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Abstract. We introduce two essentially undecidable first-order theories
WT and T. The intended model for the theories is a term model. We
prove that WT is mutually interpretable with Robinson’s R. Moreover,
we prove that Robinson’s Q is interpretable in T.

1 Introduction

A first-order theory T is undecidable if there is no algorithm for deciding if T � φ.
If every consistent extension of an undecidable theory T also is undecidable, then
T is essentially undecidable.

We introduce two first-order theories, WT and T, over the language LT =
{⊥, 〈·, ·〉,�} where ⊥ is a constant symbol, 〈·, ·〉 is a binary function symbol
and � is a binary relation symbol. The intended model for these theories is a
term model: The universe is the set of all variable-free LT-terms. Each term is
interpreted as itself, and � is interpreted as the subterm relation (s is a subterm
of t iff s = t or t = 〈t1, t2〉 and s is a subterm of t1 or t2).

The non-logical axioms of WT are given by the two axiom schemes:

(WT1) s �= t

where s and t are distinct variable-free terms.

(WT2) ∀x[ x � t ↔
∨

s∈S(t)

x = s ]

where t is a variable-free term and S(t) is the set of all subterms of t. There
are no other non-logical axioms except those given by these two simple schemes,
and at a first glance WT seems to be a very weak theory. Still it turns out that
Robinson’s essentially undecidable theory R is interpretable in WT, and thus it
follows that also WT is essentially undecidable. The theory T is given by the
four axioms:

T1 ∀xy[ 〈x, y〉 �= ⊥ ]
T2 ∀x1x2y1y2[ 〈x1, x2〉 = 〈y1, y2〉 → ( x1 = y1 ∧ x2 = y2 ) ]
T3 ∀x[ x � ⊥ ↔ x = ⊥ ]
T4 ∀xyz[ x � 〈y, z〉 ↔ ( x = 〈y, z〉 ∨ x � y ∨ x � z ) ].
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It is not difficult to see that T is a consistent extension of WT. Thus, since WT
is essentially undecidable, we can conclude right away that also T is essentially
undecidable. Furthermore, since every model of the finitely axiomatizable theory
T is infinite, T cannot be interpretable in WT, and the obvious conjecture would
be that T is mutually interpretable with Robinson’s Q.

The Axioms of R

R1 n + m = n + m ; R2 n × m = nm ; R3 n �= m for n �= m ;
R4 ∀x[ x ≤ n x = 0 ∨ . . . ∨ x = n ] ; R5 ∀x[ x ≤ n ∨ n ≤ x ]

The Axioms of Q

Q1 ∀xy[ Sx = Sy x = y ] ; Q2 ∀x[ Sx �= 0 ] ; Q3 ∀x[ x �= 0 ∃y[ x = Sy ] ] ;
Q4 ∀x[ x + 0 = x ] ; Q5 ∀xy[ x + Sy = S(x + y) ] ; Q6 ∀x[ x × 0 = 0 ] ;
Q7 xy[ x Sy = (x y) + x ] ; Q8 xy[ x y z[ x + z = y ] ]

Fig. 1. The axioms of R are given by axiom schemes where n, m ∈ N and n denotes
the nth numeral, that is, 0 ≡ 0 and n + 1 ≡ Sn.

The seminal theories R and Q are theories of arithmetic. The theory R is given
by axiom schemes, and Q is a finitely axiomatizable extension of R, see Fig. 1
(Q is also known as Robinson arithmetic and is more or less Peano arithmetic
without the induction scheme). It was proved in Tarski et al. [9] that R and Q
are essentially undecidable. Another seminal essentially undecidable first-order
theory is Grzegorcyk’s TC. This is a theory of concatenation. The language is
{∗, α, β} where α and β are constant symbols and ∗ is a binary function symbol.
The standard TC model is the structure where the universe is {a, b}+ (all finite
nonempty strings over the alphabet {a, b}), ∗ is concatenation, α is the string a
and β is the string b. It was proved in Grzegorzyk and Zdanowski [3] that TC
is essentially undecidable. It was later proved that TC is mutually interpretable
with Q, see Visser [10] for further references. The theory WTC−ε is a weaker
variant of TC that has been shown to be mutually interpretable with R, see
Higuchi and Horihata [4] for more details and further references. The axioms of
TC and WTC−ε can be found in Fig. 2.

The overall picture shows three finitely axiomatizable and essentially unde-
cidable first-order theories of different character and nature: Q is a theory of
arithmetic, TC is a theory of concatenation, and T is a theory of terms (it may
also be viewed as a theory of binary trees). All three theories are mutually inter-
pretable with each other, and each of them come with a weaker variant given
by axiom schemes. These weaker variants are also essentially undecidable and
mutually interpretable with each other.

The theory T has, in contrast to Q and TC, a purely universal axiomatiza-
tion, that is, there are no occurrences of existential quantifiers in the axioms.
Moreover, its weaker variant WT has a neat and very compact axiomatization
compared to R and WTC−ε.
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The Axioms of WTC−ε

WTC−ε
1 ∀xyz x ∗ (y ∗ z) � t ∨ (x ∗ y) ∗ z � t

)
x ∗ (y ∗ z) = (x ∗ y) ∗ z

]
;

WTC−ε
2 ∀xyzu

[
x ∗ y = z ∗ u ∧ x ∗ y � t (x = z ∧ y = u) ∨

∃w[ (x ∗ w = z ∧ w ∗ u = y) ∨ (z ∗ w = x ∧ w ∗ y = u ]
) ]

;
WTC−ε

3 ∀xy[ α �= x ∗ y ] ; WTC−ε
4 ∀xy[ β �= x ∗ y ] ; WTC−ε

5 α �= β

where x � y is defined by

x = y ∨ ∃z1z2[ z1 ∗ x = y ∨ x ∗ z2 = y ∨ (z1 ∗ x) ∗ z2 = y ∨ z1 ∗ (x ∗ z2) = y ] .

The Axioms of TC

TC1 ∀xyz[ x ∗ (y ∗ z) = (x ∗ y) ∗ z ] ;
TC2 ∀xyzu

[
x ∗ y = z ∗ u (x = z ∧ y = u) ∨
∃w[ (x ∗ w = z ∧ w ∗ u = y) ∨ (z ∗ w = x ∧ w ∗ y = u ] ;

TC3 xy[ α = x y ] ; TC4 xy[ β = x y ] ; TC5 α = β

Fig. 2. WTC−ε
1 and WTC−ε

2 are axiom schemes where t ∈ {a, b}+ and t is a term
inductively defined by: a ≡ α, b ≡ β, au ≡ α ∗ u and bu ≡ β ∗ u.

Another interesting theory which is known to be mutually interpretable with
Q, and thus also with TC and T, is the adjunctive set theory AST. More on
AST and adjunctive set theory can found in Damnjanovic [2]. For recent results
related to the work in the present paper, we refer the reader to Jerabek [5],
Cheng [1] and Kristiansen and Murwanashyaka [7].

The rest of this paper is fairly technical, and we will assume that the reader is
familiar with first-order theories and the interpretation techniques introduced in
Tarski et al. [9]. In Sect. 2 we prove that R and WT are mutually interpretable. In
Sect. 3 we prove that Q is interpretable in T. We expect that T can be interpreted
in Q by standard techniques available in the literature.

2 R and WT Are Mutually Interpretable

The theory R− over the language of Robinson arithmetic is given by the axiom
schemes

R−
1 n + m = n + m ; R−

2 n × m = nm ; R−
3 n �= m for n �= m ;

R−
4 ∀x[ x ≤ n ↔ x = 0 ∨ . . . ∨ x = n ]

where n,m ∈ N. Recall that n denotes the nth numeral, that is, 0 ≡ 0 and
n + 1 ≡ Sn.

We now proceed to interpret R− in WT. We choose the domain I(x) ≡ x = x
(thus we can just ignore the domain). Furthermore, we translate the successor
function S(x) as the function given by λx.〈x, ⊥〉, and we translate the constant
0 as 〈⊥, ⊥〉. Let n� denote the translation of the numeral n. Then we have
n + 1� ≡ 〈n�, ⊥〉. It follows from WT1 that the translation of each instance of
R−
3 is a theorem of WT since m� and n� are different terms whenever m �= n.
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We translate x ≤ y as x � y ∧ x �= ⊥. It is easy to see that

WT � ∀x[ x � n� ∧ x �= ⊥ ↔
∨

s∈T (n)

x = s ] (1)

where T (n) = S(n�) \ {⊥} and S(n�) denotes the set of all subterms of n�. We
observe that T (n) = {k

� | k ≤ n} and that (1) indeed is the translation of the
axiom scheme R−

4 . Hence we conclude that the translation of each instance of
R−
4 is a theorem of WT.

Next we discuss the translation of +. The idea is to obtain n + i through a
formation sequence of length i. Such a sequence will be represented by a term
of the form

〈. . . 〈〈〈n�, 0�〉, 〈n + 1�
, 1�〉〉, 〈n + 2�

, 2�〉〉 . . . , 〈n + i
�
, i

�〉〉. (2)

Accordingly we translate x + y = z by the predicate add(x, y, z) given by the
formula

( y = 0� ∧ z = x ) ∨
{

y �= 0� ∧ ∃W
[

〈x, 0�〉 � W ∧

∀X ∀Y � y
[

〈X, Y 〉 � W ∧ Y �= y ∧ Y �= ⊥ →
(

〈〈X, ⊥〉, 〈Y, ⊥〉〉 � W ∧ ( 〈Y, ⊥〉 = y → 〈X, ⊥〉 = z )
) ] ] }

.

Lemma 1. For any m,n ∈ N, we have

WT � ∀z
[
add(n�,m�, z) ↔ z = n + m

� ]
.

Proof. First we prove that WT � add(n�,m�, n + m
�). This is obvious if m = 0.

Assume m > 0. Let

Sn
0 ≡ 〈n�, 0�〉 and Sn

i+1 ≡ 〈Sn
i , 〈n + i + 1

�
, i + 1

�〉〉

and observe that Sn
i is of the form (2). We will argue that we can choose the W

in the definition of add(x, y, z) to be the term Sn
m.

So let W = Sn
m. By the axioms of WT, we have 〈n�, 0�〉 � W . Assume

〈X, Y 〉 � W and Y �= y = m� and Y � y = m� and Y �= ⊥.

By the axioms of WT, we have that Y � m�, Y �= m� and Y �= ⊥ imply Y = k
�

for some k < m. Since 〈X, Y 〉 � W , we know by WT2 that 〈X, Y 〉 is one of
the subterms of W . By WT1 and the form of Sn

m, we conclude that X = n + k
�
.

Furthermore, the form of Sn
m and WT2 then ensures that 〈〈X, ⊥〉, 〈Y, ⊥〉〉 �

W = Sn
m. Moreover, if 〈Y, ⊥〉 = m�, then by WT1, we must have k = m− 1, and

thus, 〈X, ⊥〉 = 〈n + (m − 1)
�
, ⊥〉 = n + m

�. This proves that we can deduce
add(n�,m�, n + m

�) from the axioms of WT, and thus we also have

WT � ∀z
[

z = n + m
� → add(n�,m�, z)

]
.
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Next we prove that the converse implication add(n�,m�, z) → z = n + m
�

follows from the axioms of WT (and thus the lemma follows). This is obvious
when m = 0. Assume m �= 0 and add(n�,m�, z). Then we have W such that
〈n�, 0�〉 � W and

∀X ∀Y � m�
[

〈X, Y 〉 � W ∧ Y �= m� ∧ Y �= ⊥ →
(

〈〈X, ⊥〉, 〈Y, ⊥〉〉 � W ∧ ( 〈Y, ⊥〉 = m� → 〈X, ⊥〉 = z )
) ]

. (3)

Since 〈n, 0�〉 � W and (3) hold, we have 〈n + k + 1
�
, k + 1

�〉 � W for any
k < m. It also follows from (3) that z = n + k + 1

�
when m = k + 1. ��

It follows from the preceding lemma that there for any n,m ∈ N exists a
unique k ∈ N such that WT � add(n�,m�, k

�
). We translate x + y = z by the

predicate φ+ where φ+(x, y, z) is the formula
(

∃!u[add(x, y, u)] ∧ add(x, y, z)
)

∨
(

¬∃!u[add(x, y, u)] ∧ z = ⊥
)
. (4)

The second disjunct of (4) ensures the functionality of our translation, that is,
it ensures that WT � ∀xy∃!xφ+(x, y, z) (the same technique is used in [6]). By
Lemma 1, we have WT � φ+(n�,m�, n + m

�). This shows that the translation
of any instance of the axiom scheme R−

1 can be deduced from the axioms of WT.
We can also achieve a translation of x × y = z such that the translation of

each instance of R−
2 can be deduced from the axioms of WT. Such a translation

claims the existence of a term Sn
m where

Sn
1 ≡ 〈n�, 1�〉 and Sn

i+1 ≡ 〈Sn
i , 〈(i + 1)n

�
, i + 1

�〉〉

and will more or less be based on the same ideas as our translation of x+ y = z.
We omit the details.

Theorem 2. R and WT are mutually interpretable.

Proof. We have seen how to interpret R− in WT. It follows straightforwardly
from results proved in Jones and Shepherdson [6] that R− and R are mutually
interpretable. Thus R is interpretable in WT. A result of Visser [11] states that a
theory is interpretable in R if and only if it is locally finitely satisfiable, that is,
each finite subset of the non-logical axioms has a finite model. Since WT clearly
is locally finitely satisfiable, WT is interpretable in R. ��

3 Q is Interpretable in T

The language of the arithmetical theory Q− is {0, S,M,A} where 0 is a constant
symbol, S is a unary function symbol, and A and M are ternary predicate sym-
bols. The non-logical axioms of the first-order theory Q− are the the following:

A ∀xyz1z2[ A(x, y, z1) ∧ A(x, y, z2) → z1 = z2 ] ;
M ∀xyz1z2[ M(x, y, z1) ∧ M(x, y, z2) → z1 = z2 ] ;
Q1 ∀xy[ x �= y → Sx �= Sy ] ; Q2 ∀x[ Sx �= 0 ] ; Q3 ∀x[ x = 0 ∨ ∃y[ x = Sy ] ] ;
G4 ∀x[ A(x, 0, x) ] ; G5 ∀xyu[ ∃z[ A(x, y, z) ∧ u = Sz ] → A(x, Sy, u) ] ;
G6 ∀x[ M(x, 0, 0) ] ; G7 ∀xyu[ ∃z[ M(x, y, z) ∧ A(z, x, u) ] → M(x, Sy, u) ] .
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Svejdar [8] proved that Q− and Q are mutually interpretable. We will prove that
Q− is interpretable in T.

The first-order theory T+ is T extended by the two non-logical axioms

T5 ∀x[ x � x ] and T6 ∀xyz[ x � y ∧ y � z → x � z ].

Lemma 3. T+ is interpretable in T.

Proof. We simply relativize quantification to the domain

I = { x | x � x ∧ ∀uv[ u � v ∧ v � x → u � x ] } .

Suppose x1, x2 ∈ I. We show that 〈x1, x2〉 ∈ I. Since 〈x1, x2〉 = 〈x1, x2〉,
we have 〈x1, x2〉 � 〈x1, x2〉 by T4. Suppose now that u � v ∧ v � 〈x1, x2〉. We
need to show that u � 〈x1, x2〉. By T4 and v � 〈x1, x2〉, at least one of the
following three cases holds: (a) v = 〈x1, x2〉, (b) v � x1, (c) v � x2. Case (a):
Since u � v and v = 〈x1, x2〉, we have u � 〈x1, x2〉 by our logical axioms. Case
(b): u � v ∧ v � x1 implies u � x1 since x1 ∈ I. By T4, we have u � 〈x1, x2〉.
Case (c): We have u � 〈x1, x2〉 by an argument symmetric to the one used in
Case (b). Hence, ∀uv[ u � v ∧ v � 〈x1, x2〉 → u � 〈x1, x2〉 ].

This proves that I is closed under 〈·, ·〉. It follows from T3 that ⊥ ∈ I, and
thus I satisfies the domain condition. Clearly, the translation of each non-logical
axiom of T+ is a theorem of T. ��

We now proceed to interpret Q− in T+. We choose the domain N given by

N(x) ≡ x �= ⊥ ∧ ∀y � x[ y = ⊥ ∨ ∃z[ y = 〈z, ⊥〉 ] ] .

Lemma 4. We have (i) T+ � N(〈⊥, ⊥〉), (ii) T+ � ∀x[N(x) → N(〈x, ⊥〉)] and
(iii) T+ � ∀yz[ N(y) ∧ z � y → ( z = ⊥ ∨ N(z) ) ].

Proof. It follows from T1, T3 and T4 that (i) holds. In order to see that (ii)
holds, assume N(x) (we will argue that N(〈x, ⊥〉) holds). Suppose y � 〈x, ⊥〉.
Now, N(〈x, ⊥〉) follows from

y = ⊥ ∨ ∃z[ y = 〈z, ⊥〉 ]. (5)

Thus it is sufficient to argue that (5) holds. By T4, we know that y � 〈x, ⊥〉
implies y = 〈x, ⊥〉 ∨ y � x ∨ y � ⊥. The case y = 〈x, ⊥〉: We obviously have
∃z[ y = 〈z, ⊥〉 ] and thus (5) holds. The case y � x: (5) holds since N(x) holds.
The case y � ⊥: We have y = ⊥ by T3, and thus (5) holds. This proves (ii).

We turn to the proof of (iii). Suppose N(y) ∧ z � y (we show z = ⊥ ∨ N(z)).
Assume w � z. By T6, we have w � y, moreover, since N(y) holds, we have
w = ⊥ ∨ ∃u[w = 〈u, ⊥〉]. Thus, we conclude that

∀w � z[ w = ⊥ ∨ ∃u[ w = 〈u, ⊥〉 ] ]. (6)

Now
z = ⊥ ∨ ( z �= ⊥ ∧ ∀w � z[ w = ⊥ ∨ ∃u[ w = 〈u, ⊥〉 ] ] )

︸ ︷︷ ︸
N(z)

follows tautologically from (6). ��
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We interpret 0 as 〈⊥, ⊥〉. We interpret the successor function Sx as λx.〈x, ⊥〉.
To improve the readability we will occasionally write 0̇ in place of 〈⊥, ⊥〉, Ṡt in
place of 〈t, ⊥〉 and t ∈ N in place of N(t). We will also write ∃x ∈ N [ η ]
and ∀x ∈ N [ η ] in place of, respectively, ∃x[ N(x) ∧ η ] and ∀x[ N(x) → η ].
Furthermore, Qx1, . . . , xn ∈ N is shorthand for Qx1 ∈ N . . .Qxn ∈ N where Q
is either ∀ or ∃.

Lemma 5. The translations of Q1, Q2 and Q3 are theorems of T+.

Proof. The translation of Q1 is ∀x, y ∈ N [ x �= y → Ṡx �= Ṡy ]. By T2, we have
x �= y → Ṡx �= Ṡy for any x, y, and thus, the translation of Q1 is a theorem of
T+.

The translation of Q2 is ∀x ∈ N [ Ṡx �= 0̇ ]. Assume x ∈ N . Then we have
x �= ⊥, and by T2, we have Ṡn ≡ 〈x, ⊥〉 �= 〈⊥, ⊥〉 ≡ 0̇.

The translation of Q3 is ∀x ∈ N [ x = 0̇ ∨ ∃y ∈ N [ x = Ṡy ] ]. Assume x ∈ N ,
that is, assume

x �= ⊥ ∧ ∀y � x[ y = ⊥ ∨ ∃z[ y = 〈z, ⊥〉 ] ] . (7)

By T5, we have x � x. By (7) and x � x, we have

x �= ⊥ ∧ ( x = ⊥ ∨ ∃z[ x = 〈z, ⊥〉 ] )

and then, by a tautological inference, we also have ∃z[x = 〈z, ⊥〉]. Thus, we have
z such that 〈z, ⊥〉 ≡ Ṡz = x ∈ N . By Lemma 4 (iii), we have z = ⊥ ∨ z ∈ N .
If z = ⊥, we have x = 〈⊥, ⊥〉 ≡ 0̇. If z ∈ N , we have z ∈ N such that x = Ṡz.
Thus, T+ � ∀x ∈ N [x = 0̇ ∨ ∃y ∈ N [x = Ṡy]]. ��

Before we give the translation of A, we will provide some intuition. The
predicate A(a, b, c) holds in the standard model for Q− iff a + b = c. Let 0̃ ≡ 0̇
and ñ + 1 ≡ Ṡñ, and observe that a + b = c iff there exists an LT-term of the
form

〈. . . 〈〈〈⊥, 〈ã, 0̃〉〉, 〈ã + 1, 1̃〉〉, 〈ã + 2, 2̃〉〉 . . . , 〈ã + b, b̃〉〉 (8)

where c = a + b. We will give a predicate φA such that φA(ã, b̃, w) holds in T+

iff w is of the form (8). Thereafter we will use φA to give the translation ΨA of
A.

Let φA(x, y, w) ≡

( y = 0̇ → w = 〈⊥, 〈x, 0̇〉〉 ) ∧ ∃w′∃z ∈ N [ w = 〈w′, 〈z, y〉〉 ] ∧
∀u∀Y,Z ∈ N [ θA(u,w, Y, Z) ]

where θA(u,w, Y, Z) ≡

〈u, 〈Z, Y 〉〉 � w ∧ Y �= 0̇ →
∃v ∃Y ′Z ′ ∈ N

[
Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧

( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )
]

.
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The translation ΨA of A is ΨA(x, y, z) ≡

∃w
[

φA(x, y, w) ∧ ∃w′[ w = 〈w′, 〈z, y〉〉 ] ∧ ∀u[ φA(x, y, u) → u = w ]
]

.

Lemma 6.

T+ � ∀x ∈ N∀w[ φA(x, 0̇, w) ↔ w = 〈⊥, 〈x, 0̇〉〉 ] .

Proof. We assume x ∈ N and prove the equivalence

φA(x, 0̇, w) ↔ w = 〈⊥, 〈x, 0̇〉〉 (9)

The left-right direction of (9) follows straightforwardly from the definition of φA.
To prove the right-left implication of (9), we need to prove φA(x, 0̇, 〈⊥, 〈x, 0̇〉〉).
It is easy to see that φA(x, 0̇, 〈⊥, 〈x, 0̇〉〉) holds if

∀u∀Y,Z ∈ N [ θA(u, 〈⊥, 〈x, 0̇〉〉, Y, Z) ] (10)

holds, and to show (10), it suffices to show that

x, Y, Z ∈ N and 〈u, 〈Z, Y 〉〉 � 〈⊥, 〈x, 0̇〉〉 and Y �= 0̇ (11)

is a contradiction. (If (11) is a contradiction, then (10) will hold as the antecedent
of θA will be false for all x, Y, Z ∈ N and all u.)

By T4 and 〈u, 〈Z, Y 〉〉 � 〈⊥, 〈x, 0̇〉〉 we have to deal with the following three
cases: (a) 〈u, 〈Z, Y 〉〉 = 〈⊥, 〈x, 0̇〉〉, (b) 〈u, 〈Z, Y 〉〉 � ⊥ and (c) 〈u, 〈Z, Y 〉〉 �
〈x, 0̇〉. Case: (a): We have Y = 0̇ by T2, but we have Y �= 0̇ in (11). Case (b):
We have 〈u, 〈Z, Y 〉〉 = ⊥ by T3, and this contradicts T1. Case (c): By T4, this
case splits into the three subcases: (a’) 〈u, 〈Z, Y 〉〉 = 〈x, 0̇〉, (b’) 〈u, 〈Z, Y 〉〉 � x
and (c’) 〈u, 〈Z, Y 〉〉 � 0̇. Case (a’): We have 〈u, 〈Z, Y 〉〉 = 〈x, 〈⊥, ⊥〉〉 since 0̇ is
shorthand for 〈⊥, ⊥〉. Thus, by T2, we have Z = ⊥ and Y = ⊥. This contradicts
Y,Z ∈ N . Case (b’): We have 〈u, 〈Z, Y 〉〉 � x and x ∈ N . By Lemma 4 (iii), we
have 〈u, 〈Z, Y 〉〉 = ⊥ or 〈u, 〈Z, Y 〉〉 ∈ N . Now, 〈u, 〈Z, Y 〉〉 = ⊥ contradicts T1.
Furthermore, by our definitions, 〈u, 〈Z, Y 〉〉 ∈ N implies that

∀y0 � 〈u, 〈Z, Y 〉〉[ y0 = ⊥ ∨ ∃z0[ y0 = 〈z0, ⊥〉 ] ].

By T5, we have 〈u, 〈Z, Y 〉〉 = ⊥ ∨ ∃z0[ 〈u, 〈Z, Y 〉〉 = 〈z0, ⊥〉 ], and this yields
a contradiction together with T1 and T2. Case (c’) is similar to Case (a’), but a
bit simpler. This completes the proof of the lemma. ��

Lemma 7.

T+ � ∀x, y ∈ N∀zww′[ w = 〈w′, 〈z, y〉〉 ∧ φA(x, y, w) →
φA(x, Ṡy, 〈w, 〈Ṡz, Ṡy〉〉) ].

Proof. We assume

x, y ∈ N and w = 〈w′, 〈z, y〉〉 and φA(x, y, w) . (12)
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We need to prove φA(x, Ṡy, 〈w, 〈Ṡz, Ṡy〉〉) ≡
( Ṡy = 0̇ → w = 〈⊥, 〈x, 0̇〉〉 ) ∧

∃w0∃z0 ∈ N [ 〈w, 〈Ṡz, Ṡy〉〉 = 〈w0, 〈z0, Ṡy〉〉 ] ∧
∀u∀Y, Z ∈ N [ θA(u, 〈w, 〈Ṡz, Ṡy〉〉, Y, Z) ] (13)

First we prove

z ∈ N and Ṡz ∈ N (14)

Since φA(x, y, w) holds by our assumptions (12), we have z1 ∈ N and w1 such
that w = 〈w1, 〈z1, y〉〉. We have also assumed w = 〈w′, 〈z, y〉〉. By T2, we have
z = z1, and thus z ∈ N . By Lemma 4 (ii), we have Ṡz ∈ N . This proves (14).

The second conjunct of (13) follows straightforwardly from (14). (simply let
z0 be Ṡz and let w0 be w). The first conjunct follows easily from T2 and the
assumption y ∈ N . Thus, we are left to prove the third conjunct of (13), namely

∀u∀Y,Z ∈ N
[

〈u, 〈Z, Y 〉〉 � 〈w, 〈Ṡz, Ṡy〉〉 ∧ Y �= 0̇ →
∃v ∃Y ′Z ′ ∈ N

[
Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧

( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )
] ]

(15)

In order to do so, we assume

Y,Z ∈ N and 〈u, 〈Z, Y 〉〉 � 〈w, 〈Ṡz, Ṡy〉〉 and Y �= 0̇ (16)

and prove

∃v ∃Y ′Z ′ ∈ N
[

Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧
( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )

]
. (17)

By our assumptions (16), we have 〈u, 〈Z, Y 〉〉 � 〈w, 〈Ṡz, Ṡy〉〉, and then T4

yields three cases: (a) 〈u, 〈Z, Y 〉〉 = 〈w, 〈Ṡz, Ṡy〉〉, (b) 〈u, 〈Z, Y 〉〉 � w and (c)
〈u, 〈Z, Y 〉〉 � 〈Ṡz, Ṡy〉. We prove that that (17) holds in each of these three
cases.

Case (a): By T2, we have u = w, Z = Ṡz and Y = Ṡy. By (14), we have z ∈ N .
By (12), we have y ∈ N . Moreover, by (12), we also have u = w = 〈w′, 〈z, y〉〉.
Thus there exist v and Y ′, Z ′ ∈ N such that

Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 .

If y = 0̇, we must have 〈v, 〈z, y〉〉 = w = 〈⊥, 〈x, 0̇〉〉 since φA(x, y, w) holds by
our assumptions (12). By T2, this implies z = x and v = ⊥. This proves that
(17) holds in Case (a).

Case (b): By our assumptions (12), we have φA(x, y, w), and thus we also
have θA(u,w, Y, Z) ≡

〈u, 〈Z, Y 〉〉 � w ∧ Y �= 0̇ →
∃v ∃Y ′Z ′ ∈ N

[
Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉) ∧

( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )
]
. (18)
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We are dealing with a case where the antecedent of (18) holds, and thus (17)
holds.

Case (c): This case is not possible. By T4, this case splits into the subcases:
(a’) 〈u, 〈Z, Y 〉〉 = 〈Ṡz, Ṡy〉, (b’) 〈u, 〈Z, Y 〉〉 � Ṡz and (c’) 〈u, 〈Z, Y 〉〉 � Ṡy.
We prove that each of these subcases contradicts our axioms. Case (a’): Recall
that Ṡy is shorthand for 〈y, ⊥〉. Thus, by T2, we have Y = ⊥. This contra-
dicts the assumption (12) that Y ∈ N . Case (b’): By Lemma 4 (iii), we have
〈u, 〈Z, Y 〉〉 = ⊥ ∨ N(〈u, 〈Z, Y 〉〉). Now, 〈u, 〈Z, Y 〉〉 = ⊥ contradicts T1. Further-
more, N(〈u, 〈Z, Y 〉〉) implies that there is z0 such that 〈u, 〈Z, Y 〉〉 = 〈z0, ⊥〉.
By T2, we have 〈Z, Y 〉 = ⊥. This contradicts T1. Case (c’) is similar to Case
(b’). This proves that (17) holds, and thus we conclude that the lemma holds. ��

Lemma 8.

T+ � ∀xy ∈ N∀w[ φA(x, Ṡy, w) →
∃u ∈ N∃w′[ w = 〈w′, 〈u, Ṡy〉〉 ∧ φA(x, y, w′) ] ].

Proof. Let x, y ∈ N and assume φA(x, Ṡy, w). Thus, we have w′ and z ∈ N such
that

w = 〈w′, 〈z, Ṡy〉〉 and ∀u∀Y,Z ∈ N [ θA(u,w, Y, Z) ] (19)

Use the assumptions (19) to prove that φA(x, y, w′) ≡

( y = 0̇ → w′ = 〈⊥, 〈x, 0̇〉〉 ) ∧ ∃w′′∃z ∈ N [ w′ = 〈w′′, 〈z, y〉〉 ] ∧
∀u∀Y,Z ∈ N [ θA(u,w′, Y, Z) ] (20)

holds. We omit the details. ��

Lemma 9. The translations of A, G4 and G5 are theorems of T+.

Proof. The translation of the axiom A is

∀x, y, z1, z2 ∈ N [ ΨA(x, y, z1) ∧ ΨA(x, y, z2) → z1 = z2 ] .

Assume ΨA(x, y, z1) and ΨA(x, y, z2). Then it follows straightforwardly from the
definition of ΨA and T2 that z1 = z2. Hence the translation is a theorem of T+.

The translation of G4 is ∀x ∈ N [ΨA(x, 0̇, x)], that is

∀x ∈ N∃w
[

φA(x, 0̇, w) ∧ ∃w′[ w = 〈w′, 〈x, 0̇〉〉 ] ∧
∀u[ φA(x, 0̇, u) → u = w ]

]
.

We have

T+ � φA(x, 0̇, 〈⊥, 〈x, 0̇〉〉) and T+ � ∀u[φA(x, 0̇, u) → u = 〈⊥, 〈x, 0̇〉〉

by Lemma 6, and it easy to see that the translation of G4 is a theorem of T+.
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The translation of G5 is

∀x, y, u ∈ N [ ∃z ∈ N [ ΨA(x, y, z) ∧ u = Ṡz ] → ΨA(x, Ṡy, u) ] . (21)

In order to prove that (21) can be deduced from the axioms of T+, we assume
ΨA(x, y, z) ∧ u = Ṡz. Then we need to prove ΨA(x, Ṡy, Ṡz) ≡

∃w
[

φA(x, Ṡy, w) ∧ ∃w′[ w = 〈w′, 〈Ṡz, Ṡy〉〉 ] ∧
∀u[ φA(x, Ṡy, u) → u = w ]

]
. .(22)

By our assumption ΨA(x, y, z) there is a unique w1 such that φA(x, y, w1) and
w1 = 〈w0, 〈z, y〉〉 for some w0. By Lemma 7, we have φA(x, Ṡy, 〈w1, 〈Ṡz, Ṡy〉〉).
Thus, we have w2 such that φA(x, Ṡy, w2) and w2 = 〈w1, 〈Ṡz, Ṡy〉〉. It is easy to
see that (22) holds if w2 is unique. Thus we are left to prove the uniqueness of
w2, more precisely, we need to prove that

∀W2[ φA(x, Ṡy,W2) → W2 = w2 ] . (23)

In order to prove (23), we assume φA(x, Ṡy,W2) (we will prove W2 = w2 =
〈w1, 〈Ṡz, Ṡy〉〉). By our assumption φA(x, Ṡy,W2) and Lemma 8, we have u0 ∈
N and W1 such that W2 = 〈W1, 〈u0, Ṡy〉〉 and φA(x, y,W1). We have argued
that there is a unique w1 = 〈w0, 〈z, y〉〉 such that φA(x, y, w1) holds. By this
uniqueness, we have W1 = w1 = 〈w0, 〈z, y〉〉. So far we have proved

w2 = 〈
w1

︷ ︸︸ ︷
〈w0, 〈z, y〉〉 , 〈Ṡz, Ṡy〉 〉 and W2 = 〈

W1
︷ ︸︸ ︷
〈w0, 〈z, y〉〉 , 〈u0, Ṡy〉 〉

and then we are left to prove that u0 = Ṡz. By our assumption φA(x, Ṡy,W2),
we have v and Z ′, Y ′ ∈ N such that u0 = ṠZ ′, Ṡy = ṠY ′ and W1 = 〈v, 〈Z ′, Y ′〉〉.
Thus, 〈v, 〈Z ′, Y ′〉〉 = 〈w0, 〈z, y〉〉. By T2, we have z = Z ′, and thus, u0 = ṠZ ′ =
Ṡz. This proves that (23) holds. ��

We will now give the translation ΨM of M . Let φM (x, y, w) ≡

( y = 0̇ → w = 〈⊥, 〈0̇, 0̇〉〉 ) ∧ ∃w′∃z ∈ N [ w = 〈w′, 〈z, y〉〉 ] ∧
∀u∀Y,Z ∈ N θM (u,w, Y, Z)

where θM (u,w, Y, Z) ≡

〈u, 〈Z, Y 〉〉 � w ∧ Y �= 0̇ → ∃v ∃Y ′, Z ′ ∈ N
[

ΨA(Z ′, x, Z) ∧
Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧ ( Y ′ = 0̇ → Z ′ = 0̇ ∧ v = ⊥ )

]
.

We let ΨM (x, y, z) ≡

∃w
[

φM (x, y, w) ∧ ∃w′[ w = 〈w′, 〈z, y〉〉 ∧ ∀u[ φM (x, y, u) → u = w ]
]

.
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The translations of M, G6 and G7 are

M ∀x, y, z1, z2 ∈ N [ ΨM (x, y, z1) ∧ ΨM (x, y, z2) → z1 = z2 ]
G6 ∀x ∈ N [ M(x, 0̇, 0̇) ]
G7 ∀x, y, u ∈ N [ ∃z ∈ N [ ΨM (x, y, z) ∧ ΨA(z, x, u) ] → ΨM (x, Ṡy, u) ] .

The proof of the next lemma follows the lines of the proof of Lemma 9. We omit
the details.

Lemma 10. The translations of M, G6 and G7 are theorems of T+.

Theorem 11. Q is interpretable in T.

Proof. It is proved in Svejdar [8] that Q is interpretable in Q−. It follows from
the lemmas above that Q− is interpretable in T+ which again is interpretable in
T. Hence the theorem holds. ��
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