233], but the current industrial use is still rather limited.
Here, we introduce ’flat’ graphene while quasi one-dimensional nanotubes based on graphene are
treated in Sect. 14.3.
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Fig. 13.1 Unit cell of A–B compound honeycomb lattice in a real space and b reciprocal space. The irreducible part of
the Brillouin zone is shown in dark grey

(a) (b)

Fig. 13.2 a Schematic layer structure of graphite with bond length and layer distance labelled. bAFM image of graphene
on oxidized silicon. The height of two areas relative to the background is labelled. Adapted from [1240]

13.1.1 Structural Properties

The carbon bond length in graphene is dC−C = 0.142nm (cmp. Table 13.1). Due to instabilities
[1234, 1235], freely suspended graphene layers are not perfectly flat but exhibit corrugations [1236].
Graphene can be prepared from graphite via micromechanical cleavage, i.e. mechanical exfoliation
(repeated peeling) of small mesas of highly oriented pyrolytic graphite [1237, 1238]. Epitaxial growth
on SiC [1239] and the growth on copper in large sheets [1232] have been reported.

Graphite is a stacked arrangement of such graphene sheets (Fig. 13.2a) held together by van-der-
Waals forces (cmp. Sect. 13.3) as shown in Fig. 13.2b. The carbon atoms bond via sp2 hybridization.
Organicmolecules such as, e.g., anthracene or coronene (Fig. 18.1) can be understood asmolecular-size
pieces of such two-dimensional graphene sheet with hydrogen saturating the outside, broken bonds.
Single layer graphene sheets (SLG) and few-layer graphene (FLG) sheets must distinguished since for
the latter the exact stacking arrangement and vertical coupling effects play a role. Ideally, such two-
dimensional crystal is infinitely extended, e.g. for band structure calculations. Of course real crystals
always have a (quasi-) one-dimensional boundary which is topologically a line or very thin sidewall.
Various defects have been studied in graphene. The vacancy is discussed in [1241] and exhibits a
magnetic moment of 2μB.

The unit cells in real and reciprocal space are shown in Fig. 13.1. The lattice vectors are a1,2 =
a/2(3,±√

3) (Fig. 13.1a). The reciprocal lattice vectors are b1,2 = 2π/(3a)(1,±√
3), where a =

dC−C. The Brillouin zone (Fig. 13.1b) has two triples of K-points that are labeled K and K’ (or K+
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(a) (b)

Fig. 13.3 a Phonon dispersion in graphene (cmp. Fig. 13.1b). Symbols are experimental data from various methods.
Dashed lines is DFT-LDA theory, solid linesGGA.Adapted from [1244], reprinted with permission, ©2004 Elsevier Ltd.
b Comparison of graphite and graphene Raman spectra (excited at 514nm). In the right panel the number of monolayers
in FLG is labeled (1: graphene, ∞: graphite). Adapted from [1245], reprinted with permission, ©2006 APS

and K−) at K , K ′ = 2π/(3a) (1,±1/
√
3). When the A- and B-sites are identical, as for graphene, the

difference between K- and K’-points is often subtle and a �–M–K Brillouin zone is sufficient.
Mechanical properties of graphene are discussed in [1242, 1243]; it has exceptional strength

(Young’s modulus in the range of 1TPa). The breaking stress 200 times greater than steel, with a
2D tensile stress of 42N/m, corresponding to a strain of 25%. The phonon dispersion of graphene is
shown in Fig. 13.3a. For the ZA and ZOmodes, the displacement is perpendicular to the graphene plane
(out-of plane modes). In Fig. 13.3b the Raman spectra of graphite and graphene are compared. The
peak (termed ‘G’) at about 1580cm−1 ist due to the zone center mode. The peak at about 2680cm−1

(termed ‘2D’) is due to two phonons (double resonance) with oppositemomentum in the highest optical
branch near the K-point. It splits into four peaks for bilayer graphene due to changes in the electronic
band structure [1245].

13.1.2 Band Structures

The band structure of graphene from first principles [1246] is depicted in Fig. 13.4a. Graphene is a
zero-gap semiconductor (cf. Fig. 6.46) which shows a linear photon-like spectrum,

E = � k vF , (13.1)

around the Fermi energy at the K-point (Fig. 13.4b). Such point is also called ’Dirac’ point.
The important bands close to the Fermi level stem from the (out-of-plane) π-orbitals while the (in-

plane) chemical bonds are sp2-type (Sect. 2.2.3). The linear dispersion around the K-point is similar
to that of relativistic particles without rest mass. The electrons in graphene are of course not really
massless, their velocity (6.35) being vF ≈ 106m/s, about 300 times smaller than the speed of light [1248,
1249].

In the simplest tight-binding approximation (cf.AppendixG), considering the coupling of the carbon
(out-of-plane) pz-orbitals with three nearest neighbors, the band structure is given as [1250, 1251] (cf.
(G.23)

E(k) = ±t

√
√
√
√1 + 4 cos

(

3
a kx
2

)
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(√
3 a ky
2

)

+ 4 cos2

(√
3 a ky
2

)

, (13.2)
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(a) (b)

Fig. 13.4 a Band structure of graphene from first principles (zero energy refers to the intrinsic Fermi level). The circle
focusses on the linear band crossing at the Fermi level. Adapted from [1247], reprinted with permission, ©2004WILEY-
VCH. b Three-dimensional representation E(kx , ky) of the π-bands of graphene (left) and of graphene-like material
with gap (right)

Fig. 13.5 Band structure of graphene, silicene and germanene as labeled. Adapted from [1255], reprinted with permis-
sion, ©2014 RSC

where t ≈ 2.8eV is the next-neighbor hopping energy (cf. Fig.G.1). More elaborate tight-binding
schemes have been reported [1252, 1365]. The second next-neighbor energy t ′ is about a factor of
10–100 smaller; a tight-binding fit to cyclotron resonance experiments finds t ′ = 0.1eV [1253].
The two-dimensional band structure is visualized in Fig. 13.4b. Such band structure has been directly
confirmed experimentally [1254] as shown in Fig. 13.6a–e. The distortion of the band structure with
increasing electron concentration (Fig. 13.6e–h) from the conical bands is due to strong electron-
electron, electron-phonon, and electron-plasmon coupling effects [1254].

The band structures of atomic sheets of C, Si and Ge are compared in Fig. 13.5. The bands cross for
all three materials at the K-point while the band gap at the zone center decreases with increases order
number. Any kind of asymmetry between the A- and B-sites, as might occur for example on certain
corrugated substrates, will introduce a band gap at the Dirac points (Fig. 13.4b).

The band structure of FLG has been theoretically analyzed in [1256, 1257]. For bilayers experi-
mental data on the band structure can be found in [1258]. Subtle differences exist for different stacking
orders of the graphene sheets (see below, Sect. 13.3). Bulk graphite shows a semi-metallic behavior
with a band overlap of about 41meV. For more than ten graphene layers the difference with the band
overlap in bulk graphite is less than 10%.
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Fig. 13.6 Experimental bandstructure of graphene (on (0001) 6H-SiC) as determined fromARPES. aEnergy distribution
of states as a function of momentum along principal directions in the Brillouin zone. The single-orbital tight-binding
model (13.2) with T = 2.82eV is shown as solid lines. The Fermi level is shifted by 0.435eV due to doping. b Constant
energy map of the states at binding energy corresponding to the Dirac energy ED; the boundary of the Brillouin Zone
boundary is superimposed as dashed line. The arrow at the K-point indicates the directions over which the data in (e–h)
were acquired. c, d Constant energy maps at the Fermi energy EF = ED + 0.45eV and ED − 1.5eV, respectively. e–h
Experimental energy bands along the line through the K-point parallel to Γ –M direction as indicated in (b). The dashed
lines are an extrapolation of the lower bands below the Dirac crossing energy, which are observed not to pass through the
upper bands (above ED), suggesting the kinked shape of the bands around ED. The sheet electron density is nS = 1.1,
1.5, 3.7, and 5.6 × 1013 cm−2 for (e)–(h), respectively, due to increased doping upon potassium adsorption. Adapted
from [1254], reprinted with permission, ©2006, Springer Nature

13.1.3 Electrical Properties

The Shubnikov-de Haas (SdH) oscillations from a graphene sheet exhibit a behavior [1249]

1

�B
= 4 e

h

1

nS
, (13.3)

which corresponds to (15.39) for a two-dimensional electron system and a spin- and valley-degeneracy1

of both two. The cyclotron mass has been determined from the temperature dependence of the SdH
oscillations to be proportional2 to

√
n (Fig. 13.7). The cyclotron mass is generally related [1259] to the

area S(E) = πk2 in k-space of the orbits at the Fermi energy via

mc = �
2

2π

∂S(E)

∂E
(13.4)

With the linear dispersion (13.1) we can write (13.4) as

mc = �
2

2π

2π E

�2 v2F
= E

v2F
. (13.5)

For the linear energy dispersion (13.1) the number of states up to energy EF is (with a degeneracy of 4)

1Each of the six valleys at the K-points is shared by three Brillouin zones; keep in mind that the K- and K’-points are
not equivalent.
2In a parabolic dispersion as in (15.38), the cyclotron mass is independent of n.
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Fig. 13.7 Cyclotron mass
in graphene as a function of
the sheet electron
concentration nS (negative
values relate to hole
concentration, EF < ED).
Adapted from [1249]

N (EF) = 4
π k2F

(2π/L)2
= A

4π E2
F

h2 v2F
, (13.6)

where A is the system area. Therefore we have (at low temperature) with (13.5)

nS = 4π

h2
E2
F

v2F
∝ m2

c , (13.7)

as determined experimentally. Therefore the behavior of the SdH oscillations confirms the linear
dispersion relation. The experimental value for the velocity is vF ≈ 106m/s. From (13.7) the density
of states (per area and energy) around the Dirac point increases linearly with energy,

D(E) = 8π

h2 v2F
E . (13.8)

The carrier density in a graphene sheet can be controlled via the field effect. The graphene is positioned
on an insulator/semiconductor structure, typically SiO2/Si (cf. Sect. 21.3). The carrier density is then
related to the applied (gate) voltage Vg via (21.93) and (21.95), i.e.

nS = εi Vg

e d
, (13.9)

where d is the thickness of the insulator and εi its dielectric constant. By applying positive (negative)
bias electron (holes) can be induced in the sheet. The electron and hole densities depend on the Fermi
energies3

nS = 8π

h2 v2F

∫ ∞

ED

E − ED

1 + exp [(E − EF)/kT ]
dE (13.10a)

pS = 8π

h2 v2F

∫ ED

−∞
−(E − ED)

1 + exp [−(E − EF)/kT ]
dE (13.10b)

as visualized in Fig. 13.8. These relations cannot be inverted to obtain EF(n, p) analytically. The total
charge carrier density is ρS = e(pS − nS).

The Hall effect (Fig. 13.9) shows the expected ambipolar dependence according to (15.16) which
takes the form

3Here we assume the linear dispersion for all thermally populated states.
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Fig. 13.8 Band structure
of graphene with various
positions of the Fermi
energy EF in relation to the
Dirac energy ED. States
occupied with electrons are
shown with in bold

Fig. 13.9 Hall coefficient
(T = 10K) for a graphene
sheet as a function of the
free carrier sheet density
ρS/e = pS − nS (positive
values indicate p-type).
Data shown as solid lines
from [1249]

RH = 1

e

pS − nS
(nS + pS)2

(13.11)

for equal electron and hole mobilities.4

From Hall effect measurements the mobility has been determined to be about 104 cm2/Vs, indepen-
dent of temperature between 10 and 100K, and the same for electrons and holes. This value, however, is
much smaller than the in-plane mobility of about 106 cm2/Vs at 4.2K in high quality samples of highly
ordered pyrolithic graphite (HOPG) [1260]. In suspended graphene a mobility of 2.3×105 cm2/Vs has
been found, limited by finite sample size [1261]. Thus in graphene layers on a solid surface extrinsic
effects such as charge traps, interfacial phonons, ripples or fabrication residue seem to limit the carrier
mobility.

The QHE has been observed in graphene [1249], reportedly up at room temperature [1262]. The
plateaus (4e2/h)(n + 1/2) correspond to unusual half-integer filling, the first plateau occurring at
2e2/h, as has been also suggested from theory, and related to the ‘pseudospin’. Another consequence
of the Dirac-like behavior of the fermions in graphene is the presence of finite maximum resistivity
ρmax = h/4e2 = 6.45k� even at low temperature and EF = ED. It is due to the fact that localization
effects, leading to insulating behavior, are strongly suppressed. Then each carrier keeps a mean free
path in the order of its Fermi wavelength.

The Klein paradox [1263, 1264], the efficient tunneling of Dirac particles through high and thick
barriers seems accessible in transport experiments with graphene [1265].

4Including sign,μh = −μe. For T = 0 and EF = ED, nS = pS = 0 and thus 1/RH should be zero. For finite temperatures
there is always nS > 0 and pS > 0, even for EF = ED. Thus 1/RH ∝ 1/(pS − nS) diverges at ρS = e(pS − nS) = 0
with a change of sign.
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(a) (b)

Fig. 13.10 a Scheme for interband absorption in the graphene band structure around one of the Dirac points. b Trans-
mission spectrum of graphene, measured using standard spectroscopy for a uniformmembrane that completely covered a
30µm aperture (blue circles) and measured using an optical microscope (red squares). The inset shows a 50µm aperture
partly covered with monolayer (ML) and bilayer (BL) graphene as labeled (white dashed lines highlight the borders).
Adapted from [1266]

13.1.4 Optical Properties

The transmission of graphene has been investigated in [1266] over apertures and in [1267] on SiO2

substrate. The band-band absorption process is schematically shown in Fig. 13.10a. A theoretical
analysis of this process yields an absorbance of π α ≈ 0.023, α = e2/(� c) being the fine structure
constant [1266, 1268]. Effects due to next-to-nearest neighbors are not present theoretically [1269].
This universal number is found in the experimental spectrum in the visible spectral range as shown in
Fig. 13.10b. In order to exhibit this value, half the photon energy may not be too large because the band
structure will deviate from the linear dependence due to the triangular warping and nonlinearities (cf.
Appendix G.3.2 and remember t ≈ 2.8eV). In the infrared regime, deviations are due to state blocking
due to finite temperature and non-zero Fermi level relative to the Dirac point and due to intraband
transitions [1267]. For FLG, the transmission decreases stepwise; the step sequence deviates from πα
due to inter-layer effects [1270].

13.2 Two-Dimensional Compound Semiconductors

Two-dimensional crystals have been reported also for compound semiconductor materials such as BN,
MoS2, NbSe2, Bi2Sr2CaCu2Ox [1238] or ZnO [1271] and in particular transitionmetal dichalcogenides
(TMDC) of the typeMX2, whereM represents a transitionmetal atom andX a chalcogen atom forming
the (W,Mo)(S,Se,Te)2 system [1272, 1273]. But many other materials also form atomically thin sheets
[1225, 1255, 1274]. The main difference to graphene is that they form a band gap. A few physical
properties are listed in Table 13.1.
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Fig. 13.11 Crystal
structure of two 2D
materials of a hexagonal
BN-type and bMX2-type
transition metal
dichalcogenides. The unit
cell is indicated. Left:
Bird’s eye view on the
plane and right: side view.
The greyed area denotes an
elementary cell. Adapted
from [1255], reprinted with
permission, ©2014 RSC

Table 13.1 Properties of various two-dimensional (monolayer) semiconductors, in-plane nearest neighbor distance
dA−B, vertical distance of anions dX−X for MX2-type TMDC, band gap Eg, exciton binding energy Eb

X (exfoliated on
silica) and spin-splitting �SOC in conduction and valence band

material C BN MoS2 MoSe2 WS2 WSe2

dA−B (nm) 0.142 0.144 0.184 0.192 0.184 0.192

dX−X (nm) 0.317 0.334 0.314 0.334

Eg (eV) 0 7.3 2.15 2.18 2.41 2.2

Eb
X (eV) 2.2 0.31 0.5 0.32 0.5

�SOC,CB
(meV)

0 -3 -21 29 36

�SOC,VB
(meV)

0 148 184 430 466

13.2.1 Structural Properties

Various two-dimensional configurations are known, the two most prominent that are typical for BN
(1H, hexagonal) and for TMDC (2H, trigonal prismatic, ABA-stacking) respectively, are shown in
Fig. 13.11. A plane-view TEM of the 2H structure of MoS2 is depicted in Fig. 13.12 [1275]. Other
configurations of the TMDC such as an ABC-like stacking (1T, distorted octahedral) are possible
[1276]. A variation are Janus TMDC of MXY type where the bottom and top layer consist of different
anions [1277]. Two-dimensional alloys can be formed by mixing cations [1279] or anions [1283] (or
both). As example, a STEM image of aMo0.47W0.53S2 monolayer is shown in Fig. 13.12b which shows
the distribution of W and Mo atoms.

Various defects have been investigated for compound 2D semiconductors. For the vacancies in BN
we refer to [1284]. Single sulphur vacancies inMoS2 are investigated in [1278]. Various antisite defects
in MoS2 have been identified [1280] (Fig. 13.13). Also extended defects such as dislocations [1275],
grain boundaries [1281] or rotational stacking faults [1282] have been observed.

The phonon spectra of graphene, BN- and BC2N-sheets are compared in Fig. 13.14. The spectrum
of BC2N is similar to the superposition of the C and BN spectra [1285]. The Raman peaks fromMoS2
show discrete peak energies for thickness of 1–5 or 6 monolayers and then merge closely to the bulk
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(a) (b)

Fig. 13.12 a STEM-ADF image of a MoS2 monolayer; a unit cell with Mo (S) atom shown in blue (orange) is overlaid
(cf. Fig. 13.1a). Reprinted (with adaptation) with permission from [1275]. ©2013 American Chemical Society. b STEM
image (Fourier filtered) of a Mo0.47W0.53S2 monolayer. The bright (dark) spots relate toW (Mo) atoms. Reprinted (with
adaptation) with permission from [1279], ©2013 ACS

Fig. 13.13 Various point defects (vacancies and antisites) in MoS2 monolayer as revealed by TEM (a)–(e) together with
atomic models (f)–(h). a S vacancy (VS), b S divacancy (VS2), c Mo on S site (MoS), d 2Mo on 2S sites (Mo2S2), e S
on Mo site (SMo). Adapted from [1280], reprinted under Creative Commons Attribute (CC BY 4.0) license

values [1286, 1287]. The dispersion of 2D MoS2 [1288] (Fig. 13.15) is quite similar to that of bulk
material [1287, 1289]. Of course, due to the mass difference between Mo and S, a clear gap exists
between acoustic and optical phonons (which is absent for graphene, cmp. Fig. 13.3a).

13.2.2 Band Structures

The band structure of a h-BN monolayer has been calculated to be indirect [1290]. In Fig. 13.16, the
band structure for a typical TMDC is depicted for a monolayer, a bilayer and bulk material. The latter
features an indirect band structure with the valence band maximum at the �-point and the conduction
band minimum about half the way to the K-point. Similar band structures are found for multi-layers
down to 2. However, for a single layer the band gap is direct at the K-points. The possible optical
transitions are indicated in Fig. 13.16 as arrows. For the single layer, the direct transition has a lower
energy than the indirect one; in a bilayer it is vice versa. Generally, the band gap increases with
decreasing number of layers; this can be understood by thinking about the slab being a quantum well
surrounded by a vacuum ’barrier’.
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Fig. 13.14 a Crystal structure of BC2N with unit cell indicated. b Brillouin zone of BC2N (rectangle) and C, BN
(hexagon, cmp. Fig. 13.1b). c Phonon dispersion of graphene (C) and BN- and BC2N-sheets. Adapted from [1285]

Fig. 13.15 Phonon dispersion of MoS2 monolayer. ZA: out-of plane acoustic mode, NP: non-polar optical modes, HP:
homopolar modes. On the right, the phonon density of states (DOS) is shown for Mo2 (red solid line) and for WS2 (blue
dashed line) in comparison. Dispersion adapted from [1288], DOS adapted from [1287]

Fig. 13.16 Band structure of monolayer, bilayer and bulk WSe2. The blue (green) arrows indicate the direct (indirect)
band-band transitions. Based on [1272]
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(a) (b)

Fig. 13.17 a Schematic three-dimensional view of (unsplit) conduction band minima (grey) and spin-split valence band
maxima with opposite (red: up, blue: down) spin orientation. b Relativistic band structure of 2H-WSe2 (red dots show
band structure without inclusion of spin-orbit splitting) with spin-splittings of conduction and valence band indicated.
Adapted from [1296], reprinted with permission, ©2011 APS

Fig. 13.18 ARPES
measurement of the band
structure of monolayer
WSe2. The horizontal
dashed white lines indicate
the spin-orbit splitting
�SOC = 513(10)meV of
the top of the valence band.
Adapted from [1297],
reprinted with permission,
©2015 IOP Publishing

The lack of inversion symmetry results in a splitting of the electronic bands due to spin-orbit
interaction. This effect is particularly strong in the valence band. Splitting energies �SOC from fully
relativistic calculations have been predicted for various 2H-MX2 systems [1292, 1293, 1296], ranging
between about 150meV (MoS2) and 500meV (WTe2). For WSe2, an experimental value of about
500meVhas been found [1297] (Fig. 13.18). For the samematerials, the spin-splitting in the conduction
band5 is an order ofmagnitude smaller in the range of 3–50meV [1292, 1293]. Because of time reversal
symmetry, the spin-splitting (cf. Sect. 6.2.4) of the bands at K and K’ has opposite sign as visualized
in Fig. 13.17a; this property is termed ’spin-valley coupling’.

5The splitting is negative (positive) for MoX2 (WX2) compounds, i.e. the lowest conduction band at the K-point is spin
up (down) [1292, 1294]; the valence band maximum at K is spin up for all cases.
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Fig. 13.19 Absorption spectrum of WSe2 monolayer (derived from reflectance spectrum). XA,B (XA,B∗ ) denote the
ground state (excited states) of the A- and B-exciton, respectively. XA,T at the low energy side denotes a trion. XC
denotes a further transition discussed further in [1299]. Based on data from [1298]

(a) (b)

Fig. 13.20 a Top: Optical image of MoS2 crystal on a silicon substrate with 1.0 and 1.5µm diameter holes. Bottom:
Photoluminescence intensity image of the same sample. The freely suspended parts of the single layer exhibit the
highest intensity. b Photoluminescence spectra (excited at 532nm) detected from regions with monolayers and bilayers,
respectively. The arrows denote the positions of the (indirect) transitions for 2–6 layers. Adapted from [1291]

13.2.3 Optical Properties and Valley Polarization

The absorption spectrum of a WSe2 monolayer is shown in Fig. 13.19 as reported in [1298]; various
excitonic transitions are labeled that are discussed further below. The A- and B-excitons are formed
from the upper and lower state of the spin-split valence band, respectively.

The direct-to-indirect transition of the band structure for monolayer and multiplayer TMDC can
be directly observed from the photoluminescence. For MoS2, the single layer exhibits a 2–3 orders of
magnitude higher luminescence intensity (Fig. 13.20a) than any multilayer sample since no phonons
are needed for the optical band-band transition. The direct transition is at about 1.9eV; the indirect
band gap decreases monotonously and discretely from about 1.6eV for a bilayer, via that of 3, 4, 5 or
6 layers (Fig. 13.20b) to that of bulk material (Eg ≈ 1.3eV) [1291].

The K- and K’-point pseudo-spin together with the spin-orbit interaction leads to spin-polarized
bands as shown schematically in Fig. 13.22a. If excited with polarized light, optical absorption occurs
between bands of the same spin orientation. In the absence of any inter-valley scattering, optical
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(a) (b)

Fig. 13.21 a Photoluminescence spectra (at room temperature) of MoS2, WS2, MoSe2, WSe2, and MoTe2 monolayers
as labeled. From [1300], with permission. b Transition energies of A and B excitons inWxMo1−xS2 alloy monolayers as
a function of composition (spectra were excited at 514.5nm for x =0-0.61 and at 457.9nm for x =0.66-1). The dashed
lines are fits with bowing parameters bA = 0.25(4)eV and bB = 0.19(6)eV. Based on data from [1279]

(a) (b)

Fig. 13.22 a Schematic band structure of MoS2 monolayer around the K- and K’-point with spin-splitting (band order
according to [1294]). Circularly polarized absorption and recombination processes are shown. b Circularly polarized
detected photoluminescence (T = 83K) from MoS2 monolayer (red: σ+, blue: σ−) after excitation with σ+-polarized
light at 1.96eV (at the right end of the energy scale). The degree of circular polarization, (σ+ − σ−)/(σ+ + σ−) is
depicted as black curve with the left-hand scale. Adapted from data in [1302]

transitions are expected with a high degree of circular polarization [1301], leading to large dichroism
effects (without magnetic ions). However, a maximum degree of circular polarization of about 50%
was found in [1302] for MoS2 excited with circularly polarized light (Fig. 13.22b). The inter-valley
dynamics reducing the polarization effects depends on the time scales of scattering and recombination
which both can be in the range of several ps [1303]. The two oppositely polarized peaks in Fig. 13.22b
have the same peak energy as expected from time-reversal symmetry; a magnetic field perpendicular
to the layer will lift this degeneracy and introduce a K-K’ splitting (valley Zeeman effect) [1304, 1305]
(Fig. 13.21).

13.2.4 Excitons

The properties of excitons are particular in 2D materials. The purely two-dimensional hydrogen prob-
lem [1306, 1307] leads to a series of bound states E = −R/(n− 1/2)2, where R denotes the Rydberg
energy and n = 1, 2, . . . as usual. However, for the excitons in 2D material, the case of a stepwise
changing dielectric constant ε, leading to image charge effects, as known from quantum well het-
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(a) (b)

Fig. 13.23 a Differential reflection contrast spectrum of WS2 monolayer (inset: reflection contrast). XA denotes the
A-exciton, XA,T at the low energy side the trion. Based on data from [1311]. b Experimental transition energies (circles)
for WS2 from magneto-optical data [1313] (cf. Fig. 15.13) with fits using the modified hydrogen model ∝ 1/(n + δ)2

(solid line) and a 2D hydrogen model with constant dielectric function fitted to the n = 3, 4, 5 levels (both theories
displayed for continuous n). The (very similar) band gap Eg = 2.239eV for the two models is shown as lines on the left

erostructures [1188] (cmp. Sect. 12.3.2), must be considered. The thin slab is surrounded by vacuum
which gives a huge contrast in ε. Even when packed, as often done in experiments, between other
layers such as h-BN (ε ≈ 4.5) or on a substrate, the contrast in dielectric constant is very large.6

This problem has been treated theoretically first in [1308, 1309] and recently rigorously in
[1310]. The exciton binding energy is typically increased by this effect to several 100meV. Also,
the strongly anisotropic dielectric surrounding affects different quantum states differently, leading to
non-hydrogenic terms in the exciton spectrum [1311] (Fig. 13.23). Schematics of the field lines for
the 1s- and 2s-states are depicted in Fig. 13.24c, motivating that the anisotropic dielectric environment
acts differently on these states. The higher the quantum number n is, the lower is the average dielectric
constant ’seen’ by the 2D-exciton. In the example of excitons in WS2, the effective dielectric con-
stant changes from about 5 for the 1s state to 2.5 for the 2s state to values close to 1 for the higher
states [1311].

In [1312] it has been discussed that the exciton level can be well described by the formula En =
Eg − R∗/(n − δ)2, with δ being a fitting parameter. Such parameter δ is known as ’quantum defect’ in
the description of alkali spectra [1314]. For WSe2 (embedded between h-BN layers), Eg = 1.873eV,
R∗ = 140.5meVand δ = 0.083has been found [1312].Thedata from [1313] forWS2 (also sandwiched
between slabs of exfoliated hexagonal h-BN) can be fitted with Eg = 2.239eV, R∗ = 140.4meV and
δ = 0.118 (Fig. 13.23b).

The calculated plane-view of the electron wave function of the exciton ground state (A-exciton) in
a MoS2 monolayer is depicted in Fig. 13.24a; the contributions to the exciton wave packet stem, from
around the K-points as shown in Fig. 13.24b [1299]. Magneto-optical spectroscopy of 2D excitons and
the Zeeman splittings and diamagnetic shifts up to the 5s state in WS2 and Mo(S,Se,Te)2 monolayers
are reported in [1313] and (on Si/SiO2 substrate) [1315]; the g-factor (cf. Sect. 15.2) of the exciton
is very close to 4μB (cf. Fig. 15.13d), a fact that is under theoretical consideration [1316]. Charged
excitons have been discussed in [1317, 1318]. The influence of various surroundingmedia to theTMDC
on the dielectric screening has been investigated theoretically [1319] and experimentally [1320].

6In QW heterostructures, the differences in ε are typically around 1 or smaller [1188].
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Fig. 13.24 Plane-view of
the electron wave function
of the exciton ground state
in MoS2 monolayer in a
real space and b k-space.
Adapted from [1299],
reprinted with permission,
©2013 APS. c Schematic
1s and 2s exciton wave
functions with different
sensing of the low-ε
environment

(c)

13.3 Van-der-Waals Heterostructures

Let’s recall that graphite is a stacked arrangement of graphene layers. It is called the ’Bernal’-phase or
-stacking and relates to the AB- or 2H-stacking like in a hcp crystal (Fig. 13.25a). Other meta-stable
arrangements are the AA’-stackings (twisted bilayer graphene), in which the crystallographic axes of
the two layers have an arbitrary angle ϑ between zero and 30◦ as depicted in Fig. 13.25b); the stacking
vor ϑ = 0 is also termed AA. Electronic properties depend on the twist angle [1321]. A refined
theory considering the super-periodicities (moiré pattern) of interlayer hopping potential has been
reported in [1322, 1323]. The different stackings can be distinguished, e.g., in infrared spectroscopic
imaging [1324].

As an extension of this concept, van-der-Waals heterostructures been conceived [1326, 1327] which
consist of vertically stacked atomic sheets of various 2D materials, a kind of molecular LEGO™

(Fig. 13.26a). Virtually any combination is possible for various electronic, sprintronic and photonic
applications [1329, 1330]. An advantage is the well controlled tunneling effect by the present exact
layer thicknesses in the device.

Fig. 13.25 Vertical stacking phases of graphene in a AB-type, Bernal-stacking and b AA’-type, non-Bernal stacking.
The rotation angle ϑ is indicated. Adapted from [1325]
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(a) (b)

Fig. 13.26 a Example of van-der-Waals heterostructure from various 2D materials as proposed in [1326]. Reprinted
with permission, ©2013, Springer Nature. b Van-der-Waals heterostructure with twisted layers. Adapted from [1328],
reprinted with permission, ©2018, Springer Nature

Fig. 13.27 Resistance of
BN-graphene-BN
van-der-Waals
heterostructure (insets
show optical image and
cross section TEM as well
as the device and its
schematic measurement
scheme). Adapted
from [1331]

Thefield effect for a graphene layer betweenBNflakes is shown inFig. 13.27.Themeasuredmobility
(at room temperature) is in the range of 105 cm2/Vs for a 2D carrier density below 1 × 1012 cm−2 and
thus larger than values achieved for InSb or InAs [1331]. Van-der-Waals heterostructures of boron
nitride and graphene are reviewed in [1332].

The effect of surroundingmedia via themodifieddielectric screeningon excitons has beenmentioned
already above [1319, 1320]. Encapsulation by h-BN monolayers can enhance the luminescence yield
and reduce the recombination time constant of a TMDC monolayer, as demonstrated in [1334] for a
three monolayer h-BN/WS2/h-BN heterostructure.

Generally, in van-der-Waals heterostructures, the weak interlayer bonding allows a new degree
of freedom, the twist angle ϑ (cf. Fig. 13.25b for twist of two graphene layers) between two 2D
crystals (Fig. 13.26b). The situation is similar to the twist boundary between two grains (Sect. 4.4.3).
This rotation causes the formation of moiré patterns that are directly observable in STM images as
depicted in Fig. 13.28. The physical properties of the heterostructure can drastically depend on the
twist angle [1335]. A prominent consequence is the periodic modification of the energy landscape for
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Fig. 13.28 STM images of ReSe2 monolayers on graphene. The twist angle ϑ (cmp. Fig. 13.26b), as deducted from
comparison with theoretical calculations, is indicated. The red arrows indicate the moiré pattern’s periodicity. Adapted
from [1333], reprinted unter Creative Commons Attribute (CC BY-NC 4.0) license

excitons leading to localization and modification of spectra [1336]. A particularly intriguing effect is
the occurrence of superconductivity with a critical temperature of up to 1.7K for a graphene bilayer
with the ’magic’ twist angle of ϑ ≈ 1.1◦ and specific (gate-controlled) carrier densities in the range of
(1–2)×1012 cm−2 [1337].



Chapter 14
Nanostructures

The principles of physics, as far as I can see, do not speak against the possibility of
maneuvering things atom by atom.

R.P. Feynman, 1959 [1338]

Abstract One-dimensional nanostructures (quantum wires) and zero-dimensional ones (quantum
dots) are discussed with regard to their various fabrication methods and the tunable physical prop-
erties in such systems. Main effects covered are the modified density of states, confined energy levels,
(envelope) wave-function symmetry and the resulting novel electrical and optical properties.

14.1 Introduction

When the structural size of functional elements enters the size rangeof the deBrogliematterwavelength,
the electronic and optical properties are dominated by quantum-mechanical effects. The most drastic
impact can be seen from the density of states (Fig. 14.1). The quantization in a potential is ruled by the
Schrödinger equation with appropriate boundary conditions. These are simplest if an infinite potential
is assumed. For finite potentials, the wavefunction leaks out into the barrier. Besides making the
calculation more complicated (and more realistic), this allows electronic coupling of nanostructures.
Via the Coulomb interaction, a coupling is even given if there is no wavefunction overlap. In the
following, we will discuss some of the fabrication techniques and properties of quantum wires (QWR)
andquantumdots (QD). In particular for the latter, several textbooks can also be consulted [1339, 1340].

14.2 QuantumWires

14.2.1 V-Groove Quantum Wires

Quantum wires with high optical quality, i.e. high recombination efficiency and well-defined spectra,
can be obtained by employing epitaxial growth on corrugated substrates. The technique is shown
schematically in Fig. 14.2. A V-groove is etched, using, e.g., an anisotropic wet chemical etch, into a
GaAs substrate. The groove direction is along

[
11̄0

]
. Even when the etched pattern is not very sharp

on the bottom, subsequent growth of AlGaAs sharpens the apex to a self-limited radius ρl of the order
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Fig. 14.1 Schematic geometry and density of states for 3D, 2D, 1D and 0D electronic systems

Fig. 14.2 Schematic cross
section of a GaAs/AlGaAs
heterostructure grown on a
channeled substrate,
illustrating the concept of
self-ordered quantum-wire
fabrication. Adapted from
[1341], reprinted with
permission, ©1992,
Elsevier Ltd

of 10nm. The side facets of the groove are {111}A. Subsequent deposition of GaAs leads to a larger
upper radius ρu > ρl of the heterostructure. The GaAs QWR formed in the bottom of the groove is
thus crescent-shaped as shown in Fig. 14.3a. A thin GaAs layer also forms on the side facets (sidewall
quantum well) and on the top of the ridges. Subsequent growth of AlGaAs leads to a resharpening
of the V-groove to the initial, self-limited value ρl. The complete resharpening after a sufficiently
thick AlGaAs layer allows vertical stacking of crescent-shaped QWRs of virtually identical size and
shape, as shown in Fig. 14.3b. In this sense, the self-limiting reduction of the radius of curvature and its
recovery during barrier-layer growth leads to self-ordering of QWR arrays whose structural parameters
are determined solely by growth parameters. The lateral pitch of such wires can be down to 240nm.

To directly visualize the lateral modulation of the band gap, a lateral cathodoluminescence (CL)
linescan perpendicular across the wire is displayed in Fig. 14.4. In Fig. 14.4a, the secondary electron
(SE) image of the sample from Fig. 14.3a is shown in plan view. The top ridge is visible in the upper
and lower parts of the figure, while in the middle the sidewalls with the QWR in the center are apparent.
In Fig. 14.4b, the CL spectrum along a linescan perpendicular to the wire (as indicated by the white
line in Fig. 14.4a) is displayed. The x-axis is now the emission wavelength, while the y-axis is the
lateral position along the linescan. The CL intensity is given on a logarithmic scale to display the full
dynamic range. The top QW shows almost no variation in band gap energy (λ = 725nm); only directly
at the edge close to the sidewall does a second peak at lower energy (λ = 745nm) appear, indicating
a thicker region there. The sidewall QW exhibits a recombination wavelength of 700nm at the edge
to the top QW, which gradually increases to about 730nm at the center of the V-groove. This directly



14.2 Quantum Wires 403

(a) (b)

Fig. 14.3 aTransmission electronmicroscopy cross-sectional image of a crescent-shaped singleGaAs/AlGaAs quantum
wire. From [1342], reprinted with permission, ©1994 IOP. (b) TEM cross-sectional image of a vertical stack of identical
GaAs/AlGaAs crescent-shaped QWRs. From [1341], reprinted with permission, ©1992, Elsevier Ltd

Fig. 14.4 a Plan-view SE image of single QWR, showing top and sidewall with QWR in the center. The white dashed
line indicates the position of the linescan on which the CL spectra linescan b has been taken at T = 5K. The CL intensity
is given on a logarithmic false color scale to display the full dynamic range as a function of wavelength and position.
Adapted from [1342], reprinted with permission, ©1994 IOP

visualizes a linear tapering of the sidewall QW from about 2.1nm thickness at the edge to 3nm in the
center. The QWR luminescence itself appears at about 800nm.

After fast capture from the barrier into the QWs and, to a much smaller extent corresponding to
its smaller volume, into the QWR, excess carriers will diffuse into the QWR via the adjacent sidewall
QW and the vertical QW. The tapering of the sidewall QW induces an additional drift current.

14.2.2 Cleaved-Edge Overgrowth Quantum Wires

Another method to create quantum wires of high structural perfection is cleaved-edge overgrowth
(CEO) [1343], shown schematically in Fig. 14.5. First, a layered structure is grown (single or multiple
quantum wells or superlattice). Then, a {110} facet is fabricated by cleaving (in vacuum) and epitaxy
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[001]

cleavage
plane

QW

QW

50nm

Fig. 14.5 Principle of CEO quantum wires and 2-fold CEO quantum dots. Part (a) depicts a layered structure (quantum
wells or superlattice, blue), (b) describes the growth on the cleaved facet used for fabrication of quantum wires. In (c) a
second cleave and growth on top of the plane allows the fabrication of quantum dots. From [1344]. (d) Cross-sectional
TEM image of CEOGaAs/AlGaAs quantumwires. Two quantumwells (QW) and the QWR at their junction are labeled.
The first epitaxy was from left to right. The second epitaxy step was on top of the cleavage plane (dashed line) in the
upward direction. Adapted from [1345], reprinted with permission, ©1997 APS

is continued on the cleaved facet. At the junctures of the {110} layer and the original quantum wells
QWRs form. Due to their cross-sectional form they are also called T-shaped QWRs. A second cleave
and another growth step allow fabrication of CEO quantum dots [1344, 1345] (Fig. 14.5c).

14.2.3 Nanowhiskers

Whiskers are primarily known as thin metal spikes and have been investigated in detail [1346]. Semi-
conductor whiskers can be considered as (fairly short) quantum wires. They have been reported for
a number of materials, such as Si, GaAs, InP and ZnO [1347]. A field of ZnO whiskers is shown in
Fig. 14.6. If heterostructures are incorporated along the whisker axis [1348], quantum dots or tunneling
barriers can be created (Fig. 14.7a). The growth mode relies often a VLS (vapor-liquid-solid) mecha-
nism in which the wire materials are first incorporated into a liquid catalyzer (most often gold) drop
at the tip and then used to build up the nanocrystal. In [1349], the layer-by-layer growth of a GaAs
nanowire via this mechanism has been observed in-situ by TEM (Fig. 14.7b) and is also available as
an impressive video. Another nanowire growth mechanism is the VSS (vapor-solid-solid) mechanism
that works without liquid drop on top of the wire.
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(a) (b)

Fig. 14.6 a Array of ZnO nanowhiskers on sapphire, fabricated using thermal evaporation. Adapted from [1353]. b
Single, free-standing ZnO nanowire fabricated using PLD. Adapted from [1354]

(a)

Au

InAs

InAs

InAs

InP

InP

(b)

Fig. 14.7 a TEM image of a part of an InAs whisker 40nm in diameter that contains InP barriers. The zooms show
sharp interfaces. On top of the whisker is a gold droplet from the so-called vapor–liquid–solid growth mechanism. The
whisker axis is [001], the viewing direction is [110]. Adapted from [1348], reprinted with permission, ©2002 AIP. b
Subsequent growth stages of the tip of a GaAs nanowire with Au cap; times at which (in-situ) TEM image has been taken
are labelled. The arrows indicate the position of the growth front. Adapted from [1349], reprinted with permission,
©2018 APS

Such nanocrystals can also act as a nanolaser [1350, 1351]. In ZnO nanowhiskers the conversion
of mechanical energy into electrical energy has been demonstrated [1352] based on the piezoelectric
effect (Sect. 16.4).

The critical thickness hc in nanowire heterostructure is strongly modified from the 2D situation
(Sect. 5.4.1). Based on the strain distribution of a misfitted slab in a cylindrical wire [1355] the depen-
dence of critical thickness on the nanowhisker radius r was developed [1356, 1357]. For given misfit
ε there is a critical radius rc for which hc is infinite for r < rc (Fig. 14.8).
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Fig. 14.8 Critical radius rc
above which an infinitely
thick layer with misfit ε
grows coherently on a
cylindrical nanowire
(relaxation by 60◦
dislocations, b = 0.4nm,
ν = 1/3). Adapted
from [1357]

Fig. 14.9 a SEM image of
an ensemble of ZnO
nanobelts. b HRTEM
image of a single ZnO
nanobelt, viewing direction
is [00.1]. The inset shows
the diffraction pattern.
Adapted from [1358],
reprinted with permission,
©2004 AIP

Fig. 14.10 a Bright field
and b dark field TEM
image of a ZnO nanoring
formed by the ‘slinky’-like
growth of a nanobelt. c
SEM image of an open
ZnO nanospiral. The insets
in (a, c) show
schematically the surface
charge distribution.
Adapted from [1359],
©2006 IOP

14.2.4 Nanobelts

A number of belt-shaped nanostructures has been reported [1347]. These are wire-like, i.e. very long in
one dimension. The cross-section is rectangular with a high aspect ratio. In Fig. 14.9a ZnO nanobelts
are shown. The wire direction is [21̄.0]. The large surface is (00.1), the thickness of the belt extends
in [01.0]-direction. High resolution transmission microscopy (Fig. 14.9b) shows that these structures
are defect-free. The pyroelectric charges on the ZnO (0001) surfaces (Sect. 16.2) lead to the formation
of open (Fig. 14.10c) spirals. Closed spirals (Fig. 14.10a) occur if the short dimension is along [00.1]
and alternating charges become compensated in a ‘slinky’-like ring (Fig. 14.10b).
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Fig. 14.11 Electron
wavefunctions (|�|2 on
logarithmic grey scale) for
the first three confined
levels for the QWR of
Fig. 14.3a. From [1342]

n=1

n=2

n=3

Fig. 14.12 a
Three-dimensional view of
the electron and (heavy)
hole part of the excitonic
wavefunction in a 4nm ×
5nm T-shaped
In0.2Ga0.8As/GaAs QWR.
The orbitals correspond to
70% probability inside. b
Cross section through the
electron and hole orbitals
in their center along the
wire direction. Reprinted
with permission from
[1361], ©1998 APS

hhe
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(b)
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14.2.5 Quantization in Two-Dimensional Potential Wells

The motion of carriers along the quantum wire is free. In the cross-sectional plane the wavefunction is
confined in two dimensions. The simplest case is for constant cross section along the wire. However,
generally the cross section along the wire may change and therefore induce a potential variation along
the wire. Such potential variation will impact the carrier motion along the longitudinal direction. Also,
a twist of the wire along its axis is possible.

In Fig. 14.11, the electron wavefunctions in a V-groove GaAs/AlGaAs QWR are shown. Further
properties of V-groove QWRs have been reviewed in [1360]. In Fig. 14.12, the excitonic electron and
hole wavefunctions are shown for a (strained) T-shaped QWR.

In Fig. 14.13a the atomic structure of a very thin ZnO nanowhisker with a cross-section consisting
of seven hexagonal unit cells is shown. The theoretical one-dimensional band structure [1362] is shown
in Fig. 14.13b together with the charge density of the lowest conduction band state (LUMO) and the
highest valence band state (HOMO). The band gap is generally too small because of the LDA method
used.1 In [1362] also the properties of nanowires with various diameters are compared. The HOMO
at � lies only 80meV above the top of valence band of bulk ZnO, and its position changes little with

1The LDA in [1362] yields Eg = 0.63eV for the bulk ZnO band gap; its experimental value is 3.4eV.
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Fig. 14.13 a Atomic
arrangement of a 1nm
wide ZnO nanowire. b
Theoretical band structure
and charge density of the c
lowest conduction band
and d highest valence band
state. Adapted from
[1362], reprinted with
permission, ©2006 AIP

the wire diameter. It is mainly composed by surface oxygen 2p like dangling bonds (Fig. 14.13d).
The LUMO (Fig. 14.13c) is delocalized in the whole nanowire, indicating that it is a bulk state. The
delocalized distribution is also responsible for the large dispersion of the LUMO from � to A. The
energy of the LUMO increases substantially with decreasing diameter due to the radial confinement.

14.3 Carbon Nanotubes

14.3.1 Structure

A carbon nanotube (CNT) is a part of a graphene sheet (cf. Sect. 13.1) rolled up to form a cylinder.
CNTs were first described as multi-walled nanotubes by Iijima [1363] in 1991 (Fig. 14.14b) and in
their single-walled form (Fig. 14.14a) in 1993 [1364]. Reviews can be found in [1247, 1365].

The chirality and diameter of a nanotube are uniquely described by the chiral vector

Fig. 14.14 a TEM image of single-walled carbon nanotubes (SWNT). b TEM images of various multi-walled carbon
nanotubes (MWNT). Adapted from [1363], reprinted with permission, ©1991, SpringerNature
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Fig. 14.15 Schematic
atomic arrangement in
graphene; the C–C bond
length is dC−C = 0.142nm.
Several vectors for making
carbon nanotubes (cf.
Sect. 14.3) are shown

Fig. 14.16 Structure of
different types of carbon
nanotubes that have
similiar diameter of 0.8nm.
a Armchair (6, 6), b zigzag
(8, 0) and c chiral
symmetry. Adapted
from [1247]

ch = n1 a1 + n2 a2 ≡ (n1, n2) , (14.1)

wherea1 anda2 are the unit vectors of the graphene sheet. The chiral vector denotes two crystallographic
equivalent sites which are brought together along the circumference of the nanotube. The possible
vectors are visualized in Fig. 14.15 for −30◦ ≤ θ ≤ 0◦. The fiber diameter is given by

d = |ch|
π

= a

π

(
n21 + n1 n2 + n22

)
, (14.2)

with the graphene lattice constant a = √
3 dC−C = 0.246nm. Ab-initio calculations show that the

diameter becomes a function of the chiral angle below 0.8nm; deviations from (14.2) are below 2%
for tube diameters d > 0.5nm [1366]. The (n, 0) tubes (θ = 0) are termed ‘zig-zag’ and an example
is depicted in Fig. 14.16b. Nanotubes with θ = ±π/6, i.e. of the (n, n) (and (2n,−n)) type, are called
‘armchair’. All others are termed ‘chiral’.

The extension along the wire axis is large compared to the diameter. The tip of a nanotube is part of
a buckminster-fullerene type molecule (Fig. 14.17). When the nanotube if formed by rolling a single
sheet of graphene (SLG), a single-walled nanotube (SWNT) is formed. A FLG sheet creates a multi-
walled nanotube (MWNT). For small number of layers they are called double-walled, triple-walled
and so forth.
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Fig. 14.17 A chiral nanotube (chiral vector is (10, 5), θ = −19.11◦) with hemispherical caps at both ends based on an
icosahedral C140 fullerene. The tube diameter is 1.036nm. Adapted from [1367]

The mechanical strength of carbon nanotubes is very large. For SWNT Young’s moduli of 103 GPa
have been found experimentally [1368] in agreement with theoretical predictions [1369].

14.3.2 Band Structure

In carbon nanotubes there is some mixing of the π (2pz) and σ (2s and 2pz) carbon orbitals due to the
radial curvature. This mixing is, however, small and can be neglected near the Fermi level [1370]. The
band structure of a nanotube is mainly determined by zone-folding of the graphene band structure.
The vector along the (infinitely extended) wire kz is continuous. The vector k⊥ around the nanotube is
discrete with the periodic boundary condition

ch · g⊥ = 2π m , (14.3)

where m is an integer. The distance of allowed k⊥-values is (5.5)

�k⊥ = 2π

π d
= 2

d
. (14.4)

The character of the nanotube band structure depends on how the allowed k-values lie relative to the
graphene Brillouin zone and its band structure. This is visualized in Fig. 14.18. For the case of an
armchair tube (n, n), as shown in Fig. 14.18a, the K-point of the graphene band structure always lies
on an allowed k-point. Therefore, the nanotube is metallic, i.e. zero-gap, as seen in the bandstructure
in Fig. 14.18b. The Dirac point is between � and X. For a zig-zag nanotube, the k-space is shown in
Fig. 14.18c for a (6, 0) nanotube. The corresponding band structure for a (6, 0) nanotube is also metallic
(Fig. 14.18d) with the Dirac point at the � point.

In Fig. 14.19c the band structure of another metallic (12, 0) zig-zag nanotube is shown. However,
only for (3m, 0) the K-point is on an allowed state and thus the tube metallic. For the other cases, as
shown for the k-space of a (8, 0) nanotube in Fig. 14.19b, this is not the case. The corresponding band
structure (Fig. 14.19c for (13, 0)) has a gap and thus the nanotube is a semiconductor. Generally, the
condition for a nanotube to be metallic is with an integer m

n1 − n2 = 3m . (14.5)

There are two semiconducting ‘branches’ with ν = (n1 − n2)mod 3 = ±1. The tubes with ν = +1
have a small band gap, those with ν = −1 have a larger band gap.

The density of states is a series of one-dimensional DOS, proportional to
√
E (6.79). It is compared

in Fig. 14.20 for a metallic and a semiconducting nanotube. Within 1eV from the Fermi energy the
DOS can be expressed in an universal term [1373].
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Fig. 14.18 a Brillouin
zone of the graphene lattice
(bold line) and allowed
k-values for a (6, 6)
armchair nanotube. b Band
structure of a (6, 6) carbon
nanotube. Adapted from
[1371]. c Brillouin zone of
the graphene lattice (bold
line) and allowed k-values
for a (6, 0) zig-zag carbon
nanotube. In the lower part
the real space structure is
visualized. (d) Band
structure of graphene (left)
and a (6, 6) nanotube
(right). Adapted
from [1372]

Fig. 14.19 a, b Brillouin
zone of the graphene lattice
(bold line) and allowed
k-values for a (a) (6, 0) and
a (b) (8, 0) zig-zag
nanotube. c Band structures
of a (12,0) metallic and
(13, 0) semiconducting
armchair carbon nanotube.
Adapted from [1371]

14.3.3 Optical Properties

Optical transitions occur with high probability between the van-Hove singularities of the DOS. The
theoretical absorption spectrum of a (10, 0) nanotube is shown in Fig. 14.21.

In an ensemble of nanotubes various types and sizes occur. The transition energies of all possible
nanotubes sorted by diameter are assembled in the Kataura plot (Fig. 14.22a). Experimental data are
shwon in Fig. 14.22b. The two branches of semiconducting nanotubes ν = ±1 yield different transition
energies. The overall dependence of the transition energy follows a 1/d-law.
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Fig. 14.20 Density of
states for a (9, 0) metallic
and (10, 0) semiconducting
zig-zag carbon nanotube
within the tight-binding
approximation (13.2). The
energy scale is given in
units of the tight-binding
parameter T ≈ 3eV. The
dashed lines are the DOS
of graphene. Adapted
from [1367]

Fig. 14.21 Calculated
absorption spectra for a
(semiconducting) (10, 0)
carbon nanotube for
parallel (solid line) and
perpendicular (dotted line)
polarization. The thick
(thin) lines are calculated
with (without) the matrix
element included. Adapted
from [1374]

14.3.4 Other Anorganic Nanotubes

Structures similar to carbon nanotubes have been reported for BN [1378, 1379]. A boron nitride
nanotube is a cylindrically rolled part of a BN sheet. BN tubes are always semiconducting (Fig. 14.23)
and have a band gap beyond 5eV similar to hexagonal BN which is mostly independent on chirality
and diameter [1380]. Thus, while carbon nanotubes appear black since they absorb within 0–4eV,
BN is transparent (or white if scattering). For high energies larger than 10eV C and BN tubes are
quite similar since they are isoelectronic and the high-lying unoccupied states are less sensitive to the
difference in the nuclear charges than the states at and below the Fermi energy [1381].
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Fig. 14.22 a Theoretical transition energies of semiconducting (filled symbols) and metallic (open symbols) carbon
nanotubes as a function of tube diameter (Kataura plot). Energies are calculated from van-Hove singularities in the JDOS
within the third-order tight-binding approximation [1252]. b Experimental Kataura plot for the first two semiconducting
(S, closed symbols) and the first metallic (M, open symbols) transition.Dashed lines connect the (near-to) armchair tubes;
full lines connect tubes in a branch, ν = (n1 − n2)mod 3. Data from photoluminescence [1375] and resonant Raman
scattering [1376]. Adapted from [1377]

Fig. 14.23 Band structure and density of states (DOS) of C(3,3) and BN(3,3) nanotubes, calculated with DFT-LDA.
Adapted from [1381]

14.4 Quantum Dots

14.4.1 Quantization in Three-Dimensional Potential Wells

The solutions for the d-dimensional (d = 1, 2, or 3) harmonic oscillator, i.e. the eigenenergies for the
Hamiltonian

Ĥ = p2

2m
+

d∑

i=1

1

2
m ω2

0 x
2
i (14.6)

are given by

En =
(
n + d

2

)
�ω0 , (14.7)

with n = 0, 1, 2, . . .. More detailed treatments can be found in quantum-mechanics textbooks.
Next, we discuss the problem of a particle in a centrosymmetric finite potential well with different

masses m1 in the dot and m2 in the barrier. The Hamiltonian and the potential are given by
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Ĥ = ∇ �
2

2m
∇ + V (r) (14.8)

V (r) =
{−V0 , r ≤ R0

0 , r > R0
. (14.9)

The wavefunction can be separated into radial and angular components �(r) = Rnlm(r) Ylm(θ, φ),
where Ylm are the spherical harmonic functions. For the ground state (n = 1) the angular momentum
l is zero and the solution for the wavefunction (being regular at r = 0) is given by

R(r) =
{

sin(k r)
k r , r ≤ R0

sin(k R0)

k R0
exp (−κ (r − R0)) , r > R0

(14.10a)

k2 = 2m1 (V0 + E)

�2
(14.10b)

κ2 = −2m2 E

�2
. (14.10c)

From the boundary conditions that both R(r) and 1
m

∂R(r)
∂r are continuous across the interface at

r = R0, the transcendental equation

k R0 cot (k R0) = 1 − m1

m2
(1 + κ R0) (14.11)

is obtained. From this formula the energy of the single particle ground state in a spherical quantum dot
can be determined. For a given radius, the potential needs a certain strength V0,min to confine at least
one bound state; this condition can be written as

V0,min = π2
�
2

8m∗ R2
0

(14.12)

for m1 = m2 = m∗. For a general angular momentum l, the wavefunctions are given by spherical
Bessel functions jl in the dot and spherical Hankel functions hl in the barrier. Also, the transcendental
equation for the energy of the first excited level can be given:

k R0 cot (k R0) = 1 + k2 R2
0

m1
m2

2+2κ R0+κ2 R2
0

1+κ R0
− 2

. (14.13)

In the case of infinite barriers (V0 → ∞), the wavefunction vanishes outside the dot and is given by
(normalized)

Rnml(r) =
√

2

R3
0

jl(knl r)

jl+1(knl R0)
, (14.14)

where knl is the n-th zero of the Bessel function jl , e.g. kn0 = nπ . With two-digit precision the lowest
levels are determined by

knl l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

n = 0 3.14 4.49 5.76 6.99 8.18 9.36
n = 1 6.28 7.73 9.10 10.42
n = 2 9.42
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Fig. 14.24 Isosurface plots (25% of maximum value) of the total probability densities a, b and valence-band projections
(c)–(e) of bound electron (a) and hole (b)–(e) states in a model pyramidal InAs/GaAs quantum dot with base length
b = 11.3 nm. The percentages are the integrals of the projections to the bulk heavy, light and split-off hole bands,
respectively, and the isosurfaces show the corresponding projection shapes. For each valence-band state the difference
from 100% is the integral

∫ ∞
−∞ |ψs↑|2+|ψs↓|2d3r of the s-type (conduction band) Bloch function projection (not shown).

Reprinted with permission from [1385], ©2002, Springer

The (2l+1) degenerate energy levels Enl are (V0 = ∞, m = m1):

Enl = �
2

2m
k2nl

1

R2
0

. (14.15)

The 1s, 1p, and 1d states have smaller eigenenergies than the 2s state.
A particularly simple solution is given for a cubic quantum dot of side length a0 and infinite potential

barriers. One finds the levels Enxnynz :

Enxnynz = �
2

2m

(
n2x + n2y + n2z

) π2

a20
, (14.16)

with nx , ny , nz = 1, 2, . . . . For a sphere, the separation between the ground and first excited state is
E1 − E0 ≈ E0, for a cube and a two-dimensional harmonic oscillator it is exactly E0. For a three-
dimensional harmonic oscillator this quantity is E1 − E0 = 2E0/3.

For realistic quantum dots a full three-dimensional simulation of strain, piezoelectric fields and
the quantum-mechanical confinement must be performed [1382, 1383]. In Fig. 14.24, the lowest four
electron and hole wavefunctions in a pyramidal InAs/GaAs quantum dot (for the strain distribution see
Fig. 5.34 and for the piezoelectric fields see Fig. 16.16) are shown. The figure shows that the lowest
hole states have dominantly heavy-hole character and contain admixtures of the other hole bands. The
wavefunction in such quantum dots can be imaged using scanning tunneling microscopy [1384].
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(a) (b)

Fig. 14.25 a Schematic drawing of a quantum dot (QD) with tunnel contacts and gate electrode. The inset depicts an
equivalent circuit with capacitances. b Realization with an in-plane gate structure. The distance between ‘F’ and ‘C’
(gate electrode) is 1µm. Electron transport occurs from a 2DEG between 3/F to 4/F through the quantum points contacts
1/3 and 2/4. Part (b) from [1386], reprinted with permission, ©1991, Springer Nature

14.4.2 Electrical and Transport Properties

The classical electrostatic energy of a quantum dot with capacitance CG that is capacitively coupled
to a gate (Fig. 14.25) at a bias voltage VG is given by

E = Q2

2CG
− Q α VG , (14.17)

where α is a dimensionless factor relating the gate voltage to the potential of the island and Q is the
charge of the island.

Mathematically, minimum energy is reached for a charge Qmin = α CG VG. However, the charge
has to be an integer multiple of e, i.e. Q = N e. If Vg has a value, such that Qmin/e = Nmin is an
integer, the charge cannot fluctuate as long as the temperature is low enough, i.e.

kT � e2

2CG
. (14.18)

Tunneling into or out of the dot is suppressed by the Coulomb barrier e2/2CG, and the conductance is
very low. Analogously, the differential capacitance is small. This effect is called Coulomb blockade.
Peaks in the tunneling current (Fig. 14.26b), conductivity (Fig. 14.26a) and the capacitance occur, when
the gate voltage is such that the energies for N and N + 1 electrons are degenerate, i.e. Nmin = N + 1

2 .
The expected level spacing is

e α �VG = e2

CG
+ �εN , (14.19)

where �εN denotes the change in lateral (kinetic) quantization energy for the added electron. e2/C
will be called the charging energy in the following.

A variation of the source–drain voltage (for a given gate voltage) leads to a so-called Coulomb
staircase since more and more channels of conductivity contribute to the current through the device
(Fig. 14.27). In Fig. 14.28 the tunneling current is shown as a function of the potential of a dot, formed
by gates on a WSe2 flake [1388], and the source-drain voltage. The iso-current lines form so-called
‘Coulomb blockade diamonds’.

The charge Q on the QD is determined by the charges on the gate, source and drain capacities,
Q = QG − QS + QD. Together with QS = CS VS, QD = CD VD and VSD = VS + VD and QG =
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Fig. 14.26 a Conductivity (Coulomb oscillations) and b current–voltage diagram at different gate voltages (Coulomb
staircase, shifted vertically for better readability) of a tunnel junction with a quantum dot as in Fig. 14.25. Adapted from
[1386], reprinted with permission, ©1991, SpringerNature

Fig. 14.27 Chemical
potentials of source and
drain and of a quantum dot
in between them. a, b, and
c show the sequence for a
variation of the gate voltage
and visualize the origin of
the Coulomb oscillations
(see Fig. 14.26a). d, e and f
visualize a variation of the
source–drain voltage and
the origin of the Coulomb
staircase (cf. Fig. 14.26b)

CG (VG − VS), we find (C� = CG + CS + CD),

VS = 1

C�

(Q + CG VG + CD VSD) (14.20)

VD = 1

C�

(−Q − CG VG + (C� − CD) VSD) . (14.21)

Now, if for a given pair of (VG, VSD) in a diagram like Fig. 14.28b the current is Coulomb-blocked
and low, then it is for all voltages with the same charge Q on the dot and either the same VS or
VD. The derivatives of (14.20) and (14.21) yield the slopes ∂VSD/∂VG = γ1 = −CG/CD and γ2 =
+CG/(CG + CS), respectively, that defined the borders of the diamond in the schematic stability
diagram as depicted in Fig. 14.29. We note that such analysis is allowed when |VS|, |VD| � e/2C�

and the quantum dot circuit can be treated as a system of capacitors (inset in Fig. 14.25a). Changing
Q to Q − e requires VG to increase by e/CG for the same VS,D, yielding the periodicity of the stability
diagram.

Single electron tunneling (SET) circuits [1387] are investigated with respect to metrology for a
novel ampere standard [1389].
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(a) (b)

Fig. 14.28 a Top: Sketch of WSe2 flake with gate structure, defining a lateral quantum dot. Bottom: SEM image of the
structure. The outline of the WSe2 flake (thickness 4.5nm) is indicated as dotted line. BG: back gate, PG: plunger gate.
b Current (in false colors) as a function of the back gate voltage VBG and the source-drain voltage VSD (T = 240mK).
On the top is a current trace as a function of VG (for VSD = 0, along the red dashed line in the diagram). SEM image in
panel (a) and panel (b) adapted from [1388] with permission from RSC

Fig. 14.29 Schematic
Coulomb diamond stability
diagram. The slopes γ1 and
γ2 are discussed in the text.
The periodicity in the gate
voltage is given by e/CG.
The charge on the dot is
Q = (−e) n

A lot of research so far has been done on lithographically defined systemswhere the lateral quantiza-
tion energies are small and smaller than the Coulomb charging energy. In this case, periodic oscillations
are observed, especially for large N . A deviation from periodic oscillations for small N and a charac-
teristic shell structure (at N = 2, 6, 12) consistent with a harmonic oscillator model (�ω0 ≈ 3meV)
has been reported for≈500-nm diameter mesas (Fig. 14.30b,c). In this structure, a small mesa has been
etched and contacted (top contact, substrate back contact and side gate). The quantum dot consists of
a 12-nm In0.05Ga0.95As quantum well that is laterally constricted by the 500-nm mesa and vertically
confined due to 9- and 7.5-nm thick Al0.22Ga0.68As barriers (Fig. 14.30a). By tuning the gate voltage,
the number of electrons can be varied within 0 and 40. Measurements are typically carried out at a
sample temperature of 50mK.

In the sample shown in Fig. 14.31, self-assembled QDs are positioned in the channel under a split-
gate structure. In a suitable structure, tunneling through a single QD is resolved.

In small self-assembled quantum dots single-particle level separations can be larger than or similar
to the Coulomb charging energy. Classically, the capacitance for a metal sphere of radius R0 is given as

C0 = 4π ε0 εr R0 , (14.22)

e.g.. C0 ≈ 6aF for R0 = 4nm in GaAs, resulting in a charging energy of 26meV. Quantum mechani-
cally, the charging energy is given in first-order perturbation theory by
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Fig. 14.30 a Schematic sample geometry for side-gated In0.05Ga0.95As/Al0.22Ga0.68As disk-shaped quantum dot. b
Coulomb oscillations in the current versus gate voltage at B = 0T observed for a D = 0.5µm disk-shaped dot. c
Addition energy versus electron number for two different dots with D = 0.50 and 0.44µm. Adapted from [1391]

Fig. 14.31 a Schematic layer sequence of epitaxial structure comprising a n-AlGaAs/GaAs heterointerface with a two-
dimensional electron gas and a layer of InAs/GaAs quantum dots. b and c are corresponding band diagrams with no gate
bias and gate voltage below the critical value, respectively. d Experimental dependence of drain current on gate voltage
in a split-gate structure at a drain source voltage of 10µV. Inset: Dependence of valley current on temperature (squares)
with theoretical fit. Reprinted with permission from [1392], ©1997 AIP

E21 = 〈00|Wee|00〉 =
∫∫

�2
0 (r

1
e)Wee(r1e , r

2
e )�2

0 (r
2
e ) d

3r1e d
3r2e , (14.23)

where Wee denotes the Coulomb interaction of the two electrons and �0 the ground state (single
particle) electron wavefunction. The matrix element gives an upper bound for the charging energy
since the wavefunctions will rearrange to lower their overlap and the repulsive Coulomb interaction.
For lens-shaped InAs/GaAs quantum dots with radius 25nm a charging energy of about 30meV has
been predicted.
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Fig. 14.32 Lithography
and etching techniques for
the fabrication of
semiconductor structures

14.4.3 Self-Assembled Preparation

The preparation methods for QDs split into top-down (lithography and etching) and bottom-up (self-
assembly)methods. The latter achieve typically smaller sizes and require less effort (at least concerning
the machinery).

Artificial Patterning

Using artificial patterning, based on lithography and etching (Fig. 14.32), quantum dots of arbitrary
shape can be made (Fig. 14.33). Due to defects introduced by high-energy ions during reactive ion
etching the quantum efficiency of such structures is very low when they are very small. Using wet-
chemical etching techniques the damage can be significantly lowered but not completely avoided.
Since the QDs have to compete with other structures that can be made structurally perfect, this is not
acceptable.

Template Growth

Template growth is another technique for the formation of nanostructures. Here, a mesoscopic structure
is fabricated by conventional means. The nanostructure is created using size-reduction mechanisms,
e.g., faceting, (Fig. 14.34). This method can potentially suffer from low template density, irregularities
of the template, and problems of reproducibility.

Colloids

Another successful route to nanocrystals is the doping of glasses with subsequent annealing (color
filters). When nanocrystals are prepared in a sol-gel process, the nanoparticles are present as a colloid
inwet solution.With the help of suitable stabilizing agents they are prevented fromsticking to each other
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Fig. 14.33 Quantum dots
of various shapes created
by lithography and etching
techniques. From [1393]

Fig. 14.34 a Schematic
representation of growth on
top of a predefined
template, b cross-sectional
TEM of quantum dot
formation at the apex.
Reprinted with permission
from [1394], ©1992 MRS

(a) (b)

and can be handled in ensembles and also individually. Such nanocrystals have been synthesized and
investigated in particular for II–VI (Fig. 14.35a) and halide perovskite (Fig. 14.35b) semiconductors.

Mismatched Epitaxy

The self-assembly (or self-organization) relies on strained heterostructures that achieve energy mini-
mization by island growth on a wetting layer (Stranski-Krastanow growth mode, see Sect. 12.2.3 and
[1339]). Additional ordering mechanisms [1397, 1398] lead to ensembles that are homogeneous in
size2 [1399] and shape [1400] (Fig. 14.36).

When a thin layer of a semiconductor is grown on top of a flat substratewith different lattice constant,
the layer suffers a tetragonal distortion (Sect. 5.3.3). Strain can only relax along the growth direction
(Fig. 14.37). If the strain energy is too large (highly strained layer or large thickness), plastic relaxation
via dislocation formation occurs. If there is island geometry, strain can relax in all three directions and
about 50% more strain energy can relax, thus making this type of relaxation energetically favorable.
When the island is embedded in the host matrix, the strain energy is similar to the 2D case and the
matrix becomes strained (metastable state).

When such QD layers are vertically stacked, the individual quantum dots grow on top of each
other (Fig. 14.38) if the separation is not too large (Fig. 14.40). This effect is due to the effect of the
underlying QD. In the case of InAs/GaAs (compressive strain), the buried QD stretches the surface
above it (tensile surface strain). Thus, atoms impinging in the next QD layer find a smaller strain right
on top of the buried QDs. In STM images of the cross section through (XSTM) such a stack (Fig. 14.39)
individual indium atoms are visible and the shape can be analyzed in detail [1402].

2The ordering in size is remarkable. Typically Ostwald ripening (due to the Gibbs-Thomson effect; smaller droplets have
larger vapor pressure and dissolve, larger droplets accordingly grow) occurs in an ensemble of droplets or nuclei. In the
case of strained QDs, surface energy terms stabilize a certain QD size.
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(a) (b)

Fig. 14.35 a CdSe colloidal (hexagonal) nanoparticles. From [1395]. b CsPbBr3 perovskite (cubic) colloidal nanocrys-
tals. Adapted from [1396] under Creative Commons Attribution (CC BY 4.0) license

Fig. 14.36 Self-organized formation of InGaAs/GaAs quantum dots during epitaxy. Left: Plan-view and cross-sectional
transmission electron micrographs. Right: Histogram of vertical and lateral size of the quantum dots. Reprinted with
permission from [1401], ©1993 AIP
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Fig. 14.37 Distribution of strain energy for (left) uncapped island and (right) island embedded in host matrix. Numerical
values are for InAs/GaAs
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Fig. 14.38 Cross-sectional TEM image of a stack of five layers of quantum dots. Due to strain effects, vertical arrange-
ment is achieved

Fig. 14.39 Cross-sectional
STM image of a stack of
five InAs quantum dots in a
GaAs matrix. Individual In
atoms can be observed
in-between the wetting
layers and the quantum
dots. Each quantum dot
layer was formed by
growing 2.4ML of InAs.
The intended distance
between the quantum dot
layers was 10nm. Image
size is 55 × 55nm2.
Reprinted with permission
from [1402], ©2003 AIP

Fig. 14.40 Experimentally
observed pairing
probability in MBE-grown
stacks of InAs/GaAs
quantum dots as a function
of the spacer-layer
thickness. Data are taken
from (a) (110) and (b)
(1–10) cross-sectional
TEM images. The filled
circles are fit to data from
theory of correlated island
formation under strain
fields. Reprinted with
permission from [1403],
©1995 APS
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Fig. 14.41 Lateral
ordering of QD array. d
Plan-view TEM of QD
array on which the
statistical evaluation is
based. a Two-dimensional
histogram of QDs as a
function of the
nearest-neighbor distance
and direction, (b, c)
projections of part (a).
Solid lines in (b) and (c)
are theory for square array
with σ = 20% deviation
from ideal position.
Adapted from [1339, 1397]

Fig. 14.42 a AFM image
of a Si (001) substrate after
960min of ion sputtering
(1.2keV Ar+, normal
incidence). b
Two-dimensional
autocorrelation function
from a 400 × 400nm2 area
of image in part (a).
Adapted from [1406] with
permission, ©2001 AIP

The vertical arrangement can lead to further ordering since a homogenization in lateral position
takes place. If two QDs in the first layers are very close, their strain fields overlap and the second layer
‘sees’ only one QD.

The lateral (in-plane) ordering of the QDs with respect to each other occurs in square or hexagonal
patterns and is mediated via strain interaction through the substrate. The interaction energy is fairly
small, leading only to short-range in-plane order [1397] as shown in Fig. 14.41. The in-plane ordering
can be improved up to the point that regular one- or two-dimensional arrays form or individual quantum
dots are placed on designated positions using directed self-assembly [1339]. Among others, dislocation
networks buried under the growth surface of the nanostructure, surface patterning and modification
have been used to direct the QD positioning.

Ion-Beam Erosion

During the erosion of a surface with low-energy ion beam sputtering ordered patterns of dots appear
[1404–1407]. Isotropic [1408] and hexagonal [1404, 1406] (Fig. 14.42) near-range ordering has been
observed. The pattern formation mechanism is based on the morphology-dependent sputter yield and
further mechanisms of mass redistribution [1409]. Also linear patterns have been reported [1410].
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Fig. 14.43 Optical
emission spectra
(T = 2.3K) of a single
InGaAs/GaAs quantum dot
at different laser excitation
levels P as labeled. The
single exciton (X) and
biexciton (XX) lines are
indicated. Adapted
from [1411]

14.4.4 Optical Properties

The optical properties of QDs are related to their electronic density of states. In particular, optical
transitions are allowed only at discrete energies due to the zero-dimensional density of states.

Photoluminescence froma singleQD is shown inFig. 14.43.The δ-like sharp transition is strictly true
only in the limit of small carrier numbers (� 1 exciton per dot on average) since otherwise many-body
effects come into play that can encompass recombination from charged excitons or multiexcitons. At
very low excitation density the recombination spectrum consists only of the one-exciton (X) line. With
increasing excitation density small satellites on either side of the X-line develop that are attributed to
charged excitons (trions) X+ and X−. On the low-energy side, the biexciton (XX) appears. Eventually,
the excited states are populated and a multitude of states contribute with rich fine structure. In bulk
material the biexciton (Sect. 9.7.10) is typically a bound state, i.e. its recombination energy EXX is lower
than that of the exciton EX. A similar situation is present in Fig. 14.43. It was pointed out in [1412] that
in QDs the biexciton recombination energy can also be larger than the exciton recombination energy.
In [1413] the modification of the QD confinement potential of InAs/GaAs QDs by annealing was
reported. The exciton binding energy (EX-EXX) is tuned from positive (‘normal’) to negative values
upon annealing (Fig. 14.44).

The charging state of the exciton can be controlled in a field-effect structure. The recombination
energy is modified due to Coulomb and exchange effects with the additional carriers. In charge-tunable
quantum dots [1414] and rings [1415] exciton emission has been observed in dependence of the number
of additional electrons. The electron population can be controlled in a Schottky-diode-like structure
through the manipulation of the Fermi level with the bias voltage. At high negative bias all charge
carriers tunnel out of the ring and no exciton emission is observed. A variation of the bias then leads to
an average population with N = 1, 2, 3, . . . electrons. The recombination of additional laser-excited
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Fig. 14.44 Biexciton
binding energy determined
for a single InAs/GaAs
quantum dot for various
annealing times. Data
from [1413]

Fig. 14.45 Luminescence
of charged excitons from a
single quantum ring at
T = 4.2K versus the bias
voltage with which the
number of electrons in the
quantum dot N is tuned
from zero to N > 3.
Adapted from [1415],
reprinted with permission,
©2000, Springer Nature

excitons depends (due to the Coulomb interaction) on the number of the electrons present (Fig. 14.45).
The singly negatively charged exciton X− is also called a trion.

The interaction of a spin with an exciton in a CdTe quantum dot has been observed in [1416]. If
the CdTe quantum dot is pure, a single line arises. If the dot contains a single Mn atom, the exchange
interaction of the exciton with the Mn S = 5/2 spin leads to a six-fold splitting of the exciton line
(Fig. 14.46. In an external magnetic field a splitting into a total of twelve lines due to Zeeman effect at
the Mn spin is observed.

In a QD ensemble, optical transitions are inhomogeneously broadened due to fluctuations in the QD
size and the size dependence of the confinement energies (Fig. 14.47). Interband transitions involving
electrons and holes suffer from the variation of the electron and hole energies:

σE ∝
(∣∣∣∣

∂Ee

∂L

∣∣∣∣ +
∣∣∣∣
∂Eh

∂L

∣∣∣∣

)
δL . (14.24)

A typical relative size inhomogeneity of σL/L of 7% leads to several tens of meV broadening. Addi-
tional to broadening due to different sizes fluctuations of the quantum dot shape can also play a role.
The confinement effect leads to an increase of the recombination energy with decreasing quantum-
dot size. This effect is nicely demonstrated with colloidal quantum dots of different size as shown in
Fig. 14.48.
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Fig. 14.46 Photoluminescence
spectrum of a single
CdTe/ZnSe quantum dot
containing a single Mn
atom (T = 5K). Adapted
from [1416], reprinted with
permission, ©2004 APS

Fig. 14.47 Ensemble
photoluminescence
spectrum (T = 293K,
excitation density
500W/cm2) of InAs/GaAs
QDs

Fig. 14.48 Luminescence
(under UV excitation) from
flasks of colloidal CdTe
quantum dots with
increasing size (from left to
right). From [1395]



Chapter 15
External Fields

Abstract The effects of external electric and magnetic fields on the electronic and optical properties
of bulk materials and quantum wells are discussed including the Stark effect and quantum-confined
Stark effect, the Hall effect and Quantized Hall Effects. The energy levels of the solid and its optical
and electronic properties depend on external electric and magnetic fields. In high magnetic fields and
at low temperatures the quantum Hall effects give evidence for new states of matter in many-body
systems.

15.1 Electric Fields

15.1.1 Bulk Material

The center-of-mass motion of the exciton is not influenced by a homogeneous electric field. The
Hamilton operator for the relative motion of an electron-hole pair of reduced mass μ along z in the
presence of an electric field E along the z direction is

Ĥ = − �
2

2μ
� − e E z . (15.1)

Here, the Coulomb interaction, leading to the formation of bound exciton states, is neglected. In the
plane perpendicular to the field (here the z direction) the solutions for the relative motion are just plane
waves.

In the electric field the bands are tilted (Fig. 15.1), i.e. there is no longer an overall band gap.
Accordingly, the wavefunctions are modified and have exponential tails in the energy gap.

After separation of the motion in the (x ,y) plane the Schrödinger equation for the motion in the z
direction is (

− �
2

2μ

d2

dz2
− e E z − Ez

)
φ(z) = 0 , (15.2)

which is of the type
d2 f (ξ)

dξ 2
− ξ f (ξ) = 0 , (15.3)
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with ξ = Ez

�
− z

( 2μ
�2 e E

)1/3
and the optoelectronic energy � =

(
e2E2

�
2

2μ

)1/3
. The solution of (15.3) is

given by the Airy function Ai (cf. Fig. 15.2):

φEz (ξ) =
√
e E

�
Ai(ξ) . (15.4)

The pre-factor guaranties the orthonormality (with regard to the Ez). The absorption spectrum is then
given by

α(ω, E) ∝ 1

ω

√
� π

[
Ai

′2(η) − η Ai2(η)
]

, (15.5)

with η = (Eg − E)/� and Ai ′(x) = dAi(x)/dx .
Optical transitions below the band gap become possible that are photon-assisted tunneling processes.

The below-bandgap transitions have the form of an exponential tail. Additionally, oscillations develop
above the band gap, the so-called Franz-Keldysh oscillations (FKO) [1417, 1418] (Fig. 15.3a).

The absorption spectrum scales with the optoelectronic energy �. The energy position of the FKO
peaks En is periodic with (ν ∼ 0.5)

(
En − Eg

)3/2 ∝ (n − ν) E
√

μ . (15.6)
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Fig. 15.3 a Theoretical
absorption (top panel) with
(solid line) and without
(dash-dotted line) electric
field for a volume
semiconductor (without
Coulomb interaction) and
theoretical change of
absorption (bottom panel).
b Experimental absorption
spectra of (In,Ga)As on InP
at T = 15K for various
applied voltages as labeled.
Adapted from [1421]
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Amore detailed theory including interband coupling and excitonic effects can be found in [1419]. The
effect is best determined with modulation spectroscopy can measuring the difference of absorption
with and without field [1420] since it exhibits more defined features (Fig. 15.3a, lower panel).

A nonperiodicity can indicate a nonparabolicity of the mass. Also, the contributions of heavy and
light holes merge. For a given mass the electric field strength can be determined. Well-pronounced
oscillations are only present for homogeneous fields.

Experimental spectra show additionally the peaks due to excitonic correlation (Fig. 15.3b) at low
field strength. At higher fields the FKO evolve and the amplitude of the excitonic peaks decreases
because the excitons are ionized in the field.

15.1.2 Quantum Wells

In a quantum well an electric field along the confinement direction (z direction) causes electrons and
holes to shift their mean position to opposite interfaces (Fig. 15.1b). However, excitons are not ionized
due to the electric field. With increasing field (for both field directions) the energy position of the
absorption edge and the recombination energy is reduced. This is the quantum confined Stark effect
(QCSE). Corresponding experimental data are shown in Fig. 15.4i–v. The shift depends quadratically
on the electric field since the exciton has no permanent dipolemoment (mirror symmetry of the quantum
well). Thus, only the second-order Stark effect is present (as for the hydrogen atom) in which the field
first induces a dipole p = αE. This dipole interacts with the field with an energy E = −p ·E = −αE2.
The carrier separation in opposite sides of the quantum well (Fig. 15.4b) leads to a reduced overlap
of the electron and hole wavefunctions and subsequently to an increased recombination lifetime (see
Fig. 12.43).

If the field is within the quantum-well interface plane, the field leads to the ionization of excitons
without shift of the energy position. The loss of the excitonic peak is visualized in the spectra in
Fig. 15.4a–c.



432 15 External Fields

1.42 1.501.46

(ii)
(i)

(iv)

(iii)

(v)

AlGaAs/
GaAs

(b)
1.451.43 1.47

AlGaAs/
GaAs

(ii)

(i)

(iii)

(a)

Fig. 15.4 Impact of electric fields on the absorption spectrum of n × (9.5nm GaAs/9.8nm Al0.32Ga0.68As) multiple
quantum well structures. a Electric field along the [001] growth direction (n = 50), (i)–(v) E = 0, 0.6, 1.1, 1.5, and
2 × 105 V/cm. b Electric field within the interface plane (n = 60), (i, ii, iii) E = 0, 1.1, and 2×105 V/cm. Adapted
from [1422]

15.2 Magnetic Fields

In magnetic fields, electrons (or holes) perform a cyclotron motion with frequency ωc = eB/m∗, i.e.
a motion perpendicular to the magnetic field on a line of constant energy in k-space. This line is the
intersection of a plane perpendicular to the magnetic field and the respective isoenergy surface in k-
space. For semiconductors with anisotropic mass, such as Si and Ge, the quantum theory of cyclotron
resonance has been given in [1423]. The physics of semiconductors in magnetic fields is covered in
detail in [1424].

The ballistic cyclotron motion can only occur between two scattering events. Thus, a significantly
long path along the cyclotron trajectory (classically speaking) and the connected magnetotransport
properties are only possible when

– ωcτ � 1, i.e. when the average scattering time τ is sufficiently large. This requires high mobility.
– the magnetic field is sufficiently strong and the temperature sufficiently low, i.e. �ωc � kT , such
that thermal excitations do not scatter electrons between different Landau levels.

– the cyclotron path is free of geometric obstructions.

An external magnetic field also produces a Zeeman-like splitting of the spin states. For the electron,
the energy splitting �E is given by

�E = g∗
e μB B , (15.7)

where B is the magnetic-field amplitude and g∗
e the (effective) electron g-factor. This value differs

from the free-electron value in vacuum of ge = 2.0023 due to the presence of spin-orbit interaction
(see Sect. 15.2.3). Values for g∗

e at low carrier density and low temperatures are 2 for Si, 1.2 for InP and
ZnSe, −1.65 for CdTe, −0.44 for GaAs, −15 in InAs, and −50 for InSb. In [1425] the temperature
dependence of g∗

e in GaAs, InP and CdTe is also measured and discussed. The electron g-factor
increases in thin GaAs/(Al,Ga)As quantum wells [1426].

15.2.1 Classical Hall Effect

Anelectrical current along the x (longitudinal) direction in a perpendicularmagnetic fieldB = (0, 0, B)

along z causes an electric field Ey along the transverse (y) direction (Fig. 15.5). The charge accumu-
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lation is due to the Lorentz force. The related transverse voltage is called the Hall voltage and the
resistivity ρxy = Ey/jx the Hall resistivity [28, 31, 32]. Many aspects of the Hall effect are discussed
in [1427]. For thin-film samples typically Hall bars [1428] (see Fig. 15.6 and also Fig. 15.19, for a
reasonable measurement of the Hall voltage the ratio of length and width of the Hall bar should be at
least 3) or the van-der-Pauw geometry (Fig. 15.7) and method are used [1429–1431].

For band transport in the relaxation time approximation (Chap. 8.2), the steady-state equation of
motion is (in the vicinity of an isotropic extremum)

m∗ v
τ

= q (E + v × B) . (15.8)

We note that this equation of motion is also valid for holes, given the convention of Sect. 6.10.1, i.e.
positive effective mass and charge. With the cyclotron frequency ωc = qB/m∗ the conductivity tensor
is (j = qnv = σ E)

σ =
⎛
⎝σxx σxy 0

σyx σyy 0
0 0 σzz

⎞
⎠ (15.9a)

σxx = σyy = σ0
1

1 + ω2
c τ 2

= σ0
1

1 + μ2 B2
(15.9b)

σxy = −σyx = σ0
ωcτ

1 + ω2
c τ 2

= σ0
μ B

1 + μ2 B2
(15.9c)
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(a) (b)

(c) (d) (e)

Fig. 15.7 a–d Geometry for van-der-Pauw Hall measurements. a Best geometry (cloverleaf), b acceptable square
geometry with small contacts on the corners, c,d not recommended geometries with contacts on the edge centers or
inside the square, respectively. e Current distribution, as visualized by lock-in thermography [1432], in epitaxial ZnO
layer on sapphire with Hall geometry as in part b. Grey dashed line indicates the outline of the 10 × 10mm2 substrate,
grey areas indicate gold ohmic contacts

σzz = σ0 = q2 n τ

m∗ = q n μ . (15.9d)

Perpendicular to the magnetic field, the conductivity (σzz) is given by (8.5). If only one type of carrier
(charge q, density n) is considered, the condition jy = 0 leads to Ey = μB Ex and jx = σ0 Ex . The
Hall coefficient is defined as RH = Ey/( jx B) or more precisely as

RH = ρxy

B
, (15.10)

where the resistivity tensor ρ is the inverse of the conductivity tensor σ ,

ρ = σ−1 =
⎛
⎝ρxx ρxy 0

ρyx ρyy 0
0 0 ρzz

⎞
⎠ (15.11a)

ρxx = ρyy = σxx

σ 2
xx + σ 2

xy

(15.11b)

ρxy = −ρyx = σxy

σ 2
xx + σ 2

xy

(15.11c)

ρzz = 1

σzz
= 1

σ0
. (15.11d)

For a single type of carriers, the Hall coefficient is therefore given by

RH = μ

σ0
= 1

q n
. (15.12)

It is negative (positive) for electron (hole) conduction. We note that electrons and holes are deflected
in the same y-direction by the magnetic field and collect at the same electrode. Thus the Hall effect
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allows the determination of the carrier type and the carrier density.1

If both types of carriers are present simultaneously, the conductivity (two-band conduction) is given
by the sum of electron and hole conductivity (8.11),

σ = σ e + σ h . (15.13)

The Hall constant (15.10) is then

RH = 1

e

−n μ2
e (1 + μ2

h B
2) + pμ2

h (1 + μ2
e B

2)

n2 μ2
e (1 + μ2

h B
2) − 2 n pμe μh (1 + μe μh B2) + p2 μ2

h (1 + μ2
e B

2)
. (15.14)

Under the assumption of small magnetic fields,2 i.e. μB � 1, the Hall coefficient is

RH = 1

e

[ −n μ2
e + pμ2

h

(−n μe + pμh)2
+ n p (−n + p) μ2

e μ2
h (μe − μh)

2

(−n μe + pμh)4
B2 + . . .

]
. (15.15)

For small magnetic field this can be written as

RH = 1

e

p − n β2

(p − n β)2
, (15.16)

with β = μe/μh < 0. For large magnetic fields, i.e. μB � 1, the Hall coefficient is given by

RH = 1

e

1

p − n
. (15.17)

In Fig. 15.8, the absolute value of the Hall coefficient for InSb samples with different doping con-
centrations is shown. The p-doped samples exhibit a reverse of the sign of the Hall coefficient upon
increase of temperature when intrinsic electrons contribute to the conductivity. The zero in RH occurs
for n = pμ2

h/μ
2
e = ni/|β|. For high temperatures, the Hall coefficient for n- and p-doped samples is

dominated by the electrons that have much higher mobility (Table 8.2).
The simultaneous conduction in a band and an impurity band (cmp. Sect. 8.6) has been separated

with a suitable model assuming two conduction channels for holes [1434] (Fig. 15.9).
In (15.8) an isotropicmasswas considered. For semiconductorswithmultiple valleys and anisotropic

extrema, in particular the conduction bands of Si and Ge (cf. Sect. 6.9.2), the Hall coefficient has been
derived in [1435, 1436]. With K = m l/m t being the mass anisotropy (cmp. Table 6.5), the Hall
coefficient (15.12) changes to,

RH = 1

q n

3 K (K + 2)

(2K + 1)2
. (15.18)

In the derivation of the (unipolar) Hall coefficient we had assumed that all carriers involved in the
transport have the same properties, in particular that they are subject to the same scattering time. This
assumption is generally not the case (cmp. Chap. J) and we need to operate with the ensemble average
of the discussed quantities. The ensemble average of an energy-dependent quantity ζ(E) over the

1Using the Hall effect, the net free charge carrier concentration is determined. We note that the concentration of fixed
charges in semiconductors can be investigated by depletion layer spectroscopy (Sect. 21.2.4).
2We note that for a mobility of 104 cm2/Vs, μ−1 is a field of B = 1T.
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Fig. 15.8 a Conductivity and b absolute value of the Hall coefficient versus inverse temperature for four p-doped (A–D)
and two n-doped (E, F) InSb samples. The doping levels are given in (a). Adapted from [1433]

Fig. 15.9 Carrier densities
in valence band (circles)
and impurity band
(triangles) from evaluating
the Hall effect on GaAs
doped with lithium (and
annealed) taking into
account two conduction
channels. Adapted
from [1434]
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(electron) distribution function f (E) is denoted as 〈ζ 〉 and is given as3

〈ζ 〉 =
∫

ζ(e) f (E) dE∫
f (E) dE

. (15.19)

In particular, the average 〈τ 〉2 is now different from 〈τ 2〉. Considering the equation 〈j〉 = 〈σ 〉E for the
ensemble-averaged current density we find (for one type of carrier, cf. (15.12))

3For this consideration it is assumed that the energy dependence is the decisive one. Generally, averaging may have to
be performed over other degrees of freedom as well, such as the spin or, in the case of anisotropic bands, the orbital
direction.
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RH = 1

q n
rH , (15.20)

with the so-called Hall factor rH given by

rH = γ

α2 + ω2
c γ 2

,

α =
〈

τ

1 + ω2
c τ 2

〉
, γ =

〈
τ 2

1 + ω2
c τ 2

〉
. (15.21)

The Hall factor depends on the scattering mechanisms and is of the order of 1. For large magnetic
fields the Hall factor approaches 1. For small magnetic fields we have

RH = 1

q n

〈τ 2〉
〈τ 〉2 . (15.22)

The mobility calculated from (cf. (15.9d)) σ0RH is called the Hall mobility μH and is related to the
mobility via

μH = rH μ . (15.23)

It is assumed so far that the free carrier density and mobility are homogeneous within the volume
of current transport. Multi-layer models can be fitted to experimental Hall data in order to account
for different conduction channels in different layered parts of the sample [1437]. E.g., in a two-layer
model, contributions from bulk and surface/interface conduction can be separated [1438–1440].

The magnetic field dependence of σ can be used in a general case to separate contributions of
carriers with different density and mobility (including its sign) without assumptions and obtain the
mobility spectrum s(μ) (MSA, mobility spectral analysis),

σxx =
∞∫

−∞
s(μ)

1

1 + μ2B2
dμ (15.24a)

σxy =
∞∫

−∞
s(μ)

μB

1 + μ2B2
dμ , (15.24b)

as a generalization of (15.13), (15.9b) and (15.9c) [1441–1443]. Examples are the separation of elec-
tron conductivity in (GaAs-) �- and (InAs-) X-Minima in a GaAs/(Al,Ga)As/InAs double quantum
well structures [1441] (Fig. 15.10a), substrate and 2DEG electron conductivity in (Al,Ga)N/GaN het-
erostructures [1444], and electrons and holes in an InAs/GaSb quantum well [1442] (Fig. 15.10b).

In the case of hopping conduction (Chap. 8.8), the theory of Hall effect is more involved [1445,
1446]. If carriers are transported by hopping, generally, they may not be free to move as expected by
(15.8) in response to the applied magnetic field and the Lorentz force. A Hall effect occurs only at
the junction of three (or more) hopping sites [1445]. The sign of the experimentally determined Hall
coefficient is often opposite to the one expected from the carrier type according to (15.12), e.g., as
studied in a-Si [1447, 1448]. The sign anomaly depends on intricacies such as the local site geometry
and interference processes taking place among bonding and antibonding orbitals of various numbers
as summarized in [1449].
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Fig. 15.10 a Mobility spectrum of GaAs/(Al,Ga)As/InAs double quantum well structure. Adapted from [1441]. b
Mobility spectrum of InAs/GaSb quantum well structure. Adapted from [1442]

15.2.2 Free-Carrier Absorption

The absorption of free carriers was treated in Sect. 9.9.1 without the presence of a static magnetic field.
Solving (15.8) for a static magnetic field B = μ0 H with H = H (hx , hy, hz) and a harmonic electric
field E ∝ exp(−iωt) yields for the dielectric tensor (cf. (9.72))

ε = i

ε0 ω
σ , (15.25)

and by comparing to j = σ E = q n v,

ε(ω) = −ω∗2
p

⎡
⎣(ω2 + iω γ ) 1 − iω2

c

⎛
⎝ 0 −hz hy

hz 0 −hx

−hy hx 0

⎞
⎠

⎤
⎦

−1

, (15.26)

where 1 denotes the (3 by 3) unity matrix and γ = 1/τ = q/(m∗μ) is the damping parameter with μ

representing the optical carrier mobility (in the non-isotropic case a tensor γ needs to be used). The
(unscreened) plasma frequency is given by (cmp. (9.77))

ω∗
p =

√
n

e2

ε0 m∗ . (15.27)

The free-carrier cyclotron frequency is

ωc = e
μ0 H

m∗ . (15.28)

If the effective mass is treated as a tensor, 1/m∗ is replaced by m∗−1 in (15.27) and (15.28). For zero
magnetic field the classical Drude theory for one carrier species is recovered (cf. (9.74a))

ε(ω) = − ω∗2
p

ω (ω + iγ )
. (15.29)
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With the magnetic field perpendicular to the sample surface, i.e. B = μ0 (0, 0, H) the magneto-optic
dielectric tensor simplifies to (cf. (15.9d))

ε(ω) = −ω∗2
p

ω2

⎛
⎝ ε̃xx iε̃xy 0

−iε̃xy ε̃xx 0
0 0 ε̃zz

⎞
⎠ (15.30a)

ε̃xx = 1 + iγ /ω

(1 + iγ /ω)2 − (ωc/ω)2
(15.30b)

ε̃zz = 1

(1 + iγ /ω)
(15.30c)

ε̃xy = ωc/ω

(1 + iγ /ω)2 − (ωc/ω)2
. (15.30d)

The in-plane component εxx provides information about ω∗
p and γ , i.e. two of the three parameters n,μ

andm∗ are known. Additionally, the antisymmetric tensor component εxy is linear in the cyclotron fre-
quency and providesq/m∗. This subtle but finite birefringence depends on the strength (and orientation)
of the magnetic field and can be experimentally determined in the infrared using magneto-ellipsometry
[1450, 1451]. Such ‘optical Hall effect’ experiment allows the determination of the carrier density n,
the mobility μ, the carrier mass4 m∗ and the sign of the carrier charge sgn(q) with optical means. The
electrical Hall effect (Sect. 15.2.1) can reveal n, μ and sgn(q) but cannot reveal the carrier mass.

15.2.3 Energy Levels in Bulk Crystals

In a 3D electron gas (the magnetic field is along z, i.e.B = B (0, 0, 1)) the motion in the (x, y) plane is
described by Landau levels. Quantum mechanically they correspond to levels of a harmonic oscillator.
The magnetic field has no impact on the motion of electrons along z, such that in this direction a free
dispersion relation ∝ k2z is present. The energy levels are given as

Enkz =
(
n + 1

2

)
�ωc + �

2

2m
k2z . (15.31)

Thus, the states are on concentric cylinders in k-space (Fig. 15.11a). The populated states of the 3D
electron gas (at 0K) lie within the Fermi vector of length kF. For the 3D system the density of states
at the Fermi energy is a square root function of the Fermi energy (6.71). In the presence of a magnetic
field the density of states diverges every time that a new cylinder (with a one-dimensional density
of states, (6.79)) touches the Fermi surface at EF. In real systems, the divergence will be smoothed,
however, a pronounced peak or the periodic nature of the density of states is often preserved.

The period is given by the number nm of cyclotron orbits (Landau levels) within the Fermi surface.

(
nm + 1

2

)
�ωc = EF . (15.32)

If the number of carriers is constant, the density of states at the Fermi energy at varying magnetic field
varies periodically with 1/B. From the conditions (nm + 1

2 )�eB1/m = EF and (nm +1+ 1
2 )�eB2/m =

EF with 1/B2 = 1/B1 + 1/�B we find,

4We note that mobility and effective mass defined and measured in this way may be referred to as ‘optical’. Other
definitions and approaches to the mobility or effective mass may give different results.
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Fig. 15.11 3D electron gas in an external magnetic field. a Allowed states in k-space for magnetic field along the z
direction. b Density of states (DOS) ρ versus energy (in units of �ωc). Dashed line is three-dimensional DOS without
magnetic field. Based on [1123]

1

�B
= e �

m∗ EF
. (15.33)

This periodicity is used to determine experimentally, e.g., the properties of the Fermi surface in metals
using the Shubnikov-de Haas oscillations (of the magnetoresistance) or the de Haas-van Alphén effect
(oscillation of the magnetic susceptibility).

Equation (15.31) needs to be extended to account for the splitting (15.7) of the Landau level due to
the electron spin. According to [1452], the electron Landau level energy can be written as

En =
(
n + 1

2

)
� e B

m∗(E)
± g∗

e (E) μB B , (15.34)

with energy dependent effective mass and g-factor

1

m∗(E)
= 1

m∗(0)
Eg (Eg + �0)

3Eg + 2�0

(
2

E + Eg
+ 1

E + Eg + �0

)
(15.35a)

g∗
e (E) = g∗

e (0)
Eg(Eg + �0)

�0

(
1

E + Eg
− 1

E + Eg + �0

)
(15.35b)

The band edge value m∗(0) of the effective mass is given by (6.43) and that of the g-factor by

g∗
e (0) = 2

[
1 − 2�0

3 Eg (Eg + �0)
EP

]
. (15.36)

For large spin-orbit splitting, the value of the g-factor deviates strongly from 2 and becomes negative.

15.2.4 Magnetic Field Effect on Impurities

The Zeeman effect is the magnetic field dependence (and the lifting of degeneracies) of spectral
lines. For semiconductor physics this is a tool to investigate properties of defect related states with
sufficiently sharp spectral features. As example we refer to the investigation of the Si:P donor system
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(cmp. Fig. 9.33) and its linear and quadratic Zeeman effect [1453] as visualized in Fig. 15.12. The
difference in transition energies for lines 4 and 1 depends linearly on the magnetic field and is equal to
the electron spin splitting. The quadratic Zeeman effect is also termed ‘diamagnetic shift’ and allows
a determination of the wavefunction size. In the present case, the electron Bohr radius at the neutral
phosphorus donor in Si was found to be aD = 1.33(5)nm (cmp. (7.22)) [1453].

15.2.5 Magnetic Field Effect on Excitons

The effect of an magnetic field on excitons is similar to that on the wave function at an impurity, except
that the electron and hole are effected simultaneously. The effect is two-fold: The Zeeman-like effect
on the spin states leads to a splitting of the exciton lines which become circularly polarized; for ‘weak’
fields the splitting is linear with the field. Additionally, themagnetic field leads to a reduction of exciton
size leading to a quadratic shift of the line center to larger energies, the so-called diamagnetic shift.
Calculations for various confinement geometries have been given in [1454]. The change of exciton
size leads also to modification of localization effects in disordered quantum wells [1455]. As example
the magnetic field dependence of quasi two-dimensional excitons in a WS2 monolayer is shown in
Fig. 15.13 (cf. Sect. 13.2.4).

15.2.6 Energy Levels in a 2DEG

In a 2D electron gas (2DEG), e.g., in a quantum well or a potential well at a modulation-doped
heterointerface, a free motion in z is not possible and kz is quantized. The energy levels (for each 2D
subband) are only given by the cyclotron energy (Fig. 15.14a). The density of states is a sequence of
δ-like peaks (Fig. 15.14b). Each peak contributes (degeneracy ĝ of a Landau level) a total number of

ĝ = e B

h
(15.37)

(a) (b)

Fig. 15.12 a Schematic level scheme and transitions (and their polarization) of donor bound excitons at Si:P. b Experi-
mental magnetic field dependent shift of photoluminescence transition energies (from about E = 1.150eV at B = 0T)
(symbols) together with fits for heavy (dashed lines) and light (solid lines) hole transitions. Adapted from [1453]
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Fig. 15.13 Magnetic field effect on excitons in WS2 monolayer. a Normalized transmission spectra. b Energy position
of Eσ+ and Eσ− of (circularly polarized) spectral lines of the 1–5s exciton lines. c Calculated energy (Eσ+ + Eσ− )/2,
showing the diamagnetic shift. Solid lines are model calculation with reduced exciton mass m∗

r = 0.175 (and further
parameters), d Zeeman splitting Eσ+ −Eσ− of the 1–3s states together with linear fits (dashed line), g-factors are around
4, as labelled. Adapted from [1313], reprinted under Creative Commons Attribute (CC BY 4.0) license

Fig. 15.14 2D electron gas
in an external magnetic
field. a Allowed states in
k-space. b Density of states
(DOS) ρ versus energy.
Dashed line is
two-dimensional DOS
without magnetic field.
Thick vertical lines: δ-like
DOS without broadening,
curves: broadened DOS.
Based on [1123]
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states (per unit area without spin degeneracy and without the degeneracy of the band extremum). In
reality, disorder effects lead to an inhomogeneous broadening of these peaks. The states in the tails of
the peaks correspond to states that are localized in real space.

Also, in a 2D system several physical properties exhibit an oscillatory behavior as a function of
Fermi level, i.e. with varying electron number, and as a function of the magnetic field at fixed Fermi
energy, i.e. at fixed electron number (Fig. 15.15).

15.2.7 Shubnikov-De Haas Oscillations

From the 2D density of states (per unit area including spin degeneracy) D2D(E) = m∗/π�
2 the sheet

density of electrons ns can be expressed as a function of the Fermi level (at T = 0K without spin
degeneracy)

ns = m∗

2π �2
EF . (15.38)

Using (15.33) we thus find (without spin degeneracy, without valley degeneracy), that the period of
1/B is ∝ ns:
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Fig. 15.15 Oscillatory
(theory, T = 6K) behavior
of a 2DEG
(GaAs/(Al,Ga)As) in a
magnetic field: a Fermi
level, b magnetization, c
specific heat, d
thermoelectric power. A
Gaussian broadening of
0.5meV was assumed.
Adapted from [1123, 1456]
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The carrier density of a 2DEG can therefore be determined from the oscillations of magnetoresistance,
and is proportional to the density of states at the Fermi level (Shubnikov-de Haas effect). A correspond-
ing measurement with varying field and fixed electron density is shown in Fig. 15.16. The periodicity
with 1/B is obvious. Since only the component of the magnetic field perpendicular to the layer affects
the (x, y) motion of the carriers, no effect is observed for the magnetic field parallel to the layer.

In another experiment the carrier density was varied at constant field (Fig. 15.17). The electron
density in an inversion layer in p-type silicon is (linearly) varied with the gate voltage of a MOS
(metal-oxide-semiconductor) structure (inset in Fig. 15.17, for MOS diodes cf. Sect. 24.5). In this
experiment, the Fermi level was shifted through the Landau levels. The equidistant peaks show that
indeed each Landau level contributes the same number of states.
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Fig. 15.16 Shubnikov-de
Haas oscillations at a
modulation-doped
(Al,Ga)As/GaAs
heterostructure with a
2DEG,
n = 1.7 × 1017 cm−2 and
μ = 11 400cm2/Vs. Data
from [1457]

Fig. 15.17 Shubnikov-de
Haas oscillations of a
2DEG at the (100) surface
of p-type silicon
(100�cm) at a magnetic
field of B = 3.3T and
T = 1.34K. The inset
shows schematically the
contact geometry. Data
from [1458]
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15.2.8 Quantum Hall Effect

In highmagnetic fields, at low temperatures and for high-mobility, 2D electron gases exhibit a deviation
from the classical behavior. We recall that the classical Hall effect (i.e. considering the Lorentz force,
classical Drude theory), the generation of a field Ey perpendicular to a current flow jx (cf. Sect. 15.2.1),
was described with the conductivity tensor σ (here, for the (x, y)-plane only)

σ = σ0

1 + ω2
c τ 2

(
1 ωc τ

−ωc τ 1

)
(15.40a)

σxx = σ0
1

1 + ω2
c τ 2

→ 0 (15.40b)

σxy = σ0
ωc τ

1 + ω2
c τ 2

→ n e

B
, (15.40c)

where σ0 is the zero-field conductivity σ0 = ne2τ/m∗ (8.5). The arrows denote the limit forωcτ → ∞,
i.e. large fields. The resistivity tensor ρ = σ−1 is given by

ρ =
(

ρxx ρxy

−ρxy ρxx

)
(15.41a)

ρxx = σxx

σ 2
xx + σ 2

xy

→ 0 (15.41b)
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Fig. 15.18 Hall resistivity ρxy and longitudinal resistivity ρxx for a modulation-doped GaAs/(Al,Ga)As heterostructure
(n = 4 × 1011 cm−2, μ = 8.6 × 104 cm2/Vs) at 50mK as a function of magnetic field (10kG=1T). The numbers refer
to the quantum number and spin polarization of the Landau level involved. The inset shows schematically the Hall bar
geometry, VL (VH) denotes the longitudinal (Hall) voltage drop. Reprinted with permission from [1459], ©1982 APS

ρxy = −σxy

σ 2
xx + σ 2

xy

→ − B

n e
. (15.41c)

15.2.8.1 Integer QHE

Experiments yield strong deviations from the linear behavior of the transverse resistivity ρxy ∝ B
(15.41c) for large magnetic fields at low temperatures for samples with high carrier mobility, i.e.
ωcτ � 1 (Fig. 15.18). In Fig. 15.19a, b, Hall bars are shown for 2DEGs in silicon metal-oxide-
semiconductor field-effect transistor (Si-MOSFET) electron inversion layers and at GaAs/(Al,Ga)As
heterostructures, respectively.

The Hall resistivity exhibits extended Hall plateaus with resistivity values that are given by

1

ρxy
= ν

e2

h
, (15.42)
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(a) (b)

Fig. 15.19 a Silicon MOS (metal-oxide-semiconductor) structure of K.v.Klitzing’s et al. original experiments. b
GaAs/(Al,Ga)As heterostructure sample grown with molecular beam epitaxy for QHE measurements, chip carrier and
bond wires. Reprinted with permission from [1460]

with ν ∈ N, i.e. integer fractions of the quantized resistance ρ0 = h/e2 = 25812.807…�, which is
also called the von-Klitzing constant. In Fig. 15.18, a spin splitting is seen for the n = 1 Landau level
(and a small one for the n = 2). We note that the topmost Hall plateau is due to the completely filled
n = 0 Landau level; the resistance is ρ0/2 due to the spin degeneracy of 2.

The integer quantum Hall effect, first reported in [1461, 1462], and the value for ρ0 are found for a
wide variety of samples and conditions regarding sample temperature, electron density or mobility of
the 2DEG and the materials of the heterostructure. Besides the Hall effect in Si-based structures and
recordmobility (Al,Ga)As/GaAsheterostructures (cf. Fig. 12.37), also (Mg,Zn)O/ZnOheterostructures
exhibit the effect [1463, 1464] in the same fashion.

Within the plateau, the resistivity is well defined within 10−7 or better up to the 10−9 regime. A
precise determination allows for a new normal for the unit Ohm [1389, 1465], being two orders of
magnitude more precise than the realization in the SI system, and an independent value for the fine-
structure constant α = (e2/h)/(2 c ε0). At the same time, the longitudinal resistivity, starting from the
classical value for small magnetic fields, exhibits oscillations and eventually it is close to zero for the
plateaus in ρxy . For ρxx values of 10−10 �/� have been measured, which corresponds to 10−16 �/cm
for bulk material, a value three orders of magnitude smaller than for any non-superconductor.

The interpretation of the quantum Hall effect(s) is discussed in [1466] among many other treatises.
The simplest explanation is that the conductivity is zero when a Landau level is completely filled and
the next is completely empty, i.e. the Fermi level lies between them. The temperature is small, i.e.
kT � �ωc, such that no scattering between Landau levels can occur. Thus no current, similar to a
completely filled valence band, can flow. The sheet carrier density ns is given by counting the i filled
Landau levels (degeneracy according to (15.37)) as

ns = i
e B

h
. (15.43)

In the transverse direction energy dissipation takes place and the Hall resistivity ρxy = B/(nse) takes
the (scattering-free) values given in (15.42).

However, this argument is too simple as it will not explain the extension of the plateaus. As soon
as the system has one electron more or less, the Fermi energy will (for a system with δ-like density of
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states) be located in the upper or lower Landau level, respectively. Then, the longitudinal conductivity
should no longer be zero and the Hall resistivity deviates from the integer fraction of ρ0. In general, a
single particle picture is insufficient to model the IQHE.

The accepted model for the explanation of the QHE, supported now with plenty of experimental
evidence, is the edge state model where quantized one-dimensional conductivity of edge channels, i.e.
the presence of conductive channels along the sample boundaries, is evoked [1475].

The most fundamental arguments for the origin of the IQHE come from gauge invariance and the
presence of a macroscopic quantum state of electrons and magnetic flux quanta [1468]. This model
holds as long as there are any extended states at all in the inhomogeneously broadened density of
states (Landau levels) (Fig. 15.14). These edge states arise from the fact that the quantum Hall state
has another topology than the (topologically trivial) surrounding [463, 1469, 1470]. Each plateau
corresponds to a distinct topological phase characterized by a Chern number (cmp. (6.29)) related to
the ‘Hofstadter butterfly’ [1471, 1472] (cf. Sect.G.3.1).

It is remarkable that the classical Hall effect is based on homogeneous conduction for a proper
evaluation (cf. Fig. 15.7e), while the quantum Hall effect involves electrical transport only along the
edges. A detailed microscopic picture of the edge channels is also of interest. Due to depletion at the
boundary of the sample, the density of the 2DEG varies at the edge of the sample and ‘incompressible’
stripes develop for which ∂μ/∂ns → ∞. When the filling factor is far from an integer, the Hall voltage
is found to vary linearly across the conductive channel and the current is thus homogeneous over the
sample (Fig. 15.20d). In the Hall plateau, the Hall voltage is flat in the center of the channel and exhibits
drops at the edges, indicating that the current flows along the boundary of the sample (edge current)
[1473] in agreement with predictions from [1476]. Although the current pattern changes with varying
magnetic field, the Hall resistivity remains at its quantized value.

In graphene, the IQHE plateaus take on the resistance values [1249, 1477],

1

ρxy
= ±4

(
n + 1

2

)
e2

h
, (15.44)

with n ∈ N0. This new ‘half integer’ quantization condition can be translated into the quantized filling
factor ν = ±4 (n + 1/2) in the usual QHE formalism of (15.42). The condition (15.44) is due to
the different nature of Landau levels for a linear dispersion (Dirac spectrum) [1478]. The +/−-sign
denotes the QHE for electrons and holes, respectively. The factor g = 4 stems from the degeneracy of
the Landau levels, accounting for spin degeneracy (when the Landau level separation is much larger
than the Zeeman spin splitting) and for the sublattice degeneracy. The two n = 0 Hall plateaus have
even been observed (for B = 45T) at room temperature [1479].

15.2.8.2 Fractional QHE

For very low temperatures and in the extreme quantum limit, novel effects are observed when the
kinetic energy of the electrons is smaller than their Coulomb interaction. New quantum Hall plateaus
are observed at various fractional filling factors ν = p/q. We note that the effects of the fractional
quantum Hall effect (FQHE) in Fig. 15.21 mostly arise for magnetic fields beyond the n = 1 IQHE
plateau. The filling factor ν = n/(eB/h) is now interpreted as the number of electrons per magnetic
flux quantum φ0 = h/e.

The effects of the FQHE cannot be explained by single-electron physics. The plateaus at fractional
fillings ν occur when the Fermi energy lies within a highly degenerate Landau (or spin) level and imply
the presence of energy gaps due to many-particle interaction and the result of correlated 2D electron
motion in the magnetic field.
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Fig. 15.20 Normalized
Hall potential profile for
different magnetic fields
around filling factor ν = 2.
The overall voltage drop
corresponds to 20mV. The
insets show the sample
geometry and transport
data. The 2DEG is from a
GaAs/Al0.33Ga0.67As
modulation-doped
heterostructure,
ns = 4.3 × 1011 cm−2,
μ = 5 × 105 cm2/Vs,
T = 1.4K. Adapted
from [1473]

A decisive role is played by themagnetic flux quanta. The presence of themagnetic field requires the
many-electron wavefunction to assume as many zeros per unit area as there are flux quanta penetrating
it. The decay of the wavefunction has a length scale of the magnetic length l0 = √

�/(eB). Since the
magnetic field implies a 2π phase shift around the zero, such an object is also termed a vortex, being
the embodiment of the magnetic flux quanta in the electron system. Such a vortex represents a charge
deficit (compared to a homogeneous charge distribution) and thus electrons and vortices attract each
other. If a vortex and an electron are placed onto each other, considerable Coulomb energy is gained.
At ν = 1/3, there are three times more vortices than there are electrons, each vortex representing
a charge deficit of 1/3 e. Such a system is described with many-particle wavefunctions, such as the
Laughlin theory for ν = 1/q [1468] and novel quasi-particles called composite fermions [1481, 1482]
for other fractional fillings. For further reading we refer readers to [1483] and references therein.



15.2 Magnetic Fields 449

R
(h

/e
)

xy
2

R
xx

Fig. 15.21 Hall resistance Rxy and magnetoresistance Rxx of a two-dimensional electron system (GaAs/(Al,Ga)As
heterostructure) of density n = 2.33× 1011 cm−2 at a temperature of 85mK, versus magnetic field B. Numbers identify
the filling factor ν, which indicates the degree to which the sequence of Landau levels is filled with electrons. Plateaus
are due to the integral (ν = i) quantum Hall effect (IQHE) and fractional (ν = p/q) quantum Hall effect (FQHE).
Adapted from [1480], reprinted with permission, ©1990 AAAS

(a)

(a)

(b)

(b)

Fig. 15.22 Weiss oscillations: a magnetoresistance and b Hall resistance of an antidot lattice (inset in (a)) with pattern
(solid lines) and without pattern (dashed lines) at T = 1.5K. b Schematic of the different orbits: (‘p’: pinned, ‘d’:
drifting, ‘s’: scattered). Reprinted with permission from [1484], ©1991 APS



450 15 External Fields

15.2.8.3 Weiss Oscillations

In Fig. 15.22, measurements are shown for a Hall bar in which an array of antidots (in which no
conduction is possible) has been introduced by dry etc.hing. The antidot size is 50nm (plus depletion
layer) and the period is 300nm. These obstructions for the cyclotron motion lead to a modification of
the magnetotransport properties.

Before etc.hing of the antidot array the 2DEG has a mean free path length of 5–10µm at 4K for
the mobility of ≈ 106 cm2/Vs. At low magnetic fields there is a strong deviation of the Hall resistivity
from the straight line to which the QHE levels converge. Similarly, ρxx shows a strong effect as well.

These effects are related to commensurability effects between the antidot lattice and the cyclotron
resonance path. When the cyclotron orbit is equal to the lattice period, electrons can fulfill a circular
motion around one antidot (pinned orbit, Fig. 15.22b) that leads to a reduction of conductivity. At high
fields, drifting orbits for which the cyclotron orbit is much smaller than the lattice period occur. At
small fields, scattering orbits also contribute for which the cyclotron radius is large and the electron
has antidots from time to time. Resonances in the Hall resistivity have been found due to pinned orbits
enclosing 1, 2, 4, 9 or 21 antidots.



Chapter 16
Polarized Semiconductors

Abstract In this chapter semiconductors with a spontaneous polarization and ferroelectric semicon-
ductors are discussed. Also the effect of piezoelectricity is treated in some detail for zincblende and
wurtzite materials.

16.1 Introduction

Semiconductors can have an electric polarization. Such polarization can be induced by an external
electric field (Fig. 16.1a). This phenomenon, i.e. that the semiconductor is dielectric, has been discussed
already in Chap.9. In this chapter, we discuss pyroelectricity, i.e. a spontaneous polarization without
an external field (Fig. 16.1b), ferroelectricity,1 i.e. pyroelectricity with a hysteresis (Fig. 16.1c) and
piezoelectricity, i.e. a polarization due to external stress.

16.2 Spontaneous Polarization

The reason for a spontaneous polarization Psp (without external electric field) is the static, relative shift
of positive and negative charges in the unit cell. For a slab of semiconductor material (thus ignoring
depolarization effects present in other geometries), the polarization causes polarization charges located
at the upper and lower surfaces (Fig. 16.2a). The polarization vector P points from the negative to the
positive charge. The electric field due to the polarization charges has the opposite direction. In the
absence of free charges, the Maxwell equation ∇ · D = 0 yields for piecewise constant fields at
a planar interface (Fig. 16.2b) (D2 − D1) · n12 = 0 where n12 is the surface normal pointing from
medium 1 to medium 2. Therefore, the polarization charge σP = ε0∇ · E is given by

σP = −(P2 − P1) · n12 . (16.1)

Polarization charges develop at interfaces where the polarization is discontinuous, e.g. an interface
between two semiconductors with different spontaneous polarization. Vacuum (at a surface) represents
a special case with P = 0.

1Ferromagnetic semiconductors are discussed in Chap. 17. We note that there exist so called multiferroic materials that
possess more than one ferroic property [1485, 1486].
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Fig. 16.1 Schematic representation of the polarization versus external electric field dependence for a dielectric, b
pyroelectric and c ferroelectric semiconductors
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Fig. 16.2 a Surface polarization charges σP on a slab of semiconductor material with polarization. The electric field is
given by E = −P/ε0. b Polarization charge σP at an interface between two semiconductors with different polarization.
In the depicted situation σ is negative
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Fig. 16.3 Spontaneous polarization Psp for various semiconductors as a function of the lattice constant a (left) and the
cell-internal parameter u (right). Based on [1487]

For cubic zincblende structure semiconductors, Psp is typically fairly small. The anisotropy of the
wurtzite structure allows for sizeable effects (Fig. 16.3). The main cause is the nonideality of the
cell-internal parameter u (cf. Sect. 3.4.5).
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Fig. 16.4 aCell parameters of PbTiO3 as a function of temperature. Adapted from [1493]. b Phase transitions of BaTiO3
as a function of temperature. The spontaneous polarization PS points along 〈100〉, 〈110〉 and 〈111〉 in the tetragonal
(C4v), orthorhombic (C2v) and trigonal (C3v , rhombohedral) phase, respectively. Adapted from [1494]

16.3 Ferroelectricity

Ferroelectric semiconductors exhibit a spontaneous polarization in the ferroelectric phase and zero
spontaneous polarization in the paraelectric phase. As a function of temperature, the ferroelectric
material undergoes a phase transition from the high-temperature paraelectric phase into the ferroelectric
phase. There can be further phase transitions between different ferroelectric phases that differ in the
direction of the polarization. The literature until 1980 is summarized in [1488]. Amore recent treatment
can be found in [1489, 1490].

PbTiO3 has perovskite structure (cf. Sect. 3.4.10). It exhibits a phase transition at TC = 490 ◦C from
the cubic into the (ferroelectric) tetragonal phase as shown in Fig. 16.4a. Mostly the cell symmetry
changes, while the cell volume remains almost constant. A more complicated situation arises for
BaTiO3. At 120 ◦C the transition into the ferroelectric phase occurs (Fig. 16.4b) that is tetragonal with
the polarization in the [100] direction. At −5 ◦C and −90 ◦C transitions occur into an orthorhombic
and a rhombohedral (trigonal) phase, respectively. The largest polarization is caused by a displacement
of the negatively (O) and positively (Ba, Ti) charged ions of the unit cell by δ ≈ 0.02nm (Fig. 16.5).
Such an origin of the spontaneous polarization is called a displacement transition.2

16.3.1 Materials

A large class of ferroelectric semiconductors are of the type ABO3, where A stands for a cation with
larger ionic radius and B for an anion with smaller ionic radius. Many ferroelectrics have perovskite
(CaTiO3) structure. They are A2+B4+O2−

3 , e.g. (Ba,Ca,Sr) (Zi,Zr)O3 or A1+B5+O2−
3 , e.g. (Li,Na,K)

(Nb,Ta)O3. Ferroelectrics can also be alloyed. Alloying in the B component yields, e.g. PbTixZr1−xO3

also called PZT. PZT is widely used for piezoelectric actuators. Also, alloying in the A component is
possible, e.g. BaxSr1−xTiO3.

2The widely accepted model for such ferroelectric is that the basic displacement occurs into the 〈111〉-direction at low
temperature. The three higher symmetry phases at higher temperature are the result of 2 (orthorhombic), 4 (tetragonal)
or 8 (cubic) allowed 〈111〉 orientations which make the macroscopically averaged polarization appear in 〈110〉- or
〈100〉-direction or vanishing altogether, respectively [1491, 1492].
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Fig. 16.5 aCrystal structure of BaTiO3 (see Fig. 3.27).bSchematic tetragonal deformation below theCurie temperature,
generating a dipole moment
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Another class of ferroelectrics are AVBVICVII compounds, such as SbSI, SbSBr, SbSeI, BiSBr.
These materials have a width of the forbidden band in the∼ 2eV range. A further class of ferroelectric
semiconductors are AV

2 B
VI
3 compounds, such as Sb2S3.

16.3.2 Soft Phonon Mode

The finite displacement of the sublattices in the ferroelectric means that the related lattice vibration
has no restoring force. The displacement is, however, finite due to higher-order terms (anharmonicity).
Thus, for T → TC ωTO → 0. Such a mode is called a soft phonon mode. The decrease of the phonon
frequency is shown in Fig. 16.6a for SbSI.

From the LST relation (9.26), it follows that the static dielectric function must increase strongly.
The increase is ∝ (T − TC)−1 (Fig. 16.6b).
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16.3.3 Phase Transition

In the case of ferroelectrics, the order parameter for the Ginzburg–Landau theory of phase transitions
is the spontaneous polarization P . The free energy F of the ferroelectric crystal is written in terms of
the free energy of the paraelectric phase F0 and is expanded in powers of P (here up to P6) as

F = F0 + 1

2
α P2 + 1

4
β P4 + 1

6
γ P6 . (16.2)

In this equation, we have neglected effects due to charge carriers, an external electric field or external
stresses and we assume homogeneous polarization. In order to obtain a phase transition, it has to be
assumed that α has a zero at a certain temperature TC and we assume (expanding only to the linear
term)

α = α0 (T − TC) . (16.3)

16.3.3.1 Second-Order Phase Transition

For modeling a second-order phase transition, we set γ = 0. Thus, the free energy has the form
(Fig. 16.7a)

F = F0 + 1

2
α P2 + 1

4
β P4 . (16.4)

The equilibrium condition with regard to the free energy yields a minimum for

∂F

∂P
= α P + β P3 = 0 (16.5a)

∂2F

∂P2
= α + 3β P2 > 0 . (16.5b)

Equation (16.5a) yields two solutions. P = 0 corresponds to the paraelectric phase. P2 = −α/β is the
spontaneous polarization in the ferroelectric phase. The condition from (16.5b) yields that α > 0 in the
paraelectric phase, while α < 0 in the ferroelectric phase. Also, β > 0 below the Curie temperature
(β is assumed to be temperature independent in the following). Using (16.3), the polarization is given
as (Fig. 16.7b)

P2 = α0

β
(T − TC) . (16.6)

Therefore, the entropy S = − ∂F
∂T and the discontinuity 
Cp of the heat capacity Cp = T

(
∂S
∂T

)
p
at the

Curie point TC are given by

S = S0 + α2
0

β
(T − TC) (16.7a)


Cp = α2
0

β
TC , (16.7b)

with S0 = − ∂F0
∂T being the entropy of the paraelectric phase. This behavior is in accordance with a

second-order phase transition with vanishing latent heat (continuous entropy) and a discontinuity of
the heat capacity. The dielectric function in the paraelectric phase is ∝ 1/α and in the ferroelectric
phase ∝ −1/α. The latter relation is usually written as the Curie–Weiss law
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Fig. 16.7 a Schematic plot of the free energy versus spontaneous polarization for a second-order phase transition. α > 0
(α < 0) corresponds to the paraelectric (ferroelectric) phase. b Spontaneous polarization of LiTaO3 as a function of
temperature exhibiting a second-order phase transition. The dashed line is theory with suitable parameters. Adapted
from [1497]

ε = C

T − TC
. (16.8)

16.3.3.2 First-Order Phase Transition

When the P6 term is included in (16.2) (γ 
= 0), a first-order phase transition is modeled. However,
in order to obtain something new, compared to the previous consideration, now β < 0 (and γ > 0) is
necessary. The dependence of the free energy on P is schematically shown in Fig. 16.8a for various
values of α. The condition ∂F

∂P = 0 yields

α P + β P3 + γ P5 = 0 , (16.9)

with the solutions P = 0 and

P2 = − β

2γ

(

1 +
√

1 − 4α γ

β2

)

. (16.10)

For a certain value of α, i.e. at a certain temperature T = T1, the free energy is zero for P = 0 and
also for another value P = P0 (second curve from the top in Fig. 16.8a). From the condition

1

2
α(T1) P

2
0 + 1

4
βP4

0 + 1

6
γ P6

0 = 0 , (16.11)

the values for P0 and α at the transition temperature T = T1 are given by

P2
0 = = −3

4

β

γ
(16.12a)

α(T1) = 3

16

β2

γ
> 0 . (16.12b)

The schematic dependence of P at the phase transition temperature T1 is depicted in Fig. 16.8b.
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Fig. 16.8 a Schematic plot of the free energy versus spontaneous polarization for a first-order phase transition. The
lowest curve is for α = 0, the others are for α > 0. b Spontaneous polarization in BaTiO3 as a function of temperature
exhibiting a first-order phase transition. The dashed line is a guide to the eye. Adapted from [1498]

For T ≤ T1 the absolute minimum of the free energy is reached for finite polarization P > P0.
However, between F(P = 0) and the minimum of the free energy an energy barrier (second lowest
curve in Fig. 16.8) is present for T close to T1. The energy barrier disappears at the Curie–Weiss
temperature T0. At the phase transition temperature, the entropy has a discontinuity


S = α0 P
2
0 , (16.13)

that corresponds to a latent heat 
Q = T
S. Another property of the first-order phase transition is
the occurrence of hysteresis in the temperature interval between T1 and T0


T ≈ T1 − T0 = 1

4α0

β2

γ
, (16.14)

in which an energy barrier is present to hinder the phase transition. For decreasing temperature, the
system tends to remain in the paraelectric phase. For increasing temperature, the system tends to remain
in the ferroelectric phase. Such behavior is observed for BaTiO3, as shown in Fig. 16.4b.

16.3.4 Domains

Similar to ferromagnets, ferroelectrics form domains with different polarization directions in order
to minimize the total energy by minimizing the field energy outside the crystal. The polarization can
have different orientations, 6 directions for P along 〈100〉 (tetragonal phase), 12 directions for P along
〈110〉 (orthorhombic phase) and 8 directions for P along 〈111〉 (rhombohedral phase). In Fig. 16.9,
such domains are visualized for BaTiO3. Due to the restricted geometry, domain formation in thin
films is different from that in bulk material.

Domains can also be artificially created by so-called poling. The ferroelectric semiconductor is
heated to the paraelectric phase.With electrodes, appropriate electric fields are applied and thematerial
is cooled. The polarization is then frozen in the ferroelectric phase. The domains of a periodically
poled structure in LiNbO3 (PPLN) are shown in Fig. 16.10b. The nonlinear optical properties in such
structures can be used for efficient second harmonic generation (SHG).
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Fig. 16.9 Ferroelectric domains in a BaTiO3 single crystal visualized by birefringence contrast. Reprinted with per-
mission from [1499], ©1949 APS

(a)

PPLN

(b)

Fig. 16.10 a Scheme of PPLN (perodically poled lithium niobate), arrows denote the direction of spontaneous polar-
ization. b Polarization microscopy image (vertical stripes are domains, horizontal dark lines are scratches)

Fig. 16.11 Temperature
dependence of the band
gap in BaTiO3 (for
polarized light with
E ⊥ c). Experimental data
from [1500]

16.3.5 Optical Properties

The first-order phase transition of BaTiO3 manifests itself also in a discontinuity of the band gap
(Fig. 16.11). The coefficient ∂Eg/∂T for the temperature dependence of the band gap is also different
in the para- and ferroelectric phases.
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Table 16.1 Piezoelectric coefficients (in Cm−2) for various zincblende and wurtzite semiconductors. Data from [165,
1501, 1504], for zb-ZnO from [1505], for zb-GaN from [1506]

Zincblende Wurtzite

III–V e14 II–VI e14 e33 e31 e15

InSb −0.123 CdTe 0.054 CdSe 0.347 −0.16 −0.138

InAs −0.078 ZnSe 0.049 CdS 0.385 −0.262 −0.183

GaSb −0.218 ZnS 0.254 ZnS 0.265 −0.238 −0.118

GaAs −0.277 ZnO 0.69 ZnO 0.89 −0.51 −0.45

AlSb −0.118 GaN 0.375 GaN 0.73 −0.49 −0.3

AlN 1.46 −0.60 −0.48

BeO 0.02 −0.02

16.4 Piezoelectricity

16.4.1 Piezoelectric Effect

External stress causes atoms in the unit cell to shift with respect to each other. In certain directions,
such a shift can lead to a polarization. Generally, all ferroelectric materials are piezoelectric. However,
there are piezoelectric materials that are not ferroelectric, e.g. quartz, GaAs and GaN. Piezoelectricity
can occur only when no center of inversion is present. Thus, e.g., GaAs is piezoelectric along 〈111〉, but
Si is not. Also, the cubic perovskite structure (in the paraelectric phase) is not piezoelectric. Generally,
the piezoelectric polarization is related to the strains via the tensor ei jk of the piezoelectric modules3

Pi = ei jk ε jk . (16.15)

16.4.2 Zincblende Crystals

In zincblende semiconductors, the polarization (with respect to x = [100], y = [010], z = [001]) is
due to shear strains only and is given as

Ppe = 2 e14

⎛

⎝
εyz
εxz
εxy

⎞

⎠ . (16.16)

The values of e14 for various zincblende compound semiconductors are listed in Table 16.1. We note
that the sign of e14 reverses from negative in cubic III–V to positive in cubic II–VI semiconductors.
This non-trivial behavior involves strain effects on ionic and electronic polarization and ionicity as
discussed in [184, 1501]. The coefficient e33, the equivalent to e14 in wurtzite semiconductors (see
below), is positive for III–V and II-VI semiconductors.

The strain in pseudomorphic heterostructures (cf. Sect. 5.3.3) can cause piezoelectric polarization
in a piezoelectric semiconductor. In zincblende, the main effect is expected when the growth direction
is along [111] and the strain has a purely shear character. In this case, the polarization is in the [111]
direction, i.e. perpendicular to the interface (P⊥). For the [001] growth direction, no piezoelectric

3Another formulation is used with parameters di jk and Pi = di jk σ jk .
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(a) (b) (c)

(d) (e)

(f)

Fig. 16.12 Three-dimensional view of the a total, b longitudinal and c transverse polarization in uniaxially compressed
GaAs. Adapted from [1502]. d Transverse polarization P‖ (parallel to the interface) and e longitudinal electric field
E⊥ (perpendicular to the interface) in the InGaAs layer of a GaAs/In0.2Ga0.8As superlattice with joint in-plane lattice
constant (obtained from energy minimization, 1.4% lattice mismatch, the InGaAs is under compressive and the GaAs
under tensile strain). The layer thicknesses of the GaAs and InGaAs layers are identical. The quantities are shown for
various orientations of the growth direction. The vector of the growth direction varies in the (01–1) plane (φ = π/4)
with polar angle θ reaching from [100] (0◦) over [111] to [011] (90◦). Image (f) depicts the transverse polarization P‖
(P⊥ = 0 in this geometry) for growth directions in the (001) plane (φ = 0). Parts d–f reprinted with permission from
[1503], ©1988 AIP

polarization is expected. For the [110] growth direction, the polarization is found to be parallel to the
interface (P‖). The situation is shown for various orientations of the growth direction in Fig. 16.12.

16.4.3 Wurtzite Crystals

In wurtzite crystals, the piezoelectric polarization (with respect to x = [2–1.0], y = [01.0], z = [00.1])
is given by4

4In Voigt notation, Px = e15 e5, Py = e15 e4
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Ppe =
⎛

⎝
2 e15 εxz
2 e15 εyz

e31 (εxx + εyy) + e33 εzz

⎞

⎠ . (16.17)

Values for the piezoelectric coefficients of several wurtzite semiconductors5 are listed in Table 16.1.
The polarization (along c) for biaxial strain in heteroepitaxy (5.69) on the [00.1] surface is

Ppe = 2 ε‖
(
e31 − C13

C33
e33

)
, (16.18)

where ε‖ = (a − a0)/a0 is the in-plane strain. The dependence of the magnitude for GaN on the
in-plane strain is shown in Fig. 16.13 together with the polarization for uniaxial stress along [00.1] and
hydrostatic strain. In the latter two cases, the polarization is smaller.

The difference of spontaneous polarization of the constituentmaterials in heterostructures and piezo-
electric effects in strained quantum wells lead to quantum confined Stark effect (QCSE, Sect. 15.1.2).
The spatial separation of electrons and holes leads to a larger radiative lifetime (Fig. 12.43) and thus
reduced radiative recombination rate in the presence of nonradiative channels, an effect unwanted in
light emitting diodes. In particular nitride based LEDs grown along the c-direction are prone to this
effect. Therefore growth on nonpolar surfaces such as (11̄00) (m-plane) and (112̄0) (a-plane) has been
investigated [1509, 1510]. However, crystal quality for these growth planes seems limited.

An alternative route are ‘semipolar’ planes, e.g. (101̄1̄) or (112̄2) [1511], with at least reduced
polarization effects. The (112̄2)-plane is tilted about 58◦ (for GaN) from the c-axis, close to the theo-
retically predicted zero of the internal electric field for InGaN/GaN quantum wells [1512] (Fig. 16.14).
Promising experimental results have been published on semipolar growth, especially for InGaN/GaN
on (112̄2)-oriented GaN substrates [1513].

Fig. 16.13 Piezoelectric
polarization Ppe in GaN
(Ga-face) versus in-plane
strain ε‖ = (a − a0)/a0 for
biaxial, uniaxial and
hydrostatic strain. The
value of the spontaneous
polarization Psp is
indicated by an arrow.
From [1508]
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5If e14 for a zincblende material is transformed to a coordinate system along [111], the wurtzite-like piezoelectric
constants are e33 = 2 e14/

√
3 and e31 = −e14/

√
3 [1507].
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Fig. 16.14 a Internal
electric field and b
transition probability for
electron-hole pairs in
pseudomorphic
InxGa1−xN/GaN quantum
well (Lw = 3nm) for three
different indium contents x
as labeled. θ denotes the
angle between the c-axis
and the normal of the
interface plane (see inset).
Based on [1512]

(c)

(b)

(a)

Fig. 16.15 a Electric field and b additional confinement potential for electrons due to piezoelectric charges for a strained
In0.2Ga0.8As/GaAs quantum wire. Adapted from [1502]. c Piezoelectric charge density in a (111)-oriented GaAs wire
with hexagonal cross section. Adapted from [1514]

16.4.4 Piezoelectric Effects in Nanostructures

The strain distribution around zincblende strained quantum wires [1502], (111)-oriented wires
under torsion [1514] and epitaxial (embedded) quantum dots [417] contains shear components and
thus generates piezoelectric fields. In Fig. 16.15a,b, the electric field and potential due to the piezoelec-
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42

-42 -21

charges

25

(a) (b)

(c) (d)

Fig. 16.16 aPiezoelectric charges and b–d resultingCoulombpotential for InAs/GaAsquantumdotwith base lengthb =
12nm. a Isosurfaces corresponding to volume charges±0.3enm−3. b Isosurfaces for the Coulomb potential at±30meV.
c,d Cross section through the Coulomb potential somewhat above the wetting layer in two different magnifications, d
is a zoom into (c). The InAs/GaAs interface is visible in d due to the image charge effect. Parts a and b reprinted with
permission from [417], ©1995 APS

tric charges are shown for a strained In0.2Ga0.8As/GaAs quantum wire. In Fig. 16.15c the three-fold
symmetric piezoelectric charge density within the cross-section of a (111)-oriented GaAs wire under
torsion (due to second order piezoelectricity) is depicted.

In Fig. 16.16, the piezoelectric charges and potential are shown for the quantum dot from Fig. 5.34.
The piezoelectric potential has quadrupole character and thus reduces the symmetry of the QD (toC2v)
[417].6 Piezoelectric effects are particularly important in wurtzite nanostructures [1515].

6The strain distribution has C2v symmetry for a square-based pyramid for zincblende materials. The energy levels and
wavefunctions are more strongly impacted by the piezoelectric effects than by the strain asymmetry [1382, 1383].



Chapter 17
Magnetic Semiconductors

Abstract Materials and properties of two types of semiconductors with spontaneous magnetization or
ferromagnetic and paramagnetic properties are explained: Compound materials and diluted magnetic
semiconductors.A short introduction to semiconductor spintronics covers the concepts of spin transistor
and spin LED.

17.1 Introduction

Magnetic semiconductors exhibit spontaneous magnetic order. Even ferromagnetism, important for
spin polarization, as needed in spinelectronics (also called spintronics), can occur below the Curie
temperature that is characteristic of the material. Magnetic semiconductors can be binary compounds
such as EuTe (antiferromagnetic) or EuS (ferromagnetic). Another class of magnetic semiconductors
contains paramagnetic ions in doping concentration (typically < 1021 cm−1) or alloy concentration
x (typically x ≥ 0.1%). Such materials are termed diluted magnetic semiconductors (DMS). The
incorporation of the magnetic atoms leads first to conventional alloy effects, such as the modification
of the lattice constant, the carrier concentration or the band gap. The status of the field up to the mid-
1980s can be found in [1516, 1517], mostly focused on II–VI DMS. A review of work on III–V based
materials for spintronics, mostly GaAs:Mn, can be found in [1518]. A 2003 review of wide band gap
ferromagnetic semiconductors is given in [1519], a 2014 review of Mn-containing DMS in [1520].

17.2 Magnetic Semiconductors

In a magnetic semiconductor, one sublattice is populated with paramagnetic ions. The first two fer-
romagnetic semiconductors discovered were CrBr3 [1521] in 1960 and EuO [1522] one year later.
Europiummonoxide has an ionic Eu2+O2− character, such that the electronic configuration of europium
is [Xe]4f75d06s0 and that of oxygen is 1s22s22p6. Some properties of europium chalcogenides [1523]
are summarized in Table 17.1.

EuO can be modeled as a Heisenberg ferromagnet with dominant nearest- and next-nearest Eu–
Eu interactions [1524]. The Heisenberg exchange parameters J1 and J2 for these four compounds
are shown in Fig. 17.1. In the nearest-neighbor interaction J1 a 4f electron is excited to the 5d band,
experiences an exchange interactionwith the 4f spin on a nearest neighbor and returns to the initial state.
This mechanism generally leads to ferromagnetic exchange. The next-nearest-neighbor interaction J2
is weakly ferromagnetic (EuO) or antiferromagnetic (EuS, EuSe, EuTe). In the superexchange process,

© Springer Nature Switzerland AG 2021
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-51569-0_17
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Table 17.1 Material properties of Eu chalcogenides. ‘FM’ (‘AF’) denotes ferromagnetic (antiferromagnetic) order. TC
(TN) denotes the Curie (Néel) temperature. Data collected in [1525]

Material Eg (eV) Magnetic order TC, TN (K)

EuO 1.12 FM 69.3

EuS 1.65 FM 16.6

EuSe 1.8 AF 4.6

FM 2.8

EuTe 2.00 AF 9.6

Fig. 17.1 Heisenberg
nearest (J1, squares) and
next-nearest (J2, circles)
exchange parameters (in
units of J1,2/kB) for the Eu
chalcogenides versus the
Eu–anion distance. Dashed
lines are guides to the eye.
Experimental data
from [1525]

Table 17.2 3d, 4d and 5d transition metals and their electron configurations. Note that Hf72 has an incompletely filled
4f-shell with 4f14

Sc21 Ti22 V23 Cr24 Mn25 Fe26 Co27 Ni28 Cu29 Zn30

3d 3d2 3d3 3d4 3d5 3d6 3d7 3d8 3d9 3d10

4s2 4s2 4s2 4s 4s2 4s2 4s2 4s2 4s 4s2

Y39 Zr40 Nb41 Mo42 Tc43 Ru44 Rh45 Pd46 Ag47 Cd48

4d 4d2 4d3 4d4 4d5 4d6 4d7 4d8 4d9 4d10

5s2 5s2 5s 5s 5s 5s 5s – 5s 5s2

La57 Hf72 Ta73 W74 Re75 Os76 Ir77 Pt78 Au79 Hg80

5d 5d2 5d3 5d4 5d5 5d6 5d7 5d8 5d9 5d10

6s2 6s2 6s2 6s2 6s2 6s2 6s2 6s 6s 6s2

electrons are transferred from the anionic p states to the 5d states of the Eu2+ cations, resulting in an
antiferromagnetic coupling.

17.3 Diluted Magnetic Semiconductors

In Table 17.2, the transition metals and their electron configurations are summarized. The 3d transition
metals are typically used for magnetic impurities in DMS due to their partially filled 3d shell. Due to
Hund’s rule, the spins on the 3d shell are filled in parallel for the first five electrons up to half filling (in
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Fig. 17.2 Diagrammatic
overview of AII

1−xMnxBVI

alloys and their crystal
structures. The bold lines
indicate ranges of the
molar fraction x for which
homogeneous crystal
phases form. ‘Hex’ and
‘Cub’ indicate wurtzite and
zincblende, respectively.
From [1526]

Fig. 17.3 a Energies of
�6 → �8 transitions versus
magnetic field for
Hg0.996Mn0.004Te at
T = 2K. Symbols are
experimental values for
two polarization directions
as indicated. Numbers
denote quantum numbers
of transitions. Solid lines
are theoretical fits. b
Interaction gap versus Mn
concentration for
Hg1−xMnxTe at
T = 4.2K. Various
symbols represent data
from different authors and
methods. Dashed line is a
guide to the eye. Adapted
from [1528]
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order to allow the electrons to get out of their way in real space). Thus, the atoms have a sizeable spin
and a magnetic moment. The spin of Mn is S = 5/2. Most transition metals have a 4s2 configuration
that makes them isovalent in II–VI compounds. We note that Zn has a complete 3d shell and thus no
net spin. In Fig. 17.2, an overview of the crystallographic properties is given for Mn-alloyed II–(Se, S,
Te, O) based DMS [1526] (DMS with Se, S, and Te have been discussed in [1527]).

As an example, the properties of Hg1−xMnxTe are discussed. This alloy is semiconducting (positive
band gap ε0) for x > 0.075 and a zero-gap material (negative interaction gap ε0) for smaller Mn
concentration (cf. Fig. 6.46). The transitions between the �6 and �8 bands can be determined with
magnetoabsorption spectra in the infrared [1528]. In Fig. 17.3a, the magnetic field dependence of
transition energies between different Landau levels is shown that can be extrapolated to yield the
interaction gap. The interaction gap is shown in Fig. 17.3b as a function of the Mn concentration.

For small Mn concentrations, the DMS behaves like a paramagnetic material. For larger concen-
trations, the Mn atoms have increasing probability to be directly neighbored by another Mn atom and
suffer superexchange interaction (cf. (3.24b)). At a certain critical concentration xc, the cluster size
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Fig. 17.4 Magnetic phase
diagram of Hg1−xMnxTe,
‘P’ (‘SG’) denotes the
paramagnetic (spin glass)
phase. Various symbols
represent data from
different authors and
methods. Dashed line is a
guide to the eye. Adapted
from [1528]
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becomes comparable with the size of the sample. If interaction up to the first, second or third neighbor
are taken into account for a fcc lattice, the critical concentrations are given by xc = 0.195, 0.136, and
0.061, respectively [1529]. The nearest-neighbor interaction between Mn atoms in such DMS as (Zn,
Cd, Hg) Mn(S, Se, Te) was found to be antiferromagnetic,1 i.e. neighboring spins are aligned antipar-
allel. Due to frustration of antiferromagnetic long-range order on a fcc lattice, an antiferromagnetic
spin glass forms. The transition temperature TC between the paramagnetic and spin-glass phases of
Hg1−xMnxTe is shown in Fig. 17.4.

In III–V compounds, the 3d transition metals represent an acceptor if incorporated on the site of
the group-III element as, e.g., in the much investigated compound Ga1−xMnxAs. This material will
be used in the following to discuss some properties of magnetic semiconductors. It seems currently
well understood and has a fairly high Curie temperature of TC ≈ 160K. Ferromagnetism in a diluted
magnetic semiconductor is believed to be caused by indirect exchange through itinerant charge carri-
ers. The ferromagnetic coupling can be invoked by the Ruderman–Kittel–Kasuya–Yoshida (RKKY)
interaction, i.e. the spins of the paramagnetic ions are aligned via interaction with the free carriers in
the semiconductor. A related concept is the double exchange2 [1530–1532] in which carriers move in a
narrow Mn-derived d-band (for d-wave character see Fig. 7.16c). Such a mechanism was first invoked
for PbSnMnTe [1533]. Later, ferromagnetism was discovered in InMnAs [1534] and GaMnAs [1535].
In (In,Ga)MnAs a Mn ion (spin up) spin polarizes the surrounding hole gas (spin down), which has
been supplied from the Mn acceptors. This mechanism lowers the energy of the coupled system. The
interaction

H = −β N0 x S s (17.1)

between the Mn d-shell electrons (S = 5/2) and the p-like free holes (s = 1/2) is facilitated by p–d
hybridization of the Mn states. N0 denotes the concentration of cation sites in the A1−xMnxB alloys.
The coupling via electrons is much weaker (coupling coefficient α). The holes interact with the next
Mn ion and polarize it (spin up), thus leading to ferromagnetic order. The ferromagnetic properties
are evident from the hysteresis shown in Fig. 17.6a. Without the carrier gas such interaction is not
present and the material is only paramagnetic. Theoretical results for the Curie temperature of various
p-type semiconductors are shown in Fig. 17.5. Generally, the quest for higher Curie temperatures (well
above room temperature) is underway and wide band gap materials such as GaN or ZnO doped with
transition metals have shown some encouraging results. Mn-substituted chalcopyrite semiconductors

1Such superexchange leads to antiferromagnetic interaction if the bond angle is ‘close’ to 180◦.
2This model is also called the Zener model.
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Fig. 17.5 Computed
values of the Curie
temperature TC for various
p-type semiconductors
plotted versus the band gap
(dashed lines are guides to
the eye). All materials
contain 5% Mn on the
cation sublattice and a hole
concentration of
p = 3.5 × 1020 cm−3.
Values for TC taken
from [1532]

are analyzed theoretically in [1536] and are predicted to exhibit less-stable ferromagnetism than III–V
semiconductors of comparable band gap.

The carrier density and thusmagnetic properties in aDMS can be controlled in a space-charge region
(cf. Sect. 21.2.2) as demonstrated in [1537]. In Fig. 17.6, results are shown for hydrogen- (deuterium-)
passivatedGaMnAs that exhibits ferromagnetismas ‘as-grown’ thinfilm.Thedeuterium is incorporated
in similar concentration as the Mn, assumes a back-bond position (forming a H–As–Mn complex) and
compensates the hole gas from the Mn (cf. Sect. 7.9). The low-temperature conductivity drops nine
orders of magnitude [1538]. Such material displays only paramagnetic behavior. An optimal Mn
concentration for ferromagnetic Ga1−xMnxAs is around x = 0.05. For smaller Mn concentrations, the
hole density is too small and the Curie temperature drops; for larger Mn concentrations, the structural
properties of the alloy degrade (phase separation into GaAs and MnAs.3).

Magnetic hysteresis has been found in nearly compensatedMn-doped ZnO [1539, 1540] (Fig. 17.7).
Such material is interesting due to its small spin-orbit coupling. The exchange mechanism is under
debate.

Fig. 17.6 Magnetization M versus magnetic field H for Ga0.963Mn0.037As at low temperature. a Comparison of as-
grown (full squares) and deuterated (open circles) thin film with magnetic field in the layer plane at T = 20K. b
Magnetization of the deuterated sample at T = 2K for larger magnetic fields. Solid line is Brillouin function for g = 2
and S = 5/2. Adapted from [1538]

3MnAs is a ferromagnetic metal. MnAs clusters can be a problem since they create ferromagnetic properties but not in
the way the DMS is supposed to work.
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Fig. 17.7 Magnetization
M versus magnetic field H
for Zn0.935Mn0.065O thin
film at T = 10 and 300K.
A hysteresis is obvious for
both temperatures
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17.4 Spintronics

Spintronics (as opposed to electronics) is an emerging field that uses the electron spin rather than its
charge for transport, processing and storage of information. Prototype devices are the spin transistor
and the spin LED. A crucial point is spin injection, i.e. the creation of (highly) spin-polarized currents.
It remains to be seen whether spintronics can be developed to its theoretically envisioned potential and
will play a commercially important role in the course of microelectronics. The spin degree of freedom
also promises potential for quantum information processing due to its weak coupling to charge and
phonons and the resulting long dephasing time.

It shall be mentioned here that the magnetization alters also the ‘classical’ transport properties of the
semiconductor. The Hall effect is modified strongly and reflects the magnetic hysteresis, also termed
anomalous Hall effect (AHE).4 This effect was already discovered by Hall in 1881 for Ni and Co
[1541]; a review of the AHE can be found in [1542]. Also the optical excitation of spin-polarized
carriers in non-magnetic materials causes AHE [1543]. For a magnetic material with topological band
structure, the internal field can be sufficient to evoke the QHE [1544]; this quantum anomalous Hall
effect (QAHE) has been reported for (Bi,Sb)2Te3:Cr [1545] and MnBi2Te4 [1546].

17.4.1 Spin Transistor

In this device (for regular transistors cf. Chap. 24), spin-polarized electrons are injected from contact 1,
transported through a channel and detected in contact 2. During the transport, the spin rotates (optimally
by π ) such that the electrons cannot enter contact 2 that has the same magnetization as contact 1
(Fig. 17.8). The spin rotation is caused by spin-orbit interaction due to the electric field under the gate
contact. This effect is called the Rashba effect and is purely relativistic [1547]. As channel material, a
semiconductor with strong spin-orbit coupling such as InAs or (In,Ga)Sb is preferable. However, the
use of narrow-gap semiconductors and the increase of spin scattering at elevated temperatures [1548]
make the realization of such a transistor at room temperature difficult.

4This use of the term ‘anomalous’ should be distinguished from the historical use of ‘anomalous’ Hall effect for the sign
reversal of the Hall voltage for hole conductors.
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source draingate

Fig. 17.8 Scheme of spin transistor after the proposal of [1549]. Source and drain are ferromagnets with their magneti-
zation shown schematically as arrows. The channel under the gate transports electrons whose spin rotates in the electric
field under the gate

17.4.2 Spin LED

In a spin LED (for LEDs see Sect. 23.3), the injection of spin-polarized carriers into the active layer
leads to circularly polarized luminescence. The spin alignment can be achieved with semimagnetic
semiconductors grown on top of the active layer or via spin injection from a ferromagnetic metal
into the semiconductor (for metal–semiconductor junctions cf. Sect. 21.2). In Fig. 17.9a, a Fe/AlGaAs
interface is shown.

Ideally, the spin-polarized electrons from the ferromagnetic metal tunnel into the semiconductor and
transfer to the recombination region. Subsequently, the emission is circularly polarized (Fig. 12.30b).
The degree of circular polarization is

Pσ = Iσ+ − Iσ−
Iσ+ + Iσ−

, (17.2)

with Iσ± being the intensity of the respective polarization. The degree of polarization depends on the
magnetization of the metal. For the saturation magnetization of Fe, the maximum polarization is about

(a)

Fe

AlGaAs
[001](110) (b)

Fe/
AlGaAs/
GaAs

MFe

Fig. 17.9 a Transmission electron microscopy image of the (110) cross section of the Fe/AlGaAs interface of a spin
LED. The vertical lines in Fe are the (110) planes with 0.203nm distance. b Magnetic-field dependence of the circular
polarization ratio Pσ at T = 4.5K (17.2) (filled and empty circles) and the out-of-plane component of the Fe-film
magnetization (dashed line, scaled to the maximum of Pσ ). Reproduced from [1551] by permission of the MRS Bulletin
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30% at T = 4.5K (Fig. 17.9b) [1550]. The interface and its structural nonideality of the interface
presumably prevent the spin injection from being 100% efficient [1551]. Recently, close to pure (95%)
circular polarization has been obtained from a (Al,Ga)As/GaAs-based stripe-laser-like (edge emitting)
structure with Fe/crystalline AlOx spin-tunnel barrier [1552].



Chapter 18
Organic Semiconductors

Abstract An introduction to organic semiconductors, based on the sp2 bonding scheme is given,
covering small organic molecules and polymers. Their electronic structure, doping schemes, as well
as their particular transport and optical properties are covered.

18.1 Introduction

Organic semiconductors are based on carbon compounds. Themain structural difference from inorganic
semiconductors is the bond based on sp2 hybridization (cf. Sect. 2.2.3) as present in benzene (and
graphite). Diamond, although consisting of 100% carbon, is not considered an organic semiconductor.
Wenote that carbon can form further interesting structures based on sp2 bonds, such as carbonnanotubes
(Sect. 14.3), (single or few layer) graphene sheets (Sect. 13.1) rolled up to form cylinders, or fullerenes,
e.g. soccer-ball-like molecules such as C60.

In the 1980 Handbook on Semiconductors only a good ten pages were devoted to organic semicon-
ductors [1553]. Now several textbooks are available [1554, 1555] for a much more detailed treatment
than given here.

18.2 Materials

18.2.1 Small Organic Molecules, Polymers

The prototype organic molecule is the benzene molecule with its ring-like structure (Fig. 2.8).
There is a large number of organic, semiconducting molecules that differs by the number of benzene

rings (Fig. 18.1), the substitution of carbon atoms by nitrogen or sulfur (Fig. 18.2a, b), the polymer-
ization (Fig. 18.2c) or the substitution of hydrogen atoms by side groups (Fig. 18.2d). Since PPV is
insoluble, typically derivatives such asMEH-PPV1 [1557] that are soluble in organic solvents are used.
Compared to benzene, the substitution of one carbon atom by nitrogen (pyridine) represents doping
with one electron. In Fig. 18.3, the most important building blocks of organic molecules are shown.

12-ethoxy,5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene.

© Springer Nature Switzerland AG 2021
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Fig. 18.1 Various organic
compounds: 1: naphtalene,
2: anthracene, 3: tetracene,
4: pentacene, 5: pyrene, 6:
perylene, 7: chrysene, 8:
pyranthrene, 9:
isoviolanthrene, 10:
anthanthrene, 11:
coronene, 12: ovalene, 13:
violanthrene, 14:
p-terphenyl, 15: rubrene,
16: m-dinaphthanthrene,
17: anthanthrone, 18:
m-dinaphthanthrone, 19:
violanthrone, 20:
pyranthrone, 21:
isoviolanthrone

(a) (b) (c) (d)

(e)

Al

N

O

N
O

N

O

(f)

Fig. 18.2 Organic compounds: a thiophene, b pyridine, c poly-(p-phenyl), d poly-(p-phenylvinyl), e Alq3 (tris-(8-
hydroxyquinolate)-aluminum) and f a three-dimensional view of the Alq3 molecule. Part (f) reprinted with permission
from [1556], ©1998 AIP

18.2.2 Organic Semiconductor Crystals

Small organic molecules can crystallize into solids, so-called organic molecular crystals (OMC), due
to van-der-Waals interaction. In Fig. 18.4a, the monoclinic unit cell of an anthracene crystal [1558]
is shown as an example. Also tetracene and pentacene (Fig. 18.4b) have this layered ’herringbone‘
structure. A comparison of the unit cells of oligoacene crystals is given in Table 18.1.

Crystal growth of single crystal OMC is achieved with a variety of methods, among them subli-
mation, Bridgman- and Czochralski-type methods [1560, 1561], vapor phase growth [1562, 1563]
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Fig. 18.3 Building blocks
of organic molecules,
‘R’=alkyl group, i.e. CH3
(methyl-), CH3CH2
(buthyl-), . . .
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Fig. 18.4 a Monoclinic unit cell (for size see Table 18.1) of anthracene crystal. b Two herringbone layers of pentacene
in a projection onto the bc plane of the triclinic unit cell. Adapted from [1566]

or from solution [1564, 1565]. Single organic molecular crystals exhibit intrinsic material properties.
The practical use of organic semiconductors involves thin films, e.g. in LEDs (OLED, Sect. 23.3.7)
and transistors (OFET, Sect. 24.6.4). Thin films of organic molecules are typically disordered and their
performance parameters are inferior to that of OMCs.



476 18 Organic Semiconductors

Table 18.1 Properties of oligoacene crystals. Melting point and unit cell parameters. Data from [1559]

Property Naphtalene Anthracene Tetracene Pentacene

Melting point (◦C) 80 217 357 > 300 ◦C
Crystal system Monoclinic Monoclinic Triclinic Triclinic

a (nm) 0.824 0.856 0.798 0.793

b (nm) 0.600 0.604 0.614 0.614

c (nm) 0.866 1.116 1.357 1.603

α (◦) 90 90 101.3 101.9

β (◦) 122.9 124.7 113.2 112.6

γ (◦) 90 90 87.5 85.8

Fig. 18.5 Schematic band
structure of a polymer
originating from the states
of the benzene molecule
(see Fig. 2.11)

pz

sp2

6

18

18.3 Electronic Structure

The pz orbitals in benzene are partially filled and there is an energy gap between HOMO and LUMO
(Fig. 2.11). A similar consideration is valid for polymers. The coupling of orbitals along the polymer
chain leads to broadening of the π and π∗ states into a (filled) valence and an (empty) conduction band,
respectively (Fig. 18.5).

The HOMO and LUMO positions of various organic semiconductors are shown in Fig. 18.6 rel-
ativ to the vacuum level (cmp. Fig. 12.21 for inorganic semiconductors). The HOMO is also known
as ionization energy (IE), the LUMO as electron affinity (EA). With layered organic semiconductors
heterostructures can be built, e.g. to design recombination pathways (recombination layer, electron
blocking layers (EBL) and hole blocking layers (HBL)). For electron injection and electron extrac-
tion (hole injection) contacts, metals with appropriate work function (in connection with a possible
interface dipole layer) have to be used. More details on injection and extraction contacts to organic
semiconductors are discussed in Sect. 21.2.7.

18.4 Doping

The doping of organic semiconductors can be achieved by

• partial oxidation or reduction of the organic molecule,
• substitution of atoms in the organic molecule,
• mixing of the matrix with ‘dopant’ molecules.
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Fig. 18.6 Position of
HOMO and LUMO for a
variety of organic
semiconductors (relative to
a common vacuum level at
E = 0eV). Based on
values from [1567]. On the
right hand side the work
functions of several metals
are shown for comparison

(a) (b)

Fig. 18.7 a Conductivity (at 0.9V/µm) versus dopant concentration ND for PPEEB films. Experimental data (circles)
andfit (solid line) according to (18.1)with activation energy Ea,0 = 0.23eVandβ = 6.5×10−8 eVcm (μ = 0.2cm2/Vs).
Dashed line denotes linear relation between conductivity and ND. Adapted from [1571]. b Thermal activation energy
Ea of carriers (holes) in ZnPc:F4-TCNQ as a function of the molar dopant concentration. Adapted from [1568]

The systematic shift of the Fermi levelwith dopant concentration has been reported in [1568]. Typically,
the conductivity increases superlinearly with the doping concentration (Fig. 18.7a), an effect discussed
in detail in [1569]. While the mobility remains constant, the thermal activation energy Ea for carriers
decreases with increasing doping (Fig. 18.7b) due to electrostatic interaction [594, 1570], an effect
already discussed in Sect. 7.5.7. The activation energy in the dilute limit Ea,0 is modified to (cmp.
(7.52))

Ea = Ea,0 − β N 1/3
D . (18.1)
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Fig. 18.8 Historic
development of the
experimentally achieved
mobility of organic
semiconductors at room
temperature

18.5 Transport Properties

Transport in organic semiconductors is characterized by

• strong polaronic effects,
• hopping conduction,
• low mobility, low drift saturation velocity.

The interaction of charges with lattice deformations leads to the formation of polarons [1572]. In
organic materials these are often ’small‘, i.e. the extension of the deformation is on atomic scale.
Such self-trapping of charges reduces their mobility. Two charges can share the same deformation
(bipolaron) or oppositely charged polarons can attract (similar to an exciton). If these charges are on
the same (neighboring) polymer chain, the polaron is called intrachain (interchain).

The conductivity within a molecule, e.g. a long polymer chain, and the conductivity between dif-
ferent molecules have to be distinguished. The conduction between different molecules occurs via
hopping. Typically, the conductivity is thermally activated according to

σ = σ0 exp

(
− Ea

kT

)
, (18.2)

where Ea is an energy of the order of 1eV. Such activation also pertains to the mobility alone, e.g.
Ea = 0.48eV for PPV [1573].

The maximum low-field mobility of many crystalline organic semiconductors at room temperature
is around 1cm2/Vs with a weak temperature dependence [1574]. Such mobility is much smaller than
that of crystalline silicon and rather comparable to that of amorphous silicon. Improved purity and
handling of organic semiconductors has allowed to achieve intrinsic material properties (Fig. 18.8).
The mobility increases at low temperatures, e.g. below 100K in naphtalene [1575]. This has been
attributed to the freeze-out of phonons and the transition from hopping to band transport.

The drift velocity at higher fields shows saturation but the values, even at low temperature, are much
smaller than in silicon (Fig. 18.9). An analytical model for the described main features of transport in
organic semiconductors has been given in [1576].
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Fig. 18.9 Carrier velocity
in ultrapure and highly
perfect single crystals of
(n-conducting) perylene at
T = 30K and
(p-conducting) naphtalene
at T = 4.3K. For
comparison electron (hole)
velocity in silicon at room
temperature is shown as
solid (dashed) line.
Adapted from [1561]

18.6 Optical Properties

Organic molecules can emit light efficiently and are thus useful for light emitters. For the photo-physics
of organic materials it is essential to recall the molecular physics of singlet and triplet states. In the
singlet (triplet) state, the total spin quantum number of the unpaired electrons is S = 0 (S = 1). A
simple energy scheme includes a ground state S0 and excited singlet (S1) and triplet (T1) states. The
recombination transition S1 → S0 is allowed and its lifetime short. Such luminescence is termend
‘fluorescence’. Recombination from the triplet state is forbidden or at least very slow (‘phosphores-
cence’).

As an example for a small organic molecule, the fluorescence lifetime of Alq3 is about 12ns [1577].
The triplet lifetime is in the 10µs range [1578]. Luminescence and absorption spectra of Alq3 are
shown in Fig. 18.10. The luminescence peak is redshifted with respect to the absorption edge due to
the Frank-Condon principle (Fig. 10.21). The density of excited (empty) states of the Alq3 molecule
is shown in Fig. 18.11 together with the orbitals associated with the four prominent states. The lowest
orbital is the LUMO and leads to the visible luminescence of the Alq3 in the red.

In Fig. 18.12, the photoluminescence (PL) and absorption of a polymer, poly-thiophene are shown.
The recombination is below the band gap of 2.1–2.3eV on an excitonic level at 1.95eV. There are

Fig. 18.10 Luminescence
and absorption spectra of
Alq3 (vapor-deposited
150nm thin film on a
quartz substrate) at room
temperature. Adapted
from [1579]
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(a) (b)

Fig. 18.11 a Projected density of states (for C, N, and O) of excited states in an Alq3 molecule. The origin of the energy
axis is the HOMO level. bOrbitals for the four states labeled I–IV in (a). Reprinted with permission from [1556], ©1998
AIP

(a)

Fig. 18.12 Photoluminescence (PL) spectra at T = 20 and300Kand absorption spectrum (green line) of poly-thiophene.
The vertical dashed line denotes the detection energy (Edet = 1.83eV) of the PL excitation (PLE) spectrum (blue circles)
(T = 20K). Adapted from [1580]

several phonon replica whose separation of 180meV corresponds to the C–C stretching mode. The PL
excitation (PLE) spectrum of poly-thiophene demonstrates that the PL at 1.83eV can be excited via
the exciton level.

The theoretical band structure of poly-thiophene is shown in Fig. 18.13a. The Brillouin zone is one-
dimensional. The situation I corresponds to a single molecular chain, the situation II pertains to the
chain embedded in a medium with a dielectric constant ε = 3. The predicted band gaps are 3.6eV and
2.5eV, respectively. The exciton binding energy is about 0.5eV. The exciton is a Frenkel exciton that
has a small extension and is localized. The high binding energy is favorable for radiative recombination
since the exciton is stable at room temperature. For photovoltaic applications, it is unfavorable since
it has to be overcome in order to separate electrons and holes (after absorption). Generally, intrachain
excitons (as here) and interchain excitons, where electron and the hole are localized on different chains,
are distinguished.

Collection of carriers in the ‘dark’ triplet state poses a problem limiting the quantum efficiency to
25% in a simple model [1582]. Harvesting luminescence from all exciton states would yield signifi-
cantly higher efficiencies than is possible in purely fluorescent materials (or devices).
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(a) (b) (c)

Fig. 18.13 a Band structure of poly-thiophene (‘I’: naked chain, ‘II’: chain in a dielectric medium (ε = 3)), b single-
particle energies and band gap, c exciton levels (’E’: experimental values). Reprinted with permission from [1581],
©2002 APS

(a) (b) (c)

(d)

Fig. 18.14 Molecular structure of a Ir(ppy)3, b CBP and c TDP (see text). d Electroluminescence spectra (at room
temperature) of CBP:6%Ir(ppy)3, CBP:10%Ir(ppy)3/1%DCM2 and CBP:2%DCM2. Based on data from [1585, 1586]

A successful route is the use of a phosphorescent guest material. Radiative transitions from triplet
states become partially allowed when the excited singlet and triplet states are mixed. This is typically
achieved in metalorganic molecules with heavy metal atoms, providing large spin-orbit interaction
effects [1583, 1584]. Most prominently Ru-, Pt- and Ir-containing compounds are used, e.g. fac tris(2-
phenylpyridine) iridium [Ir(ppy)3] in 4,4’-N,N’-dicarbazole-biphenyl [CBP] (Fig. 18.14a,b) [1585].
The luminescence spectrum of Ir(ppy)3 is shown in Fig. 18.14d. The radiative decay constant of the
Ir(ppy)3 triplet state is about 800ns and observable if energy transfer from the host triplet state is
exotherm (�G = GG − GH < 0 [1578], see Fig. 18.15a) and fast. This is the case for CBP:Ir(ppy)3
(Fig. 18.15b), �G ≈ −0.2eV. Actually, reverse transfer from Ir(ppy)3 to CBP seems responsible for
some loss in luminescence efficiency and the decrease in phosphorescent lifetime from 800ns to 400ns.
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(a) (b)

Fig. 18.15 a Schematic term diagram of host (TH) and guest (TG) triplet states. Straight arrows denote energy transfer
between triplet states, wiggly arrows denote radiative transitions to the (singlet) ground state. b Electroluminescence
transients (at room temperature, detected in the range 500–560nm [cmp. Fig. 18.14b]) of CBP:6%Ir(ppy)3 (τ ≈ 1µs)
and TDP:6%Ir(ppy)3 (τ ≈ 15µs). Insets: term schemes with arrow denoting the rate limiting step. Based on data
from [1578]

(a) (b)

Fig. 18.16 a Schematic term scheme of CBP:Ir(ppy)3/DCM2 and energy transfer and recombination paths (cmp.
spectrum in Fig. 18.14). The rate constants are shown for various processes, the rate limiting step is shown with a bold
arrow. b Electroluminescence transients after 100ns excitation pulse (grey area) of Ir(ppy)3 and DCM2 luminescence
from CBP:10%Ir(ppy)3/1%DCM2. Based on data from [1586]

In the case of N,N’-diphenyl-N,N’-bis(3-methylphenyl)-[1,1’-biphenyl]-4,4’-diamine [TDP]
(Fig. 18.14c) host, the triplet energy transfer to the phosphorent Ir(ppy)3 guest is endotherm (�G ≈
+0.1eV) and represents the rate limiting step [1578]. In this case the recombination of Ir(ppy)3 has
a decay constant of about 15µs (Fig. 18.15b). The thermal activation character is confirmed by even
longer decay times at low temperatures (τ ≈ 80µs at T = 200K) [1578]. Endothermic transfer allows
to pump a blue guest phosphor without a blue host material.

Further, subsequent Förster energy transfer [1587] from the guest triplet state to a fast and efficient
singlet state (SD) of a fluorescent dye is possible, e.g. fromCBP:Ir(ppy)3 toDCM2 [1586]. The transient
lifetime of pure DCM2 is about 1ns. In a mixture of CBP:10%Ir(ppy)3/1%DCM2 the luminescence
of DCM2 appears with the same 100ns decay constant as that of Ir(ppy)3 (Fig. 18.16b). This decay
constant (rate limiting step, see Fig. 18.16a) corresponds to the energy transfer depleting the triplet
state of Ir(ppy)3 to DCM2 and is much faster than the pure Ir(ppy)3 radiative lifetime.
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Fig. 18.17 Photoconductivity
and absorption spectrum of
anthracene

The photoconductivity of organic semiconductors is typically related to their absorption spectrum
as shown for anthracene in Fig. 18.17.



Chapter 19
Dielectric Structures

Abstract Dielectric structures, in particular periodic dielectric structures are treated. A general one-
dimensional model is developed describing Bragg mirrors. Examples for photonic band gap materials
in one, two and three dimensions are given. Different types of dielectric cavities and microscopic res-
onators including Fabry-Pérot and whispering gallery resonators are treated. Quantum electrodynamic
physical effects from light matter coupling such as Purcell effect and strong coupling are treated.

19.1 Photonic Band Gap Materials

Layered structures of dielectric materials with different index of refraction are used as optical elements
such as filters or reflection and anti-reflection coatings [1588]. In this section we discuss the use of
such concepts in one-, two- and three-dimensional photonic band gap materials.

19.1.1 Introduction

A structure with a so-called photonic band gap (PBG) exhibits an energy range (color range) in which
photons cannot propagate in any direction. In the photonic band gap, there are no optical modes, no
spontaneous emission and no vacuum (zero-field) fluctuations. We recollect that spontaneous emission
is not a necessary occurrence: Looking at Fermi’s golden rule (9.30) for the transition probability
integrated over all final states

w(E) = 2π

�
|M |2 ρf(E) , (19.1)

we see that the decay rate depends on the densityρf of final states at energy E . In the case of spontaneous
emission, this is the (vacuum) density Dem of electromagnetic modes (per energy per volume) that
varies ∝ ω2:

Dem(E) = 8π

(hc)3
E2 . (19.2)

In a homogeneous optical medium c must be replaced with c/n (cmp. Sect. 10.2.3).
If the band gap of a PBG is tuned to the electronic gap of a semiconductor, the spontaneous emission,

and also induced emission, can be suppressed. Thus, one mode has to be left by ‘doping’ the structure.
In this mode all emission will disappear and an efficient single-mode (monochromatic) LED or ‘zero-
threshold’ laser could be built. A schematic comparison of the band structure of electrons and photons
is given in Fig. 19.1.
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Fig. 19.1 Right:
electromagnetic dispersion
with a forbidden gap at the
wavevector of the
periodicity. Left:
Electron-wave dispersion
typical of a direct-gap
semiconductor. When the
photonic band gap
straddles the electronic
band gap, electron–hole
recombination into photons
is inhibited since the
photons have no place to go
(zero final density of states)

19.1.2 General 1D Scattering Theory

The formation of a photonic band gap in a one-dimensional dielectric can be calculated to a large extent
analytically and thus with direct insight. Let n(x) be the spatially varying index of refraction (no losses
or nonlinear optical effects). The one-dimensional wave equation (Helmholtz equation) reads for the
electric field E

∂2E(x)

∂x2
+ n2(x)

ω2

c2
E(x) = 0 . (19.3)

A comparison with a one-dimensional Schrödinger equation

∂2�(x)

∂x2
+ 2m

�2
[E − V (x)]�(x) = 0 (19.4)

shows that the Helmholtz equation corresponds to the quantum-mechanical wave equation of zero
external potential V and a spatially modulated mass, i.e. a case that is usually not considered.

Let us consider now the amplitude ak of the k eigenvector. The eigenvalue is then ωk . The one-
dimensional mode density ρ(ω) (per energy and per unit length) is

ρ(ω) = dk

dω
, (19.5)

which is the inverse of the group velocity.
We follow one-dimensional scattering theory as presented in [1589]. At this point we do not rely

on any specific form of n(x) (Fig. 19.2a). The (complex) transmission coefficient t for any index
structure is

t = x + iy = √
T exp(iφ) , (19.6)

where tan φ = y/x . φ is the total phase accumulated during propagation through the structure. It can
be written as the product of the physical thickness of the structure d and the effective wave number k.
Hence we have the dispersion relation

d

dω
tan(k d) = d

dω

( y

x

)
. (19.7)
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Fig. 19.2 1D scattering
problem: a General
scattering of an index of
refraction distribution, b
N -period stack, c two-layer
(quarter-wave) stack
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Evaluating the derivative we find

d

cos2(k d)

dk

dω
= y′x − x ′y

x2
, (19.8)

where the prime denotes derivation with respect to ω. Using the relation cos2 θ = (1 + tan2 θ)−1, we
obtain the general expression

ρ(ω) = dk

dω
= 1

d

y′x − x ′y
x2 + y2

. (19.9)

19.1.3 Transmission of an N-Period Potential

Now, the behavior of N periods of a given index distribution n(x) within a thickness d of one period
(Fig. 19.2b) is investigated. The scattering matrixM connects the intensity at x = 0 with that at x = d.
We use the column vector u = (u+, u−)T containing the right- and left-going waves (labeled ‘+’ and
‘−’, respectively), u± = f ± exp(±ik x),

u(0) = Mu(d) . (19.10)

Using the boundary conditions u(0) = (1, r) and u(d) = (t, 0), we find that M has the structure

M =
(
1/t r∗/t∗
r/t 1/t∗

)
. (19.11)
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The conservation of energy requires that detM = (1 − R)/T = 1. The eigenvalue equation for M is

μ2 − 2μRe(1/t) + 1 = 0 . (19.12)

The two eigenvalues μ± are related by μ+μ− = detM = 1. If we consider an infinite, periodic
structure, we know from Bloch’s theorem (cf. Sect. 6.2.1) that the eigenvector varies between unit cells
only via a phase factor, i.e. |μ| = 1. Therefore, the eigenvalues can be written as

μ± = exp(±iβ) , (19.13)

where β corresponds to the Bloch phase of a hypothetical infinite periodic structure. This phase β

should not be confused with φ defined earlier, which is associated with the unit cell transmission. We
find the condition

Re(1/t) = cosβ (19.14)

for the Bloch phase. Since every matrix obeys its own eigenvalue equation, we have also (1 being the
unity matrix)

M2 − 2M cosβ + 1 = 0 . (19.15)

By induction one can show that the N -period case has the scattering matrix

MN = M
sin(N β)

sin β
− 1

sin((N − 1) β)

sin β
. (19.16)

The solution for the finite period case can be written in terms of the Bloch phase of the infinite potential.
The transmission and reflection of the N -period system are given by

1

tn
= 1

t

sin(N β)

sin β
− sin((N − 1) β)

sin β
(19.17a)

rn
tn

= r

t

sin(N β)

sin β
. (19.17b)

The transmission of intensity can be written as (T = t∗t)

1

TN
= 1 + sin2(N β)

sin2 β

(
1

T
− 1

)
. (19.18)

Again, up to this point no specific distribution of the index of refraction within the unit cell has been
specified.

From (19.17a), a general formula for the mode density ρN (ω) of the N -stack can be obtained
as [1589]

ρN = 1

N d

sin(2Nβ)

2 sin β

(
η′ + η ξ ξ ′

1−ξ 2

)
− N η ξ ′

1−ξ 2

cos2(Nβ) + η2
(
sin(Nβ)

sin β

)2 , (19.19)

where ξ = x/T = cosβ and η = y/T .
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19.1.4 The Quarter-Wave Stack

Aquarter-wave stack, also known as aBraggmirror, exhibits a one-dimensional photonic band gap.One
period consists of two regions with thickness and index of refraction (d1, n1) and (d2, n2), respectively
(Fig. 19.2c). In the quarter-wave stack each region has an optical thickness ofλ/4 (thewave accumulates
in each region a phase of π/2) for a particular wavelength λ0 or (midgap) frequency ω0. Thus, the
condition reads

n1 d1 = n2 d2 = λ0

4
= π

2

c

ω0
. (19.20)

Using the Fresnel formulas, the transmission of an arbitrary two-layer cell is

t = T12 exp(i (p + q))

1 + R12 exp(2i q)
, (19.21)

where p = n1d1ω/c and q = n2d2ω/c are the phases accumulated in the two layers, respectively. The
values of T12 and R12 are given as

T12 = 4 n1 n2
(n1 + n2)2

(19.22)

R12 = (n1 − n2)2

(n1 + n2)2
. (19.23)

For the quarter-wave stack (p = q = π/2), we obtain for (19.21)

t = T12 exp(iπ ω̃)

1 + R12 exp(iπ ω̃)
, (19.24)

where ω̃ = ω/ω0 is the frequency scaled to the midgap value.
The transmission of a single two-layer cell is

T = T 2
12

1 − 2 R12 cos(π ω̃) + R2
12

, (19.25)

and the Bloch phase is given by

cosβ = ξ = cos(π ω̃) − R12

T12
(19.26)

η = sin(π ω̃)

T12
. (19.27)

For the N -period quarter-wave stack the transmission is given by

TN = 1 + cosβ

1 + cosβ + 2 (R12/T12) sin2(N β)
. (19.28)

A band gap forms. Within the band gap, the density of modes is lowered, at the edges it is enhanced
(Figs. 19.3 and 19.4). The transmission at midgap decreases ∝ (ni/n j )

2N , where ni < n j .
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(a)

(b)

Fig. 19.3 Quarter-wave stack with indices of refraction a n1, n2 = 1.0, 1.5 and b 1.0, 3.0. Solid lines: dimensionless
density of modes ρN (19.19), dashed lines: transmission TN (19.28) for two different numbers of pairs N = 5 (left
panels) and 10 (right panels) versus the dimensionless frequency ω̃

(a) (b)

Fig. 19.4 Quarter-wave stack with indices of refraction n1, n2 = 1.0, 1.5: a Transmission TN at midgap (ω̃ = 1, down
triangles) and at the band edge (ω̃ = 1 − ω̃/2, up triangles) versus number of pairs N . b Dimensionless density of
modes ρN at maximum near the band edge and at midgap versus number of pairs N

In the limit of large N the complete width ω̃ of the band gap is implicitly given by

cos
(π

2
ω̃

)
= 1 − 2

(
n1 − n2
n1 + n2

)2

. (19.29)

If |n1 − n2| � n1 + n2, we find

ω̃ ≈ 4

π

|n1 − n2|
n1 + n2

. (19.30)
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Fig. 19.5 Reflectance of various Bragg mirrors from YSZ/Al2O3 grown by pulsed laser deposition on sapphire. The
different layer thicknesses result in the design energies 0.43eV (N = 10.5, Rmax = 0.9812, red), 1.19eV (N = 10.5,
Rmax = 0.9779, orange), 2.11eV (N = 15.5, Rmax = 0.99953, green), 3.39eV (N = 15.5, Rmax = 0.99946, blue) and
4.54eV (N = 15.5, Rmax = 0.99989, purple)

(a) (b)

Fig. 19.6 a Index of refraction of YSZ and Al2O3 as a function of photon energy. b Reflectance spectra of the 2.11eV
(green), 3.39eV (blue) and 4.54eV (purple) Bragg mirrors of Fig. 19.5 replotted as a function of the scaled frequency
ω̃ = ω/ω0

The principle of the quarter-wave stack is scalable to frequencies other than visible light.1 In Fig. 19.5
the reflectance of various quarter-wave stacks from yttria-stabilized zirconia (YSZ [1590], high index
material, Fig. 19.6a) andAl2O3 are shown [1591]. The different designwavelengths have been achieved
solely by varying the layer thicknesses.

In Fig. 19.6b the three Bragg mirrors from Fig. 19.5 with N = 15.5 pairs are replotted in relative
frequency units ω̃. The spectra look very similar; subtle differences in the width of the reflectance band
are due to slightly larger index contrast at higher design energy (cmp. Fig. 19.6a). The width of the gap
is approximately ω̃ ≈ 0.18 in agreement with (19.30).

As further example, a Mo/Si Bragg mirror with a period of 6.7nm is shown in Fig. 19.7. Such a
mirror works in the extreme UV and is used for soft X-ray optics, possibly in advanced lithography

1This is a general property of Maxwell’s equations which do not contain a specific length scale.
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(a)

50nm

Si

Mo
Si

(b)

Fig. 19.7 a Cross-sectional TEM of Mo/Si superlattice with 2.7nm Mo (dark) and 4.0nm Si (bright) layers on Si(001)
substrate. From [1592]. b Reflection spectrum for a SL with nominal period of 6.5nm and 88.5◦ angle of incidence.
Data points are shown as circles, the solid line is a fit with a period of 6.45nm. Adapted from [1593]

systems. Dielectric thin films can also be designed for anti-reflection coatings, edge filters or pass and
stop band filters as detailed in [1588].

19.1.5 Formation of a 3D Band Structure

For other applications, e.g. waveguides with minimized footprint, 3D (or at least 2D) photonic band
gap structures are needed. Details can be found in dedicated textbooks [1594–1596]. In [1597] planar,
cylindrical and spherical Bragg mirrors are discussed.

Since we want a photonic band gap that is present for all directions of propagation, a Brillouin zone
with a shape close to a sphere is preferable. Then, the main directions are at similar k-values (Fig. 19.8).
One of the best suited is the fcc lattice. Since the L-point is centered at ≈14% lower frequency than
the X-point, the forbidden gaps for different directions must be, however, sufficiently wide to create a
forbidden frequency band overlapping at all points along the surface of the Brillouin zone. For example,
the bcc lattice has a Brillouin zone that is less symmetric than that of the fcc lattice (see Fig. 3.38) and
thus is less suited for the creation of an omnidirectional photonic band gap. However, the photonic

(a)

ky

kz

kx

W

K

L
U

X

X

(b)
k

X

L

X

L

Fig. 19.8 a The Brillouin zone of the fcc lattice. b Schematic forbidden gaps at the L- and X-points
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Table 19.1 Various photonic band gap structures and some of their properties. The band gap is between the n-th and
(n + 1)th band, ω̃ is given for air/silicon (ε ≈ 12)

Name Crystal type n ω̃ (%) Refs.

Diamond diamond 2 29 [1598]

Yablonovite fcc 2 19 [1602]

Woodpile fc tetragonal 2 20 [1603]

Spirals sc 4 17 [1604]

Square-spirals tetragonal 4 24 [1599]

Layered 3D bc orthorhombic 4 23 [1605]

Inverted scaffold sc 5 7 [1606]

Inverse opal fcc 8 4.25 [1607]

Inverse hcp hcp 16 2.8 [1608]

band gap must not arise above the first band, relaxing problems due to asymmetry of the Brillouin zone
(cf. Table 19.1).

Maxwell’s equations (zero charge density) for monochromatic waves ∝ exp(iωt) (and isotropic
dielectric function)

∇ · D = 0 (19.31)

∇ × E = i
μω

c
H (19.32)

∇ × H = i
ω

c
D (19.33)

∇(μH) = 0 , (19.34)

together with D(r) = ε(r)E(r) and μ = 1 they are combined into the wave equation

∇ × [
ε−1(ω, r)∇ × H(r)

] + ω2

c2
H(r) = 0 . (19.35)

This equation is numerically solved for planar waves with wavevector k.
In the following, results are shown for various structures. In a fcc lattice of air spheres in a dielectric

medium with n = 3.6 (a typical semiconductor), no band gap can be achieved (Fig. 19.9a), only a
pseudogap (Fig. 19.9b) appears.

In a diamond lattice (imagine as two fcc lattices shifted by 1/4 〈111〉), a complete photonic band
gap is possible [1598] (Fig. 19.10). Recently, a periodic array of spirals (Fig. 19.11) has been predicted
to exhibit a large photonic band gap [1599]. Glancing-angle deposition [1600] (GLAD) is a way
to realize such structures. Another method to fabricate structures with arbitrary geometry within a
material is two-photon lithography or two-photon holography. Another path to PBG structures are
so-called inverted opals. First, a close-packed structure of spheres, e.g. monodisperse silica spheres,
is fabricated by sedimentation or self-assembly. The gaps are filled with a high-index medium and the
template is subsequently removed, e.g. by etching or dissolving. The resulting structure is shown in
Fig. 19.12a. Such a structure has a photonic band gap (Fig. 19.12b) if the refractive index is sufficiently
high (> 2.85) [1601]. The band gap in this case is between the 4th and 5th band. Table 19.1 offers a
compilation of various PBG structures and their properties.
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(a) (b)

Fig. 19.9 a Calculated photonic band gap structure of a fcc dielectric structure composed of air spheres in a dielectric
background of refractive index n = 3.5. The filling ratio is 86% air and 14% dielectric material. Dotted and solid lines
represent coupling to s- and p-polarized light, respectively. bDensity of states for the band structure of part (a). Reprinted
from [1598] with permission, ©1990 APS

(a) (b)

Fig. 19.10 a Calculated photonic band structure for a diamond dielectric structure consisting of overlapping air spheres
in a dielectric material with n = 3.6. Filling ratio of air is 81%. The frequency is given in units of c/a, a being the
cubic lattice constant of the diamond lattice and c being the velocity of light. The gap is indicated as grayed rectangle.
b Gap-to-midgap frequency ratio for the diamond structure as a function of filling ratio for dielectric spheres n = 3.6 in
air (solid circles) and air spheres in dielectric n (open circles). Optimal case: air spheres with 82% filling ratio. Adapted
from [1598], reprinted with permission, ©1990 APS

19.1.6 Disorder

A real photonic band gap structure deviates from the ideal, perfectly periodic system by slight varia-
tions of the position and possibly also the size of the dielectric ‘atoms’. This is schematically shown
in Fig. 19.13a. The difference between the real and ideal structure is a (bipolar) spatial distribution
of ε(r) which acts as a source of scattering and hence exponential attenuation of coherent beams
propagating through photonic crystals over lengths l, named the ‘(extinction) mean free path’. After
propagating over such distance l, a light beam is converted to a diffuse glow that corrupts the func-
tionality of any photonic integrated circuit. Experimentally for opals a mean free path consistent with
5% fabrication accuracy has been found (Fig. 19.13b). For such disorder and a lattice constant a ≈ λ,
the mean free path is about only 10 wavelengths, l ≈ 10λ.

19.1.7 Defect Modes

Similar to a perfect periodic atomic arrangement leading to the formation of the electronic band
structure, a perfectly periodic dielectric structure leads to the photonic band structure. As we know
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(a) (b)

(c)

Fig. 19.11 a Tetragonal square-spiral photonic crystal. The crystal shown here has a solid filling fraction of 30%. For
clarity, spirals at the corners of the crystal are highlighted with a different shade and height. The tetragonal lattice is
characterized by lattice constants a and b. The geometry of the square spiral is illustrated in the insets and is characterized
by its width, L , cylinder radius, r , and pitch, c. The top left inset shows a single spiral coiling around four unit cells.
b Oblique and edge views of a tetragonal square spiral structure grown using the GLAD (glancing-angle deposition)
process. Both markers are 1µm. c Band structure for the direct structure crystal characterized by [L ,C ,r ]=[1.6,1.2,0.14]
and a spiral filling factor of 30%. The lengths are given in units of a, the lattice constant. The width of the PBG is 15.2%
relative to the center frequency for background dielectric constant of 1 and spiral material dielectric constant of 11.9.
The positions of high-symmetry points of the BZ are illustrated in the inset. Panel (a) reprinted and panel (c) adapted
and reprinted from [1599], with permission, ©2001 AAAS. Panel (b) reprinted from [1600] with permission, ©2002
ACS

from semiconductor physics, much of the interesting physics and numerous applications lie in defect
modes, i.e. localized electronic states due to doping and recombination at such centers. The equivalent
in PBG structures are point defects (one unit missing) or line defects (a line of units, straight, bend or
with sharp angles, missing). Such defects create localized states, i.e. regions for light localization. In
the case of line defects we deal with waveguides that can be conveniently designed and could help to
reduce the size of photonic and optoelectronic integrated circuits.

1D Model

We revisit our 1D scattering theory and create now a ‘defect’. A simple defect is the change of the
width of the center n2-region in a quarter-wave stack. For the numerical example, we choose N = 11,
n1 = 1, n2 = 2.
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(a)

(i) (ii)

(iii)

(iv)

(v)

(b)

(c)

Fig. 19.12 a Cartoon showing, in five steps, the fabrication of an inverse diamond structure with a full photonic band
gap. First, (i) a mixed body-centered cubic lattice is assembled (ii) after which the latex sublattice is removed; (iii) then
the structure is sintered to a filling fraction of ∼50% after that (iv) silicon or germanium infiltration takes place and
finally (v) silica elimination. b Photonic band diagrams of (upper panel) a silicon/silica composite diamond opal and
(lower panel) made of air spheres in silicon resulting from the removal of the silica spheres from the former. The filling
fraction for silicon is 50%. The inset shows the corresponding real space structures. Adapted from [1609], reprinted with
permission, ©2001 AIP. c SEM images of internal facets of silicon inverse opal: (i) (110) facet, (ii) (111) facet. Adapted
from [1610], reprinted with permission, ©2000, Springer Nature

In Fig. 19.14, the transmission curves are shown for the undisturbed quarter-wave stack and the
microcavity with n2 dcenter

2 = 2λ0/4 = λ0/2.A highly transmissive mode at ω = ω0 arises that is quite
sharp with ω = 3 × 10−4. Thus, the quality factor Q, also called the Q-factor or finesse,

Q = ω0

ω
, (19.36)

with ω0 being the resonance frequency and ω being the linewidth, is 3.3 × 103 in this case.
If the thickness is varied (Fig. 19.15), the mode shifts away from the center. A similar scenario arises

for higher-order nl/2-cavities, e.g. n2dcenter
2 = 4λ0/4 = λ0 (Fig. 19.16).

2D or 3D Defect Modes

An example of 2D waveguiding is shown in Fig. 19.17. Point defects can be used for high-finesse
wavelength filtering. Emitters surrounded by a photonic band gap material with a defect mode can
emit into the defect mode only, leading to spectrally filtered, highly directional emission.
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(a) (b)

Fig. 19.13 a Schematic photonic band gap structure with perfect (upper left) and disordered (upper right) periodicity.
In the lower left panel the disordered structure is overlayed with the ideal structure (red circles). In the lower right panel,
the difference between ideal and disordered structure is shown. b Optical mean free path in an opal photonic band gap
structure for various lattice constants. Solid line is theory for 5% fabrication accuracy. Adapted from [1611], reprinted
with permission, ©2005 APS

(a) (b)

Fig. 19.14 Defect mode in 1D photonic band gap: a Transmission of N = 11 quarter-wave stack exhibiting a photonic
band gap (n1 = 1, n2 = 2) (dashed line) and of microcavity (solid line) with center n2-region of width λ0/2 (instead of
λ0/4). b Relative width of mode is about 3 × 10−4

19.1.8 Topological Photonic Band Structures

A review of two-dimensional topological photonics can be found in [1613]. The idea of topologically
non-trivial 2D photonic band structures has been put forward in [1614] theoretically, employing a
Faraday-effect medium breaking time-reversal symmetry. The system is a two-dimensional photonic
crystals with an external magnetic field perpendicular to the plane of light propagation. A hexagonal
array of dielectric cylindrical rods is modeled. The degeneracy of the Dirac points (at the K-points) is
lifted by introducing the Faraday medium outside the rods. The bands close to the gap obtain non-zero
Chern numbersCn = ±1 (breaking inversion symmetry only creates a gap but does not lead to non-zero
Chern number). Reversal of the magnetic field inverts the bands to Cn = ∓1. The Berry curvature of
the photonic bands plays a role analogous to that of the magnetic field in the QHE. The calculations
show the existence of unidirectionally propagating photonic edge states between media with up and
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Fig. 19.15 Transmission of N = 11 quarter-wave stack (n1 = 1, n2 = 2) with center n2-region of widths 1.8λ0/4
(dashed line) and 2.2λ0/4 (solid line)

Fig. 19.16 Transmission of N = 11 quarter-wave stack (n1 = 1, n2 = 2) with center n2-regions of widths 3λ0/4 (solid
line), 3.5λ0/4 (dash-dotted line) and 4λ0/4 (dashed line)

down magnetic fields. An experimental system similar to this is based on yttrium iron garnet (YIG) as
gyrotropic material for breaking time reversal symmetry and exhibits topological edge modes [1615].

A non-magnetic versionwhich ismuchmore desirable in terms of fabrication and choice ofmaterials
is based on the idea of the Haldane model put forward in [1616]. A next-nearest neighbor coupling t ′
in the honeycomb lattice is considered and produces topological states if the phase φ′ of the (complex)
hopping parameter t ′ is not zero or π . Further theoretical considerations and modeling of such non-
magnetic, fully dielectric topological resonators were reported in [1617, 1618]. Such resonators have
been realized and investigated in [1619]. The system consists of a square lattice of ring resonators,
which are coupled to each other through link rings. These intermediary links are spatially shifted with
respect to the ring resonators, to introduce an asymmetric set of hopping phases controlling whether the
structure results in topologically trivial φ′ = 0 or non-trivial φ′ = π/2 situation. Lasing in edge modes
and light transport at the circumference of a 10×10 field of resonators have been demonstrated [1619].

A similar concept, also playing with the different hopping parameters to create topologically trivial
and non-trivial two-dimensional photonic band structures has been reported in [1620] (Fig. 19.18).
The dipole (odd parity) and quadrupole (even parity) character of the states changes (does not change)
within a band for the topologically non-trivial (trivial) parts. The optically pumped laser emission
stems from the topologically non-trivial 2D bulk area [1620]. This is attributed to the fact that the
band-inversion around the � point leads to a topology-induced mode selection with lower threshold,
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(a)

(b) (c)

Fig. 19.17 2D photonic band gap waveguide structure. a Fabrication principle, b SEM image of the structure, c light
guiding at a 90◦ bend. Reprinted with permission from [1612], ©2000 AIP

due to limitation of the number of cavity modes with efficient confinement; also the mode closer to
the band edge has a higher quality factor.

19.1.9 Coupling to an Electronic Resonance

In a vertical-cavity surface-emitting laser (cf. Sect. 23.4.14), an optical defect mode in a 1D dielectric
structure is coupled to an electronic excitation, such as an exciton in a quantum well or dot. In the
simplest picture, the oscillator must emit its radiation into the cavity mode since other modes do not
exist in the Bragg band. Thus, the emission energy is given and fixed by the cavity mode. However,
the photon mode (field oscillator) and the electronic oscillator form a coupled system that generally
must be described using quantum electrodynamics. Energy is periodically exchanged between the two
oscillators with the Rabi frequency. An analogous phenomenon is investigated in the field of atom–
cavity interactions. A necessary condition for the observation of such an oscillation is that the radiation
energy remains long enough in the cavity that can be expressed as [1621, 1622] (cf. (19.42))

α d � 1 − R ≈ π/Q , (19.37)

where α is the absorption coefficient of the electronic transition, d is the length of the absorbing
medium, R is the reflectance of the cavity mirror and Q is the finesse of the cavity given in (19.36).
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Fig. 19.18 a Schematic different hopping parameters for hexagonal dielectric structures with different aspect ratios of
medium and air. The boundary between the two parts is highlighted in red. bVisualization of the odd (even) parity dipole
(quadrupole) mode. c SEM image of the structure with the boundary between topologically trivial and non-trivial parts
highlighted in red. A magnified view of the area indicated with the dashed white rectangle is depicted in panel d. A
topologically trivial (non-trivial) hexagon is highlighted in green (blue). Adapted from [1620]

This situation is called the strong coupling regime since it leads to anticrossing behavior of the cavity
mode and electronic resonance. In theweak coupling regime for small absorption, the resonances cross
(within their linewidth). For resonance, the emission intensity of the oscillator into the cavity mode is
enhanced and its lifetime is reduced (Purcell effect, cf. Sect. 19.2.2).

The transmission T of a Fabry–Perot cavity with two (equal and lossless) mirrors of transmission
Tm = 1 − Rm is given by

T (ω) = T 2
m exp (−2 L α(ω))

|1 − Rm exp (i 2 n∗ L ω/c)|2 , (19.38)

with the complex index of refraction n∗ = nr + iκ = √
ε and α = 2ωκ/c (cf. (9.9)). For an empty

cavity, i.e. a (small) background absorption αB and a background index of refraction nr = nB, the
resonances occur when the phase shift 2nBLω/c is an integer multiple of 2π , i.e. for

ωm = m
π c

nB L
, (19.39)

with m ≥ 1 being a natural number. In the vicinity of the resonance, i.e. for ω = ωm + δω, we can
expand exp(2nBLω/c) ≈ 1 + i2nBLδω/c and obtain from (19.38) a Lorentzian for the transmission

T (ω) ≈ T 2
m exp (−2Lα(ω))

|1 − Rm(1 + i2nBL δω/c)|2 = (Tm/Rm)2 exp (2Lα(ω))

(δω)2 + γ 2
c

. (19.40)

The frequency width (HWHM) γc of the empty-cavity resonance is given by

γc = 1 − R′

R′
c

2 nB L
, (19.41)
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where R′ = Rm exp(−2Lα). Thus, the decay rate (photon loss from the cavity) is proportional to
Tm + αBL if both terms are small. The quality factor of the cavity resonance m is given by

Q = ωm

2 γc
≈ m π

1 − R
. (19.42)

Now, the electronic resonance is put into the cavity leading to a change in the dielectric function to (cf.
(D.11))

ε = n2B

[
1 + f

1 − (ω2 + iω�)/ω2
0

]
, (19.43)

where the index of refraction due to the electronic resonance is given by n(ω) = √
ε and (D.13a,b).

For resonance of the cavity mode and the electronic oscillator, i.e. ωm = ω0, the solution for the cavity
resonance condition 2nrωL/c = m2π is obtained, using (19.39), from

nr(ω) = m
π c

ω L
= nB

ωm

ω
. (19.44)

A graphical solution (Fig. 19.19a) yields three intersections of the left and right hands of (19.44). The
very high absorption at the central solution (ω = ω0) results in very low transmission. The other two
solutions2 yield the frequencies of the coupled normal mode peaks. For f � 1, we use (D.13a) in
(19.44) and find for the splitting ±�0/2 of the two modes

�2
0 = f ω2

0 − �2 . (19.45)

This frequency is called the Rabi frequency. If the dielectric function of the oscillator is put into (19.38),
the splitting is found to be

�2
0 = f ω2

0 − (� − γc)
2 . (19.46)

A splitting will only be observable if �0 � �, γc. If the two resonances ωc and ω0 are detuned by
 = ωc −ω0, the splitting � of the transmission peaks shows the typical anticrossing behavior of two
coupled oscillators

�2 = �2
0 + 2 . (19.47)

In the experiment, typically the electronic resonance remains fixed at ω0 and the cavity resonance is
detuned by variation of the cavity length across the wafer (Fig. 19.19b).

A detailed theory of cavity polaritons is given in [1623]. The nonlinear optics of normal mode
coupling in semiconductor microcavities is reviewed in [1624].

The in-plane dispersion of the cavity polaritons depends on the coupling strength. First, the photon
dispersion is given by

Eph(k) = � ω = � c k = � c
(
k2‖ + k2z

)1/2
, (19.48)

where k‖ is the in-plane k-vector and kz is given by the resonance condition, kz = ωm/c with (19.39),

kz = m
π

nB L
. (19.49)

Thus the dispersion relation is no longer linear as for freely propagating light.

2These solutions only occur for sufficient oscillator strength f > (�/ω0)
2, i.e. in the strong coupling regime where

�2
0 > 0. The absorption coefficient at ω0 must be larger than �n∞/c.



502 19 Dielectric Structures

(a) (b)

20

15

10

5

0

-5

-10

-15
51- 01- -5 0 5 01 51 02

GaAs/
AlGaAs

0

c

Fig. 19.19 a Graphical representation of (19.44) with the two solutions marked with circles for n∞ = 1 (dashed line),
f = 10−3, �/ω0 = 10−2 and ω0 = ωm. b Reflectance peak positions (experimental data (circles) at T = 5K) versus
cavity detuning ωc − ω0 for a cavity with two GaAs/(Al,Ga)As Bragg mirrors (24/33 pairs for the front/bottom mirror)
and five embedded quantum wells whose resonances are closely matched. Solid lines are a theoretical fit according to
(19.47) with �0 = 4.3meV. The dashed lines show the electronic resonance ω0 and the cavity resonance ωc. Part (b)
based on data from [1622]

For small k‖ this leads to an (in-plane) effective photon ‘rest mass’, applying (6.38),

1

m∗
ph

= 1

�2

∂2Eph

∂k2
. (19.50)

We find

m∗
ph = � kz

c
= � ω(k‖ = 0)

c2
. (19.51)

Now we assume the electronic oscillator to be in resonance with the photon dispersion at k‖ = 0, i.e.
Eel = �ω(k‖ = 0). The electronic resonance shall have vanishing dispersion for simplicity since the
exciton mass is much larger than (19.51). The eigenwert equation of the coupled system, resembling
(6.61), is ∣∣∣∣

E − Eph V
V E − Eel

∣∣∣∣ = 0 , (19.52)

with two solutions, called the upper and lower cavity polariton branch, visualized in Fig. 19.20. Their
splitting at k‖ = 0 is 2V . Thus the coupling parameter V = ��0/2 corresponds [1623] to the Rabi
frequency (19.45). Experimental values for the splitting of 3–15meV in (In,Al,Ga)As based [1622,
1625–1628], 17–44meV in (Cd,Zn)(Te,Se) based [1629], 6–60meV in (Al,In,Ga)N based [1630–
1634] and 78meV in ZnO based [1635] microcavities were found. It is possible to condensate cavity
polaritons in the minimum of the dispersion around k‖ = 0 (Bose-Einstein condensation). In [1636]
stimulated scattering and gain from cavity polaritons have been reported. Further details on cavity
polaritons can be found in [1637, 1638].

19.1.10 Hyperbolic Optical Metamaterials

A special class of uniaxial materials, termed hyperbolic metamaterials (HMM), has a (relative) dielec-
tric function of the form (cf. Table 9.2)
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Fig. 19.20 Dispersion of
cavity photon mode and
electronic resonance at
Eel = 3.0eV (dashed
lines) and coupled modes
(solid lines) for
2V = 40meV

Fig. 19.21 Equifrequency
surfaces (19.54) for a
‘normal’ isotropic
(ε‖ = ε⊥ > 0) and uniaxial
(ε‖ > 0, ε⊥ > 0, here
shown for ε⊥ > ε‖) optical
medium and type I (ε‖ < 0,
ε⊥ > 0) and type II
(ε‖ > 0, ε⊥ < 0)
hyberbolic metamaterials

ε =
⎛
⎝

ε‖ 0 0
0 ε‖ 0
0 0 ε⊥

⎞
⎠ (19.53)

with ε‖ε⊥ < 0. A negative dielectric function is known from metals below the plasma frequency
(cf. Sect. 9.9.1). From the conventional formula ω2 = k2c2/n2 in a isotropic medium, in an uniaxial
medium the isofrequency surface is given by

ω2

c2
= k2x + k2y

ε‖
+ k2z

ε⊥
(19.54)

and for ’normal’ uniaxial materials an ellipsoid (or a sphere for isotropic materials, cmp. to band
dispersions Fig. 6.35a, b). If one of the tensor elements is negative, two possible types of ’hyperbolic’
metamaterials develop with ε‖ < 0 (HMM type I) and with ε⊥ < 0 (HMM type II). Their isofrequency
surfaces (for TM waves) for the two types are depicted in Fig. 19.21.

Apart from homogeneousmedia, various geometries for HMMhave been proposed and investigated
[1639, 1640]. HMM can transport high-k waves andmay enable devices for sub-wavelength resolution
imaging. Also, the enhanced density of photonic states (within a restricted wavelength range) can be
used for enhancement of spontaneous recombination rates (Purcell effect, cf. Sect. 19.2.2) [1641]. A
possible epitaxial, almost perfectly lattice matched superlattice HMM system of alternating dielectric
and metallic materials is MgO/TiN [1642]. Also HMM involving the anisotropic magnetic permittivity
tensor have been considered [1643].
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19.2 Microscopic Resonators

19.2.1 Microdiscs

A microdisc is a cylindrical resonator with a thickness d that is small compared to the radius R. It can
be fabricated from semiconductors and semiconductor heterostructures using patterning and material-
selective etching. With underetching a mostly free-standing disc can be made that resides on a post
(Fig. 19.22).

The coordinate system is (ρ,φ, z) with the z direction being perpendicular to the disc area. Typically,
the disc is so thin that there is only one node along z. Solving the wave equation in this geometry
[1645], the modes are characterized by two numbers (m, l). m describes the number of zeros along
the azimuthal direction φ with the field amplitude being proportional to exp(±imφ). Thus, except
for m = 0, the modes are simply degenerate. Modes with Ez = 0 are called TE modes. This is the
preferred polarization of emission. The number l denotes the number of zeros in the radial direction.
Only for modes with |m| = 1, is the intensity nonzero on the axis, i.e. for ρ = 0. All other modes have
vanishing intensity in the disc center.

The light intensity in whispering gallery modes is preferentially concentrated along the circumfer-
ence of the disc as shown in Fig. 19.23a. Since the light can only escape via evanescent waves, the light
is well ‘captured’ in such a mode. The Q-factor (19.36) is extremely high and takes values of several

500nm
1µm(a) (b)

Fig. 19.22 a Side view of a 3-µm diameter disc containing one 10-nm InGaAs quantum well between 20-nm
(In,Ga)(As,P) barriers standing on an InP pillar that has been selectively underetched using HCl. b Top view SEM
image of a 5-µm diameter (In,Ga) (As,P) microdisc. The pedestal shape is a rhombus due to anisotropic etching of the
HCl. Adapted from [1644], reprinted with permission, ©1992 AIP
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Fig. 19.23 a Field intensity for whispering gallery mode (10, 0) (TM-polarized) for a circle with 1µm radius (shown as
white line) and n = 1.5. The image size is 4× 4µm2. b Theoretical quality factor of a 2-µm InP microdisc as a function
of the deformation parameter (19.56). The insets show (8,0) whispering gallery modes at a wavelength of 1.55µm for
n = 3.4. Part (b) adapted from [1647]
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Fig. 19.24 Strong coupling of a single QD exciton (due to monolayer fluctuation in a 13ML thick GaAs/Al0.33Ga0.67As
QW) with a WGM in a microdisk of 2µm diameter (inset). (a) Anti-crossing of upper and lower peak for various
temperatures. Symbols are data points, solid lines are theory considering coupling. The dashed (dash-dotted) line is the
expected temperature shift of the WGM mode (exciton energy). (b) Photoluminescence spectrum at the anti-crossing
point (T = 30K). Experimental data (squares) and fit with two peaks (solid line). Adapted from [1648]
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Fig. 19.25 aMicropillar with MBE-grown GaAs/AlAs DBRs and a cavity containing five layers of InAs quantum dots
as indicated. The pillar has been prepared by reactive ion etching. Reprinted with permission from [1650], ©1998 APS.
b Experimental decay time τ of on-resonance quantum dot luminescence scaled by off-resonance lifetime τ0 = 1.1ns
(close to lifetime in a QD in bulk) for a variety of micropillars with different Purcell factors FP. The error bars correspond
to the measurement accuracy of the decay time (±70ps), the dashed line is a guide to the eye. Adapted from [1650]

104. In order to couple light out of such a disc, deformed resonators, e.g. with a defect in the form of
protrusions [1646], were devised. Deformed resonators are discussed in more detail in the next section.

The strong coupling of a QD exciton to a whispering gallery mode is shown in Fig. 19.24 where
anti-crossing behavior is observed at low temperatures. Tuning is achieved by temperature variation.
Behavior of a similar system in the weak coupling regime is shown in Fig. 19.26.
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Fig. 19.26 aTemperature dependence of the energy positions of thewhispering gallerymode (WGM)of a 5-µmdiameter
(Al,Ga)As/GaAs microdisc (Q = 6500) and the single-exciton resonance of a single InAs quantum dot contained within
the disc. b Intensity ofWGMmode as a function of the detuning EWGM−EQD−X from the QD single exciton resonance.
The excitation density was 15Wcm−2 for all data. Adapted from [1651]

19.2.2 Purcell Effect

According to Fermi’s golden rule (19.1), the probability of an optical transition depends on the density
of available optical modes (final states). If the density of modes is enhanced compared to its vacuum
value (19.2) at a resonance of an optical cavity, the lifetime of the electronic state decreases by the
Purcell factor [1649],

FP = 3

4π2
Q

(λ/n)3

V
, (19.55)

where n is the refractive index of themedium, Q is the quality factor of the cavity resonance and V is the
effective mode volume.3 Experiments on the emission of quantum dots (that generally provide small
absorption and thus allow for theweak coupling regime) in etchedmicropillars containing amicrocavity
(Fig. 19.25a) have shown that indeed the luminescence decay is faster for cavities with large Purcell
factor (Fig. 19.25b) [1650]. The resonance of cavity mode and emitter leads to an enhanced emission
intensity as shown in Fig. 19.26 for the exciton emission of a single quantum dot in a microdisc [1651].

19.2.3 Deformed Resonators

Thewhispering gallerymodes in circular (or spherical) cavities are long-lived and emission goes into all
angles. Light escape is based only on the exponentially slow process of evanescent leakage (neglecting
disorder effects such as surface roughness). In order to overcome the isotropic light emission, the
resonator needs to be deformed. This can be accomplished with an ellipsoidal shape, i.e.

r(φ) = R [1 + ε cosφ] , (19.56)

where 1+2ε is the aspect ratio of the ellipse. The increased radiation leads to a decrease of the Q-factor
as shown in Fig. 19.23b. Also, a new decay process, refractive escape, becomes possible. A ray that is
initially in a whispering gallery trajectory diffuses in phase space until finally an angle smaller than the
critical angle for total reflection (9.11) is reached. The ray dynamics becomes partially chaotic [1652].

3V is given by the spatial integral of the vacuum field intensity for the cavity mode, divided by its maximum value.
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(a)

(b) (c)

Fig. 19.27 a SEM image of a quadrupolar cylinder laser with deformation parameter ε ≈ 0.16 on a sloped InP pedestal.
The light grey area in the top view is the electrical contact. b Simulated near-field intensity pattern of a chaotic whispering
gallery mode for ε = 0.06 and n = 3.3. c Simulated near-field intensity pattern of a bow-tie mode for ε = 0.15. The
length of the minor axis for (b) and (c) is 50µm. Reprinted with permission from [1653], ©1998 AAAS

One other possible deformation of the circular disc geometry is a ‘flattened quadrupole’ as shown
in Fig. 19.27a. This shape can be parameterized by a deformation parameter ε and the angle-dependent
radius r(φ) given by

r(φ) = R
[
1 + 2 ε cos2 (2φ)

]1/2
. (19.57)

For small deformation, the whispering gallery modes become chaotic and exhibit preferred emission
along the long axis of the resonator (Fig. 19.27b). For larger deformations (ε ≥ 0.14), a stronger and
qualitatively different directionality occurs in the shape of a bow-tie [1653] as shown in Fig. 19.27c.
The optical laser power extracted from deformed resonators was found to increase exponentially with
ε; for ε = 0.2 it was 50 times larger than for the circular resonator.

Another modification that can be applied to the microdisc in order to increase outcoupling of light,
is the spiral resonator [1654] as shown in Fig. 19.28a. The radius is parameterized by

r(φ) = R
[
1 + ε

2π
φ
]

. (19.58)

The experimental emission pattern is displayed in Fig. 19.28b. It exhibits a maximum along the
direction of the tangent at the radius step. The simulated near-field intensity of such an emission mode
is shown in Fig. 19.28c. In a spiral laser, ray dynamics is also chaotic [1655].
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(a) (b)

(c)

Fig. 19.28 a SEM image of a microcavity disc laser diode with a disc radius of 50µm. The p-contact ring electrode
defines the areas through which carriers are injected into the microdisc and where stimulated emission can take place. b
Radial distribution of the light output from the spiral-shaped microdisc laser diode measured below and above threshold.
The radius of the spiral microdisc was r0 = 250µm and the deformation parameters were ε = 0.05 (grey) and ε = 0.10
(black). An emission beam at an angle of α = 0◦ corresponds to a direction normal to the notch surface as shown in
the inset. Below the laser threshold, the emission pattern is essentially isotropic and independent of the deformation
parameter. Above the threshold, directional emission is clearly observed with the emission direction at a tilt angle
α ≈ 25◦. The measured divergence angle of the far-field pattern is ∼ 75◦ for ε = 0.10 and ∼ 60◦ for ε = 0.05.
Reprinted with permission from [1656], ©2004 AIP. c Simulated near-field intensity pattern of an emission mode with
nkR ≈ 200 for deformation ε = 0.10. Reprinted with permission from [1654], ©2003 AIP

19.2.4 Hexagonal Cavities

Hexagonal cavities develop, e.g., in microcrystals of wurtzite semiconductors (with the c-axis along
the longitudinal axis of the pillar). In Fig. 19.29a, a ZnO tapered hexagonal resonator (needle) is shown.
Whispering gallery modes modulate the intensity of the green ZnO luminescence [1657].4 In a simple
plane-wave model, the resonance condition is given by

6Ri = h c

n E

[
N + 6

π
arctan

(
β
√
3n2 − 4

)]
, (19.59)

where Ri is the radius of the inner circle (Fig. 19.29d), n is the index of refraction, N is the mode
number and β is given by βTM = 1/n (βTE = n) for TM (TE) polarization, respectively. Due to
birefringence, n‖ (n⊥) has to be used as the index of refraction for TM (TE) polarization.

4We note that besides the green luminescence as in Fig. 10.20, an unstructured green band also occurs that is observed
here. Its origin may be linked to the oxygen vacancy [1658].
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(d)

(e)

Fig. 19.29 a–c SEM images of ZnO nanoneedle fabricated by pulsed laser deposition. d Schematic geometry of cross-
sectional plane. Ri (R) is the radius of the incircle (circumscribing circle). The circumference of the inscribed white
hexagon, representing the path of a whispering gallery mode, has a length of 6Ri. e Two-dimensional plot of spectra
recorded along a linescan along the needle’s longitudinal axis. The left vertical axis shows the linescan position x , the
right one refers to the respective needle diameter D. The spectral maxima, i.e. the measured WGM energies, appear
as bright belts going from the bottom left corner to the right upper one. With decreasing diameter, all resonances shift
systematically to higher energies. The white dots give theoretical TM-resonance energy positions obtained from (19.59),
white crosses give the same for TE-polarization. Reprinted with permission from [1657], ©2004 APS

A N = 26 whispering gallery mode of a hexagonal resonator is shown in Fig. 19.30c,d. The 6-fold
symmetric emission stems from the edges of the hexagon. While whispering gallery resonators have
typically mode numbers N � 1, in such hexagonal resonators the whispering gallery modes could be
followed down to N = 1 [1657] as shown in Fig. 19.29a, b, e.

Under high optical pumping laser action occurs on thewhispering gallerymodes. The peak positions,
close to the band gap in the spectral region of the electron-hole plasma, follow (19.59) [1660], as
shown for various diameters in Fig. 19.31. Pumping threshold even at room temperature is below
100kW/cm−2 [1661].
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(a) (b)

(c) (d)

(e)

Fig. 19.30 Simulated near-field intensity pattern of modes in a cavity with hexagonal cross section (absolute value of
electric field in linear grey scale): Modes (N = 4) with (a) symmetry −a and (b) mode 4+ (nomenclature from [1659])
for n = 2.1 and kR = 3.1553− i0.0748. Modes (c) 26− and (d) 26+ for n = 1.466 and kR = 22.8725− i0.1064. The
displayed modes have a chiral pattern. Emission originates mostly from the corners. eMicro-photoluminescence spectra
of a single ZnO nanopillar. The three topmost curves are unpolarized. The curve labeled ‘bulk’ shows the unmodulated
luminescence of the green luminescence in bulk. The line labeled ‘exp.’ shows the experimental µ-PL spectrum of the
investigated nanopillar. The experimental spectra recorded for TM- and TE-polarization, respectively, are shown in the
lowest two curves. The curve labeled ‘theory’ displays the theoretical luminescence spectra. Dashed vertical lines are
guides to the eye referring to the spectral position of the dominating WGMs. The inset shows a SEM image of the
investigated pillar, the scale bar has a length of 500nm. The dotted lines show the position of the edges of the hexagonal
resonator obtained from topography contrast

(a) (b) (c)

Fig. 19.31 a Photoluminescence spectra of a ZnO microwire with hexagonal cross section for various pump power
densities (lowest curve: D = 60kW/cm2, top curve: D = 250kW/cm2) at T = 10K. The inset shows the scanning
electron microscopy image of a typical microwire (d = 6.40µm). bDependence of the emitted PL intensity of a selected
lasing peak (denoted by an arrow in the spectrum in part (a)) on the excitation density D. Lines are guide to the eye.
c Dependence of the resonant energies on the interference order N for wires with different diameters as labeled on top of
the graph. Lines are the predicted theoretical values calculated from (19.59) using diameter values obtained from SEM
measurements; the symbols represent the experimentally observed peaks. Adapted from [1660]



Chapter 20
Transparent Conductive Oxide Semiconductors

Many of the most important semi-conductors are oxides.

A.H Wilson, 1939 [72]

Abstract Typical materials in the class of transparent conductive oxides arementioned. Their physical
properties and the limits of conductivity versus transparency are discussed.

20.1 Introduction

Transparent conductive oxides (TCO) are semiconductors that are simultaneous transparent and highly
conductive. Therefore they can serve as transparent contacts, e.g. as a solar cell front contact or in
display applications. The materials are typically fabricated in the form of thin films on glass, polymers
or similar substrates and devices. The crystallographic structure is polycrystalline or amorphous. The
first TCO investigated was CdO in pressed powder [1662] and thin film form [38]. The recent historic
development of the resistivity of the most important TCO materials in the last 30years is shown in
Fig. 20.1. Further information on TCO films can be found in [1663–1665].

20.2 Materials

Anywide-gap (Eg > 3eV) semiconductor that is conductive, e.g. due to intrinsic defects or by chemical
impurities (doping), can be considered to be a TCO. Pratically only a few, non-toxic materials that can
be easily deposited are of importance. The first TCO application was heating of air plane windows. As
always in semiconductor technology, price drives the suitability for applications. This in particular true
for TCO applications since they include large area devices such as solar cells, displays and also large
glass panes for electromagnetic shielding and architectural heat and IR transparency management.
Therefore large quantities of TCO are needed. The popular ITO (indium-tin-oxide) suffers from large
indium price and potential indium scarcity, opening the field for aluminum-doped ZnO (ZAO) which is
abundant. Possible other compounds includingCd are of no practical interest due to toxicity. Conductive
GaN has not been considered due to its large processing temperatures. All practical TCO materials
contain either Zn, Sn or In (Fig. 20.2). A number of TCO materials is reviewed in [1666]. TCO are
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Fig. 20.1 Historical
development of the
resistivity of doped ZnO
(circles), In2O3 (squares)
and SnO2 (diamonds) TCO
films. Adapted from [1665]

Fig. 20.2 Practical TCO
materials

mostly n-conducting. Also p-conducting TCOs have been reported, e.g. CuAlO2 delafossite [1667]
with room temperature conductivity of σ = 1S/cm, ZnIr2O4 [1668] with σ = 2S/cm and ZnCo2O4

spinel [1669] with σ = 20S/cm. However, there has been so far no report on a practical transparent
highly conductive p-type electrode.

The term ITO stands for a variety of Sn-doped indium oxide (In2O3) materials, the Sn content being
typically in the 5–10% range but not strictly defined. The crystal structure of In2O3 [1670] is shown in
Fig. 20.3. The effect of the replacement of indium by tin atoms in In2O3 on mechanical, electrical and
optical properties of ITO has been calculated in [1671] using DFT. In Fig. 20.4 the band structures of
pure In2O3 and (Sn0.065In0.935)2O3 (one out of 16 indium atoms was replaced in the calculation) are
compared [1672]. The fundamental band gap is slightly lowered, the high doping introduces a gigantic
Burstein-Moss shift. Additionally another band gap opens that splits the lowest conduction band. Also
the conduction mechanism in amorphous oxides has been discussed [151].

20.3 Properties

The best conductivity of TCOs is in the range of 10−4 �cm for the specific resistivity. Such value is
about three orders of magnitude smaller than that of metals. However, the TCO meanwhile is highly
transparent in the visible region, while metals become transparent only in the UV region because of
their high plasma frequency (cf. Sect. 9.9.1).

The conduction mechanism in ZnO:Al is band transport in a highly doped semiconductor. The
carrier concentration is typically around 1021 cm−3. One of the best results is a (Hall) mobility of
47.6cm2/Vs, leading to a specific resistivity of 8.5 × 10−5 �cm [1673]. The mobility is limited by
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Fig. 20.3 The bixbyite crystal structure of indium oxide (In32O48) showing one unit cell where the indium and oxygen
atoms are represented by the full and empty circles, respectively. Adapted from [1671]

Fig. 20.4 Comparison of
the band structure of In2O3
(left) and
(Sn0.065In0.935)2O3 (right).
The position of the Fermi
level is for both cases at
E = 0. Adapted
from [1672]

(doping level dependent) ionized impurity scattering (Sect. 8.3.3) as shown in Fig. 20.5 for various
films. A detailed discussion of ionized impurity scattering in doped ZnO films can be found in [1674].
Also the mobility is correlated (Fig. 20.6) with scattering at structural defects such as grain boundaries
[1675] (cf. Fig. 8.6). We note that the carrier mobility in a (polycrystalline) TCO is not very different
from that in highly doped (crystalline) silicon (Fig. 8.9).

Conductivity and transparency are, however, linked. The high doping of the TCO leads to shifts
in the band gap (renormalization and Burstein-Moss shift), band tails and the like that can introduce
absorption in the visible spectral region. Also the infrared transparency is related to the conductivity
by free carrier absorption and the plasma edge (Sect. 9.9.1). With increasing carrier density, the plasma
edge shifts into the visible spectral range (Fig. 20.7a), limiting the possible maximum carrier density
to several 1021 cm−3, the exact value depending on the carrier mass.

In Fig. 20.7b the transparency spectra of two SnO2 films with different conductivity are compared.
The higher conductivity due to larger carrier concentration leads to reduced IR transparency. Generally,
the transmission of a TCO is limited by the band edge on the high energy side of the spectrum and the
plasma edge on the low energy side of the spectrum. The limited carrier concentration due to the onset
of free carrier absorption in the visible spectral range (∼ 3 × 1021 cm−3) and the limited mobility in
the presence of such high impurity concentration (max. 50cm2/Vs) restrict the minimum resistivity of
a TCO (or any transparent conductor) to about 4 × 10−5 �cm [1677].
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Fig. 20.5 Hall mobility for various ZnO:Al TCO thin films as a function of carrier (electron) concentration. The dashed
line is the Brooks–Hering theory of ionized impurity scattering (taking into account non-parabolicity of the conduction
band). The dash-dotted line is mobility in the presence of grain boundaries, the solid line is combined theory. Symbols
are experimental data from two sets of samples. Adapted from [1665]

Fig. 20.6 Hall mobility of ZnO:Al films (of varying thickness) versus the crystallite size. Experimental data (from
[1665]) are shown as symbols. The dashed line is a guide to the eye

(a) (b)

Fig. 20.7 a Absorption coefficient of n-type ZnO for various electron concentrations as labeled. Spectra synthesized
from ellipsometric data of thin films. The visible spectral range is indicated. The contributing absorption processes are
band-band transitions (BB), free carrier absorption (FC) and phonon-related absorption (Ph) as labeled. b Transparency
versus wavelength spectra of two SnO2 films with different conductivity as labeled. Adapted from [1676]



Part III
Applications



Chapter 21
Diodes

Abstract A thorough treatment of Schottky (metal-semiconductor) diodes, MIS (metal-insulator-
semiconductor) diodes and (bipolar) pn-diodes is given, focussing on suitable materials, the formation
of space charge layers and the forward and reverse current-voltage characteristics. Applications of such
devices based on their rectifying properties are discussed.

21.1 Introduction

One of the simplest1 semiconductor devices is the diode. It is a so-called two-terminal device, i.e. a
device with two leads. The most prominent property of a diode is the rectifying current-voltage (I–V )
characteristic. This function was initially realized with vacuum tubes (Fig. 21.1); a heated filament
emits electrons that are transferred through vacuum to the anode if it is on a positive potential. The
semiconductor diode technology led to a tremendous miniaturization, integration with other devices
(in planar technology) and cost reduction.

We distinguish2 unipolar diodes, for which the majority carriers cause the effects (e.g. metal-
semiconductor diodes), and bipolar diodes in whichminority carriers play the decisive role, e.g. in the
pn junction diode.

(a) (b) (c)

Fig. 21.1 a Schematic image of a vacuum diode. The electron current flows from the heated cathode to the anode when
the latter is at a positive potential. bOne of John A. Fleming’s first diode ‘valves’, 1904. c Commercial ‘tungar’ rectifier,
around 1916 [1679] (b, c). Adapted from [1678]

1The simplest device is a resistor made from a homogeneous piece of semiconductor, used, e.g., as a part of an integrated
circuit or as a photoresistor as discussed in Sect. 22.2.
2This distinction is not only made for diodes but also many other semiconductor devices such as transistors, see Chap.24.

© Springer Nature Switzerland AG 2021
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-51569-0_21

517

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51569-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-51569-0_21


518 21 Diodes

Table 21.1 Typical current densities for various semiconductor devices

Device j (A/cm2)

Dark current of cooled CCD (T ∼ 200K) < 10−12

Dark current of CCD at room temperature 10−9

3.6nm SiOx gate dielectric (at 1V) 10−9

Photocurrent of Si solar cell (at 1 sun) 0.04

1.5nm SiOx gate dielectric (at 1V) 1

4-junction solar cell (at 508sun) 6.5

Threshold of QD laser diodes 10

LED in typical operation 10

Threshold of QW laser diodes 102

LED in high power operation 102

Threshold of VCSEL 103

High power III–V laser diode in cw operation 103–104

High power III–V laser diode in pulsed operation 105

Resonant tunneling diode peak current 105

Power electronics transistors 105–107

Semiconductor devices carry vastly different currents depending on their design and eventual appli-
cation. In Table 21.1, an overview of typical current densities is provided as a guide through the
following chapters.

21.2 Metal-Semiconductor Contacts

The metal-semiconductor contact was investigated in 1874 by F. Braun (see Sect. 1.1). For metal sul-
fides, e.g. CuFeS2, he found nonohmic behavior.We remark here thatwe treat firstmetal-semiconductor
contacts with rectifying properties. Later it becomes understandable that metal-semiconductor con-
tacts can also be used as ohmic contacts, i.e. contacts with a very small contact resistance. Rectifying
metal-semiconductor contacts are also called Schottky diodes. A very important variation are metal-
insulator-semiconductor diodes for which an insulator, mostly an oxide, is sandwiched between the
metal and the semiconductor. Such diodes are treated in Sect. 21.3. An early treatment on ‘crystal
rectifiers’ can be found in [1680]. Reviews on Schottky diodes can be found in [1681–1687].

21.2.1 Band Diagram in Equilibrium

The metal and the semiconductor have generally different positions of the Fermi levels relative to the
vacuum level.When themetal is in contact with the semiconductor, charges will flow in such a way that
in thermodynamic equilibrium the Fermi level is constant throughout the structure.3 In the following
we treat two limiting cases: The contact of a metal with a semiconductor without any surface states
(Schottky-Mott model) and a contact where the semiconductor has a very high density of surface states
(Bardeen model).

3This situation is similar to the heterostructure interface (Sect. 12.3.4), with the metal, however, having a very short
screening length.
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Fig. 21.2 Work function Wm of various metals

The position of the Fermi level in the metal is given by the work function Wm that is shown in
Fig. 21.2 for various metals (see also Table 21.2). A recent review of published values of metal work
functions is given in [1688]. The work function reflects the atomic shell structure; minima of the work
function exist for group-I elements. The work function is the energy difference between the vacuum
level (an electron is at rest in an infinite distance from the metal surface) and the metal Fermi level
(Wm > 0). Since the electron density in the metal conduction band is very high, the position of the
metal Fermi level does not change considerably when charge is exchanged between the metal and the
semiconductor.

Since in a semiconductor the Fermi level depends strongly on the doping and temperature it is not
useful to characterize the material itself. For semiconductors the electron affinity χsc = Evac − EC > 0
is defined as the energy difference between the vacuum level and the conduction-band edge (see
Fig. 12.21).

Ideal Band Diagram

When the metal and the semiconductor are not in contact (Fig. 21.3a), the metal is characterized by its
work function Wm = Evac − EF and the semiconductor by its electron affinity χsc. First, we assume
that Wm > χsc. For an n-type semiconductor, the energy difference between the Fermi level and the
conduction band is denoted as

− e Vn = EC − EF (21.1)

being negative, Vn < 0, for nondegenerate semiconductors. Thus, the position of the semiconductor
Fermi level is given as

EF = Evac − χsc + e Vn . (21.2)

If the metal and semiconductor are brought into contact the Fermi levels will equilibrate. For the case
of Fig. 21.3 (EF,sc > EF,m) electrons will flow from the semiconductor to the metal. The negative
surface charge of the metal is compensated by a positive charge (due to D+) in the semiconductor in
the vicinity of the surface. Eventually a (Schottky) barrier of height4 FBn

FBn = Wm − χsc (21.3)

4We denote the energy barrier height with FB = −eφB.
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Table 21.2 Values of the work function Wm of various metals

Z Element Wm (eV) Z Element Wm (eV) Z Element Wm (eV)

3 Li 2.4 37 Rb 2.1 64 Gd 3.1

4 Be 3.4 38 Sr 2.59 65 Tb 3.0

5 B 4.5 39 Y 3.1 66 Dy –

6 C 4.8 40 Zr 3.8 67 Ho –

12 Mg 3.66 41 Nb 4.3 68 Er –

13 Al 4.2 42 Mo 4.2 69 Tm –

14 Si 4.2 44 Ru 4.71 70 Yb –

19 K 2.2 45 Rh 4.6 71 Lu 3.3

20 Ca 2.87 46 Pd 5.0 72 Hf 3.9

21 Sc 3.5 47 Ag 4.7 73 Ta 4.1

22 Ti 4.1 48 Cd 4.0 74 W 4.55

23 V 4.3 49 In 4.12 75 Re 5.0

24 Cr 4.4 50 Sn 4.3 76 Os 4.8

25 Mn 3.89 51 Sb 4.1 77 Ir 4.6

26 Fe 4.4 52 Te 4.8 78 Pt 5.3

27 Co 5.0 55 Cs 2.14 79 Au 4.8

28 Ni 4.9 56 Ba 2.5 80 Hg 4.49

29 Cu 4.5 57 La 3.5 81 Tl 3.8

30 Zn 4.3 58 Ce 2.9 82 Pb 4.0

31 Ga 4.2 59 Pr - 83 Bi 4.4

32 Ge 4.8 60 Nd 3.2 90 Th 3.5

33 As 5.1 62 Sm 2.7 92 U 3.6

34 Se 5.9 63 Eu 2.5

(a) (b)

Fig. 21.3 Schematic band diagram of a metal-semiconductor junction that is dominated by bulk properties of the
semiconductor. a no contact, b metal and semiconductor in contact. w denotes the width of the depletion layer. Outside
the depletion layer the semiconductor is neutral. FB,n denotes the Schottky barrier height, Vbi denotes the built-in voltage
(here Vbi > 0)

forms at the interface. The subscript ‘n’ stands for the contact on an n-type semiconductor. Sur-
face/interface effects such as non-matching bonds, surface states, etc. are neglected at this point. In the
semiconductor there exists a positively charged region that is called the depletion layer or space-charge
region [1689]. Its extension (w in Fig. 21.3b) and properties will be discussed in Sect. 21.2.2. The space
charge region in the metal is very thin due to the small screening length.

For a contact on a p-type semiconductor the barrier FBp (to the valence band) is (see Fig. 21.4d)
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Fig. 21.4 Band diagrams of metal-semiconductor junctions for a, b, c an n-type semiconductor and d, e, f a p-type
semiconductor (here FBp > 0). (b, e) in thermodynamic equilibrium, (a, d) with forward bias (V > 0), (c, f) with reverse
bias (V < 0)

FBp = Eg − (Wm − χsc) . (21.4)

Between the surface of the metal and the bulk part of the semiconductor there is a potential drop

Vbi = FBn

e
+ Vn = Wm − χsc

e
+ Vn , (21.5)

which is termed the built-in potential (or diffusion voltage). The exact form of the voltage drop, the
so-called band bending, will be discussed in Sect. 21.2.2.
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Fig. 21.5 a Experimental Schottky barrier heights FBn versus metal work functionWm for various metal-semiconductor
junctions as labeled. Dashed lines are guides to the eye, dash-dotted lines indicate dependencies for the surface index
(21.6) S = 1 and S = 0. Data from [1690, 1691]. b EC − EF at the metal-semiconductor interface versus the band
gap Eg for Au Schottky contacts on various semiconductors. The dashed line represents EC − EF = 2Eg/3. Data from
[1692]. cSurface index S versus the electronegativity difference �X between the species of compound semiconductors.
Dashed line is a guide to the eye. Data from [1691, 1693]

The surface index is defined as

S = ∂FBn

∂Wm
. (21.6)

From the present consideration (21.3), the same semiconductor with metals of varying work function
should result in S = 1.

Band Diagram in the Presence of Surface States

Experimental data shown in Fig. 21.5a, however, show a different behavior with smaller slope. For
GaAs, e.g., the barrier height is almost independent of the metal work function. Thus, a different model
is needed for realistic Schottky diodes. A rule of thumb for the dominantly covalent semiconductors
is that for n-type material the barrier height is 2/3 of the band gap and for p-type material 1/3 of
the band gap, such that EC − EF ≈ 2Eg/3 (Fig. 21.5b). Only for ionic semiconductors S ≈ 1 holds
(Fig. 21.5c) [1694].

If the semiconductor has a large density of states at its surface (� 1012 cm−2), there is a space-charge
region already without the metal [1695]. Surface traps are filled up to the Fermi level (Fig. 21.6a). The
size of the band bending in the semiconductor will be denoted as FBn since it will turn out below as
the Schottky barrier height. If the density of surface states is very high, the charge carriers moving
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(a) (b)

Fig. 21.6 Schematic band structure of a metal-semiconductor junction that is dominated by surface properties of the
semiconductor. a no contact; due to pinning of the Fermi level at surface states of the semiconductor, a depletion-layer
of width w is already present. bMetal and semiconductor in contact

from the semiconductor into the metal upon contact formation are accommodated in the surface states
and the position of the Fermi level at the semiconductor surface changes only very little. Thus, the
space-charge region is not modified and it is identical to the surface depletion region. The Schottky
barrier height is then given by the band bending at the (bare) semiconductor surface FBn (Fig. 21.6d)
and does not depend on the metal work function at all (Bardeen model [1695]). For this limiting case
we find for the surface index S = 0.

For actual metal-semiconductor contacts the surface index S takes values between 0 and 1. A
theory involving the semiconductor band structure and midgap (surface) states (MIGS) is needed [695,
1696]. For Si, the experimental result is S = 0.27; the corresponding density of surface states is
Ds = 4 × 1013 cm−2 eV−1.

21.2.2 Space-Charge Region

The width w of the space-charge region is calculated next. First, we make the so-called abrupt approx-
imation. In this approximation (Schottky-Mott model), the charge density ρ in the space-charge region
(0 ≤ x ≤ w) is given by the doping, i.e. ρ = +eND. Outside the space-charge region the semiconduc-
tor is neutral, i.e. ρ = 0 and the electric field is zero, i.e. dϕ/dx = 0. As further boundary conditions
the potential at the interface is ϕ(0) = −Vbi < 0. The potential drop in the space-charge region is
determined by the one-dimensional Poisson equation

d2ϕ

dx2
= − ρ

εs
, (21.7)

where εs = εr ε0 is the static dielectric constant of the semiconductor. Using the ansatz ϕ(x) =
ϕ0 + ϕ1x + ϕ2x2 we find

ϕ(x) = −Vbi + e ND

εs

(
w0 x − x2

2

)
, (21.8)

w0 being the depletion layer width at zero bias.
The spatial dependence E(x) of the electric field strength is

E(x) = −e ND

εs
(w0 − x) = Em + e ND

εs
x , (21.9)
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(a) (b)

Fig. 21.7 a Potential ϕ and b charge density ρ across the depletion layer of a Schottky n-GaAs diode. Calculation
parameters are εs = 12.5 ε0, Vbi − Vext = 2V (small reverse bias), ND = 1 × 1016 cm−3, T = 300K. Abrupt
approximation is shown as solid lines, exact (numerical) calculation as dash-dotted line. Dashed line in (a) indicates
depletion layer width w0 in the abrupt approximation

with the maximum field strength Em = −eND w0/εs < 0 at x = 0. From the condition ϕ(w0) = 0 we
obtain w0 as

w0 =
√

2 εs

eND
Vbi . (21.10)

The charge density and the potential in the abrupt approximation are shown in Fig. 21.7 for GaAs
material parameters.

Beyond the abrupt approximation

The thermal distribution of the majority carriers should be treated with a little more care. The depen-
dence of the charge density ρ = e(N+

D − n) on the potential ϕ (within the Boltzmann approximation)
is (β = e/kT )

ρ(x) = e ND
[
1 − exp (β ϕ(x))

]
. (21.11)

The actual charge density and the potential, obtained from a numerical solution of (21.7), are shown in
Fig. 21.7 in comparison with the abrupt approximation. Clearly, at the Schottky depletion layer width
w0, the charge varies continuously and the potential does not drop to zero.

We note that for the depletion layer ϕ ≤ 0 and n ≤ ND. The charge difference �ρ (due to the
tail of the thermal distribution of the majority charge carriers in the depletion layer) between the real
distribution (21.11) to the abrupt approximation model with constant charge density (ρ0 = eND) in
the depletion layer is

�ρ(x) = ρ(x) − ρ0 = −e ND exp (β ϕ(x)) . (21.12)

The integration of �ρ over the depletion layer yields that the voltage drop Vbi across the depletion
layer needs to be corrected by �V

�ϕ =
w0∫
0

⎡
⎣

x∫
0

−�ρ(x ′)
εs

dx ′
⎤
⎦ dx = 1

β

[
1 − exp(−β Vbi)

] ≈ β−1 . (21.13)

The approximation is valid for βVbi � 1. Therefore, (21.10) is corrected to
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w0 =
√

2 εs

e ND

(
Vbi − β−1

)
. (21.14)

When a potential difference Vext is applied externally to the diode, (21.14) is modified by the change
in the interface boundary condition, ϕ(0) = −Vbi + Vext. The band diagram is shown schematically
in Fig. 21.4a for a forward bias and in Fig. 21.4c for a reverse bias. Therefore, we obtain for the
depletion-layer width (within the abrupt approximation)

w(Vext) =
√

2 εs

e ND

(
Vbi − Vext − β−1

)
. (21.15)

Now we can also give explicitly the value of the maximum electric field Em

(at x = 0)

Em = −
√
2 e ND

εs

(
Vbi − Vext − β−1

)
(21.16)

= − 2

w

(
Vbi − Vext − β−1) .

We note that so far the barrier height is independent of the applied bias voltage. In the next section, it
is shown that this is actually not the case.

An alternative approach to solve the Poisson equation is to consider the field as a function of the
potential, E(φ). Then,

dE2

dφ
= 2 E

dE

dφ
, (21.17)

and
dE

dφ
= dE

dx

dx

dφ
= −dE

dx

1

E
= −d2φ

dx2
1

E
. (21.18)

Combining these two equations and using (21.7) and (21.11) we find

dE2

dφ
= −2 e ND

εs

[
1 − exp(β φ)

]
. (21.19)

The integration of this equation yields with the boundary condition E(φ = 0) = 0,

E2(φ) = −2 e ND

εs

(
φ − exp(β φ)

β
+ 1

β

)
. (21.20)

At the interface φ(x = 0) = −(Vbi − V ), and for sufficient voltage drop in the semiconductor
expβ φ � 1, and therefore (21.16) for Em is recovered without using the abrupt approximation or its
correction (21.13).5 Without approximation,

Em = −
√
2 e ND

εs

(
Vbi − Vext − 1 − exp[−β(Vbi − Vext)]

β

)
. (21.21)

5The functional integration method is limited to bijective potentials φ(x), i.e. strictly monotonously falling or rising
potentials [1697] and thus covers monotonously varying doping density within the depletion layer.
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21.2.3 Schottky Effect

The barrier height is reduced by the image-charge effect that has been neglected so far. This effect
has been worked out for metals by Schottky [1698] and has been adapted to semiconductors [1699,
1700]. An electron (charge q = −e) at position x in the semiconductor is facing a metal surface at
x = 0 (Fig. 21.8a). The potential distribution of the free charge is modified since the metal surface is
an equipotential surface. The potential distribution outside the metal is identical to that if an image
charge −q was located at −x . This image charge exerts a force (image force Fif ) on the electron

Fif = − q2

16π εs x2
, (21.22)

where εs is again the relative dielectric constant of the semiconductor. In order to bring an electron
from infinity to x the work Eif ,

Eif =
x∫

∞
Fif dx = − q2

16π εs x
, (21.23)

is needed. This image potential energy is shown in Fig. 21.8a. The total energy Etot (solid line in
Fig. 21.8a) of the electron in the presence of an electric field E is given by (FB0 is the relabeled
Schottky barrier (21.3) without image charge effect, q = −e < 0 and E < 0)

Etot = FB0 − q E x − q2

16π εs x
. (21.24)

We note that the divergence at x = 0 stems from the continuum idealization of the problem. It can
be removed by shifting the position of the image charge slightly against the interface or by using an
extended charge [1188].

The maximum of this function (dEtot/dx = 0) is at xm,

(a)

w

EC

eVbi

FB

xm

EFEF

ifFB0

FBn

(b)
0 1 2
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0

1

V=-Vbi

V=0

V=Vbi/2

0)

B0

Fig. 21.8 a Energy of a particle with respect to the metal surface (dashed line), conduction band in semiconductor
depletion layer (dash-dotted line) and combined effect (solid line). The image charge energy lowers the potential barrier
FB0 by the amount �F if

B to FBn. b Conduction band on the semiconductor side of a metal-semiconductor junction at
various bias voltages (V = 0, +Vbi/2, and −Vbi as labeled) taking into account the Schottky effect. The width of the
depletion layer is indicated with a short vertical dashed line. The barrier height without Schottky effect is FB0. The
dashed line is the situation without Schottky effect for zero bias
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Fig. 21.9 Electric-field
dependence of the image
charge lowering of the
Schottky barrier.
Dash-dotted line is for
vacuum dielectric constant,
dashed line is (21.26) for
εr = 12. Adapted
from [1701]

xm =
√

q

16π εs E
. (21.25)

The Schottky barrier FB0 is thus reduced by �F if
B > 0 given by

�F if
B = −q

√
q E

4π εs
= 2 q E xm . (21.26)

With the electrical field in the vicinity of the interface (xm � w) given by Em from (21.16), the barrier
reduction is6

�F if
B = e

[
e3 ND

8π2 ε3s

(
Vbi − Vext − β−1)]1/4

. (21.27)

For εs = ε0 (vacuum) and a field strength of 105 V/cm, the maximum position is at xm = 6nm
and the barrier reduction is �F if

B = 0.12eV. For 107 V/cm, xm = 1nm and �F if
B = 1.2eV. For

semiconductors with εr ∼ 10 the effect is smaller (Fig. 21.9). The Schottky effect depends on the bias
voltage as visualized in Fig. 21.8b and therefore the barrier height depends on the applied bias voltage.

21.2.4 Capacitance

The total space charge Q (per unit area) in the semiconductor is (V = Vext)

Q(V ) = e ND w =
√
2 e ND εs

(
Vbi − V − β−1

)
. (21.28)

and depends on the external voltage.
For measurement of the depletion layer capacitance first the external dc bias voltage V is set

which defines the extension of the depletion layer. The (differential) capacitance is probed by an ac
voltage with small amplitude δV � V . First we assume that the ac frequency ω is small compared to
characteristic time constants of the electrically active impurities (quasi-static capacitance) and discuss

6The term ε3s is technically εsε
2
d where εd is the image-force dielectric constant. εd is equal to εs if the transit time of an

electron from the metal to the maximum of the potential energy is sufficiently long to build up the dielectric polarization
of the semiconductor [1681].
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(a) (b)

Fig. 21.10 aCapacitanceC (dashed line) and 1/C2 (solid line) versus bias voltage dependence for an Au/GaAs Schottky
diode (2-µm MOVPE-grown GaAs:Si on a n-GaAs substrate) at room temperature. From the extrapolation to 1/C2 = 0
and (21.30) we obtain Vbi = 804 ±3mV. b Donor concentration (ND = 4.8 × 1016 cm−3) determined via (21.31) from
the 1/C2 plot versus the depletion layer width (calculated using (21.29))

the bias dependence C(V ). Following we discuss the frequency and temperature dependence of the
capacitance7 C(ω, T ), in particular when themeasurement frequency is in the range of the (temperature
dependent) electron capture or emission rate (10.42, 10.43).

Bias Dependence

From (21.28) the capacitance C = |dQ/dV | (per unit area) of the space charge region is given by

C =
√

e ND εs

2
(
Vbi − V − β−1

) = εs

w
. (21.29)

Equation (21.29) can also be written as

1

C2
= 2

(
Vbi − V − β−1

)
e ND εs

. (21.30)

If 1/C2 is measured as a function of the bias voltage (C–V spectroscopy), it should be linearly
dependent on the bias voltage if the doping concentration is homogeneous (Fig. 21.10a). The doping
concentration can be determined from the slope via

ND = − 2

e εs

[
d

dV

(
1

C2

)]−1

, (21.31)

(see Fig. 21.10b) and the built-in voltage Vbi from the extrapolation to V = V ′ such that 1/C2 = 0,
Vbi = V ′ + kT/e. Using (21.5) the Schottky barrier height can be determined from this [1702] via

FBn = e V ′ − e Vn + kT − �F if
B , (21.32)

where �F if
B is the barrier lowering (21.27) due to the image force effect between the flat-band and the

zero-bias cases.
We note that for inhomogeneous doping the depth profile of the doping can be determined by C–V

spectroscopy. The 1/C2 versus bias curve is then no longer a straight line and exhibits a varying slope.

7Probing the capacitance as a function of the ac frequency is called admittance spectroscopy.
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ND(w) is evaluated according to (21.31) using w = εs/C from (21.29) [1703],

ND

(
w = εs

C

)
= − 2

e εs

[
d

dV

(
1

C2

)]−1

, (21.33)

Using functional integration, the capacitance of a depletion layer can be expressed in terms of ϕ(0) =
−(Vbi −V )without explicit knowledge of the potential ϕ(x) [1697].8 In the approximation−eϕ(0) �
kT we obtain for homogeneous doping as refinement of (21.29)

C =
√√√√ e ND εs

2
(
Vbi − V − β−1

(
n0
ND

− ln n0
ND

)) , (21.34)

where n0 is the electron concentration in the neutral region. Within this general treatment, the validity
of (21.31) has been confirmed. Also, C does not diverge in the flatband case, for V → Vbi, as for the
abrupt approximation but exhibits a maximum [1697].

At a given bias voltage, the charge (ionized donors or acceptors) at the boundary of the space-charge
region is tested by the capacitance measurement. However, this principle works only if the depth of the
space-charge region actually changes with the bias voltage. The method can therefore not be directly
applied to such systems like δ-doped layers or quantum wells.

Frequency and Temperature Dependence

The release of carriers from (and capture on) a donor occurs with a characteristic emission rate gc
(10.43) (capture rate rc). This is true similarly for acceptors. Therefore, the capacitance depends on
the sampling frequency (Fig. 21.11a). If the capacitance is probed with a frequency much smaller than
the release rate, the system appears to be in equilibrium and has the (quasi-)static capacitance C0. If
the probe frequency is much higher, the system cannot follow and the donor does not contribute to the
capacitance. The characteristic frequency f̂ at the turning point of C( f ) is [1016, 1017]

2π f̂ = 2 gc , (21.35)

with corrections of the simple factor of 2 discussed in [1704]. Since the emission rate depends expo-
nentially on temperature, for a given frequency the capacitance depends on temperature [1705]. This is
shown in Fig. 21.11b for ZnO which exhibits several donor levels. At low temperature shallow levels
release their carriers, at higher temperature the deeper levels start to contribute. The DX center in
AlGaAs (see Sect. 7.7.6) has been investigated in [1706] with this technique.

21.2.5 Current-Voltage Characteristic

The current transport through a metal-semiconductor junction is dominated by the majority charge
carriers, i.e. electrons (holes) in the case of an n-type (p-type) semiconductor, respectively.

In Fig. 21.12, the possible transport mechanisms are visualized for an n-type semiconductor.
Thermionic emission ‘above’ the barrier involves the hot electrons from the thermal distribution and
will be important at least at high temperatures. Tunneling ‘through’ the barrier will be important for
thin barriers, i.e. at high doping (w ∝ N−1/2

D , cf. (21.15)). ‘Pure’ tunneling for electrons close to the
(quasi-) Fermi level, also called field emission, and thermionic field emission, i.e. tunneling of electrons

8This is valid as long as ϕ(x) is strictly monotonous.
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(a) (b)

Fig. 21.11 a Capacitance versus probing frequency f for a Pd/ZnO Schottky diode (zero bias) at T = 85K. Theoretical
dependence (solid line) and experimental data (circles). b Capacitance of the same diode as a function of temperature
(thermal admittance spectroscopy, TAS) for four different probing frequencies f =10, 50, 100 and 316kHz (ac amplitude
50mV). Arrows denote the release of carriers from four different defect levels, two shallow ones and the well-known
defects E1 and E3 [737, 1707]. The inset shows the contribution of the E1 defect, indicated by a rectangle in the main
graph, in more detail. Symbols are experimental data, lines are fit with four-level model (E1: ED = 116meV, E3:
ED = 330meV) [1708]

Fig. 21.12 Transport
mechanisms at
metal-semiconductor
junctions. (1) Thermionic
emission (‘above’ the
barrier) (2) tunneling
(‘through’ the barrier), (3)
recombination in the
depletion layer, (4) hole
injection from metal
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with higher energies, are distinguished. Also, recombination in the depletion layer and hole injection
from the metal are possible.

The transport of electrons above the barrier can be described with diffusion theory [1709, 1710] or
thermionic-emission theory [576]. A detailed treatment can be found in [1711, 1712]. In both cases the
barrier height is large compared to kT . For thermionic emission (typically relevant for semiconductors
with high mobility) the current is limited by the emission process and an equilibrium (constant electron
quasi-Fermi level) is established throughout the depletion layer and ballistic transport is considered. In
diffusion theory (for low mobility) a thermal equilibrium between metal and semiconductor electrons
is established in the interface plane and the current is limited by diffusion and drift in the depletion
region.

Thermionic Emission

The current density per unit area js→m of electrons that flow from the semiconductor into the metal is
due to the hot electrons from the thermal distribution function

js→m = −e

∞∫
EF+FBn

vx dn . (21.36)
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The integral starts at the lowest possible energy, the top of the Schottky barrier (no tunneling allowed
in this model!). The electron density dn in a small energy interval dE is

dn = D(E) f (E) dE . (21.37)

For a bulk semiconductor density of states (6.71) and the Boltzmann distribution (FB � kT )

dn = 1

2π2

(
2m∗

�2

)3/2 √
E − EC exp

(
− E − EF

kT

)
dE . (21.38)

For a given energy E , the carrier velocity v is determined by

E = EC + m∗ v2

2
. (21.39)

Thus we obtain √
E − EC = v

√
m∗/2 (21.40)

and
dE = m∗ v dv . (21.41)

Also, with (21.39) and (21.1),

E − EF = (E − EC) + (EC − EF) = m∗ v2

2
− e Vn . (21.42)

Therefore we write (21.38) as

dn = 2

(
m∗

h

)3

exp (βVn) exp

(
−m∗ v2

2 kT

)
4π v2 dv . (21.43)

Then the one-dimensional integral over 4πv2 dv is converted into a three-fold integral over dvx dvy dvz.
Integration over all velocities in y and z directions yields a factor 2π kT/m∗. The integration over vx
runs from the minimum velocity vmin,x necessary to pass the barrier,

∞∫
vmin,x

exp

(
−m∗ v2x

2 kT

)
vx dvx = kT

m∗ exp

(
−m∗ v2min,x

2 kT

)
, (21.44)

with the minimum velocity determined by

m∗ v2min,x

2
= e (Vbi − V ) . (21.45)

Thus the current density is given as, using (21.5),

js→m = 4πe m∗ k2

h3
T 2 exp (−β(Vbi − Vn)) exp (βV )

= A∗ T 2 exp

(
− FBn

kT

)
exp (βV ) , (21.46)
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(a) (b)

Fig. 21.13 Ideal diode I–V characteristics I = Is(exp(eV/kT ) − 1) (a) in linear plot and (b) semilogarithmic plot

with A∗ being the Richardson constant given by

A∗ = 4πe m∗ k2B
h3

= e NC v̄

4 T 2
, (21.47)

where v̄ is the average thermal velocity in the semiconductor. A∗ for electrons in vacuum is
120Acm−2 K−2. A similar result is obtained for the thermionic emission of electrons from a metal
(overcoming the work function) into vacuum.

If the bias is changed, the current from the semiconductor to the metal increases in the forward
direction because the energy difference between the quasi-Fermi level and the top of the barrier is
reduced. The current is reduced for reverse bias. The barrier from the metal into the semiconductor
remains constant (except for the Schottky effect whose impact on the current-voltage characteristic is
discussed next). Therefore the current jm→s from the metal into the semiconductor is constant and can
be obtained from the condition j = js→m + jm→s = 0 for zero bias. Therefore the current-voltage
characteristic in the thermionic-emission model is

j = A∗ T 2 exp

(
− FBn

kT

) [
exp (βV ) − 1

]
(21.48)

= js
[
exp (βV ) − 1

]
.

The pre-factor

js = A∗ T 2 exp

(
− FBn

kT

)
(21.49)

is called the saturation current density. The saturation current increases with increasing temperature.
The dependence (21.49) represents the ideal diode characteristic and is plotted in Fig. 21.13.
The temperature dependence of the saturation current js can be written as

ln

(
js
T 2

)
= ln A∗ − FBn

kT
(21.50)

by transforming (21.49). The plot of ln( js/T 2) to versus 1/T is called a Richardson plot and allows
the barrier height and the Richardson constant to be determined from a linear fit (Fig. 21.14b).
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Fig. 21.14 Temperature dependent behavior of an AgOx /ZnO Schottky diode. a I–V -characteristics. Inset depicts
extracted parameters, ideality factor n, barrier height FB and flatband barrier height F f

B (21.54). b Richardson plots for
the extracted barrier height and the calculated flatband barrier height with linear fit. Adapted from [1713]

Ideality Factor

If the Schottky (image force) effect, i.e. the change of barrier height with bias voltage, is considered,
the semilogarithmic slope of the forward I–V characteristic is no longer V−1

0 = e/kT but can be
expressed as V−1

0 = e/nkT , n being a dimensionless parameter termed the ideality factor,9

j = js

[
exp

(
e V

n kT

)
− 1

]
. (21.51)

n is given by

n =
(
1 − 1

e

∂FB

∂V

)−1

≈ 1 + 1

e

∂FB

∂V
. (21.52)

The ideality factor due to the image force effect nif (using (21.27) and the image force barrier lowering
�F if,0

B at zero bias) [1680] is

nif = 1 + �F if,0
B

4 e Vbi
= 1 + xm

w0
. (21.53)

Typical values are smaller than 1.03. For GaAs and ND = 1017 cm−3, n = 1.02. With regard to V0 and
its temperature dependence, we refer also to Fig. 21.17 and the related discussion.

In Fig. 21.14a the temperature dependence of the I–V -characteristic of an almost ideal ZnOSchottky
diode [1713] is depicted. The extracted barrier height is almost independent of temperature as it
should be. Also the ideality factor is rather small (about 1.1) and also independent of temperature.
The Richardson plot Fig. 21.14b according to (21.50) for this diode is a straight line. The extracted
constant A∗ = (10 ± 6)Acm−2 K−2 is reasonably close to the theoretical value of 32Acm−2 K−2

(using m∗ = 0.32).
In order to gain a barrier height independent from non-idealities, in [1714] the flatband barrier

height F f
B is discussed which is calculated from the diode parameters via

F f
B = n FB − (n − 1)

kT

e
ln

(
NC

ND

)
, (21.54)

9Obviously n = 1 for the ideal characteristic (21.48). Otherwise n ≥ 1.
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assuming all donors are ionized (otherwise ND shall be replaced by the electron density n, not to be
confused herewith the ideality factor).Accordingly, the saturation current density (21.49) is rewritten as

js,f = A∗ T 2 exp

(
− F f

B

kT

)
(21.55)

Laterally Inhomogeneous Barrier

The increase of the ideality factor due to a spatially inhomogeneous barrier height has been proposed
early on [1715–1719]. The barrier height FBn(y, z) across the contact area is typically assumed to have
a Gaussian probability distribution [1720] p(FBn) with a mean value F̄Bn and a standard deviation σF .

It turns out that the barrier height FC
Bn responsible for the capacitance, and thus the diffusion voltage

determined by C–V spectroscopy, is given by the spatial average, i.e. FC
Bn = F̄Bn. The barrier height

F j
Bn determining the current-voltage characteristics (cf. (21.48)) via

j = A∗ T 2 [
exp (βV ) − 1

] ∫
exp

(
− FBn

kT

)
p(FBn) dFBn (21.56)

= A∗ T 2 exp

(
− F j

Bn

kT

) [
exp (βV ) − 1

]

is given by

F j
Bn = F̄Bn − σ 2

F

2 kT
. (21.57)

Thus, the barrier height determined from the current-voltage characteristic underestimates the spatial
average of the barrier height.10 The Richardson plot (21.50) is now modified (and is nonlinear in
1/T ) to

ln

(
js
T 2

)
= ln A∗ − FBn

kT
+ σ 2

F

2 k2 T 2
. (21.58)

In [1721] the barrier nonuniformity due to the random distribution and discreteness of impurity charges
in the depletion region is evaluated. This mechanism, yielding increasing barrier inhomogeneity for
larger doping, represent a fundamental limit to the ideality of a Schottky diode.

If the distribution of barrier heights is discrete, at low voltages the current will first flow at certain
spots with low barrier (‘hot spots’). This leads to kinks in the I–V characteristics as found for SiC
[1722] or ZnO [1723] (Fig. 21.15).

Temperature Dependence

Figure 21.16a shows the temperature-dependent I–V characteristics of a Pd/ZnO Schottky diode.
A straightforward evaluation according to (21.48) results in a barrier height of about 700meV and a
Richardson constant that is orders ofmagnitude smaller than the theoretical value of 32AK−2 cm−2 (for
m∗

e = 0.27). A fit of the temperature-dependent data with (21.57), as shown in Fig. 21.16b, results in
F̄Bn = 1.1eV, in agreement with the (temperature-independent) value obtained from CV spectroscopy,
and σF = 0.13eV [1724].

The temperature dependence of the ideality factor n is given by [1725]

10This phenomenon is similar to the red-shift of luminescence lines (Stokes shift) due to thermalization in the presence
of disorder, see Sect. 12.4.
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(a)
1µm

(b)

(c)

Fig. 21.15 a I–V characteristic of ZnO Schottky diode (solid line) with fits due to regions with three different barrier
heights (dashed lines). b Thermography image at bias of 1V. The white square marks the area where one hot spot was
investigated in detail. c SEM image of FIB prepared cross section of a defect (Al2O3 particle) causing the lowest barrier
hot spots, inset: plane view of such defect before preparation. Adapted from [1723]

n = 1

1 − ρ2 + ρ3/(2kT )
, (21.59)

where ρ2 (ρ3) is the (temperature-independent) proportionality coefficient of the bias dependence of
the mean barrier height (standard deviation), i.e.

ρ2 = 1

e

∂ F̄Bn

∂V
(21.60a)

ρ3 = 1

e

∂ σ 2
F

∂V
. (21.60b)

The fit of 1/n − 1 versus 1/T in Fig. 21.16c yields ρ2 = −0.025 and ρ3 = −0.028eV for the ZnO
diodes under investigation.

The forward I–V characteristic of an Au/GaAs Schottky diode reported in [1726, 1727] is shown in
Fig. 21.17a at various temperatures. The current amplitude decreases with decreasing temperature due
to the temperature dependence of the saturation current (21.48).Also, the slopeV−1

0 of the characteristic
j = js exp(V/V0) varieswith temperature. Looking at the temperature dependence ofV0, it is described
as V0 = k(T + T0)/e rather than with an ideality factor n in the form of V0 = nkT/e. In other words,
the ideality factor follows a temperature dependence n = 1+ T0/T . In view of (21.59), such behavior
means for small T0 that n ≈ 1/(1 − T0/T ) and thus ρ2 = 0 and ρ3 = 2kT0. For T0 = 45K, ρ3

is 0.008eV, which is a fairly small value. Thus, the temperature behavior of the diode is due to the
narrowing of the Gaussian distribution of barrier height with bias voltage [1720].
In a set of similar diodeswith varyingmagnitude of barrier inhomogeneities, it is found that the effective
barrier height and the ideality factor correlate [1728]. The extrapolation to n = nif yields the limit
of the barrier height for a homogeneous barrier (Fig. 21.18). For silicon, it is found that the surface
orientation has a minor influence on the Schottky barrier height (Fig. 21.18b) for an unreconstructed
surface. The presence of a reconstruction lowers the barrier height11 (Fig. 21.18a).

11Reconstructions are accompanied by redistributions of the valence charge with respect to the undisturbed bulk
(Sect. 11.4). The subsequent extra interface dipoles alter the barrier heights of reconstructed interfaces [1728].
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Fig. 21.16 a Forward I–V characteristic of Pd/ZnO Schottky diodes for various temperatures. Diode temperatures
are 210, 220, 230, 240, 250, 260, 270, and 293K. The inset shows the current density versus voltage for 293K on a
semilogarithmic scale. bEffective barrier height F j

Bn versus the inverse temperature. The solid line is a linear fit according
to (21.57) yielding the standard deviation σF = 0.13eV and the mean barrier height F̄Bn = 1.1eV. (c) Plot of 1/n − 1
versus the inverse temperature. The solid line is a linear fit of the data yielding the voltage deformation coefficients
ρ2 = −0.025 and ρ3 = −0.028eV. The inset shows the experimentally determined n factors and the n factors calculated
from (21.59) using the voltage-deformation coefficients obtained from the linear fit (dashed line). Adapted from [1724]

Correlation of Barrier Height and Ideality Factor

Diffusion Theory

In diffusion theory the current density is considered in the presence of a carrier-density and electric-
field gradient. In the Boltzmann approximation the electron current is given by (8.60a). In stationary
equilibrium the current density is constant, i.e. independent of x . Assuming that the carrier density has
its equilibrium values at x = 0 and x = w, we find after integration and using (21.8)

j = −eμn NC Em exp

(
− FBn

kT

) [
exp (βV ) − 1

]
(21.61)

= js
[
exp (βV ) − 1

]
.

Therefore, also in this case the ideal diode characteristic is obtained, however, with a different saturation
current. The ideality factor in diffusion theory is n = 1.06 (for FBn � 15 kT ) [1684].
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Fig. 21.17 a Forward I–V characteristic of Au/GaAs diode for various temperatures. b Temperature dependence of the
voltage V0. The experimental data are fitted with T0 = 45 ±8K. Adapted from [1726]

Combined Theory

A combination of both theories [1729] considers both mechanisms to be in series. The current can then
be expressed as

j = eNCvr
1 + vr/vD

exp

(
− FBn

kT

) [
exp (βV ) − 1

]
(21.62a)

= A∗∗ T 2
[
exp (βV ) − 1

]
(21.62b)

= js
[
exp (βV ) − 1

]
.

Here vr = v̄/4 is a ‘recombination velocity’ [1730] at the top of the barrier according to j = vr(n−n0),
n0 being the equilibrium electron density at the top of the barrier and v̄ is the average thermal velocity
in the semiconductor. vD is an effective diffusion velocity describing the transport of electrons from
the edge of the depletion layer (x = w) to the top of the barrier (x = xm). It is defined as

v−1
D =

w∫
xm

−e

μnkT
exp

(
− FBn − EC(x)

kT

)
dx . (21.63)

In [1729] μn has been assumed to be independent of the electric field. This assumption is potentially
not realistic. If vD � vr, thermionic theory applies and we obtain (21.48). The case vr � vD ∼ μn Em

relates to diffusion theory and we recover (21.61).
The constant A∗∗ in (21.62b) is called the effective Richardson constant. Its calculated dependence

on the electric field is shown in Fig. 21.19 for Si. At room temperature for most Ge, Si and GaAs
Schottky diodes the thermionic emission of majority carriers is the dominating process. The effect of
lateral barrier height inhomogeneity in a diffusion model has been discussed in [1731].
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Fig. 21.18 a Effective barrier height versus ideality factor for Ag/n-Si Schottky diodes prepared on Si(111) surface with
(7 × 7) reconstruction or unreconstructed (1 × 1) as labeled. The more ideal (1 × 1) surface exhibits the higher barrier.
The dashed lines are linear fits. b Effective barrier height versus ideality factor for Au/n-Si Schottky diodes prepared
on HF-dipped (1 × 1) unreconstructed (001) and (111) surfaces. The dashed lines are linear fits and extrapolation to
n = nif . Both surface orientations exhibit the same extrapolated homogeneous barrier height. Based on data compiled
in [1728]

Fig. 21.19 Calculated
effective Richardson
constant A∗∗ as a function
of the electric field for a
metal-Si diode at
T = 300K for a (n-type or
p-type) doping of
1016 cm−3. Adapted
from [1732]
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Tunneling Current

At high doping the width of the depletion layer becomes small and tunneling processes become more
probable. Also at low temperatures, when thermionic emission is very small, tunneling processes can
dominate the transport betweenmetal and semiconductor. One process is tunneling of electrons close to
the Fermi level of the semiconductor. This process is called field emission (F) and is at least important
for degenerate semiconductors at very low temperatures. If the temperature is raised, electrons are
excited to higher energies where they encounter a thinner barrier. The tradeoff between thermal energy
and barrier width selects an electron energy Em above the conduction-band edge for which the current
is largest. This process is known as thermionic field emission (TF). For very high temperatures enough
carriers can overcome the barrier completely and we are back in the thermionic emission regime. The
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Fig. 21.20 Calculated
conditions for thermionic
field (‘TF’), field (‘F’) and
thermionic (‘TE’) emission
in a Au/GaAs Schottky
diode as a function of
temperature and doping
concentration. Adapted
from [1684]
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validity of the two regimes is shown in Fig. 21.20 for Au/GaAs Schottky diodes as a function of doping
concentration (n-type) and temperature.

Tunneling through the image-charge effect rounded triangular Schottky barrier is discussed in detail
in [1733]. In the field-emission regime the forward current is given by [1684]

j = js exp

(
eV

E00

)
, (21.64)

with the characteristic energy parameter E00 given by

E00 = e�

2

√
ND

m∗εs
. (21.65)

The saturation current is

js ∝ exp

(
− FBn

E00

)
. (21.66)

In Fig. 21.21, the forward characteristic of a highly doped Au/Si is shown. The experimental value of
E00 = 29meV agrees well with the theoretical expectation of E00 = 29.5meV. Note that at T = 77K
kT = 7meV, thus thermionic emission is excluded for the diode current.

In the reverse direction the I–V characteristic under field emission is given by [1684]

j = 4π e m∗

h3
E2
00

e (Vbi − V )

FBn
exp

(
− 2 F3/2

Bn

3E00
√
e(Vbi − V )

)
. (21.67)

From Fig. 21.21b, a barrier height of 0.79eV is deduced.
In the TF-emission regime the current-voltage characteristic is given by

j = js exp

(
eV

E0

)
, (21.68)

with

E0 = E00 coth

(
E00

kT

)
, (21.69)

where E00 is given by (21.65). The energy for maximum TF emission Em is given by Em = e(Vbi −
V )/ cosh2(E00/kT ). The coth-dependence of E0 is shown in Fig. 21.22 for an Au/GaAs diode.
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Fig. 21.21 a Forward and
b reverse I–V
characteristic of a Au/Si
Schottky diode at 77K.
The doping concentration
of the Si was
ND = 8 × 1018 cm−3.
Adapted from [1684]
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Fig. 21.22 Temperature
dependence of E0 of an
Au/GaAs diode with
ND = 5 × 1017 cm−3. The
solid line is the theoretical
dependence for thermionic
emission according to
(21.69) with
ND = 6.5× 1017 cm−3 and
m∗ = 0.07. Adapted
from [1684]
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A Schottky diode can suffer from non-idealities such as series and parallel ohmic resistance [1725].
These effects are discussed in some detail below for pn diodes in Sect. 21.4.4 and apply similarly to
Schottky diodes.

21.2.6 Ohmic Contacts

Although an ohmic contact does not have a diode characteristic, it can be understood from the previous
remarks. An ohmic contact will have a small contact resistance for both current directions. The voltage
drop across the contact will be small compared to the voltage drop in the active layer (somewhere else).
Details on electric contacts can be found in [1734].

The contact resistance Rc is defined as the differential resistance at V = 0

Rc =
(

∂ I

∂V

)−1

V=0

. (21.70)
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At low doping, the transport is dominated by thermionic emission (21.48). In this case Rc is given by

Rc = k

e A∗ T
exp

(
FBn

kT

)
. (21.71)

A small barrier height (Fig. 21.23a) will lead to small contact resistance. A negative Schottky barrier
height, i.e. Wm < Evac − EF for a n-type semiconductor, leads to an accumulation layer without a
barrier for carrier transport (Fig. 21.23b).

For high doping Rc is determined by the tunneling current (Fig. 21.23c) and is proportional to

Rc ∝ exp

(
FBn

E00

)
. (21.72)

The contact resistance decreases exponentially with the doping. A theoretical calculation and experi-
mental data are compared in Fig. 21.24 for contacts on Si.

The three mechanisms, low barrier height, accumulation layer and high doping, for the formation
of Ohmic contacts are summarized schematically in Fig. 21.23. Ohmic contacts on wide band gap
semiconductors are difficult, since metals with sufficiently small (large) work function for contacting
n-type (p-type) material are mostly not available.

Although Schottky contact devices have their place in semiconductor technology, Ohmic contacts
are indispensable for almost all devices.12 Ohmic contacts are typically prepared by evaporating a
contact metal containing the doping material for the semiconductor, e.g. Au/Zn for a contact on p-type
GaAs [1737] andAu/Ge for a contact [1738] on n-typeGaAs. The contact is alloyed around 400–500 ◦C
(see Fig. 21.25) above the eutectic temperature of Teu = 360 ◦C (for Au/Ge) to form a eutectic liquid
in which the dopant can quickly diffuse. When the eutectic liquid cools it forms a solid, a highly doped
semiconductor layer underneath the metal. The liquid-phase reactions can lead to inhomogeneous
contacts. On n-type GaAs Pd/Ge/Au contacts have been reported to have superior structural quality
[1739]. Ohmic contacts for a number of different semiconductors are reviewed in [1740, 1741].

The current-voltage characteristics of an intrinsic (low carrier density, trap-free) semiconductor with
ohmic contacts is dominated by so-called space-charge limited current (SCLC) as proposed by Mott
and Gurney [1743, 1744]. In a one-dimensional model, the semiconductor of length L is considered
with ohmic contacts and applied voltage V0 (applied electrical field E0 = V0/L). The thermal carriers
shall be negligible compared to the injected ones. The space charge density ρ in the current density
j = ρ v = ρ μ E is then in the space-charge limited regime due to the dependence of the electric field
dE/dx = ρ/ε within the semiconductor (also E = −dV/dx). Therefore the current density can be
written as

Fig. 21.23 Schematic conditions for the formation of an Ohmic contact, a low barrier height, b accumulation layer c
high doping (thin depletion layer)

12Also a Schottky diode has an Ohmic back contact.
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Fig. 21.24 Theoretical and
experimental values of
specific contact resistances
at T = 300K for Al/n-Si
[1735] and PtSi/n-Si [1736]
contacts as a function of
donor concentration. Solid
lines are theoretical
dependencies for different
values of the barrier height
as labeled. Adapted
from [574]
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Fig. 21.25 Specific
contact resistance for
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j = ε μ E
dE

dx
. (21.73)

Integration (remember that j is independent of x) and the boundary condition E(x = 0) = 0 yields

E(x) =
(
2 j

με

)1/2 √
x . (21.74)

We integrate again and find

V (x) = 2

3

(
2 j

με

)1/2

x3/2 , (21.75)
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Fig. 21.26 Current density
from the beginning
(≈ 100µs) of a pulsed
experiment versus applied
field (applied voltage
divided by sample
thickness) for 50µm thick
CdS crystal between
indium-tipped electrodes.
The dashed line shows a
V 2-dependence. Adapted
from [1748]

and for j (and E0 = V0/L) therefore the Mott-Gurney law13

j = 9

8

με

L3
V 2
0 = 9

8

με

L
E2
0 . (21.76)

A quantum theory of space-charge limited current has been put forward in [1747]. For small voltages,
Ohm’s law j ∝ V0 is valid.

The j ∝ V 2-dependence has been first observed for CdS [1748, 1749]. In order to avoid the
effect of injected charge being trapped, pulsed measurements are applied [1748]; in this case, the
V 2-dependence is well fulfilled (trap-free SCLC) (Fig. 21.26) while the steady-state current would be
many orders of magnitude smaller. In [1750], an investigation of crystalline silicon and also a theory
for bipolar transport can be found. Equation (21.76) can also serve to determine the mobility if the
conditions for space-charge limited current are fulfilled. Modifications are necessary in the presence
of traps as discussed in [1751] for the case of amorphous silicon.

21.2.7 Metal Contacts to Organic Semiconductors

Also, for organic semiconductors the metal contact plays a vital role, either for carrier injection or for
manipulation of the space-charge region.Theposition of theFermi level has beendetermined for various
organic semiconductors as shown in Fig. 21.27. These data have been obtained from measurements on
metal-semiconductor-metal structures (MSM, see also Sect. 22.3.5) as shown in Fig. 21.28a. The thin
(50nm) organic layer is fully depleted, thus the built-in field inside the semiconductor is constant. The
built-in field is measured by applying an external dc bias and finding the external potential at which the
electroabsorption signal vanishes. Figure 21.28b shows the measured electroabsorption signal �T/T
(relative change of transmission T ) and the optical density of anMEH-PPV film as a function of photon
energy for an Al/MEH-PPV/Al structure. The exciton absorption peak is found at 2.25eV. The bias at
which the built-in field vanishes can then be determined for various othermetals inmetal/MEH-PPV/Al
structures. Figure 21.27 summarizes such results for various metals and three organic semiconductors.
The plot of the Fermi level position versus the metal work function (Fig. 21.28d,e) shows that the
metals investigated do not introduce interface states in the single-particle gap that pin the Schottky

13For transport in vacuum where the electron motion is accelerated, j ∝ V 3/2
0 was found earlier, [1745, 1746]
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Fig. 21.27 Measured
Fermi energies EF (labeled
data in eV) and the work
functions Wm of various
metals contacting (a)
pentacene, (b) Alq3 and (c)
MEH-PPV. EC (EV)
denotes the energy position
of the electron (hole)
polaron. Measured data for
EF for MEH-PPV from
[1753], other from [1754].
Data for Wm from
Table 21.2
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barrier (see Fig. 21.5 for inorganic semiconductors). An electron trap, such as C60 in MEH-PPV, can
pin the Fermi level of the n-contact metal and leads to a change of the built-in potential [1752].

Space-charge limited currents (see Sect. 21.2.6) are often observed in organic semiconductors. An
analysis including the effects of traps has been reported in [1755].

21.3 Metal-Insulator-Semiconductor Diodes

In a metal-insulator-semiconductor (MIS) diode an insulator is sandwiched between the metal and
the semiconductor. Subsequently, a MIS contact has zero dc conductance. The semiconductor typ-
ically has an ohmic back contact. As insulator, often the oxide of the respective semiconductor, is
used. In particular SiO2 on Si has been technologically advanced (Fig. 21.29). In the latter case, the
diode is called a MOS (metal-oxide-semiconductor) diode. This structure has great importance for the
investigation of semiconductor surfaces and overwhelming importance for semiconductor technology
(planar integration of electronic circuits, CMOS technology). Also, CCDs (Sect. 22.3.8) are based on
MIS diodes.
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Fig. 21.28 a Schematic MSM structure with organic semiconductor (sc.) on transparent glass substrate. Metal 1 is thin
and semitransparent. Thickness of organic semiconductor (polymer or small molecules) is about 50nm. b Electroab-
sorption spectra of Al/MEH-PPV/Al structure at four dc bias voltages (solid lines) and optical density spectrum (dashed
line). c Magnitude of the electroabsorption response at 2.1eV as a function of bias for metal/MEH-PPV/Al structures.
d, e Calculated (solid lines) and experimental (points) potential difference across (d) metal/MEH-PPV/Al structures and
(e) metal/MEH-PPV/Ca structures as a function of the work-function difference of the contacts. Parts (b)–(e) adapted
from [1753]

21.3.1 Band Diagram for Ideal MIS Diode

An ideal MIS diode has to fulfill the following three conditions:

(i) (as shown in Fig. 21.30) without external bias the energy differenceWms between thework function
of the metal and the semiconductor

Wms = (−e) φms = Wm −
(

χsc + Eg

2
± e�B

)
(21.77)

is zero (φms = 0). The ‘+’ (‘−’) sign in (21.77) applies to a p-type, Fig. 21.30b (n-type, Fig. 21.30a)
semiconductor. �B is the potential difference between the intrinsic and actual Fermi level, �B =
|Ei − EF|/e > 0.

(ii) The only charges present are those in the semiconductor and the opposite charge is on the metal
surface close to the insulator.

(iii) There is no dc current between themetal and the semiconductor, i.e. the conductivity of the insulator
is zero.

The quantity �B (Fig. 21.32) is given as (for a p-type material, using (7.18), the high temperature
approximation (7.32) and (7.15))
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poly-Si

Si

Fig. 21.29 High-resolution transmission electron microscopy image of a 1.6-nm thick gate oxide between poly-Si (cf.
Sect. 24.5.4) and crystalline Si. From [1756]

(a) (b)

Fig. 21.30 Band diagram of an ideal MIS diode with a n- and b p-type semiconductor at external bias V = 0. The
insulator (‘i’) thickness is d as labeled. The dash-dotted line represents the intrinsic Fermi level Ei

e�B = Ei − EF =
[
EC + EV

2
+ kT

2
ln

(
NV

NC

)]
−

[
EV − kT ln

(
NA

NV

)]

= Eg

2
+ kT ln

(
NA√
NC NV

)
= kT ln

(
NA

ni

)
. (21.78)

When an ideal MIS diode is biased, three general cases—accumulation, depletion and inversion— can
occur (Fig. 21.35). We discuss these first for the p-type semiconductor.

Figure 21.35d shows the accumulation case for a negative voltage at the metal.14 Part of the voltage
drops across the insulator, the rest across the semiconductor. The valence band is bent upwards towards
the Fermi level. The quasi-Fermi level in the semiconductor, however, is constant since no dc current
flows (Fig. 21.31).15

Since the charge-carrier (hole) density depends exponentially on the energy separation EF − EV, a
charge accumulation (of holes) occurs in the (p-type) semiconductor in the vicinity of the interface to
the insulator.

14This poling is a forward bias of the respective Schottky diode since the positive pole is at the p-type semiconductor.
15We note that in order to reach the situations shown in Fig. 21.35 from the zero bias case of Fig. 21.30, a current must
have flowed since charge carriers are redistributed. Figure 21.35 depicts the stationary equilibrium after transient voltage
switch-on effects have subsided. The time, however, that is needed in order to reach such stationary equilibrium from
zero bias (thermal equilibrium) may be very long (e.g. days, cf. Sect. 22.3.8).
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Fig. 21.31 Band diagram of ideal MIS diodes with a, b, c n-type and d, e, f p-type semiconductors for V �= 0 in
stationary equilibrium for the cases a, d accumulation, b, e depletion and c, f inversion

In Fig. 21.35e the depletion case is shown. Now a moderate reverse voltage, i.e. a positive bias to
the metal, is applied. A depletion of majority charge carriers occurs in the semiconductor close to
the insulator. The quasi-Fermi level in the semiconductor remains beneath the intrinsic level (Ei ≈
EC + Eg/2), i.e. the semiconductor remains p-type everywhere. If the voltage is increased further to
large values, the quasi-Fermi level intersects the intrinsic level and lies above Ei close to the insulator
(Fig. 21.35f). In this region, the electron concentration becomes larger than the hole concentration and
the inversion regime is reached. The inversion is called ‘weak’ if the Fermi level is still close to Ei.
The inversion is called ‘strong’ when the Fermi level lies close to the conduction-band edge with an
accordingly large inversion charge.
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Fig. 21.32 Band diagram
close to the interface of a
p-type semiconductor MIS
diode. Accumulation
occurs for �s < 0,
depletion for �s > 0 and
inversion (as shown here)
for �s > �B > 0

EV

EF

e S

Ei
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e B

semiconductorinsulator

The corresponding phenomena occur for n-type semiconductors for the opposite signs of the volt-
age with electron accumulation and depletion. In the inversion case, p > n close to the insulator
(Fig. 21.35a–c).

21.3.2 Space-Charge Region

Nowwecalculate the charge and electric field distribution in an idealMISdiode, following the treatment
in [1757]. We introduce the potential � that measures the separation of the intrinsic bulk Fermi level
and the actual intrinsic level Ei, i.e. −e�(x) = Ei(x) − Ei(x → ∞) (see Fig. 21.32). Its value at the
surface is termed �s, the surface potential. The value is positive, i.e. �s > 0, if the intrinsic Fermi
level at the surface is below the bulk Fermi level.

The electron and hole concentrations are given (for a p-type semiconductor) as

np = np0 exp(β�) (21.79a)

pp = pp0 exp(−β�) , (21.79b)

where np0 (pp0 ) are the bulk electron (hole) concentrations, respectively, and β = e/kT > 0.
Therefore, the net free charge is given by

np − pp = np0 exp(β�) − pp0 exp(−β�) . (21.80)

The electron and hole concentrations at the surface are denoted with an index ‘s’ and are given by16

ns = np0 exp(β�s) (21.81a)

ps = pp0 exp(−β�s) . (21.81b)

We use the Poisson equation d2�
dx2 = − ρ

εs
with the charge given by

ρ(x) = e
[
pp(x) − np(x) + N+

D (x) − N−
A (x)

]
. (21.82)

As boundary conditionwe employ that far away from the surface (for x → ∞) there is charge neutrality
(cf. (7.40)), i.e.

np0 − pp0 = N+
D − N−

A , (21.83)

16�s represents the voltage drop across the semiconductor that will be discussed in more detail in Sect. 21.3.3. In this
sense, �s for the MIS diode is related to Vbi − V for the Schottky contact.
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Fig. 21.33 Dependence of
the space charge on the
surface potential �s for
p-type silicon with
NA = 1015 cm−3 at
T = 300K. The flat-band
condition is present for
�s = 0, strong inversion
for �s > 2�B. The dashed
blue (red) line is the
dependence of the
depletion (inversion)
charge

and that � = 0. The ionization of the dopants only depends on temperature which is everywhere the
same17; thus N+

D − N−
A is constant throughout the homogeneous semiconductor. Therefore (21.83)

(but not charge neutrality) holds everywhere in the semiconductor. Using (21.80) the Poisson equation
reads

∂2�

∂x2
= − e

εs
{pp0

[
exp(−β�) − 1

] − np0
[
exp(β�) − 1

]} . (21.84)

The Poisson equation is integrated and with the notations

F (�) =
√[

exp(−β�) + β� − 1
] + np0

pp0

[
exp(β�) − β� − 1

]
(21.85a)

LD =
√

εs kT

e2 pp0
=

√
εs

e β pp0
, (21.85b)

with LD being the Debye length (screening effect) for holes, the electric field can be written as

E = −∂�

∂x
= ±

√
2 kT

e LD
F (�) . (21.86)

The positive (negative) sign is for � > 0 (� < 0), respectively. At the surface, �s will be taken as the
value for �. The total charge Qs per unit area creating the surface field

Es = − ∂�

∂x

∣∣∣∣
x=0

= ±
√
2 kT

e LD
F (�s) (21.87)

is given by the one-dimensional Gauss law as Qs = −εs Es.
The dependence of the space-charge density from the surface potential18 is depicted in Fig. 21.33.

When �s is negative, F is dominated by the first term in (21.85a) and the space charge is positive
(accumulation) and proportional to Qs ∝ exp(β|�|/2). For�s = 0 the (ideal) MIS diode is under flat-
band condition and the space charge is zero. For�s > 0 the space charge is negative. For 0 < �s ≤ �B

17The donor and acceptor ionization energies do not change upon �.
18We note that we discuss the space-charge region now only with regard to�s, the voltage drop across the semiconductor,
and the dependence of �s on the bias of the diode will be discussed in the next section.
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Fig. 21.34 Ideal MIS diode at inversion: a band diagram, b charge distribution, c electric field and d potential

the space charge is due to ionized impurities (depletion) and F is dominated by the second term in
(21.85a), i.e. �s ∝ √

�s. For �B ≤ �s ≤ 2�B the diode is in the weak inversion regime and still
�s ∝ √

�s.
Eventually the dominating term of the second bracket in (21.85a) f1 = np0/pp0

exp(β�) = (ni/NA)2 exp(β�) becomes comparable and exponentially larger than the dominat-
ing term of the first bracket f2 = β�. Solving f1 = f2 for � = γ �B yields the equation
(NA/ni)γ−2 = γ ln(NA/ni) and a value γ larger than and close19 to 2. Thus for �s > � inv

s ≈ 2�B

(using (21.78)),

� inv
s ≈ 2 kT

e
ln

(
NA

ni

)
, (21.88)

strong inversion starts and the space charge is given as Qs ∝ − exp(β�/2). For the case of strong
inversion the band diagram is shown in Fig. 21.34 together with the charge, field and potential.

The bias voltage V at the MIS diode (or the total voltage drop across the MIS diode) is

19For NA/ni = 104, 106 and 108, we find γ = 2.33, 2.25 and 2.20, respectively.
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(a) (b)

Fig. 21.35 Properties of the ideal MIS diode as a function of bias voltage V ; same semiconductor parameters as in
Fig. 21.33 with an amorphous SiO2 (εr = 3.9, d = 5nm) insulator (and Wms = 0). a Voltage drops Vi (blue) across
the insulator and �s (black) across the semiconductor. b Total charge (absolute values) in the semiconductor in linear
(black) and logarithmic (blue) scale

V = Vi + �s , (21.89)

with Vi = Qs/Ci being the voltage drop across the insulator. For the insulator capacitance (per area)
Ci see (21.93). Both partial voltages are shown in Fig. 21.35a as a function of the bias. The voltage
drop in the insulator becomes significant for V > 2�B.

In the case of inversion, the charge (per unit area) in the space-charge region

Qs = Qd + Qn (21.90)

is composed of the depletion charge (ionized acceptors)

Qd = −e w NA , (21.91)

withw being the width of the depletion region, and the inversion charge Qn, which is present only close
to the interface. The charge as a function of bias is depicted in Fig. 21.35bwhere in the semi-logarithmic
plot, the depletion and inversion charges can be distinguished. The charge becomes significant for
V > 2�B.

The metal surface carries the opposite charge

Qm = −Qs (21.92)

due to global charge neutrality. The insulator itself does not contribute charges in the case of an ideal
MIS diode.

21.3.3 Capacitance

The insulator represents a capacitor with the dielectric constant εi and a thickness d. Therefore, the
capacitance is

Ci = εi

d
. (21.93)
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Fig. 21.36 a Schematic dependence of the capacitance of a MIS diode on the bias for (i) low frequencies, (ii) high
frequencies and (iii) deep depletion. b High-frequency capacitance of a Si/SiO2 diode. The inset shows the frequency
dependence. Adapted from [1758]

Between the charges −Qs and Qs the field strength Ei in the insulator is

Ei = |Qs|
εi

. (21.94)

The voltage drop Vi across the insulator is given by

Vi = Ei d = |Qs|
Ci

. (21.95)

The total capacitance C of the MIS diode is given by the insulator capacitance in series with the
capacitance Cd of the depletion layer

C = Ci Cd

Ci + Cd
. (21.96)

The capacitance of the space-charge region varies with the applied bias (Fig. 21.36). For forward bias
(accumulation), the capacitance of the space-charge region is high. Therefore, the total capacitance
of the MIS diode is given by the insulator capacitance C ≈ Ci. When the voltage is reduced, the
capacitance of the space-charge region drops toCd = εs/LD for the flat-band case (�s = 0). For a high
reverse voltage, the semiconductor is inverted at the surface and the space-charge region capacitance
is high again. In this case, the total capacitance is given by C ≈ Ci again.

The previous consideration assumes that the charge density in the semiconductor can follow changes
of the bias sufficiently fast.20 However, the inversion charge must be built up and then also disappear
via recombination that is limited by the recombination time constant τ . For frequencies around τ−1

or faster, the charge in the inversion layer cannot follow and the capacitance of the semiconductor is
given by the value Cd

∼= εs/wm; wm (Fig. 21.37) is the maximum depletion-layer width present at the
beginning of inversion (cf. (21.10) and (21.88))

wm
∼=

√
2 εs

e NA
� inv

s =
√
4 εs kT

e2 NA
ln

(
NA

ni

)
. (21.97)

For further increased voltage (into the inversion regime), the electric field is screened by the inversion
charge and the width of the depletion layer remains constant. Therefore, the total capacitance in the

20Typically, a dc bias voltage V is set and the capacitance is sampled with a small ac voltage of amplitude �V , with
δV � V .
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Fig. 21.37 Maximum width of the depletion layer wm (21.97) at room temperature for deep depletion for GaAs, Si and
Ge diodes as a function of bulk doping level

inversion regime is given by

C ∼= εi

d + wm εi/εs
. (21.98)

21.3.4 Nonideal MIS Diode

In a real, i.e. nonideal, MIS diode, the difference φms in the work functions of the metal and semicon-
ductor (cf. (21.77)) is no longer zero. Therefore, the capacitance versus voltage relation is shifted with
respect to the ideal MIS diode characteristic by the flat-band voltage shift VFB

VFB = φms − Qox

Ci
. (21.99)

Additionally, the flat-band voltage can be shifted by charges Qox in the oxide that have been neglected
so far. Such charges can be trapped, i.e. fixed with regard to their spatial position, or mobile, e.g. ionic
charges such as sodium.

For Al as metal (φm = 4.1eV) and n-type Si (φs = 4.35eV), the flat-band voltage shift is φms =
−0.25V, as shown schematically in Fig. 21.38a for zero bias. VFB is split into 0.2eV and 0.05eV for the
oxide and the silicon, respectively. In Fig. 21.38b, the dependence of φms on the doping, conductivity
type and metal is shown for various SiO2/Si MIS diodes. An Au-SiO2/Si diode with p-type Si and
NA ≈ 1015 cm−3 fulfills the condition of an ideal MIS diode with regard to φms = 0.

21.4 Bipolar Diodes

A large class of diodes is based on pn junctions. In a homo pn junction an n-doped region is next
to a p-doped region of the same semiconductor. Such a device is called bipolar. At the junction a
depletion region forms. The transport properties are determined by the minority carriers. An important
variation is the pin-diode in which an intrinsic (or lowly doped) region is between the doped region
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Fig. 21.38 a Schematic
band diagram of an
Al/SiO2/Si (n-type) diode
with 50nm oxide thickness
and ND = 1016 cm−3 for
zero bias, Wms = 0.25eV.
Based on data from [1759].
b Difference of work
functions φms = −Wms/e
for SiO2/Si MIS diodes and
various doping levels and
electrode materials (Al, Au
and polycrystalline Si).
The square represents the
situation depicted in panel
(a). Based on data
from [1760]
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Fig. 21.39 Schematic fabrication technologies for bipolar diodes: a Planar junction with local impurity incorporation
(diffusion from gas phase or ion implantation) through mask and contact metallization, b epitaxial junction

(Sect. 21.5.8). If the differently doped regions belong to different semiconductor materials, the diode
is a heterostructure pn diode (Sect. 21.4.6). Various schemes have been used to fabricate pn diodes
(Fig. 21.39).

21.4.1 Band Diagram

If the doping profile is arbitrarily sharp, the junction is called abrupt. This geometry is the case
for epitaxial pn junctions where the differently doped layers are grown on top of each other.21 For

21The choices of dopants and the growth conditions, in particular the temperature, need to be made such that no or
negligible interdiffusion of the dopants takes place.
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Fig. 21.40 Description of doping distribution with (a, b) abrupt approximation and with (c, d) linearly graded junction.
(a, c) show real impurity concentration, (b, d) idealized doping profile

junctions that are fabricatedbydiffusion, the abrupt approximation is suitable for alloyed, ion-implanted
and shallow-diffused junctions. For deep-diffused junctions a linearly graded approximation is better
(Fig. 21.40), which is treated in more detail in [574]. If one doping level is much higher that the other,
the junction is termed a one-sided (abrupt) junction. If n � p (p � n), the junction is denoted as an
n+p-diode (p+n-diode).

The thermodynamical equilibrium of a pn diode is considered here only for the electronic system.
The thermodynamic stability of the atomic doping distribution is discussed in [1761]. Typically, ther-
modynamics works to randomize the chemical concentration gradient; the existence of a pn junction
is due to the extremely low diffusion coefficient of dopants in the semiconductor lattice. Elevated
temperatures can cause the destruction of the pn diode via enhanced dopant diffusion (Sect. 4.2.3).
However, a thermodynamically stable concentration gradient and thus a built-in field can exist in a
multi-component system [1761].

21.4.2 Space-Charge Region

In thermodynamical equilibrium the Fermi level is constant (∇EF = 0). The built-in (positive) voltage
Vbi is given by (see Fig. 21.41c)

e Vbi = Eg + e Vn + e Vp , (21.100)

where Vn is the difference between conduction band and Fermi level on the n-side, −eVn = EC − EF.
Vp is the difference between valence band and Fermi level on the p-side, −eVp = EF − EV. For the
nondegenerate semiconductor Vn, Vp < 0 and (using (7.12), (7.10) and (7.11))

e Vbi = kT ln

(
NCNV

n2i

)
−

[
kT ln

(
NC

nn0

)
+ kT ln

(
NV

pp0

)]

= kT ln

(
pp0 nn0
n2i

)
= kT ln

(
pp0
pn0

)
= kT ln

(
nn0
np0

)
(21.101a)

∼= kT ln

(
NA ND

n2i

)
. (21.101b)

The electron and hole densities on either side of the junction (np0 and pp0 at x = −xp and nn0 and pn0
at x = xn) are related to each other by (from rewriting (21.101a))



556 21 Diodes

Fig. 21.41 pn junction
(abrupt approximation) in
thermal equilibrium (zero
bias) for Si at room
temperature and
NA = ND = 1018 cm−3. a
Schematic representation
of p-doped and n-doped
region with depletion layer
(grey area) and fixed space
charges, b diffusion
potential, c band diagram
with Fermi level (dashed
line), d electric field, e
free-carrier concentrations
n and p and f total
free-carrier density n + p

np0 = nn0 exp (−βVbi) (21.102a)

pn0 = pp0 exp (−βVbi) . (21.102b)

Microscopically, the equilibration of the Fermi levels on the n- and p-side occurs via the diffusion
of electrons and holes to the p- and n-side, respectively. The electrons and holes recombine in the
depletion layer. Therefore, on the n-side the ionized donors and on the p-side the ionized acceptors
remain (Fig. 21.41a). These charges build up an electric field (Fig. 21.41d) that works against the
diffusion current. At thermal equilibrium the diffusion and drift currents cancel and the Fermi level is
constant.

Values for the built-in potential are depicted in Fig. 21.42 for Si and GaAs diodes. The spatial
dependence of the potential in the depletion layer is determined by the Poisson equation.

Weassumehere the complete ionizationof the donors and acceptors.Also,weneglect at firstmajority
carriers in the depletion layers on the n- and p-sides.22 With these approximations, the Poisson equation
in the depletion layers on the n- and p-side reads

22An abrupt decrease of the majority carrier density at the border of the space-charge region corresponds to zero
temperature.
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Fig. 21.42 Built-in
voltage as a function of
doping for one-sided Si and
GaAs pn diodes

∂2V

∂x2
= −e ND

εs
, 0 ≤ x ≤ xn (21.103a)

∂2V

∂x2
= e NA

εs
, −xp ≤ x ≤ 0 . (21.103b)

One integration yields (together with the boundary conditions that the field is zero at the boundaries
of the depletion layer) the electric field in the two regions

E(x) = e

εs
ND (x − xn), 0 ≤ x ≤ xn (21.104a)

E(x) = − e

εs
NA (x + xp), −xp ≤ x ≤ 0 . (21.104b)

The maximum field strength Em is present at x = 0 and is given by

Em = −e ND xn
εs

= −e NA xp
εs

. (21.105)

The continuity of the field at x = 0 is equivalent to the overall charge neutrality

ND xn = NA xp . (21.106)

Another integration yields the potential (setting V (x = 0) = 0)

V (x) = −Em

(
x − x2

2xn

)
, 0 ≤ x ≤ xn (21.107a)

V (x) = −Em

(
x + x2

2xp

)
, −xp ≤ x ≤ 0 . (21.107b)

The built-in potential Vbi = V (xn) − V (−xp) > 0 is related to the maximum field via

Vbi = − Em w

2
, (21.108)
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where w = xn + xp is the total width of the depletion layer. The elimination of Em from (21.105) and
(21.108) yields

w =
√
2 εs

e

(
NA + ND

NA ND

)
Vbi = xn + xp ; (21.109)

the two parts of the depletion layer are given by

xn = NA

NA + ND

√
2 εs

e

NA + ND

NA ND
Vbi (21.110a)

xp = ND

NA + ND

√
2 εs

e

NA + ND

NA ND
Vbi . (21.110b)

For p+n and n+p junctions, the width of the depletion layer is determined by the lowly doped side of
the junction

w =
√

2 εs

e NB
Vbi , (21.111)

where NB denotes the doping of the lowly doped side, i.e. NA for a n+p diode and ND for a p+n diode.
If the spatial variation of the majority carrier density is considered in more detail (and for finite

temperature, cf. (21.13)), an additional term −2kT/e = −2/β is added [1757] to Vbi

w =
√
2 εs

e

(
NA + ND

NA ND

) (
Vbi − V − 2β−1

)
. (21.112)

Also, the external bias V has been included in the formula. If w0 denotes the depletion layer width at
zero bias, the depletion layer width for a given voltage V can be written as

w(V ) = w0

√
1 − V

Vbi − 2/β
≈ w0

√
1 − V

Vbi
. (21.113)

Using the Debye length (cf. (21.85b))

LD =
√

εs kT

e2 NB
, (21.114)

the depletion layer width for a one-sided diode can be written as (with β = e/kT )

w = LD

√
2 (βVbi − βV − 2) . (21.115)

The Debye length is a function of the doping level and is shown for Si in Fig. 21.43. For a doping
level of 1016 cm−3 the Debye length in Si is 40nm at room temperature. For one-sided junctions the
depletion layer width is about 6 LD for Ge, 8 LD for Si and 10 LD for GaAs.

The external bias is counted positive if the ‘+’ (‘−’) pole is at the p-side (n-side). The reverse voltage
has opposite polarity. If a reverse bias is applied, the depletion layer width is increased (Fig. 21.44).
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Fig. 21.43 Debye length
in Si at room temperature
as a function of the doping
level NB according to
(21.114)

Fig. 21.44 Width of the
depletion layer and
capacitance per area for
one-sided, abrupt Si
junctions for various values
of Vbi − V − 2kT/e as
labeled. The dash-dotted
line is for zero bias, the
dashed line is the limit due
to avalanche breakdown.
Adapted from [574]
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21.4.3 Capacitance

The capacitance of the depletion layer is the charge change upon a change of the external bias. It is
given as

C =
∣∣∣∣dQdV

∣∣∣∣ = d(eNBw)

d(w2eNB/2εs)
= εs

w
= εs√

2 LD

1√
βVbi − βV − 2

. (21.116)

Therefore, the capacitance of the depletion layer is inversely proportional to the depletion-layer width
(see the two scales in Fig. 21.44). A detailed treatment has been given in [1762]. 1/C2 is proportional
to the external bias

1

C2
= 2 L2

D

ε2s
(βVbi − βV − 2) . (21.117)

From C–V spectroscopy the doping level can be obtained from the slope

d(1/C2)

dV
= 2 β L2

D

ε2s
= 2

e εs NB
. (21.118)

From the extrapolation to the voltage for which 1/C2 = 0 the built-in voltage can be obtained.
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21.4.4 Current-Voltage Characteristics

Ideal Current-Voltage Characteristics

Now, the currents in thermodynamical equilibrium (V = 0) and under bias are discussed. A diode
characteristic will be obtained. We work at first with the following assumptions: abrupt junction,
Boltzmann approximation, low injection, i.e. the injected minority carrier density is small compared
to the majority carrier density, and zero generation current in the depletion layer, i.e. the electron and
hole currents are constant throughout the depletion layer. In the presence of a bias, electrons and holes
have quasi-Fermi levels and the carrier densities are given by (cf. (7.55a, b))

n = NC exp

(
Fn − EC

kT

)
(21.119a)

p = NV exp

(
− Fp − EV

kT

)
. (21.119b)

Using the intrinsic carrier concentration (7.19,7.20), we can write

n = ni exp

(
Fn − Ei

kT

)
= ni exp [β(ψ − φn)] (21.120a)

p = ni exp

(
− Fp − Ei

kT

)
= ni exp

[
β(φp − ψ)

]
, (21.120b)

where φ and ψ are the potentials related to the (quasi-) Fermi level and the intrinsic Fermi levels,
−eφn,p = Fn,p and −eψ = Ei. The potentials φn and φp can also be written as

φn = ψ − β−1 ln

(
n

ni

)
(21.121a)

φp = ψ + β−1 ln

(
p

pi

)
. (21.121b)

The product np is given by
np = n2i exp

[
β(φp − φn)

]
. (21.122)

Of course, at thermodynamical equilibrium (zero bias) φp = φn and np = n2i . For forward bias
φp − φn > 0 (Fig. 21.45a) and np > n2i . For reverse bias φp − φn < 0 (Fig. 21.45b) and np < n2i .

The electron current density (per unit area) is given by (8.60a) that reads here with E = −∇ψ and
n given by (21.120a) as23

jn = −eμn
(
n E + β−1 ∇n

) = e n μn ∇φn . (21.123)

Similarly, we obtain for the hole current density (using (8.60b) and (21.120b))

jp = eμp
(
pE − β−1 ∇ p

) = −e pμp ∇φp . (21.124)

Both these currents through the depletion/space-charge region are constant since no recombina-
tion/generation is assumed for now. The gradient of the quasi-Fermi levels in the depletion layer

23We remind the reader that μn was defined as a negative number.
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Fig. 21.45 a Diffusion potential, b band diagram, c electric field, d electron and hole concentrations and e n + p under
forward bias +0.4V (left panel) and reverse bias (right panel) −0.4V for a silicon pn diode at room temperature with
NA = ND = 1018 cm−3 (same as in Fig. 21.41). The dashed lines in (b) are the electron and hole quasi-Fermi levels
Fn and Fp. The depletion layer is shown as the grey area. The diffusion length in the n- and p-type material is taken as
4nm. This value is much smaller than the actual diffusion length (µm-range) and is chosen here only to show the carrier
concentration in the depletion layer and the neutral region in a single graph

is very small and the quasi-Fermi levels φn,p are practically constant. The electron and hole currents
are shown in Fig. 21.46 together with the carrier densities; a more detailed calculation of currents than
presented here can be found in [1763]. The change of carrier density in the depletion layer is mostly
due to the variation of ψ (or Ei).

Therefore, the voltage drop across the depletion layer is V = φp − φn and (21.122) reads

n p = n2i exp (βV ) . (21.125)

The electron density at the boundary of the depletion layer on the p-side (at x = −xp) is (using
(21.125))

np = n2i
pp

exp (βV ) = np0 exp (βV ) . (21.126)

Similarly, the hole density on the n-side at x = xn is given by

pn = pn0 exp (βV ) . (21.127)
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Fig. 21.46 Carrier
densities (a, c) and current
densities (b, d) (linear
scales) in a pn diode under
(a, b) forward bias and
(c, d) reverse bias
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From the continuity equation and the boundary condition that far away from the depletion layer the
hole density is pn0 , the hole density on the n-side is given by

δpn(x) = pn(x) − pn0 = pn0
[
exp (βV ) − 1

]
exp

(
− x − xn

Lp

)
, (21.128)

where Lp = √
Dpτp is the hole (minority carrier) diffusion length. In [1763] it is argued from analytical

and numerical analysis that the majority carrier density follows δnn(x) = δpn(x).
The hole current density at the boundary of the depletion layer on the n-side is

jp(xn) = −e Dp
∂pn
∂x

|xn = e Dp pn0
Lp

[
exp (βV ) − 1

]
. (21.129)

Similarly, the electron current (again δpp(x) = δnp(x) in the neutral region [1763]) in the depletion
layer is

jn(−xp) = e Dn np0
Ln

[
exp (βV ) − 1

]
. (21.130)

The total current due to diffusion is

jd = jp(xn) + jn(−xp) = js
[
exp (βV ) − 1

]
, (21.131)

with the saturation current given by

jds = e Dp pn0
Lp

+ e Dn np0
Ln

. (21.132)

This dependence represents the ideal diode characteristic and the famous result from Shockley. Here,
only the minority diffusion currents have been considered; a more in-depth discussion is delivered
in [1763] where also the majority carrier density and majority carrier drift and diffusion currents are
analyzed (minority drift currents can be neglected altogether). However, the analysis leads to the same
result (21.131) and (21.132).
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For a one-sided (p+n-) diode, the saturation current is (here NB = ND)

jds ∼= e Dp pn0
Lp

∼= e

(
Dp

τp

)1/2 n2i
NB

. (21.133)

The saturation depends via Dp/τp weakly on the temperature. The term n2i depends on T , proportional
to T 3 exp(−Eg/kT ), which is dominated by the exponential function.

If the minority carrier lifetime is given by the radiative recombination (10.19), the hole diffusion
length is

Lp =
√

Dp

B nn0
. (21.134)

For GaAs (Tables 8.2 and 10.1) with ND = 1018 cm−3, we find τp = 10ns and Lp ≈ 3 µm. For Ln we
find 14 µm, however, the lifetime at room temperature can be significantly shorter due to nonradiative
recombination and subsequently also the diffusion length will be shorter (by about a factor of 10). For
L ∼ 1 µm, the diffusion saturation current is jds ∼ 4 × 10−20 A/cm2.

The radiative recombination rate (band-band recombination, b–b) in the neutral n-region (as relevant
for LEDs, see Sect. 23.3) is B(np − n2i ) ≈ Bnn0(pn(x) − pn0). Therefore, the recombination current
jb−b
d,n in the neutral n-region is (using (21.128))

jb−b
d,n = e

∞∫
xn

B n2i
[
exp (βV ) − 1

]
exp

(
− x − xn

Lp

)
dx

= e B Lp n
2
i

[
exp (βV ) − 1

]
. (21.135)

For the neutral region on the p-side a similar expression results. The total radiative recombination
current from the neutral regions is

jb−b
d = e B (Ln + Lp) n

2
i

[
exp (βV ) − 1

]
. (21.136)

For GaAs, the saturation current for the radiative recombination in the neutral region

j r,b−b
s = e B (Ln + Lp) n

2
i (21.137)

is (Tables 7.1 and 10.1) for a diffusion length of 1 µm of j r,b−b
s ∼ 4 × 10−21 A/cm2.

Since the (radiative)minority carrier lifetime is inversely proportional to themajority carrier density,
the relevant diffusion length is that of the side with the lower doping level and is given by

L = 1

ni

√
DB NB

B
, (21.138)

where DB is the minority carrier diffusion coefficient on the lowly doped side. The radiative recombi-
nation current from the neutral region can be written as

jb−b
d = e

√
B DB NB ni

[
exp (βV ) − 1

]
. (21.139)

The I–V characteristic for pn diodes from two semiconductors with different band gap are shown in
Fig. 21.47a (for Ge and Si). The Si diode has themuch smaller saturation current. The saturation current
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Fig. 21.47 Comparison of the characteristics of a Ge and Si and b GaN pn diodes at room temperature. Note the
different scales in the forward and reverse regime in (a). The lines in (b) are related to ideality factors 2 and 1.5 as
labeled. Adapted from [1764]
Fig. 21.48 Characteristics
of a Si power diode at two
temperatures, 25 ◦C and
100 ◦C

increases at higher temperature (Fig. 21.48). A wide-gap pn diode (GaN) exhibits small saturation
currents (The n = 1.5 part of the GaN in Fig. 21.47b belongs to a saturation current density of
7 × 10−27 A/cm2, the n = 1.5 part to ≈ 10−34 A/cm2) and displays sizable current (density) only for
larger voltages.

Real I–V Characteristics

Besides the ideal I–V characteristics due to diffusion several effects contribute to the characteristics
of real bipolar diodes:

– a generation-recombination (G–R) current is present due to traps in the depletion layer
– already for fairly small forward voltages, high injection conditions are present, i.e. pn � nn is no
longer valid

– the series resistance Rs of the diode is finite (ideally Rs = 0)
– the diode has a finite parallel (shunt) resistance Rp (ideally Rp = ∞ )
– at high reverse voltage the junction breaks down; this phenomenon is treated in Sect. 21.4.5

First, we consider the generation-recombination current due to band-impurity (b–i) processes (see
Sect. 10.9). Such recombination is nonradiative or at least does not produce photons with an energy
close to the band gap. The impact on the I–V diode characteristic has first been considered in [1765].

The net b–i recombination rate is given by (10.52). For reverse voltage, the generation dominates
the G–R current. For n < ni and p < ni, the net recombination rate r is
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r ∼= σn σp vth Nt

σn exp
( Et−Ei

kT

) + σp exp
( Ei−Et

kT

) ni ≡ ni
τe

, (21.140)

where τe is the effective electron lifetime. The generation current density is given by

jg = e ni w

τe
. (21.141)

Since the width of the depletion layer varies with the applied reverse bias V , we expect a dependence

jg ∝ √
Vbi + |V | . (21.142)

The saturation current is given by the sum of the diffusion and generation parts

js = e

√
Dp

τp

n2i
ND

+ e ni w

τe
. (21.143)

In semiconductors with large ni (narrow band gap, e.g. Ge) the diffusion current will dominate; in Si
(larger band gap) the generation current can dominate.

The maximum of the recombination rate is present for Et ≈ Ei (10.57). Then nt = pt = ni in
(10.52). Assuming σ = σn = σp, the recombination rate is

rb−i = σ vth Nt
n p − n2i

n + p + 2 ni
. (21.144)

Using (21.122) we can write

rb−i = σ vth Nt ni
ni

n + p + 2 ni

[
exp (βV ) − 1

]
. (21.145)

The term ζ = ni
n+p+2ni

is maximal for n = p, which is given (from (21.125)) by

nmr = pmr = ni exp (βV/2) . (21.146)

The function ζ(x) cannot be integrated analytically. In order to evaluate the integral of ζ over the
depletion layer

χ =
xn∫

−xp

ζ dx , (21.147)

the maximum rate

ζmr = ni
nmr + pmr + 2 ni

= 1

2

1

1 + exp (βV/2)
(21.148)

can be integrated over the depletion layer as an approximation [574], χ ≈ ζmr w. This approach yields
a recombination current

jmr = e σ vth Nt w ni
2

exp (βV ) − 1

exp (βV/2) + 1
∼= jmr

s exp

(
βV

2

)
, (21.149)
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with jmr
s = eσvthNtwni/2 and the approximation being valid for eV/kT � 1. Thus the nonradiative

band-impurity recombination is often said to cause an ideality factor of n = 2.
For a better approximation of χ , the dependence of the potential ϕ(x) can be approximated as linear

(constant-field approximation), i.e. using the local field Emr at the position where n = p [1766]. For a
symmetric diode with nn0 = pp0 , this position is at x = 0; for a one-sided junction on the lower-doped
side. Emr is given for pp0 ≤ nn0 by

Emr = −
√
2

w
(Vbi − V )

√
1 + 1

β (Vbi − V )
ln

pp0
nn0

√
1 + pp0

nn0
. (21.150)

For a symmetric diode (21.151a) holds, for a one-sided diode the approximation in (21.151b) holds

Emr = − 2

w
(Vbi − V ) ∝ √

Vbi − V (21.151a)

Emr
∼= −

√
2

w
(Vbi − V ) ∝ √

Vbi − V . (21.151b)

We note that for zero bias (V = 0), (21.108) is recovered from (21.151a). Using the above approxi-
mation ζ is given by

ζ(x) = 1

2

1

1 + exp (βV/2) cosh(βEmrx)
. (21.152)

Since ζ decreases sufficiently fast within the depletion layer, the integration over the depletion layer
can be extended to ±∞ and we obtain

χ = 2

βEmr

1√
exp(βV ) − 1

arctan

[√
exp(βV/2) − 1

exp(βV/2) + 1

]
. (21.153)

We note that for V = 0, the integral takes the value χ = (βEmr)
−1. The recombination current is now

given by [1766]

jr,b−i = 2 σ vth Nt ni kT

Emr
arctan

[√
exp(βV/2) − 1

exp(βV/2) + 1

] √
exp (βV ) − 1 . (21.154)

For large voltage the arctan term becomes π/4. For eV/kT � 1 the nonradiative recombination
current can be written as

jr,b−i = j r,b−i
s exp

(
βV

n

)
, (21.155)

with j r,b−i
s = eσvthNtnikTπ/(2Emr). The voltage-dependent ideality factor n (semilogarithmic slope

n = β jr(V )/j ′r (V )) is close but not identical to 2 and is shown in Fig. 21.49 for various values of Vbi.
The built-in voltage influences the logarithmic slope via the factor 1/Emr in (21.154).

In the case of radiative band-band (b–b) recombination, the recombination rate is given by (10.14).
Together with (21.125) and integrated over the depletion layer, the recombination current in the deple-
tion layer is given by (cf. (21.136))

jr,b−b = e B w n2i
[
exp (βV ) − 1

]
, (21.156)

and exhibits an ideality factor of n = 1. Comparing (21.136) and (21.156), the dominating radiative-
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(a) (b)

Fig. 21.49 a Integral χ (21.147) multiplied by exp(βV/2) in order to extract the differences on a linear scale. Solid line:
Exact numerical calculation, dash-dotted line: standard approximation with constant maximum rate, dashed line: this
work (approximation with constant field). As material parameters we have used room temperature and ni = 1010 cm−3

(Si), nn0 = 1018 cm−3 and pp0 = 1017 cm−3. bLogarithmic slope of band-impurity recombination current in the forward
bias regime for various values of the built-in voltage Vbi = 0.6, 1.0, and 1.4eV and in the limit Vbi → ∞. Adapted
from [1766]

Fig. 21.50 Theoretical
modeling of charge-carrier
concentration, intrinsic
Fermi level (potential) ψ

and quasi-Fermi levels
(with arbitrary offset) for a
Si p+n diode for various
current densities: a
10Acm−2, b 103 Acm−2

and c 104 Acm−2.
NA = 1018 cm−3,
ND = 1016 cm−3,
τn = 0.3ns, τp = 0.84ns.
Adapted from [1767]
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recombination current is determined by the ratio of w and Ln + Lp. Since in the forward direction,
the depletion-layer width tends towards zero (for flat-band conditions), the radiative-recombination
current is dominated by the recombination in the neutral region(s).

For high injection current (under forward bias), the injected minority carrier density can become
comparable with the majority carrier density. In this case, diffusion and drift need to be considered. At
large current density, the voltage drop across the junction is small compared to the ohmic voltage drop
across the current path. In the simulation (Fig. 21.50), the high-injection effects start on the n-doped
side because it has been modeled with the lower doping (ND < NA).

The series resistance Rs (typically a few Ohms) also effects the characteristic at low injection. The
voltage drop across the junction is reduced by Rs I . Thus, the I–V characteristic taking into account
the effect of the series resistance is

I = Is

(
exp

[
e (V − Rs I )

n kT

]
− 1

)
. (21.157)



568 21 Diodes

Fig. 21.51 Theoretical I–V characteristic of a diode at room temperature with saturation currents for the n = 1 and
n = 2 processes of I n=1

s = 10−12 A and I n=2
s = 10−9 A and resistances Rs = 10�, Rp = 100M�. Green line: Ideal

diode with n = 1 characteristic only, Purple line: only n = 2 process, dashed red line: only parallel ohmic resistance
Rp, dashed blue line: only series ohmic resistance Rs, solid black line: all effects combined as in (21.159)

(a) (b)

Fig. 21.52 a jV -characteristic of NiO/ZnO bipolar diode (cmp. Sect. 21.4.6) in half-logarithmic plot. The blue line is a
fit with ideality factor n = 1.8. b I V -characteristic in linear plot. The purple line in (b) is a linear fit (with Rs = 1.06k�)
for the range where the series resistance dominates

This equation is implicit with regard to I and can only be solved numerically. At high current, the
resistance of the junction becomes very small (Fig. 21.51a); then the I–V characteristic deviates from
the exponential behavior (Fig. 21.52a); finally it is dominated by the series resistance and becomes
linear (Fig. 21.52b). Sometimes the extrapolated voltage from the linear range (1.19V in Fig. 21.52b)
is called ’threshold’ voltage, but this is a wrong term for this behavior.

The diode can also exhibit a parallel (shunt) resistance Rp, e.g. due to surface conduction between
the contacts. Including the shunt resistance, the diode characteristic is

I = Is

(
exp

[
e (V − Rs I )

n kT

]
− 1

)
+ V − Rs I

Rp
. (21.158)

The shunt resistance can be evaluated best from the differential conductance in the reverse-voltage
regime [1725]. Due to a high surface-state density, the passivation of GaAs diodes can be difficult. Si
can be very well passivated with low leakage current and high reliability.
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Rp

Rs

Iph Id Ir
nr

Fig. 21.53 Equivalent circuit of a pn diode. Serial (Rs) and parallel (Rp) resistance and diode currents: Id (due to
diffusion, n ≈ 1), I nrr (nonradiative recombination due to band-impurity recombination, n ≈ 2) and an ideal current
source due to photogeneration (as discussed in Sect. 22.3)

Often, a clear distinction between the n = 1 and n = 2 regimes cannot be made. In this case,
an intermediate ideality factor 1 ≤ n ≤ 2 is fitted to the I–V characteristic as in (21.158). If the
current can be separated into a n = 1 (diffusion) and a n = 2 (recombination-generation) process, the
characteristic is given by (see Fig. 21.51)

I = I n=1
s

(
exp

[
e (V − Rs I )

kT

]
− 1

)
+

I n=2
s

(
exp

[
e (V − Rs I )

2 kT

]
− 1

)
+ V − Rs I

Rp
. (21.159)

In summary, the pn diode has the equivalent circuit given in Fig. 21.53; the photocurrent source Iph
is discussed below in Sect. 22.3.

21.4.5 Breakdown

If a large voltage is applied in the reverse direction, the pn junction breaks down. At breakdown, a
small voltage increase leads to a dramatic increase of the current. There are three mechanisms that
lead to breakdown: thermal instability, tunneling, and avalanche multiplication [1768–1770]. Defects
cause localized pre-breakdown sites [1770, 1771].

Thermal Instability

The reverse current at large applied voltage leads to a power dissipation and heating of the junction.
This temperature increase leads to a further increase of the saturation current (21.133). If the heat sink,
e.g. themounting of the chip, is not able to transport the heat away from the device, the current increases
indefinitely. If not limited by a resistor, such a current can destroy the device. The thermal instability
is particularly important for diodes with high saturation current, e.g. Ge at room temperature.

Tunneling

At large reverse bias, charge carriers can tunnel between conduction and valence band through the
junction. A more detailed discussion will be given below in Sect. 21.5.9 about the tunneling diode.
Since for the tunneling effect a thin barrier is necessary, breakdown due to tunneling is important for
diodes where both sides are highly doped. For Si and Ge diodes, tunneling dominates the breakdown
if the breakdown voltage Vbr is Vbr < 4Eg/e. For Vbr > 6Eg/e avalanche multiplication dominates.
The intermediate regime is a mixed case.

With increasing temperature, the tunneling current can be achieved already with a smaller field
(since the band gap decreases with increasing temperature), thus the breakdown voltage decreases
(negative temperature coefficient).
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Avalanche Multiplication

Avalanche multiplication due to impact ionization is the most important mechanism for the breakdown
of pn diodes. It limits the maximum reverse voltage for most diodes and also the collector voltage in a
bipolar transistor or the drain voltage in a field-effect transistor. Avalanche multiplication can be used
for the generation of microwave radiation or for photon counting (cf. Sect. 22.3.6).

Impact ionization was discussed in Sect. 8.4.4. The most important parameters are the electron and
hole ionization coefficients αn and αp. For discussion of the diode breakdown, we assume that at x = 0
a hole current Ip0 enters the depletion layer. This current is amplified by the field in the depletion layer
and impact ionization. At the end of the depletion layer (x = w), it is Mp Ip0 , i.e. Mp = Ip(w)/Ip(0).
Similarly, an electron current is increased on its way from w to x = 0. The incremental change of the
hole current due to electron-hole pairs generated along a line element dx is

dIp = (Ip αp + In αn) dx . (21.160)

The total current in the depletion layer is I = Ip + In and is constant in stationary equilibrium.
Therefore,

dIp
dx

− (
αp − αn

)
Ip = αn I . (21.161)

The solution is

Ip(x) = I

1
Mp

+
x∫
0

αn exp

[
−

x∫
0

(αp − αn) dx ′
]
dx

exp

[
−

x∫
0

(αp − αn) dx ′
] . (21.162)

For x = w we find for the multiplication factor

1 − 1

Mp
=

w∫
0

αn exp

⎡
⎣−

x∫
0

(αp − αn) dx
′
⎤
⎦ dx . (21.163)

Avalanche breakdown is reached for Mp → ∞, i.e. when

w∫
0

αn exp

⎡
⎣−

x∫
0

(αp − αn) dx
′
⎤
⎦ dx = 1 . (21.164)

A corresponding and equivalent equation is obtained when the consideration is started with the electron
current. If αp = αn = α, (21.164) simplifies to

w∫
0

α dx = 1 . (21.165)

This means that per transit of one carrier through the depletion layer, on average another carrier is
created such that the process just starts to diverge. The breakdown voltage for various semiconductor
materials is shown in Fig. 21.54a as a function of the doping level. The depletion-layer width w at
breakdown and the maximum electric field Em are depicted in Fig. 21.54b.

The average impact ionization coefficient α has been given as [1773]



21.4 Bipolar Diodes 571

(a)

103

10

10

10

2

1

0

1014 1015 1016 1017 1018
N (cm )B

-3

Si
Ge

GaAs
GaP

(b)

102

10

10

1

0

10-1

1014 1015 1016 1017 1018
N (cm )B

-3

106

105

m

Si

Ge

GaAs

GaP

Ge

GaP

Si

GaAs

Fig. 21.54 aAvalanche breakdown voltage for one-sided abrupt junctions in Ge, Si, (100)-GaAs and GaP at T = 300K.
The dashed line indicates the limit of avalanche breakdown at high doping due to tunneling breakdown. bDepletion-layer
width w at breakdown and maximum electric field Em for the same junctions. Adapted from [1772]

Fig. 21.55 Temperature
dependence of a n+p
Si-diode with
NB = 2.5 × 1016 cm−3 and
a guard-ring structure (see
Fig. 21.56d). The
temperature coefficient
∂Vbr/∂T is 0.024V/K.
Adapted from [1776]

α = A E7 . (21.166)

for silicon with A = 1.8 × 10−35 (cm/V)7 cm−1. For the breakdown condition (21.165), using (21.9)
and (21.166) the depletion layer width at breakdown wB (wB in cm, ND in cm3) is found to be

wB = 2.67 × 1010 N−7/8
D . (21.167)

From this the breakdown voltage can be calculated with (21.15) (VB in V, ND in cm3) [1774]

VB = 6.40 × 1013 N−3/4
D . (21.168)

In GaAs, the impact-ionization coefficients and therefore the breakdown voltage are direction depen-
dent.At a doping of NB = 1016 cm−3, the breakdownvoltage is the same for (001) and (111) orientation;
for smaller doping the breakdown voltage of (001)-oriented GaAs is smaller, for larger doping that of
GaAs (111) [1775].

At higher temperatures, the charge carriers release their excess energy faster to the lattice.24 Thus,
less energy is available for impact ionization and the required electric field is higher. Therefore, the

24The scattering rate becomes higher with increasing temperature and, e.g., the mobility decreases, see Sect. 8.3.11, and
the drift saturation velocity decreases, see Sect. 8.4.1.
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Fig. 21.56 a Large electric
fields at large curvatures in
a shallow junction.
Avoidance of regions with
large electric fields by b
deep junction and c
field-ring structure. d
shows a guard-ring
structure with circular,
low-doped n region. Grey
area denotes insulating
material, arrows indicate
field lines and the dashed
lines indicate the extension
of the depletion layers
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Fig. 21.57 Breakdown
voltage (in units of the
breakdown voltage VB of a
plane junction) for
cylindrical and spherical
junctions as a function of
the curvature radius (in
units of the depletion layer
width at breakdown WB for
a plane junction). Data
from [1774]

breakdown voltage increases with the temperature (Fig. 21.55). This behavior is opposite to tunneling
diodes and the two processes can be distinguished in this way.

In planar structures (Fig. 21.56a), high electric fields as present in high power devices will occur
at the parts with large curvature. At these sites breakdown will occur first and at much lower voltages
than expected for a perfectly planar (infinite) structure [1777, 1778]. For devices that require high
breakdown voltage, design changes have to be made. These include deep junctions (Fig. 21.56b) with
a smaller curvature, a field-ring structure (Fig. 21.56c) in which an additional depletion layer is used
to smooth the field lines and the often used guard ring (Fig. 21.56d) for which a circular region of low
doping (and thus high breakdown voltage) is incorporated.

The decrease of breakdown voltage in a junction with cylindrical and spherical geometry has been
numerically calculated as a function of curvature [1779] (Fig. 21.57). Analytical formulas in terms of
the ratio of radius of curvature and the depletion layer width at breakdown for a plane junction r/wB

have been given later [1774].

Defects

In material with extended defects such as polycrystalline silicon breakdown can occur locally at lower
voltage than in the corresponding defect-free bulk material (‘pre-breakdown’) [1771]. This effect
typically occurs at certain grain boundaries and probably involvesmid-gap states. It is also accompanied
with electroluminescence by which it can be detected with high spatial resolution (Fig. 21.58).
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Fig. 21.58 Microscopic
(a) forward bias
electroluminescence and
(b) microscopic reverse
bias electroluminescence
(µ-ReBEL) image of an
alkaline texturized solar
cell (cmp. Fig. 22.61) in a
region without specific
surface features at
U = −17V. The bulk
defects at these positions
are revealed
topographically in the
neighboring acidic
texturized solar cell in the
microscopic (c) image.
Their ReBEL pattern
appears similarly in the
corresponding EL image
(d). Adapted from [1771]

21.4.6 Heterostructure Diodes

In a heterostructure diode, the n- and p-regions are made of different semiconductors. Such structures
are discussed in detail in [1780].

Type-I Heterostructure Diodes

In Fig. 21.59, the band diagram is shown for a type-I heterostructure with the n (p) region having
the larger (smaller) band gap. Additionally to the built-in voltage, the barrier in the valence band
is increased. Such a diode finds application in particular as an injection (emitter-base) diode in het-
erostructure bipolar transistors (Sect. 24.2.7). In such diode the (mostly undesired) hole current from
the p- to the n-side is reduced. The peak in the conduction band poses potentially a greater barrier for
electron transport across the interface than the diffusion potential itself. The spike can be reduced by
grading the materials across the heterojunction and creating a smooth transition of Eg between the
materials. The effect of grading on the properties of the heterojunction is discussed in detail in [1781].

Type-II Heterostructure Diodes

Many semiconductors can only be doped n-type or p-type (cmp. Sect. 7.4.2). Bipolar heterostructures
can be formed and, depending on the position of the bands relativ to the vacuum level, can form a
type-II heterostructure. Examples are p-NiO/n-ZnO or p-CuI/n-ZnO; the band diagram of the latter is
depicted in Fig. 21.60a for a typical situation (p+-n diode) [568, 1782]. Rectification for such device
can be very high (> 1010, Fig. 21.60b). Minority carrier injection is excluded due to the high barriers.
The current across the interface is a recombination current, presumably via interface defects, which
exhibits an ideality factor around 2 [1783].

21.4.7 Organic Semiconductor Diodes

A bipolar diode from organic semiconductors consists of the p-conductive hole transport layer (HTL)
and the n-conductive electron transport layer (ETL). The low conductivity of organic semiconductors
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Fig. 21.59 Schematic
band diagram of a
n-AlGaAs/p-GaAs diode a
without contact of the n-
and p-materials, b in
thermodynamic
equilibrium, and c with
graded Al composition at
the heterointerface
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Fig. 21.60 a Schematic band diagram of a p-CuI/n-ZnO diode. Adapted from [1782]. b jV -characteristics (room
temperature) of type-II epitaxial CuI/ZnO heterojunction bipolar diode (symbols) and fit (red dashed line) with js =
2×10−8 A/cm2 and ideality factorn = 1.8.Theother fit (blue line) takes into account additionally a barrier inhomogeneity
and the series resistance. Adapted from [1784]

causes the applied voltage to drop over the entire structure [1785–1787] (Fig. 21.61c) while in a
typical silicon diode for sufficient forward bias (and moderate injection, cmp. Fig. 21.50) flat-band
conditions are present (Fig. 21.61b). The first organic homodiode was reported only in 2005 for zinc-
phthalocyanine (ZnPc) doped with [Ru(terpy)2]0 (n-type) and F4-TCNQ (p-type, cmp. Fig. 18.7b)
[1788]. Deviation from ideal Shockley behavior is discussed in this report.

The hole injecting contact is often made from ITO, the electron injection contact from low work
function metals such as Al, Mg or Ca. Specially designed layers for efficient charge injection (HIL,
hole injection layer [1789] and EIL, electron injection layer [1790]) can be introduced between the
contact metal and the transport layers (Fig. 21.62c). The particular level lineup of the HTL and HTL
as shown in Fig. 21.61c (also Fig. 21.62a) leads to a barrier for electrons and holes. The hole and/or
electron blocking is beneficial for recombination in the vicinity of the interface and prevents exciton
diffusion to the contacts. In organic light emitting diodes (Sect. 23.3.7) an additional layer (EML,
emission layer) designed for efficient radiative recombination (Sect. 18.6) is introduced between HTL
and ETL (Fig. 21.62b).
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Fig. 21.61 Schematic
sample geometry and
charge distribution (left)
and energy diagram (right)
for a an ideal insulator, b a
typical inorganic
semiconductor pn diode
and c a double layer
organic diode under
forward bias V. Adapted
from [1787]

Fig. 21.62 Schematic
energy diagram for a dual
layer organic diode (HTL,
ETL), b with additional
emission layer (EML) and
c with further hole and
electron injection layers
(HIL, EIL)
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21.5 Applications and Special Diode Devices

In the following, various electronic applications of diodes are discussed. The most important special
diode types are introduced. Optoelectronic applications (involving absorption and emission of photons)
are treated below (Sect. 22). The applications of Schottky diodes are discussed in [1791].

21.5.1 Rectification

In a rectifier, the diode has to supply a high resistivity for one polarity of the bias and a low one to the
other polarity. In Fig. 21.63a, a single-path rectification method is shown. Only the positive half-wave
can pass the load resistor RL (Fig. 21.63b). In Fig. 21.63c, the characteristic of a Si diode is shown. Of
course, the voltage drop across the diode can only range in the 1-V regime. In order to make the setup
work, the load resistor has to be considered. The total current is given by I = Is[exp(eUd/nkT ) − 1].
The total voltage U is split between the voltage drop across the diode Ud and that over the load
resistance UL = RL I . The current is therefore given by

I = U −Ud

RL
. (21.169)

For sizeable currents the voltage drop across the diode Ud is between 0.7 and 1V. The characteristic
is linear between about 1 and 220V (Fig. 21.63d). Typically, the voltage UL is low-pass filtered with
a capacitor parallel to the load resistor. The effective voltage is the peak voltage divided by 2.

The drawback of the single diode rectifier is that only the positive half-wave contributes to a dc
signal. The setup in Fig. 21.63e (bridge rectifier) allows both half-waves to contribute to the dc signal.
The effective voltage in this case is the peak voltage divided by

√
2.

The forward resistance in the static (Rf ) and dynamic (rf ) case are (for βVf > 3)

Rf = Vf

If
∼= Vf

Is
exp

(
− e Vf

n kT

)
(21.170a)

rf = ∂Vf

∂ If
= n kT

e Is
exp

(
e Vf

n kT

)
∼= n kT

e If
. (21.170b)

For reverse bias we have (β|Vr| > 3)

Rr = Vr

Ir
∼= Vr

Is
(21.171a)

rr = ∂Vr

∂ Ir
= nkT

eIs
exp

(
e |Vr|
n kT

)
. (21.171b)

Thus, the dc and ac rectifications ratios are given by

Rr

Rf
= exp

(
e Vf

n kT

)
(21.172a)

rr
rf

= If

Is exp
(
e |Vr |
n kT

) . (21.172b)
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Fig. 21.63 a Single-path mains rectifier, b characteristics of Si diode (BYD127, Philips), c load characteristics of the
mains rectifier (RL = 400�), d voltage output of single-path mains rectifier. e depicts the schematic circuit of a bridge
rectifier that works for both half-waves, f the resulting voltage output
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Rectifiers generally have slow switching speeds. A significant time delay arises from the necessary
charge-carrier recombinationwhen the diode switches from low (forward) to high (reverse) impedance.
This poses typically no problem for line-frequency (50–60Hz) applications. For fast applications,
however, the minority carrier lifetime needs to be reduced, e.g. by doping Si with Au (see Sect. 10.9).

21.5.2 Frequency Mixing

The nonlinear characteristic of the diode allows the mixing of frequencies, e.g. for second- (or higher-)
harmonic generation, upconversion or demodulating of radio-frequency (RF) signals.A single balanced
mixer is shown in Fig. 21.64a, b. The RF signal consists of a RF carrier frequency f0 modulated with
an intermediate frequency (IF) signal fIF(t). It is mixed with a local oscillator (LO) that has a constant
frequency fLO outside the RF modulation bandwidth f0 ± fIF. The IF signal can be detected from the
setup in Fig. 21.64a if filtered through a low-pass filter to avoid loss of power to the IF amplifier. The
temperature dependence of the diode characteristic (via js and β) on mixing efficiency is typically less
than 0.5dB for a 100-K change in temperature.

Problems of single-diode mixers are the radiation of local-oscillator power from the RF input port,25

loss of sensitivity by absorption of input power in the local oscillator circuit, loss of input power in
the intermediate frequency amplifier, and the generation of spurious output frequencies by harmonic
mixing. Some of these problems can be solved by circuit techniques, but these circuits often introduce
new problems. Most mixers therefore use multiple-diode techniques to provide a better solution of
these problems. In Fig. 21.64c, the circuit diagram of a double balance mixer is shown. Even-order
harmonics of both the LO and the signal frequency are rejected. This mixer does not require a low-pass
filter to isolate the IF circuit. The three ports are isolated from each other by the symmetry of the
circuit. These mixers usually cover a broader frequency band than the others. Ratios as high as 1000:1
are available. Microwave equivalents (working at f � 1GHz) of such mixer circuits are available.
Bandwidth ratios as high as 40:1 are available at microwave frequencies in MMICs (millimeter-wave
integrated circuits).

The common drawback of MMIC diodes is that they are obtained from the Schottky barriers used in
field-effect transistors, that have inferior performance compared to discrete diodes. The use of pHEMT
technology26 for millimeter-wave applications provides diodes that differently from regular Schottky
diodes, since they consist of a Schottky barrier in series with a heterojunction. In Fig. 21.64d, a MMIC
45GHz mixer is shown using fast GaAs-based pHEMTs.

21.5.3 Voltage Regulator

In a voltage regulator, the large variation of resistance with applied bias is used. This effect occurs in
the forward direction and close to the breakdown voltage.

In Fig. 21.65a, a simple circuit is shown. When the input voltage Vin is increased, the current
increases. The preresistor R1 = 5k� and the load resistor represent a voltage divider with Vin =
I R1 + Vout. The total current I is given by the two currents through the diode and the load resistor
I = Is[exp(βVout/n) − 1] + Vout/RL. Therefore, the output voltage is implicitly given by

25That in military applications could make the mixer detectable by the enemy.
26Pseudomorphic high electron mobility transistors, cf. Sect. 24.5.8.
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(a) (b)

(c) (d)

Fig. 21.64 a Schematic circuit of single balanced mixer with input (RF: radio frequency, LO: local oscillator) and
output (IF: intermediate frequency). b Optical plan-view image (300× 125 µm2) of a high-speed single balanced mixer
with two GaAs Schottky diodes with opposite poling. The device properties are Rs = 5�, for I = 1 µA a forward and
reverse voltage of 0.7 and 6V, respectively; the capacitance of each diode is 8 fF. Reprinted with permission from [1792].
c Schematic circuit of a double balanced mixer. d Optical image (1.65mm2) of 40–45GHz MMIC (Gilbert cell) mixer
on GaAs basis using pHEMTs. Reprinted with permission from [1793]

Vout

(
1 + R1

RL

)
= Vin − R1 Is

[
exp

(
βVout

n

)
− 1

]
. (21.173)

A large current change is related to a fairly small change of the voltage across the diode, which at the
same time is the output voltage. Therefore, a change in the input voltage causes only a small change
in the output voltage.

We assume a diode with n = 1 and IS = 10−14 A with the characteristic shown in Fig. 21.65a.
The numerical example in Fig. 21.65c is calculated for RL = 2k� and 4k�, respectively. The output
voltage varies by about 0.02V if the input varies between 5 and 9V. In Fig. 21.65d, the differential
voltage change α = Vin

Vout

∂Vout
∂Vin

is shown.
In this way, voltage peaks can be filtered from the input voltage. If two antiparallel diodes are used,

this principle works for both polarities. Instead of a diode in the forward direction, the very steep slope
of the diode I–V characteristic at the breakdown can be used. Just before breakdown, the diode has
a high resistance and the voltage drops at the load resistor. If the input voltage increases a little, the
diode becomes conductive and shorts the additional voltage (the maximum allowed breakdown current
needs to be observed!). Due to its small saturation current, typically Si diodes are used. The breakdown
voltage can be designed via the diode parameters. Such diodes with defined breakdown voltage are
called Z- or Zener diodes (see next section).

If the breakdown is due to tunneling (avalanche multiplication), the breakdown voltage decreases
(increases) with temperature. If two diodes with positive and negative temperature coefficient are put
in series, a very good temperature stability of the breakdown voltage of 0.002%/K can be achieved.
Such diodes can be used to realize a reference voltage.
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(a)
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Fig. 21.65 a Circuit diagram of a voltage regulator, b diode characteristic (n = 1). The vertical dashed lines show the
operation conditions for RL = 2k� and UE = 5 and 9V and thus the principle of voltage stabilization. c Output versus
input voltage and d stability (differential voltage ratio α, see text) for input voltage between 5 and 9V

Fig. 21.66 Characteristics
of a field of Zener diodes
(at room temperature)
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21.5.4 Zener Diodes

A Zener diode is designed to have a defined breakdown voltage. Zener diodes are available with a
number of different standard breakdown voltages. Their characteristic is shown for reverse bias with
the current shown positive. The characteristics of various Zener diodes for different breakdown voltages
are shown in Fig. 21.66.
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Fig. 21.67 Equivalent
circuit of a varactor diode
with parasitic capacitance
Cp and inductance Lp and
variable capacitance Cj and
resistance Rs

Rs

CjCp

Lp

21.5.5 Varactors

A diode exhibits a voltage-dependent capacitance. This effect can be used to tune an oscillator using
the diode bias (voltage-controlled oscillator, VCO). The equivalent circuit is shown in Fig. 21.67. The
capacitance consists of a parasitic capacitanceCp due to mounting and bonding. This effect also causes
a parasitic inductance. The series resistance due to mounting can typically be neglected. The variable
junction capacitance Cj and the ohmic resistance Rs are bias dependent.

The C(V ) dependence has generally a power law with an exponent γ (which itself may depend on
the bias voltage)

C = C0

(1 + V/Vbi)γ
, (21.174)

where C0 is the-zero bias capacitance. Since the frequency f of an LC oscillator circuit depends on
C−1/2 the frequency, f depends on the voltage as f ∝ V γ /2. Therefore, a γ = 2 dependence is most
desirable.

For uniformly doped profiles, the capacitance depends with an inverse square root law on the applied
voltage (21.117), i.e. γ = 0.5. Hyperabrupt junctions are typically made by ion implantation or epitaxy
with graded impurity incorporation to create a special nonuniform doping profile (Fig. 21.68a). For a
doping profile

NB(z) = N̂B

(
z

z0

)m

(21.175)

the capacitance is given as

C =
[

e N̂B εm+1
s

(m + 2) zm0 (Vbi − V )

] 1
m+2

= C0

(1 + V/Vbi)
1/(m+2)

. (21.176)

Ideally, m = −3/2 results is a linear frequency versus voltage relation. The C–V characteristic of
an implanted, hyperabrupt diode exhibits a part that has an exponent γ = 2 (Fig. 21.68b). A γ = 2
C(V ) dependence and therefore a linear f (V ) curve can be achieved over more than one octave using
computer-controlled variable epitaxial-layer doping (Fig. 21.68c).
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(a)

(b) (c)

Fig. 21.68 a Donor-doping profile according to (21.175) in p+n or Schottky diodes for m = 0 (abrupt junction), m =1
(linearly graded junction) and two values with m < 0 (hyperabrupt junctions). b Bias dependence of capacitance for
diodes with abrupt junction (‘A’, γ = 0.5), hyperabrupt junction (‘H’, γ > 0.5) and ‘epilinear’ junction (‘L’, γ = 2). c
Frequency-voltage tuning characteristics (scaled to 1.0 for V = 0) for the three diode types. Parts (b) and (c) adapted
from [1794], reprinted with permission

21.5.6 Fast-Recovery Diodes

Fast-recovery diodes are designed for high switching speeds. The switching speed from the forward to
the reverse regime is given by the time t0 = t1 + t2 with t1 being the time to reduce the minority carrier
density to the equilibrium value (e.g. pn → pn0 ) and t2 being the time in which the current decreased
exponentially (Fig. 21.69). The time t1 can be drastically reduced by incorporation of deep levels that
act as recombination centers. A prominent example is Si:Au. However, this concept is limited since
the reverse generation current, e.g. (21.154), depends on the trap density. For direct semiconductors,
recombination times are short, e.g. 0.1ns or less for GaAs. In silicon, they can be extremely long (up to
ms) or at least 1–5ns. Schottky diodes are suitable for high-speed applications since they are majority
carrier devices and minority charge carrier storage can be neglected.



21.5 Applications and Special Diode Devices 583

Fig. 21.69 Current versus time trace for a (soft) fast-recovery diode. Reprinted with permission from [1795]

(a) (b)

Fig. 21.70 a Current versus time trace for a step-recovery diode and sinusoidal voltage input. The lifetime must be
sufficiently large such that a current peak is reached. b Definition of the snapback time Ts. Reprinted with permission
from [1796]

21.5.7 Step-Recovery Diodes

This type of diode is designed to store charge in the forward direction. If polarity is reversed, the charge
will allow conductance for a short while, ideally until a current peak is reached (Fig.21.70a), and then
cutoff the current very rapidly during the so-called snapback time Ts (Fig. 21.70b). The cutoff can be
quite rapid, in the ps regime. These properties are used for pulse (comb) generation or as a gate in fast
sampling oscilloscopes. In Si, only 0.5–5 µs are reached (fast-recovery diode, see previous section)
while GaAs diodes can be used in the several tens ofGHz regime.

Using aheterostructureGaAs/AlGaAsdiode (cf. Sect. 21.4.6), as shownschematically inFig. 21.71a,
a steepening of a 15-V, 70-ps (10% to 90%) pulse to a fall time of 12ps was observed (Fig. 21.71c).
The forward current of the diode was 40mA, supplied via a bias tee.

21.5.8 Pin-Diodes

In a pin-diode, an intrinsic (i), i.e. undoped region (with higher resistivity) is located between the n-
and the p-regions. Often, also a region with low n- or p-doping is used. In this case, the center region is
denoted as a ν- or π -region, respectively. The fabrication of arbitrary doping profiles and an intrinsic
region poses little problem for epitaxial diodes.
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Fig. 21.71 a Schematic layer sequence for fast GaAs/AlGaAs step-recovery diode. b Circuit with input and output
pulse. c Input (dashed line) and output (solid line) waveforms. Vertical division is 2V. Adapted from [1797]

Via the Poisson equation, the charge in the intrinsic layer is related to the electric field. If no dopants
are present, there is a constant (maximum) field in the i-region at zero bias. If there is low doping, a
field gradient exists.

The capacitance for reverse bias is εsA/w and is constant starting at fairly small reverse bias (10V).
The series resistance is given by Rs = Ri+Rc. The contact resistance Rc dominates the series resistance
for large forward bias (Fig. 21.72).

21.5.9 Tunneling Diodes

For the invention of the tunneling diode and the explanation of its mechanism the 1973 Nobel Prize in
Physics was awarded to Esaki [1798]. Eventually, the tunneling diode did not make the commercial
breakthrough due to its high basis capacitance. It is used for special microwave applications with
low power consumption, for frequency stabilization and possibly in tunneling field-effect transistors
(Sect. 24.5.6). Reviews can be found in [1799, 1800].

First, the tunneling diode is a pn diode. While the tunnel effect [1801] has already been discussed
for Schottky diodes, it has not yet been considered by us for pn diodes. We expect the tunnel effect to
be important if the depletion-layer is thin, i.e. when the doping of both sides is high.

The doping is so high that the quasi-Fermi levels lie within the respective bands (Fig. 21.73). The
degeneracy is typically several kT and the depletion layer width is in the 10nm range.

In the forward direction, the I–V characteristic of the tunneling diode exhibits a maximum followed
by a minimum and subsequently an exponential increase (Fig. 21.74a). As shown in Fig. 21.74b, the
total current consists of three currents, the band-to-band tunneling current, the excess current and the
thermal (normal thermionic diode) current.

The V = 0 situation is again shown in Fig. 21.75b. Upon application of a small forward bias,
electrons can tunnel from populated conduction-band states on the n-doped side into empty valance-



21.5 Applications and Special Diode Devices 585

Fig. 21.72 a Schematic
layer sequence of pin-diode
(‘i’: intrinsic, ‘π ’: lowly
p-doped), b net impurity
distribution NA − ND, c
space charge and d electric
field in a pin (solid lines)
and a p–π–n (dashed lines)
diode

Fig. 21.73 Band diagram
of a tunneling diode in
thermodynamic
equilibrium (V = 0). Vn
and Vp characterize the
degeneracies on the n- and
p-side, respectively
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Fp Fn

EV

EV

EC

qVn

qVp

EC

n+depletion
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Fig. 21.74 a Static
current-voltage
characteristics of a typical
tunneling diode. Peak and
valley current and voltage
are labeled. b The three
components of the current
(short dashed:
band-to-band tunnel
current, dashed: excess
current, dash-dotted:
thermal current) are shown
separately. Adapted from
[574], ©1981 Wiley (a) (b)
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Fig. 21.75 I–V characteristics (upper row) and simplified band structure (lower row) of a tunneling diode at various
bias voltages as indicated with a dot in the I–V plot. a Reverse bias, b in thermodynamic equilibrium (V = 0), c in
the maximum of the tunneling current, d close to the valley and e forward bias with dominating thermal current. The
tunneling current is indicated with straight arrows. In (e) the thermionic emission current (curved arrow) and the excess
current with inelastic tunneling (dotted arrow) are shown

(a) (b)

Fig. 21.76 a Current-voltage characteristic of silicon tunneling diode (model 1N4397 from American Microsemicon-
ductor [1807]) at low temperature (T = 4.2K). b d2 I/dV 2 for small forward voltages, exhibiting characteristic phonon
energies. Adapted from [1805]

band states (filled with holes) on the p-doped side (Fig. 21.75c). We note that this tunneling process
is usually considered elastic. However, signatures at characteristic phonon and multi-phonon energies
are found (at low temperature) in the forward current [1802, 1803] and are best seen in a d2 I/dV 2-plot
[1804, 1805] (Fig. 21.76). Peaks appear at typical phonon energies of silicon.27

A similar situation, now with electrons tunneling for the valence band on the p-side into the con-
duction band on the n-side, is present for small reverse bias (Fig. 21.75a). Thus the rectifying behavior
of the diode is lost. This property makes it suitable for the monolithic ohmic connection of two pn
diodes which is technologically used e.g. in multi-junction solar cells (cmp. Sect. 22.4.6).

For larger forward bias, the bands are separated so far that the electrons coming from the n-doped
side do not find final states on the p-doped side. Thus the tunneling current ceases (Fig. 21.75d). The

27We note that for the 1N4396 silicon tunneling diode [1806] the phonon structure of germanium was found in [1805].
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Fig. 21.77 Comparison of
tunneling characteristic
(room temperature) of
diodes based on Ge, GaSb
and GaAs. Peak-to-valley
ratios are 8 (Ge) and 12
(GaSb, GaAs). Adapted
from [574]

(a) (b)

Fig. 21.78 a Current traces upon excitation of a 25 µm thick piece of n-type GaAs with a voltage pulse (amplitude 16V
and duration 10ns). The upper trace is an expanded view of the lower trace. The oscillation period is 4.5GHz. Adapted
from [134]. b Image of packaged Gunn diode (Linwave DC1276G-T for 26–40GHz), outer diameter 3mm

current minimum is at a voltage V = Vn + Vp > 0. The thermal current is the normal diode diffusion
current (Fig. 21.75e). Therefore, a minimum is present in the I–V characteristic. The excess current
is due to inelastic tunneling processes through states in the band gap and causes the minimum to not
drop down to almost zero current.

The peak (Vp, Ip) and valley (Vv, Iv) structure of the characteristic leads to a region of negative
differential resistance (NDR). Ip/Iv is termed the peak-to-valley ratio (Fig. 21.77). Peak-to-valley ratios
of 8 (Ge), 12 (GaSb, GaAs), 4 (Si), 5 (InP) or 2 (InAs) have been reported (all at room temperature).

21.5.10 Backward Diodes

When the doping in a tunneling diode is nearly or not quite degenerate, the peak-to-valley ratio can be
very small. Then the tunnel current flowsmostly in the reverse direction (low resistance) and the forward
direction has a higher resistance (with or without the NDR regime). Such diodes are called backward
diodes. Since there is no minority charge carrier storage, such diodes are useful for high-frequency
applications.
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21.5.11 Gunn Diodes

The Gunn diode is not really a diode and thus more appropriately called Gunn element. It allows to
generate microwave radiation in the frequency range of 1–100GHz [1808] and beyond [1809] using
GaAs and in the THz-regime using GaN [1810]. Extracting higher harmonics, frequencies of several
100GHz can be realized [1811, 1812].

The Gunn element relies on the negative differential resistance (NDR) occurring in semiconductors
with twovalleys of differentmobility such asGaAsor InP (cmp. Sect. 8.4.2).At highfields, the electrons
are scattered from the �-valley into the upper valley (L-valley for most materials). Accordingly, the
Gunn element is also called transferred electron device (TED). Details on Gunn elements can be found
in [1813].

The Gunn effect was discovered by and named after J.B. Gunn [134]. The spontaneous oscillation of
current in a n-type semiconductor occurs when a sufficiently large voltage (pulse) is applied that causes
the electric field in the semiconductor to reach the NDR regime (Fig. 21.78). The applied average field
of E = 16V/25µ m = 6.4kV/cm [134] is larger than the threshold field of ET = 3.2kV/cm for NDR
in GaAs (Table 8.4).

The self-started oscillations are due the inherent instability introduced by NDR. A homogeneous
(uniform) electric field and electron distribution is unstable and a thin high-field domain with bipolar
charge distribution (Gunn domain, predicted in [764]) can develop and drift through the device. After
reaching the anode, another domain can form, causing a periodically fluctuating current. The highest
frequencies can be achieved with the so-called limited-space-charge accumulation (LSA) mode which
operateswithout domains.Optimal performance requires non-homogeneous doping profiles.Adetailed
discussion of the various oscillation mechanisms can be found in [765, 1808, 1814].

Discussion of further microwave diode devices such as the IMPATT diode can be found in [574,
1815].



Chapter 22
Light-to-Electricity Conversion

Abstract The use of diodes for the conversion of electromagnetic radiation (light) into electrical
signals is discussed with many examples for devices such as photoconductors, pn-, pin-, MSM- and
avalanche photodiodes and charge-coupled devices. Energy conversion with solar cells is explained
and standard and advanced solar cells concepts are introduced.

22.1 Photocatalysis

The absorption of light in a semiconductor across the band gap creates free electrons and holes.
In particular, for small particle size in powders1 these charge carriers can reach the surface of the
semiconductor. At the surface they can reactwith chemicals. The hole can form •OHradicals fromOH−
attached to the bead. The electron can formO2•−. These radicals can subsequently attack and detoxify,
e.g., noxious organic pollutants in the solution surrounding the semiconductor. Such photocatalytic
activity has been found, e.g., for TiO2 and ZnO powders. A review of photocatalysis, in particular
with TiO2 particles and their surface modifications with metals and other semiconductors, is found
in [1816].

The efficiency of the photocatalytic activity depends on the efficiency of the charge separation
(Fig. 22.1). Any electron-hole pair that recombines within the bulk or the surface of the particle is lost
for the catalytic activity. Thus, surfaces must exhibit a small density of recombination centers. Surface
traps, however, can be beneficial for charge-carrier separation when they ‘store’ the charge-carrier
rather than letting it recombine. Small particles are expected to exhibit more efficient charge-carrier
separation than larger ones. Electrons at the surface can be donated and reduce an electron acceptor,
typically oxygen, A → A−. A hole at the surface can oxidize a donor species, D → D+.

An example of increased photocatalytic activity are TiO2 powders with deposited metal particles
(such as Pt) for H2 evolution and metal-oxide particles (such as RuO2) for O2 evolution. Such a system
behaves as a short-circuited microscopic photoelectrochemical cell in which Pt is the cathode and
RuO2 is the anode [1817]. Excitation with light energy above the band gap in the TiO2 particle (3.2 eV)
injects electrons into the Pt particles and holes into the RuO2 particles. Trapped electrons in Pt reduce
water to hydrogen and trapped holes in RuO2 oxidize water to oxygen.

The photocatalytic activity is also tied to the geometrical shape of the semiconductor. Generally,
powders with nanosized grains have much higher activity than those with microsized particles [1818].
In Fig. 22.2 it is shown that nanosized objects with high surface-to-volume ratio are more effective
catalysts than rather compact surfaces.

1‘Small’ is here in relation to the diffusion length and does not need to be in the rangewhere quantization effects (quantum
dots) are present.
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Fig. 22.1 Principle of photocatalytic activity. Light absorption creates an electron-hole pair. The electron and hole
diffuse and can recombine in the bulk or at the surface. Free carriers can react at the surface with species from the
surrounding solution, reducing an electron acceptor or oxidizing a donor species. Adapted from [1816]

Fig. 22.2 SEM images of MOCVD-grown a ZnO thin film and b ZnO nanoneedle layer. c Comparison of the photo-
catalytic activity (decoloration of the dye Orange II in aqueous solution) of the ZnO thin film (irradiation with a Hg
lamp for 5h and 15h) and the ZnO nanoneedles (irradiation 5h). The sample labeled ‘control’ (scaled to 100%) is the
start situation (absorption of the dye Orange II) without photocatalytic process. Adapted from [1819], reprinted with
permission

In sun-protection cream only the UV absorption is wanted in UVA (330–420nm) and UVB (260–
330nm) ranges. Subsequent photocatalysis on the skin and the presence of radicals are unwanted.
Thus the semiconductor particles (∼10–200nm diameter) are encapsulated in microbeads (∼1–10µm
diameter) of silica, PMMA or urethane, also improving ease of dispersion, aggregation, stability and
skin feel.
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22.2 Photoconductors

22.2.1 Introduction

Charge carriers can be generated in the semiconductor through the absorption of light with a photon
energy above or below the band gap (Fig. 22.3). Absorption involving impurities occurs typically in the
mid- and far-infrared spectral regimes (cf. Sect. 9.8). The additional charge carriers cause an increase
in the conductivity (8.11).

22.2.2 Photoconductivity Detectors

In stationary equilibrium for constant illumination of power Popt and photon energy E = hν the
generation rate G is given by

G = n

τ
= η

Popt/hν

V
, (22.1)

where V is the volume (V = wdL , see Fig. 22.4) and τ denotes the charge-carrier lifetime. η is the
quantum efficiency, i.e. the average number of electron-hole pairs generated per incoming photon. The
photocurrent between the electrodes is

Iph = σ E w d ≈ eμn n E w d , (22.2)

assuming that μn � μp and with E = V/L denoting the electric field in the photoconductor, V being
the voltage across the photoconductor. We can then also write

Iph = e

(
η
Popt
hν

) (
μn τ E

L

)
= g Ip . (22.3)

With the primary photocurrent Ip = e
(
η

Popt
hν

)
we deduce a gain

g = Iph
Ip

= μn τ E

L
= τ

tr
, (22.4)

Fig. 22.3 Absorption and
charge-carrier generation
in a photoconductor: a
band-band transition, b
valence-band to acceptor
and c donor to
conduction-band transition

(a) (b) (c)
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Fig. 22.4 a Scheme of photoconductor. b Equivalent circuit of photoconductor

where tr = L/vd is the transit time through the photoconductor.
Now we consider a modulated light intensity

P(ω) = Popt
[
1 + m exp(iωt)

]
, (22.5)

where m is between 0 and 1. For m = 0 it is a constant light power, for m = 1 the intensity is
sinusoidally modulated between 0 and Pmax = 2Popt. The rms optical power2 is given by

√
2mPopt. In

the case of m = 1 this is equal to Pmax/
√
2.

The rms photocurrent (i2 = 〈I 2〉 − 〈I 〉2) is

iph ≈ e ηm Popt√
2hν

τ

tr

1√
1 + ω2τ 2

. (22.6)

Besides the photocurrent which is considered the signal, several sources of noise must be considered.
Noise is in this case a fluctuation current in with 〈in〉 = 0 (see Appendix K).

The thermal noise (Appendix K.3.1) at a conductivity G = 1/R is3

i2G = 4 k T G B , (22.7)

with B being the bandwidth over which the noise spectrum is integrated. The thermal noise at a resistor
was experimentally found by Johnson [1820, 1821] and theoretically explained by Nyquist [1822].4

The statistical nature (Poisson statistics) of photon arrival (and absorption) and equally that of
recombination of (photo-) excited electrons leads to fluctuations of the carrier density and consequently
to fluctuating conductivity and gain. This so-called generation-recombination noise (Appendix K.3.4)
is given by [1823]

i2GR = 4 e Iph B g
1

1 + ω2 τ 2
(22.8)

for the modulation frequencyω, Iph being the photocurrent in steady state (22.3). The equivalent circuit
with the ideal photocurrent source and the noise currents is depicted in Fig. 22.4b. A detailed treatment
can be found in [1824].

The signal-to-noise ratio of the power is then given by

2The rms value is the square root of the time average of the square of the power,
√〈P2〉.

3For frequencies hν 	 kT ; at room temperature kT/h is in the THz regime.
4The formula for thermal noise (22.7) is the fluctuation-dissipation theorem in statistical physics, providing a general
relation between the response of an equilibrium system to small external perturbations and its spontaneous fluctuations.
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S/N = i2ph
i2G + i2GR

= ηm2 (Popt/hν)

8 B

[
1 + β−1 tr

τ
(1 + ω2τ 2)

G

I0

]−1

. (22.9)

An important quantity is the noise equivalent power (NEP). This is the light power (mPopt/
√
2) for

which the S/N ratio is equal to 1 (for B = 1). The responsivity of a detector to light has been termed
’detectivity’ and is the inverse of the noise equivalent power. It typically depends on the square root of
the detector area A and the bandwidth B [1825]. Thus the detectivity D∗ (D star) has been introduced
defined by [1826]

D∗ =
√
A B

NEP
, (22.10)

in order to make various detectors comparable. The unit of D∗ is cmHz1/2W−1, also known as Jones.
The detectivity should be stated together with the modulation frequency. It can be given for monochro-
matic radiation of a particular wavelength λ or a blackbody spectrum of given temperature T . As
refined measure for detectivity, D∗∗ (D double star) has been defined to take into account the solid
angle 	 from which radiation can reach the detector [1827],

D∗∗ = √
	/π D∗ ; (22.11)

for a Lambertian characteristic D∗∗ = D∗.

22.2.3 Electrophotography

The principle of the Xerox copy machine is based on a photoconductive layer (Fig. 22.5). This layer is
normally insulating such that both sides of the layer can be oppositely charged. If light hits the layer
it becomes photoconductive and neutralizes locally. This requires a small lateral diffusion of charge
carriers. Initially amorphous selenium (Eg = 1.8eV) was used. The conductivity in the dark of a-Se
is 1016 	/cm. Se was subsequently replaced by organic material. The highest performance is currently
achieved with amorphous silicon.

On the charged areas of the photo-sensitive layer toner can be attached. The toner pattern is sub-
sequently transferred to the copy sheet and fixated. A copy takes typically more than one rotation of
the drum. The principle was invented in 1938 by Chester F. Carlson (1906–1968) with sulfur as the
photoconductor.5

22.2.4 QWIPs

Quantum-well intersubband photodetectors (QWIPs) are based on the absorption of photons between
two quantum well subbands (Fig. 22.6). A review can be found in [1829]. Quantized electron or hole
states can be used. Besides an oscillator strength for this transition, the lower level must be populated
and the upper level must be empty in order to allow this process. The Fermi level is typically chosen
by appropriate doping such that the lower subband is populated.

5In 1947 the Haloid company bought the rights to this process, renamed itself XeroX and brought the first copy machine
to the market in 1958 based on amorphous selenium. The word ‘xerography’ stems from the Greek word ξ έρoς (dry).
The last ‘X’ in XeroX was added to mimic the name of the KodaK corporation.
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(f) (g) substrate (h)

Fig. 22.5 Principle of xerography: a charging of the selenium-covered drum, b (reflection) exposure of the Se, exposed
areas become uncharged, c toner addition, d toner transfer to paper for copy, and e fixation of the toner on the copy
and preparation of drum for the next cycle. f First xerox copy (Oct. 22nd 1938). g Schematic cross section of coating
of photo-sensitive drum. The indicated thicknesses are approximate. h Image of drum with photo-sensitive layer made
from amorphous silicon. Part (h) from [1828]

Fig. 22.6 Schematic level
diagram of a quantum well.
Optical intersubband
transitions between the first
and second quantized level
(b–b) and the ground state
and the continuum (b–c)

growth
direction

b-b

Lz0

b-c

E

For infinite barrier height the energy separation between the first and second quantized levels (in
the effective-mass theory) is (cf. (12.6))

E2 − E1 = 3
�
2

2m∗
π2

L2
z

. (22.12)

For real materials the barrier height determines the maximum transition energy. Typical absorption
and transmission spectra of a QWIP structure are shown in Fig. 22.7. The spectral response is in the
mid- or far-infrared.

The dipole matrix element 〈z〉 = 〈�2|z|�1〉 can be easily calculated to be

〈z〉 = 16

9π2
Lz . (22.13)

The oscillator strength is about 0.96. The polarization selection rule causes the absorption to vary
∝ cos2 φ, where φ is the angle between the electric-field vector and the z direction (Fig. 22.8). This
means that for vertical incidence (φ = 90◦) the absorption vanishes. Thus schemes have been developed
to allow for skew entry of the radiation (Fig. 22.9a). The strict selection rule can be relaxed by using
asymmetric potential wells (breaking of mirror symmetry/parity), strained materials (band mixing) or
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(a) (b)

Fig. 22.7 a AlGaAs/GaAs QWIP absorption spectrum for multiple reflection geometry. Adapted from [1829]. b Trans-
mission of AlGaAs/GaAs QWIP (100QWs) in double reflection geometry (45◦ angle of incidence). The well doping is
1.0 × 1012 cm−2 (dashed line) and 1.5 × 1012 cm−2 (solid line). Adapted from [1830]
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(b)
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Fig. 22.8 Dependence of the QWIP response on a polarization and b angle of incidence. Dashed lines are guides to the
eye. Adapted from [1829]

quantum dots (lateral confinement). Also, a grating can be used to create a finite angle of incidence
(Fig. 22.9b).

Besides a useful detectivity (2× 1010 cmHz1/2/W at 77K) QWIPs have the advantage, e.g. against
HgCdTe interband absorbers, that the highly developed GaAs planar technology is available for the
fabrication of focal plane arrays (FPA) as shown in Fig. 22.10. A FPA is an image sensor (in the focal
plane of an imaging infrared optics) and is used, e.g., for the detection of heat leaks in buildings or
night surveillance. In particular, night vision support in cars may become a major market. A competing
technology are bolometric arrayswith thermally insulated pixels based onMEMS technology. A review
of FPA technologies can be found in [1831].

The carriers that have been optically excited into the upper state leave the QW by tunneling or
thermionic emission. Also, a QWIP can be made based on the direct transfer from the (populated)
subband into the continuum.

The incoming infrared radiation creates a photocurrent density of

iph = e ηw � , (22.14)
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Fig. 22.9 QWIP
geometries: a 45◦ edge
coupled with multiple
quantum-well (MQW)
absorber and b grating
coupled with GaAs
substrate, AlAs reflector
and metal grating on top.
Grey areas are highly
n-doped contact layers

h

MQW

h(a) (b)

GaAs

AlAs

GaAs

Fig. 22.10 Part of a
256 × 256 QWIP focal
plane array (FPA) with
grating coupler (area of one
pixel: 37 µ m2).
From [1832]

where ηw is the quantum efficiency of a single quantum well (including the escape rate) and � is the
photon flux per time and unit area. During the transport of the charge carriers through the barrier they
can be (re-)captured by theQWwith the probability pc. The capture probability decreases exponentially
with the applied bias. The total photocurrent (including generation and recapture) is

Iph = (1 − pc) Iph + iph = iph
pc

. (22.15)

If the quantum efficiency is small, the efficiency of Nw quantum wells η ≈ Nw × ηw. With this
approximation the total photocurrent of Nw quantum wells is given by

Iph = e η � g , (22.16)

where g is termed the gain of the structure and is given by

g = 1

pc

ηw

η
≈ 1

Nw pc
. (22.17)

The dark current can be calculated from thermionic emission and agrees fairly well with experiment
(Fig. 22.11a). When the voltage is increased further, avalanche multiplication can occur while the
carriers are transported through the barrier(s). This mechanism provides further gain as shown in
Fig. 22.11b.
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Fig. 22.11 a Dark current of a QWIP at 10.7 µ m, experimental (solid lines) and theoretical (dashed lines) response.
b QWIP responsivity as a function of the applied voltage. The solid line (dashed line) is the theoretical dependence with
(without) the effect of avalanche multiplication. Adapted from [1829]

22.2.5 Blocked Impurity-Band Detectors

Impurity absorption allows photoconductivity detectors in themid- and far-infrared regions to bemade.
In particular, for THz spectroscopy in medicine and astronomy the extension to longer wavelengths
is interesting. For conventional photoconductors the impurity concentration is well below the critical
dopant concentration (cf. Sect. 7.5.7). Long-wavelength response can be achieved by going to impu-
rity/host systems with smaller ionization energy, such as Si:B (45meV) → Ge:As (12.7meV) →
GaAs:Te (5.7meV). By applying stress to Ge the energy separation between impurity and conduction
bands can be lowered and subsequently the detector response is shifted towards longer wavelengths.

For high doping the impurity level broadens to an impurity band and thus allows smaller ionization
energy and thus stronger long-wavelength detector response. However, conduction in the impurity band
leads to dark current and makes such detectors unfeasible. In a blocked impurity band (BIB) detector
[1833–1835] an additional intrinsic blocking layer is sandwiched between the absorption layer and
the contact (Fig. 22.12a). Such a structure is similar to a MIS diode, the insulator being the intrinsic
semiconductor. We assume in the following an n-type semiconductor, such as Si:As or GaAs:Te, but
also p-type BIBs can be made, e.g., from Ge:Ga.

The semiconductor is highly doped (ND) and partly compensated (NA). Typically, the acceptor
concentration must be small, about 1012 cm−3, and controls the formation of the electric field as shown
below. The doping is so high that the impurities form an impurity band. Some of the electrons recombine
with the acceptors N−

A = NA and leave some donors charged N+
D = NA. For GaAs, e.g., the donor

concentration in the doped semiconductor is >1016 cm−3 and ∼1013 cm−3 in the i-layer.
Under an external forward bias V , i.e. the positive pole is at the insulator, part of the applied voltage

drops over the blocking layer of thickness b. If ideally no charges are present here, the electric field is
constant. In the n-doped material electrons move in the impurity band towards the insulator, forming
neutral donors in an electron accumulation layer of thicknessw in the presence of the charged acceptors
N−
A . This layer is the absorption layer. The mechanism can also be considered as if positive charge (the

charged donors, N+
D ) moves (via hopping conduction) towards the back contact. In the literature the

layer close to the insulator is thus also termed a ‘depletion layer’. The band diagram and the electric
field are shown in Fig. 22.12b, c. Due to the blocking layer the carriers on the donors in the n-type
material cannot spill via the impurity band into the contact but must be lifted (by photoabsorption) into
the conduction band.
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Fig. 22.12 a Structure of
BIB photodetectors. Highly
doped contact layers
(black), doped
semiconductor (white) and
blocking (intrinsic) layer
(grey). b Band diagram
under small forward bias.
Shaded area represents the
donor impurity band.
c Electric field in the
structure
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From the Poisson equation the electric field is given by

E(x) = − e

εs
NA (w + x) , −w ≤ x ≤ 0 (22.18a)

E(x) = − e

εs
NA w = Ei, 0 ≤ x ≤ b . (22.18b)

The voltage drops across the blocking layer Vb and the doped semiconductor Vs fulfill

V = Vb + Vs . (22.19)

Integration of the fields yields

Vs = e

εs
NA

w2

2
(22.20a)

Vb = e

εs
NA w b . (22.20b)

Substituting (22.20a,b) into (22.19) results in the width of the ‘depletion layer’

w =
√
2 εs V

e NA
+ b2 − b . (22.21)

The high dopant concentration allows for much thinner absorption layers than in a conventional pho-
toconductivity detector, making it less susceptible to background high-energy cosmic radiation. The
recombination in the depletion layer is negligible. Detector performance is modeled in [1836].
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22.3 Photodiodes

22.3.1 Introduction

The principle of the photodiode is the interband absorption of light in the depletion layer of a diode
(or the i-zone of a pin-diode) and the subsequent separation of electrons and holes by the electric
field. There are opposite requirements for fast detectors (thin depletion layer) and efficient detectors
(complete light absorption, sufficiently thick depletion layer). For this reason generally semiconductors
with high absorption coefficient are most suited (Fig. 22.13). In Fig. 22.14 the quantum efficiency and
detectivity D∗ of various semiconductor detectors are compared.

A diode can be operated without bias (photovoltaic mode) using the built-in field. An improvement
in the speed of a pn-diode is achieved with a reverse bias since it increases the field strength in the
depletion layer. However, the reverse bias is below the breakdown voltage. Operation near breakdown
is exploited in the avalanche photodiode (APD). In the following we will discuss pn-, pin-, MS-
(Schottky-), MSM- and heterostructure-diodes and APDs.

(a)

(b)

Fig. 22.13 Optical absorption coefficient of various semiconductormaterials (as labeled) used for photodetectors a in the
UV, visible and near-infrared range (at room temperature) and b in the mid-infrared spectral range at room temperature
(solid lines) and at 77K (dashed lines). Based on [1837]
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(a) (b)

Fig. 22.14 a Quantum efficiency of various photodetectors. The dashed lines depict lines of equal responsivity (Rλ in
A/W) as labeled on top of the panel. b Detectivity D∗ of various photoconductors and photodiodes (PD). The lighter
(darker) shaded area indicates the range unachievable at 300K (77K) due to background radiation. Adapted from [574]
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Fig. 22.15 a Schematic dark and illuminated I–V -characteristics of a photodiode (for the case jp = −2 js). b Schematic
representation of currents in a photodiode and equivalent circuit. Part b adapted from [1838]

22.3.2 Pn Photodiodes

The most important figures of merit are the quantum efficiency, responsivity, noise equivalent power
(NEP) and the response speed.

If the depletion layer is hit by a photon fluxwith a generation rateG0 (i.e. electron-hole pairs per unit
volume per unit time) the photogenerated current is added to the diffusion current. The photocurrent
density jp (per unit area) is

jp = −e G0 Lp (22.22)

for a p+n-diode. In order to obtain this result the diffusion and continuity equations have to be solved
for the depletion region.6 Equation (22.22) means that the dark I–V characteristic is shifted by jp as
shown in Fig. 22.15a. The number of electron-hole pairs that are generated per photon of energy hν

by the absorption of the (monochromatic) light power Popt is

6This derivation is done in Sect. 22.3.3. Equation (22.22) is obtained from (22.33) for vanishing thicknessw andαLp 	 1.
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η = Iph/e

Popt/(hν)
, (22.23)

where Iph = Ajph is the photogenerated current over the surface A. The responsivity Rλ of the photo-
diode (for monochromatic radiation) is defined as

Rλ = Iph
Popt

= e

hν
η ≈ λ

1.24μm
η . (22.24)

For a modulated light intensity Popt must be replaced by mPopt/
√
2. The equivalent circuit including

noise sources for a photodiode is shown in Fig. 22.15b.
Random processes lead to shot noise 〈i2S〉 (Sect.K.3.3). Besides the photocurrent Iph itself, the

background radiation (IB, in particular for infrared detectors) and the thermal generation (dark current,
ID) of carriers contribute:

〈i2S〉 = 2 e
(
Iph + IB + ID

)
B , (22.25)

with B being the bandwidth. Additionally, the parallel resistances cause thermal noise

〈i2T〉 = 4 kT B/Req . (22.26)

The resistance Req is given by the resistance of the depletion layer (junction) Rj, the load RL and the
input of the amplifier Ri as R−1

eq = R−1
j + R−1

L + R−1
i . The series resistance Rs of the photodiode can

be usually ignored in this context.
For a fully modulated signal the signal-to-noise ratio of the photodiode is given by

S/N = i2ph
〈i2S〉 + 〈i2T〉

=
(
e η Popt/hν

)2
/2

2e
(
Iph + IB + ID

)
B + 4 kT B/Req

. (22.27)

Therefore the NEP is given by

NEP = 2 hν B

η

[
1 +

√
1 + Ieq

e B

]
. (22.28)

The current Ieq is given by Ieq = IB + ID + 2kT/(eReq). If Ieq/eB 	 1, the NEP is determined by the
shot noise of the signal itself. In the other limit Ieq/eB � 1 the detection is limited by the background
radiation or thermal noise. In this case, the NEP is (for B = 1Hz, in Wcm2Hz1/2)

NEP = √
2
hν

η

√
Ieq
e

. (22.29)

In Fig. 22.16 the situation is shown for a silicon photodiode as a function of Req. The diode has a
quantum efficiency of 75% at λ = 0.77µm. A high value of Req ∼ 1G	 is necessary to ensure
detection limited by dark current.
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Fig. 22.16 NEP as a
function of the resistance
Req for a Si photodiode.
From [1838]
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22.3.3 Pin Photodiodes

The depletion layer in pn-diodes is relatively thin such that the incident light is not completely absorbed.
An almost complete absorption of light can be achieved by using a thick intrinsic absorption layer. The
field in the intrinsic region is constant or slowly varying linearly (Fig. 21.72). The generation rate per
unit area decreases exponentially following the Lambert-Beer law (9.16) as shown in Fig. 22.17c:

G(x) = G0 exp(−α x) . (22.30)

The initial generation rate G0 = �0α is given by the incident photon flux per unit area �0 and the
reflectance of the surface R as �0 = Popt(1 − R)/(Ahν).

The drift current in the i-region collects all those carriers (if recombination in the depletion layer is
neglected). The electron drift current is given by

jdr = −e

w∫
0

G(x) dx = e�0
[
1 − exp(−α w)

]
, (22.31)

with w being the thickness of the depletion layer that is approximately the same as the thickness of the
i-region. In the bulk (neutral) region (x > w) the minority-carrier density is determined by drift and
diffusion7 (10.78). The diffusion current density at x = w is thus given by

jdiff = e�0 exp(−α w)
α Lp

1 + α Lp
+ e pn0

Dp

Lp
. (22.32)

The first term is due to the diffusion current of photo-generated carriers (10.78), the second term due
to thermally generated carriers (21.133). The total current jtot = jdiff + jdr is given by

7At the edge of the depletion layer, x = w, all photo-generated carriers are transported away instantly, thus the excess
carrier density from photo-generated carriers is zero there and (10.78) applies.
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Fig. 22.17 a Schematic
cross section of pin-diode,
b profile of carrier
generation due to light
absorption and c schematic
band structure under
reverse bias. The
generation of three
electron-hole pairs is
shown; subsequent drift
(diffusive) transport is
indicated with solid
(dashed) arrows

(a)

(b)

(c)

jtot = e�0

[
1 − exp(−α w)

1 + α Lp

]
+ e pn0

Dp

Lp
. (22.33)

The first term is due to the photocurrent, the second term is due to the diffusion current known from
the p+n-diode. In normal operation, the second can be neglected compared to the first. The quantum
efficiency is

η = jtot/e

Popt/hν
= (1 − R)

[
1 − exp(−α w)

1 + α Lp

]
. (22.34)

For a high quantum efficiency, of course low reflectance and high absorption coefficient, i.e. αw � 1,
are necessary.

However, for w � 1/α the transit time through the depletion layer tr ≈ w/vs (at sufficiently
high field, vs being the drift-saturation velocity) increases too much. The 3dB cutoff frequency f3 dB
(Fig. 22.18) is

f3 dB ∼= 2.4

2π tr
∼= 0.4 vs

w
. (22.35)

Therefore a tradeoff exists between the quantumefficiency and the response speedof the pin-photodiode
(Fig. 22.18). Choosing w ∼= 1/α is a good compromise.

22.3.4 Position-Sensing Detector

In a position-sensing detector (PSD) two electrodes are placed at opposite edges of a photodetector.
The current output depends linearly on the beam position in between the electrodes, similar to a voltage
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Fig. 22.18 Quantum
efficiency and 3dB cutoff
frequency of a Si pin-diode
at T = 300K for various
wavelengths of input
radiation. Adapted
from [1838]

Fig. 22.19 a Scheme of
two-dimensional
position-sensing detector
(PSD), b image of PSD.
From [1839]

(a) (b)

divider. If two pairs of electrodes, one on the front and one on the back of the detector, are fabricated
in orthogonal directions (Fig. 22.19a), the beam position can be measured in both x and y directions.

22.3.5 MSM Photodiodes

AMSMphotodiode consists of a piece of semiconductor between two Schottky contacts (MS contacts).
These are typically arranged laterally (as shown in Fig. 22.24b) but will first be considered at the front
and back of the semiconductor [1840]. The band structure in thermodynamic equilibrium is shown in
Fig. 22.20.
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Fig. 22.20 Band diagram
of a MSM structure with an
n-type semiconductor in
thermal equilibrium. In the
general case, two different
metals cause two different
Schottky barrier heights
and related depletion layer
widths. Adapted
from [1840]

Fig. 22.21 a Band
diagram for a MSM
structure under bias
(V < VRT), b electric field
distribution. Adapted
from [1840]

(a)

(b)

In the general case two different metals with two different barriers φn1, φn2 and built-in voltage VD1,
VD2 are considered. If a voltage is applied across the MSM diode, one of the junctions is biased in
the forward, the other in the reverse direction. We assume in Fig. 22.21 that the voltage biases the first
contact in the reverse direction, i.e. the ‘+’ pole is on the left contact. The applied voltage V is split
between the two contacts, the larger voltage will drop at the reverse-biased contact (here: V1 > V2)

V = V1 + V2 . (22.36)

The electron current arises from thermionic emission at contact 2. Due to current continuity (without
recombination since we inject majority charge carriers) this is also the current through contact 1, i.e.

jn1 = jn2 . (22.37)
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(a) (b) (c)

Fig. 22.22 Band diagram (upper parts) and electric field distribution (lower parts) in a MSM diode for various bias
conditions: a at reach-through voltage VRT, b at flat-band voltage VFB and c for V > VFB. Adapted from [1840]

The reverse current at contact 1 is

jn1 = A∗
n T

2 exp (−βφn1) exp (β�φn1)
[
1 − exp (−βV1)

]
, (22.38)

where �φn1 is the barrier reduction due to the Schottky effect (Sect. 21.2.3 and (21.27)). The forward
current at contact 2 is

jn2 = −A∗
n T

2 exp (−βφn2) exp (β�φn2)
[
1 − exp (βV2)

]
. (22.39)

For a symmetric structure, i.e. φn1 = φn2 and VD1 = VD2 = VD, (22.37)–(22.39) yield together
with (21.27)

(
e3 ND

8π2 ε3s

)1/4 [
(VD + V1)

1/4 − (VD − V2)
1/4

] = 1

β
ln

[
exp (βV2) − 1

1 − exp (−βV1)

]
. (22.40)

Together with (22.36) a numerical or graphical solution can be found. Initially (for small voltages) the
injected hole current (from contact 2) is much smaller than the electron current and diffusion occurs
in the neutral region.

The reach-through voltage VRT is reached when the width of the neutral region is reduced to zero
(Fig. 22.22a). At the juncture of the two depletion regions inside the semiconductor material the electric
field is zero and changes sign. For a larger voltage VFB flat-band conditions are present at contact 2,
i.e. the electric field is zero at contact 2 (Fig. 22.22b). At even larger voltage VB breakdown occurs.

At V = VRT we have

w1 =
[
2 εs

e ND
(V1 + VD1)

]1/2

(22.41a)

w2 =
[
2 εs

e ND
(VD2 − V2)

]1/2

(22.41b)

L = w1 + w2 , (22.41c)
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and therefore (with (22.36))

VRT = e ND

2 εs
L2 − L

[
2 e ND

εs
(VD2 − V2)

]
− �VD , (22.42)

with �VD = (VD1 − VD2), vanishing for a symmetric MSM structure. At and after reach-through the
electric field varies linearly from 0 to L within the semiconductor. The point of zero electric field shifts
towards contact 2. At the flat-band voltage this point has reached the contact 2 and the width of the
depletion layer at contact 2 is zero. This condition leads (as long as no breakdown occurred) to

VFB = e ND

2 εs
L2 − �VD . (22.43)

The maximum electric field is at contact 1 and is given (for V > VFB) by

Em1 = V + VFB + 2�VD

L
. (22.44)

If in a part of the structure the critical field EB for impact ionization is reached (this will be at contact
1, since the field is highest there), the diode breaks down. Therefore the breakdown voltage is given by

VB ≈ EB L − VFB − 2�VD . (22.45)

The current-voltage characteristic for a Si-MSM structure is shown in Fig. 22.23. At small voltages
only small currents flow since one contact is in reverse bias. The hole current is much smaller than the
electron current. Only those holes that diffuse through the neutral region contribute to the hole current.
After reach-through the barrier φp2+VD2−V2 for hole injection is strongly reduced that leads to strong
hole injection. Beyond the flat-band voltage the hole current increases only weakly since a lowering of
the barrier occurs only via the Schottky effect. For high fields (V > VFB, before breakdown) the hole
current is

jp1 = A∗
p T

2 exp
(−βφp2

)
exp

(
β�φp2

) = jp,s exp
(
β�φp2

)
, (22.46)

and the total current is
j = jn,s exp (β�φn1) + jp,s exp

(
β�φp2

)
, (22.47)

with jn,s = A∗
nT

2 exp(−βφn1) and jp,s = A∗
pT

2 exp(−βφp2).
In a MSM photodetector the metal contacts are typically formed in an interdigitated structure on

the semiconductor surface (Fig. 22.24). These contacts shield some of the active area from photons.
An increase in quantum efficiency can be achieved with transparent contacts (e.g. ZnO or ITO) and an
antireflection (AR) coating.

The dark current is given by (22.47) and is minimal when electron and hole saturation currents are
identical. This conditions leads to the optimal barrier height

φn = Eg − φph = 1

2
β−1 ln

(
me

mhh

)
+ 1

2
Eg (22.48)

close tomiddle of thebandgap. For InPandoptimal barrierφn = 0.645eVadark current of 0.36pA/cm2

is expected for a field of 10V/ µ m. For deviating barrier height the current increases exponentially.
The current-voltage characteristic of an InGaAs:Fe MSM photodetector is shown in Fig. 22.25 for a
dark environment and various illumination levels.
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Fig. 22.23 Current-voltage characteristics of a Si MSM structure, ND = 4 × 1014 cm−3, L = 12 µ m (thin, polished,
〈111〉-oriented wafer), T = 300K. a Theory for two different values of φp2 , b experiment (for φp2 = 0.2V). Adapted
from [1840]
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(c) (d)

Fig. 22.24 Scheme of MSM photodetector with interdigital contacts in a plan view and b cross section. In part (b),
the electric field lines are shown schematically together with an electron-hole pair ready to be separated. c Scheme of a
MSM mesa structure, d SEM image of an InGaAs/InP MSM mesa photodetector. Parts c and d adapted from [1841]

The time-dependent response of a MSM photodetector depends on the drift time of the carriers,
i.e. the time that a created electron and hole need to arrive at their respective contacts. In Fig. 22.26 a
simulation is shown for aMSMdetector. The current has two components, a fast one due to the electrons
and a slow one due to the holes that have the lower mobility and smaller drift saturation velocity. A
similar dependence is found in experiment (Fig. 22.27a). For longer wavelengths the detector is slower
since they penetrate deeper into the material and thus the charge carriers have a longer path to the
contacts (cf. scheme in Fig. 22.24b). An important role is played by the finger separation; smaller finger
separation ensures a more rapid carrier collection (Fig. 22.27b). In [1842] a bandwidth of 300GHz was
demonstrated for 100nm/100nm finger width and separation for LT-GaAs8 and bulk GaAs, limited by

8LT: grown at low temperature, i.e. containing many defects that reduce the carrier lifetime.
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Fig. 22.25 dc I–V
characteristic of an
InGaAs/InP MSM
photodetector
(InP:Fe/InGaAs:Fe/InP:Fe,
finger separation 1 µ m,
λ = 1.3 µ m) under
illumination for dark
environment (0 µ W) and
various illumination levels
as labeled. Adapted
from [1841]

Fig. 22.26 Simulation of
the time-dependent
response of an InGaAs:Fe
MSM photodetector to a
short light pulse. Adapted
from [1841]

the RC time constant. For 300nm/300nm fingers and a LT-GaAs a bandwidth of 510GHz (pulsewidth
of 0.87ps) was reported, which is faster than the intrinsic transit time (1.1ps) and not limited by the RC
time constant (expected pulse width 0.52ps), due to the recombination time (estimated to be 0.2ps).

22.3.6 Avalanche Photodiodes

In an avalanche photodiode (APD) intrinsic amplification due to carrier multiplication (through impact
ionization) in a region with high electric field is used to increase the photocurrent. The field is generated
by a high reverse bias in the diode. In an ideal APD only one type of carrier is multiplied, resulting in
the lowest noise. If electrons are injected into the field region at x = 0 (Fig. 22.28a), the multiplication
factor for electrons is

Mn = exp(αn w) , (22.49)

for αp = 0. Typically, both carrier types suffer multiplication. If the electron and hole impact ionization
coefficients are the same (αn = αp = α), the multiplication factor for electrons and holes M is given by

M = 1

1 − α w
. (22.50)

The rms value of the current noise is the same as in the case of the pn-diode (22.25), only that now
the gain M is added
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Fig. 22.27 a Experimental
time-dependent response of
an InGaAs:Fe MSM
photodetector to a short
light pulse for three
different wavelengths, inset
shows the frequency
response from a Fourier
transform. b Response of
the MSM for two different
finger widths and
separations (both 1 or 2
µ m, respectively), InGaAs
layer thickness 2 µ m,
λ = 1.3 µ m and bias
voltage 10V. Adapted
from [1841]

(a)

(b)

〈i2S〉 = 2 e
(
Iph + IB + ID

) 〈M2〉 B . (22.51)

The term 〈M2〉 is written as 〈M〉2 F(M) with F(M) = 〈M2〉/〈M〉2 being the excess noise factor
that describes the additional noise introduced by the random nature of the impact ionization. For
multiplication started with electron injection, it is given by [1843]

F(M) = k M + (1 − k)

(
2 − 1

M

)
, (22.52)

with k = αp/αn. For hole injection starting the multiplication (22.52) holds with k substituted by
k ′ = αn/αp. In Fig. 22.29a the excess noise factor is shown vs. the average multiplication for various
values of k and k ′.

Experimental data are shown in Fig. 22.29b for a Si APD. For short wavelengths absorption is
preferential at the surface (n-region) and we have the case of hole injection. The data for the excess
noise factor are fairly well fit with k ′ ≈ 5. For longer wavelengths, the data for electron injection are
fit by k ≈ 0.2 = 1/k ′.

For a fully modulated signal the signal-to-noise ratio is given by

S/N = (e η Popt/hν)2/2

2 e
(
Iph + IB + ID

)
F(M) B + 4 kT B/(Req M2)

. (22.53)

If S/N is limited by thermal noise, the APD concept leads to a drastic improvement of noise.
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The APD can used for single photon detection; then the variation in pulse height (with reasonable
limits) plays no role for the count rate. The number of dark counts can be reduced by cooling the APD.
Using constant fraction triggering, also the arrival time of the photon can be determined, allowing time
resolution typically in the 100ps regime.

A particular APD structure is known as a solid-state multiplier. It has separate absorption and
amplification regions (SAM structure). In the low-field region the light is absorbed. One type of carrier
is transported with the drift field Ed to the multiplication region in which a large field Em is present
and multiplication occurs. In Fig. 22.30a a homo-APD with SAM structure is shown. Regions with
different electric field are created by a special doping profile.9 A π -p-π structure leads to regions with
homogeneous low and high field strengths.

The performance of a commercial silicon APD is depicted in Fig. 22.31. With increasing reverse
bias, both the dark current and the multiplication factor increase. Before breakdown at about 77V, the
best ratio of M and Idark is found. This particular diode has a typical excess noise factor of F = 2 for
M = 100. Using (22.52), this shows that only one kind of carriers is multiplied.
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Fig. 22.28 Schematic band structure a and schematic device setup b of an avalanche photodiode (APD). From [1185]
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Fig. 22.29 a Excess noise factor for various values of the ratio of ionization coefficients k or k′. Adapted from [1843].
b Experimental results for F for a Si APD with 0.1 µ A primary current. The empty (full) symbols are for short (long)
wavelengths [primary hole (electron) current]. The inset shows the schematic band diagram of the np-diode under reverse
bias. Adapted from [1844]

9Employing spatially inhomogeneous Poisson’s equation ∂(εs(x)E(x))/∂x = ρ(x).
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Fig. 22.31 a TO casing of
Si APD. b Dark current
(blue) (active area
0.2mm2) and
multiplication factor (red)
as a function of reverse
bias (at 23◦C). Adapted
from [1845]
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Fig. 22.32 Scheme of a traveling-wave photodetector with pin structure and coplanar contacts

In the case of a heterostructure-APD with SAM structure (Fig. 22.30b) absorption (of light with
sufficiently long wavelength with an energy smaller the the InP band gap) takes place only in the
InGaAs layer. Since no light is absorbed in the multiplication region, the device functions similarly
for front and back illumination. In [1846] a multi-stage InGaAs-based APD on InP is described that
is optimized for electron multiplication in ten subsequent gain sections; a total gain of 103 is achieved
with an excess noise factor F of about 40, belonging to an effective ionization ratio of k = 0.036.

22.3.7 Traveling-Wave Photodetectors

In a standard photodetector there was a tradeoff between the thickness of the absorption layer and the
speed of the detector. In a traveling-wave photodetector the light absorption occurs in a waveguide
such that for sufficient length L all incident light is absorbed. Complete absorption is achieved (‘long’
waveguide) if L � (�α)−1,α being the absorption coefficient and� ≤ 1 being the optical confinement
factor, the geometrical overlap of the optical mode with the cross section of the absorbing medium (cf.
also Sect. 23.4.4).

The electrical connections are designed along this waveguide on the sides (coplanar layout,
Fig. 22.32). The bandwidth limitation due to a RC time constant is now replaced by the velocity
match of the light wave vopt = c/n and the traveling electric wave in the contact lines vel ≈ 1/

√
LC .

While the twowaves travel along thewaveguide, energy is transferred from the light wave to the electric
wave. The 3dB bandwidth due to velocity mismatch Bvm (for impedance- matched, long waveguides)
is given by [1847]

Bvm = � α

2π

vopt vel
vopt − vel

. (22.54)

For a MSM structure, whose electrode separation has been designed with a self-aligned process (with-
out extensive effort in lateral patterning) by an etch depth of a few 100nm (Fig. 22.33), 3dB cutoff
frequencies beyond 500GHz have been achieved (Fig. 22.34). The quantum efficiency of this detector
was still 8.1%.



614 22 Light-to-Electricity Conversion

(a) (b)

Fig. 22.33 Scheme of a MSM traveling-wave photodetector in a cross section and b plan view. Adapted from [1848]

(a) (b)

Fig. 22.34 a Pulse response (FWHM=0.8ps) and b frequency response (Fourier transform of time response) of a MSM
traveling-wave photodetector (bias 5V) for various illumination intensities, A: 1mW, B: 2.2mW. Adapted from [1848]

Fig. 22.35 First 8-bit
charge coupled device
(1970). The chip (size: 1.5
× 2.5mm2) consists of 24
closely packed MOS
capacitors (narrow
rectangles in the center
grid). The thick rectangles
at either end of the grid are
input/output terminals

22.3.8 Charge Coupled Devices

The concept of the charge coupled device (CCD), an array of connected photodetectors serving as an
image sensor, was devised by W.S. Boyle and G.E. Smith [143] (Fig. 22.35) and realized [144]. As
textbook for further details [1849, 1850] may serve.

A MIS diode (mostly a silicon-based MOS diode) can be designed as a light detector. The diode
is operated in deep depletion. When a large reverse voltage is applied, initially a depletion layer is
formed and the bands are strongly bent as shown in Fig. 22.36b. We note that in this situation the
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Fig. 22.36 Ideal
MIS-diode (with p-type
semiconductor) as
photodetector (principle of
a CCD pixel). a Without
bias (see Fig. 21.30b). b
Immediately after an
external (reversely poled)
voltage V > 0 has been
applied, the surface
potential is �s = V and no
charges have moved yet. c
Strong depletion (still not
in thermodynamic
equilibrium) with signal
charge and reduced surface
potential �s < V . d The
semiconductor in
equilibrium (EF is
constant) with depletion
and inversion layer (see
Fig. 21.34). For all
diagrams, V = V − i+ �s
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semiconductor is not in thermodynamic equilibrium (as it is in Fig. 22.36d) when the quasi-Fermi level
is constant throughout the semiconductor. The inversion charge has yet to build up.

There are three mechanisms to generate the inversion charge. (a) generation-recombination, (b)
diffusion from the depletion-layer boundary and (c) carrier generation by light absorption.Mechanisms
(a) and (b) represent dark currents for the photodetector. The conductivity due to these two processes is
shown in Fig. 22.37 and slowly builds up the inversion charge. Two temperature regimes are obvious;
at low temperatures the generation dominates (∝ ni ∝ exp(−Eg/2kT )), at high temperatures the



616 22 Light-to-Electricity Conversion

Fig. 22.37 Conductivity
of a n-Si/SiO2-diode as a
function of temperature
(1/T ). The slope of the
dashed lines is (a)
∼ 0.56eV (≈ Eg/2) and
(b) ∼ 1.17eV (≈ Eg).
Adapted from [1851]
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diffusion (∝ n2i ∝ exp(−Eg/kT )). The latter process can be strongly suppressed by cooling the
device.

The gate voltage VG and the surface potential �s are related to each other via

VG − VFB = Vi + �s = e NA w

Ci
+ eNAw2

2εs
, (22.55)

where w is the width of the depletion layer. w will be larger than wm in thermodynamic equilibrium.
The first term in the sum is |Qs|/Ci and the second is obtained by integrating the Poisson equation for
the constant charge density −eNA across the depletion layer. The elimination of w yields

VG − VFB = �s + 1

Ci

√
2eεsNA�s . (22.56)

If light is absorbed in the depletion layer (process (c)), the hole (for p-Si) drifts towards the bulk
material. The electron is stored as part of the signal charge Qsig close to the oxide semiconductor
interface (Fig. 22.36b).

VG − VFB = Qsig

Ci
+ eNAw

Ci
+ �s . (22.57)

As a consequence of the increase in signal charge the potential well becomes shallower (22.57). For
each gate voltage there is a maximum charge (well capacity). The maximum signal charge is reached
for �s ≈ 2�B (Fig. 22.38).

In a charge coupled device (CCD) many light-sensitive MIS diodes, as described above, are fab-
ricated in matrix form to create an image sensor. Upon application of a gate voltage they accumulate
charge depending on the local exposure to light. The read out of this charge occurs by shifting the
charge through the array to a read-out circuit. Therefore charge is transferred from one pixel to the next.
Several schemes have been developed for this task. The three-phase clocking is shown schematically
in Fig. 22.39. Other clocking schemes involve four, two or only one electrode per pixel [1853].

Since the CCD sensor has many pixels (e.g. up to 4096) along a line, the charge transfer must be
highly efficient. The transfer of charge carriers occurs via thermal (regular) diffusion, self-induced
drift and the effect of the fringing field (inset of Fig. 22.40). The time constant with which the charge
carriers move due to diffusion (in a p-type semiconductor) is
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Fig. 22.38 Surface
potential as a function of
the signal charge Qsig for
various values of the bias
VG − VFB as labeled for a
SiO2/p-Si diode with
NA = 1015 cm−3 and an
oxide thickness of 100nm.
The dashed line represents
the limit for inversion given
by �s = 2�B ≈0.6V.
Adapted from [1852]
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τth = 4 L2

π2 Dn
, (22.58)

where L is the length of the electrode. For a sufficiently large charge packet the self-induced drift due
to Coulomb repulsion is important. The decay of charge is then given by

Q(t)

Q(0)
= t0

t + t0
, (22.59)

with t0 = πL3WeCi/(2μnQ(0)).We is thewidth of the electrode. This dependence is shown as a dashed
line in Fig. 22.40a. The last electrons are efficiently transferred by the drift induced by the fringing
field of the electrodes (solid line in Fig. 22.40a). The origin of the fringing field is schematically shown
in Fig. 22.40b; the minimum fringing field shown is 2 × 103 V/cm. In about 1–2ns practically all
(1 − 10−5) charges are transferred. This enables clock rates of several 10MHz.

For the clocking of the CCD the lateral variation of potential depth with the applied gate voltage
is used. In Fig. 22.41 it is shown how a lateral variation of doping or oxide thickness creates a lateral
potential well. Such structures are used to confine the row of pixels against the neighboring rows
(channel stops, Fig. 22.42). In order to avoid carrier loss at the interface between the oxide and the
semiconductor a buried-channel structure is used (Fig. 22.43).

For front illumination parts of the contact electrodes shield the active area of the device. Higher
sensitivity (in particular in theUV) is achieved for back illumination. For this purpose the chip is thinned
(polished). This process is expensive and makes the chip mechanically less stable. For red/infrared
wavelengths typically interference fringes occur for such thinned chips due to the small thickness. An
increase in efficiency for front illumination can be achieved with an on-chip microlens (Fig. 22.44).

For color imaging the CCD is covered with a three-color Bayer mask [1858] (Fig. 22.45a). On
average there are one blue and one red pixel and two green pixels since green is themost prominent color
in typical lighting situations. Thus each pixel delivers monochromatic information; RGB images are
generated using suitable image software.Alternatives in high-end products are the use of a beam splitter,
static color filters and threeCCDchips, one for each color (Fig. 22.45b), or the time-sequential recording
of three monochromatic images using one CCD chip and a rotating color-filter wheel (Fig. 22.45c).
Another method is to shift (by piezoelectric actors) the CCD by half or full pixels and take sequential
exposures, increasing spatial and color resolution for still objects.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 22.39 a Three-phase CCD. Each pixel has three electrodes that can be switched independently (phases 1–3). b, e,
f Schematic of CCDs with four, two or one phase, respectively. c (t1) Charge accumulated after light exposure. A lateral
potential well is formed along the row of pixels by the voltages at the three electrodes, e.g. P1 = P3 = 5V, P2 = 10,V.
(t2–t7) transfer of charge, (t7) has the same voltages as (t1), the charge has been moved one pixel to the right. d, g, h
Timing schemes for 4-, 2- and 1-phase CCDs, respectively. From [1853]

22.3.9 Photodiode Arrays

An array of photodiodes is also suitable to create an image sensor. During illumination each diode
charges a capacitor that is read out with suitable electronics. Based on CMOS technology (cf.
Sect. 24.5.4), economic image sensors can be made (CMOS image sensors, CIS) [1859, 1860]. For a
long time they exhibited inferior performance to CCDs but progress in readout and noise suppression
has made them the image sensor of choice for many camera applications including the smart phone
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Fig. 22.41 Creation of a
lateral potential well
(barrier) in a MIS structure
with a varying doping via
diffusion or implantation
and b varying (stepped)
oxide thickness. Upper row
shows schematic geometry,
lower row depicts
schematic lateral variation
of the surface potential
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Fig. 22.42 a Schematic image of channel isolation. Cross section for channel isolation by b variation of oxide thickness,
c highly doped region and d field effect. Adapted from [1855]



620 22 Light-to-Electricity Conversion

EF

EC

EC

EF

EV

EV

V VG FB

V VG FB

Qsig

Qsig=0

n-Si p-SiVG

(a)

(b)

(c)

SiO2

Fig. 22.43 a Schematic layers of MIS diode with buried-channel structure. Band diagram b after application of reverse
voltage VG and c with signal charge Qsig. Adapted from [1856]

(a) (b)

Fig. 22.44 a Scheme for enhancement of CCD efficiency for front illumination by application of an onchip microlens.
b SEM image of an array of such microlenses. From [1857]

market. The built-in electronics allows simple outward connections (Fig. 22.46) and with several tran-
sistors per pixel even on-chip image processing.

The three-color CCD image sensor does not offer RGBcolor information at each pixel. Therefore the
spatial resolution of a color image is not directly given by the pixel distance. This is not a very dramatic
drawback since human vision is more sensitive to intensity contrast than color contrast. However,
RGB color information for each pixel would be desirable, giving higher resolution, in particular in
professional photography. Such a sensor has been fabricated employing the wavelength dependence
of the silicon absorption coefficient (Fig. 22.13). Blue light has the shortest and red light the largest
penetration depth. By stacking three photodiodes on top of each other (Fig. 22.47) photocurrents at
different penetration depth are recorded that can be used to generate a RGB value for each pixel.
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Fig. 22.45 a Arrangement of colors in a CCD Bayer [1858] color filter (‘R’: red, ‘G’: green, ‘B’: blue). Color splitting
with b static color filters and c rotating color wheel. Parts b and c from [1853]

In Fig. 22.48a a 16-channel array of silicon avalanche photodiodes is shown. It features a quantum
efficiency of > 80% between 760 and 910nm. The pixel size is 648 × 208µm2 on a 320 µ m pitch.
The gain is 100 and the rise time 2ns.

The InGaAs photodiode array in Fig. 22.48b is hybridized with CMOS read-out integrated circuits.
It is useful for detection in the spectral range 0.8–1.7 µ m. The asymmetric diode size of 25× 500µm
is designed for use in the focal plane of a monochromator.

Another special type of photodiode array is the four-quadrant detector. A light beam generates four
photocurrents Ia, Ib, Ic, Id of the respective parts (Fig. 22.49a). A beam deviation in the horizontal or
vertical direction can be detected from the (signed) signals (Ia + Id)− (Ib + Ic) or (Ia + Ib)− (Ic + Id),
respectively.Wenote that these signals can also be normalized to the total beam intensity Ia+Ib+Ic+Id.

A further improvement of the microlens technology (cmp. Fig.22.44) is achieved with additional
tapered light pipes [1867], guiding obliquely incoming light to the photo-sensitive pixel in an optimized

(a) (b)

Fig. 22.46 (a) CMOS linear array sensor in a 8-pin package. b Block diagram, the built-in timing generator allows
operation only with start and clock pulse inputs. Reprinted with permission from [1861]

(a) (b)

Fig. 22.47 a Scheme of image sensor with depth-dependent light detection. From [1862]. b Schematic layer sequence
for three-color pixel. ib, ig and ir denote the photocurrents for blue, green and red light, respectively. Adapted from [1863]



622 22 Light-to-Electricity Conversion

Fig. 22.48 a Array of
16-pixel (1000 × 405μm2)
silicon APDs (width of
housing: 15mm). From
[1864]. b 1024-pixel
(25 × 500μm2) InGaAs
photodiode array (width of
array: 1 inch). From [1865]

(a) (b)

Fig. 22.49 a Scheme of
four-quadrant
photodetector with sections
‘a’, ‘b’, ‘c’ and ‘d’. b
image of four-quadrant
silicon photodetector with
circuit board (diameter of
active area: 8mm, gap
between sectors: 0.2mm).
From [1866]. (a)

ba

cd
(b)

(a) (b)

Fig. 22.50 a Schematic cross-section of global shutter pixel with light pipe for optimized collection. α denotes the taper
angle, PD: photodiode, MN: buried memory node to store the charges until readout. b Cross-section SEM image of such
pixel. Adapted from [1867]

fashion (Fig. 22.50). This so-called ’global shutter’ pixel is connected to a local memory cell that allows
simultaneous intermediate signal storage of all individual pixels in order to enable high framerate (slow-
motion) video operation without spatio-temporal distortions due to a sequential read-out sequence. For
such fast signal management, a three-layer scheme has been developed fusing three wafers for the
photodiodes, the dynamic random access memory (DRAM) and the logic layer for the image signal
processing (Fig. 22.51) [1868].

A special CMOS image sensor has built-in grating structures to allow detection of the linear polar-
ization state [1869]. As depicted in Fig. 22.52, each pixel is subdivided in four with gratings in 0◦, 90◦,
and ±45◦ directions between the on-chip lenses and the photodiodes to create sensitivity to the linear
polarization state of the incoming light.
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(a) (b) (c)

Fig. 22.51 a Scheme of stacking three wafers for global shutter CMOS image sensor. b Plane-view of the three chips,
back-illuminated photodiodes, DRAM (30 nm process), and Logic (40 nm process). c Cross-section SEM image of the
structure at position of pixel (left) and periphery (right). Adapted from [1868]

(a) (b)

Fig. 22.52 a Scheme of polarization sensitive CMOS image sensor and b SEM image of grating pattern in SONY
Polarsens™sensor. Adapted from [1869]

22.4 Solar Cells

Solar cells are light detectors, mostly photodiodes, that are optimized for the (large-area) conversion of
solar radiation (light) into electrical energy. A 1993 review of the historic development of photovoltaics
is given in [1870]. The latest data on solar cell efficiencies are compiled in the Solar Cell Efficiency
Tables [1871].

22.4.1 Solar Radiation

The sun has three major zones, the core with a temperature of 1.56× 107 K and a density of 100g/cm3

in which 40% of the mass is concentrated and 90% of the energy is generated, the convective zone with
a temperature of 1.3 × 105 K and a density of 0.07g/cm3, and the photosphere with a temperature of
5800K and low density (∼10−8 g/cm3). The radius is 6.96× 108m and is about 100 times larger than
that of the earth (6.38× 106m). The distance sun–earth is 1.496× 1011 m. The angle under which the
sun disk appears on earth is 0.54◦. An energy density of 1367± 7W/m2 arrives at the earth in front of
its atmosphere.
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Fig. 22.53 Solar spectra (power per area and wavelength interval) for AM0 (black line, extraterrestrial irradiance) and
AM1.5 (sun at 41.8◦ elevation above horizon) for direct normal irradiance (blue line) and global total irradiance (red
line) on a sun facing surface (tilted 37◦ towards the equator). Left (right) graph in log-log (linear) scales

Fig. 22.54 Schematic path
of sunlight through the
atmosphere and definition
of the air mass AMx AM3.91AM1.5
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This value and the according spectrum of the sun’s emission, which is similar to a blackbody with
temperature 5800K (Fig. 22.53), is termed air mass zero (AM0). The total energy that reaches the earth
from the sun is 1.8 × 1017W per year. This value is 104 times the world’s primary energy need.

Air mass zero (AM0) is important for solar cells in satellites. When the solar spectrum passes
the earth’s atmosphere, it is changed with regard to its shape and the total energy density due to
gas absorption (ozone, water, CO2, . . .). Depending on the meridian of the sun γ (Fig. 22.54), the
spectrum on the surface of the earth is termed AMx with x = 1/ sin γ . In spring and fall (March
21st and September 21st), Leipzig (51◦42′N latitude) has about AM1.61. At the summer (June 21st)
and winter (December 21st) solstices the air mass in Leipzig is AM1.13 (γ = 61.8◦) and AM3.91
(γ = 14.8◦), respectively. Additionally, the duration of sunshine and thus the light power density is
regionally different across the earth due to climate and weather (Fig. 22.55). For AM1.5, the incident
power density is 844W/m2.

The global radiation reaching a photovoltaic cell has three components: (i) the direct radiation, (ii)
diffuse radiation and (iii) reflected radiation. The relative amounts and their spectra depend on details
such as the climate (e.g. humidity) or the environment (e.g. outdoors vs. urban).

22.4.2 Ideal Solar Cells

When a solar cell made from a semiconductor with a band gap Eg is irradiated by the sun, only photons
with hν > Eg contribute to the photocurrent and the output power. The I–V characteristic under
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(a)

(b)

Fig. 22.55 Global sunshine distribution in a January and b July. The sunshine fraction is the actual number of bright
sunshine hours over the potential number, and is thus expressed as a percentage figure. The color scale reaches from 0
to 100%. The sunshine data are in a 0.5degree grid based on data from [1872]

illumination (Fig. 22.56) is given by

I = Is
[
exp (βV ) − 1

] − IL , (22.60)

with IL being the current due to generation of excess carriers by the absorption of the sunlight.Assuming
a simple n+p-diode solar cell model, the current consists of two components: the depletion layer
current jDL from carriers absorbed in the depletion layer (field region) and the diffusion current jD
from absorption in the neutral region ( j = I/A).

For the drift current out of the depletion layer of width w it can be assumed that it is collected fast
and recombination plays no role. Thus (cmp. (22.31))

jDL(λ) = e nph(λ) [1 − R(λ)] [1 − exp(−α(λ)w)] , (22.61)

where λ is the wavelength of the incident radiation, R the reflectance of the surface, α the absorption
coefficient and nph(λ) the photon flux (number of photons per area and time) at the given wavelength.
For a solar spectrum, an integral needs to be performed over the spectral distribution:

jDL =
∫

jDL(λ) dλ , (22.62)

the total photon flux being nph = ∫
nph(λ) dλ.
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Thediffusion current collected at the back contact is obtained fromsolving (10.73) (now for electrons
in p-typematerial) with the appropriate boundary conditions (reversely bias depletion layer, np(w) = 0,
�np(∞) = np(∞) − np0 = 0 [1873]):

jD(λ) = e nph(λ) [1 − R(λ)] α Ln

1 + α Ln
exp(−α w) + e n0

Dn

Ln
, (22.63)

Dropping the wavelength dependence and neglecting the dark term, the usual formula is obtained,

jL = e nph (1 − R)

[
1 − exp(−α w)

1 + α Ln

]
, (22.64)

The last bracket represents the quantum efficiency [1874]. The model can be extended for taking into
account a non-zero surface recombination velocity at the back contact at finite distance [1875].

Here a voltage independent photo-generated current IL is assumed. If the diffusion length is small
compared to the transport path, the carrier collection efficiency ηc becomes voltage dependent [1874].
The reduction of the diffusion potential for forward voltage decreases the carrier collection efficiency
[1876], possibly to zero close to the built-in voltage.

The saturation current density is given by (21.132) and (21.133)

js = Is
A

= e NC NV

(
1

NA

√
Dn

τn
+ 1

ND

√
Dp

τp

)
exp

(
− Eg

kT

)
, (22.65)

with A being the cell area.
The voltage at I = 0 is termed the open-circuit voltage Voc, the current at V = 0 is termed the

short-circuit current Isc = IL (Fig. 22.56). Only a part of the rectangle Isc × Voc can be used for power
conversion. By choice of the load resistance RL, the work point is set. At Im and Vm, the generated
power Pm = ImVm is maximal. The filling factor F is defined as the ratio

F = Im Vm

Isc Voc
. (22.66)

The open-circuit voltage is given by

Fig. 22.56 Schematic I–V
characteristics of a solar
cell under illumination (left
scale) and extracted power
(right scale). The grey area
is the maximum power
rectangle with Pm = ImVm
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Voc = 1

β
ln

(
IL
Is

+ 1

)
∼= 1

β
ln

(
IL
Is

)
(22.67)

and increases with increasing light power and decreasing dark current. The output power is

P = I V = Is V (exp (βV ) − 1) − IL V . (22.68)

The condition dP/dV = 0 yields the optimal voltage at which the solar cell has to be operated and is
given by the implicit equation

Vm = 1

β
ln

(
IL/Is + 1

1 + βVm

)
= Voc − 1

β
ln (1 + βVm) . (22.69)

The current at maximum power is

Im = IL

(
1 − 1 − βVm Is/IL

1 + βVm

)
∼= IL

(
1 − 1

βVm

)
. (22.70)

Em is the energy that is delivered per photon at the load resistor at the power maximum. The maximum
power is Pm = ILEm/e and Em is given by

Em
∼= e

[
Voc − 1

β
ln (1 + βVm) − 1

β

]
. (22.71)

The ideal solar cell has a (power) conversion efficiency η = Pm/Pin that can be determined from
Fig. 22.57a.

The right curve (1) in Fig. 22.57a shows the integral number nph of photons in the solar spectrum
(per area and time) with an energy larger than a given one (Eg). For a given value of nph, the left curve
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Fig. 22.57 a Number of photons nph per area and time in the sun spectrum (AM1.5, C = 1sun) with an energy larger
than a cutoff energy (curve 1) and graphical method to determine the quantum efficiency (from curve 2). Adapted from
[1877]. b Number of photons in concentrated solar spectrum (AM1.5, C =1000sun) with an energy larger than a given
energy and graphical method to determine the quantum efficiency of multi-junction solar cells. Adapted from [574]
after [1877]
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Fig. 22.58 a Ideal quantum efficiency of solar cells (single junction) as a function of band gap and light concentrationC .
The band gaps of some important semiconductors are denoted by arrows. Adapted from [1877]. b Properties of a silicon
solar cell (water cooled) as a function of light concentration. Solid line is theoretically projected efficiency, dashed lines
are guides to the eye. Adapted from [574]

(2) represents the value of Em. The efficiency is the ratio of Emnph and the area under curve (1). The
efficiency as a function of the band gap is shown in Fig. 22.58a. It has a fairly broad maximum such
that many semiconductors can be used for solar cells, in principle. The maximum theoretical efficiency
for a single junction is 31% for nonconcentrated sunlight (AM1.5). This limit corresponds to the
classic Shockley-Queisser limit [1878–1880], assuming radiative recombination as the only charge-
carrier recombination mechanism. In [1881], the limit for a single material is found to be 43% for an
optimally tailored band structure that allows carrier multiplication by optically excited hot carriers.
The solar cell as a heat engine is dicussed in [1882].

When the sunlight is concentrated, e.g. by a lens, the efficiency increases (Fig. 22.58b). The short-
circuit current increases linearly. The effect is mostly due to the increase of the open-circuit voltage.
For C = 1000, the maximum theoretical efficiency for a single-junction solar cell is 38%.

A further increase of efficiency can be achieved with multiple junctions using various materials for
absorption. In a tandem cell (two junctions), the upper layer absorbs the higher-energy photons in a
wide band gap material. The material with the lower band gap makes use of the low-energy photons.
Thus, the cell works with two different values of Em (Fig. 22.57b). With band gaps of 1.56eV and
0.84eV, an efficiency of 50% can be reached theoretically. With three materials 56%, and for a large
number of materials 72% is the limit. Between the junctions, tunneling diodes (Sect. 21.5.9) must be
used to allow carrier transport through the entire structure. It is a nontrivial task to fabricate multiple
heterojunctions due to incompatibilities of the lattice constants. Besides heteroepitaxy, wafer bonding
can also be used for fabrication. A lattice-matched InGaP/GaAs/InGaAsN cell seems a viable solution
for high-efficiency solar cells.
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Fig. 22.59 I–V
characteristics of a solar
cell considering shunt and
series resistances Rs and
Rsh, respectively. The
efficiency of the real cell
(shaded power rectangle)
is less than 30% of that of
the ideal cell. Adapted
from [1883]
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22.4.3 Real Solar Cells

For a real solar cell, the effect of parallel resistance Rsh (shunt resistance due to leakage current, e.g.
by local shorts of the solar cell) and serial resistance Rs (due to ohmic loss) must be considered. The
I–V characteristic is then (cf. (21.158))

ln

(
I + IL
Is

− V − I Rs

IsRsh
+ 1

)
= β (V − I Rs) . (22.72)

The serial resistance affects the efficiency more strongly than the shunt resistance (Fig. 22.59). There-
fore, it is frequently enough to consider Rs only and use (cf. (21.157))

I = Is exp (β(V − I Rs)) − IL . (22.73)

In the example of Fig. 22.59, a serial resistance of 5	 reduces the filling factor by a factor of about
four.

At open circuit voltage the photo-generated carriers have nowhere to go; in an ideal solar cell, the
only process is the radiative recombination and the photon escape. Certainly, the internal quantum
efficiency should be high and the non-radiative recombination rate small compared to the radiative
one (cf. Sect. 10.10). The open circuit voltage and thus the energy conversion efficiency depends also
on the light extraction efficiency χex which will be discussed in greater detail in the context of LEDs
(Sect. 23.3.3). Based on [1884, 1885], the open circuit voltage V ′

oc of a real solar cell is reduced
(χex ≤ 1) from the ideal value Voc given in (22.67),

V ′
oc = Voc + β−1 ln χex . (22.74)
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Fig. 22.60 Increase of the carrier collection efficiency by a back surface field. Adapted from [1886]

22.4.4 Design Refinements

In order to collect electrons most efficiently, a back surface field is used (Fig. 22.60). A higher-doped
region at the back contact creates a potential barrier and reflects electrons back to the front contact.

An important point for optimization is the management of the reflection at the solar cell surface.
First, a dielectric antireflection (AR) layer (or multi-layers) can be used. These layers should have a
broad AR spectrum. Additionally, a textured surface reduces reflection (Fig. 22.61d), giving reflected
photons a second chance for penetration (Fig. 22.61c). The reflectance of bare Si, 35%, can be reduced
to 2%. An AM0 efficiency of over 15% was reached using textured multi-crystalline cells. Alkaline
KOH-based etches attack Si (001) anisotropically and yield pyramidal structures (Fig. 22.61b) with
{111} facets. Recently an acidic HF/HNO3-based process has been established [1887], resulting in a
worm-like surface pattern on multi-crystalline silicon wafers (Fig. 22.61a) with superior anti-reflection
properties.

During its course over the sky during the day, the sun changes its angle towards a fixed solar cell.10

A tracking mechanism can optimize the angle of incidence during the day and increase the overall
efficiency of the solar cell (Fig. 22.62).

22.4.5 Modules

In order to cover a large area and supply certain values of output voltage and current, several solar
cells are connected into modules. Arrays are built up from several modules (Fig. 22.63). If solar cells
are connected in parallel, the total current increases; if they are connected in series, the output voltage
increases. We note that in partially shadowed modules the reverse characteristics of solar cells are
important [1892, 1893]; local breakdown can lead to hot spots and irreversible degradation.

10We are of course aware that the earth rather rotates around the sun.
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Fig. 22.61 a SEM image of topology of acidically etched multi-crystalline silicon wafer. b SEM image of alkaline
etched mono-crystalline silicon wafer. c Exemplary light path. d Reflectance of antireflection-coated flat (dashed line)
and textured (solid line) surface). Parts a and b adapted from [1888], part d adapted from [1889]
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Fig. 22.62 Annual average solar energy (in kWh/(m2 day)) for a an optimally tilted south-facing fixed panel and b an
optimally two-axis tracked panel (in mainland US). Adapted from [1890]. c Power generation of a solar cell vs. time (in
daytime hours) for a stationary setup facing the sun at constant angle (solid line) and mounting with tracking (dashed
line) to optimize the angle towards the sun. Adapted from [1891]
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Fig. 22.63 Schematic drawing of a solar cell (with contact grid), a module (36 cells) and an array of ten modules

22.4.6 Solar-Cell Types

First Generation Photovoltaics

Silicon is the most frequently used material for solar cells. Cells based on single-crystalline silicon
(wafers) have the highest efficiency but are themost expensive (Fig. 22.65a). The state-of-the-art indus-
trial crystalline silicon solar cells technology and achievements (in 2014) has been reported in [1894].
The efficiencies of various solar cells are compiled in Table 22.1. Polycrystalline (for large grains also
called multi-crystalline) silicon (Fig. 22.65b) is cheaper but offers less performance. Material design
is oriented towards increasing the grain size and/or reducing their electrical activity. Grain boundaries
act as recombination centers with a surface (i.e. interface) recombination velocity of 102 cm/s [1895]
for particular, electrically fairly inactive grain boundaries, several 103 cm/s [1896], several 104 cm/s
[1897] or even 105–107 cm/s [1898]. The grain boundaries reduce the effective diffusion length and
thus carriers recombine before they can reach the contacts. A detailed theory of solar cell performance
for polycrystalline material has been worked out in [1897] and explains the reduction of efficiency
with decreasing grain size as shown in Fig. 22.64.

These solar cells are also called ‘first-generation’ photovoltaics. Thin sheets of crystalline silicon
drawn from a melt between two seed crystals in a modified CZ growth (sheet silicon or ribbon silicon)
allow cheaper production compared to cells based on ‘traditional’ polished wafers cut from a large
silicon rod. Silicon made particularly for solar cell use is called ‘solar-grade’ silicon.

Second Generation Photovoltaics

Even cheaper are solar cells from amorphous silicon (Fig. 22.65c). Since silicon is an indirect semicon-
ductor, a fairly thick layer is needed for light absorption. If direct band gap semiconductors are used, a
thin layer (d ≈ 1 µ m) is sufficient for complete light absorption. Such cells are called thin-film solar
cells [1901]. A typical material class used in this type of cell are chalcopyrites, such as CuInSe2 (CIS).
The band gap is around 1eV, which is not optimal. An improvement can be achieved by adding Ga
and/or S which increases the band gap, Cu(In,Ga)(Se,S)2 (CIGS), to 1.2–1.6eV. Using CIGS, an effi-
ciency of over 19% has been reported in laboratory samples; 12–13% seeming realistic for production
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Table 22.1 Record efficiency of various solar cells (AM1.5, 1000 W/cm2, 25◦ unless noted otherwise). Most data from
[1871], additional data for 3J (conc.) [1899, 1900]. Date is that of (mostly certified) measurement

Cell material/type Efficiency Voc jsc FF date

(%) (V) (mA/cm2) (%) m/y

Si (crystalline) 26.7 ± 0.5 0.738 42.65 84.9 3/2017

Si (multicrystalline) 22.3 ± 0.4 0.6742 41.08 80.5 8/2017

Si (amorphous) 10.2 ± 0.3 0.896 16.36 69.8 7/2014

GaAs (crystalline) 25.9 ± 0.8 1.038 29.4 84.7 12/2007

GaAs (thin film) 29.1 ± 0.6 1.1272 29.78 86.7 10/2018

GaAs (multicrystalline) 18.4 ± 0.5 0.994 23.2 79.7 11/1995

CIGS 22.9 ± 0.5 0.744 38.77 79.5 11/2017

CdTe 21.0 ± 0.4 0.8759 30.25 79.4 8/2014

perosvkite 20.9 ± 0.7 1.125 24.92 74.5 7/2017

dye sensitized 11.9 ± 0.4 0.744 22.47 71.2 9/2012

organic (thin film) 11.2 ± 0.3 0.780 19.3 74.2 10/2015

2J (GaInP/GaAs) 32.8 ± 1.4 2.568 14.56 87.7 9/2017

3J (GaInP/GaAs/Ge) 32.0 ± 1.5 2.622 14.4 85.0 1/2003

3J (GaInP/GaAs/InGaAs) 37.9 ± 1.2 3.065 14.27 86.7 2/2013

5J (bonded) 38.8 ± 1.2 4.767 9.564 85.2 7/2013

2J (conc., 38 suns) 35.5 ± 1.2 10/2017

3J (conc., 240suns) 40.7 ± 2.4 2.911 3832 87.5 9/2006

3J (conc., 306suns) 43.5 5/2012

4J (conc., 508suns) 46.0 ± 2.2 4.227 6498 85.1 10/2014

[1902]. Also CdTe is a viable absorber mostly sputtered on glass with over 16% efficiency demon-
strated and 9–10% realistic in production. Thin-film solar cells can be fabricated on glass substrate or
on flexible polymer substrate such as Kapton11 (Fig. 22.66a, b). Also here, optimization of the grain
size is important (Fig. 22.66b). As the front contact, a transparent conductive oxide (TCO), such as
ITO (InSnO2) or ZnO:Al, is used. If the front surface is given by the glass substrate, as can be the case
for CdTe/glass solar cells, the glass is actually termed ‘superstrate’. Thin-film and amorphous silicon

Fig. 22.64 Theoretical
dependence of the effect of
grain size on efficiency of
polycrystalline solar cells
(solid line) with
experimental data points
(circles). Adapted
from [1897]

11Kapton� is a polyimide and a product and registered trademark of DuPont.
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Fig. 22.65 Various types of solar cells: a monocrystalline silicon solar cell, b polycrystalline solar cell, c amorphous
silicon solar cell. From [1891]
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Fig. 22.66 a Schematic cross section of a polycrystalline thin-film solar cell. b Rolled sheets of CIS thin film solar
cell on flexible Kapton foil. c SEM cross section of CIS thin-film solar cell. Parts b and c reprinted with permission
from [1906]

solar cells are also termed ‘second-generation’ photovoltaics. Also organic materials can be used for
solar cells [1903], promising low-cost production at acceptable performance, in 2004 2.5% [1904] and
in 2006 about 4% maximum efficiency [1905].
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Fig. 22.67 Schematic
layer stacking of
multi-junction solar cells
and expected efficiency.
Adapted from [1914]

Third Generation Photovoltaics

‘Third-generation’ photovoltaics attempt to go beyond the 30% limit and comprise of multi-junction
solar cells, concentration of sunlight, use of hot-carrier excess energy as discussed above and possibly
other concepts including photon conversion [1907, 1908], intermediate band absorption [1909–1911],
multi-exciton generation [1912] or the use of quantum dots [1913].

In multi-junction cells the different absorber layers are stacked on the substrate with increasing
band gap and connected via (highly doped) tunneling junctions (Sect. 21.5.9). Under 500-fold AM1.5
illumination a three junction (3J) cell (GaInP/GaInAs/Ge) is expected to exhibit up to 41% efficiency,
for 5J 42% or up to 55% using GaInNAs and with 6J up to 59% [1914, 1915] (Fig. 22.67). For a 3J
cell the record efficienvy is 40.7% (240suns) using the layer structure as shown in Fig. 22.68 [1899].
Details on modeling of III–V multi-junction solar cells can be found in [1916]. In a monolithic cell
the absorbers must be tuned such that the same current (Kirchhoff’s law) can pass through all layers.
Multi-junction solar cells are heteroepitaxial devices and thus expensive; the use of concentration is
economically mandatory.

A recent novel route is a tandem cell comprising of a bottom silicon cell and a top perovskite
cell. Organo-metal halide peroskites, e.g. of the ammonium trihalogen plumbates type, R-N3PbI3,
have exhibited quite high conversion efficiencies [1919, 1920] and can be tuned with regard to their
absorption range.

Another concept targeting increased efficiency ands better use of otherwise wasted photons is the
’intermediate band’ solar cell. Here, levels within the band gap of the host, e.g. created by a high
doping with suitable elements or quantum dot levels, shall help absorb below band gap photons and
pump them into the conduction band of the host. A review on this concept and experimental, results
can be found in [1921].

22.4.7 Economic Issues

The cost12 of producing photovoltaic (PV) modules, in constant dollars, has fallen from as much as
$50 per peak watt in 1980 to as little as 3$/Wp in 2004. The cost of about 0.2$/Wp in 2020, a third
of the cost in 2012, is realistic and competitive in many applications (Fig. 22.69). The price of solar
power followed for a while Swanson’s law [1925], i.e. a reduction in price by 22% for a doubling of

12Some of the following information is based on [1922–1924].
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(a) (b)

Fig. 22.68 a Schematic layer stacking of three-junction (3J) solar cell. The step-graded buffer (metamorphic buffer)
changes the in-plane lattice constant for the following layers. Adapted from [1917]. b Cross-section TEM image of
metamorphic InGaAs buffer on Ge. Adapted from [1918]

Fig. 22.69 Photovoltaic
module price (US$/W)
(adjusted to 2002 dollars)
vs. the cumulated
production. The dashed
line represents Swanson’s
law. Most data from
[1924]; data for 2016 and
2018 added from various
sources

the installed (cumulated) solar power (dashed line in Fig. 22.69). After 2005, a rise in silicon cost has
lead to a deviation for a few years, but recently the trend has shown even faster cost reductions.

The energy payback period is also dropping rapidly. For example, it took 2010 typical crystalline
silicon module about 4years to generate more energy than went into making the module in the first
place. The next generation of silicon modules, employing a different grade of silicon and use thinner
layers of semiconductor material, had 2011 an energy payback of about 2 years [1926]; energy payback
time of course also depends on solar irradiation and it reduces from about 2 years in northern Europe
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Fig. 22.70 Fraction of
photovoltaic power of the
total energy from power
plants in the public grid in
Germany. Data
from [1927]

to 1.5y or less in southern Europe [1927]. Thin-film modules bring the payback down to one year or
less [1926, 1927]. However, market growth of thin-film modules is currently not faster than the total
marker. This means that these modules will produce ‘free’ and clean energy for the remaining 29 years
of their expected life.

PV technology can meet electricity demand on any scale. The solar energy resource in a 100mile-
square area of Nevada could supply the United States with all its electricity (about 800GW), using
modestly efficient (10%) commercial PVmodules. Amore realistic scenario involves distributing these
same PV systems throughout the 50 states. Currently available sites, such as vacant land, parking lots,
and rooftops, could be used. The land requirement to produce 800GW would average out to be about
17 × 17miles per state. Alternatively, PV systems built in the ‘brownfields’, the estimated 5 million
acres of abandoned industrial sites in the US, could supply 90% of America’s current electricity. Solar
power is expected to contribute 10% of the US energy need in 2030. For Germany, more than 2% in
2020was predicted (in 2004) to be probable. In the first half of 2019, photovoltaics actually contributed
a total of 9.5% (25.05TWh); the historic increase is depicted in Fig.22.70. In June 2019, solar power
represented the largest fraction of all anergy carriers with 19.1% (7.17TWh) in Germany [1927]. The
maximum harvested solar power was 33.4GW (52.4%) on June 29, 2019.

In 2001, PV module shipments in the US approached the 400MW mark, representing a $2.5 to
$3 billion market. The US-based industry itself is now approaching $1 billion per year and provides
25000 jobs. It is expected to grow to the $10–$15 billion level in the next 20 years, providing 300000
jobs by 2025. The actual number of jobs in 2018 was 242,000. The newly installed power in 2016 was
almost 15GW for a total of just above 40GW. In 2017, a total of 50GW were installed. In 2018, solar
power provided 1.66% of total US electricity.



Chapter 23
Electricity-to-Light Conversion

Abstract Light emitting diodes (LEDs) and laser diodes are the focus of this chapter. For LEDs
materials choices, the concepts of internal and external quantum efficiency as well as device design
are treated. Special devices such as white LEDs, quantum dot and organic LEDs are introduced. For
laser diodes the concepts of gain, loss and threshold, various heterostructures for modern device design
and laser emission properties such as mode spectrum, far field, dynamics and tunability are discussed.
Finally special devices such as the hot hole laser, the cascade laser and semiconductor optical amplifiers
are mentioned.

23.1 Radiometric and Photometric Quantities

23.1.1 Radiometric Quantities

The radiometric quantities are derived from the radiant flux (power) �e (or usually simply �) that
is the total power (energy per time) emitted by a source, measured in Watts. The radiant intensity Ie
is the radiant flux emitted by a point source into a solid angle,1 measured in Watts per steradian (or
W/sr). The irradiance Ee is the radiant flux per area incident on a given plane, measured in W/m2.
The radiance Le is the radiant flux per area and solid angle as, e.g., emitted by an extended source,
measured in W/(m2 sr).

23.1.2 Photometric Quantities

The photometric quantities are related to the visual impression and are derived from the radiometric
quantities by weighting them with the V (λ) curve.

The luminous flux (luminosity or visible brightness) �v of a source with the radiant flux (spectral
power distribution) �(λ) is given by

1A solid angle � is the ratio of the spherical surface area A and the square of the sphere’s radius r , i.e. � = A/r2.
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(a) (b)

Fig. 23.1 a Relative eye sensitivity curves for photopic (light adapted, solid line) and (dark adapted, dashed line) vision.
b Conversion of lumen to Watt for light- and dark-adapted vision

Table 23.1 Radiometric and photometric quantities and units. The photometric units are lumen (lm), lux (lx = lm/m2)
and candela (cd = lm/sr)

Radiometric Photometric

Quantity Symbol Unit Quantity Symbol Unit

Radiant flux �e W Luminous flux �v lm

Radiant intensity Ie W/sr Luminous
intensity

Iv cd

Irradiance Ee W/m2 Illuminance Ev lx

Radiance Le W/m2/sr Luminance Lv lm/m2/sr

�v = Km

∞∫

0

�(λ) V (λ) dλ , (23.1)

with Km = 683 lm/W. This formula is also the definition of the unit ‘lumen’. In Fig. 23.1b, the
conversion function2 V (λ) is shown for light and dark adapted vision.3

Further derived photometric quantities are luminous intensity (luminous flux per solid angle), mea-
sured in candela (cd), the illuminance (luminous flux per area), measured in lux (lx), and the luminance
(luminous flux per area and solid angle). The latter is particularly important if the radiation enters an
optical system, e.g. for refocusing. The radiometric and photometric quantities are summarized in
Table 23.1.

2The V (λ) curve has been experimentally determined by letting several observers adjust (decrease) the perceived bright-
ness of a monochromatic light source at 555nm to that of light sources of the same absolute radiation power at other
wavelengths with so-called heterochromatic flicker photometry. The ‘relative sensitivity curve for the CIE Standard
Observer’ was determined in 1924. The ‘standard observer’ is neither a real observer nor an average human observer.
The curve has shortcomings, e.g., due to the used spectral band width (20–30nm) of the light sources and the comparison
of spectral power instead of the photon flux.
3While photopic vision is due to cones, the scotopic (dark-adapted) vision is due to rods. Rods aremore than one thousand
times as sensitive as the cones and can reportedly be triggered by individual photons under optimal conditions. Rods
predominate in the peripheral vision and are not color sensitive.
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23.2 Scintillators

A scintillator (or phosphor) is a material that converts impacting high-energy radiation into photons
[1928]. Besides a high conversion efficiency, the spectrum and decay time constant of the scintillator
are important for display applications. For display purposes, the photons are directly used for forming
the image for the observer. For radiation detection, the photons are fed to a photomultiplier tube and
counted.

The most prominent applications, involving the conversion of electrons, are the screens of cathode
ray tubes (CRT) (acceleration voltage > 10kV) and of flat panel devices, such as field-effect displays
(using a low voltage for excitation, typically < 1kV) or plasma displays (using the UV light from
the discharge of a plasma placed between two electrodes for excitation). Further details on electro-
luminescent displays can be found in [1929]. Other forms of radiation detected with scintillators are
α-, β-, and γ -radiation, X-rays and neutrons [1930]. Different excitation conditions require different
phosphors for optimal performance.

23.2.1 CIE Chromaticity Diagram

The CIE4 procedure converts the spectral power distribution (SPD) of light from an object into a
brightness parameter Y and two chromaticity coordinates x and y. The chromaticity coordinates map
the color5 with respect to hue and saturation on the two-dimensional CIE chromaticity diagram. The
procedure for obtaining the chromaticity coordinates for a given colored object involves determination
of its spectral power distribution P(λ) at each wavelength, multiplication by each of the three color-
matching functions x̄(λ), ȳ(λ), and z̄(λ) (Fig. 23.2a) and integration (or summation) of the three
tristimulus values X , Y , Z

X =
780 nm∫

380 nm

P(λ) x̄(λ) dλ (23.2a)

Y =
780 nm∫

380 nm

P(λ) ȳ(λ) dλ (23.2b)

Z =
780 nm∫

380 nm

P(λ) z̄(λ) dλ . (23.2c)

Y gives the brightness. The tristimulus values are normalized to yield the chromaticity coordinates, e.g.
x = X/(X+Y+Z). x and y obtained in this way are the chromaticity coordinates. The third coordinate
z = 1−x− y offers no additional information and is redundant. Therefore, the color is represented in a

4Commission Internationale de l’Éclairage. The color space can be described by different coordinate systems, and the
threemost widely used color systems,Munsell, Ostwald, and CIE, describe the color spacewith different parameters. The
Munsell system uses hue, value, and chroma and the Ostwald system uses dominant wavelength, purity, and luminance.
Themore precise CIE system uses a parameterY tomeasure brightness and parameters x and y to specify the chromaticity
that covers the properties hue and saturation on a two-dimensional chromaticity diagram.
5This definition is motivated by the color vision of the eye. Two light sources will have the same color, even if they have
different SPDs, when they evoke the same color impression to the human eye.
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(a) (b)

Fig. 23.2 a Color-matching functions x̄ , ȳ, and z̄ for the calculation of the CIE chromaticity, b color-matching functions
r̄ , ḡ, and b̄ for the calculation of RGB values

two-dimensional diagram, the CIE chromaticity diagram6 as shown in Fig. 23.3a. White is represented
by x = y = z = 1/3. In order to relate the differences between colors as perceived by the human
eye more closely to the geometrical distance in the chart, a revision was made (Fig. 23.3b) with new
coordinates

u′ = 4x/(−2x + 12y + 3) (23.3a)

v′ = 9y/(−2x + 12y + 3) . (23.3b)

For CRTs the red-green-blue (RGB) color space is used.7 The color matching functions for RGB values
are shown in Fig. 23.2b. The RGB values are related to the XYZ values according to

⎛
⎝ R
G
B

⎞
⎠ =

⎛
⎝ 2.36461 –0.89654 –0.46807
–0.51517 1.42641 0.08876
0.00520 –0.01441 1.00920

⎞
⎠

⎛
⎝ X
Y
Z

⎞
⎠ . (23.4)

The CIE RGB primaries from 1931 are at 700, 546.1, and 435.8nm with the relative intensities 1.0,
4.5907, and 0.0601. A display device using three phosphors can only display colors in the triangular
area of the CIE chart between the three chromaticity coordinates. For sRGB,8 the 1931 CIE primaries
and the NTSC9 norm the coordinates are given in Table 23.2 and visualized in Fig. 23.3c. An optimal
coverage of the CIE chart involves monochromatic sources (for laser TV or LED displays) at about
680, 520 and 440nm.

6The coloring of the chart is provided for an understanding of color relationships. CRT monitors and printed materials
cannot reproduce the full gamut of the color spectrum as perceived in human vision. The color areas that are shown only
depict rough categories and are not precise statements of color.
7RGB is an additive color system. However, printing devices use a subtractive color system. This means that the ink
absorbs a particular color, and the visible impression stems fromwhat is reflected (not absorbed).When inks are combined,
they absorb a combination of colors, and hence the reflected colors are reduced, or subtracted. The subtractive primaries
are cyan, magenta and yellow (CMY) and are related to RGB via (C, M, Y ) = (1 − R, 1 − G, 1 − B).
8Standard RGB color space as defined mainly by Hewlett-Packard and Microsoft, almost identical to PAL/SECAM
European television phosphors.
9National television standard colors, US norm.
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(a) (b)

(c)

Fig. 23.3 CIE chromaticity diagram from 1931 a in the coordinates x and y and from 1976 b in the coordinates u′ and
v′ (23.3b). The curved upper boundary is called the ‘spectrum locus’ and contains monochromatic colors, the straight
line at the lower left is termed the ‘purple boundary’. In the graph also the color of blackbody radiation is given,
T = 5440K corresponds to x = y = 1/3. ‘A’, ‘B’, ‘C’, and ‘E’ are standard illuminants, ‘D65’ denotes daylight with
color temperature T = 6500K. c CIE chart with the color ranges of sRGB, CIE and NTSC. Part c adapted from [1931]

Table 23.2 Primaries and white points for sRGB, CIE and NTSC

Primary Red Green Blue White

CIE 0.73467 0.26533 0.27376 0.71741 0.16658 0.00886 0.33333 0.33333

NTSC 0.6700 0.3300 0.2100 0.7100 0.1400 0.0800 0.3100 0.3160

sRGB 0.6400 0.3300 0.3000 0.6000 0.1500 0.0600 0.3127 0.3290
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23.2.2 Display Applications

The once ubiquitous amber-colored monochrome displays are mostly fabricated using ZnS:Mn [1929],
having broad emission (540–680nm) with its spectral peak at 585nm (x = 0.50, y = 0.50) with an
efficiency of 2–4 lm/W. In color television (and similar applications such as color computer monitors,
tubes for aviation use, projection television) the image is reproduced by selective and time-multiplexed
cathode excitation of three phosphors (blue, green and red) deposited on the internal face of the screen.
The chromaticity coordinates of the standard CRT phosphors P-22B, P-22G and P-22R are given
in Table 23.3. They cover about the color range labeled ‘sRGB’ in Fig. 23.3c. For blue and green
ZnS:Ag (x = 0.157, y = 0.069), ZnS:Ag,Cl, ZnS:Ag,Al and ZnS:Cu,Al (x = 0.312, y = 0.597),
ZnS:Cu,Au,Al are used as phosphors, respectively. Y2O2S:Eu (x = 0.624, y = 0.337) activated
with trivalent europium (Eu3+) facilitated such a gain in the brilliance of red over ZnS:Ag (more
than doubled it) that it has totally replaced it at about one fifth of the cost. For reproducible image
quality, precise grain-size control (median size for CRT phosphors is about 8µm), dispersion control
and surface treatment are necessary. Flat-panel displays with their lower excitation voltage require
different phosphors for optimal efficiency.

23.2.3 Radiation Detection

The most commonly used scintillation detector for alpha measurements is ZnS activated with silver,
ZnS:Ag. This material is not very transparent to light and is usually prepared as a large number of
crystals with sub-mm size attached with an adhesive to a flat piece of plastic or other material. The
flat screen is optically coupled to a photomultiplier tube that is attached to associated electronics. The
voltage and discriminator levels are selected so that the detector is sensitive to the rather large pulses
from alpha interactions but insensitive to beta- or gamma-induced pulses. The alpha particles deposit
all of their energies in a small thickness of material compared to beta and gamma radiations.

Scintillation detectors for beta radiation are often made from organic materials. In an organic
scintillator, the light emission occurs as a result of fluorescencewhen amolecule relaxes from an excited
level following excitation by energy absorption from ionizing radiation. Molecules such as anthracene,
trans-stilbene, para-terphenyl, and phenyl oxazole derivatives are among the many organic species
that have useful scintillation properties. The organic molecules are dissolved in organic solvents and
used as liquid scintillators. A classic application is in the measurement of low-energy beta radiation
from, e.g. tritium, 14C, or 35S. In such cases, the sample containing the radioactive beta emitter is
dissolved in, or in some cases suspended in, the liquid scintillation solution. The emitted beta radiation
transfers energy through the solvent to the scintillator molecule that emits light, subsequently detected
by photomultiplier tubes. Organic scintillator molecules can also be dissolved in an organic monomer
that can then be polymerized to produce a plastic scintillator in a wide variety of shapes and sizes. Very
thin scintillators have been used for alpha detection, somewhat thicker scintillators for beta detection.

Table 23.3 CIE color coordinates, peak emission wavelength and decay time (10%) of standard CRT phosphors

Phosphor x y λp (nm) Decay time

P-22B 0.148 0.062 440 ∼20µs

P-22G 0.310 0.594 540 ∼60µs

P-22R 0.661 0.332 625 1ms
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Table 23.4 Emission peak wavelength and decay time of various scintillator materials

Material λp (nm) Decay time

Zn2SiO4:Mn 525 24ms

ZnS:Cu 543 35–100µs

CdWO4 475 5µs

CsI:Tl 540 1µs

CsI:Na 425 630ns

Y3Al5O12:Ce 550 65ns

Lu2SiO5:Ce 400 40ns

YAlO3:Ce 365 30ns

ZnO:Ga 385 2ns

Large-volume plastic scintillators have been used in gamma detection, particularly for dose-related
measurements.

Other inorganic crystalline scintillators, especially sodium iodide activated with thallium, NaI:Tl,
have been used for gamma-ray energy measurements. Such detectors can be grown as large single
crystals that have a reasonably high efficiency for absorbing all of the energy from incident gamma
rays. There exists a rather large number of inorganic scintillators; some examples of these include
cesium iodide activated with thallium, CsI:Tl, bismuth germanate, Bi4Ge3O12, and barium fluoride,
BaF2. These are mostly used for gammameasurements but can also be prepared with thin windows and
have been used for charged particle (e.g. alpha and beta) counting. A number of scintillator materials
including tungstates like CdWO4 has been reviewed in [1932].

In Table 23.4, the peak emission wavelength and the characteristic decay time are listed for a
variety of scintillator materials. Direct semiconductors, although not offering the highest efficiency,
are particularly useful for high time resolution in, e.g., time-of-flight measurements or fast scanning
electron microscopy.

23.2.4 Luminescence Mechanisms

Self-Trapped Excitons
In a strongly ionic crystal, such as NaI, a hole becomes localized to an atomic site via the polaron
effect. A spatially diffuse electron is attracted, and a self-trapped exciton is formed that can recombine
radiatively.

Self-Activated Scintillator
In such material, the luminescent species is a constituent of the crystal. The emission involves an
intraionic transition, e.g. 6p→6s in Bi3+ of Bi4Ge3O12, or a charge-transfer transition in the case of
(WO4)2− in CaWO4. At room temperature, nonradiative competing processes limit the efficiency.

Activator Ions
For dopant ions such as Eu2+ in YO2S:Eu, Ce3+ in YAlO3:Ce or Tl+ in NaI:Tl, the hole and electron
excited by the radiation are sequentially trapped by the same ion that then undergoes a radiative
transition, in the case of Eu andCe10 5d→4f, for Tl 3P0,1 →S0. CsI:Tl has one of the highest efficiencies
of 64.8photons/keV [1933].

10This transition is dipole allowed for Ce and partially forbidden for Eu.
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Core–Valence Luminescence
In some materials, e.g., BaF2, CsF, BaLu2F8 the energy gap between the valence band and the top core
band is less than the fundamental band gap. A radiative transition occurs when an electron from the
valence band fills a hole in the top core band that has been created by the radiation. The light yield is
limited to about 2photons/keV.

Semiconductor Recombination Processes
Free excitons or excitons bound to impurities can recombine radiatively. This process ismost efficient at
low temperatures. At room temperature, the emission is typically much weaker (� 10×) since excitons
become unbound or dissociated. Highly doped n-type semiconductors, e.g. CdS:In, exhibit recombina-
tion between donor-band electrons and holes. ZnO:Ga has an efficiency of about 15photons/keV and
a fast response (with 2.4photons/keV emitted in the first 100ps). Luminescence can also stem from
donor–acceptor pair transitions, e.g. in PbI2 with an efficiency of 3photons/keV at 10K. Isoelectronic
impurities such as nitrogen in GaP:N and tellurium in CdS:Te attract an electron and subsequently
a hole. In ZnS:Ag and ZnS:Cu (conduction) band to trap recombination is dominant. In a codoping
scheme like CdS:In,Te, In supplies electrons in an impurity band that can recombine with holes trapped
at Te.

23.3 Light-Emitting Diodes

23.3.1 Introduction

Light-emitting diodes (LEDs) are semiconductor devices in which injected carriers recombine radia-
tively. The recombination process leading to light emission can be of intrinsic nature, i.e. band–band
recombination, or extrinsic, e.g. impurity-bound excitons. Impurity-related luminescence can also be
excited via impact excitation. For an extensive treatment of LEDs see [1934, 1935], for a review of
the early field [1936] and for recent reviews [1937, 1938]. Mostly LEDs are pn-diodes although also
some MIS-based devices have been reported [1939, 1940].

23.3.2 Spectral Ranges

Applications for LEDs can be sorted by the color of emission. In Fig. 23.4, the standard sensitivity
V (λ) of the human eye is shown (see Fig. 23.1a). In the visible spectral region (about 400–750nm) the
perceived brightness of the LED depends on the eye sensitivity. It is largest in the green (at 555nm)
and drops strongly towards the red and blue.

The most important spectral regions and applications are:

• infrared (λ > 800nm): remote controls, optocouplers, low-cost data transmission, IR interface
• visible: indicator LED, lighting11 (room, buildings, cars), white LED for broad spectrum
• ultraviolet (λ < 400nm): pumping of phosphors for white LEDs, biotechnology

In Fig. 23.4, potentially useful semiconductors for the various spectral regions are shown. The semi-
conductors that are currently used for the various colors of the visible spectrum are

• red–yellow: Ga(As,P)/GaAs, now (Al,In,Ga)P/GaP
• yellow–green: GaAsP:N, GaP:N

11Penetration of white LEDs into the general lighting market could translate (globally) into cost savings of $1011 or a
reduction of power generation capacity of 120GW.
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Fig. 23.4 Spectral
coverage by various
semiconductor materials.
Reprinted with permission
from [574], ©1981 Wiley

• green–blue: SiC, now GaN, (In,Ga)N
• violet: GaN
• ultraviolet: (Al,Ga)N

23.3.3 Efficiencies

External Quantum Efficiency
The external (or total) quantum efficiency ηext is the number of photons emitted from the device per
injected electron–hole pair. It is given by the product of the internal quantum efficiency ηint and the
light extraction efficiency χex:

ηext = χex ηint . (23.5)

In a commercial device another factor, the packaging efficiency may enter which accounts for photon
loss due to packaging the LED dice into its housing.

Wall-Plug Efficiency
The wall-plug efficiency ηw is the power conversion ratio of the electrical power and the light output
Pout,

ηw = Pout
I V

= �ω

e V
ηext . (23.6)
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At first it seems reasonable to assume that always ηw < 1. However, it has been reported that at
small current and at elevated temperature the wall-plug efficiency is found larger than 100% due to the
electrical work pumping heat from the lattice to the photon field in a GaSb-based diode[1941]. The
groundwork for such effect was laid in [1942], essentially predicting that �ω > e V is possible.

Internal Quantum Efficiency
The internal quantum efficiency is the number of photons generated (inside the semiconductor) per
injected electron–hole pair. High material quality, low defect density and low trap concentration are
important for a large value of ηint. The recombination current in the pn-diode is given in (21.136).

Light Extraction Efficiency
The light extraction efficiency of the LED chip is ratio of the number of photons leaving the device and
the total number of generated photons.12 The geometry of the LED is of prime importance to optimize
χex. Due to the large index of refraction of the semiconductors (ns ∼ 2.5–3.5), light can leave the
semiconductor only under a small angle θc from the surface normal due to total reflection (cf. (9.11)
and see right part of Fig. 9.4). Against air (n1 ≈ 1) the critical angle is

θc = sin−1 (1/ns) . (23.7)

The critical angle for total reflection is 16◦ for GaAs and 17◦ for GaP. Additionally, a portion of the
photons that do not suffer total reflection is reflected back from the surface with the reflectance R given
by (cf. (9.15))

R =
(
ns − 1

ns + 1

)2

. (23.8)

We note that the above formula is valid strictly for vertical incidence. For the GaAs/air interface, the
surface reflectance (for normal incidence) is about 30%. Thus, the light extraction efficiency for a LED
is given by (1–R) and the critical angle by

χex
∼= 4 n1 ns

(n1 + ns)2
(1 − cos θc) ≈ 4 ns

(ns + 1)2
(1 − cos θc) . (23.9)

The latter approximation is valid when the outer medium is air. For GaAs, the light extraction efficiency
is 0.7 × 4% ≈ 2.7%. Thus, for this simple geometry, only a small fraction of generated photons can
leave the device and contribute to the LED emission.

23.3.4 Device Design

In the following subsections the strategies that have allowed significant improvement of the extraction
efficiency (Fig. 23.5) and thus LED performance are briefly discussed. The record by 2014 for light
extraction efficiency is 89% [1943], however not for a mass-produced device.

Nonplanar Surfaces
With curved surfaces, the problem of total reflection can be (partially) circumvented (Fig. 23.6). Spher-
ically polished chips are feasible, but, very expensive. The epoxy seal of the standard LED case
(Fig.23.7a) and its shape play a similar role, however, with a smaller index of refraction than the
semiconductor, and are important for the beam shape.

12Note that the light extraction efficiency is also important for solar cells, cf. Sect. 22.4.3.
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Fig. 23.5 Historic development of maximum light extraction efficiency for AlGaInP (red circles) and (In,Ga)N (blue
squares) LEDs. Dashed lines are guides to the eye. Adapted from [1938, 1944]
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Fig. 23.6 Form of various LED casings with a hemispherical, b truncated sphere and c parabolic geometry. Adapted
from [1945]. d Emission characteristics for rectangular (i), hemispheric (ii) and parabolic (iii) geometry. Adapted
from [1946]
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Fig. 23.7 a Standard LED casing (schematic drawing and macrophoto), b high-power mounting (schematic drawing
and image of Luxeon� LED)

Thick-Window Chip Geometry
An increase in light extraction efficiency to about 10–12% can be achieved if the top layer is fabricated
with a much larger thickness (Fig. 23.8b) of 50–70µm instead of a few µm. However, such approach
is not scalable since larger device area would demand even larger thickness.
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(b) (c) (d) (e)(a)

transparent
metal
mirroropaque

active

Fig. 23.8 a Standard LED layer sequence with opaque substrate (grey), active layer (checkered) and transparent top,
b thick window design with thick top layer (50–70µm). c Transparent substrate (by rebonding, see Fig. 23.9, d chip
shaping (cf. also Fig. 23.11). e Thin-film LED with metal mirror (black) and rebonding (cf. also Fig. 23.12)

Fig. 23.9 Comparison of light paths in a GaAsP-based LED with a opaque (GaAs) and b transparent (GaP) substrate
(side facets roughened). Adapted from [1947]

GaAs GaPGaAs

GaP window
AlGaInP DH

(a)

substrate

(b) (c)

AlAs

Fig. 23.10 Scheme of fabrication for red high brightness LED: a AlGaInP double heterostructure (DH) with GaP
window on GaAs substrate (growth with MOCVD). b Lift-off using HF etch of sacrificial AlAs layer. c Wafer bonding
on GaP (transparent for red light)

Transparent Substrate
Reflection of photons is not so detrimental if they are not lost later due to absorption in the substrate.
In Fig. 23.8, the evolution of LED chip design is shown schematically. In Fig. 23.9, the light path is
compared for opaque and transparent substrates. The latter provides higher light extraction efficiency
due to the ‘photon recycling’ effect. Efficiencies of 20–25%are possible. InFig. 23.10, the technological
steps are shown to fabricate a GaP LEDwith anAlGaInP active layer. The active layer is initially grown
on GaAs due to lattice-match conditions.

Nonrectangular Chip Geometry
If the chip is made with an inverted structure and mounted on a mirror, a high light extraction efficiency
(> 50%) can be achieved. Typical commercial designs are shown in Fig. 23.11.

The increase in quantum efficiency allows the devices to run on much higher output power. While
initially LEDs delivered power only in the mW regime, now output power in the ∼ 1W regime is
possible (high brightness LEDs). The higher currents made a redesign of the LEDmount towards better
heat sinks necessary (Fig. 23.7b). While the standard case has a thermal resistance of 220K/W (chip
size (0.25mm)2 for 0.05–0.1W and 0.2–2 lm), the high-power case has 15K/W (chip size (0.5mm)2 for
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Fig. 23.11 Optimization of light exit by 3D design of the LED chip, a scheme, b emission pattern comparison and c
SEM image of the ATON chip. Reprinted with permission from [1948]. d Development stages towards the truncated
inverted pyramid (Prometheus) chip. From [1949]

0.5–2Wand 10–100 lm).An epoxy-free technique for encapsulation also enhances the color uniformity
and maintains the brightness.

Thin-Film LED
In the thin-film LED design [1950], as schematically shown in Fig. 23.12a, a metal mirror is evapo-
rated on the LED layers. In a flip-chip design, subsequently the metal side is wafer bonded to another
metallized substrate and the original substrate is removed. Additionally, the LED surface can be pat-
terned (before bonding) into an (hexagonal) array of (hexagonal) microprism mesas with an insulating
(e.g. silicon nitride) layer with openings in order to optimize the current path. The microprisms are
optimized to allow efficient reflection of light towards the emitting surface. This technology is scalable
to large areas without loss in efficiency.

In order to avoid bonding from the top which leads to partial shielding of the emitted radiation and
is a mechanical process, contact schemes for flip-chip LEDs have been devised for contacting both the
n- and the p-layer from the same side [1952]. In Fig. 23.13 a schematic cross-section and an emission
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(a) (b)

Fig. 23.12 a Scheme of thin-filmflip-chip LEDwithmicroprisms.b image and luminescence image of thin filmAlInGaP
LED (chip length: 320µm). Reprinted with permission from [1951]

(a)

n-GaN

p-GaN

active
InGaN
MQW

metal anode

ceramic submount

metal cathode

(b)

Fig. 23.13 a Scheme of thin-film flip-chip LED with rough surface and contacts from one side. b Emission image of
1 × 1cm2 chip. Adapted from [1952]

Fig. 23.14 Triangular
GaN LED chip with high
extraction efficiency. Both
the p- and n-contact are on
the bottom. Adapted
from [1943]

image are shown. Here, the n-contact runs through a via hole with insulated side walls. In the emission
image the array of via holes can be seen.

Bulk Flip-Chip
In the GaN material system a LED based on a triangular chip with 400µm side length using a bulk
substrate with 150µm thickness has been presented that exhibits the so far highest extraction efficiency
of almost 90% (Fig.23.14) [1943, 1953]. The top and all side facets are rough.

Cascaded LEDs
Similar to the use of tunneling junctions in multi-junction solar cells (Sect. 22.4.6), the monolithic
serial connection of several LED layers has been proposed [1954] (Fig. 23.15). For a given output
power P at forward voltage VF and current density j of a single junction LED, ideally a LED with N
identical stacks and N −1 tunneling junctions provides the same output power P at the N -fold forward
voltage, as reported for N = 2, 3 in [1955], and the current density j/N . Since the internal quantum
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Fig. 23.15 Schematic
band structure of cascaded
LED. The grey area
denotes an additional
heterostructure for
reduction of the series
resistance of the tunnel
junctions. Adapted
from [1954]
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efficiency of LEDs decreases with increasing current density (droop), such stacked LED design holds
promise for increased wall-plug efficiency if the series resistance of the tunneling junctions is small.
The quantum efficiency of such device is then larger than N times the efficiency of the single stack
LED and thus way larger than 100% (similar to quantum cascade lasers, Sect. 23.4.16).

Historic Development
In Fig. 23.16, the historic development of the LED luminous efficacy (luminous flux per electrical input
power) is shown for various material systems. While the luminosity has increased by a factor of 20 per
decade in the last 40 years, the price has decreased by a factor of ten per decade (Fig. 23.17). Currently,
there is a need for the development of more efficient LEDs in the green spectral range [1956] since
their luminosity is small compared to devices for the blue and red spectral regions (Fig. 23.18).

23.3.5 White LEDs

There are different possibilities to generate white light with an LED as shown schematically in
Fig. 23.19. The highest color gamut and a tunable white point can be achieved by combining a red,
a green and a blue LED (Fig. 23.19a). Using a blue LED and a yellow phosphor (Figs. 23.19b and
23.20a,b), a white spectrum can be achieved that is, however, not very close to a blackbody spectrum
(Fig. 23.20c). A better color rendering can be obtained with the combination of two phosphors [1958].

Fig. 23.16 Historic
development of the
luminous efficacy of
semiconductor LEDs and
OLEDs. Based on [1957]
with the addition of data on
OLEDs and recent data on
LEDs. The arrows on the
right indicate efficacy of
various other light sources
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Fig. 23.17 Historic
development of the flux (in
lumen) and cost (in $/lm)
for semiconductor LEDs.
Data from [1949]
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Fig. 23.18 Luminous
performance of various
LED materials in
comparison with other light
sources. Adapted
from [1957]

With an UV LED that is itself invisible (and must be shielded so no UV radiation leaves the LED),
phosphors with various colors can be pumped (Fig. 23.19c). The mix of phosphors determines the
white point.

Using a blue-emitting LED based on (In,Ga)N material, phosphors (similar to those used in fluo-
rescence lamps) can be pumped. Blue light is converted into green, yellow or red light such that the
resulting total spectrum appears white to the human eye. Also, a broad range of other colors can be
designed (color on demand), e.g. pink or particular corporate colors.

The color of a white LED depends on the operation conditions. In Fig. 23.21a the intensity vs. dc
driving current characteristic of a white LED is shown. In Fig. 23.21b the chromaticity coordinates
are shown for various dc currents. A change of wavelength with forward voltage occurs for the blue-
emitting (In,Ga)N material due to filling of low-energy states (Fig. 23.22). In order to avoid this effect,
the LED is drivenwith pulses of a fixed current amplitude and a repetition frequency that is high enough

(a) (b) (c)

Fig. 23.19 Different strategies to generate white light with LEDs. a Additive mixing of R, G, and B LEDs, b blue LED
and yellow phosphor, c UV LED (invisible) and R, G, and B phosphors. From [1949]
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(a) (b)

(c)
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Fig. 23.20 a Scheme and b image of color conversion Luxeon� LED. From [1949]. c Spectrum (solid line) of white
LED with blue LED pumping a yellow phosphor together with eye-sensitivity curve V (λ) (dashed line). Adapted
from [1951]
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Fig. 23.21 a Luminous intensity of white LED (NSCW215) vs. dc forward current. b CIE chromaticity coordinates for
various dc driving conditions as labeled. Data taken from [1959]

to provide a flicker-free image to the human eye, e.g. 100Hz. The intensity of the LED is modulated
via the pulse width, i.e. between 0–10ms in this case (PWM, pulsewidth modulation).

The direct light fromwhite LEDs is visually appealing and cannot be distinguished from a blackbody
source of matching temperature. But since the spectral power distribution of white LEDs is different
from natural light, objects illuminated by such light source can appear in ‘wrong’ colors. For the
spectrum of Fig. 23.20c, in particular green is reproduced poorly. A quantitative measure for the ability
of a light source to reproduce the colors of an illuminated object faithfully compared with a natural
(blackbody) light source is the color rendering index (CRI).

A major advantage of LEDs for display and lighting applications is their long lifetime compared
to halogen (about 2000h), xenon (10,000h) or fluorescent (6000–10,000h) lights. Philips Lumileds
projects (for white LUXEON® K2 LEDs) 70% lumen maintenance at given current (1A) at 50,000h
for junction temperature Tj ≤ 120◦ [1961]. Similar values are given by OSRAM [1964] for white
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500
490
480
470
460
450
440 W

Fig. 23.22 a–c Electroluminescence intensity map of (In,Ga)N LED at different currents as labeled. d Optical image
of the LED chip (top view). e–g Wavelength images (wavelength of spectral emission maximum) for different currents.
Adapted from [1960]

Fig. 23.23 Lifetime for
70% lumen as a function of
solder temperature Ts (for
white Diamond Dragon®

LED) for various driving
currents (0.3, 0.7, 1.4 and
2.0A, solid lines from right
to left). The dashed line is
for low driving current and
Ts = Tj. Adapted
from [1964]

high power LEDs (Fig. 23.23). A current problem is the decrease of efficiency with increasing current
density termed droop, probably due to Auger recombination [1962, 1963].

23.3.6 Quantum Dot LEDs

Quantum dots are an interesting active medium for LEDs due to their spectroscopic properties
(Sect. 14.4.4).

Ultranarrow Spectral Emission
A LED based on a single QD exhibits a rather unique spectrum consisting of a single spectral line, at
least at low temperatures [1965], due to exciton recombination as shown in Fig. 23.24. Such device can
deliver single photons ondemand andbe a photon source for quantumcryptographic communication.At
higher current also biexciton recombination appears. In [1966, 1967] the triggered emission of photon
pairs from cascade-like XX and X recombination in a single dot and their polarization entanglement is
reported. Entanglement is related to degenerate X and XX emission energy [1968] (cmp. Fig. 14.44).



23.3 Light-Emitting Diodes 657

Fig. 23.24 a Schematic cross-section of QD LED. Current is fed to a single QD via an oxide aperture. b Plan-view
SEM image of QD LED. c Electroluminescence (EL) spectrum (T = 10K, U = 1.65V, I = 0.87nA) of single
InGaAs/GaAs QD LED (diameter of oxide aperture 0.85µm, thickness 60nm). The single line is due to (neutral) exciton
recombination. The inset shows dependence of EL spectrum on injection current; at higher currents a second peak due
to biexciton recombination (XX→X) appears. Adapted from [1969]

Fig. 23.25 Electroluminescence
spectrum of a quantum dot
LED designed for broad
spectral range (at
5kA/cm2). Adapted
from [1971]

Ultrabroad Spectral Emission
AnLEDbased on the emission fromaquantumdot ensemble exhibits a fairly broad spectrumbecause of
inhomogeneous broadening due to size fluctuations of the quantumdots (cmp. Fig. 14.47). Additionally
several ensembles ofQDswith differentmean emissionwavelength can be incorporated in a device, e.g.
in stacked layers [1970]. This way ultrabroad electroluminescence spectra can be realized (Fig. 23.25).
Also emission on the ground and excited state can be used for broad spectral emission.

23.3.7 Organic LEDs

An organic light emitting diode (OLED) is made from organic semiconductors. The pioneering work
was made by Tang and Van Slyke [1789, 1972]. Typical layer sequences are depicted in Fig. 21.62.
The light emission occurs through the anode (and the transparent ITO layer) while the metal cathode
is opaque. Two major configurations are possible, emission through the transparent substrate (glass)
or top emission (Fig. 23.26).
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Fig. 23.26 Typical OLED
design for a bottom and b
top emission

Fig. 23.27 a Transparent OLED panel. From [1973]. b Flexible OLED display. From [1974]. c 3mm thin, 11 inch
diagonal OLED TV. From [1975]

The optimization ofmaterials for the various functional layers is ongoing. The emission layer (EML)
is optimized for efficient radiative recombination for the design wavelength or wavelength range. The
highest efficacy of over 100 lm/W (Fig. 23.16) is achieved using phosphorescent materials (Sect. 18.6).
The contacts are optimized for high carrier injection efficiency and the transport layers are optimized
for high conductivity.

End of 2007 a transparent white OLED panel was introduced [1973] (Fig. 23.27a). Its transparency
is 55% and shall be improved in the future. A crucial point is the protection of the organic films
against moisture and air. The encapsulation by glass is very good. Flexible OLED panels with polymer
substrate and encapsulation have been demonstrated (Fig. 23.27b). OLED technology is currently used
for small displays in digital cameras and cellular phones. It enables very thin TV panels, only a few
mm thick (Fig. 23.27c) entering the mass market in 2010. An increase of the lifetime from 30,000 to
beyond 50,000h is expected.
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(a) (b)

(c) (d)

Fig. 23.28 Images of the first semiconductor lasers, 1962: a GaAs laser, Lincoln Laboratories and b GaInP laser, N.
Holonyak and S.F. Bevacqua, Urbana Champaign. c Laser (at the end of gold bond wire) mounted on Peltier heat sink
and a TO chip, Universität Leipzig. d Size comparison of an ant with a laser chip (underneath the bond wire)

23.4 Lasers

23.4.1 Introduction

Semiconductor lasers13 [1976, 1977] contain a zone (mostly called the active layer) that has gain if
sufficiently pumped and that overlaps with an optical wave. The wave bounces back and forth in an
optical cavity that leads to optical feedback. The part of the wave that exits the semiconductor forms
the laser beam. Some of the first semiconductor lasers and a mounting design are shown in Fig.23.28.

Generally, two main geometrical laser types, edge emitters (Fig. 23.29a) and surface emitters
(Fig. 23.29b), are distinguished. The emission of the edge emitter exits through cleaved {110} side
facets14 (≈ 30% reflectance), of which an opposite pair acts as a Fabry–Perot optical cavity. The sur-
face emission is directed along (001), since this is the (standard) growth direction of the heterostructure
sequencemaking up the laser. Themirrors in a vertical-cavity surface-emitting laser (VCSEL) aremade
from dielectric Bragg mirrors (cf. Sect. 19.1.4) with typically R > 99.6%. Using antireflection coating

13The term ‘laser’ is an acronym for ‘light amplification by stimulated emission of radiation’. The amplification relies on
stimulated emission, theoretically predicted by Einstein in 1917. The laser concept was first explored in the microwave
wavelength region (1954, MASER using ammonia, Ch.H. Townes, Nobel prize 1964). The first optical laser (1958,
US patent No. 2,929,922 awarded 1960, A.L. Schawlow, Ch.H. Townes) was the ruby laser developed in 1960 by Th.
Maiman. A device is a laser when it emits stimulated light. This light must neither be monochromatic nor be emitted in
a narrow, directed beam.
14Or etched facets in possibly any direction.
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(b)
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Fig. 23.29 a Schematic drawing of edge-emitting semiconductor laser. b Schematic drawings of vertical-cavity surface-
emitting lasers with top emission (left) and emission through the substrate (right). Black areas are metal contacts

Fig. 23.30 Revenue in
worldwide diode laser
market. Based on numbers
from [1978], data for 2020
estimated

on one facet, semiconductor lasers can be set upwith an external cavity.15 If both facets are antireflection
coated, feedback is missing and the chip can be used as an optical amplifier (cf. Sect. 23.5).

Most lasers are pn-diodes and are then called laser diodes. They rely on the gain of interband
transitions and the emission wavelength is determined and (more or less) given by the band gap of the
semiconductor. The cascade laser [149] (Sect. 23.4.16) is a unipolar structure with a superlattice as
active layer. Here, the intersubband transitions (mostly in the conduction band but also in the valence
band) carry the gain. The emission wavelength depends on the subband separation and lies typically in
the far- and mid-infrared. Extensions to the THz regime and also to shorter wavelengths are possible.
A third type of laser is the ‘hot-hole’ laser (Sect. 23.4.17), typically fabricated with p-doped Ge, which
can be viewed as unipolar and functions only in a magnetic field; its emission is in the THz regime.

23.4.2 Applications

In Fig. 23.30, the revenue in the worldwide diode laser market is shown. The drop after 2000 is due to
the burst of the ‘internet bubble’. Nondiode laser (gas, ruby, excimer, …) revenue is currently stable
at around 2 billion US$, thus semiconductor lasers account for the largest share of all laser types sold.

The following applications rely on semiconductor lasers:

• optical communication, mostly optical fiber based (senders), typically at 10GBit/s, in special situa-
tions also 40GBit/s data rate.

15Such external cavities can be used for manipulation of the laser properties such as wavelength tuning.
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Fig. 23.31 Evolution of optical data storage technology, ‘CD’: compact disk (laser: 780nm, pitch: 1.6µm, capacity:
0.7GB), ‘DVD’: digital versatile disk (laser: 635–650nm, pitch: 0.74µm, capacity: 4.7GB for one layer), ‘BD’: ‘Blu-ray’
disk (laser: 405nm, pitch: 0.32µm, capacity: 27GB for one layer)

• optical information storage and retrieval (CD, DVD, BD16) with as short of a wavelength as possible,
as shown in Fig. 23.31, currently 405nm.

• pumping of solid-state lasers, typically 910 or 940nm for pumping Nd:YAG
• portable projectors, laser TV, entertainment.
• laser pointers, see Fig. 23.32. A red laser pointer simply uses the collimated red emission of a GaAs-
based diode. In a green laser pointer, an infrared diode pumps a Nd:YAG or Nd:YVO4 crystal. The
emitted beam is then frequency doubled, typically with a KTiOPO4 (KTP) crystal.

• medical instruments with a variety of wavelengths in ophthalmology, dermatology, cosmetics (hair
removal, tattoo removal).

• various other uses, such as remote control, position detection, distance measurement, printing, sci-
entific instrumentation.

The market for photonic devices is much more dynamic than the electronics market. An example is the
rapid change of dominating laser applications. For diode lasers, the two most prominent applications
are telecommunication (77%market share in 2000, 25% in 2003, 45% in 2008) and optical data storage
(17% market share in 2000, 60% in 2003, 44% in 2008).

23.4.3 Gain

Due to current injection,17 a nonequilibrium carrier distribution is created. After fast thermalization
processes (phonon scattering), it canmostly described by quasi-Fermi levels. Sufficiently strong pump-
ing leads to inversion, i.e. conduction-band states are more strongly populated with electrons than
valence-band states (Fig. 23.33). In this case, the stimulated emission rate is stronger than the absorp-
tion rate (cf. Sect. 10.2.6). The thermodynamic laser condition (cf. (10.23)) requires the difference of

1616 million 405nm laser diodes were shipped in 2006–2008. 85% of those are built into SONY’s PS3, the rest into
HD-DVD and other Blu-ray™disc (BD) players.
17or due to optical pumping. If electrical contacts are not available, the laser action can be invoked by supplying a
high-intensity light beam, possibly in a stripe-like shape. For optically pumped semiconductor lasers see Sect. 23.4.15.
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(a)

(b)

(c) (d) (e)

Fig. 23.32 a Scheme of red laser pointer, b scheme of green laser pointer. Parts of a green laser pointer: c pump laser
diode, d YVO4 crystal, e KTP doubler

Fig. 23.33 Population a in
thermodynamic
equilibrium T = 0K, b
under inversion for
T = 0K, c under inversion
for T > 0K. Shaded areas
are populated with
electrons
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the quasi-Fermi levels to be larger than the band gap.

Fn − Fp > Eg (23.10)

The gain is defined as the (frequency-dependent) coefficient g(�ω) that describes the light intensity
along a path L according to

I (L) = I (0) exp (g L) . (23.11)

The gain spectrum as a function of the photon energy �ω is given for non-k-conserving recombination
by (cf. (10.5) and (10.6))

g(�ω) =
�ω−Eg∫

0

De(E)Dh(E
′)

[
fe(E) fh(E

′) − (1 − fe(E))(1 − fh(E
′))

]
dE , (23.12)
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(a) (b)

(c) (d)

Fig. 23.34 Gain in the two-band model for GaAs. a Electron and hole concentrations at T = 300K as a function of
the quasi-Fermi energies counted relative to the band edges, i.e. Fn − EC and EV − Fp. b Difference of quasi-Fermi
levels as a function of carrier concentration (n = p) for GaAs at two different temperatures. c Gain spectra according to
(23.12) for n = 2 × 1018 and T = 300K (solid line), increased carrier density n = 2.1 × 1018 and T = 300K (dashed
line), higher temperature n = 2× 1018 and T = 314K (dash-dotted line) and same difference of the quasi-Fermi levels
as for the solid line, n = 2.1 × 1018 and T = 314K (dotted line). d Maximum gain (solid line) and gain at a particular
energy (dashed line, for photon energy Eg + 26.2meV for which the gain is maximal for n = 2× 1018 and T = 300K,
see solid line in part c)

with E ′ = �ω − Eg − E . The gain is positive for those photon energies for which light is amplified
and negative for those that are absorbed. In Fig. 23.34a, the electron and hole concentrations are shown
for GaAs as a function of the quasi-Fermi energies. In Fig. 23.34b, the difference of the quasi-Fermi
energies is shown as a function of the carrier density (for neutrality n = p). The gain spectrum
is shown in Fig. 23.34c for a simple two-band model.18 For a more elaborate discussion of such
matters we refer to [1979]. In the case of inversion, the gain is positive for energies between Eg

and Fn − Fp. At �ω = Fn − Fp, the gain is zero (transparency) and for larger energies negative
(positive absorption coefficient). The agreement of experimental gain spectra of quantum wells with
theoretical considerations, including carrier collision effects at the level of quantum kinetic theory in
the Markovian limit, is very good (Fig. 23.35a) [1980].

For a given fixed energy, the gain increases with increasing pumping and increasing carrier density n
(Fig. 23.34d). For very small density, it is given as g(n → 0) = −α. The gain rises around transparency
approximately linearly with the pumping intensity. At transparency carrier density ntr , the gain is zero.
Therefore, the relation g(n) can be approximated as (linear gain model)

18One electron and one hole band are considered; the heavy and light hole bands are taken into account via the mass
according to (6.73).



664 23 Electricity-to-Light Conversion

(a) (b)

Fig. 23.35 a Gain spectra of a 6.8nm thick Ga0.41In0.59P/(Al0.5Ga0.5)0.51 In0.49P quantum well, experimental data
(symbols) and theory (lines) for three different sheet carrier densities n2D = 2.2, 2.7, and 3.2× 1012 cm−2. b Maximum
gain as a function of the separation of the quasi-Fermi levels, experimental data (symbols) and theory (lines). Adapted
from [1980]

g(n) ∼= α̂
n − ntr
ntr

. (23.13)

For large carrier density, the gain saturates (at a value similar to α). The onset of positive gain is related
to the separation of the quasi-Fermi levels being larger than the band gap (23.10), Fig. 23.35b. The
gain in quantum dot lasers [150] has been discussed in [1981].

23.4.4 Optical Mode

The light wave that is amplified must be guided in the laser. An optical cavity is needed to provide
optical feedback such that the photons travel several times through the gain medium and contribute to
amplification. We explain the light-wave management for the edge emitter first:

Vertical Mode Guiding
In the course of the historical development of the semiconductor laser, the most significant improve-
ments (reduction of lasing threshold current) have been achieved through the improvement of the
overlap of the optical wave with the gain medium, as shown in Fig.23.36. From homojunctions over
the single heterojunction, eventually the double heterostructure (DHS) design could reduce the laser
threshold current density to the 1kA/cm2 level.

The band diagram of a double heterostructure is shown in Fig. 23.37 for zero and forward bias. In
the DHS, the optical mode is guided by total reflection within the low band gap center layer (core),
which has a larger index of refraction than the outer, large band gap layer (cladding).19 When the layer
thickness is in the range of λ/nr, the form of the optical mode is determined by the (one-dimensional)
wave equation (19.3) for the electrical field Ez. In Fig. 23.38a, the shape of the optical mode for
GaAs/Al0.3Ga0.7As DHS with different GaAs thickness is shown.

The optical confinement factor � is the part of the wave that has geometrical overlap with the gain
medium, i.e. is subject to amplification. It is shown for GaAs/AlxGa1−xAs DHS with different GaAs
thickness and different Al concentration in Fig. 23.38b. The modal gain gmod that is responsible for
light amplification in the cavity consists of the material gain gmat due to inversion and the optical
confinement factor.

19A smaller band gap coincides in many cases with a larger index of refraction.
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Fig. 23.36 Laser with a
homojunction, b single
heterostructure (SHS), c
double heterostructure
(‘DHS’), d reduction of
threshold current with
design progress (‘SHS’:
d =2µm, ‘DHS’:
d =0.5µm). Adapted
from [1982]
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Fig. 23.37 Schematic
band diagram of a pn
double heterostructure
(DHS) diode
(InP/InGaAsP/InP) a
before contact of the
materials, b in
thermodynamic
equilibrium (zero bias,
dashed line is Fermi level
EF = const.), c with
forward bias close to
flat-band conditions,
dashed lines are
quasi-Fermi levels. χcore
denotes the electron affinity
of the core material, χcl
that of the cladding layers
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Fig. 23.38 a Optical mode (relative intensity) for various values of the thickness d of the active layer as labeled of a
GaAs/Al0.3Ga0.7As DHS laser, b Optical confinement factor � as a function of the thickness of the active layer and the
Al concentration x of the barrier as labeled in a GaAs/AlxGa1−xAs DHS laser. Adapted from [1976]

Fig. 23.39 a Various
geometries of the active
layer of a DHS laser with
quantum wells as active
medium, (i) single QW
(separate confinement
heterostructure, SCH), (ii)
multiple QW SCH, and c
GRINSCH (graded-index
SCH) structure. b Layer
sequence for a separate
confinement
heterostructure laser

(a)

EC

EV

EC

EV

EC

EV

(i)

(ii)

(iii)

SCH

MQW-SCH

GRINSCH

(b)

p
-G
aA
s

+ p-
Al

G
a
As

0.
3

0.
7

p-
G
aA
s

+p-
Al

G
a
As

0.
1

0.
9

n-
Al

G
a
As

0.
1

0.
9

n-
Al

G
a
As

0.
3

0.
7

Eg

n

2

(i)

(ii)

(iii)

(iv)

gmod = � gmat . (23.14)

In order to allow simultaneous optimization of the light mode and the carrier confinement, the separate
confinement heterostructure (SCH) has been designed. Here, a single or multiple quantum well of a
thirdmaterial with even smaller band gap is the activemedium (Fig. 23.39a,b,d). A single quantumwell
has an optical confinement factor of a few per cent only. It offers, however, efficient carrier capture and
efficient radiative recombination. An increase in the carrier capture efficiency can be achieved using a
graded index in the barrier (GRINSCH, Fig. 23.39c).

The thin wave-guiding layer leads to large divergence of the laser beam along the vertical direction,
typically about 90◦. The strong confinement of light also limits the maximum achievable output power
due to catastrophic optical damage (COD). Several ideas have been realized to overcome this problem
and achieve much smaller divergence of about 18◦. The waveguide can be designed to be very thick
(large optical cavity, LOC) that leads to an increase of threshold. Other schemes are insertion of a
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Fig. 23.40 Scheme of
gain-guided lasers with
stripe contact: a oxide
stripe, b proton implanted
with shadow mask from
tungsten wire (∼ 10µm).
Adapted from [1983]
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Fig. 23.41 Schematic
cross section of
index-guided lasers: a
shallow ridge, b deep etch
and regrowth. Black areas
are metal contacts
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low-index layer into the confinement layer, insertion of a high-index layer into the cladding layer or
the use of high-index quarter-wavelength reflecting layers [1984].

Lateral Mode Guiding
Lateral waveguiding can be achieved with gain guiding and index guiding (or a mixture of the two). In
the gain-guiding scheme (Fig. 23.40), the current path that is defined by the stripe contact and the current
spreading underneath it, defines the gain region and therefore the volume of amplification that guides
the optical wave. Since a high carrier density reduces the index of refraction, a competing antiguiding
effect can occur. For index guiding, the lateral light confinement is caused by a lateral increase of
the index of refraction. This index modulation can be achieved by using a mesa-like contact stripe
(Fig. 23.41a). A shallow mesa reaches down into the upper cladding, a deep mesa reaches down into or
through the active layer. Possible problems with surface recombination can be avoided by regrowth of
the structure (Fig. 23.41b) with a wide band gap material (compared to the active layer). Optimization
of regrowth is targeted to achieve a well-defined surface for subsequent contact processing. A lateral
pn-diode can be incorporated that avoids current spreading in the upper part of the structure.

Depending on the width of the lateral mode, it can be monomode or multimode (Fig. 23.42a,b). For
laterally monomode lasers, the stripe width may only be a few µm. In particular for such lasers, the
current spreading must be controlled. Problems can arise for wide stripe widths due to current fila-
mentation and inhomogeneous laser emission from the facet. Since the optical mode is typically more
confined in the growth direction than in the lateral direction, the far field is asymmetric (Fig. 23.43a,b).
The vertical axis has the higher divergence and is called the fast axis. The lateral axis is called the slow
axis. The asymmetric beam shape is detrimental when the laser needs to be coupled into an optical
fiber or a symmetric beam profile is needed for subsequent optics. The beam can be made symmetric
using special optic components such as anamorphic prisms (Fig. 23.43c) and graded-index lenses. The
beam from a laterally monomode laser is diffraction limited and can therefore generally be refocused
efficiently (beam quality M2 � 1).
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Fig. 23.42 Lateral near field a and far field b of lasers with various width S of the injection stripe as labeled. Adapted
from [1985]
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Fig. 23.43 a Schematics of the asymmetric far field of an edge emitter. Adapted from [574]. b Far-field distribution of
violet GaN-based laser. Adapted from [1986]. c Correction of asymmetric far field with a pair of anamorphic prisms
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Fig. 23.44 SEM image of
a an InP microlaser with
third-order Bragg mirrors,
b magnified view of the
front facet with three slabs,
c a 12-µm long microlaser
with five third-order
mirrors on the rear side and
three first-order mirrors on
the front side with top
contact. From [1988]; part
b reprinted with permission
from [1987], ©2001 AIP

(c)

(a)
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Longitudinal Modes
The spectral positions of the laser modes for a cavity with length L is given by the condition (cf.
(19.39))

L = m λ

2 nr(λ)
, (23.15)

where m is a natural number and n(λ) is the dispersion of the index of refraction. The distance of
neighboring modes is given by (for large m)

λ = λ2

2 nr L
(
1 − λ

nr
dnr
dλ

) . (23.16)

The dispersion dnr/dλ can sometimes be neglected.
The facets of edge-emitting lasers are typically cleaved. Cleaving bears the danger of mechanical

breakage and tends to have poor reproducibility, low yield and therefore high cost. Etched facets are
another possibility to form the cavity mirror. The etch process, typically reactive ion dry etching, must
yield sufficiently smooth surfaces to avoid scattering losses. A highly efficient distributed Braggmirror
(cf. Sect. 19.1.4) with only a few periods can be created by using the large index contrast between the
semiconductor and air. As shown in Fig. 23.44, slabs can be etched that make a Bragg mirror with the
air gaps [1987]. In this way, very short longitudinal cavities can be made (≈ 10µm).

23.4.5 Loss Mechanisms

While the light travels through the cavity, it is not only amplified but it also suffers losses. The internal
loss αi and the mirror loss αm contribute to the total loss αtot

αtot = αi + αm . (23.17)

The internal loss is due to absorption in the cladding, scattering at waveguide inhomogeneities and
possibly other processes. It can be written as

αi = α0 � + αg (1 − �) , (23.18)
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where α0 is the loss coefficient in the active medium and αg is the loss coefficient outside the active
medium.

The mirror loss is due to the incomplete reflection of the optical wave at the laser facets. This
condition is necessary, however, to observe a laser beam outside the cavity. R1 and R2 are the values
of reflectance of the two facets, respectively. An as-cleaved facet has a reflectance of about 30% (cf.
(23.8)). Using dielectric layers on the facets, the reflectance can be increased (high reflection, HR-
coating) or decreased (antireflection, AR-coating). One round-trip through the cavity of length L has
the length 2L . The intensity loss due to reflection at the facets is expressed via exp(−2αmL) = R1 R2

αm = 1

2L
ln

(
1

R1 R2

)
. (23.19)

If both mirrors have the same reflectance R, we have αm = −L−1 ln R. For R = 0.3 a 1-mm cavity
has a loss of 12cm−1. For the internal loss a typical value is 10cm−1, very good waveguides go down
to 1–2cm−1.

Lasing is only possible if the gain overcomes all losses (at least for one wavelength), i.e.

gmod = gmat � ≥ αtot . (23.20)

23.4.6 Threshold

When the laser reaches threshold, the (material) gain is pinned at the threshold value

gthr = αi + αm

�
. (23.21)

Since g ∝ n, the carrier density is also pinned at its threshold value and does not increase further
with increasing injection current. Instead, additional carriers are quickly converted into photons by
stimulated emission. The threshold carrier density is (using the linear gain model, cf. (23.13))

nthr = ntr + αi + αm

α̂ �
. (23.22)

For an active layer of thickness d, the threshold current density is

jthr ∼= e d nthr
τ(nthr)

, (23.23)

where τ(nthr) is the (minority) carrier lifetime at the threshold carrier density (cmp. Sect. 10.10) from

τ(n) = 1

A + B n + C n2
. (23.24)

Using (23.22), we can write (for R = R1 = R2)

jthr = jtr + e d

τ α̂ �

(
αi − 1

L
ln R

)
, (23.25)
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(a) (b)

Fig. 23.45 a Threshold current density for (three-fold InGaAs/GaAs QD stack) laser (λ = 1150nm) at 10◦C with
different cavity length vs. the optical loss (∝ 1/L). The extrapolated transparency current density is 21.5 ±0.9A/cm2.
b Inverse external quantum efficiency versus cavity length. The internal quantum efficiency determined from the plot is
91% and the internal loss is 1.4cm−1

where the transparency current density is jtr = e d ntr/τ . Thus, the plot of jthr versus 1/L (or the
optical loss) should be linear and can be extrapolated towards the transparency current density (cf.
Fig. 23.45a).

Any additional increase of the current j leads to stimulated emission with the rate

rst = d vg gthr Nph , (23.26)

where vg is the group velocity (mostly c0/nr) and Nph is the photon density (per length) in the cavity.
The photon density increases linearly beyond the threshold

Nph = 1

e d vg gthr
( j − jthr) . (23.27)

The photon lifetime
1

τph
= vg (αi + αm) = vg � gthr (23.28)

is introduced that describes the loss rate of photons. vg αm describes the escape rate of photons from
the cavity into the laser beam(s). Therefore,

Nph = τph �

e d
( j − jthr) . (23.29)

Since the threshold depends on the carrier density, it is advantageous to reduce the active volume
further and further. In this way, the same amount of injected carriers creates a larger carrier density.
Figure23.46 shows the historic development of laser threshold due to design improvements.

23.4.7 Spontaneous Emission Factor

The spontaneous emission factor β is the fraction of spontaneous emission (emitted into all angles)
that is emitted into laser modes. For Fabry–Perot lasers, β is typically in the order of 10−4–10−5. The
design of a microcavity can increase β drastically by several orders of magnitude to ≈ 0.1 [1989] or
above and thus reduce the threshold current. The photon number as a function of the pump current can
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Fig. 23.46 Historic
development of threshold
current density (at room
temperature, extrapolated
for infinite cavity length
and injection stripe width)
for various laser designs,
‘DH’: double
heterostructure,
‘SCH–QW’: separate
confinement
heterostructure with
quantum wells. ‘QD’:
quantum dots. Dashed
lines are guides to the eye
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Fig. 23.47 Photon number
versus pump current for a
model laser. Adapted
from [1991]
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be calculated from the laser rate equations and is depicted in Fig. 23.47. For β = 1, all emitted power
goes into the laser mode regardless of whether emission is spontaneous or stimulated. The definition
of threshold in such ‘nonclassical’ lasers with large β is discussed in detail in [1990].

23.4.8 Output Power

The output power is given by the product of photon energy, the photon density in the cavity, the effective
mode volume and the escape rate:

Pout = �ω Nph
L w d

�
vg αm . (23.30)

Thus, it is given by

Pout = �ω vg αm
τph

e
L w ( j − jthr) = �ω

e

αm

αm + αi
(I − Ithr) . (23.31)
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To this equation, the factor ηint must be added. The internal quantum efficiency describes the efficiency
of the conversion of electron–hole pairs into photons (cmp. (10.59)):

ηint = B n2 + vg gthr Nph

A n + B n2 + C n3 + vg gthr Nph
. (23.32)

All in all, now (see Fig. 23.49a)

Pout = �ω

e

αm

αm + αi
ηint (I − Ithr) . (23.33)

The differential (or slope) quantum efficiency, also called the external quantum efficiency ηext, is the
slope of the Pout curve versus the current in the lasing regime. It is given by

ηext = dPout/dI

�ω/e
= ηint

αm

αm + αi
. (23.34)

The external quantum efficiency can also be written as

1

ηext
= 1

ηint

(
1 + αi

αm

)
= 1

ηint
[1 − 2αi L ln (R1R2)] . (23.35)

Therefore, if η−1
ext is plotted for similar lasers with different cavity length (see Fig. 23.45b), a straight

line should arise from which the internal quantum efficiency (extrapolation to L → 0) and the internal
loss (∝ slope) can be determined experimentally.

The threshold current for a given laser is typically determined from the P–I characteristic via
extrapolation of the linear regime as shown in Fig. 23.49a. Other measures of the threshold current can
be the change in junction resistance, the narrow peak in excess noise or the peak in the logarithmic
derivative of mode power. The S-shaped curve of the power in the dominant mode (of a single-mode
laser) as a functionof voltage (Fig.23.48), similar to theS-shaped curves of Fig.23.47has beendiscussed
in [1992]. A related discussion of laser dynamics (cmp. Sect. 23.4.13) can be found in [1993].

Record values for the threshold current density are often given for the limit L → ∞. Due to current
spreading, the threshold current density also depends on the width of the injection stripe. Record low
thresholds are therefore often given for the limit w → ∞.

The total quantum efficiency is given by

ηtot = Pout/I

�ω/e
. (23.36)

This quantity is shown in Fig. 23.49b for a laser as a function of the current. For a linear P–I lasing
characteristic, the total quantum efficiency converges towards the external quantum efficiency for high
currents because the low quantum efficiency subthreshold regime no longer plays any role. Another
important figure of merit is the wall-plug efficiency ηw that describes the power conversion:

ηw = Pout
U I

. (23.37)

Additionally to the current balance discussed so far, typically a leakage current exists that flowswithout
contributing to recombination or lasing. Carriers not captured into or escaping from the active layers
can contribute to this current. The present record for wall-plug efficiency of high-power laser diodes
is above 70% [1994, 1995], employing careful control of band alignment (graded junctions, avoiding
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Fig. 23.48 Optical power (experimental data and modelling) in the dominant mode of a single-mode GaAs laser diode
(Hitachi HLP 1400) as a function of voltage (in pulsed operation in order to avoid heating effects) around the threshold
voltage Vth. Adapted from [1992]

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I r

(b)

InGaAs/
GaAs

Fig. 23.49 aTypical P–I characteristic of a semiconductor laser. Adapted from [574].bOutput power and total quantum
efficiency of a quantum dot laser (3 stacks of InGaAs/GaAs QDs, L = 2mm, w = 200µm, λ = 1100nm, T = 293K)
versus injection current

voltage barriers), optical losses, Joule heating, spontaneous emission and carrier leakage. It seems
possible to achieve ηw of 80%.

The P–I characteristic is not linear to arbitrary high currents. Generally, the output power will
saturate or even decrease for increasing current. These effects can be due to increasing leakage cur-
rent, increasing internal loss at high current or temperature effects, e.g. an increase of threshold with
increasing temperature (cf. Sect. 23.4.9) and therefore a reduction of total efficiency. All nonradiative
losses will eventually show up as heat in the laser that must be managed with a heat sink.

A radical effect is catastrophic optical damage (COD) at which the laser facet is irreversible
(partially) destructed. Antioxidation or protective layers can increase the damage threshold to >

20MW/cm2. The record power from a single edge emitter is ∼ 12W (200µm stripe width). For a
lateral monomode laser, cw power of about 1.2W has been reached from a 1480-nm InGaAsP/InP
double quantum-well lasers with 3–5µm stripes and 3mm cavity length [1996]. About 500mW can
be coupled into a single-mode fiber [1997].
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23.4.9 Temperature Dependence

The threshold of a laser typically increases with increasing temperature as shown in Fig. 23.50a. Empir-
ically, in the vicinity of a temperature T1 the threshold follows an exponential law (see Fig. 23.50b)

jthr(T ) = jthr(T1) exp

(
T − T1
T0

)
∝ exp

(
T

T0

)
, (23.38)

with T0 being the so-called characteristic temperature.20 It is the inverse logarithmic slope, T−1
0 =

d ln jthr/dT .
T0 summarizes the temperature-dependent loss and the carrier redistribution in k-space due to the

change of the Fermi distributionwith temperature.With increasing temperature, populated states below
the quasi-Fermi level become unpopulated and nonlasing states become populated. Therefore, the gain
decreases with increasing temperature. This redistribution must be compensated by an increase of the
quasi-Fermi energy, i.e. stronger pumping. This effect is present for (even ideal) bulk, quantum well
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95°CGaAs/
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GaAs
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50 100 150 200 250 300
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Fig. 23.50 a P–I characteristic (cw output power per mirror facet) of stripe-buried heterostructure laser at various
temperatures of the heat sink between 25 ◦C and 115 ◦C in steps of 10K. b Threshold current (in logarithmic scale)
of this laser as a function of heat-sink temperature and exponential fit (dashed line) with T0 = 110K. Parts a and b
adapted from [1998]. c Temperature dependence of the threshold current density of a quantum dot laser (3 stacks of
InGaAs/GaAs QDs, λ = 1150nm) with T0 (solid lines are fits) given in the figure

20Since T0 has the dimension of a temperature difference, it can be expressed in ◦C or K. For the sake of unambiguity it
should be given in K.
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Fig. 23.51 a Mode spectra of a Fabry–Perot laser, under, at and above threshold (Ithr = 13.5mA). Adapted from [1185].
b Mode spectra of a cw DFB InGaAs/InP laser with 2mm cavity length at various currents of 200, 400, . . ., 1400mA
(Ithr = 65mA), SSR>40dB at T = 293K. Adapted from [1999], reproduced with permission from SPIE

and quantum wire lasers. Only for quantum dots with a δ-like density of states is the change of Fermi
distribution irrelevant as long as excited states are energetically well separated from the (lasing) ground
state. In Fig. 23.50c, the threshold of a quantum dot laser is indeed temperature independent (T0 = ∞)
as long as excited states are not thermally populated (for T < 170K for the present laser).

23.4.10 Mode Spectrum

In Fig. 23.51a, the mode spectrum of a typical edge-emitting laser is shown. Below threshold, the
amplified spontaneous emission (ASE) spectrum exhibits a comb-like structure due to the Fabry–
Perot modes. Above threshold, some modes grow much faster than others, possibly resulting in single
longitudinal mode operation at high injection. The relative strength of the strongest side mode is
expressed through the side-mode suppression ratio (SSR) in dB

SSR = 10 log

(
Imm

Ism

)
, (23.39)

where Imm (Ism) is the intensity of the maximum (strongest side) mode in the lasing spectrum.
As a tendency a DHS or QW semiconductor laser above threshold develops a narrow spectrum since

the pump power is channeled into one or few modes with large gain. A quantum dot laser behaves
differently when pumped largely above threshold. Since the gain of individual QDs in an inhomo-
geneously broadened ensemble (due to different QD sizes) is independent, a broad gain spectrum is
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Fig. 23.52 Lasing spectra of quantum dot laser (L = 1.2mm, stripe width w = 75µm) at room temperature. The active
medium is a three-fold stack of InGaAs/GaAs QDs. The current density as labeled is given in units of the threshold
current density ( jthr = 230A/cm2). Adapted from [2000]
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Fig. 23.53 Schematic drawing of a DFB (distributed feedback) and b DBR (distributed Bragg reflection) lasers. The
active medium is schematically shown as a triple quantum well, the waveguide is shown as a grey area

present [2001]. The lasing spectrum takes a hat-like shape when homogeneous broadening is small
compared to the inhomogeneous broadening[2000, 2002] (Fig. 23.52) as predicted theoretically [2001,
2003].

23.4.11 Longitudinal Single-Mode Lasers

In order to achieve a high SSR or single longitudinal mode lasing, the feedback must offer a higher
wavelength selectivity than a simple mirror. A preferential feedback for certain modes can be obtained
using a periodic dielectric structure that ‘fits’ to a particular wavelength, similar to a Bragg mirror. The
periodic modulation of the refractive index can be made within the cavity (distributed feedback, DFB,
Fig. 23.53a) or at the mirror (distributed reflection, DBR, Fig. 23.53b). In this way, monochromatic
lasers with SSR � 30dB are possible (Fig. 23.51b).

It is possible to couple several hundred mW optical power of a laterally and spectrally monomode
laser into a monomode optical fiber [2004] (Fig. 23.54).
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Fig. 23.54 a Output power of an InGaAsP/InP cw single-mode DFB laser at 1427nm with 2mm cavity length from the
facet and coupled to a single-mode fiber versus driving current (T = 293K). The dashed line represents the coupling
efficiency to the fiber (right scale). Adapted from [2004]. b Package with pigtail of fiber coupled 1550nm DFB laser
with 40mW output power in the fiber. From [2005]

23.4.12 Tunability

The tunability of the emission wavelength [2006] is important for several applications such as wave-
length division multiplexing21 and spectroscopy.

The simplest possibility to tune a laser is to vary its temperature and thus its band gap. This method
is particularly used for lead salt lasers in the mid-infrared region,22 as shown in Fig. 23.55.

For monomode lasers, mode hopping, i.e. the discontinuous shift of lasing wavelength (or gain
maximum) from one mode to the next, poses a problem for continuous tuning, as shown in Fig. 23.56.
The continuous shift of emission wavelength is due to the temperature dependence of the index of
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Fig. 23.55 a Schematic drawing of PbTe lead salt laser. b Tuning characteristics of such laser: Emission wavelength
(left scale, filled circles: emission wavelength at cw threshold, empty circles: emission maximum under pulsed operation)
and cw threshold current density (right scale) as a function of the heat-sink temperature. Symbols are experimental data,
dashed lines are guides to the eye. Adapted from [2007]

21In order to make better use of the high bandwidth of the optical fiber several information channels with closely lying
wavelengths are transmitted.
22Note the anomalous positive coefficient dEg/dT as discussed in Sect. 6.7.
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Fig. 23.56 Wavelength as a function of temperature (with mode hopping) for a GaAs-based DFB laser
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Fig. 23.57 a Schematic representation of SGDBR (sampled-gratingDBR) laserwith four sections.Adapted from [2008].
b Reflectance of two sampled gratings DBR mirrors

refraction and subsequently the longitudinal modes. The index of refraction increases with increasing
temperature at typically ∼ 3 × 10−4 K−1. Generally, a red-shift is the consequence.

Another possibility to vary the index of refraction (and thus the optical path length) is a variation
of the carrier density. The coefficient dnr/dn is about −10−20 cm3. In a two-section laser, separate
regions (with separately controlled currents) for gain and tuning are present. The regions are separated
with deep-etched trenches to avoid crosstalk. The tuning range is limited to about 10nm. For a mode-
hopping free tuning, the control of the phase in the cavity is important and requires an additional
section for the phase control. Such a three-section laser has separate regions (and current control) for
the reflection, phase and amplification (or gain) region.

Using sampled gratings, the tuning range can be strongly increased to about 100nm. A sampled
grating is a nonperiodic lattice that has several (∼ 10) reflection peaks. The laser structure has four
sections (Fig. 23.57) with two mirrors that have slightly different sampled gratings. Via the carrier
densities in the two mirror sections, different maxima can be brought to overlap (Vernier effect) and
the position of the selected maximum can be tuned over a wide spectral range (Fig. 23.58).

23.4.13 Dynamics and Modulation

For transmission of information in the time domain, the laser intensity must be modulated. This can be
accomplished by direct modulation, i.e. modulation of the injection current, or external modulators,
for example using the voltage-induced shift of the absorption spectrum due to QCSE (cf. Sect. 15.1.2).
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(a) (b)

Fig. 23.58 a Tuning curves of two sampled gratings DBRmirrors for the front and back mirror current. b 27 wavelength
channels (1531.12 to 1551.72nm) with a channel separation of 1nm. Adapted from [2009]

For direct modulation, small- and large-signal modulation are distinguished. Detailed treatments of
laser dynamics and modulation can be found in [1993, 2010, 2011].

Laser Dynamics
The dynamical properties of the laser are described by the coupled rate equations for the carrier density
n and the photon density (per volume) S (for a single mode):

dn

dt
= j

e d
− n

τ(n)
− � g(n, S) vg S (23.40a)

dS

dt
= � g(n, S) vg S + β B n2 − S

τph
. (23.40b)

The first term in (23.40a) describes the electrical injection23 (= I/(e V )), the second one the recombi-
nation (all channels) and the third one the carrier conversion to photons through stimulated emission
via the gain g. In the photon dynamics (23.40b), the first term represents the gain term, the second one
the photons in the laser mode from the recombination (spontaneous emission, cmp. Sect. 23.4.7) and
the third term the photon loss (due to internal losses and the mirrors). The recombination rate n/τ(n)

is typically given by (23.24). The photon lifetime τph is given by (23.28). If several optical modes are
present, (23.40b) must be written down for each mode Si and (23.40a) must be summed over all modes.

For the gain, various models are used. A simple one, going beyond (23.13), considering gain
compression due to spectral hole burning, i.e. depletion of carriers due to stimulated emission, is

g(n, S) = g′ n − nthr
1 + εS S

, (23.41)

g′ being the differential gain, g′ = ∂g/∂n|S=0, and εS being the gain compression coefficient.

23This term can be multiplied by the injection efficiency ηinj to account for leakage currents.



23.4 Lasers 681

10

8

6

4

2

1
0 2 4 6 8 10

th
r

2.0 10
6.5 10
2.5 10
9.0 10
2.7 10

17

17

18

18

19

N (cm )A
-3

Fig. 23.59 Variation of turn-on delay timewith the injected current for a laser at room temperature. Adapted from [2012]
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Fig. 23.60 Schematic response of a LED to current pulse and b of laser to current step

Large-Signal Modulation
If a current pulse is fed to the laser, the laser radiation is emitted with a short time delay, the so-called
turn-on delay (TOD) time. This time is needed to build up the carrier density for inversion. The time
dependence of the density is (neglecting the density dependence of the lifetime)

n(t) = I τ

e A d

[
1 − exp

(
− t

τ

)]
. (23.42)

The TOD time to reach the threshold density (using (23.23)) is

τTOD = τ ln

(
I

I − Ithr

)
. (23.43)

We note that τTOD > 0 for I > Ithr. Such a dependence is found experimentally (Fig. 23.59). The
turn-on delay time decreases with increasing pump current but typically is at least 1ns. In order to
circumvent this limitation for more than about 1GHz pulse repetition rate, the laser is biased slightly
below threshold.

In Fig. 23.60a, the response (light emission) of a LED to a short current pulse is shown schematically.
The monotonously decreasing transient (that is more or less exponential) corresponds to the carrier
recombination dynamics. When a laser is excited with a steep (long) current pulse, the response
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Fig. 23.61 aDependence of small-signal 3dB cutoff frequency f3dB (filled symbols) and relaxation oscillation frequency
fRO (empty symbols) on the square root of the output power P for a DFB-laser. Adapted from [2013]. b Relaxation
oscillation frequency f 2RO versus power for an InAs/GaAs QD laser. The solid line is a model including gain compression
(Psat = 3.3mW), the dashed line is the linear relation (23.44) for small power. Adapted from [2014]

exhibits so-called relaxation oscillations (RO) before the steady-state (cw) intensity level is reached
(Fig. 23.60b).

In the laser, first the carrier density is built up. It surpasses the threshold density that leads to a
build-up of the photon density. The laser pulse depletes the carrier density faster below threshold than
the current can supply further carriers. Therefore, the laser intensity drops below the cw level. From
the solution of the coupled rate equations for the electron and photon densities n and S (23.40a,b), the
frequency of the relaxation oscillations is found as

fRO = 1

2π

(
vg � g′ S0

τph

)1/2

, (23.44)

where �g′ is the differential modal gain as defined in (23.41) and S0 is the steady-state photon density
per volume that is proportional to the laser power P . The dependence fRO ∝ S1/20 is also found
experimentally (Fig. 23.61a). For higher power the relation f 2RO ∝ S0 becomes non-linear (Fig. 23.61b)
due to gain compression; in this case S0 is replaced with S0/(1 + εS S0) ∝ P/(1 + P/Psat), with Psat
being the saturation power.

Pattern Response
For digital data transmission, the laser is driven with pulse sequences (bit patterns). The response to a
random bit pattern is called an ‘eye pattern’ and is shown in Fig. 23.62. The pattern consists of traces
of the type shown in Fig. 23.60b. A clear distinction with well-defined trigger thresholds between ‘on’-
and ‘off’-states can only be made if the eye formed by the overlay of all possible traces remains open.
From the eye patterns in Fig. 23.62, it can be seen that the RO overshoot can be suppressed by driving
the laser with a dc offset current well above threshold.

Small-Signal Modulation
In small-signal modulation, the injection current I is varied periodically by a small amount δ I with
δ I � I in the lasing regime. The current modulation leads to a corresponding variation of the output
intensity. The frequency response is limited by the differential gain and the gain compression coefficient.
The frequency response shifts to higher frequency with increasing laser power as shown in Fig. 23.63b.
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Fig. 23.62 Eye pattern of
a single-mode VCSEL in
response to a 10Gb/s
random bit pattern. The
patterns are measured a
with an offset current well
above threshold and b with
an offset current above but
close to threshold.
Adapted from [2015]

100 ps

Fig. 23.63 Frequency
response of a DFB-laser for
various output powers as
labeled. Adapted
from [2013]
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α Factor
Another important quantity is the α factor, also called the linewidth enhancement factor [2016, 2017].
Due to the coupling of amplitude and phase fluctuations in the laser, the linewidth  f is larger than
expected.

 f = �ω vg Rspont ln R

8π Pout L
(1 + α2) . (23.45)

The linewidth enhancement is described via (1 + α2) with

α = dnr/dn

dκ/dn
= −4π

λ

dnr/dn

g′ , (23.46)

where κ denotes the imaginary part of the index of refraction (9.4). Typical values for α are between
1 and 10. The linewidth is inversely proportional to the output power (Fig. 23.64).
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Fig. 23.64 Linewidth  f
of a cw GaAs/AlGaAs
laser diode at various
temperatures as a function
of the inverse output power
P−1
out . At room temperature

α ≈ 5. Adapted
from [2018]
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23.4.14 Surface-Emitting Lasers

Surface-emitting lasers emit their beam normal to the surface. They can be fabricated from horizontal
(edge-) emitters by reflecting the beamwith a suitablemirror into the surface direction. This technology
requires tilted facets or micro-optical components but allows for high power per area. In Fig. 23.65, a
schematic cross section of a horizontal-cavity surface-emitting laser (HCSEL) and the light emission
from an array of 220 such lasers are shown. The laser contains a 45◦ mirror that steers the light through
the substrate and a Bragg mirror to provide the cavity mirror. The facet can also be fabricated such
that the emission is to the top surface (Fig. 23.66). Another possibility to couple the beam out of a
horizontal cavity is a surface grating.

Now, surface-emitting lasers with vertical-cavity (VCSEL), as shown in Fig. 23.29b, will be dis-
cussed. A detailed treatment can be found in [2021]. VCSELs are of increasing importance after many
issues regarding their technology and fabrication have been solved. VCSEL fabrication is essentially
a planar technology and VCSELs can be fabricated as arrays (Fig. 23.68). An on-wafer test of their
properties is possible. They offer a symmetrical (or possibly a controlled asymmetrical) beam profile
(Fig. 23.67) with possible polarization control or fixation.

The cavity is formed by two highly reflecting Bragg mirrors with a distance of λ/2 or 3λ/2 forming
a microcavity (see Sect. 19.1.7). A high index contrast can be obtained fromGaAs/AlAs Bragg mirrors
in which the AlAs layers have been selectively oxidized in a hot moist atmosphere. Pure semiconductor
Bragg mirrors suffer typically from small index contrast and require many pairs. This poses a problem,

(a)

SiO2p-AlGaAs

n-AlGaAs

DBR

active
medium

n-metal

p-metal

AR

SiO2

(b)

Fig. 23.65 a Principle of a surface-emitting laser. Light generated in the active region is internally reflected by the 45◦
angled mirror and directed through the substrate; ‘AR’: antireflection coating, ‘DBR’: epitaxial Bragg mirror. b Light
emission from a 10 × 22 surface-emitting diode array. The light emission appears as stripes due to the broad beam
divergence in the vertical direction. Part b reprinted with permission from [2019]
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(a) (b) (c)

laser
ridge

Fig. 23.66 a Horizontal Fabry–Perot cavity InP-based laser with 1310nm emission length and 10mW output power
for modulation at 2.5GB/s. The right facet is formed as DBR, emission is to the left. The trapezoid area in the center
bottom of the image is the bond pad for the top contact. b Horizontal-cavity surface-emitting laser. Compared to a, the
right facet is replaced with a 45◦ mirror, leading to surface emission. c Schematic drawing of the tilted facet. Parts a and
b from [2020]

Fig. 23.67 In-plane near field of a VCSELwith 6µm oxide aperture at various currents, a 3.0mA, b, 6.2mA, c 14.7mA,
d 18mA

(a) (b)

Fig. 23.68 a, b VCSEL arrays. Part a reprinted from [2022] with permission, part b reprinted from [2023] with
permission

e.g. for InP-based VCSELs. In Fig. 23.69, the distribution of light intensity along a 3λ/2 cavity is
shown. In the stop band of the mirrors, there is only one optical mode, the cavity mode, that can
propagate along the vertical (z) direction.

The current path through the active layer can be defined with an oxide aperture. This aperture is
fabricated by selective oxidation of an AlAs layer, leaving a circular opening in the center of the
VCSEL pillar as shown in Fig. 23.70. The current can be injected through the mirrors if they are doped.
Alternatively, the current can be directly fed to the active layer by so-called intracavity contacts.

The emission wavelength of a VCSEL can be shifted via a variation of temperature or pump power.
Tuning of the VCSEL emission can also be accomplished by leaving an air gap between the cavity
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Fig. 23.69 Simulation of the longitudinal distribution of the optical field in a VCSEL structure. The active medium are
five quantum wells in the center. Reproduced from [2024] by permission from the MRS Bulletin

(a) (b)

Fig. 23.70 a Schematic cross section of VCSEL with oxide aperture, b TEM image of cross section. Reproduced from
[2024] by permission from the MRS Bulletin

and the upper mirror [2025]. Applying a voltage to the lever arm with the top mirror, the width of
the air gap can be varied. This variation leads to a shift of the cavity mode and therefore of the laser
emission wavelength (Fig. 23.71). A VCSEL with air gap and particularly a high contrast Bragg mirror
is achieved with InP/air as shown in Fig. 23.72.

23.4.15 Optically Pumped Semiconductor Lasers

An easy way to pump semiconductor lasers is optical pumping. This technique is similar to diode-
pumped solid-state lasers (DPSS). A (semiconductor) pump diode illuminates a suitable semiconductor
structure (Fig. 23.73). The resonator is built between the bottom Bragg mirror of the semiconductor
and the output coupler. The semiconductor structure contains suitable absorption layers (barriers)
that absorb the pump light and quantum wells that emit laser radiation. This radiation is intracavity
frequency doubled. In order to reach, e.g., a 488-nm output laser beam, a standard 808-nm pump
diode is employed. The InGaAs/GaAs quantum wells are designed to emit at 976nm. Other design
wavelengths of the quantumwells allow for other output wavelengths. This technology allows compact
lasers with little heat dissipation [2028]. The optically pumped semiconductor laser (OPSL) is also
known as a semiconductor disc laser.
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Fig. 23.71 a Schematic setup and b SEM image of VCSEL with air gap between active layer and top Bragg mirror, c
spectra for different tuning conditions (via the width of the air gap). From [2026]

Fig. 23.72 a VCSEL with air gap and b Bragg mirror with high dielectric contrast InP/air interfaces. Reprinted with
permission from [2027], ©2002 IEEE
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Fig. 23.73 a Schematic setup of optically pumped semiconductor laser (OPSL). The semiconductor chip consists of a
Bragg mirror on the bottom, multiple quantum wells and an antireflection coating on the top. Adapted from [2028]. b
OPSL source (488nm, 20mW, footprint: 125 × 70mm2). Reprinted with permission from [2029]
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Fig. 23.74 a Schematic band diagram of quantum cascade laser. b Cross sectional TEM of cascade layer sequence. The
periodicity of the vertical layer sequence is 45nm. From [2030]. cLaser emissionwavelengths and operation temperatures
for various realized quantum cascade lasers (squares: cw, circles: pulsed operation, solid symbols: InP-, empty symbols:
GaAs-based). Data from [2031]. d SEM image of a quantum cascade DFB laser (grating period: 1.6µm). From [2031]

23.4.16 Quantum Cascade Lasers

In a quantum cascade laser (QCL), the gain stems from an intersubband transition. The concept was
conceived in 1971 [145, 2032] and realized in 1994 [149]. In Fig. 23.74a, the schematic conduction-
band structure at operation is shown. The injector supplies electrons into the active region. The electron
is removed quickly from the lower level in order to allow inversion. The electron is then extracted into
the next injector. The laser medium consists of several such units as shown in Fig. 23.74b. Since every
unit can deliver a photon per electron (with efficiency η1), the total quantum efficiency of N units
η = N η1 can be larger than 1.

The emission wavelength is in the far- or mid-infrared, depending only on the designed layer
thicknesses and not on the band gap of thematerial (Fig. 23.74d). In themid-infrared, room-temperature
operation has been achieved while operation in the far-infrared requires cooling so far. Extensions to
the THz-range and the infrared spectral region (telecommunication wavelengths of 1.3 and 1.55µm)
seem feasible. The cascade laser concept can also be combined with the DFB technology to create
single-mode laser emission (Fig. 23.74d).

23.4.17 Hot-Hole Lasers

The hot-hole laser, which is mostly realized with p-doped Ge, is based on a population inversion
between the light- and heavy-hole valence subbands. The laser operates with crossed electric and
magnetic fields (Voigt configuration, typically E = 0.5–3kV/cm, B = 0.3–2T) and at cryogenic
temperatures (T = 4–40K) [2033–2035].
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Fig. 23.75 Schematic
cycle of hole motion in a
hot-hole laser. Filled
(empty) circles represent
populated (unpopulated)
hole states. The solid lines
represent streaming motion
of heavy hole, the dashed
line represents scattering
into the light hole band.
Arrows denote radiative
intervalence-band
transitions

h ph

kEV

hhlh

A significant scattering process of hot carriers is interaction with optical phonons, mainly optical
phonon emission. This process has a threshold in carrier energy given by the optical phonon energy.
For sufficiently high electric fields and at low temperature, hot carriers accelerate without acoustical
phonon interaction (ballistic transport) along the crystallographic direction in which the electric field
is applied. These hot carriers reach the optical phonon energy and lose all their energy due to emission
of an optical phonon. They accelerate again, repeating this directional motion in momentum space.
This motion is called streaming motion.

For |E/B| ratios of about 1.5kV/cmT, the heavyholes are accelerated up to energies above the optical
phonon energy (37meV in germanium) and consequently are scattered strongly by these phonons.
Under these conditions, a few per cent of the heavy holes are scattered into the light-hole band. The
light holes remain at much lower energies and are accumulated at the bottom of the light-hole band
below the optical phonon energy as sketched in Fig. 23.75. The continuous pumping of heavy holes
into the light-hole band can lead to a population inversion. Consequently, laser radiation is emitted
from optical (radiative) intervalence-band transitions (cf. Sect. 9.9.3). The emission wavelength is in
the far-infrared around 100µm. Typical p-Ge lasers span the frequency range 1–4THz (300–70µm)
[2036] and deliver 1–10W peak output power for 1cm3 typical active volume.

Since the applied electric field causes considerable heating, the temperature of the laser crystal rises
quickly, within a few µs, up to 40K. Then the laser action stops. Thus the duration of the electric-field
excitation is limited to 1–5µs (limiting the emission power) and the repetition frequency is only a
few Hertz due to the necessary cooling. Research is underway towards high duty cycle (possibly cw)
operation by using smaller volumes and planar vertical-cavities [2037, 2038].

23.5 Semiconductor Optical Amplifiers

If the facets of a laser cavity are antireflection coated, a laser gain medium can be used as a semicon-
ductor optical amplifier (SOA). A textbook on this subject is [2039]. Optical feedback from facets can
also be avoided using tilted facets [2040].

A tapered amplifier geometry, as shown in Fig. 23.76a, allows for laterally monomode input and a
preservation of the lateral beam quality during the propagation of the optical wave through the gain
medium. The active medium is an 8-nm compressively strained InGaAs quantum well. A typical taper
angle is 5–10◦. The input aperture is between 5 and 7µm. The amplifier length is 2040µm. More
than 20dB optical amplification can be obtained (Fig. 23.76b). The self-oscillation is suppressed for
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Fig. 23.76 a Schematic geometry of tapered semiconductor amplifier. b Optical output power versus amplifier current
for various values of the optical input power, taper angle was 5◦. For zero input power only spontaneous and amplified
spontaneous emission is observed. Reprinted with permission from [2041]

Fig. 23.77 Photographs of a MOPA arrangement of a laser (master oscillator, ‘MO’), glass lens and tapered amplifier
(power amplifier, ‘PA’) on a silicon micro-optical ‘bench’. Reprinted with permission from [2042]

currents up to 2AbyAR facet coating of 10−4 in a 70nmband. Thewall-plug efficiency of the discussed
amplifier is up to over 40%. If such an amplifier is arranged together with a seed laser diode (master
oscillator), the setup is called MOPA (master oscillator power amplifier), as shown in Fig. 23.77. A
modulated input also leads to a modulated output.

Quantum dot arrays can be a useful gain medium in a SOA [2043, 2044] due to their fast gain
dynamics [2045] and broad spectrum (Sect. 23.3.6).



Chapter 24
Transistors

Frequently, I have been asked if an experiment I have planned is pure or applied
research; to me it is more important to know if the experiment will yield new and
probably enduring knowledge about nature. If it is likely to yield such knowledge, it
is, in my opinion, good fundamental research; and this is much more important than
whether the motivation is purely esthetic satisfaction on the part of the experimenter
on the one hand or the improvement of the stability of a high-power transistor on the
other.

W.B. Shockley [2046, 2047]

Abstract The device functionalities of bipolar, heterobipolar and field effect transistors (JFET, MES-
FET andMOSFET) are explained.Within physical models for drift, diffusion and recombination given
earlier in the book, the characteristics of these devices are derived. Remarks on integrated circuits,
miniaturization and thin film transistors finish this chapter.

24.1 Introduction

Transistors1 are the key elements for electronic circuits such as amplifiers, memories and micropro-
cessors. Transistors can be realized in bipolar technology (bipolar junction transistor (BJT), Sect. 24.2)
or as unipolar devices using the field effect (field-effect transistor (FET), Sect. 24.3) [574, 2048]. The
equivalent in vacuum-tube technology to the transistor is the triode (Fig. 24.1a). Transistors can be
optimized for their properties in analog circuits such as linearity and frequency response or their prop-
erties in digital circuits such as switching speed and power consumption. Transistors for microwave
applications are discussed in [1815]. Early commercial models are shown in Fig. 24.2.

24.2 Bipolar Transistors

Bipolar transistors consist of a pnp or npn sequence (Fig. 24.3). The layers (or parts) are named emitter
(highly doped), base (thin, highly doped) and collector (normal doping level). The transistor can be
considered to consist of two diodes (emitter–base and base–collector) back to back. However, the

1The term ‘transistor’ was coined from the combination of ‘transconductance’ or ‘transfer’ and ‘varistor’ after initially
such devices were termed ‘semiconductor triodes’. Themajor breakthroughwas achieved in 1947when the first transistor
was realized that showed gain (Figs. 1.9 and 24.1b).
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(a) (b)

emitter

base

collector

Fig. 24.1 a Schematic image of a vacuum triode. The electron current flows from the heated cathode to the anode when
the latter is at a positive potential. The flow of electrons is controlled with the grid voltage. b Bell Laboratories’ first
(experimental) transistor, 1947

(a) (b)

Fig. 24.2 a First commercial, developmental (point contact) transistor from BTL (Bell Telephone Laboratories) with
access holes for adjustment of the whiskers pressing on a piece of Ge, diameter 7/32"=5mm, 1948. b First high-
performance silicon transistor (npn mesa technology), model 2N697 from Fairchild Semiconductor, 1958 (at $200, in
1960 $28.50). The product number is still in use (now $0.95)

(a)

p++ n+ p
IE IC

IB

emitter collector
base

(b)

n++ p+ n
IE IC

IB

emitter collector
base

Fig. 24.3 Schematic structure and circuit symbol for a pnp and b npn transistors

important point is that the base is sufficiently thin (in relation to its minority carrier diffusion length)
and carriers from the emitter (which areminority carriers in the base) can dominantly reach the collector
by diffusion.

In Fig. 24.4, the three basic circuits with a transistor are shown. They are classified by the common
contact for the input and output circuit. The space charges and band diagram for a pnp transistor in the
base circuit configuration are depicted in Fig. 24.5. The emitter–base diode is switched in the forward
direction to inject electrons into the base. The base–collector diode is switched in the reverse direction.
The electrons that diffuse through the base and reach the neutral region of the collector were transported
by the high drift field away from the base.
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Fig. 24.4 Basic transistor circuits, named after the common contact: a Common base circuit, b common emitter circuit
and c common collector circuit

Fig. 24.5 pnp transistor in
a base circuit. b Doping
profile and space charges
(abrupt approximation) and
c band diagram for typical
operation conditions (a)
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24.2.1 Carrier Density and Currents

Themodeling of transistors is a complex topic.We treat the transistor on the level of the abrupt junction.
As an approximation, we assume that all voltages drop at the junctions. Series resistances, capacities
and stray capacities and other parasitic impedances are neglected at this point.

The major result is that the emitter–base current from the forward-biased emitter–base diode will be
transferred to the collector. The current flowing from the base contact is small compared to the collector
current. This explains the most prominent property of the transistor, the current amplification.

For the neutral part of the base region of a pnp transistor, the stationary equations for diffusion and
continuity are

0 = DB
∂2 p

∂x2
− p − pB

τB
(24.1a)

jp = −eDB
∂ p

∂x
(24.1b)
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jtot = jn + jp , (24.1c)

where pB is the equilibrium minority carrier density in the base. From the discussion of the pn-
diode, we know that at the boundary of the depletion layer the minority carrier density is increased
by exp(eV/kT ) (cf. (21.102a,b)). At the boundaries of the emitter–base diode (for geometry see
Fig. 24.5a)

δ p(0) = p(0) − pB = pB
[
exp (βVEB) − 1

]
(24.2a)

δn(−xE) = n(−xE) − nE = nE
[
exp (βVEB) − 1

]
, (24.2b)

where nE and pB are the equilibrium minority-carrier densities in the emitter and base, respectively.
Accordingly, at the boundaries of the base–collector diode we have

δ p(w) = p(w) − pB = pB
[
exp (βVCB) − 1

]
(24.3a)

δn(xC) = n(xC) − nC = nC
[
exp (βVCB) − 1

]
. (24.3b)

These are the boundary conditions for the diffusion equations in the p-doped layers and in the neutral
region of the n-doped base. For the p-layers (with infinitely long contacts), the solution is (similar to
(21.128)) for x < −xE and x > −xC, respectively

n(x) = nE + δn(−xE) exp

(
x + xE
LE

)
(24.4a)

n(x) = nC + δn(xC) exp

(
− x − xC

LC

)
. (24.4b)

LE and LC are the minority carrier (electron) diffusion lengths in the emitter and collector, respectively.
The solution for the hole density in the neutral region in the base (0 < x < w) is

p(x) = pB +
[
δ p(w) − δ p(0) exp (−w/LB)

2 sinh (w/LB)

]
exp

(
x

LB

)
(24.5)

−
[
δ p(w) − δ p(0) exp (w/LB)

2 sinh (w/LB)

]
exp

(
− x

LB

)
.

We shall denote the excess hole density at x = 0 and x = w as δ pE = δ p(0) and δ pC = δ p(w),
respectively. Typical (‘normal’) operation condition in the common base circuit is that δ pC = 0
(Fig. 24.8a). In the ‘inverted’ configuration, the role of emitter and collector are reversed and δ pE = 0.
We can write (24.5) also as

p(x) = pB + δ pE
sinh[(w − x)/LB]

sinh [w/LB]
+ δ pC

sinh [/LB)]
sinh [w/LB]

. (24.6)

If the base is thick, i.e. w → ∞, or at least large compared to the diffusion length (w/LB � 1), the
carrier concentration is given by

p(x) = pB + δ p(0) exp

(
− x

LB

)
(24.7)

and does not depend on the collector. In this case there is no transistor effect. A ‘coupling’ between
emitter and collector currents that are given by the derivative ∂ p/∂x at 0 and w, respectively, is only
present for a sufficiently thin base.
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From (24.6), the hole current densities at x = 0 and x = w are given as2

jEp = jp(0) = e
DB

LB

[
δ pE coth

(
w

LB

)
− δ pC csch

(
w

LB

)]
(24.8a)

jCp = jp(w) = e
DB

LB

[
δ pE csch

(
w

LB

)
− δ pC coth

(
w

LB

)]
. (24.8b)

From (24.4a,b), the electron current densities at x = −xE and x = xC are given (with δnE = δn(−xE)
and δnC = δn(xC)) by

jEn = jn(−xE) = e
DE

LE
δnE (24.9a)

jCn = jn(xC) = −e
DC

LC
δnC . (24.9b)

The emitter current density is (similar to (21.131))

jE = jp(0) + jn(−xE)

= e
DB

LB

[
δ pE coth

(
w

LB

)
− δ pC csch

(
w

LB

)]
+ e

DE

LE
δnE . (24.10)

The collector current density is given as

jC = jp(w) + jn(xC)

= e
DB

LB

[
δ pE csch

(
w

LB

)
− δ pC coth

(
w

LB

)]
− e

DC

LC
δnC . (24.11)

In these equations, only the diffusion currents are considered. Additionally, the recombination currents
in the depletion layers must be considered, in particular at small junction voltages.

24.2.2 Current Amplification

The emitter current consists of two parts, the hole current IpE injected from the base and the electron
current InE that flows from the emitter to the base (Fig. 24.5a). Similarly, the collector current is made
up from the hole and electron currents IpC and IpC, respectively.

The total emitter current splits into the base and collector currents

IE = IB + IC . (24.12)

The amplification (gain) in common base circuits

α0 = hFB = ∂ IC
∂ IE

= ∂ IEp
∂ IE

∂ ICp
∂ IEp

∂ IC
∂ ICp

= γ αT M , (24.13)

2coth x ≡ cosh x/ sinh x , cschx ≡ 1/ sinh x .
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where γ is the emitter efficiency, αT the base transport factor and M the collector multiplication factor.
Since the collector is normally operated below the threshold for avalanche multiplication, M = 1.

The current amplification in the common emitter circuit is

β0 = hFE = ∂ IC
∂ IB

. (24.14)

Using (24.12), we find

β0 = ∂ IE
∂ IB

− 1 = ∂ IE
∂ IC

∂ IC
∂ IB

− 1 = 1

α0
β0 − 1 = α0

1 − α0
. (24.15)

Since α0 is close to 1 for a well-designed transistor, β0 is a large number, e.g. β0 = 99 for α0 = 0.99.
The emitter efficiency is (A denotes the device area)

γ = A jEp
IE

=
[
1 + nE

pB

DE

DB

LB

LE
tanh

(
w

LB

)]−1

. (24.16)

The base transport factor, i.e. the ratio of minority carriers reaching the collector and the total number
of injected minority carriers, is (for reverse bias |βUCB| � kT )

αT = jCp
jEp

= exp(βUEB) − 1 + coshw/LB

1 + (exp(βUEB) − 1) coshw/LB

≈ 1

cosh (w/LB)
≈ 1 − w2

2L2
B

. (24.17)

The first approximation is for βUEB � 1 (emitter diode injecting in forward direction), the second
approximation is for w � LB. If the base length is a tenth of the diffusion length, the base transport
factor is αT > 0.995. M is also very close to 1; for reverse bias UCB and w � LB we find

M ≈ 1 + w

LC

DC

DB

δnC
δ pC − δ pE

≈ 1 + w

LC

DC

DB

nC
pB

exp(−βUEB) . (24.18)

Thus for w � LB, α0 is dominated by γ and given as (approximating (24.16))

α0 ≈ γ ≈ 1 − w

LE

nE
pB

DE

DB
. (24.19)

The gain β0 is then also determined by γ:

β0 = hFE ≈ γ

1 − γ
≈ 1

1 − γ
∝ NE

NB

LE

w
, (24.20)

NE and NB being the doping levels in the emitter and base, respectively. The base and collector
current are shown in Fig. 24.6 as a function of the emitter–base voltage, i.e. the voltage at the injection
diode. The collector current is close to the emitter–base diode current and displays a dependence
∝ exp(eVEB/kT ). The base current shows a similar slope but is orders of magnitude smaller in
amplitude. For small forward voltages of the emitter–base diode, the current is typically dominated by
a nonradiative recombination current that flows through the base contact and has an ideality factor (m
in Fig. 24.6) close to 2.
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Fig. 24.6 Collector
current IC and base current
IB as a function of the
emitter–base voltage VEB
(Gummel plot). Adapted
from [2049]
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24.2.3 Ebers-Moll Model

The Ebers-Moll model (Fig. 24.7) was developed in 1954 and is a relatively simple transistormodel that
needs, at its simplest level (Fig. 24.7a) just three parameters. It can (andmust) be refined (Figs. 24.7b,c).
The model considers two ideal diodes (‘F’ (forward) and ‘R’ (reverse)) back to back, each feeding a
current source. The F diode represents the emitter–base diode and and the R diode the collector–base
diode. The currents are

IF = IF0
[
exp (βVEB) − 1

]
(24.21a)

IR = IR0
[
exp (βVCB) − 1

]
. (24.21b)

Using (24.8a,b)–(24.11), the emitter and collector currents are

IE = â11
[
exp (βVEB) − 1

] + â12
[
exp (βVCB) − 1

]
(24.22a)

IC = â21
[
exp (βVEB) − 1

] + â22
[
exp (βVCB) − 1

]
, (24.22b)

with

â11 = eA

[
pB

DB

LB
coth

(
w

LB

)
+ nE

DE

LE

]
(24.23a)

â12 = −eApB
DB

LB
csch

(
w

LB

)
(24.23b)

â21 = eApB
DB

LB
csch

(
w

LB

)
= −â12 (24.23c)

â22 = −eA

[
pB

DB

LB
coth

(
w

LB

)
+ nC

DC

LC

]
. (24.23d)

The currents at the three contacts are

IE = IF − αI IR (24.24a)
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Fig. 24.7 Ebers-Moll
model of a transistor, ‘E’:
emitter, ‘C’: collector and
‘B’: base. Currents are
shown for a pnp transistor.
a Basic model (grey area in
b, c), b model with series
resistances and
depletion-layer
capacitances, c model
additionally including the
Early effect (VA: Early
voltage)

(a)

(b)

(c)

IC = αN IF − IR (24.24b)

IB = (1 − αN)IF + (1 − αI)IR . (24.24c)

The last equation is obtained from (24.24a,b) using (24.12). By comparison with (24.21a,b) and
(24.23a–d) we find

IF0 = â11 (24.25a)

IR0 = −â22 (24.25b)

αI = â12/IR0 (24.25c)

αN = â21/IF0 = −â12/IF0 = −αI IR0/IF0 . (24.25d)

The constants αN and αI are the forward (‘normal’) (αN = α0 from (24.13)) and reverse (‘inverted’)
gains in the common base circuit, respectively. Both constants are larger than zero. Typically, αN ≈
0.98 . . . 0.998 � 1 and αI ≈ 0.5 . . . 0.9 < αN. The model has three independent parameters, e.g. αN,
IF0 and IR0. Equations (24.24a,b) can be rewritten as
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IE = αI IC + (1 − αI αN) IF (24.26a)

IC = αN IE − (1 − αI αN) IR . (24.26b)

Under normal operation we have

IE = IF (24.27a)

IC = αN IE . (24.27b)

The model can be refined and made more realistic by including the effect of series resistances and
depletion-layer capacitances, increasing the number of parameters to eight. The Early effect (see next
section) can be included by adding a further current source. This level is the ‘standard’ Ebers-Moll
model with a total of nine parameters. Further parameters can be added. However, as is always the
case with simulations, there is a tradeoff between the simplicity of the model and to what detail a real
situation is approximated.

24.2.4 Current–Voltage Characteristics

In Fig. 24.8, the hole density in the base (of a pnp transistor) is shown for various voltage conditions.
In Fig. 24.9, the I–V characteristics of a bipolar transistor in common base and common collector
circuit are shown. In the common base circuit (Fig. 24.9a), the collector current is practically equal
to the emitter current and is almost independent of the collector–base voltage. From (24.26b), the
dependence of the collector current on the collector–base voltage is given (within the Ebers-Moll
model) as

IC = αN IE − (1 − αIαN)IR0
[
exp (βVCB) − 1

]
. (24.28)

VCB is in the reverse direction. Therefore, the second term is zero for normal operating conditions.
Since αN � 1, the collector current is almost equal to the emitter current.

Even at VCB = 0 (the case of (Fig. 24.8c), holes are extracted from the base since ∂ p/∂x |x=w > 0.
A small forward voltage must be applied to the collector–base diode in order to make the current zero,

Fig. 24.8 Hole density
(linear scale) in the base
region (the neutral part of
the base ranges from 0 to
w) of a pnp transistor for
various voltages. a normal
voltages, VCB = const. and
various VEB (in forward
direction). b VEB = const.
and various values of VCB.
c Various values of
VEB > 0, VCB = 0. d Both
pn-junctions in forward
direction. e Conditions for
IC0 and I ′

C0. f both
junctions in reverse
direction. Adapted
from [574]
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Fig. 24.9 Characteristics (IC vs. VCB) of a pnp transistor in a common base (CB) circuit (Fig. 24.4a) for various values
of the emitter current as labeled. Adapted from [2050]. b Characteristics in common emitter (CE) circuit (Fig. 24.4b).
Adapted from [2051]

i.e. ∂ p/∂x |x=w = 0 (Fig. 24.8d). The collector saturation current IC0 is measured with an open emitter
side. This current is smaller than the saturation current of the CB diode, since at the emitter side of
the basis a vanishing gradient of the hole density is present (Fig. 24.8e). This reduces the gradient (and
thus the current) at the collector side. The current IC0 is therefore smaller than the collector current
for shorted emitter–base contact (VEB = 0). At high collector voltage, the current increases rapidly at
BVCB0 due to breakdown of the collector–base diode. It can also occur that the width of the neutral
base regionw becomes zero (punch-through). In this case, the emitter and collector are short-circuited.

In the common emitter circuit (Fig. 24.9b), there is a high current amplification IC/IB. Note that the
collector current is given in mA and the base current in µA. The current increases with increasing VCE

because the base width w decreases and β0 increases. There is no saturation of the I–V characteristics
(Early effect [2052]). Instead, the I–V curves look as if they start at a negative collector–emitter
voltage, the so-called Early voltage VA. In the linear regime, the characteristic can be approximated by

IC =
(
1 + VCE

VA

)
β0 IB . (24.29)

Here, β0 is the current gain for VCE ≈ 0.
The physical reason for the increase of the collector current with increasing VCE is the increasing

reverse voltage at the collector–base diode that causes the so-called ‘base-width modulation’, as shown
in Fig. 24.8b. The expansion of the CB depletion layer leads subsequently to a reduction of the neutral
base width w. w will be smaller and smaller compared to the geometrical base width wB. When w

is reduced, the common base gain α0 (24.19) becomes closer to 1 and the current gain increases.
Therefore, the collector current increases with VCE for a given (fixed) base current. The Early voltage
is the coefficient of the increase of collector current with VCE,

β0 IB
VA

= ∂ IC
∂VCE

= ∂ IC
∂VCB

∂VCB

∂VCE
≈ ∂ IC

∂VCB
. (24.30)

For constant base current, the emitter-base voltage is almost constant and the approximation in (24.30)
holds. The dependence of the CB depletion layer width on the base side xnC onUCB is given by (21.110a)
for a pnp-transistor. Typical values for the Early voltage are 50–300V. The modeling of the Early effect
in the SPICE simulation program is discussed in [2053].
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For small collector–emitter voltage, the current quickly drops to zero. VCE is typically split in such
a way that the emitter–base diode is well biased forward and the CB diode has a high reverse voltage.
If VCE drops below a certain value (≈ 1V for silicon transistors), there is no longer any bias at the CB
diode. A further reduction of VCE biases the CB diode in the forward direction and quickly brings the
collector current down to zero.

24.2.5 Basic Circuits

24.2.5.1 Common Base Circuit

In the common base configuration, there is no current amplification since the currents flowing through
emitter and base are almost the same. However, there is voltage gain since the collector current causes
a large voltage drop across the load resistor.

24.2.5.2 Common Emitter Circuit

The input resistance of the common emitter circuit (Fig. 24.10b) depends on the emitter–base diode
and varies between a value of the order of 100k� at small current and a few � at larger current and
high VEB. The voltage gain is

rV = VCE

VEB
= IC

VEB
RL , (24.31)

where RL is the load resistance in the output circuit (see Fig. 24.4b). The ratio gm = IC/VEB is called
the forward transconductance. Also, the differential transconductance g′

m = ∂ IC/∂VEB is used. The
voltage gain of the common emitter circuit is typically 102–103. Since current and voltage are amplified,
this circuit has the highest power gain.

If the input voltage VEB is increased, the collector current rises. This increase causes an increase of
the voltage drop across the load resistance RL and a decrease of the output voltage VCE. Therefore, the
phase of the input signal is reversed and the amplifier is inverting.

(a) (b) (c)

Fig. 24.10 a Common base, b common emitter and c common collector circuits with external loads
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24.2.5.3 Common Collector Circuit

In Fig. 24.10c, the collector is connected to mass for alternating currents. Input and output current
flow through the load resistance at which part of the input voltage drops. The input voltage is divided
between the load resistor RL and the emitter–base diode. At the transistor, the voltage VBE = V1 −VRL

is applied. If the input voltage (V1 = VBC) is increased, I2 increases. This leads to a larger voltage drop
at the load resistor and therefore to a decrease of VBE, working against the original increase. The input
resistance R1 is large despite a small load resistance, R1 ≈ β0RL. The input voltage is larger than VRL,
thus no voltage gain occurs (actually it is a little smaller than 1). The current amplification is (β + 1).
The output resistance R2 is small, R2 = V2/I2 = RL ≈ R1/β0. Therefore, this circuit is also called an
impedance amplifier that allows high-impedance sources to be connected low-impedance loads. Since
an increase of the input voltage leads to an increase of the output voltage that is present at the emitter,
this circuit is a direct amplifier and is also called an emitter follower.

24.2.6 High-Frequency Properties

Transistors for amplification of high-frequency signals are typically chosen as npn transistors since
electrons, theminority carriers in the base, have highermobility than holes. The active area and parasitic
capacitance must be minimized. The emitter is formed in the shape of a stripe, nowadays in the 100nm
regime. The base width is in the 10nm range. High p-doping of GaAs with low diffusion of the dopant
is accomplished with carbon. Defects that would short emitter and collector at such thin base width
must be avoided.

An important figure of merit is the cutoff frequency fT for which hFE is unity in the common emitter
configuration. The cutoff frequency is related to the emitter–collector delay time τEC by

fT = 1

2π τEC
. (24.32)

The delay time is determined by the charging time of the emitter–base depletion layer, the base capac-
itance, and the transport through the base–collector depletion layer. It is favorable if all times are short
and similar. It does not help to minimize only one or two of the three processes since the longest time
determines the transistor performance.

Another important figure of merit is the maximum frequency with which the transistor can oscillate
in a feedback circuit with zero loss. This frequency is denoted by fmax. Approximately,

fmax 

√

fT
8π RB CCB

, (24.33)

where RB is the base resistance and CCB is the collector–base capacitance. fmax is larger than fT, by a
factor of the order of three.

24.2.7 Heterojunction Bipolar Transistors

In a heterojunction bipolar transistor (HBT), the emitter–base diode is formed with a heterostructure
diode. The desired functionality is obtained when the emitter is made from the higher-bandgapmaterial
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Fig. 24.11 Schematic
band diagram of a
heterojunction bipolar
transistor

emitter base collector

EV

EC
Fn

Fn

Fp

n-Al Ga Asx 1-x p-GaAs n-GaAs

and the base from the lower-bandgap material. The schematic band diagram is shown in Fig. 24.11
(see Fig. 21.59c for the emitter–base diode).

The higher discontinuity in the valence band, compared to a homojunction with the base material,
provides a higher barrier for hole transport from the base to the emitter. Thus, the emitter efficiency is
increased. Another advantage is the possibility for higher doping of the base without loss of emitter
efficiency. This reduces the base series resistance and leads to better high-frequency behavior due to
higher current gain and a smaller RC time constant. Also, operation at higher temperature is possible
when the emitter has a larger band gap. Current InP/InGaAs-based HBTs have cutoff frequencies
beyond 30GHz, SiGe-HBTs beyond 80GHz. The high-frequency performance is influenced by the
velocity-overshoot effect (cf. Sect. 8.4.3) [2054].

In Fig. 24.12, an InAlAs/InGaAs HBT is shown [2056]. The cutoff frequency is 90GHz. For the
layer design, a fairly thick collector with low doping was chosen. This design allows a broad depletion
layer with fairly small maximum electric field and thus a high breakdown voltage of BVCE0 > 8.5V.
The base is not too thin (80 instead of maybe 60nm) to reduce the series resistance. A graded region
between emitter and base was chosen to avoid a spike occurring in the conduction band (Fig. 21.59b)
and keep the turn-on voltage low.

24.2.8 Light-Emitting Transistors

The base current has two components. One is the recombination current in the neutral region of the
emitter; this current can be suppressed in the HBT. The other is the recombination in the base region
itself.3 If quantum wells are introduced into the base region, this recombination can occur radiatively
between electrons and holes captured into the quantum well (Fig. 24.13). The spectrum exhibits two
peaks from the QWs and the GaAs barrier.

24.3 Field-Effect Transistors

Next to the bipolar transistors, the field-effect transistors (FET) are another large class of transistors.
FETs were historically conceptualized first but due to technological difficulties with semiconductor

3Also, a recombination current in the emitter–base depletion region is possible. However, since in normal operating
conditions this diode is forward biased, the depletion layer is short and the associated recombination current is small, cf.
p. 614.
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Fig. 24.12 a Schematic layout of a high-frequency HBT and SEM images b without and c with contacts. d Epitaxial
layer sequence and e static performance data. Parts a, b from [2055], parts d, e from [2056]

surfaces, realized second. The principle is fairly simple: A current flows through a channel from source
to drain. The current is varied via the channel conductivity upon the change of the gate voltage. The
gate needs to make a nonohmic contact to the semiconductor. Since the conductivity in the channel is
a property related to the majority charge carriers, FETs are called unipolar transistors. FETs feature a
higher input impedance than bipolar transistors, a good linearity, and a negative temperature coefficient
and thus a more homogeneous temperature distribution. According to the structure of the gate diode
we distinguish JFETs, MESFETs and MOSFETs, as discussed in the following:

In the junction FET (JFET), the variation of channel conductivity is accomplished via the extension
of the depletion layer of the pn-junction formed by the gate and the channel material (Fig. 24.14a).
The JFET was analyzed by Schottky in 1952 [108] and realized by Dacey and Ross in 1953 [109]. The
JFET can be made with a heterostructure gate to improve the frequency response.
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Fig. 24.13 Microscopic image of an InGaP/GaAs HBT with two 5-nm InGaAs/GaAs QWs in the 30-nm wide base at a
zero base current and b at 1mA base current in the common emitter configuration with Si CCD image of light emission.
c Schematic band diagram of a HBT with a single InGaAs/GaAs quantum well in the base. Parts a, b from [2057], part
c adapted from [2057]
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Fig. 24.14 a Shockley’s model of a JFET. The dashed line represents the middle of the symmetric channel of total
thickness 2a. The light grey area is the depletion layer with thickness h. The gate length is L . The dark grey areas are
ohmic metal contacts. Based on [109]. b Scheme of a MOSFET with channel length L and oxide thickness d. The dark
grey areas are ohmic metal contacts. Adapted from [574]

In a MESFET, a metal–semiconductor diode (Schottky diode) is used as rectifying contact instead
of a pn-diode. Otherwise, the principle is the same as that of the JFET. After the proposal by Mead in
1966 [135], the first (epitaxial) GaAs MESFET was realized by Hooper and Lehrer in 1967 [138]. The
MESFET offers some advantages, such as the fabrication of the metal gate at lower temperature than
necessary for the (diffusion or epitaxy of the) pn-diode, lower resistance, good thermal contact.

In aMISFET, the gate diode is a metal–insulator–semiconductor diode (Fig. 24.14b). If the insulator
is an oxide, the related FET is aMOSFET.When the gate is put at a positive voltage (for a p-channel), an
inversion layer is formed close to the insulator–semiconductor interface. This layer is an n-conducting
channel allowing conduction between the two oppositely biased pn-diodes. It can carry a high current.
The MOSFET was theoretically envisioned early by Lilienfeld in 1925 [55] and realized only in 1960
by Kahng and Atalla [121].
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FETs come in ‘n’ and ‘p’ flavors, depending on the conductivity type of the channel. For high-
frequency applications, typically an n-channel is used due to the higher mobility or drift velocity. In
CMOS (complementary MOS) technology, both n-FETs and p-FETs are integrated in high density,
allowing the effective realization of logic gates with minimized power consumption.

24.4 JFET and MESFET

24.4.1 General Principle

The principal characteristic of a JFET is shown in Fig. 24.15. At VD = 0 and VG = 0, the transistor
is in thermodynamic equilibrium and there are no net currents. Underneath the gate diode, a depletion
layer is present. If for zero gate voltage the source–drain voltage is applied to the channel, the current
increases linearly. The positive voltage at the drain contact causes the expansion of the depletion layer
of the (reversely biased) gate–drain pn-diode.When the two (the upper and the lower) depletion regions
meet (pinch-off), the current saturates. The respective source–drain voltage is denoted as VD,sat. For
high gate–drain (reverse) voltage VD, breakdown occurs with a strong increase of the source–drain
current. A variation of the gate voltage VG leads to a variation of the source–drain current. A reverse
voltage leads to a reduction of the saturation current and saturation at lower source–drain voltage. For
a certain gate voltage VP, the pinch-off voltage, no current can flow in the channel any longer since
pinch-off exists even for VD = 0.

24.4.2 Static Characteristics

Here, we will calculate the general static behavior outlined in the previous section. We assume a long
channel (L � a), the abrupt approximation for the depletion layer, the gradual channel approximation,
i.e. the depletion layer depth changes slowly along x , and a field-independent, constant mobility. In
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Fig. 24.15 a Principal characteristics of a JFET. The channel current ID is shown as a function of the source–drain
voltage VD for three different values of the (absolute value of the) gate voltage VG. The saturation values VD,sat and ID,sat
are indicated for one curve. The intersections with the dash-dotted line yield the saturation voltage. Adapted from [574].
b Transfer behavior of a JFET for two different carrier distributions, homogeneous (solid line) and δ-like (dashed line).
The blue, dash-dotted line is

√
ID/IP vs. the gate voltage. After [2058, 2059]
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this case, the two-dimensional Poisson equation for the potential distribution V can be used by solving
it along the y direction (channel depth) for all x-positions (adiabatic approximation),

∂2 V

∂y2
= −ρ(y)

εs
. (24.34)

The geometry is shown in the inset of Fig. 24.15b.
The depth h of the depletion layer in the abrupt approximation is given by (cf. (21.111), reverse

voltages are counted as positive here)

h =
√

2εs
eND

(Vbi + VG + V (x)) . (24.35)

Here, we have assumed homogeneous doping, i.e. ND does not depend on y (or x). The built-in voltage
(for a p+n gate diode) is given by Vbi = β−1 ln(ND/ni) (21.101a). The voltage V is the applied source–
drain voltage in relation to the source. The depth of the depletion layer at x = 0 (source) and x = L
(drain) is given by

y1 = h(0) =
√

2 εs

e ND
(Vbi + VG) (24.36a)

y2 = h(L) =
√

2 εs

e ND
(Vbi + VG + VD) . (24.36b)

The maximum value of h is a. Therefore, the pinch-off voltage VP, at which VP = Vbi + VG + VD is
such that h = a, is given by

VP = e ND a2

2 εs
. (24.37)

The (drift) current density along x is given by (cf. (8.54a))

jx = −e ND μn Ex = e ND μn
∂V

∂x
(24.38)

for the neutral part of the semiconductor. Therefore, the current in the upper half of the channel is
given by

ID = e ND μn
∂V (x)

∂x
Z [a − h(x)] , (24.39)

where Z is the width of the channel (Fig. 24.14a). Although it seems that ID depends on x , it is of
course constant along the channel due to Kirchhoff’s law.4 Using the triviality

∫ L
0 IDdx = L ID and

∂V
∂x = ∂V

∂h
∂h
∂x with ∂V

∂h = eNDh/εs from (24.35), we find from (24.39)

ID = e2 μn N 2
D Z a3

6 εs L

[
3

a2
(
y22 − y21

) − 2

a3
(
y31 − y32

)]
. (24.40)

4We neglect recombination, in particular since the current is a majority-carrier current.
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This equation can also be written, using (24.37) and

IP = e2 μn N 2
D Z a3

6 εs L
, (24.41)

as

ID = IP

[
3VD

VP
− 2

(Vbi + VG + VD)3/2 − (Vbi + VG)3/2

V 3/2
P

]

. (24.42)

The saturation current is reached for y2 = a or Vbi + VG + VD = VP and is given by

ID,sat = IP

[

1 − 3
Vbi + VG

VP
+ 2

(
Vbi + VG

VP

)3/2
]

. (24.43)

The dependence of the saturation current on (VG +Vbi)/VP is depicted in Fig. 24.15b. For the threshold
(gate) voltage of

VT = VP − Vbi , (24.44)

the saturation current is zero since then VD = 0.5 Around the threshold voltage, the drain saturation
current is given in lowest order of VG as

ID,sat ≈ 3 IP
4

(
VG − VT

VP

)2

. (24.45)

Thus, in order to experimentally determine the threshold voltage,
√
ID is plotted versus the gate voltage

and extrapolated to ID = 0 (dash-dotted line in Fig. 24.15 and Fig. 24.16).
The source–drain voltage at the saturation point decreases with decreasing saturation current, shown

as dashed parabola-like line in Fig. 24.15a.
If the charge-carrier distribution differs from the homogeneous distribution assumed so far, a change

of transistor properties arises, as shown in Fig. 24.15b for a δ-like carrier distribution. The I–V char-
acteristic is slightly less curved, but not linear. A linear characteristic is only achievable in the drift
velocity saturation regime (cf. Sect. 24.4.4).

For high source–drain voltage VD > VP − Vbi − VG, the current remains essentially at its saturation
value. For very high source–drain voltage, breakdown in the gate–drain diode can occur, when the
maximum voltage, which is given by VG + VD at the end of the channel, is equal to the breakdown
voltage VB.

The forward transconductance gm and the drain transconductance gD are given by

gm = ∂ ID
∂VG

∣∣∣∣
VD=const.

= gmax

[√
Vbi + VG

VP
−

√
Vbi + VG + VD

VP

]

(24.46)

gD = ∂ ID
∂VD

∣
∣∣∣
VG=const.

= gmax

[

1 −
√
Vbi + VG + VD

VP

]

, (24.47)

where

gmax = 3 IP
VP

= e ND μn Z a

L
. (24.48)

5The threshold voltage can also be obtained from the condition gD0 = 0 (cf. (24.49)).



24.4 JFET and MESFET 709

In more detail, the mobility used in (24.45), (24.46) and (24.47) must be distinguished as saturation,
field-effect and effective mobility (cmp. more details given for MOSFETs on p.780).

The drain transconductance for VD → 0 (linear regime, dashed straight lines in Fig. 24.15a) is
given by

gD0 = gmax

[

1 −
√
Vbi + VG

VP

]

= gm,sat , (24.49)

which is equal6 to the forward transconductance in the saturation regime gm,sat = ∂ ID,sat/∂VG.

24.4.3 Normally On and Normally Off FETs

The JFET discussed so far had an n-conductive channel and was conductive at VG = 0. It is termed
an ‘n-type, normally on’ (or depletion) FET. If the channel is p-conductive, the FET is called ‘p-type’.
A FET that has a nonconductive channel at VG = 0 is called ‘normally off’ (or accumulation) FET.
In this case, the built-in voltage must be large enough to cause pinch-off. For a positive gate voltage
(in the forward direction of the gate–drain diode), current begins to flow. The I–V characteristics of
the four FET-types are depicted in Fig. 24.16. The circuit symbols for the four different FET types are
shown in Fig. 24.17.

Fig. 24.16 Scheme (top),
ID vs. VD (center) and I 1/2D
vs. VG (bottom) I–V
characteristics for a
normally on (depletion)
and b normally off
(accumulation) n-type
JFET. Adapted from [574]
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6Technically, here gD0 = −gm,sat , however, we had counted VG positive for the reverse direction.
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Fig. 24.17 Circuit
symbols for various types
of FETs

24.4.4 Field-Dependent Mobility

So far, we have considered FETs with long channels (L � a). This situation is often not the case, in
particular for high-integration or high-frequency applications. For short channels, the I–V character-
istics exhibit changes. The theory needs to be modified to take into account, among other effects, the
electric-field dependence of the mobility (Fig. 8.13) that was discussed in Sect. 8.4.1.

Drift-Velocity Saturation

Amaterial without negative differentialmobility, such as Si orGe, can be describedwith a drift-velocity
model

vd = μ E
1

1 + μ E/vs
. (24.50)

In this model, μ denotes the low-field (ohmic) mobility and vs the drift-saturation velocity reached for
E � vs/μ. The fraction in (24.50) describes the drift-velocity saturation.

By inserting (24.50) into (24.39), we obtain (for a n-channel)

ID = −e ND μn E(x)
1

1 + μ E(x)/vs
[a − h(x)] Z , (24.51)

and after a short calculation the drain current is given by (cf. (24.42))

ID = IP

(
1 + μ VG

vs L

)−1
[
3VD

VP
− 2

(Vbi + VG + VD)3/2 − (Vbi + VG)3/2

V 3/2
P

]

. (24.52)

The factor 1/(1 + z) with z = μVG/vsL reduces the channel current due to the drift saturation effect.
The effect of the parameter z is depicted in Fig. 24.18 in comparison to z = 0, i.e. without the drift
saturation effect (or vs → ∞). The forward conductance gm,sat decreases with increasing z, as shown
in Fig. 24.19.
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Fig. 24.18 I–V characteristic a without consideration of drift saturation (z = 0) and b with drift saturation (z = 3) for
various values of (VG + Vbi)/VP =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 as indicated at the right side. The intersections of
the dashed line and the solid lines indicate the beginning of saturation. Adapted from [2060]

Fig. 24.19 Decrease of
(saturated) forward
conductance with gate
voltage (according to
(24.49)) and parametric
dependence on z for z = 0,
0.5, 1, 2, 3, 5 and 10.
Adapted from [2060]

Two-Region Model

In order to model the GaAs drift velocity vs. field characteristic, a two-region model is used. In the
front region of the channel (region I), the field is small enough and a constant mobility μ is used. In
the back region of the channel (region II) is the high-field region where a constant drift velocity vs
is used. With increasing source–drain voltage, the region II (I) increases (decreases) in length. The
relative width of region II is also increased with decreasing channel length.

Saturated-Drift Model

Here, the drift velocity is taken everywhere as vs, i.e. complete drift saturation. This is a good approxi-
mation for short channels (high fields) that are in current saturation. In this case, the current is given by

ID = −e ND vs [a − h(x)] Z . (24.53)

Equation (24.53) is valid for homogeneous doping. For other doping profiles, the current is given by
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ID = vs Z

a∫

h

ρ(y) dy . (24.54)

The forward conductance is given by

gm = vs Z εs

h(VG)
. (24.55)

The transistor is more linear if the depletion-layer depth only weakly depends on the gate voltage.
This can be accomplished with a doping profile with increasing doping with depth. An increase with a
power law and a step-wise or exponential increase lead to a more linear I (V )-dependence. In the limit
of δ-like doping, a linear ID,sat vs. VG relation develops. Indeed, FETs with graded or stepped doping
profiles exhibit improved linearity and are used for analog circuits.

Nonequilibrium Velocity

Below the electric field for which the drift velocity in GaAs peaks, the carriers can be considered to be
in equilibrium. If the field is higher, velocity overshoot (Sect. 8.4.3 and Fig. 8.16) occurs. The carriers
have a higher velocity (and ballistic transport) before they relax to the lower equilibrium (or steady-
state) velocity after intervalley scattering. This effect will shorten the transit time in short-channel
FETs.

24.4.5 High-Frequency Properties

Two factors limit the high-frequency performance of a FET: The transit time and the RC time constant.
The transit time tr is the time that the carrier needs to go from source to drain. For the case of constant
mobility (long channel) and constant drift velocity (short channel), the transit time is given by (24.56a
and b), respectively.

tr = L

μ E
≈ L2

μ VG
(24.56a)

tr = L

vs
. (24.56b)

For a 1-µm long gate in a GaAs FET, the transit time is of the order of 10ps. This time is typically
small compared to the RC time constant due to the capacitance CGS and transconductance. The cutoff
frequency is given by

fT = gm
2πCGS

. (24.57)

24.5 MOSFETs

The MOSFET has four terminals. In Fig. 24.14b, two n-type regions (source and drain) are within a
p-type substrate. The n-type channel (length L) forms underneath a MIS diode. A forth electrode sets
the substrate bias. The source electrode is considered to be at zero potential. The important parameters
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Fig. 24.20 a Schematic
geometry of a MOSFET
and its band diagram for b
flat-band conditions for
zero gate voltage (and
VD = 0), c thermodynamic
equilibrium with reverse
gate voltage (weak
inversion, still VD = 0) and
d nonequilibrium with
nonzero drain voltage and
gate voltages (with most of
the channel being inverted,
the depletion region is
indicated). Adapted
from [2061]
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are the substrate doping NA, the insulator thickness d and the depth rj of the n-type regions. Around
the MOSFET structure is an oxide to insulate the transistor from neighboring devices.

24.5.1 Operation Principle

When there is no applied gate voltage, only the saturation current of the pn-diode(s) between source and
drain flows. In thermodynamic equilibrium (Fig. 24.20c), the necessary surface potential for inversion
at the MIS diode is � inv

s ≈ 2�B. If there is a finite drain voltage, a current flows and there is no longer
equilibrium. In this case, the quasi-Fermi level of the electrons (or generally of the minority carriers)
is lowered and a higher gate voltage is needed to create inversion. The situation at the drain is depicted
in Fig. 24.21.

In nonequilibrium, the depletion layer width is a function of the drain voltage VD. In order to reach
strong inversion at the drain, the surface potential must be at least � inv

s ≈ VD + 2�B.
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Fig. 24.21 Charge-carrier
distribution (top) and band
diagram (bottom) at the
inverted p-region of a
MOSFET for a
thermodynamic
equilibrium (VD = 0) and
b nonequilibrium at drain
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If the gate voltage is such that an inversion channel is present from source to drain, a current will flow
for a small drain voltage (Fig. 24.22a). Initially, the current will increase linearly with VD, depending
on the conductivity of the channel. With increasing drain voltage, the quasi-Fermi level of the electrons
is lowered until, finally at VD = VD,sat, the inversion channel depth becomes zero (pinch-off at the
point denoted with an arrow in Fig. 24.22b). The current at this condition is denoted as ID,sat. For a
further increase of VD, the pinch-off point moves closer to the source contact and the channel length
(inverted region) is shortened (arrow in Fig. 24.22c). The voltage at the pinch-off point remains VD,sat

and thus the current in the channel remains constant at ID,sat.

24.5.2 Current–Voltage Characteristics

We assume now that the potential V (y) varies along the channel from V = 0 at y = 0 to V = VD at
y = L . In the gradual-channel approximation, the voltage drop Vi across the oxide is

Vi(y) = VG − �s(y) , (24.58)

where �s is the surface potential in the semiconductor (see Fig. 21.34). The total charge induced in the
semiconductor (per unit area) is, using (21.92), given by

Qs(y) = − [VG − �s(y)]Ci , (24.59)

with Ci being the insulator capacitance (per unit area), as given in (21.93).
The inversion surface potential can be approximated by �s(y) ≈ 2�B + V (y) (see Fig. 24.21).

With (21.97) the depletion-layer charge is

Qd(y) = −e NA wm = −√
2 εs e NA [2�B + V (y)] , (24.60)
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Fig. 24.22 a MOSFET
with inverted channel (dark
grey) of length L for small
source–drain voltage VD in
linear regime, b at the start
of saturation at pinch-off, c
in the saturation regime
with reduced channel
length L ′. The pinch-off
point is denoted by an
arrow in b and c. The
dashed lines denote the
extension of the depletion
region. Adapted
from [574]
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such that, using (24.59), the inversion layer charge is

Qn(y) = Qs(y) − Qd(y) (24.61)

= − [VG − V (y) − 2�B] Ci +
√
2 εs e NA [2�B + V (y)] .

For the calculation of the drain current, we consider the increase of channel resistance dR(y) along a
line element dy of the channel. The integral of the conductivity over the cross section A of the channel
(width Z ) is ∫∫

A

σ(x, z)dx dz = −e μn

∫∫

A

n(x, z) dx dz = Z μn |Qn(y)| . (24.62)

Therefore,

dR(y) = dy
1

Z μn |Qn(y)| . (24.63)

Here we have assumed that the mobility is constant along the channel, i.e. not field dependent. The
change of voltage across the line element dx is
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Fig. 24.23 a Idealized I–V characteristics for a MOSFET with constant mobility. The dashed line visualizes the drain
(saturation) voltage for which the current is equal to ID,sat . The solid lines are for various values of the gate voltage
VG − VT =1–10V. Adapted from [574] b I–V characteristics taking into account the effect of field-dependent mobility
(solid lines) in comparison to the constant-mobility model (dashed lines) for various gate voltages as labeled. Adapted
from [2062]

dV (y) = ID dR = ID dy

Z μn |Qn(y)| . (24.64)

We note the drain current is independent of x . Using (24.61) and performing the integral of (24.64)
from V (y = 0) = 0 to V (y = L) = VD, we find

ID = μn Ci
Z

L

{ (
VG − 2�B − VD

2

)
− 2

3

√
2eεsNA

Ci

[
(VD + 2�B)3/2

− (2�B)3/2
] }

. (24.65)

This characteristic is depicted inFig. 24.23a. In the linear regime (small drain voltage,VD � (VG−VT)),
the drain current is given by

ID ∼= μn Ci
Z

L
(VG − VT) VD . (24.66)

The threshold voltage VT, i.e. the gate voltage for which the channel is opened and a current can flow,
is given for small drain voltage (linear regime) by

VT = 2�B +
√
4 e εs NA �B

Ci
. (24.67)

The transconductances in the linear regime are easily obtained as (cmp. (24.46), (24.47))

gm = μn Ci
Z

L
VD (24.68a)

gD = μn Ci
Z

L
(VG − VT) . (24.68b)

The mobility extracted from evaluation of a characteristic using (24.68b) is termed effective mobility
(μeff ). The mobility extracted from (24.68a) is termed field effect mobility (μFE). The experimentally
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measured field effect mobility is typically smaller than the effective mobility. The difference between
the effective and the field effect mobility is related to the gate voltage dependence of the effective
mobility; in the linear regime,

μFE ≈ μeff + (VG − VT)
∂μeff

∂VG

∣∣∣∣
VD=const.

. (24.69)

The saturation current is approximately

ID,sat
∼= μn Ci

m Z

L
(VG − VT)

2 , (24.70)

where m depends on the doping concentration and is about 0.5 for low doping. The mobility extracted
from (24.70) is termed saturation mobility (μsat). Due to the neglect of the gate voltage dependence
in the definition for the saturation mobility, the experimental results usually yield μsat < μeff . For low
p-doping of the substrate, the threshold voltage in (24.70) for the saturation regime is also given by
(24.67). At higher doping, the threshold voltage becomes dependent on the gate voltage. Ci denotes
the insulator capacitance

Ci = εi/di . (24.71)

The forward transconductance in the saturation regime is

gm,sat = μn Ci
2m Z

L
(VG − VT) . (24.72)

For constant drift velocity (Fig. 24.23b for field-dependent mobility), the saturation current is given by

ID,sat = Z Ci vs (VG − VT) , (24.73)

and the forward transconductance in the saturation regime is

gm,sat = Z Ci vs . (24.74)

We note that the transistor properties depend on and can be separated into the geometry factor (Z/L)
and the material properties (μCi = μ εi/di).

The threshold voltage can be changed by the substrate bias VBS as (β = e/kT )

�VT = a√
β

(√
2�B + VBS − √

2�B

)
, (24.75)

with (LD being the Debye length (cf. 21.85b))

a = 2
εs

εi

d

LD
. (24.76)

Experimental data are shown in Fig. 24.24. For a Si/SiO2 gate diode, a = 1 for, e.g., di = 10nm and
NA = 1016 cm−3. For gate voltages below VT, the current is given by the diffusion current, similar
to a npn transistor. This regime is important for low-voltage, low-power conditions. The related drain
current is termed the subthreshold current and is given by
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Fig. 24.24 Experimental
subthreshold I–V
characteristic of a
MOSFET device with long
channel (15.5µm). Solid
lines for VD = 10V,
dashed lines for
VD = 0.1V. Adapted
from [2063]
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Thedrain current therefore increases exponentiallywithVG, as shown inFig. 24.24.VG is approximately
linear proportional to �B:

�s = (VG − VFB) − a2

2β

(√

1 + 4

a2
(βVG − βVFB − 1) − 1

)

, (24.78)

where VFB is the flat-band voltage of the gate MIS diode. The drain current is independent of VD for
VD � 3kT/e.

24.5.3 MOSFET Types

MOSFETs can have an n-type channel (on a p-substrate) or a p-channel (on an n-type substrate). So
far, we have discussed the normally off MOSFET. If there is a conductive channel even without a
gate voltage, the MOSFET is normally on. Here, a negative gate voltage must be applied to close the
channel. Therefore, similar to the JFET, a total of four different types of MOSFET exist, see Fig. 24.25.

24.5.4 Complementary MOS

Complementary metal–oxide–semiconductor technology (CMOS) is the dominating technology for
highly integrated circuits. In such devices, MOSFETs with n-channel (NMOS) and p-channel (PMOS)
are used on the same chip. The basic structure of logic circuits, the inverter, can be realized with a pair
of NMOS and PMOS transistors, as shown in Fig. 24.26a with two normally off transistors. The load
capacitor represents the capacitance of the following elements.

If the input voltage is Vin = 0, the NMOS transistor is nonconductive (‘off’). The (positive) voltage
VDD is at the PMOS transistor source, thus the gate is negative in relation to the source and the transistor
is conductive (‘on’) since −VDD = VGp < VTp < 0 (see Fig. 24.25). The current flows through the
capacitor that becomes charged to Vout = VDD. The current then subsides, since VD at the PMOS
becomes zero. If the input voltage is set to VDD, the NMOS transistor has a positive gate–source
voltage larger than the threshold VTn < VGn = VDD and becomes conductive. The charge from the
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capacitor flows over the NMOS to ground. The PMOS transistor has zero gate–source voltage and is
in the ‘off’ state. In this case, the voltage VDD drops entirely across the PMOS and the capacitor is
uncharged with Vout = 0.

In both its logic states, the CMOS inverter does not consume power. No current7 flows in either of
the two steady states since one of the two transistors is in both cases in the ‘off’ state. Current flows
only during the switching operation. Therefore, the CMOS scheme allows for low power consumption.

The middle voltage for which Vin = Vout can be calculated from the MOSFET characteristics. Both
are, for this condition, in saturation and the currents are given by (cf. (24.70))

IDn = μn Cox
Zn

2Ln
(VM − VTn)

2 (24.79a)

IDp = μp Cox
Zp

2Lp

(
VDD − VM − VTp

)2
. (24.79b)

With γ = Zp

Zn

Ln
Lp

μp

(−μn)
, we find from IDn = −IDp,

VM = VTn + γ
(
VDD + VTp

)

1 + γ
. (24.80)

As gate material, often polycrystalline silicon (poly-Si) is used (cf. Fig. 21.29). It is used instead of
metals because its work function matches that of silicon closely. Also, poly-Si is more resistant to
temperature. Despite its high doping, the resistance of poly-Si is two orders of magnitude larger than
that of metals. Since it is easily oxidized, it cannot be used with high-k oxide dielectrics.8

For optimized ohmic contacts on the n- and p-Si, different metals are used to create a small barrier
height (Fig. 21.23a) and low contact resistance (cf. Sect. 21.2.6). Figure24.27 visualizes the band edges
of silicon in relation to the work functions of various metals (see Table 21.2). For example, the work
function of titanium matches the electron affinity of n-Si closely. However, a direct deposition of Ti on
Si results in a Schottky barrier of 0.5eV [1690]. A surface passivation with a group-VI element such
as Se can help reduce this value to 0.19eV [2065].

Fig. 24.25 The four
MOSFET types. a
Enhancement and b
depletion type with
n-channel (top row) and
p-channel (bottom row)
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7except for the subthreshold current and other leakage currents. These need to be reduced further since the dissipated
power limits chip performance (speed and device density) and battery lifetime in handheld applications.
8The term ‘high-k dielectric’ means a dielectric material with large dielectric constant ε.
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In the latest generation of CMOS ICs the PMOS (NMOS) device has a built-in compressive (tensile)
channel strain for modifying the effective mass (cf. Sect. 6.12.2), both allowing higher drive current
due to higher mobility. A detailed treatment can be found in [2066].
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Fig. 24.26 Circuit diagram of a inverter with n-type (bottom) and p-type (normally off, enhancement mode) FETs
and b inverter with p-type (bottom) and n-type (normally on, depletion mode) FETs. c Inverter characteristic with the
transistor thresholds indicated, d inverter characteristic with middle voltage VM indicated. NML,H denotes the low- and
high-noise margins, respectively, i.e. the voltage by which the input voltage can fluctuate without leading to switching.
e Composite layout (left panel) and cross-sectional view (right panel) of CMOS inverter. Part e adapted from [2064]
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Fig. 24.27 Silicon band edges in relation to different metals and their work functions

Fig. 24.28 ENIAC, the first electronic computer (J.P. Eckert, J.W. Mauchly, 1944/5). The images show only a small
part of the 18000 vacuum tubes

24.5.5 Large-Scale Integration

Historic Development

Compared to the first computers on the basis of vacuum tubes (triodes), e.g. ENIAC (Fig. 24.28), today’s
devices are extremely miniaturized and need many orders of magnitude less power per operation.
ENIAC needed 174kW of power. A comparable computing power was reached in 1971 with the few
cm2 large Intel 4004 microprocessor (Fig. 24.29b) consuming only several Watts with 2300 transistors.
In 2004 about 42million transistors were integrated in the Pentium 4microprocessor (Fig. 24.30). Also,
memory chips started to become highly integrated (Fig. 24.29a).

The development of electronic circuit integration is empirically described by Moore’s ‘law’ [2067]
that has been valid since the 1970s. According to this law, the number of transistors doubles every
20 months (Fig. 24.31a). At the same time, the performance has been improved by an increase of the
clock speed (Fig. 24.31b).9

9After year 2003 data for maximum clock rate are not for highest integration density processors.
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(a) (b)

Fig. 24.29 a IntelTM 1103 1KByte (1024 memory cells) dynamic random access memory (RAM), arranged in four
grids with 32 rows and columns (1970), chip size: 2.9 × 3.5mm2. b IntelTM 4004 microprocessor (1971), chip size: 2.8
× 3.8mm2, circuit lines: 10µm, 2,300 MOS transistors, clock speed: 108kHz

Fig. 24.30 The IntelTM Pentium 4 microprocessor (2000), circuit lines: 0.18µm, 42 million transistors, clock speed:
1.5GHz
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(a) (b)

Fig. 24.31 a Moore’s law on the exponential increase of transistors per chip (for IntelTM processor chips). Dashed line
corresponds to doubling in 20 months. b Historical increase of maximum clock speed, dashed line is guide to the eye.
Note the almost constant rate of 10MHz from the mid-1970s to the mid-1980s and another plateau developing after 2000

Interconnects

Moore’s second law says that the cost of production also doubles for each new chip generation and
is currently (2004) in the multi-billion US$ range. Most of the cost saved by integration is due to
efficient wiring (interconnects) of the components, in 2004 (65nm node) in eight layers above the
active elements (transistors and capacitors) (Fig. 24.33), in 2008 (45nm node) in eleven layers. Plane-
view images of the first three layers of the interconnects are shown in Fig. 24.34. The Cu interconnects
are fabricated with the so-called damascene process [2068–2070]. Barrier layers (e.g. TaN or TiN) are
required to avoid out-diffusion of Cu into the silicon or other parts of the circuit. Three effects limit the
conductivity: The interconnect metal line width and height approaches the mean free path of carriers
(dCu ≈ 40nm) [715, 2071], grain boundary scattering can limit mobility since grain size is reduced for
thinner lines, and the (high resistivity) barrier reduces space for the conductive part of the metal line.
In Fig. 24.32 the increase of the resistivity of copper with reduced dimension is shown as a function
of film thickness t and for a 100nm-film as a function of line width w. In a simplified approach, the
line resistivity ρline is given as [2071]

ρline

ρ0
= 1 + 3

8
(1 − p)

(
d

t
+ d

w

)
, (24.81)

ρ0 denoting the bulk resistivity (1.7µ�cm for Cu), d being the mean free path (8.7) and p being the
electron scattering parameter (p = 0 for diffuse scattering).

In order to achieve the best high frequency performance thematerial between themetal interconnects
should have low dielectric constant (‘low-k’ dielectric). Alternative materials to the standard SiO2

(εr ≈ 4.1) are investigated such as SiOF (≈ 3.8), SiCOH (≈ 3.0), porous materials (≈ 2.5) and air
gaps [2072].

CMOS Scaling

Using planar technologies, LSI (large-scale integration), VLSI (very large-scale integration), ULSI
(ultra large-scale integration) and further generations of devices have been conceived, driven by high-
density electronic memory devices. Subsequently also logic devices are produced with reduced device
size.
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Fig. 24.32 Resistivity of
copper at room temperature
for various film thickness
(solid circles), and for a
100nm-film as a function
of line width w (empty
circles). Solid lines are
theoretical dependence
according to (24.81). The
dashed lines indicate the
limits for bulk material
(t → ∞) and for large line
thickness (d = 100nm,
w → ∞). Adapted
from [2071]

Fig. 24.33 Cross section through a logic chip (65nm technology, 35nm gate length) with eight layers of dual damascene
Cu interconnects (M1–M8) with low-k carbon-doped oxide (εr = 2.9) inter-level dielectric above the active elements.
Adapted from [2073]

Fig. 24.34 Plane-view of the first three interconnect layers of a 45nm node SRAM array (Intel® Xeon®). In the image of
the M1 layer the gate layer metal connects are shown in the inset, framed with a white dashed line. Adapted from [2074]
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(a) (b)

Fig. 24.35 Scaling of MOSFET parameters gate oxide thickness tox, power supply voltage VDD (across source–drain),
threshold voltage VT, total power loss per area P , gate capacitance per channel width CG and inverter delay τ , the time
required to propagate a transition through a single inverter driving a second, identical inverter, commonly used as a
means of gauging the speed of CMOS transistors. Data for a from [2075] and for b selected from [2076]

The increase of the number of transistors per area requires the scaling of their geometrical properties.
This impacts many other properties of the transistor and their scaling needs to be considered as well.
From a general perspective, the physical properties scale while the thermal energy kT remains constant
for room-temperature electronics.

If channel width Z and channel length L of a transistor are scaled down by a factor of s > 1,
Z ′ = Z/s and L ′ = L/s, the area obviously scales as A′ = A/s2. In subsequent transistor generations
s = √

2, i.e. doubling of the number of devices per area. In order to maintain the aspect ratio of the
device also the oxide thickness (di) is scaled, t ′ox = tox/s (‘classical scaling’).

The ultimate design criteria are maximum temperature and maximum power loss. The maximum
temperature needs to be obeyed, the worst case usually taken as 100◦C. The power loss per area, e.g.
heating, needs to stay constant at an appropriatemaximum level around 200kW/m2 (Fig. 24.35b) unless
higher (and more expensive) efforts on cooling are made. At the same time the device performance
needs to be maintained if not improved, e.g. for lower power dissipation in battery operated devices.
Very important is the reduction of operation voltage VDD in order to keep electric fields and power
consumption small enough (Fig. 24.35). The power consumption in stand-by mode Poff depends on
VDD and the subthreshold (off) current

Poff = Wtot VDD Ioff , (24.82)

where Wtot is the total width of the turned-off devices and Ioff is the average off-current per device per
width. The latter increases exponentially with reduced threshold voltage VT,

Ioff = I0 exp

(
− e VT

n kT

)
, (24.83)

with ideality factor n ≈ 1.2 and I0 ≈1–10µA/µm [2075]. A well-functioning MOSFET requires a
ratio of VT/VDD of < 0.3.
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The power consumption in active mode Pac depends also on the clock speed (frequency f ) that
increases with higher integration due to shorter gate length,

Pac = Csw V 2
DD f , (24.84)

where Csw is the total node capacitance being charged and decharged in a clock cycle.
Historically the oxide thickness has been reduced less than the channel length [2075] (Fig. 24.35a)

leading to increased local fields. The reduction of the physical gate oxide thickness is limited due to gate
leakage through tunneling [2077]. While for a gate voltage of 1.5V and oxide thickness tox = 3.6nm
the leakage current is only about 10−8 A/cm2, it is about 1A/cm2 for tox = 2.0nm and about 104 A/cm2

for tox = 1.0nm. Obviously variations of oxide thickness are more harmful at small average thickness.
1.2nm physical SiO2 thickness has been used in the 90nm (gate length) logic node.

The technological solution for further reduction of oxide thickness is the use of geometrically thicker
layers, to suppress tunneling, with higher dielectric constant (‘high-k dielectrics’), e.g. HfO2 [2078],
to maintain reasonable gate capacitance per gate width

CG = εox

tox
L , (24.85)

(cmp. (24.71)) at a value of about 1.0–1.5 fF/µm (Fig. 24.35)b. For the 45nm technology node a 0.7-
fold reduction in electrical oxide thickness was achieved while reducing gate leakage 1000× for the
PMOS and 25× for the NMOS transistors [2079].

Materials

The electronics industry is based on silicon as the material for transistors. However, many other
materials are incorporated in the technology. Traditionally silicon dioxide gate oxide is used, silicon
nitride for insulation layers and polysilicon for gate contacts. For wiring aluminum has been used.
Silicides were introduced as contact materials around 1986.

Progress was made with copper interconnects (IBM, 1997), replacing aluminum. The better electri-
cal and heat conductivity could previously not be used since Cu is a deep level in Si (cf. Fig. 7.6). The
key to success was an improved barrier technology based on amorphous TaN- or TiN-based barrier
layers to prevent the diffusion of Cu into the silicon and dielectric layers. The first chip from series
production, incorporating the Cu technology, was the PowerPC 750 (400MHz) in 1998. Since 2000
high-k, i.e. large εr, Hf-containing gate dielectrics are used (Fig. 24.36). HfO2 has a dielectric constant
of 25–30. 45nm node technology probably uses HfZrO, HfSiO or HfSiON [2080] gate dielectrics with
k ∼ 12 and an electrical thickness of toxεSiO2/εox = 1.0nm.

Germanium is reintroduced into mainstream semiconductor technology via SiGe stressors in the
source and drain for PMOS. Uniaxial compressive strain in the channel region leads to 30% increased
saturation current [2082] mostly due to reduced effective masses [749, 2083, 2084] (Sect. 8.3.14)
for 90nm transistors. Similarly, uniaxial tensile strain in NMOS, introduced by SiN caps or more
recently tensile trench contacts [2079], allows for 10% higher saturation current [2082] (Fig. 24.37).
The enhanced electronmobility is due to strain-induced splitting of the X-valley and change of electron
mass [2085]. Further improvement to 18% (NMOS) and 50% (PMOS) increase in ID,sat compared to
unstrained Si have been made in 65nm transistors [2073].

The end of the miniaturization has been theoretically predicted many times and for various feature
sizes. Today, only fundamental limits such as the size of an atom seems to limit circuit design.10 Such

10Only commercial profit, rather than testing physical limits, drives theminiaturization. Insufficient economic advantages
or low yield of further chip generations possibly can limit or slow down large-scale integration.
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Fig. 24.36 Cross-section
TEM image of 45nm node
PMOS transistor with
high-k Hf-containing gate
oxide (dark) above a thin
SiO2 layer (white). The role
of the stressor SiGe pockets
is explained in Fig. 24.35.
Adapted from [2081]

limits (and the effects in nanostructures in the few-nm regime) will be reached beyond 2010, projected
at about 2020. Up to then, it is probable that at least a few companies will follow the road map for
further miniaturization, as laid out by the Semiconductor Industry Association11 (SIA).

24.5.6 Tunneling FETs

A decisive parameter for FET performance is low leakage current. With shrinking device dimensions
it increases rapidly for conventional FET design. A novel type of FET has thus been conceptualized,
the tunneling FET (TFET) [2088]. It is a lateral p-i-n diode with a MOS gate (Fig. 24.38). The leakage
current is minimized due to the reverse biased p-i-n structure. A low leakage current (per gate width)
of less than 10−14 A/µm has been realized [2089, 2090]. The channel current is due to band-to-band
tunneling as in an Esaki diode (Sect. 21.5.9) and can be controlled by the gate voltage [2091]. The
surface tunneling junction is close to the source electrode. The use of germanium instead of silicon
allows further performance enhancements [2092].

24.5.7 Nonvolatile Memories

Floating Gate Memories

When the gate electrode of a MOSFET is modified in such a way that a (semi-)
permanent charge can be stored in the gate, a nonvolatile electronic memory can be fabricated. In
the floating-gate structure (Fig. 24.39a), an insulator–metal–insulator structure is used where charge
is stored in the metal and cannot escape through the insulating barriers. The ‘metal’ is often realized
by poly-Si. In the MIOS structure (Fig. 24.39b), the insulator–oxide interface is charged. The charge
can be removed by UV light (EPROM, erasable programmable read-only memory) or by a sufficient
voltage across the oxide at which the charge carriers can tunnel out (Fowler–Nordheim tunneling)
(EEPROM, E2PROM, electrically erasable programmable read-only memory).

Nowadays, a special type of EEPROM is used for the so-called flash memories. The stored gate
charge causes a change in the MOSFET threshold voltage and is designed to switch between the on

11www.semichips.org.
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Fig. 24.37 Cross-section
TEM images of strained a
PMOS and b NMOS
transistors. Adapted from
[2086]. c–f Modelling of
strain distribution: PMOS
without c and with e
Si0.83Ge0.17 pockets,
NMOS without d and with
f tensile cap layer.
Adapted from [2087]
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(a) (b)

Fig. 24.38 Schematic of a a n-type and b p-type tunneling FET (TFET). D is reversely biased, i.e. positive for NTFET
and negative for PTFET. The grey areas represent the gate oxide, the arrows denote the spatial position of tunneling
(surface tunneling juction) for sufficient (NTFET: positive, PTFET: negative) gate voltage

Fig. 24.39 MOSFET with
a floating gate and bMIOS
structure
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floating
gate

(oxide)

Fig. 24.40 Cross sections
a perpendicular and b
parallel to the control gate
line of a 4Gb, 73nm SLC
flash memory (Samsung
K9F4G08U0M). ‘CG’
denotes the control gate,
‘FG’ the floating gate, ‘TO’
the tunneling oxide, ‘ONO’
the oxide/nitride/oxide
insulator stack, and ‘STI’
the shallow trench
insulation. Adapted
from [2074]

(a) (b)

and off state. The storage time of the charge can be of the order of 100 years. Since tunneling limits the
charge retention, the oxide must be sufficiently thick. In Fig. 24.40 a cross section of a 4Gb, 73nm SLC
(single-level cell) flash memory is shown. The lower insulator (tunneling oxide at the channel) consist
of 7.2nm SiO2, the upper insulator (insulator 1 in Fig. 24.39a) is a 18nm thick oxide/nitride/oxide
(ONO) stack. The floating gate has a 90 × 90nm2 footprint, is about 86nm high and consists of two
polysilicon layers.

In a SLC memory the floating gate has two states, a certain charge value and the erased state. In a
MLC (multi-level cell) the gate can store several charge states which can be sensed as different logic
states, e.g. 22 = 4 states. This increases the storage density, lowering cost per bit, but also increases
the complexity. Typical endurance of SLC is at least 106 program–erase cycles. SLC cells so far have
about ten times higher endurance (possible number of read–write cycles) and lower power consumption
than MLC. Generally SLC flash memory is considered industrial grade and MLC flash is considered
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(a) (b)

Fig. 24.41 a Cross-section TEM image of a cell from a Ramtron 4Mb FeRAM. The information is stored in the
electric polarization of a polycrystalline Pb(TixZr1−x )O3 (PZT) island, contacted on the bottom and top with platinum
and iridium oxide, respectively. Adapted from [2074]. b Cross-section TEM of the magnetic tunneling junction from a
Freescale 4.2Mb MRAM, located between the M4 and M5 interconnect layers. The magnetization of the free layer can
be switched, that of the fixed layer remains constant. Adapted from [2074]

consumer grade. Recently also triple level cells (TLC), storing 3 bit (8 states) are commercialized,
however the increased storage density comes at high cost of reliability [2093].

The ultimate limit, explored currently, is to use a single electron charge to cause such an effect in
the single-electron transistor (SET).

Future Concepts

Memory concepts beyond the storage of free charges include information storage via

• the static polarization in a ferroelectric material (either crystalline or polymer) (FeRAM [2094],
Fig. 24.41a) which can be switched by an electric field.

• the phase change between amorphous and polycrystalline phases in a chalcogenide layer (typically
GeSb [2095] or Ge2Sb2Te5, GST [2096, 2097] with an α ↔ c transition, Fig. 24.42) upon local
heating (similar to a rewritable DVD) and the related change is resistivity (PCM, phase change
memory).

• the storage of magnetization direction (MRAM [2098, 2099]) and subsequent resistance change of a
magneto-tunneling junction (MTJ) whose resistance depends on the relative magnetization (parallel
or perpendicular) of two magnetic layers separated by a thin tunneling insulator (Fig. 24.41b). The
largest TMR (tunnel-magnetoresistance) effect has been achieved with MgO as insulator [2099].
The magnetization of the bottom magnetic layer of the MTJ is fixed. The magnetization directions
±45◦ are written into the free layer with the magnetic fields of two perpendicular high current wires
in two subsequent back-end interconnect layers sandwiching the MTJ.

• resistance change based on solid electrolytes (PMC, programmable metallization cell memory). The
lowering of the resistance is attained by the reduction of ions in a fairly high resistivity electrolyte
(e.g. from the systemCu,Ag–Ge–Se,S,O [2100, 2101] or oxides [2102]) to form a conducting bridge
between the electrodes. The resistance is returned to the high value via the application of a reverse
bias that results in the breaking of the conducting pathway.

• resistance change in transition metal oxides such as perovskites, e.g. SrTiO3:Cr [2103, 2104] or
NiO:Ti (RRAM). Electrical pulses of opposite polarity switch the resistance reversibly between a
high- and a low-resistance state. Oxygen-vacancy drift modulates the valence of the mixed-valence
transition-metal ion (e.g. Ti3+–Ti4+) and thus the conducting state [2105].
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(a) (b)

Fig. 24.42 a Radial distribution function of ions in Ge2Sb2Te5 (GST) for various temperatures (cmp. Fig. 3.14b).
Adapted from [2096]. b Atom arrangement in the amorphous phase of GST with square units highlighted that nucleate
crystallization. Adapted from [2097]

• a molecular configuration change (e.g. redox reaction) between crossed wire lines (molecular elec-
tronics [2106–2108].

24.5.8 Heterojunction FETs

Several types of field-effect transistors have been devised that use heterojunctions (HJFET).

HIGFET

As conducting channel, the two-dimensional electron gas at an undoped heterointerface is used. Such
a transistor is called a heterojunction insulating gate FET (HIGFET). With forward or backward gate
voltage, an electron or hole gas can be created (channel enhancementmode), as visualized in Fig. 24.43.
Thus, a complementary logic can be realized. However, the p-channel suffers from low hole mobility.

HEMT

If the top wide-bandgap layer is n-doped, a modulation-doped FET (MODFET) is made (see
Sect. 12.3.4). This structure is also called a HEMT (high electron mobility transistor) or TEGFET
(two-dimensional electron gas FET) (Fig. 24.44). A thin undoped AlGaAs spacer layer is introduced
between the doped AlGaAs and the undoped GaAs to reduce impurity scattering from carriers that tun-
nel into the barrier.With increasing gate voltage, a parallel conduction channel in theAlGaAs is opened.
The natural idea would be to increase the Al fraction in the AlGaAs to increase the quantum-well bar-
rier height. Unfortunately, the barrier height is limited to 160meV for an aluminum concentration of
about 20%. For Al content higher than about 22%, the DX center (cf. Sect. 7.7.6) forms a deep level
such that the apparent ionization energy increases drastically and no shallow donors can be used for
modulation doping. An improvement for the barrier conduction problem is the use of δ-doping [2109],
i.e. the introduction of a highly doped thin (mono-)layer (Fig. 24.45), which results in higher channel
carrier concentration.
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Pseudomorphic HEMTs

Instead of increasing the height of the barrier, the depth of the well can be increased by using a low-
bandgap material. On GaAs substrate, InGaAs is used (Fig. 24.46). However, strain is introduced in
this case and the InGaAs layer thickness is limited by the onset of dislocation formation (cf. Sect. 5.4.1)
(which reduces the channel mobility and the device reliability). For In0.15Ga0.85As (thickness about
10–20nm), a total barrier height of about 400meV can be obtained. A barrier height of 500meV can
be reached with an InAlAs/InGaAs structure on InP (Fig. 24.47). The InAlAs does not suffer from
the problem related to DX centers. The channel indium concentration is typically 50%. The mobility
increases with increasing indium concentration. This InP-based HEMT structure is widely used in
satellite receivers for its excellent high-speed and low-noise properties in the 100–500GHz range and
beyond.

However, the InP technology is economically less favorable than GaAs due to smaller available
substrate size and higher cost (2001: 4" InP substrate: $1000, 6" GaAs substrate: $450).

Metamorphic HEMTs

A unification of the InAlAs/InGaAs structure with the best figure of merit and the GaAs substrate
is achieved with the metamorphic HEMT (MHEMT). Here, a relaxed buffer is used to bring the in-
plane lattice constant from that of GaAs to about that of InP. It is key that the defects occurring are
confined to the relaxed buffer and do not enter the active device structure (see Fig. 24.48). The relaxed
buffer is typically about 1µm thick. It can be grown, e.g., with a graded Inx (Ga,Al)1−xAs layer with
x =0–42% or with a stepped structure with piecewise constant indium concentration in each layer. It
is important that a smooth interface of the channel is achieved in order to avoid additional scattering
mechanisms. For high-frequency operation, the fabrication of a small gate length is important, as shown
in Fig. 24.49 for a 70-nm gate of a fT =293GHz, fmax = 337GHz transistor [2110]. SiGe channels,
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Fig. 24.43 a Scheme of a HIGFET structure with metal gate and undoped AlGaAs/GaAs heterointerface on semi-
insulating GaAs. The source and drain contacts are n-doped such that this structure can be used as an n-HIGFET (see
part c). b Band diagram for zero gate voltage. c Band diagram for positive gate voltage and n-channel, d for negative
gate voltage and p-channel
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Fig. 24.44 a Scheme of a HEMT structure with n-AlGaAs/GaAs heterointerface on semi-insulating GaAs. The source
and drain contacts are n-doped such that this structure can be used as an n-channel (normally-on) HEMT. The horizontal
dashed line represents schematically the position of the 2DEG at the heterointerface on the GaAs side. b Band diagram
at zero gate voltage. c Band diagram at positive gate voltage, increase of channel carrier concentration. d Band diagram
at even larger positive gate voltage, formation of conducting channel in the AlGaAs layer
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Fig. 24.45 a Scheme of a δ-doped HEMT structure with AlGaAs/GaAs heterointerface on semi-insulating GaAs. The
source and drain contacts are n-doped such that this structure can be used as an n-channel HEMT. The horizontal dashed
line represents schematically the position of the 2DEG in the GaAs layer. b Band diagram at zero gate voltage

providing higher mobility than pure Si, can be fabricated using graded or stepped SiGe buffer layers
on Si substrate. With such Si-based MHEMTs frequencies up to 100GHz can be achieved.

24.6 Thin-Film Transistors

Thin-film transistors (TFTs) are field-effect transistors with a channel formed as thin film on insulating
substrate. A detailed treatment is available in [2112]. TFTs are typically fabricated as large-area arrays
from thin layers of polycrystalline or amorphous silicon [2113] or organic semiconductors [2114–
2117] on cheap substrates such as glass. Their most prominent use is driving pixels in active-matrix
displays such as electroluminescence (EL) displays or twisted nematic liquid crystal displays (LCD)
[2118]. Various gates and gate geometries have been reported as depicted in Fig. 24.50.
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Fig. 24.46 a Scheme of a PHEMT structure with n-AlGaAs/InGaAs heterointerface on semi-insulating GaAs. The
source and drain contacts are n-doped such that this structure can be used as an n-channel HEMT. The horizontal dashed
line represents schematically the position of the 2DEG in the InGaAs layer. b Band diagram at zero gate voltage
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Fig. 24.47 Scheme of a PHEMT structure with n-AlInAs/InGaAs/InAlAs structure on semi-insulating InP. The source
and drain contacts (with a highly doped InGaAs contact layer) are an n-doped such that this structure can be used as an
n-channel HEMT. The horizontal dashed line represents schematically the position of the 2DEG in the InGaAs layer

24.6.1 Annealing of Amorphous Silicon

Since the mobility in polycrystalline silicon is much higher (up to several hundred cm2/Vs depending
on grain size, see Sect. 8.3.8) than in amorphous silicon (< 1cm2/Vs), such material is much more
desirable as channel in TFTs. However, it requires high deposition temperatures. In order to achieve
polycrystalline silicon with large grain size from amorphous silicon films that can be deposited at low
temperature (down to room temperature) several schemes have been developed, the most important
being thermal annealing and (excimer) laser annealing (ELA). Crystallization occurs by thermally acti-
vated nucleation and growth processes [2119]. Polycrystalline layers with small grain size can be made
amorphous with implantation of Si (self-implantation) and a subsequent optimized (re-)crystallization
processes.

In laser annealing energy is locally introduced during short pulses (several 10ns or even fs); sub-
sequent material change occurs on a sub-µs time scale [2120]. Laser induced crystallization enables
the use of inexpensive low-temperature substrates, such as plastic or glass, since it involves the ultra-
fast melting and resolidification of the near-surface region of the sample, and minimal heating of the
substrate. Local processing is also possible using laser crystallization.
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Fig. 24.48 Cross-sectional TEM image of an InAlAs/InGaAs MHEMT: a Active layer with rms surface roughness of
2.0nm (from AFM), b graded InGaAlAs buffer layer (1.5µm) on GaAs substrate. Adapted from [2111]

Fig. 24.49 Cross-sectional TEM image of the 70-nm gate of an InAlAs MHEMT on GaAs substrate. From [2110]

(a) (b) (c) (d)

Fig. 24.50 Schematic geometries of TFTs: a–c MISFETs, d MESFET with a, b bottom gate and c, d top gate. Semi-
conductor channel layer (light grey), insulating dielectric (dark grey) and metals (black)
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(d) (e)

Fig. 24.51 Thermal annealing of 100nm thick film of amorphous silicon (fabricated from LPCVD and amorphized by
100keV Si+ implantation with a dose of 5 × 1015 cm−2). TEM images and diffraction patterns (insets) for amorphized
Si after a 4h, b 5.25h and c 7.1h annealing at T = 630◦C. The crystalline fractions are 2%, 28% and 87%, respectively.
d Crystalline fraction as a function of annealing time for various annealing temperatures as labeled. Symbols are exper-
imental data, solid lines depict theory considering grain nucleation and growth. e Final grain size for various annealing
temperature. Dashed line is exponential with a slope of 0.6eV. Adapted from [2121]

In Fig. 24.51 the effect of thermal annealing of amorphous silicon is shown. The annealing time
necessary to convert the amorphous phase completely to polycrystalline, e.g. 10h at 640◦C, depends
largely on temperature as detailed in [2121, 2122] (Fig. 24.51a) with a large activation energy of 3.9eV.
Also the final grain size is temperature dependent (Fig. 24.51b).

The introduction of certain metals like Pd [2123], Al [2124], Au [2125] or Ni [2126] induces
crystallization and allows for much lower annealing temperatures. Pd and Ni create silicides that play
an important role for the grain nucleation or growth front. Au and Al are solved in the bulk but have
a similar effect. For example, using Pd complete crystallization of a 150nm thick a-Si film deposited
at 480◦C can be achieved by thermal annealing after 10h at only 500◦C [2127] (using metal-induced
lateral crystallization, MILC).

24.6.2 TFT Devices

A schematic cross section of an amorphous silicon-based TFT is shown in Fig. 24.52a. Carriers in
amorphous silicon have a low mobility typically less than 1cm2/Vs [2128, 2129]. As-grown polycrys-
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(a) (b)

Fig. 24.52 a Schematic cross section of a top-gate amorphous silicon (a-Si) thin-film transistor (MISFET) on glass
substrate. b Schematic cross section of a transparent ZnO thin-film transistor (MESFET)

(a) (b)

Fig. 24.53 a Field effect mobility and on/off current ratio for oxide channel transistors.Filled squares representMISFET
transistors; open squares are for MESFETs from [2135]. The shaded area indicates best performance. b Voltage swing
for MISFETs (filled squares, subthreshold voltage swing) and MESFET (empty square, above turn-on voltage from
[2135]) with TSO channels. The dashed line is guide to the eye for the trend of best performance. The dash-dotted line
indicates the thermodynamic limit of about 60meV/decade for the swing [2138]. Adapted from [2136]

talline silicon has amobility of typically less than 10cm2/Vs.With the use of laser irradiation or thermal
annealing, amorphous or small-grain polycrystalline silicon layers can be recrystallized, increasing the
mobility up to several 100cm2/Vs, improving transistor performance [2128, 2130, 2131]. However,
for display applications a mobility of 10cm2/Vs is large enough.

The main optimization criteria for thin-film transistors are high on-off ratio, long-term stability,
good uniformity and reproducibility, and low cost. Recently, flexible (on polymer substrate) and trans-
parent TFTs (TFET, transparent FET), e.g. with polycrystalline ZnO or GaInZnO (GIZO) channel
(Fig. 24.52b), are being investigated for advanced applications such as all-transparent electronics and
displays [151, 2132–2135]. A compilation of recent results on transparent semiconducting oxide (TSO)
channel FETs can be found in [2136]. In Fig. 24.53 performance data for various TSO channel FETs
are visualized. In Fig. 24.54 a transparent inverter based on ZnO-MESFETs is depicted [2137].

24.6.3 Transistors with 2D Materials

The ultimate thin film transistor is one with a single monolayer as channel. Various 2D materials (cf.
Sect. 13) as mono- or multi-layers have been investigated in transistors [2140, 2141]. The channel
mobility for conventional layers decreases typically for thickness d below 10nm and strongly below
5nm. The idea to use 2D materials is to avoid a rough surface and interface defects towards the gate. A
single layer MoS2 transistor with HfO2 gate and Au ohmic contacts has been reported in [2142] with a
(field effect) mobility above 200cm2/Vs, low sub-threshold voltage swing and high on/off ratios above
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(a) (b)

Fig. 24.54 a Optical image of transparent MESFET inverter based on ZnO. The two rectangles indicate the two gates.
b Transfer characteristic for supply voltage VDD=4V

106. Also, a thinner channel allows further gate size scaling. However, the realities are complicated
[2143, 2144] and clear performance gains have not been achieved yet. Also, the upscaling to wafer
size is an unresolved issue.

24.6.4 OFETs

Organic field effect transistors (OFETs) [2139, 2145–2147] are transistors forwhich at least the channel
consists of an organic material. Most work is done on thin film transistors, although some work on
OFETs using bulk organic semiconductors has been reported [2148, 2149]. Organic materials are
also used for the insulator and the contact materials. Often organic and flexible substrates are used.
Applications are in low cost electronics, e.g. for driving display pixels or RFID tags (typically operating
at 13.56MHzor 900MHz). Processes like spin-on and printing can be used.Due to their larger chemical
stability against oxidation, mostly p-type channelmaterials are used. The highest mobilities are reached
for pentacene (6cm2/Vs) and sexithiophene (1cm2/Vs); n-type organic semiconductors exhibit field
mobility below 0.1cm2/Vs [2145].



Appendix A
Tensors

A.1 Introduction

A physical quantity Ti j ...m with a total of k indices that is independent of translations of the coordinate
system and transforms with respect to all indices like a vector is called a tensor of rank k.

Often, Einstein’s sum convention is used; a sum is built over indices with the same symbol. For
example, x ′

i = Di j x j shall be read as x ′
i = ∑3

j=1 Di j x j .

A.2 Rotation of Coordinate System

A rotation of the coordinate system is a transformation x → x′ that is written in components as

x ′
i = Di j x j . (A.1)

D is called the rotation matrix. The inverse of the rotation matrix is D−1 with

D−1
kl = Dlk , (A.2)

i.e. it is the transpose of matrix D. The inverse transformation is x j = Di j x ′
i . Thus,

Di j Dkj = δi j . (A.3)

A simple example is the azimuthal rotation around the z-axis by an angle φ (in the mathematically
positive direction)

D =
⎛

⎝
cosφ − sin φ 0
sin φ cosφ 0
0 0 1

⎞

⎠ . (A.4)

For the description of an arbitrary rotation (x, y, z) → (X,Y, Z), generally three angles are necessary.
Typically, the Euler angles (φ, θ, ψ) are used (Fig.A.1). First, the system is rotated by φ around the
z-axis. The y-axis becomes the u-axis. Then, the system is tilted by θ around the u-axis and the z-axis
becomes the Z -axis. Finally, the system is rotated by ψ around the Z -axis.
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Fig. A.1 Rotation of a
coordinate system (x, y, z)
by the Euler angles
(φ, θ, ψ) into the system
(X, Y, Z)

YZ

X

z

x

y

The matrix for the general rotation by the Euler angles is

⎛

⎝
cosψ cos θ cosφ − sinψ sin φ − sin φ cos θ cosψ − cosφ sinψ sin θ cosψ

cosφ cos θ sinψ + sin φ cosψ − sinψ cos θ sin φ + cosψ cosφ sin θ sinψ

− cosφ sin θ sin φ sin θ cos θ

⎞

⎠ . (A.5)

A.3 Rank-n Tensors

Rank-0 Tensors

A tensor of rank 0 is also called a scalar. For example, the length v21+v22+v23 of the vector v = (v1, v2, v3)
is a scalar since it is invariant under rotation of the coordinate system.However, ‘scalar’ is not equivalent
to ‘number’ since, e.g. the number v21 + v22 is not rotationally invariant.

Rank-1 Tensors

A tensor of rank 1 is a vector. It transforms under coordinate rotation D as

v′
i = Di j v j . (A.6)

Rank-2 Tensors

A tensor of rank 2 is also called a dyade and is a 3 × 3 matrix T that transforms under coordinate
rotation as

T ′
i j = Dik D jl Tkl . (A.7)

The physical meaning is the following: Two vectors s and r shall be related to each other via si = Ti jr j .
This could be, e.g., the current j and the electric fieldE that are connected via the tensor of conductivity
σ , i.e. ji = σi j E j .
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Such an equation only makes physical sense if it is also valid in a (any) rotated coordination system.
The tensor T′ in the rotated coordinate system must fulfill s ′

i = T ′
i j r

′
j . This implies the transformation

law (A.7). s ′
k = Dki si = Dki Ti jr j and also s ′

k = T ′
kmr

′
m = T ′

kmDmjr j . Thus, T ′
kmDmj = Dki Ti j since

the previous relations are valid for arbitrary r. Multiplication by Dlj yields T ′
kmDmj Dl j = T ′

kmδml =
T ′
kl = Dki Dl j Ti j .
The trace of a rank-2 tensor is defined as trT = Tii = T11 + T22 + T33. It is a scalar, i.e. invariant

under coordinate rotation, since T ′
kk = Dki Dkj Ti j = δi j Ti j = Tii . Next to the trace invariant, rank-2

tensors have two more invariants independent:

I1 = trT = T11 + T22 + T33 (A.8a)

I2 = [(trT)2 − tr (T2)]/2 =
T11T22 + T22T33 + T11T33 − T12T21 − T23T32 − T13T31 (A.8b)

I3 = det (T) =
T13T22T31 + T12T23T31 + T13T21T32−
T11T23T32 − T12T21T33 + T11T22T33 . (A.8c)

Of course any function of the invariants is also invariant. In terms of the eigenvalues λ1, λ2, and λ3 of
T, the invariants are given by

I1 = λ1 + λ2 + λ3 (A.9a)

I2 = λ1 λ2 + λ1 λ3 + λ2 λ3 (A.9b)

I3 = λ1 λ2 λ3 . (A.9c)

It shall be noted that the relation
T3 = I1 T2 − I2 T + I31 (A.10)

holds, 1 being the unity matrix. Further information on tensor invariants can be found in [2150].
A rank-2 tensor can be separated into a symmetric part TS and an antisymmetric part TA, i.e.

T S
ji = T S

i j and T A
ji = −T A

i j with

T = TS + TA (A.11a)

T S
i j = Ti j + Tji

2
(A.11b)

T A
i j = Ti j − Tji

2
. (A.11c)

A rank-2 tensor can be separated into an isotropic (spherical) part TI and a deviatoric part TD . The
isotropic part is invariant under coordinate rotation.

T = TI + TD (A.12a)

T I
i j = δi j

trT
3

(A.12b)

T D
i j = Ti j − δi j

trT
3

. (A.12c)

The trace of T is the same as that of TI . The trace of TD is zero.
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Rank-3 Tensors

A tensor of rank 3 transforms according to

T ′
i jk = Dil D jm DknTlmn . (A.13)

An example is the tensor e of piezoelectric constants that relates the rank-2 tensor of the strains ε with
the polarization vector P, i.e. Pi = ei jkε jk .

Rank-4 Tensors

A tensor of rank 4 transforms according to

T ′
i jkl = Dim Djn Dko Dlp Tmnop . (A.14)

An example is the tensor C of elastic constants that relates the rank 2 tensors ε and σ of the elastic
strains and stresses, i.e. σi j = Ci jklεkl . The reduction of the rotation of a rank-4 tensor to a 6×6 matrix
problem is discussed in [2151].



Appendix B
Point and Space Groups

Table B.1 The 10 two-dimensional point groups in full and abbreviated international notation. Nsg denotes the number
of space groups

Group Notation Nsg Symmetry elements

Full Abbreviated

International

C1 1 1 1 C1

D1 1 m m 3 C1, m

C2 2 2 1 C2

D2 2 mm mm 4 C2, 2 m

C3 3 3 1 C3

D3 3 m 3 m 2 C3, 3 m

C4 4 4 1 C4

D4 4 mm 4 m 2 C4, 2 m

C6 6 6 1 C6

D6 6 mm 6 m 1 C6, 6 m
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Table B.2 The 32 point groups in Schönfließ and international notation. Nsg denotes the number of space groups

System Class Nsg Symmetry elements

International Schönfließ

Triclinic
1

1̄

C1

Ci

1

1

E

E i

Monoclinic

m

2

2/m

Cs

C2

C2h

3

4

6

E σh

E C2

E C2 i σh

Orthorhombic

2 mm

222

mmm

C2v

D2

D2h

9

22

28

E C2 σ ′
v σ ′′

v

E C2 C ′
2 C

′′
2

E C2 C ′
2 C

′′
2 i σh σ ′

v σ ′′
v

Tetragonal

4

4̄

4/m

4 mm

4̄2 m

422

4/mmm

C4

S4
C4h

C4v

D2d

D4

D4h

6

2

6

10

12

12

20

E 2C4 C2

E 2S4 C2

E 2C4 C2 i 2S4 σh

E 2C4 C2 2σ ′
v 2σd

E C2 C ′
2 C

′′
2 2σd 2S4

E 2C4 C2 2C ′
2 2C ′′

2

E 2C4 C2 2C ′
2 2C ′′

2 i 2S4 σh 2σ ′
v 2σh

Trigonal

(rhombohedral)

3

3̄

3 m

32

3̄ m

C3

S6
C3v

D3

D3d

4

2

7

6

6

E 2C3

E 2C3 i 2S6
E 2C3 3σv
E 2C3 3C2

E 2C3 3C2 i 2S6 3σd

Hexagonal

6̄

6

6/m

6̄ m2

6 mm

622

6/mmm

C3h

C6

C6h

D3h

C6v

D6

D6h

6

1

2

6

4

4

4

E 2C3 σh 2S3
E 2C6 2C3 C2

E 2C6 2C3 C2 i 2S3 2S6 σh

E 2C3 3C2 σh 2S3 3σv
E 2C6 2C3 C2 3σv 3σd
E 2C6 2C3 C2 3C ′

2 3C ′′
2

E 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S3
2S6 σh 3σd 3σv

Cubic

23

m3

4̄3 m

432

m3 m

T

Th
Td
O

Oh

5

7

8

6

10

E 4C3 4C2
3 3C2

E 4C3 4C2
3 3C2 i 8S6 3σh

E 8C3 3C2 6σd 6S4
E 8C3 3C2 6C ′

2 6C4

E 8C3 3C2 6C2 6C4 i 8S6 3σh 6σd 6S4
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Table B.3 Space group numbers and corresponding space group symbols in standard international notation

1 P1 2 P1̄ 3 P2 4 P21 5 C2

6 Pm 7 Pc 8 Cm 9 Cc 10 P2/m

11 P21/m 12 C2/m 13 P2/c 14 P21/c 15 C2/c

16 P222 17 P2221 18 P21212 19 P212121 20 C2221
21 C222 22 F222 23 I222 24 I212121 25 Pmm2

26 Pmc21 27 Pcc2 28 Pma2 29 Pca21 30 Pnc2

31 Pmn21 32 Pba2 33 Pna21 34 Pnn2 35 Cmm2

36 Cmc21 37 Ccc2 38 Amm2 39 Abm2 40 Ama2

41 Aba2 42 Fmm2 43 Fdd2 44 Imm2 45 Iba2

46 Ima2 47 Pmmm 48 Pnnn 49 Pccm 50 Pban

51 Pmma 52 Pnna 53 Pmna 54 Pcca 55 Pbam

56 Pccn 57 Pbcm 58 Pnnm 59 Pmmn 60 Pbcn

61 Pbca 62 Pnma 63 Cmcm 64 Cmca 65 Cmmm

66 Cccm 67 Cmma 68 Ccca 69 Fmmm 70 Fddd

71 Immm 72 Ibam 73 Ibca 74 Imma 75 P4

76 P41 77 P42 78 P43 79 I4 80 I41
81 P4̄ 82 I4̄ 83 P4/m 84 P42/m 85 P4/n

86 P42/n 87 I4/m 88 I41/a 89 P422 90 P4212

91 P4122 92 P41212 93 P4222 94 P42212 95 P4322

96 P43212 97 I422 98 I4122 99 P4mm 100 P4bm

101 P42cm 102 P42nm 103 P4cc 104 P4nc 105 P42mc

106 P42bc 107 I4mm 108 I4cm 109 I41md 110 I41cd

111 P4̄2m 112 P4̄2c 113 P4̄21m 114 P4̄21c 115 P4̄m2

116 P4̄c2 117 P4̄b2 118 P4̄n2 119 I4̄m2 120 I4̄c2

121 I4̄2m 122 I4̄2d 123 P4/mmm 124 P4/mcc 125 P4/nbm

126 P4/nnc 127 P4/mbm 128 P4/mnc 129 P4/nmm 130 P4/ncc

131 P42/mmc 132 P42/mcm 133 P42/nbc 134 P42/nnm 135 P42/mbc

136 P42/mnm 137 P42/nmc 138 P42/ncm 139 I4/mmm 140 I4/mcm

141 I41/amd 142 I41/acd 143 P3 144 P31 145 P32
146 R3 147 P3̄ 148 R3̄ 149 P312 150 P321

151 P3112 152 P3121 153 P3212 154 P3221 155 R32

156 P3m1 157 P31m 158 P3c1 159 P31c 160 R3m

161 R3c 162 P3̄1m 163 P3̄1c 164 P3̄m1 165 P3̄c1

166 R3̄m 167 R3̄c 168 P6 169 P61 170 P65
171 P62 172 P64 173 P63 174 P6̄ 175 P6/m

176 P63/m 177 P622 178 P6122 179 P6522 180 P6222

181 P6422 182 P6322 183 P6mm 184 P6cc 185 P63cm

186 P63mc 187 P6̄m2 188 P6̄c2 189 P6̄2m 190 P6̄2c

191 P6/mmm 192 P6/mcc 193 P63/mcm 194 P63/mmc 195 P23

196 F23 197 I23 198 P213 199 I213 200 Pm3̄

201 Pn3̄ 202 Fm3̄ 203 Fd3̄ 204 Im3̄ 205 Pa3̄

206 Ia3̄ 207 P432 208 P4232 209 F432 210 F4132

211 I432 212 P4332 213 P4132 214 I4132 215 P4̄3m

216 F4̄3m 217 I4̄3m 218 P4̄3n 219 F4̄ 3c 220 I4̄3d

221 Pm3̄m 222 Pn3̄n 223 Pm3̄n 224 Pn3̄m 225 Fm3̄m

226 Fm3̄c 227 Fd3̄m 228 Fd3̄c 229 Im3̄m 230 Ia3̄d



Appendix C
Kramers–Kronig Relations

TheKramers–Kronig relations (KKR) are relations between the real and imaginary part of the dielectric
function. They are of a general nature and are based on the properties of a complex, analytical response
function f (ω) = f1(ω) + i f2(ω) fulfilling the following conditions1:

• The poles of f (ω) are below the real axis.
• The integral of f (ω)/ω along a semicircle with infinite radius in the upper half of the complex plane
vanishes.

• The function f1(ω) is even and the function f2(ω) is odd for real values of the argument.

The integral of f (s)/(s − ω)ds along the real axis and an infinite semicircle in the upper half of the
complex plane is zero because the path is a closed line. The integral along a semicircle above the pole
at s = ω yields −π i f (ω), the integral over the infinite semicircle is zero. Therefore the value of f (ω)

is given by2

f (ω) = 1

π i
Pr

∞∫

−∞

f (s)

s − ω
ds . (C.1)

Equating the real and imaginary parts of (C.1) yields for the real part

f1(ω) = 1

π
Pr

∞∫

−∞

f2(s)

s − ω
ds . (C.2)

Splitting the integral into two parts
∫ ∞
0 and

∫ 0
−∞, going from s to −s in the latter and using f2(−ω) =

− f2(ω) and 1
s−ω

+ 1
s+ω

= 2s
s2−ω2 yields (C.3a)

f1(ω) = 2

π
Pr

∞∫

0

s f2(s)

s2 − ω2 ds (C.3a)

f2(ω) = − 2

π
Pr

∞∫

0

f1(s)

s2 − ω2 ds . (C.3b)

1The requirements for the function f to which the KKR apply can be interpreted as that the function must represent the
Fourier transform of a linear and causal physical process.
2The Cauchy principal value Pr of the integral is the limit for δ → 0 of the sum of the integrals over −∞ < s < ω − δ

and ω + δ < s < ∞.
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In a similarway, (C.3b) is obtained. These two relations are theKramers–Kronig relations [2152, 2153].
They are most often applied to the dielectric function ε. In this case, they apply to the susceptibility,
i.e. f (ω) = χ(ω) = ε(ω)/ε0 − 1. The susceptibility can be interpreted as the Fourier transform of
the time-dependent polarization in the semiconductor after an infinitely short pulsed electric field, i.e.
the impulse response of the polarization. For the dielectric function ε = ε1 + iε2, the following KKR
relations hold:

ε1(ω) =ε0 + 2

π
Pr

∞∫

0

s ε2(s)

s2 − ω2
ds (C.4a)

ε2(ω) = − 2ω

π
Pr

∞∫

0

ε1(s) − ε0

s2 − ω2
ds . (C.4b)

The static dielectric constant is thus given by

ε(0) = ε0 + 2

π
Pr

∞∫

0

ε2(s)

s
ds . (C.5)

The integral does not diverge since ε2 is an odd function and zero at ω = 0. Generally the j-th
momentum Mj of the imaginary part of the dielectric function is

Mj =
∞∫

0

ε2(ω) ω j dω . (C.6)

Thus, M−1 = π [ε(0) − ε0]/2.
Other KKRs are, e.g., the relation between the index of refraction nr and the absorption coefficientα:

nr(λ) = 1

π
Pr

∞∫

0

α(s)

1 − s2/λ2
ds . (C.7)

If the imaginary (real) part of the dielectric function is known (for all frequencies), the real (imaginary)
part can be calculated via the KKR. If the dependence is not known for the entire frequency range,
assumptions about the dielectric function in the unknown spectral regions must be made that limit the
reliability of the transformation.



Appendix D
Oscillator Strength

The response of an oscillator to an electric field E is formulated with the dielectric function. The
resulting polarization P is related to the electric field via

P = ε0 χ E , (D.1)

with χ being the electric susceptibility, and the displacement field D is given by

D = ε0 E + P = ε0 ε E . (D.2)

Thus the (relative) dielectric constant is
ε = 1 + χ . (D.3)

We assume a harmonic oscillator model for an electron, i.e. an equation of motion for the amplitude
x = x0 exp(iωt)

m ẍ = −C x . (D.4)

The resonance frequency is ω2
0 = C/m. The presence of a harmonic electric field E of frequency ω

and amplitude E0 adds a force eE . Thus,

− m ω2 x = −m ω2
0 x + e E . (D.5)

The polarization ex0 is given by

e x0 = e2

m

1

ω2
0 − ω2

E0 = e2

m ω2
0

1

1 − ω2/ω2
0

E0 . (D.6)

The pre-factor is called the (dimensionless) oscillator strength and will be denoted as

f = e2

ε0 m ω2
0

(D.7)

in the following. The frequency-dependent dielectric function of the resonance is thus

ε(ω) = 1 + f

1 − ω2/ω2
0

. (D.8)
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In the low-frequency limit, the dielectric function is ε(0) = 1+ f , in the high-frequency limit ε(∞) = 1.
The oscillator strength is the difference of ε for frequencies below and above the resonance.

For all systems, the high-frequency limit of ε is 1. This means that χ = 0, i.e. there are no more
oscillators to be polarized. The low-frequency limit includes all possible oscillators. If there are further
oscillators between frequencieswell aboveω0 andω → ∞, these are summarized as the high-frequency
dielectric constant ε∞ > 1. Equation (D.8) then reads

ε(ω) = ε(∞) + f̂

1 − ω2/ω2
0

. (D.9)

The limit ε → ε(∞) is only valid for frequencies above ω0 but smaller than the next resonance(s) at
higher frequencies.3 Another common form is to include the background dielectric constant via

ε(ω) = ε(∞)

[

1 + f

1 − ω2/ω2
0

]

. (D.10)

Obviously, f = f̂ /ε(∞), making the two forms equivalent.
In order to discuss the lineshape, not only for ε but also for the index of refraction n∗ = nr+iκ = √

ε,
we introduce damping to our calculation by adding a term −m� ẋ to the left side of (D.5). This term
is something like a ‘friction’ and would cause the oscillation amplitude to decay exponentially with a
time constant τ = 2/� without external stimulus. The dielectric constant is

ε(ω) = ε(∞)

[

1 + f

1 − (ω2 + iω�)/ω2
0

]

= ε′ + iε′′ . (D.11)

The real and imaginary part fulfill the Kramers–Kronig relations (C.3a) and (C.3b). For the oscillator
strength, the regimes of large oscillator strength ( f ∼ 1) and small oscillator strength ( f � 1) are
distinguished. For the damping, two regimes should be distinguished: Small damping (� � ω0) and
strong damping (� � ω0). Typical lineshapes are shown in Figs.D.1 and D.2.

For small oscillator strength, i.e. f � 1, the index of refraction n∗ = √
ε = nr + iκ is given by

(n∞ = √
ε(∞))

nr =n∞
[

1 + f

2

ω2
0 (ω2

0 − ω2)

(ω2
0 − ω2)2 + �2 ω2

]

(D.12a)

κ =n∞
f

2

� ω0 (ω2
0 − ω2)

(ω2
0 − ω2)2 + �2 ω2

. (D.12b)

For small detuning from the resonance frequency, i.e. ω = ω0 + δω with |δω|/ω0 � 1, the index of
refraction is given by

nr =n∞
[

1 − f

4

ω0 δω

(δω)2 + �2/4

]

(D.13a)

κ =n∞
f

4

ω0 �/2

(δω)2 + �2/4
. (D.13b)

The maximum absorption is given as

3For ω going to infinite values (beyond the X-ray regime), ε always goes towards one.
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(a) (b)

(c) (d)

(e) (f)

Fig. D.1 Real (solid lines) and imaginary (dashed lines) parts of the dielectric constant (a, c, e) and index of refraction
(b, d, f) (D.11) for oscillator strength f = 1 and various values of damping: (a, b) � = 10−2ω0, (c, d) � = 10−1ω0,
and (e, f) � = ω0

αm = 2
ω0

c
κ(ω0) = f

ω2
0

�

n∞
c

. (D.14)

For zero damping, the dielectric function has a zero at

ω′
0 = ω0

√
1 + f ≈ ω0

(

1 + f

2

)

. (D.15)

The latter approximation is valid for f � 1. In the region between ω0 and ω′
0, the real part of the index

of refraction is very small (for the physically unrealistic case of � ≡ 0 it is exactly zero since ε < 0).
The reflectance (for vertical incidence R = [(1− n∗)/(1+ n∗)]2) in this region (width: f ω0/2) is thus
very high. For larger damping (and small oscillator strength), this effect is washed out.

The frequency ωε′′,max of the maximum of the imaginary part of ε′′ of the dielectric function (�̂ =
�/ω0) is
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(a) (b)

(c) (d)

(e) (f)

Fig. D.2 Real (solid lines) and imaginary (dashed lines) parts of the dielectric constant (a, c, e) and index of refraction
(b, d, f) (D.11) for oscillator strength f = 10−1 and various values of damping: (a, b) � = 10−2ω0, (c, d) � = 10−1ω0,
and (e, f) � = ω0

ω2
ε′′,max = ω2

0
2 − �̂2 +

√
16 − 4�̂2 + �̂4

6
≈ ω2

0

[

1 −
(

�

2ω0

)2
]

. (D.16)

The approximation is valid for small damping � � ω0. In this case, the detuned frequency of the
maximum is close to ω0 (Fig.D.3). The frequency position of the maximum of tan δ = ε′′/ε′ is

ω2
tan δ,max = ω2

0
2 + f − �̂2 + �2

6
(D.17)

�2 =
√

12 (1 + f ) +
(
2 + f − �̂2

)2
.

The value of tan δ at its maximum is (� has the same meaning as in (D.17))
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Fig. D.3 Frequency
position of the maximum
of ε as a function of the
damping

(tan δ)max =
−3

√
3
2 f �̂

√

2 + f − �̂2 + �2

−8 − 8 f + f 2 − 4 �̂2 − 2 f �̂2 + �̂4 +
(
2 + f − �̂2

)
�2

. (D.18)



Appendix E
Quantum Statistics

E.1 Introduction

Bosons are particles with integer spin s = n, fermions are particles with spin s = n + 1/2 with n
being an integer including zero. The fundamental quantum-mechanical property of the wavefunction
of a system with N such particles is that under exchange of any two particles, the wavefunction is
symmetric in the case of bosons and antisymmetric in the case of fermions. For two particles, these
conditions read

�(q1, q2) =�(q2, q1) (E.1a)

�(q1, q2) = − �(q2, q1) , (E.1b)

where (E.1a) holds for bosons and (E.1b) holds for fermions. The variables qi denote the coordinates
and spin of the i-th particle. The Pauli principle allows bosons to populate the same single particle state
with an arbitrary number of particles (at least more than one). For fermions, the exclusion principle
holds that each single particle state can only be populated once.

E.2 Partition Sum

We consider a gas of N identical particles in a volume V in equilibrium at a temperature T . The
possible quantum-mechanical states of a particle is denoted as r . The energy of a particle in the state
r is εr , the number of particles in the state r is nr .

For vanishing interaction of the particles, the total energy of the gas in the state R (with nr particles
in the state r ) is

ER =
∑

r

nr εr . (E.2)

The sum runs over all possible states r . The total number of particles imposes the condition

N =
∑

r

nr . (E.3)

In order to calculate the thermodynamic potentials, the partition sum Z needs to be calculated
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Z =
∑

R

exp(−βER) , (E.4)

with β = 1/(kT ). The sum runs over all possible microscopic states R of the gas, i.e. all combinations
of the nr that fulfill (E.3). The probability PS to find the system in a particular state S is given by
(canonical ensemble)

PS = exp(−βES)

Z
. (E.5)

The average number n̄s of particles in a state s is given by

n̄s =
∑

R ns exp(−βER)

Z
= − 1

βZ

∂Z

∂εs
= − 1

β

∂ ln Z

∂εs
. (E.6)

We note that the average deviation (�ns)2 = n2s − n̄2s = n2s − n̄2s is given by

(�ns)2 = 1

β2

∂2 ln Z

∂ε2s
= − 1

β

∂ n̄s
∂εs

. (E.7)

In the Bose–Einstein statistics (for bosons), the particles are fundamentally indistinguishable. Thus, a
set of (n1, n2, . . .) uniquely describes the system. In the case of fermions, for each state nr is either 0
or 1. In both cases, (E.3) needs to be fulfilled.

E.3 Photon Statistics

This case is the Bose–Einstein statistics (cf. (E.24)) with undefined particle number.We rewrite (E.6) as

n̄s =
∑

ns
ns exp(−βnsεs)

∑(s)
n1,n2,...

exp(−β(n1ε1 + n2ε2 + . . .))
∑

ns
exp(−βnsεs)

∑(s)
n1,n2,...

exp(−β(n1ε1 + n2ε2 + . . .))
, (E.8)

where
∑(s) denotes a summation that does not include the index s. In the case of photons, the values

nr can take any value (integers including zero) without restriction and therefore the sums
∑(s) in the

numerator and denominator of (E.8) are identical. After some calculation we find

n̄s = − 1

β

∂

∂εs
ln

( ∞∑

ns=0

exp(−βnsεs)

)

. (E.9)

The argument of the logarithm is a geometrical series with the limit [1− exp(−βεs)]−1. This leads to
the so-called Planck distribution

n̄s = 1

exp(βεs) − 1
. (E.10)
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E.4 Fermi–Dirac Statistics

Now, the particle number is fixed to N . For the sum
∑(s) from (E.6), we introduce the term ZS(M)

Zs(M) =
∑

n1,n2,...

(s) exp(−β(n1ε1 + n2ε2 + . . .)) , (E.11)

when M particles are to be distributed over all states except s (
∑(s)

r nr = M). M is either N − 1 if
ns = 1 and N if ns = 0. Using Zs , we can write

n̄s = 1
Zs (N )

Zs (N−1) exp(βεs) + 1
. (E.12)

We evaluate Zs(N − 1)

ln Zs(N − �N ) = ln Zs(N ) − ∂ ln Zs

∂N
|N �N , (E.13)

or
Zs(N − �N ) = Zs(N ) exp(−γs�N ) , (E.14)

with

γs = ∂ ln Zs

∂N
. (E.15)

Since Zs runs over many states, the derivative is approximately equal to

γ = ∂ ln Z

∂N
, (E.16)

as will be shown below. Thus, we obtained so far

n̄s = 1

exp(γ + βεs) + 1
. (E.17)

Equation (E.3) holds also for the average values n̄s , i.e.

N =
∑

r

n̄r =
∑

r

1

exp(γ + βεs) + 1
, (E.18)

from which the value of γ can be calculated. Given that the free energy is given as F = −kT ln Z , we
find that

γ = − 1

kT

∂F

∂N
= −βμ , (E.19)

whereμ is the chemical potential by definition. Therefore, the distribution function for the Fermi–Dirac
statistics (also called the Fermi function) is

n̄s = 1

exp(β(εs − μ)) + 1
. (E.20)
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(a) (b)

(c) (d)

Fig. E.1 Fermi function for a, b different temperatures (for EF = 1.0eV) and c for different chemical potentials
(for T = 300K). d Fermi function (solid lines) compared with Boltzmann approximation (dashed lines) for various
temperatures and EF = 1.0eV on semilogarithmic plot

Now, we briefly revisit the approximation γ = γs . Exactly, γ fulfills

γ = γs − ns
∂γ

∂N
. (E.21)

Thus, the approximation is valid if ns
∂γ

∂N � γ . Since ns < 1, this means that the chemical potential
does not change significantly upon addition of another particle.

The Fermi–Dirac distribution function (E.20) for electrons is typically written as

fe(E) = 1

exp
( E−EF

kT

) + 1
, (E.22)

where k (or kB) denotes the Boltzmann constant, T is the temperature, and EF is the Fermi level, which
is called the chemical potential μ in thermodynamics. The Fermi distribution is shown in Fig.E.1
for various parameters. The distribution function gives the probability that a state at energy E is
populated in thermodynamic equilibrium. For E = EF the population is 1/2 for all temperatures. At
(the unrealistic case of) T = 0, the function makes a step from 1 (for E < EF) to 0.

The high-energy tail of the Fermi distribution, i.e. for E − EF � kT , can be approximated by the
Boltzmann distribution:

fe(E) ∼= exp

(

− E − EF

kT

)

. (E.23)
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E.5 Bose–Einstein Distribution

Executing (E.8) with the approximation γ = γs , the Bose–Einstein distribution is found to be

n̄s = 1

exp(β(εs − μ)) − 1
. (E.24)



Appendix F
Kronig-Penney Model

TheKronig-Penneymodel [71] is a simple, one-dimensional analytically solvablemodel that visualizes
the effect of the periodic potential on the dispersion relation of electrons, i.e. the formation of a band
structure.

A one-dimensional periodic hard-wall potential of finite height is assumed (Fig.F.1). The well width
is a, the barrier width b and thus the period P = a + b. The potential is zero in the well (regions
(0, a) + nP) and +U0 in the barrier. The Schrödinger equation

− �
2

2m

∂2�

∂x2
+U (x)� = E � (F.1)

has to be solved. The solutions for a single hard-wall potential well are well known. In the well, they
have oscillatory character, i.e.� ∝ exp(ikx)with real k. In the barrier, they have exponential character,
i.e. � ∝ exp(κx) with real κ . Thus we chose

�(x) = A exp (iKx) + B exp (−iKx) (F.2a)

�(x) = C exp (κx) + D exp (−κx) . (F.2b)

The wavefunction from (F.2a) is for the well between 0 and a with E = �
2K 2/2m. The wavefunction

from (F.2b) is for the barrier between a and a + b with U0 − E = �
2κ2/2m. From the periodicity and

Bloch’s theorem (6.3) the wavefunction at x = −b must have the form �(−b) = exp(−ikP)�(a),
i.e. between the two wavefunctions is only a phase factor. The wavevector k of the Bloch function
(plane-wave part of the solution) is a new quantity and must be carefully distinguished from K and κ ,
both coding the eigenenergy.

As boundary conditions, the continuity of � and � ′ are used.4 At x = 0 and x = a this yields

Fig. F.1 One-dimensional
periodic hard-wall potential
(Kronig-Penney model)

4Generally, � ′/m should be continuous, however, in the present example the mass is assumed constant throughout the
structure.
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Fig. F.2 Transcendental
function B(K ) from (F.5)
for β = 5. The dashed
lines indicate the [−1, 1]
interval for which solutions
exist for (F.5)

A + B = C + D (F.3a)

iKA − iKB = κC − κD (F.3b)

A exp(iKa) + B exp(−iKa) = C exp(κa) + D exp(−κa) (F.3c)

iKA exp(iKa)− iKB exp(−iKa) = κC exp(κa) − κD exp(−κa). (F.3d)

The continuity of � and � ′ at x = −b is used in the left sides of (F.3c, F.3d). A nontrivial solution
arises only if the determinant of the coefficient matrix is zero. This leads (after some tedious algebra) to

cos(kP) =
[
κ2 − K 2

2κK

]

sinh(κb) sin(Ka) + cosh(κb) cos(Ka) . (F.4)

Further simplification are obtained by letting the barrier thickness b→0 and U0 → ∞; then P → a.
The limit, however, is performed in such a way that the barrier ‘strength’U0b ∝ κ2b remains constant
and finite, i.e. U (x) ∝ ∑

n δ(n a). Equation (F.4) then reads (for κb → 0: sinh(κb) → κb and
coth(κb) → 1):

cos(ka) = β
sin(Ka)

Ka
+ cos(Ka) = B(K ) . (F.5)

The dimensionless coupling parameter β = κ2ba/2 represents the strength of the barrier. Equation
(F.5) only has a solution if the right side is in the interval [−1, 1] (Fig.F.2). The function sin(x)/x
oscillates with decreasing amplitude such that for sufficiently high values of Ka a solution can always
be found (B(0) = β + 1). The resulting dispersion is shown in Fig. F.3a, b for two different values
of β. The dispersion is different from the free-electron dispersion (for β = 0, i.e. k = K + 2πn) and
has several bands separated by gaps. The band gaps are related to the K -values for which (F.5) cannot
be fulfilled. At the center (k = 0, �-point) and the zone boundary (X-point), (k = π/a) the bands are
split and the tangent is horizontal (dE/dk = 0). The form of the dispersion is similar to the arccos
function. The first band has the value EX = �

2π2/(2ma2) at the X-point for all values of β.
The band gap E12(X) between the first and the second subband (at the X-point) is shown in Fig.F.4.

For large coupling between the potential wells (small β, β � 1) it is E12 = (4β/π2)EX. In this case,
the width of the subbands is wide. For small coupling (large β) the band gap E12 converges towards
3EX, as expected for decoupled potential wells with energy levels En = n2EX. In this case, the width
of the bands is small. Also, the character of the wavefunction is that of the solution for the individual
quantum wells, i.e. even or s-type (for n = 1, 3, . . .) or odd or p-type (for n = 2, 4, . . .).
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(a) (b)

Fig. F.3 Energy dispersion of Kronig-Penney model (in units of EX = �
2π2/(2ma2)) as a function of the superlattice

wavevector k for (a) β = 5 and (b) β = 20 in (F.5). The dashed lines are the free-electron dispersion (for β = 0) (cf.
Fig. 6.2a)

Fig. F.4 Band gap
between first and second
subband (at X-point, in
units of
EX = �

2π2/(2ma2)) as a
function of β. For small
β � 10, the band gap is
∝ β. For thick barriers
(β → ∞) the band gap
saturates towards 3EX as
expected for uncoupled
wells

Fig. F.5 Effective mass (in
units of m) of the first band
extrema at the �- and
X-points (k = 0 and π/a,
respectively) as a function
of the band gap at the
X-point (in units of
EX = �

2π2/(2ma2)). The
number in the index of the
mass denotes the band
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Fig. F.6 a Band dispersion
and b density of states from
the Kronig-Penney model
for the first band gap being
equal to EX (b ≈ 3.382)

Other interesting quantities related to real bandstructures are the width of the valence band E12(�)

and the fundamental bandgap E23(�). Typical values of E23(�)/E12(�) ≈ β/10 (for β < 5) of real
semiconductors are in the range of 0.03–0.3, i.e. for β = 0.3–3.

In Fig.F.5 the effective masses are shown for the first five band extrema. The mass at the lowest
minimum remains close to 1, i.e. keeps the carrier mass m from (F.1). Around the first gaps at the X-
and the �-point, the effective masses are pairwise positive and negative, according to the character of
the extremum as minimum or maximum, respectively. The absolute values are smaller than 1 for the
given range of gaps. The mass increases initially linearly from zero with increasing gap.

The one-dimensional density of states (1D-DOS) has peaks (poles) at the band edges and is flat
throughout most of the bands where the dispersion is linear (Fig. F.6).



Appendix G
Tight-Binding Model

G.1 Concept

The tight-binding model of electronic states rests on the concept of linear combination of atomic
orbitals for finding a solution of the Hamiltonian of a periodic lattice. The ingredients of the model are
the lattice structure and overlap matrix elements.5

Let us for now assume that there is one atom per lattice site. The atomic Hamiltonian Hatom has the
solutions φn(r) with

Hatom φn(r) = En φn(r) , (G.1)

where En the energy of the n-th energy level (n = 1, 2, . . .) of the free atom.
The lattice shall be spanned by the lattice vectors Ri with the index i running over all N sites. For

bulk-like solutions, a Bloch-type wave function, fulfilling (6.3), can be constructed from the atomic
orbitals,

�nk(r) = 1√
N

∑

i

exp(ı k Ri ) φn(r − Ri ) , (G.2)

and will be taken as Ansatz for the solution of the crystal Hamiltonian H that is the sum of the atomic
Hamiltonians plus a deviation H ′ due to the crystal, which is small at the atomic site.

For nowwe consider only a single atomic state6 n = n0 forming the band structure and write simple
φ = φn0 . The single particle energy in the crystal is then given by

E(k) =
∫

�∗
k(r) H �k(r) d3r = 〈�∗

k(r)|H|�k(r)〉 . (G.3)

Equation (G.3) contains a double sum over the lattice sites i and j ,

E(k) = 1

N

∑

i, j

exp(ık(R j − Ri ))

∫

φ∗(r − R j )Hφ(r − Ri ) d
3r (G.4)

= 1

N

∑

i, j

exp(ık(R j − Ri )) Hi j . (G.5)

5In the framework of second quantization with creation and annihilation operators the theory is more elegant but we go
here ‘zu Fuß’.
6Often this is a s-type state but, e.g., for graphene the important bands around the Fermi level are formed by p-type states.
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Now, for i = j , i.e. R′ = R j − Ri = 0, the matrix element Hii gives a value α,

Hii = α = 〈φ∗(r)|H|φ(r)〉 , (G.6)

which is nothing else but the atomic energy level E1. Since the wave function φ decays (rather quickly)
with increasing distance R′ from the atom, the matrix elements will decrease as well. In the nearest-
neighbor approximation, the sum of the R′ runs only over the m (equivalent) nearest neighbors τm
and we only consider one more matrix element Hi j = γ , when i and j are neighboring sites. This
matrix element is not calculated explicitly but adjusted empirically to match experiments (empirical
tight-binding model). Thus we find the energy dispersion

E(k) = α + γ �(k) , (G.7)

with the sum
�(k) =

∑

m

exp(ı k τm) , (G.8)

running over the nearest-neighbor sites. Extensions of the model consider second or even third next-
neighbor sites with parameters γ ′ and γ ′′. Also, a larger number of atomic orbitals than a single one
can be included, forming further bands.

G.2 One-Dimensional Model

In a one-dimensional model, Ri = ia = iae, e being the unit vector. The nearest neighbors to the
atom at i = 0 are at i = ±1 and τ1,2 = ±ae. Therefore, �(k) (G.8) is given by (k = ke)

�(k) = exp(+ı k a) + exp(−ı k a) = 2 cos(k a) , (G.9)

and the dispersion relation represents a band of width 4γ with extrema at k = 0 and k = ±π/a,

E(k) = α + 2 γ cos(k a) . (G.10)

It is straightforward to extend this scheme to the case of a two-dimensional square lattice with four
nearest neighbors (Appendix G.3.1) or to three-dimensional cubic lattices.

In the usual semiconductor cases, the basis has more than one atom; here we consider a two-atom
basis with an A- and a B-site (like Fig. 5.5). Two different (the sites A and B having the same atom
is a special case discussed below) atomic Hamiltonians HA and HB exist with sets of eigenfunctions
φA,n and φB,n . We again consider only a single state at this point, i.e. we use φA and φB. Bloch-like
functions (6.3) with these two orbitals are,

�A
k (r) = 1√

N

∑

i

exp(ı k Ri ) φA(r − Ri ) (G.11)

�B
k (r) = 1√

N

∑

i

exp(ı k Ri ) φB(r − Ri + δ) , (G.12)

according to (G.2) with δ being the vector pointing from the A- to the B-site. The total wave function
is given by
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�k(r) = cA(k)�A
k + cB(k)�B

k (G.13)

with complex coefficients cA and cB, denoting amplitudes and phases on the A- and B-site. This scheme
can be generalized to larger number of atoms in the unit cell. Multiplying H�k = E(k)�k with �A ∗

k
and �B ∗

k from the left side, respectively, and integration leads to the equation system,

( 〈�A ∗
k |H|�A

k 〉 〈�A ∗
k |H|�B

k 〉
〈�B ∗

k |H|�A
k 〉 〈�B ∗

k |H|�B
k 〉

)(
cA
cB

)

=
(
ĤAA ĤAB

ĤBA ĤBB

)(
cA
cB

)

= (G.14)

E(k)
( 〈�A ∗

k |�A
k 〉 〈�A ∗

k |�B
k 〉

〈�B ∗
k |�A

k 〉 〈�B ∗
k |�B

k 〉
)(

cA
cB

)

= E(k)
(
SAA SAB
S∗
AB SBB

)(
cA
cB

)

. (G.15)

The overlap matrix S is approximately the unity matrix 1, assuming the overlap integral of the atomic
A and B wave functions SAB = 0 (of course, always SAA = SBB = 1). The matrix Ĥ belongs to the
Hamiltonian in the k-representation. A non-trivial solution is only possible if the determinant fulfills,

∣
∣
∣
∣
ĤAA − E(k) ĤAB

ĤBA ĤBB − E(k)

∣
∣
∣
∣ = 0 , (G.16)

With ĤBA = Ĥ∗
AB, the solutions are

E(k) = ĤAA + ĤBB

2
± 1

2

√

(ĤAA − ĤBB)2 + 4|ĤAB|2 . (G.17)

G.3 Two-Dimensional Lattices

G.3.1 Square Lattice

The nearest neighbors in the square lattice (with simple base) with lattice constants a and b, are in
orthogonal directions,

τ1,2 = ±a (1, 0) , τ3,4 = ±a (0, 1) . (G.18)

Thus �(k) from (G.8) is given as

�(k) = 2
(
cos(kx a) + cos(ky a)

)
, (G.19)

yielding the dispersion relation,

E(k) = α + 2 γ
(
cos(kx a) + cos(ky a)

)
. (G.20)

It should be mentioned that such model with an additional magnetic field perpendicular to the plane
was treated by Hofstadter [1471] leading to a fractal behavior as function of the tight-binding energy γ

and the magnetic field (‘Hofstadter butterfly’). Experiments on moiré graphene bilayers (cf. Sect. 13.3)
seemingly show such effects. Also the Hofstadter butterfly is the blueprint for assigning topological
quantum numbers to the quantum Hall phases (cf. Sect. 15.2.8) [1472].
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Fig. G.1 Tight-binding
model band structure for
honeycomb lattice with A
= B according to (G.24)
(solid line) and A�=B
according to (G.25) with
�ε = γ (dashed line)

G.3.2 Honeycomb Lattice

We now look at the honeycomb lattice which is a model for graphene or other two-dimensional
semiconductors (cf. Fig. 13.1a). For an A-atom, the three vectors to the neighboring B-sites are

τ1,2 = −a

2

(
1,±√

3
)

, τ3 = a (1, 0) . (G.21)

�(k) from (G.8) is given by

�(k) = exp(−ı kx a)

[

1 + 2 exp

(
3

2
ı kx a

)

cos

(√
3

2
ky a

)]

. (G.22)

For the A- and B-atoms being the same (as for graphene), ĤAA = ĤBB = α, giving a constant
part to the energy that is ignored in the following. The square root in (G.17) yields a band structure
(cf. Fig.G.1)

E(k) = ±γ |�(k)| (G.23)

= ±γ

√
√
√
√1 + 4 cos

(
3 a kx
2

)

cos

(√
3 a ky
2

)

+ 4 cos2

(√
3 a ky
2

)

.

The energy is zero for at the K-points K , K ′ = 2π/(3a)(1,±1/
√
3) and their other equivalents (cmp.

Fig. 13.1b). The band gap at the M-point is 2γ . Around the K-points, the energy can be expanded with
k − (K , K ′) = q = q(cosφ, sin φ). We find

EK ,K ′(q) = ±γ

(
3 a

2
q ∓ 3 a2

8
q2 sin(3φ)

)

. (G.24)

This shows that the dispersion is linear and isotropic around the K- and K’-points (Dirac points) and
(further away) has threefold symmetry (triangular warping, cmp. Sect. 6.10.2). The dispersion at the
Dirac points is often written as E(q) = ±�qvF with vF = 3γ a/(2�). Also, the K- and K’-points are
non-equivalent, reflecting the two-atomic base. The winding sense in the ∓q2-term around K and K’
is opposite which leads to further ‘pseudo-spin’ physics.
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Fig. G.2 Schematic of the Su-Schrieffer-Heeger (SSH) model. (a) One-dimensional chain of unit cells (grey area) with
A- and B-sites. The lattice constant is a. The hopping potentials v (intra-base, green line) and w (inter-base, orange line)
are indicated. Dimers (grey ellipses) are shown for the cases (b) v � w and (c) v � w

For the case of the A- and B-sites being non-identical (e.g. for BN), �ε = ĤAA − ĤBB �= 0, the
(non-constant part of the dispersion) is,

E(k) = ±
√

�ε2 + γ 2 |�(k)|2 . (G.25)

Thus a gap of 2|�ε| opens up at the K- and K’-points. Developing the solution around the K-points
yields

EK ,K ′(q) = ±|�ε|
[

1 +
(

3 γ 2

2�ε2

)2 (
1

2
a2 q2 ∓ 1

4
a3 q3 sin(3φ)

)]

, (G.26)

and therefore (isotropic) parabolic extrema close to K and K’; the different winding sense of K and K’
appears in the ∓q3-term.

G.4 Edge States and Topological Aspects

G.4.1 One-Dimensional Model

The Su-Schrieffer-Heeger (SSH) model [370, 2154, 2155] is a tight-binding model very much like
the one in Appendix G.2, describing a single spin-less electron on a one-dimensional lattice with a two-
sites (A and B) unit cell (Fig.G.2a), suitable e.g. to describe an polyacetylene molecule. One electron
per unit cell is assumed such that states are half filled. Also, the length of the chain will eventually be
finite (N unit cells). The model has no on-site potential, which means that the constant energy parts
HAA and HBB in (G.16) are now considered non-essential. The momentum-space Hamiltonian can be
then written as

Ĥ(k) =
(

0 v + w exp(−i k a)

v + w exp(i k a) 0

)

, (G.27)

with the energy eigenvalues7 given by

E(k) = ±|v + w exp(−i k a)| = ±
√
v2 + w2 + 2 v w cos(k a) . (G.28)

7The eigenvectors are (± exp−iφ(k), 1)/
√
2 with φ = arctan(dy/dx ) (G.31).
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Fig. G.3 Band structure of the SSH model (G.28) for the cases v = 0, v < w, v = w, v > w and w = 0, as labeled

The parameters v andw are real positive numbers8; v denotes the intra-base hopping amplitude between
A and B, while w denotes the hopping between A and B belonging to different lattice points, i.e. from
B to the right-neighbor A (Fig.G.2a). The band structure from (G.28) is shown in Fig.G.3 for which
we discuss five cases: in (a) v = 0 (w �= 0) and (e) w = 0 (v �= 0), the bands are flat with a gap (of
size 2v or 2w). For (c) v = w, the bands have no gap (similar to the graphene case). For the last two
cases, (b) v < w and (d) v > w, the bands are curved with a gap (of size 2|v − w|).

The point is now that the two seemingly similar cases Fig.G.3b and d result in the same band
structure (i.e. the same eigenvalues), but they are different in other, maybe more subtle but actually
very fundamental aspects, namely their eigenstates and eventually their topology.

The Hamiltonian for this two-band model (G.27) can be rewritten using the Pauli matrices,

σ0 =
(
1 0
0 1

)

, σx =
(
0 1
1 0

)

, σ y =
(
0 −i
i 0

)

, σz =
(
1 0
0 −1

)

, (G.29)

as
Ĥ(k) = dx σx + dy σ y + dz σz = d(k) σ , (G.30)

with the vector
d(k) = (v + w cos(k a),w sin(k a), 0) . (G.31)

The coefficient of σ0 is zero in the SSHmodel (zero potential). Also dz = 0 (due to ‘chiral’ symmetry,9

dz �= 0 would open a gap10 for v = w). Generally, the normalized vector d̂ = d/d can be displayed
on the Bloch sphere. In Fig.G.4 the mapping of the Brillouin (torus, cf. Fig. 6.6) to the Bloch sphere
to represent a unit vector.

Here, the vector d is two-dimensional and its length is equal to E(k) (positive value). While k runs
through the entire Brillouin zone, i.e. from −π to π , d forms a circle of radius w around the point
(v, 0); it is visualized in Fig.G.5 for the cases (b) and (d).

The main and qualitative difference of the two trajectories is that the origin (k = 0) is contained
or not contained in the circle. Note, that for v = w, the circle touches the origin and the case (c) is
undefined with that respect; such material, however, does not have a gap and is no insulator but a
metal. Now, a number as topological invariant can be defined as the number of rotations that d makes

8This choice is not limiting the generality since other phases or signs can be moved into the wave functions.
9This means that the Hamiltonian does not induce any transitions from a site on one sublattice (i.e. the A-sites or B-sites)
to any site on the same sublattice. Refer to [370] for further details.
10This is similar to the trivial gap in the diatomic linear chainmodel opening forM1 �= M2 whenC1 = C2, cf. Sect. 5.2.3.
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Fig. G.4 Mapping of the
k-values from a 2D
Brillouin zone (torus) to
the vectors d̂ (Bloch
sphere). Designed after a
graph in [2157]

Fig. G.5 Vector d
according to (G.30) for the
cases v > w (green, v = 1,
w = 0.5) and v < w
(orange, v = 0.5, w = 1)

in the (dx , dy)-plane around the origin (while k runs through the entire Brillouin zone and avoids the
origin for any wave vector since the material should have a gap); this quantity should be termed the
‘bulk winding number’ ν. We note that in general, the trajectory of d will be deformed from a circle,
but it will be a closed loop due to the periodicity of the bulk k-space. Also, it might wind more than
once around the origin. The calculation of the winding number can be generalized to an integral in
reciprocal space,

ν = 1

2π

∫

BZ

(

dn(k) × d

dk
dn(k)

)

z

dk . (G.32)

A look at the states of a finite chain model reveals another important distinction between the two cases
ν = 0 and ν = 1. Going to the extreme cases (a) and (e), the situation can be cartooned as shown in
Fig.G.2b, c. For v � w, the coupling within the base is strong and the chain disintegrates in N bases;
this is called the ‘dimerized limit’. Then N identical uncoupled (or very weakly coupled) bases, split
into their symmetric and anti-symmetric state, make up the flat bands. In the case v � w, the dimers
group differently, giving the same flat bulk band structure. But, for a finite chain, at the edges two sites,
indicated by arrows in Fig.G.2c remain unconnected to the bulk of the chain. Their energy is zero
(since no on-site potentials are used in the SSH model). The discussed model is the simplest one to
generate edge states. The edge states are only present for ν = 1 and not for the ‘topologically trivial’
case ν = 0.

For finite N , the problem must be solved numerically. The Schrödinger equation (G.27) leads to
the matrix eigenvalue problem,



772 Appendix G

(a) (b)

Fig. G.6 a Eigenvalues for SSH finite chain model (G.33) with N = 8 and w = 1. For sufficiently small v, two zero
energy edge states (blue lines) develop. The case v = 0.1 is highlighted with a dashed line and the HOMO, the LUMO
and the two edge states are indicated by circles. b Mode patterns (for v = 0.1) of the two edge states (center graphs)
(energy: ±10−8) and the HOMO (bottom graph) and LUMO (top graph) (energy: ±0.909) as indicated in panel (a). The
red (blue) bars denote the amplitude on the A (B) sites. The greyed areas denote the first and last unit cell of the chain

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 v 0 0 0 0 0 0
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0

...

0 0 0 0 0 w 0 v
0 0 0 0 0 0 v 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(k) exp ik
b(k) exp ik
a(k) exp i2k
b(k) exp i2k
. . .

a(k) exp iNk
b(k) exp iNk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= E(k)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(k) exp ik
b(k) exp ik
a(k) exp i2k
b(k) exp i2k
. . .

a(k) exp iNk
b(k) exp iNk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (G.33)

The eigenvalues for constant w = 1 and v varying between 0 and 2 are shown in Fig.G.6a for a chain
with N = 8 bases. For v → 0, two edges states develop with zero energy in the gap. For N → ∞,
the edge states develop for v < 1. The wave function amplitudes of the edge states are shown together
with those of the HOMO/LUMO in Fig.G.6b. The edge states have significant amplitude only on the
A- or B-site and are strongly localized at the edges.

For a system with periodic boundary conditions, the upper right and the lower left element in the
matrix of (G.33) are equal to w and no edge states are present.

G.4.2 Two-Dimensional Models

Topological edge states in two-dimensional lattices with alternating hopping potentials have been
investigated for square and honeycomb lattices in [2156, 2158]. Topological aspects of graphene are
discussed in [2159, 2160]. The gap due to breaking parity symmetry (graphene → BN as discussed
above) has been described in [2161]. It is topologically trivialwhile gaps in graphene due to next-nearest
neighbor coupling [1616] or spin-orbit interaction [2162] lead to non-trivial bulks. Two-dimensional
topological insulators with arbitrary Chern number can be constructed with the scheme given in [2163].

It was also found that zigzag graphene ribbons (cmp. Fig. 14.16) feature zero energy edge states,
while armchair ribbons do not [2164].
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k · p Perturbation Theory

The k · p method is described in great detail in [461] for various crystal symmetries. The solutions of
the Schrödinger equation (cf. Sect. 6.2.1)

H �nk(r) =
(

− �
2

2m
∇2 +U (r)

)

�nk(r) = En(k)�nk(r) , (H.1)

with a lattice periodic potential U , i.e. U (r) = U (r +R) for direct lattice vectors R, are Bloch waves
of the form

�nk(r) = exp(i k r) unk(r) , (H.2)

with the lattice periodic Bloch function unk(r) = unk(r + R).
Inserting the Bloch wave into (H.1), the following equation is obtained for the periodic Bloch

function: (

− �
2

2m
∇2 +U (r) + �

m
k · p

)

unk(r) =
(

En(k) − �
2k2

2m

)

unk(r) . (H.3)

For simplicity, we assume a band edge En(0) at k = 0. In its vicinity, the k · p term can be treated
as a perturbation. The dispersion for a nondegenerate band11 is given up to second order in k

En(k) = En(0) +
3∑

i, j=1

⎛

⎝ �
2

2m
δi j + �

2

m

∑

l �=n

pinl p
j
ln

En(0) − El(0)

⎞

⎠ ki k j , (H.4)

with l running over other, so-called remote bands. The momentum matrix element is given by pinl =
〈un0|pi |ul0〉 (cf. (6.39)). The coefficients in front of the quadratic terms are the components of the
dimensionless inverse effective-mass tensor (cf. (6.43))

( m

m∗
)

i j
= δi j + 2

m

∑

l �=n

pinl p
j
ln

En(0) − El(0)
. (H.5)

For degenerate bands, the pinn′ vanish when n and n′ belong to the degenerate set and also the first-order
correction is zero. In the Löwdin perturbation theory [2165], the bands are separated into the close-by
degenerate or nearly degenerate bands and the remote bands. The effect of the remote bands is taken
into account by an effective perturbation

11apart from the spin degeneracy.
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Table H.1 Basis set that diagonalizes the spin-orbit interaction

|J,m j 〉 Wavefunction Symmetry

| 12 , 1
2 〉 i|s ↑〉 �6

| 12 ,− 1
2 〉 i|s ↓〉 �6

| 32 , 3
2 〉 1√

2
|(x + iy) ↑〉 �8

| 32 , 1
2 〉 1√

6
|(x + iy) ↓〉 −

√
2
3 |z ↑〉 �8

| 32 ,− 1
2 〉 − 1√

6
|(x − iy) ↑〉 −

√
2
3 |z ↓〉 �8

| 32 ,− 3
2 〉 1√

2
|(x − iy) ↑〉 �8

| 12 , 1
2 〉 1√

3
|(x + iy) ↓〉 +

√
1
3 |z ↑〉 �7

| 12 ,− 1
2 〉 − 1√

3
|(x − iy) ↑〉 +

√
1
3 |z ↓〉 �7

k · p + k · p
∑

l �=n

|l〉〈l|
En(0) − El(0)

k · p , (H.6)

with the index l running over all bands not being in the degenerate set. The dispersion relation is
obtained by diagonalization of the Hamiltonian (H.3) in the degenerate basis but with the perturbation
given by (H.6).

The spin-orbit interaction [1547] adds an additional term

Hso = �

4m2 c2
(σ × ∇U ) p (H.7)

to the Hamiltonian, where σ are the Pauli spin matrices and c the vacuum speed of light. In the
Schrödinger equation for the Bloch functions two new terms arise:

(
− �

2

2m∇2 +U (r) + �

4m2c2 (σ × ∇U ) p+
�

mk
[
p + �

4m2c2 (σ × ∇U )
])
unk(r) =

(
En(k) − �

2k2

2m

)
unk(r) . (H.8)

The linear term in k is again treated as a perturbation. The first spin-orbit term in (H.8) is lattice
periodic, thus the solutions at k = 0 are still periodic Bloch functions, however, different ones from
previously. If the band edge is not degenerate, the momentum operator in (H.3) is simply replaced by

π = p + �

4m2 c2
(σ × ∇U ) , (H.9)

and the band edge is still parabolic. For a degenerate band edge, the effect can be more profound, in
particular it can lead to the lifting of a degeneracy.

In the 8-band Kane model [510], four bands (lowest conduction band, heavy, light and split-off hole
band) are treated explicitly and the others through Löwdin perturbation theory. The basis is chosen
to be diagonal in the spin-orbit interaction leaving the spin-orbit interaction �0 as parameter. The
band- edge Bloch functions are denoted as |i ↑〉, where the index i = s, x, y, z labels the symmetry
of the different bands. The linear combinations that diagonalize the spin-orbit interaction are given in
Table H.1. The band gap and the spin-orbit interaction are given by
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Eg = E�6 − E�8 (H.10a)

�0 = E�8 − E�7 . (H.10b)

The Hamiltonian in the basis states of Table H.1 is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2 + Eg 0
√
2Pk+ −

√
2
3 Pkz −

√
2
3 Pk− 0

√
1
3 Pkz −

√
4
3 Pk−

0 k2 + Eg 0
√

2
3 Pk+ −

√
2
3 Pkz

√
2Pk−

√
4
3 Pk+

√
1
3 Pkz√

2Pk− 0 k2 0 0 0 0 0

−
√

2
3 Pkz

√
2
3 Pk− 0 k2 0 0 0 0

−
√

2
3 Pk+ −

√
2
3 Pkz 0 0 k2 0 0 0

0
√
2Pk+ 0 0 0 k2 0 0√

1
3 Pkz

√
4
3 Pk− 0 0 0 0 k2 − �0 0

−
√

4
3 Pk+

√
1
3 Pkz 0 0 0 0 0 k2 − �0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(H.11)

with the energy measured from the valence-band edge in units of �
2/(2m) and

1

2
i �P =〈s|πx |x〉 = 〈s|πy|y〉 = 〈s|πz|z〉 (H.12a)

k± =kx ± iky . (H.12b)

The inclusion of remote bands renormalizes the above Hamiltonian to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dk2 + Eg 0
√
2Pk+ −

√
2
3 Pkz −

√
2
3 Pk− 0

√
1
3 Pkz −

√
4
3 Pk−

0 Dk2 + Eg 0
√

2
3 Pk+ −

√
2
3 Pkz

√
2Pk−

√
4
3 Pk+

√
1
3 Pkz√

2Pk− 0 Hh R S 0 i√
2
R −i

√
2S

−
√

2
3 Pkz

√
2
3 Pk− R∗ Hl 0 S Hh−Hl√

2i
i
√

3
2 R

−
√

2
3 Pk+ −

√
2
3 Pkz S∗ 0 Hl −R −i

√
3
2 R

∗ Hh−Hl√
2i

0
√
2Pk+ 0 S∗ −R∗ Hh −i

√
2S∗ − i√

2
R∗

√
1
3 Pkz

√
4
3 Pk− − i√

2
R∗ − Hh−Hl√

2i
i
√

3
2 R i

√
2S Hh+Hl√

2
− �0 0

−
√

4
3 Pk+

√
1
3 Pkz i

√
2S∗ −i

√
3
2 R

∗ − Hh−Hl√
2i

i√
2
R 0 Hh+Hl√

2
− �0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(H.13)

with

D = 1 + 2

m

∑

l �=n

|〈s|πx |l〉|2
Eg − El(0)

(H.14a)

γ ′
1 =

⎡

⎣1 + 2

m

∑

l �=n

|pxxl |2
En(0) − El(0)

⎤

⎦ − 2P2

3Eg
(H.14b)

γ ′
2 =

⎡

⎣1 + 2

m

∑

l �=n

|py
xl |2

En(0) − El(0)

⎤

⎦ − P2

3Eg
(H.14c)

γ ′
3 =

⎡

⎣ 2

m

∑

l �=n

pxxl p
y
ly + py

xl p
x
ly

En(0) − El(0)

⎤

⎦ − P2

3Eg
(H.14d)

Hh = (γ ′
1 + γ ′

2)(k
2
x + k2y) + (γ ′

1 − 2γ ′
2)k

2
z (H.14e)
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Hl = (γ ′
1 − γ ′

2)(k
2
x + k2y) + (γ ′

1 + 2γ ′
2)k

2
z (H.14f)

R = − 2
√
3γ ′

3k−kz (H.14g)

S = √
3γ ′

2(k
2
x − k2y) + 2

√
3γ ′

3ikxky . (H.14h)

The Hamiltonian in the presence of inhomogeneous strain is given in [536]. The hole bands decouple
from the conduction band for Eg → ∞ (six-band model [1423]). The heavy and light holes can be
treated separately for �0 → ∞ (Luttinger Hamiltonian). For the �8 states, the Hamiltonian is then
given by ⎡

⎢
⎢
⎣

Hh R S 0
R∗ Hl 0 S
S∗ 0 Hl −R
0 S∗ −R∗ Hh

⎤

⎥
⎥
⎦ . (H.15)



Appendix I
Effective-Mass Theory

The effective-mass theory or approximation (EMA), also termed the envelope function approximation,
is widely used for calculating the electronic properties of carriers in potentials in an otherwise periodic
crystal. The strength of the method is that the complexities of the periodic potential are hidden in the
effective-mass tensor m∗

i j . The effective-mass theory is a useful approximation for the treatment of
shallow impurities (Sect. 7.5) or quantum wells (Sect. 12.3.2) with a potential that is slowly varying
with respect to the scale of the lattice constant.

For the lattice-periodic potential, the Schrödinger equation

H0 �nk = En(k)�nk (I.1)

is solved by the Bloch wave �nk. With a perturbing potential V , the Schrödinger equation reads

(H0 + V ) �nk = En(k)�nk . (I.2)

According to Wannier’s theorem [2166], the solution is approximated by the solution of the equation

(En(−i∇) + V ) �n = E �n . (I.3)

The dispersion relation is expanded to second order as described in Appendix H. The function �n

is termed the envelope function since it varies slowly compared to the lattice constant and the exact
wavefunction is approximated (in lowest order) by

�(r) = �n(r) exp (i k r) un0(r) . (I.4)
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Boltzmann Transport Theory

J.1 Boltzmann Transport Equation

The Boltzmann treatment of transport in semiconductors goes beyond the relaxation time approxima-
tion (cmp. Sect. 8.2) and contains this approach as its simplest approximation. The distribution function
of carriers f (r,p, t) is considered with regard to their momentum p = (px , py, pz), their position
(r) = (x, y, z) and time t . Via the dispersion relation(s) the momentum distribution also determines
the energy distribution.

In thermodynamical equilibrium, the distribution function shall be termed f0(p). In a homoge-
neous semiconductor it should be independent of r, not depend explicitly on time and the momentum
distribution be such that the resulting energy distribution should match the Fermi-Dirac distribution.

In non-equilibrium, the flow of electrons and heat is determined by the external forces F (electrical
andmagnetic fields) and the scattering of charge carriers via various processes (termed here collisions).
In a (non-equilibrium) steady-state situationwith constant forces, the distribution function f is constant
in time; thus in a given time interval δt the change δ f is zero,

δ f

δt
= 0 . (J.1)

Within the time interval δt the momenta change as p → p + F δt and the coordinates as r →
r + p/m∗ δt . We assume here for simplicity an isotropic mass and also the particle energy given by
E = p2/(2m∗). The condition (J.1) written in partial derivatives reads

(
∂

∂t
+ 1

m∗ p · ∇r + F · ∇p

)

f (p, r, t) = 0 . (J.2)

The force may be taken as the Lorentz force. So far no collisions have been considered. Without giving
an explicit form for the microscopic details of the collisions, the change of the distribution function
due to collisions is written as (

∂ f

∂t

)

coll

. (J.3)

Assuming that only two-particle collisions play a role, sample boundaries play no role and that position
and velocity of particles are uncorrelated, the collision term can be written as

(
∂ f

∂t

)

coll

=
∫∫∫

[ f (p′, r, t) P(p′,p) − f (p, r, t) P(p,p′)] dp′ . (J.4)
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with P(p,p′) being the transition probability per time that a momentum p is changed into p′ by colli-
sions. The collision integral must be calculated explicitly using microscopic and eventually quantum
mechanical models. This leads now to the Boltzmann transport equation

(
∂

∂t
+ 1

m∗ p · ∇r + F · ∇p

)

f (p, r, t) =
(

∂ f

∂t

)

coll

. (J.5)

Under certain circumstances, the collision term can be effectively written as (for a homogeneous
semiconductor and homogeneous fields, neglecting the spatial dependence of f )

(
∂ f

∂t

)

coll

= − f (p) − f0
τ(p)

. (J.6)

Compared to the relaxation time approximation, the major difference on the level of (J.6) here is the
consideration of themomentum (and energy) dependence of the distribution function and the relaxation
time.

J.2 Conductivity

In thermodynamical equilibrium the number of electronic states per unit volume associated with an
element dp = dpx dpy dpz , including spin degeneracy of 2 is

2

h3
f0(p) dp . (J.7)

In the presence of an electric field E, which we assume here in x-direction, a steady-state current will
arise and the number of electronic states changes to

2

h3
f (p) dp , (J.8)

making the (electron) current density (along x-direction)

jx = −2 e

h3

∫∫∫

vx [ f (p) − f0(p)] dp . (J.9)

This is a generalization of (8.4). The Boltzmann transport equation (J.5) with (J.6) simplifies to

− f (p) − f0
τ(p)

= −e Ex
∂ f

∂px
≈ −e Ex

∂ f0
∂px

. (J.10)

The last approximation is valid for small fields and makes jx proportional to Ex (ohmic regime). The
derivative with respect to px is converted to a derivative with respect to energy, yielding

f (p) − f0
τ(p)

= e vx Ex
∂ f0
∂E

. (J.11)

We note that for the Fermi-Dirac distribution (E.22) f0(E):
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∂ f0
∂E

= − 1

kT
f0 [1 − f0] , (J.12)

and in the case of a non-degenerate semiconductor (Boltzmann approximation), the right-hand side
simplyfies to

∂ f0
∂E

≈ − 1

kT
f0 = − 1

kT
exp

(

− E − EF

kT

)

, (J.13)

Now the current density is given as

jx = −2 e2

h3
Ex

∫∫∫

v2x τ(p)
∂ f0
∂E

dp . (J.14)

If we assume that τ depends only on the momentum and not its direction12, and replace v2x by v2/3
assuming isotropy, the integral reads13

jx = −8π e2

3 h3
Ex

∞∫

0

v2 τ(p)
∂ f0
∂E

p2 dp . (J.15)

The quantity 8πp2dp f0/h3 (cmp. J.7) denotes the number dn of electrons with momentum in the range
dp. Thus the integral can also be written as (in Boltzmann approximation)

jx = e2

3 kT
Ex

∞∫

0

v2 τ dn . (J.16)

Denoting the average of a quantity a over the electron distribution with 〈a〉 according to

〈a〉 =
∫
a dn

n
, (J.17)

the equation (J.16) can be written as

jx = n e2

3 kT
Ex 〈v2τ 〉 . (J.18)

Using m∗〈v2〉 = 3 kT , we thus have obtained

σ = n e2

m∗
〈v2τ 〉
〈v2〉 , (J.19)

and with σ = n (−e) μ (for electrons), the mobility

μ = − e

m∗
〈v2τ 〉
〈v2〉 . (J.20)

12This might be incorrect e.g. for piezoelectric scattering.
13using dp = 4πp2dp.
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For degenerate semiconductors, similar as for metals, the derivative of f0 in (J.15) has a significant
value only in the few-kT vicinity of the Fermi level. In an approximation we can evaluate the integral
by replacing E3/2 and τ by their values at the Fermi level and find14 (using (6.70))

σ = jx
Ex

= n e2 τF

m∗ . (J.21)

Starting again with (J.15), using the density of states (6.71) in the form (per volume)

D(E) = m∗ 8π

h3
√
2m∗E , (J.22)

and dp/dE = √
2m∗/E we write

jx = −e2

3
Ex

∞∫

0

D(E) v2 τ(E)
∂ f0
∂E

dE . (J.23)

Using an energy-dependent mobility, in the spirit of (J.20) defined as

μ(E) = −e
v2 τ(E)

3 kT
, (J.24)

the conductivity can be written in a generalized form integrating over single electron states [2167]
(neglecting correlation effects):

σ = e
∫

D(E) μ(E) kT
∂ f0
∂E

dE

= −e
∫

D(E) μ(E) f0(E) [1 − f0(E)] dE . (J.25)

J.3 Hall Effect

Treating the Hall effect with the Boltzmann transport equation andmaking the assumptions of isotropy,
one obtains (cmp. (15.12) and (15.22))

RH = 1

q n

〈v2τ 2〉 〈v2〉
〈v2τ 〉2 . (J.26)

The Hall mobility determined from the Hall coefficient is

μH = σ RH = e

m∗
〈v2τ 2〉
〈v2τ 〉2 , (J.27)

and thus different from the field mobility (J.20).

14
∫ ∞
0

∂ f0
∂E dE = −1 + [1 + exp(EF/kT )]−1 ≈ −1 for EF � kT .
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J.4 Thermopower

The electronic energy transported per electron is E − EF. Writing (J.25) as σ = ∫
σ(E)dE , the

weighing factor for electrons at energy E contributing to conduction is σ(E)dE/σ . Therefore the
Seebeck coefficient (thermopower) can be written [823]

S = −k

e

∫ (
E − EF

kT

)
σ(E)

σ
dE . (J.28)

or

S = −k

e

∫
D(E) μ(E) [(E − EF)/kT ] f (1 − f ) dE

∫
D(E) μ(E) f (1 − f ) dE

. (J.29)

For band conduction the thermopower is obtained by integrating (J.29) for electrons (Sn) and holes
(Sp) (using the Boltzmann approximation) as [823]

Sn = − k

e

(
EC − EF

kT
+ TC

)

(J.30a)

Sp =k

e

(
EF − EV

kT
+ TV

)

, (J.30b)

where Ai are constants depending on the energy dependence of the density of states and the mobility,

TC =
∫ ∞
0 (E ′/kT ) σ (E ′) dE ′

∞∫

0
σ(E ′) dE ′

, E ′ = E − EC (J.31a)

TV =

0∫

−∞
(E ′/kT ) σ (E ′) dE ′

0∫

−∞
σ(E ′) dE ′

, E ′ = EV − E . (J.31b)

If the product of the density of states and themobility Dμ depends on the energy like Eγ , the constant is
A = 1+γ (for γ > −1). For a parabolic band (D ∝ E1/2) and acoustic deformation potential scattering
μ ∝ E−1/2 (Sect. 8.3.4), A=1; for moderate ionized impurity scattering μ ∝ E3/2 (Sect. 8.3.3) and
A = 3.

For two-band conduction, when electrons and holes contribute to transport,

S = Sn σn + Sp σp

σn + σp
. (J.32)

At low temperatures the interaction of the phonon flow with the current via electron-phonon scattering
(phonon-drag effect) leads to an increase of thermopower [825, 2168–2170].
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Noise

Noise is a general phenomenon effecting every measurement process and the performance of semi-
conductor devices [2171–2178]. Eventually, always a signal-to-noise ratio is measured instead of a
‘signal’. Electrical noise fundamentally limits the sensitivity and resolution of communication, navi-
gation, measurement, and other electronic systems [2176].

Behind the fluctuating signal stand microscopic classical and quantum mechanical processes that
inherently contain randomness. From the physical standpoint, seemingly constant physical quantities
even in thermodynamical equilibrium such as the free carrier density or the density of carriers on a trap
are subject to fluctuations, e.g. leading to generation-recombination noise. Also the random motion
of carriers, in equilibrium without net charge transport, leads to fluctuations, e.g. thermal noise on a
resistor.

In this appendix necessary definitions, some mathematical basics and simple physical examples
regarding noise are given.

K.1 Fluctuating signals

The noisy signal under consideration can be ‘analog’, for example in the case of a fluctuating current,
voltage or power or it can be ‘digital’ for example a photon count rate.

Let A(t) be an analog signal that fluctuates in time. Even under constant experimental conditions, it
will fluctuate due to possibly many reasons, at least due to thermal fluctuations. We note that another,
identically set-up experiment will have another signal B(t). The time average (of first moment) of the
signal within a time interval 2T (symmetric around t = 0) is defined as

〈A〉T = 1

2 T

T∫

−T

A(t) dt . (K.1)

The time average of the signal 〈A〉 in general is the limit for large times,

〈A〉 = limT→∞
1

2 T

T∫

−T

A(t) dt . (K.2)

Two identical experiments will (should) share the same limits, i.e. 〈A〉 = 〈B〉. The fluctuation or noise
of A is defined as a(t) via
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a(t) = A(t) − 〈A〉 , (K.3)

thus evidently 〈a〉 = 0. For an identical but different experiment, a(t) �= b(t) as stated before.
The variance σ 2 (or second moment) of the signal is the average of the squared fluctuation,

σ 2 = 〈a2〉 = limT→∞
1

2 T

T∫

−T

a(t)2 dt = 〈A2〉 − 〈A〉2 . (K.4)

The effective value of the noise quantity a is the square root of the variance, also termed the ‘root mean
square’ (or rms-value),

σ = 〈a2〉1/2 =
√

〈A2〉 − 〈A〉2 . (K.5)

The quantity σ 2 is a measure of the noise power, where 〈A〉2 is a measure of the dc power.15

In a measurement procedure, the noise of a signal can be reduced by integrating or averaging over
time; however, the time for a specific measurement is always finite and maybe constricted by many
conditions. Given a fixed (finite) averaging time of T0, the measured signals TT0 in a series of such
subsequent identical measurements will still exhibit a fluctuation. How large this remaining fluctuation
is depends on the choice of T0 and the noise spectrum discussed below.

In the case of a digital signal, e.g. the count rate of a photomultiplier or from a scintillator, the
signal consists of (integer) numbers N (ti ) aggregated at times ti , i = 0, 1, . . . ,m. The average is then
defined as

〈N 〉 = limm→∞
1

m

m∑

i=0

N (ti ) . (K.6)

The definition of the variance and rms are analog to this definition. A well known result for photon
counting, based on the Poisson statistics of classical light is σ 2 = 〈N 〉 = N̄ .

K.2 Correlations

If a measurable quantity is subject to two fluctuating quantities a1(t) and a2(t), the time average of
a1 + a2 is

〈(a1 + a2)
2〉 = 〈a21〉 + 〈a22〉 + 2〈a1 a2〉 . (K.7)

The third term is the decisive one; the correlation coefficient of noise quantities a1 and a2 is defined as

c12 = 〈a1 a2〉
√
a21 a

2
2

= 〈a1 a2〉
σ1 σ2

. (K.8)

If the two noise quantities are independent of each other they are termed uncorrelated and c12 = 0.
In the following it will become clear that this is a necessary but not sufficient condition for two noise
sources to be uncorrelated. In the case c12 = 0, the noise powers of the two processes are simply added,

15Imagine a fluctuating current I (t) = 〈I 〉 + i(t) leading to Joule heating (∝ I 2) at a resistor. Comparing the heating
from I and 〈I 〉 = 〈I 〉 (from a low noise current source) can yield the noise power. Also 〈i2〉 could be determined by first
compensating I with 〈I 〉 (from a low noise current source) and then measuring the temperature increase at the resistor.
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〈(a1 + a2)
2〉 = 〈a21〉 + 〈a22〉 . (K.9)

This concept can be generalized to several noise sources.
A more general concept to determine correlation of two functions a1 and a2 is the cross correlation

function, defined by
ρ12(τ ) = 〈a1(t) a2(t + τ)〉 , (K.10)

which is the average of function a1 and time-shifted function a2. Often t = 0 is used when the nature
of the fluctuations does not change with time. An important time-shift is τ = 0, and it follows that

c12 = ρ12(0)

σ1 σ2
, (K.11)

Two noise quantities a1 and a2 are uncorrelated if ρ12(τ ) = 0 holds for all times τ ; thus c12 = 0 is a
special but important case.16

If a1 and a2 are the same function, i.e. a = a1 = a2, (K.10) becomes the auto correlation function,

ρ(τ) = 〈a(t) a(t + τ)〉 , (K.12)

In stationary processes the auto correlation function must be symmetric with regard to τ ,

ρ(τ) = ρ(−τ) . (K.13)

The value at τ = 0 is
ρ(0) = 〈a2〉 = σ 2 . (K.14)

Typically, ρ(τ → ∞) = 0 in a statistic (non-repetitive) process. For uncorrelated processes, the auto
correlation function of the sum, is the sum of the individual auto correlation functions.

K.3 Noise spectrum

Since the function a(t) is not known, the noise spectrumcannot be calculated from its Fourier transform.
However, this is also unnecessary since we are not interested in the Fourier transform of a itself but
rather the spectral power density for a given frequency W (ν), with

∞∫

0

W (ν) dν = 〈a2〉 . (K.15)

Since the quantity 〈a2〉 is finite and the spectral power density W (ν) is positive, for high frequencies,
W (ν) must decrease to zero. Starting from the auto correlation function ρ, its Fourier transform shall
be denoted w,

w(ν) =
∞∫

−∞
ρ(τ) exp(−2π i ν τ) dτ . (K.16)

16A simply example of correlated noise sources with c12 = 0 are the voltages at a resistor and a capacitance in series;
the fact that they are 90◦ out of phase makes c12 = 0 although the fluctuations of the voltages, due to fluctuations of the
driving current, are obviously correlated.
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Also,

ρ(τ) =
∞∫

−∞
w(ν) exp(2π i ν τ) dν . (K.17)

Using τ = 0 in this equation, we have obtained an equation similar to (K.15). With (K.12) w(ν) can
be identified as a spectral power density. Due to (K.13), w is a real and even function and we find for
the noise power spectrum W in (K.15) W = 2w (Wiener–Khintchine theorem),

W (ν) = 2

∞∫

−∞
ρ(τ) exp(−2π i ν τ) dτ = 4

∞∫

0

ρ(τ) cos(−2π ν τ) dτ . (K.18)

The noise power is practically measured in a finite frequency range, often in a narrow band of width B
(with varying central frequency). If the frequency dependence ofW can be neglected within B around
the frequency ν0, the variance is given by

〈a2〉(ν0, B) =
ν0+B/2∫

ν0−B/2

W (ν) dν ≈ W (ν0) B . (K.19)

Typical noise mechanisms and spectra are discussed in the following sections.

K.3.1 Thermal Noise

Finite temperature induces random motion of particles, e.g. as known from the theory of ideal gases
and diffusion. In the case of charge carriers such motions lead to fluctuations of current or at a resistor
to fluctuation of voltage. This happens also in the case of zero bias (no external fields). Such ‘thermal
noise’ at a resistor was experimentally found by Johnson [1820, 1821] and theoretically derived by
Nyquist [1822].

Using the general result from Langevin theory of motion under a fluctuating force, the mobility17

is given as

μ(ω) = e

kT

∞∫

0

〈v(t) v(0)〉 exp(iωt) dt . (K.20)

Now we restrict ourselves to times much longer than the relaxation time constant, and subsequently to
frequencies much smaller than 1/τ . In this case the conductivity σ(ω) = e n μ(ω) does not depend on
frequency and can be taken as its low frequency limit σ0 (cmp. Sect. 8.5). In a conductor (resistor) of
length L and cross section A shall be N electrons (n = N/(AL)). With the electron velocities vi (t),
the current is

I (t) = e

L

∑

i

vi (t) . (K.21)

Without external field, 〈vi (t)〉 = 0 and 〈I (t)〉 = 0 and we name this fluctuating current i(t). If all
electrons move independently of each other,

17In the Langevin theory the mobility is the ratio of velocity v and the force K , here the mobility is the ratio of v and the
field E with K = −e E .



Appendix K 789

〈i(τ ) i(0)〉 = N
e2

L2
〈v(τ ) v(0)〉 . (K.22)

The power spectrum of i(t) is according to (K.18),

W (ω) = 2

∞∫

−∞
〈i(τ ) i(0)〉 exp(iωτ) dτ = 4 N

e2

L2

∞∫

0

〈v(τ ) v(0)〉 exp(iωτ) dτ

= 4
N e2

L2

μ kT

e
= 4

N e2

L2

σ0 kT A L

e2 N
= 4 σ0

A

L
kT . (K.23)

Then, using the conductance G = R−1 = σ0 A/L , we find the frequency independent spectral power

W = 4 kT G . (K.24)

Therefore the fluctuation of the current induced by the thermal motion is

〈i2〉 = 4 kT G B , (K.25)

and the variance of the fluctuating voltage at a resistor with resistance R in a frequency range B is
(i = u/R)

〈u2〉 = 4 kT R B . (K.26)

At room temperature (T0 = 293K), the quantity k T0 is about 26meV; in the context here, the unit
Ws=W/Hz is the appropriate one, and k T0 = 4.04 × 10−21W/Hz. This represents a fundamental
limit to noise in devices. Since the power density is independent of frequency, this noise is ‘white’
noise. The formulas (K.26) and (K.25) are valid for frequencies h ν � kT ; for larger frequencies the
quantum nature of electromagnetic radiation and photon statistics play a role. For practical purposes
even cooled devices at T = 4K fulfill the limit condition for frequencies up in the 100GHz regime. In
the cases of heated electron (or hole) gases (cmp. Fig.10.3), the lattice temperature must be replaced
by the temperature of the carrier gas.

For a RC low pass, the power spectrum Wi = 4kTG at the resistor is converted using u2 = |Z |2i2
to Wu = 4kT R/[1 + (ωRC)2].

K.3.2 1/ f Noise

For many processes a frequency dependent noise spectral power following a να-law is found with α

close to −1. Such noise is termed ‘pink noise’, 1/ f -noise or Flicker noise. The microscopic reasons
for such behavior can be manifold and various models have been proposed [2179, 2180]. As an
example, the noise spectrum of a RuO2 thick film resistor is depicted in Fig.K.1a; for this system,
the fluctuation of tunneling current in metal-insulator-metal units was used to explain the observed
frequency (and temperature) dependence of the 1/ f -noise. At high frequencies, the 1/ f spectral power
vanishes and other noise sources such as thermal noise dominate, as depicted in Fig.K.1b for an a-Si
thin film transistor. The 1/ f -dependence of the noise spectral power (of a carbon sheet resistor) has
been detected for frequencies down to 3 × 10−6 Hz [2181].



790 Appendix K

(a)

1000

700

500

300

100

100

70

50

30
102102 1035 102 5 1032 102 2 103

RuO2

Frequency (Hz)

S
pe

ct
ra

l d
en

si
ty

 (
10

A
/H

z)
-2

4
2

(b)

10-22

10-23

10-24

10-25

10-26

10-27

Frequency (Hz)

S
pe

ct
ra

l d
en

si
ty

 (
A

/H
z)

2

10-2 10-1 100 101 102

a-Si TFT

Fig. K.1 a Noise current density spectrum of a ruthenium oxide resistor (at T = 300K and current of I = 1mA),
experimental data (symbols) and 1/ f -dependency (dashed line). Adapted from [2182]. bNoise current density spectrum
of an amorphous silicon thin film transistor, experimental data (symbols) for various source-drain voltages, thermal noise
(horizontal dashed line) and 1/ f -dependency (red dashed lines). Adapted from [2183]

K.3.3 Shot Noise

A dc current 〈i〉 = I0 through a resistor is a sequence of electron transfers from one contact to the
other. The transit time ttr is given by the length L and the drift velocity vD as ttr = L/vD = L2/(μV ).
The event times of these transits are random and thus lead to a noise (ac) component on top of the
dc current. This is termed ‘shot’ noise, after the crackling arrival of shot pellets on a target. For low
frequencies ( f � t−1

tr ), the noise power is

W = 2 e I0 , (K.27)

and the current noise thus is given by
〈i2〉 = 2 e I0 B , (K.28)

This noise term has been first found for vacuum diodes in the saturation regime which also serve
as noise normals according to (K.28). It is important for the validity of (K.28) that in each event a
full charge e is transferred. The situation in a semiconductor diode is more complicated since various
currents contribute; if scattering events occur during transit, also fractional transferred charges can
occur. The reverse current of an asymmetric diode if originating from the lowly doped region is due
to carriers crossing the depletion layer. If generation in the depletion layer plays no role, the noise is
also determined by the shot noise (K.28).

The maximal noise level (K.28) is present in absence of all correlations (Poisson process), both
in the injection process as well as in the subsequent transport. Such value has been found, e.g., for
intrinsic germanium in [2184] and in the limit of large currents for CdTe detectors [2185] (Fig.K.2).
In a metallic conductor (or degenerate semiconductor) the noise is reduced to a third of that value due
to correlations induced by the Pauli exclusion principle [2186]. The modification in non-degenerate
semiconductors on length scales intermediate between the elastic and inelastic mean free paths is
discussed in [2187]. The case of shot noise in semiconductors in the presence of transport of electrons
and holes has been treated in [2184, 2188].
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Fig. K.2 Noise of semi-insulating (dark) CdTe detector at T = 323K (at a frequency of about 1–2kHz when 1/ f -noise
plays no role). Experimental data (symbols) and detailed theory (black line). The dashed blue line represents the thermal
noise (K.25), the dashed red line the shot noise (K.28). Adapted from [2185]

K.3.4 Generation-Recombination Noise

It is a semiconductor specific property that the carrier density is subject to fluctuations due to generation
and recombination.18 A fluctuation in majority carrier density leads to a change of conductivity which
will lead to a change in current if a constant voltage is applied. Typical examples of transitions leading to
a fluctuation of the carrier density are between bands and localized levels and in between the conduction
and valence bands. Usually, the sample remains neutral. Detailed treatments are given in [2189, 2190].

A simple example is the effect of carrier number fluctuation due to transitions between a conduction
band and donor levels. This ismanifested in the noise spectrumof a n-Si sample at T = 78K (Fig.K.3a)
with the plateau at 106–107 Hz on top of the 1/ f noise [2191] (The plateau at 108–109 Hz is due
to velocity fluctuations). The spectral power of the generation-recombination noise contribution is
given by

W = I 20
〈δn2〉
〈n〉2

4 τ0

1 + (ω τ0)2
, (K.29)

where τ0 is the characteristic relaxation time, 〈n〉 = n̄ is the average carrier density (average carrier
number per given volume) and 〈δn2〉 = 〈(n − n̄)2〉 is the fluctuation of the carrier density. In order to
better visualize the generation-recombination noise with respect to the 1/ f noise, the quantity W × ω

can be plotted (Fig.K.3b) which takes the shape of a peak (for logarithmic frequency axis) [2192].
For a partially compensated semiconductorwith ND > NA it is found (if holes canbeneglected) [2190]

〈δn2〉
〈n〉2 =

[

1 + n̄ ND

(n̄ + NA) (ND − NA − n̄)

]−1

≤ 1 . (K.30)

Thefluctuation 〈δn2〉/〈n〉2 is typically smaller than thePoissonvalue of 1; such sub-Poissonian statistics
is typical of a repulsive correlation. For the case ND � NA [2190], (K.30) simplifies to

〈δn2〉
〈n〉2 =

[

1 + ND

ND − n̄

]−1

= ND − n̄

2 ND − n̄
. (K.31)

18A metal exhibits a constant carrier density.
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Fig. K.3 a Current noise spectrum of n-type Si (T = 78K, n = 3 × 1013 cm−3) for an electric field of E = 200V/cm
along the 〈100〉 direction, in relative units to the noise spectrum for E = 0. The dashed blue line indicates the level of
thermal noise, The arrow labeled ‘GR’ denotes the contribution of generation-recombination noise. Adapted from [2191].
b Voltage noise power times frequency of a GaAs MESFET. Experimental data (symbols) and fit (solid line) including
two generation-recombination noise terms of the type (K.29) (times ω) for two different traps. Adapted from [2192]

In the ambipolar regime, typically close to intrinsic conditions, when only free electrons and holes are
important, it is found [2190] (μn < 0)

〈δn2〉
〈n〉2 = n̄2 p̄ (μp − μn)

2

(n̄ + p̄) ( p̄μp − n̄ μn)2
. (K.32)

which simplifies to
〈δn2〉
〈n〉2 = 1

2
. (K.33)

in the intrinsic case (n̄ = p̄).
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321. S. Kret, Pawel Dłużewski, Piotr Dłużewski, J.-Y. Laval, On the measurement of dislocation core distributions in a
GaAs/ZnTe/CdTe heterostructure by high-resolution transmission electronmicroscopy. Philos.Mag. 83, 231–244
(2003). 10.1080/0141861021000020095

322. A.R. Smith, V. Ramachandran, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E.
Northrup, Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy
electron diffraction. J. Vac. Sci. Technol. A 16, 1641–1645 (1998). 10.1116/1.581134

323. S.N.G. Chu, W.T. Tsang, T.H. Chiu, A.T. Macrander, Lattice-mismatch-generated dislocation structures and their
confinement using superlattices in heteroepitaxial GaAs/InP and InP/GaAs grown by chemical beam epitaxy. J.
Appl. Phys. 66, 520–530 (1989). 10.1063/1.343568

324. A.M. Smirnov, E.C. Young, V.E. Bougrov, J.S. Speck, A.E. Romanov, Critical thickness for the formation of
misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures. APL
Mater. 4, 016105:1–8 (2016). 10.1063/1.4939907

325. M. Grundmann, Universal relation for the orientation of dislocations from prismatic slip systems in hexagonal
and rhombohedral strained heterostructures. Appl. Phys. Lett. 116, 082104:1–3 (2020). 10.1063/1.5140977

326. M. Grundmann,M. Lorenz, Epitaxial growth and strain relaxation of corundum-phase (Al,Ga)2O3 thin films from
pulsed laser deposition at 1000◦Con r-planeAl2O3.Appl. Phys. Lett.117, 242102:1–4 (2020). 10.1063/5.0030675

327. M. Horn-von Hoegen, F.K. LeGoues, M. Copel, M.C. Reuter, R.M. Tromp, Defect self-annihilation in surfactant-
mediated epitaxial growth. Phys. Rev. Lett. 67, 1130–1133 (1991). 10.1103/PhysRevLett.67.1130

328. R.B. Heimann, Auflösung von Kristallen, Theorie und technische Anwendung, in Applied Mineralogy, vol. 8
(Springer, Wien, 1975). 10.1007/978-3-7091-3402-3

329. K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Anisotropic etching rates of single-crystal
silicon for TMAHwater solution as a function of crystallographic orientation. Sens.Actuators 73, 131–137 (1999).
10.1016/S0924-4247(98)00271-4

330. J.G. Grabmaier, C.B. Watson, Dislocation etch pits in single crystal GaAs. Phys. Status Solidi 32, K13–K15
(1969). 10.1002/pssb.19690320155

331. H. Richter, M. Schulz, Versetzungsnachweis auf {100}-Flächen von GaAs-Einkristallen. Kristall und Technik 9,
1041–1050 (1974). 10.1002/crat.19740090909

https://doi.org/10.1063/1.4863211
https://doi.org/10.1103/PhysRevB.78.125310
https://doi.org/10.1063/1.324560
https://doi.org/10.1088/0953-8984/17/22/001
https://doi.org/10.1002/1521-3951(200209)233:1%3C24::AID-PSSB24%3E3.0.CO;2-5
https://doi.org/10.1063/1.121075
https://doi.org/10.1002/j.1538-7305.1960.tb03928.x
https://doi.org/10.1002/pssa.2211010113
https://doi.org/10.1007/BFb0107682
https://doi.org/10.1088/0953-8984/16/50/002
https://doi.org/10.1063/1.1728792
https://doi.org/10.1002/pssa.2210400103
https://doi.org/10.1116/1.587757
https://doi.org/10.1016/0022-0248(84)90458-5
https://doi.org/10.1007/BF02670413
https://doi.org/10.1080/0141861021000020095
https://doi.org/10.1116/1.581134
https://doi.org/10.1063/1.343568
https://doi.org/10.1063/1.4939907
https://doi.org/10.1063/1.5140977
https://doi.org/10.1063/5.0030675
https://doi.org/10.1103/PhysRevLett.67.1130
https://doi.org/10.1007/978-3-7091-3402-3
https://doi.org/10.1016/S0924-4247(98)00271-4
https://doi.org/10.1002/pssb.19690320155
https://doi.org/10.1002/crat.19740090909


804 References

332. K. Ishida, H. Kawano, Different etch pit shapes revealed by molten KOH etching on the (001) GaAs surface and
their dependence on the Burgers vectors. Phys. Status Solidi A 98, 175–181 (1986). 10.1002/pssa.2210980119

333. J.L. Weyher, J. van de Ven, Selective etching and photoetching of GaAs in CrO3–HF aqueous solutions. III.
Interpretation of defect-related etchfigures. J. Cryst.Growth 78, 191–217 (1986). 10.1016/0022-0248(86)90055-2

334. A.F. Bogenschütz, Ätzpraxis für Halbleiter (Carl Hanser, München, 1967)
335. M. Köhler, Etching in Microsystem Technology (Wiley-VCH, Weinheim, 1999). 10.1002/9783527613786
336. A.R. Clawson, Guide to references on III-V semiconductor chemical etching. Mater. Sci. Eng. 31, 1–438 (2001).

10.1016/S0927-796X(00)00027-9
337. J. Frühauf, Shape and Functional Elements of the Bulk Silicon Microtechnique: A Manual of Wet-Etched Silicon

Structures (Springer, Berlin, 2005). 10.1007/b138230
338. D.M. Manos, D.L. Flamm, eds., Plasma Etching: An Introduction (Academic Press, San Diego, 1989)
339. G.S. May, C.J. Spanos, Fundamentals of Semiconductor Manufacturing and Process Control (Wiley, Hoboken,

2006). 10.1002/0471790281
340. J.W. Coburn, Plasma Etching and Reactive Ion Etching: Fundamentals and Applications, American Vacuum

Society Monograph Series (AVS, New York, 1982)
341. V.M.Donnelly,A.Kornblit, Plasma etching:Yesterday, today, and tomorrow. J.Vac. Sci. Technol.A 31, 050825:1–

47 (2013). 10.1116/1.4819316
342. V. Smaminathan, A.S. Jordan, Dislocations in III/V compounds. Semicond. Semimet. 38, 293–341 (1993).

10.1016/S0080-8784(08)62803-3
343. T. Kamejima, J. Matsui, Y. Seki, H. Watanabe, Transmission electron microscopy study of microdefects in

dislocation-free GaAs and InP crystals. J. Appl. Phys. 50, 3312–3321 (1979). 10.1063/1.326372
344. L. Wang, W. Jie, Y. Yang, G. Xu, L. Fu, Defect characterization and composition distributions of mercury indium

telluride single crystals. J. Cryst. Growth 310, 2810–2814 (2008). 10.1016/j.jcrysgro.2008.01.060
345. NREL, www.nrel.gov/measurements/trans.html
346. Z. Liliental-Weber, H. Sohn, J. Washburn, Structural defects in epitaxial III/V layers. Semicond. Semimet. 38,

397–447 (1993). 10.1016/S0080-8784(08)62805-7
347. Y. Hao, G. Meng, ZhLWang, Ch. Ye, L. Zhang, Periodically twinned nanowires and polytypic nanobelts of ZnS:

the role of mass diffusion in vapor-liquid-solid growth. Nano Lett. 6, 1650–1655 (2006). 10.1021/nl060695n
348. S. Mader, A.E. Blakeslee, Extended dislocations in GaAs0.7P0.3. Appl. Phys. Lett. 25, 365–367 (1974).

10.1063/1.1655510
349. M. Sato, K. Sumino, K. Hiraga, Impurity effect in stacking fault energy of silicon crystals studied by high

resolution electron microscopy. Phys. Status Solidi A 68, 567–577 (1981). 10.1002/pssa.2210680228
350. A. Gomez, D.J.H. Cockayne, P.B. Hirsch, V. Vitek, Dissociation of near-screw dislocations in germanium and

silicon. Philos. Mag. 31, 105–113 (1975). 10.1080/14786437508229289
351. D. Gerthsen, C.B. Carter, Stacking-fault energies of GaAs. Phys. Status Solidi A 136, 29–43 (1993).

10.1002/pssa.2211360104
352. P. Pirouz, D.J.H. Cockayne, N. Shimada, P. Hirsch, A.R. Lang, Dissociation of dislocations in diamond. Proc.

Roy. Soc. Lond. A 386, 241–249 (1983). 10.1098/rspa.1983.0034
353. H. Gottschalk, G. Patzer, H. Alexander, Stacking fault energy and ionicity of cubic III-V compounds. Phys. Status

Solidi A 45, 207–217 (1978). 10.1002/pssa.2210450125
354. S. Takeuchi, K. Suzuki, K.Maeda, Stacking-fault energy of II-VI compounds. Philos.Mag. A 50, 171–178 (1984).

10.1080/01418618408244220
355. S. Amelinckx, W. Dekeyser, The structure and properties of grain boundaries. Solid State Phys. 8, 325–499

(1959). 10.1016/S0081-1947(08)60482-8
356. C.R.M. Grovenor, Grain boundaries in semiconductors. J. Phys. C: Solid State Phys. 18, 4079–4119 (1985).

10.1088/0022-3719/18/21/008
357. C. Fontaine, D.A. Smith, On the atomic structure of the �=3 112 twin in silicon. Appl. Phys. Lett. 40, 153–154

(1982). 10.1063/1.93019
358. H. Sawada, H. Ichinose, M. Kohyama, Imaging of a single atomic column in silicon grain boundary. J. Electron

Microscopy 51, 353–357 (2002). 10.1093/jmicro/51.6.353
359. F.L. Vogel, W.G. Pfann, H.E. Corey, E.E. Thomas, Observations of dislocations in lineage boundaries in germa-

nium. Phys. Rev. 90, 489–490 (1953). 10.1103/PhysRev.90.489
360. H. Föll, Universität Kiel. http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/backbone/r7_2_2.html
361. H. Föll, D. Ast, TEM observations on grain boundaries in sintered silicon. Philos. Mag. A 40, 589–610 (1979).

10.1080/01418617908234861
362. M. Grundmann, A. Krost, D. Bimberg, LP-MOVPE growth of antiphase domain free InP on (001) Si using low

temperature processing. J. Cryst. Growth 107, 494–495 (1991). 10.1016/0022-0248(91)90509-4
363. Wolfgang Mader, private communication (2006)
364. F. Wolf, W. Mader, Microdomain structure in Fe2O3-doped ZnO and the formation of spinel. Optik 110(Suppl.

8), 66 (1999)

https://doi.org/10.1002/pssa.2210980119
https://doi.org/10.1016/0022-0248(86)90055-2
https://doi.org/10.1002/9783527613786
https://doi.org/10.1016/S0927-796X(00)00027-9
https://doi.org/10.1007/b138230
https://doi.org/10.1002/0471790281
https://doi.org/10.1116/1.4819316
https://doi.org/10.1016/S0080-8784(08)62803-3
https://doi.org/10.1063/1.326372
https://doi.org/10.1016/j.jcrysgro.2008.01.060
www.nrel.gov/measurements/trans.html
https://doi.org/10.1016/S0080-8784(08)62805-7
https://doi.org/10.1021/nl060695n
https://doi.org/10.1063/1.1655510
https://doi.org/10.1002/pssa.2210680228
https://doi.org/10.1080/14786437508229289
https://doi.org/10.1002/pssa.2211360104
https://doi.org/10.1098/rspa.1983.0034
https://doi.org/10.1002/pssa.2210450125
https://doi.org/10.1080/01418618408244220
https://doi.org/10.1016/S0081-1947(08)60482-8
https://doi.org/10.1088/0022-3719/18/21/008
https://doi.org/10.1063/1.93019
https://doi.org/10.1093/jmicro/51.6.353
https://doi.org/10.1103/PhysRev.90.489
http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/backbone/r7_2_2.html
https://doi.org/10.1080/01418617908234861
https://doi.org/10.1016/0022-0248(91)90509-4


References 805

365. F. Wolf, B.H. Freitag, W. Mader, Inversion domain boundaries in ZnO with additions of Fe2O3 studied by high-
resolution ADF imaging. Micron 38, 549–552 (2007). 10.1016/j.micron.2006.07.021

366. G.P. Srivastava, The Physics of Phonons (Taylor and Francis, New York, 1990)
367. N. Ashcroft, D. Mermin, Solid State Physics (Harcourt College Publishers, Fort Worth, 1976)
368. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Chichester, 2004)
369. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. Lond. A 392, 45–57 (1984).

10.1098/rspa.1984.0023
370. J.K. Asbóth, L. Oroszlány, A. Pályi, A short course on topological insulators, band-structure topology

and edge states in one and two dimensions, in Lecture Notes in Physics, vol. 919 (Springer, 2016).
10.1007/978-3-319-25607-8

371. R. Süsstrunk, S.D. Huber, Classification of topological phonons in linear mechanical metamaterials. PNAS 113,
E4767–E4775 (2016). 10.1073/pnas.1605462113

372. H. Montgomery, The symmetry of lattice vibrations in the zincblende and diamond structures. Proc. Roy. Soc.
Lond. A 309, 521–549 (1969). 10.1098/rspa.1969.0055

373. J.L.T. Waugh, G. Dolling, Crystal dynamics of gallium arsenide. Phys. Rev. 132, 2410–2412 (1963).
10.1103/PhysRev.132.2410

374. P.H. Borcherds, K. Kunc, G.F. Alfrey, R.L. Hall, The lattice dynamics of gallium phosphide. J. Phys. C: Solid
State Phys. 12, 4699–4706 (1979). 10.1088/0022-3719/12/22/012

375. J.L.Yarnell, J.L.Warren, R.G.Wenzel, P.J.Dean, Lattice dynamics of gallium phosphide, in Neutron Inelastic
Scattering, vol. 1 (IAEA, Vienna, 1968), pp. 301–313
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778. T. Słupiński, J. Caban, K. Moskalik, Hole transport in impurity band and valence bands studied in moderately
doped GaAs:Mn single crystals. Acta Phys. Polon. 112, 325–330 (2007). 10.12693/APhysPolA.112.325

779. Z. Kabilova, C. Kurdak, R.L. Peterson, Observation of impurity band conduction and variable range hopping in
heavily doped (010) β-Ga2O3. Semicond. Sci. Technol. 34, 03LT02:1–7 (2019). 10.1088/1361-6641/ab0150

780. D.J. Thouless, Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974).
10.1016/0370-1573(74)90029-5

781. T.F. Rosenbaum, K. Andres, G.A. Thomas, R.N. Bhatt, Sharp metal-insulator transition in a random solid. Phys.
Rev. Lett. 45, 1723–1726 (1980). 10.1103/PhysRevLett.45.1723

782. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
10.1103/PhysRev.109.1492

783. N.F. Mott, The metal-insulator transition in an impurity band. J. Phys. Colloques 37, C4-301–C4-306 (1976).
10.1051/jphyscol:1976453

784. J.T. Devreese, Polarons, digital Encycl. Appl. Phys. 383–413 (2003). 10.1002/3527600434.eap347
785. D. Emin, Polarons (Cambridge University Press, Cambridge, 2013)
786. J. Appel, Polarons. Solid State Phys. 21, 193–391 (1968). 10.1016/S0081-1947(08)60741-9
787. R.P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97, 660–665 (1955). 10.1103/PhysRev.97.660
788. G.D. Mahan, Many-Particle Physics (Springer. New York, 2000). 10.1007/978-1-4757-5714-9
789. H. Fröhlich, H. Pelzer, S. Zienau, Properties of slow electrons in polar materials. Philos.Mag. 41, 221–242 (1950).

10.1080/14786445008521794
790. T.D. Schultz, Slow electrons in polar crystals: Self-energy, mass, and mobility. Phys. Rev. 116, 526–543 (1959).

10.1103/PhysRev.116.526
791. O.F. Schirmer, O− bound small polarons in oxide materials. J. Phys.: Cond. Matter 18, R667–R704 (2006).

10.1088/0953-8984/18/43/R01
792. M. Albrecht, J. Varley, T. Remmele, Z. Gałaska, R. Uecker, C. Van de Walle, R. Fornari, In-situ observation of

small polarons in gallium oxide by aberration corrected high resolution transmission electron microscopy, in 15th
European Microscopy Congress (Manchester, UK, 2012). PS2.3:1–2

793. B.J. Morgan, D.O. Scanlon, G.W. Watson, Small polarons in Nb- and Ta-doped rutile and anatase TiO2. J. Mater.
Chem. 19, 5175–5178 (2009). 10.1039/B905028K

794. S.J.F. Byrnes, Basic Theory and Phenomenology of Polarons (2008). online at
http://sjbyrnes.com/FinalPaper--Polarons.pdf

795. N.F. Mott, E.A. Davis, Electronic Properties in Non-Crystalline Materials (Clarendon Press, Oxford, 1971)
796. A.L. Efros, B.I. Shklovskii, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

10.1007/978-3-662-02403-4
797. M. Pollak, B.I. Shklovskii, eds., Hopping Transport in Solids (Elsevier/North-Holland, Amsterdam, 1990)
798. J.J. Hauser, Electrical properties and anisotropy in amorphous Si and Si0.5Ge0.5 alloy. Phys. Rev. B 8, 3817–3823

(1973). 10.1103/PhysRevB.8.3817
799. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1–17 (1968).

10.1016/0022-3093(68)90002-1
800. A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered system. J. Phys. C:

Solid State Phys. 8, L49–L51 (1975). 10.1088/0022-3719/8/4/003
801. A. Yildiz, N. Serin, T. Serin,M. Kasap, Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii

variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203:1–5
(2009). 10.1143/JJAP.48.111203

802. N. Mott, The mobility edge since 1967. J. Phys. C: Solid State Phys. 20, 3075–3102 (1987).
10.1088/0022-3719/20/21/008

803. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001). 10.1038/35104620
804. N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostruc-

tures. Nature 408, 946–949 (2000). 10.1038/35050047

https://doi.org/10.1063/1.362375
https://doi.org/10.1103/PhysRevB.71.085201
https://doi.org/10.1103/PhysRev.79.726
https://doi.org/10.1103/PhysRev.79.727
https://doi.org/10.1103/PhysRev.96.1226
https://doi.org/10.12693/APhysPolA.112.325
https://doi.org/10.1088/1361-6641/ab0150
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1103/PhysRevLett.45.1723
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1051/jphyscol:1976453
https://doi.org/10.1002/3527600434.eap347
https://doi.org/10.1016/S0081-1947(08)60741-9
https://doi.org/10.1103/PhysRev.97.660
https://doi.org/10.1007/978-1-4757-5714-9
https://doi.org/10.1080/14786445008521794
https://doi.org/10.1103/PhysRev.116.526
https://doi.org/10.1088/0953-8984/18/43/R01
https://doi.org/10.1039/B905028K
http://sjbyrnes.com/FinalPaper--Polarons.pdf
https://doi.org/10.1007/978-3-662-02403-4
https://doi.org/10.1103/PhysRevB.8.3817
https://doi.org/10.1016/0022-3093(68)90002-1
https://doi.org/10.1088/0022-3719/8/4/003
https://doi.org/10.1143/JJAP.48.111203
https://doi.org/10.1088/0022-3719/20/21/008
https://doi.org/10.1038/35104620
https://doi.org/10.1038/35050047


820 References

805. J.Garcia-Barriocanal,A.Rivera-Calzada,M.Varela, Z. Sefrioui, E. Iborra,C.Leon, S.J. Pennycook, J. Santamaria,
Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680
(2008). 10.1126/science.1156393

806. J.X.M. Zheng-Johansson, R.L. McGreevy, A molecular dynamics study of ionic conduction in CuI. II. Local
ionic motion and conduction mechanisms. Solid State Ionics 83, 35–48 (1996). 10.1016/0167-2738(95)00218-9

807. M. Yashima, Q. Xu, A. Yoshiasa, S. Wada, Crystal structure, electron density and diffusion path of the fast-ion
conductor copper iodide CuI. J. Mater. Chem. 16, 4393–4396 (2006). 10.1039/B610127E

808. T. Jow, J.B. Wagner, On the electrical properties of cuprous iodide. J. Electrochem. Soc. 125, 613–620 (1978).
10.1149/1.2131511

809. P.T. Landsberg, On the diffusion theory of rectification. Proc. Roy. Soc. Lond. A 213, 226–237 (1952).
10.1098/rspa.1952.0122

810. A.N. Chakravarti, B.R. Nag, Generalized Einstein relation for degenerate semiconductors having non-parabolic
energy bands. Int. J. Electr. 37, 281–284 (1974). 10.1080/00207217408900521

811. N.G. Nilsson, An accurate approximation of the generalized einstein relation for degenerate semiconductors.
Phys. Status Solidi A 19, K75–K78 (1973). 10.1002/pssa.2210190159

812. E. Spenke, Elektronische Halbleiter, Eine Einführung in die Physik der Gleichrichter und Transistoren (Springer,
Berlin, 1955). 10.1007/978-3-662-01338-0

813. F.A. Lindholm,R.W.Ayers,GeneralizedEinstein relation for degenerate semiconductors. Proc. IEEE 56, 371–372
(1968). 10.1109/PROC.1968.6320

814. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)
815. T.H. Geballe, G.W. Hull, Isotopic and other types of thermal resistance in germanium. Phys. Rev. 110, 773–775

(1958). 10.1103/PhysRev.110.773
816. H.B.G. Casimir, Note on the conduction of heat in crystals. Physica 5, 495–500 (1938).

10.1016/S0031-8914(38)80162-2
817. W.S. Capinski, H.J. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, E. Gmelin, Thermal con-

ductivity of isotopically enriched Si. Appl. Phys. Lett. 71, 2109–2111 (1997). 10.1063/1.119384
818. T. Ruf, R.W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.J. Pohl, G.G. Devyatykh, P.G. Sen-

nikov, Thermal conductivity of isotopically enriched silicon. Solid State Commun. 115, 243–247 (2000).
10.1016/S0038-1098(00)00172-1

819. G.O. Mahan, Good thermoelectrics. Solid State Phys. 51, 81–157 (1997). 10.1016/S0081-1947(08)60190-3
820. H. Böttner, G. Chen, R. Venkatasubramanian, Aspects of thin-film superlattice thermoelectric materials, devices,

and applications. Dev. Appl. MRS Bull. 31, 211–217 (2006). 10.1557/mrs2006.47
821. V.A. Johnson, K. Lark-Horowitz, Theory of thermoelectric power in semiconductors with applications to germa-

nium. Phys. Rev. 92, 226–232 (1953). 10.1103/PhysRev.92.226
822. T.H. Geballe, G.W. Hull, Seebeck effect in silicon. Phys. Rev. 98, 940–947 (1955). 10.1103/PhysRev.98.940
823. H. Fritzsche, A general expression for the thermoelectric power. Solid State Commun. 9, 1813–1815 (1971).

10.1016/0038-1098(71)90096-2
824. Z. Wang, S. Wang, S. Obukhov, N. Vast, J. Sjakste, V. Tjuterev, N. Mingo, Thermoelectric transport properties

of silicon: Toward an ab initio approach. Phys. Rev. B 83, 205208:1–5 (2011). 10.1103/PhysRevB.83.205208
825. G.D. Mahan, L. Lindsay, D.A. Broido, The Seebeck coefficient and phonon drag in silicon. J. Appl. Phys. 116,

245102:1–7 (2014). 10.1063/1.4904925
826. I. Newton, Opticks (London, 1704), Book 3, Query 5, p. 133
827. C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Raman tensor formalism for optically anisotropic

crystals. Phys. Rev. Lett. 116, 127401:1–5 (2016). 10.1103/PhysRevLett.116.127401
828. C. Sturm, J. Furthmüller, F. Bechstedt, R. Schmidt-Grund,M. Grundmann, Dielectric tensor of monoclinic Ga2O3

single crystals in the spectral range 0.5–8.5 eV. APL Mater. 3, 106106:1–9 (2015). 10.1063/1.4934705
829. C. Sturm, R. Schmidt-Grund, C. Kranert, J. Furthmüller, F. Bechstedt, M. Grundmann, Dipole analysis of the

dielectric function of color dispersive materials: Application to monoclinic Ga2O3. Phys. Rev. B 94, 035148:1–11
(2016). 10.1103/PhysRevB.94.035148

830. W.Voigt, Beiträge zurAufklärung derEigenschaften pleochroitischerKristalle.Ann. Physik 314, 367–416 (1902).
10.1002/andp.19023141006

831. C. Sturm, M. Grundmann, The singular optical axes in biaxial crystals and analysis of their spectral dispersion
effects in β-Ga2O3. Phys. Rev. A 93, 053839:1–8 (2016). 10.1103/PhysRevA.93.053839

832. C. Sturm, V. Zviagin, M. Grundmann, Applicability of the constitutive equations for the determination of the
material properties of optically active materials. Opt. Lett. 44, 1351–1354 (2019). 10.1364/OL.44.001351

833. A. Kwan, J. Dudley, E. Lantz, Who really discovered Snell’s law? Physics World 15, 64 (2002).
10.1088/2058-7058/15/4/44

834. A. Fresnel, Œuvres complètes d’Augustin Fresnel, H. de Senarmont, É. Verdet, L. Fresnel, eds. (Imprimerie
Impériale, Paris, 1866-1870, 3 vols.)

835. M. Bouguer, Essai d’optique sur la gradation de la lumière (Claude Jombert, Paris, 1729)

https://doi.org/10.1126/science.1156393
https://doi.org/10.1016/0167-2738(95)00218-9
https://doi.org/10.1039/B610127E
https://doi.org/10.1149/1.2131511
https://doi.org/10.1098/rspa.1952.0122
https://doi.org/10.1080/00207217408900521
https://doi.org/10.1002/pssa.2210190159
https://doi.org/10.1007/978-3-662-01338-0
https://doi.org/10.1109/PROC.1968.6320
https://doi.org/10.1103/PhysRev.110.773
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1063/1.119384
https://doi.org/10.1016/S0038-1098(00)00172-1
https://doi.org/10.1016/S0081-1947(08)60190-3
https://doi.org/10.1557/mrs2006.47
https://doi.org/10.1103/PhysRev.92.226
https://doi.org/10.1103/PhysRev.98.940
https://doi.org/10.1016/0038-1098(71)90096-2
https://doi.org/10.1103/PhysRevB.83.205208
https://doi.org/10.1063/1.4904925
https://doi.org/10.1103/PhysRevLett.116.127401
https://doi.org/10.1063/1.4934705
https://doi.org/10.1103/PhysRevB.94.035148
https://doi.org/10.1002/andp.19023141006
https://doi.org/10.1103/PhysRevA.93.053839
https://doi.org/10.1364/OL.44.001351
https://doi.org/10.1088/2058-7058/15/4/44


References 821

836. A. Beer, Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. Chem. 162, 78–88
(1852). 10.1002/andp.18521620505

837. Ch.M. Wolfe, N. Holonyak Jr., G.E. Stillman, Physical Properties of Semiconductors (Prentice Hall, Englewood
Cliffs, NJ, 1989)

838. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)
839. R.H. Lyddane, R.G. Sachs, E. Teller, On the polar vibrations of alkali halides. Phys. Rev. 59, 673–676 (1941).

10.1103/PhysRev.59.673
840. B. Jogai, Absorption coefficient of wurtzite GaN calculated from an empirical tight binding model. Solid State

Commun. 116, 153–157 (2000). 10.1016/S0038-1098(00)00305-7
841. M. Cardona, Modulation spectroscopy of semiconductors. Adv. Solid State Phys. (Festkörperprobleme) 10, 125–

173 (1970). 10.1007/BFb0108433
842. M.D. Sturge, Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).

10.1103/PhysRev.127.768 Erratum: Phys. Rev. 129, 2835 (1963). 10.1103/PhysRev.129.2835.3
843. R.G. Ulbrich, Band edge spectra of highly excited gallium arsenide. Adv. Solid State Phys. (Festkörperprobleme)

25, 299–307 (1985). 10.1007/BFb0108162
844. T.Matsuyama, H. Horinaka, K.Wada, T. Kondo,M.Hangyo, T. Nakanishi, S. Okumi, K. Togowa, Spin-dependent

luminescence of highly polarized electrons generated by two-photon absorption in semiconductors. Jpn. J. Appl.
Phys. 40, L555–L557 (2001). 10.1143/JJAP.40.L555

845. P.J. Dean, D.G. Thomas, Intrinsic absorption-edge spectrum of gallium phosphide. Phys. Rev. 150, 690–703
(1966). 10.1103/PhysRev.150.690

846. L.H. Hall, J. Bardeen, F.J. Blatt, Infrared absorption spectrum of germanium. Phys. Rev. 95, 559–560 (1954).
10.1103/PhysRev.95.559

847. J. Geist, A. Migdall, H.P. Baltes, Analytic representation of the silicon absorption coefficient in the indirect
transition region. Appl. Optics 27, 3777–3779 (1988). 10.1364/AO.27.003777

848. G.G. Macfarlane, V. Roberts, Infrared absorption of germanium near the lattice edge. Phys. Rev. 97, 1714–1716
(1955). 10.1103/PhysRev.97.1714.2

849. G.G. Macfarlane, T.P. McLean, J.E. Quarrington, V. Roberts, Fine structure in the absorption-edge spectrum of
Si. Phys. Rev. 111, 1245–1254 (1958). 10.1103/PhysRev.111.1245

850. B.N. Brockhouse, Lattice vibrations in silicon and germanium. Phys. Rev. Lett. 2, 256–258 (1959).
10.1103/PhysRevLett.2.256

851. J.I. Pankove, P. Aigrain, Optical absorption of arsenic-doped degenerate germanium. Phys. Rev. 126, 956–962
(1962). 10.1103/PhysRev.126.956

852. G.A. Cox, G.G. Roberts, R.H. Tredgold, The optical absorption edge of barium titanate. Br. J. Appl. Phys. 17,
743–745 (1966). 10.1088/0508-3443/17/6/305

853. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys.
Rev. 92, 1324 (1953). 10.1103/PhysRev.92.1324

854. S.R. Johnson, T. Tiedje, Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613
(1995). 10.1063/1.359683

855. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Optical absorption edge of semi-insulating
GaAs and InP at high temperatures. Appl. Phys. Lett. 70, 3540–3542 (1997). 10.1063/1.119226

856. T.S. Moss, T.D.F. Hawking, Infrared absorption in gallium arsenide. Infrared Phys. 1, 111–115 (1961).
10.1016/0020-0891(61)90014-8

857. J. Stuke, Review of optical and electrical properties of amorphous semiconductors. J. Non-Cryst. Solids 4, 1–26
(1970). 10.1016/0022-3093(70)90015-3

858. A. Baldereschi, N.O. Lipari, Energy levels of direct excitons in semiconductors with degenerate bands. Phys.
Rev. B 3, 439–451 (1971). 10.1103/PhysRevB.3.439

859. N.O. Lipari, M. Altarelli, Theory of indirect excitons in semiconductors. Phys. Rev. B 15, 4883–4897 (1977).
10.1103/PhysRevB.15.4883

860. N.O. Lipari, Exciton energy levels in wurtzite-type crystals. Phys. Rev. B 4, 4535–4538 (1971).
10.1103/PhysRevB.4.4535

861. D. Birkedal, J. Singh, V.G. Lyssenko, J. Erland, J.M. Hvam, Binding of quasi-two-dimensional biexcitons. Phys.
Rev. Lett. 76, 672–675 (1996). 10.1103/PhysRevLett.76.672

862. E.F. Gross, Excitons and their motion in crystal lattices. Usp. Fiz. Nauk 76, 433–466 (1962) [Sov. Phys. Usp. 5,
195–218 (1962)]. 10.1070/PU1962v005n02ABEH003407

863. T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, M. Bayer, Giant Rydberg excitons in the copper oxide Cu2O.
Nature 514, 343–347 (2014). 10.1038/nature13832

864. Ch. Uihlein, D. Fröhlich, R. Kenklies, Investigation of exciton fine structure in Cu2O. Phys. Rev. B 23, 2731–2740
(1981). 10.1103/PhysRevB.23.2731

865. R.J. Elliott, Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957).
10.1103/PhysRev.108.1384

https://doi.org/10.1002/andp.18521620505
https://doi.org/10.1103/PhysRev.59.673
https://doi.org/10.1016/S0038-1098(00)00305-7
https://doi.org/10.1007/BFb0108433
https://doi.org/10.1103/PhysRev.127.768
https://doi.org/10.1103/PhysRev.129.2835.3
https://doi.org/10.1007/BFb0108162
https://doi.org/10.1143/JJAP.40.L555
https://doi.org/10.1103/PhysRev.150.690
https://doi.org/10.1103/PhysRev.95.559
https://doi.org/10.1364/AO.27.003777
https://doi.org/10.1103/PhysRev.97.1714.2
https://doi.org/10.1103/PhysRev.111.1245
https://doi.org/10.1103/PhysRevLett.2.256
https://doi.org/10.1103/PhysRev.126.956
https://doi.org/10.1088/0508-3443/17/6/305
https://doi.org/10.1103/PhysRev.92.1324
https://doi.org/10.1063/1.359683
https://doi.org/10.1063/1.119226
https://doi.org/10.1016/0020-0891(61)90014-8
https://doi.org/10.1016/0022-3093(70)90015-3
https://doi.org/10.1103/PhysRevB.3.439
https://doi.org/10.1103/PhysRevB.15.4883
https://doi.org/10.1103/PhysRevB.4.4535
https://doi.org/10.1103/PhysRevLett.76.672
https://doi.org/10.1070/PU1962v005n02ABEH003407
https://doi.org/10.1038/nature13832
https://doi.org/10.1103/PhysRevB.23.2731
https://doi.org/10.1103/PhysRev.108.1384


822 References

866. A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, S. Nakamura, Biaxial strain dependence
of exciton resonance energies in wurtzite GaN. J. Appl. Phys. 81, 417–424 (1997). 10.1063/1.364074

867. S. Rudin, T.L. Reinecke, B. Segall, Temperature-dependent exciton linewidths in semiconductors. Phys. Rev. B
42, 11218–11231 (1990). 10.1103/PhysRevB.42.11218

868. A.J. Fischer, W. Shan, J.J. Song, Y.C. Chang, R. Horning, B. Goldenberg, Temperature-dependent absorption
measurements of excitons in GaN epilayers. Appl. Phys. Lett. 71, 1981–1983 (1997). 10.1063/1.119761

869. A.J. Fischer, D.S. Kim, J. Hays,W. Shan, J.J. Song, D.B. Eason, J. Ren, J.F. Schetzina, H. Luo, J.K. Furdyna, Z.Q.
Zhu, T. Yao, W. Schäfer, Femtosecond coherent spectroscopy of bulk ZnSe and ZnCdSe/ZnSe quantum wells.
Phys. Rev. Lett. 73, 2368–2371 (1994). 10.1103/PhysRevLett.73.2368

870. A.K. Viswanath, J.I. Lee, D. Kim, C.R. Lee, J.Y. Leem, Exciton-phonon interactions, exciton binding energy,
and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys. Rev. B
58, 16333–16339 (1998). 10.1103/PhysRevB.58.16333

871. D.-S. Kim, J. Shah, J.E. Cunnigham, T.C. Damen, W. Schäfer, M. Hartmann, S. Schmitt-Rink, Giant exci-
ton resonance in time-resolved four-wave mixing in quantum wells. Phys. Rev. Lett. 68, 1006–1009 (1992).
10.1103/PhysRevLett.68.1006

872. R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, C. Klingshirn, Temperature dependent band gap
and homogeneous line broadening of the exciton emission in ZnO. Phys. Status Solidi C 3, 976–979 (2006).
10.1002/pssc.200564643

873. J.J. Hopfield, D.G. Thomas, Polariton absorption lines. Phys. Rev. Lett. 15, 22–25 (1965).
10.1103/PhysRevLett.15.22

874. J.J. Hopfield, Resonant scattering of polaritons as composite particles. Phys. Rev. 182, 945–952 (1969).
10.1103/PhysRev.182.945

875. A.A. Maradudin, D.L. Mills, Effect of spatial dispersion on the properties of a semi-infinite dielectric. Phys. Rev.
B 7, 2787–2810 (1973). 10.1103/PhysRevB.7.2787

876. Y. Toyozawa, On the dynamical behavior of an exciton. Prog. Theor. Phys., Suppl. 12, 111–140 (1959).
10.1143/PTPS.12.111

877. U. Heim, P. Wiesner, Direct evidence for a bottleneck of exciton-polariton relaxation in CdO. Phys. Rev. Lett.
30, 1205–1207 (1973). 10.1103/PhysRevLett.30.1205

878. B. Gil, Oscillator strengths of A, B, and C excitons in ZnO films. Phys. Rev. B 64, 201310:1–3 (2001).
10.1103/PhysRevB.64.201310

879. T. Soma, H.-M. Kagaya, The metallic and ionic contributions to lattice vibrations of III-V covalent crystals. Phys.
Status Solidi B 118, 245–254 (1983). 10.1002/pssb.2221180130

880. A. Göldner, Nichtstrahlende Relaxationsprozesse bandkantennaher Zustände in II-VI- und III-V-
Halbleiterstrukturen, Ph.D. Thesis, Technische Universität Berlin (2000) (Wissenschaft und Technik Verlag,
Berlin, 2000)

881. I. Broser, M. Rosenzweig, Determination of excitonic parameters of the A polariton in CdS from magnetore-
flectance spectroscopy. Phys. Rev. B 22, 2000–2007 (1980). 10.1103/PhysRevB.22.2000

882. M. Rosenzweig, Exzitonische Polaritonen in CdS—Optische Eigenschaften räumlich dispersiver Medien, Ph.D.
Thesis, Technische Universität Berlin (1982)

883. G. Blattner, G. Kurtze, G. Schmieder, C. Klingshirn, Influence of magnetic fields up to 20 T on excitons and
polaritons in CdS and ZnO. Phys. Rev. B 25, 7413–7427 (1982). 10.1103/PhysRevB.25.7413

884. B. Gil, S. Clur, O. Briot, The exciton-polariton effect on the photoluminescence of GaN on sapphire. Solid State
Commun. 104, 267–270 (1997). 10.1016/S0038-1098(97)00284-6

885. A.E. Yunovich, Radiative recombination and optical properties of GaP, in Radiative Recombination in Semicon-
ductors, ed. by Ya. E. Pokrovskii (Moscow, 1972) (in Russian). A.E. Yunovich, Strahlende Rekombination und
optische Eigenschaften von GaP. Fortschritte der Physik 23, 317–398 (1975). 10.1002/prop.19750230602

886. V. Vashishta, R.K. Kalia, Universal behavior of exchange-correlation energy in electron-hole liquid. Phys. Rev.
B 25, 6492–6495 (1982). 10.1103/PhysRevB.25.6492

887. R. Zimmermann, Nonlinear optics and the Mott transition in semiconductors. Phys. Status Solidi B 146, 371–384
(1988). 10.1002/pssb.2221460140

888. H.-E. Swoboda, M. Sence, F.A. Majumder, M. Rinker, J.-Y. Bigot, J.B. Grun, C. Klingshirn, Properties of
electron-hole plasma in II-VI compounds as a function of temperature. Phys. Rev. B 39, 11019–11027 (1989).
10.1103/PhysRevB.39.11019

889. J.P. Löwenau, S. Schmitt-Rink, H. Haug, Many-body theory of optical bistability in semiconductors. Phys. Rev.
Lett. 49, 1511–1514 (1982). 10.1103/PhysRevLett.49.1511

890. L.V. Keldysh, Concluding remarks [for IXth International Conference on the Physics of Semiconductors], in
Proceedings of the 9th International Conference on the Physics of Semiconductors (Moscow, Nauka, Leningrad,
1968), pp. 1303–1312

891. W.F. Brinkman, T.M. Rice, P.W. Anderson, S.T. Chui, Metallic state of the electron-hole liquid, particularly in
germanium. Phys. Rev. Lett. 28, 961–964 (1972). 10.1103/PhysRevLett.28.961

https://doi.org/10.1063/1.364074
https://doi.org/10.1103/PhysRevB.42.11218
https://doi.org/10.1063/1.119761
https://doi.org/10.1103/PhysRevLett.73.2368
https://doi.org/10.1103/PhysRevB.58.16333
https://doi.org/10.1103/PhysRevLett.68.1006
https://doi.org/10.1002/pssc.200564643
https://doi.org/10.1103/PhysRevLett.15.22
https://doi.org/10.1103/PhysRev.182.945
https://doi.org/10.1103/PhysRevB.7.2787
https://doi.org/10.1143/PTPS.12.111
https://doi.org/10.1103/PhysRevLett.30.1205
https://doi.org/10.1103/PhysRevB.64.201310
https://doi.org/10.1002/pssb.2221180130
https://doi.org/10.1103/PhysRevB.22.2000
https://doi.org/10.1103/PhysRevB.25.7413
https://doi.org/10.1016/S0038-1098(97)00284-6
https://doi.org/10.1002/prop.19750230602
https://doi.org/10.1103/PhysRevB.25.6492
https://doi.org/10.1002/pssb.2221460140
https://doi.org/10.1103/PhysRevB.39.11019
https://doi.org/10.1103/PhysRevLett.49.1511
https://doi.org/10.1103/PhysRevLett.28.961


References 823

892. G.A. Thomas, T.M. Rice, J.C. Hensel, Liquid-gas phase diagram of an electron-hole fluid. Phys. Rev. Lett. 33,
219–222 (1974). 10.1103/PhysRevLett.33.219

893. T.L. Reinecke, S.C. Ying, Droplet model of electron-hole liquid condensation in semiconductors. Phys.
Rev. Lett. 35, 311–315 (1975). 10.1103/PhysRevLett.35.311 Erratum: Phys. Rev. Lett. 35, 547 (1975).
10.1103/PhysRevLett.35.547.2

894. R.S. Markiewicz, J.P. Wolfe, C.D. Jeffries, Strain-confined electron-hole liquid in germanium. Phys. Rev. B 15,
1988–2005 (1977). 10.1103/PhysRevB.15.1988

895. L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, D.S. Chemla, Towards Bose-Einstein condensation of excitons
in potential traps. Nature 417, 47–52 (2002). 10.1038/417047a

896. L.V. Butov, A.C. Gossard, D.S. Chemla,Macroscopically ordered state in an exciton system. Nature 418, 751–754
(2002). 10.1038/nature00943

897. K.E. O’Hara, L.Ó. Súilleabháin, J.P.Wolfe, Strong nonradiative recombination of excitons in Cu2O and its impact
on Bose-Einstein statistics. Phys. Rev. B 60, 10565–10568 (1999). 10.1103/PhysRevB.60.10565

898. M. Skolnick, A.I. Tartakovskii, R. Butté, R.M. Stevenson, J.J. Baumberg, D.M. Whittaker, High occupancy
effects and condensation phenomena in semiconductor microcavities and bulk semiconductors, in Nano-
Optoelectronics, Concepts, Physics and Devices, ed. by M. Grundmann (Springer, Berlin, 2002), pp. 273–296.
10.1007/978-3-642-56149-8_11

899. H. Mahr, Two-photon absorption spectroscopy, in Quantum Electronics: A Treatise, H. Rabin, C.L. Tang, eds.
vol. I, Part A (Academic, New York, 1975), pp. 285–361. 10.1016/B978-0-12-574001-2.50010-1

900. H.J. Fossum, D.B. Chang, Two-photon excitation rate in indium antimonide. Phys. Rev. B 8, 2842–2849 (1973).
10.1103/PhysRevB.8.2842

901. J.P. van der Ziel, Two-photon absorption spectra of GaAs with 2�ω1 near the direct band gap. Phys. Rev. B 16,
2775–2780 (1977). 10.1103/PhysRevB.16.2775

902. C.J. Summers, R. Dingle, D.E. Hill, Far-infrared donor absorption and photoconductivity in epitaxial n-type
GaAs. Phys. Rev. B 1, 1603–1606 (1970). 10.1103/PhysRevB.1.1603

903. ShM Kogan, T.M. Lifshits, Photoelectric spectroscopy—A new method of analysis of impurities in semiconduc-
tors. Phys. Status Solidi A 39, 11–39 (1977). 10.1002/pssa.2210390102

904. L.T. Ho, A.K. Ramdas, Excitation spectra and piezospectroscopic effects of magnesium donors in silicon. Phys.
Rev. B 5, 462–474 (1972). 10.1103/PhysRevB.5.462

905. R.A. Cooke, R.A. Hoult, R.F. Kirkman, R.A. Stradling, The characterisation of the donors in GaAs epi-
taxial films by far-infrared photoconductive techniques. J. Phys. D: Appl. Phys. 11, 945–953 (1978).
10.1088/0022-3727/11/6/014

906. B.L. Cardozo, E.E. Haller, L.A. Reichertz, J.W. Beemann, Far-infrared absorption in GaAs:Te liquid phase
epitaxial films. Appl. Phys. Lett. 83, 3990–3992 (2003). 10.1063/1.1624491

907. M. Kleverman, K. Bergmann, H.G. Grimmeiss, Photothermal investigations of magnesium-related donors in
silicon. Semicond. Sci. Technol. 1, 49–52 (1986). 10.1088/0268-1242/1/1/006

908. U. Fano, Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cimento 12, 154–
160 (1935). 10.6028/jres.110.083English translation: U. Fano,G. Pupillo, A. Zannoni, C.W.Clark, On the absorp-
tion spectrum of noble gases at the arc spectrum limit, J. Res. NIST 110, 583-587 (2005). 10.1007/BF02958288

909. G. Breit, E. Wigner, Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936). 10.1103/PhysRev.49.519
910. G.Lucovsky,On the photoionization of deep impurity centers in semiconductors. Solid StateCommun. 3, 299–302

(1965). 10.1016/0038-1098(65)90039-6
911. P. Drude, Zur Ionentheorie der Metalle. Z. Phys. 1, 161–165 (1900)
912. C.R. Pidgeon, Free Carrier Optical Properties of Semiconductors, Handbook on Semiconductors, vol. 2 (North

Holland, Amsterdam, 1980), pp. 223–328
913. H.Y. Fan, Effects of free carriers on the optical properties. Semicond. Semimet. 3, 405–419 (1967).

10.1016/S0080-8784(08)60321-X
914. W.P. Dumke, Quantum theory of free carrier absorption. Phys. Rev. 124, 1813 (1961). 10.1103/PhysRev.124.1813
915. R. von Baltz, W. Escher, Quantum theory of free carrier absorption. Phys. Status Solidi B 51, 499–507 (1972).

10.1002/pssb.2220510209
916. P. Kleinert, M. Giehler, Theory of free-carrier infrared absorption in GaAs. Phys. Status Solidi B 136, 763–777

(1986). 10.1002/pssb.2221360246
917. Z.G. Hu, M.B.M. Rinzan, S.G. Matsik, A.G.U. Perera, G. Von Winckel, A. Stintz, S. Krishna, Optical character-

izations of heavily doped p-type AlxGa1−xAs and GaAs epitaxial films at terahertz frequencies. J. Appl. Phys.
97, 093529:1–7 (2005). 10.1063/1.1894581

918. H.R. Chandrasekhar, A.K. Ramdas, Nonparabolicity of the conduction band and the coupled plasmon-phonon
modes in n-GaAs. Phys. Rev. B 21, 1511–1515 (1980). 10.1103/PhysRevB.21.1511

919. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954). 10.1103/PhysRev.93.632
920. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 76, 775–782 (1954).

10.1088/0370-1301/67/10/306

https://doi.org/10.1103/PhysRevLett.33.219
https://doi.org/10.1103/PhysRevLett.35.311
https://doi.org/10.1103/PhysRevLett.35.547.2
https://doi.org/10.1103/PhysRevB.15.1988
https://doi.org/10.1038/417047a
https://doi.org/10.1038/nature00943
https://doi.org/10.1103/PhysRevB.60.10565
https://doi.org/10.1007/978-3-642-56149-8%5F11
https://doi.org/10.1016/B978-0-12-574001-2.50010-1
https://doi.org/10.1103/PhysRevB.8.2842
https://doi.org/10.1103/PhysRevB.16.2775
https://doi.org/10.1103/PhysRevB.1.1603
https://doi.org/10.1002/pssa.2210390102
https://doi.org/10.1103/PhysRevB.5.462
https://doi.org/10.1088/0022-3727/11/6/014
https://doi.org/10.1063/1.1624491
https://doi.org/10.1088/0268-1242/1/1/006
https://doi.org/10.6028/jres.110.083
https://doi.org/10.1007/BF02958288
https://doi.org/10.1103/PhysRev.49.519
https://doi.org/10.1016/0038-1098(65)90039-6
https://doi.org/10.1016/S0080-8784(08)60321-X
https://doi.org/10.1103/PhysRev.124.1813
https://doi.org/10.1002/pssb.2220510209
https://doi.org/10.1002/pssb.2221360246
https://doi.org/10.1063/1.1894581
https://doi.org/10.1103/PhysRevB.21.1511
https://doi.org/10.1103/PhysRev.93.632
https://doi.org/10.1088/0370-1301/67/10/306


824 References

921. T.J. Coutts, D.L. Young, X. Li, Characterization of transparent conducting oxides. MRS Bull. 25, 58–65 (2000).
10.1557/mrs2000.152

922. S. Kim, J. Park, S. Kim, Y. Lee, S. Ahn, J. Cho,M. Ju, N. Lakshminarayan, V.A. Dao, J. Yi, Free-carrier absorption
and Burstein-Moss shift effect on quantum efficiency in heterojunction silicon solar cells. Vacuum 108, 39–44
(2014). 10.1016/j.vacuum.2014.05.015

923. G.N. Childs, S. Brand, R.A. Abram, Intervalence band absorption in semiconductor laser materials. Semicond.
Sci. Technol. 1, 116–120 (1986). 10.1088/0268-1242/1/2/004

924. J. Taylor, V. Tolstikhin, Intervalence band absorption in InP and related materials for optoelectronic device
modeling. J. Appl. Phys. 87, 1054–1059 (2000). 10.1063/1.371979

925. R. Braunstein, E.O. Kane, The valence band structure of the III-V compounds. J. Phys. Chem. Solids 23, 1423–
1431 (1962). 10.1016/0022-3697(62)90195-6

926. A. Chandola, R. Pino, P.S. Dutta, Below bandgap optical absorption in tellurium-doped GaSb. Semicond. Sci.
Technol. 20, 886–893 (2005). 10.1088/0268-1242/20/8/046

927. W.P.Dumke,M.R. Lorenz,G.D. Pettit, Intra- and interband free-carrier absorption and the fundamental absorption
edge in n-type InP. Phys. Rev. B 1, 4668–4673 (1970). 10.1103/PhysRevB.1.4668

928. H. Peelaers, E. Kioupakis, C.G. Van de Walle, Fundamental limits on optical transparency of transparent con-
ducting oxides: Free-carrier absorption in SnO2. Appl. Phys. Lett. 100, 011914:1–3 (2012) 10.1063/1.3671162

929. A. Schleife, J.B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke, A. Janotti, C.G. Van de Walle, Tin dioxide
from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83, 035116:1–9 (2011).
10.1103/PhysRevB.83.035116

930. H. Peelaers, C.G. Van de Walle, Sub-band-gap absorption in Ga2O3. Appl. Phys. Lett. 111, 182104:1–5 (2017).
10.1063/1.5001323

931. R. Zallen, Crystal Structures, Handbook on Semiconductors, vol. 1 (North Holland, Amsterdam, 1980), pp. 1–27
932. R.J. Collins, H.Y. Fan, Infrared lattice absorption bands in germanium, silicon, and diamond. Phys. Rev. 93,

674–678 (1954). 10.1103/PhysRev.93.674
933. F.A. Johnson, Lattice absorption bands in silicon. Proc. Phys. Soc. 73, 265–272 (1959).

10.1088/0370-1328/73/2/315
934. W.G. Spitzer, Multiphonon lattice absorption. Semicond. Semimet. 3, 17–69 (1967).

10.1016/S0080-8784(08)60314-2
935. E.S. Koteles, W.R. Datars, Two-phonon absorption in InSb, InAs, and GaAs. Can. J. Phys. 54, 1676–1682 (1976).

10.1139/p76-199
936. A. Mooradian, G.B. Wright, Observation of the interaction of plasmons with longitudinal optical phonons in

GaAs. Phys. Rev. Lett. 16, 999–1001 (1966). 10.1103/PhysRevLett.16.999
937. P.T. Landsberg, Recombination in Semiconductors (Cambridge Univ. Press, Cambridge, 1992).

10.1017/CBO9780511470769
938. G. Göbel, Recombination without k-selection rules in dense electron-hole plasmas in high-purity GaAs lasers.

Appl. Phys. Lett. 24, 492–494 (1974). 10.1063/1.1655025
939. X. Sun, J. Liu, L.C. Kimerling, J. Michel, Direct gap photoluminescence of n-type tensile-strained Ge-on-Si.

Appl. Phys. Lett. 95, 011911:1–3 (2009). 10.1063/1.3170870
940. J. Shah, R.C.C. Leite, Radiative recombination from photoexcited hot carriers in GaAs. Phys. Rev. Lett. 22,

1304–1307 (1969). 10.1103/PhysRevLett.22.1304
941. W. Michaelis, M. Pilkuhn, Radiative recombination in silicon p-n junctions. Phys. Status Solidi 36, 311–319

(1969). 10.1002/pssb.19690360132
942. W. Shockley,W.T. Read Jr., Statistics of the recombination of holes and electrons. Phys. Rev. 87, 835–842 (1952).

10.1103/PhysRev.87.835
943. R.N. Hall, Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952). 10.1103/PhysRev.87.387
944. V.K.Malyutenko,Negative luminescence in semiconductors: A retrospective view. Physica E 20, 553–557 (2004).

10.1016/j.physe.2003.09.008
945. J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey Jr., B.P. Keller, U.K. Mishra, S.P. DenBaars, Absorp-

tion coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmis-
sion measurements. Appl. Phys. Lett. 71, 2572–2774 (1997). 10.1063/1.120191

946. W. Gerlach, H. Schlangenotto, H. Maeder, On the radiative recombination rate in silicon. Phys. Status Solidi A
13, 277–283 (1972). 10.1002/pssa.2210130129

947. A. Galeckas, J. Linnros, V. Grivickas, U. Lindefelt, C. Hallin, Auger recombination in 4H-SiC: Unusual temper-
ature behavior. Appl. Phys. Lett. 71, 3269–3271 (1997). 10.1063/1.120309

948. V. Palankovski, Simulation of Heterojunction Bipolar Transistors, Ph.D. Thesis, Technische Universität Wien
(2002)

949. R.K. Akrenkiel, Minority-carrier lifetime in III-V semiconductors. Semicond. Semimet. 39, 39–150 (1993).
10.1016/S0080-8784(08)62594-6

950. P.J. Dean, J.R. Haynes,W.F. Flood, New radiative recombination processes involving neutral donors and acceptors
in silicon and germanium. Phys. Rev. 161, 711–729 (1967). 10.1103/PhysRev.161.711

https://doi.org/10.1557/mrs2000.152
https://doi.org/10.1016/j.vacuum.2014.05.015
https://doi.org/10.1088/0268-1242/1/2/004
https://doi.org/10.1063/1.371979
https://doi.org/10.1016/0022-3697(62)90195-6
https://doi.org/10.1088/0268-1242/20/8/046
https://doi.org/10.1103/PhysRevB.1.4668
https://doi.org/10.1063/1.3671162
https://doi.org/10.1103/PhysRevB.83.035116
https://doi.org/10.1063/1.5001323
https://doi.org/10.1103/PhysRev.93.674
https://doi.org/10.1088/0370-1328/73/2/315
https://doi.org/10.1016/S0080-8784(08)60314-2
https://doi.org/10.1139/p76-199
https://doi.org/10.1103/PhysRevLett.16.999
https://doi.org/10.1017/CBO9780511470769
https://doi.org/10.1063/1.1655025
https://doi.org/10.1063/1.3170870
https://doi.org/10.1103/PhysRevLett.22.1304
https://doi.org/10.1002/pssb.19690360132
https://doi.org/10.1103/PhysRev.87.835
https://doi.org/10.1103/PhysRev.87.387
https://doi.org/10.1016/j.physe.2003.09.008
https://doi.org/10.1063/1.120191
https://doi.org/10.1002/pssa.2210130129
https://doi.org/10.1063/1.120309
https://doi.org/10.1016/S0080-8784(08)62594-6
https://doi.org/10.1103/PhysRev.161.711


References 825

951. G. Davies, The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83–188 (1989).
10.1016/0370-1573(89)90064-1

952. G.D. Gilliland, Photoluminescence spectroscopy of crystalline semiconductors. Mater. Sci. Engin. R 18, 99–400
(1997). 10.1016/S0927-796X(97)80003-4

953. P.J. Dean, D.C. Herbert, Bound Excitons in Semiconductors, in: Excitons, K. Cho, ed. (Springer, Berlin, 1979),
pp. 55–182. 10.1007/978-3-642-81368-9_3

954. P.J. Dean, Lithium donors and the binding of excitons at neutral donors and acceptors in gallium phosphide, in
Luminescence of Crystals, Molecules and Solutions, ed. by F. Williams (Plenum, New York, 1973), pp. 538–552.
10.1007/978-1-4684-2043-2_75

955. S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz,W. von der Osten, Localisation of excitons at small Te clusters
in diluted ZnSe1−xTex solid solutions. J. Phys.: Cond.Matter 1, 5125–5137 (1989). 10.1088/0953-8984/1/31/011

956. T. Skettrup, M. Suffczynski, W. Gorzkowski, Properties of excitons bound to ionized donors. Phys. Rev. B 4,
512–517 (1971). 10.1103/PhysRevB.4.512

957. R.G. Ulbrich, Low density photoexcitation phenomena in semiconductors: Aspects of theory and experiment.
Solid State Electron. 21, 51–59 (1978). 10.1016/0038-1101(78)90114-4

958. D.E. Hill, Exciton recombination radiation of GaAs:Zn. Phys. Rev. B 1, 1863–1864 (1970).
10.1103/PhysRevB.1.1863

959. D.C. Reynolds, D.C. Look, B. Jogai, V.M. Phanse, R.P. Vaudo, Identification of an ionized-donor-bound-exciton
transition in GaN. Solid State Commun. 103, 533–535 (1997). 10.1016/S0038-1098(97)00231-7

960. N. Nepal, M.L. Nakarmi, K.B. Nam, J.Y. Lin, H.X. Jiang, Acceptor-bound exciton transition in Mg-doped AlN
epilayer. Appl. Phys. Lett. 85, 2271–2273 (2004). 10.1063/1.1796521

961. D.G. Thomas, J.J. Hopfield, Optical properties of bound exciton complexes in cadmium sulfide. Phys. Rev. 128,
2135–2148 (1962). 10.1103/PhysRev.128.2135

962. J.L. Merz, H. Kukimoto, K. Nassau, J.W. Shiever, Optical properties of substitutional donors in ZnSe. Phys. Rev.
B 6, 545–556 (1972). 10.1103/PhysRevB.6.545

963. P.J. Dean, D.C. Herbert, C.J. Werkhoven, B.J. Fitzpatrick, R.N. Bhargava, Donor bound-exciton excited states in
zinc selenide. Phys. Rev. B 23, 4888–4901 (1981). 10.1103/PhysRevB.23.4888

964. B.K. Meyer, J. Sann, S. Lautenschläger, M.R. Wagner, A. Hoffmann, Ionized and neutral donor-bound excitons
in ZnO. Phys. Rev. B 76, 184120:1–4 (2007). 10.1103/PhysRevB.76.184120

965. J.R. Haynes, Experimental proof of the existence of a new electronic complex in silicon. Phys. Rev. Lett. 4,
361–363 (1960). 10.1103/PhysRevLett.4.361

966. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M.
Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Bound exciton and donor-acceptor pair recombinations in
ZnO. Phys. Status Solidi B 241, 231–260 (2004). 10.1002/pssb.200301962

967. S. Müller, D. Stichtenoth, M. Uhrmacher, H. Hofsäss, C. Ronning, J. Röder, Unambiguous identification of the
PL-I9 line in zinc oxide. Appl. Phys. Lett. 90, 012107:1–3 (2007). 10.1063/1.2430483

968. P.J. Dean,M. Skolnick, Donor discrimination and bound exciton spectra in InP. J. Appl. Phys. 54, 346–359 (1983).
10.1063/1.331709

969. F.A.J.M. Driessen, H.G.M. Lochs, S.M. Olsthoorn, L.J. Giling, An analysis of the two electron satellite spectrum
of GaAs in high magnetic fields. J. Appl. Phys. 69, 906–912 (1991). 10.1063/1.347332

970. D. Karaiskaj, M.L.W. Thewalt, T. Ruf, M. Cardona, H.-J. Pohl, G.G. Deviatych, P.G. Senniko, H. Riemann,
Photoluminescence of isotopically purified silicon: How sharp are bound exciton transitions? Phys. Rev. Lett. 86,
6010–6013 (2001). 10.1103/PhysRevLett.86.6010

971. D. Karaiskaj, M.L.W Thewalt, T. Ruf, M. Cardona, M. Konuma, “Intrinsic” acceptor ground state splitting in
silicon: an isotopic effect. Phys. Rev. Lett. 89, 016401:1–4 (2002). 10.1103/PhysRevLett.89.016401

972. V.A. Karasyuk,M.L.W. Thewalt, S. An, E.C. Lightowlers, A.S. Kaminskii, Fourier-transform photoluminescence
spectroscopy of excitons bound to group-III acceptors in silicon: Zeeman effect. Phys. Rev. B 54, 10543–10558
(1996). 10.1103/PhysRevB.54.10543

973. M.L.W. Thewalt, A. Yang, M. Steger, D. Karaiskaj, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D.
Bulanov, I.D. Kovalev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.J. Pohl, E.E. Haller, J.W. Ager III, K.M.
Itoh, Direct observation of the donor nuclear spin in a near-gap bound exciton transition: 31P in highly enriched
28Si. J. Appl. Phys. 101, 081724:1–5 (2007). 10.1063/1.2723181

974. J.D. Cuthbert, D.G. Thomas, Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe.
Phys. Rev. 154, 763–771 (1967). 10.1103/PhysRev.154.763

975. J.P. Laurenti, P. Roentgen, K. Wolter, K. Seibert, H. Kurz, J. Camassel, Indium-doped GaAs: A very dilute alloy
system. Phys. Rev. B 37, 4155–4163 (1988). 10.1103/PhysRevB.37.4155

976. D. Bimberg, M. Sondergeld, E. Grobe, Thermal dissociation of excitons bound to neutral acceptors in high-purity
GaAs. Phys. Rev. B 4, 3451–3455 (1971). 10.1103/PhysRevB.4.3451

977. M. Grundmann, C.P. Dietrich, Lineshape theory of photoluminescence from semiconductor alloys. J. Appl. Phys.
106, 123521:1–10 (2009). 10.1063/1.3267875

https://doi.org/10.1016/0370-1573(89)90064-1
https://doi.org/10.1016/S0927-796X(97)80003-4
https://doi.org/10.1007/978-3-642-81368-9%5F3
https://doi.org/10.1007/978-1-4684-2043-2%5F75
https://doi.org/10.1088/0953-8984/1/31/011
https://doi.org/10.1103/PhysRevB.4.512
https://doi.org/10.1016/0038-1101(78)90114-4
https://doi.org/10.1103/PhysRevB.1.1863
https://doi.org/10.1016/S0038-1098(97)00231-7
https://doi.org/10.1063/1.1796521
https://doi.org/10.1103/PhysRev.128.2135
https://doi.org/10.1103/PhysRevB.6.545
https://doi.org/10.1103/PhysRevB.23.4888
https://doi.org/10.1103/PhysRevB.76.184120
https://doi.org/10.1103/PhysRevLett.4.361
https://doi.org/10.1002/pssb.200301962
https://doi.org/10.1063/1.2430483
https://doi.org/10.1063/1.331709
https://doi.org/10.1063/1.347332
https://doi.org/10.1103/PhysRevLett.86.6010
https://doi.org/10.1103/PhysRevLett.89.016401
https://doi.org/10.1103/PhysRevB.54.10543
https://doi.org/10.1063/1.2723181
https://doi.org/10.1103/PhysRev.154.763
https://doi.org/10.1103/PhysRevB.37.4155
https://doi.org/10.1103/PhysRevB.4.3451
https://doi.org/10.1063/1.3267875


826 References

978. D.G. Chtchekine, Z.C. Feng, S.J. Chua, G.D. Gilliland, Temperature-varied photoluminescence and mag-
netospectroscopy study of near-band-edge emissions in GaN. Phys. Rev. B 63, 125211:1–7 (2001).
10.1103/PhysRevB.63.125211

979. V.D. Kulakovskiı̌, G.E. Pikus, V.B. Timofeev, Multiexciton complexes in semiconductors. Usp. Fiz. Nauk 135,
237–284 (1981) [Sov. Phys. Usp. 24, 815–840 (1981)]. 10.1070/PU1981v024n10ABEH004805

980. A.S. Kaminskiı̌, Ya.E. Pokrovskiı̌, Recombination radiation of the condensed phase on nonequilibrium carriers
in silicon. Pis’ma Zh. Eksp. Teor. Fiz. 11, 381 (1970) [JETP Lett. 11, 255–257 (1970)]

981. M.L.W. Thewalt, Details of the structure of bound excitons and bound multiexciton complexes in Si. Can. J. Phys.
55, 1463–1480 (1977). 10.1139/p77-186 Erratum: Can. J. Phys. 56, 310 (1978). 10.1139/p78-038

982. M.L.W. Thewalt, J.A. Rostworowski, G. Kirczenow, Piezospectroscopic studies of phosphorus-, boron-, and
lithium-doped silicon. Can. J. Phys. 57, 1898–1923 (1979). 10.1139/p79-262

983. O. Goede, L. John, D. Hennig, Compositional disorder-induced broadening for free excitons in II-VI semicon-
ducting mixed crystals. Phys. Status Solidi B 89, K183–K186 (1978). 10.1002/pssb.2220890262

984. E.F. Schubert, E.O. Göbel, Y. Horikoshi, K. Ploog, H.J. Queisser, Alloy broadening in photoluminescence spectra
of AlxGa1−xAs. Phys. Rev. B 30, 813–820 (1984). 10.1103/PhysRevB.30.813

985. S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spe-
mann, G. Benndorf, B. Rheinländer, Th. Nobis, M. Lorenz, M. Grundmann, Luminescence and surface prop-
erties of MgxZn1−xO thin films grown by pulsed laser deposition. J. Appl. Phys. 101, 083521:1–6 (2007).
10.1063/1.2719010

986. R. Zimmermann, Theory of the exciton linewidth in II-VI semiconductor mixed crystals. J. Cryst. Growth 101,
346–349 (1990). 10.1016/0022-0248(90)90993-U

987. J.M. Langer, R. Buczko, A.M. Stoneham, Alloy broadening of the near-gap luminescence and the natural band
offset in semiconductor alloys. Semicond. Sci. Technol. 7, 547–551 (1992). 10.1088/0268-1242/7/4/018

988. A. Müller, M. Stölzel, G. Benndorf, M. Lorenz, M. Grundmann, Origin of the near-band-edge luminescence in
MgxZn1−xO alloys. J. Appl. Phys. 107, 013704:1–6 (2010). 10.1063/1.3270431

989. M.C. Wagener, G.R. James, A.W.R. Leitch, F. Omnès, On the nature of Si-doping in AlGaN alloys. Phys. Status
Solidi C 1, 2322–2327 (2004). 10.1002/pssc.200404838

990. B. Segall, G.D. Mahan, Phonon-assisted recombination of free excitons in compound semiconductors. Phys. Rev.
171, 935–948 (1968). 10.1103/PhysRev.171.935

991. J. Conradi, R.R. Haering, Oscillatory exciton emission in CdS. Phys. Rev. Lett. 20, 1344–1346 (1968).
10.1103/PhysRevLett.20.1344

992. Y.S. Park, J.R. Schneider, Oscillations in exciton emission in the excitation spectra of ZnSe and CdS. Phys. Rev.
Lett. 21, 798–800 (1968). 10.1103/PhysRevLett.21.798

993. D. Kovalev, B. Averboukh, D. Volm, B.K. Meyer, H. Amano, I. Akasaki, Free exciton emission in GaN. Phys.
Rev. B 54, 2518–2522 (1996). 10.1103/PhysRevB.54.2518

994. S. Permogorov, Optical emission due to exciton scattering by LO phonons in semiconductors, in Excitons, E.I.
Rashba, M.D. Sturge, eds. (North-Holland, 1982)

995. M. Wojdak, A. Wysmołek, K. Pakuła, J.M. Baranowski, Emission due to exciton scat-
tering by LO-phonons in gallium nitride. Phys. Status Solidi B 216, 95–99 (1999).
10.1002/(SICI)1521-3951(199911)216:1%3C95::AID-PSSB95%3E3.0.CO;2-R

996. R. Dingle, Luminescent transitions associated with divalent copper impurities and the green emission from
semiconducting zinc oxide. Phys. Rev. Lett. 23, 579–581 (1969). 10.1103/PhysRevLett.23.579

997. Th Agne, Identifikation und Untersuchung von Defekten in ZnO Einkristallen. Ph.D. Thesis, Universität des
Saarlandes, Saarbrücken, (2004)

998. K. Huang, A. Rhys, Theory of light absorption and non-radiative transitions in F-centres. Proc. Roy. Soc. Lond.
A 204, 406–423 (1950). 10.1098/rspa.1950.0184

999. J.J. Hopfield, A theory of edge-emission phenomena in CdS, ZnS and ZnO. J. Phys. Chem. Solids 10, 110–119
(1959). 10.1016/0022-3697(59)90064-2

1000. M. Lax, The Franck-Condon principle and its application to crystals. J. Chem. Phys. 20, 1752–1760 (1952).
10.1063/1.1700283

1001. J.L. Merz, Isoelectronic oxygen trap in ZnTe. Phys. Rev. 176, 961–968 (1968). 10.1103/PhysRev.176.961
1002. C. Klingshirn, The luminescence of ZnO under high one- and two-quantum excitation. Phys. Status Solidi B 71,

547–556 (1975). 10.1002/pssb.2220710216
1003. P.J. Dean, C.H. Henry, C.J. Frosch, Infrared donor-acceptor pair spectra involving the deep oxygen donor in

gallium phosphide. Phys. Rev. 168, 812–816 (1968). 10.1103/PhysRev.168.812
1004. A. Juhl, Calorimetrische Absorptionsspektroskopie (CAS)—Eine neue Methode zur Charakterisierung der optis-

chen Eigenschaften von Halbleitersystemen, Ph.D. Thesis, Technische Universität Berlin (1987)
1005. W.H. Koschel, U. Kaufmann, S.G. Bishop, Optical an ESR analysis of the fe acceptor in InP. Solid State Commun.

21, 1069–1072 (1977). 10.1016/0038-1098(77)90308-8
1006. F. Jelezko J.Wrachtrup, Single defect centres in diamond: A review. Phys. Status Solidi A 203, 3207–3225 (2006).

10.1002/pssa.200671403

https://doi.org/10.1103/PhysRevB.63.125211
https://doi.org/10.1070/PU1981v024n10ABEH004805
https://doi.org/10.1139/p77-186
https://doi.org/10.1139/p78-038
https://doi.org/10.1139/p79-262
https://doi.org/10.1002/pssb.2220890262
https://doi.org/10.1103/PhysRevB.30.813
https://doi.org/10.1063/1.2719010
https://doi.org/10.1016/0022-0248(90)90993-U
https://doi.org/10.1088/0268-1242/7/4/018
https://doi.org/10.1063/1.3270431
https://doi.org/10.1002/pssc.200404838
https://doi.org/10.1103/PhysRev.171.935
https://doi.org/10.1103/PhysRevLett.20.1344
https://doi.org/10.1103/PhysRevLett.21.798
https://doi.org/10.1103/PhysRevB.54.2518
https://doi.org/10.1002/(SICI)1521-3951(199911)216:1%3C95::AID-PSSB95%3E3.0.CO;2-R
https://doi.org/10.1103/PhysRevLett.23.579
https://doi.org/10.1098/rspa.1950.0184
https://doi.org/10.1016/0022-3697(59)90064-2
https://doi.org/10.1063/1.1700283
https://doi.org/10.1103/PhysRev.176.961
https://doi.org/10.1002/pssb.2220710216
https://doi.org/10.1103/PhysRev.168.812
https://doi.org/10.1016/0038-1098(77)90308-8
https://doi.org/10.1002/pssa.200671403


References 827

1007. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: Nanoscale sensors for
physics and biology. Ann. Rev. Phys. Chem. 65, 83–105 (2014). 10.1146/annurev-physchem-040513-103659

1008. G. Balasubramanian, I.Y. Chan, R. Kolesov,M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A.Wojcik, P.R. Hemmer, A.
Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nanoscale imaging magnetometry
with diamond spins under ambient conditions. Nature 455, 648–651 (2008). 10.1038/nature07278

1009. E. Abe, K. Sasaki, Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—Microwave engi-
neering, materials science, and magnetometry. J. Appl. Phys. 123, 161101:1–14 (2018). 10.1063/1.5011231

1010. W. Lochmann,A.Haug, Phonon-assisted auger recombination in Siwith direct calculation of the overlap integrals.
Solid State Commun. 35, 553–556 (1980). 10.1016/0038-1098(80)90896-0

1011. M. Takeshima, Theory of phonon-assisted Auger recombination in semiconductors. Phys. Rev. B 23, 6625–6637
(1981). 10.1103/PhysRevB.23.6625

1012. M. Takeshima, Phonon-assisted Auger recombination in a quasi-two-dimensional structure semiconductor. Phys.
Rev. B 30, 3302–3308 (1984). 10.1103/PhysRevB.30.3302

1013. P.C. Findlay, C.R. Pidgeon, H. Pellemans, R. Kotitschke, B.N. Murdin, T. Ashley, A.D. Johnson, A.M. White,
C.T. Elliott, Auger recombination dynamics of InxGa1−xSb. Semicond. Sci. Technol. 14, 1026–1030 (1999).
10.1088/0268-1242/14/12/302

1014. D. Vignaud, J.F. Lampin, E. Lefebvre, M. Zaknoune, F. Mollot, Electron lifetime of heavily Be-doped
In0.53Ga0.47As as a function of growth temperature and doping density. Appl. Phys. Lett. 80, 4151–4153 (2002).
10.1063/1.1483126

1015. D.B. Laks, G.F. Neumark, S.T. Pantelides, Accurate interband-Auger-recombination rates in silicon. Phys. Rev.
B 42, 5176–5185 (1990). 10.1103/PhysRevB.42.5176

1016. P. Blood, J.W. Orton, The electrical characterization of semiconductors. Rep. Progress Phys. 41, 157–257 (1978).
10.1088/0034-4885/41/2/001

1017. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States
(Academic Press, San Diego, 1992)

1018. D. Macdonald, A. Cuevas, Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in
crystalline silicon. Phys. Rev. B 67, 075203:1–7 (2003). 10.1103/PhysRevB.67.075203

1019. D.H. Auston, Picosecond photoconductivity: High-speed measurements of devices and materials. Semicond.
Semimet. 28, 85–134 (1990). 10.1016/S0080-8784(08)62785-4

1020. A.A. Istratov, E.R. Weber, Electrical properties and recombination activity of copper, nickel and cobalt in silicon.
Appl. Phys. A 66, 123–136 (1998). 10.1007/s003390050649

1021. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon. Appl. Phys. A 69, 13–44 (1999).
10.1007/s003390050968

1022. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron contamination in silicon technology. Appl. Phys. A 70, 489–534
(2000). 10.1007/s003390051074

1023. J.S. Blakemore, Lifetime in p-type silicon. Phys. Rev. 110, 1301–1308 (1958). 10.1103/PhysRev.110.1301
1024. M.S. Tyagi, R. van Overstraeten, Minority carrier recombination in heavily doped silicon. Solid State Electron.

26, 577–597 (1983). 10.1016/0038-1101(83)90174-0
1025. G. Bemski, Lifetime of electrons in p-type silicon. Phys. Rev. 100, 523–524 (1955). 10.1103/PhysRev.100.523
1026. Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E.F. Schubert, M.H. Crawford, D.D. Koleske, M.-H. Kim, Y. Park,

Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett.
97, 133507:1–3 (2010). 10.1063/1.3493654

1027. S. Karpov, ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a
review. Opt. Quant. Electron. 47, 1293–1303 (2015). 10.1007/s11082-014-0042-9

1028. J. Frenkel, On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648
(1938). 10.1103/PhysRev.54.647

1029. R.D. Harris, J.L. Newton, G.D. Watkins, Negative-U properties for interstitial boron in silicon. Phys. Rev. Lett.
48, 1271–1274 (1982). 10.1103/PhysRevLett.48.1271

1030. S. Bothra, S. Tyagi, S.K. Chandhi, J.M. Borrego, Surface recombination velocity and lifetime in InP. Solid State
Electron. 34, 47–50 (1991). 10.1016/0038-1101(91)90199-9

1031. J. Schmidt, A.G. Aberle, Accurate method for the determination of bulk minority-carrier lifetimes of mono- and
multicrystalline silicon wafers. J. Appl. Phys. 81, 6186–6199 (1997). 10.1063/1.364403

1032. M.J. Kerr, J. Schmidt, A. Cuevas, J.H. Bultman, Surface recombination velocity of phosphorus-diffused silicon
solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon
oxide. J. Appl. Phys. 89, 3821–3826 (2001). 10.1063/1.1350633

1033. O. Hahneiser, M. Kunst, Theoretical and experimental study of charge carrier kinetics in crystalline silicon. J.
Appl. Phys. 85, 7741–7754 (1999). 10.1063/1.370579

1034. D.E. Aspnes, Recombination at semiconductor surfaces and interfaces. Surf. Sci. 132, 406–421 (1983).
10.1016/0039-6028(83)90550-2

1035. L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, X. Yang, Brief review of surface passivation on III-V semiconductor.
Crystals 8, 226:1–14 (2018). 10.3390/cryst8050226

https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1038/nature07278
https://doi.org/10.1063/1.5011231
https://doi.org/10.1016/0038-1098(80)90896-0
https://doi.org/10.1103/PhysRevB.23.6625
https://doi.org/10.1103/PhysRevB.30.3302
https://doi.org/10.1088/0268-1242/14/12/302
https://doi.org/10.1063/1.1483126
https://doi.org/10.1103/PhysRevB.42.5176
https://doi.org/10.1088/0034-4885/41/2/001
https://doi.org/10.1103/PhysRevB.67.075203
https://doi.org/10.1016/S0080-8784(08)62785-4
https://doi.org/10.1007/s003390050649
https://doi.org/10.1007/s003390050968
https://doi.org/10.1007/s003390051074
https://doi.org/10.1103/PhysRev.110.1301
https://doi.org/10.1016/0038-1101(83)90174-0
https://doi.org/10.1103/PhysRev.100.523
https://doi.org/10.1063/1.3493654
https://doi.org/10.1007/s11082-014-0042-9
https://doi.org/10.1103/PhysRev.54.647
https://doi.org/10.1103/PhysRevLett.48.1271
https://doi.org/10.1016/0038-1101(91)90199-9
https://doi.org/10.1063/1.364403
https://doi.org/10.1063/1.1350633
https://doi.org/10.1063/1.370579
https://doi.org/10.1016/0039-6028(83)90550-2
https://doi.org/10.3390/cryst8050226


828 References

1036. C. Donolato, Theory of beam induced current characterization of grain boundaries in polycrystalline solar cells.
J. Appl. Phys. 54, 1314–1322 (1983). 10.1063/1.332205

1037. T. Kieliba, S. Riepe, W. Warta, Effect of dislocations on minority carrier diffusion length in practical silicon solar
cells. J. Appl. Phys. 100, 063706:1–12 (2006). 10.1063/1.2338126

1038. J. Palm, Local investigation of recombination at grain boundaries in silicon by grain boundary-electron beam
induced current. J. Appl. Phys. 74, 1169–1178 (1993). 10.1063/1.354917

1039. T.F. Ciszek, T.H. Wang, R.W. Burrows, X. Wu, J. Alleman, Y.S. Tsuo, T. Bekkedahl, Grain boundary and
dislocation effects on the PVperformance of high-purity silicon, in 23th IEEEPhotovoltaic Specialists Conference
Rec. (IEEE, New York, 1993), pp. 101–105. 10.1109/PVSC.1993.347071

1040. R. Corkish, T. Puzzer, A.B. Sproul, K.L. Luke, Quantitative interpretation of electron-beam-induced current grain
boundary contrast profiles with application to silicon. J. Appl. Phys. 84, 5473–5481 (1998). 10.1063/1.368310

1041. J.D. Major, Grain boundaries in CdTe thin film solar cells: A review. Semicond. Sci. Technol. 31, 093001:1–19
(2016). 10.1088/0268-1242/31/9/093001

1042. A.D. Kurtz, S.A. Kulin, B.L. Averbach, Effect of dislocations on the minority carrier lifetime in semiconductors.
Phys. Rev. 101, 1285–1291 (1956). 10.1103/PhysRev.101.1285

1043. E.A. Fitzgerald, D.G. Ast, P.D. Kirchner, G.D. Pettit, J.M.Woodall, Structure and recombination in InGaAs/GaAs
heterostructures. J. Appl. Phys. 63, 693–703 (1988). 10.1063/1.340059

1044. M. Grundmann, J. Christen, D. Bimberg, A. Fischer-Colbrie, R. Hull, Misfit dislocations in pseudomorphic
In0.23Ga0.77As/GaAs quantum wells: Influence on lifetime and diffusion of excess excitons. J. Appl. Phys. 66,
2214–2216 (1989). 10.1063/1.344288

1045. H. Dember, Über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Phys. Zeitschrift 32, 554–556 (1931)
1046. H. Dember, Über eine Kristallphotozelle. Phys. Zeitschrift 32, 856–858 (1931)
1047. H. Dember, Über die Vorwärtsbewegung von Elektronen durch Licht. Phys. Zeitschrift 33, 207–208 (1932)
1048. M. Krc̆mar, W.M. Saslow, Exact surface solutions for semiconductors: The Dember effect and partial currents.

Phys. Rev. B 65, 233313:1–4 (2002). 10.1103/PhysRevB.65.233313
1049. S.R. Goldman, K. Kalikstein, B. Kramer, Dember-effect theory. J. Appl. Phys. 49, 2849–2854 (1978).

10.1063/1.325166
1050. S.K. Chattopadhyaya, V.K. Mathur, Normal and anomalous Dember effect. J. Appl. Phys. 40, 1930–1933 (1969).

10.1063/1.1657868
1051. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic

water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007).
10.1016/j.rser.2005.01.009

1052. S. Cho, J.-W. Jang, K.-H. Lee, J.S. Lee, Research update: Strategies for efficient photoelectrochemical water
splitting using metal oxide photoanodes. APL Mater. 2, 010703:1–14 (2014). 10.1063/1.4861798

1053. J. Watson, The tin oxide gas sensor and its applications. Sens. Act. 5, 29–42 (1984).
10.1016/0250-6874(84)87004-3

1054. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide materials for development of integrated gas sensors—A
comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004). 10.1080/10408430490888977

1055. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology. Sensors 12, 9635–9665
(2012). 10.3390/s120709635

1056. H. Ibach, Physics of Surfaces and Interfaces (Springer, Berlin, 2006). 10.1007/3-540-34710-0
1057. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 2012). 10.1017/CBO9780511622564
1058. R.H. Kingston, Semiconductor Surface Physics (Literary Licensing, Whitefish, 2012)
1059. P.J. Morandi, Symmetry Groups: The Classification of Wallpaper Patterns, From Group Cohomology to Escher’s

Tessellations (New Mexico State University, 2007)
1060. A.A. Stekolnikov, F. Bechstedt, Shape of free and constrained group-IV crystallites: Influence of surface energies.

Phys. Rev. B 72, 125326:1–9 (2005). 10.1103/PhysRevB.72.125326
1061. J.M. Bermond, J.J. Métois, X. Egéa, F. Floret, The equilibrium shape of silicon. Surf. Sci. 330, 48–60 (1995).

10.1016/0039-6028(95)00230-8
1062. C.B. Duke, Semiconductor surface reconstruction: The structural chemistry of two-dimensional surface com-

pounds. Chem. Rev. 96, 1237–1259 (1996). 10.1021/cr950212s
1063. J. Fritsch, U. Schröder, Density functional calculation of semiconductor surface phonons. Phys. Reports 309,

209–331 (1999). 10.1016/S0370-1573(98)00034-9
1064. K. Hermann, Fritz-Haber-Institut (Berlin)
1065. W.G. Schmidt, F. Bechstedt, J. Bernholc, GaAs(001) surface reconstructions: Geometries, chemical bonding and

optical properties. Appl. Surf. Sci. 190, 264–268 (2002). 10.1016/S0169-4332(01)00862-5
1066. K. Takayanagi,Y. Tanishiro, S. Takahashi,M.Takahashi, Surface analysis of Si(111)-7×7. Surf. Sci. 164, 367–392

(1985). 10.1016/0039-6028(85)90753-8
1067. R. Wiesendanger, G. Tarrach, L. Scandella, H.-J. Güntherodt, Scanning tunneling microscopy on laser- and

thermal-annealed Si(111): Transitions from 7×7 reconstructed to disordered surface structures. Ultramicroscopy
32, 291–295 (1990). 10.1016/0304-3991(90)90006-8

https://doi.org/10.1063/1.332205
https://doi.org/10.1063/1.2338126
https://doi.org/10.1063/1.354917
https://doi.org/10.1109/PVSC.1993.347071
https://doi.org/10.1063/1.368310
https://doi.org/10.1088/0268-1242/31/9/093001
https://doi.org/10.1103/PhysRev.101.1285
https://doi.org/10.1063/1.340059
https://doi.org/10.1063/1.344288
https://doi.org/10.1103/PhysRevB.65.233313
https://doi.org/10.1063/1.325166
https://doi.org/10.1063/1.1657868
https://doi.org/10.1016/j.rser.2005.01.009
https://doi.org/10.1063/1.4861798
https://doi.org/10.1016/0250-6874(84)87004-3
https://doi.org/10.1080/10408430490888977
https://doi.org/10.3390/s120709635
https://doi.org/10.1007/3-540-34710-0
https://doi.org/10.1017/CBO9780511622564
https://doi.org/10.1103/PhysRevB.72.125326
https://doi.org/10.1016/0039-6028(95)00230-8
https://doi.org/10.1021/cr950212s
https://doi.org/10.1016/S0370-1573(98)00034-9
https://doi.org/10.1016/S0169-4332(01)00862-5
https://doi.org/10.1016/0039-6028(85)90753-8
https://doi.org/10.1016/0304-3991(90)90006-8


References 829

1068. F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Subatomic features on the silicon (111)-(7×7) surface
observed by atomic force microscopy. Science 289, 422–425 (2000). 10.1126/science.289.5478.422

1069. B.S. Swartzentruber, N. Kitamura, M.G. Lagally, M.B. Webb, Behavior of steps on Si(001) as a function of
vicinality. Phys. Rev. B 47, 13432–13441 (1993). 10.1103/PhysRevB.47.13432

1070. O. Dulub, L.A. Boatner, U. Diebold, STM study of the geometric and electronic structure of ZnO(0001)-Zn,
(0001̄)-O, (101̄0), and (112̄0) surfaces. Surf. Sci. 519, 201–217 (2002). 10.1016/S0039-6028(02)02211-2

1071. J.J. Métois, A. Saúl, P. Müller, Measuring the surface stress polar dependence. Nature Mater. 4, 238–242 (2005).
10.1038/nmat1328

1072. M. Syväjärvi, R. Yakimova, E. Janzén, Step-bunching in SiC epitaxy: Anisotropy and influence of growth tem-
perature. J. Cryst. Growth 236, 297–304 (2002). 10.1016/S0022-0248(01)02331-4

1073. A.A. Baski, S.C. Erwin, L.J. Whitman, The structure of silicon surfaces from (001) to (111). Surf. Sci. 392, 69–85
(1997). 10.1016/S0039-6028(97)00499-8

1074. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).
10.1103/PhysRev.106.874

1075. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon
polaritons. Rep. Prog. Phys. 70, 1–87 (2007). 10.1088/0034-4885/70/1/R01

1076. J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: Physics and applications. J. Phys. D: Appl. Phys. 45,
113001:1–19 (2012). 10.1088/0022-3727/45/11/113001

1077. https://www.wikipedia.de
1078. S. Kalusniak, S. Sadofev, F. Henneberger, ZnO as a tunable metal: New types of surface plasmon polaritons.

Phys. Rev. Lett. 112, 137401 (2014). 10.1103/PhysRevLett.112.137401
1079. J.E. Northrup, M.S. Hybertsen, S.G. Louie, Many-body calculation of the surface-state energies for Si(111)2×1.

Phys. Rev. Lett. 66, 500–503 (1991). 10.1103/PhysRevLett.66.500
1080. I. Ivanov, A. Mazur, J. Pollmann, The ideal (111), (110), and (100) surfaces of Si, Ge and GaAs: A comparison

of their electronic structure. Surf. Sci. 92, 365–384 (1980). 10.1016/0039-6028(80)90209-5
1081. R.I.G. Uhrberg, G.V. Hansson, Electronic structure of silicon surfaces: Clean and with ordered overlayers. Crit.

Rev. Solid State Mater. Sci. 17, 133–186 (1991). 10.1080/10408439108242191
1082. P. Mårtensson, W.-X. Ni, G.V. Hansson, J.M. Nicholls, B. Reihl, Surface electronic structure of Si(111)7×7-Ge

and Si(111)5×5-Ge studied with photoemission and inverse photoemission. Phys. Rev. B 36, 5974–5981 (1987).
10.1103/PhysRevB.36.5974

1083. S.R. Varier, P.S. Mandal, N. Sahadev, D.N. Biswas, K. Maiti, Study of the surface electronic structure of Si(111)
surface using spin and angle resolved photoemission spectroscopy. AIP Conf. Proc. 1512, 818–819 (2013).
10.1063/1.4791289

1084. Z. Zhu, Y. Cheng, U. Schwingenschlögl, Band inversion mechanism in topological insulators: A guideline for
materials design. Phys. Rev. B 85, 235401:1–5 (2012). 10.1103/PhysRevB.85.235401

1085. L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803:1–4 (2007).
10.1103/PhysRevLett.98.106803

1086. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Zh Fang, S-Ch. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and
Sb2Te3 with a single Dirac cone on the surface. Nature Physics 5, 438–442 (2009). 10.1038/nphys1270

1087. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan,
Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5,
398–402 (2009). 10.1038/nphys1274

1088. Y. Xia, Photoemission studies of a new topological insulator class: Experimental discovery of the Bi2X3 topo-
logical insulator class, Ph.D. Thesis, Princeton University (2010)

1089. J.E. Ayers, T. Kujofsa, P. Rago, J. Raphael, Heteroepitaxy of Semiconductors: Theory, Growth, and Characteri-
zation, 2nd edn. (CRC Press, Boca Raton, 2016)

1090. U. Pohl, Epitaxy of Semiconductors (Springer, Berlin, 2013). 10.1007/978-3-642-32970-8
1091. G.Dhanaraj,K.Byrappa,V. Prasad,M.Dudley, eds., SpringerHandbook ofCrystalGrowth (Springer,Heidelberg,

2010). 10.1007/978-3-540-74761-1
1092. J.Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, San Diego, 1993).

10.1016/C2009-0-22426-3
1093. M.L. Hitchman, K.F. Jensen, eds., Chemical Vapor Deposition (Academic Press, San Diego, 1993)
1094. P. George, Chemical Vapor Deposition: Simulation and Optimization (VDM Verlag Dr. Mueller, Saarbrücken,

2008)
1095. G. Stringfellow,Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic Press, San Diego, 1999).

10.1016/B978-0-12-673842-1.X5000-5
1096. C.S. Hwang, C.Y. Yoo, eds., Atomic Layer Deposition for Semiconductors (Springer, Berlin, 2014).

10.1007/978-1-4614-8054-9
1097. J. Valdez, ed., Atomic Layer Deposition (ALD) (Nova Science Publ., Hauppauge, 2015)
1098. R. Eason, ed., Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley,

Hoboken, 2006). 10.1002/0470052120

https://doi.org/10.1126/science.289.5478.422
https://doi.org/10.1103/PhysRevB.47.13432
https://doi.org/10.1016/S0039-6028(02)02211-2
https://doi.org/10.1038/nmat1328
https://doi.org/10.1016/S0022-0248(01)02331-4
https://doi.org/10.1016/S0039-6028(97)00499-8
https://doi.org/10.1103/PhysRev.106.874
https://doi.org/10.1088/0034-4885/70/1/R01
https://doi.org/10.1088/0022-3727/45/11/113001
https://www.wikipedia.de
https://doi.org/10.1103/PhysRevLett.112.137401
https://doi.org/10.1103/PhysRevLett.66.500
https://doi.org/10.1016/0039-6028(80)90209-5
https://doi.org/10.1080/10408439108242191
https://doi.org/10.1103/PhysRevB.36.5974
https://doi.org/10.1063/1.4791289
https://doi.org/10.1103/PhysRevB.85.235401
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1274
https://doi.org/10.1007/978-3-642-32970-8
https://doi.org/10.1007/978-3-540-74761-1
https://doi.org/10.1016/C2009-0-22426-3
https://doi.org/10.1016/B978-0-12-673842-1.X5000-5
https://doi.org/10.1007/978-1-4614-8054-9
https://doi.org/10.1002/0470052120


830 References

1099. P. Capper, M. Mauk, eds., Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (Wiley,
Chichester, 2007). 10.1002/9780470319505

1100. B.A. Joyce, J.H. Neave, P.J. Dobson, P.K. Larsen, Analysis of reflection high-energy electron-diffraction data
from reconstructed semiconductor surfaces. Phys. Rev. B 29, 814–819 (1984). 10.1103/PhysRevB.29.814

1101. J.-T. Zettler,W. Richter, K. Ploska, M. Zorn, J. Rumberg, C.Meyne, M. Pristovsek, Real time diagnostics of semi-
conductor surface modifications by reflectance anisotropy spectroscopy, in Semiconductor Characterization—
Present Status and Future Needs, W.M. Bullis, D.G. Seiler, A.C. Diebold, eds. (AIP Press, Woodbury, 1996), pp.
537–543

1102. J.-T. Zettler, Characterization of epitaxial semiconductor growth by reflectance anisotropy spectroscopy and
ellipsometry. Prog. Cryst. Growth Charact. Mater. 35, 27–98 (1997). 10.1016/S0960-8974(97)00024-7

1103. W. Zulehner, Status and future of silicon crystal growth. Mater. Sci. Engin. B 4, 1–10 (1989).
10.1016/0921-5107(89)90207-9

1104. W. Zulehner, Historical overview of silicon crystal pulling development. Mater. Sci. Engin. B 73, 7–15 (2000).
10.1016/S0921-5107(99)00427-4

1105. B. Depuydt, A. Theuwis, I. Romandie, Germanium: From the first application of Czochralski crys-
tal growth to large diameter dislocation-free wafers. Mat. Sci. Semicond. Process. 9, 437–443 (2006).
10.1016/j.mssp.2006.08.002

1106. Virgina Semiconductor, www.virginiasemi.com
1107. J. Czochralski, Ein neues Verfahren zurMessung der Kristallisationsgeschwindigkeit derMetalle. Z. Phys. Chem.

92, 219–221 (1918). 10.1515/zpch-1918-9212
1108. R. Uecker, The historical development of the Czochralski method. J. Cryst. Growth 401, 7–24 (2014).

10.1016/j.jcrysgro.2013.11.095
1109. G.K. Teal, J.B. Little, Growth of germanium single crystals. Phys. Rev. 78, 647 (1950). 10.1103/PhysRev.78.637
1110. G.K. Teal, M. Sparks, E. Buehler, Growth of germanium single crystals containing p-n junctions. Phys. Rev. 81,

637 (1951). 10.1103/PhysRev.81.637
1111. W.R. Runyan, Growth of large diameter silicon and germanium crystals by the Teal-Little method. Rev. Sci. Instr.

30, 535–540 (1959). 10.1063/1.1716676
1112. W.G. Pfann, Zone Melting (Wiley, New York, 1966)
1113. H.J. Scheel, T. Fukuda, eds., Crystal Growth Technology (Wiley, New York, 2004)
1114. Siltronic AG, München
1115. K.A. Reinhardt, W. Kern, Handbook of Silicon Wafer Cleaning Technology, 3rd edn. (William Andrew, New

York, 2018)
1116. J. Ruzyllo, Semiconductor cleaning technology: Forty years in the making. Interface 19, 44–46 (2010).

10.1149/2.F05101if
1117. W. Kern, Purifying Si and SiO2 surfaces with hydrogen peroxide, in Semiconductor International (1984), pp.

94–99
1118. A. Ishizaka, Y. Shiraki, Low temperature surface cleaning of silicon and its application to silicon MBE. J.

Electrochem. Soc. 133, 666–671 (1986). 10.1149/1.2108651
1119. J.C. Kim, J.-Y. Ji, J.S. Kline, J.R. Tucker, T.-C. Shen, Preparation of atomically clean and flat Si(100) sur-

faces by low-energy ion sputtering and low-temperature annealing. Appl. Surf. Sci. 220, 293–297 (2003).
10.1016/S0169-4332(03)00826-2

1120. H. Hartnagel, B.L. Weiss, A contribution to etch polishing of GaAs. J. Mat. Sci. 8, 1061–1063 (1973).
10.1007/BF00756642

1121. Z.F. Tomashik, N.V. Kusyak, V.N. Tomashik, Chemical etching of InAs, InSb, and GaAs in H2O2-HBr solutions.
Inorg. Mat. 38, 434–437 (2002). 10.1023/A:1015402501421

1122. H. von Wenckstern, H. Schmidt, C. Hanisch, M. Brandt, C. Czekalla, G. Benndorf, G. Biehne, A. Rahm, H.
Hochmuth, M. Lorenz, M. Grundmann, Homoepitaxy of ZnO by pulsed-laser deposition. Phys. Status Solidi
RRL 1, 129–131 (2007). 10.1002/pssr.200701052

1123. C. Weisbuch, Fundamental properties of III-V semiconductor two-dimensional quantized structures:
the basis for optical and electronic device applications. Semicond. Semimet. 24, 1–133 (1987).
10.1016/S0080-8784(08)62448-5

1124. C.H.J. van den Brekel, Growth rate anisotropy and morphology of autoepitaxial silicon films from SiCl4. J. Cryst.
Growth 23, 259–266 (1974). 10.1016/0022-0248(74)90067-0

1125. J.-I. Nishizawa, T. Terasaki, M. Shimbo, Layer growth in silicon epitaxy. J. Cryst. Growth 13(14), 297–301
(1972). 10.1016/0022-0248(72)90173-X

1126. J.G.E. Gardiniers, C.H. Klein Douwel, L.J. Giling, Reduced pressure silicon CVD on hemispherical substrates.
J. Cryst. Growth 108, 319–334 (1991). 10.1016/0022-0248(91)90380-N

1127. S. Nishino, Y. Nishio, Y. Masuda, Y. Chen, C. Jacob, Morphological stability of 6H-SiC epitaxial layer on
hemispherical substrates prepared by chemical vapor deposition. Mat. Sci. Forum 338–342, 197–200 (2000).
10.4028/www.scientific.net/MSF.338-342.197

https://doi.org/10.1002/9780470319505
https://doi.org/10.1103/PhysRevB.29.814
https://doi.org/10.1016/S0960-8974(97)00024-7
https://doi.org/10.1016/0921-5107(89)90207-9
https://doi.org/10.1016/S0921-5107(99)00427-4
https://doi.org/10.1016/j.mssp.2006.08.002
www.virginiasemi.com
https://doi.org/10.1515/zpch-1918-9212
https://doi.org/10.1016/j.jcrysgro.2013.11.095
https://doi.org/10.1103/PhysRev.78.637
https://doi.org/10.1103/PhysRev.81.637
https://doi.org/10.1063/1.1716676
https://doi.org/10.1149/2.F05101if
https://doi.org/10.1149/1.2108651
https://doi.org/10.1016/S0169-4332(03)00826-2
https://doi.org/10.1007/BF00756642
https://doi.org/10.1023/A:1015402501421
https://doi.org/10.1002/pssr.200701052
https://doi.org/10.1016/S0080-8784(08)62448-5
https://doi.org/10.1016/0022-0248(74)90067-0
https://doi.org/10.1016/0022-0248(72)90173-X
https://doi.org/10.1016/0022-0248(91)90380-N
https://doi.org/10.4028/www.scientific.net/MSF.338-342.197


References 831

1128. L. Hollan, C. Schiller, Étude de l’anisotropie de la croissance épitaxiale de GaAs en phase vapeur. J. Cryst. Growth
13(14), 319–324 (1972). 10.1016/0022-0248(72)90177-7

1129. K.Morizane, Antiphase domain structures in GaP and GaAs epitaxial layers grown on Si and Ge. J. Cryst. Growth
38, 249–254 (1977). 10.1016/0022-0248(77)90305-0

1130. M. Volmer, A. Weber, Keimbildung in übersättigten Gebilden. Z. Physikal. Chem. 119U, 277–301 (1926).
10.1515/zpch-1926-11927

1131. I.N. Stranski, Zur Theorie der isomorphen Fortwachsung (orientierter Ausscheidung) von Ionenkristallen
aufeinander. Z. Physikal. Chemie 142A, 453–466 (1929). 10.1515/zpch-1929-14232

1132. I.N. Stranski, L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Monats-
hefte f. Chemie u. verwandte Teile anderer Wissenschaften 71, 351–364 (1937). 10.1515/zpch-1929-14232

1133. E. Bauer, Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I. Z. Kristallogr. 110, 372–394
(1958). 10.1524/zkri.1958.110.16.372

1134. T. Shitara, D.D. Vvedensky, M.R. Wilby, J. Zhang, J.H. Neave, B.A. Joyce, Step-density variations and reflection
high-energy electron-diffraction intensity oscillations during epitaxial growth on vicinal GaAs(001). Phys. Rev.
B 46, 6815–6824 (1992). 10.1103/PhysRevB.46.6815

1135. A. Pimpinelli, J. Villain, Physics of Crystal Growth (Cambridge Univ. Press, Cambridge, 1999).
10.1017/CBO9780511622526

1136. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, Growth of the 2-in-size bulk ZnO single
crystals by the hydrothermal method. J. Cryst. Growth 260, 166–170 (2004). 10.1016/j.jcrysgro.2003.08.019

1137. F. Scholz, U. Kaiser, Universität Ulm
1138. S. Heitsch, C. Bundesmann, G. Wagner, G. Zimmermann, A. Rahm, H. Hochmuth, G. Benndorf, H. Schmidt, M.

Schubert, M. Lorenz, M. Grundmann, Low temperature photoluminescence and infrared dielectric functions of
pulsed laser deposited ZnO thin films on silicon. Thin Solid Films 496, 234–239 (2006). 10.1016/j.tsf.2005.08.305

1139. M. Grundmann, T. Böntgen, M. Lorenz, Occurrence of rotation domains in heteroepitaxy. Phys. Rev. Lett. 105,
146102:1–4 (2010). 10.1103/PhysRevLett.105.146102

1140. M. Grundmann, Formation of epitaxial domains: Unified theory and survey of experimental results. Phys. Status
Solidi B 248, 805–824 (2011). 10.1002/pssb.201046530

1141. Y. Zhang, C. McAleese, H. Xiu, C.J. Humphreys, R.R. Lieten, B. Degroote, G. Borghs, Misoriented
domains in (0001)-GaN/(111)-Ge grown by molecular beam epitaxy. Appl. Phys. Lett. 91, 092125:1–2 (2007)
10.1063/1.2779099

1142. H. Kawanami, A. Hatayama, Y. Hayashi, Antiphase boundary of GaAs films grown on Si(001) substrates by
molecular beam epitaxy. J. Electr. Mater. 17, 341–349 (1988). 10.1007/BF02652116

1143. J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, A. Ishii, Experimental and theoretical investigation on the structural
properties of GaN grown on sapphire. Appl. Phys. Lett. 83, 3075–3077 (2003). 10.1063/1.1618379

1144. H. Kato, M. Sano, K. Miyamoto, T. Yao, Polarity control of ZnO on c-plane sapphire by plasma-assisted MBE.
J. Cryst. Growth 275, e2459–e2465 (2005). 10.1016/j.jcrysgro.2004.11.377

1145. P.J. Schuck,M.D.Mason, R.D. Grober, O. Ambacher, A.P. Lima, C.Miskys, R. Dimitrov,M. Stutzmann, Spatially
resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures. Appl.
Phys. Lett. 79, 952–954 (2001). 10.1063/1.1390486

1146. B.J. Rodriguez, A. Gruveman, A.I. Kingon, R.J. Nemanich, O. Ambacher, Piezoresponse force microscopy for
polarity imaging of GaN. Appl. Phys. Lett. 80, 4166–4168 (2002). 10.1063/1.1483117

1147. T.S. Zheleva, S.A. Smith, D.B. Thomson, K.J. Linthicum, P. Rajagopal, R.F. Davis, Pendeo-epitaxy:
A new approach for lateral growth of gallium nitride films. J. Electr. Mater. 28, L5–L8 (1999).
10.1007/s11664-999-0239-z

1148. A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen, A.
Krost, Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates. Appl. Phys. Lett. 78,
727–729 (2001). 10.1063/1.1347013

1149. H. Lahrèche, P. Vennéguès, B. Beaumont, P. Gibart, Growth of high-quality GaN by low-pressure metal-organic
vapour phase epitaxy (LP-MOVPE) from 3D islands and lateral overgrowth. J. Cryst. Growth 205, 245–252
(1999). 10.1016/S0022-0248(99)00299-7

1150. T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, A. Krost, U. Haboeck, A. Hoffmann, Opti-
cal and structural microanalysis of GaN grown on SiN submonolayers. J. Appl. Phys. 99, 123518:1–8 (2006).
10.1063/1.2150589

1151. H.G. Chen, T.S. Ko, S.C. Ling, T.C. Lu, H.C. Kuo, S.C. Wang, Y.H. Wu, L. Chang, Dislocation reduc-
tion in GaN grown on stripe patterned r -plane sapphire substrates. Appl. Phys. Lett. 91, 021914:1–3 (2007).
10.1063/1.2754643

1152. N. Okada, K. Tadatomo, Characterization and growthmechanism of nonpolar and semipolar GaN layers grown on
patterned sapphire substrates. Semicond. Sci. Technol. 27, 024003:1–9 (2012). 10.1088/0268-1242/27/2/024003

1153. F. Tendille, P. De Mierry, P. Vennéguès, S. Chenot, M. Teisseire, Defect reduction method in (11–22) semipolar
GaN grown on patterned sapphire substrate by MOCVD: Toward heteroepitaxial semipolar GaN free of basal
stacking faults. J. Cryst. Growth 404, 177–183 (2014). 10.1016/j.jcrysgro.2014.07.020

https://doi.org/10.1016/0022-0248(72)90177-7
https://doi.org/10.1016/0022-0248(77)90305-0
https://doi.org/10.1515/zpch-1926-11927
https://doi.org/10.1515/zpch-1929-14232
https://doi.org/10.1515/zpch-1929-14232
https://doi.org/10.1524/zkri.1958.110.16.372
https://doi.org/10.1103/PhysRevB.46.6815
https://doi.org/10.1017/CBO9780511622526
https://doi.org/10.1016/j.jcrysgro.2003.08.019
https://doi.org/10.1016/j.tsf.2005.08.305
https://doi.org/10.1103/PhysRevLett.105.146102
https://doi.org/10.1002/pssb.201046530
https://doi.org/10.1063/1.2779099
https://doi.org/10.1007/BF02652116
https://doi.org/10.1063/1.1618379
https://doi.org/10.1016/j.jcrysgro.2004.11.377
https://doi.org/10.1063/1.1390486
https://doi.org/10.1063/1.1483117
https://doi.org/10.1007/s11664-999-0239-z
https://doi.org/10.1063/1.1347013
https://doi.org/10.1016/S0022-0248(99)00299-7
https://doi.org/10.1063/1.2150589
https://doi.org/10.1063/1.2754643
https://doi.org/10.1088/0268-1242/27/2/024003
https://doi.org/10.1016/j.jcrysgro.2014.07.020


832 References

1154. Y.H. Lo, New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59,
2311–2313 (2005). 10.1063/1.106053

1155. C. Lynch, E. Chason, R. Beresford, L.B. Freund, K. Tetz, K.W. Schwarz, Limits of strain relaxation in
InGaAs/GaAs probed in real time by in situ wafer curvature measurement. J. Appl. Phys. 98, 073532:1–7 (2005).
10.1063/1.2060947

1156. A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, A. Krost, Metalorganic chemical vapor phase epi-
taxy of crack-free GaN on Si(111) exceeding 1 μm thickness. Jpn. J. Appl. Phys. 39, L1183–L1185 (2000).
10.1143/JJAP.39.L1183

1157. J. Bläsing, A. Reiher, A. Dadgar, A. Dietz, A. Krost, The origin of stress reduction by low-temperature AlN
interlayers. Appl. Phys. Lett. 81, 2722–2724 (2002). 10.1063/1.1512331

1158. K. Sakamoto, T. Sakamoto, S. Nagao, G. Hashiguchi, K. Kuniyoshi, Y. Bando, Reflection high-energy electron
diffraction intensity oscillations during GexSi1−x MBE growth on Si(001) substrates. Jpn. J. Appl. Phys. 26,
666–670 (1987). 10.1143/JJAP.26.666

1159. P.M.J. Marée, K. Nakagawa, F.M. Mulders, J.F. van der Veen, Thin epitaxial Ge-Si(111) films: Study and control
of morphology. Surf. Sci. 191, 305–328 (1987). 10.1016/S0039-6028(87)81180-9

1160. M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp, Surfactants in epitaxial growth. Phys. Rev. Lett. 63, 632–635
(1989). 10.1103/PhysRevLett.63.632

1161. D. Kandel, E. Kaxiras, The surfactant effect in semiconductor thin-film growth. Solid State Phys. 54, 219–262
(2000). 10.1016/S0081-1947(08)60249-0

1162. M. Ilg, D. Eißler, C. Lange, K. Ploog, Surfactant-mediated molecular beam epitaxy of high-quality (111)B-GaAs.
Appl. Phys. A 56, 397–399 (1993). 10.1007/BF00324362

1163. X. Yang,M.J. Jurkovic, J.B. Heroux,W.I.Wang, Low threshold InGaAsN/GaAs single quantumwell lasers grown
by molecular beam epitaxy using Sb surfactant. Electron. Lett. 35, 1082–1083 (1999). 10.1049/el:19990746

1164. T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, F. Koyama, Sb surfactant effect on
GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy.
J. Appl. Phys. 96, 44–48 (2004). 10.1063/1.1760841

1165. H.J. Osten, J. Klatt, G. Lippert, B. Dietrich, E. Bugiel, Surfactant-controlled solid phase epitaxy of germanium
and silicon. Phys. Rev. Lett. 69, 450–453 (1992). 10.1103/PhysRevLett.69.450

1166. H. Kroemer, Heterostructure devices: A device physicist looks at interfaces. Surf. Sci. 132, 543–576 (1983).
10.1007/978-94-009-3073-5_7

1167. G. van der Ch, J. Walle, Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and
solutions. Nature 423, 626–628 (2003). 10.1038/nature01665

1168. K. Xu, H. Sio, O.A. Kirillov, L. Dong, M. Xu, P.D. Ye, D. Gundlach, N.V. Nguyen, Band offset determination
of atomic-layer-deposited Al2O3 and HfO2 on InP by internal photoemission and spectroscopic ellipsometry. J.
Appl. Phys. 113, 024504:1–5 (2013). 10.1063/1.4774038

1169. K. Shi, D.B. Li, H.P. Song, Y. Guo, J. Wang, X.Q. Xu, J.M. Liu, A.L. Yang, H.Y. Wei, B. Zhang, S.Y. Yang, X.L.
Liu, Q.S. Zhu, Z.G. Wang, Determination of InN/diamond heterojunction band offset by X-ray photoelectron
spectroscopy. Nanoscale Res. Lett. 6, 50:1–5 (2011). 10.1007/s11671-010-9796-6

1170. P.F. Zhang, X.L. Liu, R.Q. Zhang, H.B. Fan, H.P. Song, H.Y. Wei, C.M. Jiao, S.Y. Yang, Q.S. Zhu, Z.G. Wang,
Valence band offset ofMgO/InN heterojunction measured by X-ray photoelectron spectroscopy. Appl. Phys. Lett.
92, 042906 (2008). 10.1063/1.2839611

1171. W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, G. Zhang, Valence band offset of β-Ga2O3wurtzite GaN
heterostructure measured by X-ray photoelectron spectroscopy. Nanoscale Res. Lett. 7, 562:1–5 (2013).
10.1186/1556-276X-7-562

1172. X. Zhang, Q. Zhang, F. Lu, Energy band alignment of an In2O3:Mo/Si heterostructure. Semicond. Sci. Technol.
22, 900–904 (2007). 10.1088/0268-1242/22/8/013

1173. A. Walsh, J.L.F. Da Silva, S.-H. Wei, C. Körber, A. Klein, L.F.J. Piper, A. DeMasi, K.E. Smith, G. Panaccione,
P. Rorelli, D.J. Payne, A. Bourlange, R.G. Egdell, Nature of the band gap of In2O3 revealed by first-principles
calculations and X-ray spectroscopy. Phys. Rev. Lett. 100, 167402:1–4 (2008). 10.1103/PhysRevLett.100.167402

1174. P.D.C. King, T.D. Veal, C.E. Kendrick, L.R. Bailey, S.M. Durbin, C.F. McConville, InN/GaN valence band
offset: High-resolution x-ray photoemission spectroscopy measurements. Phys. Rev. B 78, 033308:1–4 (2008).
10.1103/PhysRevB.78.033308

1175. K. Muraki, S. Fukatsu, Y. Shiraki, R. Ito, Surface segregation of In atoms during molecular beam epitaxy
and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557–559 (1992).
10.1063/1.107835

1176. D. Hernández-Maldonado, M. Herrera, P. Alonso-González, Y. González, L. González, J. Gazquez, M. Varela,
S.J. Pennycook,M. de la Paz Guerrero-Lebrero, J. Pizarro, P.L. Galindo, S.I. Molina, Compositional analysis with
atomic column spatial resolution by 5th-order aberration-corrected scanning transmission electron microscopy.
Microsc. Microanal. 17, 578–581 (2011). 10.1017/S1431927611000213

1177. Volker Gottschalch, Günther Wagner, private communication (2006)

https://doi.org/10.1063/1.106053
https://doi.org/10.1063/1.2060947
https://doi.org/10.1143/JJAP.39.L1183
https://doi.org/10.1063/1.1512331
https://doi.org/10.1143/JJAP.26.666
https://doi.org/10.1016/S0039-6028(87)81180-9
https://doi.org/10.1103/PhysRevLett.63.632
https://doi.org/10.1016/S0081-1947(08)60249-0
https://doi.org/10.1007/BF00324362
https://doi.org/10.1049/el:19990746
https://doi.org/10.1063/1.1760841
https://doi.org/10.1103/PhysRevLett.69.450
https://doi.org/10.1007/978-94-009-3073-5%5F7
https://doi.org/10.1038/nature01665
https://doi.org/10.1063/1.4774038
https://doi.org/10.1007/s11671-010-9796-6
https://doi.org/10.1063/1.2839611
https://doi.org/10.1186/1556-276X-7-562
https://doi.org/10.1088/0268-1242/22/8/013
https://doi.org/10.1103/PhysRevLett.100.167402
https://doi.org/10.1103/PhysRevB.78.033308
https://doi.org/10.1063/1.107835
https://doi.org/10.1017/S1431927611000213


References 833

1178. P. Offermans, Study of III-V semiconductor nanostructures by cross-sectional scanning tunneling microscopy,
Ph.D. Thesis, Technische Universiteit Eindhoven (2005). 10.6100/IR595006

1179. O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547–7552 (1983).
10.1103/PhysRevB.27.7547

1180. D.J. BenDaniel, C.B. Duke, Space-charge effects on electron tunneling. Phys. Rev. 152, 683–692 (1966).
10.1103/PhysRev.152.683

1181. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semicon-
ductor Nanostructures, 4th edn. (Wiley, Chichester, 2016). 10.1002/9781118923337

1182. M. Ehrhardt, Th. Koprucki, eds., Multi-band effective mass approximations, in Advanced Mathematical Mod-
els and Numerical Techniques, vol. 94. Lecture Notes in Computational Science and Engineering (Springer,
Heidelberg, 2014). 10.1007/978-3-319-01427-2

1183. Y.C. Chang, J.N. Schulman, Interband optical transitions in GaAs/Ga1−xAlxAs and InAs-GaSb superlattices.
Phys. Rev. B 31, 2069–2079 (1985). 10.1103/PhysRevB.31.2069

1184. R.C. Miller, D.A. Kleinman, A.C. Gossard, Energy-gap discontinuities and effective masses for
GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 29, 7085–7087 (1984). 10.1103/PhysRevB.29.7085

1185. S.L. Chuang, Physics of Photonic Devices, 2nd edn. (Wiley, New York, 2009)
1186. R.C. Miller, A.C. Gossard, W.T. Tsang, O. Munteanu, Extrinsic luminescence from GaAs quantum wells. Phys.

Rev. B 25, 3871–3877 (1982). 10.1103/PhysRevB.25.3871
1187. W.T. Masselink, Y.-Ch. Chang, H. Morkoç, Binding energy of acceptors in GaAs/AlxGa1−xAs quantum wells.

Phys. Rev. B 28, 7373–7376 (1983). 10.1116/1.582827
1188. D.B. Tran Thoai, R. Zimmermann, M. Grundmann, D. Bimberg, Image charges in semiconductor quantum wells:

Effect on exciton binding energy. Phys. Rev. B 42, 5906–5909 (1990). 10.1103/PhysRevB.42.5906
1189. M.J.L.S. Haines, N. Ahmed, S.J.A. Adams, K. Mitchell, I.R. Agool, C.R. Pidgeon, B.C. Cavenett, E.P. O’Reilly,

A. Ghiti, M.T. Emeny, Exciton-binding-energy maximum in Ga1−x InxAs/GaAs quantum wells. Phys. Rev. B 43,
11944–11949 (1991). 10.1103/PhysRevB.43.11944

1190. K.J. Moore, G. Duggan, K. Woodbridge, C. Roberts, Observations and calculations of the exciton bind-
ing energy in (In,Ga)As/GaAs strained-quantum-well heterostructures. Phys. Rev. B 41, 1090–1094 (1990).
10.1103/PhysRevB.41.1 090

1191. L. Esaki, A perspective in quantum-structure development, inNATO ASI Series (Series B: Physics), E.E. Mendez,
K. von Klitzing, eds. vol. 170 (Springer, Boston, 1987). 10.1007/978-1-4684-5478-9_1

1192. R. Dingle, A.C. Gossard, W. Wiegmann, Direct observation of superlattice formation in a semiconductor het-
erostructure. Phys. Rev. Lett. 34, 1327–1330 (1975). 10.1103/PhysRevLett.34.1327

1193. F. Stern, S. Das Sarma, Electron energy in GaAs-Ga1−xAlx heterojunctions. Phys. Rev. B 30, 840–848 (1984).
10.1103/PhysRevB.30.840

1194. A.L. Efros, F.G. Pikus, G.G. Samsonidze, Maximum low-temperature mobility of two-dimensional electrons in
heterojunctions with a thick spacer layer. Phys. Rev. B 41, 8295–8301 (1990). 10.1103/PhysRevB.41.8295

1195. L. Pfeiffer, K.W. West, The role of MBE in recent quantum Hall effect physics discoveries. Physica E 20, 57–64
(2003). 10.1016/j.physe.2003.09.035

1196. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe
quantum wells. Science 314, 1757–1761 (2006). 10.1126/science.1133734

1197. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum
spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007). 10.1126/science.1148047

1198. A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.-L. Qi, S.-C. Zhang, Nonlocal transport in
the quantum spin Hall state. Science 325, 294–297 (2009). 10.1126/science.1174736

1199. J. Christen, D. Bimberg, Line shapes of intersubband and excitonic recombination in quantum wells: Influence of
final-state interaction, statistical broadening, and momentum conservation. Phys. Rev. B 42, 7213–7219 (1990).
10.1103/PhysRevB.42.7213

1200. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Linewidth dependence of radia-
tive exciton lifetimes in quantum wells. Phys. Rev. Lett. 59, 2337–2340 (1987). 10.1103/PhysRevLett.59.2337
Erratum: Phys. Rev. Lett. 60, 243 (1988) 10.1103/PhysRevLett.60.243.4

1201. M.S. Skolnick, J.M. Rorison, K.J. Nash, D.J. Mowbray, P.R. Tapster, S.J. Bass, A.D. Pitt, Observation of a
many-body edge singularity in quantum-well luminescence spectra. Phys. Rev. Lett. 58, 2130–2133 (1987).
10.1103/PhysRevLett.58.2130

1202. D. Gammon, S. Rudin, T.L. Reinecke, D.S. Katzer, C.S. Kyono, Phonon broadening of excitons in
GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 51, 16785–16789 (1995). 10.1103/PhysRevB.51.16785

1203. L. Béaur, T. Bretagnon, B. Gil, A. Kavokin, T. Guillet, C. Brimont, D. Tainoff,M. Teisseire, J.-M. Chauveau, Exci-
ton radiative properties in nonpolar homoepitaxial ZnO/(Zn,Mg)O quantum wells. Phys. Rev. B 84, 165312:1–8
(2011). 10.1103/PhysRevB.84.165312

1204. E. Runge, R. Zimmermann, Optical properties of localized excitons in nanostructures: Theoretical aspects. Adv.
Solid State Phys. (Festkörperprobleme) 38, 251–263 (1999). 10.1007/BFb0107622

https://doi.org/10.6100/IR595006
https://doi.org/10.1103/PhysRevB.27.7547
https://doi.org/10.1103/PhysRev.152.683
https://doi.org/10.1002/9781118923337
https://doi.org/10.1007/978-3-319-01427-2
https://doi.org/10.1103/PhysRevB.31.2069
https://doi.org/10.1103/PhysRevB.29.7085
https://doi.org/10.1103/PhysRevB.25.3871
https://doi.org/10.1116/1.582827
https://doi.org/10.1103/PhysRevB.42.5906
https://doi.org/10.1103/PhysRevB.43.11944
https://doi.org/10.1103/PhysRevB.41.1090
https://doi.org/10.1007/978-1-4684-5478-9%5F1
https://doi.org/10.1103/PhysRevLett.34.1327
https://doi.org/10.1103/PhysRevB.30.840
https://doi.org/10.1103/PhysRevB.41.8295
https://doi.org/10.1016/j.physe.2003.09.035
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1174736
https://doi.org/10.1103/PhysRevB.42.7213
https://doi.org/10.1103/PhysRevLett.59.2337
https://doi.org/10.1103/PhysRevLett.60.243.4
https://doi.org/10.1103/PhysRevLett.58.2130
https://doi.org/10.1103/PhysRevB.51.16785
https://doi.org/10.1103/PhysRevB.84.165312
https://doi.org/10.1007/BFb0107622


834 References

1205. E. Runge, Excitons in semiconductor nanostructures. Solid State Phys. 57, 149–305 (2002).
10.1016/S0081-1947(08)60180-0

1206. S.T. Davey, E.G. Scott, B. Wakefield, G.J. Davies, A photoluminescence study of Ga1−x InxAs/Al1−yInyAs
quantum wells grown by MBE. Semicond. Sci. Technol. 3, 365–371 (1988). 10.1088/0268-1242/3/4/014

1207. M. Grassi Alessi, F. Fragano, A. Patané, M. Capizzi, E. Runge, R. Zimmermann, Competition between radiative
decay and energy relaxation of carriers in disordered InxGa1−xAs/GaAs quantum wells. Phys. Rev. B 61, 10985–
10993 (2000). 10.1103/PhysRevB.61.10985

1208. Q. Li, S.J. Xu, W.C. Cheng, M.H. Xie, S.Y. Tong, C.M. Che, H. Yang, Thermal redistribution of localized
excitons and its effect on the luminescence band in InGaN ternary alloys. Appl. Phys. Lett. 79, 1810–1812
(2001). 10.1063/1.1403655

1209. J. Hegarty, L. Goldner, M.D. Sturge, Localized and delocalized two-dimensional excitons in GaAs-AlGaAs
multiple-quantum-well structures. Phys. Rev. B 30, 7346–7348 (1984). 10.1103/PhysRevB.30.7346

1210. N.F. Mott, E.A. Davies, Electronic Processes in Noncrystalline Materials, 2nd edn. (Oxford University Press,
New York, 1979)

1211. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Quantum-confined Stark
effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, Part 2, L382–L385
(1997). 10.1143/JJAP.36.L382

1212. S.F. Chichibu, A.C. Abare, M.S. Minsky, S. Keller, S.B. Fleischer, J.E. Bowers, E. Hu, U.K. Mishra, L.A.
Coldren, S.P. DenBaars, Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum
well structures. Appl. Phys. Lett. 73, 2005–2008 (1998). 10.1063/1.122350

1213. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli,
B. Vinter, C. Deparis, Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells. Phys. Rev. B 72,
241305(R):1–4 (2005). 10.1103/PhysRevB.72.241305

1214. J.A. Davis, L.V. Dao, X. Wen, C. Ticknor, P. Hannaford, V.A. Coleman, H.H. Tan, C. Jagadish, K. Koike, S. Sasa,
M. Inoue, M. Yano, Suppression of the internal electric field effects in ZnO/Zn0.7Mg0.3O quantum wells by ion-
implantation induced intermixing. Nanotechnology 19, 055205:1–4 (2008). 10.1088/0957-4484/19/05/055205

1215. E.Berkowicz,D.Gershoni,G.Bahir, E. Lakin,D. Shilo, E. Zolotoyabko,A.C.Abare, S.P.Denbaars, L.A.Coldren,
Measured and calculated radiative lifetime and optical absorption of InxGa1−xN/GaN quantum structures. Phys.
Rev. B 61, 10994–11008 (2000). 10.1103/PhysRevB.61.10994

1216. N. Akopian, G. Bahir, D. Gershoni, M.D. Craven, J.S. Speck, S.P. DenBaars, Optical evidence for lack of
polarization in (112̄0)-oriented GaN/(AlGa)N quantum structures. Appl. Phys. Lett. 86, 202104:1–3 (2005).
10.1063/1.1926406

1217. J. Spitzer, T. Ruf, M. Cardona, W. Dondl, R. Schorer, G. Abstreiter, E.E. Haller, Raman scattering
by optical phonons in isotopic 70(Ge)n 74(Ge)n superlattices. Phys. Rev. Lett. 72, 1565–1568 (1994).
10.1103/PhysRevLett.72.1565

1218. A. Reznicek, R. Scholz, S. Senz, U. Gösele, Comparative TEM study of bonded silicon/silicon interfaces
fabricated by hydrophilic, hydrophobic and UHV wafer bonding. Mater. Chem. Phys. 81, 277–280 (2003).
10.1016/S0254-0584(02)00601-6

1219. P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, U.M. Gösele, Materials integration of gallium arsenide and
silicon by wafer bonding. Appl. Phys. Lett. 72, 3181–3183 (1998). 10.1063/1.121586

1220. Q.-Y. Tong, U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Wiley, New York, 1998)
1221. U. Gösele, Q.-Y. Tong, Semiconductor Wafer Bonding. Ann. Rev. Mat. Sci. 28, 215–241 (1998).

10.1146/annurev.matsci.28.1.215
1222. M. Alexe, U. Gösele, eds., Wafer Bonding (Springer, Berlin, 2004). 10.1007/978-3-662-10827-7
1223. A.K. Geim, Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011).

10.1103/RevModPhys.83.851
1224. 2D Materials, F. Iacopi, J.J. Boeckl, C. Jagadish, eds., Semicond. Semimet. 95 (2016).

10.1016/S0080-8784(16)30017-5
1225. P. Avouris, T.F. Heinz, T. Low, eds., 2D Materials, Properties and Devices (Cambridge Univ. Press, Cambridge,

2017). 10.1017/9781316681619
1226. J. Li, Z.Wei, J. Kang, Two-Dimensional Semiconductors, Synthesis Physical Properties and Applications (Wiley-

VCH, Weinheim, 2020)
1227. H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Carbon

24, 241–245 (1986). 10.1016/0008-6223(86)90126-0
1228. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene.

Rev. Mod. Phys. 81, 109–162 (2009). 10.1103/RevModPhys.81.109
1229. D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From conception to realization: An historial account of graphene and

some perspectives for its future. Angew. Chemie Int. Ed. 49, 9336–9344 (2010). 10.1002/anie.201003024
1230. Ten years in two dimensions (editorial), Nature Nanotechn. 9, 725 (2014) and Focus issue ’Graphene applications’

of Nature Nanotechnology 9 (2014). 10.1038/nnano.2014.244

https://doi.org/10.1016/S0081-1947(08)60180-0
https://doi.org/10.1088/0268-1242/3/4/014
https://doi.org/10.1103/PhysRevB.61.10985
https://doi.org/10.1063/1.1403655
https://doi.org/10.1103/PhysRevB.30.7346
https://doi.org/10.1143/JJAP.36.L382
https://doi.org/10.1063/1.122350
https://doi.org/10.1103/PhysRevB.72.241305
https://doi.org/10.1088/0957-4484/19/05/055205
https://doi.org/10.1103/PhysRevB.61.10994
https://doi.org/10.1063/1.1926406
https://doi.org/10.1103/PhysRevLett.72.1565
https://doi.org/10.1016/S0254-0584(02)00601-6
https://doi.org/10.1063/1.121586
https://doi.org/10.1146/annurev.matsci.28.1.215
https://doi.org/10.1007/978-3-662-10827-7
https://doi.org/10.1103/RevModPhys.83.851
https://doi.org/10.1016/S0080-8784(16)30017-5
https://doi.org/10.1017/9781316681619
https://doi.org/10.1016/0008-6223(86)90126-0
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1002/anie.201003024
https://doi.org/10.1038/nnano.2014.244


References 835

1231. J. Yang, P. Hu, G. Yu, Perspective of graphene-based electronic devices: Graphene synthesis and diverse appli-
cations. APL Mater. 7, 020901:1–7 (2019). 10.1063/1.5054823

1232. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: A review. Crit. Rev.
Solid State Mater. Sci. 35, 52–71 (2010). 10.1063/1.5054823

1233. V.B. Mohan, K.-T. Lau, D. Hui, D. Battacharyya, Graphene-based materials and their composites: A
review on production, applications and product limitations. Compos. B: Eng. 142, 200–220 (2018).
10.1016/j.compositesb.2018.01.013

1234. R. Peierls, Bemerkungen über Umwandlungstemperaturen. Helvetica Phys. Acta 7, 81–83 (1934).
10.5169/seals-110415

1235. N.D. Mermin, Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968), 10.1103/PhysRev.176.250
Errata: Phys. Rev. B 20, 4762 (1979) 10.1103/PhysRevB.20.4762 and Phys. Rev. B 74, 149902(E) (2006).
10.1103/PhysRevB.74.149902

1236. J.C.Meyer,A.K.Geim,M.I.Katsnelson,K.S.Novoselov, T.J. Booth, S.Roth, The structure of suspended graphene
sheets. Nature 446, 60–63 (2007). 10.1038/nature05545

1237. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov,
Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). 10.1126/science.1102896

1238. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional
atomic crystals. PNAS 102, 10451–10453 (2005). 10.1073/pnas.0502848102

1239. G.R. Yazdi, T. Iakimov, R. Yakimova, Epitaxial graphene on SiC: A review of growth and characterization.
Crystals 6, 53:1–45 (2016). 10.3390/cryst6050053

1240. University of Manchester, www.condmat.physics.manchester.ac.uk
1241. A.M. Valencia, M.J. Caldas, Single vacancy defect in graphene: Insights into its magnetic properties from theo-

retical modeling. Phys. Rev. B 96, 125431:1–9 (2017). 10.1103/PhysRevB.96.125431
1242. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craig-

head, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).
10.1126/science.1136836

1243. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocom-
posites. Progr. Mat. Sci. 90, 75–127 (2017). 10.1016/j.pmatsci.2017.07.004

1244. L. Wirtz, A. Rubio, The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004).
10.1016/j.ssc.2004.04.042

1245. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov,
S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401:1–4 (2006).
10.1103/PhysRevLett.97.187401

1246. M. Machón, S. Reich, C. Thomsen, D. Sánchez-Portal, P. Ordejón, Ab initio calculations of the optical properties
of 4-Å-diameter single-walled nanotubes. Phys. Rev. B 66, 155410:1–5 (2002). 10.1103/PhysRevB.66.155410

1247. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH.
Berlin (2004). 10.1002/9783527618040

1248. Ch.L. Kane, Erasing electron mass. Nature 438, 168–170 (2005). 10.1038/438168a
1249. K.S. Novoselov, A.K. Geim, S.V.Morozov, D. Jiang,M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov,

Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). 10.1038/nature04233
1250. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947). 10.1103/PhysRev.71.622
1251. C. Bena, G. Montambaux, Remarks on the tight-binding model of graphene. New J. Phys. 11, 095003:1–15

(2009). 10.1088/1367-2630/11/9/095003
1252. S.Reich, J.Maultzsch,C.Thomsen, P.Ordejón,Tight-bindingdescriptionof graphene. Phys.Rev.B66, 035412:1–

5 (2002). 10.1103/PhysRevB.66.035412
1253. R.S. Deacon, K.-C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Cyclotron resonance study of the electron

and hole velocity in graphenemonolayers. Phys. Rev.B 76, 081406(R):1–4 (2007). 10.1103/PhysRevB.76.081406
1254. A. Bostwick, T. Ohta, Th. Seyller, K. Horn, E. Rotenberg, Quasiparticle dynamics in graphene. Nature Phys. 3,

36–40 (2006). 10.1038/nphys477
1255. P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014).

10.1039/c4cs00102h
1256. B. Partoens, F.M. Peeters, From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74,

075404:1–11 (2006). 10.1103/PhysRevB.74.075404
1257. M. Aoki, H. Amawashi, Dependence of band structures on stacking and field in layered graphene. Solid State

Commun. 142, 123–127 (2007). 10.1016/j.ssc.2007.02.013
1258. T. Ohta, A. Bostwick, Th Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene.

Science 313, 951–954 (2006). 10.1126/science.1130681
1259. S.V. Vonsovsky, M.I. Katsnelson, Quantum Solid-State Physics (Springer, New York, 1989)
1260. M.S. Sercheli, Y. Kopelevich, R. Ricardo da Silva, J.H.S. Torres, C. Rettori, Evidence for internal field

in graphite: A conduction electron spin-resonance study. Solid State Commun. 121, 579–583 (2002).
10.1016/S0038-1098(01)00465-3

https://doi.org/10.1063/1.5054823
https://doi.org/10.1063/1.5054823
https://doi.org/10.1016/j.compositesb.2018.01.013
https://doi.org/10.5169/seals-110415
https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1103/PhysRevB.20.4762
https://doi.org/10.1103/PhysRevB.74.149902
https://doi.org/10.1038/nature05545
https://doi.org/10.1126/science.1102896
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.3390/cryst6050053
www.condmat.physics.manchester.ac.uk
https://doi.org/10.1103/PhysRevB.96.125431
https://doi.org/10.1126/science.1136836
https://doi.org/10.1016/j.pmatsci.2017.07.004
https://doi.org/10.1016/j.ssc.2004.04.042
https://doi.org/10.1103/PhysRevLett.97.187401
https://doi.org/10.1103/PhysRevB.66.155410
https://doi.org/10.1002/9783527618040
https://doi.org/10.1038/438168a
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1088/1367-2630/11/9/095003
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.76.081406
https://doi.org/10.1038/nphys477
https://doi.org/10.1039/c4cs00102h
https://doi.org/10.1103/PhysRevB.74.075404
https://doi.org/10.1016/j.ssc.2007.02.013
https://doi.org/10.1126/science.1130681
https://doi.org/10.1016/S0038-1098(01)00465-3


836 References

1261. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Störmer, Ultrahigh electron
mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). 10.1016/j.ssc.2008.02.024

1262. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Störmer, U. Zeitler, J.C. Maan, G.S. Boe-
binger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).
10.1126/science.1137201

1263. O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.
Z. Phys. 53, 157–165 (1929). 10.1007/BF01339716

1264. A. Calogeracos, N. Dombey, History and physics of the Klein paradox. Contemporary Physics 40, 313–321
(1999). 10.1080/001075199181387

1265. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2,
620–625 (2006). 10.1038/nphys384

1266. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine
structure constant defines visual transparency of graphene. Science 320, 1308 (2008). 10.1126/science.1156965

1267. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the optical conductivity of
graphene. Phys. Rev. Lett. 101, 196405:1–4 (2008). 10.1103/PhysRevLett.101.196405

1268. T. Ando, Y. Zheng, H. Suzuura, Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys.
Soc. Jpn. 71, 1318–1324 (2002). 10.1143/JPSJ.71.1318

1269. H. Falomir, M. Loewe, E. Muñoz, A. Raya, Optical conductivity and transparency in an effective model for
graphene. Phys. Rev. B 98, 195430:1–11 (2018). 10.1103/PhysRevB.98.195430

1270. B.G. Ghamsari, J. Tosado, M. Yamamoto, M.S. Fuhrer, S.M. Anlage, Measuring the complex optical conduc-
tivity of graphene by Fabry-Pérot reflectance spectroscopy. Sci. Rep. 6(34166), 1–6 (2016). 10.1038/srep34166.
Erratum: Sci. Rep. 7, 40973 (2017). 10.1038/srep40973

1271. C. Tusche, H.L. Meyerheim, J. Kirschner, Observation of depolarized ZnO(0001) monolayers: Formation of
unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102:1–4 (2007). 10.1103/PhysRevLett.99.026102

1272. S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Beyond graphene: Progress in novel
two-dimensional materials and van der Waals solids. Ann. Rev. Mater. Res. 45, 1–27 (2015).
10.1146/annurev-matsci-070214-021034

1273. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev.
Mater. 2, 17033:1–15 (2017) 10.1038/natrevmats.2017.33

1274. J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q.
Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B.I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, A
library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). 10.1038/s41586-018-0008-3

1275. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Intrinsic
structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013). 10.1021/nl4007479

1276. B. Ouyang, G. Lan, Y. Guo, Z. Mi, J. Song, Phase engineering of monolayer transition-metal dichalco-
genide through coupled electron doping and lattice deformation. Appl. Phys. Lett. 107, 191903:1–5 (2015).
10.1063/1.4934836

1277. Y.C. Cheng, Z.Y. Zhu, M. Tahir, U. Schwingenschlögl, Spin-orbit induced spin splittings in polar transition metal
dichalcogenide monolayers. EPL 102, 57001:1–6 (2013). 10.1209/0295-5075/102/57001

1278. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J.
Wang, X. Wang, Hopping transport through defect-induced localized states in molybdenum disulphide. Nature
Commun. 4, 2642:1–6 (2013). 10.1038/ncomms3642

1279. Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S. Huang, L. Xie, Tunable Band
gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616
(2013). 10.1021/nn401420h

1280. J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C.
Jin, W. Ji, X. Zhang, J. Yuan, Z. Zhang, Exploring atomic defects in molybdenum disulphide monolayers. Nature
Commun. 6, 6293:1–8 (2015). 10.1038/ncomms7293

1281. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour
phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759
(2013). 10.1038/nmat3673

1282. Z. Li, X. Yan, Z. Tang, Z. Huo, G. Li, L. Jiao, L.-M. Liu, M. Zhang, J. Luo, J. Zhu, Direct observation of
multiple rotational stacking faults coexisting in freestanding bilayer MoS2, Sci. Rep. 7, 8323:1–10 (2017).
10.1038/s41598-017-07615-9

1283. X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu,
X. Duan, Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett.
16, 264–269 (2016). 10.1021/acs.nanolett.5b03662

1284. D.H. Kim, H.S. Kim, M.W. Song, S. Lee, S.Y. Lee, Geometric and electronic structures of monolayer hexagonal
boron nitride with multi-vacancy. Nano Convergence 4, 13:1–8 (2017). 10.1186/s40580-017-0107-0

1285. Y. Miyamoto, M.L. Cohen, S.G. Louie, Ab initio calculation of phonon spectra for graphite, BN, and BC2N
sheets. Phys. Rev. B 52, 14971–14975 (1995). 10.1103/PhysRevB.52.14971

https://doi.org/10.1016/j.ssc.2008.02.024
https://doi.org/10.1126/science.1137201
https://doi.org/10.1007/BF01339716
https://doi.org/10.1080/001075199181387
https://doi.org/10.1038/nphys384
https://doi.org/10.1126/science.1156965
https://doi.org/10.1103/PhysRevLett.101.196405
https://doi.org/10.1143/JPSJ.71.1318
https://doi.org/10.1103/PhysRevB.98.195430
https://doi.org/10.1038/srep34166
https://doi.org/10.1038/srep40973
https://doi.org/10.1103/PhysRevLett.99.026102
https://doi.org/10.1146/annurev-matsci-070214-021034
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/s41586-018-0008-3
https://doi.org/10.1021/nl4007479
https://doi.org/10.1063/1.4934836
https://doi.org/10.1209/0295-5075/102/57001
https://doi.org/10.1038/ncomms3642
https://doi.org/10.1021/nn401420h
https://doi.org/10.1038/ncomms7293
https://doi.org/10.1038/nmat3673
https://doi.org/10.1038/s41598-017-07615-9
https://doi.org/10.1021/acs.nanolett.5b03662
https://doi.org/10.1186/s40580-017-0107-0
https://doi.org/10.1103/PhysRevB.52.14971


References 837

1286. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single and few-layer
MoS2. ACS Nano 4, 2695–2700 (2010). 10.1021/nn1003937

1287. A.Molina-Sánchez, L.Wirtz, Phonons in single-layer and few-layerMoS2 andWS2, Phys. Rev. B 84, 155413:1–8
(2011). 10.1103/PhysRevB.84.155413

1288. K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first
principles. Phys. Rev. B 85, 115317:1–16 (2012). 10.1103/PhysRevB.85.115317

1289. H. Tornatzky, R. Gillen, H. Uchiyama, J. Maultzsch, Phonon dispersion in MoS2, Phys. Rev. B 99, 144309:1–13
(2019). 10.1103/PhysRevB.99.144309

1290. F. Ferreira, A.J. Chaves, N.M.R. Peres, R.M. Ribeiro, Excitons in hexagonal boron nitride single-layer: A new
platform for polaritonics in the ultraviolet. J. Opt. Soc. Am. B 36, 674–683 (2019). 10.1364/JOSAB.36.000674

1291. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys.
Rev. Lett. 105, 136805:1–4 (2010). 10.1103/PhysRevLett.105.136805
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A
absorption, 257, 262, 306, 309, 578, 594, 599, 615

atmospheric, 624
band–band, 267
bleaching, 214
bound exciton, 281
coefficient, see coefficient, absorption
free-carrier, 263, 291, 438
impurity, 287
inter-valley, 297
intervalence-band, 295
intra-band, 297
lattice, 298
negative, 284
optical, 214
phonon, 272
schematic spectrum, 262
selfabsorption, 321
spectrum, 269, 378, 430
two-photon, 271, 276, 286

absorption edge, 272
optical, 149
shift, 284

acceleration, 159
acceptor, 186, 191, 192

binding energy, 193
charged, 193
double, 209
energy, 193
neutral, 194, 322

accumulation, 546
admittance spectroscopy, 528
air gap, 685
air mass, 624
alkali halogenides, 244
alloy, 60, 94, 219, 465, 541

broadening, see broadening, alloy
phonon, see phonon, alloy
quaternary, 63
random, 61, 316
ternary, 54, 62, 153

amorphous, 174
amplification, 309, 664, 679, 689

current, see current, amplification
light, 659
region, 611

amplifier
optical, 660, 689
power, 690

angle
Brewster, 261
critical, 261, 648
Euler, 739
off-cut, 343
taper, 689
twist, 398

anharmonicity, 454
annealing, 44, 69, 134

laser, 734
thermal, 734

anode, 517
anticrossing, 280, 369, 500, 501
antidot, 450
antiphase domain, see domain, antiphase
approximation

abrupt, 522, 554, 707
adiabatic, 33, 707
Boltzmann, 180, 190, 536
Born–Oppenheimer, 33, 320
electric dipole, 266
envelope function, 368
gradual channel, 706
harmonic, 95
quasi-cubic, 168
relaxation time, 225, 241, 291, 780
two-band, 286
virtual crystal, 65, 153
WKB, 330

atmosphere, 623
Auger process, 323
autocompensation, 198
autodoping, 200
auxetic, 121
avalanche multiplication, 570, 596, 696
average, 785
axis
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optic, 259
singular, 259

B
background radiation, 601
band

alignment, 365
bending, 373, 521, 547
conduction, 24, 144, 330

minimum, 144, 153
diagram, 692

diode, 518, 545
discontinuity, 366, 368
edge, 287
filled, 163, 182
gap, 24, 144, 149, 150, 159, 183, 402, 458, 762

engineering, 365
fundamental, 272
negative, 169
photonic, 485–501
renormalization, 284
temperature dependence, 154
zero, 169, 467

impurity, 202, 243
inversion, 144, 169
lineup, 365
mixing, 171, 369, 415, 594
parabolic, 268
remote, 773
splitting, 29
staggered lineup, 365
straddled lineup, 365
tail, 115, 273
tilted, 429
valence, 24, 144, 688

fine structure, 168
band structure, 135–172, 266, 480

chalcopyrites, 147
delafossites, 149
direct, 145, 153
extrema, 174
indirect, 144, 153, 285
lead salt, 146
multi-valley, 238
perovskites, 149
photonic, 492
projected, 346
rocksalt, 147
spinels, 149
strained, 170
topological, 144, 169, 374, 470, 770

bandwidth, 592, 601, 613, 788
barrier, 329, 368, 372

Coulomb, 416
finite, 369
height, 368, 534
reduction, 527
Schottky, 520
triangular, 330

base, 36, 691
diatomic, 36, 263
monoatomic, 36
width, 700

beam profile, 667, 684
benzene, 25, 473
Berry phase, 103, 143
biaxial, 259

stress, see stress, biaxial
biexciton, 283, 425
binodal, 63
bipolaron, 478
birefringence, 259, 291, 439
blackbody, 593
Bloch

function, see function, Bloch
oscillation, see oscillation, Bloch
theorem, 136, 761

Bohr radius, 186, 187, 202, 275
Boltzmann

approximation, see approximation, Boltzmann
constant, see constant, Boltzmann
distribution, see distribution, Boltzmann
transport equation, 779

bond
angle, 44
bending, 120
breaking, 133
covalent, 21
dangling, 44, 341
elastic, 95
electron pair, 21
homopolar, 29
ionic, 27
length, 29, 44, 66, 70, 121, 153
metallic, 31
mixed, 28
partially ionic, 263
sp2, 25
sp3, 22
strength, 150
stretching, 120
strong, 359
tetrahedral, 23, 186
van-der-Waals, 31

Bose–Einstein
distribution, see distribution, Bose–Einstein
model, see model, Bose—Einstein
statistics, 756

boson, 755
bottleneck, 280
boule, 353
boundary

additional ∼ condition, 281
antiphase domain, 93
condition, 96, 333, 368, 401, 414, 487, 522, 549,
557, 694, 761

depletion layer, 615, 694
grain, see grain boundary
inversion domain, 93, 360
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periodic ∼ condition, 96
sample, 447

bow-tie, 195, 507
bowing, 67

parameter, 152
Bragg mirror, 489, 659, 669, 684
breakdown, 569, 599, 606, 700

voltage, see voltage, breakdown
brightness, 641

high, 650
perceived, 646
visible, 639

Brillouin zone, 60, 96, 97, 137, 340, 480
cubic

body-centered, 61
face centered, 61
simple, 61

folded, 101
hexagonally close packed, 61
orthorhombic, 61, 147
paths, 60
points, see point
size, 268

broadening, 115
alloy, 315
inhomogeneous, 377, 426
phonon, 277
Stark, 288

buffer, 359
graded, 735
metamorphic, 636
relaxed, 732

bulk modulus, 121
Burger’s vector, 81, 129
Burstein–Moss shift, 294

C
capacitance, 528, 534, 552, 559

insulator, 552
parasitic, 702

capture, 403
barrier, 213
cross section, 326

carrier
capture, 205, 325
concentration, 179

intrinsic, 183
density, 303, 439

equilibrium, 308
excess, 308, 332
nonequilibrium, 308

excess, 324, 403
excess ∼ profile, 332
free, 291
freeze-out, 190
hot, 628
injection, 204, 303
itinerant charge, 468
lifetime, see lifetime, carrier

majority, 517, 530
minority, 517, 554
release, 325
threshold ∼ density, 670

catalysis, 339, 352
catastrophic optical damage, 666, 674
cathodoluminescence, 133, 402
cavity

empty, 500
external, 660
Fabry–Pérot, 500, 659
hexagonal, 508
micro-, see microcavity
mirror, 499
mode, 500
optical, 659
resonance, 506
short, 669

cell
central ∼ correction, 200, 287
elementary, 40
internal parameter, 47, 66, 452
photoelectrochemical, 589
primitive elementary, 40
primitive unit, 54
solar, see solar cell
tandem, 628
unit, 40, 451
Wigner–Seitz, 40, 60

chalcogenide, 48, 730
atoms, 208
europium, 465
glass, 211
impurity, 208
lead, 146

chalcopyrite structure, see structure
channel, 470, 471, 704

buried, 617
depth, 707
edge, 447
inversion, 714
isolation, 619
length, 705, 725
long, 712
n-type, 718
p-type, 718
short, 712
stop, 617
strain, 720
width, 707, 725

charge
conservation, 327
deficit, 448
density, 373
effective, 29
elementary, 206
excess, 303
fixed, 187
image, 372, 526
inversion, 550, 615
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ionic, 554
maximum, 616
neutrality, 549, 552
packet, 617
polarization, 451
relative shift, 451
retention, 729
sign, 439
signal, 616
state, 206
storage, 582
surface, 520
transfer, 373

charge coupled device, 12, 614–621
charge neutrality, 219
chemical shift, 287
Chern number, 143, 447, 772
chromaticity, 641
circuit

common base, 692, 699, 701
common collector, 699, 702
common emitter, 696, 700, 701
equivalent, 569, 581, 592, 601
feedback, 702
integrated, 8, 12, 718

millimeter-wave, 579
open, 252, 626
optoelectronic integrated, 495
read-out, 616, 621
short, 254, 626

cleaving, 133, 341, 403, 669
clock speed, 726
cluster, 60

size, 467
clustering, 61, 94
CMOS technology, 618, 718–727
coating

antireflection, 607, 670, 689
high-reflection, 670

coefficient
absorption, 262, 269, 271, 292, 334, 620, 748
Auger recombination, 324
bimolecular recombination, 307
correlation, 786
diffusion, 216, 248
distribution, 75, 80
elastic, 119
electron ionization, 241
gain compression, 680, 682
hole ionization, 241
impact ionization, 609
negative temperature, 704
Peltier, 252

sign, 254
Seebeck, 783
segregation, 75
stiffness, 119
temperature, 570, 572, 580
thermal expansion, 118, 126, 156, 363
transmission, 486

two-photon absorption, 286
coincident site lattice, 91
collector, 691
collision, 779
colloid, 420, 426
color center, 322
color space, 642
commensurability, 450
compensation, 195, 215, 322
composite fermion, 448
compound

binary, 29
carbon, 25, 473
I–VII, 27
II–VI, 28
ionic, 27

compressibility, 121
condensation, 285

Bose–Einstein, 285
bosonic, 286

conduction
band, see band, conduction
heat, 251–252
hole, 193
intrinsic, 182, 191
n-type, 193
ohmic, 183
p-type, 193
two-band, 435, 783

conductivity, 179, 224–225, 478, 591, 615, 780
channel, 416, 704
complex, 242, 291
heat, 251
longitudinal, 447
metal, 225
one-dimensional, 447
type, 200
zero-field, 444

configuration
atomic, 206
coordinate, 212
electron, see electron, configuration

confinement
energy, see energy
potential, see potential
spatial, 271

constant
Boltzmann, 758
damping, 242
dielectric, 187, 264, 298, 346, 372, 397

high frequency, 264
negative, 293
static, 264

effective Richardson, 538
elastic, 96, 119
fine-structure, 446
force, 99, 101, 110, 111, 210
Fröhlich coupling, 244
lattice, see lattice, constant
normalization, 136
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Poisson, 126
Richardson, 532, 534
spring, 96
static dielectric, 524
von-Klitzing, 446

contact
back, 630
base, 693
intracavity, 685
lines, 613
metal–semiconductor, 6, 518–545
nonohmic, 704
Ohmic, 518, 541–542, 719
resistance, 518, 541
Schottky, 6, 53, 604
transparent, 607

continuity equation, 250
convolution, 378
cooler

thermoelectric, 255
coordination number, 40
correlation, 786
Coulomb

blockade, 416
charging energy, 418
correlation, 277
gauge, 266
staircase, 416

coupling, 694
antiferromagnetic, 466
capacitive, 416
ferromagnetic, 468
intervalley, 287
nanostructures, 401
phonon–plasmon, 300
spin-valley, 394
strong, 500
weak, 500

crack, 88, 363
crescent, 402
critical thickness, see thickness, critical
crystal

class, 37
nobel gas, 31
structure, 12

Curie–Weiss law, 455
current

amplification, 695
dark, 596, 601, 607, 615, 627
diffusion, 248, 600
divergence, 250
excess, 586, 587
leackage, 629
particle, 248
photo-, 591, 624
photogenerated, 600
recombination, see recombination, current
saturation, 532, 539, 708
short-circuit, 626
space-charge limited, 542

spreading, 673
transparency, 671
tunneling, 195, 539, 586

curvature, 126, 140, 159, 163, 280, 327, 402, 572, 648
C–V spectroscopy, 528, 534
cyclotron

frequency, 433, 438
motion, 224, 432, 450
orbit, 439, 450
resonance, 162

D
de Broglie wavelength, 401
de Haas—van Alphén effect, 440
Debye law, 109
Debye length, 549, 559, 717
decay

hyperbolic, 308
time, 308

defect, 60, 129
acceptor, 192
annihilation, 89
antisite, 70, 208, 214
area, 69
density, 360
diffusion, 74
donor, 187
double acceptor, 209
double donor, 208
EL2, 214
electronic states, 179–220
etching induced, 420
Frenkel, 69
interstitial, 69, 200, 207, 214, 219
isoelectronic, 216
line, 69, 81, 495
metastable, 69
nucleation, 364
pair, 79, 195
passivation, 219
point, 69, 200, 328, 495
quantum, 397
structural, 69–94
symmetry, 210
thermodynamics, 70
vacancy, 70

deformation
volume, 153

degeneracy, 72, 100, 193, 212, 416, 441, 442
holes, 369
Kramer’s, 140
spin, 174, 189, 194, 387, 446, 447
sublattice, 447
valley, 177, 189, 387, 442

delafossite structure, see structure
Dember field, 333
demodulation, 578
density of modes, 489, 490, 506



874 Index

density of states, 173–178, 180, 369, 372, 401, 439,
441, 479

amorphous semiconductor, 174
band-edge, 327
conduction-band edge, 181
δ-like, 447
joint, 267, 377
photonic, 503
surface, 519, 521
two-dimensional, 178
valence-band edge, 181

depletion, 546
deep, 614

depletion layer, 183, 520, 599
width, 525, 558

depolarization, 451
deposition

atomic layer, 352
chemical vapor, 352
pulsed laser, 352

detailed balance, 303, 307
detectivity, 593, 595, 599
deuterium, 469
device

charge coupled, see charge coupled device
cooling, 224
high-power, 224
high-speed, 215
optoelectronic, 257
performance, 183
photonic, 257
reliability, 732
two-terminal, 517

diagram
chromaticity, 641

diamond structure, see structure
dichroism, 259, 396
dielectric constant, see constant, dielectric
dielectric function, see function, dielectric
diffraction, 260–263

reflection high energy electron, 352
diffusion, 223, 248–250, 403, 530, 536, 557, 615, 616,

692
equation, 333
lateral, 378, 593
length, 333
pair ∼ mechanism, 75
point defects, 73
surface, 352

dimer, 342
diode, 223, 517–575

backward, 587
bipolar, 517, 554–572

I–V characteristics, 560–569
fast-recovery, 582
Gunn, 238, 588
heterostructure, 554, 573, 582, 702
ideal characteristic, 532
laser, see laser
light-emitting, 351, 646

application, 646
white, 653

metal-insulator-semiconductor, 518, 545–554
metal-oxide-semiconductor, 443, 545
metal-semiconductor, 517
nonideal MIS, 553
one-sided, 563, 566
photo-, see photodiode
pin, 584
pn junction, 517
Schottky, 425, 518

I–V characteristics, 530–540
step-recovery, 582
tunneling, 585
unipolar, 517
Zener, 580, 581

dipole, 431
dipole moment, 431
Dirac particle, 389
Dirac point, 768
direction

growth ∼, 659
polar, 93
surface ∼, 684

dislocation, 81, 82, 352
60◦, 83
α, β, 83
array, 130
core, 82, 130
density, 132
edge, 83
half-loop, 129
line, 81
misfit, 84, 129, 362
partial, 84, 89
screw, 83
spacing, 91
threading, 129

disorder, 43, 65, 94, 114, 153, 174, 269, 273, 442, 534
cation, 49
configurational, 71
isotope, 312, 315

dispersion
free electron, 159
graphene, 768
linear, 280
quadratic, 280
spatial, 259, 279

dispersion relation, 159, 292, 369, 486, 762
branch, 99, 105, 300
free electron, 137
hole, 164
lattice vibration, 95
linear chain, 98, 100
parabolic, 140

displacement, 82, 96, 125, 214, 230, 453
atomic, 210
ion, 243
parameter, 49

display, 641
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application, 644
electroluminescence, 733
field-effect, 641
liquid crystal, 733
plasma, 641

distortion
tetragonal, 129, 421

distribution
binomial, 316
Boltzmann, 758
Bose–Einstein, 229, 306, 759
degenerate, 180, 294
Fermi–Dirac, 180, 307, 375, 757
Gaussian, 378, 534
momentum, 779
nondegenerate, 180
Planck, 756
spectral power, 641

domain
antiphase, 93, 357
high field, 588
inversion, 93
polarization, 457

donor, 186, 187
–acceptor pair, 322
binding energy, 187
deep, 214
double, 208
empty, 189
fine structure, 190
ionization energy, 187, 190
ionized, 188
neutral, 188, 322
populated, 189
shallow, 187

dopant, 325, 374
doping, 70, 184, 186–204, 292, 476, 617

concentration, 528
depth profile, 528
glass, 420
modulation, 234, 374, 441, 731
profile, 581, 712

drain, 704
drift, 223, 531, 602, 616

self-induced, 616
time, 608

droop, 653, 656
droplet, 421
Drude theory, 438, 444
DX center, 213, 731

E
Early effect, 699, 700
edge state, see state, edge
effect

field, 329
Hall, see Hall, effect
Jahn–Teller, see Jahn–Teller effect
polaronic, 244

quantum Hall, see Hall, effect
Stark, see Stark effect
thermoelectric, 252
Zeeman, 440

effective mass, see mass, effective
effective-mass

impurity, 187, 205
theory, 187, 777

efficiency
conversion, 627, 641
differential, 673
emitter, 696
external, 673
external quantum, 647
internal quantum, 647, 673
light extraction, 629, 647
maximum solar cell, 628
packaging, 647
quantum, 420, 480, 591, 599
total quantum, 647, 673
wall-plug, 647, 673, 690

Einstein relation, 249
EL2 defect, see defect, EL2
elasticity, 118
electroabsorption, 544
electroluminescence, 3, 733
electromagnetic spectrum, 257
electron

affinity, 185, 476, 519
conduction, 31
configuration, 22, 465
density, 179
dispersion, 158
distribution function, 180
equation of motion, 158
mass, see mass, electron
trap, 325
valence, 31, 135
wave packet, 158

electron gas
free, 175
one-dimensional, 178
three-dimensional, 177, 439
two-dimensional, 178, 226, 373, 441, 450

electron–hole droplet, 285
electronegativity, 29, 299
electrophotography, 593
ellipsometry, 439
emission

amplified spontaneous, 676
directional, 496
field, 530, 539
pattern, 507
phonon, 272
probability, 329
spontaneous, 304, 485
stimulated, 266, 306, 309
thermally activated, 329
thermionic, 530, 531, 595
thermionic field, 539
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emission rate, see rate, emission
emitter, 691

follower, 702
empty lattice, see lattice, empty
encapsulation, 399
energy

activation, 75, 219
barrier, 211
branch point, 219
capture, 213
charging, 213
confinement, 368
conservation, 271
core, 131
correlation, 284
Coulomb, 211
Coulomb charging, see Coulomb
defect formation, 69
density, 224
Dirac, 387, 389
dissipation, 446
elastic, 118
electrostatic, 416
exchange, 284
free, 206, 455
gap, 24, 25, 139
ionization, 187, 329, 476
kinetic, 139
loss, 237
Madelung, 27
optoelectronic, 430
parameter, 160
radiation, 499
Rydberg, 187, 275
strain, see strain, energy
surface, 341, 421
thermal, 230
zero-point, 32

enthalpy, 70
formation, 72, 73, 207
free, 70, 207
migration, 73, 74
mixing, 63

entropy, 70, 212, 455
configurational, 63
disorder, 72
formation, 71

envelope function, see function, envelope
epitaxial relationship, 356
epitaxy

liquid phase, 352
metalorganic vapor phase, 352
molecular beam, 352
thin film, 352

equilibrium
crystal shape, 341
state, 303
stationary, 536
thermodynamic, 183, 204, 205, 306–308, 324–326,
373, 519, 758

etch, 85, 354
pit, 85
RCA, 354
Shiraki, 354

etching, 420
anisotropic, 93, 401
plasma, 86
reactive ion, 86, 420, 669
thermal, 354
wet chemical, 420

excitation
external, 303
neutral, 308
optical, 214

exciton, 6, 262, 274–278, 396, 480
binding energy, 275, 370
bound, 281

absorption, see absorption
recombination, see recombination

bright, 279
charged, 283, 425
correlation, 431
dark, 279
delocalized, 379
diamagnetic shift, 441
dynamics, 377
free, 309, 316
Frenkel, 480
interchain, 480
intrachain, 480
ionization, 431
localized, 379
longitudinal, 279
ortho-, 279
oscillator strength, 276
para-, 279
polariton, 279
radius, 275
recombination, 309
scattering states, 277
self-trapped, 645
transverse, 279
volume, 316
Zeeman effect, 441

exclusion principle, 755
exhaustion, 190, 191

regime, 197
eye pattern, 682

F
facet

cleaved, 404, 659
etched, 669
laser, 670
side, 402
tilted, 684

faceting, 344
factor

base transport, 696
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collector multiplication, 696
fractional filling, 447
ideality, 532, 535, 696
linewidth enhancement, 683
optical confinement, 613
quality, 496, 506
Sommerfeld, 277
spontaneous emission, 671

Fano resonance, 289
far field, 667
feedback

distributed, 677
loop, 352
optical, 659

Fermi
energy, 439
function, see function, Fermi
integral, 180, 250
intrinsic ∼ level, 183, 195, 548
level, 189, 191, 194, 197, 294, 327, 373, 425, 443,
518, 544, 758
gradient, 249

liquid, 285
local quasi ∼ level, 205
quasi ∼ level, 204, 307, 309, 530, 615, 713
sphere, 224
surface, 439
vector, 439

Fermi’s golden rule, 265, 485, 506
Fermi–Dirac

distribution, see distribution, Fermi–Dirac
Fermi–Dirac statistics, 206, 207, 757
fermion, 755
ferroelectricity, 451, 453
ferromagnet

Heisenberg, 465
Fick’s law, 248
field

built-in, 544
crossed electric and magnetic, 688
crystal, 216
Dember, 333
displacement, 264, 749
drift, 692
effect, see effect, field
electric, 159, 223, 241, 244, 248, 291, 429, 524
electromagnetic, 265
external, 429
fringing, 616
high magnetic, 444
homogeneous, 431
internal electric, 223
macroscopic electric, 263
magnetic, 159, 162, 224, 271, 288, 432

static, 291
piezoelectric, 230, 415
ring, 572
strength, 611
strong electric, 329
surface, 549

time dependent electric, 291
transverse electric, 432

filling factor, 39, 626
finesse, 496
flip-flop, 8
flow

heat, 251
fluctuation, 64, 316, 377, 379, 785

amplitude, 683
phase, 683
quantum dot size, 426
vacuum, 485

fluorescence, 479
flux

luminous, 639
radiant, 639

focal plane array, 595
force, 159

dissipative, 241
image, 526
Lorentz, 433, 444, 779
restoring, 265, 454
van-der-Waals, 27

force constant, see constant, force
Fourier

coefficient, 138
series, 138
transform, 747
transformation, 56

Franck–Condon principle, 320
Franz–Keldysh oscillation, see oscillation, Franz–

Keldysh
freeze-out

regime, 191
Frenkel defect, see defect, Frenkel
frequency

cutoff, 702
high, 702, 712, 732
mixing, 578

Fresnel formulas, 261, 489
friction, 225
Fröhlich coupling constant, see constant, Fröhlich cou-

pling
function

auto correlation, 787
Bessel, 414
Bloch, 136, 159, 205, 266, 279, 368, 369, 766, 773
Boltzmann, 378
color matching, 641
cross correlation, 787
dielectric, 258, 264, 266, 291, 501, 503, 747, 750
distribution, 780
envelope, 368, 777
error-, 378
Fermi, 757
Hankel, 414
spherical harmonic, 414
static dielectric, 454
work, see work function
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G
g-factor, 432
gain, 596, 659, 675

differential, 682
maximum, 678

gate, 416, 704
charge, 727
contact, 470
voltage, 416, 443, 616

gauge invariance, 447
Gauss law, 549
generation–recombination

noise, see noise
generation-recombination, 615
Gibbs—Thomson effect, 421
Ginzburg–Landau theory, 455
glide plane, 82
glide reflection, 42
glide system, 132
grain

boundary, 35, 90, 219
boundary, small-angle, 90
size, 43, 633, 644, 734
structure, 134

graphene, 14, 383, 772
grating, 595

sampled, 679
group

point, 41, 340, 743, 744
space, 42, 340, 356, 743, 745
theory, 35, 141

growth
Czochralski, 352
Frank-van der Merwe, 355
kinetics, 199
methods, 352
mode, 355
pseudomorphic, 126
rate, see rate, growth
spiral, 83
Stranski-Krastanow, 355, 421
template, 420
Volmer-Weber, 355

guard ring, 572
Gunn element, 588

H
Halbleiter, 4
Hall

bar, 445, 450
coefficient, 434

sign, 435
constant, 435
effect, 214, 432–437, 782

anomalous, 470
electrical, 439
fractional quantum, 447
integer quantized, 445
optical, 439

quantized, 12, 444
quantum, 351
quantum anomalous, 470

factor, 437
plateau, 445, 447
resistivity, 447, 450

Hayne’s rule, 311
heat

capacity, 455
conduction, see conduction, heat
latent, 455
sink, 255, 650, 659, 674
transport, see transport, heat

heavy metal, 481
Helmholtz equation, 486
heteroepitaxy, 118, 122, 461
heterointerface, 441

graded, 574
heterojunction, 628, 731
heterostructure, 12, 351–380, 421, 445, 504

type-I, 365
type-II, 365
van-der-Waals, 398

hexagonality index, 54
hole, 163–167

capture, 327
concept, 163
density, 180, 194
dispersion, 163, 369
dispersion relation, see dispersion relation, hole
effective mass, 164
gas, 468
heavy, 164, 369
light, 164, 369
mass, see mass, hole
split-off, 164, 240, 269

HOMO, 25, 476
hopping, 244, 772

transport, see transport, hopping
Huang–Rhys parameter, see parameter, Huang–Rhys
hue, 641
Hund’s rule, 466
hybridization

p–d, 468
sp2, 25, 384, 473
sp3, 22

hydrogen, 187, 219, 312, 384, 469
2D model, 397
2D problem, 396
atom, 431
modified model, 397
molecule, 21, 283
problem, 187

hydrogenation, 44
hyperdoping, 203, 235
hysteresis, 451, 457, 468

I
ideality factor, see factor, ideality
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illuminance, 640
illumination, 591, 607, 613, 617, 625
image charge, see charge, image
image sensor, 595, 616, 618
impact ionization, 239, 324, 570, 609
impedance, 578, 613

amplifier, 702
input, 704

impurity, 70, 88, 179, 219, 287, 310, 325
amphoteric, 199
background, 195
band, see band, impurity
binding energy, 370
charged, 288
concentration, 179
hardening, 88
incorporation, 199
isoelectronic, 282, 646
isovalent, 70
magnetic, 466
shallow, 186

in-situ
control, 352
monitoring, 352

inclusion, 49
index of refraction, 260, 291, 748
insulator, 518, 545–548, 552

topological, 348
interaction

antiferromagnetic, 468
atom–cavity, 499
Coulomb, 27, 187, 274, 370, 401, 447
dipole–dipole, 31
double exchange, 468
electron–phonon, 33, 154, 244, 265–267
electrostatic, 27, 33
exchange, 279, 285
gap, 467
hyperfine, 187, 206, 211
indirect exchange, 468
London, 31
many-body, 447
nearest-neighbor, 465
parameter, 63
Ruderman–Kittel–Kasuya–Yoshida, 468
spin-orbit, 164, 394, 432, 470, 481, 772, 774
superexchange, 465, 467
van-der-Waals, 31, 474

interconnect, 723
interface, 129, 130, 370, 451, 460, 548, 616

flat, 379
geometry, 351
heterostructure, 519
planar, 260, 351
plane, 369, 531
single hetero-, 366, 373
state, 544

interstitial, see defect
inversion, 41, 93, 141, 546, 688

center, 459

charge, see charge, inversion
strong, 550
weak, 549

inversion domain, see domain, inversion
inverted opal, 493
inverter, 719
ionicity, 29, 121, 150, 299
ionization, 288, 557

exciton, see exciton
photothermal, 288

iron, 81, 93, 207, 216
irradiance, 639
irradiation, 328
island growth, 421
isomer shift, 199
isotope, 94, 199, 251, 312

effect on phonon, 107

J
Jahn–Teller effect, 70, 210, 211

dynamic, 211
Joule heating, 251, 255
junction

abrupt, 554
deep, 572
graded, 673
hyperabrupt, 581
multiple, 628
one-sided, 555, 559

K
Keating criterion, 120
kick-out mechanism, 75
kink, 343
Kirchhoff’s law, 707
Klein paradox, 389
k · p theory, 159, 773–776
Kramer’s degeneracy, see degeneracy, Kramer’s
Kramers–Kronig relation, 259, 267, 747–748, 750

L
Lambert–Beer’s law, 262, 602
Lamé’s constant, 121
Landau level, see level, Landau
large scale integration, 721
laser, 9, 223, 351, 659–689

cascade, 660
condition

thermodynamic, 309
diode, 660
double heterostructure, 9, 10
edge emitting, 659
horizontal cavity surface-emitting, 684
hot hole, 688
lead salt, 678
modulation, 679
monochromatic, 677
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monomode, 677
multisection, 679
optically pumped, 686
output power, 672
quantum cascade, 688
surface-emitting, 659, 684
tunable, 678, 685
two-section, 679
vertical-cavity surface-emitting, 499, 684
zero-threshold, 485

lattice
1D Bravais, 96
2D Bravais, 36
3D Bravais, 37
body-centered cubic, 37
Bravais, 35–37, 340
constant, 65, 96, 101, 126, 150
empty, 137
expansion, 154
face-centered cubic, 37
honeycomb, 768
ionic, 243
match, 153
mismatch, 118, 126, 362
period, 450
point, 36, 40, 97
reciprocal, 56–60, 136
relaxation, 70, 210, 214
simple cubic, 37
site, 199
temperature, 237, 286
vibration, 95–265

lattice matched, 362
Laughlin theory, 448
layer

active, 659
amorphous, 356
depletion, see depletion layer
inversion, 443, 445, 705
nucleation, 356
semi-insulating, 206
sequence, 366
space-charge, 520
spacer, 731
wetting, 355

level
charge neutrality, 219
deep, 174, 186, 205, 289, 582
Landau, 439, 441, 443, 446, 447, 467
midgap, 328, 330
occupancy, 211
quantized, 368

lifetime, 308, 328, 378
carrier, 591
minority carrier, 308, 327, 564, 578
phosphorescent, 481
photon, 671
triplet, 479

lift-off, 127
light-emitting diode, see diode

linear chain
diatomic, 99
monoatomic, 96

lithography, 420
localization, 243, 314, 400

Anderson, 243, 247
energy, 311
exciton, 318
light, 495

Löwdin perturbation theory, 773
loss, 669

internal, 669
mirror, 670

LST relation, see Lyddane–Sachs–Teller relation
luminance, 640
luminescence, 315, 479

decay, 506
impurity, 646
mechanism, 645
negative, 307

luminosity, 639
LUMO, 25, 476, 479
Luttinger Hamiltonian, 776
Luttinger parameter, see parameter, Luttinger
Lyddane–Sachs–Teller relation, 264, 299

M
Macfarlane–Roberts plot, 272
Madelung constant, 27, 28
magnetic moment, 467
magnetoresistance, 440, 443
magnetotransport, 432, 450
mask, 360
mass, 96, 101

anisotropic, 287, 432
carrier, 439
density of states, 162, 177, 178, 181
effective, 140, 159, 163, 187, 227, 326, 368, 369
effective conductivity, 225
electron, 161
hole, 166
isotropic, 161
longitudinal, 161
nonparabolicity, 162
polaron, 243
reduced, 299, 429
strain effect, 172
transverse, 161, 369

mass-action law, 182
matrix element, 265, 266, 271, 307, 369, 419

bulk momentum, 160
dipole, 594
k-dependence, 160
momentum, 159, 266, 773

Matthiesen rule, 227
Maxwell’s equations, 260, 493
mean free path, 225, 450
memory, 691, 721

flash, 727
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nonvolatile, 727
metalorganic, 352, 481
metamaterial, 502
microcavity, 286, 496, 506, 671, 684
microdisc, 504
micropillar, 506
microscopy

scanning tunneling, 192, 195
secondary electron, 402

midgap level, 286
Miller indices, 57

wurtzite, 59
miniband, 372
minigap, 372
mirror operation, 41
miscibility gap, 60
mobility, 226, 374, 399, 439, 450, 530, 702, 734, 782

channel, 732
edge, 379
effective, 716
extremely high, 351
field effect, 716
high, 444
high electron, 227
hole, 226
metal, 226
negative differential, 710
optical carrier, 438
saturation, 717
surface, 359
temperature dependence, 232

mobility edge, 247
mode

chaotic, 507
defect, 494, 496
evanescent, 506
gap, 112
hopping, 678
localized vibrational, 71, 110–219
longitudinal phonon plasmon, 300
normal, 32
optical, 100, 485
out of plane, 385
single longitudinal, 676
soft phonon, 454
spectrum, 676
stretching, 480
volume, 506
whispering gallery, 504, 506, 508

model
ABC, 328
anti-crossing, 173
Bardeen, 519, 521
Bose—Einstein, 157, 158
Cohen—Fritzsche—Ovshinsky, 174
Davis–Mott, 174
Drude, 291
Ebers—Moll, 697, 699
hydrogen, 275, 371, 397
Kane, 774

Kronig-Penney, 137, 152, 202, 372, 761–762
Marshall—Owen, 174
Mott, 174
multi-layer, 437
Schottky—Mott, 519, 522
Su—Schrieffer—Heeger, 769
Thomas—Fermi, 228
tight-binding, 387, 765
Zener, 468
zero range, 289

modulation
large-signal, 681
pulsewidth, 655
small-signal, 682

momentum
angular, 271, 369, 414
conservation, 266
cyrstal, 159
matrix element, see matrix element
orbital angular, 164, 288
total angular, 164

monolayer, 343, 352, 366, 379
Moore’s law, 721
Mott—Gurney law, 543
Mott transition, see transition, Mott
multiexciton, 425
multiferroics, 451
multiplication

region, 613

N
nanobelt, 406
nanohelix, 127
nanolaser, 405
nanoscroll, 127, 129
nanostructure, 401–426, 727
nanotube, 127

BN, 412
carbon, 408
metallic, 410

nanowhisker, 404, 407
negative-U center, 211
neutrality, 182

charge, see charge, neutrality
condition, 183, 191, 196
constraint, 206

Newton’s law, 158
Nobel Prize, 12, 13, 351, 585
noise, 785

1/ f , 789
equivalent power, 593, 600
excess, 610
Flicker, 789
generation-recombination, 592, 791
shot, 601, 790
source, 601
thermal, 592, 601, 610, 788
white, 789

nonequilibrium, 204, 303



882 Index

thermodynamic, 205
nonlinear optics, 286, 457, 486
nonparabolicity, 249, 431
nonpolar, 229, 461
nucleation, 355, 356, 734

dislocation, 129
number

atomic order, 70, 315
Chern, see Chern number
complexion, 72
order, 45

O
Ohm’s law, 225
orbit

drifting, 450
scattering, 450

orbital, 22
antibinding, 24
antisymmetric, 22
bonding, 24
highest populated, 25
lowest unoccupied, 25
overlap, 95
symmetric, 22

order
antiferromagnetic long-range, 468
long-range, 43
spontaneous magnetic, 465
stacking, 47, 54

ordering, 67
CuAu, 68
CuPt, 67
in-plane, 424

orientation, 219
random in-plane, 356

oscillation
Bloch, 224
Franz-Keldysh, 430
Shubnikov-de Haas, 440, 442
Weiss, 450

oscillator, 8, 238
harmonic, 32, 95, 413, 418, 439, 749
local, 578
master, 690
strength, 112, 267, 279, 299, 593, 749–753

exciton, see exciton
voltage-controlled, 581

oscillator strength, 262
Ostwald ripening, 421
overgrowth

cleaved-edge, 403
epitaxial lateral, 360

overlap
geometrical, 613

oxide
aperture, 685
high-k dielectrics, 719
transparent conductive, 3, 511–513

P
parabola, 162
paramagnetic ion, 465
parameter

s, 29, 89
Heisenberg exchange, 465
Huang–Rhys, 320
Luttinger, 166

partition sum, 755
passivation, 44
pattern

moiré, 398
peak-to-valley ratio, 587
Peltier effect, 223, 254
periodic system, 14, 22, 186
phase, 82, 93, 679

Berry, 103, 143
Bloch, 488
change, 730
cubic, 453
diagram, 63, 285
factor, 488, 761
ferroelectric, 453, 455
metastable, 54, 146
opposite, 263
ordered, 94
orthorhombic, 453, 457
paraelectric, 453, 455
paramagnetic, 468
rhombohedral, 457
separation, 63
shift, 448
spin glass, 468
tetragonal, 149, 453, 457
transition, 40, 47, 131, 153, 285, 453, 455, 456

first-order, 456
second-order, 455

trigonal, 453
phonon, 33, 96, 109, 271

absorption, 330
acoustic, 101, 229, 280
alloy, 112

one-mode, 112
two-mode, 112

average temperature, 158
Bose-Einstein model, 157, 158
broadening, 277
dispersion, 105, 157, 158
emission, 324
energy, 380
infrared active, 262
LA, 100
LO, 100, 230, 244, 265
long wavelength, 265
optical, 101, 157, 298, 301

emission, 237
replica, 480
soft, 454
TA, 100
TO, 265
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phonon-drag, 254, 783
phosphor, 641, 642, 654
phosphorescence, 479
photocatalysis, 339, 589
photoconductivity, 483

persistent, 214
photoconductor, 591, 593
photodetector, 206, 223

FIR, 287
quantum well intersubband, 593
traveling wave, 613

photodiode, 599–623, 623, 623, 623, 623, 623, 623,
623, 623

array, 618
avalanche, 599, 609–613, 621
bipolar, 600
metal-semiconductor-metal, 604
pin, 602
stacking, 620

photometry, 639
photon

counting, 570
photoresistor, 517
piezoelectricity, 451, 459
pinch-off, 706, 707, 709, 714, 715
planar technology, 8, 517, 595, 684, 723
Planck’s law, 306
plane

high index, 344
plasma, 641

frequency, 292, 301, 438, 503
plasmon, 293, 346
plastic flow, 130
pnictide, 48
point

critical, 268, 274
crossover, 213
defect, see defect, point
Dirac, 385, 388, 410, 768
F, 149
�, 60, 98, 100, 101, 144, 149, 272
group, see group, point
K, 60
L, 60, 145, 146, 153
M, 149
saddle, 268
X, 60, 100, 144, 153

Poisson
equation, 373, 522, 549, 557, 707
ratio, 121
statistics, 786

polariton, 286, 300
lower branch, 280
surface plasmon, 346

polarizability, 299
polarization, 261, 264, 279, 370, 396, 594, 748

circular, 271, 471
electric, 230, 451
ferroelectric, 52
light, 286

p, 261
s, 261
spin, 468
spontaneous, 67, 451
TE, 370
time-dependent, 263
TM, 370

polaron, 243, 478, 645
small, 244

poling, 457, 547
periodic, 457

polyhedra, 41
polymer, 25

chain, 476
polymorphism, 54
polytypism, 54
Poole–Frenkel effect, see effect, Poole–Frenkel
population, 325

inverted, 309
position sensing detector, 603
potential

asymmetric, 95, 594
atomic interaction, 95
built-in, 521
chemical, 207, 757
confinement, 368
Coulomb, 138
crystal, 138
distribution, 526
double well, 152
external, 525
fluctuation, 379
hard wall, 761
harmonic, 96
hydrostatic deformation, 170, 229
inversion surface, 714
ion core, 186
lateral ∼ well, 617
Lennard–Jones, 31
long-range Coulomb, 329
minimum, 377
optical deformation, 171
periodic, 5, 135, 187
piezoelectric, 463
pure Coulomb, 287
screened Coulomb, 227
short range, 186
triangular, 373
two-dimensional well, 407
well

three-dimensional, 413
power

maximum, 627
noise, 788
output, 627
spectral, 641
thermoelectric, 252
total, 639

pre-breakdown, 570
precipitate, 198
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precursor, 352
pressure, 70, 118

high, 12
hydrostatic, 47
partial, 199
vapor, 421

process
activation, 210
causal, 747

processing temperature, 511
propagation

direction, 370
punch-through, 700
Purcell effect, 500, 503, 506
purity, 179
pyroelectricity, 451
pyrolysis, 352

Q
quadrupole, 463, 507
quality factor, see factor, quality
quantum

box, see quantum, dot
dot, 123, 178, 379, 401, 413–426, 506, 595

charge tunable, 425
cleaved-edge overgrowth, 404
cubic, 415
lens-shape, 419
pyramidal, 415
self-assembled, 418, 420
spherical, 414
stack, 421

efficiency, see efficiency, quantum
electrodynamics, 499
magnetic flux, 447
well, 178, 286, 366, 431, 703

coupled, 372
energy level, 368
multiple, 366
sidewall, 402
vertical, 403

wire, 123, 178, 401–407
cleaved-edge overgrowth, 403
T-shaped, 404
V-groove, 401

quantum defect, see defect, quantum
quantum dot, see quantum, dot
quantum Hall effect, see Hall, effect
quantum statistics, 755–759
quantum wire, see quantum, wire
quarter-wave stack, 489
quasi-Fermi level, see Fermi, level
quasicrystal, 41

R
Rabi frequency, 499, 501
radiance, 639
radiometry, 639

radius
self-limited, 402

random bit pattern, 682
random walk, 248
Rashba effect, 470
rate

Auger recombination, 324
capture, 326
emission, 326, 329
escape, 596, 671
generation, 250, 303, 591
growth, 352
net recombination, 306
pulling, 352
recombination, 250, 307
thermal Auger generation, 324
thermal generation, 307
tunneling, 330

recombination, 195, 303–335, 399, 471, 479, 530, 553,
578, 589, 703

Auger, 323
band–band, 304
band–impurity, 325
bimolecular, 307
bound-exciton, 310
center, 328, 582
current, 330, 648
donor–acceptor pair, 322
dynamics, 308
excitons, 309
free-exciton, 309
lineshape, 377
nonradiative, 90, 206, 696
quantum well, 375
radiative, 351, 480, 646
rate, see rate, recombination
spectrum, 425
spontaneous, 304
surface, 330–331
velocity, 538

rectification, 2, 6, 576
rectifier

metal–semiconductor, 6
point contact, 7

reflectance, 261, 300
reflection, 257, 260–263, 679

anisotropy spectroscopy, 352
distributed, 677
low, 603
total, 261, 506, 648

region
space-charge, 520

relaxation
carrier, 303
plastic, 129, 421
time-constant, see time-constant, relaxation

resharpening, 402
resistance

negative differential, 587, 588
serial, 629
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shunt, 629
resistivity, 225

high, 215
negative differential, 237
transverse, 445

resonator
deformed, 505, 506
microscopic, 504–510
spiral, 507

responsivity, 601
reststrahlenbande, 299, 300
richardson constant, see constant, Richardson
rocksalt structure, see structure
rotation, 41, 93, 229, 739

general, 739
improper, 41

roughness, 354, 506

S
saturation, 641

electron density, 190
scalar, 740
scattering, 432, 446, 779, 783

deformation potential, 229
elastic ∼ process, 229
grain boundary, 232
hot-carrier, 689
impurity, 731
inelastic, 230
intervalley, 712
ionized impurity, 227, 374
matrix, 487
microscopic process, 227
phonon, 291
piezoelectric potential, 230
polar optical, 230
process, 224
Rutherford, 227
spin, 470
theory, 486
time, 435

Schönfließ notation, 41
Schottky

barrier, see barrier, Schottky
Schottky effect, 526
Schrödinger equation, 135, 138, 368, 373, 401, 429,

486, 773
scintillation detector, 644
scintillator, 641
scrolling, 127

direction, 128
second-harmonic generation, 457, 578
Seebeck effect, 223, 252
selection rule, 271, 369

optical, 370
polarization, 594

self-assembly, 421
self-consistent, 373
semiconductor, 4

alloy, 152
amorphous, 35, 43–44, 153, 174, 219, 274, 734
compound, 7, 47, 145
diluted magnetic, 465–470
doped, 183
elemental, 144, 150
ferroelectric, 453
history, 1
II–VI, 150, 230
III–V, 150
indirect, 272, 325
inhomogeneous, 223
intrinsic, 182
lead salts, 156
magnetic, 53, 465–471
nonpolar, 229
organic, 25, 473–480, 543
oxide, 352
polarized, 451–463
polycrystalline, 35, 43
properties, 16
semi-insulating, 215
small band gap, 227
small-gap, 183
wide band gap, 183, 465, 468, 541
wide-gap, 183

semipolar, 361, 461
Shell structure, see structure, shell
Shockley—Queisser limit, 628
Shockley—Read—Hall kinetics, 307, 325
Shubnikov-de Haas effect, 443
side-mode suppression ratio, 676
signal-to-noise ratio, 592, 601, 610, 785
singularity, 125, 174, 268

Fermi-edge, 376
van-Hove, 174, 268

snapback time, 582
Snell’s law, 260
sol-gel process, 420
solar

cell, 3, 223, 623–637
spectrum, 624

solid-state multiplier, 611
solubility, 64, 80, 203, 216
source, 704
space group, see group, space
space-charge limited current, 542
space-charge region, 522, 548, 555

capacitance, 528, 552
spectroscopy

deep level transient, 214
Mössbauer, 199
Raman, 380

spectrum
noise, 787

spin, 141, 164, 271, 467
alignment, 471
glass, 468
LED, 471
nuclear, 188, 313
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polarization, 349
rotation, 470
splitting, see splitting, spin
total, 279
transistor, 470

spin-orbit interaction, 141, 349, 772, 774
spinodal, 64

decomposition, 64
spintronics, 465, 470
spliting

spin, 394
splitting, 210, 312

crystal field, 168
Rabi, 501
spin, 141, 432, 446
valley-orbit, 312
Zeeman, 288, 313

stacking, 39
Bernal, 398
vertical, 402, 421

stacking fault, 84, 89
energy, 89
extrinsic, 89
intrinsic, 89

Stark effect
quantum confined, 431, 461, 679
second-order, 431

state
dark, 480
edge, 103, 115, 116, 447, 772
macroscopic quantum, 447
midgap surface, 521
triplet, 481

step, 343
bunch, 343
monoatomic, 93
surface, 354

Stirling’s formula, 72
stoichiometry, 61, 200
Stokes shift, 378, 534
Stoney’s formula, 127
strain, 119, 230, 362, 594

bending, 128
biaxial, 126, 170
compressive, 122, 171
distribution, 124, 415
energy, 118, 128, 132, 421
homogeneous, 170
hydrostatic, 170, 172
in-plane, 461
inhomogeneous, 170, 285, 776
large, 170
management, 127
microscopic, 49
misfit, 130
plastic relaxation, 84
random, 312
relaxation, 362, 421
shear, 122, 170, 459
small, 170

tensile, 122, 171
tensile surface, 421
tensor, 229
three-dimensional, 415

streaming motion, 689
stress, 119, 219, 362

–strain relation, 118, 119, 121
biaxial, 122, 123
external, 451
superposition, 125
three-dimensional, 123
uniaxial, 461

structure
band, see band structure
chalcopyrite, 48
CsCl, 45
delafossite, 51
diamond, 45, 133, 153
dielectric, 485–510
field-ring, 572
fluorite, 51
hexagonally close packed, 39
interdigitated, 607
NiAs, 53
orthorhombic, 28
periodically poled, 457
perovskite, 52, 453
pseudomorphic, 362
rocksalt, 27, 45, 53, 153
shell, 418, 519
spinel, 49
tetragonal, 28
wurtzite, 47, 153
zincblende, 27, 46, 93, 133, 152, 153

subband, 178, 441, 593
edge, 369, 372

sublattice, 46, 322, 465
anion, 47
cation, 47

substrate
bending, 122, 126
compliant, 362
curved, 355
hetero-, 356
homo-, 356
patterned, 359
polished, 354
rotation, 352
transparent, 650

sun, 623
superconductivity, 33, 235, 400
superlattice, 61, 224, 366, 369, 372, 660

buffer layer, 354
isotope, 380

surface, 339–349
cracks, 134
energy, 341
index, 521
isoenergy, 174, 432
isofrequency, 503
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passiviation, 339
phonon, 345
plasmon, 346
reconstruction, 341
resonance, 348
state, 347
vicinal, 343

surface state, 219
susceptibility, 748

electric, 749
magnetic, 440
nonlinear third-order electric dipole, 286

switch, 206
symmetry

chiral, 104, 770
inversion, 141
mirror, 431
parity, 772
reduction, 210
surface, 340
tetrahedral, 287
time reversal, 140, 349
trigonal, 213

T
tail

carrier distribution, 524
exponential, 429
states, 442
Urbach, see Urbach tail

Taylor series, 250
temperature

blackbody, 593
characteristic, 675
Curie, 454, 465, 468
Curie–Weiss, 457
Debye, 230
difference, 254
electron, 237
gradient, 223, 251
lattice, 237, 789
local, 205

tensor, 739
conductivity, 444
dielectric

magneto-optic, 439
dielectric function, 258
effective mass, 777
effective-mass, 159, 187
nonlinear third-order electric dipole susceptibility,
286

resistivity, 444
terrace, 343, 344
theory

Drude, see Drude theory
effective mass, see effective mass, theory
Laughlin, see Laughlin theory
perturbation, 210
time-dependent perturbation, 265

thermal instability, 570
thermalization, 378, 534

incomplete, 378
thermopower, 252, 783
thickness

barrier, 372, 762
critical, 129–405
film, 130
oxide, 617
quantum well, 368, 377

Thomson heating, 255
threshold, 670
tight-binding model, 765
tilt, 90
time constant, 303, 308, 399, 528, 553, 616, 703

decay, 641
LO phonon emission, 237
RC, 613
relaxation, 225, 227
reorientation, 211

topological invariant, 102, 770
topology, 142, 770, 772
transconductance, 701, 708, 716

differential, 701
transistor, 7, 223, 691–738

bipolar, 8, 691–703
effect, 12
field-effect, 4, 6, 703
heterobipolar, 351, 702
high electron mobility, 351, 731
JFET, 8
junction field effect, 7, 706
light-emitting, 703
MESFET, 7, 10, 706
MOSFET, 4, 9, 445, 712
organic, 738
planar, 9
point contact, 7
spin, see spin, transistor
thin film, 736

transit time, 603, 712
transition

band–band, 267
dipole, 279
direct, 268
displacement, 453
donor–acceptor pair, 322, 646
forbidden, 276
indirect, 271
intersubband, 688
metal, 466
metal–insulator, 202, 233, 243, 247
Mott, 379
optical, 160, 168, 262, 288, 304, 425, 506
probability, 265

transmission, 257
transparency, 671
transport, 223–255, 416

ballistic, 224, 530, 689
Boltzmann theory, 779
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charge, 223
coupled heat and charge, 251
diode current, 530
heat, 251
heat energy, 223
high frequency, 241
high-field, 236
hopping, 245, 437, 478
ionic, 248
low-field, 225
magneto-, see magnetotransport

trap, 329
filled, 326
multilevel, 328
surface, 521

trion, 283, 425, 426
tuning range, 679
tunneling, 12, 368, 372, 377, 530, 539, 570, 573, 595

assisted, 330
current, 416
direct, 330
Fowler–Nordheim, 727
inelastic, 587
phonon-assisted, 330
photon-assisted, 330, 430
rate, see rate, tunneling
Zener, 6

turn-on delay time, 681
twin, 89

boundary, 89
lamella, 89

twist, 90, 398, 407
two-electron satellite, 311
two-photon process, 266

U
umklapp process, 110
uniaxial, 259, 503
unit cell, see cell, unit

volume, 159
Urbach tail, 273

V
vacancy, 69, 200, 206, 212, 214
vacuum, 403

level, 519
tube, 2, 4, 517, 691, 721
ultrahigh, 352

valence band, see band, valence
valley

current, 419, 586
L, 238
X, 287

van-der-Pauw geometry, 433
van-Hove singularity, see singularity, van-Hove
varactor, 581
variable range hopping, 246
variance, 786

Varshi’s formula, 156
vector

antiphase, 93
Burger’s, see Burger’s vector
displacement, 118
in-plane wave, 369
line, 81
potential, 125, 266
reciprocal lattice, 137
translation, 35
wave, 139

Vegard’s law, 65
velocity

average carrier, 225
drift saturation, 237, 603, 708
effective diffusion, 538
glide, 132
group, 98, 158, 486
light, 291
match, 613
maximum, 225
maximum drift, 237
mismatch, 613
overshoot, 238
phase, 98
sound, 99, 229
surface recombination, 330, 335
thermal, 326, 532

Vernier effect, 679
void, 70
voltage

bias, 527
breakdown, 571, 579, 607, 703
built-in, 528, 555
diffusion, 521
flat-band, 553, 554, 607
gain, 701
gate, see gate, voltage
maximum reverse, 570
open-circuit, 626
pinch-off, 706
reach-through, 606
reference, 580
regulator, 579
threshold, 716
turn-on, 703

vortex, 448

W
wafer, 352

bending, see substrate, bending
bonding, 381, 628, 650, 651
breakage, 133
diameter, 353
edge, 134
epiready, 354
flat, 353

Wannier’s theorem, 777
warping, 165, 193, 768
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wave
acoustic, 99
compression, 229
electromagnetic, 291
equation, 138, 291, 486
evanescent, 347
longitudinal, 96
plane, 98, 136, 429
shear, 229, 230
sound, 99
standing, 99, 139
transverse, 96
traveling, 613
vector, 291

wavefunction
d, 195
many-electron, 448
overlap, 372, 401, 419
strongly localized, 205

waveguide, 492, 495, 496, 613, 666, 670, 677
plasmon, 293

weiss oscillation, see oscillation, Weiss

well capacity, 616
Wiedemann–Franz law, 251
Wiener–Khintchine theorem, 788
work function, 519, 521, 544, 545
wurtzite structure, see structure

Y
Young’s modulus, 120, 385

Z
zincblende, 141
zincblende structure, see structure
zone

boundary, 100, 139, 224, 762
vicinity, 140

Brillouin, see Brillouin zone
reduced scheme, 136
scheme, 136

ZT -value, 254
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