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Abstract. A multitude of agent-oriented software engineering frame-
works exist, most of which are developed by the academic multi-agent
systems community. However, these frameworks often impose program-
ming paradigms on their users that are challenging to learn for engi-
neers who are used to modern high-level programming languages such as
JavaScript and Python. To show how the adoption of agent-oriented pro-
gramming by the software engineering mainstream can be facilitated, we
provide a lean JavaScript library prototype for implementing reasoning-
loop agents. The library focuses on core agent programming concepts
and refrains from imposing further restrictions on the programming app-
roach. To illustrate its usefulness, we show how the library can be applied
to multi-agent systems simulations on the web, deployed to cloud-hosted
function-as-a-service environments, and embedded in Python-based data
science tools.

Keywords: Reasoning-loop agents · Agent programming ·
Multi-agent systems

1 Introduction

Many multi-agent system (MAS) platforms have been developed by the sci-
entific community [11]. However, these platforms are rarely applied outside of
academia, likely because they require the adoption of design paradigms that are
fundamentally different from industry practices and do not integrate well with
modern software engineering tool chains. A recent expert report on the sta-
tus quo and future of engineering multi-agent systems1 concludes that “many
frameworks that are frequently used by the MAS community–for example Jason
and JaCaMo–have not widely been adopted in practice and are dependent on
technologies that are losing traction in the industry” [13]. Another comprehen-
sive assessment of the current state of agent-oriented software engineering and
its implications on future research directions is provided in Logan’s Agent Pro-
gramming Manifesto [12]. Both the Manifesto and the EMAS report recommend
developing agent programming languages that are easier to use (as one of several
ways to facilitate the impact of multi-agent systems research). The EMAS report
highlights, in particular, the following issues:
1 The report was assembled as a result of the EMAS 2018 workshop.
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1. The tooling of academic agent programming lacks maturity for industry adop-
tion. In particular, Logan states that “there is little incentive for developers to
switch to current agent programming languages, as the behaviours that can be
easily programmed are sufficiently simple to be implementable in mainstream
languages with only a small overhead in coding time” [12].

2. Recent trends towards higher-level programming languages have found little
consideration by the multi-agent systems community. In contrast, the machine
learning community has embraced these programming languages, for example
by providing frameworks like Tensorflow.js for JavaScript [16] and Keras for
Python [6].

3. Consequently, agent programming lacks strong industry success stories.

Based on these challenges, the following research directions can be derived:

1. Provide agent programming tools that offer useful abstractions in the context
of modern technology ecosystems/software stacks, without imposing unnec-
essarily complex design abstractions or niche languages onto developers.

2. Embrace emerging technology ecosystems that are increasingly adopted by
the industry, like Python for data science/machine learning and JavaScript
for the web.

3. Evaluate agent programming tools in the context of industry software engi-
neering.

While this work cannot immediately provide practical agent programming suc-
cess stories, it attempts to provide a contribution to the development of tools
and frameworks that are conceptually pragmatic in that they limit the design
concepts and technological peculiarities they impose on their users and allow for
a better integration into modern software engineering ecosystems. We follow a
pragmatic and lean approach: instead of creating a comprehensive multi-agent
systems framework, we create JS-son, a light-weight library that can be applied
in the context of existing industry technology stacks and tool chains and requires
little additional, MAS-specific knowledge.

The rest of this chapter is organized as follows. The design approach for JS-
son is described in Sect. 2. The architecture of JS-son, as well as the supported
reasoning loops, are explained in Sect. 3. Subsequently, Sect. 4 explains how to
program JS-son agents using a small, step-by-step example. Section 5 elaborates
on scenarios, in which using JS-son can be potentially beneficial; for some of the
use case types, simple proof-of-concept examples are presented in Sect. 6. Then,
JS-son is put into the context of related work on agent programming libraries
and frameworks in high-level programming languages in Sect. 7. Finally, Sect. 8
concludes the chapter by discussing limitations and future work.

2 Design Approach

Programming languages like Lisp and Haskell are rarely used in practice
but have influenced the adoption of (functional) features in mainstream lan-
guages like JavaScript and C#. It is not uncommon that an intermediate
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adoption step is enabled by external libraries. For example, before JavaScript’s
array.prototype.includes function was adopted as part of the ECMA Script
standard2, a similar function (contains and its aliases include/includes) could
already be imported with the external library underscore3. Analogously, JS-son
takes the belief-desire-intention (BDI) [15] architecture as popularized in the MAS
community by frameworks like Jason [3] (as the name JS-son reflects) and pro-
vides an abstraction of the BDI architecture (as well as support for other reasoning
loops) as a plug and play dependency for a widely adopted programming language.
Table 1 provides a side-by-side overview of the influence of the functional program-
ming paradigm via Lisp’s MEMBER function on JavaScript’s includes function as
an analogy to the influence of Jason’s (event, context, body)-plans on JS-son’s
(intention-condition, body)-plans. To further guide the design and develop-

Table 1. Evolution of a Functional Feature from Lisp to JavaScript and Development
of an Agent-oriented Feature from Jason to JS-son.

Functional programming Agent-oriented programming

Source technology Lisp Jason

Source feature, MEMBER function (list) (event, context, body) plans

Target technology JavaScript

Target feature includes functor (array) (intention-condition, body)

plans

Library/extension Lodash ( ) JS-son

Standard feature includes (ES2016) none

ment of JS-son, we introduce three design principles that are–in their structure,
as well as in their intend to avoid unnecessary overhead on the software (agent)
engineering process–influenced by the Agile Manifesto4.

Usability over intellectual elegance. JS-son provides a core framework for
defining agents and their reasoning loops and environments, while allowing
users to stick to pure JavaScript syntax and to apply their preferred libraries
and design patterns to implement agent-agnostic functionality.

Flexibility over rigor. Instead of proposing a one-size-fit-all reasoning loop,
JS-son offers flexibility in that it supports different approaches and is intended
to remain open to evolve its reasoning loop as it matures.

Extensibility over out-of-the-box power. To maintain JS-son as a concise
library that can be adapted to a large variety of use cases while requiring little
additional learning effort, we keep the JS-son core small and abstain from
adding complex, special-purpose features, in particular if doing so imposed
additional learning effort for JS-son users or required the use of third-party
dependencies; i.e., we maintain a lean JS-son core module that is written in

2 https://www.ecma-international.org/ecma-262/7.0/#sec-array.prototype.includes.
3 https://underscorejs.org/#contains.
4 http://agilemanifesto.org/.

https://www.ecma-international.org/ecma-262/7.0/#sec-array.prototype.includes
https://underscorejs.org/#contains
http://agilemanifesto.org/
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vanilla JavaScript (does not require dependencies). Additional functionality
can be provided as modules that extend the core and are managed as separate
packages.

3 Architecture and Reasoning Loops

The library provides object types for creating agent and environment objects,
as well as functions for generating agent beliefs, desires, intentions, and plans5.
The agent implements the BDI concepts as follows:

Beliefs: A belief can be any JavaScript Object Notation (JSON6) object or
JSON data type (string, number, array, boolean, or null).

Desires: Desires are generated dynamically by agent-specific desire functions
that have a desire identifier assigned to them and determine the value of the
desire based on the agent’s current beliefs.

Intentions: A preference function filters desires and returns intentions - an
array of JSON objects.

Plans: A plan’s head specifies which intention needs to be active for the plan to
be pursued. The plan body specifies how the plan should update the agent’s
beliefs and determines the actions the agent should issue to the environment.

Each agent has a next() function to run the following process:

1. It applies the belief update as provided by the environment (see below).
2. It applies the agent’s preference function that dynamically updates the inten-

tions based on the new beliefs; i.e., the agent is open-minded (see Rao and
Georgeff [15]).

3. It runs the plans that are active according to the updated intentions, while
also updating the agent beliefs (if specified in the plans).

4. It issues action requests that result from the plans to the environment.

It is also possible to implement simpler belief-plan agents; i.e., as a plan’s head,
one can define a function that determines–based on the agent’s current beliefs–if
a plan should be executed. Alternatively, belief-desire-plan/belief-intention-plan
reasoning loops are supported; these approaches bear similarity to the belief-
goal-plan approach of the GOAL language [8]. Figure 1a depicts the reasoning
loops that are supported by standard JS-son agents.
The environment contains the agents, as well as a definition of its own state.
It executes the following instructions in a loop:

1. It runs each agent’s next() function.
2. Once the agent’s action request has been received, the environment processes

the request. To determine which update requests should, in fact, be applied
to the environment state, the environment runs the request through a filter
function.

5 The library–including detailed documentation, examples, and tests–is available at
https://github.com/TimKam/JS-son.

6 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.

https://github.com/TimKam/JS-son
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
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3. When an agent’s actions are processed, the environment updates its own state
and the beliefs of all agents accordingly. Another filter function determines
how a specific agent should “perceive” the environment’s state.

Figure 1b depicts the environment’s agent and state management process7.

4 Implementing JS-son Agents

This section explains how to implement JS-son agents, by first giving a detailed
explanation of the most important parts of the JS-son core API and then pro-
viding a programming tutorial.

4.1 JS-son Core API

The JS-son core API provides two major abstractions: one for agents and one for
environments8. In addition, the agent requires the instantiation of beliefs, desires,
and plans. Note that intentions are generated dynamically, as is explained below.

Agents. An agent is instantiated by calling the Agent function with parameters
that specify the agent’s identifier (a text string), as well as its initial beliefs,
desires, plans, and a preference function generator. Beliefs, desires, and plans
are generated by the Belief , Desire, and Plan functions, respectively. Beliefs
and desires consist of an identifier (key) and a body (value). A belief body
can be any valid JSON object or property (number, string, null, boolean, or
array). A desire body is a function that processes the agent’s current beliefs
and returns the processing result. A plan has two functions; one as its body and
one as its head. The head determines–based on an agent’s beliefs–if the plan
body should be executed. The body determines agent actions, as well as belief
updates, taking the agent’s beliefs as an optional input. Intentions are created
by a preference function generator, a higher-order function that, based on the
agents’ current desires and beliefs, generates a function that reduces the agents’
desires to intentions. Table 3a documents the Agent function signature, whereas
Tables 3b, 3c, and 3d document the signatures for the Belief , Desire, and Plan
functions, respectively.

Environment. The environment is generated by the Environment function
that takes as its input an array of JS-son agents, an initial state definition
(JSON object), and functions for updating the environment’s state, visualizing
it, and pre-processing (filtering or manipulating) it before exposing the state to
the agents. The update function processes the agents’ actions; for each agent,
it determines how the environment’s state should be updated, based on the

7 In its current version, JS-son executes all steps synchronously. Supporting the asyn-
chronous execution, in particular of agent plans is future work, as discussed in Sect. 8.

8 Here, we only explain the core functionality for instantiating agents and environ-
ments. A comprehensive, continuously updated documentation of the JS-son API is
available at https://js-son.readthedocs.io/en/latest/.

https://js-son.readthedocs.io/en/latest/
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(a) JS-son reasoning loop. The XOR gate-
ways allow for different reasoning loop ap-
proaches. The red sequence flows indicate
the path of the belief-desire-intention-plan
reasoning loop.

(b) JS-son environment: agent and state
management process. The XOR gateway al-
lows for partially and fully observable envi-
ronments.

Fig. 1. JS-son reasoning and environment loop.

current state, the agent’s actions, and the agent’s identifier. The state update
is then visualized as specified by the render function. In case a visualization
is not necessary, the default render function makes the environment log each
iteration’s state to the console. The stateF ilter function filters or manipulates
the state as perceived by a particular agent, based on this agent’s identifier
and its current beliefs; by default (if no stateF ilter function is specified), the
state is returned unfiltered to the agent(s). Table 3 documents the environment’s
function signature.
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Table 2. Function signature of the JS-son Agent and its components.

Name Type Description

(a) JS-son Agent function signature

id String Unique identifier of
the agent

beliefs Object Initial beliefs of the
agents

desires Object The agent’s desires

plans Array The agent’s plans

preferenceFunctionGenerator Array Preference function
generator; by default
(if no function is
provided), the
preference function
turns all desires into
intentions

Returns Object JS-son Agent object

(b) JS-son Belief function signature

Name Type Description

id String Unique identifier of
the belief

value Any (needs to be
valid JSON object
or JSON value)

The belief’s initial
value

Returns Object JS-son Belief object

(c) JS-son Desire function signature

id String Unique identifier of
the belief

body Function Function for
computing the
desires value based
on current beliefs

Returns Object JS-son Desire object

(d) JS-son Plan function signature

head Function Determines if plan is
active

body Function Determines the
execution of actions
and update of beliefs

Returns object Plan object
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Table 3. JS-son Environment function signature

Name Type Description

agents Array of JS-son agents Agents that the environment is managing

state Object Initial state of the environment

update Function Processes agent actions and updates the
environment’s state

render Function Visualizes the environment’s current
state

stateF ilter Function Filters/manipulates the state that agents
should perceive

Returns Object Plan object

4.2 Tutorial

The tutorial explains how to program belief-plan agents using a minimal exam-
ple9. Running the example requires the creation of a new Node.js project (npm
init), the installation of the js-son-agent dependency, and the import of the
JS-son library.

const {
Belief,
Plan,
Agent,
Environment } = require('js-son-agent')

The tutorial implements the Jason room example10 with JS-son. In the example,
three agents are in a room:

1. A porter that locks and unlocks the room’s door if requested;
2. A paranoid agent that prefers the door to be locked and asks the porter to

lock the door if this is not the case;
3. A claustrophobe agent that prefers the door to be unlocked and asks the

porter to unlock the door if this is not the case.

The simulation runs twenty iterations of the scenario. In an iteration, each
agent acts once. All agents start with the same beliefs. The belief with the
ID door is assigned the object {locked: true}; i.e., the door is locked. Also,
nobody has so far requested any change in door state (requests: []).

const beliefs = {
...Belief('door', { locked: true }),
...Belief('requests', [])

}

9 Tutorials that present more complex examples are available in the JS-son project
documentation https://js-son.readthedocs.io.

10 https://github.com/jason-lang/jason/tree/master/examples/room.

https://js-son.readthedocs.io
https://github.com/jason-lang/jason/tree/master/examples/room
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Now, we define the porter agent. The porter has the following plans:

1. If it does not believe the door is locked and it has received a request to lock
the door (head), lock the door (body).

2. If it believes the door is locked and it has received a request to unlock the
door (head), unlock the door (body).

const plansPorter = [
Plan(

beliefs =>
!beliefs.door.locked &&
beliefs.requests.includes('lock'),

() => [{ door: 'lock' }]
),
Plan(

beliefs =>
beliefs.door.locked &&
beliefs.requests.includes('unlock'),

() => [{ door: 'unlock' }]
)

]

We instantiate a new agent with the belief set and plans. Because we are not
making use of desires in this simple belief-plan scenario, we pass an empty object
as the agent’s desires.

const porter = new Agent('porter', beliefs, {}, plansPorter)

Next, we create the paranoid agent with the following plans:

1. If it does not belief the door is locked (head), it requests the door to be locked
(body).

2. If it beliefs the door is locked (head), it broadcasts a thank you message for
locking the door (body).

const plansParanoid = [
Plan(

beliefs => !beliefs.door.locked,
() => [{ request: 'lock' }]

),
Plan(

beliefs => beliefs.door.locked,
() => [{ announce: 'Thanks for locking the door!' }]

)
]

const paranoid = new Agent('paranoid', beliefs, {}, plansParanoid)
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The last agent we create is the paranoid one. It has these plans:

1. If it beliefs the door the door is locked (head), it requests the door to be
unlocked (body).

2. If it does not belief the door is locked (head), it broadcasts a thank you
message for unlocking the door (body).

const plansClaustrophobe = [
Plan(

beliefs => beliefs.door.locked,
() => [{ request: 'unlock' }]

),
Plan(

beliefs => !beliefs.door.locked,
() => [{ announce: 'Thanks for unlocking the door!' }]

)
]

const claustrophobe = new Agent(
'claustrophobe',
beliefs,
{},
plansClaustrophobe

)

Now, as we have defined the agents, we need to specify the environment. First,
we set the environments state, which is–in our case–consistent with the agents’
beliefs.
const state = {

door: { locked: true },
requests: []

}

To define how the environment processes agent actions, we implement
the updateState function. The function takes an agent’s actions, as well
as the agent’s identifier and the current state to determine the environ-
ment’s state update that is merged into the new state state = ...state,
...stateUpdate.
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const updateState = (actions, agentId, currentState) => {
const stateUpdate = {

requests: currentState.requests
}
actions.forEach(action => {

if (action.some(action => action.door === 'lock')) {
stateUpdate.door = { locked: true }
stateUpdate.requests = []
console.log(`${agentId}: Lock door`)

}
if (action.some(action => action.door === 'unlock')) {

stateUpdate.door = { locked: false }
stateUpdate.requests = []
console.log(`${agentId}: Unlock door`)

}
if (action.some(action => action.request === 'lock')) {

stateUpdate.requests.push('lock')
console.log(`${agentId}: Request: lock door`)

}
if (action.some(action => action.request === 'unlock')) {

stateUpdate.requests.push('unlock')
console.log(`${agentId}: Request: unlock door`)

}
if (action.some(action => action.announce)) {

console.log(`${agentId}: ${
action.find(

action => action.announce
).announce

}`)
}

})
return stateUpdate

}

To simulate a partially observable world, we can specify the environment’s
stateFilter function, which determines how the state update should be shared
with the agents. However, in our case we simply communicate the whole state
update to all agents, which is also the default behavior of the environment, if no
stateFilter function is specified.
const stateFilter = state => state

We instantiate the environment with the specified agents, state, update function,
and filter function.
const environment = new Environment(

[paranoid, claustrophobe, porter],
state,
updateState,
stateFilter

)

Finally, we run 20 iterations of the scenario.
environment.run(20)
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5 Potential Use Cases

We suggest that JS-son can be applied in the following use cases:

Data science. With the increasing relevance of large-scale and semi-automated
statistical analysis (“data science”) in industry and academia, a new set of
technologies has emerged that focuses on pragmatic and flexible usage and
treats traditional programming paradigms as second-class citizens. JS-son
integrates well with Python- and Jupyter notebook11-based data science tools,
as shown in Demonstration 1.

Web development. Web front ends implement functionality of growing com-
plexity; often, large parts of the application are implemented by (browser-
based) clients. As shown in Demonstration 2, JS-son allows embedding BDI
agents in single-page web applications, using the tools and paradigms of web
development.

Education. Programming courses are increasingly relevant for educating stu-
dents who lack a computer science background. Such courses are typically
taught in high-level languages that enable students to write working code
without knowing all underlying concepts. In this context, JS-son can be used
as a tool for teaching MAS programming.

Internet-of-Things (IoT) Frameworks like Node.js12 enable the rapid devel-
opment of IoT applications, as a large ecosystem of libraries leaves the appli-
cation developer largely in the role of a system integrator. JS-son is available
as a Node.js package.

Function-as-a-Service. The term serverless [1] computing refers to informa-
tion technology that allows application developers to deploy their code via the
infrastructure and software ecosystem of third-party providers without need-
ing to worry about the technical details of the execution environment. The
provision of serverless computing services is often referred to as Function-as-
a-Service (FaaS). Most FaaS providers, like Heroku13, Amazon Web Services
Lamda14, and Google Cloud Functions15, provide Node.js support for their
service offerings and allow for the deployment of JavaScript functions with
little setup overhead. Consequently, JS-son can emerge as a convenient tool to
develop agents and multi-agent systems that are then deployed as serverless
functions. For a running example, see Subsection 6.4.

6 Examples

We provide four demonstrations that show how JS-son can be applied. The code
of all demonstration is available in the JS-son project repository (https://github.
com/TimKam/JS-son).
11 https://jupyter.org/.
12 https://nodejs.org/.
13 https://devcenter.heroku.com/articles/getting-started-with-nodejs.
14 https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html.
15 https://cloud.google.com/functions/docs/concepts/nodejs-8-runtime.

https://github.com/TimKam/JS-son
https://github.com/TimKam/JS-son
https://jupyter.org/
https://nodejs.org/
https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html
https://cloud.google.com/functions/docs/concepts/nodejs-8-runtime
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6.1 JS-son Meets Jupyter

The first demonstration shows how JS-son can be integrated with data science
tools, i.e., with Python libraries and Jupyter notebooks16. As a simple proof-
of-concept example, we simulate opinion spread in an agent society and run
an interactive data visualization. The example simulates the spread of a single
boolean belief among 100 agents in environments with different biases regard-
ing the facilitation of the different opinion values. Belief spread is simulated as
follows:

1. The scenario starts with each agent announcing their beliefs.
2. In each iteration, the environment distributes two belief announcements to

each agent. Based on these beliefs and possibly (depending on the agent type)
the past announcements the agent was exposed to, each agent announces a
new belief: either true or false.

The agents are of two different agent types (volatile and introspective):

Volatile. Volatile agents only consider their current belief and the latest
belief set they received from the environment when deciding which belief
to announce. Volatile agents are “louder”, i.e., the environment is more likely
to spread beliefs of volatile agents. We also add bias to the announcement
spread function to favor true announcements.

Introspective. In contrast to volatile agents, introspective agents consider the
past five belief sets they have received, when deciding which belief they should
announce. Introspective agents are “less loud”, i.e., the environment is less
likely to spread beliefs of volatile agents.

The agent type distribution is 50, 50. However, 30 volatile and 20 introspective
agents start with true as their belief, whereas 20 volatile and 30 introspective
agents start with false as their belief. Figure 2a shows an excerpt of the Juypter
notebook.

6.2 JS-son in the Browser

The second demonstration presents a JS-son port of Conway’s Game of Life.
It illustrates how JS-son can be used as part of a web frontend. In this exam-
ple, JS-son is fully integrated into a JavaScript build and compilation pipeline
that allows writing modern, idiomatic JavaScript code based on the latest
ECMAScript specification, as it compiles this code into cross-browser compat-
ible, minified JavaScript. The demonstration makes use of JS-son’s simplified
belief-plan approach17. Each Game of Life cell is represented by an agent that
has two beliefs: its own state (active or inactive) and the number of its active
neighbors. At each simulation tick, the agent decides based on its beliefs, if it

16 The Jupyter notebook is available on GitHub at http://s.cs.umu.se/lmfd69 and on
a Jupyter notebook service platform at http://s.cs.umu.se/girizr.

17 The simulation is available at http://s.cs.umu.se/chfbk2.

http://s.cs.umu.se/lmfd69
http://s.cs.umu.se/girizr
http://s.cs.umu.se/chfbk2
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should register a change in its status (from active to inactive or vice versa) with
the environment. After all agents have registered their new status, the environ-
ment updates the global game state accordingly and passes the new number of
active neighbors to each agent. Figure 2b depicts the Game of Life application.

6.3 Learning JS-son Agents

The third demonstration shows how learning JS-son agents can be implemented
in a browser-based grid world18. The example instantiates agents in a 20 × 20
field grid world arena with the following field types:

– Mountain fields that the agents cannot pass.
– Money fields that provide a coin to an agent that approaches them (the agent

needs to move onto the field, but the environment will return a coin and leave
the agent at its current position).

– Repair fields that provide damaged agents with one additional health unit
when approached (again, the agent needs to move onto the field, but the
environment will return a health unit and leave the agent at its current posi-
tion).

– Plain fields that can be traversed by an agent if no other agent is present
on the field. If another agent is already present, the environment will reject
the move, but decrease both agents’ health by 10. When an agent’s health
reaches (or goes below) zero, it is punished by a withdrawal of 100 coins from
its stash.

The agents are trained online (no model is loaded/persisted) using deep Q-
learning through an experimental JS-son learning extension. Figure 2c shows
the agents in the grid world arena.

6.4 Serverless JS-son Agents

The fourth demonstration shows how JS-son agents can be deployed to Function-
as-a-Service providers. It is based on the belief spread simulation as introduced in
the first demonstration (see Subsect. 6.1). The multi-agent simulation is wrapped
in a request handler and provided as a Node.js project that is configured to run as
a Google Cloud Function. The request handler accepts HTTP(S) requests against
the simulate endpoint. The request method (e.g., GET, POST, PUT) is ignored by
the handler. Upon receiving the request, the handler runs the simulation for the
specified number of ticks, configuring the bias in the agent society as specified
by the corresponding request parameter (the higher the bias, the stronger the
facilitation of true announcements). An example request against a fictional FaaS
instance could be sent using the curl command line tool as specified in the code
snippet below.
18 This grid world is an adaptation of an environment in which learning JS-son agents

are rewarded based on a specific, fair game-theoretical equilibrium in a given state,
as presented by Kampik and Spieker [10].
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curl -X GET 'https://instance.faas.net/simulation/simulate?ticks=20&bias=5'

Figure 2d depicts the simulation in the Google Cloud Functions management
user interface.

7 Related Work

Over the past two decades, a multitude of agent-oriented software engineering
frameworks emerged (see, e.g., Kravari and Bassiliades [11]). However, most of
these frameworks do not target higher-level programming languages like Python
and JavaScript. In this section, we provide a brief overview of three agent pro-
graming frameworks–osBrain, JAM, and Eve that are indeed written in and for
these two languages. We then highlight key differences to our library.

7.1 OsBrain

osBrain19 is a Python library for developing multi-agent systems. Although
osBrain is written in a different language than JS-son, it is still relevant for
the comparison because it is i) written in a higher level programming language
of a similar generation and ii) somewhat actively maintained20. Initially devel-
oped as an automated trading software backbone, the focus of osBrain lies on
the provision of an agent-oriented communication framework. No framework for
the agents internal reasoning loop is provided, i.e. osBrain does not provide BDI
support. Also, osBrain dictates the use of a specific communication protocol and
library, utilizing the message queue system ZeroMQ [9].

7.2 JavaScript Agent Machine (JAM)

Bosse introduces the JavaScript Agent Machine (JAM), which is a “mobile multi-
agent system[...] for the Internet-of-Things and clouds” [5].

Some of JAM’s main features and properties are, according to its documen-
tation21:

– Performance: through third-party libraries, JAM agents can be compiled to
Bytecode that allows for performant execution in low-resource environments;

– Mobility and support for heterogenous environments: agent instances can be
moved between physical and virtual nodes at run-time;

19 https://osbrain.readthedocs.io/en/stable/about.html.
20 As of March 2020, the last update to the source of Eve dates back more than 2.5

years to August 2017 (https://github.com/enmasseio/evejs/); the last update of the
documentation of JAM –whose source code is not available–dates back more than
1.5 years to August 2018 (http://www.bsslab.de/?Software/jam). In contrast the
last update of the osBrain source and documentation dates back roughly one year
to April 2019 (https://github.com/opensistemas-hub/osbrain).

21 http://www.bsslab.de/assets/agents.html.

https://osbrain.readthedocs.io/en/stable/about.html
https://github.com/enmasseio/evejs/
http://www.bsslab.de/?Software/jam
https://github.com/opensistemas-hub/osbrain
http://www.bsslab.de/assets/agents.html
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(a) Analysis of a JS-son multi-agent simu-
lation in a Jupyter Notebook.

(b) JS-son: Conway’s Game of Life, imple-
mented as a web application.

(c) JS-son agents in a grid world. (d) JS-son multi-agent system, deployed as
a Google Cloud Function.

Fig. 2. JS-son example applications.

– Machine learning capabilities, through integration with a machine learning
service platform; however, no details on how this service can be accessed are
provided in the documentation.

In its initial version, JAM agents required the use of a JavaScript-
like language that is syntactically not fully compliant with any standard
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JavaScript/ECMAScript version [4]. However, in its latest version, it is pos-
sible to implement agent in syntactically valid JavaScript. With its focus on
agent orchestration, deployment, and communications, JAM’s agent internals
are based on activity-transition graphs, which implies that its functionality
overlaps little with JS-son. Another point of distinction is that the JAM source
code is not openly available; instead, the JAM website22 provides a set of
installers and libraries and software development kits for different platforms
that can be used as black-box dependencies.

7.3 Eve

De Jong et al. [7] present Eve, a multi-agent platform for agent discovery and
communications. It is available as both a Java and a JavaScript implementation.
Similar to osBrain, Eve’s core functionality is an agent-oriented, unified abstrac-
tion on different communication protocols; it does not define agent internals like
reasoning loops and consequently does not follow a belief-desire-intention app-
roach. Eve is provided as Node.js package23, but as of March 2020, the instal-
lation fails and the Node Package Manager (npm) reports 11 known security
vulnerabilities upon attempted installation. Still, Eve is in regard to its techno-
logical basis similar to JS-son. With its difference in focus–on agent discovery
and communications in contrast to JS-son’s reasoning loops–Eve could be, if
maintenance issues will be addressed, a potential integration option that a JS-
son extension can provide.

7.4 Comparison - Unique JS-son Features

To summarize the comparison, we list three unique features that distinguish
JS-son from the aforementioned frameworks.

Reasoning loop focus with belief-desire-intention support. Of the three
frameworks, only JAM provides a dedicated way to frame the reasoning loop
of implemented agents, using activity-transition graphs. Still, the core focus
of all three libraries is on communication and orchestration, which contrasts
the focus of JS-son as a library that has a reasoning loop framework at its
core and aims to be largely agnostic to specific messaging and orchestration
approaches.

Full integration with the modern JavaScript ecosystem. As shown in
Sect. 6, JS-son fully integrates with the JavaScript ecosystem across run-
time environments. This is in particular a contrast to JAM, which provides
installers that obfuscate the proprietary source code and require a non-
standard installation process. This can potentially hinder integration into
existing software ecosystems that rely on industry standard approaches to
dependency management for continuous integration and delivery purposes.

22 http://www.bsslab.de/?Software/jam.
23 https://www.npmjs.com/package/evejs.

http://www.bsslab.de/?Software/jam
https://www.npmjs.com/package/evejs
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While Eve attempts to provide an integration that allows for a convenient
deployment in different environments, for example through continuous inte-
gration pipelines, it does in fact not provide a working, stable, and secure
installation package.

Dependency-free and open source code. JS-son is a light-weight, open
source library that does not ship any dependencies in its core version, but
rather provides modules that require dependencies as extensions. In contrast,
adopting JAM requires reliance on closed/obfuscated source code, whereas
osBrain and Eve require a set of dependencies, which are in the case of Eve–
as explained before–not properly managed.

8 Conclusions and Future Work

This chapter presents a lean, extensible library that provides simple abstractions
for JavaScript-based agent programming, with a focus on reasoning loop specifi-
cation. To further increase the library’s relevance for researchers, teachers, and
practitioners alike, we propose the following work:

Support a distributed environment and interfaces to other MAS
frameworks. It makes sense to enable JS-son agents and environments to
act in distributed systems and communicate with agents of other types, with-
out requiring extensive customization by the library user. A possible way to
achieve this is supporting the open standard agent communication language
FIPA ACL24. However, as highlighted in a previous publication [14], FIPA
ACL does not support communication approaches that have emerged as best
practices for real-time distributed systems like publish-subscribe. Also, the
application of JS-son in a distributed context can benefit from the enhance-
ment of agent-internal behavior, for example through a feature that supports
the asynchronous execution of plans.

Implement a reasoning extension. To facilitate JS-son’s reasoning abilities,
additional JS-son extensions can be developed. From an applied perspective,
integrations with business rules engines can bridge the gap to traditional
enterprise software, whereas a JS-son extension for formal argumentation
(see, e.g., Bench-Capon and Dunne [2]) can be of value for the academic
community.

Move towards real-world usage. To demonstrate the feasibility of JS-son,
it is important to apply the library in advanced scenarios. Considering the
relatively small technical overhead JS-son agents imply, the entry hurdle for
a development team to adopt JS-son is low, which can facilitate real-world
adoption. Still, future work needs to evaluate how useful the abstractions
JS-son provides are for industry software engineers.

Implement a Python port. While JS-son can be integrated with the Python
ecosystem, for example via Jupyter notebooks, doing so implies technical over-
head and requires knowledge of two programming languages25. To facilitate

24 http://www.fipa.org/specs/fipa00061/index.html.
25 Also, the module that allows for Node.js-Python interoperability (https://github.

com/pixiedust/pixiedust node) has some limitations, i.e. it lacks Python 3 support.

http://www.fipa.org/specs/fipa00061/index.html
https://github.com/pixiedust/pixiedust_node
https://github.com/pixiedust/pixiedust_node
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the use of agents in a data science and machine learning context, we propose
the implementation of Py son, a Python port of JS-son.
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