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Abstract. We present some asymptotic properties on the average num-
ber of prefixes in trace languages. Such languages are characterized by an
alphabet and a set of commutation rules, also called concurrent alphabet,
which can be encoded by an independency graph or by its complement,
called dependency graph. One key technical result, which has its own
interest, concerns general properties of graphs and states that “if an
undirected graph admits a transitive orientation, then the multiplicity
of the root of minimum modulus of its clique polynomial is smaller or
equal to the number of connected components of its complement graph”.
As a consequence, under the same hypothesis of transitive orientation
of the independency graph, one obtains the relation E[T,] = O(E[W,]),
where the random variables T,, and W,, represent the number of pre-
fixes in traces of length n under two different fundamental probabilistic
models:

— the uniform distribution among traces of length n (for T7,),

— the uniform distribution among words of length n (for W,).
These two quantities are related to the time complexity of algorithms for
solving classical membership problems on trace languages.

Keywords: Trace monoids - Clique polynomials -+ Mobius functions -
Automata theory *+ Analytic combinatorics - Patterns in words

1 Introduction

In computer science, trace monoids have been introduced by Mazurkiewiecz [22]
as a model of concurrent events, describing which action can permute or not
with another action (we give a formal definition of traces and trace monoids in
Sect. 2, see also [14] for a treatise on the subject). In combinatorics, they are
related to the fundamental studies of the “monoide partiellement commutatif”
introduced by Cartier and Foata in [10], and to its convenient geometrical view

as heap of pieces proposed by Viennot in [25].
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Several classical problems in language theory (recognition of rational and
context-free trace languages, determination of the number of representative
words of a given trace, computing the finite state automaton recognizing these
words) can be solved by algorithms that work in time and space proportional to
(or strictly depending on) the number of prefixes of the input trace [3,6-8,15,23].
This is due to the fact that prefixes represent the possible decompositions of a
trace in two parts and hence they are natural indexes for computations on traces.

This motivates the analysis of the number of prefixes of a trace of given
length both in the worst and in the average case. In the average case analysis,
two natural sequences of random variables play a key role:

— {T,, }nen, the number of prefixes of traces of length n generated at random
under the equidistribution of traces of given size;

— {W,}nen, the number of prefixes of traces of length n generated at random
under the equidistribution of representative words of given size.

For some families of trace monoids, the asymptotic average, variance, and limit
distributions of {T,,} and {W),,} are known [6,7,19-21]. It is interesting that they
rely on the structural properties of an underlying graph (the independency graph,
defined in Sect. 2). For example, it is known that, for every trace monoid M, the
maximum number of prefixes of a trace of length n is of the order ©(n*), where
« is the size of the largest clique in the concurrent alphabet defining M [8]. We
summarize further such results in Sect. 3. In analytic combinatorics (see [17] for
an introduction to this field), it remains a nice challenge to get a more universal
description of the possible asymptotics of T}, and W,,.

In this work we prove that, if the concurrent alphabet (X, C) admits a tran-
sitive orientation, then

This is obtained by showing a general property of undirected graphs, which in our
context is applied to the concurrent alphabet (X, C) and its complement (X, C).
Such a property states that, for any undirected graph G admitting a transitive
orientation of its edges, the number of connected components of its complement
is greater or equal to the multiplicity of the root of smallest modulus in the
clique polynomial of G. The interest for the present discussion mainly relies on
the use of finite state automata and on classical tools of formal languages to study
properties of integer random variables in particular the asymptotic behaviour of
their moments.

The paper is organized as follows: in Sect. 2 we recall the basic definitions on
trace monoids; in Sect. 3 we summarize some asymptotic results on the random
variables T,, and W,,; in Sects.4 and 5, we present our main results on cross-
sections of trace monoids, clique polynomials, and a new bound relating the
asymptotic behaviour of T;,, and W,,; we then conclude with possible future
extensions of our work.
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2 Notation and Preliminary Notions

For the reader not already familiar with the terminology of trace languages, we
present in this section the key notions used in this article (see e.g. [14] for more
details on all these notions).

Given a finite alphabet X, as usual X* denotes the free monoid of all words
over X, ¢ is the empty word and |w]| is the length of a word w for every w € X*.
We recall that, for any w € X*, a prefix of w is a word u € X* such that w = uv,
for some v € X*. Also, for any finite set S, we denote by #S the cardinality of
S.

A concurrent alphabet is then a pair (X, C), where C C X' x X' is a symmet-
ric and irreflexive relation over X. Such a pair can alternatively be defined by an
undirected graph, which we call independency graph, where X is the set of
nodes and {{a,b} | (a,b) € C} is the set of edges. Its complement (X, C¢) is
called dependency graph. As the notions of concurrent alphabet and indepen-
dency graph are equivalent, in the sequel we indifferently refer to either of them.
Informally, a concurrent alphabet lists the pairs of letters which can commute.

The trace monoid generated by a concurrent alphabet (X, C) is defined as
the quotient monoid X*/ =¢, where =¢ is the smallest congruence extending the
equations {ab = ba : (a,b) € C}, and is denoted by M (X, C) or simply by M. Its
elements are called traces and its subsets are named trace languages. In other
words, a trace is an equivalence class of words with respect to the relation =¢
given by the reflexive and transitive closure of the binary relation ~¢ over X*
such that uabv ~¢ ubav for every (a,b) € C and every u,v € X*. For any w € X*,
we denote by [w] the trace represented by wj; in particular [¢] is the empty trace,
i.e. the unit of M. Note that the product of two traces r, s € M, where r = [x]
and s = [y], is the trace t = [zy], which does not depend on the representative
words z,y € X* and we denote the product by ¢t = s - r. The length of a trace
t € M, denoted by [t|, is the length of any representative word. For any n € N,
let M,, :={t € M :|t| =n} and m,, :== #M,,.

Note that if C = ) then M reduces to X*, while if C = {(a,b) € X' x X | a # b}
then M is the commutative monoid of all monomials with letters in X.

Any trace t € M can be represented by a partial order over the multiset
of letters of ¢, denoted by PO(t). It works as follows: first, consider a word w
satisfying ¢ = [w]. Then, for any pair of letters (a,b) of w, let a; be the i-th
occurrence of the letter a and b; the j-th occurrence of the letter b. The partial
order is then defined as a; < b; whenever a; precedes b; in all representative
words of [w]. (See Example 1 hereafter.)

A prefix of a trace t € M is a trace p such that ¢t = p - s for some s € M.
Clearly, any prefix of ¢ is a trace p = [u] where u is a prefix of a representative
of t. Tt is easy to see that if p is a prefix of ¢ then the PO(u) is an order ideal of
PO(t) and can be represented by the corresponding antichain. We recall that an
antichain of a partial order set (S, <) is a subset A C S such that a < b does
not hold for any pair of distinct elements a,b € A, while an order ideal in (S, <)
is a subset {a € § | 3 b € A such that a < b} for some antichain A of (S, <). For
every t € M, we denote by Pref(¢) the set of all prefixes of ¢.
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Example 1. Let M be the trace monoid characterized by the following inde-
pendency graph:
@—0——0—@

That is, one has ab = ba,bc = cb,cd = de. Then, the trace [bacda] (i.e., the
equivalence class of the word bacda) is the set of words {bacda,badca, abdca,
abeda, acbda}. The corresponding partially ordered set is given by the following
diagram

a1 —* Cl\
az

PO([bacdal) = -

b1Hd1

where an arrow from z; to y; means that z; always precedes y; and where we
omitted the arrows implied by transitivity. The set of prefixes is given by

Pref([bacda)) = {[e], [a], [b], [ab], [ac], [abc], [abd], [abcd], [abedal}.

In this set, we now overline the letters belonging to the antichain of each prefix:
{[e], [a], [b], [ab], [ac], [abe], [abd], [abed), [abedal}. |

Recognizable, rational and context-free trace languages are well defined by
means of linearization and closure operations over traditional string languages;
their properties and in particular the complexity of their membership problems
are widely studied in the literature (see for instance [8,14,15,23]).

For any alphabet X and trace monoid M, we denote by Z{(X)) the set of
formal series on words (they are thus series in noncommutative variables) and
by Z{M)) the set of formal series on traces (they are thus series in partially
commutative variables), and Z[z] stands for ring of classical power series in the
variable z. These three distinct rings (with the operations of sum and Cauchy
product, see [5,14,24]) will be used in Sects. 4 and 5.

3 Asymptotic Results for the Number of Prefixes

Several algorithms are presented in the literature for the recognition of rational
and context-free trace languages, or for other problems like computing the num-
ber of representative words of a trace, that take a trace ¢ as input and then carry
out some operations on all prefixes of ¢ [3,6-9,15,23]. Thus, their time and space
complexity strictly depend on the number of prefixes of ¢ and in many cases they
work just in time O(# Pref(t)). Now, it follows from [8] that

max{# Pref(t) : t € M,,} = O(n%), (1)

where « is the size of the largest clique in the independency graph of M. It is thus
essential to get a more refined analysis of the asymptotic behaviour of # Pref(t)
under natural distribution models in order to obtain a better understanding of
the average complexity of all these algorithms.

In this section, we recall the main results on the number of prefixes of a
random trace, under two different probabilistic models.
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3.1 Probabilistic Analysis on Equiprobable Words

A main goal of the present contribution is to compare the random variables T;,
and W,,, defined by

T, = #Pref(t) and W, = # Pref([w]), (2)

where ¢ is uniformly distributed over M,,, while w is uniformly distributed
over X". Clearly the properties of T,, and W,, immediately yield results on
time complexity of the algorithms described in [3,6,7] assuming, respectively,
equiprobable input traces of length n and equiprobable representative words of
length n. Since every trace of length n has at least n + 1 prefixes, a first crude
asymptotic bound is

n+1<T,<dn% n+1<W,<dn® (Vn eN),

for a suitable constant d > 0, where « is defined as in (1). More precise results
on the moments of W, are studied in [6,7,20]:

EWil=0(") VjeN, 3)

where k is the number of connected components of the dependency graph
of M. This relation is obtained by constructing suitable bijections between
each moment of W,, and the set of words of length n in a regular language [6].
These bijections also allow proving a first order cancellation of the variance, i.e.
var(W,) = O(n?*~1) [20]. Further, when the dependency graph is transitive,
this leads to two different limit laws, either chi-squared or Gaussian, according
whether all the connected components of (X, C¢) have the same size or not [19].

3.2 Probabilistic Analysis on Equiprobable Traces

Now, in order to analyse T}, (the number of prefixes of a random trace of size n),
it is useful to introduce the generating function of the trace monoid M:

M(z) := Z myz", with my, = #M,, = #{t €e M : |t| =n}.
neN

The Mé&bius function of M is defined as paq == D, v m(t) t, where

1 if t = [¢],
(=)™ ift =[ar1az - an),

where all a; € X' are distinct and (a;,a;) € C for any i # j,
0 otherwise.

It is in fact a polynomial belonging to Z{{M)). As established by Cartier and
Foata in [10], an important property of paq is that

Em - im = pia - Enm = 1, (4)

where {aq = ), 0t is the characteristic series of M. Here, {o¢ can be seen as
a partially commutative analogue of M (z).
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Now, let ppq € Z[z] be the commutative analogue of piaq. It then follows that
pm(2) =1 —crz 4+ c2? — -+ (=1)%a2%, (5)

where ¢; is the number of cliques of size 7 in the independency graph of M.
For this reason, we call pys the clique polynomial of the independency graph
(X, C). Tts properties are studied in several papers (see for instance [18,21]). In
particular, the commutative analogue of Eq. (4) is then

M(z) - pm(z) = pm(z) - M(z) = 1. (6)

This entails that M(z) = (par(2))” ", a fundamental identity which can also be
derived by an inclusion-exclusion principle.

As it is known from [21] that pas has a unique root p of smallest modulus
(and clearly p > 0 via Pringsheim’s theorem, see [17]), one gets m,, = #M,, =
cp "L+ O (p‘"n‘]_z), where ¢ > 0 is a constant and ¢ is the multiplicity of
p in pag(z). We observe that the existence of a unique root of smallest modulus
for paq(2) is not a consequence of the strict monotonicity of the sequence {my,}.
Indeed, if one considers M(z) = m, one has my13 = ((n + 5)m, +
2Mpg1 + 2Mpy2)/(n + 3) so the sequence {m,,} is strictly increasing; however,
the polynomial (1—23)(1—z)? has 3 distinct roots of smallest modulus. Therefore,
such a M(z) cannot be the generating function of a trace monoid.

In our context, clique polynomials are particularly relevant as they are related
to the average value of the number of prefixes of traces [7,21]. In fact, for any
trace monoid M, we have E[T),] = %’ where P, = >, # Pref(t). Since
&4 = Drer #Pref(t)t, from (4) and (6) its commutative analogue becomes
>, Puz™ = pp(2)~? and hence P, = O(p~"n?~1), which proves

E[T,] = O(n"), (7)

where ¢ is the multiplicity of the smallest root of pa(z).

4 Cross-Sections of Trace Monoids

Cross-sections are standard tools to study the properties of trace monoids by
lifting the analysis at the level of free monoids. Intuitively, a cross-section of a
trace monoid M is a language £ having exactly one representative string for
each trace in M. Thus, the generating function of £ coincides with M(z) and
hence it satisfies equality (6). As a consequence, by choosing an appropriate
regular cross-section £, one can use the property of a finite state automaton
recognizing £ to study the singularities of M(z), i.e. the roots of pa(z).

Formally, a cross-section of a trace monoid M over a concurrent alphabet
(X,C) is a language £ C X* such that

— for each trace t € M, there exists a word w € £ such that ¢ = [w],
— for each pair of words z,y € L, if [x] = [y] then z = y.



Number of Prefixes in Trace Monoids 257

Among all cross-sections of M, it is convenient to consider a canonical one. A
natural one is based on a normal form using the lexicographic order [1]. Alterna-
tively, one can see it as based on the orientations of edges in the independency
graph of M, as used in [12,13] to study properties of Mobius functions in trace
monoids. It works as follows. Let < be any total order on the alphabet X' and
let <* be the lexicographic linear order induced by < over X*. We denote by <¢
the binary relation over X' such that a <¢ b if (a,b) € C and a < b. Thus, <¢ is
an orientation of the independency graph of M. We now consider the following
cross-section of M: the language L< of all minimal lexicographic representatives
of traces in M, i.e. L< ={w € X* | w <* y for every y € [w]}. Moreover, L< is
regular, as it satisfies the equality

Lo=3"\ |J Zciaxr, (8)
(a,b)eC
a<cb
where C, := {c € X | (a,c) € C} is the set of letters allowed to commute with
a. Thus, L< is the set of all words in X* that do not contain any factor of the
form bva where a <¢ b and v € C;. Then, for any w € X*, in order to verify
whether w € L<, one can read the letters of w in their order, updating at each
step the family of letters @ € X' forming a “forbidden” factor of the form bva,
with a <¢ b, v € C}. If one of these letters is met then w is rejected, otherwise
it is accepted.
To formalize the definition, for each b € X, the predecessors of b are Pred(b) =
{a € ¥ | a <¢ b}. Define the finite state automaton A as the 4-tuple (2%, 0,6, F),
where the set of states is 2%, i.e. the power set of X, the initial state is the empty
set ), F = {S € 2* | S # X} is the family of final states and the transition
function § : (2* x X) — 2* is given by

X ifbeS

2S,b) = {Pred(b) U(SNG,) otherwise (7S E X VbEX).

Note that, during a computation, the current state S represents the set of for-
bidden letters. At the beginning, all input letters are allowed, as ) is the initial
state, while X' is a trap state, where all letters are forbidden. In a general step, if
S C X' is the current state and b ¢ S is an input letter, the new set of forbidden
letters must be obtained from & U Pred(b) by removing those elements that do
not commute with b. This justifies the above definition of é and it is clear that
A recognizes L<.

Moreover, the state set of the above automaton can be reduced to the states
S ¢ X reachable from §). Setting

Q={SCY|S£X Twe X :60w) =S8}
the entries of the transition matrix A of the automaton A are given by:

Assr= > b (VS5 €Q).
bEX:5(S,b)=8"



258 C. Banderier and M. Goldwurm

The commutative analogue in NJ[z]] of this transition matrix has therefore all its
entries which are monomials of degree one in z. Factorizing by z, this commuta-
tive analogue can thus be written zA, for a matrix A we call the adjacency matriz
of A. Note that A strictly depends on both the concurrent alphabet (X, C) and
the total order < over X.

As a consequence, since A recognizes a cross-section of M, denoting by 7
and 7, respectively, the characteristic (column) vectors of ) and @, the generating
function M(z) is given by

“+o0
M(z) = Z ' Az = 7' (I — zA) "', (9)
n=0

where I is the identity matrix of size #Q x #Q and 7’ is the transposed of .
This identity, together with relation (6) proves the following proposition.

Proposition 1 (Factorisation property). For any trace monoid M with a
concurrent alphabet (X,C), let < be a total order on X, let A be the adjacency
matriz of the automaton A recognizing the cross-section L< of M, and assume
I, © and n defined as in (9). Then, M(z) and pap(2z) satisfy the identities

7" adj(I — zA)n det(I — zA)

M(z) =n'(I —zA)"'n = det(I —zA4) pam(z) = ' adj(I — zA)

(10)
Example 2. Consider the concurrent alphabet (X, C) defined by the graph
@.@ >>
@—©
Then, the clique polynomial and the generating function of M are given by
+oo 1

pm(2) =1 —=524+622 2%, M(z) = Zmnz”

n=0

T 152462223

The standard ordering (a, b, c,d,e) on X induces the following (non-transitive)
orientation <¢ over the independency graph

Thus the predecessors of each letter are given by Pred(a) = Pred(b) = 0,
Pred(c) = Pred(d) = {a,b}, Pred(e) = {b,c} and the transition matrix of A
is defined by the following table, where rows and columns are labelled by the
states of A:
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0 {ab} et {0}
0 a+b c+d e 0
A =|{a,b}|0 c+d e 0
{b,c} |0 d e a
{c} |0 d e a+b

From that I — 2 A is easily computed (where A is the adjacency matrix of A):

1—-2z -2z —=z 0
0 1—-2z —=z 0
0 -z 1—-z -z
0 —z —z 1-2z

I—zA=

and, accordingly, det(I — 2A4) =1 — Tz + 1622 — 1323 + 22% = (1 — 22)pum(2). B

Proposition 2. For any trace monoid M over a concurrent alphabet (X, C) and
any total order < on X, all roots of the clique polynomial ppq(z) are reciprocals of
eigenvalues of the corresponding adjacency matrixz A. More precisely, the clique
polynomial of any independency graph (X,C) is of the form

[e%

() =[] - 2:2)

=1

where « is the size of the maximum clique in (X,C) and all x;’s are eigenvalues
of a adjacency matriz A.

Proof (sketch). The result follows from Proposition 1 by refining equalities (10)
and recalling that all roots of clique polynomials are different from 0. a

We observe that the reverse property does not hold in general, i.e. it may
occur that an eigenvalue of A is not the reciprocal of a root of pa(2). However,
as shown in the following section, such a reverse sentence is true whenever the
graph (X,C) admits a transitive orientation.

5 Concurrent Alphabets with Transitive Orientation

Now let us consider a trace monoid M such that its independency graph (X, C)
admits a transitive orientation. Then, we may fix a total order < on X' such
that <¢ is transitive. In this case, the definition of cross-section L< and of
the automaton A can be simplified, since the set of “forbidden” factors of the
form bwa, with a <¢ b and w € C}, can be reduced to the simple set of words
S = {70 € X% | 0 <c 7}. To prove this property, consider a forbidden factor of
the above form bwa, with a <¢ b and w € C}; thus any symbol ¢ occurring in w

must verify (a,c) € C. As a consequence, either a <¢ ¢ or ¢ <¢ a: in the first case
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ca belongs to S while, in the second case, by transitivity of <¢ we have ¢ <¢ b
and hence bc is in S.

Thus, identity (8) can be simplified as L< = X"\, ., 2*baX*. Moreover,
the state set of the automaton A can be reduced to @ = {Pred(a) | a € X'} and
the transition function now assumes values 6(S,b) = Pred(b), for every S € Q
and every b € X\S.

Proposition 3. Let (X,C) be a concurrent alphabet with an associated indepen-
dency graph admitting a transitive orientation <c. Let < be a total order on X
extending <c. Also assume that the dependency graph (X,C¢) is connected. Then
the adjacency matrix A is primitive.

Proof (sketch). Under these hypotheses, by the simplifications above, it turns out
that the state diagram of the automaton A (defined by <) is strongly connected
and has at least one loop. a

The hypothesis of transitivity for <¢ cannot be avoided to guarantee that A is
primitive. For instance, in Example 2 the dependency graph (X, C¢) is connected
but the orientation <¢ of (X,C) is not transitive, and in fact observe that the
corresponding transition matrix is not irreducible and hence A is not primitive.
Nevertheless, the smallest root of pay(z) is simple and then the same concurrent
alphabet satisfies the following theorem.

Theorem 4. Let (X,C) be a concurrent alphabet. If its independency graph
admits a transitive orientation <c, then one has £ < k, where £ and k denote,
respectively, the multiplicity of the smallest root of pp(z) and the number of
connected components of the dependency graph (X,C°).

Proof (sketch). First, it is well-known [18,21] that paq(z) is always the prod-
uct of the clique polynomials of all independency subalphabets given by the
connected components of (X', C¢). Then, each of these clique polynomials (using
the additional condition that one has a transitive orientation) has a smallest root
of multiplicity 1: this follows from Proposition 3 and a commutative analogue of
a result in [11] stating that, when (X, C) has a transitive orientation, its clique
polynomial equals det(I — zA). O

Applying the previous theorem to relations (3) and (7), one gets the following,.

Theorem 5. Let (X,C) be a concurrent alphabet. If its independency graph
admits a transitive orientation <c, then the random variables counting the num-
ber of prefizes in traces (as defined in (2)) satisfy E[T,] = O(E[W,]).

Example 3. Consider the concurrent alphabet (X,C) and the orientation <¢
of Example 2. Note that (X,C) is connected but <¢ is not transitive and in
fact A is not primitive. However, (X,C) admits a (different) orientation that is

transitive, given by
\
@ /©
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A total order extending the previous orientation is ¢ < d < a < e < b. Computing
matrix A with respect to this total order we obtain

1—2z —=z —z —z
oA — 0 1—2z —z —z 7
—z -z 1—z —z
0 —z 0 1—=z2
and hence det(I — 2zA) =1 — 52+ 622 — 23 = ppy(2). [ |

The following example considers an independency graph of M that does
not admit any transitive orientation. In this case pa(z) is a proper factor of
det(I — zA), but its smallest root is again simple and hence ¢ < k is still true
even if the hypothesis of Theorem 4 is not satisfied.

Example 4. Consider the concurrent alphabet corresponding to the following
independency graph G, associated to the following partial order <c:

O—® O—®
G = >:e> L <= e
@—@ @~—
Thus the transition matrix, defined according to Sect. 4, is given by the following
table:

N 0 {a,b} {a} {b,d} {d}

A =0 a+b c d e 0
{a,b} 0 c d e 0
{a} |b c d e 0
{b,d} |0 c 0 e a
{d} |b c 0 e a

Accordingly, one has det(I — zA) =1 — 62+ 1022 —52% = (1 — 2)pm(z). A

6 Conclusion

We have investigated the fundamental role played by the clique polynomial in
asymptotic studies of trace monoids. Building on the factorization property
(stated in Proposition 1), we got a link between the multiplicity of its small-
est root and the number of connected components of some associated graph
(Theorem 4). This, in turn, is the key for a new asymptotic relation between
the number of prefixes in traces of length n: E[T,,] = O(E[W,]) (Theorem 5),
where T, and W,, correspond to two natural models (uniform distribution over
traces and over words). In the long version of this article, we plan to extend
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these analyses to more general cases (including concurrent alphabets without
transitive orientation).

Several other problems remain open in our context and could be at the centre
of future investigations. The first one concerns the adjacency matrix A defined
in Sect. 4, which does not seem to be studied too much in the previous literature;
in particular, in all our examples det(I — zA) is a clique polynomial, even when
the concurrent alphabet (X,C) does not admit any transitive orientation. For
this purpose, similarly to the approach used in [11] and in our proof of Theo-
rem 4, it is possible to adapt a noncommutative approach building on links to
words with forbidden patterns (see [2]). We plan to use these links to tackle the
asymptotic behaviour of the variance and higher moments of {7}, }, and the limit
distributions of both {T},} and {W,,} for all trace monoids.

In conclusion, all these studies are further illustration of the nice interplay
between complex analysis (analytic combinatorics) and the structural properties
of formal languages, as also illustrated e.g. in [4,5,16,17,19,20].
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