
Louise A. Dennis
Rafael H. Bordini
Yves Lespérance (Eds.)

 123

LN
AI

 1
20

58

7th International Workshop, EMAS 2019
Montreal, QC, Canada, May 13–14, 2019
Revised Selected Papers

Engineering
Multi-Agent Systems

Lecture Notes in Artificial Intelligence 12058

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Louise A. Dennis • Rafael H. Bordini •

Yves Lespérance (Eds.)

Engineering
Multi-Agent Systems
7th International Workshop, EMAS 2019
Montreal, QC, Canada, May 13–14, 2019
Revised Selected Papers

123

Editors
Louise A. Dennis
University of Liverpool
Liverpool, UK

Rafael H. Bordini
Pontifical Catholic University of Rio Grande
do Sul
Porto Alegre, Brazil

Yves Lespérance
University of York
Toronto, ON, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-51416-7 ISBN 978-3-030-51417-4 (eBook)
https://doi.org/10.1007/978-3-030-51417-4

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2020
The chapter “Who’s That? - Social Situation Awareness for Behaviour Support Agents” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1426-1896
https://orcid.org/0000-0001-8688-9901
https://doi.org/10.1007/978-3-030-51417-4
http://dx.doi.org/10.1007/978-3-030-51417-4_1
http://dx.doi.org/10.1007/978-3-030-51417-4_1

Preface

The International Workshop on Engineering Multi-Agent Systems (EMAS) is intended
as a venue for the presentation of results and discussion about the theory and practice of
engineering intelligent agents: theories, architectures, languages, platforms, method-
ologies for designing, implementing, and running intelligent agents.

Despite a substantial existing body of knowledge about the design and development
of multi-agent systems (MAS), the systematic development of large-scale and open
MAS still poses many challenges. Even though various languages, models, techniques,
and methodologies have been proposed in the literature, researchers and developers are
still faced with fundamental questions pertaining to their engineering.

The overall purpose of the workshop is to facilitate the cross-fertilization of ideas
and experiences from various fields in order to:

– Enhance our knowledge and expertise in MAS engineering and improve the state
of the art

– Define new directions for MAS engineering that are useful to practitioners, arising
from results and recommendations from different research areas

– Investigate how practitioners can use, or need to adapt, established methodologies
for the engineering of large-scale and open MAS

– Encourage masters and PhD students to become involved in and contribute to the
area

Like previous editions, the 7th edition of the workshop was co-located with
AAMAS (International Conference on Autonomous Agents and Multiagent Systems)
which in 2019 took place in Montreal, Canada. The previous editions were held in
Stockholm (LNAI 11375), Sao Paulo (LNAI 10738), St. Paul (LNAI 8245), Paris
(LNAI 8758), Istanbul (LNAI 9318), and Singapore (LNAI 10093).

In 2019, the EMAS workshop was held as a two-day event. In total, 20 papers were
submitted to the workshop and after a double review process, 13 papers were selected
for inclusion in this volume. All the contributions were revised by taking into account
the comments received and the discussions at the workshop.

Finally, we would like to thank the members of the Program Committee for their
work during the reviewing phase, as well as the members of the EMAS Steering
Committee for their valuable suggestions and support. We also acknowledge the
EasyChair conference management system for its support in the workshop organization
process.

March 2020 Louise A. Dennis
Rafael H. Bordini
Yves Lespérance

Organization

Organizing Committee

Rafael H. Bordini PUCRS, Brazil
Louise A. Dennis The University of Liverpool, UK
Yves Lespérance York University, Canada

Program Committee

Natasha Alechina Universiteit Utrecht, The Netherlands
Matteo Baldoni Università degli Studi di Torino, Italy
Bita Banihashemi York University, Canada
Luciano Baresi Politecnico di Milano, Italy
Cristina Baroglio Università degli Studi di Torino, Italy
Clara Benac Earle Universidad Politécnica de Madrid, Spain
Olivier Boissier École Nationale Supérieure des Mines

de Saint-Étienne, France
Daniela Briola Università degli Studi di Torino, Italy
Moharram Challenger Universiteit Antwerpen, The Netherlands
Andrei Ciortea University of St. Gallen, Switzerland
Stefania Costantini Università degli Studi dell’Aquila, Italy
Fabiano Dalpiaz Universiteit Utrecht, The Netherlands
Mehdi Dastani Universiteit Utrecht, The Netherlands
Lavindra de Silva University of Cambridge, UK
Jürgen Dix Technische Universität Clausthal, Germany
Angelo Ferrando The University of Liverpool, UK
Lars-Åke Fredlund Universidad Politécnica de Madrid, Spain
Maíra Gatti de Bayser IBM Research, Brazil
Adriana Giret Universidad Politécnica de Valencia, Spain
Jorge J. Gómez-Sanz Universidad Complutense de Madrid, Spain
Zahia Guessoum Université de Reims Champagne-Ardenne, France
James Harland RMIT University, Australia
Vincent Hilaire Université Bourgogne Franche-Comté, France
Koen Hindriks Vrije Universiteit, The Netherlands
Benjamin Hirsch Degussa Bank, Germany
Tom Holvoet Katholieke Universiteit Leuven, Belgium
Jomi Fred Hübner Universidade Federal de Santa Catarina, Brazil
Nadin Kokciyan University of Edinburgh, UK
João Leite Universidade Nova de Lisboa, Portugal
Brian Logan University of Nottingham, UK
Viviana Mascardi Università degli Studi di Genova, Italy
Phlippe Mathieu Université de Lille, France

John-Jules Meyer Universiteit Utrecht, The Netherlands
Frédéric Migeon Université Paul Sabatier Toulouse, France
Jörg P. Müller Technische Universität Clausthal, Germany
Enrico Pontelli New Mexico State University, USA
Alessandro Ricci Università di Bologna, Italy
Valieria Seidita Università delgi Studi di Palermo, Italy
Jaime Sichman Universidade deo São Paulo, Brazil
Viviane Silva Universidade Federal Fluminente, Brazil
Wamberto Vasconcelos University of Aberdeen, UK
Jørgen Villadsen Danmarks Tekniske Universitet, Denmark
Gerhard Weiss Maastricht University, The Netherlands
Rym Zalila Wenkstern The University of Texas at Dallas, USA
Michael Winikoff Victoria University of Wellington, New Zealand
Neil Yorke-Smith Technische Universiteit Delft, The Netherlands

Steering Committee

Matteo Baldoni Università degli Studi di Torino, Italy
Rafael Bordini PUCRS, Brazil
Mehdi Dastani Universiteit Utrecht, The Netherlands
Jurgen Dix Technische Universität Clausthal, Germany
Amal El Fallah-Seghrouchni Sorbonne Université, France
Brian Logan University of Nottingham, UK
Jörg P. Müller Technische Universität Clausthal, Germany
Alessandro Ricci Università di Bologna, Italy
M. Birna van Riemsdijk Universiteit Twente, The Netherlands
Danny Weyns Katholieke Universiteit Leuven, Belgium
Michael Winikoff Victoria University of Wellington, New Zealand
Rym Zalila-Wenkstern The University of Texas at Dallas, USA

Additional Reviewers

Bita Banihashemi
Davide Dell’Anna
Ben Wright

viii Organization

Contents

Multi-agent Interaction and Organization

Accountability and Responsibility in Multiagent Organizations
for Engineering Business Processes . 3

Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio,
and Stefano Tedeschi

From Goals to Organisations: Automated Organisation Generator
for MAS . 25

Cleber Jorge Amaral and Jomi Fred Hübner

On Enactability of Agent Interaction Protocols: Towards
a Unified Approach . 43

Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum,
and Viviana Mascardi

Simulation

An Architecture for Integrating BDI Agents
with a Simulation Environment . 67

Alan Davoust, Patrick Gavigan, Cristina Ruiz-Martin,
Guillermo Trabes, Babak Esfandiari, Gabriel Wainer,
and Jeremy James

Using MATSim as a Component in Dynamic Agent-Based
Micro-Simulations . 85

Dhirendra Singh, Lin Padgham, and Kai Nagel

Social Awareness and Explainability

Incorporating Social Practices in BDI Agent Systems 109
Stephen Cranefield and Frank Dignum

Who’s That? - Social Situation Awareness for Behaviour Support Agents:
A Feasibility Study . 127

Ilir Kola, Catholijn M. Jonker, and M. Birna van Riemsdijk

The “Why Did You Do That?” Button: Answering Why-Questions for End
Users of Robotic Systems . 152

Vincent J. Koeman, Louise A. Dennis, Matt Webster, Michael Fisher,
and Koen Hindriks

Learning and Reconfiguration

From Programming Agents to Educating Agents – A Jason-Based
Framework for Integrating Learning in the Development
of Cognitive Agents . 175

Michael Bosello and Alessandro Ricci

Plan Library Reconfigurability in BDI Agents . 195
Rafael C. Cardoso, Louise A. Dennis, and Michael Fisher

Implementation Techniques and Tools

JS-son - A Lean, Extensible JavaScript Agent Programming Library 215
Timotheus Kampik and Juan Carlos Nieves

SAT for Epistemic Logic Using Belief Bases . 235
Emiliano Lorini and Fabián Romero

Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE 246
Cleber Jorge Amaral and Jomi Fred Hübner

Author Index . 257

x Contents

Multi-agent Interaction and
Organization

Accountability and Responsibility
in Multiagent Organizations

for Engineering Business Processes

Matteo Baldoni1 , Cristina Baroglio1(B) , Olivier Boissier2 ,
Roberto Micalizio1 , and Stefano Tedeschi1

1 Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
{matteo.baldoni,cristina.baroglio,

roberto.micalizio,stefano.tedeschi}@unito.it
2 Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol,

MINES Saint-Etienne, Saint-Etienne, France
Olivier.Boissier@emse.fr

Abstract. Business processes realize a business goal by coordinating
the tasks undertaken by multiple interacting parties. Given such a
distributed nature, Multiagent Organizations (MAO) are a promising
paradigm for conceptualizing and implementing business processes. Yet,
MAO still lack of a systematic method for reporting to the right agents
feedback about success or failure of a task. We claim that an explicit
representation of accountability and responsibility assumptions provides
the right abstractions to engineer MAO for supporting the execution
of business processes. Basing our programming approach on MAO, we
present two accountability patterns for developing accountable agents.
To illustrate this approach we use the JaCaMo multi-agent program-
ming platform.

1 Introduction

Weske [37] defines a business process as “a set of activities that are performed
in coordination in an organizational and technical environment. These activities
jointly realize a business goal.” In general, a business goal is achieved by breaking
it up into sub-goals, which are distributed to a number of actors. Each actor
carries out part of the process, and depends on the collaboration of others to
perform its task. One limit of business processes is that they integrate, at the
same abstraction level, both the business logic and the interaction logic (message
passing). This makes their reuse problematic; whenever different coordination
schemas are to be enacted the business process must be revised. Moreover, since
message exchanges lie at the level of data, it is difficult to assess the correctness
of individual processes in isolation.

Multiagent Systems (MAS), and in particular models for multi-agent orga-
nizations (MAO), are promising candidates to supply the right abstractions to

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 3–24, 2020.
https://doi.org/10.1007/978-3-030-51417-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_1&domain=pdf
http://orcid.org/0000-0002-9294-0408
http://orcid.org/0000-0002-2070-0616
http://orcid.org/0000-0002-2956-0533
http://orcid.org/0000-0001-9336-0651
http://orcid.org/0000-0002-9861-390X
https://doi.org/10.1007/978-3-030-51417-4_1

4 M. Baldoni et al.

keep processes linked together in a way that allows reasoning about the correct-
ness of the overall system in terms of goals rather than of messages. In order
to provide the right support to BPs, however, MAO need to be enriched with
a systematic way to properly handle feedback about the execution, that can be
provided by the agents as explanation of goal achievement or non-achievement.
Such feedback will generally be of interest to (and should be handled by) some
agent which is not the one that can produce it. Consequently, for connecting
agents in the right way, an appropriate “infrastructure” needs to be devised. A
significant special case of feedback provision and management is exception han-
dling. In this case, the availability of means for reporting the produced feedback
(the exception) to an agent that is capable of tackling it, would increase system
robustness. Approaches for modeling exceptions in a multiagent setting have
been proposed in the literature (see, e.g., [26,30,34]) but no consensus has been
reached yet on how accommodating the usual exception handling semantics with
the peculiar properties of agents, such as autonomy, openness, heterogeneity, and
encapsulation.

In this paper we argue that the notions of accountability and responsibility
are useful both to the general purpose of enriching MAOs with a feedback infras-
tructure, and to the specific purpose of accommodating exception handling.

In [2] a proposal was made to use accountability and responsibility rela-
tionships to state the rights and duties of agents in the organization, given the
specification of a normative structures. From this understanding, we define what
it means for an agent to be accountable when taking on responsibilities in the
execution of part of a business process. That is, we address the notion of account-
ability from a computational perspective and study its role as a design property
[5].

In the following we use these concepts as tools to systematize and guide the
design and development of the agents. We, then, exemplify how such concepts
can be introduced in multi-agent systems realized in JaCaMo, where agents
will execute under a normative organization expressing a business process as
accountability and responsibility relationships among agents. We use, as a ref-
erence example, a revisited version of the Incident Management case from the
BPMN examples by the OMG [29]. The implementation is available at https://
di.unito.it/incident.

2 Enhancing MAOs to Better Support BPs

The Incident Management case [29] (Fig. 1), that we use as a running example,
models the interaction between a customer and a company for the management
of a problem that was reported by the customer. It involves several actors. The
Customer reports the problem to a Key Account Manager who, based on her
experience, can either solve the problem directly or ask for the intervention of
First-level Support. The problem can, then, be recursively treated by different
support levels until, in the worst case, it is reported to the software developer.

Goal distribution over a group of processes bears strong similarities with
proposals from research on MAO. In the Incident Management example, the

https://di.unito.it/incident
https://di.unito.it/incident

Accountability and Responsibility in MAO for Engineering BPs 5

business aim of the process (to solve the reported problem) is decomposed and
distributed over up to five BPMN processes, whose execution requires interaction
and coordination–realized in this case through message exchange. Noticeably, as
always with business processes, the way in which goals are achieved matters,
so the agents that will participate into the organization are expected not only
to fulfill their assigned goals but also to respect the business process. Indeed,
from an organizational perspective, the “goal” is that the process takes place [1].
As Fig. 1 shows, the case includes treatment of anomalous situations, in terms
of message passing. For instance, an issue at the level of Software Developer
Support is propagated upwards towards the Customer causing certain activities
to occur.

One common limitation of the kind of modularity implemented both by BPs
and by MAOs is that the overall process structure of the goal is intended mainly
as a way for constraining the agents’ autonomy, and not as information provided
to support the agents in their work. In particular, MAOs (see, e.g., [11,15]) allow
structuring complex organizational goals by functional decomposition, assign-
ing subgoals to the agents. The coordinated execution of subgoals is often sup-
ported by a normative specification, with which the organization issues obliga-
tions towards the agents (e.g., [9,13,14,18]). However, by focusing merely on the
achievement of the assigned sub-goals, agents loose sight of the overall process,
and ignore the place their achievement has within the organization. Moreover,
agents may have the capability of achieving the assigned goals but in ways that
do not fit into the process specification and, importantly, in presence of anoma-
lous situations, the organization has no explicit mechanism for sorting out what
occurred, for a redress. On the other hand, in BPMN the relationships between
the actors are just loosely modeled via message exchange, there is no explicit
representation of the legitimate expectations each actor has about the others,
and there is no notion of responsibility.

So, even if MAOs solve part of the limits of BPMN, what is actually miss-
ing is the agents’ awareness of their part in the organization, not only in terms
of the goals assigned to them, but also (and equally important) in terms of
the relationships they have with the others, of their mutual dependencies, and,
more broadly, of the dependence of the organization on its members for what
concerns the realization of the business process. We claim that the notions of
responsibility and accountability serve this purpose in an intuitive, yet effective
way. A first conceptualization of how these notions can be used in the context
of distributed processes is discussed in [7], here we discuss more practical, pro-
gramming aspects.

Responsibility and Accountability

According to Dubnick [16], accountability “emerges as a primary characteris-
tic of governance where there is a sense of agreement and certainty about the
legitimacy of expectations between the community members.” So, within an
institutional frame, accountability manifests as rules, through which authority

6 M. Baldoni et al.

Fig. 1. The incident management BPMN diagram enriched with exception manage-
ment.

is “controlled” so that it is exercised in appropriate ways. In human organi-
zations, it amounts to the enactment of mechanisms for dealing with expec-
tations/uncertainty. In complex task environments where multiple, diverse and
conflicting expectations arise, it is a means for managing an otherwise chaotic
situation. Further on this line [20], accountability implies that some actors have
the right to hold other actors to a set of standards, to judge whether they have
fulfilled their responsibilities in light of these standards, and to impose sanctions
if they determine that these responsibilities have not been met. They explain

Accountability and Responsibility in MAO for Engineering BPs 7

that accountability presupposes a relationship between power-wielders and those
holding them accountable, where there is a general recognition of the legitimacy
of (1) the operative standards for accountability and (2) the authority of the
parties to the relationship (one to exercise particular powers and the other to
hold them to account).

Concerning responsibility, [36] proposes an ontology relating six different
responsibility concepts (capacity, causal, role, outcome, virtue, and liability),
that capture: doing the right thing, having duties, an outcome being ascribable
to someone, a condition that produced something, the capacity to understand
and decide what to do, something being legally attributable. In the context of
Information Systems (in particular, access rights models and rights engineering
methods), the meta-model ReMMO [17] represents responsibility as a unique
charge assigned to an agent, and in the cited literature most of the authors
acknowledge that responsibility aims at conferring one or more obligation(s) to
an actor (the responsibility owner). As a consequence, this causes a moral or
formal duty, in the mind of the responsibility owner, to justify the performance
of the obligation to someone else, by virtue of its accountability.

Business processes show all the characteristics of accountability settings: they
represent an agreed behavior, they involve tasks the interacting parties should
take care of, they introduce expectations on how they will act, and require some
kind of governance in order for the process to be enacted. However, the lack of
an adequate representation of the involved relationships obfuscates the account-
ability [28] (that results hidden into some kind of collective responsibility), pos-
sibly compromising the functioning of the system as a whole or its governance.
As Thompson [35] explains, typically adopted solutions, like applying hierarchi-
cal or collective forms of responsibility, are wanting, and personal responsibil-
ity approaches, based on some weak causal connection between individuals and
events, should be preferred.

It is worth noting that accountability and responsibility are not primitive
concepts. Rather, they are properties that emerge in carefully designed software
systems. This means that when we use accountability/responsibility for system
engineering, we actually constrain the ways in which software is designed and
developed.

3 Engineering MAO with Accountability/Responsibility

Since the proposal is set into the JaCaMo framework [9] (whose organization
model is briefly introduced below), the coordinated execution of the agents is
regulated by obligations, that are issued by the organization. In [2], it is pro-
posed to improve the specification of an organization by complementing the
functional decomposition of the organizational goal with a set of accountability
and responsibility specifications. As in that proposal, we denote by R(x, q) and
A(x, y, r, u) responsibility and accountability relationships, respectively. R(x, q)
expresses an expectation on any agent playing role x on pursuing condition q (x
is in position of being considered to control q). Instead, A(x, y, r, u) expresses

8 M. Baldoni et al.

that x, the account-giver (a-giver), is accountable towards y, the account-taker
(a-taker), for the condition u when the condition r (context) holds. We see u in
the context of r as an agreed standard which brings about expectations inside
the organization. Accountability relationships can be collected in a set A, called
an accountability specification. The organization designer will generally specify
a set of accountability specifications which is denoted by A.

In the following, besides introducing JaCaMo organizational model, we dis-
cuss a programming pattern for accountable agents, that is, for programming
agents that provide an account of their conduct both when they succeed in
achieving their goals, and when, for some reason, they fail in the attempt. We
will also describe a full implementation of JaCaMo with accountabilities.

JaCaMo Organisation Model

JaCaMo [9] is a conceptual model and programming platform that inte-
grates agents, environments and organizations. A MAS in JaCaMo consists
of an agent organization, realized through [24], involving Jason [10]
autonomous agents, working in a shared, artifact-based environment, pro-
grammed in CArtAgO [32]. A Jason agent consists of a set of plans, each having
the structure triggering event : 〈context〉 ← 〈body〉. On occurrence of trigger-
ing event (belief/goal addition or deletion), under the circumstances given by
context, the course of action body should be taken.

includes an organization modeling language and an organization
management infrastructure [23]. The specification of an organization is decom-
posed into three dimensions. The structural dimension specifies roles, groups and
links between roles in the organization. The functional dimension is composed
of one (or more) scheme capturing how the global organizational goal is decom-
posed into subgoals, and how subgoals are grouped in sets, called missions, to
be distributed to the agents. The normative dimension binds the two previous
dimensions by specifying roles’ permissions and obligations for missions.

JaCaMo provides various kinds of organizational artifacts that allow encoding
the state and behavior of the organization, in terms of groups, schemes and
normative states. Obligations are issued on the basis of a normative program,
written in NOPL [22]. Norms have the form id : φ → ψ, where id is a unique
identifier of the norm; φ is a formula that determines the activation condition
for the norm; and ψ is the consequence of the activation of the norm (either a
failure or the generation of an obligation). Obligations, thus, have a well-defined
lifecycle. Once created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the state of the world
specified by the obligation before a given deadline. An obligation is unfulfilled
when the agent does not bring it about before the deadline. When the condition
φ does not hold anymore, the state of the obligation becomes inactive.

Accountability and Responsibility in MAO for Engineering BPs 9

Accountability/Responsibility Specifications in the JaCaMo
Organisation Model

To specify the execution conditions that are object of accountability and respon-
sibility, we use the event-based linear logic called precedence logic [33]. Such a
language allows modeling complex expressions, under the responsibility of many
agents, whose execution needs to be coordinated. The interpretation deals with
occurrences of events along runs (i.e., sequence of instanced events). Event occur-
rences are assumed non-repeating and persistent: once an event has occurred,
it has occurred forever. The logic has three primary operators: ‘∨’ (choice), ‘∧’
(concurrence), and ‘·’ (before). The before operator constrains the order with
which two events must occur: a · b means that a must occur before b, but not
necessarily one immediately after the other. If e be an event, e (the complement
of e) is also an event. Initially, neither e nor e hold. On any run, either of the
two may occur, not both. Complementary events allow specifying situations in
which an expected event e does not occur, either because of the occurrence of
an opposite event, or because of the expiration of a time deadline.

Residuation, inspired by [27,33], allows tracking the progression of temporal
logic expressions, hopefully arriving to completion of their execution. The resid-
ual of a temporal expression q with respect to an event e, denoted as q/e, is the
remainder temporal expression that would be left over when e occurs, and whose
satisfaction would guarantee the satisfaction of the original temporal expression
q. Residual can be calculated by means of a set of rewrite rules. The following
equations are due to Singh [27,33]. Here, r is a sequence expression, and e is an
event or �. Below, Γu is the set of literals and their complements mentioned in
u. Thus, for instance, Γe = {e, e} = Γe and Γe·f = {e, e, f, f}. We have that:

0/e
.
= 0 �/e

.
= �

(r ∧ u)/e
.
= ((r/e) ∧ (u/e)) (r ∨ u)/e

.
= ((r/e) ∨ (u/e))

(e · r)/e
.
= r, if e �∈ Γr (e′ · r)/e

.
= 0, if e ∈ Γr

r/e
.
= r, if e �∈ Γr (e · r)/e

.
= 0

Using the terminology in [2], we say that an event e is relevant to a temporal
expression p if that event is involved in p, i.e. p/e 	≡ p. Let us denote by e a
sequence e1, e2, . . . , en of events. We extend the notion of residual of a temporal
expression q to a sequence of events e as follows: q/e = (. . . ((q/e1)/e2)/ . . .)/en.
If q/e ≡ � and all events in e are relevant to q, we say that the sequence e is
an actualization of the temporal expression q (denoted by q̂).

Agent Programming Patterns

In general, given a set of accountability specifications A, and a set of responsi-
bility assumptions R (responsibility distribution), the organization is properly
specified when the accountability fitting “R fits A” (denoted by R � A) holds
[2]. This happens if ∃ A ∈ A such that ∀ A(x, y, r, u) ∈ A, ∃ R(x, q) ∈ R such
that, for some actualization q̂, (u/r)/q̂ ≡ �. Fitting has a relevant impact on

10 M. Baldoni et al.

organization design: When R � A holds, any set of agents playing roles into the
organization (consistently with R and one accountability specification A ∈ A)
can actually accomplish the organizational goal. Thus, fitting also provides a
guide for developing agents that are accountable by design, because it expresses
(1) what each agent is engaged to achieve, by fulfilling its responsibilities, and
(2), through accountability, how this achievement is related to that process which
is the goal of the organization.

In other words, R � A provides a specification the agents must explicitly
conform to, when enacting organizational roles. When an agent enacts some
role in an organization, it declares to be aware of all the responsibilities that
come with that role, and by accepting them it declares to adhere to the fitting
exposed by the organization itself. That is, the accountability fitting exposed by
an organization specifies the requirements that agents, willing to play roles in
that organization, must satisfy.

When an agent accepts a responsibility it accepts to account for the achieve-
ment, or failure, of some state of interest. In our metaphor, thus, an agent acts
with the aim of preparing the account it should provide. In this way, we reify
the cited “sense of agreement and certainty about the legitimacy of expectations
between the community members” which otherwise remains implicit both in
business processes and in MAO. Leveraging these concepts for developing agents
provides interesting advantages from a software engineering point of view.

As a tool for realizing the accountability fitting that specifies an organization,
we are about to introduce a programming pattern that allows realizing account-
able agents, but before we need to identify the portion of fitting involving each
single individual.

Definition 1. Given the fitting R � A, and a role x in its scope, the pro-
jection of the fitting over role x is defined as Rx � Ax where Rx ≡
{R(x, q)|R(x, q) ∈ R}, and Ax ≡ {A(x, y, r, u)|A(x, y, r, u) ∈ A}, and where
for every A(x, y, r, u) ∈ Ax, there is R(x, q) ∈ Rx, such that (u/r)/q̂ ≡ � holds
for some actualization q̂ of q.

Thanks to a proper programming pattern, for all agents playing role x, the
fitting projection over role x can be mapped into a number of Jason plans that
will be part of the actual agent program. We provide such a pattern in a way
that suits JaCaMo (i.e. the setting of this work) by exploiting the obligations
implied by accountabilities and responsibilities [20]. The pattern is expressed
in AgentSpeak(ER) [31] because it allows encapsulating a set of plans into a
same context that, in our case, depends on x player being accountable towards
another agent y about some condition q, and will be adopted until for some
reason it drops its responsibility inside the organization (e.g. the agent leaves the
organization). More in details, AgentSpeak(ER) extends Jason by introducing
two types of plans: g-plans and e-plans. G-plans encapsulate the strategy for
achieving a goal and can be further structured into sub-plans. Besides triggering
events and contexts, g-plans include a goal condition, specifying until when the
agent should keep pursuing the goal. E-plans are defined in the scope of a g-plan,
and embody the reactive behavior to adopt while pursuing the g-plan’s goal.

Accountability and Responsibility in MAO for Engineering BPs 11

Definition 2 (Pattern Specification). The fitting relationship represented
by each pair 〈R(x, q), A(x, y, r, u)〉 in Rx � Ax, is mapped into an AgentS-
peak(ER) g-plan according to the following pattern:

+!be accountable(x, y, q) <: drop fitting(x, y, q) {
+obligation(x, q) : r ∧ c
<- bodyq.

Well-Doing e-plan

+oblUnfulfilled(x, q) : r ∧ c′

<- bodyf .
Wrong-Doing e-plan

}

Such that: (1) bodyq satisfies the fitting-adherence condition (see below); (2)
bodyf includes the sending of an explanation for the failure from x to y.

The agent will perceive certain events as events it should tackle, by means of
some behavior of its own, thanks to the part of its identity that is provided
by the organizational role it plays. The agent will also be aware of its social
position both (1) by knowing which other agents will have the right, under cer-
tain conditions, to ask for an account and (2) by including specific behavior for
building such an account. The two e-plans encode the proactive behavior of an
agent assuming a responsibility. From that moment on, and until the responsi-
bility is not dropped, the agent starts reacting to obligations in accordance to
the accountability relationship specified in the fitting.

Well-Doing e-Plan. The first e-plan is triggered when the specified obligation
is issued by the normative organization. That will be the usual obligation a
Jason agent receives from the organization when it is time to pursue
a particular goal. The context expression, r ∧ c, is satisfied when condition r
activating the agent accountability holds together with some possibly empty
condition c: a local condition that encodes the possibility for the agent to have
multiple well-doing e-plans to react to the same obligation, i.e. multiple ways to
achieve a same result in different (local) circumstances (e.g., a 1st Level Support
Agent could decide to handle a task directly or ask to 2nd Level Support).
Condition c allows the developer to discriminate between these alternatives,
if any. It’s worth noting that if multiple alternative e-plans with different c
are present, the developer must take care of defining such conditions so that
for each obligation issued, at least one e-plan is always triggered. Due to the
accountability fitting the agent has accepted, the body of the plan(s) (bodyq)
must, then, be such to satisfy the responsibility assumption represented by the
pair 〈R(x, q), A(x, y, r, u)〉. That is, the plan body has to satisfy the following
fitting-adherence condition.

Definition 3 (Fitting-adherence). Let [bodyq]u denote the set of sequences of
events generated by the execution of bodyq, restricted to the events that are rel-
evant for the progression of u. bodyq satisfies the fitting-adherence condition if:
∃ sequence s ∈ [bodyq]u such that s ≡ q̂ and (u/r)/q̂ ≡ �.

12 M. Baldoni et al.

Note that fitting adherence requires the agent to be just able to activate at
least one actualization s of q, not all of them. In other words, the agent needs
to be able to perform at least one of the possibly many ways for carrying out q.
The rationale is that any actualization of q generates a sequence of events that
brings the condition u/r to �; hence, it is sufficient for an agent to implement
one actualization in order to meet its responsibility. As we have discussed above,
an accountable agent provides an account of its conduct. Sometimes, the account
of an agent that behaved as expected will be evident to the interested agents
from the way in which it operated in the environment [19]. In this case, the
obligation to give an account for the satisfaction of an obligation is implicitly
resolved by satisfying the very same obligation, and there is no need to explicitly
capture the obligation to provide an account. When, however, it is not possible
to see the agent’s operations as a proof, an explicit account should be provided
also for the well-doing case. This, for instance, happens when there is the need
of reporting facts that occur in one context, but are meaningful also in others
where they are not directly observable by the involved parties, see e.g., [4]. It is
also the case in which an agent’s behavior requires some certification for having
been performed up to some standard.

Wrong-Doing e-Plan. The second pattern allows agents to provide accounts
also in the case they did not complete a task, for some reason. The triggering
event, oblUnfulfilled, is generated by the organization when a previously
issued obligation has been left unsatisfied. The context of the pattern is again
a condition that is true when the accountability is activated (i.e., r holds), and
when some local condition c′ is satisfied. bodyf , this time, has to produce an
account about the failure. We can think of such an account as an explanation
that the agent produces so that another agent, possibly the a-taker y, can use
it to resume the execution, thus managing the exception. The correct use of
the pattern guarantees, by design, that exceptional events, when occurring, are
reported to the agents who can handle them properly. Accountability fulfills this
purpose because, by nature, it brings about an obligation on the a-giver to give
an account of what it does. The account, then, can be used by the a-taker to
recover, when possible, from the exceptional situation. Under this respect, the
account should be provided in terms that can be understood by all the interested
agents in the organization. This aspect, however, is strongly domain dependent.
As well as in the positive pattern, the agent will produce an account by modifying
its environment in a way that is meaningful for the agents that have to capture
and interpret it. Along this line, a promising approach to the synthesis of an
account is discussed in [12].

4 Shaping Business Processes as Accountable Agents
in JaCaMo

In JaCaMo [9] the state of an organization is encoded in terms of group instances,
that map agents to the roles they play, and scheme instances, that allow tracing

Accountability and Responsibility in MAO for Engineering BPs 13

which goals have been achieved and which are ready for pursue. By exploiting
these instances, the organization issues proper obligations to the agents. Due to
the declarative nature of scheme instances, agents can autonomously decide how
to satisfy their obligations. They are, however, held to notify the organization
about the completion of their tasks by means the special directive goalAchieved.

When implementing a business process as a JaCaMo organization, one has to
be aware of a substantial difference between the two underlying paradigms. A
business process describes an activity flow where choices, upon alternative exe-
cution branches, depend on the data produced by the activities performed that
far. Instead, in JaCaMo each organization generally has a complex goal, whose
structure is provided as a functional decomposition into subgoals, overlooking
the data dimension. The functional decomposition is used to track and guide
the execution, understanding when a sub-goal is to be pursued and emitting the
correspondant obligation.

The implementation of business processes through JaCaMo organizations,
thus, requires some special treatment, especially for what concerns the BPMN
gateways, where choices upon data are taken. Specifically, we capture these gate-
ways and their alternative branches as special goals within the functional decom-
position. Considering a choice, the goals amounting to the various alternatives
are mutually exclusive: the achievement of one of such alternative goals deter-
mines a specific execution path that constrains the evolution of the remainder of
the social scheme. This stratagem allows incorporating, at least in part, within
a functional decomposition the execution flow based on data. A dedicated man-
ager agent will be in charge of satisfying the obligations issued upon such special
goals.

Having this in mind, the following steps provide a guideline to map a number
of interacting business processes into a JaCaMo organization.

1. For each process, a corresponding manager role in the organization is defined.
The agent(s) playing this role will have to decide on the alternative branches
to choose in the process execution;

2. For all the activities in a process, suitable worker roles in the organization
are defined. These roles will be played by the agents in charge of executing
the activities;

3. For each process:
– A group collecting the manager and all the workers involved in the process

is defined;
– A social scheme is created to organize the activities as a goal decomposi-

tion tree1. Corresponding missions are defined, to be assigned to roles of
the group in charge of the process by defining corresponding norms;

4. For each set of activities to be executed in sequence, the corresponding goals
are added to the social scheme by means of the “sequence” operator;

1 Here, we restrict our attention to processes that do not include loops; otherwise it
would not be possible to express them as decomposition trees.

14 M. Baldoni et al.

5. For each set of activities to be executed without strict ordering, the corre-
sponding goals are added to the social scheme by means of the “parallel”
operator;

6. If a choice is present inside a process, a corresponding goal is added to the
social scheme by means of the “choice” operator. Each subgoal represents a
possible course of action (alternative branch). Every alternative in the choice
should include a goal, encoding the chosen path to be assigned to the process
manager. Depending on which goal will be achieved by the manager, the
execution will follow a branch or another;

7. If a process sends a message that makes another process start, the message
should be sent to the process manager, which, as a consequence, will instan-
tiate the social scheme corresponding to the process;

8. If a process includes waiting for a message from another process to proceed,
a corresponding goal is added to the social scheme and assigned to the man-
ager; such goal is to be set as achieved only after the message is received.
The introduction of this goal is necessary to ensure the coordination, and
synchronization during the execution, of the social schemes corresponding to
the two processes.

Example 1 (Incident Management as a JaCaMo Organization). Let us now
explain how the Incident Management scenario can be mapped into a JaCaMo
organization by applying these steps. For the sake of simplicity, we will just
consider the Key Account Manager process. First, we introduce a manager role
am and, for each activity in the process, we define a corresponding worker.
aw1, for instance, will be in charge of get-description, aw2 will be in charge of
explain-solution, and so on. As a further step we define a Key Account group
collecting am and all of its workers. At the beginning of the execution, the cus-
tomer agent c will send a message to am reporting the problem. As a consequence
the agent playing role am will instantiate a scheme that will be assigned to this
group and will encompass the overall Key Account Manager process. The root
goal of such scheme will be assigned to am that, in order to satisfy it, will have
to manage the successful execution of the social scheme.

Figure 2 shows the scheme available for instantiation to am that represents
the possible courses of actions during the execution of the Key Account Man-
ager process. Subgoals in a sequence are anticipated by a number denoting the
position of the goal in the sequence. Goals including a choice are underlined.
The picture also shows how goals are grouped together into missions and which
agents such missions are assigned to (through norms). The scheme is to be
instantiated as soon as a problem to be solved is reported. Indeed, we map
the scheme instantiation to report-problem. As a consequence, the obligation to
achieve get-description will be issued to the corresponding worker aw1. After the
successful achievement of get-description, two obligations under a choice will be
issued towards am: the former related to the can-handle goal and the latter to
cannot-handle. Depending on the result of the previous activity (i.e., whether
the problem requires further support or can be handled at that level), am will
decide to achieve either one of the two goals, the choice made by am thus con-

Accountability and Responsibility in MAO for Engineering BPs 15

am_sch: scheme_key_account_management

root_key_account_management

1:gd 2:switch_ch_cnh

ch_branch

1:ch2:es1

cnh_branch

1:cnh 2:ask1ls 3:switch_ans1ls_timeoutam

ans1ls_branch

1:ans1ls2:es2

timeoutam_branch

1:timeoutam 2:rec

m3
(1..1)

m2
(1..1)

m4
(1..1)

m1
(1..1)

m0
(1..1)

am

w1

w2

w3

w4

Fig. 2. Social scheme realizing the Key Account Manager process.

strains the subsequent obligations that will be generated. In the former case,
the normative system will simply issue the obligation to explain-solution, while
in the latter it will issue the obligation to ask support to the first level. In the
second case, after a request for support has been made, again two options are
available to the manager. If an answer is received from the first level support,
the solution has to be explained; in this case am will achieve answer-from-fls.
On the contrary, if a feedback is not received after one day, causing a timeout
in the BPMN diagram, an invitation to recall will be sent to the customer. �

4.1 Adding Accountabilities and Responsibilities

The approach described above is applied to the three remaining processes in
the example, whose translation in JaCaMo is not discussed here for the sake of
simplicity. The organization specification we obtain can, then, be enriched with
an accountability specification that allows us to capture BPMN exceptions.

Example 2 (Incident Management with Accountabilities). Figure 3 shows an
excerpt of an accountability specification Aincident for the incident management

16 M. Baldoni et al.

Fig. 3. Excerpt of the accountability specification and responsibility distribution for
the Incident Management scenario.

scenario. Accountabilities a1–a6 concern the Key Account Manager Process. For
instance, accountability a1 states that am is accountable towards c, the customer,
for the problem management after a problem is reported 2, and legitimates c, as
a-taker, to ask for an account about the management of the problem. The a-giver
am is, thus, expected to provide such an account when needed and recognizes
the legitimacy of such an expectation. Accountability a2, instead, states that
once a problem has been reported (and the manager has started the process),
the manager has the right to ask worker aw1 an account about get-description
(i.e., the achievement of goal gd in the social scheme).

Accountabilities a3 and a4 cover the two alternative paths after
get-description. a3 encodes the fact that, if the problem can be handled directly,
a worker aw2 will be in charge of explain-solution (the achievement of es1 in the
scheme). It’s worth noting that we require the same worker to be accountable for
that activity also in another context, as stated by a5. This accountability states
that the same worker should account for explain-solution if the problem cannot
be handled directly, too, but in case support has been requested to the first level
support and an answer provided (see es2 in the social scheme). Accountability
a4, conversely, states that another worker aw3 is accountable for asking further
support if the problem cannot be handled. Accountability a4, finally, is related
to the invite-recall condition. Should an answer not be received within one day
from the first level, a worker aw4 would be accountable for the invite-recall (rec
in the social scheme) activity. These accountabilities, together, completely char-
acterize the Key Account Manager process3. Accountability a7, in turn, involves
the manager of the first level of support. It states that such agent is accountable
towards am for providing a feedback, once a request for support has been made.
In this case, too, such accountability will be supported by further accountabil-

2 Event problem-management corresponds to the achievement of root key ac-
count management , the root goal of the social scheme in Fig. 2.

3 It’s worth noting that we do not define any accountability relationship w.r.t.
can-handle, cannot-handle, answer-from-fls and 1-day. Such goals are the ones whom
the manager is in charge of and would encompass the manager both as a-giver and
a-taker.

Accountability and Responsibility in MAO for Engineering BPs 17

ity relationships, not reported here, built upon the First Level Support process’
decomposition tree. �

Accountabilities capture only a part of the organization specification. A busi-
ness process captures an activity flow, that is, it involves activities that are meant
to be executed. It is, thus, necessary to identify those agents which are in posi-
tion of being capable of carrying out the various activities. This is captured by
responsibilities. For instance, in the case at issue, due to r1, am is responsible
of problem-management.

In order for the organization to execute the business process so that a full
account can be provided, it is necessary to bind accountabilities with responsi-
bility assumptions. This is done by the accountability fitting, that, by exploiting
the pattern described in the previous section, enables the implementation of
exception handling mechanisms. With the accountability specification Aincident

as a basis, the designer can identify a suitable responsibility distribution which
fits it. An excerpt of an acceptable one is reported in Fig. 3. It is easy to verify
that for each ai ∈ Aam there is a rj ∈ Ram which fits it. For instance, if we
consider a1 and r1, we have that:

problem-management/report-problem/problem-management ≡ �
We now briefly explain how, by relying on an accountability specification

and on the programming patterns described above, it is possible to implement
an agent playing role am whose behavior is accountable for a given set of relevant
events.

Example 3 (Key Account Manager with Exceptions). First of all, an agent play-
ing role am has to instantiate the scheme for the Key Account Manager (see
Fig. 2) process as soon as it receives a request from a customer. This behavior is
realized through the following plan:

Let us now show how to apply the programming pattern based on the
accountability specification discussed above. For instance, let us consider the
fitting r1 � a1: the agent being developed must be in control of responsibil-
ity r1 (i.e., problem-management), and assume an accountable behavior towards
the customer for problem-management, when condition report-problem holds. We
recall that we map problem-management to the achievement of the root goal of
the scheme in Fig. 2, and report-problem to the instantiation of such scheme.
Following the pattern described in the previous section, the programmer should
define in the agent body a g-plan containing well-doing and wrong-doing e-
plans. However, the actual framework we use for implementation is JaCaMo,
where Jason still implements AgentSpeak(L) rather than AgentSpeak(ER), and
hence it is not possible to define nested e-plans. The well-doing and wrong-doing
e-plans are therefore rendered by means of two plain Jason plans. The fitting
involving r1 � a1 is implemented by the following plans:

18 M. Baldoni et al.

The first plan, in particular, realizes the well-doing part of the pattern.
Recalling Definition 2, the plan is triggered as soon as an obligation concerning
the scheme root is issued (Line 3). The obligation object (What) is the satisfac-
tion of the organizational goal root key account management –corresponding
to the problem-management condition in Fig. 3. Indeed, in JaCaMo, the achieve-
ment of an organizational goal fulfills the corresponding obligation. Then, as
requested by the pattern, the contexts of both plans must include the conditions
specified in a1. In JaCaMo we represent this condition (report-problem) in terms
of scheme being instantiated (see Line 6). Considering the fitting-adherence con-
dition, we have that r is report-problem, and u is problem-management. Thus
q ≡ u/r is just problem-management. The plan for well-doing needs to include
some actions that amount to such an event. In this setting we consider the
event to be occurred as soon as the corresponding organizational goal is set as
achieved. This is trivially true in the example (see Line 7). The second plan, at
Line 9, instead, deals with the wrong-doing part of the pattern. Should, for any
reason, the obligation be unfulfilled, the agent, by virtue of its accountability,
must provide a motivation about the unsatisfaction of the obligation. In this
case, a proper message encoding the explanation for the failure is sent to the
account-taker agent (see Line 14). Note that the agent could be equipped with
multiple plans covering the wrong-doing part to take care of several causes of
failures each with its own specific explanation to be sent to a precise a-taker.
These two plans ensure that, no matter how the scheme execution evolves, c will
always receive an account from am, consisting either of a notification about the
achievement of problem-management, or of an explanation for the failure. �

The implementation of an agent playing the am role must also take into
account that the agent is the manager of the Key Account Manager process.
Therefore the agent should also be provided with plans for controlling the execu-
tion flow, that is, for deciding which goals amount to choices it needs to satisfy.

Example 4 (Controlling Alternatives). In our case there are two alternative goals
ch and cnh, whose achievement corresponds to can-handle and cannot-handle),
respectively. Specifically, after goal get-description gets accomplished, the orga-
nizational infrastructure will issue two obligations at the same time, directed to
am, one for ch and one for cnh. The agent will then decide to achieve either
one of the two goals depending on data that are not captured by the functional

Accountability and Responsibility in MAO for Engineering BPs 19

decomposition, but that may be accessible to the agent by means of artifacts.
The two plans below realize this behavior:

If the problem is directly solvable, the agent will fulfill the first obligation,
otherwise it will satisfy the second one. The choice of which obligation is actually
fulfilled obviously affects the subsequent activities. In the second case, in fact,
a new sub-process needs to be activated, that is, a new functional scheme needs
to be instantiated. �

Worker agents for the Key Account Manager process are developed in a
similar way, following the pattern. For instance, let’s consider the agent playing
the aw1 role. The agent is involved in r2 � a2. The well-doing and wrong-doing
plans are defined as follows:

The first two plans, together, realize the well-doing part of the pattern. The
first plan (Line 3), in particular, is triggered as soon as the obligation to achieve
gd is issued. As a result, the agent will send a message to the customer ask-
ing for a description. To successfully complete the activity and achieve its goal,
however, the agent has to wait for an answer. The second plan, at Line 9, is
triggered as soon as a description is received from the customer and finally leads
to the achievement of the organizational goal (Line 13). Before that, nonethe-
less, the worker forwards the description to his manager (Line 12), which will
then use it to decide how to proceed, as explained above. The plan at Line 15

20 M. Baldoni et al.

realizes the wrong-doing part of the pattern. In this case, should the obligation
become unfulfilled because of a missing response from the customer (see Line 19),
the account sent to the a-taker would be no description from customer (see
Line 21).

The am agent, in turn, being account-taker in several accountability rela-
tionships, can include also some plans to handle the accounts provided by its
account-givers, both in positive and negative circumstances. Let’s consider again
a2. As explained above, in case of failure, aw1 would send a precise message to
am. The very same message can be used as triggering event in a recovery plan,
as follows:

A possible way to deal with the failure could be to send a further message to
the customer and reset the failed goal. In general considerations related to how
to handle a failure are strictly domain dependent.

Notably, considering the accountability specification as a requirement, the
actual implementation of the system results robust. The accountable am for
instance, to satisfy the requirement of being accountable, must be capable, on
the one side, of capturing exceptions from other agents, and on the other side,
of providing an account to its a-taker (i.e., the customer).

5 Conclusions

We have discussed how the agent technology can be exploited for the imple-
mentation of business processes modeled as BPMN schema. To be effective,
however, agent system needs to take care of some peculiarities of business pro-
cesses, as for instance, the handling of exceptional events, that possibly interrupt
the execution of a process. Approaches for modeling exceptions in a multi-agent
setting have been proposed (see, e.g., [26,30,34]), but these proposal fall short
in addressing the typical properties of MAS, such as autonomy, openness, het-
erogeneity, and encapsulation.

In this paper we have coped with BPMN exceptions by relying on the notions
of accountability and responsibility as elements for the specification of an agent
organization. In addition, we have proposed a programming pattern for devel-
oping agents that adhere to such a specification. The pattern, when applied
systematically, brings along positive consequences. First of all, an accountabili-
ty/responsibility specification provides a programmer with all the relevant infor-
mation for developing an agent that is aware of the process as characterization of
the goal (see [1]). In fact, while a responsibility distribution is a coverage of the
functional decomposition, an accountability specification conveys how the agents
contribute to the process. Hence, the accountabilities provide the programmer
with a behavioral specification agents must satisfy.

Accountability and Responsibility in MAO for Engineering BPs 21

Our approach is specular to [38], whose aim is to determine whether a group
of agents can be attributed the responsibility for a given goal. Once the responsi-
bility can be attributed to the agents, their accountability is implicitly modeled
in the inferred plan. Here, instead, we aim at developing agents that, by con-
struction, satisfy the organization specification. Indeed, an interesting evolution
of the present work goes in the direction of an agent-oriented type checking (see
e.g., [3]). Having an explicit model of the organization in terms of accountabilities
and responsibilities, it would be possible to mechanize a type checking system
that verifies whether, at role enacting time, an agent possesses all the necessary
plans for role playing.

The proposal moves MAOs closer to other paradigms where exceptions are
handled. In the actor model (e.g., [21]), for instance, when an actor cannot han-
dle an exception, it usually reports the exception to its parent actor, which in
turns decides to either handle the exception or report it further. In an agent-
based system such a scheme is not directly applicable since agents are indepen-
dent entities, and rarely are related to each other by a parent-child relationship.
Accountabilities can fill in this gap: when an obligation is not satisfied, it is rea-
sonable to report the exception to the a-taker. This is achieved quite naturally
with the Wrong-Doing Pattern, that allows an agent to provide an account for an
unsatisfied obligation. Interestingly, the choice “on-the-fly” of which branch to
follow, performed by the manager, can be seen as a form of planning autonomy :
“This type of autonomy dictates if an agent is able (or unable) to create, choose
or modify plans to achieve a specific goal” [25]. The integration of this type of
autonomy into an organizational model (i.e.,) discussed in [25] opens
interesting perspectives in the modeling of BPMN processes for our accountable
agents.

Commitment-based protocols (e.g., [39]), as well as standard NorMAS [8],
provide alternatives for modeling coordination. Roughly speaking, a commit-
ment is a promise that a debtor does in favor to a creditor that in case some
antecedent condition is satisfied, the debtor will bring about a consequent con-
dition. When the antecedent holds, the commitment is detached, and amounts
to an obligation on the debtor to bring about the consequent. When the conse-
quent is no longer achievable, the commitment is violated. In such a case, the
creditor has the right to complain against the debtor, the creditor cannot hold
the debtor to provide an explanation. This lack of information hampers both
the understanding of what has occurred, and any attempt of recovery from the
failure. However, commitments have the power of enforcing accountability when
properly used. For instance, the ADOPT protocol [6] establishes an account-
ability relationship, expressed via a commitment-based protocol, between an
organization and its agents.

22 M. Baldoni et al.

References

1. Adamo, G., Borgo, S., Di Francescomarino, C., Ghidini, C., Guarino, N.: On the
notion of goal in business process models. In: Ghidini, C., Magnini, B., Passerini,
A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 139–151.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3 11

2. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, R., Tedeschi, S.:
Accountability and responsibility in agent organizations. In: Miller, T., Oren, N.,
Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS
(LNAI), vol. 11224, pp. 261–278. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03098-8 16

3. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Type checking for proto-
col role enactments via commitments. J. Auton. Agents Multi-Agent Syst. 32(3),
349–386 (2018). https://doi.org/10.1007/s10458-018-9382-3

4. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P.: Composing and verifying
commitment-based multiagent protocols. In: Wooldridge, M., Yang, Q. (eds.) Pro-
ceedings of 24th International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 25th July–31th 2015 (2015). http://ijcai-15.org/

5. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability. In: Chesani, F., Mello, P., Milano, M. (eds.) Deep Understand-
ing and Reasoning: A Challenge for Next-Generation Intelligent Agents, URANIA
2016, vol. 1802, pp. 56–62. CEUR Workshop Proceedings, Genoa, December 2016.
http://ceur-ws.org/Vol-1802/paper8.pdf

6. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability in MAS organizations with ADOPT. Appl. Sci. 8(4), 489 (2018)

7. Baldoni, M., Baroglio, C., Micalizio, R.: Goal distribution in business process mod-
els. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018.
LNCS (LNAI), vol. 11298, pp. 252–265. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03840-3 19

8. Boella, G., van der Torre, L.W.N., Verhagen, H.: Introduction to normative multia-
gent systems. In: Normative Multi-Agent Systems. Dagstuhl Seminar Proceedings,
vol. 07122 (2007)

9. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

10. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley, Chichester (2007)

11. Corkill, D.D., Lesser, V.R.: The use of meta-level control for coordination in dis-
tributed problem solving network. In: Bundy, A. (ed.) Proceedings of the 8th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 1983), pp. 748–756.
William Kaufmann, Los Altos (1983)

12. Cranefield, S., Oren, N., Vasconcelos, W.W.: Accountability for practical reasoning
agents. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 33–48. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17294-7 3

13. Dastani, M., Tinnemeier, N.A., Meyer, J.J.C.: A programming language for nor-
mative multi-agent systems. In: Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, pp. 397–417. IGI Global (2009)

14. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, Utrecht University (2004). Published by SIKS

https://doi.org/10.1007/978-3-030-03840-3_11
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/s10458-018-9382-3
http://ijcai-15.org/
http://ceur-ws.org/Vol-1802/paper8.pdf
https://doi.org/10.1007/978-3-030-03840-3_19
https://doi.org/10.1007/978-3-030-03840-3_19
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1007/978-3-030-17294-7_3

Accountability and Responsibility in MAO for Engineering BPs 23

15. Dignum, V.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models (2009)

16. Dubnick, M.J., Justice, J.B.: Accounting for accountability. Annual Meeting
of the American Political Science Association, September 2004. https://pdfs.
semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf

17. Feltus, C.: Aligning access rights to governance needs with the responsability Meta-
Model (ReMMo) in the frame of enterprise architecture. Ph.D. thesis, University
of Namur, Belgium (2014)

18. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a
model of institutional reality for open multiagent systems. Artif. Intell. Law 16(1),
89–105 (2008). https://doi.org/10.1007/s10506-007-9055-z

19. Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall Inc., Englewood Cliffs
(1967)

20. Grant, R.W., Keohane, R.O.: Accountability and abuses of power in world politics.
Am. Polit. Sci. Rev. 99(1), 29–43 (2005)

21. Haller, P., Sommers, F.: Actors in scala - concurrent programming for the multi-
core era. Artima (2011)

22. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming
language for organisation management infrastructures. In: Padget, J., et al. (eds.)
COIN -2009. LNCS (LNAI), vol. 6069, pp. 114–129. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14962-7 8

23. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-
sations with organisational artifacts and agents. Auton. Agents Multi-Agent Syst.
20(3), 369–400 (2010). https://doi.org/10.1007/s10458-009-9084-y

24. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)

25. Maia, A., Sichman, J.S.: Explicit representation of planning autonomy in MOISE
organizational model. In: 7th Brazilian Conference on Intelligent Systems, BRACIS
2018, São Paulo, Brazil, 22–25 October 2018, pp. 384–389 (2018)

26. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In:
Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2005, pp. 122–129. ACM (2005)

27. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A., Patti, V., Singh, M.: Com-
mitments with regulations: reasoning about safety and control in REGULA. In:
Proceedings of the 10th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), vol. 2, pp. 467–474 (2011)

28. Nissenbaum, H.: Accountability in a computerized society. Sci. Eng. Ethics 2(1),
25–42 (1996). https://doi.org/10.1007/BF02639315

29. Object Management Group: BPMN specification - business process model and
notation (2018). http://www.bpmn.org/. Accessed 08 Nov 2018

30. Platon, E., Sabouret, N., Honiden, S.: An architecture for exception management
in multiagent systems. Int. J. Agent-Oriented Softw. Eng. 2(3), 267–289 (2008)

31. Ricci, A., Bordini, R.H., Hübner, J.F., Collier, R.: AgentSpeak(ER): an extension
of AgentSpeak(L) improving encapsulation and reasoning about goals. In: AAMAS,
pp. 2054–2056. International Foundation for Autonomous Agents and Multiagent
Systems, Richland/ACM (2018)

32. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3 8

https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://doi.org/10.1007/s10506-007-9055-z
https://doi.org/10.1007/978-3-642-14962-7_8
https://doi.org/10.1007/s10458-009-9084-y
https://doi.org/10.1007/BF02639315
http://www.bpmn.org/
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8

24 M. Baldoni et al.

33. Singh, M.P.: Distributed enactment of multiagent workflows: temporal logic for
web service composition. In: Proceedings of the Second International Joint Con-
ference on Autonomous Agents & Multiagent Systems, AAMAS 2003, Melbourne,
Victoria, Australia, 14–18 July 2003, pp. 907–914. ACM (2003)

34. Souchon, F., Dony, C., Urtado, C., Vauttier, S.: Improving exception handling
in multi-agent systems. In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J.,
Alencar, P.S.C. (eds.) SELMAS 2003. LNCS, vol. 2940, pp. 167–188. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24625-1 10

35. Thomson, J.J.: Remarks on causation and liability. Philos. Public Aff. 13(2), 101–
133 (1984)

36. Vincent, N.A.: A structured taxonomy of responsibility concepts. In: Vincent, N.,
van de Poel, I., van den Hoven, J. (eds.) Moral Responsibility. LOET, vol. 27, pp.
15–35. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1878-4 2

37. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73522-9

38. Yazdanpanah, V., Dastani, M.: Distant group responsibility in multi-agent systems.
In: Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) PRIMA
2016. LNCS (LNAI), vol. 9862, pp. 261–278. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44832-9 16

39. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45448-9 17

https://doi.org/10.1007/978-3-540-24625-1_10
https://doi.org/10.1007/978-94-007-1878-4_2
https://doi.org/10.1007/978-3-540-73522-9
https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/3-540-45448-9_17

From Goals to Organisations: Automated
Organisation Generator for MAS

Cleber Jorge Amaral1,2(B) and Jomi Fred Hübner2(B)

1 Federal Institute of Santa Catarina (IFSC), São José, SC, Brazil
cleber.amaral@ifsc.edu.br

2 Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
jomi.hubner@ufsc.br

http://www.ifsc.edu.br/, http://pgeas.ufsc.br/en/

Abstract. An explicit organisational structure helps entrants in open
multi-agent systems (MAS) to reason about their positions in the organi-
sation for cooperating to achieve mutual goals. In spite of its importance,
there are few studies on automatic organisation generators that create
explicit organisational structures. This paper introduces GoOrg, a pro-
posal for automatic design of organisations. Our approach considers as
inputs a goal decomposition tree (gdt) and user preferences. From the
gdt with annotations such as necessary skills to achieve organisational
goals, predicted workload and throughput, GoOrg creates roles in the
form of an organisational chart. The main challenge is to define strate-
gies to search the space of all organisational structures for those that
can achieve the goals respecting constraints and taking into account user
preferences. We can, for instance, prefer a flatter or a taller structure,
more specialist or more generalist roles, and we can accept matrix con-
nections or not.

Keywords: Automated organisation design · Organisational chart ·
Organisational structure · Open Multi-Agent Systems

1 Introduction

The organisational structure is an instrument used to split, organise and coordi-
nate activities of Multi-Agent System (MAS) organisations. It reflects authority
relations and responsibility for goals, providing a typical way to assign tasks to
agents [15]. An explicit organisational structure helps agents to know where they
fit relatively to others and which are their responsibilities [9,13,21,30].

Currently, there are a few studies on the automatic design of organisations
that generates explicit organisational structures [10,17,23,26]. Although sem-
inal, there is still space for improvements, for instance, automating the roles
creation process. This paper presents an ongoing work in the context of a PhD
thesis that proposes GoOrg, an automated organisation generator which takes a

Supported by Petrobras project AG-BR, IFSC and UFSC.

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 25–42, 2020.
https://doi.org/10.1007/978-3-030-51417-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_2&domain=pdf
http://orcid.org/0000-0003-3877-6114
http://orcid.org/0000-0001-9355-822X
https://doi.org/10.1007/978-3-030-51417-4_2

26 C. J. Amaral and J. F. Hübner

goal decomposition tree (gdt) and produces as output an organisational chart,
i.e., an explicit organisational structure, according to user preferences. The main
novelty of our method is its capability of creating roles from the inputs. In this
sense, our method may produce a larger range of possible organisational charts.

To discuss the problem and to describe the proposed generator, Sect. 2
presents the concept of automatic organisation design and the state of art of this
research area. Section 3 describes the problem, i.e., the challenge we want to over-
come. Section 4 presents our organisation generator GoOrg. Section 5 describes
the research method we are applying in, the status of this research and planned
evaluation. Finally, Sect. 6 presents related works and Sect. 7 presents our con-
clusions.

2 Organisation Design

Pattinson et al. [22] define organisation design as “the problem of choosing the
best organisation class - from a set of class descriptions - given knowledge about
the organisation’s purpose (goal, task, and constraints on the goal) and the
environment in which the organisation is to operate”. Given necessary input, an
organisation generator can give as output organisational aspects, such as, struc-
ture, goals definitions, strategy, how leadership will work, which reward system
will be used, among others [2]. We have identified three classes of organisation
generators in the MAS domain [1].

The first class is the automated organisation design by task planning. These
generators usually create problem-driven organisations, for specific and generally
short term purposes [8]. The organisational structure is typically not explicit
being an unintended result of a task allocation process. Such generators are
focused on solving a given problem by decomposing tasks, allocating them on
the available agents [4]. Agents are previously known, and usually, roles are not
necessary. The agents generally cooperate by fulfilling their tasks which, when
combined, implies in the achievement of global goals.

The second class uses self-organisation approaches. In this class, the organisa-
tions usually emerge by agents common interest and interactions [13]. Resulting
organisations are dynamic, may operate continuously, have overlapping tasks,
have no external or central control, and hierarchy and information flow in many
directions [32]. The organisational structure is an informal implicit outcome of
this bottom-up process. The target of this method is to solve some problem and
not precisely to carefully design an organisation [26,28].

Finally, the third class is the automated explicit organisation generators. It
is focused “on a specification of desired outcomes and the course of actions
for achieving them, analysis of the organisational environment and available
resources, allocation of those resources and development of organisational struc-
tures and control system” [15]. It considers inputs such as organisational goals,
available agents, resources and performance targets, producing explicit organi-
sation definitions, which may include roles, constraints, assignments of respon-
sibilities, hierarchy and other relations.

From Goals to Organisations: Automated Organisation Generator for MAS 27

The first class can provide a very efficient way to allocate tasks among agents
when the MAS is solving a previously known problem, usually in deterministic
environments. However, it may lack the ability to deal with entrants in case of
open systems, because it is supposed to know at planning time the available
agents. In this sense, a new agent would not know what to do and how to
cooperate unless a replanning is triggered, which can be computationally heavy.

Whether dealing with uncertainty and dynamic environments, the second
class has advantages over other classes, which cannot deal with unpredictable
situations [13]. However, in some cases, an entrant of an open system would need
to negotiate with other agents his participation what may be slow to accommo-
date due to message exchanging.

Alternatively, the latter class cares on designing explicit structures which
foster entrances and exits [11]. When adopting a role, an entrant receives its
responsibilities, starting to cooperate with other organisational members. In
many cases, an entrance does not require any extra designing effort since the
roles already have assigned tasks. An exit works in the same way. A role, as an
abstract description of a position in the system, is a fundamental concept in this
class [23].

3 Organisation Design Problem

This research proposes to develop an automated explicit organisational generator.
We hypothesise that it is possible to create roles from a gdt automatically. A
gdt is a plan to achieve the main goal of the system, which includes operators
that ensure that the decomposition satisfaction is equivalent to the main goal
satisfaction [24].

In short, our proposal assigns goals to roles in a structured organisational
chart taking into consideration some characteristics of the goals such as the ones
that have the same parent goal, require the same skills to be performed, have a
low predicted workload, etc. Additionally, design preferences can also determine
whether to gather goals into a role or not, e.g., whether it is preferred a flat-
ter or taller organisation; more specialist or generalist roles, if matrix relations
are allowed or not, maximum workload per agent, etc. Moreover, the predicted
throughput associated with a goal may indicate the need for the creation of new
hierarchy levels and a performer index may imply that the same agent must, or
must not, perform some goals.

For example, in a gdt for Printed Circuit Board (PCB) production, shown in
Fig. 1a, the main goal is decomposed into two sub-goals: Buy Supplies and PCB
Assembly. Buy Supplies also has two sub-goals: Buy Components and Buy Other
Supplies. For these sub-goals, the skill Purchase is associated, which means that
the agent(s) that will perform both buy sub-goals must be able to purchase items.
The goal PCB Assembly has three sub-goals: Apply Paste, Place Components
and Soldering Components. The first is associated with the skill Print, the second
with the skill Pick and Place and the latter with the skill Heat.

Figure 1b shows a possible organisational chart based on the given gdt config-
ured to be more generalist. In this example, the sub-goals Buy Components and

28 C. J. Amaral and J. F. Hübner

Fig. 1. Automated design for PCB Production. a) Inputs: goals tree and necessary
skills. b) Output: organisational chart with the more generalist roles considering inputs.

Buy Other Supplies are assigned to the same role. In this sense, the same agent
will perform both Components and Other Supplies purchases. This created role
was placed below the Purchasing Coordinator role, as a subordinate.

However, one may ask: “is that solution the best one to choose?”. Still, there
is no sufficient information to tell whether that structure is suitable or not. For
instance, how many PCB’s are being produced per hour? How many different
models are being produced? Are there other available resources? Any privacy
requirement? These questions regard to varying situations in which the chosen
structure depends on.

Fig. 2. Which organisational structure should be chosen?

Figure 2 illustrates how diverse can the results be for the same given gdt.
There is a solution in which only three roles were created in a very generalist
and flat organisational structure. Another solution goes in the opposite direction,

From Goals to Organisations: Automated Organisation Generator for MAS 29

being very tall (hierarchical) and specialised. In fact, many aspects can influence
organisational structures outcomes such as the chained sub-goals, agents’ lim-
ited skills and goals fulfilment capacity, agents’ communication capabilities and
privacy needs, and so on [20]. Our proposal intends to address this problem by
adding annotations to the goals to generate and choose a suitable organisational
structure.

4 Proposed Method

We investigate the use of search algorithms to address the problem of creating
and choosing an organisational structure. In this sense, the search space O is
composed of all possible organisational charts o ∈ O. Each state o is composed
of: (i) a set of role identifiers used in the organisational chart; (ii) the function
gr for addressing the set of goals assigned to each role; (iii) the function pr for
addressing the parent of each role which represent its immediate superior in the
organisational chart where ε represents “no parent”, so that the root role r has
pr(r) = ε; and (iv) the function sr for mapping the set of skills in S which are
associated with each role1.

o = ⟨R, gr, pr, sr⟩

gr : R→ 2G

pr : R→R ∪ {ε}
sr : R→ 2S

We can thus state that GoOrg searches for an organisational chart o ∈O that
is suitable for a particular gdt. A gdt is composed of: (i) a set of goal identifiers
G; (ii) the function pg that returns the parent of each goal of the tree where ε
represents “no parent”, so that the root goal g has pg(g)=ε; and (iii) the function
sg that addresses the set of necessary skills to achieve a given goal.

gdt = ⟨G, pg, sg⟩

pg : G→G ∪ {ε}
sg : G→ 2S

The difference of G and the set of goals assigned to roles is the set of not
allocated goals nag, where:

nag(gdt, o) = gdt.G ∖
⋃

r∈o.R

gr(r)

1 In a future work we will add other properties of goals and inputs for GoOrg.

30 C. J. Amaral and J. F. Hübner

4.1 State Transformations

All possible organisations populate the search space. To help the search for organ-
isational charts, we define a transformation relation between two states. Figure 3
represents each of the currently supported transformations in a respective area.
Top and bottom of each area show respectively previous and final states. On
each area, the graph on the left side is a gdt with three goals. Grey goals are
the ones that were already assigned, and the black one is the goal that is being
assigned. The graph on the right represents the roles of the organisational chart
that is being created. The information between brackets describes the assigned
goals, and eventually below it has the necessary skills to perform the respective
role. Grey roles already exist, and the black one represents the role which is
being explored for applying transformations.

b2 c2 d2

c1b1 d1

a2

a1

Empty
Organisational

Chart

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

[g0]
r0

[g0]
r0

[g1]
r1

[g0]
r0

[g0]
r0

[g0,g1]
r0

[g0]
r0

[g1,g2]
r1

[g0]
r0

[g1]
r1

Fig. 3. Supported transformations.

In this illustration, we have: (a) the root goal generates the root role; (b)
a sub-goal is assigned to a role to be subordinate of the role that contains its
parent goal; (c) a sub-goal is vertically brought joining to the role that includes
its parent goal; and (d) the sub-goal is horizontally carried joining to the role
that contains its sibling sub-goal. For instance, the first transformation is illus-
trated on the area a, i.e., Fig. 3a shows the transformation of a1 into a2. In this
case, the root goal g0 is going to be assigned and the organisational chart is
empty as represented on part a1. After this transformation the chart has the
role r0 as represented by part a2. Considering the given input as pg(g) = ε, the
transformation for adding the root role is as follows:

o = ⟨{}, {}, {}, {}⟩
addRootRole(g)

o′
= ⟨{r}, {r↦ {g}}, {r↦ ε}, {r↦ sg(g)}⟩

On the area b of Fig. 3 the goal g1 was assigned to a new role r1 added as a
subordinate of r0. This transformation is a possible process after the transfor-
mation displayed on area a. For this case, to add the role r as subordinate of r′

From Goals to Organisations: Automated Organisation Generator for MAS 31

and allocate goal g to r, we require that g is a sub-goal of g′ (pg(g) = g′) and g′

is already allocated to r′ (g′
∈ gr(r′)) and have the following transformation:

o = ⟨R, gr, pr, sr⟩

addSubordinate(g, r′)
o′
= ⟨R ∪ {r}, gr ∪ {r↦ {g}}, pr ∪ {r↦ r’}, sr ∪ {r↦ sg(g)}⟩

On area c the goal g1 was assigned to the existing role r0 joining with the
previously assigned goal g0. Again it can be illustrated from the state displayed
on area a. In this case, there is no new role, the goal to be assigned is joined
with a previously assigned goal g0. Formally, let the input be pg(g) = g′, and
considering that {r′

↦ g′} ∈ gr, the transformation for joining a subordinate is as
follows:

o = ⟨R, gr, pr, sr⟩

joinASubordinate(g, r′)
o′
= ⟨R, gr ∪ {r’↦ {g}}, pr, sr ∪ {r’↦ sg(g)⟩

Finally, on area d the goal g2 was assigned to the existing role r1 joining
with the previously assigned goal g1. This transformation can be applied from
the state illustrated on area b. In this case, let the input be pg(g)= g′′, there is a
goal g′ which parent is same, i.e., pg(g′)=g′′, and considering that {r′′

↦g′′} ∈gr
and {r′

↦g′}∈gr. In this sense, the transformation for joining a pair is as follows:

o = ⟨R, gr, pr, sr⟩

joinAPair(g, r′)
o′
= ⟨R, gr ∪ {r’↦ {g}, pr, sr ∪ {r’↦ sg(g)}⟩

In fact, a goal can be assigned into a role in many ways. Currently, besides
the parent relation of assigned goal(s), the associated necessary skills are also
being taking into account. The parent is the way the algorithm use to assume
relations among goals. A goal that is parent or a sibling of another potentially
can be joined in the same role or it can be created as a close role, being a
subordinate, according to the relation. The decision to join or not depends on
the skills. The role skills must be compatible to be joined, which means, the role
must already have the necessary skills of a goal candidate to be joined.

4.2 The Search Tree

To illustrate how the algorithm performs the search, Fig. 4 shows a gdt with
three goals. There is a parent goal (g0) and two sub-goals (g1 and g2). To be
fulfilled, g1 requires the skill s1. In the given gdt, two goals have no annotation.
In case of g1, since it requires the skill s1, a role able to perform s1 can be
assigned to other goals that also requires s1 or does not require anything. Of
course, a role that has no skills associated cannot perform the goal g1.

32 C. J. Amaral and J. F. Hübner

g0

g1
s1

g2

Fig. 4. Example of a simple goal decomposition tree (gdt).

The algorithm creates and visits states, as illustrated in Fig. 5. The trans-
formation of making the root goal be the root role of the organisational chart
generates the first state. As expected, the first transformation has removed the
element g0 from the list of to assign goals, assigning it to the just created role
called r0. The three possible successors of this state, is to add a role to assign g1
as a subordinate of r0, add a role for g2 as a subordinate of r0 or even, bring up
g2 assigning it to r0, joining with other assigned goal(s) since their skills match.

root role

addSubordinate addSubordinate

joinAPairaddSubordinate joinASubordinate addSubordinate

[g0]
r0

Empty
Organisational

Chart

[g0]
r0

[g1]
s1

r1
[g2]
r2

[g0]
r0

[g2]
r1

g0

g1
s1

g2 [g0,g2]
r0

g0

g1
s1

g2

g0

g1
s1

g2

Duplicated! Solution #2 Solution #3

[g1]
s1

r1

addSubordinate

joinASubordinate

g0

g1
s1

g2

g0

g1
s1

g2

g0

g1
s1

g2

g0

g1
s1

g2

g0

g1
s1

g2
[g1,g2]

s1

r1

[g1]
s1

r1

[g0]
r0

[g0]
r0

[g0,g2]
r0

[g0]
r0

[g1]
s1

r2
[g2]
r1

g0

g1
s1

g2

Solution #1

Fig. 5. Step by step of state search with all possible solutions for the given gdt.

Applying the transformations in the just created state on the left, where the
goal g2 was assigned to the role r1, it creates a role r2 to assign g1 putting it as a
subordinate of r0. This is a target state since all goals were assigned successfully.
This state is represented by the area with the label “Solution #1”. The next area
on the right is a duplicated solution. Indeed, our method ignores the role name,
using only assigned goals and parent relation to check redundancy, which is the
case of solutions #1 and #2. Still, there are other solutions, as indicated by the
other two areas.

From Goals to Organisations: Automated Organisation Generator for MAS 33

Table 1 shows the referred solutions, or target states, generated by this
method. The “Solution #1” is the most obvious chart, which is the generation
of a role for each goal. The “Solution #2” is the result of joining horizontally the
goals g1 and g2. It is possible because these goals are siblings and also the skills
are compatible. The “Solution #3” is the result of joining vertically the goals g0
and g2. It was possible because the skills are compatible; in this case, both goals
have no necessary skills. The arrows represent parent relations among goals.

Table 1. Organisational charts for a simple goals tree having a goal with an annotation

Solution Chart Description
#1

[g0]
r0

[g1]
s1

r1
[g2]
r2

Organisational chart from adding two subordinates (r1 and r2) to the
role r0. The same result would be achieved adding either r1 or r2 as
subordinate of r0 and later add the other as a pair. This is the most
specialised solution for the given goals tree.

#2
[g0]
r0

[g1,g2]
s1

r1

Organisational chart from adding r1 as subordinate of r0 and then
joining the goals g1 and g2 into the role r1. It is possible because
before assigning g2 the role r1 already had the skills needed by g2,
which is actually nothing. The other way round would not be possible
(g2 has not s1). It is one of the more generalist solutions for the given
goals tree.

#3
[g0,g2]

r0

[g1]
s1

r1

Organisational chart from joining g0 and g2, since g0 has all the
necessary skills needed by g2. Later r1 was added as a subordinate of
r0. This solution is the more generalised and one of the more generalist
solutions for the given goals tree.

In terms of hierarchy, i.e., the number of levels, all three solutions have the
same height. In this case, it is not applicable any preference to choose a flatter
or taller hierarchy. In terms of specialisation, “Solution #1” has more specialist
roles, and the other solutions have more generalist roles for the given gdt.

Regarding the “Solution #2”, one may ask: why g2 joined with g1 and not
the other way round? The reason is that a role created to perform g2 does not
have any skills associated, and g1 needs the skill s1 to be performed. Since there
is a sub-goal which has a skill associated, it was not possible to assign all the
goals into a unique role. It would be the chart with more generalist roles and also
the flattest solution since it would have assigned g0, g1 and g2 into an unique
role.

4.3 The Search Algorithm

The proposed method for creating and choosing an organisational structure uses
uninformed search also called blind search. We are using the well-known depth

34 C. J. Amaral and J. F. Hübner

Algorithm 1: Depth-limited Search
Data: Organisation o0
Result: Organisation
Stack n
begin

n.push(o0)
while n ≠ ∅ do

o← n.pop()
if nag(gdt, o) = ∅ then

return o
end
n.push(successors(gdt, o))

end
return null // failed on finding a goal state!

end

state-space search algorithm to illustrate how GoOrg is being implemented. As
presented in Algorithm 1, it starts adding to a stack the given first state o0 ∈O.

It represents the organisation that only has the root role created in the organ-
isational chart R. The procedure, over and over, checks if the visiting state is a
target state. When the tested state is not a target, the algorithm opens its suc-
cessors to visit them later. The search ended when all the goals were assigned,
i.e., nag(gdt, o) is empty. The limit of this search, regarding the maximum depth
of the tree, is G size, in this example it has three levels.

The function to get successors is illustrated in Algorithm 2. It is responsible
for generating all possibilities for assigning a goal to roles. Indeed, as illustrated,
the algorithm tries to place the goal to be assigned on each existing role applying
the supported transformations. The gr(r) function refers to the assigned goals
for the specific role r, the same for the functions pr and sr.

The algorithms for transformations are roughly similar. The parent is even-
tually unknown because joining process may assign multiple goals into a unique
role. For this reason, the algorithm tries to find the parent goal of the sub-goal
to be allocated into the existing roles. Then nag(gdt, o) is almost a copy, just
skipping the current goal. Later the R is copied and also is updated with the just
created role. Finally, this new or modified role is considered a possible successor
state for further searches.

In the previous example, as illustrated in Fig. 5, all the possible solutions
are being shown. However, the algorithm stops after finding the first solution,
which remarks on the importance of ordering. The solutions are sorted by cost
functions which are related to the user preferences. For instance, if a more gen-
eralist structure is preferred so “pair roles” creation is costly, and joining pairs
is cheaper. It makes preferable a chart with fewer pairs as possible.

From Goals to Organisations: Automated Organisation Generator for MAS 35

Algorithm 2: successors
Data: List ⟨G, pg, sg⟩ gdt, Organisation o
Result: List ⟨ Organisation ⟩
begin

List suc
foreach Goal g of nag(gdt, o) do

foreach Role r of o.R do
if gr(r) contains pg(g) then

addSubordinate(r, suc, g) // Add as a child role

if sg(g) ∈ sr(r) then
joinASubordinate(r, suc, g) // Join g into *this* role

end

else if pg(g) ∈ gr(pr(r)) and sg(g) ∈ sr(r) then
joinAPair(r, suc, g) // Join goal g into *this* role

end

end

end
return suc

end

5 Future Work

For the next step of our research, the designing process is being split into two
phases: the organisation design and the resource allocation process. With this
separation, it is expected that GoOrg becomes more suitable to deal with asyn-
chronous changes on the system’s resources availability and redesign requests.

On the next step, still on designing process, we will add new inputs such as
predicted workload, necessary resources, performer index, communication topics,
and predicted throughput. The predicted workload can be used to know how many
agents should take the same role or if the same agent can perform more than
one role. The performer index indicates that the same agent must perform some
goals and, contrarily, can tell that two goals cannot be performed by the same
agent, for instance in a process in which something is made and must be verified
by another agent. With communication topics and predicted throughput, the
hierarchy levels and departmentalisation can be set. These data may also allow
enhancing the algorithm to decide when a coordination role can be subtracted,
maintained or even new ones created. Other state-space search algorithm and
cost functions will be experienced for optimisation purpose and to give more
possibilities in terms of structures.

In the sequence, we plan to develop the second process, i.e., resources alloca-
tion. This process will bind resources and roles. The inputs are available agents
and skills, available artefacts and organisation design preferences. This alloca-
tion process aims to guarantee that the created structure is viable, i.e., can be
well-formed when it runs with the given resources. Finally, the output is an
organisational chart with artefacts allocated and agents assigned to roles.

36 C. J. Amaral and J. F. Hübner

The allocation process can solve some challenges that do not require a
redesign. To illustrate it, back to PCB Production example, consider that Buy
Components sub-goal also needs Electronics Knowledge skill and the chart has
created different roles for purchasing, they can be called Components Purchaser
and Other Inputs Purchaser. Consider that agent A and agent B play, respec-
tively, the referred roles having all the necessary skills to play both. Consider
now that agent A left the system and agent C has joined it, but this agent has
no Electronics Knowledge skill. The resource allocation process can move agent
B to Components Purchaser role, assigning agent C to Other Inputs Purchaser
role.

It is also expected to make GoOrg suitable to deal with asynchronous changes
on the system’s resources availability and redesign requests. For instance, with
simple changes in the availability of resources, the process can be lighter. How-
ever, with more significant changes, for example, on the gdt, a complete redesign
process may be necessary, a function that can be triggered by the allocation
phase. In this solution, as illustrated in Fig. 6b1, the goals were centralised in
a unique role which is more generalist to achieve more goals with sometimes
different associated skills.

Fig. 6. More generalist organisation chart for the given goals and available agents.

However, the illustration also exemplifies a situation where there is no avail-
able agent with all necessary skills to perform the role Assembler since it is
gathering the skills Print, Pick and Place and Heat. Figure 6b2 shows a possible
solution assuming that an agent mary is able to perform Print and an agent
tom can perform Pick and Place and Heat. In this case, the more generalist
well-formed organisation is represented by this last chart.

From Goals to Organisations: Automated Organisation Generator for MAS 37

We also expect to create other organisational aspects as outputs, i.e., Organ-
isational Scheme and Organisational Norms. The former refers to sets of goals
allocated to different roles that should be performed by the same agent in a
specific sequence. The latter regards especially to general obligations, such as,
when adopting a role created by the method GoOrg the agent is obligated to
perform the missions associated with the referred role.

Finally, we will evaluate our solution using existing domains [3,17,26]. We
will first assess the number of input parameters needed by GoOrg. With these
inputs, we will evaluate the ability of GoOrg to design organisations properly.
We will vary aspects of the simulated domains presenting them as more static or
dynamic, with shorter or longer goals, with more chained or independent goals,
etc. These domains will be used to experiment with different user preference
parameters.

From a literature perspective, we can select an organisational structure by
its features as the potentially better solution for the given problem and scenario.
Besides testing this candidate, other organisational structures will be created for
comparison purposes. It is expected to fulfil all the goals in less time with the best
candidate. The results of the simulations should give us insights to discuss lit-
erature perspectives, the adhesion of our method and simulation with literature
and potentially GoOrg application as a testbed for organisational structures.

Among the assumptions we want to evaluate, we have: how the span of
control affects the effectiveness of the organisation [13] varying the height of the
hierarchy to check the impact on agents communication and coordination [14,30].
In this sense, we can check whether a few number of levels really can lead to faster
decisions and lower overhead costs [14,30] and if highly structured organisations
are best for repetitive operations [13].

6 Related Work

In the administration area, there are many studies about organisation design,
including some frameworks that may help companies and other organisations
to design their structures [2,7]. In multi-agent systems, we usually have man-
ual organisational generators, i.e., approaches that allow a human to design
organisations in a wide variety of structures and other aspects as norms, roles,
relations, organisational goals and ontologies, e.g., Moise+ [18], THOMAS [5],
STEAM [31] and AALADIN [12].

In spite of having many studies about organisation design, there are still many
gaps regarding the full range of disciplines and high complexity of organisations.
Considering only automatic organisation generators, the focus of this research,
there are few studies.

Automated planning is a research area that has produced many contributions
to MAS design. When developing planners for multiple agents, the organisation
design is an intrinsic outcome. Some examples of planners able to generate organ-
isations are TÆMS [8] which provides a way to quantitatively describe individ-
ual tasks which are performed in shared environments, DOMAP [3] which is a

38 C. J. Amaral and J. F. Hübner

decentralised MAS task planning and Sleight’s agent-driven planner [27] using
a decentralised Markov Decision Process Model.

Considering bottom-up approaches So [29] did one of the earlier researches
on Multi-Agent Systems organisation design. This study over the characteri-
sation of different organisation designs, including self-organised ones and the
reconfiguration process for stable organisations. There are several studies over
self-organised swarms which use very computationally limited agents [19], and
there is no complex coordination mechanism among agents [32].

In the class we have positioned our research, we found only a few works:
SADDE [23] and ODML [17], which are algorithms that use as input mathemat-
ical models to predict efforts and create an organisational structure; MaSE-e [10]
which is a method for creating organisation structures extending the engineering
method MaSE; and KB-ORG [25,26] that takes goals and roles to bind agents
and create coordination levels. Although seminal, we think the methods have
challenges to overcome, especially regarding inputs in which we are proposing a
method to produce roles in a way to make inputs easier to handle.

Table 2 gives an overview of explicit organisation generators we have found2.
We are comparing a few features related to inputs, intrinsic features and outputs.
The first columns refer to inputs. We start checking whether goals are inputs
since it gives an idea of the start point of each approach. The no need roles as
inputs indicates if the generator needs this input. The column Bound Agents are
inputs represents the capability of the generator to receive as inputs a structure
earlier created with bound resources.

Table 2. Comparison among organisation generation methods.

Organisation
Generator

G
oa

ls
ar
e
in
pu

ts

N
o
ne

ed
ro
le
s
as

in
pu

ts

B
ou

nd
A
g.

ar
e
in
pu

ts

H
as

qu
an

ti
ta
ti
ve

an
al
ys
is

O
rg
an

is
at
io
ns

ar
e
ex
pl
ic
it

Is
do

m
ai
n-
in
de

pe
nd

en
t

C
re
at
es

R
ol
es

C
re
at
es

C
oo

rd
.
L
ev
el
s

C
re
at
es

vi
ab

le
or
g.

Sy
nt
he

si
se

O
rg
.
N
or
m
s

B
in
d
ag

en
ts

an
d
ro
le
s

C
re
at
es

de
pa

rt
m
en

ts

R
ep

re
se
nt
s
ro
le
s
in

a
ch

ar
t

D
oe

s
st
at
e
re
or
ga

ni
sa
ti
on

D
oe

s
st
ru
ct
ur
e
re
or
g.

GoOrg Y Y Y Y Y Y Y Y Y R Y R Y R R
SADDE Y - - Y Y Y - - Y - Y - - - -
MaSE-e Y - Y Y Y Y - - Y - Y - *2 Y R
KB-ORG Y - - Y Y Y - Y Y - Y - Y - -
ODML Y - - Y Y Y - - Y - Y - *1 - -

2 Legend: (Y)es, (-)No, On (R)oadmap and (*) comments. Table comments: *1 The
output is a nodes tree, not exactly an organisational chart. *2 There is no hierarchy.

From Goals to Organisations: Automated Organisation Generator for MAS 39

The next columns represent features of the generators. The column has quan-
titative analysis describes the capability of the generator the assess the goals
creating structures that take into account quantitative parameters such as goal
expected needed effort to be performed. Organisations are explicit refers to meth-
ods that use explicit organisation representations. Is domain-independent relates
to methods that are suitable for any problem domain.

The next columns are related to the main outputs of the generators. Cre-
ates roles refers to the ability to automatically create roles, combined with roles
are inputs says whether the approach uses or not the concept of roles. The cre-
ates coordination levels column represents the ability of the method to create
coordination roles according to coordination needs automatically. Create viable
organisations represents the ability of the generator to check available resources
to create organisations that can be fulfilled when running. synthesise organi-
sational norms inform whether generators are automatically creating organisa-
tional norms. Bind agents and roles tells whether the method is doing agents
allocation job or not.

The next columns regard to byproducts of the generators. Creates depart-
ments refers to the specific ability of the generator to create organisational
departments automatically. Represents roles in a chart relates to methods that
represent organisations as usual organisational charts.

The following columns are related to the capability of the generators to deal
with reorganisations. Does state reorganisation refers to the ability to move
agents from some responsibility to another without needing to trigger a restruc-
turing process. Does structure reorganisation refers to the ability to create new
structures based on an old one.

Finally, as we agree with many authors that there is no single type of organi-
sation suitable for all situations [16], we also recognise that there is no individual
approach ideal for creating all organisations [6]. In both cases, each offers some
advantages that the others may lack, especially regarding different organisation
generator classes. In the presented comparison, we tried to show an overview of
those organisation generators based on the assumption that explicit organisa-
tional structures can provide advantages on designing open systems.

7 Conclusion

This paper has presented a proposal for an automated generator of explicit
organisations based on goals and annotations as inputs. The current status of
this research shows that it is feasible to draw an organisational chart using as
input organisational goals with some annotations such as necessary skills to per-
form each goal. It is intended to enhance the current version of our method
adding new inputs to bring necessary information to produce useful organisa-
tional charts, taking advantage of opportunities to join goals on the same roles,
adding or removing coordination levels. According to performance issues, we can
add heuristics to improve the search algorithm.

40 C. J. Amaral and J. F. Hübner

We have also presented our classification regarding related research of auto-
mated organisation generators: (i) automated organisation design by task plan-
ning ; (ii) self-organisation approaches; and (iii) automated explicit organisation
generators. It shows that different strategies address the challenge of organisa-
tion design. The approaches have advantages and drawbacks being more suitable
according to the system’s purpose and environment conditions. Besides, we think
that each class gives some contribution and a combination of them can lead to
a comprehensive MAS design.

Besides the organisational chart creation itself, an extra outcome of GoOrg is
a proposition of a model that identifies different designing phases done by various
methods which potentially can be used together to design a whole MAS. Indeed,
when splitting GoOrg to fit this model, we could identify that our method is
actuating on two processes: organisation design and resources allocation. The
allocation of resources done before the execution is a guarantee that when run-
ning the created organisational chart can be filled by the available resources, i.e.,
can be a well-formed organisation.

About evaluation criteria, it is intended to apply the model in known domains
testing if it can build suitable structures. These organisations will be simulated in
a variety of conditions and checked if goals were fulfilled. By tuning preferences,
it is expected to create better arrangements for our testing domains. We also
intend to compare the results in terms of time to accomplish the goals between
the best candidate and other organisational structures.

References

1. Amaral, C.J., Hübner, J.F.: Goorg: automated organisational chart design for open
multi-agent systems. In: De La Prieta, F., et al. (eds.) PAAMS, vol. 1047, pp. 318–
321. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24299-2 28

2. Burton, R.M., Obel, B., Desanctis, G.: Organizational Design: A Step-by-Step
Approach. Cambridge University Press, Cambridge (2011)

3. Cardoso, R.C., Bordini, R.H.: A modular framework for decentralised multi-agent
planning. In: Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, São Paulo, Brazil, pp. 1487–1489 (2017)

4. Cardoso, R.C., Bordini, R.H.: Decentralised Planning for Multi-Agent Program-
ming Platforms (AAMAS), pp. 799–807 (2019)

5. Criado, N., Argente, E., Botti, V.: THOMAS: an agent platform for supporting
normative multi-agent systems. J. Logic Comput. 23(2), 309–333 (2013)

6. Daft, R.L.: Organization Theory and Design, 10th edn. South-Western College
Pub, Centage Learning (2009)

7. De Pinho Rebouças De Oliveira, D.: Estrutura Organizacional: Uma Abordagem
Para Resultados e Competitividade. ATLAS EDITORA (2006)

8. Decker, K.S.: Environment centered analysis and design of coordination mecha-
nisms. Ph.D. thesis, University of Massachusets, May 1995

9. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engi-
neering methodology. In: Cohen, R., Spencer, B. (eds.) Advances in Artificial
Intelligence, pp. 1–15. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
47922-8 1

https://doi.org/10.1007/978-3-030-24299-2_28
https://doi.org/10.1007/3-540-47922-8_1
https://doi.org/10.1007/3-540-47922-8_1

From Goals to Organisations: Automated Organisation Generator for MAS 41

10. DeLoach, S.A., Matson, E.: An organizational model for designing adaptive mul-
tiagent systems. In: The AAAI-04 Workshop on Agent Organizations: Theory and
Practice (AOTP 2004), pp. 66–73 (2004)

11. Deloach, S.A., Oyenan, W.H., Matson, E.T.: A capabilities-based model for adap-
tive organizations. Auton. Agents Multi-Agent Syst. 16, 13–56 (2008)

12. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: Proceedings - International Conference on Multi
Agent Systems, ICMAS 1998, pp. 128–135 (1998)

13. Fink, S., Jenks, R., Willits, R.: Designing and Managing Organizations. Irwin Series
in Financial Planning and Insurance, R.D. Irwin (1983)

14. Galbraith, J.R.: Designing Organizations: An Executive Briefing on Strategy,
Structure, and Process. Jossey-Bass Publishers, San Francisco (1995)

15. Hatch, M.: Organization Theory: Modern, Symbolic, and Postmodern Perspectives.
Oxford University Press, Oxford (1997)

16. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281–316 (2004)

17. Horling, B., Lesser, V.: Using quantitative models to search for appropriate orga-
nizational designs. Auton. Agents Multi-Agent Syst. 16(2), 95–149 (2008)

18. Hübner, J.F., Sichman, J.S.: Organização de sistemas multiagentes. III Jornada de
MiniCursos de Inteligência Artificial JAIA03 8, 247–296 (2003)

19. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots
inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. 1(1), 4–25
(2007)

20. Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart
agents in industrial cyber physical systems. In: Proceedings of the IEEE (2016)

21. Mintzberg, H.: The design school: reconsidering the basic premisses of strategic
management. Strateg. Manag. J. 11(May 1989), 171–195 (1990)

22. Pattison, H.E., Corkill, D.D., Lesser, V.R.: Chapter 3 - instantiating descriptions of
organizational structures. In: Huhns, M.N. (ed.) Distributed Artificial Intelligence,
pp. 59–96 (1987)

23. Sierra, C., Sabater, J., Augusti, J., Garcia, P.: SADDE: Social Agents Design
Driven by Equations. In: Methodologies and Software Engineering for Agent Sys-
tems, pp. 1–24. Kluwer Academic Publishers (2004)

24. Simon, G., Mermet, B., Fournier, D.: Goal decomposition tree: an agent model to
generate a validated agent behaviour. In: Baldoni, M., Endriss, U., Omicini, A.,
Torroni, P. (eds.) Declarative Agent Languages and Technologies III, vol. 3904, pp.
124–140. Springer, Heidelberg (2006). https://doi.org/10.1007/11691792 8

25. Sims, M., Corkill, D., Lesser, V.: Knowledgeable automated organization design
for multi-agent systems. Challenge 1–42 (2007)

26. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Auton. Agents Multi-Agent Syst. 16(2) (2008)

27. Sleight, J., Durfee, E.H.: Organizational design principles and techniques for
decision-theoretic agents. In: Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 463–470. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC (2013)

28. Sleight, J.L., Durfee, E.H., Baveja, S.S., Cohn, A.A.E.M., Lesser, E.V.R.: Agent-
Driven Representations, Algorithms, and Metrics for Automated Organizational
Design (2015)

29. So, Y.P., Durfee, E.H.: Chapter X. Designing Organizations for Computational
Agents (1996)

https://doi.org/10.1007/11691792_8

42 C. J. Amaral and J. F. Hübner

30. Stoner, J., Freeman, R.: Management. Prentice-Hall, Upper Saddle River (1992)
31. Tambe, M.: Towards flexible teamwork. J. Artif. Intell. Res. 7, 83–124 (1997)
32. Ye, D., Zhang, M., Vasilakos, A.V.: A survey of self-organisation mechanisms in

multi-agent systems. IEEE Trans. SMC: Syst. 47(3) (2016)

On Enactability of Agent Interaction
Protocols: Towards a Unified Approach

Angelo Ferrando1, Michael Winikoff2(B), Stephen Cranefield3,
Frank Dignum4,5,6, and Viviana Mascardi7

1 Liverpool University, Liverpool, UK
angelo.ferrando@liverpool.ac.uk

2 Victoria University of Wellington, Wellington, New Zealand
michael.winikoff@vuw.ac.nz

3 University of Otago, Dunedin, New Zealand
stephen.cranefield@otago.ac.nz
4 Ume̊a University, Ume̊a, Sweden

frank.dignum@umu.se
5 Utrecht University, Utrecht, The Netherlands

6 CVUT Prague, Prague, Czech Republic
7 Genova University, Genova, Italy

viviana.mascardi@unige.it

Abstract. Interactions between agents are usually designed from a
global viewpoint. However, the implementation of a multi-agent interac-
tion is distributed. It is well known that this difference between the spec-
ification and the implementation levels can introduce problems, allowing
designers to specify protocols from a global viewpoint that cannot be
implemented as a collection of individual agents. This leads naturally to
the question of whether a given (global) protocol is enactable, namely,
whether it can be implemented in a distributed way. We consider this
question in the powerful setting of trace expressions, considering a range
of message ordering interpretations (specifying what it means to say that
an interaction step occurs before another), and a range of possible con-
straints on the semantics of message delivery, corresponding to different
properties of the underlying communication middleware. We provide a
definition of enactability, along with an implementation of the definition
that is applied to a number of example protocols.

Keywords: Agent interaction protocols · Enactability ·
Enforceability · Implementability · Realizability · Projectability · Trace
Expressions

Michael was at the University of Otago when this work was carried out.
A. Ferrando—Work supported by EPSRC as part of the ORCA [EP/R026173] and
RAIN [EP/R026084] Robotics and AI Hubs.

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 43–64, 2020.
https://doi.org/10.1007/978-3-030-51417-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-51417-4_3

44 A. Ferrando et al.

1 Introduction

Alice’s country’s laws forbid students to be enrolled in two different courses of
studies at the university level at the same time. Alice knows this rule and its
serious consequences: a fine may be issued for not respecting the law and, in
the worst case, a degree obtained at University A while being also enrolled in
University B may be invalidated1.

When Alice decides to give up her studies in University A and move to
University B, she informs University A that she wishes to unenroll by posting a
letter a few days before enrolling in University B.

This situation can be represented by the following global Agent Interaction
Protocol:

changeUni = Alice
Unenroll=⇒ UniA · Alice

Enroll=⇒ UniB

where a1 M=⇒ a2 models the interaction between a1 and a2 to exchange message
M2 and “·” models interaction concatenation. Alice believes that the above pro-
tocol correctly meets her country’s regulations, but she is fined anyway: UniB
received Alice’s enrollment request before UniA received the unenrollment com-
munication, and for a few days Alice turned out to be enrolled in both of them.
What went wrong is the interpretation of “before”. To Alice, it meant that she
should send Unenroll before she sent Enroll, while for her country’s regulations
it (also) meant that UniA should receive Unenroll before UniB received Enroll.
This ambiguity would have had no impact on Alice if the physical communi-
cation model guaranteed that between the sending and receiving stages of an
interaction, nothing could happen. Although Alice waited for a couple of days
before sending the Enroll communication, the Unenroll one was delivered after.
While it is evident that the postal service cannot guarantee that the order of
posting is the same as the order of delivery, such guarantees cannot even be easily
ensured by software communication platforms. This issue has important implica-
tions that we explore in this paper: Alice’s story shows that enacting the intent
of a global protocol without clear semantics of the meaning of “before”, without
guarantees from the platform implementation on message delivery order, and
without hidden communications between the participants (“covert channels”),
may not be possible. Many other real situations are similar to this one: for exam-
ple, a citizen must wait for the bank to have received (and processed) the request
to add some money to a new empty account, before sending a request to move
that money to another account, otherwise he can go into overdraft.

1 This is a real example: in Italy, a law dating back to 1933 prevents students from
being enrolled in more than one Italian course at university level at the same time;
the only – recent – exception is being enrolled in a conservatory and in a university.
The ambiguities in the law article are many, and appeals to the courts are in the
thousands.

2 This notation has been used in the most recent papers on Trace Expressions [3,5];
although not being standard, it is consistent with the background theory.

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 45

This kind of issue is not new in the field and various authors use different
terms for global protocols that can be enforced by distributed participants: con-
formant [23], enforceable [6,13], enactable [14], implementable [27], projectable
[10,20], and realizable [25,28]. The concept behind these names is however the
same: by executing the localised versions of the protocol implemented by each
participant, the global protocol behaviour is obtained, with no additional com-
munication. We will use the term enactability to denote this property. However,
despite the large amount of work on enactability, there is no existing work that
considers both the intended message ordering and the communication model of
the infrastructure in which the agents will be implemented, that recognises the
need to use a decision structure to enforce consistent choices, and that provides
an implementation for checking protocol enactability. Together, these are the
innovative and original features of our contribution.

Although it might be argued that it is desirable to have robust protocol
specifications that are independent of the underlying platform implementation,
we observe that robustness can make the protocol more complex, and hence
harder to maintain. For example, considering again the protocol changeUni =
Alice

Unenroll=⇒ UniA · Alice
Enroll=⇒ UniB we observe that, depending on which

interpretation we choose, we can have different conclusions on what to expect
from the protocol implementation. This can be avoided if we add additional
acknowledgement messages, which gives a more message-intensive protocol such
as changeUni = Alice

Unenroll=⇒ UniA · UniA
AckUnenroll=⇒ Alice · Alice

Enroll=⇒
UniB, in which Alice would not have been fined. However, adding additional
acknowledgement messages increases the complexity of the protocol and reduces
opportunities for concurrency. We therefore prefer to take into account what
the underlying implementation guarantees with respect to communication, so
that we can relax our specifications, and use as simple a protocol as possible.
Additionally, a protocol that is not enactable in some platform may be enactable
in some other platform. Our work is therefore relevant to both platform designers
and protocol designers.

The paper is structured as follows. Section 2 introduces the Trace Expres-
sions formalism, a taxonomy of standard communication models, and some pos-
sible message orderings taken into account by the literature, which together pro-
vide the background of our work. Section 3 generalises and formalises the notion
of Message Order Interpretation (MOI), introduces the communication models
semantics, and faces the main objective of the paper by showing – also by means
of examples – when an interaction protocol is strongly (or weakly) enactable,
given an MOI semantics and a communication model. Section 4 discusses related
work and future plans.

2 Background

Trace Expressions. Trace expressions [4] are a compact and expressive formal-
ism inspired by global types [1] and then extended and exploited in different

46 A. Ferrando et al.

application domains [2,15,16]. Initially devised for runtime verification of multi-
agent systems, trace expressions are expressive, and can define context-sensitive
languages.

A trace expression τ denotes a set of possibly infinite event traces, and is
defined on top of the following operators:3

– ε (empty trace), denoting the singleton set {〈〉} containing the empty event
trace 〈〉.

– M (event), denoting a singleton set {〈M〉} containing the event trace 〈M〉.
– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating

the traces of τ1 with those of τ2.
– τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
– τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
– τ1|τ2 (shuffle), denoting the union of the sets obtained by shuffling each trace

of τ1 with each trace of τ2 (see [9] for a more precise definition).

Trace expressions are cyclic terms, thus they can support recursion without
introducing an explicit construct.

As is customary, the operational semantics of trace expressions is specified
by a transition relation δ ⊆ T × E × T , where T and E denote the sets of trace
expressions and of events, respectively [4]. We do not present all the transition
rules for space constraints. They are standard ones (see e.g. [4]) that state, for
example, that δ(ev · τ, ev, τ), meaning that the protocol whose state is modelled
by ev · τ can move to state τ if ev occurs, and that δ(τ1 ∨ τ2, ev, τ) if δ(τ1, ev, τ),
meaning that if the protocol whose state is modelled by τ1 can move to state
τ if ev occurs, then also the protocol whose state is modelled by τ1 ∨ τ2 can.
The denotational semantics is defined as follows, where t1 �� t2 is the set of all
interleavings of t1 and t2, and ◦ is concatenation over sequences:

[[ε]] = {〈〉}
[[M]] = {〈M〉}

[[τ1 · τ2]] = {t1 ◦ t2 | t1 ∈ [[τ1]] ∧ t2 ∈ [[τ2]]}
[[τ1 ∧ τ2]] = [[τ1]] ∩ [[τ2]]
[[τ1 ∨ τ2]] = [[τ1]] ∪ [[τ2]]

[[τ1|τ2]] = {z | t1 ∈ [[τ1]] ∧ t2 ∈ [[τ2]] ∧ z ∈ t1 �� t2}

Events can be, in principle, of any kind. In this paper, we will limit ourselves
to consider interaction and message events.

An interaction has the form a
M=⇒ b and gives information on the protocol

from the global perspective, collapsing sending and receiving into a single event.
We say that τ is an interaction protocol if all the events therein are interactions.
Interaction protocols take other names in other communities, such as Interaction

3 Binary operators associate from left, and are listed in decreasing order of precedence;
that is, the first operator has the highest precedence. The operators “∨” and “∧”
are the standard notation for trace expressions.

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 47

Oriented Choreography [23] in the service-oriented computing community, and
global type in the community working on process calculi and types [11].

Message events have the form aM ! (a sends M) and bM? (b receives M).
They model actions that one agent can execute, hence taking a local perspec-
tive. A trace expression where all events are messages will be named a message
protocol throughout the paper. Message protocols have different names in differ-
ent communities, such as Process Oriented Choreography [23] and local type or
session type in the global types community [19,30].

Communication Models. As our proposal explicitly takes the communication
model supported by the MAS infrastructure into account, we provide a summary
of some communication models based on [12]. We use CM0 to CM6 to identify
them in a compact way.

CM0: Synchronous Communication. Sending and receiving are synchro-
nised: the sender cannot send if the receiver is not ready to receive.

CM1: Realisable with Synchronous Communication (RSC). After a
communication transition consisting of a send event of a message, the only pos-
sible communication transition is the receive event of this message. This asyn-
chronous model is the closest one to synchronous communication and can be
implemented with a 1-slot unique buffer shared by all agents.

CM2: FIFO n-n Communication. Messages are globally ordered and are
delivered in their emission order: if sending of M1 takes place before sending of
M2, then reception of M1 must take place before reception of M2. This model
can be implemented by means of a shared centralised object, such as a queue.

CM3: FIFO 1-n Communication. Messages from the same sender are deliv-
ered in the order in which they were sent. It can be implemented by giving each
agent a separate queue where it puts its outgoing messages, with peers fetching
messages from this queue.

CM4: FIFO n-1 Communication. A send event is implicitly and globally
ordered with regard to all other sending actions toward the same agent. This
means that if agent b receives M1 (sent by agent a) and later it receives M2

(sent by agent c), b knows that the sending of M1 occurred before the sending
of M2 in the global execution order, even if there is no causal path between the
two sending actions. The implementation of this model can, similarly to FIFO
1-n, be done by providing each agent with a queue: messages are sent by putting
them into the queue of the recipient agent. Implementing this model is expensive
as it requires a shared real-time clock or a global agreement on event order.

CM5: Causal. Messages are delivered according to the causality of their emis-
sions [22]: if a message M1 is causally sent before a message M2 then an agent
cannot get M2 before M1. Implementing this model requires sharing the causality
relation.

CM6: Fully Asynchronous. No order on message delivery is imposed. Mes-
sages can overtake others or be arbitrarily delayed. The implementation can be
modelled by a bag.

48 A. Ferrando et al.

Other communication models exist, such as the one named FIFO 1-1 com-
munication in [12], where messages between any two peers are delivered in their
send order. Messages from/to different peers are independently delivered. This
is the model supported by Erlang4.

Message Ordering. The statement “one interaction comes before another” is
ambiguous, as exemplified in Sect. 1. This ambiguity has been recognised by
some authors who suggested how to interpret message ordering when moving
from the interaction (global) level to the message (local) level. In this section we
summarise and compare the proposals by Lanese et al. [23] and Desai and Singh
[14].

To identify the interpretations, we will use the acronyms used in [14] when
available, and our own acronyms otherwise. The starting point for interpreting
message ordering is the interaction protocol τ = a

M1=⇒ b · c M2=⇒ d. For the sake
of clarity, we denote aM1! with s1, bM1? with r1, cM2! with s2, and dM2? with
r2; we characterise the message ordering interpretations by the traces of message
events that respect them.

RS: Under this message ordering interpretation the meaning of “interaction
event M1 occurs before M2” is that M1 is received before M2 is sent. The set of
traces that respect this model is {〈s1, r1, s2, r2〉}. This interpretation is named
RS (receive before send) in [14] and disjoint semantics in [23].

SS: M1 is sent before M2 is sent, and there are no constraints on the delivery
order. The set of traces that respect this model is {〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉,
〈s1, s2, r2, r1〉}. This interpretation is named SS (send before send) in [14] and
sender semantics in [23].

RR: M1 is received before M2 is received, and there are no constraints
on the sending order. The set of traces that respect this model is
{〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉, 〈s2, s1, r1, r2〉}. This interpretation is named RR
(receive before receive) in [14] and receiver semantics in [23].

RR & SS: this combines the requirements of RR and of SS: M1 is sent before
M2 is sent and also M1 is received before M2 is received. The set of traces that
respect this model is {〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉}: both s1 comes before s2
(“coming before” according to the senders), and r1 comes before r2 (“coming
before” according to the receivers). This interpretation is named sender-receiver
semantics in [23].

SR: M1 is sent before M2 is received. The set of traces that respect this model
is {〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉, 〈s1, s2, r2, r1〉, 〈s2, s1, r1, r2〉, 〈s2, s1, r2, r1〉}.
This interpretation is named SR (send before receive) in [14].

4 http://erlang.org/doc/apps/erts/communication.html, Section 2.1, accessed on
September 2019.

http://erlang.org/doc/apps/erts/communication.html

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 49

It is easy to see that the following inclusions among asynchronous models
hold: RS ⊂ RR & SS ⊂ SS ⊂ SR and RS ⊂ RR & SS ⊂ RR ⊂ SR. The
SS and RR interpretations are not comparable. In the remainder of this paper
we consider only the four interpretations defined by Desai & Singh, i.e. we do
not consider “RR & SS”.

3 Defining Enactability Using a Semantic Approach

Basic Notation. In the following, let ComModel = {CM1, CM2, CM3, CM4,
CM5, CM6} be the set of possible (asynchronous) communication models, and
MOISet = {SS,SR,RS,RR} the set of possible message order interpretations
that can be imposed. We also define A = {a, b, c, d, a1, a2, . . . , an} to be the set
of agents involved in the interaction protocol.

Recall that we consider both interaction and message protocols. When we
say that τ is an interaction protocol, we mean that the protocol represents
sequences of interaction events. The set of traces recognized is obtained following
the semantics defined in Sect. 2, and for an interaction protocol τ we define I(τ)
to be the set of interactions involved in the interaction protocol: I(τ) = {i | ∃I :
I ∈ [[τ]] ∧ i ∈ I}5. We define I to be the set of all possible interaction events.
Similarly, when τ is a message protocol, it represents sequences of send and
receive events of the form aM ! (send event) and bM? (receive event), and given
a particular set of possible interactions I, we define EI to be the corresponding
set of events: EI = {aM ! | ∃b∈A . a

M=⇒ b ∈ I} ∪ {bM? | ∃a∈A . a
M=⇒ b ∈ I}. In a

message protocol τ we have that E ∈ [[τ]] =⇒ ∀e∈E . e ∈ EI(τ). Given a message
protocol τ we also define E(τ) to be the set of message events that occur in the
protocol.

Next, we define the language of traces (i.e. of sequences of events) for inter-
action protocols and message protocols. For interaction protocols, the set of all
possible traces is defined to be6: LI = I∗ ∪Iω. For message protocols, the defini-
tion is somewhat more complex, since there is a relationship between a send and
a receive event. Specifically, the set of all possible traces of events is constrained
so that a message being received must be preceded by that message having been
sent. We also constrain the set so that each message can be sent at most once,
and received at most once (i.e. message names are unique). The assumption is
made by most authors, see [12] for example, and is considered harmless, since we
can integrate many elements to the notion of “message name”, such as content,
protocol ID and conversation ID, to discriminate between messages at design
time. We define LEI as follows, where we treat a sequence E as a function from
indices to elements, and dom(E) is the domain of this function:

5 We extend the operator “∈” to denote membership of an item in a sequence.
6 The superscripts ∗ and ω are standard notations for (respectively) all finite (all

infinite) sequences built from a given set.

50 A. Ferrando et al.

LEI = {E ∈ E∗
I ∪ Eω

I |
(∀i,j∈dom(E) . E[i] = aM ! ∧ E[j] = aM ! =⇒ i = j) ∧
(∀i,j∈dom(E) . E[i] = bM? ∧ E[j] = bM? =⇒ i = j) ∧
(∀i∈dom(E) . E[i] = bM? =⇒ (∃j∈dom(E) . E[j] = aM ! ∧ j < i))

Message Order Interpretation (MOI). As discussed earlier, we follow prior work
in considering four message ordering interpretations (SS, SR, RS, and RR). We
formalise this by defining a variant semantics that takes an interaction pro-
tocol τ and returns its semantics in terms of events rather than interactions.
The possible sequences of events are constrained: given a situation where τ
specifies that M1 must occur before M2, we constrain the possible sequence of
events with the appropriate constraint on events corresponding to the selected
MOI.

Definition 1 (Order on interactions in a trace). Let I ∈ LI be a trace
of interaction events, E ∈ LEI be a trace of send and receive events, moi ∈
MOISet a message ordering interpretation, and a

M1=⇒ b ∈ I, c
M2=⇒ d ∈ I two

interactions. Abbreviating a
M1=⇒ b as I1 and c

M2=⇒ d as I2, we define the message
ordering interpretation constraint, denoted I1 ≺E

moi I2, as follows:

I1 ≺E
SS I2 iff aM1! ≺E cM2! I1 ≺E

SR I2 iff aM1! ≺E dM2?
I1 ≺E

RS I2 iff bM1? ≺E cM2! I1 ≺E
RR I2 iff bM1? ≺E dM2?

where e1 ≺E e2 iff ∃i,j∈dom(E) . E[i] = e1 ∧ E[j] = e2 ∧ i < j is the constraint
that in event trace E the event e1 occurs before e2.

Formalising the MOI is not as simple as it might seem. An obvious approach
that does not work is to compute the semantics of the interaction protocol τ ,
and then map each sequence I ∈ [[τ]] to a set of message event traces. This
does not work because the trace is linear, and therefore a total order, whereas a
protocol can specify a partial order7 (and indeed, in the case of the SR MOI, the
ordering may not even be partial, since SR is not transitive). Instead, we define a
variant semantics, denoted [[τ]]moi, which is compositional. The semantics follow
the standard semantics (Sect. 2) with a few exceptions. Firstly, the semantics of
an interaction I is given as the sequence of sending the message, followed by
receiving it (denoted s(I) and r(I), respectively). Secondly, the semantics for a

7 An illustrative example is τ = (M1 · M2) | M3. This simple protocol has three
sequences of interactions: {〈M1, M2, M3〉, 〈M1, M3, M2〉, 〈M3, M1, M2〉}. Assuming
an RS message ordering interpretation, then each of the message sequences cor-
responds to exactly one sequence of events, giving (where we abbreviate sending
and receiving M as respectively M ! and M?): {〈M1!, M1?, M2!, M2?, M3!, M3?〉,
〈M1!, M1?, M3!, M3?, M2!, M2?〉, 〈M3!, M3?, M1!, M1?, M2!, M2?〉}. However, the
protocol does not specify any constraint on M3, so should also allow other interpre-
tations where the occurrences of M3! and M3? are not constrained relative to the
other events, for example 〈M1!, M1?, M3!, M2!, M2?, M3?〉.

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 51

sequence τ1 · τ2 is given in terms of the semantics of τ1 and τ2. These are then
combined by interleaving them (rather than simply concatenating them), but
with the constraint that the result must satisfy the appropriate MOI constraint
(I1 ≺E

moi I2) for all possible final messages of τ1 (I1) and all possible initial
messages of τ2 (I2). Determining initial and final messages is itself somewhat
complex, and is done using partially ordered sets.

A partially ordered set (poset) is a pair (E,<) where E is the set of elements
(in this case interactions) and < is a transitive binary relation on E. We define
the union operator to act piecewise on posets, and to take the transitive closure
of the resulting relation, i.e. (E1, <1) ∪ (E2, <2) = (E1 ∪ E2, (<1 ∪ <2)∗). The
sets of minimal and maximal elements of a poset P are denoted min(P) and
max(P), respectively.

We can then define the poset of an interaction protocol as follows:

poset(ε) = (∅, ∅)
poset(I) = ({I}, ∅)

poset(τ1 ∧ τ2) = poset(τ1) ∪ poset(τ2)
poset(τ1 | τ2) = poset(τ1) ∪ poset(τ2)

poset(τ1 ∨ τ2) = poset(τ1) ∪ poset(τ2)
poset(τ1 · τ2) = poset(τ1) · poset(τ2)

(E1, <1) · (E2, <2) = (E1 ∪ E2, <1 ∪ <2 ∪ E1×E2)

where we define a sequence of two posets (E1, <1) · (E2, <2) by collecting the
orderings of each of E1 and E2, and adding additional ordering constraints
between every element of E1 and every element of E2. We can now proceed
to define the variant compositional semantics [[τ]]moi.

[[ε]]moi = {ε}
[[I]]moi = {〈s(I), r(I)〉}

[[τ1 ∨ τ2]]moi = [[τ1]]moi ∪ [[τ1]]moi

[[τ1 ∧ τ2]]moi = [[τ1]]moi ∩ [[τ1]]moi

[[τ1 · τ2]]moi = {t | t1 ∈ [[τ1]]moi ∧ t2 ∈ [[τ2]]moi ∧ t ∈ t1 �� t2 ∧
∀I1 ∈ max(poset(τ1)),∀I2 ∈ min(poset(τ2)) .

I1 ∈ t ∧ I2 ∈ t ⇒ I1 ≺t
moi I2}

[[τ1|τ2]]moi = {z | t1 ∈ [[τ1]]moi ∧ t2 ∈ [[τ2]]moi ∧ z ∈ t1 �� t2}

Where t1 �� t2 is the set of all interleavings of t1 and t2; and (A M=⇒ B) ∈
t iff AM ! ∈ t.

52 A. Ferrando et al.

Communication Model Semantics. We formalise the defined communication
model semantics by defining, for each communication model CMi, a correspond-
ing language of event traces that incorporates the appropriate restriction, ruling
out event sequences that violate the communication model. For example, for
CM1 the constraint is that immediately after each sending event in u we have
its corresponding receiving event, with nothing in the middle; etc. Note that
each LEI

CMi takes as a parameter the set of message events EI .

LEI
CM1 = {E ∈ LEI |∀

a
M1=⇒b∈I .∀k∈dom(E) . aM1! = E[k − 1] =⇒ bM1? = E[k]}

LEI
CM2 = {E ∈ LEI |∀

a
M1=⇒b∈I .∀

c
M2=⇒d∈I .∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

dM2? = E[j] ∧ aM1! = E[k] ∧ cM2! = E[l] ∧ k < l) =⇒ i < j}
LEI

CM3 = {E ∈ LEI |∀
a

M1=⇒b∈I .∀
a

M2=⇒d∈I .∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧
dM2? = E[j] ∧ aM1! = E[k] ∧ aM2! = E[l] ∧ k < l) =⇒ i < j}

LEI
CM4 = {E ∈ LEI |∀

a
M1=⇒b∈I .∀

c
M2=⇒b∈I .∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

bM2? = E[j] ∧ aM1! = E[k] ∧ cM2! = E[l] ∧ k < l) =⇒ i < j}
LEI

CM5 = {E ∈ LEI |∀
a

M1=⇒b∈I .∀
a

M2=⇒b∈I .∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

bM2? = E[j] ∧ aM1! ≺E
Causal aM2!) =⇒ i < j}

where aM1! ≺u
Causal bM2! ⇐⇒

((a = b ∨ M1 = M2) ∧
∃i,j∈dom(u).(u[i] = aM1! ∧ bM2! = u[j] ∧ i < j))

∨ (∃ev∈E .aM1! ≺u
Causal ev ∧ ev ≺u

Causal bM2!)
LEI

CM6 = LEI

We can then apply a particular communication model to an interaction pro-
tocol τi using [[τi]]CM

moi, and to a message protocol τm using [[τm]]CM, which are
defined as follows8.

[[τi]]CM
moi = [[τi]]moi ∩ LEI(τ)

CM

[[τm]]CM = [[τm]] ∩ LE(τ)
CM

Projection. Projection is defined, intuitively, as focusing on the aspects of the
protocol that are relevant for a given role. It is defined as follows, where we write
τA to denote projecting trace τ for role A.

8 Note that in the first line we have an interaction protocol τi, and so the set of
message events is given by determining the set of interaction events I(τ), and then
determining the set of message events EI(τ). By contrast, in the second line, τm is a
message protocol, so we just determine the set of message events directly (E(τ)).

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 53

(ε)A = ε

(a M=⇒ b)A =

⎧
⎪⎨

⎪⎩

aM !, if a = A

bM?, if b = A

ε, otherwise

(aM !)A =

{
aM !, if a = A

ε, otherwise

(aM?)A =

{
aM?, if a = A

ε, otherwise

(τ1 ⊗ τ2)A = (τ1)A ⊗ (τ2)A (where ⊗ is any operator)

We then define the distribution of τ , denoted �τ�, where τ involves roles a1 . . . an

as9:

�τ� = τa1‖ · · · ‖τan

To give an example, let us consider again the scenario proposed in Sect. 1.
In order to move to University B, Alice needs to book an apartment close to
her new university. At the beginning, Alice reserves the apartment owned by
Bob. When Alice discovers that Carol rents a cheaper and larger apartment, she
decides to cancel the reservation of Bob’s apartment and book Carol’s one. This
situation can be represented by

modifyRes = Alice
Canc=⇒ Bob · Alice

Res=⇒ Carol

We point out that modifyRes suffers from the same problem as changeUni :
Bob might receive the cancellation request after Carol receives the booking,
and this might cause Alice to have some nights booked (and to pay) in both
apartments.

To complete the reservation, Carol needs some information from Alice. This
information can be wrong or incomplete, in which case Carol gives Alice an
opportunity to amend the information, and in either case the interaction then
concludes with Carol confirming the booking. This can be represented as the
following specification:

reqInfo = Alice
Info
=⇒ Carol ·

(Carol
Wrong
=⇒ Alice · Alice

Info′
=⇒ Carol ∨ ε) ·

Carol
Booked=⇒ Alice

9 We use ‖ to distinguish between parallel composition of different agents, and parallel
composition within a protocol.

54 A. Ferrando et al.

Let us consider main as the sequential combination of the two protocols:
main = modifyRes · reqInfo. Then the projection of main on each single agent
gives the following distribution.

�main� = mainAlice ‖ mainBob ‖ mainCarol

mainAlice = modifyResAlice · reqInfoAlice

modifyResAlice = AliceCanc! · AliceRes!
reqInfoAlice = AliceInfo! · (AliceWrong? · AliceInfo′! ∨ ε) ·

AliceBooked?
mainBob = modifyResBob · reqInfoBob = BobCanc? · ε

mainCarol = modifyResCarol · reqInfoCarol

modifyResCarol = CarolRes?
reqInfoCarol = CarolInfo? · (CarolWrong! · CarolInfo′? ∨ ε) ·

CarolBooked!

In order to define the semantics of a projected protocol we need to first
define what we term a decision structure. This is needed in the semantics in
order to deal correctly with projected protocols. Specifically, the intuition for
enactability (see Sect. 3) is that an interaction protocol τ involving, say, three
roles a, b and c is enactable iff there exist three protocols τa, τ b and τ c such
that their concurrent interleaving results in the same behaviour as the original
protocol. However, when a protocol contains choices (∨) we need to ensure that
the occurrences of ∨ in each of τa, τ b and τ c arising from the same ∨ in τ are
treated consistently. For example, consider the protocol τ = a

M1=⇒ b ∨ a
M2=⇒ c.

This protocol is simple: it specifies that agent a can either send a message M1

to b, or it can send a different message M2 (M2 �= M1) to agent c. When we
distribute the protocol by projecting it (see Sect. 3) and forming τa‖τ b‖τ c, we
obtain the distributed protocol (aM1! ∨ aM2!)‖(bM1? ∨ ε)‖(ε ∨ cM2?). However,
if we interpret each ∨ independently (as the semantics would naturally do) then
we can have inconsistent choices. For example, we could have (aM1!)‖(ε)‖(ε)
where the message is sent by a, but b does not elect to receive it. So what we
need to do is ensure that each of the three occurrences of “∨” represent the same
choice, and that the choice should be made consistently.

The heart of the issue is that the trace expression notation offers a choice
operator (∨), which is adequate for global protocols. However, for local protocols
it is important to be able to distinguish between a choice that represents a free
(local) choice, and a choice that is forced by earlier choices. In this example, a
can freely choose whether to send M1 or M2. However, the choice of b whether
to receive M1 or not is not a free choice, but is forced by a’s earlier choice.

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 55

Our semantics handles this by defining a decision structure that is used to
enforce consistent choices. Formally, given a protocol τ , we define d(τ) as a set of
decision structures. A decision structure is a syntactic structure that mirrors the
structure of τ , except that each ∨ is annotated with a decision (e.g. L or R). We
define three operations on a decision structure: to get the sub-decision structure
corresponding to the left part (denoted d.L), to get the right part (d.R) and to
get the decision (L or R) associated with the current ∨ node (denoted d.D).
We define d(τ) to create a set of decision structures, each of which corresponds
to the structure of τ , but where all possible assignments of decisions are made.
Observe that If τ contains N occurrences of ∨ then the set d(τ) contains 2N

elements.
For example, given τ = a

M1=⇒ b ∨ a
M2=⇒ b we have that d(τ) = {

L
∨ ,

R
∨ }

where we use to indicate an irrelevant part of a decision structure, and
L
∨ to

denote a node tagged with a decision L.
In addition to decisions of L and R, the definition of d(τ1 ∨ τ2) has a second

case (. . . ∪ {t1
LR
∨ t2 | . . .}). The reason is that it is only possible to enforce

consistent choice if the choice is made by a single agent. If this is not the case,
then we annotate with “LR” to indicate that a mixed choice is possible. For

example, given τ = b
M1=⇒ a ∨ a

M2=⇒ b we have that d(τ) = {
LR
∨ } because

the agents associated with the set of possible initial messages in each branch are
different (ag(τ1) = {b} �= ag(τ2) = {a}).

d(ε) = {ε} d(I) = {I}
d(τ1 ∨ τ2) = {t1

x
∨ t2 | t1 ∈ d(τ1) ∧ t2 ∈ d(τ2)
∧ x ∈ {R,L} ∧ |ag(τ1) ∪ ag(τ2)| = 1}

∪ {t1
LR
∨ t2 | t1 ∈ d(τ1) ∧ t2 ∈ d(τ2) ∧ |ag(τ1) ∪ ag(τ2)| �= 1}

where ag(τ) = {p | p
M=⇒ r ∈ min(poset(τ))}

d(τ1 ⊕ τ2) = {t1 ⊕ t2 | t1 ∈ d(τ1) ∧ t2 ∈ d(τ2)}

(τL ⊗ τR).L = τL (τL ⊗ τR).R = τR (τL

X
∨ τR).D = X

Where ⊗ is any operator, and ⊕ is any operator other than ∨.
We now specify the semantics of a distributed protocol, denoted [[τ]]dist. The

semantics is defined in terms of a union over possible decision structures (first
line). The remaining equations for the semantics carry along the decision struc-
ture, and follow it in recursive calls, and for the semantics of ∨ it enacts the
decision specified in the structure, rather than considering both sub-protocols.
Note that projection is defined using ‖ rather than the usual |. The difference
in the semantics below is that ‖ passes the same decision structure to both
arguments. This ensures consistency between agents, but not within agents.

56 A. Ferrando et al.

[[τ]]dist =
⋃

dt∈d(τ)

[[τa1‖ . . . ‖τan]]dt

[[M]]dt = {〈M〉}
[[ε]]dt = {〈〉}

[[τ1 · τ2]]dt = {t1 ◦ t2 | t1 ∈ [[τ1]]dt.L ∧ t2 ∈ [[τ2]]dt.R}
[[τ1 ∧ τ2]]dt = [[τ1]]dt.L ∩ [[τ2]]dt.R

[[τ1 ∨ τ2]]dt = if dt.D = R then [[τ2]]dt.R else if dt.D = L then [[τ1]]dt.L

else [[τ2]]dt.R ∪ [[τ1]]dt.L

[[τ1|τ2]]dt = {z | t1 ∈ [[τ1]]dt.L ∧ t2 ∈ [[τ2]]dt.R ∧ z ∈ t1 �� t2}
[[τ1‖τ2]]dt = {z | t1 ∈ [[τ1]]dt ∧ t2 ∈ [[τ2]]dt ∧ z ∈ t1 �� t2}

Note that if τ does not contain any occurrences of ∨ then the semantics above
reduce to the standard semantics.

Finally, we define [[τi]]CM
dist, which computes the semantics of an interaction

protocol τi by distributing it, and also applies a particular communication model
CM.

[[τi]]CM
dist = [[τi]]dist ∩ LEI(τ)

CM

Enactability. We are now finally in a position to define enactability. The intuition
is that an interaction protocol τ is enactable iff the semantics of τ , with respect
to a selected message ordering interpretation and communication model, can be
realised by a distributed version of the protocol. In other words, if there exists
for each role r a corresponding message protocol τr such that the combination of
these protocols realises the same behaviour as τ . However, instead of considering
whether there exists some τr, we let τr = τ r, i.e. we take for each role the
projected protocol as its protocol.

We also consider a notion of weak enactability. This applies in a situation
where the distributed enactment is able to avoid violating the behaviour spec-
ified by τ , but is not able to recreate all of the behaviours that τ specifies.
In other words, if a protocol is weakly enactable, the interleaving of the corre-
sponding local protocols generates a subset of its traces (with a fixed moi and
communication model). This means that a distributed implementation of the
protocol can be sound (generates only valid traces), but cannot be complete
(not all the traces are generated). This situation can arise with weaker message
ordering interpretations (see below for examples). Weak enactability can also
arise in situations where two ordered messages have two overlapping roles (e.g.
τ = a

M1=⇒ b · b
M2=⇒ a). In this situation the projection operator is too strict: it

has τ b = r(M1) · s(M2), which requires that M1 is received before M2 is sent.
However, if we adopt an SR message ordering interpretation, then we do not
need to ensure that M2 is sent after M1 is received, only that M1 is sent before
M2 is received, which role a can ensure on its own.

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 57

Definition 2 (Strongly/Weakly Enactable). Let τ be an interaction pro-
tocol, {a1, a2, ..., an} the set of agents involved in τ , moi ∈ MOISet a message
order interpretation and CM ∈ ComModel a communication model. We say that,
τ is strongly (weakly) enactable, for moi semantics in CM model iff the decom-
position of τ through projection on its agents {a1, a2, ..., an} recognizes the same
(a subset of) traces recognized by τ . Formally:

enact(τ)CM
moi iff [[τ]]CM

dist = [[τ]]CM
moi

weak enact(τ)CM
moi iff [[τ]]CM

dist ⊆ [[τ]]CM
moi

Fig. 1. Automatically generated analyses of enactability.

Figure 1 show the results of applying this definition to a number of cases, with
different message ordering interpretation, and different communication models.
These tables were all generated by the Haskell implementation of the definitions
in this paper, in which ✔ and (✔) denote strongly and weakly enactable, respec-
tively. The prototype has around 300 LOC. It implements the trace expression
standard semantics, message order interpretation, communication model seman-
tics and enactability check10.

Looking at the tables in Fig. 1, we make the following observations.
Firstly, CM1 is quite strict: all the cases considered are enactable under CM1,

regardless of the selected message ordering interpretation. This is expected: we
know that CM1 is quite strong.

Secondly, for many examples there is not a difference in enactability with the
different communication models (other than CM1). The exception is where the
communication model corresponds to the combination of MOI and the pattern in
the protocol. For example, in the top row, second table from the right, the simple
protocol is enactable given the SS message ordering interpretation only with

10 The code is available at http://enactability.altervista.org/.

http://enactability.altervista.org/

58 A. Ferrando et al.

CM2 and CM4 (and, of course, CM1). This is because, for this protocol, both
messages are received by the same agent but sent by different agents, and, given
an RR MOI, the desired constraint that agent B receives the first message before
the second, can only be enforced using a communication model that guarantees
delivery of messages to the same recipient in the order in which messages were
sent. Both CM2 and CM4 provide this guarantee (in fact CM4 provides exactly
this, and CM2 is stronger).

Thirdly, RS appears to be a good choice for message ordering interpretation,
since it is the only MOI where protocols are never weakly enactable. For the
other message ordering interpretations, there are protocols that are only weakly
enactable (for communication models other than CM1). A protocol being weakly
enactable indicates that the desired behaviour specified by the MOI is too loose:
it permits behaviours that the distributed realisation cannot realise. On the
other hand, in the case of the left-most table on the bottom row (protocol a

M1=⇒
b · a

M2=⇒ b), the protocol is not enactable under RS (except for CM1), but is
enactable under SS and under RR. Turning to SR, we observe that it seems to
be too weak: almost all the protocols in the figure are enactable (although in
most cases only weakly enactable).

We now return to the example from the introduction:

changeUni = Alice
Unenroll=⇒ UniA · Alice

Enroll=⇒ UniB

This corresponds to the second table from the left in the top row of Fig. 1, which
shows that, if one desires an RR MOI, then the underlying message communi-
cation must be CM1, CM2 or CM3 in order for the protocol to be enactable.

Two further examples are discussed in the sequel.

Booking Protocol. The Booking protocol is a very simple two party protocol
presented in [32]. It starts with the user U requesting the system S to book
a ticket, followed by the system asking the user to pay for the ticket. Upon
the reception of the user payment message, the protocol ends with the booking
system sending a confirmation back to the user.

The Booking protocol is described by the following trace expression:

booking = U
Book=⇒ S · S

Pay
=⇒ U · U

Payment
=⇒ S · S

Confirm
=⇒ U

Figure 2 shows the results obtained by running the Haskell prototype on it. As
we expected, the protocol turns out to always be at least weakly enactable.
Since each pair of sequential messages always shares Receiver and Sender, the
Booking protocol is strongly enactable only when the RS MOI is considered,
whatever the selected CM. The motivation for this result resides in the definition
of enactability and in the set of traces generated by the corresponding global
and distributed protocols: U and S have the power to enforce each reception to
be consumed before each sending.

Considering the other MOIs, the protocol is always weakly enactable except
for the RSC model (CM1) when the asynchronous messages cannot be inter-
leaved. This result is also a consequence of the power of U and S. We explain it

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 59

Fig. 2. Automatically generated analysis for the Booking protocol.

for RR; the same explanation holds for the other MOIs. Since the enactability
test returns (✔), we know that all the traces generated by the distributed pro-
tocol �booking� are also recognised by the global protocol, but there must be at
least one which is only recognised by the global one. Always considering RR, and
the first pair of sequential messages U

Book=⇒ S · S
Pay
=⇒ U , the global protocol,

through [[booking]]RR, contains the trace t = 〈s(Pay), s(Book), r(Book), r(Pay)〉
where the reception of Book takes place before the reception of Pay, but the send-
ing of Book takes place after the sending of Pay (the two messages are received
in the opposite order they have been sent). This is a suitable trace which respects
the global protocol constraints, since the RR MOI constrains the reception order
only.

The distributed version of the Booking protocol, �booking�, is the following:

�booking� = bookingU ‖ bookingS

bookingU = UBook! · UPay? · UPayment! · UConfirm?
bookingS = SBook? · SPay! · SPayment? · SConfirm!

With respect to the first pair of sequential messages, we note that S locally
enforces the reception of the Book message before enabling the sending of Pay.
Consequently, we cannot observe the trace generated by the global protocol
execution, where messages reception is in the correct order, but sending is not.
For this reason the protocol is only weakly enactable.

Play Date Protocol. The Play Date protocol11 has been chosen as an example of
a non-enactable protocol. It is a two party protocol and, like the Booking one,
it involves a user U and the system S.

The protocol starts with the user asking the system to organise a Play Date
event, ReqPD . After this request more information can be either required by
the system (Req), or given spontaneously by the user (GiveInfo). The user may
also asking the system to forget something that he had previously communi-
cated (Forget). This choice is followed by a further choice between the system
confirming the event (ConfirmPD) or the user cancelling it (CancelPD).
11 We present a simplified version of the play date protocol introduced in [32], where

we replaced a loop involving a choice among Req , GiveInfo, or Forget , with a single
iteration only.

60 A. Ferrando et al.

The Play Date protocol can be described by the following trace expression:

playdate = U
ReqPD
=⇒ S·

(S
Req
=⇒ U ∨ U

GiveInfo
=⇒ S ∨ U

Forget
=⇒ S)·

(S
ConfirmPD

=⇒ U ∨ U
CancelPD=⇒ S)

As Fig. 3 shows, this is not enactable with any choice of CM and MOI. The
reason is that the protocol is extremely flexible, and, in particular, it allows the
user or the system to take the initiative, which allows for a race condition.

Fig. 3. Automatically generated analysis for the Play Date protocol.

4 Related Work and Discussion

Global protocols may be modelled using many different formalisms including
global types [11], Petri Nets [24], WS-CDL [31], AUML [21], Statecharts [18],
and causal logic [17]. In each of these formalisms the enactability problem has
been addressed in some ad hoc way. Despite their diversity, most of these for-
malisms do not support protocol concatenation which is needed to achieve a
high expressivity, and very few approaches consider how message ordering and
decision structures affect its definition. Also, very few come with an implemented
prototype, and none considers the issues raised by the communication model.

Taking all these features into account in a unified semantic-driven way, and
demonstrating the potential of the approach on a highly expressive protocol
language, are the innovative and original features of this contribution.

Desai and Singh [14] limit their investigation to the RS message ordering
interpretation, which they consider the standard of correctness. Hence, despite
the introduction they provide to other message orderings and to the problems
they might raise, the definition of enactability they provide is not parametric in
the MOI.

Lanese et al. [23] move a step further, but the generality of their approach is
still limited. They define three different notions of enactability, which they name
conformance: sender conformance, receiver conformance, and disjoint confor-
mance. That approach is more flexible than the one by Desai and Singh, but less

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 61

general than ours, where the definition of enactability is parametric in the MOI
and does not require different cases. Also, they only consider how sequence and
choice are affected by MOIs, leaving the study of other operators for the future.
Moreover, when discussing interaction protocols whose most external operator
is a choice, they put a very strong constraint for enactability, namely that the
agents involved in the two branches of the choice (excluding the agents involved
in the choice itself) are the same. We added decision structures to overcome this
restriction, and provide a notion of enactability that can succeed even when that
constraint is not met.

Neither Desai and Singh, nor Lanese et al. use formalisms for protocol repre-
sentation as expressive as trace expressions, and neither of them present exper-
iments obtained from a working prototype, as we do.

With respect to the introduction of decision structures to remove unnecessary
restrictions on enactability of protocols when choice is involved, our proposal
is similar to that by Qiu et al. [27]. However, as for the other works we have
discussed in this section, we implemented our enactability checker, whereas their
work only provides definitions. Additionally, our approach is simpler in that we
do not need to label the choice operator with agents as they do, and, finally,
they do not consider as general a setting (with a range of message ordering
interpretations and communication semantics).

In the future, we will address both theoretical and practical issues. On the
theoretical side, we plan to take more communication models into account includ-
ing the FIFO 1-1, and to carry out a systematic analysis of the relationships
between the communication model and the message ordering interpretation, to
identify those combinations that provide some guarantees by design. We will also
explore the relationship between enactability and distributed monitorability [16],
since the two notions are related.

On the practical side, we plan to improve our working prototype to provide
a tool to assess protocols for enactability. Apart from providing a user-friendly
interface, a key issue to address will be to provide a way to isolate the part
of a non-enactable protocol that makes it non-enactable. Also, trace expres-
sions are interpreted in a coinductive way [29] to represent infinite traces of
events. Since Haskell does not support coinduction, the existing prototype can be
only used on acyclic message and interaction protocols. Haskell has been chosen
because the implementation mimics the semantics, which makes it easy to check
that the Haskell implementation correctly implements the formal definitions. In
order to fully implement the proposed features we are planning to develop the
enactability check using SWI-Prolog12, which natively supports coinduction. We
also will explore alternative approaches to dealing with cyclic trace expressions,
including the possibility of translating them to (e.g.) Büchi automata. Addition-
ally, to stress-test the prototype and assess its performance from a qualitative
and quantitative viewpoint we plan to create a library of interaction protocols
known to be “problematic” with respect to enactability, and perform systematic
experiments.

12 http://www.swi-prolog.org.

http://www.swi-prolog.org

62 A. Ferrando et al.

Finally, this work highlighted the need to characterise existing agent infras-
tructures such as JADE [7], Jason [8] and Jadex [26] in terms of the communica-
tion models they support. We asked the developers of the three frameworks, and
all agreed that they support the CM4 model, which was the answer we expected.
Nevertheless, this answer was far from being trivial to identify for the devel-
opers themselves. As an example, Lars Braubach pointed out that Jadex uses
service interaction on top of messages, i.e. communication is fully asynchronous
but based on interfaces and method calls from a user perspective, which makes
answering the question more subtle than it might seem. Both Jomi Fred Hübner
(Jason) and Agostino Poggi (JADE) recognized that they had to spend some
time on the issue, also because the classification CM0-CM6 based on [12] requires
time to be read and understood. This suggests two further directions of work. On
the one hand, we might run experiments on the three platforms above, to confirm
their CM and try to check if other models are (unexpectedly) supported. On the
other hand, the EMAS community13 might devise a standard taxonomy for CMs,
such as the as one in [12], and provide each platform with a set of agreed upon
“platform standard metadata” (how many agents can run concurrently without
experiencing problems; learning curve for different types of professionals; known
practical applications; etc.). These metadata should include CM as well. This
piece of information, along with the approach we have proposed in this paper,
would allow the developers to determine whether a protocol is enactable on a
given infrastructure.

Acknowledgements. We thank Lars Braubach, Jomi Fred Hübner, and Agostino
Poggi for their support in understanding the communication model supported by Jadex,
Jason, and JADE.

References

1. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4 5

2. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Parametric trace expres-
sions for runtime verification of Java-like programs. In: FTfJP@ECOOP, pp. 10:1–
10:6. ACM (2017)

3. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent
interaction protocols when monitoring partially observable multiagent systems. In:
Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018.
LNCS (LNAI), vol. 10978, pp. 59–71. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94580-4 5

4. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear
temporal logic for runtime verification. In: Ábrahám, E., Bonsangue, M., Johnsen,
E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 47–64.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 6

13 http://emas.in.tu-clausthal.de/.

https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-30734-3_6
http://emas.in.tu-clausthal.de/

On Enactability of Agent Interaction Protocols: Towards a Unified Approach 63

5. Ancona, D., Ferrando, A., Mascardi, V.: Agents interoperability via conformance
modulo mapping. In: Cossentino, M., Sabatucci, L., Seidita, V. (eds.) Proceedings
of the 19th Workshop “From Objects to Agents”, CEUR Workshop Proceedings,
Palermo, Italy, 28–29 June 2018, vol. 2215, pp. 109–115. CEUR-WS.org (2018).
http://ceur-ws.org/Vol-2215/paper 18.pdf

6. Autili, M., Tivoli, M.: Distributed enforcement of service choreographies. In:
Cámara, J., Proença, J. (eds.) 13th International Workshop on Foundations of
Coordination Languages and Self-Adaptive Systems (FOCLASA). Electronic Pro-
ceedings in Theoretical Computer Science (EPTCS), vol. 175, pp. 18–35 (2014).
https://doi.org/10.4204/EPTCS.175.2

7. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Hoboken (2007)

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley, Hoboken
(2007)

9. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259(2), 162–173 (2018)

10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 2

11. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party sessions. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS,
vol. 6722, pp. 1–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21461-5 1

12. Chevrou, F., Hurault, A., Quéinnec, P.: On the diversity of asynchronous commu-
nication. Form. Aspects Comput. 28(5), 847–879 (2016). https://doi.org/10.1007/
s00165-016-0379-x

13. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0 22

14. Desai, N., Singh, M.P.: On the enactability of business protocols. In: Fox, D.,
Gomes, C.P. (eds.) Twenty-Third AAAI Conference on Artificial Intelligence,
pp. 1126–1131. AAAI Press (2008). http://www.aaai.org/Library/AAAI/2008/
aaai08-178.php

15. Ferrando, A., Ancona, D., Mascardi, V.: Monitoring patients with hypoglycemia
using self-adaptive protocol-driven agents: a case study. In: Baldoni, M., Müller,
J.P., Nunes, I., Zalila-Wenkstern, R. (eds.) EMAS 2016. LNCS (LNAI), vol. 10093,
pp. 39–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50983-9 3

16. Ferrando, A., Ancona, D., Mascardi, V.: Decentralizing MAS monitoring with
DecAMon. In: Larson, K., Winikoff, M., Das, S., Durfee, E.H. (eds.) Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, São Paulo, Brazil, 8–12 May 2017, pp. 239–248. ACM (2017). http://dl.acm.
org/citation.cfm?id=3091164

17. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artif. Intell. 153(1–2), 49–104 (2004). https://doi.org/10.1016/j.artint.
2002.12.001

18. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP

http://ceur-ws.org/Vol-2215/paper_18.pdf
https://doi.org/10.4204/EPTCS.175.2
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/978-3-540-75183-0_22
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
https://doi.org/10.1007/978-3-319-50983-9_3
http://dl.acm.org/citation.cfm?id=3091164
http://dl.acm.org/citation.cfm?id=3091164
https://doi.org/10.1016/j.artint.2002.12.001
https://doi.org/10.1016/j.artint.2002.12.001
https://doi.org/10.1016/0167-6423(87)90035-9

64 A. Ferrando et al.

1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 273–284. ACM (2008). https://
doi.org/10.1145/1328438.1328472

21. Huget, M.-P., Odell, J.: Representing agent interaction protocols with agent UML.
In: Odell, J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp.
16–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30578-1 2

22. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

23. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Cerone, A., Gruner, S. (eds.)
Sixth IEEE International Conference on Software Engineering and Formal Methods
(SEFM), pp. 323–332. IEEE Computer Society (2008). https://doi.org/10.1109/
SEFM.2008.11

24. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977). https://doi.
org/10.1145/356698.356702

25. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies.
In: 27th Annual ACM Symposium on Applied Computing (SAC), pp. 1927–1934.
ACM (2012). https://doi.org/10.1145/2245276.2232095

26. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent
Programming. MSASSO, vol. 15, pp. 149–174. Springer, Boston (2005). https://
doi.org/10.1007/0-387-26350-0 6

27. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J.
(eds.) 16th International World Wide Web Conference (WWW), pp. 973–982. ACM
(2007). https://doi.org/10.1145/1242572.1242704

28. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE Trans. Serv. Comput. 5(3), 290–304 (2012). https://doi.
org/10.1109/TSC.2011.9

29. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. 31(4), 15:1–15:41 (2009). https://doi.org/10.1145/1516507.
1516510

30. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

31. W3C: Web Services Choreography Description Language Version 1.0 (2005).
https://www.w3.org/TR/ws-cdl-10/

32. Winikoff, M., Yadav, N., Padgham, L.: A new hierarchical agent protocol notation.
Auton. Agents Multi-Agent Syst. 32(1), 59–133 (2017). https://doi.org/10.1007/
s10458-017-9373-9

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-540-30578-1_2
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1145/356698.356702
https://doi.org/10.1145/356698.356702
https://doi.org/10.1145/2245276.2232095
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1145/1242572.1242704
https://doi.org/10.1109/TSC.2011.9
https://doi.org/10.1109/TSC.2011.9
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1007/s10458-017-9373-9
https://doi.org/10.1007/s10458-017-9373-9

Simulation

An Architecture for Integrating BDI
Agents with a Simulation Environment

Alan Davoust1,2(B), Patrick Gavigan1, Cristina Ruiz-Martin1,
Guillermo Trabes1,3, Babak Esfandiari1, Gabriel Wainer1, and Jeremy James4

1 Carleton University, Ottawa, Canada
{patrickgavigan,cristinaruizmartin,guillermotrabes,babak,

gwainer}@sce.carleton.ca
2 Université du Québec en Outaouais, Gatineau, Canada

alan.davoust@uqo.ca
3 Universidad Nacional de San Luis, San Luis, Argentina

4 Cohort Systems, Ottawa, Canada
jjames@cohortsys.com

Abstract. We present Simulated Autonomous Vehicle Infrastructure
(SAVI), an open source architecture for integrating Belief-Desire-
Intention (BDI) agents with a simulation platform. This allows for sep-
aration of concerns between the development of complex multi-agent
behaviours and simulated environments to test them in.

We identify and address the impedance mismatch between modelling
and simulation, where time is explicitly modelled and differs from “wall
clock” time, and BDI systems, where time is not explicitly managed. Our
approach avoids linking the environment’s simulation time step to the
agents’ reasoning cycles, relying instead on real time simulation where
possible, and ensuring that the reasoning module does not get ahead of
the simulation. This contributes to a realistic approximation of a real
environment for the simulated BDI agents.

This is accomplished by running the simulation cycles and the agent
reasoning cycles each in their own threads of execution, and managing
a single point of contact between these threads. Finally, we illustrate
the use of our architecture with a case study involving the simulation of
Unmanned Aerial Vehicles (UAVs) following birds.

Keywords: Belief-Desire-Intention (BDI) · Modeling and simulation ·
Architecture · Jason · AgentSpeak Language (ASL)

1 Introduction

Multi-agent systems are often designed to be embedded in highly dynamic envi-
ronments. In these environments, the wide range of possible input signals may
produce complex group-level behaviours which are difficult to accurately pre-
dict or to produce by design. During the development process, the behaviour
of the agents must therefore be thoroughly tested in a controlled yet realistic
c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 67–84, 2020.
https://doi.org/10.1007/978-3-030-51417-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-51417-4_4

68 A. Davoust et al.

environment before the system can be deployed. In this research, we are con-
cerned with the development of agents using the Belief-Desire-Intention (BDI)
paradigm [25], and of an appropriate simulated environment to test the agent
system. The main challenge in this task is the lack of frameworks to appropri-
ately handle both the development of complex cognitive agents and of a realistic
simulated environment [2,29].

Existing BDI frameworks, such as Jason [11,15] and lightJason [5,19], include
simple environments that can be reused and extended, but these environments
lack the sophistication and graphical capabilities of proper simulation platforms.
Conversely, the field of Modelling and Simulation provides a set methodologies
with their own simulation tools. These formalisms include the Discrete Event
System Specification (DEVS) formalism [37] with simulators such as CD++ [35]
and PyDEVS [30], and the methodology of Agent Based Modelling (ABM) with
tools including Repast [23] or NetLogo [36]). There are also domain-specific sim-
ulation platforms for communication networks (e.g. OMNET++ [34]), traffic
simulation (e.g. MITSIMLab [8], Microscopic Traffic Simulator [18]), and other
domains. However, these are poorly suited for modelling complex cognitive pro-
cesses [2]; in particular, they do not provide any support for techniques such as
BDI.

As a result, the main approaches to integrating these two pieces involve either
writing custom simulation code in a BDI framework, or custom BDI support in
a simulation platform, or finally integrating two separate, mature frameworks
from the two areas, with a considerable impedance mismatch problem [29]. By
this term we refer to the conceptual and technical issues faced when integrating
components defined using different methodologies, formalisms or tools.

Our work follows the third approach, and aims to integrate BDI agents with a
simulated environment. Our main contribution is Simulated Autonomous Vehi-
cle Infrastructure (SAVI), an architecture that seamlessly connects the Jason
BDI framework [11,15] with a simulation environment developed using Process-
ing [14], addressing several key elements of the impedance mismatch problem.

In particular, our architecture decouples the agents from the simulation envi-
ronment, making it easy to develop them independently, and allowing them to
run as separate processes interacting in an asynchronous manner. This avoids
linking the environment’s simulation advances to the agent’s responses: if the
agent is for some reason slow (e.g. due to expensive computation), the simula-
tion will continue unaffected, making the transition to a natural environment
more realistic.

The rest of the paper is organized as follows: in Sect. 2 we provide a summary
of background followed by related work in Sect. 3. This is followed by a definition
of the proposed SAVI architecture is in Sect. 4. In Sect. 5 we describe a case
study applying our architecture. Finally, we conclude in Sect. 6 followed by a
brief section on future work.

An Architecture for Integrating BDI Agents with a Simulation Environment 69

2 Background

In this section we present the BDI paradigm for developing multi-agent systems
and discuss different approaches to develop a BDI agent system in a simulated
environment.

2.1 Belief-Desire-Intention Architecture

The BDI architecture was introduced by Bratman and others in the 1980s [12]
as a way to develop complex intelligent and autonomous agents. In this method,
agents have a set of beliefs, stored in a belief base about their state as well as the
state of their environment. They can perceive their environment to update these
beliefs. These agents also have goals, or desires, that they need to achieve. The
agents also have a set of plans that they can execute, stored in a plan base. The
plans can involve updates to the belief base, or actions that the agent can apply to
the environment. When an agent reasons about its beliefs and desires and selects
an appropriate plan to execute, this plan becomes an intention. As the agent
executes these plans, the agent can drop intentions based on changes in their
beliefs if they are no longer achievable due to some change in the environment.
The execution cycle for a BDI agent, from perception to action, is called the
reasoning cycle.

BDI architectures have become especially relevant with the development of
autonomous vehicles, in particular, self-driving cars (see [27] for example). How-
ever, as testing the vehicles’ decision-making in a real-life setting is challenging,
it is crucial that they can be developed in a realistic simulated environment.

2.2 Simulation Requirements for Multi-agent Systems

A multi-agent system is situated in an environment (real or simulated) which
the agents can perceive through different types of sensors (e.g. a camera or lidar
sensor), and modify through actuators (e.g. moving to a new location, picking
up an object).

An important property of the environment is whether it is static or dynamic
[28]: a static environment contains only static objects that remain fixed and
unchanging (the agents change only their internal state); a simple dynamic envi-
ronment changes over time, but only due to the agents’ actions; and finally a
complex dynamic environment changes over time, due to the agents’ actions
but also due to other external factors, including natural phenomena, and agents
outside of the considered agent system (e.g. humans).

The actions performed by the agents and the changes to the environment,
either in response to the agents’ actions or due to external factors, update the
state of the system over time. There are several ways to model time in a sim-
ulation. One approach, Discrete-Event Modelling [6], updates the model’s state
variables every time an event occurs, and allows the model (or each sub-model
of a composite model) to schedule its next state change, at any time. This allows
arbitrarily fine-grained precision along the time axis. In an alternative approach,

70 A. Davoust et al.

Discrete Time Modelling, the state of the simulation is updated at discrete points
in time. The difference between a point in time and the next one is called the
time step. This approach is well suited for applications where the system state
changes very quickly or many events happen in a short period of time.

3 Related Work: Simulated Environments for BDI
Systems

There are three main approaches to simulate the environment of a BDI agent
system [29]: the simulation can be built into the BDI engine, or else an existing
simulation platform can be extended to support BDI, or finally a simulation
platform can be connected to a BDI engine.

3.1 Simulation Within MAS Development Platforms

Several agent development platforms have basic built-in simulation capabilities;
this includes BDI platforms such as Jason.

In [10], the authors provide their own custom simulation environment for
BDI agents. Another such custom simulation is [33], which includes heavyweight
agents (i.e. agents with very advanced reasoning) combined with lightweight
agents (i.e. agents that only reacts to their environment). However, if we com-
pare these custom environments to other simulator platforms such as Repast,
their features and capabilities are very limited. Typically, they are meant to sup-
port simple dynamic environments (which only change according to the agents’
actions), and do not explicitly model time.

3.2 Modelling Cognitive Processes in Simulation Platforms

The second approach is to model the cognitive capabilities of agents (BDI, in
our case) on standard simulation platforms.

Established ABM modeling tools (such as Netlogo or Repast) are not meant
to directly model complex agent behaviours or realistic physical systems: their
strength is rather in modelling the behaviour of complex systems as the emer-
gent result of very simple interacting agent models. Similarly, general-purpose
simulation systems (e.g. Mason [20]) and formalisms (e.g. DEVS) do not have
built-in capabilities to model cognitive processes (such as the basic machinery of
the BDI paradigm). However, there have been several attempts to build models
of cognitive processes using modelling and simulation formalisms, in particular
the DEVS formalism.

Several projects have implemented BDI reasoning with the DEVS formalism
[2,31,32,38].

JAMES [31,32] is a Java based agent modeling environment for simulation,
to be used as test beds for multi-agent systems. It allows the execution of agents
in distributed environments. In JAMES, an agent is represented as a DEVS
atomic model, where its autonomous behaviour is represented by the internal

An Architecture for Integrating BDI Agents with a Simulation Environment 71

function and the perceptions are represented through the external function. The
actions of the agent in the environment are represented as the output function. In
JAMES, the BDI architecture is incorporated in the internal state of the atomic
model. Because in ABM, new agents are usually created and destroyed during
the simulation, the authors also introduced Dynamic DEVS (DynDEVS).

The proposals of Akplogan et al. [2] and Zhang et al. [38] are very similar to
the JAMES approach. The former uses the classic dynamic DEVS (DS-DEVS)
introduced by Barros [7] on a platform targeted at the simulation of agriculture
called RECORD [9], whereas the latter implements PRS [16], a BDI-based rea-
soning architecture, on the D-SOL simulation platform [17]. Another model of
cognitive processes, ACT-R, has also been modelled with DEVS [21].

DIVAs [4] is a simulation platform for dynamic and open environments that
includes some machinery for agents’ cognitive processes, including base classes
to implement agent knowledge, tasks and plans. However, it is unclear whether
this system uses an established simulation formalism or an established cognitive
reasoning model.

3.3 Connecting Simulation Platforms and Cognitive Reasoning
Engines

A third approach, the one presented in this paper, aims to couple a mature
platform for developing cognitive agents with an existing simulation platform.
This can provide an improved modeling capability for simulations that involve
complex agent behaviors. The main existing work in this direction [24,29] is
an integration of the commercial JACK platform [3] (for BDI agents) with the
Repast agent based simulation software [22]. This is then generalized to an archi-
tecture that can accommodate wider range of ABM platforms and a wider range
of platforms for modelling cognitive agents.

Our approach is similar, although we have chosen Processing [14] as a simu-
lation environment rather than an ABM tool. In our experience – shared by oth-
ers [1,26] – ABM modelling tools (such as Netlogo or Repast) are poorly suited
to model complex dynamic environments. The agent-based modelling approach
tends to model the entire system of interest (including physical systems deprived
of any agency) as a system of (numerous) interacting agents. When the environ-
ment includes a small number of complex cognitive agents and a small number of
(potentially complex) physical systems, other modelling methodologies appear
more appropriate.

Our choice of Processing is motivated by its powerful built-in visualization
capabilities, its built-in synchronization with real time (further discussed below
and in Sect. 4.2) and the option of using discrete-event simulation (although at
this point our simulations are all discrete-time). A powerful graphical interface is
useful for the demonstration of real scenarios to a non-technical audience. This
is specially important for our use case, a military application where we need to
test the resilience of the BDI agents.

A key difference with our approach is the way time is synchronized between
the two environments. In the approach of [24] and [29], the discrete-time simu-

72 A. Davoust et al.

lation steps are synchronized with the reasoning cycles of the cognitive agents.
This implies that each reasoning cycle of the agent takes a fixed (simulated)
time, and is probably appropriate for very simple cognitive tasks of predictable
or negligible duration (with respect to the simulation time frame). In the con-
text of an autonomous agent travelling at potentially high speed in a physical
world, delays and variations in reasoning may have major impacts, including for
example collisions that could happen while the agent is attempting to decide
how to avoid the obstacle. Our approach aims instead to synchronize simulated
time with real time (which is to some extent handled by Processing, unlike many
traditional simulation platforms), and considers that the BDI agent also reasons
in “‘real time”, i.e. at the same speed in simulation as in its future deployment.
This approach is further discussed in Sect. 4.2, along with its assumptions and
limitations.

4 SAVI Architecture

This section details the proposed SAVI architecture for integrating BDI agents
with a simulated environment. Specifically, we will focus on solving the problems
resulting from the impedance mismatch between BDI and simulation systems.
First, we introduce our framework setup, and briefly discuss the impedance mis-
match problems. Then we introduce the open source SAVI architecture [13] and
explain how these problems are addressed.

4.1 Setup

Our overarching problem is to connect an agent system built with a BDI frame-
work to a model of the environment, designed using a framework appropriate for
simulation. In our case, the BDI framework is Jason [11,15], and our simulation
runs in Processing [14]. Both are Java applications, which makes the integration
manageable through direct method invocations, but the same approach would
be feasible with any frameworks that expose the appropriate information via an
external Application Programming Interface (API).

Our assumption is that the BDI agents are simply the reasoning engine (the
brain) for agents with a physical presence in the simulated environment (e.g.,
drones or unmanned vehicles). In our case (see case study in Sect. 5), these agent
models are drones.

In order to connect the two “worlds” (i.e. simulation and BDI agents), the
agent brains must receive perceptions of the world from the simulated agents, and
send actions for the agent models to execute in the simulated world. Eventually,
these agent brains will be connected to physical agents transmitting the same
information as their simulated counterparts, and the goal is for the simulated
behaviour to carry over into the real world.

An Architecture for Integrating BDI Agents with a Simulation Environment 73

4.2 Decoupling Simulation and Reasoning

In this context, one approach (adopted for example by Singh et al. [29]) is to
use the discrete-time simulation process as a driver for the agents’ reasoning:
at each time-tick, update each simulated model, and invoke one reasoning cycle
from the agent brains. This has the advantage of simplifying the integration
of the two platforms, but it arguably comes at a significant cost in terms of a
realistic simulation. In particular, it implies that changing the simulation time
step (simply to change the granularity of the simulation), would directly affect
the agents’ reasoning clock : the agent reasoning will not be simulated more or
less precisely, it will instead directly increase or decrease the agent’s relative
computational power, by allowing unbounded time for each decision. Pushed
to the extreme, we might imagine for example an agent getting lost in thought
while computing intractable plans, and the world would then wait for the agent.
Of course, this cannot happen in a real world environment: if an agent is lost in
thought, the environment will continue to update while the agent performs its
reasoning.

More generally, a key component of the “impedance mismatch” problem is
the lack of explicit time management (modelling) in existing BDI engines, where
there is no notion of simulation time. Unlike typical simulation settings, the BDI
agent is not a model that can be executed at an arbitrary speed: it is essentially
the real process that will be deployed, and the speed it will run at only depends
on the hardware on which it will be deployed. This implies that if we attempt
to speed up the simulation beyond real-time, we may force the agent to make
decisions faster than it could in a real deployment, and therefore reduce the
fidelity of the simulation. We can increase the rate of discrete-time “ticks”, but
these ticks must represent shorter increments of the simulation time. The only
factor that may allow the simulation to run faster than real-time would be a
significant difference in hardware capability, meaning that we could simulate the
real robot’s reasoning faster than it would happen once deployed. This would,
however, require precise models of the deployment hardware.

Our approach addresses this problem by running the simulation in real time,
which is the only speed available to the BDI engine (excluding the hardware
acceleration possibility discussed above). In order to remove the synchronization
between the simulation time-step and the BDI reasoning cycles, we allow the
agents’ brains to run as their own processes (threads, more specifically), while
the simulation will update on its own schedule. The two sides must now interact
asynchronously, which brings several challenges (generically described above as
the impedance mismatch between the two frameworks).

For one thing, actions may be initiated by the agent asynchronously, whereas
the simulation system constrains changes to happen at fixed time steps. This is
connected to a thread-safety issue, if both an agent process and the simulation
process attempt to concurrently modify the environment.

Another challenge is the constraint of running a real-time simulation. This
is not always possible: if we attempt to shorten the time-step too much, then
the simulator may not be able to keep up with real time. As we can see in our

74 A. Davoust et al.

experiments (Sect. 5), Processing will not run faster than real-time, but if the
simulation gets too computationally intensive, it will run slower than real time.

There is therefore a delicate balance to maintain between the simulation
speed and the agents’ reasoning speed. On one hand, if the agent reasons too fast,
then it might repeatedly perceive an outdated state of the world and misinterpret
the consequences of its latest action, which the simulation engine has not yet
computed. The problem here is that this would not happen in the real world:
there cannot be any delay between an action being initiated by the an agent in
the real world, and this action initiating its effect on the environment. On the
other hand, if the agent is slow and the perceptions from the environment come
as messages, the agents might accrue a backlog of these messages, and again be
attempting to act on an outdated perception of reality. In this case an agent
being too slow to keep up with its environment is perfectly possible. However,
the environment would not be sending overwhelming numbers of updates in the
form of messages1.

4.3 The SAVI Architecture

In order to address these challenges, we designed the SAVI architecture shown
in Fig. 1.

Fig. 1. Simulation and agent behaviour architecture.

This architecture uses three main modules for implementing the interface
between the BDI agents and the simulation infrastructure. These include the
Simulated Environment module, the State Synchronization module, and the
Agent Behaviour module. To ensure that the simulation time step is independent
of the agent reasoning cycle rate of each of the agents, the simulation engine and
each individual agent’s behavioural model run in separate threads of execution.

The Simulated Environment module is responsible for providing the simu-
lated environment as well as a simulated model of the agents’ physical presence
in that environment. This includes all movements and interactions of the agents.
In our case, this module also provides a visualization of the environment for
monitoring the simulation.
1 Of course, the perception infrastructure may do so, and again using the present

architecture to implement that interface could solve the problem.

An Architecture for Integrating BDI Agents with a Simulation Environment 75

Individual agents perceive this simulated environment as well as their own
properties, and perform actions. These interactions are mediated by the State
Synchronization module. This module is responsible for ensuring mutual exclu-
sion of the different execution processes over perception, messages, and actions
being passed between the environment and agent objects in the Agent Behaviour
module. This mutual exclusion is managed by ensuring that the variables rep-
resenting the agent’s perception are always calculated and set by the simulation
side and only read by the behavioural models. Mutual exclusion of data between
the simulation and agent threads is ensured using thread safe variables, and hap-
pens separately for each agent, meaning that there is no centralized bottleneck.

The agent behaviour module provides the implementation of the BDI based
behaviour model. It receives environmental perceptions and messages from other
agents via the State Synchronization module and responds by sending actions
and messages back. These responses are determined using the BDI reasoning
cycle, which runs as a separate thread of execution for each agent. This enables
the updates to the environment to be decoupled from the execution time of the
individual reasoning cycles of each agent. In addition, since the perceptions are
represented as state variables to be read, as opposed to messages, there is never
a backlog of perceptions waiting for the agent, even if the reasoning is slow.

Finally, in the case where the agent reasons faster than the simulation can
update the environment variables, we ensure that the agent waits for new per-
ceptions by implementing a producer-consumer pattern: if the simulation clock
has not advanced since the previous reasoning cycle, the agent waits. For this
purpose, the simulation engine timestamps every update of the state variables.

The effects of this speed coordination are illustrated by measurements of the
simulation update speed and the reasoning speed, discussed in Sect. 5.4.

5 Case Study

In this section, we describe our implementation of the SAVI architecture. We
demonstrate the separation of the simulation from the implementation of the
agent behaviours in BDI. We also show that we have overcome the impedance
mismatch between these two techniques. Our case study scenario involves an
airport safety patrol made up of Unmanned Aerial Vehicles (UAVs) chasing
migratory birds away from the airport. The implementation of SAVI, including
this case study, are available as an open-source project [13].

5.1 Scenario

In this scenario, UAVs are controlled by BDI agents in order to chase migratory
birds away from the airport property. The simulation environment represents the
Ottawa airport area, the UAVs, and the different threats (migratory birds) that
can appear in that area. Because the objective of the case study is to show our
simulation architecture, and not necessarily to demonstrate the performance of

76 A. Davoust et al.

complex behaviours, we use a simplified version of the problem where the UAVs’
mission is simply to follow the different threats near the airport.

Each UAV perceives the environment through four sensors:

1. A Global Positioning System (GPS) receiver that provides the position of the
UAV,

2. A velocity sensor that indicates the UAV’s speed and direction of travel,
3. A camera that can see nearby threats and other UAVs up to a maximum

range,
4. A clock.

Each UAV also has a set of simple actions related to moving in the environ-
ment. These include:

1. Turning to the left,
2. Turning to the right,
3. Activating a thruster to move forward,
4. Deactivating a thruster to stop moving.

The behavior of the UAVs in this simulation is defined in AgentSpeak Lan-
guage (ASL) as follows:

– When the UAV does not perceive any threats, the UAV stops and keep turning
until a threat is perceived.

– When the UAV perceives threats, it turns to face the nearest one and then
follows it.

5.2 Implementation

The simulation is built using Processing [14], which handles the set-up and
discrete-time simulation as well as visualisation. The agent behaviour to be
deployed in the UAVs is defined using the BDI paradigm, with behaviours writ-
ten in the ASL and interpreted using Jason [11,15]. These two components are
integrated as described above, using our SAVI architecture. The threat behaviour
is directly implemented in Java: each threat sets a random destination and then
travels in a straight line from its actual position. Once they arrive, they choose
a new random destination.

5.3 Testing

Our case study consists of two scenarios, which can be easily set up in the
simulation environment’s configuration file. In the first scenario, shown in Fig. 2,
we simulated the Ottawa airport area with 10 bird threats. The area is patrolled
by three UAVs which have a limited camera perception range, as shown in the
figure by a semicircle. Objects that are visible to a UAV are shown with circles
around them. In the figure we can see that all the UAVs have a threat within

An Architecture for Integrating BDI Agents with a Simulation Environment 77

Fig. 2. Scenario 1: Test bed with 3 UAVs with short perception distance and 10 threats.

their camera range; however, there is a large area that is not observed by the
UAVs.

In the second scenario, shown in Fig. 3, we simulated the Ottawa airport area
with 15 threats. The area was patrolled by 10 UAVs with longer-range cameras,
also represented by a semicircle in the figure. In the figure we can see that all the
threats are perceived at least by one UAV. Likewise, all the UAVs are perceived
by at least another UAV, however some areas are not covered.

5.4 Results

The key objectives of the SAVI architecture were to connect BDI agents to a
simulation platform and resolve the challenges of synchronizing time between
the two components. Our simulations are run as discrete time simulations, and
can be run with different time step values. Processing allows us to set a frame
rate, which specifies the number of execution cycles to be run per (real) second,
and by setting the timestep to the inverse of this frequency we obtain real-time
simulation, provided the computation can run quickly enough. As we request
higher frame rates the simulation cannot keep up and we lose the “real time”
property.

Our simulations were successfully run at several different frame rates, and the
agents were able to carry out their task, largely unaffected by these variations.
This demonstrates the suitability of our SAVI architecture to integrate a BDI
framework with a simulation platform.

78 A. Davoust et al.

Fig. 3. Scenario 2: Test bed with 10 UAVs with large perception distance and 15
threats.

As noted earlier, we wanted to ensure that the agents’ reasoning cycle and
the simulation cycles were decoupled, and that we could manage their relative
speeds. In effect, we needed to be certain that the simulation environment does
not wait for the agent reasoning cycle to complete prior to computing the next
simulation step. Furthermore, it was also of concern to ensure that the agent
cannot reason faster than the simulation rate.

In order to demonstrate the effects of our safeguards on the speed coordina-
tion, we ran the test scenarios discussed in this case study under various frame
rates and measured the effective simulation and reasoning cycle periods. The
results for this test are shown in Fig. 4. The frame rate used as a reference along
the X axis is the requested simulation speed, which may not be achievable in a
computationally intensive simulation. We therefore plot the effective simulation
speed (measured by the effective period between two frames) and the effective
duration of the agents’ reasoning cycles.

The plot shows that the reasoning cycle and the simulation time step follow
an identical time step for lower frame rates, below approximately 65 frames per
second. At these slower simulation speeds, the agent must synchronize its speed
to only reason on up-to-date environment perceptions. The decreasing simulation
time step also shows that the simulator is able to achieve the requested frame
rate.

As the simulation frame rate increases, the simulation time step and the rea-
soning cycle period decrease but begin to diverge, and then they approximately

An Architecture for Integrating BDI Agents with a Simulation Environment 79

Fig. 4. Difference in simulation time step and reasoning cycle periods at different frame
rates.

stabilize at the highest speed that the simulator is able to achieve for this sce-
nario. At a frame rate of approximately 75 frames per second we can clearly see
the reasoning cycle period lag behind the simulation time step. This means that
the agent is reasoning more slowly than the simulation updates proceed. The
simulated environment is not delayed by a slow agent’s reasoning cycle, and the
agent does not develop a backlog of messages (which would affect the agents’
performance and possibly the reasoning speed).

In addition to showing that the reasoning cycle and simulation rates were
decoupled, we also sought to demonstrate the scalability of SAVI. To test this
property we recorded the change in performance of the simulation with an
increasing number of agents and objects. These scenarios were performed using
a desktop computer with an Intel i5 9400 processor and 16 GB of RAM. We
performed two test scenarios: a test of the simulation refresh rate relative to
the number of agents in the simulation, and a second test where we varied the
number of other objects present, in this case the number of threats.

In Fig. 5 we show the increase in simulation refresh time as we increase the
number of agents in the simulation. This test was not possible with more than
80 agents as the simulation cannot be performed in real time. In a similar way,
in Fig. 6, we compare the simulation refresh time against the number of threat
objects in the environment. In this scenario, the number of agents was fixed
as two agents. We found that the number of objects in the environment had
less of an impact on performance as it required more than 2000 objects to be
included in the simulation in order for the simulation to refresh below the frame
rate needed to be used on a real time scenario. Note that these results are
hardware dependant, a more powerful computer would be expected to yield
more favourable results. Additionally, because the number of objects has less

80 A. Davoust et al.

Fig. 5. Simulation refresh time vs. number of agents.

Fig. 6. Simulation refresh time vs. number of threats.

impact than the number of agents, we anticipate that the reasoning complexity
of the agent and the agent’s interactions are important factors. As future work,
we will analyze the factors affecting the scalability such as the complexity of the
agents, the agent-platform and the agent interactions among others.

An Architecture for Integrating BDI Agents with a Simulation Environment 81

6 Conclusion

We have presented the SAVI architecture to integrate multi-agent systems devel-
oped using the BDI paradigm with a simulation platform. Our architecture
decouples the execution of a time stepped simulation from the agent’s reasoning
processes, allowing them to run as separate processes interacting in an asyn-
chronous manner. This contributes to a more realistic simulation by allowing the
simulation of environment to proceed regardless of the agents’ decision-making
speed. However, we are nonetheless able to prevent the reasoning cycle from
executing faster than the simulation rate. This should not be possible in an
environment that is meant to approximate dynamic environments in continuous
time. These benefits of our architecture should make the transition to a natural
environment more realistic. In addition, the decoupling of the two component
frameworks makes it easy to develop them independently, and has allowed our
team to successfully separate these two unrelated concerns during the devel-
opment process. We have made our reference implementation available to the
community as an open-source project [13].

Future Work

As the SAVI project is under active development, there are several developments
planned as ongoing and future work.

One direction is to strengthen the validity of the simulation side, by using
other modelling and simulation methodologies (discrete-time approaches, in par-
ticular), and by setting the reasoning speed to match the expected performance
of real embedded reasoning systems.

A second direction is to enrich the architecture to bring it closer to a real
environment. This includes connecting a human interface for providing command
and control for the agent activities as well as a means for the agents to inform
users of the state of the environment and as their state. This could also mean
connecting SAVI to agents that are loaded on real world hardware, where SAVI
would stand in for a real world environment so that real world hardware can be
tested in a controlled setting. Related to the goal of connecting to real world
hardware, the SAVI project currently does not use any analogue sensing of the
environment. Development is required in order to support the use agents with
simulated analogue sensors which are connected to agents using BDI for higher
level reasoning as part of a broader agent architecture.

Acknowledgement. We acknowledge the support of Cohort Systems, Ottawa,
Ontario, Canada.

The work has been partially funded by Department of National Defence (DND)
Contract Number: W7714-196749/001/SV.

We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), [funding reference number 518212].

Cette recherche a été financée par le Conseil de recherches en sciences naturelles et
en génie du Canada (CRSNG), [numéro de référence 518212].

82 A. Davoust et al.

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based mod-
elling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev.
24, 13–33 (2017)

2. Akplogan, M., Quesnel, G., Garcia, F., Joannon, A., Martin-Clouaire, R.: Towards
a deliberative agent system based on DEVS formalism for application in agri-
culture. In: Proceedings of the 2010 Summer Computer Simulation Conference,
SCSC 2010, pp. 250–257. Society for Computer Simulation International, San Diego
(2010). http://dl.acm.org/citation.cfm?id=1999416.1999447

3. AOSGroup: Jack. http://www.aosgrp.com/products/jack/. Accessed 04 Feb 2019
4. Araujo, F., Valente, J., Al-Zinati, M., Kuiper, D., Zalila-Wenkstern, R.: DIVAs 4.0:

a framework for the development of situated multi-agent based simulation systems.
In: Proceedings of the 2013 International Conference on Autonomous Agents and
Multi-Agent Systems, pp. 1351–1352. International Foundation for Autonomous
Agents and Multiagent Systems (2013)

5. Aschermann, M., Kraus, P., Müller, J.P.: LightJason: a BDI framework inspired
by Jason. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V.
(eds.) EUMAS/AT 2016. LNCS (LNAI), vol. 10207, pp. 58–66. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59294-7 6

6. Banks, J., Carson, J., Nelson, B., Nicol, D.: Discrete-Event System Simulation, 5th
edn. Prentice Hall, Upper Saddle River (2010)

7. Barros, F.J.: Dynamic structure discrete event system specification: a new formal-
ism for dynamic structure modeling and simulation. In: Proceedings of the 27th
Conference on Winter Simulation, WSC 1995, pp. 781–785. IEEE Computer Soci-
ety, Washington, DC (1995). https://doi.org/10.1145/224401.224731

8. Ben-Akiva, M., et al.: Traffic simulation with MITSIMLab. In: Barceló, J. (ed.)
Fundamentals of Traffic Simulation. ISOR, vol. 145, pp. 233–268. Springer, New
York (2010). https://doi.org/10.1007/978-1-4419-6142-6 6

9. Bergez, J.E., et al.: RECORD: a new software platform to model and simulate
cropping systems. Farming System Design, Monterey, CA (2009)

10. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006). https://doi.org/10.1007/11750734 9

11. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason (Wiley Series in Agent Technology). Wiley, Hoboken
(2007)

12. Bratman, M.: Intention, Plans, and Practical Reason, vol. 10. Harvard University
Press, Cambridge (1987)

13. Davoust, A., et al.: Simulated autonomous vehicle infrastructure. https://github.
com/NMAI-lab/SAVI. Accessed 19 Feb 2019

14. Fry, B., Reas, C.: Processing. https://processing.org/. Accessed 16 Feb 2019
15. Hübner, J.F., Bordini, R.H.: Jason: a Java-based interpreter for an extended version

of AgentSpeak. http://jason.sourceforge.net. Accessed 16 Feb 2019
16. Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning

and system control. IEEE Expert 7(6), 34–44 (1992)
17. Jacobs, P.H., Lang, N.A., Verbraeck, A.: D-SOL; a distributed Java based discrete

event simulation architecture. In: Proceedings of the Winter Simulation Confer-
ence, vol. 1, pp. 793–800. IEEE (2002)

http://dl.acm.org/citation.cfm?id=1999416.1999447
http://www.aosgrp.com/products/jack/
https://doi.org/10.1007/978-3-319-59294-7_6
https://doi.org/10.1145/224401.224731
https://doi.org/10.1007/978-1-4419-6142-6_6
https://doi.org/10.1007/11750734_9
https://github.com/NMAI-lab/SAVI
https://github.com/NMAI-lab/SAVI
https://processing.org/
http://jason.sourceforge.net

An Architecture for Integrating BDI Agents with a Simulation Environment 83

18. Jaworski, P., Edwards, T., Burnham, K.J., Haas, O.C.L.: Microscopic traffic simu-
lation tool for intelligent transportation systems. In: 2012 15th International IEEE
Conference on Intelligent Transportation Systems, pp. 552–557 (2012)

19. Kuper, C., Müller, J.P., Spitzer, M., Tatasadi, E.: LightJason. https://lightjason.
org/. Accessed 15 Mar 2019

20. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent
simulation environment. Simulation 81(7), 517–527 (2005)

21. Mittal, S., Douglass, S.A.: Net-centric ACT-R-based cognitive architecture with
DEVS unified process. In: Proceedings of the 2011 Symposium on Theory of Mod-
eling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS 2011, pp.
34–44. Society for Computer Simulation International, San Diego (2011). http://
dl.acm.org/citation.cfm?id=2048476.2048480

22. North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: A declarative model assembly
infrastructure for verification and validation. In: Takahashi, S., Sallach, D., Rouch-
ier, J. (eds.) Advancing Social Simulation: The First World Congress, pp. 129–140.
Springer, Tokyo (2007). https://doi.org/10.1007/978-4-431-73167-2 13

23. North, M.J., et al.: Complex adaptive systems modeling with Repast Simphony.
Complex Adapt. Syst. Model. 1(1), 3 (2013). https://doi.org/10.1186/2194-3206-
1-3

24. Padgham, L., Scerri, D., Jayatilleke, G., Hickmott, S.: Integrating BDI reasoning
into agent based modeling and simulation. In: Proceedings of the Winter Simulation
Conference, WSC 2011, pp. 345–356. Winter Simulation Conference (2011). http://
dl.acm.org/citation.cfm?id=2431518.2431555

25. Rao, A.S., George, M.P.: BDI agents: from theory to practice. In: Proceedings
of the First International Conference on Multi-Agent Systems, ICMAS 1995, pp.
312–319 (1995). http://www.agent.ai/doc/upload/200302/rao95.pdf

26. Robertson, D.: Agent-based modeling toolkits NetLogo, RePast, and Swarm. Acad.
Manag. Learn. Educ. 4, 524–527 (2005). https://doi.org/10.5465/AMLE.2005.
19086798

27. Rüb, I., Dunin-Kȩplicz, B.: BDI model of connected and autonomous vehicles.
In: 6th International Workshop on Engineering Multi-Agent Systems, EMAS 2018
(2018). http://emas2018.dibris.unige.it/images/papers/EMAS18-16.pdf

28. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall Press, Upper Saddle River (2009)

29. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based
simulation platforms. Auton. Agents Multi-Agent Syst. 30(6), 1050–1071 (2016).
https://doi.org/10.1007/s10458-016-9332-x

30. Tendeloo, Y.V., Vangheluwe, H.: An evaluation of DEVS simulation tools. Simu-
lation 93(2), 103–121 (2017). https://doi.org/10.1177/0037549716678330

31. Uhrmacher, A.M.: A system theoretic approach to constructing test beds for multi-
agent systems. In: Sarjoughian, H.S., Cellier, F.E. (eds.) Discrete Event Modeling
and Simulation Technologies: A Tapestry of Systems and AI-Based Theories and
Methodologies, pp. 315–339. Springer, New York (2001). https://doi.org/10.1007/
978-1-4757-3554-3 15

32. Uhrmacher, A.M., Kullick, B.G.: “Plug and test” - software agents in virtual
environments. In: 2000 Winter Simulation Conference Proceedings (Cat. No.
00CH37165), vol. 2, pp. 1722–1729, December 2000. https://doi.org/10.1109/WSC.
2000.899162

33. Van Dyke Parunak, H., Nielsen, P., Brueckner, S., Alonso, R.: Hybrid multi-agent
systems: integrating swarming and BDI agents. In: Brueckner, S.A., Hassas, S.,

https://lightjason.org/
https://lightjason.org/
http://dl.acm.org/citation.cfm?id=2048476.2048480
http://dl.acm.org/citation.cfm?id=2048476.2048480
https://doi.org/10.1007/978-4-431-73167-2_13
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1186/2194-3206-1-3
http://dl.acm.org/citation.cfm?id=2431518.2431555
http://dl.acm.org/citation.cfm?id=2431518.2431555
http://www.agent.ai/doc/upload/200302/rao95.pdf
https://doi.org/10.5465/AMLE.2005.19086798
https://doi.org/10.5465/AMLE.2005.19086798
http://emas2018.dibris.unige.it/images/papers/EMAS18-16.pdf
https://doi.org/10.1007/s10458-016-9332-x
https://doi.org/10.1177/0037549716678330
https://doi.org/10.1007/978-1-4757-3554-3_15
https://doi.org/10.1007/978-1-4757-3554-3_15
https://doi.org/10.1109/WSC.2000.899162
https://doi.org/10.1109/WSC.2000.899162

84 A. Davoust et al.

Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 1–14.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69868-5 1

34. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops, Simutools
2008, pp. 60:1–60:10. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels (2008). http://dl.acm.org/
citation.cfm?id=1416222.1416290

35. Wainer, G.: CD++: a toolkit to develop DEVS models. Softw.: Pract. Exp. 32(13),
1261–1306 (2002). https://doi.org/10.1002/spe.482

36. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/
netlogo/

37. Zeigler, B.P., Praehofer, H., Kim, T.: Theory of Modelling and Simulation: Inte-
grating Discrete Event and Continuous Complex Dynamic Systems, 2nd edn. Aca-
demic Press, San Diego (2000)

38. Zhang, M., Verbraeck, A.: A composable PRS-based agent meta-model for multi-
agent simulation using the DEVS framework. In: Proceedings of the 2014 Sym-
posium on Agent Directed Simulation, ADS 2014, pp. 1:1–1:8. Society for Com-
puter Simulation International, San Diego (2014). http://dl.acm.org/citation.cfm?
id=2665049.2665050

https://doi.org/10.1007/978-3-540-69868-5_1
http://dl.acm.org/citation.cfm?id=1416222.1416290
http://dl.acm.org/citation.cfm?id=1416222.1416290
https://doi.org/10.1002/spe.482
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://dl.acm.org/citation.cfm?id=2665049.2665050
http://dl.acm.org/citation.cfm?id=2665049.2665050

Using MATSim as a Component in
Dynamic Agent-Based Micro-Simulations

Dhirendra Singh1,3(B) , Lin Padgham1 , and Kai Nagel2

1 RMIT University, Melbourne, Australia
{dhirendra.singh,lin.padgham}@rmit.edu.au

2 Technical University, Berlin, Germany
kai.nagel@tu-berlin.de

3 CSIRO Data61, Melbourne, Australia
dhirendra.singh@data61.csiro.au

Abstract. This paper discusses use of the widely used transport sim-
ulator, MATSim, as one component in a large complex agent based
microsimulation where dynamic changes in the environment require the
agents to be reactive as well as goal directed. We describe a number
of refinements to MATSim that have been made to facilitate its use
within our deployed wildfire evacuation applications, as well as some
tools that have been developed which complement MATSim. All code is
freely available under open source licenses. As applications increasingly
require complex microsimulations, with many aspects, it is important to
use existing software where possible. However most simulation systems,
like MATSim, have been developed as standalone systems. We identify
ways that MATSim has needed to be extended or modified in order for
it to be used as a component in a larger whole. The paper provides
details that will be useful for anyone wanting to use MATSim within
their specific application.

Keywords: MATSim · Belief-Desire-Intention · BDI · Agent-based
simulation

1 Introduction

It is often necessary to couple simulation systems long after they were designed
and implemented. Reasons for this include that most groups neither have the
resources for a start from scratch, nor a sufficiently broad expertise in all domains
that may be needed. In consequence, both for cutting-edge research applications
as well as for cost-effective real-world applications, the coupling of existing sys-
tems is of interest. This paper focusses on the use of the MATSim (Multi-Agent
Transport Simulation) [13] traffic simulator as a component in large scale agent
based micro-simulations, where, as is increasingly relevant, it is often important
to make use of detailed real world data (e.g. [7,29]). The unifying aspect of
our contributions was their need in a family of applications in the evacuation

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 85–105, 2020.
https://doi.org/10.1007/978-3-030-51417-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_5&domain=pdf
http://orcid.org/0000-0001-8369-8878
http://orcid.org/0000-0002-6974-3318
http://orcid.org/0000-0003-2775-6898
https://doi.org/10.1007/978-3-030-51417-4_5

86 D. Singh et al.

domain [24], although they are also more widely applicable. The work described
here is currently being used in decision support tools within the emergency ser-
vices in Australia.1

Originally MATSim was developed for finding traffic equilibrium as individ-
ual agents adapt their travel behaviour to a specified transport infrastructure,
based on their individual activity patterns. The system is initialised with a set of
agents, having various attributes, each having an “activity plan” which specifies
the location and duration of various activities throughout the day. The system
then determines the best route between activities at suitable times, embellish-
ing the plans with specific detailed routes for each trip.2 The execution simply
steps through these plans. The executed plans are scored, taking into account
congestion and other, possibly unexpected, occurences during plans execution.
At the end of each one day simulation, plans are reviewed and some poorly rated
ones are modified using an evolutionary algorithm, until eventually after some
number of iterations a stable state is reached.

This approach is successful for assessing the impact of proposed new infras-
tructure in situations where behavior is repetitive from one day to the next.
However it is not suitable for applications where decisions need to be made reac-
tively, based directly on a dynamic situation. Two examples of such situations
are evacuation simulations and simulations involving taxis which must respond
to the evolving environment. In recent years there has been a focus on modifying
the mobsim component of MATSim to accommodate this, using what is called
within-day replanning or en-route replanning [5,9]. It is this aspect of MATSim
which is considered in the current paper, using only a single iteration of the
agents over a simulated day.

The BDI-MATSim system [17] is one approach to supporting the ability of
MATSim agents to be reactive to a dynamic situation. It builds on an infras-
tructure developed for integrating any existing cognitive system (as long as it
relies on percepts and actions) with any agent-based model that fills certain
requirements [25]. The integration facilitates within-day replanning in MATSim
by allowing agents to proactively make decisions to change their original plan,
depending on both environmental situations and agent goals. Conceptually, the
“brain” of a MATSim agent is modelled in the BDI system (as a BDI agent)
while the “body” remains inside MATSim. The communication between these
agent counterparts is defined based on standard agent concepts, percepts and
actions. A MATSim agent sends percepts to the BDI counterpart, which con-
ducts high-level reasoning and issues a (BDI) action for the MATSim agent to
execute. Percepts from the MATSim counterpart agent can be either information
about its own state (e.g. location), or an observation from the MATSim environ-
ment. Basically, a BDI action modifies the travel plan of a MATSim agent using
low-level MATSim functions. The evacuation applications which have motivated

1 The code for these models is accessible from https://github.com/agentsoz/ees.
2 A plan encompasses activities, trips which contain the (possibly multi-modal) move-

ment between activities, and routes which are the detailed road/path segments to
be traversed by a vehicle/person.

https://github.com/agentsoz/ees

MATSim as a Component for Micro-Simulations 87

and used the extensions and tools described in this paper have all used the
BDI-MATSim system.

In developing large and complex simulations it is essential to be able to incor-
porate components which are themselves large and complex pieces of software.
These must all work together – and preferably continue to work together as
components are further modified and developed.

Our own experiences in this direction are mixed. There are several issues:
The coupling of simulation systems written in different programming languages
often resorts to writing to and reading from file. The data exchange can be
made somewhat typesafe by using a format such as XML (eXtensible Markup
Language, [27]) which allows to certify a grammar via DTD or XSD files. This,
however, needs a lot of effort. Also data exchange via files is inefficient. See
[16] for an example in the domain considered here. An alternative might be to
use message passing, e.g. MPI [15]. This is an established approach for math-
ematical objects such as vectors or arrays, but does not support object ori-
ented structures such as variable-length lists or maps. One could instead use
XML again, but send it via messages. The implementation effort remains large,
and the conversion from binary numbers to strings and back is inefficient. See
[11] for an example. The fairly recent emergence of Google protocol buffers [20]
and similar approaches confirms that there has been a lack of tools that allow
to exchange objects between different programming languages. These newer
approaches address problems of type safety and efficiency, but require signifi-
cant effort since both the prototypes and the adapter classes need to be written.

However, even when staying within the same programming language, chal-
lenges remain. One of them is to find the right level of abstraction for the inter-
change between the pre-existing codes. This was the main problem after our
initial prototype [18]: Although MATSim in principle provided the necessary
functionality, in practice it was very difficult to use by the BDI group because
it was at a too low level.

We are not aware of any other effort that combines dynamic behavior, large
scale, dealing with real-world scenarios, and being in the transport domain.
Clearly, when taking a step back, then our work has many connections into
a variety of different communities. En-route replanning was mentioned above
and is common in the transport domain, albeit other approaches do not use
the flexibility of a (BDI or other) framework. Multi-agent systems (e.g. [30])
are related, but concentrate on the systems rather than the simulation aspect.
Artificial intelligence (e.g. [22]) is related, but concentrates more on individual
agents rather than their emergent properties, and also is more interested in
“rational” agents rather than the spontaneous, rule-based reactions that are
considered in our study. Agent-based social simulation (e.g. [10]) shares the
aspect of emergence, but is typically less strongly connected to real-world data
than our studies. Urban planning has consistently used agent-based approaches
(e.g. [4,26]) and has been discussing simular issues of model coupling [28], but
it does not have the same spontaneous real-time aspect as our work.

88 D. Singh et al.

The contributions of this paper are a result of our learnings and refinements
of the BDI-MATSim coupling from extensive use over the years. Figure 1 shows
the two components in detail, highlighting the original MATSim and Jill BDI
artifacts, the pre-existing extensions which we build on, and the new additions
that are described in this paper. More generally our contributions reduce the
practical effort in maintaining a sustainable coupling between the two indepen-
dently developed systems: the MATSim traffic model and the Jill BDI cognition
model. Specifically they:

1. standardise the mechanism of data passing and control through a high-level
controller where MATSim is a slave component among others, as opposed to
being the master as in [18] (Sect. 2.1).

2. simplify the process of programming the behaviours of the MATSim agents
through cognitive reasoning that is coded in the BDI system (Sects. 2.2, 2.3,
2.4 and 3);

3. unify the description of the individuals of the agent population with respect
to their BDI behaviour attributes and their MATSim activities through a
common schema (being MATSim’s population scheme), as well as their con-
struction through support tools for population synthesis (Sects. 4); and

4. facilitate cleaner cognitive agent designs (Sect. 5).

Fig. 1. The BDI-MATSim sub-system and contributions of this paper

MATSim as a Component for Micro-Simulations 89

The complete model consists of the BDI-MATSim components amongst oth-
ers as shown in Fig. 2, where a controller pauses and continues the execution
of components as well as providing a mechanism for data sharing. The setup is
conceptually similar to that prescribed by HLA [8] standard, although, unlike
HLA, multiple models can represent aspects of the same conceptual agents at
the same time, as long as aspects are managed to ensure consistency, as they
are in the BDI-ABM integrated framework described in [25]. We support mod-
els that run on different size timesteps as well as variable time steps such as
discrete event models. Data exchange is based on a publish/subcribe scheme
whereby a model is called on one of two events: to handle incoming data from
other models that it is subscribed to, or to publish its own data at a frequency
(fixed or variable) under its full control. If there is a producer consumer relation-
ship with respect to data produced and used within the same simulation time
step, then the controller must sequence the component executions appropriately.
The model cannot deal with circular relationships between components within
a single timestep, only with pipeline relationships. The issues of shared resource
management as handled by frameworks like OpenSim [23] that were built for
integrating existing models do not apply here.

Fig. 2. High level view of the component based simulation

2 MATSim as a Component

For MATSim to operate as a component within this framework, rather than as
a standalone application, it is necessary to allow stopping and starting from an
external controller (unlike [17] where all control was with MATSim), as well as
options for MATSim to receive and provide data. To support additional func-
tionality likely to be needed for new applications it is also desirable to have a
principled API providing access to internal MATSim functionality. These aspects
are discussed in the subsections of this section.

90 D. Singh et al.

2.1 External Control of MATSim Steps

Algorithm 1 shows the high level simulation loop where MATSim is a component.
Each model is first initialised (line 1), and registers with the central controller
of Fig. 2 all data types it wishes to publish or subscribe to (line 2). We do
this upfront, but models are free to register types also during the simulation
conditional on some event. Then on every simulation loop iteration (line 3), the
BDI model is called first (line 4) followed by MATSim so that new or dropped
BDI actions passed via container dataBDI are handled by MATSim immediately
in the same time step (line 7). BDI actions status’ and percepts coming back
from MATSim in datABM are handled by the BDI model in the next iteration of
the loop. Other models are called as needed (line 8) and the entire simulation
terminates (lines 5–6) when MATSim itself reaches the end of its own simulation.

Result: Simulation completed
1 // initialise all models

2 // register ordered models with controller

3 while true do
// invoke BDI model with incoming data from ABM

4 controller.publish(BDI CONTROL, dataABM);
5 if MATSim has reached end of simulation then
6 break; // exit the loop

// invoke MATSim with incoming data from BDI

7 controller.publish(ABM CONTROL, dataBDI);
// progress time & advance other models

8 controller.stepTime();

9 // terminate all models

Algorithm 1: Simulation loop for MATSim as a component

Data flow between models happens in several places in the simulation loop.
Direct data passing from publisher models to subscriber models occurs in the
controller’s stepTime() function (line 8). We use this to directly feed, for
instance, time-stamped fire shape data from the Phoenix Fire Model into MAT-
Sim to dynamically increase link penalties on road segments impacted by fire.
Data flow between the BDI-MATSim coupling is managed more precisely by the
controller as mentioned already, by routing the data from the models (dataBDI
and dataABM) through the controller.

A new facility called PlayPauseSimulationControl was implemented in
MATSim to provide a doStep(time) function to continue the MATSim sim-
ulation forward up until time and return. This new play/pause API also ensures
that the simulation clock of the controller is not tied to MATSim’s simula-
tion clock. The approach consists of starting MATSim in a separate thread,
and inserting a so-called MobsimAfterSimStepListener into the mobsim, which
stops the thread when control is to be returned to the central controller. This

MATSim as a Component for Micro-Simulations 91

is one of the cases where the functionality would already have been available
previously, albeit at a too low level.

2.2 API to Modify MATSim Agent Behaviour

Previously, while it was possible to modify MATSim agent behaviour in all sorts
of ways, this involved editing into the internals of MATSim in functions that even
if they were public, possibly should not have been, and were in danger of changing
as MATSim developed. There are now three clearly specified classes allowing
for editing of plans (EditPlans), routes (EditRoutes) and trips (EditTrips).3

These classes provide a clean interface for programming functions to change
agent behaviour, as well as for querying MATSim regarding aspects of an agent’s
current plan. Plans are the highest level of abstraction and consist of a sequence
of activities at specific locations, interleaved with trips between locations. A
trip may consist of several legs, which may have a variety of different modes,
including car, public transport, and walking. A route is the specific set of links
to be traversed within a leg. Table 1 shows the API functions for plan editing.
Trip and route editing follow a similar pattern. Basically these are the typical
insert/add/remove/modify methods that one knows from the Java List class,
plus some helper methods that have to do with the data model.

Table 1. High level API for plan editing.

addActivityAtEnd (agent, activity, routingMode)

createFinalActivity (type, newLinkID)

findIndexOfRealActAfter (agent, index)

findRealActAfter (agent, index)

findRealActBefore (agent, index)

flushEverythingBeyondCurrent (agent)

getModeOfCurrentOrNextTrip (agent)

insertActivity (agent, index, activity)

isAtRealActivity (agent)

isRealActivity (agent, planElement)

removeActivity (agent, index, mode)

replaceActivity (agent, index, newAct)

rescheduleActivityEndtime (agent, index, newEndTime)

3 http://matsim.org/javadoc → matsim main → EditPlans, EditRoutes, Edit-

Trips.

http://matsim.org/javadoc

92 D. Singh et al.

2.3 Adding BDI Actions to MATSim

When a BDI action is sent to MATSim, it performs the necessary changes to the
agent’s plan elements using suitable API functions (of Sect. 2.2). In particular
there must always be some event(s) which indicate that the action has terminated
– normally successfully, but possibly that it has failed. Information which needs
to be provided to the BDI agent is then packaged up for transmission to the
relevant BDI agent as a percept, along with information that the BDI action has
succeeded or failed (see Sect. 2.4).

An example reusable BDI action is drive-to(args) for which we provide a
default action handler on the MATSim side (in MATSimModel), which on recep-
tion of the BDI action (i) inserts a new activity immediately following the agent’s
current activity/leg, on the network link nearest to the coordinates given in args;
(ii) optionally sets the end time of the current activity, if the agent is currently
performing an activity, to some future time given in args; and (iii) registers
an event handler for the MATSim PersonArrivalEvent event, which when trig-
gered on the link of the newly inserted activity indicates the end of the drive-to
action.

A particular application may introduce both new BDI actions and new
percepts to be used by the BDI agents in their reasoning. This necessitates
new application code to be added to MATSim to implement the percept han-
dlers (see Sect. 2.4), and also to implement the MATSim realisation of the BDI
action. The latter is done by registering an application specific action handler
in MATSimModel at initialisation. The syntax approximately is
agent.registerBDIAction(actionType , actionHandler) ;

This means that when the BDI system wants to execute the action actionType,
then actionHandler is called. The action handler itself has the following struc-
ture:
... handleAction(String agentID , ..., Object [] args) {

// modify plan of MATSim agent
...

}

The notification about the completion of the action contains the status, i.e.,
PASSED, FAILED, or DROPPED, and is composed in the relevant MATSim event
handler as explained in Sect. 2.4.

2.4 Generating BDI Percepts from MATSim

MATSim’s mobility simulation, or mobsim, that is responsible for moving the
agents around according to their plans, generates a stream of events that capture
the movement of people between activities. This stream gives MATSim exten-
sions a mechanism to plug in and listen to events of interest and perform their
own computations as needed. In our case, this mechanism is used to perform the
necessary computations to construct a BDI percept that can be sent back to the
BDI agent.

It is also possible to add custom MATSim events based on the application’s
requirements. For the evacuation application, we defined two new events that are

MATSim as a Component for Micro-Simulations 93

both relevant when the agent is engaged in a drive-to BDI-action. The event
AgentInCongestionEvent flags the condition that the vehicle is stuck in traffic
congestion, while the event NextLinkBlockedEvent is triggered if the vehicle is
about to enter a link that is blocked, due to a road closure for instance. Cor-
responding custom handlers generate the appropriate BDI percept information
for passing back to the BDI agent as well as deciding if the BDI-action should
potentially be deemed failed.4

From a BDI programming viewpoint, the agent code registers to perceive the
kinds of events it cares about, such as the event of arriving at a road blockage, as
shown in the sequence diagram of Fig. 3. MATSimModel then monitors MATSim’s
event stream for the NextLinkBlockedEvent event, and for every such event that
is generated for the MATSim agent counterpart, it adds the BLOCKED percept to
the global data container. The percept is eventually received by the BDI agent
via the handlePercept call. For some percepts, such as BLOCKED, the percept
handler code in MATSimModel will also check if the agent in question has an
active drive-to action, and if found, will also add a drive-to action update
with status FAILED. In this case the BDI agent will additionally be notified via

Fig. 3. Sequence diagram for percept registration (from BDI) and generation (from
MATSim)

4 The custom AgentInCongestionEvent is triggered on LinkLeaveEvent if (tk,i −
t∗k,i)/t

∗
k,i > w , where k is some traversed link, i is the current link, time tk,i is the

recorded travel time for the route taken from k to i, and t∗k,i is the expected travel
time if travelling at freespeed on that route. The constant w is the congestion toler-
ance threshold. Practically, we set a time period T for congestion evaluation and take
the maximum permissible tk,i such that tk,i ≤ T . For instance, T = 300, w = 0.4
means that an agent will consider itself to be stuck in congestion if over the last
5min, the time delay in travelling the route from k to i was greater than 40% of
the expected travel time for that route. – The nextLinkBlocked event is generated
when the following link has freespeed close to zero as the intent is to prevent the
agent from entering a blocked link where it might get stuck forever.

94 D. Singh et al.

the updateAction call that its current driving action has failed (evidently due
to the road block as indicated by the accompanying BLOCKED percept).

2.5 Generating Additional BDI Percepts Based on External Model

The architecture of Fig. 2 supports data flow directly between models, as
described in Sect. 2.1. Such incoming “data events” can therefore be used by the
MATSim model to generate BDI percepts. For instance, on reception of updated
fire(smoke) shape information from the Phoenix Fire model, MATSimModel first
queries MATSim for a list of all agents that are within the polygon shape
(plus some configurable buffer around the shape) at that timestep, generates
fire(smoke)-visual BDI percepts for all those agents, and packages these
inside a data container that is received by JillBDIModel.

As different applications are developed with MATSim as one component, it
is anticipated that a range of application specific percepts and percept handlers
will be developed, some of which will be reusable across multiple applications.
The in-congestion percept is one such addition which could be expected to
be reused across applications. The smoke and fire percept and percept handler
on the other hand is likely to be relevant only to applications in the bushfire
domain. The mechansim of percept handlers and the way they can be linked to
specific high level actions (BDI-actions) is a new/refined facility which supports
the integration of MATSim into new application areas, combined with other
components.

2.6 Conclusion

So these handlers serve as the glue between the BDI framework and MATSim:
(i) The BDI framework may come up with actions, and the above action han-
dlers will translate them into physical actions inside MATSim. (ii) At the same
time, events that can occur within MATSim are connected to percepts that are
communicated to the BDI agent.

3 Flexible Route Planning

The activity of driving is made up of a hierarchy of decisions such as acceler-
ating/braking, changing lanes, taking turns at intersections (= routing), or the
decision to arrive (= destination choice). It needs to be decided at which level
external code can interact with the travel model. In the original MATSim design
for external mental models, accelerating/braking as well as changing lanes were
treated within MATSim, while routing and destination choice were assumed to
be treated in the external mental model.

During the practical work with the evacuation application, it turned out that
having the routing inside the mental model is too heavyweight. For example, it
means that the mental model needs a copy of the road network, and routers of
its own. It was thus decided to rather use the pre-existing routing infrastructure
of MATSim.

MATSim as a Component for Micro-Simulations 95

Here, however, one is confronted with the inverse problem: There are mental
concepts that now need to be included into the router, for example if the agent
is assumed to have global knowledge (e.g. about congestion or blockage) or not,
or if the routing is for an emergency vehicle, which should be allowed to drive
towards the danger, or for an evacuee, which should accept such routing only if
unavoidable.

An additional challenge is that there are dynamic elements both outside the
mental and outside the travel model that may influence either one. For example,
a fallen tree may block a road, but will also influence the global knowledge
routing. Smoke may influence the routing.

Our resulting design decision was to use the travel model to provide the
routers, but have several such routers corresponding to several mental models,
and to flexibly allow to add such routers. The remainder of this section will
explain this in more detail.

3.1 Route Planning in MATSim

Whenever an agent needs to plan its route between destinations it calls a router.
The router uses a Djikstra-like algorithm to find a close to optimal path to the
destination, based on the cost of the links. Link cost is based on a function of link
attributes such as link travel time, link length, monetary toll, etc. Link travel
times are typically based on traffic conditions.

3.2 The Evacuation System Routers

For a given vehicle type/mode, the standard router in MATSim is always the
same. In the evacuation application we needed to use different route planning
in different situations, for the same vehicle type: sometimes a car would require
using a free speed router, sometimes a router based on global knowledge, and
emergency vehicles required different link costs again. The refinement to MAT-
Sim that was introduced was to allow a specific router to be specified dynamically
as a parameter, together with the destination node for a trip.

3.3 Fire Avoidance

One issue with evacuation routing is how danger avoidance is included. A possible
approach [12,14] is to label nodes by their distance to the danger, and accept
danger-increasing moves only when no other moves are possible. For the fire
evacuation, links within the danger zone (the fire area) are given high penalties,
so that vehicles take the fastest way out. Links in a buffer around the fire area
are given penalties only when leading towards the fire, with the penalty related
to the risk increase. The travel time can either be maximum link speed, or actual
(congested) current link speed. This successfully controls the behaviour of the
agents such that they do not “mindlessly” drive into the fire, but if they have
a goal to reach a destination within the danger zone (such as rescuing family
members), then they are not prevented from doing so.

96 D. Singh et al.

<population>

<person id="">

<attributes>...</attributes

<plan selected="yes">

<activity type="home" x="" y="" end_time="" />

<leg mode="car" />

. . .
</plan>

</person>

. . .
</population>

Fig. 4. Structure of MATSim’s input population XML file

We currently have three different routers for our evacuation applications:
carFreespeed, carGlobalInformation and emergencyVehicle, with the abil-
ity to switch between them depending on context. The emergencyVehicle router
is similar to the carGlobalInformation router but imposes lower penalties for
coming close to the fire – it allows taking of greater risks.

Within our system the road link penalties used by the routers are updated
periodically based on information from the fire model. This information is also
used to provide percepts to the (BDI) agents to be potentially used in their rea-
soning process. The sequence of execution is as follows: (i) updated smoke and
fire shape information is published by the Phoenix Fire model; (ii) the MAT-
Sim model has subscribed to this information and therefore receives it immedi-
ately; (iii) at the next MATSim step MATSim places penalties on links and also
produces smoke/fire percepts for relevant agents in the areas (as explained in
Sect. 2.4); and (iv) at the next BDI step the smoke percepts are passed to the
specified BDI agents where it affects their decision making.

The ability to dynamically choose which router to use, combined with the
ability to set penalties dynamically based on a changing situation provides great
flexibility which can be relatively easily extended and modified for different appli-
cation needs.

4 Initialisation of MATSim

Like most microsimulations MATSim typically includes data from real environ-
ments, and creates agents with attributes and activities taken from data. The
easiest way to create a road network is to use OpenStreetMap5 and then convert
to MATSim representation using the MATSim utility class OsmNetworkReader.
The population of agents is given by an input file in XML format as shown in
Fig. 4.

5 https://www.openstreetmap.org/.

https://www.openstreetmap.org/

MATSim as a Component for Micro-Simulations 97

4.1 Creating the Agent Population

It is relatively straightforward to create a set of individuals that match census
data with regard to attributes such as gender, age, etc. These attributes can be
directly encoded as attributes of a person in the MATSim population using the
attributes set as shown in Fig. 4. Grouping individuals into family and house-
hold structures that also match census data is more complex. Various approaches
have been used in the literature, and for Australian census data there is soft-
ware available that can create a population, assigned to households with address
coordinates.6

The attributes are also used to specify for each agent a BDIAgentType,
which defines, by a fully qualified Java class name, the BDI behaviors for that
agent.

4.2 Creating the Activities

For the bushfire applications we have a user requirement to simulate the agents
going about their daily business, prior to the evacuation request. There are a
number of approaches that have been used for creating the activity schedules of
the agents. These include activity based demand generation models (e.g. [21]),
smart card or mobile phone data (e.g. [1,6]), hourly origin destination matrices
[3], or commuting matrices [2]. One can additionally calibrate against emergent
properties such as traffic counts (e.g. [31]). The challenge is to combine the data
that is locally available, and which is typically different in each location, to come
up with a good approximation.

For the evacuation application in the Australian context, we have developed
the following approach:

1. Since the census data includes information on whether individuals work,
where they work (at a suitably fine geographical granularity), and mode of
transport to work, then reasonable initial activity schedules for work travel
can be created by assigning travel to and from a work activity of appropri-
ate length, for a suitable number of people in each geographical area. Work
locations can be assigned randomly within the relevant geographical area, or
probabilistically according to knowledge of centres of activity. Timings must
also be assigned based on some assumptions (or data) about usual length and
time of work activities. Code is available which allocates these work activity
schedules to the population described in Sect. 4.1, based on census data of
individuals and households.

2. In order to simulate other activity we have developed a tool that allows us to
use expert knowledge about the approximate proportions of different agent
types doing various activities at certain times of day, in order to generate
representative activity schedules. The tool takes as input, for each popula-
tion subgroup, a table of activities distributions for the day, a list of GIS
shapes associated with each activity signifying places where those activities

6 Software is available at https://github.com/agentsoz/synthetic-population.

https://github.com/agentsoz/synthetic-population

98 D. Singh et al.

1 3 5 7 9 11131517192123
0

50

100

home work beach shops other

Fig. 5. Example input weekday activities for Residents.

can be performed, and the number of persons of the subgroup to generate. For
instance, given the example activities distributions for the Resident subgroup
in Fig. 5 – that tells us what activities the subgroup is doing at different times
of the day and in what proportion – the algorithm constructs a population
whose activities taken together resemble these distributions.7,8

The output is a MATSim population file in GZipped-XML (.xml.gz) format.

5 Designing Agents and Their Behaviours

Designing the agents and their behaviours in a complex simulation involving mul-
tiple components will typically involve some level of interaction between these
components. Decisions must be made about which components receive, and are
affected by, which information. In some cases agents may be represented in differ-
ent components to take advantage of specialised representations and modelling.
This is the case in BDI-ABM integration as described in [25], where the cognitive
reasoning of the agents is in a different component than the interaction of the
agent with the environment. This raises questions regarding the design of the
agents and what aspects should be in which component. This will always depend
on the particular application and the specifics of the components.

The principle with BDI-ABM agents has always been that reasoning decisions
should be made by the cognitive system, with actions carried out by the ABM.
In practice however this is a fuzzy boundary. As already discussed in Sec. 3, route
planning is a cognitive process, but it is tightly coupled with the representation
7 This software can be accessed at https://github.com/agentsoz/ees-synthetic-

population/tree/master/plan-algorithm.
8 The aim is not to build calibrated populations, but instead build representative

populations that capture sufficient richness of activities while being relatively easy
for domain experts to specify. However this tool is potentially suitable only for
relatively small geographical areas in its current state, as with large scale scenarios,
a random destination choice with a uniform distribution leads to distances that are
too large (in the average half the scenario diameter). Nevertheless it has been useful
for the current applications and is an area of ongoing work.

https://github.com/agentsoz/ees-synthetic-population/tree/master/plan-algorithm
https://github.com/agentsoz/ees-synthetic-population/tree/master/plan-algorithm

MATSim as a Component for Micro-Simulations 99

Fig. 6. Basic design of handling of congestion percept

of the road network. Given that MATSim has route planning as an integral
part of the system it would be a lot of additional work to reproduce this in
the BDI system. It is also the case that as it is MATSim which has detailed
location information regarding agents, it is sometimes MATSim that must receive
information and then channel it to the relevant (BDI) agents. In consequence,
an active design decision needs to be made at which level of abstraction the BDI
model operates. For our present applications, we assume that the BDI model
knows about certain fixed location coordinates (e.g. activity locations), but not
about the road network, or dynamic co-ordinates such as agent location.

When a BDI-action is sent to MATSim, then the BDI goal of which it is
a part is suspended until MATSim returns from that action with completion
status like PASSED or FAILED. We note that failing a BDI action is not the same
as failing a BDI plan, as an action is a plan step (similar to a sub-goal), and
therefore should, like a sub-goal, raise a consideration of alternative options for
achieving success for that action, rather than automatic failure, leading to failure
of the containing plan. We have developed a mechanism to specify (possibly with
some analysis or query regarding the current situation) together with an action,
what should be done if it fails.

Sometimes a percept relevant to a BDI-action may be better provided to the
BDI system as a trigger for reasoning, rather than associated with immediate
success or failure of the BDI-action. This allows the BDI system to reason about
the situation using standard goals and plans with context conditions, in order to
determine what should be done. The BDI action can then be aborted/replaced
if that is considered appropriate.

A simplified example of this situation is shown in Fig. 6 using the detailed
design diagram of the Prometheus agent system design methodology [19]. This
figure shows an evacuate goal which through some series of plans and subgoals
has led to a BDI-action to drive to the evacuation destination. The design spec-
ifies that if a congestion percept arrives (which will happen only while the agent
is engaged in some drive-to), then an appropriate plan is chosen to assess the
situation. Here we show 3 different plans depending on whether the agent is 1.
still in the danger zone, 2. out of the danger zone but far from the destination,
3. close to the destination.

100 D. Singh et al.

If as a result of the reasoning that happens when one of these plans is chosen,
there is a decision that the agent should modify its destination, then the decision
code within the congestion intention9 will abort the drive-to action within the
Evacuate intention. The code for handling this situation will then instantiate a
new drive-to action with the new destination.

Fig. 7. Detailed design of handling of congestion percept

There may be a number of subgoals and further plans associated with the
plans for handling the congestion percept. Figure 7 shows a possible design. Plan
in-danger results in the agent querying MATSim to find a location outside the
danger zone to which there is a faster route (given congestion) than the point
outside the danger zone on the current route. If such exists the agent will register
the new destination and abort the current drive-to action allowing it to be
replaced with a new drive-to action. The new destination will be accessed and
provided as a parameter to the new drive-to. MATSim will then add the route
in standard fashion. The code for failing/aborting the drive-to action for this
case will, in addition to instantiating a new drive-to, need to ensure this is
followed by a choice of final destination once out of the danger zone.

If the out-of-danger plan is chosen the agent may consider either looking for
a new route to the current evacuation destination, or looking for an alternative
destination which is faster to get to, given congestion. Let us assume that the
agent first looks for a better route, by choosing the better-route plan, resulting in
instantiating a new BDI-action to “find-faster-route”. If this has been properly
set up in MATSim as described in Sect. 2.4, then the action will be generated in
MATSim to replace the current route with a faster one if such exists and return
PASSED. At this point the intention triggered by the congestion percept would
complete. If no faster route was found then a FAIL would be returned, in which
case the plan can just be allowed to fail and the standard BDI execution will
9 An intention is simply the code stack resulting from a top-level instantiated goal.

MATSim as a Component for Micro-Simulations 101

lead to the plan new-dest which can consider alternative evacuation destinations.
Depending on the outcome of that reasoning, either a new destination may be
chosen or it may be determined that there is nothing better and no change is
made. The former will result in aborting the current drive-to and instantiating
a drive-to with new destination (as in case (1)), while the latter would simply
terminate with no change. Case (3) may simply be a no-op where the agent does
no further reasoning, as they are anyway close to the destination.

The key aspects that we have identified for design are: (i) percepts should
always be handled by a new separate intention. This may simply alter a belief
that affects a current intention, it may generate a substantial reasoning process
regarding what to do with regards to a current intention, or it may generate new
behaviour unrelated to other current intentions. (ii) any reasoning, other than
that specifically related to route planning or simple locational reasoning, should
be done by the BDI system. (iii) action failures must be handled differently to
plan failures - they are more like goal failures. (Future work should investigate
infrastructure support for high level specification and management of such, in
the same style as is done for goal failure with a search for alternative plans based
on context). (iv) there is a need for aborting an action, which arises from BDI
reasoning, as well as failing an action which arises from the environment. (v)
querying of MATSim may be needed in order to do the BDI reasoning. This is
supported by the BDI-ABM infrastructure of [25].

Agent intentions may also be triggered by messages from another agent. This
happens in the evacuation domain when a policeman “sees” (via a percept from
MATSim) an approaching agent, and directs them to take a particular turn. A
similar approach to that shown with the congestion percept is appropriate. First
generate an intention that reasons about the message, and any effect on current
intention(s). Then modify current intentions as needed.

6 Evaluation

All required functionality as described in Sect. 1 was successfully implemented.
At the same time, the combined system became more streamlined, e.g. by clar-
ifying the interaction between the BDI system and MATSim, mediated via the
Controller (Sect. 2).

Figure 8 shows a view of the Surf Coast Shire bushfire evacuation simulation10

which was built in collaboration with the emergency services. The simulation
contains 10,000 agents to whom a range of daily activities were assigned based
on expert knowledge (as per Sect. 4). The scenario models a bushfire that starts
at 12pm (red shape is fire, blue shape is smoke) and moves in a south-easterly
direction eventually engulfing the township of Anglesea along the Great Ocean
Road. Vehicles can be seen moving about the region (green are travelling at
freespeed, red are slowed by congestion). BDI reasoning causes agents to perform
within-day re-routing in MATSim for a range of reasons including driving to the
10 https://github.com/agentsoz/ees/tree/master/scenarios/surf-coast-shire/populatio

n-subgroups.

https://github.com/agentsoz/ees/tree/master/scenarios/surf-coast-shire/population-subgroups
https://github.com/agentsoz/ees/tree/master/scenarios/surf-coast-shire/population-subgroups

102 D. Singh et al.

location of dependants, driving to chosen evacuation points, and re-planning to
find alternative routes or evacuation locations when delayed in congestion.

Fig. 8. Surf Coast Shire bushfire simulation with 10,000 agents.

0 5 10 15 20 25

2,000

4,000

6,000

Simulation time (hour of day)

M
A
T
Si
m

th
ro
ug

hp
ut

(s
/r
)

MATsim only
Full simulation

Fig. 9. Comparison of MATSim throughput for the Surf Coast Shire bushfire simula-
tion when run in the combined simulation and directly in MATSim.

The work conducted since [17,18,25] and presented here has significantly
improved the runtime for large scenarios. We have made significant improve-
ments that impact performance–such as thread-safety of data structures used–in
all aspects of the BDI-MATSim integration, however these are more difficult to
discuss in the paper. As an example, the Surf Coast Shire simulation of Fig. 8
that contains all the components shown in Fig. 2 runs on a recent-day laptop11

within 3 min. Figure 9 shows the relative performance12 of the combined simu-
lation of Fig. 2 against MATSim alone, for the Surf Coast Shire scenario with
11 Macbook Pro 15,2 with 4 i7 cores (2.7 GHz) and 16GB RAM.
12 The reported metric is the simulation to real time ratio (s/r), i.e. how much faster

than reality the simulation is.

MATSim as a Component for Micro-Simulations 103

10,000 agents. The MATSim-only run was produced by running the simulation
configuration directly in MATSim (since the configuration files are compatible
with MATSim, see Sect. 4). The main difference is that of course in MATSim
there is no bushfire and the population just goes about its day, whereas in the
combined simulation the bushfire commences at 12pm, following which the BDI
agents start to respond by choosing destinations and re-routing as necessary.
We can see that prior to 12pm, the combined simulation is slow by a factor of
about 1.5-2x, and post-12pm by about 5–6x. The majority of slowdown post
commencement of the bushfire at 12pm can be attributed to the extra path
planning that occurs in MATSim due to the BDI agents rerouting.

7 Discussion and Conclusion

In this paper we have described some of the important aspects of MATSim which
facilitate its use as a component in large complex simulations, including some
new extensions and some supporting tools. MATSim is itself a large and complex
system. However, where transport simulation is an important aspect of a larger
micro-simulation it does not make sense to implement a simpler (and likely less
efficient and accurate) alternative. Rather effort should be made to facilitate the
re-use and incorporation of this existing and highly flexible software. The work
described here contributes to this effort.

A number of the aspects described have been motivated by our use of MAT-
Sim as a component in evacuation applications and in an urban planning appli-
cation. We believe that this description will assist others in using MATSim in
similar ways. The key aspects we have described are: (i) Architecture that enables
external control of multiple simulation components. Components must be able
to be started and paused externally. (ii) A well specified API to support addi-
tion of new percepts and actions, as well as the structure within which to do
this. (iii) An ability to modify the environment dynamically, in this case using
dynamic penalties and flexible routers. (iv) Tools to assist in creating a suitable
representative initial scenario for the simulation. (v) Design of cognitive agents
within the BDI-MATSim system.

We also gave examples of how we have used these facilities within evacuation
applications, where requirements were user driven. One of these applications
is currently deployed and the other is expected to be deployed within coming
months.

References

1. Anda, C., Erath, A., Fourie, P.J.: Transport modelling in the age of big data.
Int. J. Urban Sci. 21(sup1), 19–42 (2017). https://doi.org/10.1080/12265934.2017.
1281150

2. Balmer, M., Axhausen, K., Nagel, K.: A demand generation framework for large
scale micro simulations. Transp. Res. Rec. 1985, 125–134 (2006). https://doi.org/
10.3141/1985-14

https://doi.org/10.1080/12265934.2017.1281150
https://doi.org/10.1080/12265934.2017.1281150
https://doi.org/10.3141/1985-14
https://doi.org/10.3141/1985-14

104 D. Singh et al.

3. Balmer, M., Rieser, M., Vogel, A., Axhausen, K., Nagel, K.: Generating day plans
using hourly origin-destination matrices. In: Bieger, T., Laesser, C., Maggi, R.
(eds.) Jahrbuch 2004/05 Schweizerische Verkehrswirtschaft, pp. 5–36, Schweizer
Verkehrswissenschaftliche Gesellschaft (2005)

4. Batty, M.: Fifty years of urban modeling: macro-statics to micro-dynamics. In: The
Dynamics of Complex Urban Systems: An Interdisciplinary Approach, Ascona/Ti-
cino, Switzerland, 4–6 November 2004, p. 27 (2004)

5. Bazzan, A., Amarante, M.D.B.D., Sommer, T., Benavides, A.J.: ITSUMO: an
agent-based simulator for ITS applications. In: Rossetti, R., Liu, H., Tang, S.
(eds.) Proceedings of the 4th Workshop on Artificial Transportation Systems and
Simulation. IEEE, September 2010

6. Bouman, P., Lovric, M.: Rotterdam: revenue management in public transportation
with smart-card data enabled agent-based simulations. In: Horni, A., Nagel, K.,
Axhausen, K.W. (eds.) The Multi-Agent Transport Simulation MATSim, chap. 81.
Ubiquity, London (2016). https://doi.org/10.5334/baw

7. Bruch, E., Atwell, J.: Agent-based models in empirical social research. Sociol.
Methods Res. 44(2), 186–221 (2015)

8. Dahmann, J.S., Kuhl, F., Weatherly, R.: Standards for simulation: as simple as
possible but not simpler: the high level architecture for simulation. Simulation
71(6), 378–387 (1998)

9. Dobler, C., Nagel, K.: Within-day replanning. In: Horni, A., Nagel, K., Axhausen,
K.W. (eds.) The Multi-Agent Transport Simulation MATSim, chap. 30, pp. 187–
200. Ubiquity Press, London (2016)

10. Epstein, J., Axtell, R.: Growing Artificial Societies. MIT Press, Cambridge (1996)
11. Gloor, C., Cavens, D., Nagel, K.: A message-based framework for real-world mobil-

ity simulations. In: Klügl, F., Bazzan, A., Ossowski, S. (eds.) Applications of Agent
Technology in Traffic and Transportation, Whitestein Series in Software Agent
Technologies and Autonomic Computing, pp. 193–209. Birkhäuser, Basel (2005).
https://doi.org/10.1007/3-7643-7363-6 13

12. Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems: a
state of art. Technical report, Fraunhofer ITWM (2001)

13. Horni, A., Nagel, K., Axhausen, K.W. (eds.): The Multi-Agent Transport Simula-
tion MATSim. Ubiquity, London (2016). https://doi.org/10.5334/baw

14. Lämmel, G., Klüpfel, H., Nagel, K.: Risk minimizing evacuation strategies under
uncertainty. In: Peacock, R., Kuligowski, E., Averill, J. (eds.) Pedestrian and Evac-
uation Dynamics, pp. 287–296. Springer, Berlin (2011). https://doi.org/10.1007/
978-1-4419-9725-8 26

15. Message Passing Interface (MPI) web page. https://www.mpi-forum.org. Accessed
2019

16. Nicolai, T.W., Nagel, K.: Coupling MATSim and UrbanSim: software design issues.
SustainCity Working Paper 6.1, also VSP WP 10–13 (2010). http://www.vsp.tu-
berlin.de/publications

17. Padgham, L., Nagel, K., Singh, D., Chen, Q.: Integrating BDI agents into a MAT-
Sim simulation. In: ECAI 2014, pp. 681–686. IOS Press, Prague (2014)

18. Padgham, L., Singh, D.: Making MATSim agents smarter with the Belief-Desire-
Intention framework. In: Horni, A., Nagel, K., Axhausen, K.W. (eds.) The Multi-
Agent Transport Simulation MATSim, chap. 31, pp. 201–210. Ubiquity Press, Lon-
don (2016)

19. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A practical
guide. Wiley Series in Agent Technology. Wiley, Hoboken (2004)

https://doi.org/10.5334/baw
https://doi.org/10.1007/3-7643-7363-6_13
https://doi.org/10.5334/baw
https://doi.org/10.1007/978-1-4419-9725-8_26
https://doi.org/10.1007/978-1-4419-9725-8_26
https://www.mpi-forum.org
http://www.vsp.tu-berlin.de/publications
http://www.vsp.tu-berlin.de/publications

MATSim as a Component for Micro-Simulations 105

20. Protocol Buffers Web. https://developers.google.com/protocol-buffers/. Accessed
2015

21. Rieser, M., Nagel, K., Beuck, U., Balmer, M., Rümenapp, J.: Truly agent-oriented
coupling of an activity-based demand generation with a multi-agent traffic simu-
lation. Transp. Res. Rec. 2021, 10–17 (2007). https://doi.org/10.3141/2021-02

22. Russel, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn.
Pearson Education, Upper Saddle River (2010)

23. Singh, D., Padgham, L.: OpenSim: a framework for integrating agent-based models
and simulation components. In: ECAI 2014, pp. 837–842. IOS Press, Prague (2014)

24. Singh, D., Padgham, L.: Emergency Evacuation Simulator (EES) - a tool for plan-
ning community evacuations in Australia. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence Organization, pp. 5249–
5251, Melbourne, August 2017. https://doi.org/10.24963/ijcai.2017/780

25. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based
simulation platforms. Auton. Agent. Multi-Agent Syst. 30(6), 1050–1071 (2016).
https://doi.org/10.1007/s10458-016-9332-x

26. Strauch, D., et al.: Linking Transport and Land Use Planning: The Microscopic
Dynamic Simulation Model ILUMASS, chap. 20, pp. 295–311. CRC Press, Boca
Raton (2005)

27. W3C: eXtensible Markup Language (XML). World Wide Web Consortium (W3C)
(2008). www.w3.org/XML

28. Waddell, P., Ševč́ıková, H., Socha, D., Miller, E., Nagel, K.: OPUS: an open plat-
form for urban simulation. In: 9th Conference on Computers in Urban Planning and
Urban Management (CUPUM), vol. 428, University College London, UK (2005).
http://128.40.111.250/cupum/searchpapers/detail.asp?pID=428

29. Waddell, P., Borning, A., Noth, M., Freier, N., Becke, M., Ulfarsson, G.: Microsim-
ulation of urban development and location choices: design and implementation of
urbansim. Netw. Spat. Econ. 3(1), 43–67 (2003)

30. Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. The MIT Press (1999)

31. Zilske, M., Nagel, K.: A simulation-based approach for constructing all-day travel
chains from mobile phone data. Procedia Comput. Sci. 52, 468–475 (2015). https://
doi.org/10.1016/j.procs.2015.05.017

https://developers.google.com/protocol-buffers/
https://doi.org/10.3141/2021-02
https://doi.org/10.24963/ijcai.2017/780
https://doi.org/10.1007/s10458-016-9332-x
www.w3.org/XML
http://128.40.111.250/cupum/searchpapers/detail.asp?pID=428
https://doi.org/10.1016/j.procs.2015.05.017
https://doi.org/10.1016/j.procs.2015.05.017

Social Awareness and Explainability

Incorporating Social Practices in BDI
Agent Systems

Stephen Cranefield1(B) and Frank Dignum2,3,4

1 University of Otago, Dunedin, New Zealand
stephen.cranefield@otago.ac.nz

2 Umeå University, Umeå, Sweden
frank.dignum@umu.se

3 Czech University of Technology in Prague, Prague, Czech Republic
frank.dignum@aic.fel.cvut.cz

4 Utrecht University, Utrecht, The Netherlands
f.p.m.dignum@uu.nl

Abstract. When agents interact with humans, either through embodied agents
or because they are embedded in a robot, it would be easy if they could use
fixed interaction protocols as they do with other agents. However, people do not
keep fixed protocols in their day-to-day interactions and the social environment
is often dynamic, making it impossible to use fixed protocols. Deliberating about
interactions from fundamentals is not very scalable either, because in that case
all possible reactions of a human have to be considered in the agent’s plans. In
this paper we argue that social practices can be used as an inspiration for design-
ing flexible and scalable interaction mechanisms that are also robust. However,
using social practices requires extending the traditional BDI deliberation cycle
to monitor landmark states and perform expected actions by leveraging existing
plans. We define and implement this mechanism in Jason using a periodically run
meta-deliberation plan, supported by a metainterpreter, and illustrate its use in a
realistic scenario.

1 Introduction

Imagine the scenario where a disabled person, living alone, is assisted by a care robot.
The robot makes sure that the person gets up every morning and that he drinks some
coffee and takes his morning pills (if needed). Then they read the newspaper together,
which means that the person looks at the pictures in the paper and the robot reads the
articles out loud for the person to hear.

When agents in the role of this type of personal assistant or care robot have to
interact with humans over a longer time period and in a dynamic environment (that is
not controlled by the agent), the interaction management becomes very difficult. When
fixed protocols are used for the interaction they are often not appropriate in all situations
and cause breakdowns and consequent loss of trust in the system. However, to have real-
time deliberation about the best response during the interaction is not very scalable,
because in real life the contexts are dynamic and complex and thus the agent would
need to take many parameters into consideration at each step. Thus we need something
c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 109–126, 2020.
https://doi.org/10.1007/978-3-030-51417-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_6&domain=pdf
http://orcid.org/0000-0001-5638-1648
http://orcid.org/0000-0002-5103-8127
https://doi.org/10.1007/978-3-030-51417-4_6

110 S. Cranefield and F. Dignum

in between a completely scripted interaction that is too brittle and a completely open
interaction that is not scalable.

As we have done before in the agent community, we take inspiration from human
interactions and the way they are managed by individuals. Humans classify situations
into standard contexts in which a certain social practice can be applied. Social science
has studied this phenomenon in social practice theory. Social practice theory comes
forth from a variety of different sub-disciplines of social science. It started from philo-
sophical sociology with proponents like Bourdieu [3] and Giddens [8]. Later on Reck-
witz [16] and Shove [18] have expanded on these ideas, and also Schatzki [17] made
some valuable contributions.

These authors all claim that important features of human life should be understood
in terms of organized constellations of interacting persons, which together constitute
social practices. People are not just creating these practices, but our deliberations are
also based on the fact that most of our life is shaped by social practices. Thus, we use
social practices to categorize situations and decide upon ways of behaviour based on
social practices. The main intuition behind this is that our life is quite cyclic, in that
many activities come back with a certain regularity. We have meals every day, go to
work on Monday until Friday, go to the supermarket once a week, etc. These so-called
Patterns of Life [7] can be exploited to create standard situations and expectations. It
makes sense to categorize recurrent situations as social practices with a kind of standard
behaviour for each of them.

Unfortunately social practice theory has not been widely used in computer science
or in HCI and thus there are no ready-to-use tools in order to incorporate them in agents.
It is clear from the above description that social practices are more than just a proto-
col or a frame to be used by the agent in its deliberation. Therefore, in this paper we
make the following contributions. We propose a mechanism for BDI agents to main-
tain awareness about active social practices, and to leverage their existing plans to act
in accordance with these practices. We focus on these aspects of social practices (dis-
cussed in more detail in Sect. 2): (a) they are relevant in specific contexts, defined in
terms of the actors, resources and places involved; and (b) they are modelled as plan
patterns, structured as a set of partially ordered landmarks, each with an associated pur-
pose (a goal) and a sequence of actions that is a partial prescription for reaching the
landmark.

Our mechanism is presented as a meta-deliberation plan that can be directly exe-
cuted by Jason agents, or treated as a specification for an optimised implementation in
an extended agent platform. This plan has been deployed in the (simulated) care robot
scenario, to confirm that awareness of and adherence to a social practice enables the
robot to have a more successful interaction with the patient over a longer period of
time. As some of the features needed to implement this scenario, and to support our
meta-deliberation plan, are not available in Jason1, we also present a Jason metainter-
preter, which provides this extended functionality, but can also be used independently
to support other research on extensions to BDI practical reasoning.

1 These features are finding a plan for a goal that ensures a given action is performed, and
support for durative and joint actions.

Incorporating Social Practices in BDI Agent Systems 111

In the next section, we give an introduction to the purpose and structure of social
practices. Section 3 elaborates on the care robot scenario and how we have modelled it
in Jason. Section 4 describes the role of social practices in this scenario, and discusses
the requirements this imposes for a BDI agent. Section 5 presents our mechanism for
extending Jason to leverage social practices, and the metainterpreter needed to support
this. We finish the paper with some conclusions and suggestions for future work.

2 Social Practices

Social practices are defined as accepted ways of doing things, contextual and materially
mediated, that are shared between actors and routinized over time [16]. They can be
seen as patterns that can be filled in by a multitude of single and often unique actions.
Through (joint) performance, the patterns provided by the practice are filled out and
reproduced.

According to Reckwitz [16] and Shove et al. [18], a social practice consists of three
parts:

– Material: covers all physical aspects of the performance of a practice, including the
human body and objects that are available (relates to physical aspects of a context).

– Competence: refers to skills and knowledge that are required to perform the practice
(relates to the notion of deliberation about a situation).

– Meaning: refers to the issues which are considered to be relevant with respect to
that material, i.e. understandings, beliefs and emotions (relates to social aspects of a
situation).

Let us consider these three parts of a social practice in the scenario of the care
robot scenario introduced in Sect. 1. Material refers to the room where the robot serves
morning coffee for the disabled person. It includes the materials that are needed to
make coffee (such as coffee and a coffee maker) and serve it (such as a cup and tray).
However, it also includes the table and other furniture in the room, the newspaper (if
present), the TV, radio, computer, tablet, and the robot and person (and possible other
people that may be present).

Competence describes the activities every party can perform and expectations about
what they will actually do. For example, the robot is capable of making coffee and serv-
ing it. The person can drink his coffee by himself. They can jointly read the newspaper
or watch TV. The expectation is that the robot wakes the person if he is not awake yet,
makes the coffee and gives it to the person. After that they will read the newspaper
together to provide mental stimulation. Note, these are expectations, not a protocol. So,
parties can deviate from it and they can also fill the parts in, in ways they see fit best.

Meaning has to do with all the social interpretations that come with the social prac-
tice, e.g. drinking coffee in the morning might give the person a sense of well-being that
he can use to face the challenges of the rest of the day. When the coffee is cold or weak
the person might interpret it as disinterest on the part of the robot in his well-being. The
goal of reading the newspaper might also be not just to get the information from it, but
a form of entertainment and feeling related to the robot, because the human and robot
are doing something together.

112 S. Cranefield and F. Dignum

From the above description it can already be seen that social practices are more
encompassing than conventions and norms. Conventions focus on the strategic advan-
tage that an individual gets by conforming to the convention. The reason to follow
a convention is that if all parties involved comply, a kind of optimal coordination is
reached, i.e. if we all drive on the left side of the road, traffic will be smoother than
when everyone chooses the side to drive on freely. Thus, conventions focus on the
actual actions being performed and how they optimize the coordination. Social prac-
tices focus on common expectations and ways to achieve them. For example, if we go
to a presentation, we sit down as soon as we see chairs standing in rows in the room.
However, we could also keep standing (as is often done outside).

Social practices are also different from norms. Norms usually dictate a very specific
behaviour rather than creating a set of loosely coupled expectations as is the case for
social practices. For example, if the norm states that a car has to stop for a red light, it
gives a very specific directive. If a norm is more abstract (like “drive carefully”) then
we need to translate this into concrete norms for specific situations.

One framework that seems very close to social practices is the notion of scripts.
However, social practices are not just mere scripts in the sense of Minsky [14]. Prac-
tices are more flexible than the classical frames defined by scripts, in that they can be
extended and changed by learning, and the “slots” only need to be filled in as far as
they are needed to determine a course of action. Using these structures changes plan-
ning in many common situations to pattern recognition and filling in parameters. They
support, rather than restrict, deliberation about behaviour. For example, the social prac-
tice of “going to work” incorporates usual means of transport that can be used, timing
constraints, weather and traffic conditions, etc. Normally you take a car to work, but if
the weather is exceptionally bad, the social practice does not force the default action,
but rather gives input for deliberation about a new plan in this situation, such as taking
a bus or train (or even staying home). Thus, social practices can be seen as a kind of
flexible script. Moreover, scripts do not incorporate any social meaning for the activities
performed in them as social practices do.

Social practices have been used in applications in a variety of ways. In [12,15]
they have been used as part of social simulations. In those applications, social practices
are used as a standard package of actions with a special status. Thus individuals can
use them with a certain probability given the circumstances are right. However, these
applications do not use the internal structure of social practices for the planning of the
individuals. Social practices have been used for applications in natural language and
dialogue management in [1,9]. Here, the social practices are used to guide the planning
process, but are geared towards a particular dialogue rather than as part of a more gen-
eral interaction. In [13] it is shown how social practices can be used by a traditional
epistemic multi-agent planner to provide efficient and robust plans in cooperative set-
tings. However, in this case the planner was not part of a BDI agent with its own goals
and plans, but completely dedicated to finding a plan for the situation at hand. In [6]
a first structure of social practices was presented that is more amenable for the use by
agents. The paper is only conceptual and no implementation was made yet. In this paper
we will follow the structure described in [6]. However, we mainly concentrate on the

Incorporating Social Practices in BDI Agent Systems 113

plan patterns that are a core part of the social practices and show how they work with
BDI agents in the Jason platform.

The complete structure for social practices (based on [6]) is as follows:

Context

– Roles describe the competencies and expectations about a certain type of actor.
Thus the robot is expected to be able to make a cup of coffee.

– Actors are all people and autonomous systems involved, that have capability to
reason and (inter)act. This indicates the agents that are expected to fulfil a part
in the practice. In our scenario, these are the robot and the person.

– Resources are objects that are used by the actions in the practice, such as cups,
coffee, trays, curtains, and chairs. So, they are assumed to be available both for
standard actions and for the planning within the practice.

– Affordances are the properties of the context that permit social actions and
depend on the match between context conditions and actor characteristics. For
example, the bed might be used as a chair, or a mug as a cup.

– Places indicates where all objects and actors are usually located relative to each
other, in space or time: the cups are in the cupboard in the kitchen, the person is
in the chair (or in bed), etc.

Meaning

– Purpose determines the social interpretation of actions and of certain physical
situations. For example, the purpose of reading the newspaper is to get informa-
tion about current affairs and to entertain the person.

– Promotes indicates the values that are promoted (or demoted, by promoting the
opposite) by the social practice. Giving coffee to the person will promote the
value of “caring”.

– Counts-as are rules of the type “X counts as Y in C” linking brute facts (X) and
institutional facts (Y) in the context (C). For example, reading the newspaper
with the person counts as entertaining the person.

Expectations

– Plan patterns describe usual patterns of actions defined by the landmarks that
are expected to occur (states of affairs around which the inter-agent coordination
is structured). For example, the care robot first checks if the person is awake then
makes sure there is coffee served. Landmarks are usually very naturally given
by the people involved. They describe a social practice in terms of the phases
of which it consists and use the landmarks to denote fixed points that have to be
reached before the next phase can start.

– Norms describe the rules of (expected) behaviour within the practice. For exam-
ple, the robot should ask the person if he wants coffee, before starting to make
it.

– Strategies indicate condition-action pairs that can occur at any time during the
practice. For example, if the person drops the coffee, the robot will clean it up.
If the robot notices the person is asleep (again) it will try to wake him.

114 S. Cranefield and F. Dignum

– A Start condition, or trigger, indicates how the social practice starts, e.g. the
practice of having morning coffee starts at 8 am.

– A Duration, or End condition, indicates how the social practice ends, e.g., the
morning routine takes around 45min and ends when the newspaper is read and
the coffee is finished.

Activities

– Possible actions describe the expected actions of actors in the social practice,
e.g. making coffee, reading the newspaper, and opening curtains.

– Requirements indicate the type of capabilities or competences that the agent is
expected to have in order to perform the activities within this practice. For exam-
ple, the robot is expected to know how to make coffee and read the newspaper.

In [5] there is a first formalization of all these aspects based on dynamic logic. Due
to space limitations we will not include this formalization here, but just discuss a few
points that are important for the current implementation of social practices in Jason.
The core element of the social practice for an agent is the plan pattern, which gives it
handles to plan its behaviour. Plan patterns are parallel, choice or sequential combina-
tions of plan parts expressed as γφ. These plan parts stand for all possible sequences
of actions γ that contain actions contributing towards the achievement of φ (starting
from a particular situation). φ is the purpose of that part of the practice. There can be
more effects, but they are not all specified. So, in our morning routine practice, the plan
pattern can be defined as γ1φ1; (γ2φ2&γ3φ3); γ4φ4, where φ1 denotes the person being
awake, φ2 denotes the coffee being served, φ3 denotes the pills being taken, and φ4

denotes the person being mentally stimulated.
Thus, the purpose of the first part of the morning routine is that the person is awake.

This might be done by opening the curtains, making a loud noise, or otherwise. If the
purpose is achieved by opening the curtains, not only is the person awake, but the cur-
tains are also open. The latter is merely a side effect of achieving the purpose.

Two more things should be noted about these patterns. One is that the overall pat-
tern is supposed to achieve the overall purpose of the social practice. This is a formal
constraint, but we only treat this implicitly. The other is that after a part of the plan pat-
tern is finished, it automatically triggers the start of the next part of the pattern. In the
full formalism this is assured, but is not explicit from only this fragment. In the same
way, a social practice is started when the start condition becomes true. It then becomes
available for execution and can be used by any agent present in the situation.

Finally, the formalism of social practices also guarantees that there is a common
belief in the elements of the social practice and if actions are taken everyone has at least
a common belief about the effects in as far as they are important for the social practice.
Thus it guarantees a common situation awareness.

3 The Care Robot Scenario

In this section we elaborate on the care robot scenario outlined in the introduction, and
describe how we have modelled and implemented it using Jason.

Incorporating Social Practices in BDI Agent Systems 115

We assume the high-level operation of the robot is based on a BDI interpreter, and
that it comes equipped with goals and plans to trigger and enact its care activities (most
likely with some customisation of key parameters possible). In this section, we consider
only a small subset of the robot’s duties: to wake the patient at a certain time in the
morning, to provide coffee as required, and to provide mental stimulation. We do not
specify any goals of the robot outside the practice here, but normally the care robot
would also have its own goals such as powering its battery, cleaning a room and taking
care of the health of the patient.

Social practices provide patterns of coordination for multiple agents in terms of
landmark states rather than explicit sequences of actions. Therefore they do not make
limiting assumptions about the temporal aspects of actions and their effects leading
up to a landmark. Only the landmarks themselves are explicitly temporally ordered.
Monitoring of landmark states is necessarily decoupled from the performance of
actions, as reaching a landmark may depend on another agent or agents, or may be
the result of a delayed effect of an action. To provide a non-trivial test case, we include
some temporal complexity in the scenario by including durative actions (i.e. those that
take place across an interval of time), an action with a delayed effect, and a joint durative
action, which has its desired effect only if two participants perform it during overlap-
ping time intervals. Durative and joint actions are implemented using a Jason metain-
terpreter2 that is described in Sect. 5. To simulate the passing of time, we use a “ticker”
agent with a recursive plan that periodically performs a tick action to update the time
recorded in the environment. We use Jason’s synchronous execution mode, so the robot,
patient and ticker agents perform a single reasoning cycle in every step of the simula-
tion.

Listing 1 shows the robot’s initial beliefs, rules and plans. The plans in lines
22–41 have declarative goals (i.e. their triggering goals express desired states) and use
Jason preprocessing directives to transform them according to a predefined declarative
achievement goal pattern [2].

The first set of plans (lines 22–26) is for achieving a state where the patient is
awake, with alternative plans for talking to the patient, shaking him, and opening the
curtains and waiting for the light to wake him. The exclusive backtracking declarative
goal (“ebdg”) pattern specifies that additional failure-handling logic should be added to
ensure that all the plans will be tried (once each) until the goal is achieved, or all plans
fail. Opening the curtains has a delayed effect: it will eventually wake the patient3.

The second set of plans (lines 28–33) handles the goal of having the patient mentally
simulated, and also uses the ebdg pattern. The first plan waits for the patient to be awake,
and then fails so that the other plans will be tried. The other two alternatives involve
playing the music of Mozart to the patient, and initiating the joint action of reading the
newspaper with the patient. As joint actions are not directly supported by Jason, line 32
calls this action via a solve goal that is handled by our metainterpreter.

2 A metainterpreter is a programming language interpreter written in the same, or a similar, lan-
guage to the one being interpreted. It can be used to prototype extensions to the base language.

3 Actions are implemented in Jason by defining an execute method in a Java class modelling the
environment. The delay is currently hard-coded in this class.

116 S. Cranefield and F. Dignum

1 /* Initial beliefs and rules */
2 durative(makePodCoffee).
3 durative(readNewspaper).
4 joint(readNewspaper).
5 durative_action_continuation_pred(readNewspaper, continueReadingNewspaper).
6 durative_action_continuation_pred(makePodCoffee, continueMakingPodCoffee).
7 durative_action_cleanup_goal(readNewspaper, cleanupReadNewspaper).
8 continueReadingNewspaper :-
9 started(readNewspaper, T1) &
10 not started_durative_action(readNewspaper, patient, _) &
11 time(T2) &
12 T2 <= T1 + 20.
13 continueReadingNewspaper :-
14 started_durative_action(readNewspaper, patient, _) &
15 not stopped_durative_action(readNewspaper, patient, _).
16

17 continueMakingPodCoffee :- state(coffee, not_made).
18

19 wake_up_phrase("Good morning sleepyhead!").
20

21 /* Plans */
22 {begin ebdg(state(patient,awake))}
23 +!state(patient,awake) : wake_up_phrase(P) <- talkToPatient(P).
24 +!state(patient,awake) <- shakePatient.
25 +!state(patient,awake) <- openCurtains; .wait(state(patient, awake), 30000).
26 {end}
27

28 {begin ebdg(state(patient,mentally_stimulated))}
29 +!state(patient, mentally_stimulated) <- .wait(state(patient, awake)); .fail.
30 +!state(patient, mentally_stimulated) <- play_mozart.
31 +!state(patient, mentally_stimulated) <-
32 !solve({ readNewspaper[participants([patient,robot])] }).
33 {end}
34

35 +!state(coffee, served) <- !state(coffee, made); serveCoffee.
36

37 {begin ebdg(state(coffee,made))}
38 +!state(coffee, made) : resource(coffee_pods) & resource(coffee_pod_machine) <-
39 makePodCoffee; .wait(state(coffee, made), 10000).
40 +!state(coffee, made) : resource(instant_coffee) <- makeInstantCoffee.
41 {end}
42

43 +performing_durative_action(Act, Agent, Time) :
44 not started_durative_action(Act, Agent, _) <-
45 // Cache percept as a belief
46 +started_durative_action(Act, Agent, Time).
47

48 +stopped_durative_action(Act, StoppedParticipant, Time)[source(percept)] <-
49 // Cache percept as a belief
50 +stopped_durative_action(Act, StoppedParticipant, Time);
51 -started_durative_action(Act, StoppedParticipant, Time).
52

53 +!cleanupReadNewspaper <-
54 -stopped_durative_action(readNewspaper, _, _)[source(self)].
55

56 { include("metainterpreter.asl") }

Listing 1. Plans for the care robot domain

These plans are followed by a single plan for serving coffee. This has the subgoal
of having the coffee made, and then the action of serving the coffee is performed.

The fourth set of plans (lines 37–41) is triggered by the goal of reaching a state in
which the coffee is made. The options are to use a coffee pod machine and wait for it to
finish, or to make instant coffee.

Incorporating Social Practices in BDI Agent Systems 117

The environment sends a percept to all participants of a joint action when any other
participant performs the action for the first time or performs a stop action with the joint
action as an argument. The remaining three plans handle receipt of these percepts, and
a belief ‘clean-up’ goal that is created by the metainterpreter (if the agent declares that
it has one—see line 7) when the agent stops performing a joint action.

The initial segment of the listing contains initial beliefs and rules related to the
processing of durative actions: declarations of which actions are declarative and/or joint,
and of predicates and associated rules defining the circumstances in which the robot will
continue performing the durative actions.

In a real scenario, the patient will be a human, not a BDI agent, but we simulate the
patient using a Jason agent. “He” (the patient agent) has a plan to take his pills once he
is awake. He also has a plan that will respond to the robot beginning the joint newspaper
reading action by also beginning that action. He will continue reading the newspaper
for 40 time units if he is in a good mood, but only 20 if he is in a bad mood. Being
woken by daylight (after the curtains are opened) leaves him in a good mood; being
shaken awake leaves him in a bad mood, and talking will not wake him up. Thus, if the
robot begins with goals to have the patient awake and mentally stimulated, the patient
will be left in a bad mood by being shaken awake and the newspaper reading will be
shorter (and less stimulating) than if he were in a good mood.

4 A Care Robot with Social Practices

Section 3 introduced the care robot scenario. In this section, we consider how the robot
could be enhanced using social practices. We focus on the robot’s awareness of a social
practice’s context, and its temporal structure as a partially ordered set of landmarks,
each described in terms of a purpose and a sequence of actions to be performed4.

As noted previously, it is assumed that the robot comes equipped with appropriate
goals and plans, and that it is possible to customise certain parameters such as the
time the user likes to wake up, and the time and style of coffee that he likes to have.
However, customising each plan in isolation will not easily provide the coordination
between activities and dynamic adaptability to different contexts that can be provided
by social practices. To perform most effectively, the robot should choose, for a given
context, the plans for each goal that will achieve the best outcomes for the patient,
and furthermore, consider constraints on goal orderings that arise from preferences and
habit. For example, if the patient prefers to be woken at a certain time in a given context
(e.g. when his family is due to visit) and/or in a certain way (e.g. by the curtains being
opened), his mood is likely to be adversely affected if he is woken at a different time,
and his engagement with subsequent activities (such as reading the newspaper together)
may be reduced. In this section we describe how this type of contextual information can
be addressed by the use of a social practice.

In Sect. 3, we described the various plans and actions available to the robot. We now
assume that the following “morning routine” social practice has emerged5. We present
this as a set of beliefs in the form used by our social practice reasoning plans that will be

4 Currently we only handle a single action for each landmark.
5 It is beyond the scope of this paper to consider how social practices might be learned.

118 S. Cranefield and F. Dignum

discussed in Sect. 5. Note that we only illustrate a small subset of what would be likely
to be a real morning routine for a patient and his/her care robot, but this is sufficient to
highlight the nature of social practices and their relation to BDI agents.

social_practice(morningRoutine,
[state(location, home), resource(coffee_pods), resource(coffee_pod_machine),
resource(pills), resource(newspaper_subscription),
(time(T) & T < 1200)]).

landmark(morningRoutine, pa, [],
[action(robot, openCurtains)], state(patient, awake)).

landmark(morningRoutine, pt, [pa],
[action(patient, takePills)], state(pills, taken)).

landmark(morningRoutine, cs, [pa],
[action(robot, makePodCoffee)], state(coffee, served)).

landmark(morningRoutine, ms, [pt,cs],
[action([robot,patient], readNewspaper)], state(patient, mentally_stimulated)).

The first belief above encodes the name of the social practice and a list of conditions
that must all hold for it to become active: there are constraints on the location, the
resources available, and the time (here, the number 1200 is a proxy for some real-world
time that ends the morning routine period).

The other four beliefs model the landmarks, specifying the social practice they are
part of, an identifier for the landmark, a list of landmarks that must have been reached
previously, a list of actions and their actors that are associated with the landmark, and
finally, a goal that is the purpose of the landmark. The landmarks are: (1) to have the
patient awake due to the robot opening the curtains, (2) for the patient to have taken his
pills, (3) to have the coffee served, which should involve the robot making pod coffee,
and (4) for the patient to be mentally stimulated due to the newspaper being read jointly.
These landmarks are partially ordered with 1 before 2 and 3, which both precede 4.

Comparing this social practice to the robot plans shown in Listing 1, it can be seen
that it avoids an ineffective attempt to wake the patient by talking to him, and prevents
him from being left in a bad mood after being shaken awake. It agrees with the first-
ordered plan for making coffee (by making pod coffee), and avoids an ill-fated attempt
by the robot to provide mental stimulation by playing Mozart. Furthermore, it specifies
an ordering on these activities that is not intrinsic to the plans themselves. Note also,
that the social practice does not provide complete information on how to reach the
landmark of having coffee served: it indicates that the robot should make pod coffee, but
doesn’t specify the action of serving the coffee. While a planning system could deduce
the missing action using a model of actions and their effects [13], a BDI agent does
not have this capability. Instead, a BDI agent using social practices must reason about
how its existing plans could be used to satisfy landmarks given potentially incomplete
information about the actions it must perform.

Furthermore, the robot may already have goals to wake the patient, provide mental
stimulation, etc., and the activation of a social practice should not create independent
instances of those goals. Thus, the activation of a social practice should override the
agent’s normal behaviour (for the relevant goals) during the period of activation.

As social practices are structured in terms of ordered landmarks, which model
expected states to be reached in a pattern of inter-agent coordination, it is necessary

Incorporating Social Practices in BDI Agent Systems 119

for the agent to monitor the status of landmarks once their prior landmarks have been
achieved, and to actively work towards the fulfilment of the current landmarks for which
it has associated actions. In the next section, we present a meta-deliberation cycle for
Jason agents that addresses this and the other issues outlined above, and which enables
the successful execution of our care robot enhanced with social practices.

5 Implementation

5.1 Meta-level Reasoning About Social Practices

Maintaining awareness of social practices (SPs), and contributing to them in an appro-
priate way, requires agents to detect when each known social practice becomes active or
inactive, to monitor the state of the landmarks in an active social practice, and to trigger
the appropriate activity if an active SP has an action for the agent associated with the
current landmark. This is a type of meta-level reasoning that the agent should perform
periodically, and it may override the performance of any standard BDI processing of
goals, which is not informed by social practices. We note that, on an abstract level,
the same was done in [1] where the plan pattern was translated into a global pattern in
Drools (Java based expert system) and the specific interactions within each phase were
programmed in a chatbot.

The question then arises of how best to implement such a meta-level reasoner in
a BDI architecture. The best performance can, no doubt, be achieved by extending a
BDI platform using its underlying implementation language. However, it would require
a change of the basic deliberation cycle to include not only reasoning about goals,
plans and intentions, but also taking into account the social practice context. Thus,
this approach requires significant knowledge of the implementation and requires using
an imperative coding style that is not best suited to reasoning about goals [10] and for
rapid prototyping and dissemination of new reasoning techniques. Therefore, in this
work we define the meta-level reasoner as a plan for a metadeliberate goal that
reasons about social practices, sleeps and then calls itself recursively. This, and some
other plans it triggers, are shown in Listing 2. The plans make use of some extensions
to Jason, handled by a metainterpreter that is described in the following subsection6.

The social practice reasoner runs in response to the goal metadeliberate (line
10 in Listing 2). Lines 13 to 31 show the plan for this goal. The atomic annotation
on the plan label ensures that steps of this plan are not interleaved with steps of other
plans. The plan begins by (re)considering which social practice (if any) should be active.
It uses the rules in lines 3 to 7 to find social practices that are relevant (i.e. all their
requirements hold), and to select one (currently, the first option is always selected). If
none are relevant (lines 17–20), any existing belief about the currently selected social
practice is retracted. Otherwise (lines 21–29), if the selection has changed, the belief
about the selection is updated. Any monitored landmarks are then checked to see if
their purpose has been fulfilled (lines 26–28). If so, a belief about their completion is
added. The plan then sleeps for a period, before triggering itself to be re-run in a new
intention (lines 30–31). The new intention is needed for the recursive call because the
plan is atomic, and the agent’s other plans must be allowed to run.
6 See https://github.com/scranefield/jason-social-practices for source code.

https://github.com/scranefield/jason-social-practices

120 S. Cranefield and F. Dignum

1 /* Rules */
2 // Omitted: has_plan_generating_action/3 and for_all/1
3 relevant_sp(SP) :-
4 social_practice(SP, Requirements) & forall(Requirements).
5 sp_selection(Options, CurrentSP) :-
6 selected_sp(CurrentSP) & .member(CurrentSP, Options).
7 sp_selection([SP|_], SP).
8

9 /* Initial goal */
10 !metadeliberate.
11

12 /* Plans */
13 @metaplan[atomic]
14 +!metadeliberate <-
15 .findall(SP, (relevant_sp(SP) & not completed_sp(SP)),
16 RelevantSPs);
17 if (RelevantSPs == []) {
18 if (selected_sp(CurrentlySelectedSP)) {
19 -selected_sp(CurrentlySelectedSP)
20 }
21 } else {
22 if (sp_selection(RelevantSPs, SelectedSP) &
23 not selected_sp(SelectedSP)) {
24 -+selected_sp(SelectedSP)
25 }
26 for (monitored(Purpose, SP, ID)) {
27 if (Purpose) { +completed_landmark(SP, ID, Purpose) }
28 }
29 }
30 .wait(500);
31 !!metadeliberate.
32

33 +selected_sp(SP) <-
34 for (landmark(SP, ID, _, _, Purpose)) {
35 PurposeNoAnnots[dummy] = Purpose[dummy];
36 if (.intend(PurposeNoAnnots)) {
37 .suspend(PurposeNoAnnots);
38 +suspended_intention(SP, ID, PurposeNoAnnots)
39 }
40 .add_plan({@suspend_purpose(SP,ID)
41 +!PurposeNoAnnots <- .suspend(PurposeNoAnnots)},
42 landmark(SP,ID), begin)
43 }
44 for (landmark(SP, ID, [], Actions, Purpose)) {
45 !activate_landmark(SP, ID, Actions, Purpose)
46 }.
47

48 @activate_landmark[atomic]
49 +!activate_landmark(SP, ID, Actions, Purpose) <-
50 PurposeNoAnnots[dummy] = Purpose[dummy];
51 +monitored(PurposeNoAnnots, SP, ID)
52 if (Actions = [action(Actors, Act)] &
53 (Actors = Me | (.list(Actors) & .member(Me, Actors)))) {
54 if (has_plan_generating_action({+!Purpose}, Act, Path)) {
55 !!solve({ !Purpose }, Path)
56 } elif (joint(Act)) {
57 !!solve({ Act[participants(Actors)] })
58 } elif (durative(Act)) {
59 !!solve({ Act })
60 } else { Act }
61 } else { .print("Multiple actions are not yet supported"); }.
62

Listing 2. Rules and plans for social practice reasoning

Incorporating Social Practices in BDI Agent Systems 121

63 @completed_landmark[atomic]
64 +completed_landmark(SP, ID, Purpose) <-
65 .succeed_goal(Purpose);
66 -monitored(Purpose, SP, ID);
67 .remove_plan(suspend_purpose(SP,ID));
68 for (landmark(SP, ID2, PrecedingLMs, Actions, Purpose2) &
69 not completed_landmark(SP, ID2, _) &
70 .findall(PrecID, (.member(PrecID, PrecedingLMs) &
71 completed_landmark(SP, PrecID, _)),
72 CompletedPrecIDs) &
73 .difference(PrecedingLMs, CompletedPrecIDs, [])) {
74 !activate_landmark(SP, ID2, Actions, Purpose2)
75 }
76 .findall(ID2, (landmark(SP, ID2, _, _,_) &
77 not completed_landmark(SP, ID2, _)),
78 PendingLandmarks);
79 if (PendingLandmarks == []) { +completed_sp(SP) }.

Listing 2. Rules and plans for social practice reasoning (continued)

A new belief about a selected social practice is handled by the plan in lines 33–46.
This loops through the landmarks to check if the agent already has intentions to achieve
any of their purposes7. If so, these intentions are suspended, and this is recorded in a
belief so the intentions can be later marked as successful if the landmark is completed
(see line 67). A plan is also temporarily added (lines 40–42) to ensure that if some
other active plan of the agent separately creates this intention, it will be immediately
suspended (the new plan is placed before any existing plans for that goal). For each
landmark in the social practice that has no prior landmarks, a goal is created to activate
it (lines 44–46).

Landmark activations are handled by the plan in lines 48–61. A belief recording that
the landmark’s purpose should be monitored is added, then the action associated with
the landmark is processed (only a single action is supported currently). If the action is
to be performed by the agent, three options are considered. First (line 54), a query is
made to find a solution for achieving the landmark’s purpose that involves performing
the specified action. A set of rules (not shown) handle this query by searching for the
action recursively (up to a prespecified depth bound) through the plans that achieve the
purpose, and the subgoals in those plans, and so on8. Context conditions are checked
for the top level plans (those for the landmark’s purpose), but not for the recursive calls,
as, in general, it cannot be known how the state of the world will change as these plans
are executed. If such a solution is found, it is recorded as a goal-plan tree “path” (see
Sect. 5.2) and passed to our Jason metainterpreter via a solve goal (line 55). If no such
solution is found, and the action is joint, or durative but not joint, the metainterpreter is
called to handle this (lines 57 and 59). Otherwise, the action is performed directly (line
60). Note that this plan is declared to be executed atomically (line 48). This prevents
steps of the agent’s other plans from being interleaved with this one, and thus ensures
the landmark is activated promptly. To ensure that other plans can run again once the
correct course of action has been identified by this plan, the calls to the metainterpreter
are created as a separate intention (using “!!”).

7 The unifications in lines 35 and 50 instantiate the variable on the left with the value of the
variable on the right, but with any Jason annotations removed.

8 At present we assume that the plan body will contain only one achievement subgoal.

122 S. Cranefield and F. Dignum

1 // Solve plan body, with optional path through the goal-plan tree
2 // Example goal: !solve({action; ?test(X); !g})
3 +!solve(PlanBody) <- !solve(PlanBody, no_path).
4

5 +!solve({}, _).
6 +!solve({BodyTerm;BodyTerms}, Path) <-
7 !solve_bt(BodyTerm, Path);
8 !solve(BodyTerms, no_path). // Path is applied to first body term only
9

10 // Solve body term
11 +!solve_bt(G, _)
12 : .member(G, [test(_), addBel(_), delBel(_), internalAction(_)]) <- G.
13 +!solve_bt(achieve(solve(PB)), Path) <- !solve(PB, Path).
14 +!solve_bt(achieve(G), Path) <-
15 .relevant_plans({+!G}, RPlans);
16 if (.list(Path) & Path = [N|PathTail]
17 & .nth(N, RPlans, plan(Label,_,Context,PlanBody))
18 & Context) {
19 !solve(PlanBody, PathTail);
20 } else {
21 !applicable_plans(RPlans, [plan(Label,_,_,PlanBody)|_]);
22 !solve(PlanBody, Path);
23 }.
24 // Handle durative action
25 +!solve_bt(BT, _) :
26 BT = action(A) & NoAnnotsA[dummy] = A[dummy] & durative(NoAnnotsA) <-
27 ?durative_action_continuation_pred(NoAnnotsA, Query);
28 if (durative_action_cleanup_goal(NoAnnotsA, CleanupGoal)) {
29 CUGoal = CleanupGoal;
30 } else {
31 CUGoal = true;
32 }
33 if (joint(NoAnnotsA) & NoAnnotsA[participants(P)] = A) {
34 ParticipantsAnnot = [participants(P)];
35 } else {
36 ParticipantsAnnot = [];
37 }
38 AnnotatedA = NoAnnotsA[durative|ParticipantsAnnot];
39 .term2string(AnnotatedA, S);
40 .concat("{", S, "}", BodyTermString);
41 .term2string(AnnotatedBT, BodyTermString);
42 AnnotatedBT;
43 ?time(T); // Must be supplied as a percept from the environment
44 -+started(NoAnnotsA, T)[source(meta)];
45 !solve_durative(Query, AnnotatedBT, NoAnnotsA, ParticipantsAnnot, CUGoal).
46 // Handle non-durative action
47 +!solve_bt(ActionGoal, _) : ActionGoal = action(_) <- ActionGoal.
48

49 +!solve_durative(Query, ActionBT, Action, ParticipantsAnnot, CleanupGoal) <-
50 if (Query) {
51 ActionBT;
52 !solve_durative(Query, ActionBT, Action, ParticipantsAnnot, CleanupGoal);
53 } else {
54 stop(Action)[durative|ParticipantsAnnot];
55 if (CleanupGoal \== true) { !CleanupGoal; }
56 }.
57 -!solve_durative(_, _, Action, _, _) <- -started(Action, _).
58

59 @applicable_plans[atomic]
60 +!applicable_plans([], []).
61 +!applicable_plans([P|T], [P|T2]) : P = plan(_,_,C,_) & C <-
62 !applicable_plans(T, T2).
63 +!applicable_plans([P|T], T2) : P = plan(_,_,C,_) & not C <-
64 !applicable_plans(T, T2).

Listing 3. A Jason metainterpreter

Incorporating Social Practices in BDI Agent Systems 123

Finally, the plan in lines 63–79 handles completed landmarks—those for which the
purpose has been achieved. Any suspended intentions for the purpose are succeeded,
the belief stating that the landmark should be monitored is retracted, and the temporary
plan added in lines 40–42 is removed. The plan then checks for subsequent landmarks
that should now be activated (if all their prior landmarks are completed), and finally
adds a belief that the social practice has completed if all its landmarks are completed.
Another plan (not shown) is needed to handle social practices that become inactive
when their relevance conditions cease to hold. In this case, any active landmarks should
be abandoned, and original intentions to achieve their purposes can be resumed.

5.2 A Jason Metainterpreter

Listing 3 shows our Jason metainterpreter9, which extends the AgentSpeak metainter-
preter defined byWinikoff [19], and specialises it for use with Jason. Themetainterpreter
is initiated by calling asolve goal with a Jason plan body {g1, · · · , gn} as an argument,
where the gi may be of the various types of goals and actions that Jason supports, such
as test goals (queries to the belief base), belief additions and deletions, achievement
goals that trigger plans, and actions that may be internal (built-in or user-defined) or
external (defined by the environment). An additional Path argument, explained below,
may also be supplied. The plans in lines 5–8 sequentially create solve_bt subgoals
for each body term (“bt” for short) in the plan body, and these are handled by the plans
in lines 11–47. For test goals, belief additions and deletions, and internal and (stan-
dard) external actions, lines 11–12 and 47 call these body terms directly to invoke the
standard Jason interpreter. Line 13 ensures that the metainterpreter can handle plans
containing solve subgoals to explicitly make use of the meta-interpreter’s extensions.
The remaining plans provide extended BDI semantics, as outlined below.

– As explained in Sect. 5.1, when a landmark in a social practice includes an action
associated with the current agent, the plan to activate a landmark attempts to find an
existing set of plans that can achieve the landmark’s purpose while also including
the specified action. This is a recursive search through plans and their subgoals,
and it results in a pre-selected path through the goal-plan tree [11] representing the
search space for satisfying the landmark’s purpose. This differs from the standard
Jason goal execution mechanism, in which a set of relevant plans (those triggered
by a goal matching the current one) is determined, these are filtered by evaluating
the plans’ context conditions to produce the applicable plans, and one is selected
to be executed (the first-listed one, by default). This process is then repeated for
each subgoal appearing in the body of a plan being executed. This standard process
will not guarantee that the landmark’s associated action will be performed. Thus,
the metainterpreter allows a predetermined goal-plan tree path to be passed as an
optional argument to a solve goal (see line 55 in Listing 2), to guide it directly
to the pre-chosen subplans, and eventually the desired action. This feature is useful
for plan pre-selection in other meta-reasoning contexts as well, e.g. choosing plans
based on their effect on the values of a human user [4]. If no path is provided as

9 The metainterpreter requires version 2.4 of Jason.

124 S. Cranefield and F. Dignum

an argument to solve, a default value of no_path is used (line 3 of Listing 3).
When a path is provided, lines 16 to 19 select the requested plan for the current
goal, if its context condition holds, and call its body via solve. Otherwise, the list
of applicable plans (those whose context conditions are true) are computed (lines 21
and 59–6410), the first (in order of appearance in the agent’s code) is chosen (second
argument in line 21), and its plan body is called via solve (line 22). If there are no
applicable plans, this plan fails, as does the original solve goal.

– Durative actions, as required by our scenario, are supported (lines 25–45 and 49–
57)11. A continuation predicate, and optionally a clean-up goal, for the action are
looked up (lines 27–32), the time the action was started is recorded as a belief (lines
43–44), and a solve_durative goal is created (line 45) to trigger the perfor-
mance of the action. The plan for this goal (lines 49–56) checks the continuation
condition (passed as variable Query). It is intended that the query is a 0-arity pred-
icate defined by a rule in the agent’s program. If the query succeeds, the action is
executed with a “durative” annotation (which the environment should check for),
and possibly an annotation listing the action participants if it is a joint action (see
below). The goal is then called recursively. If the query fails, stop(Act) is exe-
cuted (again, with the appropriate annotations). Thus, durative actions are imple-
mented by repeated execution of an action until the corresponding stop action is
called.

– Joint actions are also supported. These are durative actions with an annotation listing
the intended action participants. The environment should notify all intended partici-
pants (via a percept) when a durative action is called for the first time or is stopped,
thus enabling the participants to coordinate their actions. It should also keep a history
of the time intervals over which the participants perform the action, as its outcome
will depend on the existence and length of a period of overlap. Lines 33–34 and
38–4212 ensure that an action term annotation recording the participants is passed
on when starting the action, and line 54 passes the annotation on when performing
the stop action.

6 Evaluation

We ran our Jason care robot program, with and without the social practice beliefs and
meta-deliberation plan, using a Jason agent to simulate the patient (as outlined at the
end of Sect. 3). With the social practice support for the care robot agent, the robot and
patient agent could more successfully coordinate their actions across the landmarks of
the social practice, ensuring that the patient remains in a good mood, and engages in the
newspaper reading for longer (compared to the outcome outlined in the last paragraph

10 Lines 59–64 would be better implemented as Jason rules (Horn clauses), but passing plan
bodies to Jason rules via test goals currently causes the goals to fail, even when the rules
succeed.

11 The second context condition in line 26 binds NoAnnotsA to the action term A with annota-
tions removed.

12 Lines 39 to 41 are a workaround for a current limitation of Jason: annotations cannot be added
to an existing plan body term.

Incorporating Social Practices in BDI Agent Systems 125

of Sect. 3). Of course, the scenario was designed to produce better outcomes when the
social practice is followed, but demonstrating this in practice validates our metadelib-
eration plan and metainterpreter.

In this paper, we aim to show the promise of using social practices as part of a
meta-deliberation cycle for BDI agents in order to cope with real time environments.
The main characteristic of using this approach is that we can separate different concerns.
One is to deal with a context of an interaction and its consequences for the plans and
actions of the agent; the other is to deal with plans within a certain context. It follows
from the above that we do not really extend the language or intrinsic capabilities of the
agent (as we have shown, the meta-deliberation cycle can indeed be written using Jason
rules and plans). Rather we claim that using this separation of concerns will make it
more scalable and robust. These are hard properties to prove or evaluate directly.

What would be needed for an evaluation are complex and dynamic scenarios where
the agent is interacting with several people and other agents in different roles, and where
events in the environment can also influence the interaction. We can then show that in
these complex scenarios the agents based on social practices are still programmed in a
modular way, with limited complexity, and behaving robustly. Ideally one would show
how Jason BDI agents would have to be programmed without the social practices in the
meta-deliberation and compare that with a Jason agent including the social practice in
the meta-deliberation. That would give some indication of the utility of our architecture.
However, one could still object that the specific agent programs should be programmed
by people with the same background, using the same information and measuring the
time to develop the agents, etc., in order to make a fair comparison.

As first steps in this evaluation process we will develop more complex scenarios for
social robots that will act in a physical context in order to evaluate the robustness and
efficiency of our approach.

7 Conclusions

We have argued that for interactive settings, as sketched in our scenario, the use of social
practices is a good compromise between using a fixed interaction protocol and delib-
eration and planning from scratch at each point during the interaction. We proposed a
mechanism for a BDI agent to maintain awareness about and contribute towards the
completion of social practices, and presented this as a meta-deliberation plan for Jason
agents. We also presented a Jason metainterpreter to support this plan and our care robot
scenario. These contributions provide a specification of potential extensions to the BDI
reasoning cycle, but also allow the approach to be directly applied within Jason agents.

Our approach allows BDI agents to use their existing plans to achieve social practice
landmarks that do not detail all actions required to achieve the landmark. In future work
we intend to investigate more complex interactions between social practices and agent’s
local plans. We also intend to develop elaborate scenarios that use all aspects of a social
practice, and compare these with agent implementations where no social practice is
used, both in terms of the outcomes of the agent and the ease of design of the agents.

Acknowledgement. We thank Jomi Hübner for making extensions to Jason in support of the
Jason metainterpreter presented in Listing 3.

126 S. Cranefield and F. Dignum

References

1. Augello, A., Gentile, M., Dignum, F.: Social practices for social driven conversations in
serious games. In: de De Gloria, A., Veltkamp, R. (eds.) GALA 2015. LNCS, vol. 9599, pp.
100–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40216-1 11

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. Wiley, Chichester (2007)

3. Bourdieu (trans. R. Nice), P.: Outline of a Theory of Practice. Cambridge University Press,
Cambridge (1972)

4. Cranefield, S., Winikoff, M., Dignum, V., Dignum, F.: No pizza for you: value-based plan
selection in BDI agents. In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, pp. 178–184. ijcai.org (2017)

5. Dignum, F.: Interactions as social practices: towards a formalization. arXiv (2018). https://
arxiv.org/abs/1809.08751

6. Dignum, V., Dignum, F.: Contextualized planning using social practices. In: Ghose, A., Oren,
N., Telang, P., Thangarajah, J. (eds.) COIN 2014. LNCS (LNAI), vol. 9372, pp. 36–52.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25420-3 3

7. Folsom-Kovarik, J., Schatz, S., Jones, R.M., Bartlett, K., Wray, R.E.: AI challenge problem:
scalable models for patterns of life. AI Mag. 35(1), 10–14 (2014)

8. Giddens, A.: Central Problems in Social Theory: Action, Structure and Contradiction in
Social Analysis. University of California Press, Berkeley (1979)

9. Harel, R., Yumak, Z., Dignum, F.: Towards a generic framework for multi-party dialogue
with virtual humans. In: Proceedings of the 31st International Conference on Computer Ani-
mation and Social Agents, CASA 2018, pp. 1–6. ACM, New York (2018)

10. Logan, B.: An agent programming manifesto. Int. J. Agent-Oriented Softw. Eng. 6(2), 187–
210 (2018)

11. Logan, B., Thangarajah, J., Yorke-Smith, N.: Progressing intention progression: a call for a
goal-plan tree contest. In: Proceedings of the 16th Conference on Autonomous Agents and
Multiagent Systems, pp. 768–772. IFAAMAS (2017)

12. Mercuur, R., Dignum, F., Kashima, Y.: Changing habits using contextualized decision mak-
ing. In: Jager, W., Verbrugge, R., Flache, A., de Roo, G., Hoogduin, L., Hemelrijk, C. (eds.)
Advances in Social Simulation 2015. AISC, vol. 528, pp. 267–272. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-47253-9 23

13. Miller, T., Dignum, V., Dignum, F.: Planning for human-agent collaboration using social
practices. In: First International Workshop on Socio-cognitive Systems at IJCAI 2018 (2018)

14. Minsky, M.: A framework for representing knowledge. In: Smith, A., Collins, E. (eds.) Read-
ings in Cognitive Science, pp. 156–189. Morgan Kaufmann (1988)

15. Narasimhan, K., Roberts, T., Xenitidou, M., Gilbert, N.: Using ABM to clarify and refine
social practice theory. In: Jager, W., Verbrugge, R., Flache, A., de Roo, G., Hoogduin, L.,
Hemelrijk, C. (eds.) Advances in Social Simulation 2015. AISC, vol. 528, pp. 307–319.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47253-9 27

16. Reckwitz, A.: Toward a theory of social practices. Eur. J. Soc. Theory 5(2), 243–263 (2002)
17. Schatzki, T.R.: A primer on practices. In: Practice-Based Education, Practice, Education,

Work and Society, vol. 6, pp. 13–26. SensePublishers, Rotterdam (2012)
18. Shove, E., Pantzar, M., Watson, M.: The Dynamics of Social Practice. Sage, Thousand Oaks

(2012)
19. Winikoff, M.: An AgentSpeak meta-interpreter and its applications. In: Bordini, R.H., Das-

tani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) ProMAS 2005. LNCS (LNAI), vol.
3862, pp. 123–138. Springer, Heidelberg (2006). https://doi.org/10.1007/11678823 8

https://doi.org/10.1007/978-3-319-40216-1_11
https://arxiv.org/abs/1809.08751
https://arxiv.org/abs/1809.08751
https://doi.org/10.1007/978-3-319-25420-3_3
https://doi.org/10.1007/978-3-319-47253-9_23
https://doi.org/10.1007/978-3-319-47253-9_27
https://doi.org/10.1007/11678823_8

Who’s That? - Social Situation Awareness
for Behaviour Support Agents

A Feasibility Study

Ilir Kola1(B) , Catholijn M. Jonker1,2 , and M. Birna van Riemsdijk3

1 Interactive Intelligence Group, Delft University of Technology,
Delft, The Netherlands

{i.kola,c.m.jonker}@tudelft.nl
2 Leiden Institute of Advanced Computer Science, Leiden, The Netherlands

3 Human Media Interaction Lab, University of Twente, Enschede, The Netherlands
m.b.vanriemsdijk@utwente.nl

Abstract. Behaviour support agents need to be aware of the social envi-
ronment of the user in order to be able to provide comprehensive support.
However, this is a feature that is currently lacking in existing systems.
To tackle it, first of all we explore literature from social sciences in order
to find which elements of the social environment need to be represented.
We structure this knowledge as a two-level ontology that models social
situations. We formalize the elements that are needed to model social sit-
uations, which consist of different types of meetings between two people.
We conduct an experiment to evaluate the lower level of the ontology
using feedback from the subjects, and to test whether we can use the
data to reason about the priority of different situations. Subjects found
our proposed features of social relationships to be understandable and
representative. Furthermore, we show these features can be combined in
a decision tree to predict the priority of social situations.

Keywords: Socially aware agents · Social situation modelling ·
Knowledge representation

1 Introduction

Artificial agents that support people in their daily lives, for example to live
healthier lifestyles or help them in the execution of daily tasks, are becoming a
reality (e.g. [32,43]). Such behaviour support agents need to be aware of a user’s
social context to function effectively [46]: a user’s social network may need to
play a role in providing support, and a user’s activities may involve other people
which affects the type of support that is needed [41]. For instance, an app that
helps its user be more punctual might send reminders at different intervals when
it sees that a meeting is approaching. However, not all meetings have the same

This work is part of the research programme CoreSAEP (project no. 639.022.416),
supported by the Netherlands Organisation for Scientific Research (NWO).

c© The Author(s) 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 127–151, 2020.
https://doi.org/10.1007/978-3-030-51417-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_7&domain=pdf
http://orcid.org/0000-0002-1662-6652
http://orcid.org/0000-0003-4780-7461
http://orcid.org/0000-0001-9089-5271
https://doi.org/10.1007/978-3-030-51417-4_7

128 I. Kola et al.

priority: for most people, being on time for a job interview is more important
than being on time for an informal dinner with friends. Effective support may
require taking this into account in the frequency or type of reminders that are
generated.

Existing behaviour support agents however mostly focus on modelling inter-
nal aspects of the users (e.g. their goals, values, abilities, etc.) [36,44], while
paying less attention to users’ social context. In this paper we take first steps
towards developing a generic framework that enables behaviour support agents
to take into account the user’s social environment in order to provide personal-
ized and socially-aware behaviour support [46].

The main idea underlying our approach is to take research on situation aware-
ness, which offers ways to model and reason about the physical environment, and
adapt it for realizing social situation awareness. Specifically, we take the well-
known situation awareness model by Endsley [17] as a starting point. Endsley’s
model distinguishes three levels of situation awareness: 1) perception of relevant
elements in the environment, 2) comprehension to understand their significance,
and 3) projection towards future states of the environment. Inspired by these
levels, we put forward the idea that a behaviour support agent should similarly
be able to represent relevant aspects of social situations, be able to reason about
their meaning, and lastly project how these situations will affect the behaviour
of the user. These three levels are in line with the classic sense-reason-act cycle
in multi-agent systems.

While there are many socially relevant dimensions to behaviour support,
in this paper we focus on handling social settings such as meetings or social
gatherings. Moreover, we focus on behaviour relevant for arranging these social
settings, rather than how to behave whilst participating in one. One may think
of a personal assistant agent that can schedule social events for its user [41], or
an agent to support people with cognitive impairments in arranging their social
life. Furthermore, we need to determine which dimensions of a social situation
may be used to interpret their meaning, i.e., what is the “output” of the com-
prehension process. In this case we focus on priority of social situations. We
expect that priority, among other things, may be used for dealing with conflicts
in a user’s schedule. Putting this together, in this paper we address the follow-
ing research questions and hypothesis, corresponding with the three levels of
situation awareness:

– RQ1: Perception - Which features can be used to describe a social situation
from the perspective of a user for the purpose of behaviour support?

– RQ2: Comprehension - How can features of a social situation be used to
assess its priority?

– H3: Projection - Priority of social situations can be used for resolving con-
flicts between two social settings if they cannot both be attended.

While these research questions and hypothesis guide the work presented in
this paper, we do not aim to provide definitive answers here. Rather, as this is a
novel research direction, our aim is to assess the feasibility of the approach as a

Social Situation Awareness for Behaviour Support Agents 129

basis for future work that considers other dimensions besides priority, as well as
a more extensive investigation into their translation to support actions by the
agent.

Addressing these questions involves creating knowledge structures and rea-
soning techniques for representation and interpretation of social situations, as
well as evaluation with users. We further detail this approach and the envisaged
software architecture for our support agent in Sect. 2. We present a knowledge
structure for describing features of social situations in Sect. 3. We present our
user study to evaluate this knowledge structure and gather data for addressing
RQ2 and H3 in Sect. 4. Our reasoning model for addressing RQ2 is presented in
Sect. 5. We conclude the paper and discuss our findings in Sect. 6.

2 Research Approach and Agent Architecture

The overall objective of this work is to assess the feasibility of realizing social
situation awareness for behaviour support agents based on the three levels of
situation awareness of Endsley [17]. For this reason, we touch on each of these
three levels in this work (albeit less comprehensively for the higher levels), i.e.,
we take a “breadth-first” approach, rather than first going into depth on the first
level. In this way we get a sense of how the different levels of the framework could
work together to achieve social situation awareness early on in the research, and
it allows us to identify aspects that require a more in-depth study in follow-up
research. Specifically, we address the research questions and hypothesis in the
following way:

– RQ1: Which features can be used to describe a social situation from the
perspective of a user for the purpose of behaviour support?

• Model building: based on research in social sciences, we propose an ontol-
ogy for modelling the high-level structure of social situations, as well as
a set of low level features that can be used to describe daily life social
situations (Sect. 3).

• Evaluation: Assessing whether the social features identified in the mod-
elling step are suitable, consists of two parts: i) assessing the understand-
ability and expressivity of these features for users; this is important, since
we envisage that we will (partly) elicit these features from users through
interaction with the support agent, and explaining the support agent’s
actions to the user requires that these features are meaningful to users
(Sect. 4); ii) assessing the usefulness of these features for situation com-
prehension; this is assessed via RQ2 (Sect. 5).

– RQ2: How can features of a social situation be used to assess its priority?
• Model building: One may envisage different ways of building a model

that can take features of a social situation and derive a corresponding
priority, for example by pre-specified rules, through machine learning,
or a combination. Since an important requirement for this model is its
explainability for users, in this paper we choose a learning method that

130 I. Kola et al.

yields an interpretable model: decision trees. To create this decision tree,
we collect data from people via a user study (Sect. 4), and then use the
data to learn a decision tree that predicts priority of social situations
(Sect. 5).

• Evaluation: We evaluate the predictive capacity of the decision tree by
taking a test data set from the data collected for building the model, and
evaluating its capacity in predicting the right priority for a specific event
based on information about social features of the situation.

– H3: Priority of social situations can be used for resolving conflicts between
two social settings if they cannot both be attended.

• Data collection: First, we ask subjects about their relationship with peo-
ple in their social circle. Then, we present them with social situations
involving these people, and ask them what priority they would assign to
these situations. Lastly, we show them pairs of these situations and ask
them which one they would attend if the meeting times would overlap
and they had to choose only one (Sect. 4).

• Hypothesis testing: To test this hypothesis, we check whether the propor-
tion of meetings with higher priority that was chosen when breaking the
ties is higher than chance.

Figure 11 depicts a high level architecture of how our proposed behaviour
support agent can be used in practice. The first part of the work consists in
learning a model which given data from different social situations (in our case,
the experiment data), it learns priority rules based on the answers of the par-
ticipants. When the user is faced with a future social situation, it gives the
behaviour support agent a description of the situation (situation cues) and rela-
tionship with the other person (social background features). The agent uses this
information, as well as the learned priority rules, to reason about the priority
of this situation. In future work, the priority level will be fed to a support rea-
soner, which will then output a support action to be of assistance to the user. In
this work, we hypothesize that priority can be used to break ties when different
meetings overlap. In that case, the support reasoner can compare the priority of
the different meetings, and suggest to the user which one to attend.

3 Modelling Social Situations

In this section we outline which features can be used to describe a social situation
from the perspective of a user of the behaviour support agent. We distinguish
between a description of the main components, i.e., the overall structure of a
social situation (Sect. 3.1) which we refer to as the upper ontology following
[24], while the concrete features of the social situation that are the result of the
perception process are described in a lower ontology (Sect. 3.2).

1 Icons used in the architecture were made by Freepik and retrieved from www.flaticon.
com.

www.flaticon.com
www.flaticon.com

Social Situation Awareness for Behaviour Support Agents 131

Fig. 1. High level architecture of the proposed approach. Boxes marked in blue are
parts which we do not explicitly tackle in this paper. (Color figure online)

3.1 Structure of Social Situations: Upper Ontology

Research in social psychology by Rauthmann and colleagues [37] proposes that
features of situations can be discussed on three different levels: cues, which are
physical and objective elements (who is present, what activity is taking place,
etc.), psychological characteristics, which are dimensions that can be used to
describe situations (such as duty, intellect, etc.), as well as classes, which are
abstract types of situations (such as social situations, work situations, etc.). For
the scope of this work, we will focus on situation cues and classes, since these are
concrete concepts that can be elicited from the user, i.e., that are the result of
the perception process. Psychological characteristics, and how to automatically
infer them, will be explored in future work.

Cues in turn can be divided into three categories according to [37]: persons,
events/activities, and locations. Saucier et al. [39] identify similar categories in an
experiment in which students describe their daily situations, namely locations,
associations (i.e. people/interactions), as well as actions and positions. Thus
we can see that in the literature information about people in the situation is
considered to be a specific kind of situation cue. Since in this paper we focus
on modelling social situations, meaning that the relation to the people in the
situation is of specific interest, we decide to model people separately from other

132 I. Kola et al.

situation cues. This is in line with other work in the field of socially intelligent
technologies [1,2].

Cues. The literature identifies essentially two remaining types of cues [37,39],
when we separate information about people from other situation cues: location
and activity. In this paper we also model the situation class as a type of cue, which
we refer to as the setting. Furthermore, we introduce a number of additional cues
that we consider specifically relevant for comprehension of organized events, as
we focus on in this paper. In particular, we represent the frequency with which an
event takes place. This variable is not explicitly mentioned as a situation cue in
the literature, however some situation taxonomies, e.g., [33], suggest typicality as
one of the psychological characteristics of the situation. Moreover, we represent
the time at which the event takes place, as well as the initiator of the event,
since we expect this may influence the priority of the meeting.

People. For reasons of simplicity, in this work we focus on dyadic social rela-
tionships, i.e., we concern ourselves with social situations involving two people.
In our case, one of the people will be the user of the behaviour support agent.
This means that the information about the social relation is modelled from the
perspective of the user.

We model the social relationship by identifying a set of features that char-
acterize this relationship. We distinguish between social background features
and situation-specific social features. The former concern features that describe
aspects of the relationship in general, while the latter describe aspects that are
specific to the situation at hand. We distinguish two kinds of social background
features, namely structural features and personal features. The former concern
what may be referred to as “objective” characteristics such as the user’s role
in relation to the other person, while the latter concern “subjective” relation-
ship characteristics from the perspective of the user, such as the quality of the
relationship. This distinction is in line with research in social science on relation-
ships in organizations [30] and social support [25], which considers the difference
between relationship characteristics that are derived from formal requirements
of a role, and interpersonal characteristics. These features are further detailed
in Sect. 3.2.

Putting this all together, Fig. 2 offers a schematic representation of the upper
ontology.

Related Work. Context and situations are well studied concepts in computer
science. Kokar and colleagues [27] present an ontology for formalization of situ-
ations based on the situation theory developed by Barwise [5] and extended by
Devlin [10]. This formalization is compatible with the interpretation of situation
awareness provided by Endsley [18], which also forms the basis of our work. Yau
and Liu [48] offer another ontological approach that models situations for per-
vasive computing applications. They differentiate between situations, defined as

Social Situation Awareness for Behaviour Support Agents 133

Fig. 2. Schematic representation of an upper ontology of dyadic social situations.

“a set of contexts in the application over a period of time that affects future
system behavior” and contexts, defined as “any instantaneous, detectable, and
relevant property of the environment, system, or users”. Their ontology is based
on this division, and they specify a context layer, which models context definition
and contextual data, and a situation layer which is built on top of the context
layer and aggregates context into situations. This forms the core of their upper
ontology, whereas the elements of the lower ontology can be specified depend-
ing on the domain. Their definition of context can be compared to our notion
of situation cues. However, these approaches are very abstract in the concepts
used in the ontology since they focus on modelling a generic type of situations.
Building the lower level ontologies, specifically concerning the modelling of social
situations as we focus on in this paper, is not a trivial task.

Zavala and colleagues [50] offer a framework which can be used to build place-
aware mobile applications. To do so, they build a place ontology which models
the concept of place not only as a geographical location, but also in terms of
activities that occur there. For instance, someone can have an office in two dif-
ferent cities, but both of them would count as a workplace since similar activities
occur there. This is comparable to the cues “location” and “setting” in our ontol-
ogy. In Murukannaiah et al. [31] this approach is extended and social circles are
learned based on the places in which people are meeting: following the previous
example, people meeting in workplaces would be classified as colleagues. This
can be viewed as a kind of structural relationship feature, as we refer to it in
our ontology. Similar to our work, their approach goes beyond modelling very
abstract concepts for representing generic situations. However, the concept of
places and associated types of relationship is just one aspect relevant to compre-
hending social situations. Our approach aims at providing a more comprehensive
knowledge structure for modelling social situations, as well as development of
methods for interpreting these.

Another related line of research is work on modelling and reasoning about
social practices [11,14]. In [14], social practices are represented by distinguishing

134 I. Kola et al.

physical context (resources, places, actors), social context (social interpretation,
roles, norms), activities, plan patterns, meaning and competences. Physical con-
text and activities are comparable to what we refer to as cues of a social situa-
tion, while social context in our case concerns the modelling of people. Meaning
can be compared to our second level of situation awareness, i.e., comprehension.
Thus while the type of notions we use for modelling social situations are broadly
comparable to what is used in research on social practices, our starting point
is different. In social practice modelling, the starting point is the social setting,
e.g., a classroom [11], for which the norms and expected activities are explicitly
modelled independent of the participating agents. Then deliberation techniques
are needed to allow agents to determine how to achieve their goals, taking into
account the (given) norms of this social setting [14]. In our work the starting
point is the social relation between the (human) agents. For this reason we go
in detail regarding the modelling of social background features (Sect. 3.2) that
characterize from the (subjective) user’s point of view their relation with the
other person in the social situation. Based on these features, we then interpret
in a bottom-up way the social situation in terms of more abstract general char-
acteristics, in this case priority of a social event. From that we then determine
appropriate support actions for the user. Moreover, since our aim is to create
behaviour support agents for people, we develop our models taking into account
results from user studies.

In our previous work [28] we provide an extension of the ontology of [27] with
relations that support modelling social relationships, and explore how these can
be used for decision making in social situations. However, in that paper we
model social relations based on only four abstract relationship types from [19]
that can be used to model social decision making: communal sharing, authority
ranking, equality matching, and market pricing. These can be viewed as a type of
structural relationship feature. However, these do not capture personal features
that describe more subjective aspects of interpersonal relationships. Moreover,
in that paper we do not investigate comprehension of a social situation based
on these features, but rather model decision making directly using pre-specified
rules.

3.2 Features of Social Situations: Lower Ontology

In this section we go more in detail regarding the modelling of situation cues,
and we introduce features of dyadic social relationships that a behaviour sup-
port agent can use to model daily life social situations of a user. The list of
features presented in this section is not exhaustive, and depending on the type
of behaviour support different features may be relevant. However it highlights
the type of features that may be considered, and serves as an example of the
concrete features that can be used. Moreover, we use these features to model the
scenarios in our experiment.

We represent features of social situations by means of relations over situation
instances (SI) and dyadic social relationships (A × A where A is the set of peo-
ple) for cues and social features respectively, and a domain (D) that specifies the

Social Situation Awareness for Behaviour Support Agents 135

value-ranges the feature can take. This is in line with situation theory ontology
[27] in which the modelling of perceived aspects of a situation is done by means
of so-called infons which describe the relations between objects in a situation.
The appropriateness of the chosen value-ranges is also subject to evaluation, and
may be changed depending on the domain.

Cues. For simplicity in this paper we focus on three out of six cues that have
been introduced in Sect. 3.1: the initiator of an event, the setting of a social situ-
ation, and frequency of the event. A good starting point for modelling locations
and activities can be the work of Zavala et al. [50].

The initiator is a person from the set A, or none if no initiator is identified.
For the selection of types of setting of a situation we choose common situa-
tion classes that users may face in their daily life. In this paper, we base the
types of settings on Pervin [35], who identifies work situations, family situa-
tions, friends/recreation situations, and private recreation situations. We omit
the latter since we are concerned with social situations, and add sports activity
as a specific type of setting. The situation classes proposed in Rauthmann et al.
[37] can also be clustered into these settings. We distinguish two frequencies,
regular and occasional. While more fine-grained distinctions can be made,
we expect that this broad categorization suffices in many cases. We list the
corresponding relations in Table 1 below.

Table 1. Relations to model cues of social situations. For a relation 〈name〉, set of
situation instances SI and domain D, the relation is defined as 〈name〉 : SI × D〈name〉.

Relation name Domain (D)

event initiator A ∪ {none}
setting {work related, casual meeting, sports activity,

family related}
event frequency {regular, occasional}

Social Background Features. While there is a lot work in the social sciences
on understanding social relationships, in this paper we mainly use the following
two lines of work as the basis for selecting structural and personal social features
for our model. First, Kahn and Antonucci [3,4,25] explore the role of social rela-
tions as a form of social support for (elderly) people. Enabling social support
is an important purpose of the behaviour support agents we aim to create [46].
We select our structural features mainly from this line of work. Second, social
relations are also considered from the organizational point of view. Specifically,
we use the work of Mainela [30] which gives an overview of types and func-
tions of social relationships that can be relevant in the organization of a joint

136 I. Kola et al.

venture. Organizational relationships are an important type of relation that our
behaviour support agent may take into consideration. We select our personal
features mainly from this work.

Structural Features. Kahn and Antonucci conceptualize support systems as a so-
called Convoy model - three concentric circles representing three levels of close-
ness between the supported person and their “convoy” of supporters. Different
aspects of the relationship are considered in order to establish someone’s position
within the convoy model. The Convoy model [4] distinguishes between struc-
tural (age, sex, years known, proximity, contact frequency, relationship (role))
and functional characteristics (types of support received and provided) of social
support networks.

For this paper we use role, contact frequency, and default geographical distance
(proximity) as structural features. The feature role refers to the role of the other
person towards the user in dyadic relations. Knowing this is important since it
can help inferring the expectations that come with the role. The range of roles
we use is taken from the general social survey [8]. The geographical distance
refers to the physical proximity of the two actors in terms of their default home
location. Proximity can influence the relationship of two people since it affects
how often they can see each other. For the range we opted to measure distance
in terms of time that it usually takes to get to that person.

Besides the above three structural features, we introduce a fourth one, namely
hierarchy, to express the type of relation between the user and the other person.
Hierarchy affects the power dynamics between the first and second actor. Higher
(respectively same and lower) means that the other person is higher up (resp.
at the same level, and lower) in the hierarchy than the user. In case there is no
hierarchy amongst the actors, this is indicated by “n.a.”. We expect this feature
to be relevant when assessing the priority of meetings, especially for users who
are in working relations, or actors that come from a culture with some sort of
caste system. More information on the concept of hierarchical ranking can be
found in, e.g., [19,47].

Personal Features. The first of our personal features is also taken from the Con-
voy model [3]. In addition to structural and functional aspects of relationships,
this paper emphasizes the importance of relationship quality in characterizing
social relations. The remaining three personal features we consider in this paper
are taken from Mainela [30]. The paper gives an overview of how types of social
relationships in business dyads have been characterized in the literature. For
example, Granovetter [22,23] talks about strong ties and weak ties in work rela-
tionships. The strength of a tie in a network depends on aspects such as the
amount of time spent on it, the emotional intensity, the intimacy, and the reci-
procity. Furthermore, the author argues that ties are stronger when the level of
acquaintance is deeper.

From the list of features for characterizing social relations identified through
the literature study of Mainela, we select three, namely acquaintance depth [22]
of the user towards the other person, level of formality of the relationship [38],

Social Situation Awareness for Behaviour Support Agents 137

and trust [45] of the user towards the other person as personal features. These
features can inform the expectations of the relationship between user and the
other person, and consequently are relevant for comprehending social situations.

Other features mentioned by Mainela can be used to distinguish different
types of social relationships in a business context, but seem too specific for
social situation awareness of our envisaged behaviour support agent, e.g., legal
questions, attendant consequences, activation of a relation, outcome expecta-
tions, and scope of economic issues. The features continuity of interaction and
amount of time spent are closely related to event frequency, contact frequency
and acquaintance depth. Features like personal nature, intimacy and emotional
intensity seem closely related to level of formality and acquaintance depth.
Finally, reciprocity may also be relevant for our purposes, however refers more
to functional aspects of the relationship and may be difficult to characterize
directly in these terms by users. Therefore we leave it out in this paper.

We summarize these social background features in Table 2 below. The range
of some features is Likert5, which denotes a 5-point Likert-type scale, where 1
is the lowest/most negative value and 5 the highest/most positive value.

Table 2. Relations to model social background features of social situations. The upper
part concerns structural features, the bottom part personal features. For a relation
〈name〉, and domain D, the relation is defined as 〈name〉 : A × A × D〈name〉 where A
denotes the set of persons.

Relation name Domain (D)

role {partner, parent, sibling, child, extended family,

coworker, neighbor, friend, supervisor, group member, other}
contact frequency Likert5

def geo distance {0-1 h, 1-2 h, 2-4 h, flight needed}
hierarchy {higher, same, lower, n.a.}
rel quality Likert5

acq depth Likert5

rel formality Likert5

trust Likert5

Situation-Specific Social Features. Several of the social background fea-
tures may have a situation-specific variant, for example if you go to a basketball
game with your boss, in that situation you are both team-mates, and if you are
the captain you are the one holding a higher hierarchy level in that situation.
However for reasons of simplicity we do not further elaborate on these in this
paper.

We do introduce another situation-specific social feature, which we call the
help dynamic. It refers to whether in the specific event the user is giving to

138 I. Kola et al.

or receiving help from the other person. The fact that they have to give or
receive help can influence how obligated the actors feel to attend a certain event.
It is defined as a relation help dynam : SI × A × A × Dhelp dynam, where
Dhelp dynam = {giving, receiving, neither}.

Related Work. Different aspects of modelling social relationships have been
studied in sub-fields of multi-agent systems. In particular, when talking about
organizations of agents, “role” is one of the central concepts. In the OperA model
[13], agents form societies with different organizational structures, and they take
up roles in these societies. These roles, in combination with social contracts,
define what an agent should and should not do. Singh [40] follows a similar
approach, and proposes that “Org(anization)s are finely structured through the
notion of a role, which codifies a set of related interactions that a member of
an Org may enact”. D’Inverno and colleagues [16], in their quest to weave a
fabric for socially aware agents, also introduce the concept of roles in order to
represent agents in the context of a social setting. Roles in these works are used
to describe, design and understand interactions in an abstract and re-usable
sense, independent from the agents that will eventually play the roles. In our
case we combine abstract information about roles with information about the
concrete relation between the user and the other person, i.e., between the specific
(human) agents in the interaction, in order to assess how best to support the
user this social situation.

The notion of hierarchy is used in [13] to describe a type of relation between
roles in an organization. Although not the same thing, hierarchy can be con-
nected to the notion of power. Pereira and colleagues [34] argue for the impor-
tance of modelling social power into the decision making of cognitive agents. The
importance of modelling social power is also proposed in [12].

Another well studied concept within the multi-agent systems field is trust.
Mostly, it is considered from the point of view of software agents trusting each
other. The focus is on determining the level of trust in another agent by taking
into consideration the agent’s previous interactions with another agent, or by
relying on other agents’ opinions about that agent [20,49]. In our case, once we
have information about the trust the user has towards the other person, we use it
for interpreting the social situation and allowing our support agent to determine
the appropriate support actions in this situation.

The virtual agents research area has also studied modelling and use of vari-
ous features that describe social relationships. Zhao and colleagues [51] argue for
the importance of representing rapport in a virtual agent that interacts with a
human. Rapport is a feeling of connection and closeness to another person, which
can be compared with depth of acquaintance. Dudzik and colleagues [15] pro-
vide a review of literature that deals with contextual features of human emotion
perception for automatic affect recognition. As contextual factors they identify
characteristics of the sender or receiver of the emotion, such as age, gender and
occupation, as well as situation features such as cause of the emotion, conver-
sation content and language, information about the conversation partner in the

Social Situation Awareness for Behaviour Support Agents 139

social interaction, location, and lighting conditions during the interaction. Our
work is complementary in that it focuses on characterizing the social relationship
itself between people in the social situation, and from that derive higher-level
understanding of the social situation, in this case in terms of its priority.

Thus our framework for modelling social situations includes a number of
features that have been studied in various parts of the agent systems literature.
Based on social science literature we add several features that are specifically
relevant for characterizing human social relations, such as contact frequency,
geographical distance, and relationship formality. Moreover, our work differs
from existing work in multi-agent systems in that we investigate how we can
combine features of social situations for the purpose of comprehension in order
to allow an agent to provide appropriate socially-aware support.

4 User Study

In order to evaluate how well we can use our proposed low level features to model
and interpret daily social situations, we conducted a pilot experiment in which
subjects had to answer a survey about the social relations in their life [29]. The
survey consisted of three parts, through which we explore RQ1 and evaluate H3.
Furthermore, we use the data from survey to create and evaluate a model that
addresses RQ2. We present our experimental setting in Sect. 4.1 and our results
in Sect. 4.2.

4.1 Experimental Setting

Pilot Subjects. We tested 20 subjects (15 male, 5 female) who answered to all
three parts of the experiment. Subjects were university employees (mostly PhD
candidates). The average age was 31.1 years old (SD = 7.6yo).

Design and Procedure.2 The experiment was implemented as an online sur-
vey, and consisted of three parts. In Part I – Perception, subjects were asked to
think about six people from their social circle. For the purpose of the study, they
were instructed to select at least one family member, one friend, and one person
who had a higher hierarchy level than them. In follow-up research, we will also
ask for information on relationships with people lower in the hierarchy. For each
of these people, subjects were asked to provide all social background features
(Sect. 3.2). The first part was concluded with an evaluation section in which the
subjects were asked whether the questions were understandable, whether the
amount of questions was appropriate, and how well they thought the questions
represent their social relationship with someone. Through these questions, we
test how understandable and expressive our proposed features are (RQ1). Fur-
thermore, they had the option to propose more aspects of social relationships
which they thought are relevant.

2 The questions for each part of the experiment can be found in the Appendix.

140 I. Kola et al.

In Part II – Comprehension, subjects were shown 20 scenarios of daily life
social situations. Each scenario involved one of the six people that subjects had
mentioned in Part I, selected randomly3. We made the study subject-specific
to enable them to reflect on their own relationships, instead of presenting them
with hypothetical relationships. Scenarios consisted of different parameters of the
situation cues and situation specific features of social relationships. A scenario
could represent a social situation such as:

“You have invited Person X for a work meeting on Tuesday morning
because you need some feedback on your recent project”.

In this case it is a work setting, the event is occasional, the subject is the
initiator and he/she is expected to receive help. For each scenario, subjects were
asked about the priority of the meeting, how obligated they would feel to attend
the meeting and how much they would enjoy it. We need the information on
priority to answer RQ2. Obligation and enjoyment were asked for exploratory
purposes to inform future research. Furthermore, subjects were asked how they
think the other person would answer these questions. This was done because in
future work, we want to explore the reciprocity of these decisions. Lastly, they
were asked about the likelihood of that scenario happening in their daily life in
order to assess the appropriateness of the scenarios we have chosen. Subjects
had to answer on a 5-point Likert scale. In order to assess priority, they were
instructed to take into account how difficult it would be for them to cancel the
meeting, how important they think it is to be punctual, and any other thing
they would consider relevant.

In Part III – Projection, scenarios were paired randomly and subjects were
asked which of the two meetings would they choose to attend in case of a conflict
between the two scenarios meaning that they could not attend both meetings.
We will use this information to evaluate H3. Furthermore, they were asked what
reason would they give to the person whose meeting they were canceling: the
real reason, some other reason, or no reason. This was asked in order to have
some more insight in case our hypothesis is not corroborated from the data.
Each subject was presented with six pairs of scenarios.

4.2 Results

In this subsection, we will present and discuss the results of each part of the
experiment separately.

Part I – Perception. The selected people from the subjects’ social circle had
an average age of 37.6 years old (SD = 13.55 yo). They were mostly friends (29%),
followed by people from work (18% supervisors and 10% coworkers) and family

3 Apart from the scenarios in which a family setting or a higher hierarchy work setting
were being tested, which were restricted to family members and people with higher
hierarchy, respectively.

Social Situation Awareness for Behaviour Support Agents 141

members (11% parents, 8% siblings and 7% members of the extended family).
Partners consisted of 10% of the selected people. Overall 74% of the people were
not in a hierarchical relation with the subjects, 22% were on a higher level and
4% on a lower level. 36% lived within an hour of distance from the subjects,
18% between 1–2 h, 4% between 2–4 h, and for the remaining 32%, the subjects
would need to take a flight in order to meet them. The subjects’ answers for
social background features that have a Likert-scale as the domain are shown in
Table 3 below.

Table 3. Percentage of subjects that gave each specific answer for different social
background features. The answer options were Likert-type scale values ranging from
1 to 5. For relationship quality 1= very negative and 5= very positive. For the rest,
1= very low and 5 = very high.

Feature\Answer 1 2 3 4 5

Contact frequency 0 23.82 25.59 25.59 25

Relationship quality 2.06 5 10.88 49.41 32.65

Acquaintance depth 0 15.59 34.12 25.59 24.71

Relationship formality 46.76 16.18 26.18 7.06 3.82

Trust 1.76 1.47 25 37.25 34.41

As seen in Table 3, subjects mostly choose people with whom they have
strongly positive relationships. Furthermore, they chose people whom they trust,
and the relationships have a low level of formality. In future work, in order to
have more representative data from a larger variety of relationships, we will
control some features when asking the subjects to think of people from their
social circle. For instance, we will ask some subjects to think about a coworker
with whom they do not have a positive relationship.

The evaluation questions (all posed with a 5-point Likert scale in possible
answers) showed that the subjects found the questionnaire understandable, with
an average of 4.59 (SD = 0.51). The number of asked questions was appropriate
(the average answer was 3, SD = 0.61, on a 5-point scale where 3 = appropriate).
When asked how much this information represents their relationship with some-
one (Likert range from 1 = very little to 5 = very much), the average answer
was 3 (SD = 0.79), confirming that social relationships have subtle aspects not
captured in our questionnaire. Whether we need to add more features, depends
on the strength of the correlations between the current features and the choices
the subjects make in Part II of the questionnaire. The subjects (mostly being
PhD students), seemed to understand this point, as some subjects indicated
that the answer to this question depends on the purpose of the study. This is
something that we will take into account in future experiments.

When asked whether they could think of additional aspects of social rela-
tionships which should be present in the survey, 35% of subjects answered with

142 I. Kola et al.

“Yes”. Some of the suggestions included: dependability, understanding, fun,
respect, how important is the other person, common interests, etc. However,
none of the suggestions appeared consistently.

Part II – Comprehension. In this section subjects were asked to evaluate
different scenarios with respect to their priority (and additionally obligation and
enjoyment). Subjects mostly give a high priority to the meetings, with 37% of
scenarios being assigned a 5, 41% a 4 and 16% a 3, with only 6% having a
1 or a 2. This was expected given that scenarios included people with whom
the subjects have a close and positive relationship. This is also reflected in how
much they enjoy these meetings (65% of scenarios being assigned a 4 or a 5). For
obligation, the results were more balanced, with 14% of scenarios being assigned
a 2, 21% a 3, 37% a 4 and 25% a 5. The average likelihood of the scenarios was
3.14 (SD = 1.42), which means the scenarios were relatively likely despite being
chosen randomly in terms of the combination of person with whom the subject
relates, and scenario. We notice a high standard deviation, caused by the fact
that some of the scenarios had a low likelihood, possibly because of the random
person-meeting combination.

Part III – Projection. In this part, subjects were given pairs of scenarios
(from Part II), and they had to select which one they would attend if they could
attend only one. We notice that in 69% of the cases, subjects would select the
meeting to which they had assigned a higher priority in Part II. This suggests
that priority is a good indicator of how people break ties. However, it is not
the only thing. We noticed that in most of the cases in which subjects select
meetings to which they had assigned a lower priority, those meetings have also a
low likelihood. This suggests that when breaking ties between different meetings,
subjects also take into account how difficult it would be to reschedule each of the
meetings. Also, in this section we see differences between individuals, since there
were subjects who consistently chose a certain type of meetings. This can link
to the subjects’ personal values (see also [26,44]). For instance, some subjects
consistently picked work meetings or family meetings, which indicates a tie to
their value system. This will be explored in future work.

Subjects were also asked about the justification that they would give to the
person whose meeting they would cancel. In 89% of the cases, subjects reported
that they would give the real reason. Most of the cases in which the subjects
would give no reason or a different reason (and not the real one) took place when
they chose to attend meetings with a lower priority. Furthermore, many cases
involve either not reporting to someone with a higher rank, or not giving details
about their meetings with family members.

5 Predicting Priority of Social Situations

In order to address RQ2, we will investigate how to use data from Part II of
the user study in order to predict the priority level of social situations based on

Social Situation Awareness for Behaviour Support Agents 143

information about social features. First we will discuss possible options on how
to achieve this (Sect. 5.1), and then we will introduce and evaluate our proposed
approach (Sect. 5.2).

5.1 Reasoning About Situations

Different strategies can be used to reason about the priority of an event. The
most straightforward approach would be to combine the situation cues in an
Expected Priority (EP) function, such as:

EP =
∑

f∈F
wfvf

where F is the set of all features considered, and where for all f ∈ F , vf refers to
the feature value and wf to the relative weight of feature f in this computation.
However, there are two main issues with this approach. First of all, most of the
features that we are dealing with have nominal values, so quantifying them is
difficult. Furthermore, based on the literature on preference profiles, see e.g., [6],
in many decision situations, we hypothesize the weights to be dependent on the
individual, making the correct initialization of the weights a challenge.

Another option is to learn a model from our data, and use it to classify
new instances. Our proposed approach to do this is to use decision trees [7],
because literature suggests that the structure of decision trees is appropriate
for reasoning about social relations. First of all, cognitive psychology proposes
that social intelligence can have a modular nature [21]. This means different
“scripts” are activated in different settings. People recognize these settings from
environmental cues, and in turn decide to behave in a certain way. This is similar
to the concept of decision trees, in which different combinations of features lead
to different decisions. Endsley also suggests that people use different “schemata”
to organize and combine knowledge and perceptions in order to comprehend the
situation [17]. Moreover, the decision process of decision trees is predictable and
transparent. This would allow the agent to explain to the user why a certain
priority level is assigned to a specific event, which is important since we focus
on behaviour support.

Decision trees are graphical representations of a set of rules which can be
used to make classifications. Each node of the tree represents a question regarding
certain features of the object that is being classified, in this case a social situation,
and each branch represents a different answer to that question, in this case the
priority level. Nodes below a given node either contain another question, or are
given a label which assigns a class to the object. The latter are called leaf-nodes.
Given an object with a set of features and a decision tree, in order to classify
the object we traverse the tree until we reach a leaf.

5.2 Model

So far, we have represented the features of the social situations. However, this
raw information is not sufficient to draw conclusions about how people evaluate

144 I. Kola et al.

situations. As explained in Sect. 1, in situation awareness literature, this process
is called comprehension [18]. In this work we explore one general and abstract
characteristic of a given situation, namely its priority.

As mentioned in the previous section, we will use decision trees to predict
priority of social situations. One of the most used methods because of its high
accuracy is the Classification and Regression Trees algorithm (CART) [7]. CART
models are binary trees, which means for every parent node there are two child
nodes. Learning a CART model involves selecting features and split points on
those features until a suitable tree is constructed. This selection is performed by
using a greedy algorithm which minimizes a cost function. We build the model
using the R package rpart [42]. We use 70% of the data as a training set from
which the tree structure was learned, and then test it on the remaining 30%. As
a pruning mechanism we limit the maximal depth of the tree to 4.4

The learned model is shown in Fig. 3. We remark that, to us, many of the
tree splits are intuitive. For instance, the first information that is checked is
the setting of the meeting, with casual and sport events on one hand (the left
branch) and family and work events on the other (the right branch). This split
was to be expected since subjects assigned higher priorities to family and work
events.

Fig. 3. Decision tree built based on the data. Nodes with categorical features, such as
event setting, should be interpreted as “is event setting=casual OR sport?”

Since we lack a benchmark in this domain in order to evaluate our model,
we compare our result with an algorithm which would predict a random priority
(as we offered 5-point scale, chance corresponds to 20%) and with an algorithm
which always picks the most selected class, i.e., priority 4, which was selected
in 41% of cases. To determine the accuracy of the models, we use the following
definition:

4 The code can be found in: https://github.com/ilir-kola/decisiontree-socialsit.git.

https://github.com/ilir-kola/decisiontree-socialsit.git

Social Situation Awareness for Behaviour Support Agents 145

accuracy =
Number correct predictions

Number overall predictions

The accuracy of our model on the test set is 47%, thus performing better
than the other two algorithms that we used as a benchmark. This means that
information about social features can be used to predict priority of a social
situation.

6 Discussion and Conclusions

6.1 Research Questions and Hypothesis

Regarding RQ1, in Sect. 4.2 we notice that subjects find our proposed set of
features understandable and their quantity appropriate. Furthermore, they find
the features relatively expressive. In Sect. 5, we tackle RQ2 by proposing a model
which learns a decision tree to predict priority of meetings. We observe that the
model performs better than chance, which shows that while this can be a way
to predict priority of social situations, more works needs to be done in order to
achieve a higher accuracy. This may involve introduction of additional features.
The result also contributes in the answer of RQ1, since it suggests that the
features allow us to represent social situations in order to learn information
about them. Regarding H3, in Sect. 4.2 we see that in 69% of the cases, priority
is a good predictor for choosing between overlapping meetings. However, it also
shows that it is not the only element, and more dimensions of situations need to
be assessed to identify where this difference comes from.

6.2 Contributions

For the benefit of the development of behaviour support agents with social sit-
uation awareness, this paper provides the following contributions:

– an upper ontology for representing the salient situation cues and types of
features for characterizing dyadic social relationships.

– a set of lower level features which can be used to represent daily life social
situations.

– an evaluation of social features via a user study, showing that subjects find
the concepts understandable and expressive.

– an evaluation whether decision trees can be used to predict the priority of
social situations based on features of social situations, which proved to be the
case.

Results presented in this work tend to support the feasibility of our overall
approach, but in parallel they open the way for different research questions which
need to be explored in more depth in future work.

146 I. Kola et al.

6.3 Limitations

First of all, the number of people in our user study via which we evaluate our pro-
posed features is relatively small, and the subjects are mostly PhD candidates.
This does not allow for a conclusive answer when it comes to understandability
and expressiveness among other types of people with, for example, other levels
of education. In turn, this also creates limitations when tackling RQ2. First of
all, we built the model using a small data set, and learning algorithms need more
data in order to generalize better. This is also shown by the high level of over-
fitting which takes place, as noticed by the fact that the accuracy on the training
set is 65%. Moreover, the data is unbalanced, since people mostly give a priority
of 4 or 5 to events. The presence of lower priorities would make the evaluation
of the algorithm more realistic since we would be able to measure not only the
number of correct predictions, but also how far off the incorrect predictions are.
The low variance in the data can be explained by the fact that subjects chose
people who are very close to them, thus they would prioritize those events.

6.4 Proposed Future Work

Based on the findings reported in this paper, a more extensive experiment can
be confidently carried out to obtain a detailed social model that can serve as
a background model for behaviour support agents to advise on how to choose
between social situations. More data can help not only in building a more accu-
rate model, but also to try out more techniques. Furthermore, that data can
also be used to study the correlations between the different features, in order to
select a minimal set of features for which to ask the users.

Another interesting approach is to analyze how personal values [26,44] affect
the way in which subjects think about social situations. Part III of our experi-
ment suggested the existence of individual differences in how people decide which
meetings to attend. We will explore whether people with shared personal values
make similar choices.

The current model relies fully on information that is acquired directly from
the users. In future work, we would like to add sensory data to inform our model.
Literature shows that sensory data can be used to perceive social information
(e.g., [9]). This line of research would provide useful ways to acquire information
without interrupting the user.

Finally, in this work we mostly focus on the modelling of social situations.
The next step is to dive deeper into situation comprehension, and reason about
different dimensions of social situations (other than priority). Data from the user
study suggests that both enjoyment and obligation correlate well with priority,
and this correlation is stronger when considering situations in specific settings
(enjoyment for casual situations and obligation for work situations). Represent-
ing more dimensions of social situations would lead to having a more complete
profile of the situation, which in turn enables behaviour support agents to pro-
vide more comprehensive help.

Social Situation Awareness for Behaviour Support Agents 147

Appendix

Part 1
For each person, the following questions were asked:

– What’s the name of this person? (e.g. Alice)
– What is the role of Alice towards you? options: {partner, parent,

sibling, child, friend, extended family member, neighbor, cowo-
rker, supervisor, member of the same group (e.g., sports team),
other}

– What’s the hierarchy rank (from a formal point of view) of Alice towards
you? options: {higher, lower, same, n.a.}

– How would you consider the quality of your relationship with Alice? options:
Likert5

– What’s the geographical distance between you and Alice? options: {0-1 h,
1-2 h, 2-4 h, I would need to take a flight}

– How well do you know Alice? options: Likert5
– How often are you in touch with Alice? options: Likert5
– How much do you trust Alice? options: Likert5
– How formal is your relationship with Alice? options: Likert5

Part 2
For each scenario, the following questions were asked. For all, the answer option
was a 5-point Likert scale:

– What priority would you assign to this meeting?
– What priority do you think the other person would assign to this meeting?
– To what extent would you feel obligated to attend this meeting?
– To what extent do you think the other person would feel obligated to attend

this meeting?
– To what extent would you enjoy attending this meeting?
– To what extent do you think the other person would enjoy attending this

meeting?
– How likely are you to encounter this scenario in your life?

Part 3
Two scenarios were chosen randomly and shown to the subject, and the following
questions were asked:

– If they were planned to happen at the same time, which of the two scenarios
would you attend? options: {Scenario 1, Scenario 2}

– What explanation would you give to the person whose meeting you
would have to cancel? options: {no explanation, the real reason, some
other reason}.

148 I. Kola et al.

References

1. Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Designing ethical personal
agents. IEEE Internet Comput. 22(2), 16–22 (2018)

2. Ajmeri, N., Murukannaiah, P.K., Guo, H., Singh, M.P.: Arnor: modeling social
intelligence via norms to engineer privacy-aware personal agents. In: Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 230–
238. International Foundation for Autonomous Agents and Multiagent Systems
(2017)

3. Antonucci, T.C., Ajrouch, K.J., Birditt, K.S.: The convoy model: explaining social
relations from a multidisciplinary perspective. Gerontologist 54(1), 82–92 (2013)

4. Antonucci, T.C., Akiyama, H.: Social networks in adult life and a preliminary
examination of the convoy model. J. Gerontol. 42(5), 519–527 (1987)

5. Barwise, J., Perry, J.: Situations and attitudes. J. Philos. 78(11), 668–691 (1981)
6. Boutilier, C.: A POMDP formulation of preference elicitation problems. In: Eigh-

teenth National Conference on Artificial Intelligence, pp. 239–246. American Asso-
ciation for Artificial Intelligence, Menlo Park (2002). http://dl.acm.org/citation.
cfm?id=777092.777132

7. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Routledge, Abingdon (1994)

8. Burt, R.S.: Network items and the general social survey. Soc. Netw. 6(4), 293–339
(1984)

9. Cabrera-Quiros, L., Demetriou, A., Gedik, E., van der Meij, L., Hung, H.: The
MatchNMingle dataset: a novel multi-sensor resource for the analysis of social
interactions and group dynamics in-the-wild during free-standing conversations
and speed dates. IEEE Trans. Affect. Comput. (2018). https://doi.org/10.1109/
TAFFC.2018.2848914

10. Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1995)
11. Dignum, F.: Interactions as social practices: towards a formalization. arXiv preprint

arXiv:1809.08751 (2018)
12. Dignum, F., Prada, R., Hofstede, G.J.: From autistic to social agents. In: Pro-

ceedings of the 2014 International Conference on Autonomous Agents and Multi-
Agent Systems, pp. 1161–1164. International Foundation for Autonomous Agents
and Multiagent Systems (2014)

13. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded
in Logic. SIKS (2004)

14. Dignum, V., Dignum, F.: Contextualized planning using social practices. In: Ghose,
A., Oren, N., Telang, P., Thangarajah, J. (eds.) COIN 2014. LNCS (LNAI),
vol. 9372, pp. 36–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25420-3 3

15. Dudzik, B., et al.: Context in human emotion perception for automatic affect detec-
tion: a survey of audiovisual databases. In: Proceedings of the 8th International
Conference on Affective Computing & Intelligent Interaction. Association for the
Advancement of Affective Computing (2019)

16. d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J.A., Sierra, C.: Weav-
ing a fabric of socially aware agents. In: Kinny, D., Hsu, J.Y., Governatori, G.,
Ghose, A.K. (eds.) PRIMA 2011. LNCS (LNAI), vol. 7047, pp. 263–274. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25044-6 21

17. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum.
Factors 37(1), 32–64 (1995)

http://dl.acm.org/citation.cfm?id=777092.777132
http://dl.acm.org/citation.cfm?id=777092.777132
https://doi.org/10.1109/TAFFC.2018.2848914
https://doi.org/10.1109/TAFFC.2018.2848914
http://arxiv.org/abs/1809.08751
https://doi.org/10.1007/978-3-319-25420-3_3
https://doi.org/10.1007/978-3-319-25420-3_3
https://doi.org/10.1007/978-3-642-25044-6_21

Social Situation Awareness for Behaviour Support Agents 149

18. Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review.
Situat. Aware. Anal. Meas. 1, 24 (2000)

19. Fiske, A.P.: The four elementary forms of sociality: framework for a unified theory
of social relations. Psychol. Rev. 99(4), 689 (1992)

20. Fullam, K.K., Klos, T., Muller, G., Sabater-Mir, J., Barber, K.S., Vercouter, L.:
The agent reputation and trust (ART) testbed. In: Stølen, K., Winsborough, W.H.,
Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 439–442.
Springer, Heidelberg (2006). https://doi.org/10.1007/11755593 32

21. Gigerenzer, G.: The modularity of social intelligence. In: Machiavellian Intelligence
II: Extensions and Evaluations, vol. 2, no. 264, pp. 264–288 (1997)

22. Granovetter, M.: The strength of weak ties: a network theory revisited. In: Socio-
logical Theory pp. 201–233 (1983)

23. Granovetter, M.: Weak ties and strong ties. Am. J. Sociol. 78, 1360–1380 (1973)
24. Hoekstra, R.: Ontology representation design patterns and ontologies that make

sense. In: Proceedings of the 2009 Conference on Ontology Representation: Design
Patterns and Ontologies that Make Sense, pp. 1–236. IOS Press (2009)

25. Kahn, R., Antonucci, T.: Convoys over the life course: attachment, roles, and social
support. In: Life-Span Development and Behavior (1980)

26. Kayal, A., Brinkman, W.P., Neerincx, M.A., Riemsdijk, M.B.V.: Automatic reso-
lution of normative conflicts in supportive technology based on user values. ACM
Trans. Internet Technol. 18(4), 41:1–41:21 (2018)

27. Kokar, M.M., Matheus, C.J., Baclawski, K.: Ontology-based situation awareness.
Inf. Fusion 10(1), 83–98 (2009)

28. Kola, I., Jonker, C.M., van Riemsdijk, M.B.: Modelling the social environment:
towards socially adaptive electronic partners. In: 10th International Workshop on
Modelling and Reasoning in Context (2018)

29. Kola, I., Jonker, C.M., van Riemsdijk, M.B.: Pilot experiment exploring the priority
of social situations (2019). https://doi.org/10.4121/uuid:e18fb318-c1d4-4ccc-9b4f-
be48e1ee49e2

30. Mainela, T.: Types and functions of social relationships in the organizing of an
international joint venture. Ind. Mark. Manag. 36(1), 87–98 (2007)

31. Murukannaiah, P.K., Singh, M.P.: Platys social: relating shared places and private
social circles. IEEE Internet Comput. 16(3), 53–59 (2012)

32. Myers, K.L., Yorke-Smith, N.: Proactivity in an intentionally helpful personal assis-
tive agent. In: AAAI Spring Symposium: Intentions in Intelligent Systems, pp.
34–37 (2007)

33. Parrigon, S., Woo, S.E., Tay, L., Wang, T.: Caption-ing the situation: a lexically-
derived taxonomy of psychological situation characteristics. J. Pers. Soc. Psychol.
112(4), 642 (2017)

34. Pereira, G., Prada, R., Santos, P.A.: Integrating social power into the decision-
making of cognitive agents. Artif. Intell. 241, 1–44 (2016)

35. Pervin, L.A.: A free-response description approach to the analysis of person-
situation interaction. ETS Res. Bull. Ser. 1975(2), i-26 (1975)

36. Pinder, C., Vermeulen, J., Cowan, B.R., Beale, R.: Digital behaviour change inter-
ventions to break and form habits. ACM Trans. Comput.-Hum. Interact. (TOCHI)
25(3), 15 (2018)

37. Rauthmann, J.F., et al.: The situational eight diamonds: a taxonomy of major
dimensions of situation characteristics. J. Pers. Soc. Psychol. 107(4), 677 (2014)

38. Ring, P.S., Van de Ven, A.H.: Developmental processes of cooperative interorgani-
zational relationships. Acad. Manag. Rev. 19(1), 90–118 (1994)

https://doi.org/10.1007/11755593_32
https://doi.org/10.4121/uuid:e18fb318-c1d4-4ccc-9b4f-be48e1ee49e2
https://doi.org/10.4121/uuid:e18fb318-c1d4-4ccc-9b4f-be48e1ee49e2

150 I. Kola et al.

39. Saucier, G., Bel-Bahar, T., Fernandez, C.: What modifies the expression of per-
sonality tendencies? Defining basic domains of situation variables. J. Pers. 75(3),
479–504 (2007)

40. Singh, M.P.: Norms as a basis for governing sociotechnical systems. ACM Trans.
Intell. Syst. Technol. (TIST) 5(1), 21 (2013)

41. Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P., Scerri, P., Pynadeth, D.V.:
Electric elves: what went wrong and why. AI Mag. 29, 23 (2008)

42. Therneau, T., Atkinson, B.: rpart: Recursive Partitioning and Regression Trees
(2018). https://CRAN.R-project.org/package=rpart. R Package Version 4.1-13

43. Tielman, M., Brinkman, W.-P., Neerincx, M.A.: Design guidelines for a virtual
coach for post-traumatic stress disorder patients. In: Bickmore, T., Marsella, S.,
Sidner, C. (eds.) IVA 2014. LNCS (LNAI), vol. 8637, pp. 434–437. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09767-1 54

44. Tielman, M.L., Jonker, C.M., van Riemsdijk, M.B.: What should i do? Deriving
norms from actions, values and context. In: Proceedings of the 10th International
Workshop on Modelling and Reasoning in Context, MRC 2018, pp. 35–40. CEUR
Workshop Proceedings (2018)

45. Uzzi, B.: Social structure and competition in interfirm networks: the paradox of
embeddedness. Adm. Sci. Q. 42, 35–67 (1997)

46. Van Riemsdijk, M.B., Jonker, C.M., Lesser, V.: Creating socially adaptive elec-
tronic partners: interaction, reasoning and ethical challenges. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 1201–1206. International Foundation for Autonomous Agents and Multiagent
Systems (2015)

47. Williamson, O.E.: Markets and Hierarchies: Analysis and Antitrust Implications.
Free Press, New York (1975)

48. Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive
computing. In: The Fourth IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems, p. 6. IEEE (2006)

49. Yolum, P., Singh, M.P.: Service graphs for building trust. In: Meersman, R., Tari,
Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 509–525. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30468-5 32

50. Zavala, L., et al.: Platys: from position to place-oriented mobile computing. AI
Mag. 36(2), 50–62 (2015)

51. Zhao, R., Papangelis, A., Cassell, J.: Towards a dyadic computational model of rap-
port management for human-virtual agent interaction. In: Bickmore, T., Marsella,
S., Sidner, C. (eds.) IVA 2014. LNCS (LNAI), vol. 8637, pp. 514–527. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09767-1 62

https://CRAN.R-project.org/package=rpart
https://doi.org/10.1007/978-3-319-09767-1_54
https://doi.org/10.1007/978-3-540-30468-5_32
https://doi.org/10.1007/978-3-319-09767-1_62

Social Situation Awareness for Behaviour Support Agents 151

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The “Why Did You Do That?” Button:
Answering Why-Questions for End Users

of Robotic Systems

Vincent J. Koeman1 , Louise A. Dennis2(B) , Matt Webster2,
Michael Fisher2 , and Koen Hindriks3

1 Delft University of Technology, Delft, The Netherlands
v.j.koeman@tudelft.nl

2 University of Liverpool, Liverpool, UK
{L.A.Dennis,M.Webster,MFisher}@liverpool.ac.uk

3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
k.v.hindriks@vu.nl

Abstract. The issue of explainability for autonomous systems is becom-
ing increasingly prominent. Several researchers and organisations have
advocated the provision of a “Why did you do that?” button which allows
a user to interrogate a robot about its choices and actions. We take pre-
vious work on debugging cognitive agent programs and apply it to the
question of supplying explanations to end users in the form of answers to
why-questions. These previous approaches are based on the generation
of a trace of events in the execution of the program and then answering
why-questions using the trace. We implemented this framework in the
agent infrastructure layer and, in particular, the Gwendolen program-
ming language it supports – extending it in the process to handle the
generation of applicable plans and multiple intentions. In order to make
the answers to why-questions comprehensible to end users we advocate
a two step process in which first a representation of an explanation is
created and this is subsequently converted into natural language in a
way which abstracts away from some events in the trace and employs
application specific predicate dictionaries in order to translate the first-
order logic presentation of concepts within the cognitive agent program
in natural language. A prototype implementation of these ideas is pro-
vided.

1 Introduction

As autonomous systems become more prevalent in society, issues related to
the ways in which humans interact with such systems become more important.
Among these issues is the question of transparency and, in particular, explain-
ability. Wortham and Theodorou [35], and Sheh [24] (among others) have argued
that the ability for a robot (and by extension any autonomous system) to provide
explanations of its behaviour helps users develop accurate mental models of the
robot’s reasoning and so interact better with the robot and develop trust. Charisi
c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 152–172, 2020.
https://doi.org/10.1007/978-3-030-51417-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_8&domain=pdf
http://orcid.org/0000-0002-3147-0262
http://orcid.org/0000-0003-1426-1896
http://orcid.org/0000-0002-0875-3862
http://orcid.org/0000-0002-5707-5236
https://doi.org/10.1007/978-3-030-51417-4_8

Answering Why-Questions for End Users of Robotic Systems 153

et al. [5], Turner [26] and The IEEE Global Initiative on Ethics of Autonomous
and Intelligent Systems [25] in particular advocate the provision of a “why did
you do that?” button to help the user understand a robot’s behaviour.

We take as our focus autonomous systems which employ a cognitive agent
to make high level decisions such as [27,28,36]. One of the reasons often put
forward for the employment of cognitive agents in this role is their in principle
ability to explain their decisions to end users. However, in practice, little research
has been performed in actually providing such explanations of reasoning.

There are a number of key problems in the provision of explanations. Firstly,
they require a backward view of the program execution (in contrast to common
debugging practice in which a breakpoint is set and the program is then run for-
wards from the breakpoint). Secondly, log files, which are the obvious solution to
the first problem tend to be verbose and their production can cause significant
performance overheads. These problems are exacerbated when all the informa-
tion needed to understand why something is taking place must be captured.

In this paper we combine work on the debugging of cognitive agent programs
in the Beliefs-Desires-Intentions (BDI) paradigm [17] with work on the provision
of explanations for programmers in GOAL [15] and AgentSpeak [31]. Koeman
et al. [17] generate an omniscient trace of key events that take place during
program execution in a manner which limits the overhead cost of producing
the trace. Each event stores enough information about the agent’s mental state
to reconstruct the state of the program execution at that point. This trace is
supported by tools allowing it to be viewed at a high-level of abstraction hiding
extraneous information unless a user wants to see it.

We have implemented omniscient tracing in the Agent Infrastructure Layer
(AIL) [7,9], a prototyping tool for verifiable interpreters for cognitive agent pro-
gramming languages, with particular attention to the Gwendolen program-
ming language [8] but with attention paid to keeping the framework generic
where possible. In applying this framework to the AIL we extended the key
events considered beyond changes to the agent’s mental state to include a num-
ber of events involved in the generation of plans and the handling of intentions.

The development of omniscient debugging was driven, in part, by a desire to
support programmers in answering why-questions. Programmers can interrogate
the high level trace at specific points in the program execution and ask “why
did you do that” (as outlined in [15]). Winikoff [31] reports on a similar system
constructing why and why-not explanations over traces for AgentSpeak.

We implemented this idea in our AIL-based omniscient debugging frame-
work. We developed an explanation generation framework for end users that is
specific to Gwendolen, providing explanations at a higher level of abstraction
than previously considered, and using predicate dictionaries to provide natural
language substitutes for application specific logical predicates. This implemen-
tation generates explanations when multiple intentions are being executed in an
interleaved fashion (something omitted from [31]).

154 V. J. Koeman et al.

2 Background and Related Work

2.1 Cognitive Agent Programming

At its most general, an agent is an abstract concept that represents an
autonomous computational entity that makes its own decisions [33]. A general
agent is simply the encapsulation of some distributed computational component
within a larger system. However, in many settings, something more is needed.
Rather than just having a system which makes its own decisions in an opaque
way, it is increasingly important for the agent to have explicit reasons (that it
could explain, if necessary) for making one choice over another.

Cognitive agents [3,21,34] enable the representation of this kind of reason-
ing. Such an agent has explicit reasons for making the choices it does. We often
describe a cognitive agent’s beliefs and goals, which in turn determine the agent’s
intentions. Such agents make decisions about what action to perform, given their
current beliefs, goals and intentions. This view of cognitive agents is encapsulated
within the Beliefs-Desires-Intentions (BDI) model [20–22]. Beliefs represent the
agent’s (possibly incomplete, possibly incorrect) information about itself, other
agents, and its environment, desires represent the agent’s long-term goals while
intentions represent the goals that the agent is actively pursuing (the represen-
tation of intentions often includes partially instantiated and/or executed plans
and so combines the goal with its intended means).

There are many different agent programming languages and agent platforms
based, at least in part, on the BDI approach [1,6,14,19,23]. Agents programmed
in these languages commonly contain a set of beliefs, a set of goals, and a set of
plans. Plans determine how an agent acts based on its beliefs and goals and form
the basis for practical reasoning (i.e., reasoning about actions) in such agents.
As a result of executing a plan, the beliefs and goals of an agent may change
and actions may be executed.

It is generally recognised that debugging BDI agent programs is hard [29,30]
(and by extension that agent behaviour can be difficult to understand even when
performing as desired). In particular agents react to exogenous events in dynamic
environments; exogenous events which may combine in unexpected ways and
which may be handled by the agent “in parallel” with each other. Furthermore
many cognitive agent languages have provision for failure handling which, again,
may interact in complex ways with the behaviour of the rest of the program.

2.2 Explanations in Cognitive Agent Systems and “Why” Questions

Ko and Myers [16] created the WHY-LINE tool, which allows developers to
pose “why did” or “why didn’t” questions about the output of Java programs.
A trace is generated in memory through bytecode instrumentation, containing
everything necessary for reproducing a specific execution. From this trace, a
set of questions and associated answers is generated. The authors note that
their approach is not suited for executions that span more than a few minutes
or executions that process or produce substantial amounts of data. However,

Answering Why-Questions for End Users of Robotic Systems 155

their results do show that the approach enables developers to debug failures
substantially faster.

Hindriks [15] and Winikoff [31] both consider a similar model applied to the
debugging of cognitive agent programs in GOAL and AgentSpeak respectively.
Of these [15] is the earlier and has a more informal treatment than [31] which
sought to extend, formalise and implement the proposal. The two approaches are
therefore similar in their underlying conception and we use them as the basis for
our work. The key idea is that a trace of events is stored as a log. Each event in
the trace can be interrogated and an explanation constructed in a systematic way
using information either stored in that event and/or by referring to a previous
event in the log. For instance the explanation for why some action was executed
might be that “the action’s preconditions held and a plan was previously selected
which contained the action”. Explanations can then also be given for why the
preconditions succeeded and/or why the plan was selected.

Koeman et al. [17] propose a trace based mechanism for debugging cogni-
tive agent programs. Although concerned with many of the same issues as [15]
and [31] (and indeed, intended as support for the mechanisms proposed in [15])
the authors focus on more foundational questions of what information needs to
be stored in a trace in order to reconstruct the state of an agent at that point, and
the performance overhead of storing such traces for a program. They conclude
that if a trace stored the key events in agent execution, namely the changes to
the agent’s mental state, then the program run could be reconstructed without
the significant performance impact associated with storing the full state of an
agent at each step in execution. They develop a space-time visualiser for these
traces which allows a programmer to inspect the trace and query the state of
the underlying program at any point.

Hindriks [15] and Koeman et al. [17] consider primarily changes to an agent’s
mental state (i.e., beliefs and goals) in their tracing and debugging frameworks.
Winikoff [31] extends this to include traces and explanations for the selection
of plans but assumes that the entirety of a plan is executed before anything
else happens. The AIL allows interleaved execution of plans by manipulating
intentions. In our work therefore, we integrated the approach in [31] with that
of [17] and then extended it to the handling of multiple intentions1.

A few systems have considered the question of providing explanations specif-
ically for end users of cognitive agent systems. In Harbers [13] explanations of
agent behaviour are generated based on the beliefs and goals of the agents using
a goal hierarchy paired with a behaviour log. Winikoff et al. [32] presents a
similar system but adds the concept of preferences (or valuings) to the expla-
nations presented to end users. The use of goal heirarchies can be viewed as
a more abstract approach than ours which considers the concept of plans and
their selection as an important part of explanation generation beyond their use

1 Though it should be noted that the implementation of omniscient debugging in
GOAL also handles GOAL’s module mechanism (although this is not reported in
depth in [17]) which is not entirely dissimilar to the concept of intention in the AIL.

156 V. J. Koeman et al.

to decompose goals into sub-goals. We hypothesise that many users will find the
concept of plan a useful one but have yet to evaluate this hypothesis in any way.

2.3 The Agent Infrastructure Layer and Gwendolen

The Agent Infrastructure Layer (AIL) [7] is a set of Java classes intended to assist
in the development of BDI-style programming languages. Gwendolen [8] is the
most mature language in this framework.

Aside: It is unfortunate that the literature on tracing programs refers to stor-
ing key events in a trace, while the BDI literature refers to events that trigger
plans (which may be either external or internal to the program). We distinguish
between these two uses of the word “event” in what follows by using trace event
for events stored in traces and BDI event for events that may trigger plans during
program execution.

The AIL provides default data structures for agents, beliefs, goals, plans and
intentions. Individual languages implemented in the AIL define custom reasoning
cycles for agent deliberation. However the toolkit has an underlying assumption
that such reasoning cycles will typically involve the following steps in some order:

– Perception which creates sets of new beliefs and removes beliefs that no longer
hold.

– Posting BDI events (either as new intentions, or added to existing intentions)
when beliefs are acquired or removed and goals are acquired or removed.

– Selecting plans to react to BDI events.
– Selecting among intentions which represent partially processed plans or

unhandled BDI events.
– Processing one (or more) steps in an intention which include adding and

removing beliefs and goals and executing actions.

These default steps therefore form the core events supported by our implemen-
tation of omniscient debugging within the AIL.

Gwendolen Operational Semantics. We use Gwendolen as our key imple-
mentation language. We present here a simplified version of the Gwendolen
operational semantics which is presented in full in [8]. The semantics presented
here assumes all terms are ground (so ignores issues surrounding the handling
of unifiers), and ignores a number of language features such as locking and sus-
pending intentions, dropping goals, agent sleeping and waking behaviour, mes-
sage handling and special cases such as transitions for handling goals that can’t
be planned. The intention is to present enough information to allow our frame-
work to be understood. This operational semantics is shown in Fig. 1. Following
[31] we annotate the transitions (expressions above the arrow) with the trace
events that are stored by the omniscient debugger. These are discussed further
in Sect. 3.

Answering Why-Questions for End Users of Robotic Systems 157

Fig. 1. Simplified Gwendolen Semantics

The Gwendolen reasoning cycle shown here has five stages A, B, C, D and
E2. One transition in each stage is executed in turn. In the semantics we show
the stage that a transition applies to with a letter to the right of the rule. A
Gwendolen agent starts in stage A and so (1) is the first rule to apply, followed
by (2) and so on. In stage D whichever rule applies to the top of the current
intention is applied and then the reasoning cycle moves on to stage E.

BDI languages use intentions to store the intended means for achieving goals
– this is generally represented as some form of deed stack (deeds include actions,
belief updates, and the commitment to goals). In Gwendolen, intention struc-
tures3 also maintain information about the BDI event that triggered them (the
addition or removal of a belief or the posting of a (sub-)goal). Gwendolen
aggregates this information: an intention becomes a stack of tuples of an event
and a deed. Each tuple associates a particular deed with the BDI event that trig-
gered the plan that placed the deed in the intention. Unplanned BDI events are
associated with an empty deed, ε, which can be thought of a marker indicating
“no plan yet”.
2 The implementation of Gwendolen contains a sixth stage for message handling.
3 A refinement of the AIL’s intention structure which is more general.

158 V. J. Koeman et al.

In order to track the evolution of intentions in traces more easily, we extended
the AIL implementation of intentions with an ID number, k, and will use the
notation ik to represent that intention, i, has ID number, k. This ID number is
frequently stored in trace events (see, for instance, (3) in Fig. 1).

We represent an agent state as a tuple 〈i, I, B,A〉 where: i is the current
intention; I is a queue of intentions {i1, i2, ..}; B is a set of the agent’s beliefs;
and A is a set of currently applicable plans for the current intention i.

A Gwendolen program consists of a set of plans, Δ, of the form,
e : {g} ← ds (where ds is a sequence of deeds to be executed if BDI event, e
is posted and guard, g, follows from the agent’s beliefs and goals), a set of initial
beliefs, B, and a set of initial goals, Gs. In an agent’s initial state the current
intention is null, the intention set consists of one intention for each of the initial
goals provided by the programmer of the form (start, +!g). The belief base is
B and the applicable plans are empty.

(1) governs the selection of intentions. Sint is an application specific function
that selects one intention out of a set of intentions and returns a tuple of the
selected intention and the set without that intention in it. By default Sint oper-
ates on a queue data structure and so in general the current intention is placed
at the end of the queue and the intention at the top of the queue is selected.
Also by default empty intentions which have been fully executed are removed at
this point.

(2) represents the process of inspecting the plan library and finding plans
that match the current intention. These are transformed into applicable plans
and returned by the function G. A plan, e : {g} ← ds matches an intention if e
matches the BDI event in the top tuple of the intention, g is a logical consequence
of the agent’s beliefs and goals (goals are inferred from the BDI events posted in
all intentions) and the deed in the top tuple of the intention is ε. Applicable plans
are an interim data structure that describe how the plan changes the current
intention. An applicable plan describes new tuples to be placed on the top of
the intention stack (replacing the existing top tuple). A tuple is created for each
deed in ds and associated with e4.

(3) uses the application specific function Splan to pick an applicable plan
to be applied. By default, this treats the set as a list and picks the first plan
based on the order they appear in the Gwendolen program. We use the syntax
(e, ds) @ tli(i) to represent the replacement of the top tuple in intention, i, by
the tuples in the applicable plan, e : {g} ← ds.

(4), (5), (6), (7) and (8) process the top deed in the intention handling the
instruction to add a goal (depending upon whether the goal is already achieved
or not), add a belief, drop a belief and execute an action respectively. (e, d);ii

4 In order to handle situations where the top deed on the intention is not ε (“no plan
yet”) then G returns the existing top tuple so there is no change to the intention
and it continues to be processed as normal. This somewhat baroque mechanism has
its roots in Gwendolen’s origin as an intermediate language into which all BDI
languages could be translated [10]. We ignore this type of applicable plan in our
explanation mechanism and so do not refer to them further here.

Answering Why-Questions for End Users of Robotic Systems 159

represents the addition of the tuple (e, d) to the top of the intention i. do(a)
represents the execution of an action in some external environment. These rules
make a check on the top deed in the intention to see what type it is (e.g., the
addition of a belief, the deletion of a goal). We represent these checks implicitly
using the notation: a for an action; +b for a belief addition; −b for a belief
removal; and +!g for a goal addition. (6) and (7) both add two trace events to
the trace representing that both the belief base has been changed and that a
new intention has been created. This new intention has a new ID number k′.

(9) handles perception. A set of Percepts are gathered from the environ-
ment. New percepts are added as intentions to add a belief (each with a new ID
number indicated by fresh(k ′)). Out of date percepts (i.e., percepts in the belief
base that can no longer be perceived) are handled by creating a new intention
to remove them.

3 An AIL-Based Framework for Omniscient Debugging
Driven Explanations for Cognitive Agents

As noted above, omniscient debugging was developed with the intention of sup-
porting explanations in the form of answering why- and why-not-questions as
outlined in [15] and [31].

Omniscient debugging for GOAL focused on the changes in agent goals and
beliefs as the key trace events underpinning a trace. We used the analysis from
Sect. 2.3 to extend5 this to:

1. Creation of intention, ik: crei(i, k).
2. Selection of intention, ik: seli(k).
3. Successful evaluation of guard, g for (applicable) plan π, with unifier, θ in

intention, ik: bel(π, g, θ, k).
4. Selection of an applicable plan, (e, ds) in intention, ik: selp((e, ds), k).
5. Execution of action, a, by intention ik: act(a, k).
6. Adding or removing goal, g, by intention ik: addg(g, k), delg(g, k).
7. Adding or removing belief, b by intention ik: addb(b, k), delb(b, k).
8. Modification of intention, ik, by adding or removing tuples, ts: add(ts, k),

del(ts, k).

We used the work of Koeman et al. [17] for trace construction and visuali-
sation to implement tracing in the AIL. Since both GOAL and the AIL were
implemented in Java it was possible to port much of the framework directly.

3.1 Adaptation to Gwendolen

Commands to log these trace events were embedded in relevant parts of the
AIL toolkit, primarily in classes used to implement transition rules in reasoning
5 Note this is not the complete set of trace events shown in Fig. 1. This is elaborated

further in Sect. 3.1.

160 V. J. Koeman et al.

cycles. This is why in Fig. 1 we were able to annotate the transitions in the
Gwendolen semantics with the associated trace events. Given Gwendolen
modifies the current intention when a goal is posted instead of maintaining a
goal base we do not use addg(g, k) or delg(g, k).

In Fig. 1 we reference two further constructs, Γ and Π, these represent sit-
uations where one transition in the semantics generates several trace events in
the trace. Γ logs each successful guard evaluation for plans in Δ as an event
in the trace and associates them with the relevant applicable plan. Π logs the
creation of the intentions caused by the addition and removal of beliefs following
perception.

3.2 Example

As an example of a simple Gwendolen trace we consider the excution of a
Gwendolen program that consists of a single plan +b : {a} ← +d; e (if the
BDI event that b is believed is posted and a is already believed then add the
belief d and do e). We will omit the gory details of the Gwendolen agent
state, but hope the process of execution is nevertheless comprehensible from the
example trace.

In the trace a number of beliefs are added following perception steps in the
program execution. Some of these beliefs are relevant to the plan execution
and some are not. We have included them to help illustrate the use of multiple
intentions.

Subscripts on trace events indicate the step in the trace.

crei((percept, +a), 1)1
seli(1)2
addb(a, 1)3
crei((+a, ε), 2)4
crei((percept, +b), 3)5

Steps 1–5 in the trace represent two rounds of the reasoning cycle. a is perceived
in step 1 and creates an intention (intention 1). Intention 1 is selected (step 2).
a is added as a belief and a new intention (intention 2) is created (steps 3 and
4). At the end of the round b is perceived and this creates intention 3 (step 5).

In the next cycle intention 2 is selected. There is no plan for responding to
the belief a and so nothing else happens. We get a single addition to the trace:
seli(2)6 (intention 1 is empty and is removed. This isn’t recorded in the trace).

In the fourth cycle the following steps are added to the trace:

seli(3)7
addb(b, 3)8
crei((+b, ε), 4)9
crei((percept, +c), 5)10

Intention 3 is selected (step 7); b is added to the belief base (step 8); a new
intention is created recording the fact (step 9) and; finally, c is perceived (step
10).

Answering Why-Questions for End Users of Robotic Systems 161

In the fifth cycle the following steps are added to the trace:

seli(4)11
bel((+b, +d; do(e)), a, ∅, 4)12
selp((+b, +d; do(e)), 4)13
addb(d, 4)14
crei((+d, ε), 6)15

Intention 4 is selected (step 11). This triggers the plan and the trace records
that the plan’s guard, a, holds (step 12) and that the plan has been selected
(step 13). The first deed in the plan is executed (d is added to the belief base)
(step 14) and this creates intention 6 (step 15).

seli(5)16
addb(c, 5)17
crei((+c, ε), 7)18

(10)

The sixth cycle processes the perception, c.

seli(4)19
act(e, 4)20

(11)

The seventh cycle selects intention 4 again and this time executes e.

seli(6)21
seli(7)22

(12)

Finally intentions 6 and 7 are selected in turn. There is no processing to do in
relation to them and they are removed.

The agent now has no intentions and execution stops until something new is
perceived.

3.3 From Traces to Explanations: Why-Questions in Gwendolen

For answering a why-question, a trace is mapped to a chain of reasons (i.e.,
an explanation). Reasons thus represent a selection of directly connected trace
events that might span over large parts of the trace. For example, the trace
event of adopting a goal can be directly connected to the event of evaluating the
guard of the plan whose body contained that goal, in between evaluating the
guard and actually adopting the goal many other trace events could occur (e.g.,
the evaluations of guards for other plans).

In order to generate explanations we need to link each of the traced events to
a local explanation as outlined particularly in [31] but also implied in [15]. To do
this the explanation had to be grounded in the specific language, Gwendolen,
under consideration but nevertheless could be fitted into a general framework.

We consider some event e occurring at step, N , in a trace t and assume, fol-
lowing [31], the existence of a language specific function why such that why(eN , t)

162 V. J. Koeman et al.

returns some representation of an explanation. In our case we represent an expla-
nation as a tree where each node represents a trace event and its children rep-
resent previous trace events that explain this one. This tree structures a subset
of the trace events that appear in the trace.

Our focus on end users, however, means that explanations should have a
default cut-off point and are not unwrapped further unless requested by the
user. So we perform further processing on the tree in order to generate our
explanations.

Figure 2 shows the algorithm for constructing an explanation tree for Gwen-
dolen and Fig. 3 shows the algorithm for converting the tree into a text based
explanation.

why(eN , τ) can be read as “why did e occur at step N in trace τ” where e is
one of our traced events. We can also ask why some formula is believed at step
N , why(bN , τ), and why some formula is a goal at step N , why(!gN , τ).

Definition 1. An explanation tree is a tree structure

t ::= ne(eN , [t, . . . , t]) | ne(bN , [t, . . . , t]) | ne(!gN , [t, . . . , t]) | le(eN)

where e is a trace event, b is a belief formula, g is a goal formula and N is a
step in a trace.

Leaves, le(eN), can be considered as events that require no explanation (such
as perceptions) or are to be expanded by a further “top level” question (e.g., “why
did you believe that”) and nodes, ne(en, l) are an explanation for trace event e.
In selecting the trace events to form part of the explanation tree we typically
move backwards along the trace from N looking for an event of some particular
kind. We introduce the notation ↑N,τ S to represent this process where S is a set
of event specifications. An event specification is either an event expression (with
capital letters used Prolog-style to indicate variables to be instantiated when a
matching event is found) or an event with some side condition – e.g., the event
specification selp((E, D), k) | e ∈ D matches a select plan event in intention, k,
where e appears in the set of deeds, D, of the plan.

In Fig. 2 we see in equation (13) that an action is taken because some plan
was selected that included the action in its deeds. An explanation tree node is
constructed with one child – an explanation for why that plan was selected. Note
that we need the select plan events to have operated on the same intention (and
Gwendolen’s intention selection mechanism means that other intentions may
have been manipulated in between selecting a plan and performing the action)
so we track the intention ID number, k, to ensure we are considering the events
occurring in the correct intention.

(14) and (15) ask why something is believed at step N or is a goal at step
N . In the first case the explanation is that a belief was added to the belief base
at some previous step and, in the second case, that an achieve goal event was
added to the top of some intention.

The reason an applicable plan is selected (16) is because the guard g was
believed and either the BDI event e appeared when a new intention was created

Answering Why-Questions for End Users of Robotic Systems 163

Fig. 2. Generating explanation trees

(as happens when beliefs are posted in Gwendolen) or e was posted to the
top of an intention (as happens when goals are posted in Gwendolen). We
construct a node for the select plan event with two children, the guard event
created when the plan’s guard was evaluated (for which we do not generate an
explanation, though one can be produced if the user wishes) and an explanation
for the created intention or posted goal.

(17) and (18) ask why either a belief was added to the belief base or a goal
was posted to the top of an intention, this is either because an intention was
created to perform that deed (for instance in the case of an initial goal) or a
plan was selected previously in the intention which included the posting of the
belief or goal as a deed.

There are four reasons why an intention (a, b) may have been created (19): if
a is start then b was an initial belief or goal, if a is percept then b is something
perceived. In all other cases b = ε and a is the addition of a belief, and the
intention was created either as part of processing an initial belief or percept
(i.e., another create-intention event though this time with a on the left hand
side) or because a plan was selected which included posting a new belief in its
deed stack.

164 V. J. Koeman et al.

If we look at our running example then if we ask for an explanation for why
e was performed in state 20. We get the following explanation tree:

ne(act(e, 4)20, [ne(selp((+b, +d; e), 4)13,

[le(bel((+b, +d; e), a, ∅, 4)), ne(crei((+b, ε), 4)9,

[ne(addb(b, 3)8, [le(crei((percept, +b), 3)5)])])])]) (20)

Once we have successfully generated an explanation tree we need to process
it into an explanation for presentation to end users. This involves deciding how
far down the branches of the tree to progress as part of explanation generation.
The algorithm for this is shown in Fig. 3.

In our presentation of explanations we introduce a function describe(e) where
e is a trace event, a belief formula or a goal formula. We don’t present describe(e)
in full here since it may be application specific. In brief however, we first intro-
duce a predicate dictionary for each application that provides a mapping of
predicates to strings (e.g., ‘state(X)’ to ‘the robot is in state X’). Second, an
internal translation of specific programming symbols is used (e.g., ‘+!’ to ‘added
the goal’).

Key features of the explanation algorithm are that where an explanation
involves the selection of a plan we do not always explain why the plan was
selected, theoretically leaving the user to expand the explanation if they choose6.
Secondly explanations never refer to manipulation of intentions (we consider
these to be low level details of little interest to most users) so where new inten-
tions are created we do not mention the fact just recursing through to the reason
the intention was created (generally the perception of a belief of the posting of
an initial goal).

Returning to our running example we generate the following explanation
from our explanation tree:

e was executed because +b : {a} ← +d; e was selected in state 13
because a was believed and b was added in state 8 because b was
perceived in state 5.

Our framework is similar in conception and to that in [31] but our focus
on end users has caused us to introduce the two step process of buildling an
explanation tree structure and then using the explain and describe functions to
present an explanation. That said the actual trace events identified as important
to the explanation are generally in agreement with those identified by Winikoff,
given our extension to multiple intentions.

Winikoff [31] also treats a number of other trace events—for instance where
some deed is not the first to be executed in the body of a plan, then part of the
explanation for its execution includes that the previous deeds were successful. We
have taken the view that end users will not generally consider “and the parts
6 It should be noted that our implementation does not yet enable such expansion of

explanations.

Answering Why-Questions for End Users of Robotic Systems 165

Fig. 3. Generating explanations from an explanation tree

of the plan before this succeeded” as part of an explanation, though we may
well need to incorporate aspects of this when we look at why-not-questions (i.e.,
something may not have happened because a previous deed failed). In general,

166 V. J. Koeman et al.

our treatment extends that of Winikoff [31] to multiple intentions but does not
yet consider why-not questions.

3.4 Implementation

The AIL is implemented in Java. Therefore we were able to create an abstract
class for events and a framework for storing and presenting visualisations based
on the work in [17]. We were then able to create specific event types for the
events of interest. We extended the visualiser with an interface to allow why-
questions to be asked—specifically “why did you perform this action?”, “why
did you hold this belief?” and “why did you have this goal?”.

We then constructed a specific explanation mechanism for the Gwendolen
language based on the algorithms in Figs. 2 and 3.

We also implemented a pretty printing mechanism which utilised the describe
mechanism to print out traces for user inspection.

This gave us a flexible and extensible framework for implementing omniscient
debugging in order to enable why-questions in AIL languages.

4 Test Examples and Evaluation

Our current implementation is a prototype only so a full evaluation has yet to
be undertaken. However, it is possible to present initial results.

4.1 Traces in Gwendolen for Tutorial Examples

The AIL comes with an extensive set of examples based on tutorials for the
framework, the Gwendolen language, and the AJPF model-checker [9]. We
used these as an ongoing driver for development of our framework—in particular
to help settle on appropriate pretty printing conventions. Figure 4 shows part of
a pretty printed version of the event trace for one of these examples as it is
constructed7. The visualiser for traces is shown in Fig. 5. The trace is read from
left to right with specifics of various trace events shown on the left.

Figure 6 shows an example explanation (for why the robot performed the
action lift rubble).

4.2 Potential Use Case: Self-certifying Offshore Assets

In order to validate our intuitions about appropriate explanations for end users
we investigated a prototype agent program for surveying offshore assets such as
oil rigs and wind farms [11,12]. This agent guides an unmanned aircraft that must

7 It is generally accepted that end users prefer natural language presentations while
developers often prefer something more compact so this log presents the events with
end users in mind, though it remains much more verbose than is required for an
explanation.

Answering Why-Questions for End Users of Robotic Systems 167

Fig. 4. A pretty printed event trace for a Gwendolen program

Fig. 5. Trace visualiser

168 V. J. Koeman et al.

Fig. 6. Generating an explanation

select a suitable path between the legs of an oil rig based on wind speed, wind
direction, and perceived tolerance to risks. Guided by the developers, we pro-
duced a predicate dictionary for the application which converted the program’s
internal representation into natural language—e.g., enactRoute(route2, t2)
becomes enact route2 with target t2 and so on.

A sample explanation is shown in Fig. 7. These explanations were shown to
the developers who confirmed that they provided explanations likely to prove of
use to their end users (considered to be experts in unmanned aircraft operation
and offshore asset inspection), though obviously further work is needed on the
presentation (e.g., performing unifications rather than showing the unifier) and
possibly further refining the explain algorithm to shorten the initial explanation.

4.3 Traces and Explanations for Other Languages

To evaluate our claim that tracing in the AIL is generic we enabled tracing for
another language implemented in the AIL, without any further customisation
for the language. The language selected was pbdi [4], a reimplementation of a
BDI library for Python8 intended to allow agents written using the library to be
verified. We generated an omniscient trace for a simple program in this language
(one which stops the operation of a small Pi2Go robot using a command done
when the switch on the side of the robot is pressed). A sample trace is shown in
Fig. 8.

As can be seen, the lack of language specific pretty printing for plans renders
this less readable, but nevertheless a clear trace has been generated of the key
events in the execution of the program.

8 https://github.com/VerifiableAutonomy/BDIPython.

https://github.com/VerifiableAutonomy/BDIPython

Answering Why-Questions for End Users of Robotic Systems 169

Fig. 7. Explanation of route selection

Fig. 8. A sample trace for BDIPython

170 V. J. Koeman et al.

5 Conclusion

We sought to combine omniscient debugging and answering why-questions for
cognitive agent programs in order to generate explanations for end users. To do
this we ported omniscient debugging to the AIL toolkit and thus demonstrated
its general applicability beyond the GOAL language for which it was developed.

On top of the traces generated by the omniscient debugger we were able to
construct explanations for programs in the Gwendolen language. To do this we
extended work by [15] and [31] aimed at answering why-questions for developers.
This extension involved adding the capability to handle multiple intentions via
the tracking of intention IDs and the use of pretty printing and application
specific dictionaries to render explanations into natural language. It would be
instructive to perform a full comparison of our algorithm to that in [31] once
why-not questions have been tackled.

While this prototype system has yet to be formally evaluated, informal feed-
back suggests that the end user explanations are appropriate for the intended
purpose. A major piece of further work will involve integration of the framework
into an application being developed for offshore inspection of oil rigs and wind
farms [11,12] and the evaluation of the generated explanations by the applica-
tion’s users. Work is also needed to integrate the answering of why-not-questions
into the framework in order to provide constrastive explanations as discussed
in [18] which argues that why-questions answer counter-factuals.

Work is needed to improve the presentation of traces and explanations and
to allow the expansion of explanations if the user wishes to explore further back
in a trace. We would also like to investigate the use of tracing/explanation levels
analogous to the logging levels used by Java in order to increase the flexibility of
the provided explanations allowing users to “drill down” into more detail if the
provided explanation does not meet their needs or alternatively to move outward
to a presentation similiar to the goal heirarchies used in [13] and [32].

Open Data. The source code for the AIL is available from http://mcapl.
sourceforge.net where the work in this paper can be found in the omniscient
branch of the git repository. The specific examples discussed in the paper can
be found in the University of Liverpool Data Catalgue DOI: https://doi.org/10.
17638/datacat.liverpool.ac.uk/751

Acknowledgments. This research was partially funded by EPSRC grants Verifi-
able Autonomy (EP/LO24845/1) and the Offshore Robotics for Certification of Assets
(EP/RO26173) Robotics and Artificial Intelligence Hub.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. Wiley, Hoboken (2007)

http://mcapl.sourceforge.net
http://mcapl.sourceforge.net
https://doi.org/10.17638/datacat.liverpool.ac.uk/751
https://doi.org/10.17638/datacat.liverpool.ac.uk/751

Answering Why-Questions for End Users of Robotic Systems 171

2. Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Heidelberg
(2005). https://doi.org/10.1007/b137449

3. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

4. Bremner, P., Dennis, L.A., Fisher, M., Winfiled, A.F.: On proactive, transparent
and verifiable ethical reasoning for robots. In: Proceedings of the IEEE special issue
on Machine Ethics: The Design and Governance of Ethical AI and Autonomous
Systems (2019, to appear)

5. Charisi, V., et al.: Towards moral autonomous systems. CoRR abs/1703.04741
(2017). http://arxiv.org/abs/1703.04741

6. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent sys-
tems in 3APL. In: [2], chap. 2, pp. 39–67

7. Dennis, L., Fisher, M., Webster, M., Bordini, R.: Model checking agent program-
ming languages. Autom. Softw. Eng. 19, 1–59 (2011). https://doi.org/10.1007/
s10515-011-0088-x

8. Dennis, L.A.: Gwendolen semantics: 2017. Technical report ULCS-17-001, Univer-
sity of Liverpool, Department of Computer Science (2017)

9. Dennis, L.A.: The MCAPL framework including the agent infrastructure layer and
agent java pathfinder. J. Open Source Softw. 3(24), 617 (2018)

10. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A common
semantic basis for BDI languages. In: Dastani, M., El Fallah Seghrouchni, A.,
Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 124–
139. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79043-3 8

11. Dinmohammadi, F., et al.: Certification of safe and trusted robotic inspection of
assets. In: 2018 Prognostics and System Health Management Conference (PHM-
Chongqing), pp. 276–284, October 2018

12. Fisher, M., et al.: Verifiable self-certifying autonomous systems. In: 2018 IEEE
International Symposium on Software Reliability Engineering Workshops (ISS-
REW), pp. 341–348, October 2018

13. Harbers, M.: Explaining agent behaviour in virtual training. Ph.D. thesis, SIKS
Dissertation Series (2011). no. 2011–35

14. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89299-3 4

15. Hindriks, K.V.: Debugging is explaining. In: Rahwan, I., Wobcke, W., Sen, S.,
Sugawara, T. (eds.) PRIMA 2012. LNCS (LNAI), vol. 7455, pp. 31–45. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32729-2 3

16. Ko, A.J., Myers, B.A.: Extracting and answering why and why not questions about
Java program output. ACM Trans. Softw. Eng. Methodol. 20(2), 4:1–4:36 (2010)

17. Koeman, V.J., Hindriks, K.V., Jonker, C.M.: Omniscient debugging for cognitive
agent programs. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence, IJCAI 2017, pp. 265–272. AAAI Press (2017)

18. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2017)

19. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: [2],
pp. 149–174

20. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proceed-
ings of 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R), pp. 473–484. Morgan Kaufmann (1991)

https://doi.org/10.1007/b137449
http://arxiv.org/abs/1703.04741
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/978-3-540-79043-3_8
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/978-3-642-32729-2_3

172 V. J. Koeman et al.

21. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Pro-
ceedings of International Conference on Knowledge Representation and Reasoning
(KR&R), pp. 439–449. Morgan Kaufmann (1992)

22. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings
of 1st International Conference on Multi-Agent Systems (ICMAS), San Francisco,
USA, pp. 312–319 (1995)

23. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

24. Sheh, R.K.: “Why did you do that?” Explainable intelligent robots. In: AAAI-17
Workshop on Human-Aware Artificial Intelligence (2017)

25. The IEEE global initiative on ethics of autonomous and intelligent systems: eth-
ically aligned design: a vision for prioritizing human well-being with autonomous
and intelligent systems. version 2. Report. IEEE (2017)

26. Turner, J.: Robot Rules: Regulating Artificial Intelligence. Palgrave Macmillan,
London (2019)

27. Webster, M., Fisher, M., Cameron, N., Jump, M.: Formal methods for the certifi-
cation of autonomous unmanned aircraft systems. In: Flammini, F., Bologna, S.,
Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 228–242. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 17

28. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS (LNAI), vol. 7837, pp.
54–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38700-5 4

29. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. J. Artif.
Intell. Res. 51, 71–131 (2015)

30. Winikoff, M.: BDI agent testability revisited. Auton. Agents Multi-agent Syst.
31(1094), 1094–1132 (2017). https://doi.org/10.1007/s10458-016-9356-2

31. Winikoff, M.: Debugging agent programs with Why? questions. In: Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, pp. 251–259. International Foundation for Autonomous Agents and Multia-
gent Systems, Richland (2017)

32. Winikoff, M., Dignum, V., Dignum, F.: Why bad coffee? Explaining agent plans
with valuings. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFE-
COMP 2018. LNCS, vol. 11094, pp. 521–534. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99229-7 47

33. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2002)
34. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Applied Logic

Series. Kluwer Academic Publishers, Berlin (1999)
35. Wortham, R.H., Theodorou, A.: Robot transparency, trust and utility. Connect.

Sci. 29(3), 24200247 (2017)
36. Ziafati, P., Dastani, M., Meyer, J.-J., van der Torre, L.: Agent programming

languages requirements for programming autonomous robots. In: Dastani, M.,
Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS (LNAI), vol. 7837, pp. 35–53.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38700-5 3

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-3-642-24270-0_17
https://doi.org/10.1007/978-3-642-38700-5_4
https://doi.org/10.1007/s10458-016-9356-2
https://doi.org/10.1007/978-3-319-99229-7_47
https://doi.org/10.1007/978-3-319-99229-7_47
https://doi.org/10.1007/978-3-642-38700-5_3

Learning and Reconfiguration

From Programming Agents to Educating
Agents – A Jason-Based Framework

for Integrating Learning in the Development
of Cognitive Agents

Michael Bosello and Alessandro Ricci(B)

Department of Computer Science and Engineering,
Alma Mater Studiorum – Università di Bologna, Cesena Campus, Cesena, Italy

michael.bosello@studio.unibo.it, a.ricci@unibo.it

Abstract. Recent advances and successes of machine learning techniques are
paving the way to what is referred as Software 2.0 era and cognitive comput-
ing, in which traditional programming and software development is meant to be
replaced by such techniques for many applications. If we consider agent-oriented
programming, we believe that such developments trigger new interesting scenar-
ios blending cognitive architecture such as the BDI one and techniques like Rein-
forcement Learning (RL) even more deeply compared to what has been proposed
so far in the literature. In that perspective, we aim at exploring the integration of
cognitive agent-oriented programming based on BDI with learning techniques so
as to systematically exploit them in the agent development stage. The approach
should support the design of BDI agents in which some plans can be explicitly
programmed and others instead can be learned by the agent during the develop-
ment/engineering stage. In that view, the development of an agent is metaphori-
cally similar to an education process, in which first an agent is created with a set
of basic programmed plans and then grow up in order to learn plans to achieve
the goals for which the agent is meant to be designed. This paper presents and
discusses this medium-term view, introducing a first model for a BDI agent pro-
gramming framework integrating RL, a first implementation based on Jason pro-
gramming language/platform and sketching a roadmap for this research line.

1 Introduction

Machine learning and cognitive computing techniques have been getting a momentum
in recent years, thanks to several factors, including theoretical developments in contexts
such as (deep) neural networks, reinforcement learning, Bayesian networks, the avail-
ability of big data and the availability of more and more powerful parallel computing
machinery (GPU, cloud) [3,13,14,17]. Their deeper and deeper impact in real-world
applications is celebrating a new “AI Spring” era, which is generating a strong debate
in the literature as well [22]. Actually, the impact is not only about the kind of applica-
tions but also about how applications are programmed and engineered. In particular, a
vision of Software 2.0 era is emerging [18], in which traditional programming and soft-
ware development is meant to be more and more replaced by e.g. machine learning and
cognitive computing techniques, towards the “the end of programming” era [17,32].
c© Springer Nature Switzerland AG 2020

L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 175–194, 2020.
https://doi.org/10.1007/978-3-030-51417-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_9&domain=pdf
http://orcid.org/0000-0002-0647-072X
http://orcid.org/0000-0002-9222-5092
https://doi.org/10.1007/978-3-030-51417-4_9

176 M. Bosello and A. Ricci

Besides the hype and the marketing-oriented claims, if we consider agent-oriented
programming [27], and – more generally – multi-agent systems (MAS) engineering, we
believe that such recent developments would trigger new interesting scenarios blend-
ing cognitive architectures such as the BDI one [24] and techniques like Reinforce-
ment Learning (RL) [30] even more deeply than what has been already proposed so
far in literature. As far as authors’ knowledge, existing research integrating BDI-based
agents and MAS with learning techniques mainly focused on improving agent adapta-
tion, exploiting learning to improve e.g. plan or action selection at runtime. As a further
approach, our objective is to explore the integration of cognitive agent-oriented pro-
gramming based on BDI with learning techniques so as to systematically exploit them
in the agent development stage. The basic idea is that an agent developer could integrate
the explicit programming of plans – when developing a BDI agent – with the possibility
that, for some goals, it would be the agent itself to learn the plans to achieve them, by
exploiting reinforcement learning based techniques. This is not only for a specific ad
hoc problem, but as a general feature of the agent platform.

In that view, the development of an agent is metaphorically similar to an education
process, in which first an agent is created with a set of basic programmed plans and then
grow up in order to learn plans to achieve the goals for which the agent is meant to be
designed. We believe that this vision would trigger interesting research directions about
the evolution of agent-oriented programming in the software 2.0 era. In the remainder
of the paper, we present and discuss this view, with a first proof-of-concept framework
based on the Jason agent platform [7,8].

After giving a background and an account about related works (Sect. 2), we first
describe our approach integrating learning in the loop of BDI agent programming, using
AgentSpeak(L) [23] as reference model (Sect. 3). Then, we describe an implementation
of the framework on top of the Jason agent language/platform (Sect. 4), including some
testing using a simple example and a discussion (Sect. 5). We close the paper sketching
a roadmap for this research line (Sect. 6).

2 Background and Related Work

In this section, we first provide an overview about basic concepts of Reinforcement
Learning (RL) – taking [30] as main reference – and then an account of existing research
works in the context of agent-oriented programming – especially focusing on BDI-
based model [24] – proposing an integration with RL. It is worth remarking that in
this setting we do not intend to consider the latest advances in RL, but just the core
foundational layer useful to present and discuss our approach.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method with the key idea that a
goal-oriented agent learns how to fulfill a task by interacting with its environment. Any
problem of learning goal-directed behavior can be reduced to three signals passing back
and forth between an agent and its environment: one signal to represent the choices
made by the agent (the actions), one signal to describe the basis on which the choices

From Programming Agents to Educating Agents 177

are made (the states), and one signal to define the agent’s goal (the rewards). A state is
defined as whatever information is available to the agent about its environment, some
of what makes up a state could be based on the memory of past perceptions or even be
entirely mental or subjective, i.e. the states can be anything we can know that might be
useful in the decision process. The agent must decide what action to take as a function
of whatever state signal is available. The actions too might be either internal – changing
the agent’s mental state – or external – affecting the environment. For example, some
actions might control what an agent chooses to think about, or where it focuses its
attention. The reward is a single real number obtained at each interaction step that the
agent seeks to maximise over time. The reward signal thus defines what the good and
bad events for the agent are, i.e. it is your way of communicating to the agent what it
must achieve.

We refer to each successive stages of interaction between the agent and the environ-
ment as time steps. In the case of a BDI agent, a reasoning cycle can be pretty assumed
as a step. In some applications, there is a natural notion of final time step, that is, when
the agent-environment interaction breaks naturally into subsequences that are referred
as episodes. Related to BDI, this is the case of agents pursuing achievement goals. In
many cases, the agent-environment interaction does not break naturally into identifiable
episodes but goes on continually without limit—these are called continuing tasks—i.e.,
maintenance goals in the BDI case.

The agent learns a policy as a result of the learning process. A policy is a function
that maps states to actions. we seek to learn and exploit an optimal policy, but we need
to behave non-optimally to explore all the possibilities. A classic method to balance the
exploitation and exploration phases is to use an ε-greedy policy with which the agent
behaves greedily but there is a (small) ε probability to select a random action.

In many cases of interest, the agent has only partial information about the state of
the world, so, the states signal is replaced by an observations signal that depend on
the environment state but provide only partial information about it. In the BDI case,
this is directly modelled by percepts and, therefore, by beliefs about the environment.
The fundamental property of a state, known as the Markov property, is that it can be
used to predict the future. A stochastic process has the Markov property if the condi-
tional probability distribution of future states depends only upon the current state, not
on the sequence of events that preceded it. From the observations, the agent recovers an
approximate state i.e., a state that may not be Markov. Actually, we can partially drop
the Markov property; however, this implies that long-term prediction performance can
degrade dramatically. An approximate state will play the same role in RL algorithms as
before, so we simply continue to call it a state.

2.2 Integrating RL into BDI Agents and AOP

Generally speaking, the integration of learning capabilities has been a main research
topic in agents and MAS literature since their roots [33]. A first work providing prelim-
inary results about integrating learning in BDI multi-agent systems is [15], proposing
an extension of the BDI architecture to endow agents with learning skills, based on
induction of logical decision trees. Learning, in that case, is about plan failures, that an
agent should reconsider after its experience.

178 M. Bosello and A. Ricci

Other works in literature exploits RL to improve plan/action selection capability
in BDI agent, making them more adaptive [2,28,29]. In [21] an extension of BDI is
proposed so as to get a model of decision making by exploiting the ability to learn to
recognise situations and select the appropriate plan based upon this.

In [4,5], Jason is used to realise Temporal Difference (TD) and SARSA, two rein-
forcement learning methods, in order to face the RL problem with a more appropri-
ate paradigm which has been remarkably effective. [31] proposes a hybrid framework
that integrates BDI and TD-FALCON, a neural network based reinforcement learner.
BDI-FALCON architecture extends the low-level RL agent with a desire and intention
modules. In this way, the agent has explicit goals in the desire module instead of rely-
ing on an external signal, enhancing the agent with a higher level of self-awareness.
The intention module and its plan library permit to reason about a course of actions
instead of individual reactive responses. If there isn’t a plan for a situation, the agent
performs the steps suggested by the FALCON module and, if the sequence succeeds,
a new plan is created with indications about the starting state, the goal state, and the
actions sequence. When the agent uses a plan, it updates the confidence of the plan
according to the outcome.

Also in [16] a hybrid approach BDI-FALCON is proposed. Here, the focus is on
the abstraction level: BDI provides a high-level knowledge representation but lacks
learning capabilities, meanwhile low-level RL agents are more adept at learning. The
layered proposal wants to retain both advantages. An alternative vision is provided in
[12], where a policy is learned and then is used to generate a BDI agent.

Compared to this literature, in this paper we consider the problem of extending BDI
agents with RL from a slightly different perspective, more focused on programming
and the software 2.0 vision, that is: how learning – reinforcement learning, in this case
– could be exploited by a developer in the process of developing an agent, so as to
integrate plans explicitly written by the agent programmer with plans designed to be
learnt.

3 The Basic Idea

The simple idea of this paper is to extend the BDI agent development process with a
learning stage in which we can specify plans in the plan library whose body is not meant
to be explicitly programmed but learned, using a learning by experience technique. In
so doing, the development of an agent accounts for: (i) explicitly programming plans as
in the traditional way—we will refer to them as hard plans1; and (ii) implicitly defin-
ing plans by allowing the agent itself to learn them by experience—referenced as soft
plans. Soft plans are meant to become part of the plan library like hard plans and can be
selected and used at runtime – in terms of instantiated intentions – without any differ-
ence (but allowing for continuous learning, if wanted). At runtime, soft and hard plans
are treated in a uniform way: intentions are created to carry on plan execution, hard
plans could trigger the execution of soft plans and vice versa.

With soft plans we obtain a notion of learning module, that is, a soft plan is like
a module that defines the boundaries of a learned behavior. A learning module can be

1 hard in this case stands for hard-coded.

From Programming Agents to Educating Agents 179

replaced without affecting the rest of the agent. It can be reused in other agents and for
other tasks as happens with standard hard plans. It can be tested at the unit level and in
a natural way with the support of the BDI abstractions.

To support the learning stage, we would need to run the agent in a proper environ-
ment supporting this learning by experience, like the simulated environments typically
used in RL scenarios. Besides, before deploying the agent, there could be some assess-
ment of the soft plans, eventually using an assessment environment which could be
different from the one used for training. The assessment is actually very similar to a tra-
ditional validation stage, including tests that consider the soft plans and their integration
with hard plans. If the agent overcomes the assessment, it can be deployed—otherwise,
the process goes back to the learning stage, possibly changing also plans in the hard
part.

Given this general idea, in the remainder of the section we first introduce the model
integrating key concepts of RL into a BDI framework, and then we describe an exten-
sion of the BDI reasoning cycle supporting the learning process. We will use AgentS-
peak(L) [24] and Jason [7] as concrete abstract and practical BDI-based languages—
nevertheless, we believe that the core idea is largely independent of the specific BDI
agent programming language or framework adopted.

To exemplify the approach, we will use the simple gridworld example (p. 80, [30]),
in which an agent is located into a bi-dimensional grid environment, where it has to
reach some destination cells without knowing in advance the best path for doing it.

3.1 A First Model

In devising the model, we aim at abstracting from the specific RL algorithm that can be
used. To that purpose, we consider key common RL concepts – observations, actions,
rewards, episodes – and how they are represented into a BDI setting (see Fig. 1, top).
These concepts are used by a component – referred as RL reasoner – extending the BDI
reasoner (interpreter) (see Fig. 1, bottom). The classic BDI reasoner handles the hard
plans – i.e., with a body – and the RL reasoner handles the soft plans—whose behavior
is learned.

Observations are modeled as a subset of the agent beliefs that will be used by the
particular algorithm to construct the state, including those that are necessary to under-
stand when a goal is achieved. Recall that the observations are a generalization of states
and if we want to represent a Markov state we just need to include all its aspects
as observations. In the gridworld case, for instance, the agent must reach a specific
position moving towards four directions. In this case, the observations include the cur-
rent position of the agent (pos(X, Y)) and a belief about having reached the target
(finish_line)—if this belief is missing, it means that the agent has not achieved the
target in the current state.

The action set can contain both primitive actions (a BDI agent action) and com-
pound actions (a BDI agent plan) so that representing different levels of planning gran-
ularity. To have a common representation for both cases, we represent actions as plans,
i.e. the set of actions selectable by the RL reasoner is a subset of the plan library defined
by the plans which are relevant for the goal and applicable in the current context. In
Fig. 1, these plans are still referred as Actions in the plan library, and as Behavior (i.e.,

180 M. Bosello and A. Ricci

RL Proposed BDI+ construct Representation in BDI
Observations Belief about Learning Belief subset

Actions Actions Relevant Plans
Rewards Motivational Rule Belief Rule
Episode Terminal Rule Belief Rule
Policy Learning Module Plan

Behavior Behavior Intention

Fig. 1. (Top) The mapping between RL concepts and their counterpart in the BDI model. (Bottom)
A graphic representation of the BDI model with the addition of our constructs.

the learned policy) when instantiated at runtime, wrapped into an intention. In the grid-
world example, the action set has one parametric plan to move the agent in one direc-
tion: !move(D), where D could be up, down, left, right.

Rewards are represented by rules reflecting agent desires—we call them Motiva-
tional Rules. These rules make it possible to weight the current situation of an agent
according to some goal to be achieved. We can see these rules as the generators of
internal stimuli in the agent like a reward signal in neuroscience, which is a signal
internal to the brain that influences decision making and learning. The signal might be
triggered by the external environment, but it can also be triggered by things that do not
exist outside the agent and which can be represented as beliefs as well. We move the
reward, that in RL comes from the environment, into the agent. This is crucial to sep-
arate the agent desires from the environment so as to allow an agent to define its own
goals and rewards about them.

In the AgentSpeak(L)/Jason model that will be detailed in next section, we can
represent Motivational Rules as Prolog-like rules in the belief base:

From Programming Agents to Educating Agents 181

reward(Goal, Reward) :- < some condition over the belief base >

In the gridworld example, the motivational rule will give a positive reward when the
finish line is reached (while pursuing a reach_end goal) and a negative reward in other
steps.

reward(reach_end, 10) :- finish_line.
reward(reach_end, -1) :- not finish_line.

It is worth remarking that Motivational Rules are meant to model also the reward
signal that comes from the environment, as in the classic view. In this case the reward
can be seen more like suggestion coming from a teacher (or a coach) which is assisting
the agent during the learning/training process. The teacher conceptually knows both the
goal of the agent and the structure of the (task) environment. Since the agent has the
objective of learning how to achieve the goal, it is part of its motivation to follow the
suggestions given by its teacher/coach.

Finally, we must include a notion of episode. An episode is an event or a group of
events occurring as part of a sequence. Like in the case of rewards, we can assume that
the agent designer may have her vision about how to define episodes, starting from a
relevant ensemble of situations. This condition is well established by a rule that asserts
in which belief state a coherent group of events ends up in an episode i.e., it defines
when the task ends, regardless of whether the agent accomplishes or fails the goal. We
refer to this rule as a Terminal Rule:

episode_end(Goal) :- < some condition over the belief base >

In the gridworld example, the episode for achieving a reach_end goal ends when the
finish line is reached:

episode_end(reach_end) :- finish_line.

It is worth noting that this approach could be applied only in the case of achievement
goals. In the case of maintenance goals (continuing tasks in [30]) we would need to
reconsider how an episode is modeled.

3.2 Extending the Reasoning Cycle

In our framework, a BDI agent is then equipped with general-purpose learning capabil-
ities that are triggered as soon as a soft plan must be learned or adapted, for some goal.
Figure 1 shows the pseudo-code of a classic BDI agent reasoning cycle (as defined in
[8,35]) extended with such learning capabilities. This pseudo-code does not depend on
a specific RL algorithm, which is encapsulated inside a separate module – referenced in
the following as learning strategy module – whose methods are called by the reasoning
cycle.

The beginning (lines 1–8) and the end (lines 22–36) of the reasoning cycle have not
been modified. We briefly recall those parts, please refer to [8,35] for more details. At
the beginning of the reasoning cycle, the agent reviews its beliefs, desires, and intentions
according to the new perception from the environment. At the end of the plan cycle, after

182 M. Bosello and A. Ricci

Algorithm 1. BDI practical reasoning extended with RL, in pseudo-code.
1: B ← B′ � B’ are the initial beliefs
2: I ← I′ � I’ are the initial intentions
3: loop
4: ρ ← GETNEXTPERCEPT

5: B ← BRF(B, ρ) � Belief Revision Function
6: D ← OPTIONS(B, I)
7: I ← FILTER(B,D, I)
8: π ← PLAN(B, I,Ac) � Ac is the set of available actions
9: if SOFTPLAN(π)∧ LEARNING(π,B) then

10: A ← INITEPISODE(π,B, I)
11: end if

12: while

((SOFTPLAN(π)∧ LEARNING(π,B)∧¬EPISODEFINISHED(π,B, I))
∨ (SOFTPLAN(π)∧¬LEARNING(π,B))
∨ (¬SOFTPLAN(π)∧¬EMPTY(π)))

∧¬((SUCCEEDED(I,B)∨ IMPOSSIBLE(I,B)))

do

13: if ISSOFTPLAN(π) then
14: if LEARNING(π,B)∧¬EPISODEFINISHED(π,B, I) then
15: EXECUTE(A)
16: A ← DOLEARNSTEP(π,B, I,A)
17: else
18: A ← CHOOSELEARNTACTION(π,B, I)
19: EXECUTE(A)
20: end if
21: else
22: A ← HEAD(π)
23: EXECUTE(A)
24: π ← TAIL(π)
25: end if
26: ρ ← GETNEXTPERCEPT

27: B ← BRF(B, ρ)
28: if RECONSIDER(I,B) then
29: D ← OPTIONS(B, I)
30: I ← FILTER(B,D, I)
31: end if
32: if ¬SOUND(π, I,B) then
33: π ← PLAN(B, I,Ac)
34: end if
35: end while
36: end loop

each action execution, the agent acquires a new percept and uses the new knowledge to
reconsider its desires, intentions, and the plan itself.

In the standard cycle, the function plan (line 8) generates a plan to achieve the
intention I. In our extension, the plan could be either a soft plan or a hard plan. If it is
a soft plan and we are in the learning stage, then a new learning episode is initialized

From Programming Agents to Educating Agents 183

(line 10), producing the initial action to be executed. The initialization of the episode
depends on the specific learning strategy adopted.

The execution loop condition remains the same for the hard plans (continue until
the plan is empty or it succeeds or fails). Instead, a soft plan (in the learning stage)
continues until the learning episode finishes – i.e., a terminal state is met. A soft plan in
the exploitation stage continues to produce new actions until the intention succeeds or
becomes impossible to reach. Inside the loop, in the case of a soft plan in the learning
stage, the currently selected action is executed (line 15). and then a learning step is
performed (line 16) which also returns the next action to be executed. The learning step
depends on the specific learning strategy adopted. If we are not in the learning stage but
instead we are in the exploitation stage, the soft plan is used almost like a hard plan: the
soft plan is used to decide which action to do (line 18) and the action is executed (line
19). In the case of a hard plan, the action is retrieved from the plan and executed as in
the original cycle (lines 22–24).

We must stress that learning and exploitation are two distinct phases at different
times. At first, the developer needs to design a teaching stage performed in a simulated
environment in which the agent learns how to perform the soft plan. After that, the
developer must validate the learning result to ensure it is suitable for the real scenario.
From the agent cycle point of view, there is no difference between the two phases: it is
the developer’s job to assess the agent’s capabilities before deploying it. The developer
can also freely decide if the agent, after the deployment, will only exploit plans or also
adapt to new experiences.

Figure 2 shows the implementation of a learning strategy module based on
SARSA [30] as concrete RL algorithm. SARSA is based on an action-value function
Q which is built during the learning process. Besides the Q function the module keeps
track of the current state, which is built from the observations (line 4 during the initial-
isation of an episode, line 13 in performing a learning step and line 21 when choosing
an action during the exploitation stage). Observations are extracted from the belief base
according to the goal to achieve (line 3 and line 12). The reward in a learning step is
obtained from the motivational rule that quantifies the fulfilment of the goal in accor-
dance with the current beliefs (line 11). Action selection follows the RL policy and the
current value function Q (line 14 and line 22). The core part of the learning step is the
value-action function update (line 15).

4 Proof-of-Concept Implementation in Jason

We developed a first proof-of-concept implementation on top of Jason, exploiting its
extensibility. Knowledge required by the RL part is uniformly represented by specific
beliefs, referred as beliefs about learning. The framework abstracts from the specific
RL algorithm but, depending on the characteristics of the problem, there will be differ-
ent constraints on it. Critical factors are the knowledge about the environment and the
state/action space dimensionality: if the state/action space dimensionality increases or
more environment features are hidden (Markov property), then the constraints on the
algorithm will be more stringent. To deal with this problem, we consider the possibil-
ity for the programmer to specify some domain knowledge so as to reduce state/action
space and thus obtaining a more efficient/effective learning.

184 M. Bosello and A. Ricci

Algorithm 2. Learning strategy module based on SARSA
1: Q(S,A),S,α ,ε,γ � Module state variables and params

2: procedure INITEPISODE(π,B, I) � To initialise a learning episode
3: O ← πobs(B, I)
4: S ← STATE(O)
5: return Qpolicy(S,ε) � action chosen using a policy derived from Q (e.g., ε-greedy)
6: end procedure

7: function EPISODEFINISHED(π,B, I) � To check if an episode is finished
8: return S= πterm(B, I)
9: end function

10: procedure DOLEARNSTEP(π,B, I,A) � To do a learning step of an episode, using SARSA
11: R ← MR(π,B, I) � Getting the reward using the motivational rules
12: O ← OBS(π,B, I) � Getting the observations relevant for the learning task
13: S′ ← STATE(O) � Reconstruct the state given the observations
14: A′ ← Qpolicy(S′,ε) � Choose A′ from S′ using a policy derived from Q
15: Q(S,A) ← Q(S,A)+α [R+ γQ(S′,A′)− Q(S,A)] � Q update, according to SARSA
16: S ← S′ � Updating the new current state S
17: return A′
18: end procedure

19: function CHOOSELEARNTACTION(π,B, I)
20: O ← πobs(B, I)
21: S ← STATE(O)
22: return Qpolicy(S) � action chosen from S using Q action-value function
23: end function

All the RL items are represented as beliefs, including rules, and plans. In this way,
the agent can control everything related to the reinforcement learning process. For the
BDI agent, RL is a black box and vice versa. We can see the black box as a block that
we can change without affecting the agent and that can implement any RL algorithm.

4.1 RL Concepts Representation in Jason

All beliefs about learning include as the first parameter a ground term representing
the goal for which we want a soft plan, i.e. whose plan is learned. This is useful to
support multiple goals with soft plans at the same time. In the gridworld, for instance,
we identify the goal with reach_end.

In order to reduce the state space, we need to declare which beliefs shall be consid-
ered relevant for a goal, so that they will be used as observations. We do this with the
beliefs rl_observe(G, O), where G is a ground term that refers to the goal and O is
the list of the beliefs that will be considered for the goal. In gridworld example:

rl_observe(reach_end, [pos(_,_)]).

As introduced in the previous section, Motivational Rules define the rewards for
some goal given the current context:

From Programming Agents to Educating Agents 185

rl_reward(G, R) :- ...

where G is the goal and R is a real number. The body of the rule represents the state for
which this reward must be generated. In the gridworld example:

rl_reward(reach_end, 10) :- finish_line.
rl_reward(reach_end, -1) :- not finish_line.

At each execution, the RL reasoner gets the sum of all the rewards of the Motivational
Rules for which the body is true on the basis of the agent beliefs.

Similarly, Terminal Rules are in the form of rl_terminal(G) :- ..., asserting
when the end of an episode is reached. In the gridworld example:

rl_terminal(reach_end) :- finish_line.

The action set is represented as a set of (hard) plans, identified by an @action anno-
tation: @action[rl_goal(g1, ..., gn)] where g1, ..., gn is the list of goals for
which the plan/action can be used. In the gridworld example:

@action[rl_goal(reach_end),
rl_param(direction(set(right, left, up, down)))]

+!move(Direction) <- move(Direction).

This is used to inform the RL reasoner that the move action, wrapped into the corre-
sponding plan, is relevant for learning how to achieve the reach_end goal. The anno-
tation allows for specifying also parameters that are used in the action/plan, specifying
the range of the values: @action[rl_goal(g1, ..., gn), rl_param(p1, ...,
pm)] where p1, ..., pm is the list of literals whose names match the names of the
variables—these literals must contain a predicate that defines the type of the parameter
and its range. To define an action space in which the action set is not the same in all
states we can use the context of the plan—if the context is not satisfied for the current
state, the plan will not be considered by the RL algorithm.

RL algorithm parameters can be specified as beliefs, enabling the complete control
of the learning process by the programmer and the agent. In the gridworld example,
some parameters are:

rl_parameter(alpha, 0.26).
rl_parameter(gamma, 0.9).
rl_parameter(policy, egreedy).

Finally, a couple of internal actions are provided to drive and inspect the learning
process: rl.execute(G) and rl.expected_return(G,R).

The internal action rl.execute(G) makes it possible to perform one run (episode)
of the learning process – if we are in the learning stage – or execute the soft plan – in
the exploitation stage. The belief about policy parameter rl_parameter(policy,P)
can be used to specify if the agent is in learning stage or exploitation stage. Exploitation
occurs when the policy P is set to exploit. When rl.execute(G) is executed, if the
policy is set to exploit, then the soft plan is executed without learning.

186 M. Bosello and A. Ricci

The action rl.execute(G), implemented in Java, wraps the core part of the RL
algorithm. To that purpose, the Java bridge makes it possible to reuse existing RL
libraries, when useful, including libraries written in other languages such as Python
ones. The action carries on and improves the soft plan under learning and its execu-
tion completes when the episode is completed (or until an action failure). The soft plan
intention is carried out like any other intention—so the RL execution competes with the
other intentions for the agent attention and further execution. Typically, a full learning
process involves the repeated execution of learning episodes, in this case by executing
multiple times the rl.execute action.

The internal action rl.expected_return(G, R) gets the estimate of future
rewards R for the goal G on the basis of the current state and learned policy, i.e. the
expected return. This could be used to understand the performance of the learnt soft
plan for some goal, given the current situation of the agent. For instance, if the expec-
tation of the learnt behaviour in the current state is poor, we can fall back on another
plan. As a result, we obtain a notion of context for soft plans.

A simple example of learning process, related to the gridworld example, using
rl.execute(G) and rl.expected_return(G, R) follows:

+!reach_end: rl.expected_return(reach_end, R) & R >= 10
<- rl.execute(reach_end).

+!reach_end: rl.expected_return(reach_end, R) & R < 10
<- -+rl_parameter(policy, egreedy);

!do_learning(reach_end,10).

+!do_learning(G,TargetRew) :
rl.expected_return(reach_end, R) & R < TargetRew

<- rl.execute(reach_end);
!do_learning(G,TargetRew).

+!do_learning(G,TargetRew) :
rl.expected_return(reach_end, R) & R >= TargetRew

<- -+rl_parameter(policy, exploit).

In this case, if a new reach_end goal is requested and we have a good expected return,
then we execute the soft plan (which is supposed to be in exploitation mode). Otherwise,
we start a learning process, until the target reward is achieved.

4.2 Jason-RL Reasoning Cycle

The Jason reasoning cycle defines how the Jason interpreter runs an agent program, it
can be seen as a refinement of the BDI decision loop [8]. There are ten main steps: in
our framework, some of these steps are extended to include learning aspects. Figure 2
shows our extended architecture based on the original one; the red components are the
extensions. The detailed description of the original cycle can be found in [8]. In the
following we focus on our extensions.

From Programming Agents to Educating Agents 187

In a learning agent, after the update of the belief base (2a), the maps that track the
Belief about Learning are updated to reflect the new belief; we call this process Obser-
vation Update Function OUF (2b). In this way, when the observations are required, the
agent doesn’t need to iterate multiple times over the belief base. In step (7a), when the
plan’s context is bound to the expected reward, the value is asked to the RL black box
and then verified against the threshold (7b). Finally, a new step (11) shall be added to
the sequence when the next action of the intention selected in (9) is the RL execution.
At this stage, the information that the RL process needs in order to continue shall be
provided to it. The observations and the parameters are taken from the belief base, plus,
the Motivational Rules and the Terminal Rules are checked against the belief base to
retrieve the reward and the terminal status.

The RL reasoner needs also the set of relevant actions; this is formed by the action
set defined in the plan library after the non-applicable actions are eliminated through
the same check context function of (7). So, the agent provides these data to the RL black
box and then obtain the next suggested action (12). This action is pushed on top of the
intention queue and, if the state is not terminal, under this action is put a new call to the
RL execution action (13). The next time this intention is further executed, the selected
action will be performed, at the subsequent intention execution, another action will be
requested and so on.

The full implementation of the framework, along with some documentation, is avail-
able as open-source project2.

5 First Evaluation and Discussion

Agentspeak has both a declarative nature (the reasoning) and an imperative one (plans,
i.e sequences of actions). We worked towards automating the development of the imper-
ative side while maintaining the declarative one. In the developed framework, the con-
cept of soft plan allows the agent to learn plans while preserving the reasoning capabili-
ties of a BDI agent: the framework act on the body of the plan, retaining the declarative
attitude derived from event triggering and plans’ context, as with traditional plans. As
a result, it is not just about calling a policy learned through RL, but it concerns the
inclusion of that kind of plan in the reasoning flow of the agent.

The framework aims at modeling the three fundamental RL signals without any
assumption on the RL algorithm behind them. Nevertheless, depending on the RL algo-
rithm, different kinds of environments may be considered, with a different impact on
the performances. In literature, three main characteristics of the environments are typ-
ically considered to properly select the RL algorithms: the Markov property, the type
of task (episodic or continuing), and the state and action spaces dimension. A detailed
discussion of this aspect is out of the scope of this paper.

Here we found it interesting to consider if and how our model/framework would be
expressive and flexible enough to include more advanced RL approaches used to tackle
complex environments. For instance, in literature function approximation is exploited to
tackle partial observability, possibly using nonlinear methods such as neural networks,

2 https://github.com/MichaelBosello/jacamo-rl.

https://github.com/MichaelBosello/jacamo-rl

188 M. Bosello and A. Ricci

Fig. 2. The Jason Reasoning Cycle extended with learning aspects.

From Programming Agents to Educating Agents 189

in particular deep networks—such as in deep reinforcement learning. In our framework,
this accounts for changing/plugging a proper RL reasoner component, without changing
the whole interpreter architecture.

RL algorithms may have different characteristics and features. It is an action-value
method if it selects the actions based on their estimated action values. It is a policy
gradient method if it learns a parameterized policy that can select actions without con-
sulting a value function. It is on-policy if it learns the behavior policy i.e., the (near-
optimal) policy used to generate behavior. It is off-policy if it learns the target policy
i.e., the optimal policy. It is tabular if the value-function is represented with a table. It is
approximated if it uses some kind of function approximation. Given such a spectrum of
characteristics, to provide a first evaluation of our approach we implemented three RL
algorithms which represent three families of RL approaches: (i) SARSA, an on-policy
action-value method; (ii) DQN, an off-policy action-value method with approximation
i.e. the neural network; (iii) REINFORCE, a policy gradient method.

As we can see, our approach generalizes quite well with respect to the various RL
algorithms. The developer needs only to change a belief to change the algorithm used by
the agent. In the remainder of the section, we first provide some implementation details
about the algorithms used and then we describe the set of tests that we performed, based
on simple well-known problems, along with the obtained results. The full source code
of the examples is available within the distribution of the framework.

5.1 Details About the Algorithms Used

As a first extension of the framework, we implemented a RESTful service in Python
that provides the capability of TF-Agents [26] to our framework. TF-Agents is a library
that offers the core elements of RL and several RL algorithms, which is built on top of
TensorFlow [1], the popular machine learning open source platform. A Java class that
implements the interface requested by our framework consumes the above-mentioned
service, completing the bridge between our framework and TF-Agents. We tested two
algorithms offered by the library: DQN [19] and REINFORCE [34]. SARSA instead
has been implemented directly in Java.

5.2 Tests Performed and Results

In order to test our proof-of-concept implementation, we used the gridworld problem
introduced in Sect. 3, performing first simple tests over small (5 × 5) grids. This prob-
lem has been used essentially for testing the framework in its early stages. At every
episode, the agent appears in a random place and seek to reach a fixed target position.
SARSA algorithm performs properly in this task with a ε-greedy policy with epsilon
decay (i.e., the exploration probability decreases with increasing steps). Parameters
used: alpha = 0.26, gamma = 0.9, epsilon = 0.22, epsilon decay = 0.99992. The agent
learns the policy in about 1000 episodes, and when epsilon decreases under 0.05 (with
this decay, approximately after 5000 episodes), the behaviour becomes near optimal.
The chart in Fig. 3 shows the average error (how many extra steps were made compared
to the minimum path) on five trials with 6000 episodes.

190 M. Bosello and A. Ricci

Fig. 3. Chart of simulation results: x is the episode number and y is the average error.

Fig. 4. Chart of CartPole results: x is the validation phase and y is the average reward on 100
episodes.

We tested the other algorithms in two classic control environments, namely Cart-
Pole [6] and MountainCar [20]. To obtain an ensemble of test tasks, we implemented
a bridge – with a REST service, in the same way as for the algorithms – between the
Jason environment and Gym [10], a suite of RL tasks.

In the CartPole quest, a movable pole is attached to a cart. The BDI agent gets
four observations from the environment: the cart’s position and velocity as well as the

From Programming Agents to Educating Agents 191

Fig. 5. Chart of MountainCar results: x is the validation phase and y is the average reward on 100
episodes.

position and velocity of the pole. It desires to keep the pole upright and prevent it from
falling over by moving the cart. The plan move takes the direction, right or left, as a
parameter. At every time-step, the agent receives a positive reward with a cumulative
maximum of 200 per episode. The episode ends when the pole is more than 15 degrees
from vertical, the cart moves more than 2.4 units from the center, or more than 200 time-
steps have passed. CartPole defines “solving” as getting an average reward of 195.0
over 100 consecutive trials. We solved the CartPole problem with the REINFORCE
algorithm and the following parameters: learning rate = 0.001, gamma = 1, epsilon =
0.1, one hidden layer with 100 neurons.

In the MountainCar problem, a car is between two mountains in a one-dimensional
track. The agent seeks to reach the top of the right one. The car’s engine is not strong
enough to scale the mountain, so, the agent must build up momentum going back and
forth to reach the top. The agent gets as beliefs the position and speed of the car. Its
desire is reach_top. It uses the plan move by selecting one of the three directions: back,
none, and forth. At every time-step, the agent receives a negative reward. MountainCar-
v0 is solved with an average reward of −110.0 over 100 consecutive trials. We used
DQN to solve MountainCar. Parameters have been: learning rate = 0.0008, gamma =
0.99, epsilon = 0.1, two hidden layers with 256 neurons each, batch size = 64. The charts
in Figs. 4 and 5 display the trend of the average cumulative return. The agent alternate a
phase of training and a phase of evaluation. Every column of the charts shows the value
of the average reward on 100 episodes of evaluation. Between every evaluation phase,
the agent performs 100 episodes of training for the CartPole case and 50 episodes for
the MountainCar one.

192 M. Bosello and A. Ricci

6 The Road Ahead

The objective of this paper was to introduce a novel perspective on the integration of
learning in BDI Agents programming and agent-oriented programming. In that per-
spective, the development stage of an agent accounts for setting up a first version of the
agent, eventually including some programmed plans (hard plans), and then grow up the
agent by making itself learning some other plans (soft plans), according to the need.
Soft plans become part of the plan library and at deployment time the agent can exploit
them like the hard ones, in a uniform way.

In the paper, we described a first proof-of-concept model and implementation based
on Jason. In the current state, the framework is not meant to be ready to tackle real-
world problems but to be a first tool in order to further explore and develop this idea.
In that perspective, many interesting aspects – from our point of view – are worth to be
investigated in future work. A list of main ones follows:

Mixing Soft and Hard Plans. Exploring the benefits of mixing soft and hard
plans. This includes, in particular, the possibility of exploiting hard plans during
the learning process. Hard plans in this case can be framed as the predefined practi-
cal knowledge that the agent could exploit, without the need of learning everything
necessarily from scratch. We believe that this may have a positive impact on both
the time required to learn and of the quality of the learnt plans itself. To effec-
tively explore this point, we need both to further extend the basic framework and
to identify a proper set of problems of incremental complexity.
Hierarchical RL and Reward Shaping. Further extending the set of RL algo-
rithms used and examples/problems as well, eventually doing a rigorous analysis
of the computational complexity and properties of the computations performed by
the extended reasoning cycle. Among the large spectrum of RL-based approaches,
two are particularly interesting with respect to the objective of our research line.
The first is about Hierarchical Reinforcement Learning, extending the reinforce-
ment learning paradigm by allowing the learning agent to aggregate actions into
reusable subroutines or skills [9]. In BDI case, reusable subroutines or skills are
modelled as plans triggered by subgoals. The second one is about reward shaping
in reinforcement learning3 [11]. There, “education” is realised through the creation
of a proper learning environment and, in particular, through demonstration.
Education Process. Exploring further the development/education process life-
cycle, analysing how the different stages – development/training, valida-
tion/assessment, deployment/monitoring – are related.
New Generation of Tools and IDE. Designing and developing proper tools to be
embedded in existing IDEs – or extending them – to support this process. Includ-
ing simulators, which become an essential part of the picture.
Software Engineering. Exploring how software engineering aspects such as mod-
ularity, extensibility, reusability, composability can be framed when dealing with
soft plans, aside to hard plans. Can we introduce kind of incremental learning to
extend existing soft plans?

3 We thank the reviewers for this suggestion.

From Programming Agents to Educating Agents 193

Artifact-Based Environments. Exploring how environment first-class abstrac-
tions such as artifacts [25] could be useful to better structure, modularise and
make the way in which actions – and observations as well – are currently con-
sidered more dynamic.
Beyond the Single Agent Perspective. What does it mean an education process
for a multi-agent system? what does it mean an education process for an agent
organisation?
Methodologies. What’s the impact on AOSE methodology. Or, can we exploit
existing AOSE methodology to effectively support this process or do we need to
extend them?
Planning. In the paper we did not consider at all planning, being our framework
focused on learning. Nevertheless, it would be interesting and important to extend
the conceptual framework to consider also the role that planning can do in such
agent education process.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015). http://tensorflow.org/. Software available from tensorflow.org

2. Airiau, S., Padgham, L., Sardina, S., Sen, S.: Enhancing the adaptation of BDI agents using
learning techniques. Int. J. Agent Technol. Syst. 1(2), 1–18 (2009)

3. Andrew McAfee, E.B.: The Second Machine Age: Work, Progress, and Prosperity in a Time
of Brilliant Technologies. W. W. Norton & Company, New York (2014)

4. Badica, A., Badica, C., Ivanovic, M., Mitrovic, D.: An approach of temporal difference
learning using agent-oriented programming. In: 20th International Conference on Control
Systems and Computer Science, pp. 735–742, May 2015

5. Badica, C., Becheru, A., Felton, S.: Integration of jason reinforcement learning agents into an
interactive application. In: 19th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC), pp. 361–368, September 2017

6. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve diffi-
cult learning control problems. IEEE Trans. Syst. Man Cybern. SMC-13(5), 834–846 (1983)

7. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented pro-
gramming. In: Bordini, R.H., et al. (eds.) Multi-Agent Programming: Languages, Platforms
and Applications, pp. 3–37. Springer, Boston (2005). https://doi.org/10.1007/0-387-26350-
0_1

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason (Wiley Series in Agent Technology). Wiley, Hoboken (2007)

9. Botvinick, M., Niv, Y., C Barto, A.: Hierarchically organized behavior and its neural foun-
dations: a reinforcement learning perspective. Cognition 113, 262–280 (2008)

10. Brockman, G., et al.: OpenAI Gym (2016)
11. Brys, T., Harutyunyan, A., Suay, H.B., Chernova, S., Taylor, M.E., Nowé, A.: Reinforcement

learning from demonstration through shaping. In: Proceedings of the 24th International Con-
ference on Artificial Intelligence (IJCAI 2015), pp. 3352–3358. AAAI Press (2015)

12. Feliú, J.L.S.: Use of Reinforcement Learning (RL) for plan generation in Belief-Desire-
Intention (BDI) agent systems. University of Rhode Island (2013)

13. Ford, M.: Architects of Intelligence: The Truth About AI from the People Building It. Packt
Publishing, Birmingham (2018)

14. Gerrish, S.: How Smart Machines Think. MIT Press, Cambridge (2018)

http://tensorflow.org/
https://doi.org/10.1007/0-387-26350-0_1
https://doi.org/10.1007/0-387-26350-0_1

194 M. Bosello and A. Ricci

15. Guerra-Hernández, A., El Fallah-Seghrouchni, A., Soldano, H.: Learning in BDI multi-agent
systems. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3259, pp. 218–233.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30200-1_12

16. Karim, S., Sonenberg, L., Tan, A.-H.: A hybrid architecture combining reactive plan execu-
tion and reactive learning. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol.
4099, pp. 200–211. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36668-
3_23

17. Kelly, J.E.: Computing, cognition and the future of knowing (2015). IBM Research and
Solutions, white paper

18. Meijer, E.: Behind every great deep learning framework is an even greater programming lan-
guages concept (2018). Invited Talk at the 26th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)

19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518
(2015)

20. Moore, A.: Efficient memory-based learning for robot control. Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, PA, March 1991

21. Norling, E.: Folk psychology for human modelling: extending the BDI paradigm. In: Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), pp. 202–209. IEEE Computer Society, Washington, DC (2004)

22. Parnas, D.L.: The real risks of artificial intelligence. Commun. ACM 60(10), 27–31 (2017)
23. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van

de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0031845

24. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319 (1995)

25. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an
artifact-based perspective. Auton. Agents Multi-Agent Syst. 23(2), 158–192 (2011)

26. Guadarrama, S., et al.: TF-Agents: A library for reinforcement learning in tensorflow (2018).
https://github.com/tensorflow/agents

27. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
28. Singh, D., Hindriks, K.V.: Learning to improve agent behaviours in goal. In: Dastani, M.,

Hübner, J.F., Logan, B. (eds.) Programming Multi-Agent Systems, pp. 158–173. Springer,
Heidelberg (2013)

29. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI agent for
environments with changing dynamics. In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 2525–2530. AAAI Press (2011)

30. Sutton, R.S., Barto, A.G.: Reinforcement Learning : An Introduction. The MIT Press, Cam-
bridge (2018)

31. Tan, A.H., Ong, Y.S., Tapanuj, A.: A hybrid agent architecture integrating desire, intention
and reinforcement learning. Expert Syst. Appl. 38(7), 8477–8487 (2011)

32. Tanz, J.: The end of code. Wired (2016)
33. Weiß, G.: Adaptation and learning in multi-agent systems: some remarks and a bibliography.

In: Weiß, G., Sen, S. (eds.) IJCAI 1995. LNCS, vol. 1042, pp. 1–21. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60923-7_16

34. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn. 8(3), 229–256 (1992)

35. Wooldridge, M.: Introduction to Multi-Agent Systems. Wiley, Hoboken (2009)

https://doi.org/10.1007/978-3-540-30200-1_12
https://doi.org/10.1007/978-3-540-36668-3_23
https://doi.org/10.1007/978-3-540-36668-3_23
https://doi.org/10.1007/BFb0031845
https://github.com/tensorflow/agents
https://doi.org/10.1007/3-540-60923-7_16

Plan Library Reconfigurability
in BDI Agents

Rafael C. Cardoso(B) , Louise A. Dennis , and Michael Fisher

University of Liverpool, Liverpool L69 3BX, UK
{rafael.cardoso,L.A.Dennis,mfisher}@liverpool.ac.uk

Abstract. One of the major advantages of modular architectures in
robotic systems is the ability to add or replace nodes, without needing
to rearrange the whole system. In this type of system, autonomous agents
can aid in the decision making and high-level control of the robot. For
example, a robot may have a module for each of the effectors and sen-
sors that it has and an agent with a plan library containing high-level
plans to aid in the decision making within these modules. However, when
autonomously replacing a node it can be difficult to reconfigure plans
in the agent’s plan library while retaining correctness. In this paper,
we exploit the formal concept of capabilities in Belief-Desire-Intention
agents and describe how agents can reason about these capabilities in
order to reconfigure their plan library while retaining overall correctness
constraints. To validate our approach, we show the implementation of
our framework and an experiment using a practical example in the Mars
rover scenario.

Keywords: Belief-Desire-Intention · Modular architectures ·
Autonomous agents · Reconfigurability

1 Introduction

Robots have been frequently used in real world applications over the years,
from industrial robotics [34] to teleoperated robots in search and rescue [27].
However, there are still many open challenges such as: the German strategic
initiative Industrie 4.0 that encourages research in the intelligent networking of
machines; and robot assisted disaster response in the TRADR project [21]. The
reconfigurability problem originally stemmed from manufacturing systems [20],
but has since been expanded to self-reconfigurable robots [6,35] that can adapt
to different situations via proper selection and reconfiguration of the functional
components and the software that are available.

Due to the complexity present in these challenges modular architectures are
typically employed to speed up and make the development of robotic systems

Work supported by UK Research and Innovation, and EPSRC Hubs for “Robotics
and AI in Hazardous Environments”: EP/R026092 (FAIR-SPACE), and EP/R026084
(RAIN).

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 195–212, 2020.
https://doi.org/10.1007/978-3-030-51417-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_10&domain=pdf
http://orcid.org/0000-0001-6666-6954
http://orcid.org/0000-0003-1426-1896
http://orcid.org/0000-0002-0875-3862
https://doi.org/10.1007/978-3-030-51417-4_10

196 R. C. Cardoso et al.

easier. The Robot Operating System (ROS) [29] is an example of a popular
middleware that can be used to develop a modular robotic system. In ROS,
nodes are used to effectively capture robotic software in terms of a graph that
describes the communication between distinct nodes. Some of the advantages
of decoupling the system in this way include: more precise failure handling and
recovery mechanisms, since failures can be traced to individual nodes; and the
complexity of the code is reduced when compared to monolithic systems, making
it easier to add, replace, or remove functionality (i.e., nodes).

Agent-based control allows a system to dynamically adapt to changes in the
environment through the use of modularity, decentralisation, autonomy, scal-
ability, and reusability [22]. Many of these systems use cognitive agents, par-
ticularly those in the Belief-Desire-Intention (BDI) paradigm [30]. Kohn and
Nerode’s MAHCA system [19] uses multiple knowledge-based agents as planners
which generate the actions performed by the underlying control system. While
these agents are not based on the BDI paradigm, which was only in its infancy
when MAHCA was originally developed, the approach was designed to represent
logical decision-making in a high-level declarative fashion. Recent agent-based
approaches have been used in networks of autonomous agents interacting to
solve complex and dynamic problems in manufacturing and supply chain deci-
sion making [24], and explored in the control of spacecraft [28], Unmanned Air-
craft [37], and robotics [38]. Many of these approaches are explicitly BDI-based
that aim to model the mission designer’s intent and to separate the symbolic
and non-symbolic reasoning.

Modular architectures for robotic systems often benefit from having a frame-
work for reconfigurability, allowing modules to be added and replaced should the
need arise. For example, a node can be replaced if it is under-performing accord-
ing to a specific measure (e.g., the path planner is wasting too much battery), or
due to a failure the node is no longer operational; a new node can be added to
deal with some problem that was detected post-deployment, or to improve the
functionality of other nodes. Several types of reconfigurability can be identified
in these systems [9]: (i) reconfiguration at the hardware level, for instance the
dynamic reconfiguration of effectors and sensors to cope with a hardware change;
(ii) reconfiguration due to low-level control, such as ROS node reconfiguration
and being able to replace nodes while still maintaining a working graph; (iii)
reconfiguration due to high-level control, for example reconfiguring an agent’s
goals, plans, and knowledge.

In this paper, we introduce the reconfigurability of plan libraries in BDI
agents. Specifically, our approach is aimed towards modular architectures and
applications that detect anomalies or malfunctions in a capability (an extended
action specification) and can then reason about replacing it with alternative
capabilities that are able to achieve the desired outcome. Our reconfigurabil-
ity framework consists of formal descriptions of capabilities, plans, and how to
perform plan replacement.

We use the BDI-based agent-oriented programming language Gwen-
dolen [7] to implement our framework. By using this language, we can formally

Plan Library Reconfigurability in BDI Agents 197

verify our new plan library using a program model checker. This is an important,
and necessary [11], step towards the validation and reliability of the framework
and its applications. To evaluate the implementation of our framework, we used
it to reconfigure plans of a BDI agent controlling a Mars rover.

In the next section we provide a background on BDI agents and clarify the dis-
tinction between actions and capabilities in BDI agent programming languages.
Section 3 introduces our reconfigurability framework, with an overview of the
overall system architecture that it can be applied to and a running example.
Then, we provide a formal description of capabilities, plans, and plan replace-
ment in propositional logic. In Sect. 4 we describe our implementation of recon-
figurability in the Gwendolen language, and then demonstrate its use in a
practical experiment in the Mars rover scenario. Section 5 covers the related
work, from purely theoretical approaches to application-based solutions. We end
the paper in Sect. 6 with our conclusions and future work.

2 BDI Agent Programming Languages and Capabilities

Agents programmed using BDI languages commonly contain a set of beliefs,
representing the agent’s current state and knowledge about the environment in
which it is situated; a set of goals, tasks that the agent aims to achieve; a set
of intentions, tasks that the agent is committed to achieve; and a set of plans,
courses of actions that are triggered by events. Events can be related to changes
in the agent’s belief base or to the addition or removal of goals. The agent reacts
to these events by creating new intentions which are generated from the set of
applicable plans related to that event.

The body of a plan often contains a set of actions that can cause changes in
the environment. Languages such as Jason, Gwendolen, and 2APL delegate
these actions’ specifications to the environment. Any preconditions or postcon-
ditions (i.e., effects) that such actions may have are invisible to the agent and
are dealt with at the environment level. The environment may return some value
to be unified with an open variable or, for example, in Jason it may also return
a failure condition which will trigger the removal of the event that started the
plan, allowing the user to set plans to handle these failures.

It is possible to specify an action’s pre and postconditions at the agent level
using these languages, for example by creating a dummy plan with only one
action, and writing the preconditions of the actions as the preconditions of the
plan. The postconditions, if any, could then be written as belief operations (add
or remove) to be executed after the action finishes. However, this is not how BDI
agents are traditionally programmed in those languages and it can be difficult
to reason about an action’s pre and postconditions programmed this way.

In general, to be able to successfully search for replacement actions it is
necessary to know the preconditions and postconditions of all available actions.
Thus, during reconfiguration it is crucial to be able to access information about
the execution of an action. We refer to actions with explicit specifications of pre
and postconditions as capabilities. It is important to note that agent languages

198 R. C. Cardoso et al.

usually do not use this term and when it is used its meaning can vary depending
on the language.

A capability can only be executed when its preconditions are true, and any
postconditions that it has are added as beliefs when the capability ends with
success. This kind of action theory is more prominent in automated planning,
known as actions in classical planning [13] or primitive tasks (also operators) in
Hierarchical Task Network (HTN) planning [36]. However, there are some BDI
languages that implement this concept of capability, such as GOAL, 3APL, and
2APL (only for belief update actions).

The problem that we are interested in solving is improving the system’s
ability to adapt its behaviour in the event of a (software) failure or damage to
some of its (physical) sub-systems in such a way that it can continue to achieve
some, or all, of its goals. In these systems, a BDI-agent is involved at the highest
decision-making level, and as such, the agent can recognise that a component is
no longer behaving as expected, then invoke diagnosis subsystems to identify the
actions related to the failure, and lastly reconfigure its plan library to cope with
the failure. We note that failure detection and diagnosis in agents is touched
on, for example, with semantics for adding duration and failure information in
actions for the life-cycle of goals in [8], and through the use of trace expressions
to specify protocols on top of sets of events (such as messages, beliefs, and
actions) to be checked at runtime through the use of automatically generated
monitors [12]. Such mechanisms are assumed to be in place and are not a part of
the framework that we describe in this paper; we focus on the reconfigurability
problem.

3 Reconfigurability Framework

Our framework is aimed towards systems that have a similar architecture to the
one represented in Fig. 1. The system goes through phases of potentially time
critical operations followed by an offline phase in which it can reason about
failure, perform reconfiguration, and if necessary reverify any relevant system
properties. When such a system is deployed, the execution of its capabilities is
monitored (e.g., with runtime monitors [12]). If a capability is detected as faulty,
then the reconfiguration process tries to replace calls to the faulty capability with
viable alternatives, which may include one or multiple capabilities.

We are particularly interested in applications where a high degree of assur-
ance (ideally formal verification) is required. We assume that the system has an
offline period, which is very common in robotic systems with long-term autonomy
(see [17] for example). During this period the robot can recharge and perform
cleanup operations, among other things. But, more importantly from our point
of view, it can also reconfigure itself if any faults were detected and verify any
plans that were replaced using, for example, a program model checker for agent
programming languages. In this paper, we focus on the formal definition and
implementation of the reconfigurability of plan libraries in BDI agent(s) that
perform high-level reasoning within the system.

Plan Library Reconfigurability in BDI Agents 199

System execution

System deployment

Faulty capability
detected?

Any plans
were replaced?

Reconfiguration

Program Model Checking

Yes

Yes

Offline period

No

No

Fig. 1. Overview of the system.

3.1 Running Example

Robots are increasingly deployed to explore hazardous environments that are
dangerous for human exploration and often safety-critical, such as areas with
extreme temperatures (monitoring of offshore structures [33]), lack of oxy-
gen (both orbital [14] and planetary [39] space exploration), or high radiation
(nuclear inspection and decommissioning [3]). Autonomous robots are especially
important in scenarios with communication bottlenecks, for example, in plane-
tary space exploration it can take a very long time for human operators to send
commands from Earth to the robots. One such example is the Mars rovers used
by NASA1 in several missions. In this scenario an autonomous rover vehicle tra-
verses the surface of Mars collecting image, soil, and rock data. For our example
we assume that the rover has access to a topological map, which indicates areas
of interest (denoted by waypoints) where the rover can collect data.

The Mars rover scenario can easily be seen as a system that matches the
overview depicted in Fig. 1. While in execution mode, the rover traverses through

1 https://mars.nasa.gov/.

https://mars.nasa.gov/

200 R. C. Cardoso et al.

routes in the topological map, collecting data at each waypoint. The rover’s
offline period happens, for instance, during the night when it can not recharge
using its solar panels and must conserve energy by remaining stationary.

Specifically, in this scenario we are interested in modelling the agent that is
responsible for autonomously controlling the rover at a high-level. The actions
that the agent can perform include moving between waypoints in a topological
map, charging its batteries, collecting soil, collecting data, and taking images.
These high-level commands should be translated into a lower-level system for
execution. For example, if we use ROS with the move base library for path plan-
ning, travelling to a waypoint in a topological map is automatically translated
into a sequence of commands with some particular linear and angular parame-
ters that are published to the velocity node. This makes the high-level control
of the robot much more transparent to the developer and to the agent.

3.2 Preliminaries

Propositional Logic. We adopt a language of propositional logic L with formula
φ defined over a finite set of literals, L, and with �,⊥ ∈ L denoting the true
and false connectives respectively. We also use a finite set of abstract states S
with element s and an entailment relation s |=L φ which defines when formula
φ holds in s.

As previously mentioned in Sect. 2, actions form the body of a BDI plan.
When these actions are executed, some parameters may need to be instantiated
(this is typically done by unification). We use the notation tθ to indicate the
application of a unifier, θ, to a term t.

3.3 Capabilities

Our formal representation of capabilities is based on the action theory found in
classical automated planning, such as STRIPS reasoning [13], situation calcu-
lus [31], and the Planning Domain Definition Language (PDDL) [25]. As such,
our formalism is deliberately close to those, but a key difference is that we do not
plan from scratch. We discuss the relationship between our work and planning
systems in related work (Sect. 5).

A capability specification describes an action that an agent can take and any
relation it has to the internal (self) and external (environment) facts of the agent.
The specification is in the form of a set of preconditions and postconditions for
the action. If the preconditions hold before the action is performed then the
action specification states that eventually, if the action terminates with success,
the postconditions will hold.

Capability Specification. We use the notation {Cpre}C {Cpost} where C is the
capability, Cpre are the preconditions and Cpost are the postconditions. C, Cpre,
and Cpost are all formulas φ ∈ L.

Plan Library Reconfigurability in BDI Agents 201

Capability Example. The move action of a rover can be represented as:

C = {at(W1), notW1 = W2}move(W1,W2) {not at(W1), at(W2)}
such that W1 is the current position of the rover, and W2 is the desired desti-
nation. Following the capability specification, we know that the rover must be
at(W1) (precondition), and after the end of the execution it must be at(W2)
(postcondition). Note that we consider postconditions as belief updates. That
is, not at(W1) in the postcondition is a belief removal of at(W1). This is needed
to maintain consistency during the search for plan replacements. Consistency
here indicates that the preconditions do not contradict the postconditions.

Reasoning About the Execution of a Capability. The notation do(Cθ) indicates
the execution of a capability, with its parameters instantiated by the θ unifier.
The execution defines a transition on states in S that is completely specified by
the specification of C. That is, if s ∈ S and s |=L Cpreθ there is some unique
state s′ ∈ S such that:

s
do(Cθ)−−−−−→s′ and s′ |=L Cpostθ

In order to avoid the frame problem, we make the simplifying assumption
that for any φ ∈ L, if s |=L φ and φ∧Cpostθ is consistent then s′ |=L φ. That is,
any formula that is true in state s and is not explicitly effected by the execution
of the capability will still be true in state s′. Thus, if the preconditions hold then
the postconditions will also hold.

As discussed in Sect. 2, many BDI systems employ a simplistic action theory
where the pre and postconditions of actions are not represented at the execution
level of the agent. Thus, it is always possible to execute actions in those systems
as long as the preconditions of the plan hold when the plan was selected. Our
theory of plan validity assumes that capability specifications are complete and
correct and that the preconditions of a capability always hold when the system
attempts to execute the associated action.

Execution Example. Suppose that in state s the proposition empty(true) holds
and the next action in the plan to be executed is the capability collect sample
with postcondition empty(false):

s
do(collect sample)−−−−−−−−−−−−→s′

results in a state where empty(false) holds.

3.4 Plans

A BDI plan is a structure which contains a sequence of capabilities as its body,
but may also contain additional elements such as trigger events or guards. For
simplicity, we ignore these additional elements in a plan body when reasoning
about plan replacements, but we point out that most of these elements could be
represented as capabilities.

202 R. C. Cardoso et al.

Plan Specification. Given a plan, P , we write its preconditions as Ppre and its
postconditions as Ppost. We use the notation C = [C1;C2; . . . ;Cn] to indicate
a sequence of capabilities that are to be executed as part of the body, C, of
a BDI plan. Our theory assumes that capabilities are guaranteed to execute
sequentially, i.e., Ci+1 is not executed until Ci

post holds.

Plan Body Example. We have a plan, P 1 to collect a rock sample at a particular
position and then transmit the data. The body of this plan, C1, consists of a
sequence of four capabilities:

C1 = [move(W1,W2); collect sample(S); move(W2,W3); transmit data(S)]

The first moves the rover to a position where it is capable of collecting a rock
sample, performs the collection, then moves to a position where it can transmit
the data, and finally performs the transmission.

Many BDI-based languages already allow the specification of preconditions
in plans (e.g., plan context in Jason, or plan guards in Gwendolen), but it is
unusual for a BDI plan to have explicit postconditions. However, we believe these
can often be understood implicitly from the postconditions of the capabilities in
a plan’s body.

Pre and Postcondition Example. Using the plan from the previous example, P 1,
we can complete the plan specification by adding P 1

pre = [at(W1), empty(true)]
and P 1

post = [data transmitted(S)] as such:

P 1 = {at(W1), empty(true)}C1 {data transmitted(S)}

meaning that for the plan to be applicable the rover must be at waypoint W1

and it must not be carrying any sample, and after the plan’s conclusion the data
of S will have been transmitted.

We represent pre and postconditions for plans explicitly because even though
two capabilities may have different postconditions it may be the case that one can
be replaced by another in a plan, without changing what the plan is intended to
achieve. In other words, by having the plan’s postconditions explicitly specified
we can check that they still hold even after replacing a capability for another one
with different postconditions. Although it would be possible to enforce capabili-
ties in the body of a plan to be minimal, we prefer to not impose that restriction,
since BDI plans are generally constructed by humans rather than automated
planning systems.

It may occur that the postcondition of a plan does not include all of the
effects from the execution of the capabilities in the plan body (i.e., Ppost �=
C1

post ∪ . . . ∪ Cn
post). For example, the proposition at(W2) is not a postcondition

of P 1 since in this case we do not care if the final position of the rover is W2,
only that it has successfully transmitted the data. This may be achievable from
other waypoints, allowing the plan to be modified in a fashion that would have
the rover transmitting data from a different waypoint.

Plan Library Reconfigurability in BDI Agents 203

Simple Plan Trace. A simple plan trace is one in which only the capabilities in the
plan body cause state transitions in S. That is, the environment does not change
apart from the execution of those capabilities and the plan’s execution has not
been interleaved with the execution of any other plan. Formally, let [C1; . . . ;Cn]
form the body of some plan, P . Then a sequence of states s1; . . . ; sn+1 together

with a unifier, θ, forms a simple plan trace for P if for all si, si
do(Ciθ)−−−−−→si+1.

3.5 Plan Replacement

When reasoning about plan replacement we assume an idealised execution envi-
ronment for the plan represented by a simple plan trace. We ignore any impact
that the environment (or another external factor) might have in the outcome
of a capability, as these would be impossible to predict. The end system may
still have them and they may make a plan that was replaced fail, but we do
not address this issue in this paper, since this is not directly related to the
reconfigurability problem.

Definition 1 (Valid Plan). We say a plan P with a body consisting of the
sequence of capabilities [C1; . . . ;Cn] is valid with regards to the specifications of
the capabilities, if for all simple plan traces, 〈s1; . . . ; sn+1, θ〉 where θ instanti-
ates all the parameters of all the specifications for capabilities in the body of P ,
si |=L Ci

preθ for all Ci. That is, the precondition in the specification for the next
capability in the plan holds when some capability is executed.

Note that plans in an actual BDI program may not be valid w.r.t. to the
actions’ specifications since they have been supplied by a programmer, i.e., not
constructed from the specifications. In this case, these plans would need to be
fixed, either by an automatic algorithm or by hand, to be considered as valid
plans and able to be replaced.

Definition 2 (Valid Plan Specification). We say that a plan specification
P = {Ppre}C{Ppost} for a plan with body [C1; . . . ;Cn] is valid if

[1.]
1. P is valid;
2. Ppre → C1

pre; and
3. for all simple plan traces, 〈s1; . . . ; sn+1, θ〉 where θ instantiates all the param-

eters in the specifications of capabilities appearing in the body of P and all
free variables in Ppre and Ppost, if s1 |=L Ppreθ then sn+1 |=L Ppostθ.

The first point is covered in Definition 1. The second point states that if the
preconditions of the plan holds before its execution, then the preconditions of
the first capability in that plan’s body also hold. The third point declares that
a plan specification is valid if it can establish its postconditions on simple plan
traces. That is, if the precondition of a plan hold before execution of the plan,
then the plan’s postconditions hold after its execution.

Once again, we assume a static environment where all capabilities behave
according to their specification. Note that this does not guarantee that the plan

204 R. C. Cardoso et al.

always works, only that it has been specified appropriately and sensibly pro-
grammed to work in most situations where it is invoked.

Definition 3 (Preservation of Plan Spec. Validity). Consider a plan spec-
ification P = {Ppre}C{Ppost}. Let P ′ be a plan that has identical pre and post-
conditions to P except that P ′ has body C ′. We say that P ′ preserves the validity
of P if P ′ = {Ppre}C ′{Ppost} is valid.

We argue that the preservation of plan specification validity is a minimal
requirement when replacing plans. It states that if there is a static environment
and no interleaved execution of plans, then the new plan will achieve the replaced
plan’s postconditions.

Definition 4 (Rational Plan Body Replacement). We say the replacement
of plan body C for C ′ in a plan P so it becomes a plan P ′ is rational if P ′

preserves the validity of P .

Therefore we seek to implement mechanisms for plan body replacement that
are rational.

Plan Body Replacement Example. If we detect a capability in the previous plan
P 1 to be faulty, for example, the rover can no longer move from the place it
collected the rock sample to a place to transmit the data due to an unavoidable
obstacle. Then, the capability move(W2,W3) can be exchanged in the plan body
replacement:

C1′ =
[

move(W1,W2); collect sample(S); move(W2,W4);
move(W4,W3); transmit data(S)

]

with W4 representing an intermediate waypoint between W2 and the goal posi-
tion W3 and that this route is obstacle-free. This is a rational plan body replace-
ment: the new plan P 1′

= {at(W1), empty(true)}C1′ {data transmitted(S)} is
a valid plan which achieves P 1 postconditions whenever P 1 preconditions are
true, assuming that the environment is static and plan execution is not inter-
leaved.

4 Implementation

We have implemented our theory as an extension of the Gwendolen program-
ming language [7], chosen for its association with the Agent Java Pathfinder
(AJPF) model-checker [10]. This provides a potential route for verification of
a reconfigured plan library. To simplify implementation, we only use grounded
capabilities in our practical experiment.

Algorithm 1 shows a high-level abstraction of our implementation for recon-
figurability of plan libraries in BDI agents. Due to the availability and accessibil-
ity of implementations of fast classical planners, we opted to translate the search
for the replacement of plan bodies into a limited planning problem. Limited here

Plan Library Reconfigurability in BDI Agents 205

Algorithm 1: Implementation of plan library reconfigurability.
1 Function replace (capability)
2 Capabilities ← get capabilities;
3 Capabilities ← Capabilities \ {capability};
4 if Capabilities = ∅ then
5 return false;

6 domain ← create domain (Capabilities);
7 PlanLibrary ← get plan library;
8 Plans ← get plans (capability);
9 while there exists {plan} ∈ Plans do

10 InitState ← propagate (plan, capability);
11 Goals ← get post cond (plan);
12 problem ← create problem (InitState, Goals);
13 replacement ← STRIPS planner (domain, problem);
14 if replacement = ∅ then
15 return false;

16 newplan ← replace cap (plan, replacement);
17 PlanLibrary ← PlanLibrary \ {plan} ∪ {newplan};
18 Plans ← Plans \ {plan};

19 update plan library (PlanLibrary);
20 return true;

refers to the use of a very small subset of information, instead of planning from
scratch.

We start the reconfiguration of the plan library when a capability is detected
to be faulty and in need of a replacement. First, we retrieve all capabilities that
the agent has, except for the one that it wants to replace (lines 2–3). If we are
left with an empty set of capabilities, then that capability cannot be replaced.
Otherwise, the domain is created, translating all capabilities into STRIPS oper-
ators. Next, we fetch all plans from the agent’s plan library that have the faulty
capability in a plan’s body (line 8).

In lines 9–18 we cycle through each of the plans that include the capability to
be replaced. We construct the initial state from the propagation of the literals
from the preconditions and postconditions starting at the first capability and
going up to the last capability before the faulty one in the plan. This propagation
is also known as progression in search algorithms. Our Goals set contains the
postconditions of the plan to be replaced. We create the problem specification
and then call a STRIPS planner to find the replacements by providing the domain
and problem specifications that were translated from the Gwendolen syntax.
Although any STRIPS planner would suffice, we chose the SIW+−then-BFSf
planner [23], one of the top performing planners from the agile track in the
International Planning Competition.

If no replacement is found by the planner, then the faulty capability cannot
be replaced in that plan. Otherwise, we swap it with the replacement that was

206 R. C. Cardoso et al.

found (which can contain one or more alternative capabilities), remove the old
plan from the temporary plan library, and add in the new plan. After we cycled
all plans and replaced the faulty capability within them, the plan library is
updated with the new modifications.

4.1 Practical Experiment

We use a simple problem in our running example of the Mars rover scenario as
a practical experiment. The problem is to replace a faulty movement capability,
moveW1W2 that represents the route between the topological nodes W1 and
W2. For this experiment we focus only on movement capabilities. Although other
actions such as collecting rock data are also represented as capabilities, we omit
them since they are not relevant to this experiment.

The capabilities in Fig. 2 represent the topological map that the agent has
access to. A precondition list precedes the capability, which is followed by a post-
condition list. The topological map consists of the following navigation routes
between each waypoint: W1 ⇔ W2, W1 ⇔ W3, W3 ⇔ W2, W1 ⇔ W4,
W2 ⇔ W5, and W5 ⇔ W4.

1 :Capabilities:

2 { at(waypoint1) } moveW1W2 { −at(waypoint1), +at(waypoint2) }
3 { at(waypoint2) } moveW2W1 { −at(waypoint2), +at(waypoint1) }
4 { at(waypoint1) } moveW1W3 { −at(waypoint1), +at(waypoint3) }
5 { at(waypoint3) } moveW3W1 { −at(waypoint3), +at(waypoint1) }
6 { at(waypoint3) } moveW3W2 { −at(waypoint3), +at(waypoint2) }
7 { at(waypoint2) } moveW2W3 { −at(waypoint2), +at(waypoint3) }
8 { at(waypoint1) } moveW1W4 { −at(waypoint1), +at(waypoint4) }
9 { at(waypoint4) } moveW4W1 { −at(waypoint4), +at(waypoint1) }

10 { at(waypoint2) } moveW2W5 { −at(waypoint2), +at(waypoint5) }
11 { at(waypoint5) } moveW5W2 { −at(waypoint5), +at(waypoint2) }
12 { at(waypoint5) } moveW5W4 { −at(waypoint5), +at(waypoint4) }
13 { at(waypoint4) } moveW4W5 { −at(waypoint4), +at(waypoint5) }

Fig. 2. Capabilities of the rover agent in Gwendolen.

The plans for the rover agent are listed in Fig. 3. A plan in Gwendolen
is started by an event, for example, a plan for completing a mission mission1
is activated when the goal (!) mission1 is added (+); this is known as a goal
addition event. The plan will be selected and added to the agent’s intention base
if the formulae present in the guard (i.e., the context or precondition of the plan,
goes after a colon and between curly brackets) are true. After a plan is selected,
a sequence of actions in the plan body (denoted by ←) is executed.

There are plans for three different missions, each applicable when the agent
is at a different location. For example, the guard of mission1 (line 3) states that
the agent must have the belief at(waypoint1) expressing that the rover must be

Plan Library Reconfigurability in BDI Agents 207

currently located in waypoint1. The body of mission1 (lines 4–8) contains the
capabilities that must be executed in sequential order to successfully achieve the
mission’s goal.

1 :Plans:

2 +!mission1 [perform] :
3 { B at (waypoint1) }
4 ←
5 moveW1W2,
6 collect soil,
7 moveW2W5,
8 collect rock;
9 +!mission2 [perform] :

10 { B at (waypoint4) }
11 ←
12 moveW4W1,
13 collect rock,
14 moveW1W2,
15 take image;
16 +!mission3 [perform] :
17 { B at (waypoint3) }
18 ←
19 moveW3W1,
20 moveW1W2,
21 collect rock,
22 moveW2W5,
23 take image;

Fig. 3. Plan library of the rover agent in Gwendolen.

Figure 4 shows a simple example in the Mars rover scenario using a represen-
tation of all the capabilities described in Fig. 2. A lander spacecraft stays in its
original position and acts as a charging station for the rover, which starts next to
the lander at waypoint 1 (W1). At some point during the system’s deployment,
either while in execution or in the offline period, the capability moveW1W2 is
detected to be faulty. This could have been caused because, for example, the
route between waypoint 1 and waypoint 2 is no longer valid (e.g., there is an
unavoidable obstacle), or the route is consuming too much battery (e.g., the
terrain became difficult to traverse).

The solution found by the planner was to replace the faulty capability
moveW1W2 for moveW1W3 and moveW3W2. Then, we replace all occurrences
of that capability in all plans, effectively removing the route between waypoint
1 and waypoint 2, and replacing it with the route from waypoint 1 to waypoint
3, and then from waypoint 3 to waypoint 2. Although this solves the problem
caused by the faulty capability in all three mission plans, it also introduces some
backtracking in the plan for mission3. This would be necessary if the agent was

208 R. C. Cardoso et al.

L
W5 W1

R
W2

W3

W4

L = Lander

R = Rover

W = Waypoint 1..5

1 2 3 4 5

1

2

3

4

Fig. 4. Mars rover practical example.

executing that plan and had to stop to reconfigure itself, and then resume from
that moment onward. However, in most other cases it would result in unnecessary
backtracking. This illustrates the trade-off between speed and optimality.

Because we are using an agile planner the solution is not always guaran-
teed to be optimal. However, as we previously mentioned, the translation from
Gwendolen can be used in any STRIPS classical planner, including optimal
planners. Another, more advanced, option would be to add reasoning plans to
be able to choose between different planners depending on the situation that the
rover is currently in. A simple example of such feature would be to use an agile
planner for generating replacements if the system is running, and an optimal
planner if the system is in offline period.

5 Related Work

In [18], an extension of a temporal epistemic logic is used to generalise model
checking as a solution to reconfiguring reactive multi-agent systems. In this case
the problem was to determine whether a set of reactive robots can combine into
a robot that satisfies the functionality of the system. Two scenarios are given,
one is a monolithic system and the other is an individual module that is part of
a bigger system. Similar to our work, they have also defined a new logic-based
language to represent multi-agent systems and reason about reconfigurability
at an abstract level, however, our approach is intended as a generic extension
applicable to a range of BDI-based agent-oriented programming languages and
which, as we have shown, can result directly in an implemented system.

An agent-based framework is proposed for resource reconfiguration in produc-
tion lines of industrial assembly applications considering product specification
and capabilities of production resources [2]. The reconfiguration is goal-based

Plan Library Reconfigurability in BDI Agents 209

and done through task reallocation. The authors claim that the framework is
implemented and runs on a real-world assembly system, however, there is no
formal description of the framework or any of its features. Although the concept
of reconfigurability and capability is similar to ours, the main difference is that
their concepts are intrinsically tied to industrial assembly applications, whilst
our framework is domain independent.

An architecture for planning in reconfigurable manufacturing systems is pre-
sented in [4]. Reconfiguration in these systems are described to occur in three
different scenarios: a production change, physical malfunctions, or a change in
production goals. The control system implements a sense-plan-act cycle using
ontology-based knowledge to regenerate the planning domain specification when
necessary. Similar to the previous approach, this architecture is application spe-
cific, and thus, it does not address generic reconfigurability problems.

A reconfigurable agent-based architecture for use in autonomous nuclear
waste management is reported in [1]. In this system a BDI-agent controls a
ROS-based system for sorting and segregating different types of low radiation
level nuclear waste. Reconfiguration is handled by pre-existing plans in the BDI
agent rather than by the agent reconfiguring its existing plans. This necessarily
limited the extent to which the system could adapt to hardware degradation and
changes in its environment.

As previously mentioned, our approach assumes the integration of a planning
system with a BDI programming language for implementation purposes. We use
the planner strictly to find replacement plans in a limited planning problem.
There are many approaches that try to fully incorporate planning in agents,
such as in [26]. By extending an AgentSpeak(L) interpreter, agents are able to
call a classical planner to create new plans at runtime to respond to unforeseen
circumstances at design time. Another example is the work done in [5], that
allows agents in a multi-agent system to perform decentralised HTN planning.
These approaches do not consider reconfigurability, however it should be possible
to use them to implement our reconfigurability framework as long as the agent
languages used have (or are extended to have) the same concept of capabilities
as in our framework.

The reconfigurability scenarios that we described could be represented as
replanning problems or plan2 repair problems [15]. In plan repair, there are sev-
eral bodies of work such as: in [16] a plan adaptation approach is used to first
analyse the actions, identify inconsistencies, and then repair the plan; and in [32]
the authors use a CSP-solver (Constraint Satisfaction Problem) to perform the
reconfigurability of a plan. However, formal verification of planning is still an
area in its infancy while the verification of BDI agents is well studied in BDI pro-
gramming languages—hence we have developed a framework in which planning
is only part of our approach, namely in the search of capability replacements. If
we tried to solve reconfigurability by only using planning, then the complete state

2 The areas of automated planning and BDI agent programming both use the word
“plan” but with slightly different meanings.

210 R. C. Cardoso et al.

of the world would have to be passed to a planner. By using our reconfigurability
framework this can be avoided, potentially saving computation time.

6 Conclusions

There are different ways that the reconfigurability problem can be solved, such
as: preemptively adding plans that cover plan failure; or replanning from scratch.
However, the former is prone to human error, and the latter can take substan-
tially longer in complex problems.

In this paper, we have described a formal framework for plan library reconfig-
urability in BDI agents. We presented a theory based on capabilities and plans,
and introduced several definitions concerning how to reason about valid plan
replacement. Further to this, we implemented our framework into the Gwen-
dolen BDI language and used an agile planner to find capability replacements
that are then merged into a plan replacement. As a demonstration of the imple-
mentation of our framework we performed a practical experiment on reconfig-
urability in the Mars rover scenario.

The performance of the implementation of our reconfigurability framework
is intrinsically tied to the performance of the planner’s implementation that we
used to find the proper replacements for a faulty capability. Therefore, future
experiments to measure the scalability of our framework should include differ-
ent planners to better evaluate how well our approach scales by isolating the
performance of the planning component. Future work also include considering
plan regression to rationally discard redundant capabilities that came before the
faulty capability to remove any unnecessary backtracking.

References

1. Aitken, J.M., et al.: Autonomous nuclear waste management. IEEE Intell. Syst.
33(6), 47–55 (2018)

2. Antzoulatos, N., Castro, E., de Silva, L., Rocha, A.D., Ratchev, S., Barata, J.: A
multi-agent framework for capability-based reconfiguration of industrial assembly
systems. Int. J. Prod. Res. 55(10), 2950–2960 (2017)

3. Bogue, R.: Robots in the nuclear industry: a review of technologies and applica-
tions. Ind. Robot: Int. J. 38(2), 113–118 (2011)

4. Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture
for a reconfigurable manufacturing system. In: Proceedings of the Twenty-Sixth
International Conference on International Conference on Automated Planning and
Scheduling, ICAPS 2016, pp. 358–366, AAAI Press, London (2016)

5. Cardoso, R.C., Bordini, R.H.: Decentralised planning for multi-agent programming
platforms. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2019, International Foundation for
Autonomous Agents and Multiagent Systems, pp. 799–818, Richland (2019)

6. Chen, I.M., Yang, G., Yeo, S.H.: Automatic modeling for modular reconfigurable
robotic systems: theory and practice. In: Cubero, S. (ed.) Industrial Robotics, chap.
2. IntechOpen, Rijeka (2006)

Plan Library Reconfigurability in BDI Agents 211

7. Dennis, L.A., Farwer, B.: Gwendolen: a BDI language for verifiable agents. In:
Logic and the Simulation of Interaction and Reasoning, AISB, Aberdeen (2008)

8. Dennis, L.A., Fisher, M.: Actions with durations and failures in BDI languages.
In: 21st European Conference on Artificial Intelligence, vol. 263, pp. 995–996. IOS
Press (2014)

9. Dennis, L.A., et al.: Reconfigurable autonomy. KI - Künstliche Intelligenz 28(3),
199–207 (2014)

10. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

11. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods:
necessity meets opportunity. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 161–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98938-9 10

12. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and
validating autonomous systems: towards an integrated approach. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 263–281. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 15

13. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3), 189–208 (1971)

14. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics tech-
nologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

15. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: replanning versus plan
repair. In: Proceedings of the 16th International Conference on Automated Plan-
ning and Scheduling, pp. 212–221. AAAI Press, Cumbria (2006)

16. Gerevini, A.E., Serina, I.: Efficient plan adaptation through replanning windows
and heuristic goals. Fundam. Inf. 102(3–4), 287–323 (2010)

17. Hawes, N., et al.: The STRANDS project: long-term autonomy in everyday envi-
ronments. Robot. Autom. Mag. 24(3), 146–156 (2017)

18. Huang, X., Chen, Q., Meng, J., Su, K.: Reconfigurability in reactive multiagent
systems. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence, pp. 315–321. AAAI Press, New York (2016)

19. Kohn, W., Nerode, A.: Multiple agent autonomous hybrid control systems. In:
Proceedings of the 31st Conference Decision and Control (CDC), pp. 2956–2964.
Tucson (1992)

20. Koren, Y., et al.: Reconfigurable manufacturing systems. CIRP Ann. 48(2), 527–
540 (1999)

21. Kruijff-Korbayová, I., et al.: TRADR project: long-term human-robot teaming for
robot assisted disaster response. KI - Künstliche Intelligenz 29(2), 193–201 (2015)

22. Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art sur-
vey. Eng. Appl. Artif. Intell. 22(7), 979–991 (2009)

23. Lipovetzky, N., Ramirez, M., Muise, C., Geffner, H.: Width and inference based
planners: SIW, BFS (f), and PROBE. In: Proceedings of the 8th International
Planning Competition (2014)

24. Marik, V., McFarlane, D.: Industrial adoption of agent-based technologies. IEEE
Intell. Syst. 20(1), 27–35 (2005)

25. Mcdermott, D., et al.: PDDL - the planning domain definition language. Technical
report, TR-98-003, Yale Center for Computational Vision and Control (1998)

26. Meneguzzi, F., Luck, M.: Declarative planning in procedural agent architectures.
Expert Syst. Appl. 40(16), 6508–6520 (2013)

27. Murphy, R.R.: Trial by fire [rescue robots]. IEEE Robot. Autom. Mag. 11(3), 50–61
(2004)

https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-030-03769-7_15

212 R. C. Cardoso et al.

28. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote agent: to boldly go
where no AI system has gone before. Artif. Intell. 103(1–2), 5–48 (1998)

29. Quigley, M., et al.: ROS: an open-source robot operating system. In: Workshop on
Open Source Software at the International Conference on Robotics and Automa-
tion. IEEE, Japan (2009)

30. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of
the first International Conference on Multi-Agent Systems, pp. 312–319 (1995)

31. Reiter, R.: The frame problem in situation the calculus: a simple solution (some-
times) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial
Intelligence and Mathematical Theory of Computation, pp. 359–380. Academic
Press Professional Inc., San Diego (1991)

32. Scala, E., Micalizio, R., Torasso, P.: Robust plan execution via reconfiguration and
replanning. AI Commun. 28(3), 479–509 (2015)

33. Shukla, A., Karki, H.: Application of robotics in offshore oil and gas industry - a
review part II. Robot. Auton. Syst. 75, 508–524 (2016)

34. Singh, B., Sellappan, N.P.K.: Evolution of industrial robots and their applications.
Int. J. Emerg. Technol. Adv. Eng. 3(5), 763–768 (2013)

35. Støy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots. MIT Press,
Cambridge (2010)

36. Tate, A.: Generating project networks. In: Proceedings of the 5th International
Joint Conference on Artificial Intelligence, IJCAI 1977, vol. 2, pp. 888–893. Morgan
Kaufmann Publishers Inc., San Francisco (1977)

37. Webster, M., Fisher, M., Cameron, N., Jump, M.: Formal methods for the certifi-
cation of autonomous unmanned aircraft systems. In: Flammini, F., Bologna, S.,
Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 228–242. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 17

38. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS (LNAI), vol. 7837, pp.
54–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38700-5 4

39. Wilcox, B.H.: Robotic vehicles for planetary exploration. Appl. Intell. 2(2), 181–
193 (1992)

https://doi.org/10.1007/978-3-642-24270-0_17
https://doi.org/10.1007/978-3-642-38700-5_4

Implementation Techniques and Tools

JS-son - A Lean, Extensible JavaScript
Agent Programming Library

Timotheus Kampik(B) and Juan Carlos Nieves

Ume̊a University, 901 87 Ume̊a, Sweden
{tkampik,jcnieves}@cs.umu.se

Abstract. A multitude of agent-oriented software engineering frame-
works exist, most of which are developed by the academic multi-agent
systems community. However, these frameworks often impose program-
ming paradigms on their users that are challenging to learn for engi-
neers who are used to modern high-level programming languages such as
JavaScript and Python. To show how the adoption of agent-oriented pro-
gramming by the software engineering mainstream can be facilitated, we
provide a lean JavaScript library prototype for implementing reasoning-
loop agents. The library focuses on core agent programming concepts
and refrains from imposing further restrictions on the programming app-
roach. To illustrate its usefulness, we show how the library can be applied
to multi-agent systems simulations on the web, deployed to cloud-hosted
function-as-a-service environments, and embedded in Python-based data
science tools.

Keywords: Reasoning-loop agents · Agent programming ·
Multi-agent systems

1 Introduction

Many multi-agent system (MAS) platforms have been developed by the sci-
entific community [11]. However, these platforms are rarely applied outside of
academia, likely because they require the adoption of design paradigms that are
fundamentally different from industry practices and do not integrate well with
modern software engineering tool chains. A recent expert report on the sta-
tus quo and future of engineering multi-agent systems1 concludes that “many
frameworks that are frequently used by the MAS community–for example Jason
and JaCaMo–have not widely been adopted in practice and are dependent on
technologies that are losing traction in the industry” [13]. Another comprehen-
sive assessment of the current state of agent-oriented software engineering and
its implications on future research directions is provided in Logan’s Agent Pro-
gramming Manifesto [12]. Both the Manifesto and the EMAS report recommend
developing agent programming languages that are easier to use (as one of several
ways to facilitate the impact of multi-agent systems research). The EMAS report
highlights, in particular, the following issues:
1 The report was assembled as a result of the EMAS 2018 workshop.

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 215–234, 2020.
https://doi.org/10.1007/978-3-030-51417-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_11&domain=pdf
http://orcid.org/0000-0002-6458-2252
http://orcid.org/0000-0003-4072-8795
https://doi.org/10.1007/978-3-030-51417-4_11

216 T. Kampik and J. C. Nieves

1. The tooling of academic agent programming lacks maturity for industry adop-
tion. In particular, Logan states that “there is little incentive for developers to
switch to current agent programming languages, as the behaviours that can be
easily programmed are sufficiently simple to be implementable in mainstream
languages with only a small overhead in coding time” [12].

2. Recent trends towards higher-level programming languages have found little
consideration by the multi-agent systems community. In contrast, the machine
learning community has embraced these programming languages, for example
by providing frameworks like Tensorflow.js for JavaScript [16] and Keras for
Python [6].

3. Consequently, agent programming lacks strong industry success stories.

Based on these challenges, the following research directions can be derived:

1. Provide agent programming tools that offer useful abstractions in the context
of modern technology ecosystems/software stacks, without imposing unnec-
essarily complex design abstractions or niche languages onto developers.

2. Embrace emerging technology ecosystems that are increasingly adopted by
the industry, like Python for data science/machine learning and JavaScript
for the web.

3. Evaluate agent programming tools in the context of industry software engi-
neering.

While this work cannot immediately provide practical agent programming suc-
cess stories, it attempts to provide a contribution to the development of tools
and frameworks that are conceptually pragmatic in that they limit the design
concepts and technological peculiarities they impose on their users and allow for
a better integration into modern software engineering ecosystems. We follow a
pragmatic and lean approach: instead of creating a comprehensive multi-agent
systems framework, we create JS-son, a light-weight library that can be applied
in the context of existing industry technology stacks and tool chains and requires
little additional, MAS-specific knowledge.

The rest of this chapter is organized as follows. The design approach for JS-
son is described in Sect. 2. The architecture of JS-son, as well as the supported
reasoning loops, are explained in Sect. 3. Subsequently, Sect. 4 explains how to
program JS-son agents using a small, step-by-step example. Section 5 elaborates
on scenarios, in which using JS-son can be potentially beneficial; for some of the
use case types, simple proof-of-concept examples are presented in Sect. 6. Then,
JS-son is put into the context of related work on agent programming libraries
and frameworks in high-level programming languages in Sect. 7. Finally, Sect. 8
concludes the chapter by discussing limitations and future work.

2 Design Approach

Programming languages like Lisp and Haskell are rarely used in practice
but have influenced the adoption of (functional) features in mainstream lan-
guages like JavaScript and C#. It is not uncommon that an intermediate

JS-son - A Lean, Extensible JavaScript Agent Programming Library 217

adoption step is enabled by external libraries. For example, before JavaScript’s
array.prototype.includes function was adopted as part of the ECMA Script
standard2, a similar function (contains and its aliases include/includes) could
already be imported with the external library underscore3. Analogously, JS-son
takes the belief-desire-intention (BDI) [15] architecture as popularized in the MAS
community by frameworks like Jason [3] (as the name JS-son reflects) and pro-
vides an abstraction of the BDI architecture (as well as support for other reasoning
loops) as a plug and play dependency for a widely adopted programming language.
Table 1 provides a side-by-side overview of the influence of the functional program-
ming paradigm via Lisp’s MEMBER function on JavaScript’s includes function as
an analogy to the influence of Jason’s (event, context, body)-plans on JS-son’s
(intention-condition, body)-plans. To further guide the design and develop-

Table 1. Evolution of a Functional Feature from Lisp to JavaScript and Development
of an Agent-oriented Feature from Jason to JS-son.

Functional programming Agent-oriented programming

Source technology Lisp Jason

Source feature, MEMBER function (list) (event, context, body) plans

Target technology JavaScript

Target feature includes functor (array) (intention-condition, body)

plans

Library/extension Lodash () JS-son

Standard feature includes (ES2016) none

ment of JS-son, we introduce three design principles that are–in their structure,
as well as in their intend to avoid unnecessary overhead on the software (agent)
engineering process–influenced by the Agile Manifesto4.

Usability over intellectual elegance. JS-son provides a core framework for
defining agents and their reasoning loops and environments, while allowing
users to stick to pure JavaScript syntax and to apply their preferred libraries
and design patterns to implement agent-agnostic functionality.

Flexibility over rigor. Instead of proposing a one-size-fit-all reasoning loop,
JS-son offers flexibility in that it supports different approaches and is intended
to remain open to evolve its reasoning loop as it matures.

Extensibility over out-of-the-box power. To maintain JS-son as a concise
library that can be adapted to a large variety of use cases while requiring little
additional learning effort, we keep the JS-son core small and abstain from
adding complex, special-purpose features, in particular if doing so imposed
additional learning effort for JS-son users or required the use of third-party
dependencies; i.e., we maintain a lean JS-son core module that is written in

2 https://www.ecma-international.org/ecma-262/7.0/#sec-array.prototype.includes.
3 https://underscorejs.org/#contains.
4 http://agilemanifesto.org/.

https://www.ecma-international.org/ecma-262/7.0/#sec-array.prototype.includes
https://underscorejs.org/#contains
http://agilemanifesto.org/

218 T. Kampik and J. C. Nieves

vanilla JavaScript (does not require dependencies). Additional functionality
can be provided as modules that extend the core and are managed as separate
packages.

3 Architecture and Reasoning Loops

The library provides object types for creating agent and environment objects,
as well as functions for generating agent beliefs, desires, intentions, and plans5.
The agent implements the BDI concepts as follows:

Beliefs: A belief can be any JavaScript Object Notation (JSON6) object or
JSON data type (string, number, array, boolean, or null).

Desires: Desires are generated dynamically by agent-specific desire functions
that have a desire identifier assigned to them and determine the value of the
desire based on the agent’s current beliefs.

Intentions: A preference function filters desires and returns intentions - an
array of JSON objects.

Plans: A plan’s head specifies which intention needs to be active for the plan to
be pursued. The plan body specifies how the plan should update the agent’s
beliefs and determines the actions the agent should issue to the environment.

Each agent has a next() function to run the following process:

1. It applies the belief update as provided by the environment (see below).
2. It applies the agent’s preference function that dynamically updates the inten-

tions based on the new beliefs; i.e., the agent is open-minded (see Rao and
Georgeff [15]).

3. It runs the plans that are active according to the updated intentions, while
also updating the agent beliefs (if specified in the plans).

4. It issues action requests that result from the plans to the environment.

It is also possible to implement simpler belief-plan agents; i.e., as a plan’s head,
one can define a function that determines–based on the agent’s current beliefs–if
a plan should be executed. Alternatively, belief-desire-plan/belief-intention-plan
reasoning loops are supported; these approaches bear similarity to the belief-
goal-plan approach of the GOAL language [8]. Figure 1a depicts the reasoning
loops that are supported by standard JS-son agents.
The environment contains the agents, as well as a definition of its own state.
It executes the following instructions in a loop:

1. It runs each agent’s next() function.
2. Once the agent’s action request has been received, the environment processes

the request. To determine which update requests should, in fact, be applied
to the environment state, the environment runs the request through a filter
function.

5 The library–including detailed documentation, examples, and tests–is available at
https://github.com/TimKam/JS-son.

6 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.

https://github.com/TimKam/JS-son
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

JS-son - A Lean, Extensible JavaScript Agent Programming Library 219

3. When an agent’s actions are processed, the environment updates its own state
and the beliefs of all agents accordingly. Another filter function determines
how a specific agent should “perceive” the environment’s state.

Figure 1b depicts the environment’s agent and state management process7.

4 Implementing JS-son Agents

This section explains how to implement JS-son agents, by first giving a detailed
explanation of the most important parts of the JS-son core API and then pro-
viding a programming tutorial.

4.1 JS-son Core API

The JS-son core API provides two major abstractions: one for agents and one for
environments8. In addition, the agent requires the instantiation of beliefs, desires,
and plans. Note that intentions are generated dynamically, as is explained below.

Agents. An agent is instantiated by calling the Agent function with parameters
that specify the agent’s identifier (a text string), as well as its initial beliefs,
desires, plans, and a preference function generator. Beliefs, desires, and plans
are generated by the Belief , Desire, and Plan functions, respectively. Beliefs
and desires consist of an identifier (key) and a body (value). A belief body
can be any valid JSON object or property (number, string, null, boolean, or
array). A desire body is a function that processes the agent’s current beliefs
and returns the processing result. A plan has two functions; one as its body and
one as its head. The head determines–based on an agent’s beliefs–if the plan
body should be executed. The body determines agent actions, as well as belief
updates, taking the agent’s beliefs as an optional input. Intentions are created
by a preference function generator, a higher-order function that, based on the
agents’ current desires and beliefs, generates a function that reduces the agents’
desires to intentions. Table 3a documents the Agent function signature, whereas
Tables 3b, 3c, and 3d document the signatures for the Belief , Desire, and Plan
functions, respectively.

Environment. The environment is generated by the Environment function
that takes as its input an array of JS-son agents, an initial state definition
(JSON object), and functions for updating the environment’s state, visualizing
it, and pre-processing (filtering or manipulating) it before exposing the state to
the agents. The update function processes the agents’ actions; for each agent,
it determines how the environment’s state should be updated, based on the

7 In its current version, JS-son executes all steps synchronously. Supporting the asyn-
chronous execution, in particular of agent plans is future work, as discussed in Sect. 8.

8 Here, we only explain the core functionality for instantiating agents and environ-
ments. A comprehensive, continuously updated documentation of the JS-son API is
available at https://js-son.readthedocs.io/en/latest/.

https://js-son.readthedocs.io/en/latest/

220 T. Kampik and J. C. Nieves

(a) JS-son reasoning loop. The XOR gate-
ways allow for different reasoning loop ap-
proaches. The red sequence flows indicate
the path of the belief-desire-intention-plan
reasoning loop.

(b) JS-son environment: agent and state
management process. The XOR gateway al-
lows for partially and fully observable envi-
ronments.

Fig. 1. JS-son reasoning and environment loop.

current state, the agent’s actions, and the agent’s identifier. The state update
is then visualized as specified by the render function. In case a visualization
is not necessary, the default render function makes the environment log each
iteration’s state to the console. The stateF ilter function filters or manipulates
the state as perceived by a particular agent, based on this agent’s identifier
and its current beliefs; by default (if no stateF ilter function is specified), the
state is returned unfiltered to the agent(s). Table 3 documents the environment’s
function signature.

JS-son - A Lean, Extensible JavaScript Agent Programming Library 221

Table 2. Function signature of the JS-son Agent and its components.

Name Type Description

(a) JS-son Agent function signature

id String Unique identifier of
the agent

beliefs Object Initial beliefs of the
agents

desires Object The agent’s desires

plans Array The agent’s plans

preferenceFunctionGenerator Array Preference function
generator; by default
(if no function is
provided), the
preference function
turns all desires into
intentions

Returns Object JS-son Agent object

(b) JS-son Belief function signature

Name Type Description

id String Unique identifier of
the belief

value Any (needs to be
valid JSON object
or JSON value)

The belief’s initial
value

Returns Object JS-son Belief object

(c) JS-son Desire function signature

id String Unique identifier of
the belief

body Function Function for
computing the
desires value based
on current beliefs

Returns Object JS-son Desire object

(d) JS-son Plan function signature

head Function Determines if plan is
active

body Function Determines the
execution of actions
and update of beliefs

Returns object Plan object

222 T. Kampik and J. C. Nieves

Table 3. JS-son Environment function signature

Name Type Description

agents Array of JS-son agents Agents that the environment is managing

state Object Initial state of the environment

update Function Processes agent actions and updates the
environment’s state

render Function Visualizes the environment’s current
state

stateF ilter Function Filters/manipulates the state that agents
should perceive

Returns Object Plan object

4.2 Tutorial

The tutorial explains how to program belief-plan agents using a minimal exam-
ple9. Running the example requires the creation of a new Node.js project (npm
init), the installation of the js-son-agent dependency, and the import of the
JS-son library.

const {
Belief,
Plan,
Agent,
Environment } = require('js-son-agent')

The tutorial implements the Jason room example10 with JS-son. In the example,
three agents are in a room:

1. A porter that locks and unlocks the room’s door if requested;
2. A paranoid agent that prefers the door to be locked and asks the porter to

lock the door if this is not the case;
3. A claustrophobe agent that prefers the door to be unlocked and asks the

porter to unlock the door if this is not the case.

The simulation runs twenty iterations of the scenario. In an iteration, each
agent acts once. All agents start with the same beliefs. The belief with the
ID door is assigned the object {locked: true}; i.e., the door is locked. Also,
nobody has so far requested any change in door state (requests: []).

const beliefs = {
...Belief('door', { locked: true }),
...Belief('requests', [])

}

9 Tutorials that present more complex examples are available in the JS-son project
documentation https://js-son.readthedocs.io.

10 https://github.com/jason-lang/jason/tree/master/examples/room.

https://js-son.readthedocs.io
https://github.com/jason-lang/jason/tree/master/examples/room

JS-son - A Lean, Extensible JavaScript Agent Programming Library 223

Now, we define the porter agent. The porter has the following plans:

1. If it does not believe the door is locked and it has received a request to lock
the door (head), lock the door (body).

2. If it believes the door is locked and it has received a request to unlock the
door (head), unlock the door (body).

const plansPorter = [
Plan(

beliefs =>
!beliefs.door.locked &&
beliefs.requests.includes('lock'),

() => [{ door: 'lock' }]
),
Plan(

beliefs =>
beliefs.door.locked &&
beliefs.requests.includes('unlock'),

() => [{ door: 'unlock' }]
)

]

We instantiate a new agent with the belief set and plans. Because we are not
making use of desires in this simple belief-plan scenario, we pass an empty object
as the agent’s desires.

const porter = new Agent('porter', beliefs, {}, plansPorter)

Next, we create the paranoid agent with the following plans:

1. If it does not belief the door is locked (head), it requests the door to be locked
(body).

2. If it beliefs the door is locked (head), it broadcasts a thank you message for
locking the door (body).

const plansParanoid = [
Plan(

beliefs => !beliefs.door.locked,
() => [{ request: 'lock' }]

),
Plan(

beliefs => beliefs.door.locked,
() => [{ announce: 'Thanks for locking the door!' }]

)
]

const paranoid = new Agent('paranoid', beliefs, {}, plansParanoid)

224 T. Kampik and J. C. Nieves

The last agent we create is the paranoid one. It has these plans:

1. If it beliefs the door the door is locked (head), it requests the door to be
unlocked (body).

2. If it does not belief the door is locked (head), it broadcasts a thank you
message for unlocking the door (body).

const plansClaustrophobe = [
Plan(

beliefs => beliefs.door.locked,
() => [{ request: 'unlock' }]

),
Plan(

beliefs => !beliefs.door.locked,
() => [{ announce: 'Thanks for unlocking the door!' }]

)
]

const claustrophobe = new Agent(
'claustrophobe',
beliefs,
{},
plansClaustrophobe

)

Now, as we have defined the agents, we need to specify the environment. First,
we set the environments state, which is–in our case–consistent with the agents’
beliefs.
const state = {

door: { locked: true },
requests: []

}

To define how the environment processes agent actions, we implement
the updateState function. The function takes an agent’s actions, as well
as the agent’s identifier and the current state to determine the environ-
ment’s state update that is merged into the new state state = ...state,
...stateUpdate.

JS-son - A Lean, Extensible JavaScript Agent Programming Library 225

const updateState = (actions, agentId, currentState) => {
const stateUpdate = {

requests: currentState.requests
}
actions.forEach(action => {

if (action.some(action => action.door === 'lock')) {
stateUpdate.door = { locked: true }
stateUpdate.requests = []
console.log(`${agentId}: Lock door`)

}
if (action.some(action => action.door === 'unlock')) {

stateUpdate.door = { locked: false }
stateUpdate.requests = []
console.log(`${agentId}: Unlock door`)

}
if (action.some(action => action.request === 'lock')) {

stateUpdate.requests.push('lock')
console.log(`${agentId}: Request: lock door`)

}
if (action.some(action => action.request === 'unlock')) {

stateUpdate.requests.push('unlock')
console.log(`${agentId}: Request: unlock door`)

}
if (action.some(action => action.announce)) {

console.log(`${agentId}: ${
action.find(

action => action.announce
).announce

}`)
}

})
return stateUpdate

}

To simulate a partially observable world, we can specify the environment’s
stateFilter function, which determines how the state update should be shared
with the agents. However, in our case we simply communicate the whole state
update to all agents, which is also the default behavior of the environment, if no
stateFilter function is specified.
const stateFilter = state => state

We instantiate the environment with the specified agents, state, update function,
and filter function.
const environment = new Environment(

[paranoid, claustrophobe, porter],
state,
updateState,
stateFilter

)

Finally, we run 20 iterations of the scenario.
environment.run(20)

226 T. Kampik and J. C. Nieves

5 Potential Use Cases

We suggest that JS-son can be applied in the following use cases:

Data science. With the increasing relevance of large-scale and semi-automated
statistical analysis (“data science”) in industry and academia, a new set of
technologies has emerged that focuses on pragmatic and flexible usage and
treats traditional programming paradigms as second-class citizens. JS-son
integrates well with Python- and Jupyter notebook11-based data science tools,
as shown in Demonstration 1.

Web development. Web front ends implement functionality of growing com-
plexity; often, large parts of the application are implemented by (browser-
based) clients. As shown in Demonstration 2, JS-son allows embedding BDI
agents in single-page web applications, using the tools and paradigms of web
development.

Education. Programming courses are increasingly relevant for educating stu-
dents who lack a computer science background. Such courses are typically
taught in high-level languages that enable students to write working code
without knowing all underlying concepts. In this context, JS-son can be used
as a tool for teaching MAS programming.

Internet-of-Things (IoT) Frameworks like Node.js12 enable the rapid devel-
opment of IoT applications, as a large ecosystem of libraries leaves the appli-
cation developer largely in the role of a system integrator. JS-son is available
as a Node.js package.

Function-as-a-Service. The term serverless [1] computing refers to informa-
tion technology that allows application developers to deploy their code via the
infrastructure and software ecosystem of third-party providers without need-
ing to worry about the technical details of the execution environment. The
provision of serverless computing services is often referred to as Function-as-
a-Service (FaaS). Most FaaS providers, like Heroku13, Amazon Web Services
Lamda14, and Google Cloud Functions15, provide Node.js support for their
service offerings and allow for the deployment of JavaScript functions with
little setup overhead. Consequently, JS-son can emerge as a convenient tool to
develop agents and multi-agent systems that are then deployed as serverless
functions. For a running example, see Subsection 6.4.

6 Examples

We provide four demonstrations that show how JS-son can be applied. The code
of all demonstration is available in the JS-son project repository (https://github.
com/TimKam/JS-son).
11 https://jupyter.org/.
12 https://nodejs.org/.
13 https://devcenter.heroku.com/articles/getting-started-with-nodejs.
14 https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html.
15 https://cloud.google.com/functions/docs/concepts/nodejs-8-runtime.

https://github.com/TimKam/JS-son
https://github.com/TimKam/JS-son
https://jupyter.org/
https://nodejs.org/
https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html
https://cloud.google.com/functions/docs/concepts/nodejs-8-runtime

JS-son - A Lean, Extensible JavaScript Agent Programming Library 227

6.1 JS-son Meets Jupyter

The first demonstration shows how JS-son can be integrated with data science
tools, i.e., with Python libraries and Jupyter notebooks16. As a simple proof-
of-concept example, we simulate opinion spread in an agent society and run
an interactive data visualization. The example simulates the spread of a single
boolean belief among 100 agents in environments with different biases regard-
ing the facilitation of the different opinion values. Belief spread is simulated as
follows:

1. The scenario starts with each agent announcing their beliefs.
2. In each iteration, the environment distributes two belief announcements to

each agent. Based on these beliefs and possibly (depending on the agent type)
the past announcements the agent was exposed to, each agent announces a
new belief: either true or false.

The agents are of two different agent types (volatile and introspective):

Volatile. Volatile agents only consider their current belief and the latest
belief set they received from the environment when deciding which belief
to announce. Volatile agents are “louder”, i.e., the environment is more likely
to spread beliefs of volatile agents. We also add bias to the announcement
spread function to favor true announcements.

Introspective. In contrast to volatile agents, introspective agents consider the
past five belief sets they have received, when deciding which belief they should
announce. Introspective agents are “less loud”, i.e., the environment is less
likely to spread beliefs of volatile agents.

The agent type distribution is 50, 50. However, 30 volatile and 20 introspective
agents start with true as their belief, whereas 20 volatile and 30 introspective
agents start with false as their belief. Figure 2a shows an excerpt of the Juypter
notebook.

6.2 JS-son in the Browser

The second demonstration presents a JS-son port of Conway’s Game of Life.
It illustrates how JS-son can be used as part of a web frontend. In this exam-
ple, JS-son is fully integrated into a JavaScript build and compilation pipeline
that allows writing modern, idiomatic JavaScript code based on the latest
ECMAScript specification, as it compiles this code into cross-browser compat-
ible, minified JavaScript. The demonstration makes use of JS-son’s simplified
belief-plan approach17. Each Game of Life cell is represented by an agent that
has two beliefs: its own state (active or inactive) and the number of its active
neighbors. At each simulation tick, the agent decides based on its beliefs, if it

16 The Jupyter notebook is available on GitHub at http://s.cs.umu.se/lmfd69 and on
a Jupyter notebook service platform at http://s.cs.umu.se/girizr.

17 The simulation is available at http://s.cs.umu.se/chfbk2.

http://s.cs.umu.se/lmfd69
http://s.cs.umu.se/girizr
http://s.cs.umu.se/chfbk2

228 T. Kampik and J. C. Nieves

should register a change in its status (from active to inactive or vice versa) with
the environment. After all agents have registered their new status, the environ-
ment updates the global game state accordingly and passes the new number of
active neighbors to each agent. Figure 2b depicts the Game of Life application.

6.3 Learning JS-son Agents

The third demonstration shows how learning JS-son agents can be implemented
in a browser-based grid world18. The example instantiates agents in a 20 × 20
field grid world arena with the following field types:

– Mountain fields that the agents cannot pass.
– Money fields that provide a coin to an agent that approaches them (the agent

needs to move onto the field, but the environment will return a coin and leave
the agent at its current position).

– Repair fields that provide damaged agents with one additional health unit
when approached (again, the agent needs to move onto the field, but the
environment will return a health unit and leave the agent at its current posi-
tion).

– Plain fields that can be traversed by an agent if no other agent is present
on the field. If another agent is already present, the environment will reject
the move, but decrease both agents’ health by 10. When an agent’s health
reaches (or goes below) zero, it is punished by a withdrawal of 100 coins from
its stash.

The agents are trained online (no model is loaded/persisted) using deep Q-
learning through an experimental JS-son learning extension. Figure 2c shows
the agents in the grid world arena.

6.4 Serverless JS-son Agents

The fourth demonstration shows how JS-son agents can be deployed to Function-
as-a-Service providers. It is based on the belief spread simulation as introduced in
the first demonstration (see Subsect. 6.1). The multi-agent simulation is wrapped
in a request handler and provided as a Node.js project that is configured to run as
a Google Cloud Function. The request handler accepts HTTP(S) requests against
the simulate endpoint. The request method (e.g., GET, POST, PUT) is ignored by
the handler. Upon receiving the request, the handler runs the simulation for the
specified number of ticks, configuring the bias in the agent society as specified
by the corresponding request parameter (the higher the bias, the stronger the
facilitation of true announcements). An example request against a fictional FaaS
instance could be sent using the curl command line tool as specified in the code
snippet below.
18 This grid world is an adaptation of an environment in which learning JS-son agents

are rewarded based on a specific, fair game-theoretical equilibrium in a given state,
as presented by Kampik and Spieker [10].

JS-son - A Lean, Extensible JavaScript Agent Programming Library 229

curl -X GET 'https://instance.faas.net/simulation/simulate?ticks=20&bias=5'

Figure 2d depicts the simulation in the Google Cloud Functions management
user interface.

7 Related Work

Over the past two decades, a multitude of agent-oriented software engineering
frameworks emerged (see, e.g., Kravari and Bassiliades [11]). However, most of
these frameworks do not target higher-level programming languages like Python
and JavaScript. In this section, we provide a brief overview of three agent pro-
graming frameworks–osBrain, JAM, and Eve that are indeed written in and for
these two languages. We then highlight key differences to our library.

7.1 OsBrain

osBrain19 is a Python library for developing multi-agent systems. Although
osBrain is written in a different language than JS-son, it is still relevant for
the comparison because it is i) written in a higher level programming language
of a similar generation and ii) somewhat actively maintained20. Initially devel-
oped as an automated trading software backbone, the focus of osBrain lies on
the provision of an agent-oriented communication framework. No framework for
the agents internal reasoning loop is provided, i.e. osBrain does not provide BDI
support. Also, osBrain dictates the use of a specific communication protocol and
library, utilizing the message queue system ZeroMQ [9].

7.2 JavaScript Agent Machine (JAM)

Bosse introduces the JavaScript Agent Machine (JAM), which is a “mobile multi-
agent system[...] for the Internet-of-Things and clouds” [5].

Some of JAM’s main features and properties are, according to its documen-
tation21:

– Performance: through third-party libraries, JAM agents can be compiled to
Bytecode that allows for performant execution in low-resource environments;

– Mobility and support for heterogenous environments: agent instances can be
moved between physical and virtual nodes at run-time;

19 https://osbrain.readthedocs.io/en/stable/about.html.
20 As of March 2020, the last update to the source of Eve dates back more than 2.5

years to August 2017 (https://github.com/enmasseio/evejs/); the last update of the
documentation of JAM –whose source code is not available–dates back more than
1.5 years to August 2018 (http://www.bsslab.de/?Software/jam). In contrast the
last update of the osBrain source and documentation dates back roughly one year
to April 2019 (https://github.com/opensistemas-hub/osbrain).

21 http://www.bsslab.de/assets/agents.html.

https://osbrain.readthedocs.io/en/stable/about.html
https://github.com/enmasseio/evejs/
http://www.bsslab.de/?Software/jam
https://github.com/opensistemas-hub/osbrain
http://www.bsslab.de/assets/agents.html

230 T. Kampik and J. C. Nieves

(a) Analysis of a JS-son multi-agent simu-
lation in a Jupyter Notebook.

(b) JS-son: Conway’s Game of Life, imple-
mented as a web application.

(c) JS-son agents in a grid world. (d) JS-son multi-agent system, deployed as
a Google Cloud Function.

Fig. 2. JS-son example applications.

– Machine learning capabilities, through integration with a machine learning
service platform; however, no details on how this service can be accessed are
provided in the documentation.

In its initial version, JAM agents required the use of a JavaScript-
like language that is syntactically not fully compliant with any standard

JS-son - A Lean, Extensible JavaScript Agent Programming Library 231

JavaScript/ECMAScript version [4]. However, in its latest version, it is pos-
sible to implement agent in syntactically valid JavaScript. With its focus on
agent orchestration, deployment, and communications, JAM’s agent internals
are based on activity-transition graphs, which implies that its functionality
overlaps little with JS-son. Another point of distinction is that the JAM source
code is not openly available; instead, the JAM website22 provides a set of
installers and libraries and software development kits for different platforms
that can be used as black-box dependencies.

7.3 Eve

De Jong et al. [7] present Eve, a multi-agent platform for agent discovery and
communications. It is available as both a Java and a JavaScript implementation.
Similar to osBrain, Eve’s core functionality is an agent-oriented, unified abstrac-
tion on different communication protocols; it does not define agent internals like
reasoning loops and consequently does not follow a belief-desire-intention app-
roach. Eve is provided as Node.js package23, but as of March 2020, the instal-
lation fails and the Node Package Manager (npm) reports 11 known security
vulnerabilities upon attempted installation. Still, Eve is in regard to its techno-
logical basis similar to JS-son. With its difference in focus–on agent discovery
and communications in contrast to JS-son’s reasoning loops–Eve could be, if
maintenance issues will be addressed, a potential integration option that a JS-
son extension can provide.

7.4 Comparison - Unique JS-son Features

To summarize the comparison, we list three unique features that distinguish
JS-son from the aforementioned frameworks.

Reasoning loop focus with belief-desire-intention support. Of the three
frameworks, only JAM provides a dedicated way to frame the reasoning loop
of implemented agents, using activity-transition graphs. Still, the core focus
of all three libraries is on communication and orchestration, which contrasts
the focus of JS-son as a library that has a reasoning loop framework at its
core and aims to be largely agnostic to specific messaging and orchestration
approaches.

Full integration with the modern JavaScript ecosystem. As shown in
Sect. 6, JS-son fully integrates with the JavaScript ecosystem across run-
time environments. This is in particular a contrast to JAM, which provides
installers that obfuscate the proprietary source code and require a non-
standard installation process. This can potentially hinder integration into
existing software ecosystems that rely on industry standard approaches to
dependency management for continuous integration and delivery purposes.

22 http://www.bsslab.de/?Software/jam.
23 https://www.npmjs.com/package/evejs.

http://www.bsslab.de/?Software/jam
https://www.npmjs.com/package/evejs

232 T. Kampik and J. C. Nieves

While Eve attempts to provide an integration that allows for a convenient
deployment in different environments, for example through continuous inte-
gration pipelines, it does in fact not provide a working, stable, and secure
installation package.

Dependency-free and open source code. JS-son is a light-weight, open
source library that does not ship any dependencies in its core version, but
rather provides modules that require dependencies as extensions. In contrast,
adopting JAM requires reliance on closed/obfuscated source code, whereas
osBrain and Eve require a set of dependencies, which are in the case of Eve–
as explained before–not properly managed.

8 Conclusions and Future Work

This chapter presents a lean, extensible library that provides simple abstractions
for JavaScript-based agent programming, with a focus on reasoning loop specifi-
cation. To further increase the library’s relevance for researchers, teachers, and
practitioners alike, we propose the following work:

Support a distributed environment and interfaces to other MAS
frameworks. It makes sense to enable JS-son agents and environments to
act in distributed systems and communicate with agents of other types, with-
out requiring extensive customization by the library user. A possible way to
achieve this is supporting the open standard agent communication language
FIPA ACL24. However, as highlighted in a previous publication [14], FIPA
ACL does not support communication approaches that have emerged as best
practices for real-time distributed systems like publish-subscribe. Also, the
application of JS-son in a distributed context can benefit from the enhance-
ment of agent-internal behavior, for example through a feature that supports
the asynchronous execution of plans.

Implement a reasoning extension. To facilitate JS-son’s reasoning abilities,
additional JS-son extensions can be developed. From an applied perspective,
integrations with business rules engines can bridge the gap to traditional
enterprise software, whereas a JS-son extension for formal argumentation
(see, e.g., Bench-Capon and Dunne [2]) can be of value for the academic
community.

Move towards real-world usage. To demonstrate the feasibility of JS-son,
it is important to apply the library in advanced scenarios. Considering the
relatively small technical overhead JS-son agents imply, the entry hurdle for
a development team to adopt JS-son is low, which can facilitate real-world
adoption. Still, future work needs to evaluate how useful the abstractions
JS-son provides are for industry software engineers.

Implement a Python port. While JS-son can be integrated with the Python
ecosystem, for example via Jupyter notebooks, doing so implies technical over-
head and requires knowledge of two programming languages25. To facilitate

24 http://www.fipa.org/specs/fipa00061/index.html.
25 Also, the module that allows for Node.js-Python interoperability (https://github.

com/pixiedust/pixiedust node) has some limitations, i.e. it lacks Python 3 support.

http://www.fipa.org/specs/fipa00061/index.html
https://github.com/pixiedust/pixiedust_node
https://github.com/pixiedust/pixiedust_node

JS-son - A Lean, Extensible JavaScript Agent Programming Library 233

the use of agents in a data science and machine learning context, we propose
the implementation of Py son, a Python port of JS-son.

Acknowledgements. The authors thank the anonymous reviewers, as well as Cleber
Jorge Amaral, Jomi Fred Hübner, Esteban Guerrero, Yazan Mualla, Amro Najjar,
Helge Spieker, Michael Winikoff, and many others for useful feedback and discussions.
This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References

1. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

2. Bench-Capon, T.J., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(10–15), 619–641 (2007)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley, Chichester
(2007)

4. Bosse, S.: Unified distributed computing and co-ordination in pervasive/ubiquitous
networks with mobile multi-agent systems using a modular and portable agent code
processing platform. Procedia Comput. Sci. 63, 56–64 (2015)

5. Bosse, S.: Mobile multi-agent systems for the Internet-of-Things and clouds using
the Javascript agent machine platform and machine learning as a service. In:
2016 IEEE 4th International Conference on Future Internet of Things and Cloud
(FiCloud), pp. 244–253. IEEE (2016)

6. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Green-
wich (2017)

7. De Jong, J., Stellingwerff, L., Pazienza, G.E.: Eve: a novel open-source web-based
agent platform. In: 2013 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 1537–1541. IEEE (2013)

8. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-89299-3 4

9. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly Media Inc.,
Sebastopol (2013)

10. Kampik, T., Spieker, H.: Learning agents of bounded rationality: rewards based
on fair equilibria. In: 2019 The 31st Annual Workshop of the Swedish Artificial
Intelligence Society (SAIS) (2019)

11. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

12. Logan, B.: An agent programming manifesto. Int. J. Agent-Oriented Softw. Eng.
6(2), 187–210 (2018)

13. Mascardi, V., et al.: Engineering multi-agent systems: state of affairs and the road
ahead. SIGSOFT Eng. Notes (SEN) 44(1), 18–28 (2019)

14. Nieves, J.C., Espinoza, A., Penya, Y.K., De Mues, M.O., Pena, A.: Intelligence
distribution for data processing in smart grids: a semantic approach. Eng. Appl.
Artif. Intell. 26(8), 1841–1853 (2013)

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-0-387-89299-3_4

234 T. Kampik and J. C. Nieves

15. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning, pp. 473–
484. Morgan Kaufmann Publishers Inc., San Mateo (1991)

16. Smilkov, D., et al.: TensorFlow.js: machine learning for the web and beyond. arXiv
preprint arXiv:1901.05350 (2019)

http://arxiv.org/abs/1901.05350

SAT for Epistemic Logic Using Belief
Bases

Emiliano Lorini(B) and Fabián Romero

IRIT-CNRS, Toulouse University, Toulouse, France
emiliano.lorini@irit.fr

Abstract. In [4] a new epistemic logic LDA of explicit and implicit belief
was introduced, and in [5] we presented a tableau-based satisfability
checking procedure as well as a dynamic extension for it. Based on such
procedure, we created a portable software implementation that works
for the family of multi-agent epistemic logics, as well as for the proposed
dynamic extension. This software implementation runs as a library for
the most common operative systems, also runs in popular IoT and robot
hardware, as well as cloud environments and in server-less configurations.

1 Introduction

We believe that semantics based on explicit representation of agents’ epistemic
states expressed as knowledge or belief bases, are a more natural paradigm for
the description of intelligent systems such as robotic and conversational agents
than the Kripkean semantics commonly used for epistemic logics [2]. In order
to have a tool to experiment with such semantics and explore its use, we used
the logic LDA (Logic of Doxastic Attitudes) given in [5] and implemented a
tableau-based satisfability procedure for it.

2 Language, Semantics and Syntax

2.1 Language of Doxastic Alternatives

The language LLDA for the logic LDA is constructed in the following way. Assume
a countably infinite set of atomic propositions Atm = {p, q, . . .} and a finite set
of agents Agt = {1, . . . , n}.

The language L0 is the language of explicit beliefs defined by the following
grammar:

α ::= ⊥ | p | ¬α | α1 ∧ α2 | �iα

where p ranges over Atm.
The multi-modal operator �iα has to be read “α is a formula in agent’s i

belief base”.
The language of implicit beliefs LLDA is defined by the grammar:

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 235–245, 2020.
https://doi.org/10.1007/978-3-030-51417-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_12&domain=pdf
http://orcid.org/0000-0002-7014-6756
http://orcid.org/0000-0003-2112-3061
https://doi.org/10.1007/978-3-030-51417-4_12

236 E. Lorini and F. Romero

φ ::= α | ¬φ | φ1 ∧ φ2 | �iφ | ♦iφ

where α ∈ L0, the modal formula �iφ has to read “agent i can deduce φ
from its belief base” and the modal dual ♦iφ has to be read “φ is consistent
with agent i’s belief base”.

The semantics for this language is based on multi-agent belief bases according
to the following definition.

Definition 1 (Multi-agent belief base). A multi-agent belief base is a tuple
B = (B1, . . . , Bn,S) where Bi ⊆ L0, for every i ∈ Agt, and S ⊆ Atm.

Formulas of L0 are interpreted relative to multi-agent belief bases.

Definition 2 (Satisfaction Relation). Let B = (B1, . . . , Bn,S) be a multi-
agent belief base. Then, the satisfaction relation |= for formulas in L0 is defined
as follows:

B �|= ⊥
B |= p ⇐⇒ p ∈ S

B |= ¬α ⇐⇒ B �|= α

B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2

B |= �iα ⇐⇒ α ∈ Bi

In order to interpret implicit belief operators, the following notion of doxastic
alternative is required.

Definition 3 (Doxastic Alternative). Let B = (B1, . . . , Bn,S) and B′ =
(B′

1, . . . , B
′
n,S ′) be two multi-agent belief bases. Then, BRiB

′ if and only if, for
every α ∈ Bi, B′ |= α.

So, B′ is a doxastic alternative for agent i at B, if everything i explicitly
believes at B is true at B′.

The notion of multi-agent belief model (MAB) is used for the interpretation
of formulas in LLDA.

Definition 4 (Multi-agent belief model). A multi-agent belief model (MAB)
is a pair (B,Cxt) where B is a multi-agent belief base and Cxt is a set of multi-
agent belief bases, also called context.

The following definition extends the satisfaction relation defined above to the
full logical language. (Boolean cases are omitted as they are defined in the usual
way.)

Definition 5 (Satisfaction Relation (cont.)). Let (B,Cxt) be a MAB.
Then:

(B,Cxt) |= α ⇐⇒ B |= α

(B,Cxt) |= �iϕ ⇐⇒ ∀B′ ∈ Cxt : if BRiB
′ then (B′Cxt) |= ϕ

(B,Cxt) |= ♦iϕ ⇐⇒ ∃B′ ∈ Cxt : BRiB
′ and (B′,Cxt) |= ϕ

SAT for Epistemic Logic Using Belief Bases 237

Therefore, the �i-modality, relates a belief base B with every belief base B′

which is a doxastic alternative from the point of view of the agent i at B.

2.2 Dynamic Extension

The dynamic extension of LDA we present in our companion paper allows us to
describe actions of agents under observability conditions. This perceptive con-
text, where the dynamic actions take place, is defined by the following grammar
LOBS:

ω ::= seei,j | seeiω

The expression seei,j has to read “agent i sees what agent j does” and seeiω
represents the fact that “agent i sees that ω”.

The language LDLDA for DLDA (Dynamic LDA) is defined by the following
grammar:

φ ::= α | ¬φ | φ1 ∧ φ2 | �iφ | ♦iφ | [(p, τ, i, Ω)]χ

where α ∈ L0, p ranges over Atm, i ranges over Agt , τ ranges over {+,−} and
Ω is a finite set of formulas of LOBS.

The action +p consists in setting the value of the atomic variable p to true,
whereas the action −p consists in setting the value of the atomic variable p to
false. The formula [(p, τ, i, Ω)]φ has to be read “φ holds after the action τp has
been performed by agent i under the perceptive context Ω”.

2.3 Input Syntax

The syntax used for the library is the following. Operations and precedence
order for unparenthesized expressions in LLDA are (operators are separated by
commas):

false := false, F,⊥
true := true, T,�

box operator agent j := [j],�j

diamond operator agent j := < j >,♦j

triangle operator agent j := {j},�j

negation := −,∼,¬
conjunction := &,∧, /\,̂

disjunction := ∨, \/, |
implication := − >,→

double implication := < − >,↔
conjunction := ;

Propositions are strings of lowercase letters of length greater than zero, fol-
lowed by zero or more digits, agents are non-empty strings of digits.

238 E. Lorini and F. Romero

We represent seei,j in LOBS as “i < j” with infix right associative operator
“<”. We use “;” to separate observations in a perceptive context, and for the
dynamic operator introduced as [(p, τ, i, Ω)] we will use i+p or i−p to represent
the Boolean value of the variable p for the agent i. Finally, “[(”, “)]” will be
used to open and close the definition of the operator. For example, if Ω =
{seei,i, seej,i, seeiseej,i}, then the LDLDA operator [(p,+, i, Ω)] is written as:

[(i+p;i<i;j<i;i<j<i)]

For readability, we allow comments starting from a character ‘#’ to the end
of the line, and all contiguous white space characters including new lines are
interpreted as a single space.

3 Tableaux

Definition 6 (Tableau Rules). A tableau rule consists of a set Γ above a line
called the numerator, and a list of distinct sets Γ1, .., Γn separated by |, called
the denominators:

Γ
Γ1 | . . . | Γn

The following definition specifies the conditions under which a rule is appli-
cable.

Definition 7 (Applicable Rule and Saturated Set). A tableau rule is
applicable to a set Γ if Γ is an instance of its numerator and Γ is not an
instance of one of its denominators. We say that a set Γ is saturated if there is
no rule applicable to it.

The condition requiring that for a tableau rule to be applicable to a set Γ ,
Γ does not have to be an instance of one of its denominators, guarantees that
when constructing a tableau we do not loop indefinitely by applying the same
rule infinitely often. In the following definition, we introduce the static rules for
our tableau method.

Definition 8 (Static Rules). Let X be a finite set of formulas from LLDA,
then:

ψ;¬ψ;X⊥-rule: ⊥
ψ ∧ φ;X∧-rule:

ψ;φ;ψ ∧ φ;X
¬¬ψ;X¬-rule:

ψ;¬¬ψ;X
�iα;X�i-rule: �iα;�iα;X

¬(ψ ∧ φ);X∨-rule: ¬ψ;¬(ψ ∧ φ);X | ¬φ;¬(ψ ∧ φ);X

The following extra rules are used for the KD and KT variants of the logic.

SAT for Epistemic Logic Using Belief Bases 239

Definition 9 (T-rule and D-rule). Let X be a finite set of formulas from
LLDA, then:

�iψ;X
T-rule:

ψ;�iψ;X
�iψ;X

D-rule: ♦iψ;�iψ;X

The D-rule corresponds to the property of global consistency (GC) on multi-
agent belief models, while the T-rule corresponds to the property of belief cor-
rectness (BC). This correspondence is captured by the function cf such that:

cf (D-rule) = GC
cf (T-rule) = BC

Lemma 1 (Monotonicity). For all static rules distinct from ⊥-rule, if Γk is
a denominator of Γ then Γ ⊂ Γk.

The transitional rule allows to generate a new successor for a certain agent
i.

Definition 10 (Transitional Rule). Let X be a finite set of formulas from
LLDA, then:

♦iψ;X♦i:
ψ; {φ|�iφ ∈ X}

Observe that the transitional rule preserves the subsets relation, i.e. if we
have two sets Γ,Δ such that Γ ⊆ Δ and the transtional rule applies to Γ (and
therefore to Δ) then, the denominators Γ ′,Δ′ of applying the ♦i − rule for an
agent i to Γ and Δ respectively also have the subset relation Γ ′ ⊆ Δ′.

The following definition introduces the concept of tableau.

Definition 11 (Tableau). Let X ⊆ {T-rule,D-rule}. A tableau for Γ is a tree
such that each vertex v carries a pair (Γ ′, ρ), where Γ ′ is a set of formulas and ρ
is either an instance of a static rule applicable to Γ ′, an instance of a rule from
X applicable to Γ ′, a transitional rule applicable to Γ ′ or the empty rule nihil,
the root carries a pair (Γ, ρ) for some tableau rule ρ and for every vertex v, if v
carries the pair (Γ ′, ρ), then the following conditions hold:

– if Γ ′ is not saturated then ρ �= nihil, and
– if ρ has k denominators Γ1, . . . , Γk then v has exactly k children v1, . . . , vk

such that, for every 1 ≤ h ≤ k, vh carries (Γh, ρ′) for some tableau rule ρ′.

Observe that any sub-tree of a tableau is also a tableau.
The following definition introduces the concept of closed tableau.

Definition 12 (Closed Tableau). A branch in a tableau is a path from the
root of the tableau to an end vertex, where an end vertex is a vertex carrying
a pair (Γ ′, nihil). A branch in a tableau is closed if its end node is of the form
({⊥}, nihil). A tableau is closed if all its branches are closed, otherwise it is open.

240 E. Lorini and F. Romero

From this definition and the tableau definition follows that any sub-tree of a
closed tableau is also a closed tableau.

The proof of the following theorem is provided in the article.

Theorem 1. Let ϕ ∈ LLDA and let X ⊆ {T-rule,D-rule}. Then, if ϕ is satisfi-
able for the class M{cf (x):x∈X} then all tableaux for {ϕ} are open.

The algorithm that our proof induces, has to check if there is any closed-
tableaux, and for that has to check every possible configuration. In order to
reduce the search space, we introduce the concept of strategy.

Definition 13 (Strategy). Let <σ be an order for the tableau rules. We say
that a tableau follows the strategy <σ if for every vertex (Γ, ρ) in the tableau, if
ρ′ <σ ρ then ρ′ doesn’t apply to Γ .

We introduce the concept of weakening which will be used on the next the-
orem.

Lemma 2 (Weakening). Let Γ, Γ ′ ⊆ LLDA. If there is a closed tableau for Γ ,
then there is a closed tableau for Γ ∪ Γ ′.

Proof. If τ is a tableau for Γ then, we can create a tree τ ′ isomorphic to τ by
mapping every node (Δ, ρ) → (Δ ∪ Γ ′, ρ), since ρ applies to Δ then ρ applies to
Δ ∪ Γ ′ therefore τ ′ is also a tableau which applies the same rules in the same
order than τ , and because τ closes, τ ′ also closes. ��
Theorem 2. Let <σ be the following total order of the tableau rules:

⊥ − rule < �i − rule < ∧ − rule < ∨ − rule < T − rule < D − rule < ♦i − rule

If there is a closed tableau, then there exists a closed tableau that follows the
strategy <σ.

Proof. Let τ be a closed tableau, for each edge ((Γ, ρ), (Γ ′, ρ′)) ∈ τ if ρ′ applies
to Γ and ρ′ <σ ρ then, we will create a closed tableau τ ′ that replaces the
sub-tree with root (Γ, ρ) with another closed tableau with root (Γ, ρ′).

The intuition is, by using this operation repeatedly, we can “bubble sort”
the tableau by “pushing upwards” the lesser operators whenever they apply to
upper nodes.

For each pair of rules ρ, ρ′, we need to prove that if there is a closed tableau
τ having an edge ((Γ, ρ), (Γ ′, ρ′)) ∈ τ , ρ′ <σ ρ and ρ′ applies to Γ , then there is
a closed tableau with (Γ, ρ′) as its root.

(Γ,⊥ − rule) There is an edge ((Γ, ρ), (Γ ′,⊥ − rule)) ∈ τ and ⊥ − rule applies
to Γ , then, by applying the ⊥ − rule we have a closed tableau.

(Γ,♦i − rule) There is an edge (Γ,♦i − rule), (Γ ′, ρ)) ∈ τ and ρ applies to
Γ . As the rule ρ applies to Γ , consider Γ2 the denominator of
applying ρ to Γ , as ρ is a transitional rule distinct from ⊥− rule,
by monotonocity Γ ′ ⊆ Γ2 let Γ ′

2 the denominator of applying the
♦i−rule on Γ2, as the transitional rule preserves subsets Γ ′′ ⊆ Γ ′

2

since there is a closed tableau for (Γ,♦i−rule) by weakening there
is a closed tableau for Γ2.

SAT for Epistemic Logic Using Belief Bases 241

(∗, ∗) The rest of the cases are proven by induction on the number of
rules that apply to elements of Γ , as we can assume all �i rules
have been applied and all applicable ♦i − rule have been applied.
The well known proof by invertibility of rules for tableau in modal
logic [3] will apply with no modifications.

��

4 Algorithm

We assume all formulas in B have been translated in negated normal form
(NNF).

1: procedure IsSatisfiable(B,s,i) � under the semantics s, i is Nullable
2: Parallel r ← SAT(B) [wait = false] do
3: if (¬r) then
4: return |cancel, ⊥|
5: end if
6: end Parallel
7: Parallel r ← SAT(B) do
8: if matches((ψ ∧ ¬ψ, X), B) then
9: return |cancel, ⊥|

10: end if
11: if matches((�iψ; X), B, i) then
12: return |current, IsSatisfiable(ψ; �iψ; �iψ; X, s, i)|
13: end if
14: if matches((ψ ∧ ξ; X), B) then
15: return |current, IsSatisfiable(ψ; ξ; X, s)|
16: end if
17: if matches((ψ ∨ ξ; X), B) then
18: return |wait, IsSatisfiable(ξ; X, s) ∨ IsSatisfiable(ψ; X, s)|
19: end if
20: if matches(♦iψ; X, B, i) then
21: for i ← 1, n do
22: spawn IsSatisfiable(next(i, ♦ψ; X, B), s, i)
23: end for
24: end if
25: return |wait, �|
26: end Parallel
27: end procedure

5 Example

In this section, we use the logic LLDA to formalize a simple scenario of human-
robot interaction in a dynamic domain inspired the famous Sally-Anne false
belief’s task from the psychological literature on Theory of Mind [1].

242 E. Lorini and F. Romero

We assume that Agt = {h, r} where h denotes the human and r denotes the
robot. The scenario is depicted in Fig. 1. The human and the robot are standing
in front of each other on the opposite sides of a table. The robot has two boxes
and two balls in front of him: box 1, box 2, a black ball and a gray ball. In the
initial situation the black ball is inside box 1 and the grey ball is inside box
2. The human can perfectly observe her actions as well as the robot’s actions.
Similarly, the robot can perfectly observe its actions as well as the human’s
actions. Moreover, the robot can see that the human can see its actions and
the human can see that the robot can see her actions. Therefore, the perceptive
context is described by the following set of formula from the language LOBS:

Ω1 = {sr,r, sh,h, sr,h, sh,r, srsh,r, shsr,h}.

Let the atomic proposition blackIn1 denote the fact that the black ball is
inside box 1 and let blackIn2 denote the fact that the black ball is inside box
2. Similarly, let greyIn1 and greyIn2 denote, respectively, the fact that the grey
ball is inside box 1 and the fact that the grey ball is inside box 2.

Fig. 1. Balls in the boxes scenario

We assume that in the initial situation the human does not explicitly believe
that the black ball is inside box 1 and the human does not explicitly believe
that the black ball is inside box 2, as she cannot see the box’s content. Similarly,
the human does not explicitly believe that the grey ball is inside box 1 and
the human does not explicitly believe that the grey ball is inside box 2. We
also assume that the robot does not explicitly believe that the human explicitly
believes that the black ball is inside box 1 (resp. box 2) and that the robot does
not explicitly believe that the human explicitly believes that the grey ball is
inside box 1 (resp. box 2):

Hyp1
def= ¬�hblackIn1 ∧ ¬�hblackIn2 ∧ ¬�hgreyIn1∧

¬�hgreyIn2 ∧ ¬�r�hblackIn1 ∧ ¬�r�hblackIn2∧
¬�r�hgreyIn1 ∧ ¬�r�hgreyIn2

Moreover, we assume that the robot explicitly believes that if the human explic-
itly believes that one ball is inside one box then she explicitly believes that the
ball cannot be inside the other box:

SAT for Epistemic Logic Using Belief Bases 243

Hyp2
def= �r

(

(�hblackIn1 → �h¬blackIn2)∧
(�hblackIn2 → �h¬blackIn1)∧
(�hgreyIn1 → �h¬greyIn2)∧
(�hgreyIn2 → �h¬greyIn1)

)

We can use the logic LLDA to infer that, in the perceptive context Ω1, if the
robot moves the black ball from box 1 to box 2 then, after the occurrence of
the action, both the human and the robot will explicitly believe that the black
ball is inside box 2, the robot will explicitly believe that the human explicitly
believes that the black ball is inside box 2, and the robot will implicitly believe
that the human explicitly believes that the black ball is outside box 1:

(Hyp1 ∧ Hyp2) → [(r, + blackIn2 ,Ω1)](�rblackIn2∧
�hblackIn2∧
�r�hblackIn2∧
�r�h¬blackIn1)

Now, suppose the human moves away so that she cannot see anymore what
the robot does and the robot knows this. In other words, let us suppose that
the situation has changed into the following perceptive context Ω2 in which the
robot and the human can see their own actions but cannot see the actions of the
other:

Ω2 = {sr,r, sh,h}.

In the new perceptive context Ω2, if the robot moves the grey ball from box 2
to box 1 then, after the occurrence of the robot’s action, the human will continue
to believe that the black ball is inside box 2, without believing that the grey ball
is inside box 1. Moreover, the robot still does not believe that the human believes
that the grey ball is inside box 1:

(Hyp1 ∧ Hyp2) →[(r, + blackIn2 ,Ω1)]
[(r, + greyIn1 ,Ω2)](�hblackIn2∧
¬�hgreyIn1 ∧ ¬�r�hgreyIn1)

Here it is the same example encoded for the tool’s syntax, notice we encode
the agent h as 1, and the agent r as 2, as numerical indexes are required.

244 E. Lorini and F. Romero

Observe the semicolon ’;’ means conjunction (with the least precedence)
#Hypothesis 1
-{1}b1 & -{1}b2; # Human doesn’t explicitly believe either ball
-{1}g1 & -{1}g2; # is in either box
-{2}{1}b1 & -{2}{1}b2; # Robot doesn’t explicitly believe the human believe
-{2}{1}g1 & -{2}{1}g2; # if either ball is in either box
#Hypothesis 2
{2}({1}b1->{1}-b2; # Robot explicitly believes that

{1}b2->{1}-b1; # if human believes any ball is in either box
{1}g1->{1}-g2; # then it also believes that such ball is not
{1}g1->{1}-g2); # in the other box (here enumerated the 4 options)

The observation context is both observing each other
and simultaneously aware of this fact and of themselves
-[(2+b2; 1<1; 2<2; 1<2; 2<1; 1<2<1; 2<1<2)](# We set b2 true for the robot

({2}b2) & ({1}b2) & ({2}{1}b2);# All aware that black ball is in box 2
\cite{ch12Fag87}{1}-b1 # Robot can conclude that human believes ...

) # ... that the black ball is not in box 1

As expected, after evaluating the translation, it returns that it is unsatisfi-
able. The tool is available for testing at https://tableau.irit.fr.

6 Implementation

6.1 Software, Architecture and Algorithms

We created a tool in the F
 programming language (an open source, cross plat-
form ML language for the Common Language Infrastructure (CLI)), that follows
closely the paper as reference implementation, with the following speed improve-
ments.

There are two separated API methods, one for the reduction of the dynamic
extension, and the second for the evaluation of the satisfability given by the
tableau procedure.

For the reduction of the dynamic extension, we implement the exact rewriting
as specified in the paper, with no further optimization.

For the propositional case, we added a modern yet simple DPLL SAT solver,
we focused more in having a clean and solid functional architecture for this rather
than adding all possible heuristics, it is slower (2x–50x) than other modern SAT
solver (we benchmark against Z3 [6]), and also is much simpler (the current
implementation of the SAT solver has less than 1k lines of code). However, is
written in F
, so it is exactly as portable as the library itself, which simplifies
enormously the development/testing and integration as compared as using a
C ++ library which is the language most modern SAT solvers are implemented.
This solver is used to discard processes, but the solution when available, is given
by the tableau itself. So this is only used to help speed up execution, and it can
be disabled when calling the library.

We use a reactive asynchronous execution workflow that allows us to aggres-
sively benefit from hardware parallelism when available.

We create a process tree which is the contraction of the tableau tree on the
root node and all nodes created by applying a transitional rule. Each process runs
a “SAT solver” for the propositional interpretation of the set of variables, and

https://tableau.irit.fr

SAT for Epistemic Logic Using Belief Bases 245

spawns one process for each transitional rule that would apply to the contracted
tableau node. If the “SAT solver” is not satisfiable or any of the children sends
a message saying it is unsatisfiable, it kills all remaining children and returns
with the same message to its father. In other case, when all transitional children
return a satisfactory configuration, it returns itself with the appropriate message
to its father.

As we use immutable data structures, we can use shared memory between
processes, in a safe and fast manner.

It is written entirely for the .net core platform, which runs in an array of
architectures and operative systems, that include RaspberyPi, Linux, MacOs,
Windows and the Windows 10 IoT which is rapidly increasing the array of hosts.

A trade off for the current version, is that we use a full in-memory approach.
So, it runs well with models having few thousands of “modal” tableau nodes and
few million propositional variables among them, but fails in much larger models,
which we consider is acceptable for the kind of environments/problems the tool
is designed for.

References

1. Baron-Cohen, S., Leslie, A.M., Frith, U.: Does the autistic child have a “theory of
mind”? Cognition 21(1), 37–46 (1985)

2. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell.
34(1), 39–76 (1987)

3. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) pp. 297–396. Springer, Dordrecht
(1999). https://doi.org/10.1007/978-94-017-1754-0 6

4. Lorini, E.: In praise of belief bases: doing epistemic logic without possible worlds.
In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI 2018), pp. 1915–1922. AAAI Press (2018)

5. Lorini, E., Romero, F.: Decision procedures for epistemic logic exploiting belief
bases. In: Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS 2019), IFAAMAS, pp. 944–952 (2019)

6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1007/978-3-540-78800-3_24

Jacamo-Web is on the Fly: An Interactive
Multi-Agent System IDE

Cleber Jorge Amaral1,2(B) and Jomi Fred Hübner2(B)

1 Federal Institute of Santa Catarina (IFSC), São José, SC, Brazil
cleber.amaral@ifsc.edu.br

http://www.ifsc.edu.br/
2 Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil

jomi.hubner@ufsc.br

http://pgeas.ufsc.br/en/

Abstract. This paper presents jacamo-web, an interactive programming
IDE for developing Multi-Agent Systems (MAS). The standard program-
ming method usually follows the sequence of compile, link and execute
the application. Alternatively, the so-called interactive programming pro-
vides a way to modify a system while it is running. Besides saving devel-
oping time, it maintains the system’s availability since the application is
kept running while it is being changed. To illustrate jacamo-web inter-
active functions, we have developed a MAS for the financial market. It
checks data of companies and applies known formulae to suggest whether
to buy assets or not.

Keywords: Interactive programming · Just-in-time programming ·
Multi-agent oriented programming · On-the-fly programming ·
Incremental compiler

1 Introduction

Interactive programming is a way to develop a program while it is running,
without stopping or restarting, acting directly over its instances [13]. It allows
rapid prototyping, debugging and learning, as well as facilities for incremental
development [7,12]. On the interactive approach, the programmer can enter a
program or a fragment directly into an already running system. It reduces sys-
tem development time since the usual compile-link-execute process is done in a
single step [12]. This approach is also useful in cases where there is no precise
specification of the problem at the design phase, and adaptations are required
at run-time.

We can illustrate the interactive programming comparing a surgery with
fixing a car. In the car case, we can stop it, lift the vehicle, proceed changes to
fix some problem, and restart the engine. However, to treat an injured person

Supported by Petrobras project AG-BR, IFSC and UFSC.

c© Springer Nature Switzerland AG 2020
L. A. Dennis et al. (Eds.): EMAS 2019, LNAI 12058, pp. 246–255, 2020.
https://doi.org/10.1007/978-3-030-51417-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51417-4_13&domain=pdf
http://orcid.org/0000-0003-3877-6114
http://orcid.org/0000-0001-9355-822X
https://doi.org/10.1007/978-3-030-51417-4_13

Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE 247

by a surgery, we cannot interrupt the organism, it must be kept running. The
interactive programming is like a surgery for computational systems. It also
differs from standard programming because it generally acts on instances, i.e., it
provides ways to fix the code of running entities. Usually, standard programming
does not offer this facility. Standard programming focuses on providing tools
to develop templates or classes which are the basis for generating static code
instances.

Indeed, with this dynamic method, the software is “hot-swapped”, allowing
immediate execution making use of the existing instantiated data [6,8]. Among
applications, the interactive programming is applied for algorithm development
and data analysis in environments such as MATLAB R©, R and SciLab, since it
provides conductivity and convenience [4].

It is also useful for programming long term running systems, such as some
open systems. Interactive programming gives tools to improve a part or the
whole system at run-time [9]. For example, imagine stock market autonomous
agents buying and selling all sorts of assets. It is usual that one needs to enhance
some functions of the agents, for instance, their prediction models and decision-
making rules. Interactive programming allows instantly applying such changes
without stopping the agents.

This paper presents jacamo-web an Integrated Development Environment
(IDE)1, which uses the concept of interactive programming for the development
of Multi-Agent Systems. It extends JaCaMo platform [5] adding facilities to
create, modify and destroy agents, artifacts, and organisations at running time.
This IDE is being shown by demonstrating an application of financial market
consultants.

2 Jacamo-Web

JaCaMo is a Multi-Agent Oriented Programming (MAOP) platform that splits
programming concerns of a MAS by the parts responsible for autonomous deci-
sions: (i) the agents which are developed in Jason; (ii) their shared environment,
programmed in CArtAgO; and (iii) the coordination of global behaviour, which
is developed in MOISE [5]. jacamo-web implements RESTful endpoints to access
JaCaMo functions, and adds a web interface for consuming such data allowing
users to create, modify, interact with, and destroy agents, artifacts, and organ-
isations. Although we have MAS IDEs where the agents themselves can modify
the running system (by dynamically adding plans, changing beliefs of others,
changing its organisation and environment). jacamo-web brings these features
for the user (developer) using a web interface.

jacamo-web provides interactive functions of Read-Eval-Print Loop [11], in
short REPL, paradigm. The acronym REPL refers to: Read user insertions,
Evaluates them, Print the result for the user, all of this, repeatedly in a Loop [14].
This technology allows the user to send commands to agents, to insert new

1 A demo application is running at http://jacamo-web.herokuapp.com/.

http://jacamo-web.herokuapp.com/

248 C. J. Amaral and J. F. Hübner

instructions or full blocks of code. Jason’s API is equipped with REPL functions
which are processed by Jason’s internal interpreter.

In case of environmental artifacts, jacamo-web brings a built-in Java com-
piler. It allows the development of new artifacts by coding Java files which are
compiled automatically. These new or changed artifacts can be used in the run-
ning system.

In the case of the organisation, jacamo-web allows the user to create new
organisations and change those that are already running. For instance, the user
can create, modify and remove roles, shared goals, coordination schemes, and
norms.

3 Demonstration

The facilities provided by jacamo-web for users are demonstrated by the imple-
mentation of a MAS for the financial market. The organisation of the MAS has
two roles: consultants, which read assets data to apply a particular formulae
to suggest whether to buy it or not; and, assistants, which receive the user’s
requests, asking consultants about their opinions, compiling a final suggestion
and replying to the user. The interface with final users is implemented using the
Telegram cell phone application, which is being integrated through the Apache
Camel framework [1,2].

Figure 1 shows the architecture of our application. jacamo-web extends
JaCaMo which is a Java-based framework. jacamo-web implements RESTful
endpoints for accessing JaCaMo facilities such as creating agents, send com-
mands to them, and so on. For the financial agents application, we add another
communication infrastructure based on an Apache Camel component called
camel-jason. This infrastructure simplifies the integration of agents with external
entities, the Telegram application, in our case.

Operating System

Java Virtual Machine

JaCaMo Apache Camel

jacamo-web

Rest API

Financial Agents Application

camel-jason

Fig. 1. Financial agents and jacamo-web architecture

In the financial market, there are some known investors that have shared
the way they decide to buy an asset or not. For this demo, we adapt Benjamin
Graham’s, Decio Bazin’s and Joel Greenblatt ’s formulas [3,10]2. Each of these
2 Buying conditions: Graham: Price <

√
(22.5 ∗ EPS ∗ BV PS); Greenblatt: EBIT/

(MarketCap + NetDebt) < 0.1 and ROIC < 0.1; Bazin: DY >= 0.06 and
Debt/EV <= 1.

Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE 249

decision rules is coded into agents with the same name as the original authors’
formulae. These agents are connected to an artifact that gets financial data of
assets from an external web-site. The assistant agent sends to the user consultant
opinions as well as a summarised recommendation. The final recommendation is
to buy the asset if at least two of the consultants are suggesting to buy.

To illustrate interactive functions jacamo-web is launching the Financial
Agents project from JaCaMo project file definitions. This project has three con-
sultant agents, one assistant agent, the artifact fundamentus and the organisa-
tion financialorg. The MAS is illustrated by the jacamo-web generated system’s
overview in Fig. 2. The diagram presents the organisation on the top where we
have the group financialteam and the scheme financialsch. Below the organisa-
tion, the illustration presents the agents’ dimension with the four created agents
which play roles in the group and are committed with missions in the scheme.
The bottom of the figure shows the environment dimension with the workspace
financialagents and the artifact fundamentus in which some agents are focusing.

Fig. 2. Application overview showing runtime organisation, agents and environment

3.1 Agents’ Interface

The agents’ interface provides functions for creating, inspecting, editing and
killing agents. Figure 3 is displaying the consultant bazin. The generated diagram
illustrates bazin’s mind having two namespaces, default and fundamentals, in
which its belief base is settled. This agent is focusing on the artifact fundamentus,
it is playing the role consultant on the group financialteam, and it is committed
to the mission mConsultant of the scheme financialsch.

250 C. J. Amaral and J. F. Hübner

One of the most important interactive facilities in MAS programming is plans
library edition. jacamo-web provides two ways to interactively change agent’s
plans: (i) sending new plans using the .send internal action with the tellHow
performative; and (ii) using the jacamo-web plans editor. In both ways, the agent
keeps running without downtime. Old intentions that the agent is executing are
not affected. However, the updated plans library will be used by new intentions
of the agent. The main difference between these ways to edit plans regards to the
persistence of the data. Plans added by tellHow are only added to the running
instance of the agent. They are not persistent, i.e., if the agent is killed these
plans are lost. In contrast, changes performed using the plans editor overwrites
agent’s model, i.e., they do not only affect the instance but they also modify the
source code of the agent that is used when the agent is being launched.

Fig. 3. Example of sending a plan by tellHow from command box on agent’s interface

The first way to change an agent’s plans library is shown in Fig. 3. We are
sending a plan using the command box. In the figure, this box is shown just below
the agent’s diagram. The illustrated command uses the tellHow performative
that adds a new know how knowledge in the agent’s library, in this case, a plan
which repeatedly prints the greeting “hi” every 2 s. After sending this command,
a log box just below the command box displays a debug message saying that
the command was included for execution. After being added to the plans library
of the running instance of the agent, the new plan is ready to be executed. In

Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE 251

other words, the agent has a new capability, in this example, the ability to say
“hi” repeatedly.

The other way to change agent plans interactively is using jacamo-web plans
editor as shown in Fig. 5. This interface is available from the inspection window
by selecting an agent module to edit. The agent continues running normally
while the user is coding. After editing and clicking on Save & Reload the plan
library of the running agent is updated and its model is overwritten.

Using the plans editor interface, it is possible to make several changes in
different plans at once as illustrated in Fig. 4. On the left side of the figure, there
are two running intentions (i1.1 and i2.1). They are respectively based on the
plans p1 and p2. The right side of the figure represents the new state of the
agent’s instance and model after an edition of its plans library. In this example,
the user removed the plan p1, edited the plan p2 and added a new plan called
p3. It is shown that the old intentions i1.1 and i2.1 are kept without changes.
Let us say that the agent generates a new intention from the plan it knows as
p2. In this case, we are showing that this new intention will be based in the
new version of this plan, here represented as p2’. In such situation, old and new
intentions of a modified plan may coexist. Finally, in case of adding a plan, as
exemplified, the plan p3 could be used to generate the intention i3.1.

new
intention

plan p1

agent's
model

agent's
running
instance

new
intention

plan p2

before editing plans library after editing plans library

intention
i1.1

intention
i2.1

new
intention

plan p2'

new
intention

plan p3

intention
i1.1

intention
i2.1

intention
i3.1

intention
i2'.1

plan p1

removed

plan p2

changed modified
p2

new plan

run until its
ends

run until its
ends

Fig. 4. The hot-swap function keeps old intentions while updates plans of the model.

In addition to agent’s plans inspection, jacamo-web allows to inspect the
agent’s rules and belief base at running time as well as add, remove or change
beliefs. A belief may be added just typing “+” followed by the belief in the com-
mand box of the agent. For instance, the command +divYield("itsa4",7.9),
adds a belief that dividend yield of the itsa4 asset is 7.9. The belief base can be
inspected by the belief base inspection interface or by Jason test goals. In this
case, the log box can be used to quickly show a piece of retrieved information
using a test goal, e.g., typing in the command box ?divYield("itsa4",X);
.print(X) the log prints the value 7.9.

The code completion function aids typing commands through the command
box. This function provides suggestions of frequently used commands as the user

252 C. J. Amaral and J. F. Hübner

types. It is based on a dictionary that is filled with all available internal actions
this agent can perform, all available plans of this agent, and all external oper-
ations provided by any artifact this agent is focusing on. This facility improves
the productivity during the system development and help users to learn available
operations.

Fig. 5. Agent’s plans editor interface

Still on agents interface, there is a function for creating agents. The new agent
starts with a default code or with an existing agent’s code if its name matches
with an existing Jason’s model (from an asl file). Alternatively, an agent can be
created using the internal action .create agent that can be executed by the
command box of an existing agent. The interface also provides a function for
killing the selected agent.

Finally, agents can also interactively be registered or deregistered from the
directory facilitator. Again, using the command box it is possible to send com-
mands to the running agent. For instance, from the agent graham we can call the
command .df register(consultant) to inform that this agent may perform
the consultant service. The interface of directory facilitator shows a table with
all the agents and the services they can provide.

Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE 253

3.2 Environment’s Interface

For the environment programming, jacamo-web provides interface for inspecting
workspaces and artifacts. Figure 6 shows the inspection of the artifact funda-
mentus which is in the workspace financialagents. The diagram shows that this
instance is based on the template dynamic.stock.FundamentusArtifact and it is
being focused by three agents. The artifact has no observable property since the
box bellow its name is blank and it has two operations that agents can act on:
observeProperty and getFundamentals.

In JaCaMo artifacts are created and destroyed by agents using the exter-
nal actions makeArtifact and disposeArtifact respectively. In other words,
JaCaMo already provides facilities to dynamically change the elements of the
environment. jacamo-web introduces a way to create templates at running time
which makes agents able to create artifacts based on templates that did not exist
at the time the system was launched. The templates creation function opens a
Java editor allowing the user to fill the new template with an artifact’s model.
After created, jacamo-web compiles the code and loads the model. An agent can
build instances based on this new template.

Fig. 6. Inspecting an artifact with edit template option.

jacamo-web also allows to edit an artifact template. In the same way of
template creation, when editing an artifact template the user is changing the
model which do not impact in the running instances of artifacts. In this sense,
although jacamo-web is providing a built-in Java compiler making possible to
add and edit templates while the system is running, it is still not possible to
make changes on instances code in a REPL way. When it is desired to update
an existing artifact instance, an agent has to dispose the running artifact and,
after that, create a new one which will use the most updated template.

3.3 Organisation’s Interface

In the organisation dimension, jacamo-web has functionalities to inspect them in
different perspectives as shown in Fig. 7 in which financialagents organisation is

254 C. J. Amaral and J. F. Hübner

being examined. The interface allows to show or hide groups, schemes and norms.
It can be exploited by the user for consulting aspects such as the composition
of groups, check whether the goals of a given scheme were already achieved or
not, and so on. In the illustration, the schemes are shown on the top; the green
text is the goal that is being achieved at the moment. The scheme is linked with
the groups by norms which inform the commitment of the agents with the goals.
The scheme and the group are shown in dark yellow colour which represents that
they are well-formed since cardinalities were respected.

Fig. 7. Organisation’s interface allowing creating roles and showing or hiding groups,
schemes and norms. (Color figure online)

Using the same mechanism of artifacts, an organisation is instanti-
ated by an agent using makeArtifact external action, e.g., makeArtifact
(financialagents, "ora4mas.nopl.OrgBoard", ["src/org/financial.xml
"], OrgArtId) creates an organisation called financialagents based on the
descriptive model presented in the file financial.xml. JaCaMo supports creat-
ing and changing organisations in many aspects through commands executed
by agents, which can also be executed by the user using the command box of a
running agent. In addition to these inherited facilities, jacamo-web allows users
to change the organisation’s structure by creating non-persistent roles which can
later be adopted by agents.

4 Conclusions

We have presented jacamo-web, an extension of JaCaMo a framework for the
development of MAS. jacamo-web has shown that it can shorten the project
life cycle. We could take advantage of instantiated contexts and quickly get
responses from new code insertions. While developing a system like this financial
application, we are often faced by common situations that need changes on
agents, environment and organisations. jacamo-web allows applying such changes

Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE 255

at running time, and the results are shown instantly. In case of open systems,
they are supposed to be available for new entrants where IDE like jacamo-web
are useful to help maintain the system’s availability. In addition, we think it
also facilitates to understand programming aspects, being an important tool for
didactic purposes. As far as we know, jacamo-web is the first interactive MAOP
IDE where the user can interact with the system while it is running.

References

1. Amaral, C.J., et al.: Finding new routes for integrating multi-agent systems using
apache camel (2019)

2. Amaral, C.J., Cranefield, S., Hübner, J.F., Roloff, M.L.: Giving camel to artifacts
for Industry 4.0 integration challenges. In: Demazeau, Y., Matson, E., Corchado,
J.M., De la Prieta, F. (eds.) PAAMS 2019. LNCS (LNAI), vol. 11523, pp. 232–236.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24209-1 20

3. Bazin, D.: Faça Fortuna com Ações, Antes que seja Tarde, 6a edn. CLA Cultural
(2006)

4. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic lan-
guage for technical computing. MIT, pp. 1–27 (2012). http://arxiv.org/abs/1209.
5145

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A.: Dimensions in programming
multi-agent systems. Knowl. Eng. Rev. 34, e2 (2019). https://doi.org/10.1017/
S026988891800005X

6. Cascaval, C., Duesterwald, E., Sweeney, P.F., Wisniewski, R.W.: Performance and
environment monitoring for continuous program optimization. IBM J. Res. Dev.
50(2.3), 239–248 (2010). https://doi.org/10.1147/rd.502.0239

7. Choi, W.: Rehearse: coding interactively while prototyping. In: Extended Abstracts
of UIST 2008, vol. 8, pp. 1–3 (2008)

8. Kistler, T., Franz, M.: Continuous program optimization: design and evaluation.
IEEE Trans. Comput. 50(6), 549–567 (2001). https://doi.org/10.1109/12.931893

9. Lattner, C., Vikram, A.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: Lattner, C., Adve, V. (eds.) International Sympo-
sium on Code Generation and Optimization, CGO, vol. 1, no. 4, pp. 75–86 (2004).
https://doi.org/10.1109/CGO.2004.1281665

10. Reese, J., Forehand, J.: The Guru Investor: How to Beat the Market Using History’s
Best Investment Strategies. Wiley, Hoboken (2009)

11. Seibel, P.: Practical Common Lisp. The Expert’s Voice in Programming Languages,
1st edn. Apress, New York (2005)

12. Tung, S.H.S.: Interactive modular programming in scheme. ACM SIGPLAN Lisp
Point. V(1), 86–95 (1992). https://doi.org/10.1145/141478.141512

13. Wang, G., Cook, P.R.: On-the-fly programming: using code as an expressive musi-
cal instrument. In: NIME 2004 Proceedings of the 2004 Conference on New Inter-
faces for Musical Expression (2004). https://doi.org/10.1017/S1092852916000900

14. Wenzel, M.: READ-EVAL-PRINT in parallel and asynchronous proof-checking.
In: Electronic Proceedings in Theoretical Computer Science, vol. 118, pp. 57–71
(2013). https://doi.org/10.4204/EPTCS.118.4. http://arxiv.org/abs/1307.1944v1

https://doi.org/10.1007/978-3-030-24209-1_20
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1147/rd.502.0239
https://doi.org/10.1109/12.931893
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/141478.141512
https://doi.org/10.1017/S1092852916000900
https://doi.org/10.4204/EPTCS.118.4
http://arxiv.org/abs/1307.1944v1

Author Index

Amaral, Cleber Jorge 25, 246

Baldoni, Matteo 3
Baroglio, Cristina 3
Boissier, Olivier 3
Bosello, Michael 175

Cardoso, Rafael C. 195
Cranefield, Stephen 43, 109

Davoust, Alan 67
Dennis, Louise A. 152, 195
Dignum, Frank 43, 109

Esfandiari, Babak 67

Ferrando, Angelo 43
Fisher, Michael 152, 195

Gavigan, Patrick 67

Hindriks, Koen 152
Hübner, Jomi Fred 25, 246

James, Jeremy 67
Jonker, Catholijn M. 127

Kampik, Timotheus 215
Koeman, Vincent J. 152
Kola, Ilir 127

Lorini, Emiliano 235

Mascardi, Viviana 43
Micalizio, Roberto 3

Nagel, Kai 85
Nieves, Juan Carlos 215

Padgham, Lin 85

Ricci, Alessandro 175
Romero, Fabián 235
Ruiz-Martin, Cristina 67

Singh, Dhirendra 85

Tedeschi, Stefano 3
Trabes, Guillermo 67

van Riemsdijk, M. Birna 127

Wainer, Gabriel 67
Webster, Matt 152
Winikoff, Michael 43

	Preface
	Organization
	Contents
	Multi-agent Interaction and Organization
	Accountability and Responsibility in Multiagent Organizations for Engineering Business Processes
	1 Introduction
	2 Enhancing MAOs to Better Support BPs
	3 Engineering MAO with Accountability/Responsibility
	4 Shaping Business Processes as Accountable Agents in JaCaMo
	4.1 Adding Accountabilities and Responsibilities

	5 Conclusions
	References

	From Goals to Organisations: Automated Organisation Generator for MAS
	1 Introduction
	2 Organisation Design
	3 Organisation Design Problem
	4 Proposed Method
	4.1 State Transformations
	4.2 The Search Tree
	4.3 The Search Algorithm

	5 Future Work
	6 Related Work
	7 Conclusion
	References

	On Enactability of Agent Interaction Protocols: Towards a Unified Approach
	1 Introduction
	2 Background
	3 Defining Enactability Using a Semantic Approach
	4 Related Work and Discussion
	References

	Simulation
	An Architecture for Integrating BDI Agents with a Simulation Environment
	1 Introduction
	2 Background
	2.1 Belief-Desire-Intention Architecture
	2.2 Simulation Requirements for Multi-agent Systems

	3 Related Work: Simulated Environments for BDI Systems
	3.1 Simulation Within MAS Development Platforms
	3.2 Modelling Cognitive Processes in Simulation Platforms
	3.3 Connecting Simulation Platforms and Cognitive Reasoning Engines

	4 SAVI Architecture
	4.1 Setup
	4.2 Decoupling Simulation and Reasoning
	4.3 The SAVI Architecture

	5 Case Study
	5.1 Scenario
	5.2 Implementation
	5.3 Testing
	5.4 Results

	6 Conclusion
	References

	Using MATSim as a Component in Dynamic Agent-Based Micro-Simulations
	1 Introduction
	2 MATSim as a Component
	2.1 External Control of MATSim Steps
	2.2 API to Modify MATSim Agent Behaviour
	2.3 Adding BDI Actions to MATSim
	2.4 Generating BDI Percepts from MATSim
	2.5 Generating Additional BDI Percepts Based on External Model
	2.6 Conclusion

	3 Flexible Route Planning
	3.1 Route Planning in MATSim
	3.2 The Evacuation System Routers
	3.3 Fire Avoidance

	4 Initialisation of MATSim
	4.1 Creating the Agent Population
	4.2 Creating the Activities

	5 Designing Agents and Their Behaviours
	6 Evaluation
	7 Discussion and Conclusion
	References

	Social Awareness and Explainability
	Incorporating Social Practices in BDI Agent Systems
	1 Introduction
	2 Social Practices
	3 The Care Robot Scenario
	4 A Care Robot with Social Practices
	5 Implementation
	5.1 Meta-level Reasoning About Social Practices
	5.2 A Jason Metainterpreter

	6 Evaluation
	7 Conclusions
	References

	Who's That? - Social Situation Awareness for Behaviour Support Agents
	1 Introduction
	2 Research Approach and Agent Architecture
	3 Modelling Social Situations
	3.1 Structure of Social Situations: Upper Ontology
	3.2 Features of Social Situations: Lower Ontology

	4 User Study
	4.1 Experimental Setting
	4.2 Results

	5 Predicting Priority of Social Situations
	5.1 Reasoning About Situations
	5.2 Model

	6 Discussion and Conclusions
	6.1 Research Questions and Hypothesis
	6.2 Contributions
	6.3 Limitations
	6.4 Proposed Future Work

	References

	The ``Why Did You Do That?'' Button: Answering Why-Questions for End Users of Robotic Systems
	1 Introduction
	2 Background and Related Work
	2.1 Cognitive Agent Programming
	2.2 Explanations in Cognitive Agent Systems and ``Why'' Questions
	2.3 The Agent Infrastructure Layer and Gwendolen

	3 An AIL-Based Framework for Omniscient Debugging Driven Explanations for Cognitive Agents
	3.1 Adaptation to Gwendolen
	3.2 Example
	3.3 From Traces to Explanations: Why-Questions in Gwendolen
	3.4 Implementation

	4 Test Examples and Evaluation
	4.1 Traces in Gwendolen for Tutorial Examples
	4.2 Potential Use Case: Self-certifying Offshore Assets
	4.3 Traces and Explanations for Other Languages

	5 Conclusion
	References

	Learning and Reconfiguration
	From Programming Agents to Educating Agents – A Jason-Based Framework for Integrating Learning in the Development of Cognitive Agents
	1 Introduction
	2 Background and Related Work
	2.1 Reinforcement Learning
	2.2 Integrating RL into BDI Agents and AOP

	3 The Basic Idea
	3.1 A First Model
	3.2 Extending the Reasoning Cycle

	4 Proof-of-Concept Implementation in Jason
	4.1 RL Concepts Representation in Jason
	4.2 Jason-RL Reasoning Cycle

	5 First Evaluation and Discussion
	5.1 Details About the Algorithms Used
	5.2 Tests Performed and Results

	6 The Road Ahead
	References

	Plan Library Reconfigurability in BDI Agents
	1 Introduction
	2 BDI Agent Programming Languages and Capabilities
	3 Reconfigurability Framework
	3.1 Running Example
	3.2 Preliminaries
	3.3 Capabilities
	3.4 Plans
	3.5 Plan Replacement

	4 Implementation
	4.1 Practical Experiment

	5 Related Work
	6 Conclusions
	References

	Implementation Techniques and Tools
	JS-son - A Lean, Extensible JavaScript Agent Programming Library
	1 Introduction
	2 Design Approach
	3 Architecture and Reasoning Loops
	4 Implementing JS-son Agents
	4.1 JS-son Core API
	4.2 Tutorial

	5 Potential Use Cases
	6 Examples
	6.1 JS-son Meets Jupyter
	6.2 JS-son in the Browser
	6.3 Learning JS-son Agents
	6.4 Serverless JS-son Agents

	7 Related Work
	7.1 OsBrain
	7.2 JavaScript Agent Machine (JAM)
	7.3 Eve
	7.4 Comparison - Unique JS-son Features

	8 Conclusions and Future Work
	References

	SAT for Epistemic Logic Using Belief Bases
	1 Introduction
	2 Language, Semantics and Syntax
	2.1 Language of Doxastic Alternatives
	2.2 Dynamic Extension
	2.3 Input Syntax

	3 Tableaux
	4 Algorithm
	5 Example
	6 Implementation
	6.1 Software, Architecture and Algorithms

	References

	Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE
	1 Introduction
	2 Jacamo-Web
	3 Demonstration
	3.1 Agents' Interface
	3.2 Environment's Interface
	3.3 Organisation's Interface

	4 Conclusions
	References

	Author Index

