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Abstract Fish biodiversity is at risk globally due to the climate-driven expansion of
areas of low dissolved oxygen. The Arabian Sea is one of the three regions globally
with a persistent oxygen minimum zone (OMZ). The Arabian Sea OMZ is a
consequence of the high productivity associated with the Southwest Monsoon
(SWMon). During the Northeast Monsoon (NEMon), the OMZ is also present but
tends to be found in deeper water (>200 m). I examined patterns in fish biodiversity
across the Arabian Sea with respect to region, season and depth strata and in relation
to environmental conditions, including bottom sea temperature, salinity and
dissolved oxygen. Analyses were based on 764 trawl samples collected as part of
a stock assessment survey conducted between 2007 and 2008. A total of 99,319 fish
were collected, representing 207 species. There was no variation in the estimated
total species diversity by region, and the number of species was highest during the
NEMon and decreased with greater depth. The average species richness per trawl
also did not vary with region and was highest during the NEMon and lowest in the
post-Southwest Monsoon (PostMon) period and was greatest in the shallowest depth
strata. The Chao1 and Shannon indices of biodiversity showed no regional patterns
but were highest in the NEMon and lowest in the SWMon. The analysis also showed
declines in these two indices with increasing depth. The total abundance was
significantly higher during the PreMon and was invariant in three depth strata 1, 2
and 4 and low in depth strata 3. Biodiversity indices were poorly explained by the
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environmental variables. Climate change is expected to strengthen the SWMon,
which will expand the OMZ. As the SWMon period and its expanded OMZ are
associated with lower species richness, biodiversity is likely to be negatively
affected by climate change. The generality of this prediction should be evaluated
by exploring patterns in biodiversity associated with other OMZs globally and as
these features expand through time.

Keywords Biodiversity · OMZ · South West monsoon · North East monsoon ·
Species richness · Abundance

1 Introduction

Patterns in fish biodiversity and distribution are underpinned by habitat and envi-
ronmental conditions which may be modified by anthropogenic factors such as
climate change, fishing, habitat fragmentation and pollution (Raffaelli 2004). The
presence of the OMZ in the Arabian Sea however provides a rare opportunity to
specifically consider how changing environmental conditions associated with the
OMZ, both regionally, seasonally and at depth, affect fish biodiversity, acknowl-
edging that these activities such as fishing may also influence these patterns and
cannot be excluded (Catalan et al. 2006). Climate change is expected to influence the
patterns of fish biodiversity with respect to alterations in distribution and abundance
by changing the marine ecosystem hydrography (Cheung et al. 2009). Fish commu-
nities are closely linked to their environment (Jones et al. 2004) and respond
differentially to changes in ambient conditions. Such responses can include changes
in horizontal (Perry et al. 2005) and vertical distribution (Dulvy et al. 2008). For
instance, with ocean warming, fishes have shown poleward movements escaping
from warming water to water bodies where temperature falls within their range of
tolerance (Nye et al. 2009). Additionally, distribution may deepen as fishes migrate
vertically to maintain preferred temperature ranges (Pörtner and Knust 2007). Such
changes can yield overall shifts in species composition with both local losses and
additions (Hiddink and Hofstede 2008; Cheung et al. 2009).

Sea surface temperature (SST) has increased globally by 0.2 �C in the last
30 years (Hansen et al. 2006). Temperature strongly influences fish through impacts
on physiology, metabolism, growth, reproduction and behaviour (Pauly 1980). Such
impacts can result in range shifts either through migration (Pörtner and Knust 2007)
or reduced productivity of affected populations (Brander et al. 2003). Indeed, while
fish can positively react to increases in temperature, with, for instance, enhanced
growth, such benefits are constrained by limits with respect to temperature tolerances
(Pörtner 2001) as temperature beyond these limits forces fish to utilise more of its
energy budget in the form of carbohydrates (Hemre et al. 2002) and reduce the
amount of food intake (Handeland et al. 2008), hence negatively affecting fitness and
growth. Increases in temperature can also lead to a greater risk of disease and mass
fish mortalities and thus contribute to biodiversity loss (Harvell et al. 2002).
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Associated with climate-driven increases in temperature is the reduction in
dissolved oxygen levels in the global seas (Matear and Hirst 2003). Stratification
prevents mixing of water masses between surface and deep layers, reducing the
dissolved oxygen in the deeper layer (Pörtner and Knust 2007). Oxygen minimum
zones (OMZs), defined as regions with permanent dissolved concentrations less than
0.5 ml l�1, are expected to expand in area and volume across oceans globally but
especially in tropical regions (Matear and Hirst 2003; Stramma et al. 2008). Increas-
ingly, the influence of oxygen on patterns in fish biodiversity is being recognised
(Jackson and Mandrak 2002; Worm et al. 2006; Vaquer-Sunyer and Duarte 2008).
Persistent OMZs increase the risk of hypoxia (<0.5 ml l�1) and can influence
biodiversity by causing mass mortality of marine fishes (Gray et al. 2002). At
non-lethal levels, OMZs can influence biodiversity by altering fish behaviour and
fitness (Kramer 1987). Persistent OMZs can also affect the metabolic rate through
oxygen blood pressure, limiting the energy used in reproduction, growth and other
vital rates (Pörtner and Knust 2007). Low oxygen can lead to migration to new areas
which in turn may increase predation risk for migrating individuals (Harley et al.
2006) with subsequent reductions in fitness and consequences for biodiversity
(Vinebrooke et al. 2004). Persistent OMZs can cause physiological stress to
non-migrating individuals, with impacts on growth, reproduction and age at maturity
(Vaquer-Sunyer and Duarte 2008; Pauly 2010). These sublethal effects may also
affect biodiversity by reducing, through time, the number of species able to occupy
OMZs (Doney et al. 2012).

The effects of persistent OMZs on biodiversity are, however, unclear as fish
species respond differentially to conditions in relation to their specific tolerances.
The effects of low levels of dissolved oxygen are dependent on size, life history stage
and metabolic rate. For instance, small species and individuals are more affected by
low levels of dissolved oxygen than large species and individuals because they have
lower energy budgets (Staples and Nomura 1976). This constrains their search for
suitably oxygenated water, making behavioural change more difficult and increasing
their vulnerability to predation and mortality (Rijnsdorp et al. 2009). For early life
history stages, demersal and pelagic species appear similarly affected by low oxygen
concentration through increased mortality that reduces recruitment (Walther et al.
2002). In later life history stages, demersal species are more greatly affected by low
oxygen concentrations as they tend to have less capacity for migration compared to
pelagic species (Barbaro et al. 2009).

The influence of changing environmental conditions, such as reductions in
dissolved oxygen concentration, occurs against a backdrop of large-scale biogeog-
raphy (Willig et al. 2003). For instance, fish diversity tends to decline with depth
(Nye et al. 2009) and increase towards the equator (Perry et al. 2005). Deeper water
is also typically characterised by low dissolved oxygen concentration (Schmittner
et al. 2007) which may not suit smaller species, and if further deoxygenation of deep
water occurs, small species may be locally extirpated (Nilsson and Ostlund-Nilsson
2008). Additionally, expanding OMZs near the equator may also lead to poleward
range shifts of affected species (Pörtner and Knust 2007), counterbalancing the
current trend towards greater equatorial diversity.
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The Arabian Sea provides an important model system in which to study the
effects of persistent OMZs on fish diversity. It is characterised by permanent,
shallow (<50 m) low dissolved oxygen concentration water (Helly and Levin
2004) and is one of only three OMZs globally (Arabian Sea, Eastern Pacific
Ocean and off West Africa) where oxygen is consistently less than 0.5 ml l�1

(Levin et al. 2000). The Southwest Monsoon drives vertical nutrient fluxes via
coastal upwelling that enhances pelagic productivity along the Omani coastline,
followed by deoxygenation as the organic material is respired (Brock and Mcclain
1992; Honjo et al. 1999; Sheppard et al. 2000). The Northeast Monsoon season also
brings high nutrients and increased primary production to the Arabian Sea. It occurs
during the winter as a result of cool, dry continental air brought by prevailing
Northeast trade winds but is less intense than the Southwest Monsoon (Kumar
et al. 2001).

Against this environmental background, the Arabian Sea’s fish fauna is both
diverse and representative of the Indo-Pacific. The 166 families recorded from the
Arabian Sea represent 92.6% of the families recorded in the Indo-Pacific Ocean
(Fouda et al. 1998), Al-Jufaili et al. (2010) recorded a total of 1176 marine fish
species, 1138 species were identified by Fouda et al. (1998), 930 described by
Randall (1995), and 280 were described by Al-Abdessalaam (1995). Manilo and
Bogorodsky (2003) present a list of 1769 from all coasts of the Arabian Sea to a
depth up to 500 m, which include India, Oman, Yemen and the East coast of Africa.
Over 364 marine species support the commercial fisheries in the Arabian Gulf,
Oman and the Arabian Sea (Siddeek et al. 1999).

In this study, the data from a research survey across the Northwest Arabian Sea
off the coast of Oman were used between September 2007 and September 2008 to
quantify patterns in demersal fish biodiversity by region, season and depth strata
given measured differences in dissolved oxygen. Further, the relationship between
dissolved oxygen and other environmental variables were considered with respect to
their influence on fish biodiversity.

2 Data Resources and Analysis

A research survey across the Northwest Arabian Sea off the coast of Oman was
carried out by the New Zealand National Institute of Water and Atmospheric
Research (NIWA) for the government of the Sultanate of Oman between September
2007 and September 2008 using a two-phase stratified random survey design
(McKoy et al. 2009). The survey was conducted from the Al Mustaqila 1, a
45.2 m long modern commercial fishing vessel designed to operate efficiently
under a wide variety of conditions in both inshore and offshore environments. The
bottom trawl was configured with a 70 m sweep length and 9 m bottom backstrop.
The mouth area of the trawl had a 308 m minimum circumference and used 800 mm
mesh in the fore part of the net. The cod end was 20 m and used a 16 mm liner. The
headline height ranged from 9 to 12.7 m when averaged by survey. The net was
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rigged with standard Thyboron Type 7 trawl doors and 150 m bridles. The sampling
effort was stratified randomly for the three factors included in this study: region,
season and depth strata (Table 1). The survey covered the continental shelf across the
20–250 m depth range across four regions: Ra’s al Hadd to Masirah Island (Region
A), Masirah Island to Ra’s al Madrakah (Region B), Ra’s al Madrakah to Ra’s Hasik
(Region C) and Ra’s Hasik to the Yemen border (Region D) (Fig. 1). Sampling
occurred throughout the year, allowing data to be allocated to one of the four major
seasons of the Arabian Sea (Piontkovski et al. 2011): the Northeast Monsoon
(NEMon; January–March), the pre-Southwest Monsoon season (PreMon; April–
June), the Southwest Monsoon (SWMon; July–September) and the post-Southwest

Table 1 Sampling effort in
each level of the three factors
included in this study during
the fisheries-independent sur-
vey in the Arabian Sea coast
of Oman (2007–2008)

Region No. Season No. Depth No.

A 187 NEMon 265 1 293

B 243 PreMon 173 2 285

C 236 SWMon 211 3 130

D 98 PostMon 115 4 56

Fig. 1 Classification of the regions in the study area. A, Ra’s al Hadd to Masirah Island; B, Masirah
Island to Ra’s Al Madrakah, C, Ra’s Al Madrakah to Ra’s Hasik; D, Ra’s Hasik to Yemen border
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Monsoon season (PostMon: October–December). The four depth strata were DS1
(5–50 m), DS2 (51–100 m), DS3 (101–150 m) and DS4 (151–250 m).

Samples from a total of 764 demersal trawls were collected across the region,
with key environmental measurements taken for each trawl. These included bottom
temperature (�C), salinity (ppt), dissolved oxygen (ml l�1) and depth (m). At sea, fish
were classified to genus and species using the FAO species catalogue (Cohen et al.
1999) and counted. The records were stored in the database of the Fish Resources
Assessment Survey of the Northwest Arabian Sea Coast of Oman (McKoy et al.
2009).

In this study the species richness is estimated as the number of fish species in each
region, season and depth stratum. Abundance is the total number of each fish species
in each region, season and depth stratum. To assess the adequacy of sampling effort
in capturing the biodiversity of the region, fish species richness was computed using
EstimateS programme (Version 9, Colwell et al. 2004). The programme estimates
species richness by extrapolating the asymptote of species accumulation curves,
i.e. plotting the cumulative species richness against sampling effort at each level of
sampling effort using various models of rarefaction. Estimated species richness was
calculated for each region, season and depth stratum. Chi-square Goodness-of-Fit
tests were run in Excel software to test the null hypotheses that species richness is
evenly distributed as a function of (1) region, (2) season and (3) depth strata.
Additionally, Chi-square contingency tests were calculated to determine whether
patterns of species richness across region were independent of season and depth and
likewise whether patterns of species richness across season were independent of
depth, thereby capturing any potential interactions between the factors (Zar 1999).

Twelve biodiversity indices were calculated for each of the 764 trawls conducted
during the survey using the ‘diversity’ option in Past software v2.17c (Hammer et al.
2001). These included Dominance D, Berger-Parker, Evenness e^H/S, Menhinick,
Equitability J, Fisher alpha, Chao1, Taxa S, Simpson 1-D, Margalef, Brillouin and
Shannon index. These continuous indices were first normalised to address differ-
ences in variable scales, with resemblance then calculated based on a Euclidean
distance matrix. Two-dimensional ordinations were created by principal component
analysis (PCA) using primer to visualise the contributions of both richness and
equitability to the overall biodiversity patterns. The null hypothesis is that the
species richness had the same biodiversity patterns. Single indices from opposing
clusters were chosen to represent patterns in biodiversity among the samples and
avoid redundancy of these related metrics and a new Euclidean distance matrix
calculated on to normalised values of the 12 biodiversity indices.

Observed species richness and total abundance for each trawl were also calcu-
lated. Euclidean distance matrices were calculated for each of these variables given
their continuous nature. Data were not normalised prior to the permutational
ANOVA as the analyses are a univariate application of permutational methods
(Wood 2009). The null hypothesis is that the mean of observed species richness
and total abundance was the same for all factors (region, season and depth strata).
Finally, the fish community composition data (abundance by species) were
transformed via square root to down-weight and up-weight common and rare
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species, respectively. This transformation was followed by calculation of the Bray-
Curtis resemblance matrix given the presence of joint zeros in the abundance data and
their non-informative nature. The overall statistical design for these univariate biodi-
versity metrics consisted of testing the influence of region, season and depth strata
using a three-way permutational ANOVA with interactions. Non-significant interac-
tions were sequentially removed, beginning with the three-way interaction, and
followed by the two-way interactions with the highest p-values, following Underwood
(1981). Tukey post hoc pairwise tests using R software (Wood 2009) where signifi-
cant main effects were indicated. Effects were visualised with bar charts, including
interactions where present between the different variables in the factors.

As region, season and depth strata are to some degree proxies for environmental
conditions, general additive models (GAMs) were used to investigate the relation-
ships between environmental characteristics of the sampling station
(i.e. temperature, salinity, dissolved oxygen and sea bottom depth) as explanatory
variables with patterns in fish biodiversity (Chao1, species richness and abundance)
as response variables. General additive models were built using the package ‘mgcv’
of R software (Wood 2009) at the significant difference at α ¼ 0.05 with parameter
estimation by residual maximum likelihood (REML). The maximum bias dimension
was set to k¼ 4 as suggested by (Hastie and Tibshirani 1990) to minimise overfitting
and preserve biological realism.

3 Results Obtained

The fitted species accumulation curve suggests that our overall 764 sampling effort
was reasonable with approximately 207 species predicted to be present (Fig. 2). The
species accumulation curve increased rapidly up to point of approximately
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300 samples, at which point the rate of species accumulation decelerated. The curve
did not reached a plateau at 764 samples. Chi-square goodness of fit tests indicates
that the number of estimated species was evenly distributed across regions (χ2:
p ¼ 0.40; Table 2) but unevenly distributed among seasons (χ2: p < 0.001;
Table 2) and by depth strata (χ2: p < 0.001; Table 2). Specifically, the estimated
species pool was highest during the NEMon season and lowest in the PostMon
season (χ2: p < 0.001; Table 2), highest in depth strata 1 and lowest in the deepest
strata 4 (χ2: p < 0.001; Table 2). The contingency Chi-square tests indicate that the

Table 2 Variation in esti-
mated species richness
between regions, seasons and
depth based on goodness of fit
by Chi-square analysis strata

Factor χ2 Df p-Value

Goodness of fit

Season 20.956 3 <0.001
Region 2.94 3 0.401

Stratum 111.05 3 <0.001

Contingency

Region � season 16.19 9 0.063

Region � depth 18.62 9 0.029
Season � depth 19.02 9 0.025

Chi-square contingency tests were used to determine if variation in
estimated species richness was similar across region by season,
region by depth and season by depth. The numbers in bold were
significant probability at 0.05 level
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way in which the species pool varies by depth depends on the region and the season
but that seasonal variations in estimated species richness do not vary with region
(Table 2). The number of estimated species decreased with depth from strata 1 to 4 in
all regions and during all seasons (χ2: p < 0.05; Table 2), except in region C where
the number of species was higher in stratum 2 than stratum 1 (Fig. 3).

The 12 observed biodiversity indices largely separated into indicators of diversity
and indicators of evenness (Fig. 4). Of these, I chose Chao1 and Shannon as these
had the limit collinear with the samples. The variance in region factor was not
significantly different in Chao-Shannon, species richness and total abundance, but
season factor was significant in Chao-Shannon, species richness and total abundance
( p < 0.01; Table 3; Fig. 5). Pairwise tests for both Chao-Shannon and species
richness show that these metrics were significantly lower in the SWMon season
relative to the other seasons ( p< 0.01; Table 3; Fig. 5). A combination of Chao1 and
Shannon (hence Chao-Shannon) and species richness was significantly higher dur-
ing the NEMon season relative to the other seasons ( p < 0.01; Table 3; Fig. 5). The
total abundance was highest during the PreMon ( p < 0.01; Table 3; Fig. 5). Chao-
Shannon, species richness and total abundance were significantly higher in the
shallowest depth strata and decreased as the depth increase ( p < 0.01; Table 3;
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Table 3 PERMANOVA
results of three biodiversity
indices across region, season
and depth strata

Season Stratum Region: stratum

Chao and Shannon <0.01 <0.01 NS

Species richness <0.01 0.01 NS

Total abundance <0.01 <0.01 <0.01

Chao and Shannon refers to a combined metric of the Chao1 and
Shannon indices
NS not significant
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Fig. 5). In Chao and Shannon, the diversity during the SWMon was approximately a
third lower than the PreMon and the PostMon seasons and half of that observed
during the NEMon season (Fig. 4). The only significant interaction between the
factors was between region and season in their impact on total abundance ( p< 0.01;
Table 3).

The GAMs demonstrated that salinity and dissolved oxygen explained a signif-
icant amount of variation in Chao1 and species richness ( p< 0.01; Table 4) and that
temperature significantly explained variation in Chao1 ( p ¼ 0.03; Table 4). How-
ever, despite the statistical significance of the tests, the deviance explained by the
models was very low for all variables in Chao1, species richness and total abundance
(Table 4). The highest deviance explained was 2.7% by salinity with respect to
species richness (Table 4).

4 Discussion

Accurate estimates of species richness and abundance are necessary to understand
the status and trends of fish assemblages in the aquatic environment (Cappo et al.
2004). Species accumulation curves are typically used to estimate the rate of new
species discovery under increased sampling effort (Thompson et al. 2003). The
species accumulation curve did not reach a plateau; however, even a doubling of
the effort would generate only approximately 15–20% additional species. This
pattern of species accumulation suggests that either the sampling effort was insuf-
ficient (Thompson and Withers 2003), there was high fish diversity with complex
geographic distribution (Magurran and Henderson 2003), or species were highly
patchy (Cappo et al. 2004). For instance, in the Chilean OMZ, fish were not evenly
distributed, resulting in an underestimation of species richness (Quiroga et al. 2009).
However, even though a plateau was not reached, the species pool estimated from
the accumulation curves can be compared with other curves in non-OMZ areas
(Soberón and Llorente 1993; Colwell et al. 2004).

The univariate biodiversity metrics of Chao1, the Shannon index and the com-
bined Chao Shannon species richness and total abundance showed similar patterns
across region and depth, with the exception of the presence of an interaction between

Table 4 The biological-environmental correlation analysis used to extract the best correlations
between fish biodiversity attributes and environmental variables based on general additive models
(GAM)

Index

Temperature Salinity Dissolved oxygen

p
Deviance
explained p

Deviance
explained p

Deviance
explained

Chao1 0.03 0.7% <0.01 1.9% <0.01 2.2%

Species
richness

0.12 0.3% <0.01 2.7% <0.01 2.4%

Abundance 0.37 0.0% 0.05 0.9% 0.32 0.0%
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region and depth on total abundance. The general effects of region and depth may be
attributed to either of two possible reasons. These consistent patterns in biodiversity
across region and depth reflect species-specific environmental preferences
(Piontkovskie et al. 2011) and depth preferences (Collie et al. 2000). Seasonal
differences may reflect adaptive strategies to variation in environmental conditions
with respect to growth and survival (Brönmark et al. 2008). Finally, movement
between seasons may also reflect differential reproduction and feeding and changes
in physical oceanographic parameters that alter patterns in the biodiversity indices
(Brönmark et al. 2008).

During the Northeast Monsoon, nutrients upwell into surface waters at a time
when cooling conditions in the surface water trigger phytoplankton production
which is then widely spread over whole Arabian Sea (Madhupratap et al. 1996;
Raghukumar and Anil 2003). The abundance of phytoplankton causes an increase in
zooplankton biomass and hence an increase in fish production across the shelf
marine ecosystem (Ware and Thomson 2005). All fishes sampled in this study are
piscivorous, and their diversity and abundance are generally limited by the abun-
dance of planktivorous fishes which in turn depend on zooplankton that rely on
phytoplankton (Sala and Knowlton 2006). The summer upwelling in the Arabian
Sea during the SWMon is most pronounced off the coasts of Oman and Somalia
(Burkill et al. 1993) and plays a great role in the fish community structure in the
Arabian Sea (Bianchi et al. 2000). This strong upwelling brings large concentrations
of nutrient from the bottom of the ocean to the surface and leads to increased
productivity but creates OMZs in different parts in Arabian Sea parallel to the
Omani coastline (Levin et al. 2000). The presence of these monsoon-enhanced
OMZs may explain the generally reduced biodiversity during the SWMon compared
to other seasons because the fish try to avoid occurring in the low oxygen areas
(Worm et al. 2006).

Species diversity metrics generally decreased with increasing depth in this study,
consistent with patterns observed elsewhere (Fitzpatrick et al. 2012). The high
diversity in the shallow depth strata may reflect the tendency for many smaller fish
species tend to avoid predators when searching for food to support adequate growth
and reach maturity stages (Linehan et al. 2001). In contrast, large fish species tend to
occupy deeper water for the metabolic benefit of living in cooler water and the longer
lifespan this supports (Blaber and Blaber 1980; Linehan et al. 2001). This may
explain the lower species number recorded in the deeper depth strata. Also, the
coastal habitat provides juveniles and small fish with food and refuges from pisciv-
orous fishes in the shallow areas (Paterson andWhitfield 2000). Predation risk is also
higher in shallow water for larger fish species because there are no shelters to hide
from predators (Blaber and Blaber 1980) whereas deeper water can present a higher
risk predation for small fish species because of high number of large predators
(Breitburg 1992). Fish that have escaped predation or fishing mortality in shallow
waters grow and move to deeper water, characterised by low dissolved oxygen,
because they have the physiological ability to tolerate the low oxygen concentrations
better than smaller fish species (Nilsson and Ostlund-Nilsson 2008). Heavy fishing
throughout the year by foreign trawlers between 1980 and 2010 (Anon 2013) could

712 I. H. Al-Rasady et al.



also explain high fish diversity in the shallow depth strata relative to the deeper
strata. Trawlers typically fished in areas more than 20 km from the shore and in water
depths greater than 50 m (McIlwain et al. 2006). Trawling causes physical destruc-
tion of marine habitats that causes biodiversity loss (Watling 1999) and as such may
be implicated in our patterns. However, the effect of depth on biodiversity was
consistent across the regions despite trawling being concentrated in regions B, C
and D.

The variation in the distribution of fish species in different parts of the global
oceans remains a fundamental issue in aquatic ecology (Sosa-López et al. 2007).
Although the deviance explained by GAMs for all indices was poor (<2.7%),
salinity was the best predictor of fish biodiversity. Similar results were found in
the Great Barrier Reef in Australia where, among the different oceanographic
parameters variables, salinity was most significantly related to fish species richness
for coral reef fishes (Mellin et al. 2010). The relationship between environmental
variables and biodiversity was difficult to model because they remain poorly under-
stood (Mora and Robertson 2005).

There was a significant reduction in fish diversity during the Southwest Monsoon,
associated with the strongest OMZ along the Omani coast of Arabian Sea. With the
increasing OMZs because of the climate change, fish biodiversity in the Arabian Sea
and other parts of the globe is in threat. Immediate action should be implemented to
protect the global fish biodiversity by creating marine protected areas. Further
studies should be undertaken to detect the most sensitive fish and habitat to OMZ.
Although the sample size was adequate to generate results for a general assessment
of the effect of the OMZ on biodiversity, conclusions need to be considered in light
of the uneven distribution of sampling effort between the factors. Further analyses
should also include the effect of fishing effort in the last decades on the fish
biodiversity of the Arabian Sea. Environmental variables, fishing effort and the
biodiversity indices should be modelled to acquire more understanding of the effect
of OMZ on biodiversity.
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