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Abstract Oxygen concentrations are predicted to decline under climate change
scenarios. To assess the possible effect of low dissolved oxygen levels on fish
condition, we evaluated the condition of fish in the Northwest Arabian Sea, a region
of persistent oxygen minimum zones (OMZs). Condition of fish was inferred from
the coefficients of length–weight relationships (LWR), comparing LWR coefficients
for 53 species sampled across the Northwest Arabian Sea OMZ to the coefficients
reported for these species from non-OMZ regions. Regional effects of oxygen
depletion were also examined by comparing coefficients from LWR of seven fish
species in four different regions of the Northwest Arabian Sea across a latitudinal
gradient. The estimated values of a, the body form coefficient, were significantly
higher in the Northwest Arabian Sea than in non-OMZ regions. However, there was
no significant difference in b, the allometric growth rate, observed in the Northwest
Arabian Sea with those observed elsewhere. Regions showed significant difference
in allometric growth rates for five of seven investigated fish species, with Drepane
longimana, Pagellus affinis, and Pomadasys commersonnii showing decreasing
trends from north to south, while Argyrops spinifer and Carangoides equula showed
the opposite trend, and Cheimerius nufar and Plectorhinchus schotaf showed no
discernable trend. Fishes from the Northwest Arabian Sea had larger body forms
(as indicated by the LWR coefficient a) compared to conspecifics in non-OMZ
regions but showed increased allometric growth rates (as indicated by the LWR
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coefficient b) with declining oxygen on a regional basis. Climate models predict
expansion of OMZs globally, and fishes in the Arabian Sea showed unexpected
responses in relation to the OMZ. Consequently, the conditions of the fishes need to
be studied in Arabian Sea using empty weight during different seasons, regions, and
depth strata and configure its relation to the environmental factors and compare the
results with same fishes from non-OMZ.

Keywords Length-weight relationship · Northwest Arabian Sea · Body form ·
Allometric growth rate

1 Introduction

Climate change is predicted to have significant consequences for marine ecosystems
and the fisheries they support (Brander 2010; Cheung et al. 2009), with oceans
functioning as a natural carbon sink, absorbing approximately half of all anthropo-
genic carbon dioxide (CO2) (Le Quéré et al. 2007). Analysis of available time series
has revealed changes in distribution, abundance, and production of fish species that
correlate with climate-related environmental variables (Rijnsdorp et al. 2009). There
is also evidence suggesting that species change the timing of their life cycles in
response to ocean warming and have shifted their geographic distributions toward
higher latitudes (Chen et al. 2011). Moreover, climate change may also lead to a
reduction in mean body size as predicted by the temperature-size rule, under which
individuals experiencing higher temperatures will have smaller body sizes (Walters
and Hassall 2006; Feary et al. 2010). The synergistic effects of climate change on
fish are also driving concern with respect to fisheries production (Halpern et al.
2008).

One predicted impact of climate change is increased areal extent of persistent
oxygen minimum zones (OMZs) (Diaz and Rosenberg 2008). Of particular concern
are the substantial reductions in formation rate and/or density of certain key water
masses that lead to changes in the dissolved oxygen levels via reduction in the
ventilation rate and biogeochemical cycling and changes in overturning timescales
(Matear 2003). Climate change scenarios also predict outgassing of oxygen from the
ocean into the atmosphere and large declines in the dissolved oxygen concentrations
in the ocean by the end of this century (Keeling et al. 2010).

The Arabian Sea covers an area of approximately 3,862,000 km2 with depths
ranging to 2990 m. Mean environmental conditions are 24 �C temperature and
4 ml�1 O2, but these conditions vary strongly by season and are driven by the
monsoon. For instance, during periods when the OMZ occurs, oxygen levels
typically decline to <0.2 ml�1 (Kumar et al. 2009). The Arabian Sea fish fauna
includes representative species from all marine families found in the Indian Ocean,
and 93% of the marine fish families found across the Indo-Pacific (Fouda et al. 1998;
Siddeek et al. 1999; Henderson et al. 2007). The region supports both artisanal and
industrial fisheries that use a variety of fishing gear including gillnets, traps, lines and
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hooks, and bottom trawls (Al-Oufi et al. 2000; Al-Masroori et al. 2004; McIlwain
et al. 2006).

The Arabian Sea has one of the only three permanently existing oxygen minimum
zones globally, with the other two located in the Eastern Pacific Ocean and off West
Africa, and as such provides a natural experiment where the effects of low oxygen
levels on fish can be examined. The Arabian Sea OMZ is driven by large-scale
forcing factors such as monsoons that strongly affect oxygen levels (Von Rad et al.
1999). Additionally, aeolian forcing, fluvial inputs from the surrounding land
masses, and upwelling of nutrient-rich water to the surface by the Southwest
Monsoon make the Arabian Sea one of the most productive oceanic areas in the
world (Brink et al. 1998), with reported mean primary productivity in Oman’s
Economic Exclusive Zone of 1327 mgCm�2 day�1 (Khalfallah et al. 2015). The
region is also characterized by slow water circulation, and a high salinity current
exists at 200–350 m water depth, forming the upper limit of the OMZ (Reichart et al.
1997; Schulz et al. 1998; Von Rad et al. 1999). A strong thermocline further prevents
downward mixing of oxygenated surface water (Altabet et al. 1995; Brink et al.
1998; Von Rad et al. 1999). Consequently, a persistent OMZ is located along the
Omani coast in the Arabian Sea (Morrison et al. 1999).

Dissolved oxygen concentration is important to fish as it underpins the physio-
logical basis for fish growth (Breitburg 2002). Dissolved oxygen concentration can
influence feeding, metabolic rate. and energy expenditure of fish (Buentello et al.
2000; Borsuk et al. 2001). When dissolved oxygen concentration decreases, respi-
ration and feeding activities also decline causing reduced growth rates (Wu et al.
2003) with implications for reproductive output (Wu 2002). Additionally, behavioral
changes such as changes in dial vertical migration can occur in response to reduced
oxygen levels (Diaz and Rosenberg 2008; Gibson and Atkinson 2003). Finally, low
oxygen levels can increase the risk of disease (Pichavant et al. 2001) and lead to
acute responses such as mass mortalities (Peterson et al. 2000; Naqvi et al. 2010).
Indeed, expanding hypoxia and anoxia have been blamed for the replacement of
economically important demersal fish species with less valued planktonic omnivores
in the Black Sea where oxygen levels have fallen from 2 to 0.5 mll�1, and only six of
26 commercial fisheries remain viable (Mee 1992; Diaz 2001).

Changes in growth and behavior in response to reduced oxygen levels may
manifest in changes to fish condition (Wu 2002). Fish condition can be quantified
by length–weight relationships (LWR) in terms of whether individuals are at a
predicted weight at a given length (Murphy et al. 1991; Koops et al. 2004). Length–
weight relationships are characterized by a non-linear model that estimates the
coefficients a and b, where the intercept a reflects body form and the slope b is the
allometric growth rate. These coefficients are species-specific (Piet and Jennings
2005) and can be used to compare populations across habitats and regions
(Gonçalves et al. 1997; Petrakis and Stergiou 1995). The use of LWRs as an
indicator of condition is based on the assumption that greater weight at a length
indicates better condition (Froese 2006). Moreover, as body weight is positively
correlated with reproductive output (Wootton 1985) and the quality of offspring
(Venturelli et al. 2009), there are multiple benefits to greater weight at length.
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While previous studies have assessed a wide range of climate-driven impacts on
fish and fisheries, the influence of a persistent low oxygen environment in the
Arabian Sea on fish condition has yet to be explored. A spatially extensive and
fisheries-independent data were analyzed on fish lengths and weights from the
Arabian Sea comparing species-specific LWR in the Arabian Sea to those generated
for these species in non-OMZ regions. As the Arabian Sea also shows gradients in
oxygen, generally decreasing from north to south (Madhupratap et al. 2001), I also
tested intraspecific patterns in length–weight relationships along this latitudinal gradient.

2 Data Resources and Analysis

A research survey across the Northwest Arabian Sea off the coast of Oman was
carried out by the New Zealand National Institute of Water and Atmospheric
Research (NIWA) for the government of Oman between September 2007 and
September 2008 using a stratified random survey design (McKoy et al. 2009). The
survey was conducted from the Al Mustaqila 1, a 45.2-m-long modern commercial
fishing vessel designed to operate efficiently under a wide variety of conditions in
both inshore and offshore environments. The bottom trawl was configured with a
70 m sweep length and 9 m bottom backstrop. The mouth area of the trawl had a
308 m minimum circumference and used 800 mm mesh in the fore part of the net.
The cod-end was 20 m and used a 16 mm liner. The headline height ranged from 9 to
12.7 m when averaged by survey. The net was rigged with standard Thyboron Type
7 trawl doors and 150 m bridles. The survey covered the continental shelf in the
20–250 m depth range across four regions: Ra’s al Hadd to Masirah Island (Region
A), Masirah Island to Ra’s al Madrakah (Region B), Ra’s al Madrakah to Ra’s Hasik
(Region C), and Ra’s Hasik to the Yemen border (Region D) (Fig. 1). Sampling
occurred throughout the year, allowing data to be allocated to one of the four major
seasons of the Arabian Sea (Piontkovski et al. 2011): the Northeast Monsoon
(NEMon; January–March), the Pre-Southwest Monsoon season (PreMon; April–
June), the Southwest Monsoon (SWMon; July–September), and the Post-Southwest
Monsoon season (PostMon: October–December). The region was also subdivided
into four depth strata: DS1 (20–50 m); DS2 (51–100 m); DS3 (101–150 m); and DS4
(151–250 m).

A total of 764 demersal trawls were completed across the region with measure-
ments of key environmental parameters taken for each trawl. These included bottom
temperature (�C), dissolved oxygen (mll�1), salinity (ppt), and depth (m). At sea,
specimens were classified to genus and species using the FAO species catalog
(Nielsen et al. 1999), the fork length was measured to the nearest millimeter, and
the weight was recorded to the nearest gram for a subset of individual fish across a
range of sizes (Appendix). These data were stored in the database of the Fish
Resources Assessment Survey of the Northwest Arabian Sea Coast of Oman
(McKoy et al. 2009).

To test whether LWR for populations in this OMZ differed from those derived for
non-OMZ regions, we first extracted the length and weight data for individual fishes
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from the survey database. Length and weight were log10 transformed, and regression
coefficients (R2) were estimated for log10(weight) as a function of log10(length) for
each species with a minimum of 30 individuals, as suggested by Froese (2006).
Ordinary least squares regression was used with residuals assessed to evaluate the
appropriateness of model fit (Zar 1999). We also extracted the length–weight
coefficients for each of these species from Fishbase (Froese and Pauly 2015) for
non-OMZ regions. Where multiple equations existed in Fishbase, we chose the
equation based on sample size, sex and size range, and strength of the coefficient
of determination (R2). Because the statistical distribution of the regression coeffi-
cients is unknown, the intercept (log10(a)) and slope (b) of the length–weight
regressions were compared using a paired non-parametric Wilcoxon signed-rank
test matched pair signed test (Siegel 1956) in which each species included a paired
set of estimates for the OMZ and non-OMZ relationships. Length–weight relation-
ships with R2 values less than 0.8 were excluded from the comparison because of the
relatively large uncertainty.

To assess, overall changes in conditions as a function of latitude (Regions A–D),
a non-parametric ANOVA (Friedman’s two-way analysis of variance by rank; Siegel
1956) was used. We selected all species in which a common range of sizes was

Fig. 1 Study area and regions where A: Ra’s al Hadd to Masirah Island; B: Masirah Island to Ra’s
al Madrakah, C: Ra’s alMadrakah to Ra’s Hasik; D: Ra’s Hasik to Yemen border
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represented in the four regions given the allometric influence of size on growth and
for which there was at least 20 individuals. For these seven species, the intraspecific
changes in condition as a function of region were compared using analysis of
covariance (ANCOVA) (Zar 1999).

3 Results Obtained

Environmental conditions of 38,928 measurements of temperature, salinity,
dissolved oxygen, and depth were obtained across the study region. The mean
bottom sea temperature during the study period was 20.21 �C � 3.87 SD
(Table 1), with the mean temperature generally increasing from north to south.
However, none of the other environmental variables showed directional trends
with latitude. Mean bottom salinity was 35.7 ppt � 0.66 SD, and mean bottom
dissolved oxygen was 0.41 mll�1 � 0.25 SD (Table 1). The minimum surveyed
depth was 13 m in region A, and the maximum depth was 814 m in region C
(Table 1), with a mean value of 63.6 � 95.7 SD across all samples. Depths sampled
were similar in regions B and C and substantially deeper in region D (Table 1).

A total of 40,032 fish representing 94 species and 39 families were included in
our analysis (Appendix). The family Carangidae was the most speciose with 17 rep-
resentatives, followed by the Haemulidae with eight species and five species each in
the Nemipteridae and Sparidae. The remaining 35 families were represented by one

Table 1 Descriptive statistics for environmental variables of the Northwest Arabian Sea
(n ¼ 38,928) and by region

Variable Statistics

Arabian Region

Sea A B C D

Temperature (�C) Mean 20.21 19.11 19.76 21.13 21.19

SD 3.87 3.03 3.71 4.02 5.12

Min 15.38 16.79 17.58 15.80 15.38

Max 26.66 19.52 19.82 26.66 23.54

Salinity
(ppt)

Mean 35.70 36.07 35.79 35.12 36.22

SD 0.66 0.79 0.79 0.37 0.37

Min 34.13 36.01 35.75 34.13 35.94

Max 36.50 36.50 36.22 36.06 36.33

Dissolved oxygen (mg l�1) Mean 0.41 0.38 0.33 0.55 0.38

SD 0.25 0.19 0.20 0.35 0.18

Min 0.01 0.01 0.01 0.01 0.01

Max 1.72 1.72 0.60 1.12 0.47

Depth (m) Mean 63.6 69.6 38.53 57.63 147.43

SD 95.7 84.8 115.58 61.54 112.97

Min 13 13 17 17 31

Max 814 429 381 814 480
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to three species. The sparid Argyrops spinifer and the haemulid Pomadasys
commersonnii were the most abundant species, with 4130 (10.3%) and 4110
(10.2%) individuals, respectively, followed by 3171 (7.9%) individuals of the
lethrinidae, Lethrinus nebulosus. Only nine elasmobranch species (2504 individuals)
were included in the analysis based on abundance (Appendix). For the 94 included
species, the mean coefficient of variation (R2) was 0.95 (�0.005 SD), with 60% of
LWR having coefficients of determination greater than 0.95.

This study provided the first published records of LWR for 27 species (see
Appendix). These 27 species belonged to 20 families (over half of the sampled
families) included five species of rays and two shark species and comprised approx-
imately 22.7% of the sampled individuals. Nine species were endemic to the Arabian
Sea and comprised 22.8% of the individuals for which our analysis presented the first
published records. As these were the first published records for these species, no
comparisons could be made to relationships developed for conspecifics in non-OMZ
regions.

Of the remaining 66 species, 53 species-specific LWR based on fork length from
non-OMZ regions were available in FishBase. There was a significant difference for
the intercept with values of the intercept a derived from individuals in the Northwest
Arabian Sea typically greater than the values reported for the same species in
non-OMZ regions (Wilcoxon signed test, P ¼ 0.028; Table 2). However, there
was no difference in the slopes (Wilcoxon signed test, P ¼ 0.11; Table 2).

Seven species had a minimum of 20 individuals with similar size ranges across
the four regions. There was no effect of region on the LWR for two of these species
(Cheimerius nufar and Plectorhinchus schotaf), while region did influence the LWR
of the remaining five species (Table 3). There was no significant effect of region on
the intercept value (“a”) for any of the five species. The slopes for each of the five
species did not show consistent patterns across the four regions (Fig. 2; Table 4).
Three out of five (Drepane longimana, Pagellus affinis, and Pomadasys
commersonnii) showed lower allometric coefficients with lower latitude (Fig. 2),

Table 2 Paired t-tests performed for the length–weight regression parameters for 53 species of fish
from the Northwest Arabian Sea oxygen minimum zone (OMZ) and non-OMZ regions

L–W parameter OMZ non-OMZ P

a 0.037 0.023 0.028

b 0.293 0.299 0.11

Table 3 P values for the
slopes of the regressions of
analysis of covariance
(ANCOVA) of log (W) on
with log (L) with region as
covariate

Species No P

Cheimerius nufar 2321 0.17

Plectorhinchus schotaf 120 0.28

Drepane longimana 2257 0.0001

Pagellus affinis 1014 0.026

Pomadasys commersonnii 4131 0.0001

Argyrops spinifer 4271 0.0009

Carangoides equula 271 0.025
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whereas the remaining two (Argyrops spinifer, Carangoides equula) showed an
increase of the allometric coefficient at lower latitudes.

4 Discussion

We established LWR for 94 species of fish found in the Northwest Arabian Sea. The
strength of these relationships reflects, in part, the large sample sizes underpinning
them (Taylor 1990). Moreover, these data were collected throughout the year across
a wide range of sizes (Appendix, Table 5; McKoy et al. 2009), thus increasing their
reliability (Chu et al. 1995). Finally, our estimates of the LWR coefficients are very
similar to those previously reported from the Northwest Arabian Sea for A. spinifer
and L. nebulosus (Al-Mamry et al. 2009), Carangoides chrysophrys (Al-Rasady
et al. 2011), and several other species (Human and Al-busaidi 2008). These indica-
tors of reliability suggest that differences in LWR between OMZ and non-OMZ
regions should be detectable if present.

The body form coefficients, a, were on average significantly higher in the OMZ
when compared to those estimated from non-OMZ regions. This suggests that across
the length ranges observed, fish are consistently heavier at length in the OMZ region

Table 4 Length–weight relationships parameters of the five species across the studied regions in
Northwest Arabian Sea

Species Region N R2 p a SE b SE

Argyrops spinifer A 1739 0.994 <0.05 0.0294 0.019 0.275 0.005

B 853 0.996 <0.05 0.0321 0.022 0.283 0.006

C 958 0.995 <0.05 0.0303 0.022 0.278 0.006

D 721 0.993 <0.05 0.0300 0.031 0.277 0.009

Carangoides equula A 72 0.985 <0.05 0.0299 0.135 0.272 0.040

B 136 0.992 <0.05 0.0358 0.071 0.290 0.022

C 21 0.988 <0.05 0.0415 0.234 0.308 0.078

D 42 0.967 <0.05 0.0357 0.257 0.287 0.084

Drepane longimana A 244 0.914 <0.05 0.0325 0.208 0.296 0.058

B 696 0.829 <0.05 0.0174 0.156 0.253 0.044

C 917 0.921 <0.05 0.0265 0.096 0.279 0.027

D 400 0.908 <0.05 0.0280 0.160 0.283 0.045

Pagellus affinis A 407 0.968 <0.05 0.0434 0.080 0.313 0.028

B 180 0.950 <0.05 0.0458 0.146 0.324 0.056

C 306 0.977 <0.05 0.0423 0.079 0.307 0.027

D 121 0.991 <0.05 0.0441 0.079 0.316 0.027

Pomadasys commersonnii A 1755 0.897 <0.05 0.0324 0.091 0.273 0.022

B 821 0.959 <0.05 0.0324 0.081 0.272 0.020

C 855 0.870 <0.05 0.0234 0.137 0.250 0.033

D 700 0.893 <0.05 0.0284 0.142 0.264 0.034

R2 ¼ coefficients of determination, a ¼ intercept, b ¼ slope, and SE ¼ standard error

Low Oxygen Zones Predict Future Condition of Fish Under Climate Change 129



than in non-OMZ regions. This result was unexpected as I had predicted that the
negative consequences of low oxygen levels would reduce growth. One possible
explanation is high regional productivity offsetting negative impacts of low oxygen
levels and perhaps providing a head start for recruit growth. The region is among the
most productive globally in terms of primary productivity (Barber et al. 2001). Due
to the summer Southwest Monsoon and winter Northeast Monsoon, winds that
induce the coastal upwelling affect the shallow hydrography up to depths of about
400 m and along some 1000 km of the northern Arabian Sea in a region extending
from the coast to 150 km offshore (Goes et al. 2005). Both monsoons bring nutrients
to the photic zone which triggers spectacular phytoplankton blooms (Kumar et al.
2009). The summer and winter productivity enhance the food web (Levin 2003),
thereby favoring the establishment of fish juvenile individuals that may be able to
take advantage of seasonal high periods of productivity to pack on weight acting as
an effective “head start.” Both the NE monsoon and SW monsoon seem to drive
spawning with large numbers of species observed to spawn in both periods
(McIlwain et al. 2006; McKoy et al. 2009), a time when large-scale increase in
biological production take place in most of the Arabian Sea (Madhupratap et al.
1996), possibly enhancing larval growth and survival of fish larval and juveniles
(Grimes and Finucane 1991).

Behavioral adaptations in fish may also explain the occurrence of fish in OMZ.
Fishes are known to migrate to OMZs to exploit abundant food and escape from
predators and competitors (De Robertis et al. 2001; Gibson and Atkinson 2003). For
instance, myctophids in the Arabian Sea stay in a deep layer with an extremely low
oxygen level of <0.1 mll�1 during the day time to escape from predators and search
for food at night at high oxygen level at the surface water (Kinzer et al. 1993). The
same behavior has also been recorded for the large population of photichthyid fishes,
gelatinous animals, and swimming crabs in the Arabian Sea and Oman Sea (Herring
et al. 1998). Larger fish are more mobile and may more easily be able to show
behavioral adaptations by, for instance, moving vertically from deoxygenated waters
into oxygenated waters to recover oxygen debt (Koslow et al. 2011; Jutfelt and
Hedgärde 2013). Some fishes also have adaptive strategies such as increasing their
gill surface (Childress and Seibel 1998; Gibson and Atkinson 2003) and modifying
respiratory pigments (i.e., hemoglobins or hemocyanins) to increase oxygen affinity
(Childress and Nygaard 1974; Sanders and Childress 1990; Levin 2003) and hence
counterbalance the negative long-duration effects of low oxygen.

The allometric coefficient of the fish collected in the OMZ was not significantly
different than those associated with their counterparts in non-OMZ regions. The lack
of a significant difference implies that the regional effect on fish weight as a function
of length was independent of fish length. This is in contrast to laboratory studies that
show hypoxia induces size-specific reductions in fish growth due to decreases in the
rate of food intake (Pichavant et al. 2001). Our result was also unexpected because
large fish are more susceptible to oxygen stress (Nilsson and Ostlund-Nilsson 2008)
and thus growth might be expected to slow with increases in length. Non-significant
difference between allometric growth coefficients may also reflect the high primary
production in the Arabian Sea which enriches the food web in the region and leads to
flourishing growth of different fish species (Pauly and Palomares 2005). As such,
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high productivity may allow fish to grow at optimal rates regardless of size and
reflective of optimal growth rates in non-OMZ regions.

In OMZs, some fish could be found in all regions, and others are limited to
specific regions according to the characteristics of the region depth and oxygen level
(Quiroga et al. 2009). ANCOVA results showed significant differences in the
patterns of LWR across the regions for five of the seven species; however these
were not related to clear latitudinal gradients nor were they correlated to environ-
mental parameters. They do however reflect habitat and life-history differences
among the three groups of species. The two species that showed no regional affects
are C. nufar and P. schotaf. These are both strongly reef-associated species although
P. schotaf can be found in brackish waters (Froese and Pauly 2015). The three
species that showed increases in allometric growth rate as moving south were
A. spinifer, C. equula, and P. affinis. These three species are all demersal species
found on the continental shelf and slopes of Indo-Pacific oceans (Froese and Pauly
2015). The remaining two, Drepane longimana and Pomadasys commersonnii,
showed decrease in allometric growth rate as moving south. Both species are migra-
tory and amphidromous and oceanadromous, respectively (Froese and Pauly 2015).
The same distribution was found for Macrouridae which found in all regions, whereas
Ipnopidae and Squalidae scatarted in the Chilean OMZ (Quiroga et al. 2009).

Coefficients of LWRs may also be influenced by fishing pressure, as fishing
influences demographic traits of fishes, such as growth and reproduction (Jennings
et al. 1995). However, this is an unlikely explanation for our results. The highest
fishing pressure over the last 30 years has been in the area between Masirah Island
and Hallaniyat Island (regions B–D), with overfishing by foreign trawlers driving
decreases in landings (McIlwain et al. 2006) species such as kingfish,
Scomberomorus commerson, show spatial variation in growth in the coastal waters
of the Sultanate of Oman in relation to fishing effort (McIlwain et al. 2005).
However, decreasing trends from north to south for D. longimana, P. affinis, and
P. commersonnii could be attributed to the fishing effort. In addition, simple indices
such as catch per unit effort reflect size structure, density, and the rate functions
(Willis et al. 1993). The catch statistic data in the Arabian Sea showed that the
relative catch per unit effort for fishes caught in the studied regions decrease as
moving to the south regions (MAFASR 2012).

This study demonstrates the potential of LWR as an indicator of environmental
change, in addition to its more traditional role in fisheries management (Froese
2006). In particular, it allows comparisons between OMZ and non-OMZ regions
which can form a basis for ongoing monitoring as OMZs expand globally. Changes
to condition in response to OMZ expansion have direct implication for food security
and the economic productivity of fisheries. It also allows for regional differences in
condition to be detected and, if applied over time, would allow exploration of how
condition is varying with any intensification of the OMZwithin the Arabian Sea. The
primary production in the Northwest Arabian Sea seems to positively affect condi-
tion in the OMZ region despite low oxygen levels, but also that responses on a
regional basis are species-specific. The Northwest Arabian Sea is the source of
2–35% of global oceanic N2O, a key greenhouse gas (Bange et al. 2001), and is
also particularly sensitive to climate change (Owens et al. 1991). It is also home to
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approximately more than 60% of the world population in India, Pakistan, Iran, and
other close by countries, many of whom depend on regional fisheries (Zhou et al.
2010). Monitoring how expanding and potentially intensifying OMZs affect fish
condition is thus both of environmental and economic importance.

Appendix

Table 5 Length–weight regression coefficients for 94 species of fishes, sharks, and rays of the
Northwest Arabian Sea

Family Species
Sample
size

Min
FL
(cm)

Max
FL
(cm) a b R2

Ariidae Netuma bilineata 527 22.2 68 0.0258 2.8906 0.9819

Plicofollis
dussumieri

187 22.9 65.2 0.0499 2.7128 0.9655

Plicofollis
tenuispinis

151 25.7 43.6 0.0182 2.9449 0.939

Balistidae Sufflamen
fraenatum

85 13.8 34.7 0.0327 2.9278 0.993

Carangidae Alectis ciliaris 31 19.5 73 0.0653 2.6529 0.9965

Alectis indica 160 21.2 102 0.0069 3.145 0.9871

Alepes djedaba 163 23.6 37.1 0.0245 2.8564 0.9377

Carangoides
armatus

30 10.4 61.3 0.0017 3.5601 0.9936

Carangoides
chrysophrys

2036 17.6 73 0.0518 2.7265 0.9948

Carangoides
coeruleopinnatus

39 20.1 31.7 0.0812 2.5765 0.9678

Carangoides equula 271 13.6 45.1 0.0336 2.8368 0.9899

Carangoides
fulvoguttatus

60 25.5 85 0.0485 2.713 0.992

Carangoides
malabaricus

364 16.3 36.1 0.0401 2.7772 0.9746

Decapterus russelli 1271 4 24.3 0.0044 3.3485 0.9646

Gnathanodon
speciosus

116 46.4 85 0.0476 2.8026 0.9745

Megalaspis cordyla 44 40 53.4 0.0107 3.0148 0.8981

Parastromateus
niger

60 26.4 48 0.048 2.8181 0.8412

Scomberoides
commersonianus

34 35 96.8 0.064 2.6153 0.9831

Selar
crumenophthalmus

167 17.8 24 0.0255 2.8324 0.8378

Trachurus indicus 1750 3.5 36.2 0.0111 3.0557 0.9786

Uraspis helvola 285 16.4 42 0.0616 2.7286 0.9839
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Table 5 (continued)

Family Species
Sample
size

Min
FL
(cm)

Max
FL
(cm) a b R2

Carcharhinidae Rhizoprionodon
acutus

292 35.5 89 0.0071 2.8926 0.9424

Clupeidae Sardinella albella 30 9.7 13.8 0.0139 2.8731 0.9698

Sardinella
longiceps

82 13.4 20.4 0.0005 4.1468 0.8184

Sardinella
sindensis

401 6.1 19.8 0.0062 3.2405 0.9798

Cynoglossidae Cynoglossus
carpenteria

51 15.7 21.8 0.029 2.4361 0.8757

Dasyatidae Himantura
gerrardia

355 17.2 95 0.0424 2.9337 0.9918

Himantura uarnaka 66 22.6 146 0.1127 2.7023 0.9883

Drepanidae Drepane
longimana

2257 22 43.2 0.0795 2.7554 0.8984

Dussumieriidae Dussumieria
elopoides

249 4.8 19.6 0.0041 3.3196 0.9764

Etrumeus sadina 150 11.7 21.1 0.0076 3.1385 0.9073

Engraulidae Encrasicholina
heteroloba

56 4.9 8.9 0.0129 2.8124 0.8094

Thryssa vitrirostris 66 9.1 15.2 0.0135 2.8115 0.924

Gerreidae Gerres filamentosus 85 14.4 22.3 0.0664 2.6037 0.9266

Gymnuridae Gymnura
poeciluraa

301 27.8 95 0.0044 3.1768 0.9888

Haemulidae Diagramma pictum 251 10.9 73 0.0244 2.875 0.9959

Plectorhinchus
flavomaculatus

35 39.3 51.1 0.0254 2.8747 0.9572

Plectorhinchus
pictus

35 29.2 65.2 0.0118 3.1507 0.9827

Plectorhinchus
schotaf

120 21.4 61.9 0.0087 3.2006 0.9309

Pomadasys
commersonnii

4110 33 78 0.1081 2.4841 0.9074

Pomadasys kaakan 43 33.6 58.7 0.0225 2.9023 0.9669

Pomadasys
maculatus

83 14.4 57.9 0.0414 2.7443 0.9914

Pomadasys stridens 167 15.6 22.5 0.0427 2.6932 0.898

Leiognathidae Equulites elongates 131 5 9.9 0.0124 2.9464 0.8715

Leiognathus
oblongus

200 3.5 11.8 0.005 3.6028 0.9411

Lethrinidae Lethrinus lentjan 107 10.4 41.1 0.0277 2.8953 0.9785

Lethrinus microdon 99 25.6 58.9 0.0172 2.9684 0.9793

Lethrinus nebulosus 3171 22.2 67.8 0.0274 2.8849 0.9901

(continued)
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Table 5 (continued)

Family Species
Sample
size

Min
FL
(cm)

Max
FL
(cm) a b R2

Lutjanidae Lutjanus lutjanus 295 16.9 33.8 0.0169 2.9817 0.9482

Pristipomoides
filamentosus

129 10.1 71 0.0081 3.1692 0.988

Mullidae Parupeneus
rubescens

50 14.6 34.7 0.018 3.026 0.9844

Myliobatidae Aetomylaeus
nichofiia

180 22.8 61.1 0.0054 3.2198 0.9794

Rhinoptera
jayakaria

194 52.7 87 0.0144 3.0448 0.8739

Nemipteridae Nemipterus
japonicus

220 9.5 33.4 0.0182 2.9952 0.9923

Nemipterus rally 1704 6.1 20.2 0.0038 3.5779 0.9262

Parascolopsis
aspinosa

196 5.1 20.5 0.067 2.508 0.9223

Parascolopsis
eriomma

36 13.6 30.6 0.0148 3.0878 0.988

Scolopsis taeniata 98 7.3 30.9 0.0133 3.0896 0.9926

Ostraciidae Tetrosomus
gibbosus

45 15.8 23.6 0.0635 2.7452 0.8301

Paralichthyidae Pseudorhombus
arsius

150 9.1 39.4 0.0084 3.0459 0.9838

Pinguipedidae Parapercis
alboguttata

67 7.2 18 0.0073 3.0877 0.9637

Platycephalidae Kumococius
rodericensis

1009 6.6 32.2 0.013 2.851 0.9456

Plotosidae Plotosus limbatus 42 41.5 58.1 0.0312 2.5644 0.8013

Priacanthidae Priacanthus hamrur 96 16.3 24.8 0.0011 3.845 0.8722

Psettodidae Psettodes erumei 82 11.9 63.9 0.0033 3.3746 0.986

Rhinobatidae Rhinobatos
punctifera

311 24.3 91 0.0078 2.8112 0.9911

Sciaenidae Argyrosomus heinii 134 16.6 73.8 0.0299 2.7599 0.9542

Otolithes ruber 321 27.9 52.5 0.0157 2.8748 0.9771

Scombridae Rastrelliger
kanagurta

117 8.2 28.7 0.0061 3.3155 0.9966

Scomber japonicus 290 18.9 40.4 0.0074 3.1573 0.9909

Serranidae Epinephelus
diacanthus

868 19.1 55.4 0.0104 3.0766 0.9882

Epinephelus
polylepis

99 19.9 121 0.0036 3.3317 0.988

Epinephelus
radiates

42 13.8 60.1 0.0063 3.2158 0.994
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Table 5 (continued)

Family Species
Sample
size

Min
FL
(cm)

Max
FL
(cm) a b R2

Siganidae Siganus
canaliculatus

166 23.8 41.2 0.0488 2.7104 0.9407

Sparidae Argyrops spinifer 4130 8.8 62.1 0.0443 2.8004 0.9949

Boops lineatus 64 7.5 21.4 0.0036 3.5163 0.9669

Cheimerius nufar 2297 10.4 59.3 0.0321 2.8489 0.9819

Pagellus affinis 887 6.3 30.7 0.02 2.9834 0.9731

Rhabdosargus
sarba

411 15.8 40.8 0.0513 2.7559 0.9491

Sphyraenidae Sphyraena
acutipinnis

122 21.6 60.7 0.0086 2.8734 0.9463

Sphyraena
flavicauda

110 9.2 30 0.0125 2.8255 0.9528

Sphyraena
putnamae

152 59.6 121 0.0289 2.6181 0.8754

Sphyraena qenie 100 40.1 101.2 0.03 2.6002 0.978

Synodontidae Saurida tumbil 297 8 57.1 0.0126 2.9502 0.9916

Saurida
undosquamis

626 6.5 38.8 0.0039 3.2583 0.9839

Synodus
dermatogenys

72 8 14.1 0.0008 4.0426 0.8965

Trachinocephalus
myops

48 7.6 15.4 0.0045 3.3585 0.9397

Terapontidae Terapon jarbua 58 16.2 31.9 0.0133 3.0854 0.9707

Trachichthyidae Hoplostethus
mediterraneus
mediterraneus

178 10.9 17.6 0.0686 2.6253 0.8381

Triakidae Iago omanensis 579 18.4 80 0.0021 3.1116 0.9801

Mustelus mosis 175 65.5 105 0.0001 3.866 0.9264

Trichiuridae Trichiurus lepturusb 816 35.9 119 0.0001 3.5812 0.9364

Triglidae Lepidotrigla
omanensis

120 10.4 16.5 0.0105 3.0751 0.8357

Pterygotrigla
hemisticta

1025 6.8 25.1 0.0091 3.1367 0.9343

Species for which LWR are presented for the first time are in bold
FL ¼ Fork length, a ¼ intercept, b ¼ slope, and R2 ¼ coefficients of determination
aDisk diameter was used to quantify size for rays
bFor this species without fork, total length was used instead fork length
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