
Accountability and Responsibility
in Multiagent Organizations

for Engineering Business Processes

Matteo Baldoni1 , Cristina Baroglio1(B) , Olivier Boissier2 ,
Roberto Micalizio1 , and Stefano Tedeschi1

1 Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
{matteo.baldoni,cristina.baroglio,

roberto.micalizio,stefano.tedeschi}@unito.it
2 Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol,

MINES Saint-Etienne, Saint-Etienne, France
Olivier.Boissier@emse.fr

Abstract. Business processes realize a business goal by coordinating
the tasks undertaken by multiple interacting parties. Given such a
distributed nature, Multiagent Organizations (MAO) are a promising
paradigm for conceptualizing and implementing business processes. Yet,
MAO still lack of a systematic method for reporting to the right agents
feedback about success or failure of a task. We claim that an explicit
representation of accountability and responsibility assumptions provides
the right abstractions to engineer MAO for supporting the execution
of business processes. Basing our programming approach on MAO, we
present two accountability patterns for developing accountable agents.
To illustrate this approach we use the JaCaMo multi-agent program-
ming platform.

1 Introduction

Weske [37] defines a business process as “a set of activities that are performed
in coordination in an organizational and technical environment. These activities
jointly realize a business goal.” In general, a business goal is achieved by breaking
it up into sub-goals, which are distributed to a number of actors. Each actor
carries out part of the process, and depends on the collaboration of others to
perform its task. One limit of business processes is that they integrate, at the
same abstraction level, both the business logic and the interaction logic (message
passing). This makes their reuse problematic; whenever different coordination
schemas are to be enacted the business process must be revised. Moreover, since
message exchanges lie at the level of data, it is difficult to assess the correctness
of individual processes in isolation.

Multiagent Systems (MAS), and in particular models for multi-agent orga-
nizations (MAO), are promising candidates to supply the right abstractions to

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 3–24, 2020.
https://doi.org/10.1007/978-3-030-51417-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_1&domain=pdf
http://orcid.org/0000-0002-9294-0408
http://orcid.org/0000-0002-2070-0616
http://orcid.org/0000-0002-2956-0533
http://orcid.org/0000-0001-9336-0651
http://orcid.org/0000-0002-9861-390X
https://doi.org/10.1007/978-3-030-51417-4_1

4 M. Baldoni et al.

keep processes linked together in a way that allows reasoning about the correct-
ness of the overall system in terms of goals rather than of messages. In order
to provide the right support to BPs, however, MAO need to be enriched with
a systematic way to properly handle feedback about the execution, that can be
provided by the agents as explanation of goal achievement or non-achievement.
Such feedback will generally be of interest to (and should be handled by) some
agent which is not the one that can produce it. Consequently, for connecting
agents in the right way, an appropriate “infrastructure” needs to be devised. A
significant special case of feedback provision and management is exception han-
dling. In this case, the availability of means for reporting the produced feedback
(the exception) to an agent that is capable of tackling it, would increase system
robustness. Approaches for modeling exceptions in a multiagent setting have
been proposed in the literature (see, e.g., [26,30,34]) but no consensus has been
reached yet on how accommodating the usual exception handling semantics with
the peculiar properties of agents, such as autonomy, openness, heterogeneity, and
encapsulation.

In this paper we argue that the notions of accountability and responsibility
are useful both to the general purpose of enriching MAOs with a feedback infras-
tructure, and to the specific purpose of accommodating exception handling.

In [2] a proposal was made to use accountability and responsibility rela-
tionships to state the rights and duties of agents in the organization, given the
specification of a normative structures. From this understanding, we define what
it means for an agent to be accountable when taking on responsibilities in the
execution of part of a business process. That is, we address the notion of account-
ability from a computational perspective and study its role as a design property
[5].

In the following we use these concepts as tools to systematize and guide the
design and development of the agents. We, then, exemplify how such concepts
can be introduced in multi-agent systems realized in JaCaMo, where agents
will execute under a normative organization expressing a business process as
accountability and responsibility relationships among agents. We use, as a ref-
erence example, a revisited version of the Incident Management case from the
BPMN examples by the OMG [29]. The implementation is available at https://
di.unito.it/incident.

2 Enhancing MAOs to Better Support BPs

The Incident Management case [29] (Fig. 1), that we use as a running example,
models the interaction between a customer and a company for the management
of a problem that was reported by the customer. It involves several actors. The
Customer reports the problem to a Key Account Manager who, based on her
experience, can either solve the problem directly or ask for the intervention of
First-level Support. The problem can, then, be recursively treated by different
support levels until, in the worst case, it is reported to the software developer.

Goal distribution over a group of processes bears strong similarities with
proposals from research on MAO. In the Incident Management example, the

https://di.unito.it/incident
https://di.unito.it/incident

Accountability and Responsibility in MAO for Engineering BPs 5

business aim of the process (to solve the reported problem) is decomposed and
distributed over up to five BPMN processes, whose execution requires interaction
and coordination–realized in this case through message exchange. Noticeably, as
always with business processes, the way in which goals are achieved matters,
so the agents that will participate into the organization are expected not only
to fulfill their assigned goals but also to respect the business process. Indeed,
from an organizational perspective, the “goal” is that the process takes place [1].
As Fig. 1 shows, the case includes treatment of anomalous situations, in terms
of message passing. For instance, an issue at the level of Software Developer
Support is propagated upwards towards the Customer causing certain activities
to occur.

One common limitation of the kind of modularity implemented both by BPs
and by MAOs is that the overall process structure of the goal is intended mainly
as a way for constraining the agents’ autonomy, and not as information provided
to support the agents in their work. In particular, MAOs (see, e.g., [11,15]) allow
structuring complex organizational goals by functional decomposition, assign-
ing subgoals to the agents. The coordinated execution of subgoals is often sup-
ported by a normative specification, with which the organization issues obliga-
tions towards the agents (e.g., [9,13,14,18]). However, by focusing merely on the
achievement of the assigned sub-goals, agents loose sight of the overall process,
and ignore the place their achievement has within the organization. Moreover,
agents may have the capability of achieving the assigned goals but in ways that
do not fit into the process specification and, importantly, in presence of anoma-
lous situations, the organization has no explicit mechanism for sorting out what
occurred, for a redress. On the other hand, in BPMN the relationships between
the actors are just loosely modeled via message exchange, there is no explicit
representation of the legitimate expectations each actor has about the others,
and there is no notion of responsibility.

So, even if MAOs solve part of the limits of BPMN, what is actually miss-
ing is the agents’ awareness of their part in the organization, not only in terms
of the goals assigned to them, but also (and equally important) in terms of
the relationships they have with the others, of their mutual dependencies, and,
more broadly, of the dependence of the organization on its members for what
concerns the realization of the business process. We claim that the notions of
responsibility and accountability serve this purpose in an intuitive, yet effective
way. A first conceptualization of how these notions can be used in the context
of distributed processes is discussed in [7], here we discuss more practical, pro-
gramming aspects.

Responsibility and Accountability

According to Dubnick [16], accountability “emerges as a primary characteris-
tic of governance where there is a sense of agreement and certainty about the
legitimacy of expectations between the community members.” So, within an
institutional frame, accountability manifests as rules, through which authority

6 M. Baldoni et al.

Fig. 1. The incident management BPMN diagram enriched with exception manage-
ment.

is “controlled” so that it is exercised in appropriate ways. In human organi-
zations, it amounts to the enactment of mechanisms for dealing with expec-
tations/uncertainty. In complex task environments where multiple, diverse and
conflicting expectations arise, it is a means for managing an otherwise chaotic
situation. Further on this line [20], accountability implies that some actors have
the right to hold other actors to a set of standards, to judge whether they have
fulfilled their responsibilities in light of these standards, and to impose sanctions
if they determine that these responsibilities have not been met. They explain

Accountability and Responsibility in MAO for Engineering BPs 7

that accountability presupposes a relationship between power-wielders and those
holding them accountable, where there is a general recognition of the legitimacy
of (1) the operative standards for accountability and (2) the authority of the
parties to the relationship (one to exercise particular powers and the other to
hold them to account).

Concerning responsibility, [36] proposes an ontology relating six different
responsibility concepts (capacity, causal, role, outcome, virtue, and liability),
that capture: doing the right thing, having duties, an outcome being ascribable
to someone, a condition that produced something, the capacity to understand
and decide what to do, something being legally attributable. In the context of
Information Systems (in particular, access rights models and rights engineering
methods), the meta-model ReMMO [17] represents responsibility as a unique
charge assigned to an agent, and in the cited literature most of the authors
acknowledge that responsibility aims at conferring one or more obligation(s) to
an actor (the responsibility owner). As a consequence, this causes a moral or
formal duty, in the mind of the responsibility owner, to justify the performance
of the obligation to someone else, by virtue of its accountability.

Business processes show all the characteristics of accountability settings: they
represent an agreed behavior, they involve tasks the interacting parties should
take care of, they introduce expectations on how they will act, and require some
kind of governance in order for the process to be enacted. However, the lack of
an adequate representation of the involved relationships obfuscates the account-
ability [28] (that results hidden into some kind of collective responsibility), pos-
sibly compromising the functioning of the system as a whole or its governance.
As Thompson [35] explains, typically adopted solutions, like applying hierarchi-
cal or collective forms of responsibility, are wanting, and personal responsibil-
ity approaches, based on some weak causal connection between individuals and
events, should be preferred.

It is worth noting that accountability and responsibility are not primitive
concepts. Rather, they are properties that emerge in carefully designed software
systems. This means that when we use accountability/responsibility for system
engineering, we actually constrain the ways in which software is designed and
developed.

3 Engineering MAO with Accountability/Responsibility

Since the proposal is set into the JaCaMo framework [9] (whose organization
model is briefly introduced below), the coordinated execution of the agents is
regulated by obligations, that are issued by the organization. In [2], it is pro-
posed to improve the specification of an organization by complementing the
functional decomposition of the organizational goal with a set of accountability
and responsibility specifications. As in that proposal, we denote by R(x, q) and
A(x, y, r, u) responsibility and accountability relationships, respectively. R(x, q)
expresses an expectation on any agent playing role x on pursuing condition q (x
is in position of being considered to control q). Instead, A(x, y, r, u) expresses

8 M. Baldoni et al.

that x, the account-giver (a-giver), is accountable towards y, the account-taker
(a-taker), for the condition u when the condition r (context) holds. We see u in
the context of r as an agreed standard which brings about expectations inside
the organization. Accountability relationships can be collected in a set A, called
an accountability specification. The organization designer will generally specify
a set of accountability specifications which is denoted by A.

In the following, besides introducing JaCaMo organizational model, we dis-
cuss a programming pattern for accountable agents, that is, for programming
agents that provide an account of their conduct both when they succeed in
achieving their goals, and when, for some reason, they fail in the attempt. We
will also describe a full implementation of JaCaMo with accountabilities.

JaCaMo Organisation Model

JaCaMo [9] is a conceptual model and programming platform that inte-
grates agents, environments and organizations. A MAS in JaCaMo consists
of an agent organization, realized through [24], involving Jason [10]
autonomous agents, working in a shared, artifact-based environment, pro-
grammed in CArtAgO [32]. A Jason agent consists of a set of plans, each having
the structure triggering event : 〈context〉 ← 〈body〉. On occurrence of trigger-
ing event (belief/goal addition or deletion), under the circumstances given by
context, the course of action body should be taken.

includes an organization modeling language and an organization
management infrastructure [23]. The specification of an organization is decom-
posed into three dimensions. The structural dimension specifies roles, groups and
links between roles in the organization. The functional dimension is composed
of one (or more) scheme capturing how the global organizational goal is decom-
posed into subgoals, and how subgoals are grouped in sets, called missions, to
be distributed to the agents. The normative dimension binds the two previous
dimensions by specifying roles’ permissions and obligations for missions.

JaCaMo provides various kinds of organizational artifacts that allow encoding
the state and behavior of the organization, in terms of groups, schemes and
normative states. Obligations are issued on the basis of a normative program,
written in NOPL [22]. Norms have the form id : φ → ψ, where id is a unique
identifier of the norm; φ is a formula that determines the activation condition
for the norm; and ψ is the consequence of the activation of the norm (either a
failure or the generation of an obligation). Obligations, thus, have a well-defined
lifecycle. Once created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the state of the world
specified by the obligation before a given deadline. An obligation is unfulfilled
when the agent does not bring it about before the deadline. When the condition
φ does not hold anymore, the state of the obligation becomes inactive.

Accountability and Responsibility in MAO for Engineering BPs 9

Accountability/Responsibility Specifications in the JaCaMo
Organisation Model

To specify the execution conditions that are object of accountability and respon-
sibility, we use the event-based linear logic called precedence logic [33]. Such a
language allows modeling complex expressions, under the responsibility of many
agents, whose execution needs to be coordinated. The interpretation deals with
occurrences of events along runs (i.e., sequence of instanced events). Event occur-
rences are assumed non-repeating and persistent: once an event has occurred,
it has occurred forever. The logic has three primary operators: ‘∨’ (choice), ‘∧’
(concurrence), and ‘·’ (before). The before operator constrains the order with
which two events must occur: a · b means that a must occur before b, but not
necessarily one immediately after the other. If e be an event, e (the complement
of e) is also an event. Initially, neither e nor e hold. On any run, either of the
two may occur, not both. Complementary events allow specifying situations in
which an expected event e does not occur, either because of the occurrence of
an opposite event, or because of the expiration of a time deadline.

Residuation, inspired by [27,33], allows tracking the progression of temporal
logic expressions, hopefully arriving to completion of their execution. The resid-
ual of a temporal expression q with respect to an event e, denoted as q/e, is the
remainder temporal expression that would be left over when e occurs, and whose
satisfaction would guarantee the satisfaction of the original temporal expression
q. Residual can be calculated by means of a set of rewrite rules. The following
equations are due to Singh [27,33]. Here, r is a sequence expression, and e is an
event or �. Below, Γu is the set of literals and their complements mentioned in
u. Thus, for instance, Γe = {e, e} = Γe and Γe·f = {e, e, f, f}. We have that:

0/e
.
= 0 �/e

.
= �

(r ∧ u)/e
.
= ((r/e) ∧ (u/e)) (r ∨ u)/e

.
= ((r/e) ∨ (u/e))

(e · r)/e
.
= r, if e �∈ Γr (e′ · r)/e

.
= 0, if e ∈ Γr

r/e
.
= r, if e �∈ Γr (e · r)/e

.
= 0

Using the terminology in [2], we say that an event e is relevant to a temporal
expression p if that event is involved in p, i.e. p/e 	≡ p. Let us denote by e a
sequence e1, e2, . . . , en of events. We extend the notion of residual of a temporal
expression q to a sequence of events e as follows: q/e = (. . . ((q/e1)/e2)/ . . .)/en.
If q/e ≡ � and all events in e are relevant to q, we say that the sequence e is
an actualization of the temporal expression q (denoted by q̂).

Agent Programming Patterns

In general, given a set of accountability specifications A, and a set of responsi-
bility assumptions R (responsibility distribution), the organization is properly
specified when the accountability fitting “R fits A” (denoted by R � A) holds
[2]. This happens if ∃ A ∈ A such that ∀ A(x, y, r, u) ∈ A, ∃ R(x, q) ∈ R such
that, for some actualization q̂, (u/r)/q̂ ≡ �. Fitting has a relevant impact on

10 M. Baldoni et al.

organization design: When R � A holds, any set of agents playing roles into the
organization (consistently with R and one accountability specification A ∈ A)
can actually accomplish the organizational goal. Thus, fitting also provides a
guide for developing agents that are accountable by design, because it expresses
(1) what each agent is engaged to achieve, by fulfilling its responsibilities, and
(2), through accountability, how this achievement is related to that process which
is the goal of the organization.

In other words, R � A provides a specification the agents must explicitly
conform to, when enacting organizational roles. When an agent enacts some
role in an organization, it declares to be aware of all the responsibilities that
come with that role, and by accepting them it declares to adhere to the fitting
exposed by the organization itself. That is, the accountability fitting exposed by
an organization specifies the requirements that agents, willing to play roles in
that organization, must satisfy.

When an agent accepts a responsibility it accepts to account for the achieve-
ment, or failure, of some state of interest. In our metaphor, thus, an agent acts
with the aim of preparing the account it should provide. In this way, we reify
the cited “sense of agreement and certainty about the legitimacy of expectations
between the community members” which otherwise remains implicit both in
business processes and in MAO. Leveraging these concepts for developing agents
provides interesting advantages from a software engineering point of view.

As a tool for realizing the accountability fitting that specifies an organization,
we are about to introduce a programming pattern that allows realizing account-
able agents, but before we need to identify the portion of fitting involving each
single individual.

Definition 1. Given the fitting R � A, and a role x in its scope, the pro-
jection of the fitting over role x is defined as Rx � Ax where Rx ≡
{R(x, q)|R(x, q) ∈ R}, and Ax ≡ {A(x, y, r, u)|A(x, y, r, u) ∈ A}, and where
for every A(x, y, r, u) ∈ Ax, there is R(x, q) ∈ Rx, such that (u/r)/q̂ ≡ � holds
for some actualization q̂ of q.

Thanks to a proper programming pattern, for all agents playing role x, the
fitting projection over role x can be mapped into a number of Jason plans that
will be part of the actual agent program. We provide such a pattern in a way
that suits JaCaMo (i.e. the setting of this work) by exploiting the obligations
implied by accountabilities and responsibilities [20]. The pattern is expressed
in AgentSpeak(ER) [31] because it allows encapsulating a set of plans into a
same context that, in our case, depends on x player being accountable towards
another agent y about some condition q, and will be adopted until for some
reason it drops its responsibility inside the organization (e.g. the agent leaves the
organization). More in details, AgentSpeak(ER) extends Jason by introducing
two types of plans: g-plans and e-plans. G-plans encapsulate the strategy for
achieving a goal and can be further structured into sub-plans. Besides triggering
events and contexts, g-plans include a goal condition, specifying until when the
agent should keep pursuing the goal. E-plans are defined in the scope of a g-plan,
and embody the reactive behavior to adopt while pursuing the g-plan’s goal.

Accountability and Responsibility in MAO for Engineering BPs 11

Definition 2 (Pattern Specification). The fitting relationship represented
by each pair 〈R(x, q), A(x, y, r, u)〉 in Rx � Ax, is mapped into an AgentS-
peak(ER) g-plan according to the following pattern:

+!be accountable(x, y, q) <: drop fitting(x, y, q) {
+obligation(x, q) : r ∧ c
<- bodyq.

Well-Doing e-plan

+oblUnfulfilled(x, q) : r ∧ c′

<- bodyf .
Wrong-Doing e-plan

}

Such that: (1) bodyq satisfies the fitting-adherence condition (see below); (2)
bodyf includes the sending of an explanation for the failure from x to y.

The agent will perceive certain events as events it should tackle, by means of
some behavior of its own, thanks to the part of its identity that is provided
by the organizational role it plays. The agent will also be aware of its social
position both (1) by knowing which other agents will have the right, under cer-
tain conditions, to ask for an account and (2) by including specific behavior for
building such an account. The two e-plans encode the proactive behavior of an
agent assuming a responsibility. From that moment on, and until the responsi-
bility is not dropped, the agent starts reacting to obligations in accordance to
the accountability relationship specified in the fitting.

Well-Doing e-Plan. The first e-plan is triggered when the specified obligation
is issued by the normative organization. That will be the usual obligation a
Jason agent receives from the organization when it is time to pursue
a particular goal. The context expression, r ∧ c, is satisfied when condition r
activating the agent accountability holds together with some possibly empty
condition c: a local condition that encodes the possibility for the agent to have
multiple well-doing e-plans to react to the same obligation, i.e. multiple ways to
achieve a same result in different (local) circumstances (e.g., a 1st Level Support
Agent could decide to handle a task directly or ask to 2nd Level Support).
Condition c allows the developer to discriminate between these alternatives,
if any. It’s worth noting that if multiple alternative e-plans with different c
are present, the developer must take care of defining such conditions so that
for each obligation issued, at least one e-plan is always triggered. Due to the
accountability fitting the agent has accepted, the body of the plan(s) (bodyq)
must, then, be such to satisfy the responsibility assumption represented by the
pair 〈R(x, q), A(x, y, r, u)〉. That is, the plan body has to satisfy the following
fitting-adherence condition.

Definition 3 (Fitting-adherence). Let [bodyq]u denote the set of sequences of
events generated by the execution of bodyq, restricted to the events that are rel-
evant for the progression of u. bodyq satisfies the fitting-adherence condition if:
∃ sequence s ∈ [bodyq]u such that s ≡ q̂ and (u/r)/q̂ ≡ �.

12 M. Baldoni et al.

Note that fitting adherence requires the agent to be just able to activate at
least one actualization s of q, not all of them. In other words, the agent needs
to be able to perform at least one of the possibly many ways for carrying out q.
The rationale is that any actualization of q generates a sequence of events that
brings the condition u/r to �; hence, it is sufficient for an agent to implement
one actualization in order to meet its responsibility. As we have discussed above,
an accountable agent provides an account of its conduct. Sometimes, the account
of an agent that behaved as expected will be evident to the interested agents
from the way in which it operated in the environment [19]. In this case, the
obligation to give an account for the satisfaction of an obligation is implicitly
resolved by satisfying the very same obligation, and there is no need to explicitly
capture the obligation to provide an account. When, however, it is not possible
to see the agent’s operations as a proof, an explicit account should be provided
also for the well-doing case. This, for instance, happens when there is the need
of reporting facts that occur in one context, but are meaningful also in others
where they are not directly observable by the involved parties, see e.g., [4]. It is
also the case in which an agent’s behavior requires some certification for having
been performed up to some standard.

Wrong-Doing e-Plan. The second pattern allows agents to provide accounts
also in the case they did not complete a task, for some reason. The triggering
event, oblUnfulfilled, is generated by the organization when a previously
issued obligation has been left unsatisfied. The context of the pattern is again
a condition that is true when the accountability is activated (i.e., r holds), and
when some local condition c′ is satisfied. bodyf , this time, has to produce an
account about the failure. We can think of such an account as an explanation
that the agent produces so that another agent, possibly the a-taker y, can use
it to resume the execution, thus managing the exception. The correct use of
the pattern guarantees, by design, that exceptional events, when occurring, are
reported to the agents who can handle them properly. Accountability fulfills this
purpose because, by nature, it brings about an obligation on the a-giver to give
an account of what it does. The account, then, can be used by the a-taker to
recover, when possible, from the exceptional situation. Under this respect, the
account should be provided in terms that can be understood by all the interested
agents in the organization. This aspect, however, is strongly domain dependent.
As well as in the positive pattern, the agent will produce an account by modifying
its environment in a way that is meaningful for the agents that have to capture
and interpret it. Along this line, a promising approach to the synthesis of an
account is discussed in [12].

4 Shaping Business Processes as Accountable Agents
in JaCaMo

In JaCaMo [9] the state of an organization is encoded in terms of group instances,
that map agents to the roles they play, and scheme instances, that allow tracing

Accountability and Responsibility in MAO for Engineering BPs 13

which goals have been achieved and which are ready for pursue. By exploiting
these instances, the organization issues proper obligations to the agents. Due to
the declarative nature of scheme instances, agents can autonomously decide how
to satisfy their obligations. They are, however, held to notify the organization
about the completion of their tasks by means the special directive goalAchieved.

When implementing a business process as a JaCaMo organization, one has to
be aware of a substantial difference between the two underlying paradigms. A
business process describes an activity flow where choices, upon alternative exe-
cution branches, depend on the data produced by the activities performed that
far. Instead, in JaCaMo each organization generally has a complex goal, whose
structure is provided as a functional decomposition into subgoals, overlooking
the data dimension. The functional decomposition is used to track and guide
the execution, understanding when a sub-goal is to be pursued and emitting the
correspondant obligation.

The implementation of business processes through JaCaMo organizations,
thus, requires some special treatment, especially for what concerns the BPMN
gateways, where choices upon data are taken. Specifically, we capture these gate-
ways and their alternative branches as special goals within the functional decom-
position. Considering a choice, the goals amounting to the various alternatives
are mutually exclusive: the achievement of one of such alternative goals deter-
mines a specific execution path that constrains the evolution of the remainder of
the social scheme. This stratagem allows incorporating, at least in part, within
a functional decomposition the execution flow based on data. A dedicated man-
ager agent will be in charge of satisfying the obligations issued upon such special
goals.

Having this in mind, the following steps provide a guideline to map a number
of interacting business processes into a JaCaMo organization.

1. For each process, a corresponding manager role in the organization is defined.
The agent(s) playing this role will have to decide on the alternative branches
to choose in the process execution;

2. For all the activities in a process, suitable worker roles in the organization
are defined. These roles will be played by the agents in charge of executing
the activities;

3. For each process:
– A group collecting the manager and all the workers involved in the process

is defined;
– A social scheme is created to organize the activities as a goal decomposi-

tion tree1. Corresponding missions are defined, to be assigned to roles of
the group in charge of the process by defining corresponding norms;

4. For each set of activities to be executed in sequence, the corresponding goals
are added to the social scheme by means of the “sequence” operator;

1 Here, we restrict our attention to processes that do not include loops; otherwise it
would not be possible to express them as decomposition trees.

14 M. Baldoni et al.

5. For each set of activities to be executed without strict ordering, the corre-
sponding goals are added to the social scheme by means of the “parallel”
operator;

6. If a choice is present inside a process, a corresponding goal is added to the
social scheme by means of the “choice” operator. Each subgoal represents a
possible course of action (alternative branch). Every alternative in the choice
should include a goal, encoding the chosen path to be assigned to the process
manager. Depending on which goal will be achieved by the manager, the
execution will follow a branch or another;

7. If a process sends a message that makes another process start, the message
should be sent to the process manager, which, as a consequence, will instan-
tiate the social scheme corresponding to the process;

8. If a process includes waiting for a message from another process to proceed,
a corresponding goal is added to the social scheme and assigned to the man-
ager; such goal is to be set as achieved only after the message is received.
The introduction of this goal is necessary to ensure the coordination, and
synchronization during the execution, of the social schemes corresponding to
the two processes.

Example 1 (Incident Management as a JaCaMo Organization). Let us now
explain how the Incident Management scenario can be mapped into a JaCaMo
organization by applying these steps. For the sake of simplicity, we will just
consider the Key Account Manager process. First, we introduce a manager role
am and, for each activity in the process, we define a corresponding worker.
aw1, for instance, will be in charge of get-description, aw2 will be in charge of
explain-solution, and so on. As a further step we define a Key Account group
collecting am and all of its workers. At the beginning of the execution, the cus-
tomer agent c will send a message to am reporting the problem. As a consequence
the agent playing role am will instantiate a scheme that will be assigned to this
group and will encompass the overall Key Account Manager process. The root
goal of such scheme will be assigned to am that, in order to satisfy it, will have
to manage the successful execution of the social scheme.

Figure 2 shows the scheme available for instantiation to am that represents
the possible courses of actions during the execution of the Key Account Man-
ager process. Subgoals in a sequence are anticipated by a number denoting the
position of the goal in the sequence. Goals including a choice are underlined.
The picture also shows how goals are grouped together into missions and which
agents such missions are assigned to (through norms). The scheme is to be
instantiated as soon as a problem to be solved is reported. Indeed, we map
the scheme instantiation to report-problem. As a consequence, the obligation to
achieve get-description will be issued to the corresponding worker aw1. After the
successful achievement of get-description, two obligations under a choice will be
issued towards am: the former related to the can-handle goal and the latter to
cannot-handle. Depending on the result of the previous activity (i.e., whether
the problem requires further support or can be handled at that level), am will
decide to achieve either one of the two goals, the choice made by am thus con-

Accountability and Responsibility in MAO for Engineering BPs 15

am_sch: scheme_key_account_management

root_key_account_management

1:gd 2:switch_ch_cnh

ch_branch

1:ch2:es1

cnh_branch

1:cnh 2:ask1ls 3:switch_ans1ls_timeoutam

ans1ls_branch

1:ans1ls2:es2

timeoutam_branch

1:timeoutam 2:rec

m3
(1..1)

m2
(1..1)

m4
(1..1)

m1
(1..1)

m0
(1..1)

am

w1

w2

w3

w4

Fig. 2. Social scheme realizing the Key Account Manager process.

strains the subsequent obligations that will be generated. In the former case,
the normative system will simply issue the obligation to explain-solution, while
in the latter it will issue the obligation to ask support to the first level. In the
second case, after a request for support has been made, again two options are
available to the manager. If an answer is received from the first level support,
the solution has to be explained; in this case am will achieve answer-from-fls.
On the contrary, if a feedback is not received after one day, causing a timeout
in the BPMN diagram, an invitation to recall will be sent to the customer. �

4.1 Adding Accountabilities and Responsibilities

The approach described above is applied to the three remaining processes in
the example, whose translation in JaCaMo is not discussed here for the sake of
simplicity. The organization specification we obtain can, then, be enriched with
an accountability specification that allows us to capture BPMN exceptions.

Example 2 (Incident Management with Accountabilities). Figure 3 shows an
excerpt of an accountability specification Aincident for the incident management

16 M. Baldoni et al.

Fig. 3. Excerpt of the accountability specification and responsibility distribution for
the Incident Management scenario.

scenario. Accountabilities a1–a6 concern the Key Account Manager Process. For
instance, accountability a1 states that am is accountable towards c, the customer,
for the problem management after a problem is reported 2, and legitimates c, as
a-taker, to ask for an account about the management of the problem. The a-giver
am is, thus, expected to provide such an account when needed and recognizes
the legitimacy of such an expectation. Accountability a2, instead, states that
once a problem has been reported (and the manager has started the process),
the manager has the right to ask worker aw1 an account about get-description
(i.e., the achievement of goal gd in the social scheme).

Accountabilities a3 and a4 cover the two alternative paths after
get-description. a3 encodes the fact that, if the problem can be handled directly,
a worker aw2 will be in charge of explain-solution (the achievement of es1 in the
scheme). It’s worth noting that we require the same worker to be accountable for
that activity also in another context, as stated by a5. This accountability states
that the same worker should account for explain-solution if the problem cannot
be handled directly, too, but in case support has been requested to the first level
support and an answer provided (see es2 in the social scheme). Accountability
a4, conversely, states that another worker aw3 is accountable for asking further
support if the problem cannot be handled. Accountability a4, finally, is related
to the invite-recall condition. Should an answer not be received within one day
from the first level, a worker aw4 would be accountable for the invite-recall (rec
in the social scheme) activity. These accountabilities, together, completely char-
acterize the Key Account Manager process3. Accountability a7, in turn, involves
the manager of the first level of support. It states that such agent is accountable
towards am for providing a feedback, once a request for support has been made.
In this case, too, such accountability will be supported by further accountabil-

2 Event problem-management corresponds to the achievement of root key ac-
count management , the root goal of the social scheme in Fig. 2.

3 It’s worth noting that we do not define any accountability relationship w.r.t.
can-handle, cannot-handle, answer-from-fls and 1-day. Such goals are the ones whom
the manager is in charge of and would encompass the manager both as a-giver and
a-taker.

Accountability and Responsibility in MAO for Engineering BPs 17

ity relationships, not reported here, built upon the First Level Support process’
decomposition tree. �

Accountabilities capture only a part of the organization specification. A busi-
ness process captures an activity flow, that is, it involves activities that are meant
to be executed. It is, thus, necessary to identify those agents which are in posi-
tion of being capable of carrying out the various activities. This is captured by
responsibilities. For instance, in the case at issue, due to r1, am is responsible
of problem-management.

In order for the organization to execute the business process so that a full
account can be provided, it is necessary to bind accountabilities with responsi-
bility assumptions. This is done by the accountability fitting, that, by exploiting
the pattern described in the previous section, enables the implementation of
exception handling mechanisms. With the accountability specification Aincident

as a basis, the designer can identify a suitable responsibility distribution which
fits it. An excerpt of an acceptable one is reported in Fig. 3. It is easy to verify
that for each ai ∈ Aam there is a rj ∈ Ram which fits it. For instance, if we
consider a1 and r1, we have that:

problem-management/report-problem/problem-management ≡ �
We now briefly explain how, by relying on an accountability specification

and on the programming patterns described above, it is possible to implement
an agent playing role am whose behavior is accountable for a given set of relevant
events.

Example 3 (Key Account Manager with Exceptions). First of all, an agent play-
ing role am has to instantiate the scheme for the Key Account Manager (see
Fig. 2) process as soon as it receives a request from a customer. This behavior is
realized through the following plan:

Let us now show how to apply the programming pattern based on the
accountability specification discussed above. For instance, let us consider the
fitting r1 � a1: the agent being developed must be in control of responsibil-
ity r1 (i.e., problem-management), and assume an accountable behavior towards
the customer for problem-management, when condition report-problem holds. We
recall that we map problem-management to the achievement of the root goal of
the scheme in Fig. 2, and report-problem to the instantiation of such scheme.
Following the pattern described in the previous section, the programmer should
define in the agent body a g-plan containing well-doing and wrong-doing e-
plans. However, the actual framework we use for implementation is JaCaMo,
where Jason still implements AgentSpeak(L) rather than AgentSpeak(ER), and
hence it is not possible to define nested e-plans. The well-doing and wrong-doing
e-plans are therefore rendered by means of two plain Jason plans. The fitting
involving r1 � a1 is implemented by the following plans:

18 M. Baldoni et al.

The first plan, in particular, realizes the well-doing part of the pattern.
Recalling Definition 2, the plan is triggered as soon as an obligation concerning
the scheme root is issued (Line 3). The obligation object (What) is the satisfac-
tion of the organizational goal root key account management –corresponding
to the problem-management condition in Fig. 3. Indeed, in JaCaMo, the achieve-
ment of an organizational goal fulfills the corresponding obligation. Then, as
requested by the pattern, the contexts of both plans must include the conditions
specified in a1. In JaCaMo we represent this condition (report-problem) in terms
of scheme being instantiated (see Line 6). Considering the fitting-adherence con-
dition, we have that r is report-problem, and u is problem-management. Thus
q ≡ u/r is just problem-management. The plan for well-doing needs to include
some actions that amount to such an event. In this setting we consider the
event to be occurred as soon as the corresponding organizational goal is set as
achieved. This is trivially true in the example (see Line 7). The second plan, at
Line 9, instead, deals with the wrong-doing part of the pattern. Should, for any
reason, the obligation be unfulfilled, the agent, by virtue of its accountability,
must provide a motivation about the unsatisfaction of the obligation. In this
case, a proper message encoding the explanation for the failure is sent to the
account-taker agent (see Line 14). Note that the agent could be equipped with
multiple plans covering the wrong-doing part to take care of several causes of
failures each with its own specific explanation to be sent to a precise a-taker.
These two plans ensure that, no matter how the scheme execution evolves, c will
always receive an account from am, consisting either of a notification about the
achievement of problem-management, or of an explanation for the failure. �

The implementation of an agent playing the am role must also take into
account that the agent is the manager of the Key Account Manager process.
Therefore the agent should also be provided with plans for controlling the execu-
tion flow, that is, for deciding which goals amount to choices it needs to satisfy.

Example 4 (Controlling Alternatives). In our case there are two alternative goals
ch and cnh, whose achievement corresponds to can-handle and cannot-handle),
respectively. Specifically, after goal get-description gets accomplished, the orga-
nizational infrastructure will issue two obligations at the same time, directed to
am, one for ch and one for cnh. The agent will then decide to achieve either
one of the two goals depending on data that are not captured by the functional

Accountability and Responsibility in MAO for Engineering BPs 19

decomposition, but that may be accessible to the agent by means of artifacts.
The two plans below realize this behavior:

If the problem is directly solvable, the agent will fulfill the first obligation,
otherwise it will satisfy the second one. The choice of which obligation is actually
fulfilled obviously affects the subsequent activities. In the second case, in fact,
a new sub-process needs to be activated, that is, a new functional scheme needs
to be instantiated. �

Worker agents for the Key Account Manager process are developed in a
similar way, following the pattern. For instance, let’s consider the agent playing
the aw1 role. The agent is involved in r2 � a2. The well-doing and wrong-doing
plans are defined as follows:

The first two plans, together, realize the well-doing part of the pattern. The
first plan (Line 3), in particular, is triggered as soon as the obligation to achieve
gd is issued. As a result, the agent will send a message to the customer ask-
ing for a description. To successfully complete the activity and achieve its goal,
however, the agent has to wait for an answer. The second plan, at Line 9, is
triggered as soon as a description is received from the customer and finally leads
to the achievement of the organizational goal (Line 13). Before that, nonethe-
less, the worker forwards the description to his manager (Line 12), which will
then use it to decide how to proceed, as explained above. The plan at Line 15

20 M. Baldoni et al.

realizes the wrong-doing part of the pattern. In this case, should the obligation
become unfulfilled because of a missing response from the customer (see Line 19),
the account sent to the a-taker would be no description from customer (see
Line 21).

The am agent, in turn, being account-taker in several accountability rela-
tionships, can include also some plans to handle the accounts provided by its
account-givers, both in positive and negative circumstances. Let’s consider again
a2. As explained above, in case of failure, aw1 would send a precise message to
am. The very same message can be used as triggering event in a recovery plan,
as follows:

A possible way to deal with the failure could be to send a further message to
the customer and reset the failed goal. In general considerations related to how
to handle a failure are strictly domain dependent.

Notably, considering the accountability specification as a requirement, the
actual implementation of the system results robust. The accountable am for
instance, to satisfy the requirement of being accountable, must be capable, on
the one side, of capturing exceptions from other agents, and on the other side,
of providing an account to its a-taker (i.e., the customer).

5 Conclusions

We have discussed how the agent technology can be exploited for the imple-
mentation of business processes modeled as BPMN schema. To be effective,
however, agent system needs to take care of some peculiarities of business pro-
cesses, as for instance, the handling of exceptional events, that possibly interrupt
the execution of a process. Approaches for modeling exceptions in a multi-agent
setting have been proposed (see, e.g., [26,30,34]), but these proposal fall short
in addressing the typical properties of MAS, such as autonomy, openness, het-
erogeneity, and encapsulation.

In this paper we have coped with BPMN exceptions by relying on the notions
of accountability and responsibility as elements for the specification of an agent
organization. In addition, we have proposed a programming pattern for devel-
oping agents that adhere to such a specification. The pattern, when applied
systematically, brings along positive consequences. First of all, an accountabili-
ty/responsibility specification provides a programmer with all the relevant infor-
mation for developing an agent that is aware of the process as characterization of
the goal (see [1]). In fact, while a responsibility distribution is a coverage of the
functional decomposition, an accountability specification conveys how the agents
contribute to the process. Hence, the accountabilities provide the programmer
with a behavioral specification agents must satisfy.

Accountability and Responsibility in MAO for Engineering BPs 21

Our approach is specular to [38], whose aim is to determine whether a group
of agents can be attributed the responsibility for a given goal. Once the responsi-
bility can be attributed to the agents, their accountability is implicitly modeled
in the inferred plan. Here, instead, we aim at developing agents that, by con-
struction, satisfy the organization specification. Indeed, an interesting evolution
of the present work goes in the direction of an agent-oriented type checking (see
e.g., [3]). Having an explicit model of the organization in terms of accountabilities
and responsibilities, it would be possible to mechanize a type checking system
that verifies whether, at role enacting time, an agent possesses all the necessary
plans for role playing.

The proposal moves MAOs closer to other paradigms where exceptions are
handled. In the actor model (e.g., [21]), for instance, when an actor cannot han-
dle an exception, it usually reports the exception to its parent actor, which in
turns decides to either handle the exception or report it further. In an agent-
based system such a scheme is not directly applicable since agents are indepen-
dent entities, and rarely are related to each other by a parent-child relationship.
Accountabilities can fill in this gap: when an obligation is not satisfied, it is rea-
sonable to report the exception to the a-taker. This is achieved quite naturally
with the Wrong-Doing Pattern, that allows an agent to provide an account for an
unsatisfied obligation. Interestingly, the choice “on-the-fly” of which branch to
follow, performed by the manager, can be seen as a form of planning autonomy :
“This type of autonomy dictates if an agent is able (or unable) to create, choose
or modify plans to achieve a specific goal” [25]. The integration of this type of
autonomy into an organizational model (i.e.,) discussed in [25] opens
interesting perspectives in the modeling of BPMN processes for our accountable
agents.

Commitment-based protocols (e.g., [39]), as well as standard NorMAS [8],
provide alternatives for modeling coordination. Roughly speaking, a commit-
ment is a promise that a debtor does in favor to a creditor that in case some
antecedent condition is satisfied, the debtor will bring about a consequent con-
dition. When the antecedent holds, the commitment is detached, and amounts
to an obligation on the debtor to bring about the consequent. When the conse-
quent is no longer achievable, the commitment is violated. In such a case, the
creditor has the right to complain against the debtor, the creditor cannot hold
the debtor to provide an explanation. This lack of information hampers both
the understanding of what has occurred, and any attempt of recovery from the
failure. However, commitments have the power of enforcing accountability when
properly used. For instance, the ADOPT protocol [6] establishes an account-
ability relationship, expressed via a commitment-based protocol, between an
organization and its agents.

22 M. Baldoni et al.

References

1. Adamo, G., Borgo, S., Di Francescomarino, C., Ghidini, C., Guarino, N.: On the
notion of goal in business process models. In: Ghidini, C., Magnini, B., Passerini,
A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 139–151.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3 11

2. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, R., Tedeschi, S.:
Accountability and responsibility in agent organizations. In: Miller, T., Oren, N.,
Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS
(LNAI), vol. 11224, pp. 261–278. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03098-8 16

3. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Type checking for proto-
col role enactments via commitments. J. Auton. Agents Multi-Agent Syst. 32(3),
349–386 (2018). https://doi.org/10.1007/s10458-018-9382-3

4. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P.: Composing and verifying
commitment-based multiagent protocols. In: Wooldridge, M., Yang, Q. (eds.) Pro-
ceedings of 24th International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 25th July–31th 2015 (2015). http://ijcai-15.org/

5. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability. In: Chesani, F., Mello, P., Milano, M. (eds.) Deep Understand-
ing and Reasoning: A Challenge for Next-Generation Intelligent Agents, URANIA
2016, vol. 1802, pp. 56–62. CEUR Workshop Proceedings, Genoa, December 2016.
http://ceur-ws.org/Vol-1802/paper8.pdf

6. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability in MAS organizations with ADOPT. Appl. Sci. 8(4), 489 (2018)

7. Baldoni, M., Baroglio, C., Micalizio, R.: Goal distribution in business process mod-
els. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018.
LNCS (LNAI), vol. 11298, pp. 252–265. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03840-3 19

8. Boella, G., van der Torre, L.W.N., Verhagen, H.: Introduction to normative multia-
gent systems. In: Normative Multi-Agent Systems. Dagstuhl Seminar Proceedings,
vol. 07122 (2007)

9. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

10. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley, Chichester (2007)

11. Corkill, D.D., Lesser, V.R.: The use of meta-level control for coordination in dis-
tributed problem solving network. In: Bundy, A. (ed.) Proceedings of the 8th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 1983), pp. 748–756.
William Kaufmann, Los Altos (1983)

12. Cranefield, S., Oren, N., Vasconcelos, W.W.: Accountability for practical reasoning
agents. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 33–48. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17294-7 3

13. Dastani, M., Tinnemeier, N.A., Meyer, J.J.C.: A programming language for nor-
mative multi-agent systems. In: Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, pp. 397–417. IGI Global (2009)

14. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, Utrecht University (2004). Published by SIKS

https://doi.org/10.1007/978-3-030-03840-3_11
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/s10458-018-9382-3
http://ijcai-15.org/
http://ceur-ws.org/Vol-1802/paper8.pdf
https://doi.org/10.1007/978-3-030-03840-3_19
https://doi.org/10.1007/978-3-030-03840-3_19
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1007/978-3-030-17294-7_3

Accountability and Responsibility in MAO for Engineering BPs 23

15. Dignum, V.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models (2009)

16. Dubnick, M.J., Justice, J.B.: Accounting for accountability. Annual Meeting
of the American Political Science Association, September 2004. https://pdfs.
semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf

17. Feltus, C.: Aligning access rights to governance needs with the responsability Meta-
Model (ReMMo) in the frame of enterprise architecture. Ph.D. thesis, University
of Namur, Belgium (2014)

18. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a
model of institutional reality for open multiagent systems. Artif. Intell. Law 16(1),
89–105 (2008). https://doi.org/10.1007/s10506-007-9055-z

19. Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall Inc., Englewood Cliffs
(1967)

20. Grant, R.W., Keohane, R.O.: Accountability and abuses of power in world politics.
Am. Polit. Sci. Rev. 99(1), 29–43 (2005)

21. Haller, P., Sommers, F.: Actors in scala - concurrent programming for the multi-
core era. Artima (2011)

22. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming
language for organisation management infrastructures. In: Padget, J., et al. (eds.)
COIN -2009. LNCS (LNAI), vol. 6069, pp. 114–129. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14962-7 8

23. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-
sations with organisational artifacts and agents. Auton. Agents Multi-Agent Syst.
20(3), 369–400 (2010). https://doi.org/10.1007/s10458-009-9084-y

24. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)

25. Maia, A., Sichman, J.S.: Explicit representation of planning autonomy in MOISE
organizational model. In: 7th Brazilian Conference on Intelligent Systems, BRACIS
2018, São Paulo, Brazil, 22–25 October 2018, pp. 384–389 (2018)

26. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In:
Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2005, pp. 122–129. ACM (2005)

27. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A., Patti, V., Singh, M.: Com-
mitments with regulations: reasoning about safety and control in REGULA. In:
Proceedings of the 10th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), vol. 2, pp. 467–474 (2011)

28. Nissenbaum, H.: Accountability in a computerized society. Sci. Eng. Ethics 2(1),
25–42 (1996). https://doi.org/10.1007/BF02639315

29. Object Management Group: BPMN specification - business process model and
notation (2018). http://www.bpmn.org/. Accessed 08 Nov 2018

30. Platon, E., Sabouret, N., Honiden, S.: An architecture for exception management
in multiagent systems. Int. J. Agent-Oriented Softw. Eng. 2(3), 267–289 (2008)

31. Ricci, A., Bordini, R.H., Hübner, J.F., Collier, R.: AgentSpeak(ER): an extension
of AgentSpeak(L) improving encapsulation and reasoning about goals. In: AAMAS,
pp. 2054–2056. International Foundation for Autonomous Agents and Multiagent
Systems, Richland/ACM (2018)

32. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3 8

https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://doi.org/10.1007/s10506-007-9055-z
https://doi.org/10.1007/978-3-642-14962-7_8
https://doi.org/10.1007/s10458-009-9084-y
https://doi.org/10.1007/BF02639315
http://www.bpmn.org/
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8

24 M. Baldoni et al.

33. Singh, M.P.: Distributed enactment of multiagent workflows: temporal logic for
web service composition. In: Proceedings of the Second International Joint Con-
ference on Autonomous Agents & Multiagent Systems, AAMAS 2003, Melbourne,
Victoria, Australia, 14–18 July 2003, pp. 907–914. ACM (2003)

34. Souchon, F., Dony, C., Urtado, C., Vauttier, S.: Improving exception handling
in multi-agent systems. In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J.,
Alencar, P.S.C. (eds.) SELMAS 2003. LNCS, vol. 2940, pp. 167–188. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24625-1 10

35. Thomson, J.J.: Remarks on causation and liability. Philos. Public Aff. 13(2), 101–
133 (1984)

36. Vincent, N.A.: A structured taxonomy of responsibility concepts. In: Vincent, N.,
van de Poel, I., van den Hoven, J. (eds.) Moral Responsibility. LOET, vol. 27, pp.
15–35. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1878-4 2

37. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73522-9

38. Yazdanpanah, V., Dastani, M.: Distant group responsibility in multi-agent systems.
In: Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) PRIMA
2016. LNCS (LNAI), vol. 9862, pp. 261–278. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44832-9 16

39. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45448-9 17

https://doi.org/10.1007/978-3-540-24625-1_10
https://doi.org/10.1007/978-94-007-1878-4_2
https://doi.org/10.1007/978-3-540-73522-9
https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/3-540-45448-9_17

	Accountability and Responsibility in Multiagent Organizations for Engineering Business Processes
	1 Introduction
	2 Enhancing MAOs to Better Support BPs
	3 Engineering MAO with Accountability/Responsibility
	4 Shaping Business Processes as Accountable Agents in JaCaMo
	4.1 Adding Accountabilities and Responsibilities

	5 Conclusions
	References

