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1 Introduction

Recent years have evidenced a rapid growth in the application of advanced Artificial
Intelligence (AI) technologies in numerous fields, such as industry, healthcare,
transportation, and domestic appliances. AI is a form of computing that allows
a machine to perform cognitive functions, such as adapting their behaviour and
modifying their decisions according to changing environment and conditions.
Machine learning (ML) is an application of AI that provides a system the ability to
automatically learn and adapt to the environment through experience. In particular,
machines and tools that support AI are designed to react and learn from data
collected from the environment, and the knowledge and insights created from them,
through data analytics. Data analytics discovers new knowledge and creates new
value through the exchange, selection, integration, and analysis of massive data.
It provides a technology that reveals the knowledge and correlation in systems
that may not be discovered or fully described with conventional mathematical
models. The properties and problems of data analytics vary when the volume,
generation velocity, and variability of the collected data grow above a certain
threshold, entering into the Big Data analytics realm. To support these conditions,
novel technologies have entered the market, such as cloud computing and NoSQL
databases. Big Data analytics, combined with the underlying AI technologies, have
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found their applications in all aspects of business, society, and life, which are
reshaping our future technology landscape.

Industry 4.0 is one of the main consequences of this data-centric revolution.
Information on the processes, consumer demands, supply chain, etc. become a
necessity to achieve the flexibility and agility required in Industry 4.0. To obtain
this information, data must be intensively collected by different kinds of IoT sensors
(product tracking, environmental monitoring, etc.) and processes (online shopping
trends, machine status information, network traffic information, etc.). The collected
information is then stored and processed using the aforementioned Big Data storage
and analytics technologies, etc. Wireless connectivity plays an even more important
role in industrial environments, due to the ease of deployment, low maintenance
costs, and the high flexibility they offer.

Future wireless networks are data-intensive and service-driven. The adoption of
wireless technologies has enabled a new paradigm in connectivity and computation,
where machines have access to the Internet to autonomously send data and receive
instructions. These machine-to-machine (M2M) communications, which have vary-
ing characteristics and requirements, have enabled a rich set of novel applications,
and, combined with mobile computing devices, shaped the Internet-of-Things (IoT).
In IoT, novel applications have appeared, such as smart wearables, smart mobility,
smart utility management, eHealth, virtual/augmented reality, ultra-high definition
(UHD) video, driverless cars, etc. It has been predicted that around 25 billion IoT
devices will be connected by 2025 [1]. Specifically, cellular technologies are seeing
a great adoption by the IoT market, thanks to the ubiquitous connectivity they offer,
plus their ease of use and maintenance from the point of view of the clients. 5G
technologies, with their capability of providing high data rate, low latency, and
guaranteed services through network slicing, are designed to cater for the needs of
different IoT applications. The connection of the massive numbers of devices will
generate a huge amount of data, gathered by individual devices, and shared over the
IoT network in near real time.

An important point to take into account in industrial IoT networks are the
particularities of the scenarios where connectivity occurs. Industrial environments
such as factories or distribution centres are especially harsh for radio propagation,
due to the presence of large metallic structures that cause shadowing and a
large number of transmitters that produce interference. Therefore, a key point in
deploying intelligent connectivity in industry, and a major differential factor with
respect to the general use cases, is to use the appropriate Radio Access Network
technologies and be especially careful with their dimensioning.

The accumulation and sharing of massive amounts of data and knowledge
will in turn facilitate AI and ML, enabling the so-called intelligent connectiv-
ity – a vision of future network empowered by the combination of emerging
technologies, including 5G, AI, ML, Big Data, and IoT [2]. Underpinned by
ubiquitous hyperconnectivity, as well as real-time decision making with collective
intelligence, intelligent connectivity is foreseen to transform industries such as
energy, transportation, and manufacturing, as well as every aspect of our daily lives.
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To fully unleash the potential of intelligent connectivity, there are some chal-
lenging topics that must be addressed, for instance, data and intelligence sharing,
scalability of the existing solutions, security, and the underlying transformation
in infrastructure. In particular, data analytics and AI face some unique challenges
when applied to IoT networks. Firstly, a great variety of device types exist, and
data collected from different devices may follow different format with different
data types. It is a huge task to harmonize the collected raw data into a universal
language where insights and knowledge can be shared. Secondly, the constantly
changing network conditions and surrounding environment needs to be detected
and the connectivity methods adapted by the AI algorithms, ideally in real time.
This implies a fast exchange of information and knowledge, as well as a need
for selecting what data to pass on and what data to retain locally in the device.
In addition, there is a problem of model applicability. The majority of the current
AI models deployed in IoT networks are based on exhaustive experimenting over
available data, so these models are highly adapted to the existing datasets. There
is a significant problem of reusing and scaling the existing AI models extracted in
one scenario to a different scenario, or a different part of the network for the same
application. For example, an AI model extracted from a specific industrial process
in a small factory cannot be easily scaled to larger factories.

This chapter provides an overview of the current and future applications enabled
by the merging of AI, 5G, and IoT, and their future looking technologies.

2 The Role of AI and Big Data

AI and Big Data, as the key enablers of intelligent connectivity, have been evolving
hand in hand with emerging IoT technologies, where the most significant sources of
data are generated. Considerable interest from the industry and research efforts have
been attracted to this field. In the developments both from academia and industry,
data mining and ML are used to extract the insights and knowledge from the data
collected by IoT networks.

AI is a set of techniques and algorithms that are meant to perform actions that
usually would require human intervention. AI algorithms are ultimately functions
that, given a certain input, return a corresponding output through a non-linear
relation. The inputs are usually a set of complex observations, which may require a
pre-processing with operations such as quantification or normalization. The outputs
are dependent on the application where the algorithm is used and the nature of
the algorithm. The type of output defines a taxonomy where AI algorithms can be
grouped as classifiers, regressors, etc. The non-linear relation between the input
and the output is shaped by a set of parameters that are commonly complex and
hard to adjust. Some examples of AI algorithms are Recurrent Neural Networks,
Fuzzy Logic Controllers, and Bayesian Networks. Figure 1 summarizes how AI
methods are used in intelligent connectivity, and their relation with ML and Big
Data Analytics. In intelligent connectivity, AI algorithms take as inputs the data
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Fig. 1 General scheme for intelligent connectivity

collected by the IoT devices in the network, along with data from other sources
such as the network infrastructure or external online services; and produce outputs
that can be used to interact with the IoT applications and services, or to improve the
connectivity by modifying network configuration.

AI algorithms have a large number of configuration parameters that must be fine-
tuned to a specific scenario to work correctly. Although there are AI systems where
these parameters are adjusted manually, ML is more often used to do this. In these
kinds of setup, ML algorithms take as input large historic datasets similar to those
that the AI algorithm will process once deployed and return as output optimal sets
of configuration parameters.

• Supervised learning: The ML algorithm has access to sets of input variables
of the AI and the expected output (labeled data). In this case, the ML needs
to configure the AI so that it imitates the process that generated the training
samples in the first place. Although supervised learning usually produces AI
systems that need less post-processing and that have higher accuracy, one major
issue is the availability of training data. Some common examples of supervised
learning algorithms are Deep Learning and Support Vector Machines.

• Unsupervised learning: The ML algorithm only has access to sets of input
data (unlabeled data). In this case, the ML will search for patterns and train
the AI to find them. These systems will usually produce less accurate AIs, but
accessibility of unlabeled data is much easier. Some examples of unsupervised
learning are clustering and anomaly detection.

• Reinforcement learning: In the third kind, which is sometimes classified as a
kind of supervised learning, the ML algorithm has access to the input data of
the AI and, although it cannot access the expected output, there is a certain
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feedback that indicates whether the output produced by a trained AI is correct
or not. In this case, the ML will train the AI algorithm in a case-by-case fashion.
Q-learning is an example of reinforcement learning.

AI and ML algorithms are based on the processing of large amounts of data. Both
the storage and the processing of these data consumes a lot of resources. In fact,
above a certain threshold, traditional computing techniques are insufficient for the
successful execution of some AI/ML systems. This is where Big Data technologies
come into play. Three features determine whether a problem can be considered part
of this Big Data domain [3]:

• High volume: A very large amount of sources produce data. This is true for IoT
networks, where a very high number of devices produces large amounts of data.

• High variability: The data from different data sources come in different formats
that requires harmonization. In an IoT network, devices of different models,
manufacturers, and purposes operate, producing data in many different formats
(numerical records, audio/video files, etc.).

• High velocity: Data is generated quickly, that is, faster than it can be processed
by traditional methods. In applications where speed is important (such as self-
driving cars), processing the data fast is critical; and this is difficult when the
maximum allowed delay is close to the minimal processing time.

In the case of intelligent connectivity, the collected and processed data has
all the three features. Big Data techniques help to overcome these challenges by
offering special storage and processing methods. NoSQL databases improve the
storage and retrieval of data with high variability (i.e. data that may have different
formats at different moments). Cloud computing is a set of Big Data technologies for
improving the speed of processing. In cloud computing, tasks are divided into many
parallel processes, reducing the overall computing time. Schemes such as Map-
Reduce [4] and the Lambda architecture [5] are examples of Big Data processing
techniques.

3 Use Cases of AI-Enabled Intelligent Connectivity

So far, the mainstream applications of AI in technologies include computer vision,
natural language processing, voice recognition, and prediction. These technologies
can be widely used by end consumers and businesses. Table 1 below gives an
overview of the applications of AI in different technologies and their application
scenarios for consumers and enterprise customers. In Fig. 2, we provide an overview
of some of the use cases on AI-enabled intelligent connectivity. Next, we describe a
few use cases of AI-enabled intelligent connectivity.
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Table 1 AI algorithms and their applications

Technology Overview Application Scenarios

Computer vision Computer replaces
human vision to
recognize, follow and
measure the objects

Smart home
AR, VR
Shopping via image searching
Intelligent home security
3D analytics

Natural language processing Interpret meanings of
texts and extract
abstracts from articles

Search engine
Recommendations and advertisement
Machine translate

Voice recognition Translate human
instructions to texts
and commands to
machines

Smart TV
Call centre
Voice assistant
Smart home assistant

Enterprise applications AI applications for
third-party, business
customers

Network management
Stock exchange
Production planning

Intelligent
Connec�vity

Transporta�on
Fleet

management
Connected cars

Finance

Agriculture

Supply chain
Transac�on and

order
management

Goods tracking

Health care
Assisted living

Remote pa�ent
monitoring

Public safety

Manufacturing
Predic�ve

maintenance

Fig. 2 Overview of intelligent connectivity use cases
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3.1 Smart Manufacturing

In the last years, market trends have driven to a demand of highly customized
manufacturing goods. To efficiently serve this new customized market, where
production volumes of a single product are low, but total sales keep increasing,
factories need to adopt agility as a basis for their operation. Agility is achieved
with a vast set of novel technologies collected under the umbrella of Industry 4.0
[6]. Wireless connectivity, Big Data, robotics, and sensors are the four pillars of
Industry 4.0. intelligent connectivity, as a combination of Wireless connectivity and
Big Data, plays a major role in many Industry 4.0 applications. In this section, two of
these applications will be described: predictive maintenance and hazard detection.

Predictive Maintenance As costs of production grow, the need for cutting
expenses is an ever-increasing need in industry. In industrial machinery, there
are two sources of expense: waste of unspoiled elements and machine breakdowns.
To be more specific, some industrial machinery require a periodic maintenance,
which can be done proactively or reactively. The first approach implies that some
wear items (such as metallic pieces that are subject to stress, or parts that perform
abrasive processes) may be changed before their lifespan is consumed, increasing
the expense in replacements. On the other hand, the reactive approach consists
of only replacing parts once they wear off and cause a malfunction. Although
this means that the expendable elements are fully used, they may cause machine
breakdowns that increase the cost with the need of repairs. Therefore, there is a need
to optimize the scheduling of predictive maintenance so that the wear elements are
fully used without causing breakdowns.

Sensors are one of the key technologies in Industry 4.0. In recent years their cost
has dropped, making vast deployments affordable from an economic standpoint.
Novel IoT technologies, such as cloud-based platforms for collecting and processing
sensor data, greatly simplify the process of sensorization at large scale. Information
frommany kinds of sensors can be collected, and models of the monitored processes
can be extracted with ML processes. These models can then be used to perform
predictions.

This scheme of heavy monitoring, modelling, and prediction can be used for
predictive maintenance. Depending on the specifications of the machine, magni-
tudes such as vibrations, flow of fluids, electric current, conductivity, and thickness
of certain pieces can be measured. Supervised ML using the collected data from
reactive maintenance, can determine which variables contain information on an
immediate breakdown, leading to an interruption in the operation of the machine
next time maintenance is required. This achieves both objectives of fully utilizing
wear elements and preventing breakdowns.

Hazard Detection Factories, having large and powerful machines, are dangerous
places. Some dangers to personnel are fires, accidents with machinery, accidents
with vehicles, toxic fumes, falling objects, and incorrectly isolated electric lines.
According to Eurostat, over 3000 deaths per year are registered in the EU in the
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sector of agriculture, construction, and manufacturing. Strict regulations are in place
to minimize these fatalities, determining how machines and buildings must be built
in order to prevent hazards and facilitate danger mitigation measures. Active safety
systems, such as automatic fire extinction systems, also help reduce the risk and
incidence of accidents. A critical aspect of safety in factories is to detect hazards
early, before they cause accidents or irreversible situations. These hazards may be
varied in nature, determining the mechanisms that can be used for their detection.
Smoke detectors, radiation detectors, or temperature sensors are some common
examples.

Video analysis is a function that can be performed with intelligent connectivity.
Processes such as object recognition or movement detection can be performed in
the cloud with AI using video feeds from connected cameras. To train the analysis
AI algorithms, videos of known activities can be used to feed supervised learning
processes to train a model. Another option is to model normal behaviour and train
the AI to recognize when abnormal activity occurs. The output of video analysis can
then be fed to other systems to perform certain activities, such as raising alarms or
activating actuators through integrated IoT platforms.

Video analysis can be used to detect hazards such as smoke, fire, or even
sabotage in factories. Since surveillance cameras are usually deployed in factories,
video analysis can be deployed over their feeds to increase the coverage of hazard
detection, reducing the reaction time for active safety systems.

3.2 Connected Cars

As novel technologies arrive to the mobile communications market, an increasing
demand to integrate them into vehicles is growing [8]. Services such as video
streaming are starting to be part of on-board entertainment systems. But, beyond
entertainment for passengers, mobile communications can offer some very inter-
esting services to assist drivers: collision avoidance systems, navigation, predictive
maintenance, etc. Mobile communications will also play a major role in the future
of self-driving cars, where it is expected that autonomous cars will communicate
among each other to create self-organizing traffic patterns. Two examples where
intelligent connectivity has a central role are the transmission of traffic-related
warnings to drivers and remote driving.

Connected cars also has the potential to transform logistics, which is a key aspect
of supply chain management in industries.

Traffic-Related Warning Transmission Although fully autonomous self-driving
cars are quickly becoming a realistic possibility, there is yet a long way to go in
its social and legal aspects. In the first place, the psychological implications of
not having any control over a self-driving vehicle cause a general rejection over
the wider public. Also, issues like the coexistence between autonomous and non-
autonomous traffic, the ethical dilemmas on what decisions should AI systems take
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in case of emergency, the liabilities in case of accident, etc. are debates that are
still open to resolution. Therefore, the implantation of these technologies is taking
place in a gradual manner; starting with technologies that assist drivers and provide
information for better decision making. Information on traffic, road conditions, tolls,
accidents, or weather all help drivers to plan their routes or be especially cautious at
certain moments.

One of the main use cases of intelligent connectivity is the obtention of
information from sensors deployed over large geographic areas. The two basic
building blocks of this use case are the sensors themselves, and the wireless
technologies that provide connectivity. The reduction of the price in sensors and
the availability of low power systems in the last decades has made the deployment
of massive amounts of sensors economically feasible. But thanks to AI and ML,
other devices, such as cameras, smartphones or network access points, can be used
to extract additional information after some processing. Image recognition, location
analysis or network traffic modelling are just some of the processes that can be
used to obtain rich information from these devices. Regarding wireless networks,
wireless access network (WAN) technologies, such as 5G or 6LoWPAN, enable low
cost and low power connectivity both for sensors and for users of the information.

For traffic information, intelligent connectivity can be used to gather and
centralize all the useful information. This information may come from sources
such as road cameras, which can be used to measure the traffic and detect jams
through image recognition. Other incidents, such as oil stains over the asphalt, can
be recognized either by cameras or by sensors in the cars that upload this data
to the cloud. Collision detection systems, which are currently being installed in
modern vehicles and are being enforced by legislation, can report accidents. All this
information can then be curated and customized for each driver based on the analysis
of their trajectory, which can be obtained inspecting the geolocation information of
smartphones. As a result, drivers will have an updated and simple newsfeed on their
dashboards, that warns them of any important event they might encounter in the near
future.

Remote Driving Another intermediate steps towards full automation is remote
driving. In this stage, although there is still a human making the decisions, the driver
is in a remote location, so there is a delay in the feedback that, if not appropriately
dealt with, may cause accidents due to late decisions.

Mixed-Criticality Systems model devices where several different information
paths coexist. Some are more proprietary, therefore they are processed earlier,
having to wait less in queues, and receiving more resources (such as increased CPU
frequency) when needed. The wireless network can also establish different policies
for different kinds of traffic. Currently, 5G networks consider three main traffic
types: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communica-
tions (mMTC), and Ultra-Reliable Low Latency Communications (URLLC). This
differentiation allows to adapt the resources available in the Radio Access Network
carrier and the Core Network connections to better serve the needs of each type of
message.
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In remote driving, video feeds are a very important data source, allowing the
driver to visualize the environment. To transmit a high-resolution view, eMBB
connections are required in order to provide the required bandwidth. On the
other hand, when a sudden obstacle, such as an animal, appears in view, eMBB
may introduce a high latency, so a URLLC message showing the danger would
be required. To differentiate when this warning must be sent, image recognition
must be running at all times in the car’s CPU using a high-priority process.
Collision avoidance between cars must also be dealt with high priority. In this case,
geolocation information must be sent regularly by vehicles to the network, and a
collision prediction must be run in the network edge, where the information of
neighbouring vehicles can be aggregated. Once a potential collision is detected, a
warning can be sent to both drivers using URLLC.

3.3 Next-Generation Healthcare

Applications of IoT in healthcare seem to be endless: from remote monitoring
and personal healthcare to smart sensors and medical device integration, as well
as the pharmaceutical industry, healthcare insurance, healthcare building facilities,
robotics, smart pills, and even treatments of diseases [7]. It has the potential to not
only keep patients safe and healthy, but also to improve how physicians deliver care.
In the following we will focus on a few prominent IoT use cases in health with the
greatest potential from AI.

Remote Patient Monitoring Personal health and medical data are collected from
an individual and transmitted to a provider for use in care and related support.
In this way the provider can track healthcare data for a patient once released to
home or a care facility, reducing readmission rates. Healthcare devices as insulin
pumps, defibrillators, scales, continuous positive airway pressure machines, cardiac
monitoring devices, and oxygen tanks are now connected in the IoT to ensure remote
monitoring, providing patients and their caregivers valuable real-time information.

IoT-supported healthcare services can provide better and more efficient treatment
to patients while also inducing cost saving for the providers. On the other hand,
interconnectivity can provide for easy data collection, asset management, Over-the-
Air updates, and device remote control and monitoring.

Assisted Living Demographics, public policy, and the labour market are driving an
emerging market for IoT to deliver elder care services. By 2029, 20 percent of the
U.S. population will be over the age of 65 and 70 percent of those individuals will
need some form of assisted care, according to recent research [16].

AI and the IoT have the potential to shape a new collection of technologies
to improve the quality and availability of elder care while helping to control
its costs. Ambient intelligence, which combines AI and IoT, will provide real-
time monitoring of an environment and event-driven response to changes in that
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environment. Sensors designed to detect changes in sound, motion, physiological
signals, as well as more generalized image processing are core components of an
ambient intelligent environment.

Ambient intelligence thus is poised to serve a range of functions with regards
to elder care, but most applications will address three broad functions: maintaining
routine activities and social connectedness, enhancing safety, and monitoring health.
Routine activities and social support are especially suited for elders suffering
cognitive decline. These systems detect changes in patients’ location or environment
and provide verbal assistance as needed, or if needed, notify caregivers. Safety-
enhancing sensors are often wearable and provide early warnings of potentially
threatening situations, such as falls. Health monitoring systems may combine
wearable and stationary sensors to monitor blood pressure, pulse, and movement
of the patient as well as environmental data, such as ambient temperature.

Unlike IoT applications that function primarily to monitor and control devices
or environmental conditions, ambient intelligence systems are designed to monitor
and support humans, creating an additional dimension of complexity. Developers
of ambient intelligence systems face challenges common to IoT as well as some
specific to this domain. Real-time processing, quality control, and data integration
are especially important when making decisions about the physical well-being of a
patient.

4 Architecture for AI-Enabled IoT

Intelligent connectivity encompasses a wide set of ML and AI algorithms for a very
wide array of solutions applied over a great variety of use cases. To implement
these solutions in practice, the first question to resolve is its architecture, that is,
what elements will be used, and at which location in the IoT system they will be set
up. Figure 1 provides an overview of such an architecture. In this section, we will
delve into the details of the elements of this architecture.

4.1 IoT Network

The IoT network has a main role as a gatherer of information. By providing
connectivity to IoT devices, it collects all the data and redirects them to the services
they are connected to. It also plays the reverse role, that is, to send commands and
responses from the services to the devices.

In intelligent connectivity, the IoT network adapts itself to the connectivity needs
of the devices, ensuring that they have the resources they need for their operation.
This means that the network is reactive to external changes, and in some cases even
proactive, in the sense that it uses predictions to adapt to these changes beforehand.
Therefore, a secondary role of the network is as a client of the AI services. For this,
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the IoT network must share its configuration parameters and performance indicators
with the AI/ML blocks, and use their outputs for self-configuration.

This adaptability functionality is especially important in harsh environments such
as those found in Industry 4.0. Shadowing and interference are major problems,
as earlier stated. Intelligent connectivity solutions can help in tasks such as the
detection of coverage holes (i.e. zones in an industrial premise where no wireless
connectivity is present), interference mitigation and load balancing. AI techniques
can perform these functions, and even do it in a predictive manner.

Although the network is a central component to intelligent connectivity, it is
also the component over which the least control is usually feasible by the industrial
installation owners. Large deployments are usually undertaken and operated by
network operators, while often the applications are demanded and developed by
external entities with very specific needs. There is a need, therefore, for coordination
among the different entities.

4.2 Databases

In intelligent connectivity, the IoT network “knows” where all the information from
all the devices is located. This knowledge can be modeled as a single, huge database,
where the AI/ML blocks can query specific data. Since the central database is
actually a set of disperse network services, common formats [9] such as XML
or JSON, and normalized interfaces such as REST [10] or Graphql [11], are
key technologies to retrieve the information when required. Technologies such as
NoSQL databases are used in online services to store very large amounts of schema-
less data, which are common when the data sources (IoT devices, smartphones, etc.)
are from different vendors. This technology can also be used by the IoT network to
centralize the data from different services once they are queried by the AI/ML block.

Some important features of databases in industrial applications are their reli-
ability, their performance and their security. Databases play a central role in
data-centric applications, therefore, it is important that they are accessible at all
times, information is not corrupted easily, since otherwise the outcomes of ML/AI
processes would be affected and the cost due to errors would escalate. Performant
databases are the basis of performant ML/AI algorithms that can cater for large
data-centric applications and processes with very high throughput. Security is key
to avoid industrial information theft and sabotage; and it is also a major selling point
for owners, which ultimately helps in the expansion of the intelligent connectivity
market.
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4.3 AI and ML Components

The elements that will be used for the AI block depend highly on the application,
which imposes a certain output, for example, a classification label, or the prediction
of a time series. Two boundary conditions must be set based on the requirements of
the application:

• Selection of input data: to decide the datasets that will first train the AI
algorithm with ML and afterwards be used as input of the trained AI algorithms,
the main criteria is the availability of the information within the data. In other
words, the first step to take is to assess what is the base dataset that contains the
target information. The base dataset determines also the physical data sources
that must be used (e.g. databases, file systems, devices, etc.), and the flow of
data throughout the network. These are aspects that must be taken into account
to ensure that requirements such as latency and reliability are fulfilled.

• Selection of the type of output: this decision depends on what the objective
of the intelligent connectivity solution is. It defines what information will be
extracted from the input data. There are many kinds of output; for instance,
class labels, that classify a certain input dataset into one of a finite number of
classes; or predicted values, that provide a value for a variable in the near future
based on past values of that same variable or others. The output can also consist
in model parameters, such as statistic indicators (averages, quantiles, etc.).

Once these boundary conditions are adjusted, the set of AI algorithms that can
be used is narrowed down to those that can provide the expected output with the
selected inputs. In some cases, some algorithms (such as Artificial Neural Networks)
can be used for different kinds of applications (prediction and classification), but the
mode of working with them, the set of selected inputs and their roles varies widely
for each case.

Once the AI algorithm is fixed, the ML method that will train it must be selected.
If the data available for training includes examples of the output, supervised learning
can be used; otherwise, unsupervised learning must be chosen. In a system where
ML is done online, that is, when the output of the AI is validated by an external
factor and fed back to the ML algorithm, reinforcement learning can also be used.

Selecting the datasets and the ML/AI algorithm are the base of the intelligent
connectivity solution design; but to actually implement the system other decisions
must also be taken. Specifically these decisions affect where each of the functions
composing the solution are implemented:

• Physical computing element: aspects such as the dimension of data or the
complexity of the operations determine the required computing power. Also,
the cost of such computing power must be taken into account.

• Centralized/decentralized architecture: this aspect of the architecture deter-
mines whether the algorithm is implemented in a single server (centralized)
or aggregating the results of instances running in a distributed set of devices
(decentralized).
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These two architectural decisions comprehend a very large set of technologies
that exist in the market nowadays. Also, the very broad range of ML/AI algorithms
that exists in the market gives place to a very heterogeneous set of requirements.
There are some algorithms that are very lightweight while others are demanding;
some that are parallelizable while others are not; some that need a global view of
the use case (for instance, they need to access data coming from many sensors as
well as data saved in the cloud) while others only need a local view (for instance,
only on the sensing device). All these considerations define the boundary conditions
of the selected location for the implementation of the algorithm.

Considering the physical computing element and the centralized/decentralized
decisions as a single issue, there are three main options for the implementation
location:

• Local device: For algorithms that only need local visibility and are simple
enough so that they can run within the computational resources offered by
the device, Implementation in the same device is a possibility. The main
advantage of this location is that the latency is very low. On the other hand
for energy constrained devices this implies a higher consumption. This is an
example of a decentralized implementation option. Different instances running
in different devices can communicate among themselves using peer to peer
communications.

• Remote device: The traditional client server scheme also has its place in
intelligent connectivity. In this case the algorithms will not be running the
devices but in a remote location. The devices only act as information collectors
and actuators. Also data from other data sources (such as databases or the
Internet) can be used in this scheme. Applications that require a global view
must be implemented using this scheme. This is a traditionally centralized
architecture, where a network connection is established between the devices
(clients) and one remote computer (server). Nowadays this scheme is a little
bit more complex but also more flexible, thanks to technologies such as
virtualization (that allows to run virtualized servers and share physical resources
between them) and cloud computing (that allows running a flexible number of
parallel instances of a specific algorithm). These technologies combined allow
the access to a high computing power with a low cost.

• Edge computing: In the last years, the separation between the communications
infrastructure and the computing platform has started to vanish. In edge com-
puting the implementation of the algorithms is done over computing elements
located in the access network nodes (e.g. gNBs in 5G). This combines the
advantages of a local implementation (low latency) with the advantages of a
centralized implementation (global visibility, energy saving, computing power,
etc.)

In IoT, one important development of the last years is the emergence of integral
platforms, such as OneM2M [12], Fiware [13] or OpenStack [14] that offer premade
solutions including data storage, processing, computation resource management,
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edge computing, security, etc. These platforms offer a scalable starting point for
any new intelligent connectivity solution.

5 Future Outlook

The next few years are going to see the merging of the emerging technologies,
including the convergence of big data, AI, and IoT. In particular, industrial IoT will
harness the power of AI for optimized manufacturing process, including predictive
maintenance and root cause analysis.

5.1 Digital Twins

As “things” becoming connected and with increased capability of producing data
through sensing, virtual replicas of physical entities and processes can be produced
to run simulation, before actual entities are built and deployed. Such virtual replicas
are referred to as ‘digital twins’. In essence, a digital twin is a computer program
that takes real-world data and contexts about a physical system and process and
reproduces how the system or the process will react to these inputs. Digital twins
have been applied to manufacturing industry to facilitate production and proactive
maintenance, and can include large items such as buildings, factories, and even
cities.

Digital twin is a perfect example as the merging of emerging technologies
including big data, AI, and IoT. The technology has been made possible due to the
massive number of IoT sensors. In particular, construction of digital twins requires
inputs from massive sensors gathering all relevant features—in the form of big
data—of its physical counterpart, such that its digital twin can represent the physical
entity, and reactions of these data can be simulated in real time. Representing a
complicated physical entity (e.g., a factory, a bridge) may rely on the underlying
features of the material and structure of the physical entity, and conventional method
of modelling such an entity may not be sufficient. AI can serve as an effective
tool in this case to reflect the underlying features of the physical entity, offering
recommendations and insights to performance validation, with or without a specific
modelling. It can also effectively react to the dynamic contexts of the twin, and
provide enhancement in real time, according to the contexts. In many cases, a digital
twin could serve as a prototype of the physical entity, before it is physically deployed
in practice.
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5.2 Next-Generation IoT

The next-generation IoT (NG-IoT) technologies and applications [8] will be human-
centric. A human-centric IoT environment requires tackling new technological
trends and challenges. The next-generation IoT development, including human-
centred approaches, is interlinked with the evolution of enabling technologies (AI,
connectivity, security, virtualization) that require strengthening trustworthiness with
electronic identity services, services and data portability across applications and
IoT platforms. This ensures evolution to platforms with better efficiency, scalability,
end-to-end security, privacy, and resilience. The virtualization of functions and rule-
base policies will allow for free, fair flow and sharing of data and knowledge, while
protecting the integrity and privacy of data.

Intelligent/cognitive IoT networks provide multiple functionalities, including
physical connectivity that supports transfer of information and adaptive features that
adapt to user needs. These networks can efficiently exploit network-generated data
and functionality in real time and can be dynamically instantiated close to where
data are generated and needed. The dynamically instantiated functions are based on
(artificial) intelligent algorithms that enable the network to adapt and evolve to meet
changing requirements and scenarios and to provide context and content suitable
services to users. The AI embedded in the network allows the functions of IoT
platforms to be embedded within the network infrastructure.

Advanced technologies are required for the NG-IoT to provide energy-efficient,
intelligent, scalable, and high-connectivity performance, with intelligent and
dynamically adaptive infrastructure to provide high quality experience that can
be developed by humans and things. In this context, the connectivity networks
provide energy efficiency and high performance as well as the edge-network
intelligence infrastructure using AI, ML, Deep Learning, Neural Networks, and
other techniques of decentralized and automated network management, adaptive
analytics, and shared context and knowledge.

The development of AI and IoT combined in NG-IoT enables new ways of
interacting with connected objects through voice or gesture, while augmented
reality (AR) and virtual reality (VR) are powered by the data generated by IoT.
Furthermore, sensors and actuator technologies together with AI and connectivity
will push the development of tactile IoT based on convergence of these technologies,
where the boundaries between virtual and physical worlds blur.
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