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Preface

This volume contains the proceedings of ICGT 2020, the 13th International Conference
on Graph Transformation held during June 25–26, 2020. Due to the pandemic situation
leading to COVID-19 countermeasures and travel restrictions, the conference was held
online. ICGT 2020 was affiliated with STAF (Software Technologies: Applications and
Foundations), a federation of leading conferences on software technologies, and it took
place under the auspices of the European Association of Theoretical Computer Science
(EATCS), the European Association of Software Science and Technology (EASST),
and the IFIP Working Group 1.3 on Foundations of Systems Specification.

The ICGT series aims at fostering exchange and collaboration of researchers from
different backgrounds working with graphs and graph transformation, either by con-
tributing to their theoretical foundations or by highlighting their relevance in different
application domains. Indeed, the use of graphs and graph-like structures as a formalism
for specification and modeling is widespread in all areas of computer science as well as
in many fields of computational research and engineering. Relevant examples include
software architectures, pointer structures, state space graphs, control/data flow graphs,
UML and other domain-specific models, network layouts, topologies of cyber-physical
environments, and molecular structures. Often, these graphs undergo dynamic change,
ranging from reconfiguration and evolution to various kinds of behavior, all of which
may be captured by rule-based graph manipulation. Thus, graphs and graph transfor-
mation form a fundamental universal modeling paradigm that serves as a means for
formal reasoning and analysis, ranging from the verification of certain properties of
interest to the discovery of new computational insights.

ICGT 2020 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
L’Aquila (Italy) in 2015, Vienna (Austria) in 2016, Marburg (Germany) in 2017,
Toulouse (France) in 2018, and Eindhoven (The Netherlands) in 2019, following a
series of six International Workshops on Graph Grammars and Their Application to
Computer Science from 1978 to 1998 in Europe and in the USA.

This year, the conference solicited research papers describing new unpublished
contributions in the theory and applications of graph transformation as well as tool
presentation papers that demonstrate new features and functionalities of graph-based
tools. The Program Committee selected 22 out of 40 submissions for inclusion in the
conference’s program. Out of these 22 papers, 2 of them have been accepted as new
ideas papers that were presented at the conference, without appearing in the pro-
ceedings. All submissions went through a thorough peer-review process and were
discussed online. There was no preset number of papers to accept, and each of them has
been evaluated and assessed based on its own strengths and weaknesses. The topics
of the accepted papers range over a wide spectrum, from theoretical approaches to
graph transformation to the application of graph transformation in specific domains.



The papers presented new results on the DPO/SPO dichotomy and their rule applica-
tion conditions, as well as introducing novel rewriting formalisms and establishing
tighter connections with bigraphical reaction systems; furthermore, model checking
issues were explored and the use of graph transformation advances in contemporary
application domains such as life sciences. In addition to the submitted papers and tool
presentations, the conference program included an invited talk, given by Bob Coecke
(University of Oxford, UK), on the use of graphical structures for the implementation
of natural language on quantum hardware.

We would like to thank all who contributed to the success of ICGT 2020, the invited
speaker Bob Coecke, the authors of the submitted papers, as well as the members of the
Program Committee and all the reviewers for their valuable contributions to the
selection process. We are grateful to Reiko Heckel, the chair of the Steering Committee
of ICGT, for his fruitful suggestions; and to Adrian Rutle, the STAF 2020 general
chair, for the close collaboration during the dynamic pandemic situation in early 2020.

May 2020 Fabio Gadducci
Timo Kehrer
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Quantum Natural Language Processing
(on Actual Quantum Hardware):

(Abstract of Invited Paper)

Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis,
and Alexis Toumi

Cambridge Quantum Computing Ltd., Oxford University,
Department of Computer Science

This work involves three different graphical structures:

– Those of categorical quantum mechanics (CQM) [1, 6, 9].
– hose of distributional compositional language meaning (DisCoCat) [11].
– The ZX-calculus, in particular applied to quantum circuits [7–9].

By Quantum Natural Language Processing (QNLP) we mean the canonical
implementation of natural language on quantum hardware, where by canonical we
mean that compositional language structure, including grammar, matches the manner in
which quantum systems compose.

The DisCoCat model for natural language enables such a canonical embedding.
One instance of this is the perfect match of grammatical structure in terms of pregroups
[17] and the compositional quantum structure of bipartite entanglement [1], in that both
form compact closed categories (a.k.a. string diagrams). In fact, DisCoCat was directly
inspired by teleportation-alike behaviours that exploit this entanglement [5].

Besides vector spaces and inner-products, which are commonplace in modern
Natural Language Processing (NLP), DisCoCat also employs several other
quantum-theoretic features, such as projector spectra for representing meanings of
adjectives, verbs and relative pronouns [10, 14, 15, 19], density matrices for repre-
senting linguistic ambiguity and lexical entailment [2, 18], and entanglement for rep-
resenting correlated concepts [4], all of which ‘exist’ on quantum hardware. Therefore
DisCoCat-QNLP deserves to be referred to as ‘quantum-native’.

The first proposal to implement QNLP was put forward in [21]. A first major
upshot of quantum implementation of DisCoCat is an exponential reduction of space
resources as compared to implementations on classical hardware. Other initially
mentioned upshots include the nativeness of density matrices, and the availability of
quantum algorithms that provide an algorithmic quantum advantage for typical NLP
tasks such as classification.

However, a first shortcoming in that proposal was the reliance on quantum RAM
[13], which does not yet, and may never do. Also, one needs to provide
hardware-dependent conversion of DisCoCat diagrams into e.g. quantum circuits.
These shortcoming are addressed in:



• Quantum natural language processing on near-term quantum computers. arXiv:
2005.04147.

Recently, we performed QNLP in the form of question-answering on IBM quantum
hardware. In fact, this was the first time any form of NLP had been done on quantum
hardware. The main two resources for our implementation are:

• A medium blog describing the implementation that we did:
https://medium.com/cambridge-quantum-computing/quantum-natural-language-
processing-748d6f27b31d

• A github repository containing the implementations:
https://github.com/oxford-quantum-group/discopy/blob/
ab2b356bd3cad1dfb55ca6606d6c4b4181fe590c/notebooks/qnlp-experiment.ipynb

This work makes use of tool box components presented in:

• DisCoPy: Monoidal Categories in Python. arXiv:2005.02975.

One key change as compared to [21] is the use of variational quantum circuits [3]
instead of qRAM. Here is such a parametrised quantum circuit that we used:

subj(θ0)

verb(θ1)

obj(θ2)

where the values of h0; h1; h2 are learned using a small corpus. For reasons of
simplicity, we used the verb structure that was studied in [16]. The task, rather than
classification, is question answering [12], and we used a 1-dimensional sentence space.
We made use of ZX-calculus [7] for easy translation between between DisCoCat
diagrams and quantum circuits, and used CQC’s t|ket> compiler and optimisation [20],
which also relies on ZX-calculus.
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Conditional Bigraphs

Blair Archibald(B) , Muffy Calder , and Michele Sevegnani

School of Computing Science, University of Glasgow, Glasgow, UK
{blair.archibald,muffy.calder,michele.sevegnani}@glasgow.ac.uk

Abstract. Bigraphs are a universal graph based model, designed for
analysing reactive systems that include spatial and non-spatial (e.g. com-
munication) relationships. Bigraphs evolve over time using a rewriting
framework that finds instances of a (sub)-bigraph, and substitutes a new
bigraph. In standard bigraphs, the applicability of a rewrite rule is deter-
mined completely by a local match and does not allow any non-local
reasoning, i.e. contextual conditions. We introduce conditional bigraphs
that add conditions to rules and show how these fit into the matching
framework for standard bigraphs. An implementation is provided, along
with a set of examples. Finally, we discuss the limits of application condi-
tions within the existing matching framework and present ways to extend
the range of conditions that may be expressed.

Keywords: Bigraphs · Bigraphical reactive systems · Application
conditions · Conditional rewriting

1 Introduction

Bigraphs are a universal mathematical model, introduced by Milner [15], for
representing spatial and non-spatial relationships of physical or virtual entities.
They have been applied to a wide range of systems including: mixed-reality
systems [4], networking [6], Iot [2], security of cyber-physical systems [1], and
biology [13].

Bigraphical reactive systems (BRS) augment bigraphs with a rewriting the-
ory that allows models to evolve over time. The rewrite theory consists of a set
of reaction rules L �R that finds an occurrence of L in a larger bigraph B and
replaces it with R. This form of rewriting only allows local reasoning through
matching a pattern bigraph L exactly, but does not allow non-local reasoning
that takes into account the context of a rule. We introduce conditional rules
that use application conditions to specify contextual requirements within the
rewrite system. Such conditional rules have proved invaluable in graph transfor-
mation systems [11] (GTS), a closely related formalism to bigraphs. However, it
is important to note that although BRS and GTS are based on graph structures,
the formalisms require completely different semantics for conditional rewriting.
For example, in GTS there is a single context for the rules, whereas BRS feature
a distinct context and a parameter, and so application conditions can be specified
over either.
c© Springer Nature Switzerland AG 2020
F. Gadducci and T. Kehrer (Eds.): ICGT 2020, LNCS 12150, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-51372-6_1
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A common requirement for conditional rules in BRS is to avoid the dupli-
cation of links between entities. As an example, consider the createLink rule
shown in Fig. 1a (full details of this notation is in Sect. 2). Bigraphs consist of
entities, A, B and L, shown as shapes that are related either by a nesting relation-
ship – L inside A – or via the green hyperlinks. Sites (grey rectangles) represent
parts of the system that have been abstracted away, i.e. other bigraphs may
appear inside. Without an application condition, this rule allows any number
of L-L links to be created between an A and a B; this is because the sites may
contain any number of other entities, including existing L entities. If we wish
to restrict to single L-L links between A-B pairs, we have to employ some sort
of tagging scheme [6], often coupled with rule priorities [3], that can determine
when a link does or does not exist. In practice, this requires an extra entity
(for tagging) and additional (four) reaction rules. This inflates the model with
non-domain specific rules, generates additional control-only steps in the result-
ing transition system, and, more importantly, obfuscates the purpose of the rule,
which is to create non-duplicate links.

With conditional rules, we can achieve this goal in a single rewrite step.
In the example, we create a conditional rule though the addition of a negative
application condition, which is shown in Fig. 1b. This states that within the
parameter of the rule, i.e. in the sites, we must not find an existing L-L link. If
such a link is found then the rule does not apply. Consider application of the rule
to the example bigraph in Fig. 1c. For the linked A, the existing L entities appear
inside the two sites of the parameter (of the left-hand side of the rule). As the
parameter negative condition forbids such a shape to appear in the left-hand
side, no new link can be created. On the other hand, for the unlinked A, no L-L
link is present in the parameter and so the negative condition is not satisfied,
and a new link can be created.

A
B

L L
A

B

�

(a) createLink rule

L L

(b)

L
A

L
B

A

(c)

Fig. 1. Negative application condition to avoid duplicate L-L links. (b) Negative appli-
cation condition for the parameter. Given the bigraph in (c), the rule does not apply
for the already linked A and B but does for the unlinked A and B. (Color figure online)

In Sects. 3–5 we show that conditional rules are possible within Milner’s origi-
nal BRS formalism, and we give our implementation in BigraphER [19]. In Sect. 6
we reflect on the fact that, due to how bigraph matching is defined, conditional
rules are limited in the conditions that can be expressed. We discuss these lim-
itations, with examples, and indicate possible extensions that include matching
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on names and patterns, spatial logics to encode spatial context, and matching
with sorting schemes, site numbering, and nested application conditions.

We make the following contributions:

– We extend the original formalism of bigraphs to support non-local application
conditions for bigraphical reactive systems.

– To show application conditions are both implementable and useful, we imple-
ment application conditions in BigraphER [19] and provide example models
that highlight common uses of application conditions in practice.

– We show the limits of such an approach, based strictly on the existing match-
ing/decomposition of bigraphs, and highlight areas for future exploration.

2 Bigraphs

A bigraph consists of two orthogonal structures: a place graph that describes the
nesting of entities, e.g. a Phone inside a Room, and link graph that provides non-
local hyperlinks between entities, e.g. allowing Phone entities to communicate
regardless of location. In standard bigraphs place graphs are forests, however
here we use bigraphs with sharing [18], that has place graphs as directed acyclic
graphs, allowing entities to have multiple parents. Bigraphs feature an equivalent
algebraic and an intuitive diagrammatic form, and we use this diagrammatic
form where possible.

An example bigraph is in Fig. 1c. We draw entities as different (colored)
shapes, often omitting the label when possible. Containment illustrates the spa-
tial nesting relationship, e.g. L is contained by A, while green hyperedges repre-
sent non-spatial connections. Entities have a fixed arity (number of links), e.g.
L has arity 1, but links may be disconnected/closed.

Each place graph has m regions, shown as the dashed rectangles, and n sites,
shown as filled dashed rectangles. Regions represent parallel parts of the system,
and sites represent abstraction, i.e. an unspecified bigraph (including the empty
bigraph) exists there. Similarly, link graphs have a (finite) set of inner names,
e.g. {z} and outer names, e.g. {x, y}. For example, in Fig. 2b, C has an inner
name x, d has outername x, and idI has both an inner and outer name x (where
both x’s are distinct).

Bigraphs are compositional structures, that is, we can build larger bigraphs
from smaller bigraphs. Composition of bigraphs consists of placing regions in
sites, and connecting inner and outer-faces on like-names.

Algebraically we describe bigraphs using their interfaces, e.g. B : 〈n,X〉 →
〈m,Y 〉, or more succinctly B : I → J , where n is the number of sites, m number
of regions, X a set of inner names, and Y a set of outer names. Composition
of bigraphs is defined when the interfaces match, i.e. B1 ◦ B0 is defined for
B0 : I → J and B1 : J → K. We use ε to refer to the empty interface 〈0, ∅〉, and
call bigraphs of the form ε → I ground, i.e. bigraphs with no sites and no inner
names. Figure 1a is non-ground as it contains two sites, while Fig. 1c is ground
as it contains no sites or inner names.
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We let idI : idI : 〈m,X〉 → 〈m,X〉 be the identity bigraph over an interface
I : 〈m,X〉. idI maps names in X to themselves and places m sites in m regions.
This bigraph is particularly important for matching as it allows names and
entities to move between the context and parameter of a match. With these
definitions, bigraphs form a pre-category1 with objects as interfaces and arrows
as bigraphs.

While composition combines bigraphs vertically, we can also combine
bigraphs horizontally through the tensor product ⊗. This tensor product extends
both the sites/regions and name sets for the interfaces. For example, given
A : 〈0, {x}〉 → 〈1, {y}〉 and B : 〈1, ∅〉 → 〈2, {z}〉, we can construct a new
bigraph A ⊗ B : 〈1, {x}〉 → 〈3, {y, z}〉 Note that ⊗ is only defined when the sets
of interface names are disjoint.

Notation. When referring to a ground bigraph we use lower-case letters, while
general bigraphs, that may or may not be ground, are denoted in upper-case.
Where the identity of an interface is not required we use · as a placeholder for
I, J, . . .

2.1 Bigraphical Reactive Systems

Bigraphical reactive systems (BRS) equip bigraphs with a rewriting theory that
allows models to evolve over time. Intuitively, applying a reaction rule L �R
to bigraph B finds an occurrence of L in B (if one exists) and replaces it with
R to create B′. Most often we rewrite over ground bigraphs as these represent
fully formed models, e.g. without holes/sites. Here we give the most general def-
initions possible, i.e. for arbitrary (including ground) bigraphs B, and specialise
to ground bigraphs when necessary.

We work with a restricted version of reaction rules that are “well-behaved”
where L is solid2. Solid bigraphs were introduced by Krivine et al. [13] to count
unique occurrences for stochastic BRS.

Definition 1 (solid). A bigraph is solid if:

– All roots contain at least one node, and all outer names are connected to at
least one edge.

– No two sites or inner names are siblings
– No site has a root as a parent
– No outer name is linked to an inner name.

Definition 2 (occurrence). We say a bigraph P occurs in B, written B � P ,
if there exists a decomposition B = C ◦ (P ⊗ idI) ◦ D for some context C and
parameter D. That is, there is a match for P in B.

Likewise, we say P does not occur in B, written B � P if �C ′
�D′, B =

C ′ ◦ (P ⊗ idI) ◦ D′. That is, there is no match for P in B.

1 Bigraphs are not a full category as composition is not defined for non-disjoint sup-
ports. We do not discuss support here.

2 The definition of solid for bigraphs with sharing differs slightly, see [17, Defn 3.6.1].
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A

B

A

(a)

A B A

x

C

A B

L
A

x

idI

A B

d

(b)

Fig. 2. Decomposition of ground bigraph b = C ◦ (L ⊗ idI) ◦ d.

For a solid L, we gain the property that an occurrence B |= L uniquely
identifies a context C and parameter D.

We show graphically how occurrences are found in Fig. 2. Given the ground
bigraph b shown in Fig. 2a, we show in Fig. 2b one (of the two possible) decom-
positions when matching against the rule given in Fig. 1a. The match L, by
definition, has the same form as the left-hand-side of the reaction rule. The con-
text C captures entities in the bigraph that do not lie within the match, while
the parameter d, which must be ground as b is ground, provides the entities
required to fill any sites/inner names in the match. To allow names (and entities
in the case of sharing, i.e. for those sharing a parent in the match and context) to
move between the parameter and the context, we allow an interface idI next to
the match. The use of idI means the distinction between context and parameter
is not always clear as both names and unmatched entities can move between the
context and parameter as required, e.g. an entity from the context can appear in
the parameter by extending idI with an additional, trivial, region/site. Note that
we only take L to be solid allowing these region/sites to be added as required.

Allowing entities to move between the context and parameter complicates
the specification of application conditions that must determine if the condition is
within the context of the parameter. We deal with this by forcing the parameter
to be minimal such that it contains only entities that are within sites of the
match, and all other entities move to the context. We note this is a choice and
the theory also applies to systems that take the minimal context.

Definition 3 (reaction rule). A reaction rule R is a pair of bigraphs, R =
(L,R), defined over the same interface, and often written as L �R, with L
solid. Applying a reaction rule consists of replacing an occurrence B |= L, in a
given bigraph B, with R.

Rewriting (over ground bigraphs) is shown graphically in the commuting
diagram of Fig. 3. Given a ground bigraph a, we first find a decomposition a =
C ◦ (L ⊗ idI) ◦ d and, should such a decomposition exist, rewrite it to obtain
a′ = C ◦ (R⊗ idI)◦d. Both the context C and parameter d are the same for both
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the left and right hand sides of the rewrite3. In Sect. 3 we show how checking
application conditions corresponds to a further decomposition of C and d.

ε · · · ε

·
�

d L ⊗ idI dR ⊗ idI

C

a a′

Fig. 3. Bigraph rewriting [15]. a rewrites to (a support equivalent) a′ if there is a
decomposition a = C ◦ (L ⊗ idI) ◦ d and rule L � R.

While the rules are specified for abstract bigraphs, i.e. they match any entity
of the correct type, rewriting itself works on concrete bigraphs where entities
have distinct identifiers. In general, we may rewrite into any support equivalent
a′, notated � where support equivalence allows renaming of entity identifiers
and link-names while keeping the structure intact. For the rest of the paper we
assume support equivalence without explicitly stating it.

Given a set of reaction rules we construct a BRS as follows.

Definition 4 (bigraphical reactive system (BRS)). A bigraphical reactive
system consists of a set of ground bigraphs B and set of reaction rules R, defined
over B, of the form L � R. The reaction relation � over ground bigraphs is
the smallest such that b � b′ when b = C ◦ (L⊗ idI)◦d and b′ = C ◦ (R⊗ idI)◦d
for b, b′ ∈ B, reaction (L � R) ∈ R, context C, and parameter d.

That is, our system consists all possible (ground) bigraphs closed under �.

3 Application Conditions for Bigraphs

We show how application conditions for bigraphs are instances of the bigraph
matching problem. We begin by defining application conditions, which can be
viewed as stand-alone instances of the left-hand-side of a rule.

Application conditions include information such as if they are positive or
negative and if they apply to the context or parameter of a match.

Definition 5 (application condition). An application condition is a tuple
〈t, P, l〉 where t ∈ {+,−} is the type of application condition, either positive
or negative, P is a (non-ground, not necessarily solid) constraint bigraph, and
l ∈ {↑, ↓} determines if the condition is over the context (↑) or parameter (↓).

3 Bigraphs allow the use of an instantiation map η [15, Defn 8.3] that specifies a
mapping of sites in the left-hand side to those in the right-hand site. We do not
consider instantiation maps here.
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Checking the conditions is a matching problem and no rewriting is performed
on the context/parameter, i.e. we do not reduce constraints. Finally, we define
conditional reaction rules.

Definition 6 (conditional reaction rule). A conditional reaction rule R
consists of a reaction rule R : L � R, and a set of application conditions A.
Unconditional rules are those where A = ∅.

A rule L � R applies to a if there is a decomposition a = C ◦ (L ⊗ idI) ◦ d,
and

∀〈+, P, ↑〉 ∈ A, C � P
∀〈−, P, ↑〉 ∈ A, C � P
∀〈+, P, ↓〉 ∈ A, d � P
∀〈−, P, ↓〉 ∈ A, d � P

In a slight overload of notation, we use C, d � a when an application condition
a ∈ A is satisfied (positively or negatively) in context C and parameter d.

We show graphically how application conditions of the form 〈+, P, ↑〉 and
〈+, P ′, ↓〉 are checked in Fig. 4. This diagram shows the left-hand side of Fig. 3,
i.e. the decomposition of ground bigraph a, but with the context C and param-
eter d further decomposed. As C can be decomposed into three arrows and as P
exists in the decomposition we know the application condition is met. The use
of the additional parameter E allows for application conditions to have a differ-
ent interface from the original match (shown here as an arbitrary ·). Without
E all application conditions would be forced to have the same number of sites
as regions of L, and matching outer/inner names, making it difficult to spec-
ify reusable conditions. Likewise we can check P ′ via the decomposition of d.
For negative application conditions we instead show that no such decomposition
exists for a given P , i.e. we cannot form the diagram in Fig. 4.

ε · · · · · · ·
d′ (P ′ ⊗ idJ) C′′ (L ⊗ idK) E (P ⊗ idI) C′

a

Cd

Fig. 4. Context and parameter decomposition over left-hand side of Fig. 3 to check
positive application conditions

When multiple application conditions are specified, we check that matches
exist (or do not exist) separately for each condition. That is, we take the conjunc-
tion of the conditions. Importantly, we do not force the decompositions to cover
a unique set of entities, and allow the same entity to be matched for multiple
application conditions, i.e. conditions can overlap. We discuss non-overlapping
rules as an extension to this approach in Sect. 6.4.
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Definition 7 (conditional bigraphical reactive system). A conditional
BRS consists of a set of ground bigraphs B and set of conditional reaction rules
Rc of the form (L �R,A).

The reaction relation � is the smallest such that b � b′ when b = C ◦
(L ⊗ idI) ◦ d and b′ = C ◦ (R ⊗ idI) ◦ d, for b, b′ ∈ B, reaction (L �R,A) ∈ R,
context C, and parameter d. Additionally, ∀a ∈ A, C, d � a.

When A = ∅, a conditional BRS is a standard BRS as in Definition 4.

4 Implementation

We have implemented application conditions in BigraphER [19] an open-source
framework for bigraphs4. BigraphER supports bigraphs with sharing [18], includ-
ing an efficient matching algorithm based on SAT that we use to decompose the
bigraph to check application condition predicates.

We show the example rule for Fig. 1 in the BigraphER language in
Listing 1.1. The rules are written as before, with the addition of an if clause that
allows application conditions to be specified as arbitrary bigraphs. The structure
of the conds production has the following BNF specification and appears as an
optional statement of any reaction rule; the production 〈bigraph exp〉 parses an
arbitrary bigraph expression. As is common in programming languages, we use
! to represent negation, while param and ctx become reserved keywords that
specify where we should search for the constraint specified by 〈bigraph exp〉 –
in the parameter (sites) or context respectively.

〈place〉 ::= param | ctx

〈bang〉 ::= ! | ε

〈app cond〉 ::= 〈bang〉 〈bigraph exp〉 in 〈place〉
〈app conds〉 ::= 〈app cond〉 | 〈app cond〉, 〈app conds〉

〈conds〉 ::= if 〈app conds〉

5 Examples

We apply conditional rewriting to three typical examples: ensuring entities are
unique, implementing a � operator and performing counting in multi-sets, and
replacing priorities/control with conditionals.

4 Available, along with the example models of Sect. 5, at www.dcs.gla.ac.uk/∼michele/
bigrapher.html.

www.dcs.gla.ac.uk/~michele/bigrapher.html
www.dcs.gla.ac.uk/~michele/bigrapher.html
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Listing 1.1: Specifying application conditions in BigraphER.
1 # Example from Fig. 1
2

3 # control <name > = <arity >
4 ctrl A = 0; # Circle
5 ctrl B = 0; # Ellipse
6 ctrl L = 1; # Square
7

8 react createLink =
9 A.id || B.id --> /x (A.(L{x} | id) || B.(L{x} | id))

10 if
11 !(/y (L{y} || L{y})) in param;

5.1 Uniqueness of Entities

Many applications have constraints on the uniqueness of particular entities. For
example, in a networking application e.g. in [20], we want to disallow two devices
having the same MAC address.

In bigraphs there is no general method to declare an entity as unique. How-
ever, with application conditions we can check, before an entity is created, that
no identical entity exists in either the context or the parameter. Since there is no
way to create a duplicate, if we use conditional reaction rules with appropriate
conditions to generate a model, this will ensure entities are unique.

As an example, consider the rule createUnique shown in Fig. 5. This rule
allows an entity Unique to be created in a given Place so long as no other entity
Unique already exists in the model – either in the same place, i.e. the parameter,
or anywhere in the context.

Uniqueq

Place

Unique

Place

� if 〈−,
Unique

, ↑〉 , 〈−,
Unique

, ↓〉

Fig. 5. createUnique – application conditions force uniqueness of entity Unique.

5.2 Non-existence and Counting in Multisets

Non-atomic entities in bigraphs can be considered multisets, i.e. they hold an
arbitrary number of children including duplicates. An example bigraph used as
a (multi-)set is in Fig. 6a.

Checking an entity is in the set is simple: we match on the entity of interest
and use a site to allow other children (including the empty child) to be present,
i.e. the rule Fig. 6b would apply to Fig. 6a. However, matching on the non-
existence of a child is difficult. To ensure the entity of interest cannot not appear
in a site, we must specify rules for every possible combination of other entities
in the set, e.g. Fig. 6c. In this case the rule does not apply to Fig. 6a as the circle
entity is present. It is often not practical to specify rules for all permutations of
additional entities in the set as the number of rules increases factorially.
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(a) Example Bigraph

R�

(b) ∃circle - Other entities allowed

R�

(c) �circle - No site allowed

R� if 〈−, , ↓〉

(d) �circle - Other entities allowed

Fig. 6. Using negative application conditions for non-existence in multisets.

As shown in Fig. 6d, negative application conditions for the parameters allows
sites to be used in non-existence checks by allowing anything in the parameter
except the entity of interest – a concise and natural way of specifying the rule.

A similar issue of sites hiding too much information occurs when counting.
For example, if we wish to match at most one T then without negative conditions
we must enumerate all possible sets with a single T. With negative conditions,
we can specify that a site exists but that the site does not contain more than
one T.

5.3 Encoding Control Flow

Models often need to encode some control flow, for example, to implement turn-
based control. Often this is achieved through the use of tagging, counters, and
prioritised rules, e.g. [16], that determine when the algorithms should change
state.

Application conditions can make it easier to encode elements of control with-
out requiring counting, tagging, or priorities. Consider the system in Fig. 7 that
uses turn-based control where entities, shown as circles, representing autonomous
agents, cycle between a Move phase and a Act phase, with the current phase
determined by a Controller. Each agent keeps track of its local state, i.e. what
the last action it performed was.

The move and act rules (Figs. 7b and 7e) show example actions the agents
can take. While the act shown only changes internal state (represented by the
fill color) to say an action has been performed, in practice this would perform
some meaningful step. Applications conditions on the rules ensure that agents
only perform valid actions for the given controller state. It is possible to write a
similar rule without application conditions by matching on Move in a separate
region, however this does not allow the agents to be nested under a controller
and obscures the meaning of the rule.
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Rules switch1 and switch2 (Figs. 7c and 7d) toggle the controller state
only once all agent has taken the appropriate action, i.e. it encodes fix-point
behaviour. As the rules simply check for the non-existence of agents waiting to
take an action, they work for any number of agents without needing to explicitly
encode counting. Likewise, there is no need to introduce priorities to the rules
as the conditions guard them from firing at the wrong time.

Move

Controller

Place

Place

(a) Example Configuration

� if 〈+, Act , ↑〉

(b) act

Move

Controller

MoveAct

ControllerController

� if 〈−, , ↑〉

(c) switch1

MoveAct

ControllerController

Move

Controller

� if 〈−, , ↑〉

(d) switch2
Place Place Place Place

� if 〈+, Move , ↑〉

(e) move

Fig. 7. Encoding turn-based control. (Color figure online)

6 Discussion and Limitations

The key advantage of the presented approach is that application conditions are
defined solely in terms of the existing rewriting theory for bigraphs – allowing
theory/tool reuse.

However, this approach does not capture all the application conditions we
might wish to specify in practice. In this section we highlight the limitations of
the current approach and discuss how, by moving away from standard bigraph
theory, i.e. changing the semantics of matching, or utilising spatial logics, we
can express a wider range of application conditions.

6.1 Matching on Names

Commonly, application conditions in GTS make use of graph edges to access
the context for a particular node, i.e. the existence of a link identifies an entity
of interest in the context. In bigraphs such an approach is not possible as link
names cannot be used as identifiers.
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For example, consider the reaction rule and application condition in Fig. 8.
The intention of the rule is to state that an (empty) circle can be transformed
into a red circle when it is connected to a square on the x link. However, this
is not the interpretation because an open name in a reaction rule is not an
identifier, but, much like sites, it signifies that there may be additional entities
on the same link. As such, the x on the left-hand side and the x in the application
condition are not considered to be the same link (i.e. the second x is not bound
to the first x); we would get the same rewrite if we replaced, for example, the x
in the application condition with y.

x x

� if 〈+,
x

, ↑〉

Fig. 8. Names are not identifiers in bigraphs. (Color figure online)

This issue has been observed elsewhere, for example Benford et al. [4] extend
the matching semantics for bigraphs to “bigraph patterns” that allow matching
on specific identifiers.

Utilising this type of matching for application conditions would allow the
intended interpretation of Fig. 8, where x is scoped over both the left-hand side
and the application condition. No implementation of this matching currently
exists, and it remains unclear how this might affect other aspects of the bigraph
theory.

6.2 Matches Can Be Too Large

Although we have shown application conditions as defined are useful for practical
applications, care must be taken in their use. Currently an application condi-
tion allows its constraint to appear anywhere in the context/parameter. This
is sometimes too strong. Consider our first example of avoiding duplicate links
(Fig. 1). If the target bigraph contains an L-L link within A, as shown in Fig. 9,
then the rule does not apply, even though there is no duplicate link between A
and B.

Practically such cases are often not an issue as, for example, the createLink
rule only ever creates links between an A and B – disallowing internal A–A links
from ever being created. If internal links are needed, then a different entity type
could be used to distinguish between external and internal links. Finally, a sorting
scheme [15, Chapter 6] could be used to disallow invalid contexts/parameters
from existing, however there is currently no automated tool support for checking
a sorting scheme is satisfied.



Conditional Bigraphs 15

A

B

A B

C

A B

L

A B

C′

p

Fig. 9. Matches occur anywhere in the parameter, not only in specific regions. Decom-
position shows further decomposition d = C′ ◦ p for application condition constraint p
(Fig. 1b) for rule createLink.

0 1

A
B A

B

� if 〈−,
0 1

, ↓〉

Fig. 10. Explicit parameter placement

6.3 Matching Specific Places

Another possible solution to the internal link issue above is to extend matching
to allow application conditions to specify where in the context/parameter a
particular entity should be found. For example, in Fig. 10, we add explicit indices
to the sites allowing us to specify how the application condition should compose
with the match – in this case, that the two L ends are in distinct sites. Matching
routines that can check for the explicit placement of entities are not currently
available, and as with name linking it remains unclear what affect this might
have on the rest of the bigraph theory. As it would only be used for application
condition matching it could potentially be defined as a special case matching
routine. It is particularly unclear how to perform such matches if sharing is
allowed e.g. as shares can merge regions in the parameter.

Explicit placement is also possible for conditions in the context, this time
allowing us to specify that a particular region in the match occurs as a descendent
of a site in the context. Figure 11 is an example of this where entity C must be
a – not-necessarily direct – descendant of D in the condition.

C

0

R� if 〈+, 0

D

, ↑〉

Fig. 11. Explicit context placement
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6.4 Handling Overlaps

A conditional rule only applies if the conjunction of all application conditions is
true, e.g. all matches are present. As each application condition is checked inde-
pendently, the same entity can be used in multiple matches i.e. we allow overlaps
between application conditions. For example, consider the rule in Fig. 12. The
intended behaviour is to check there are two distinct square entities in the con-
text – regardless of how many other entities e.g. the diamond, are in the nesting –
however as we allow overlaps this matches even in the case a single square entity
is in the context.

(a) Example Bigraph

R� if 〈−, , ↑〉, 〈−, , ↑〉
(b) Reaction rule with overlapping condition

Fig. 12. Rule applies to both circle entities as overlaps are allowed

A solution for this in GTS is to use nested conditions [12] that allow further
checks to be made on the context of the constraint within in the application
condition.

We can define a form of nested application conditions for bigraphs by allowing
further decomposition within the application condition match. That is, we first
find a suitable context (parameter) and then decompose the context (param-
eter) into a new context/parameter and check nested conditions on these new
context/parameter.

As it only requires additional decompositions, such an approach is possible
within the existing bigraph matching framework. However, it requires matches
to apply in a specific order e.g. closest match first, to ensure we know if the
nested condition should be in the parameter or context. For example, in Fig. 12
if we first match on the outermost square then the next condition appears in
the parameter. But, if we first match on the innermost square then the next
condition is in the context.

6.5 Related Work

Sorting Schemes. It is possible to give a sorting scheme to bigraphs [15,
Chapter 6] that determines when a bigraph is well formed, e.g. that a Room
cannot be within a Person – much like a type graph for GTS. Sorting schemes
compliment application conditions. The sorting scheme defines what can be in
the context/parameter, while application conditions determine what is in the
current context/parameter. While there is an existing theory for sorts, there is
currently no tool support available.
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Conditional Transformation Systems. Conditional rewriting is often found
in rewriting logic [14] where rules take the form r → l if u1 ∧ u2 ∧ . . . . Unlike
application conditions, rewriting logic allows the terms in u1 to be reduced over
a set of equations.

Application conditions are also a common feature in GTS [10, Chapter 7] and
are present in most graph rewriting frameworks. Intuitively, a GTS application
condition is defined as the existence/non-existence of a match (graph morphism)
between a non-local pattern and the current graph.

More general treatments of (nested) application conditions considers them at
the level of adhesive categories [5,12]. Such categories are are closely linked with
the DPO rewriting approach. The relationship between bigraphs and cospan
categories/DPO rewriting has previously been explored [9], and such an input-
linear variant of bigraphs5, such as that of Sobociński [21], could fit such a
framework.

Spatial Logics. Another approach to application conditions for bigraphs was
explored by Tsigkanos et al. [22]. Here application conditions are specified using
a spatial logic for closure spaces [7], of which graphs are an instance. The logic
requires flattening the bigraph to a graph – losing the distinction between spatial
and non-spatial links – but provides features such as matching links by name
and specifying reachability constraints, e.g. a PC connects to a Printer through
some path.

A more general spatial logic for bigraphs is BiLog [8], which could also imple-
ment application conditions while maintaining the orthogonality between space
and linking. However, there is a lack of tool support and the decidability of the
logic remains an open question.

Importantly, both logics require the user to specify constraints in a language
separate to that of bigraphs, while our approach maintains the diagrammatic
approach by having conditions as bigraphs.

7 Conclusion

Reactive modelling formalisms, such as bigraphical reactive systems, should
make it as easy as possible to express how a system evolves over time. Whether
or not a reaction rule is applicable often depends not only on a local match,
but also on the surrounding context. Application conditions allow non-local rea-
soning to be added to reaction rules allowing the context to be interrogated to
check the existence/non-existence of constraints.

We have extended the theory of bigraphical reactive systems with condi-
tional reaction rules that allow application conditions to be specified. Unlike
graph transformation systems that feature a single context, bigraphs have both
a context (above the match) and a parameter (below the match). We show how
these contexts can be further decomposed as additional instances of the bigraph
matching problem, enabling the existing matching framework to be used to check

5 Standard bigraphs are output-linear.
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application conditions. To show this is useful in practice we implement condi-
tional rules in BigraphER [19].

Unfortunately, such rules do not let us express all conditions of interest. For
example we cannot track a name from the match into the context, or specify
the exact location of entities e.g. do not apply a rule if entity A is a grandpar-
ent. Specifying these types of property require extensions to how bigraphs are
matched, and potentially the use of spatial logics to provide exact specification
of spatial constraints.

This paper paves the way for future work on application conditions for
bigraphs, and, more generally, improvements to the matching algorithm that
allow more expressive constraints to be described.

Acknowlegements. This work was supported EPSRC grant S4: Science of
Sensor Systems Software (EP/N007565/1), and PETRAS SRF grant MAGIC
(EP/S035362/1).
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Abstract. The transformation of graphs and graph-like structures is
ubiquitous in computer science. When a system is described by graph-
transformation rules, it is often desirable that the rules are both ter-
minating and confluent so that rule applications in an arbitrary order
produce unique resulting graphs. However, there are application scenar-
ios where the rules are not globally confluent but confluent on a subclass
of graphs that are of interest. In other words, non-resolvable conflicts can
only occur on graphs that are considered as “garbage”. In this paper, we
introduce the notion of confluence up to garbage and generalise Plump’s
critical pair lemma for double-pushout graph transformation, provid-
ing a sufficient condition for confluence up to garbage by non-garbage
critical pair analysis. We apply our results to language recognition by
backtracking-free graph reduction, showing how to establish that a graph
language can be decided by a system which is confluent up to garbage.
We present two case studies with backtracking-free graph reduction sys-
tems which recognise a class of flow diagrams and a class of labelled
series-parallel graphs, respectively. Both systems are non-confluent but
confluent up to garbage.

Keywords: Graph transformation · Confluence · Graph languages ·
Decision procedures

1 Introduction

Rule-based graph transformation and graph grammars date back to the late
1960s. The best developed theoretical framework is the so-called double-pushout
(DPO) approach to graph transformation [10,12]. When specifying systems in
computer science by DPO graph transformation rules, it is often desirable that
the rules are both terminating and confluent so that rule applications in an
arbitrary order produce unique resulting graphs. However, there are application
scenarios where the rules are not confluent but confluent on a subclass of graphs
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that are of interest. In other words, non-resolvable conflicts can only occur on
graphs that are considered as “garbage”.

In this paper, we introduce the notions of (local) confluence up to garbage
and termination up to garbage in graph transformation. We generalise Plump’s
Critical Pair Lemma [26,28] and Newmann’s Lemma [25] and thereby allow
to check confluence up to garbage via non-garbage critical pair analysis. We
apply our results to language recognition by backtracking-free graph reduction,
showing how to establish that a graph language can be decided by a system which
is confluent up to garbage. We present two case studies with backtracking-free
graph reduction systems which recognise a class of flow diagrams and a class
of labelled series-parallel graphs, respectively. Both systems are non-confluent
but confluent up to garbage. Parts of this paper are based on Chapter 4 of an
unpublished report [6], in turn developed from Campbell’s BSc Thesis [5].

2 Preliminaries

We review some terminology for binary relations, the DPO approach to graph
transformation, graph languages, and confluence checking.

2.1 Abstract Reduction Systems

An abstract reduction system (ARS) is a pair (A,→) where A is a set and → a
binary relation on A. We say that:

1. y is a successor to x if x
+−→ y, and a direct successor if x → y;

2. x and y are joinable if there is a z such that x
∗−→ z

∗←− y. We write x ↓ y;
3. → is confluent if y1

∗←− x
∗−→ y2 implies y1 ↓ y2;

4. → is locally confluent if y1 ← x → y2 implies y1 ↓ y2;
5. → is terminating if there is no infinite sequence x0 → x1 → . . ..

The principle of Noetherian induction is:

∀x ∈ A, (∀y ∈ A, x
+−→ y ⇒ P (y)) ⇒ P (x)

∀x ∈ A,P (x)

Theorem 1 (Noetherian Induction [1]). Given an ARS (A,→), the prin-
ciple of Noetherian induction holds if and only if → is terminating.

Theorem 2 (Newman’s Lemma [25]). A terminating relation is confluent if
and only if it is locally confluent.

2.2 Labelled Graphs and Morphisms

We will be working with directed labelled graphs [15]. An alphabet is a pair
Σ = (ΣV , ΣE) of finite sets of node and edge labels from which a graph can be
labelled. A graph (over Σ) is a tuple G = (V,E, s, t, l,m) where V is a finite set
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of nodes, E is a finite set of edges, s : E → V is the source function, t : E → V is
the target function, l : V → ΣV is the node labelling function, and m : E → ΣE

is the edge labelling function. We may write the components as VG, EG, sG, etc.
A graph morphism g : G → H is a pair g = (gV , gE) of functions gV : VG →

VH and gE : EG → EH such that gV ◦sG = sH ◦gE , gV ◦tG = tH ◦gE , lG = lH ◦gV

and mG = mH ◦ gE . We say g is injective (surjective, bijective) if both functions
gV and gE are. A graph H is a subgraph of G, denoted by H ⊆ G, if there exists
an inclusion morphism i : H → G with i(x) = x for all items x.

It is well known that graphs and morphisms over Σ form a category. Graph
morphisms are bijective if and only if they are isomorphisms in the categorical
sense. Given a graph G, we write [G] for the isomorphism class of G and call [G]
an abstract graph. We denote by G(Σ) the set of all abstract graphs over Σ.

2.3 Double-Pushout Graph Transformation

A rule is a pair of inclusions r = 〈L ← K → R〉, where L is the left-hand
side (LHS), K the interface, and R the right-hand side (RHS). A match of r
in a graph G is an injective morphism L → G. An application of rule r to G
with match g : L → G requires to construct two pushouts as in Fig. 1. We write
G ⇒r,g H for this application and call the diagram in Fig. 1 a direct derivation.

L K R

G D H

g d h

Fig. 1. A direct derivation

Given r and the match g : L → G, the direct derivation of Fig. 1 exists if
and only if the dangling condition is satisfied: nodes in g(L − K) must not be
incident to edges in G − g(L). In this case the graphs D and H are determined
uniquely up to isomorphism [10]. We call the injective morphism h the comatch
of the rule application.

Given a set of rules R, we write G ⇒R H if H is obtained from G by applying
any of the rules from R. We write G ⇒+

R H if H is obtained from G by one or
more rule applications, and G ⇒∗

R H if G ∼= H or G ⇒+
R H.

By pushout properties, the relation ⇒R can be lifted to abstract graphs.
Hence we have an ARS (G(Σ),⇒R). This view gives us the definition of (local)
confluence and termination for graph transformation systems.

2.4 Graph Languages

A graph language is simply a set of graphs, in the same way that a string language
is a set of strings. Just like we can define string languages using string grammars,
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we can define graph languages using graph grammars, where we rewrite some
start graph using a set of graph transformation rules. Derived graphs are then
defined to be in the language exactly when they are terminally labelled.

Given a graph transformation system T = (Σ,R), a subalphabet of non-
terminals N , and a start graph S over Σ, then a graph grammar is a tuple
G = (Σ,N ,R, S). We say that a graph G is terminally labelled if l(V ) ∩ NV = ∅
and m(E) ∩ NE = ∅. Thus, we can define the graph language generated by G:

L(G) = {[G] | S ⇒∗
R G,G terminally labelled}.

Given G = (Σ,N ,R, S), we have G ⇒r H if and only if H ⇒r−1 G, for some
r ∈ R, by using the comatch. Moreover, [G] ∈ L(G) if and only if G ⇒∗

R−1 S and
G is terminally labelled. So we have a non-deterministic membership checking.

2.5 Confluence Checking

In 1970, Knuth and Bendix showed that confluence checking of terminating term
rewriting systems is decidable [18]. Moreover, it suffices to compute all critical
pairs and check their joinability [1,17]. Unfortunately, for (terminating) graph
transformation systems, confluence is not decidable in general, and joinability
of critical pairs does not imply local confluence. In 1993, Plump showed that
strong joinability of all critical pairs is sufficient but not necessary to show local
confluence [26,28].

The derivations H1 ⇐r1,g1 G ⇒r2,g2 H2 are parallelly independent if (g1(L1)∩
g2(L2)) ⊆ (g1(K1) ∩ g2(K2)). We say two parallelly independent derivations are
a critical pair if additionally G = g1(L1) ∪ g2(L2), and if r1 = r2 then g1 �= g2.
Every graph transformation system has only finitely many critical pairs.

Let G ⇒ H be a direct derivation. Then the track morphism is defined to be
the partial morphism trG⇒H = in ′ ◦ in−1, where in and in ′ are the bottom left
and right morphisms in Fig. 1, respectively. We define trG⇒∗H inductively as the
composition of track morphisms. The set of persistent nodes of a critical pair
Φ : H1 ⇐ G ⇒ H2 is PersistΦ = {v ∈ GV | trG⇒H1({v}), trG⇒H2({v}) �= ∅}.
That is, those nodes that are not deleted by the application of either rule.

A critical pair Φ : H1 ⇐ G ⇒ H2 is strongly joinable if it is joinable without
deleting any of the persistent nodes, and the persistent nodes are identified when
joining. That is, there exists a graph M and derivations H1 ⇒∗

R M ⇐∗
R H2 such

that ∀v ∈ PersistΦ, trG⇒H1⇒∗M ({v}) = trG⇒H2⇒∗M ({v}) �= ∅.

Theorem 3 (Critical Pair Lemma [26,28]). A graph transformation system
T is locally confluent if all its critical pairs are strongly joinable.

The original proof of the Critical Pair Lemma needs the Commutativity,
Clipping and Embedding Theorems, and some auxiliary definitions. We will need
these intermediate results when we come to prove our generalised version.

Theorem 4 (Commutativity [11]). If H1 ⇐r1,g1 G ⇒r2,g2 H2 are parallelly
independent, then there is a graph G′ and derivations H1 ⇒r2 G′ ⇐r1 H2.
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Let the derivation Δ : G0 ⇒∗ Gn be given by pushouts (1), (1′), . . . , (n), (n′)
and suppose there are pushouts (1), (1′), . . . , (n), (n′) whose vertical morphisms
are injective (Fig. 2). Then, the derivation Δ′ : G′

0 ⇒∗ G′
n consisting of the

composed pushouts (1 + 1), . . . , (n′ + n′) is an instance of Δ based on the mor-
phism G0 → G′

0. Moreover, we define the subgraph UseΔ to be all items x
such that there is some i ≥ 0 with G0 ⇒∗ Gi(x) ∈ Match(Gi ⇒ Gi+1) where
Match(Gi ⇒ Gi+1) is the image of the associated rule’s left hand side graph
under the match L → Gi.

L1 K1 R1 L2 K2 R2

(1) (2) (3) (4)

G0 D1 G1 D2 G2 · · ·

(1′) (2′) (3′) (4′)

G′
0 D′

1 G′
1 D′

2 G′
2

Fig. 2. Derivation instances

Theorem 5 (Clipping [27]). Given a derivation Δ′ : G′ ⇒∗ H ′ and an injec-
tive morphism h : G → G′ such that Use Δ′ ⊆ h(G), there exists a derivation
Δ : G ⇒∗ H such that Δ′ is an instance of Δ based on h.

Given a derivation Δ : G ⇒∗ H the subgraph of G, PersistΔ, consists of all
items x such that trG⇒∗H(x) is defined.

Theorem 6 (Embedding [27]). Let Δ : G ⇒∗ H be a derivation, h : G → G′

an injective graph morphism, BΔ be the discrete subgraph of G consisting of all
nodes x such that h(x) is incident to an edge in G′ \ h(G). If BΔ ⊆ PersistΔ,
then there exists a derivation Δ′ : G′ ⇒∗ H ′ such that Δ′ is an instance of Δ
based on h. Moreover, there exists a pushout of t : BΔ → H along h′ : BΔ → CΔ

where CΔ = (G′ \ h(G)) ∪ h(BΔ) and t is the restriction of trG⇒∗H to BΔ.

3 Closedness and Confluence up to Garbage

In this section, we introduce (local) confluence and termination up to garbage,
and closedness. We show that if we have closedness and termination up to
garbage, then local confluence up to garbage implies confluence up to garbage:
the Generalised Newmann’s lemma. Moreover, we recap that closedness is unde-
cidable in general, in the context of DPO graph transformation.
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3.1 Closedness and Garbage

Definition 1. Let T = (Σ,R) be a GT system, and D ⊆ G(Σ) be a set of
abstract graphs. Then, a graph G is called garbage if [G] �∈ D and D is closed
under T if for all G, H such that G ⇒R H, if [G] ∈ D then [H] ∈ D.

The idea is that a set of abstract graphs D represents the good input, and the
garbage is the graphs that are not in this set. D need not be explicitly generated
by a graph grammar. For example, it could be defined by some (monadic second-
order [8]) logical formula.

Example 1. Consider the reduction rules in Fig. 3. The language of acyclic graphs
is closed under the GT system (({�}, {�}), {r1}), and the language of trees
(forests) and its complement are both closed under (({�}, {�}), {r2}).

r1: ← →
1 2 1 2 1 2

r2: ← →
1 1 1

Fig. 3. Example reduction rules

Definition 2 (Closedness Problem).

Input: A GT system T = (Σ,R) and a graph grammar G over Σ.
Question: Is L(G) closed under T?

It turns out that closedness is undecidable in general, even if we restrict
ourselves to recursive languages and terminating GT systems. In 1998, Fradet
and Le Métayer showed the following result:

Theorem 7 (Undecidable Closedness [14]). The closedness problem is
undecidable in general, even for terminating GT systems T with only one rule,
and G an edge replacement grammar.

3.2 Confluence up to Garbage

We can now define (local) confluence and termination up to garbage, allowing
us to say that, ignoring the garbage graphs, a system is (locally) confluent.

Definition 3. Let T = (Σ,R), D ⊆ G(Σ). Then:

1. if for all graphs G, H1, H2, such that [G] ∈ D, H1 ⇐R G ⇒R H2 implies
that H1, H2 are joinable, then T is locally confluent (up to garbage) on D;

2. if for all graphs G, H1, H2, such that [G] ∈ D, H1 ⇐∗
R G ⇒∗

R H2 implies
that H1, H2 are joinable, then T is confluent (up to garbage) on D;
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3. if there is no infinite derivation sequence G0 ⇒R G1 ⇒R G2 ⇒R · · · such
that [G0] ∈ D, then T is terminating (up to garbage) on D.

The following is an immediate consequence of set inclusion:

Proposition 1. Let T = (Σ,R), D ⊆ G(Σ), E ⊆ D. Then (local) confluence
on D implies (local) confluence on E, and similarly for termination.

Example 2. Looking again at r1 and r2 from our first example, it is easy to see
that r1 is terminating and confluent up to garbage on the language of acyclic
graphs, but is not confluent on all graphs. Similarly, r2 is terminating and con-
fluent up to garbage on the language of trees.

Example 3. Consider the rules in Fig. 4. Clearly they are terminating, since they
are size reducing. Moreover, the language of all linked lists with edge labels a
or b and its complement are closed under the rules. The rules are not locally
confluent. To see this, consider the 3-cycle with edges labelled with a, a, b. It is
possible for the cycle to be reduced to either the 2-cycle with edges a and a or
the 2-cycle with edge a and b. Neither of these cycles can be reduced further, and
so we have a counter example to confluence. These rules are locally confluent on
linked lists. Moreover, an input graph G is a linked list if and only if it can be
reduced using these rules to a length one linked list.

ri: ← → ∀x, y ∈ {a, b}
1 2 1 2 1 2

x y a

Fig. 4. List reduction rules

Theorem 8 (Generalised Newman’s Lemma). Let T = (Σ,R), D ⊆
G(Σ). If T is terminating on D and D is closed under T , then T is confluent on
D if and only if it is locally confluent on D.

Proof. This can be seen by Noetherian Induction (Fig. 5), due to the fact that
closedness ensures applicability of the induction hypothesis. ��
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Fig. 5. Induction step diagram

4 Generalised Critical Pair Lemma

In this section, we generalise Plump’s Critical Pair Lemma, providing a machine
checkable sufficient condition for local confluence up to garbage. For this, we
need to define a notion of subgraph closure and non-garbage critical pairs.

4.1 Subgraph Closure

In the proof of the traditional critical pair lemma for (hyper)graphs, the argu-
ment is that if a pair of derivations is not parallelly independent, then it must
be the case that a critical pair can be embedded within it. In our new setting,
the possible start graphs will be restricted, since some of the graphs will be
garbage. We are only interested in those critical pairs with start graphs that can
be embedded in non-garbage graphs. This is exactly the statement that the start
graph of the critical pair is in the subgraph closure of the non-garbage graphs.

Definition 4. Let D ⊆ G(Σ) be a set of abstract graphs. Then D is subgraph
closed if for all graphs G, H, such that H ⊆ G, if [G] ∈ D, then [H] ∈ D.
The subgraph closure of D, denoted ̂D, is the smallest set containing D that is
subgraph closed.

Proposition 2. Given D ⊆ G(Σ), ̂D always exists, and is unique. Moreover,
D = ̂D if and only if D is subgraph closed.

Proof. The key observations are that the subgraph relation is transitive, and
each graph has only finitely many subgraphs. Clearly, the smallest possible set
containing D is just the union of all subgraphs of the elements of D, up to
isomorphism. This is the unique subgraph closure of D. ��

̂D always exists, however it need not be decidable, even when D is! It is
not obvious what conditions on D ensure that ̂D is decidable. Interestingly, the
classes of regular and context-free string languages are actually closed under
substring closure [4].
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Example 4. ∅, G(Σ), and the language of discrete graphs are subgraph closed.

Example 5. The subgraph closure of the language of trees is the language of
forests. The subgraph closure of the language of connected graphs is the language
of all graphs.

4.2 Non-garbage Critical Pairs

We now define non-garbage critical pairs, which allow us to ignore certain pairs,
which if all are strongly joinable, will allow us to conclude local confluence up to
garbage, even in the presence of (local) non-confluence on all graphs.

Definition 5. Let T = (Σ,R), D ⊆ G(Σ). A critical pair H1 ⇐ G ⇒ H2 is
non-garbage if [G] ∈ ̂D.

Lemma 1. Given a GT system T = (Σ,R) and D ⊆ G(Σ), then there are only
finitely many non-garbage critical pairs up to isomorphism. Moreover, if ̂D is
decidable, then one can find them in finite time.

Proof. There are only finitely many critical pairs for T , up to isomorphism, and
there exists a terminating procedure for generating them. It then remains to
filter out the garbage pairs, which can always be done if ̂D is decidable. ��
Corollary 1. Let T = (Σ,R), D ⊆ G(Σ) be such that T is terminating on D
and ̂D is decidable. Then, one can decide if all the non-garbage critical pairs are
strongly joinable.

Proof. By Lemma 1, we can generate all the pairs, but then since T is terminating
on D, there are only finitely many successor graphs to be generated. We can then
test each for strong joinability in finite time. ��
Theorem 9 (Generalised Critical Pair Lemma). Let T = (Σ,R), D ⊆
G(Σ). If all its non-garbage critical pairs are strongly joinable, then T is locally
confluent on D.

Proof. Our proof is a generalisation of Plump’s original proof of the Critical
Pair Lemma for (hyper)graphs (Theorem 3) [26,28]. We need to show that every
pair of derivations H1 ⇐r1,g1 G ⇒r2,g2 H2 such that G is non-garbage can be
joined. There are two cases to consider. Firstly, if the derivations are parallelly
independent, then by Theorem4, the result is immediate. Otherwise, we must
consider the case that they are not parallelly independent.

By Theorem 5, we can factor out a pair T1 ⇐ S ⇒ T2. Since critical pairs are,
by construction, the overlaps of rule left hand sides, it must be the case that this
pair is actually a critical pair. Moreover, since [G] ∈ D, then [S] ∈ ̂D and so the
critical pair must be non-garbage, and must be strongly joinable to U . We can
now apply Theorem6 to T1 ⇒∗ U and T2 ⇒∗ U , separately, giving result graphs
M1 and M2 (applicability of the theorem is a consequence of strong joinability).
To see that M1 and M2 are isomorphic follows from elementary properties of
pushouts along monomorphisms [28] (Fig. 6). ��
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Fig. 6. Generalised critical pair lemma diagram

Corollary 2. Let T = (Σ,R), D ⊆ G(Σ). If T is terminating on D, D is closed
under T , and all T ’s non-garbage critical pairs are strongly joinable, then T is
confluent on D.

Proof. By the above theorem, T is locally confluent up to garbage, so by the
Generalised Newman’s Lemma (Theorem 8), T is confluent up to garbage. ��

Obviously, checking for local confluence up to garbage is undecidable in gen-
eral, even when ̂D is decidable and the system is terminating and closed. What
is remarkable though, is that local confluence up to garbage is actually undecid-
able in general for a terminating non-length-increasing string rewriting systems
and D a regular string language [7]!

4.3 Checking for Confluence up to Garbage

Given a GT system T and a language D (possibly specified by a grammar), the
process is to:

1. Establish (by means of direct proof) that T is terminating on D and D is
closed under T . If this is not true, one may want to restart with some language
containing D to try to establish closedness.

2. Generate the finitely many non-garbage critical pairs of T .
3. Check if each generated pair is (strongly) joinable.

If all the pairs are strongly joinable, then we have confluence up to garbage
due to Corollary 2. If all the pairs are joinable, but not all strongly, then we
cannot draw any conclusions, but one may be able to construct a counter example
to confluence by attaching context to nodes. Finally, if one of the pairs is not
joinable at all, then we have a direct counter example to confluence, and we can
conclude non-confluence up to garbage.

5 Language Recognition

In this section, we introduce a general notion of what it means to recognise a
language, and what it means to be a confluent decider. We then demonstrate the
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applicability of our earlier results by showing that there are confluent deciders
for Extended Flow Diagrams and Labelled Series-Parallel Graphs, even in the
absence of confluence. We thus have algorithms, specified by reduction rules,
that can check membership of these languages without needing to backtrack.

5.1 Confluent Recognition

One can think of graph transformation systems in terms of grammars that define
languages. If they are terminating, then membership testing is decidable, but
in general, non-deterministic in the sense that a deterministic algorithm must
backtrack if it produces a normal form not equal to the start graph, to determine
if another derivation sequence could have reached it. If the system is confluent
too, then the algorithm becomes deterministic.

In general, the requirement of confluence is too strong, and one only requires
confluence on the language we are recognising. Using the results from the last
section, it is often possible to prove local confluence up to garbage using the
Generalised Critical Pair Lemma, and then, in the presence of termination and
closure, use the Generalised Newman’s Lemma to show confluence up to garbage.
Closedness and language recognition has actually been considered before by
Bakewell, Plump, and Runciman, in the context of languages specified by reduc-
tion systems without non-terminals [3], but without the development of the
theory we have provided.

Before continuing, we must provide a formal definition of what it means to
recognise a language, and that grammars satisfy our definition by considering
their rules in reverse, abstracting away from grammars, with a more general
definition that accounts for the fact that reduction systems may need auxiliary
symbols, not in the input, in the same way grammars can use non-terminals.

Definition 6 (Language Recognition). Let T = (Σ,R) be a GT system,
I ⊆ Σ an input alphabet, and S a finite set of graphs over Σ. Then we say that
(T,S) recognises a language L over I if for all graphs G over I, [G] ∈ L if and
only if G ⇒∗

R S for some S ∈ S.

Theorem 10 (Membership Checking). Given a grammar G = (Σ,N ,R,
S), [G] ∈ L(G) if and only if G ⇒∗

R−1 S and G is terminally labelled. That is,
((Σ,R−1), {S}) recognises L(G) over Σ \ N .

Proof. The key is that rules and derivations are invertible, which means that if
S can be derived from G using the reverse rules, then G can be derived from
S using the original rules so is in the language. If S cannot be derived from G,
then G cannot be in the language since that would imply there was a derivation
sequence from S to G which we could invert to give a contradiction. ��

We are now ready to define confluent deciders, and show that such systems
can test for language membership without backtracking.
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Definition 7 (Confluent Decider). Let T = (Σ,R) be a GT system, I ⊆ Σ
an input alphabet, and S a finite set of graphs over Σ. Then we say that (T,S)
is a confluent decider for a language L over I if (T,S) recognises L over I, T is
terminating on G(I), and T is confluent on L.

Theorem 11 (Confluent Decider Correctness). Given a confluent decider
(T,S) for a language L over I ⊆ Σ and an input graph G over I, the following
algorithm is correct: Compute a normal form of G by deriving successor graphs
using T as long as possible. If the result graph is isomorphic to S, the input
graph is in the language. Otherwise, the graph is not in the language.

Proof. Suppose G is not in L. Then, since T is terminating on G(I) our algorithm
must be able to find a normal form of G, say H, and because T recognises L, it
must be the case that H is not isomorphic to S, and so the algorithm correctly
decides that G is not in L.

Now, suppose that G is in L. Then, because T is terminating, as before, we
must be able to derive some normal form, H. But then, since T is both confluent
on L and recognises L, it must be the case that H is isomorphic to S, and so
the algorithm correctly decides that G is in L. ��

What we really want is a version of Theorem 10 for instantiating confluent
deciders. We really want is a Since both termination and confluence testing is
undecidable in general, we cannot hope for an effective procedure, even for a
terminating system, however the theory we introduced in the previous sections
will help by automating local confluence checking. It just remains for us to choose
a suitable set D, and proceed in a similar way to as described in Subsect. 4.3.
For the remainder of this section, we will look at two examples that demonstrate
how we can use the Generalised Newman’s Lemma and Generalised Critical Pair
Lemma to show that we have a confluent decider for a language, given a grammar
that generates the language.

5.2 Extended Flow Diagrams

In 1976, Farrow, Kennedy and Zucconi presented semi-structured flow graphs,
defining a grammar with confluent reduction rules [13]. Plump has considered
a restricted version of this language: extended flow diagrams (EFDs) [28]. The
reduction rules for extended flow diagrams are a confluent decider for the EFDs,
despite not being confluent.

Definition 8. The language of extended flow diagrams is generated by EFD =
(Σ,N ,R, S) where ΣV = {•,�,♦}, ΣE = {t, f,�}, NV = NE = ∅, R =
{seq, while, ddec, dec1, dec2}, and S = (Fig. 7).

In the next figure, the shorthand notation with the numbers under the nodes
places such nodes in the interface graph of the rules. We assume that the interface
graphs are discrete (have no edges).
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Fig. 7. EFD grammar rules

Lemma 2. Every directed cycle in an EFD contains a t-labelled edge

Proof. By induction. ��
Theorem 12 (Confluent EFD Decider). Let T = (Σ,R−1). Then (T, {S})
is a confluent decider for L(EFD) over Σ.

Proof. By Theorem 10, T recognises L(EFD) over Σ, and one can see that it is
terminating since each rule is size reducing.

We now proceed by performing critical pair analysis on T . There are ten
critical pairs, all but one of which are strongly joinable apart from one (Fig. 8).
Now observe that Lemma 2 tells us that EFDs cannot contain such cycles. With
this knowledge, we define D to be all graphs such that directed cycles contain
at least one t-labelled edge. Clearly, D is subgraph closed, and then by our
Generalised Critical Pair Lemma (Theorem 9), we have that T is locally confluent
on D.

Next, it is easy to see that D is closed under T , so we can use Generalised
Newman’s Lemma (Theorem 8) to conclude confluence on D and thus, by Propo-
sition 1, T is confluent on L(EFD).

Thus, T is a confluent decider for L(EFD) over Σ, as required. ��

Fig. 8. Non-joinable EFD critical pair
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5.3 Series-Parallel Graphs

Series-parallel graphs were introduced by Duffin [9] as a model of electrical net-
works. A more general version of the class was introduced by Lawler [23] and
Monma and Sidney [24] as a model for scheduling problems.

Definition 9. Series-parallel graphs are inductively defined:

1. P is a series-parallel graph where s is the source and t the sink.
2. The class of series-parallel graphs is closed under parallel composition and

sequential composition.

where P = s t , parallel composition identifies the two sources and the two
sinks, and sequential composition identifies the sink of one with the source of
another.

Duffin showed that a graph is series-parallel if and only if it can be reduced
to P by a sequence of series and parallel reductions. We can rephrase this in
terms of a graph grammar.

Theorem 13 (SP Recognition [29]). The class of series-parallel graphs is
the language generated by grammar SP = (({�}, {�}), (∅, ∅), {s, p}, P ) (Fig. 9).

s: ← →
1 2 1 2 1 2

p: ← →
1 2 1 2 1 2

Fig. 9. Series-parallel grammar rules

By traditional critical pair analysis, one can establish that the reversed rules
are confluent, however, we run into a problem if we want to consider arbitrarily
labelled graphs. Consider the case where the edge alphabet is of size 2, rather
than size 1. The obvious modification to the rules is to use all combinations of
labels in LHS graphs (Fig. 10), however Hristakiev and Plump [16] observed that
when doing (the equivalent of) this in GP 2, we no longer have confluence. We
exhibit a counter example to confluence in Fig. 11.

si: ← → ∀x, y ∈ {a, b}
1 2 1 2 1 2

x y a

pi: ← → ∀x, y ∈ {a, b}
1 2 1 2 1 2

x

y

a

Fig. 10. Labelled series-parallel reduction rules

All is not lost, however, because we can use our new theory to show that, via
non-garbage critical pair analysis, the new system is confluence up to garbage,
and so we can show that we have a confluent decider. Moreover, our system for
two edge labels can be easily generalised for any finite edge alphabet.
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⇐ ⇒
b

a a a

b
a

a

⇐ ⇒
a

b b b

a
a

a

Fig. 11. Non-joinable labelled series-parallel pairs

Definition 10. The class of labelled series-parallel graphs (LSPs) is all series-
parallel graphs, but with arbitrary edge labels chosen from ΣE = {a, b}.

Theorem 14 (Confluent LSP Decider). Let Σ = ({�}, {a, b}), T = (Σ,

{si, pi | i ∈ I}) (where I indexes label choice), Pa = a and Pb = b . Then
(T, {Pa, Pb}) is a confluent decider for the labelled series-parallel graphs over Σ.

Proof. We denote by L the language of all labelled series-parallel graphs.
Our rules are structurally the same as the unlabelled rules, so because our

LHS graphs are arbitrarily labelled, language recognition of L over Σ follows
from Theorem 13. Termination follows from the fact that the combined metric of
graph size plus number of b-labelled edges strictly decreases with each derivation.

We now proceed by performing critical pair analysis on T . We find that
we have two non-isomorphic critical pairs that are not joinable (Fig. 11). These
pairs have a cyclic start graph, but the series-parallel graphs are acyclic, so we
can define D to be the language of acyclic graphs over Σ, thus classifying these
two pairs as garbage. The remaining critical pairs are strongly joinable, so by
Theorem 9, we have that T is locally confluent on D.

We find that all the non-garbage critical pairs are strongly joinable. We have,
up to isomorphism, two garbage critical pairs. These are not even joinable, which
give us a counter example to (local) confluence, but since all our non-garbage
pairs are strongly joinable, we can claim local confluence up to garbage.

Next, it is easy to see that D is closed under T , so we can use Theorem 8 to
conclude confluence on D and thus, by Proposition 1, T is confluent on L. ��

6 Conclusion and Future Work

In this paper we have introduced (local) confluence and termination up to
garbage for DPO graph transformation systems, and shown that Newmann’s
Lemma and Plump’s Critical Pair Lemma can be generalised, providing us with
machine checkable conditions for confluence up to garbage, using only critical
pairs. Of course, confluence up to garbage of terminating graph transformation
systems is undecidable in general, however, now we can detect more positive
cases of confluence up to garbage using non-garbage critical pair analysis, where
we previously would have been unable to draw a conclusion due to non-strong
joinability of some critical pairs.
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In particular, our results can be directly applied to recognition of languages,
which we have demonstrated with extended flow diagrams and labelled series-
parallel graphs. We have backtracking-free algorithms that apply reduction rules
as long as possible, with correctness established via non-garbage critical pair
analysis. We also anticipate there to be other applications, since there are many
other reasons one would want to show confluence up to garbage, such as consider-
ing GT systems as computing functions where we restrict [15]. Indeed, one might
only be interested in the non-garbage critical pairs themselves, and classification
of conflicts [20,22].

Confluence analysis of GT systems (and related systems) still remains a gen-
erally under-explored area. One obvious piece of future work is to investigate the
connection to the work by Lambers, Ehrig and Orejas on essential critical pairs
[21] and the continued work by others including Born and Taentzer [20]. It is also
not obvious if there is a relation between confluence up to garbage and graphs
satisfying negative constraints [19]. Moreover, developing a stronger version of
the Generalised Critical Pair Lemma that allows for the detection of persistent
nodes that need not be identified in the joined graph would allow conclusions of
confluence up to garbage where it was previously not determined.

Future work also includes developing checkable sufficient conditions under
which one can decide if a graph is in the subgraph closure of a language. Finally,
applying our theory in a rooted context and to GP 2 is future work [2]. It is
likely that the theory will be applicable there, since program preconditions cor-
respond exactly to non-garbage input, and so it is only natural to be interested
in confluence up to garbage, rather than confluence. We would also expect there
to be analogues of our results for other kinds of rewriting systems such as string
and term rewriting.
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Abstract. Directed bigraphs are a meta-model which generalises Mil-
ner’s bigraphs by taking into account the request flow between controls
and names. A key problem about these bigraphs is that of bigraph embed-
ding, i.e., finding the embeddings of a bigraph inside a larger one. We
present an algorithm for computing embeddings of directed bigraphs,
via a reduction to a constraint satisfaction problem. We prove sound-
ness and completeness of this algorithm, and provide an implementation
in jLibBig, a general Java library for manipulating bigraphical reactive
systems, together with some experimental results.

1 Introduction

Bigraphical Reactive Systems (BRSs) are a family of graph-based formalisms
introduced as a meta-model for distributed, mobile systems [17,22,25]. In this
approach, system configurations are represented by bigraphs, graph-like data
structures capable of describing at once both the locations and the logical con-
nections of (possibly nested) components. The dynamics of a system is defined
by means of a set of graph rewriting rules, which can replace and change
components’ positions and connections. BRSs have been successfully applied
to the formalization of a wide spectrum of domain-specific models, including
context-aware systems, web-service orchestration languages [4,5,20,28]. BRSs
are appealing because they provide a range of general results and tools, which
can be readily instantiated with the specific model under scrutiny: libraries
for bigraph manipulation (e.g., DBtk [1] and jLibBig [23,24]), simulation tools
[10,19,21], graphical editors [9], model checkers [27], modular composition [26],
stochastic extensions [18], etc.

Along this line, [13,14] introduced directed bigraphs, a strict generalization of
Milner’s bigraphs where the link graph is directed (see Fig. 1). This variant is very
suited for reasoning about dependencies and request flows between components,
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Fig. 1. An example of directed bigraph and its place and link graphs [15].

such as those found in client-server or producer-consumer scenarios. In fact, they
have been used to design formal models of security protocols [12], molecular
biology [2], access control [15], container-based systems [5], etc.

A key notion at the core of these results and tools is that of bigraph embedding.
Informally, an embedding is a structure preserving map from a bigraph (called
guest) to another one (called host), akin a subgraph isomorphism. Finding such
embeddings is a difficult problem; in fact, the sole embedding of place graphs
has been proved to be NP-complete [3]. Several algorithms have been proposed
in literature for bigraphs with undirected links (see e.g. [7,11,23,29,30]), but
there is no embedding algorithm for the more general case of directed bigraphs,
yet.

In this work, we propose an algorithm for computing embedding of directed
bigraphs (which subsume traditional ones), laying the theoretical and technical
foundations for bringing directed bigraphs to tools like the ones listed above.

More precisely, in Sect. 2 we first introduce directed bigraphs and bigraphic
reactive systems, generalizing [5,13]. Then, the notion of directed bigraph embed-
ding is defined in Sect. 3. In Sect. 4 we present a reduction of the embedding prob-
lem for directed bigraphs to a constraint satisfaction problem (CSP) and show
that it provides a sound and complete algorithm for computing embeddings.
This reduction extends our previous (unpublished) work [23] on the embedding
problem for undirected bigraphs. We have implemented this algorithm as an
extension of jLibBig [24], a general Java library for BRSs; this implementation
and some experimental results are reported in Sect. 5. Finally, some conclusions
and directions for future work are drawn in Sect. 6.

2 Reactive Systems on Directed Bigraphs

In this section we introduce a conservative extension of the notions of directed
link graphs and bigraphs, and directed bigraphical reactive systems, originally
defined in [13,14].

2.1 Directed Bigraphs

Definition 1 (Polarized interface). A polarized interface X is a pair
(X−,X+), where X+ and X− are sets of names s.t. X− ∩X+ = ∅; the two sets
are called downward and upward interfaces respectively.

http://mads.uniud.it/downloads/libbig/
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Definition 2 (Polarized signature). A signature is a pair (K, ar), where K
is the set of controls, and ar : K → N × N is a map assigning to each control
its polarized arity, that is, a pair 〈n,m〉 where n,m are the numbers of positive
and negative ports of the control, respectively.

We define ar+, ar− : K → N as shorthand for the positive and negative ports
of controls: ar+ � π1 ◦ ar, ar− � π2 ◦ ar.

The main difference between this definition and that from [13] is that we
allow also for inward ports in controls, whereas in [13], like in [25], controls
have only outward ports. This turns up also in the definition of points and
handles. The addition of negative ports enables us to represent more faithfully
the dependencies between processes, entities and components, according to the
micro-services paradigm.

Definition 3 (Directed Link Graph). A directed link graph A : X → Y is a
quadruple A = (V,E, ctrl, link) where X,Y, V,E and ctrl are defined as before,
while the link map is defined as link : Pnt(A) → Lnk(A) where

Prt+(A) �
∑

v∈V

ar+(ctrl(v)) Prt−(A) �
∑

v∈V

ar−(ctrl(v))

Pnt(A) � X+ � Y − � Prt+(A) Lnk(A) � X− � Y + � E � Prt−(A)

with the following additional constraints:

∀x ∈ X−,∀y ∈ X+.link(y) = x ⇒ link−1(x) = {y} (1)

∀y ∈ Y +,∀x ∈ Y −.link(x) = y ⇒ link−1(y) = {x}. (2)

The elements of Pnt(A) are called the points of A; the elements of Lnk(A) are
called the handles of A.

The constraint (1) means that if there is an upward inner name connected to
a downward inner name, then nothing else can be connected to the latter; con-
straint (2) is similar, on the outer interface. Together, these requirements guaran-
tee that composition of link graphs (along the correct interfaces) is well defined.

Direct link graphs are graphically depicted similarly to ordinary link graphs,
with the difference that edges are represented as vertices of the graph and not
as hyper-arcs connecting points and names.

Directed bigraphs are composed by a directed link graph and a place graph.
Since the definition of place graph is the same as for pure bigraphs, we will omit
it and refer the interested reader to [25].

Definition 4 (Directed Bigraph). An interface I = 〈m,X〉 is composed by
a finite ordinal m, called the width, and by a directed interface X = (X−,X+).

Let I = 〈m,X〉 and O = 〈n, Y 〉 be two interfaces; a directed bigraph with
signature K from I to O is a tuple G = (V,E, ctrl, prnt, link) : I → O where

– I and O are the inner and outer interfaces;
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– V and E are the sets of nodes and edges;
– ctrl, prnt, link are the control, parent and link maps;

such that GL � (V,E, ctrl, link) : X → Y is a directed link graph and GP �
(V, ctrl, prnt) : m → n is a place graph, that is, the map prnt : m � V → n � V
is acyclic. The bigraph G is denoted also as 〈GP , GL〉.
Definition 5 (Composition and identities).

– The composition of two place graphs F : k → m and G : m → n, is defined
in the same way as pure bigraphs (i.e., suitable grafting of forests);

– If F : X → Y and G : Y → Z are two link graphs, their composition is
the link graph G ◦ F � (V,E, ctrl, link) : X → Z such that V = VF � VG,
E = EF � EG, ctrl = ctrlF � ctrlG, and link : Pnt(G ◦ F ) → Lnk(G ◦ F ) is
defined as follows:

Pnt(G ◦ F ) = X+ � Z− � Prt+(F ) � Prt+(G)

Lnk(G ◦ F ) = X− � Z+ � Prt−(F ) � Prt−(G) � E

link(p) �
{

prelink(p) if prelink(p) ∈ Lnk(G ◦ F )
link(prelink(p)) otherwise

where prelink : Pnt(G ◦ F ) � Y + � Y − → Lnk(G ◦ F ) � Y + is linkF � linkG.
The identity link graph at X is idX � (∅, ∅, ∅K, IdX−�X+) : X → X.

– If F : I → J and G : J → K are two bigraphs, their composite is

G ◦ F � 〈GP ◦ FP , GL ◦ FL〉 : I → K

and the identity bigraph at I = 〈m,X〉 is 〈idm, idX−�X+〉.
Definition 6 (Juxtaposition).

– For place graphs, the juxtaposition of two interfaces m0 and m1 is m0 + m1;
the unit is 0. If Fi = (Vi, ctrli, prnti) : mi → ni are disjoint place graphs
(with i = 0, 1), their juxtaposition is defined as for pure bigraphs;

– For link graphs, the juxtaposition of two (directed) link graph interfaces X0

and X1 is (X−
0 � X−

1 ,X+
0 � X+

1 ). If Fi = (Vi, Ei, ctrli, linki) : Xi → Yi are
two link graphs (with i = 0, 1), their juxtaposition is

F0 ⊗ F1 � (V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1) : X0 ⊗ X1 → Y0 ⊗ Y1

– For bigraphs, the juxtaposition of two interfaces Ii = 〈mi,Xi〉 (with i = 0, 1)
is 〈m0+m1, (X−

0 �X−
1 ,X+

0 �X+
1 )〉 (the unit is ε = 〈0, (∅, ∅)〉). If Fi : Ii → Ji

are two bigraphs (with i = 0, 1), their juxtaposition is

F0 ⊗ F1 � 〈FP
0 ⊗ FP

1 , FL
0 ⊗ FL

1 〉 : I0 ⊗ I1 → J0 ⊗ J1.
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Polarized interfaces and directed bigraphs over a given signature K form a
monoidal category DBig(K).

Milner’s pure bigraphs [25] correspond precisely to directed bigraphs with
positive interfaces only and over signatures with only positive ports. We observe
also that the introduction of negative ports is more important than adding direc-
tions to interfaces: directed bigraphs as per [13] can be obtained as a traced
category over the category of pure bigraphs, while we cannot properly represent
controls with negative ports using those with positive ports only.

2.2 Reactive Systems over Directed Bigraphs

In order to define reactive systems over bigraphs, we need to define how a para-
metric reaction rule (i.e., a pair of “redex-reactum” bigraphs) can be instan-
tiated. Essentially, in the application of the rule, the “sites” of the reactum
must be filled with the parameters appearing in the redex. This relation can be
expressed by specifying an instantiation map in the rule.

Definition 7 (Instantiation map). An instantiation map η::〈m,X〉 →
〈m′,X ′〉 is a pair η = (ηP , ηL) where

– ηP : m′ → m is a function which maps sites of the reactum to sites of the
redex; for each j ∈ m′, it determines that the j-th site of the reactum is filled
with the η(j)-th parameter of the redex.

– ηL :
(∑m′−1

i=0 X
)

→ X ′ is a wiring (i.e., a link graph without nodes nor
edges), which is responsible for mapping names of the redex to names of the
reactum. This can be described as a pair of functions ηL = (η+, η−) where
η+ :

(∑m′−1
i=0 X+

)
→ X ′+ and η− : X ′− → ∑m′−1

j=0 X−.

We can now define the dynamics of directed bigraphs, starting with the formal
definition of parametric reaction rules.

Definition 8 (Parametric reaction rule). A parametric reaction rule for
bigraphs is a triple of the form (R : I → J,R′ : I ′ → J, η :: I → I ′) where R is
the parametric redex, R′ the parametric reactum and η is an instantiation map.

We can now define the key notion of reactive systems over directed bigraphs,
which is a generalization of that in [14,25]. Let Ag(K) be the set of agents (i.e.,
bigraphs with no inner names nor sites) over a signature K.

Definition 9 (DBRS). A directed bigraphical reactive system DBG(K,R) is
defined by a signature K and a set R of rewriting rules.

A DBRS DBG(K,R) induces a rewriting relation �⊆ Ag(K) × Ag(K)
according to the following rule:

(RL, RR, η) ∈ R
A = C ◦ (RL ⊗ IdZ) ◦ ω ◦ (D0 ⊗ . . . ⊗ Dm−1)

A′ = C ◦ (RR ⊗ IdZ) ◦ ω′ ◦ (DηP (0) ⊗ . . . ⊗ DηP (m′−1))
A � A′
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where ω and ω′ are called wiring maps and are defined as follows:

ω :
m−1∑

i=0

Xi → X ⊕ Z ω′ :
m′−1∑

j=0

XηP (j) → X ′ ⊕ Z

ω+ :
m−1∑

i=0

X+
i → X+ � Z+ ω′+ :

m′−1∑

j=0

X+
ηP (j)

→ X ′+ � Z+

ω− : X− � Z− →
m−1∑

i=0

X−
i ω′− : X ′− � Z− →

m′−1∑

j=0

X−
ηP (j)

ω′+(j, x) �
{

η+(j, ω+(η(j), x)) if ω+(ηP (j), x) ∈ X+

ω+(ηP (j), x) if ω+(η(j), x) ∈ Z+

ω′−(x) � (j, y) for j ∈ ηP −1
(i) and (i, y) ∈ η−(x)

The difference with respect to the previous versions of BRS is that now
links can descend from the redex (and reactum) into the parameters, as it is
evident from the fact that redexes and reactums in rules may have generic inner
interfaces (I and I ′). This is very useful for representing a request flow which
goes “downwards”, e.g. connecting a port of a control in the redex to a port of
an inner component (think of, e.g., a linked library).

However, this poses some issues when the rules are not linear. If any of Di’s is
cancelled by the rewriting, the controls in it disappear as well, and we may be not
able to connect some name descending from RL or IdZ anymore. More formally,
this means that the map ω− can be defined only if for every x ∈ (X ′− � Z−)
there are j, y such that (ηP (j), y) = η−(x). We can have two cases:

1. for some x, there are no such j, y. This means that ω is not defined and hence
the rule cannot be applied.

2. for each x, there are one or more pairs (j, y) such that (ηP (j), y) = η−(x).
This means that for a given source agent decomposition, there can be several
ways to define ω−, each yielding a different application of the same rule.

Overall, the presence of downward names in parameters adds a new degree of
non-determinism to Directed BRSs, with respect to previous versions of BRSs.

3 Directed Bigraph Embeddings

As we have seen in the previous section, to execute or simulate a BRS it is
necessary to solve the bigraph matching problem, that is, finding the occurrences
of a redex R within a given bigraph A. More formally, this translates to finding
C,Z, ω and D = (D0 ⊗ . . . ⊗ Dm−1) such that A = C ◦ (R ⊗ IdZ) ◦ ω ◦ D. C and
D are called context and parameter, respectively.
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If we abstract from the decomposition of the agent A in context, redex and
parameter we can see how the matching problem is related to the subgraph
isomorphism problem. Therefore, in this section we define the notions of directed
bigraph embedding. The following definitions are taken from [16], modified to suit
the definition of directed bigraphs.

Directed Link Graph. Intuitively an embedding of link graphs is a structure
preserving map from one link graph (the guest) to another (the host). As one
would expect from a graph embedding, this map contains a pair of injections: one
for the nodes and one for the edges (i.e., a support translation). The remaining of
the embedding map specifies how names of the inner and outer interfaces should
be mapped into the host link graph. Outer names can be mapped to any link;
here injectivity is not required since a context can alias outer names. Dually,
inner names can be mapped to hyper-edges linking sets of points in the host link
graph and such that every point is contained in at most one of these sets.

Definition 10 (Directed link graph embedding). Let G : XG → YG and
H : XH → YH be two directed link graphs. A directed link graph embedding
φ : G ↪→ H is a map φ � φv � φe � φi � φo, assigning nodes, edges, inner and
outer names with the following constraints:

(L1) φv : VG � VH and φe : EG � EH are injective;
(L2) ctrlG = ctrlH ◦ φv;
(L3) φi : Y −

H � X+
H � P+

H ⇀ X+
G � Y −

G � P+
G defined as follows

φi(x) �
{

φi−
(x) if x ∈ Y −

H � P+
H

φi+(x) if x ∈ X+
H � P+

H

where
φi−

: Y −
H � P+

H ⇀ Y −
G � P+

G

φi+ : X+
H � P+

H ⇀ X+
G � P+

G

dom(φi+) ∩ dom(φi−
) = ∅

(L4) φo : X−
G � Y +

G ⇀ EH � X−
H � Y +

H � P−
H is a partial map s.t.:

φo(y) �
{

φo−
(y) if y ∈ X−

G

φo+
(y) if y ∈ Y +

G

where
φo−

: X−
G ⇀ EH � X−

H � P−
H

φo+
: Y +

G ⇀ EH � Y +
H � P−

H

(L5a) img(φe) ∩ img(φo) = ∅;
(L5b) ∀v ∈ VG,∀j ∈ ar(ctrl(v)) . φi((φv(v), j)) = ⊥;
(L6a) φp ◦ link−1

G |EG
= link−1

H ◦ φe;
(L6b) ∀v ∈ VG,∀i ∈ ar(ctrl(v)) . φp ◦ link−1

G ((v, i)) = link−1
H ◦ φport((v, i));

(L7) ∀p ∈ dom(φi) : linkH(p) = (φo � φe)(linkG ◦ φi(p)).

where φp � φi+ � φo− � φport and φport : PG � PH is φport(v, i) � (φv(v), i).

The first three conditions are on the single sub-maps of the embedding. Con-
ditions (L5a) and (L5b) ensures that no components (except for outer names)
are identified; condition (L6a) imposes that points connected by the image of
an edge are all covered. Finally, conditions (L2), (L6b) and (L7) ensure that the
guest structure is preserved i.e. node controls and point linkings are preserved.
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Place Graph. Like link graph embeddings, place graph embeddings are just a
structure preserving injective map from nodes along with suitable maps for the
inner and outer interfaces. In particular, a site is mapped to the set of sites and
nodes that are “put under it” and a root is mapped to the host root or node that
is “put over it” splitting the host place graphs in three parts: the guest image,
the context and the parameter (which are above and below the guest image).

Definition 11 (Place graph embedding [16, Def 7.5.4]). Let G : nG → mG

and H : nH → mH be two place graphs. A place graph embedding φ : G ↪→ H is
a map φ � φv � φs � φr (assigning nodes, sites and roots respectively) such that:

(P1) φv : VG � VH is injective;
(P2) φs : nG � ℘(nH � VH) is fully injective;
(P3) φr : mG → VH � mH in an arbitrary map;
(P4) img(φv) ∩ img(φr) = ∅ and img(φv) ∩ ⋃

img(φs) = ∅;
(P5) ∀r ∈ mG : ∀s ∈ nG : prnt∗H ◦ φr(r) ∩ φs(s) = ∅;
(P6) φc ◦ prnt−1

G

∣∣
VG

= prnt−1
H ◦ φv;

(P7) ctrlG = ctrlH ◦ φv;
(P8) ∀c ∈ nG � VG : ∀c′ ∈ φc(c) : (φf ◦ prntG)(c) = prntH(c′);

where prnt∗H(c) =
⋃

i<ω prnti(c), φf � φv � φr, and φc � φv � φs.

These conditions follow the structure of Definition 10, the main difference is
(P5) which states that the image of a root cannot be the descendant of the image
of another. Conditions (P1), (P2) and (P3) are on the three sub-maps composing
the embedding; (P4) and (P5) ensure that no components are identified; (P6)
imposes surjectivity on children and the last two conditions require the guest
structure to be preserved by the embedding.

Directed Bigraph. Finally, a directed bigraph embedding can be defined as a pair
composed by an directed link graph embedding and a place graph embedding,
with a consistent interplay of these two structures. The interplay is captured by
two additional conditions ensuring that points (resp. handles) in the image of
guest upward (resp. downward) inner names reside in some parameter defined
by the place graph embedding (i.e. descends from the image of a site).

Definition 12 (Directed bigraph embedding). Let G : 〈nG,XG〉 →
〈mG, YG〉 and H : 〈nH ,XH〉 → 〈mH , YH〉 be two directed bigraphs. A directed
bigraph embedding is a map φ : G ↪→ H given by a place graph embedding
φP : GP ↪→ HP and a link graph embedding φL : GL ↪→ HL subject to the
following constraints:

(B1) dom(φi+) ⊆ X+
H � {(v, i)∈P+

H | ∃s ∈ nG, k ∈ N : prntkH(v) ∈ φs(s)};
(B2) img(φo−

) ⊆ X−
H � {(v, i)∈P−

H | ∃s ∈ nG, k ∈ N : prntkH(v) ∈ φs(s)}.
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4 Implementing the Embedding Problem in CSP

In this Section we present a constraint satisfaction problem that models the
directed bigraph embedding problem. The encoding is based solely on integer
linear constraints and is proven to be sound and complete.

Initially, we present the encoding for the directed link graph embedding prob-
lem and for the place graph embedding problem. Then we combine them pro-
viding some additional “gluing constraints” to ensure the consistency of the two
sub-problems. The resulting encoding contains 37 constraint families (reflecting
the complexity of the problem definition, see Sect. 3); hence we take advantage
of the orthogonality of link and place structures for the sake of both exposition
and adequacy proofs. We observe that the overall number of variables and con-
straints produced by the encoding is polynomially bounded with respect to the
size of the involved bigraphs, i.e., the number of nodes and edges.

4.1 Directed Link Graphs

Let us fix the guest and host bigraphs G : XG → YG and H : XH → YH . We
characterize the embeddings of G into H as the solutions of a suitable multi-flux
problem which we denote as DLGE[G,H]. The main idea is to see the host
points (i.e. positive ports, upward inner names and downward outer names) as
sources, and the handles (i.e. edges, negative ports, upward outer names and
downward inner names) as sinks (see Fig. 2). Each point outputs a flux unit
and each handle inputs one unit for each point it links. Units flow towards
each point handle following H edges and optionally taking a “detour” along the
linking structure of the guest G (provided that some conditions about structure
preservation are met). The formal definition of the flux problem is in Fig. 3.

The flux network reflects the linking structure and contains an edge connect-
ing each point to its handle; these edges have an integer capacity limited to 1 and

Network variables

Guest linking

Host points Host handles

Guest points Guest handles

Fig. 2. Schema of the multi-flux network encoding.
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Nh,h′ ∈ {0, . . . , |link−1
H (h′)|} h ∈ EG � Y +

G � X−
G � P −

G ,
h′ ∈ EH � Y +

H � X−
H � P −

H

(3)

Np,h′ ∈ {0, 1} h′ ∈ EH � Y +
H � X−

H � P −
H ,

p ∈ link−1
H (h′)

(4)

Np,p′ ∈ {0, 1} p′ ∈ X+
G � P+

G � Y −
G ,

p ∈ X+
H � P+

H � Y −
H

(5)

Fh,h′ ∈ {0, 1} h ∈ EG � Y +
G � X−

G � P −
G ,

h′ ∈ EH � Y +
H � X−

H � P −
H

(6)

∑

k

Np,k = 1 p ∈ X+
H � P+

H � Y −
H (7)

∑

k

Nk,h = |link−1
H (h)| h ∈ EH � Y +

H � X−
H � P −

H (8)

∑

k

Nh,k =
∑

p∈link−1
G

(h)

∑

k

Nk,p h ∈ EG � Y +
G � X−

G � P −
G (9)

∑

k

Nk,p ≤ 1 p ∈ X+
G � P+

G � Y −
G (10)

Np,p′ = 0 p′ ∈ P+
G , p ∈ X+

H � Y −
H (11)

Nh,h′

|link−1
H (h′)| ≤ Fh,h′ ≤ Nh,h′

h ∈ EG � Y +
G � X−

G � P −
G ,

h′ ∈ EH � Y +
H � X−

H � P −
H ,

link−1
G (h) �= ∅, link−1

H (h′) �= ∅

(12)

Np,p′ ≤ Fh,h′
h ∈ EG � Y +

G � X−
G � P −

G ,
h′ ∈ EH � Y +

H � X−
H � P −

H ,
p ∈ link−1

G (h), p′ ∈ link−1
H (h′)

(13)

Fh,h′ ≤
∑

p∈link−1
G

(h)

p′∈link−1
H

(h′)

Np,p′
h ∈ EG � Y +

G � X−
G � P −

G ,
h′ ∈ EH � Y +

H � X−
H � P −

H ,
link−1

G (h) �= ∅, link−1
H (h′) �= ∅

(14)

∑

k

Fh,k = 1 h ∈ EG � Y +
G � X−

G � P −
G (15)

Np,h′ + Fh,h′ ≤ 1
h ∈ EG, h′ ∈ EH � Y +

H � X−
H � P −

H ,
p ∈ link−1

H (h′)
(16)

Fh,h′ + Fh′′,h′ + Fh′′′,h′ + Fh′v,h′ ≤ 1
h ∈ EG, h′ ∈ Y +

H � X−
H � P −

H ,
h′′ ∈ Y +

G , h′′′ ∈ X−
G , h′v ∈ P −

G

(17)

Fh,h′ = 0 h ∈ EG, h′ ∈ Y +
H � X−

H � P −
H (18)

Fh,h′ ≤ 1 h ∈ EG � Y +
G � X−

G � P −
G , h′ ∈ EH (19)

Np,p′ = 0

v ∈ VG, v′ ∈ VH ,
ctrlG(v) = ctrlH(v) = c, i �= i′ ≤ c,
p = (v, i) ∈ P+

G � P −
G ,

p′ = (v′, i′) ∈ P+
H � P −

H

(20)

Np,p′ = 0

v ∈ VG, v′ ∈ VH ,
ctrlG(v) �= ctrlH(v)
p = (v, i) ∈ P+

G � P −
G ,

p′ = (v′, i′) ∈ P+
H � P −

H

(21)

∑

j≤c

N(v,j),(v′,j) = c · Np,p′

v ∈ VG, v′ ∈ VH ,
ctrlG(v) = ctrlH(v) = c, i ≤ c,
p = (v, i) ∈ P+

G � P −
G ,

p′ = (v′, i′) ∈ P+
H � P −

H

(22)

Np,p′ = 0 p ∈ P+
H , p′ ∈ X+

G � Y −
G (23)

Fig. 3. Constraints of DLGE[G,H].
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are represented by the variables defined in (4). The remaining edges of the net-
work are organised in two complete biparted graphs: one between guest and host
handles and one between guest and host points. Edges of the first sub-network
are described by the variables in (3) and their capacity is bounded by the number
of points linked by the host handle since this is the maximum acceptable flux
and corresponds to the case where each point passes through the same hyper-
edge of the guest link graph. Edges of the second sub-network are described by
the variables in (5) and, like the first group of links, have their capacity limited
to 1; to be precise, some of these variables will never assume a value different
from 0 because guest points can receive flux from anything but the host ports
(as expressed by constraint (11)). Edges for the link structure of the guest are
presented implicitly in the flux preservation constraints (see constraint (9)). In
order to fulfil the injectivity conditions of link embeddings, some additional flux
variables (whereas the previous are network variables) are defined by (6). These
are used to keep track and separate each flux on the bases of the points handle.

The constraint families (7) and (8) define the outgoing and ingoing flux of
host points and handles respectively. The former has to send exactly one unit
considering every edge they are involved with and the latter receive one unit for
each of their point regardless if this unit comes from the point directly or from
a handle of the guest.

The linking structure of the guest graph is encoded by the constraint family
(9) which states that flux is preserved while passing through the guest i.e. the
output of each handle has to match the overall input of the points it connects.

Constraints (10), (11), (20), (21), (22) and (23) shape the flux in the sub-
network linking guest and host points. Specifically, (10) requires that each point
from the guest receives at most one unit; this is needed when we want to be
able to embed a redex where some points (e.g. upward inner names) would not
match with an entity of the agent and (those points) would be deleted anyway
when composing the resulting agent back. Constraints (11), (20) and (21) disable
edges between guest ports and host inner names, between mismatching ports
of matching nodes and between ports of mismatching nodes. Constraint (23)
ensures that ascending inner names or descending outer names of the redex are
not matched with positive ports of the agent. Finally, the flux of ports of the
same node has to act compactly, as expressed by (22): if there is flux between
the i-th ports of two nodes, then there should be flux between every other ports.

Constraints (12), (13) and (14) relate flux and network variables ensuring
that the formers assume a true value if, and only, if there is actual flux between
the corresponding guest and host handles. In particular, (13) propagates the
information about the absence of flux between handles disabling the sub-network
linking handles points and, vice versa, (14) propagates the information in the
other way disabling flux between handles if there is no flux between their points.

The remaining constraints prevent fluxes from mixing. Constraint (15)
requires guest handles to send their output to exactly one destination thus ren-
dering the sub-network between handles a function assigning guest handles to
host handles. This mapping is subject to some additional conditions when edges
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are involved: (18) and (19) ensure that the edges are injectively mapped to edges
only, (17) forbids host outer names to receive flux from an edge and an outer
name at the same time. Finally, (16) states that the output of host points cannot
bypass the guest if there is flux between its handle and an edge from the guest.

Adequacy. Let N be a solution of DLGE[G,H]. The corresponding link graph
embedding φ : G ↪→ H is defined as follows:

φv(v) � v′ ∈ VH if ∃i : N(v,i),(v′,i) = 1 φe(e) � e′ ∈ EH if Fe,e′ = 1

φi(x) �
{

φi−
(x) if x ∈ Y −

H � P+
H

φi+(x) if x ∈ X+
H � P+

H

φo(y) �
{

φo−
(y) if y ∈ X−

G

φo+
(y) if y ∈ Y +

G

where

φo−
(y) � y′ ∈ X−

H � P−
H if Fy,y′ = 1 φo+

(y) � y′ ∈ Y +
H � P−

H if Fy,y′ = 1,

φi−
(x) � x′ ∈ Y −

G � P+
G if Nx,x′ = 1, φi+(x) � x′ ∈ X+

G � P+
G if Nx,x′ = 1

and dom(φi+) ∩ dom(φi−
) = ∅.

It is easy to check that these components of φ are well-defined and compliant
with Definition 10.

On the other way around, let φ : G ↪→ H be a link graph embedding. The
corresponding solution N of DLGE[G,H] is defined as follows:

Np,p′ �

⎧
⎪⎨

⎪⎩

1 if p ∈ X+
H � Y −

H ∧ p′ = φi(p)
1 if p′ = (v, i) ∈ P+

G ∧ p = (φv(v), i)
0 otherwise

Np,h′ �
{

1 if h′ = linkH(p) ∧ �p′ : Np,p′ = 1
0 otherwise

Nh,h′ �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if h′ ∈ EH ∧ h ∈ EG ∧ h′ = φe(h)
1 if h′ ∈ Y +

H � X−
H ∧ h ∈ Y +

G � X−
G ∧ h′ = φo(h)

1 if h = (v, i) ∈ P−
G ∧ h′ = (φv(v), i)

0 otherwise

Fh,h′ = 1
�⇐==⇒ Nh,h′ �= 0

Every constraint of DLGE[G,H] is satisfied by the solution just defined.
The constraint satisfaction problem in Fig. 3 is sound and complete with

respect to the directed link graph embedding problem given in Definition 10.

Proposition 1 (Adequacy of DLGE). For any two concrete directed link
graphs G and H, there is a bijective correspondence between the directed link
graph embeddings of G into H and the solutions of DLGE[G,H].
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4.2 Place Graphs

Let us fix the guest and host place graphs: G : nG → mG and H : nH → mH .
We characterize the embeddings of G into H as the solutions of the constraint
satisfaction problem in Fig. 4. The problem is a direct encoding of Definition 11
as a matching problem presented, as usual, as a bipartite graph. Sites, nodes and
roots of the two place graphs are represented as nodes and partitioned into the
guest and the host ones. For convenience of exposition, the graph is complete.

Mh,g ∈ {0, 1} g ∈ nG � VG � mG,
h ∈ nH � VH � mH

(24)

Mh,g = 0 g ∈ nG � VG, h ∈ mH (25)

Mh,g = 0 g ∈ VG � mG, h ∈ nH (26)

Mh,g = 0
g ∈ VG, h ∈ VH ,
ctrlG(g) �= ctrlH(h) (27)

Mh,g = 0
g ∈ mG, h /∈ mH ,
v ∈ prnt∗

H(h) ∩ VG,
ctrlG(v) /∈ Σa

(28)

Mh,g ≤ Mh′,g′
g /∈ mG, g′ ∈ prntG(g),
h /∈ mH , h′ ∈ prntH(h) (29)

∑

h∈VH�mH

Mh,g = 1 g ∈ mG (30)

∑

h∈nH�VH

Mh,g = 1 g ∈ VG (31)

mG ·
∑

g∈nG�VG

Mh,g +
∑

g∈mG

Mh,g ≤ mG h ∈ VH (32)

|prnt−1
H (h)| · Mh,g ≤

∑

h′∈prnt−1
H

(h),

g′∈prnt−1
G

(g)

Mh′,g′ g ∈ VG, h ∈ VH (33)

|prnt−1
G (g) \ nG| · Mh,g ≤

∑

h′∈prnt−1
H

(h)\nh,

g′∈prnt−1
G

(g)\ng

Mh′,g′ g ∈ mG, h ∈ VH (34)

Mh,g +
∑

h′∈prnt∗H (h),g′∈mG

Mh′,g′ ≤ 1 g ∈ VG, h ∈ VH (35)

Fig. 4. Constraints of PGE[G,H].

Edges are modelled by the boolean variables defined in (24); these are the only
variables used by the problem. So far, a solution is nothing more than a relation
between the components of guest and host containing only those pairs connected
by an edge assigned a non-zero value. To capture exactly those assignments that
are actual place graph embeddings some conditions have to be imposed.
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Constraints (25) and (26) prevent roots and sites from the host to be matched
with nodes or sites and nodes or roots respectively. (27) disables matching
between nodes decorated with different controls. Constraint (28) prevents any
matching for host nodes under a passive context (i.e. have an ancestor labelled
with a passive control). (29) propagates the matching along the parent map from
children to parents. Constraints (30) and (31) ensure that the matching is a func-
tion when restricted to guest nodes and roots (the codomain restriction follows
by (25) and (26)). (32) says that if a node from the host cannot be matched
with a root or a node/site from the guest at the same time; moreover, if the host
node is matched with a node then it cannot be matched to anything else.

The remaining constraints are the counterpart of (29) and propagate match-
ings from parents to children. (33) applies to matchings between nodes and says
that if parents are matched, then children from the host node are covered by
children from the guest node. In particular, the matching is a perfect assignment
when restricted to guest children that are nodes (because of (32)) and is a sur-
jection on those that are sites. (34) imposes a similar condition on matchings
between guest roots and host nodes. Specifically, it says that the matching has
to cover child nodes from the guest (moreover, it is injective on them) leaving
child sites to match whatever remains ranging from nothing to all unmatched
children. Finally, (35) prevents matching from happening inside a parameter.

Adequacy. Let M be a solution of PGE[G,H]. The corresponding place graph
embedding φ : G ↪→ H is defined as follows:

φv(g) � h ∈ VH if ∃i : Mh,g = 1 φs(g) � {h ∈ nh � VH | Mh,g = 1}
φr(g) � h ∈ mH � VH if Mh,g = 1

These components of φ are well-defined and compliant with Definition 11.
On the opposite direction, let φ : G ↪→ H be a place graph embedding. The
corresponding solution M of PGE[G,H] is defined as aside. It is easy to check
that every constraint of PGE[G,H] is satisfied by this solution. Hence, the
constraint satisfaction problem in Fig. 4 is sound and complete with respect to
the place graph embedding problem (Definition 11).

Mh,g �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if g ∈ VG ∧ h = φv(g)
1 if g ∈ mG ∧ h = φr(g)
1 if g ∈ nG ∧ h ∈ φs(g)
0 otherwise

Proposition 2 (Adequacy of PGE). For any two concrete place graphs G
and H, there is a bijective correspondence between the place graph embeddings
of G into H and the solutions of PGE[G,H].

4.3 Bigraphs

Let G : 〈nG,XG〉 → 〈mG, YG〉 and H : 〈nH ,XH〉 → 〈mH , YH〉 be two bigraphs.
By taking advantage of the orthogonality of the link and place structures we
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Mv,v′ = Np,p′
v ∈ VH , v′ ∈ VG,
p = (v, k) ∈ P+

H , p′ = (v′, k) ∈ P+
G

(36)

Mv,v′ = Fh,h′ v ∈ VH , v′ ∈ VG, h ∈ P −
G , h′ ∈ P −

H (37)
∑

p′∈X+
G

Np,p′ ≤
∑

h∈prnt∗H (v),g∈nG

Mh,g v ∈ VH , p = (v, k) ∈ P+
H (38)

∑

h∈X−
G

Fh,h′ ≤
∑

h∈prnt∗H (v),g∈nG

Mh,g v ∈ VH , h′ = (v, k) ∈ P −
H (39)

Fig. 5. Constraints of DBGE[G,H].

can define the constraint satisfaction problem capturing bigraph embeddings
by simply composing the constraints given above for the link and place graph
embeddings and by adding four consistency constraints to relate the solutions of
the two problems. These additional constraint families are reported in Fig. 5. The
families (36) and (37) ensure that solutions for DLGE[G,H] and PGE[G,H]
agree on nodes since the map φv has to be shared by the corresponding link and
place embeddings. The families (38) and (39) respectively, ensure that positive
ports (negative ports resp.) are in the same image as upward inner names (down-
ward inner names resp.) only if their node is part of the parameter i.e. only if it
is matched to a site from the guest or it descends from a node that is so.

Conditions (38) and (39) correspond exactly to (B1) and (B2). It thus follows
from Propositions 1 and 2 that the CSP defined by Figs. 3 to 5 is sound and
complete with respect to the bigraph embedding problem given in Definition 12.

Theorem 1 (Adequacy of BGE). For any two concrete bigraphs G and H,
there is a bijective correspondence between the bigraph embeddings of G into H
and the solutions of DBGE[G,H].

5 Experimental Results

The reduction algorithm presented in the previous section has been successfully
integrated into jLibBig, an extensible Java library for manipulating bigraphs and
bigraphical reactive systems which can be used for implementing a wide range
of tools and it can be adapted to support several extensions of bigraphs [24].

The proposed algorithm is implemented by extending the data structures
and the models for pure bigraphs to suit our definition of directed bigraphs.

In this section we test our implementation by simulating a system in which
we want to track the position and the movements of a fleet of vehicles inside a
territory divided in “zones”, which are accessible via “roads”. The rewriting rule
in question and an example agent can be found in Fig. 6.

We evaluate the running time of the different components of our algorithm:
model construction, CSP resolution, building of the actual embedding and execu-
tion of the rewriting rule. Moreover, we want to evaluate how these performances
scale while increasing the size of the agent. The parameters used to build the

http://mads.uniud.it/downloads/libbig/
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Fig. 6. Rewriting rule (left) and example of an agent (right) for the test cases.

tests are: number of zones, number of cars and “connectivity degree”. The last
parameter is a number between 1 and 100 representing the probability of the
existence of a connection between two nodes; a value of 100 means that every
node is connected to all its neighbours.

Fig. 7. Execution times vs. number of
zones, 70 cars and 100% connectivity.

Fig. 8. Execution times vs. connectiv-
ity, 11 × 11 grid and 70 cars.

We consider the following kinds of tests:

1. varying number of zones, with fixed number of cars and connectivity degree;
2. varying connectivity degree, with fixed numbers of zones and cars.

Each test case is made up of four groups of instances, where for each group we
choose an increasing value for their fixed parameters. For each group we choose
ten values for its variable parameter. The instances generation works as follows:
for each test case and for each group of that particular test case we generate
ten random instances for each combination of the values of the fixed parameters
and the variable one. We then take the average of the running times of those ten
random instances. At the end of the process, for each group we have tested 100
instances, 10 for each value of the variable parameter, so 400 instances for each
test case and 1200 in total.

All tests have been performed on an Intel Core i7-4710HQ (4 cores at
3.5 GHz), 8 GB of RAM running on ArchLinux with kernel 5.5.2 and using
OpenJDK 12.

We briefly review the results obtained from these tests and refer to the com-
panion technical report [6] for more details.
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Time vs. Number of Zones. In this case we evaluate how our implementation
scales with an increasing number of zones; see Fig. 7. We can see that the run-
ning time grows exponentially, especially the resolution time. Similarly to the
previous test case, the time spent building the CSP and applying the reaction
rule is negligible even though we can see that the time necessary to build the
CSP increases linearly with the grid size. We can also observe that there is no
correlation between the rewriting time and the number of zones.

Time vs. Connectivity Degree. In this case we evaluate how our implementation
scales with an increasing connectivity degree; see Fig. 8. We can see that the
running time scales exponentially, no matter the grid size or the number of cars.
Once again, we see that although increasing, the time spent building the model
and applying the rewriting rule is negligible.

6 Conclusions and Future Works

In this paper, we have presented a new version of directed bigraphs and bigraphic
reactive systems, which subsume previous versions (such as Milner’s bigraphs).
For this kind of bigraphs we have provided a sound and complete algorithm for
solving the embedding problem, based on a constraint satisfaction problem. The
resulting model is compact and the a number of variables and linear constraints
are polynomially bounded by the size of the guest and host bigraphs. Differently
from existing solutions, this algorithm applies also to non-ground hosts.

The algorithm has been successfully integrated into jLibBig, an extensible
library for manipulating bigraphical reactive systems. The empirical evaluation
of the implementation of our algorithm in jLibBig looks promising. It cannot be
considered a rigorous experimental validation yet, mainly because performance
depends on the implementation and the solver and the model is not optimized
for any specific solver. Moreover, up to now there are no “official” (or “widely
recognized”) benchmarks, nor any other algorithms or available tools that solve
the directed bigraph embedding problem, to compare with.

The proposed approach offers great flexibility: it can be easily applied also
to other extensions of bigraphs and directed bigraphs. An interesting direction
for future work would be to extend the algorithm also to stochastic and proba-
bilistic bigraphs [18]; this would offer useful modelling and verification tools for
quantitative aspects, e.g. for systems biology [2,8]. Approximated and weighted
embeddings are supported in jLibBig, but still as experimental feature. In fact,
the theoretical foundations of these extensions have not been fully investigated
yet, suggesting another line of research.
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Abstract. We build on the correspondence between Petri nets and free
symmetric strict monoidal categories already investigated in the liter-
ature, and present a categorical semantics for Petri nets with guards.
This comes in two flavors: Deterministic and with side-effects. Using the
Grothendieck construction, we show how the guard semantics can be
internalized in the net itself.

1 Introduction

Category theory has been used to study Petri nets at least since the beginning of
the nineties [6]. Throughout this time, the main effort in this direction of research
consisted in showing how Petri nets can be thought of as presenting various
flavors of free monoidal categories [2,5,6,8] This idea has been very influential,
successfully modeling the individual-token philosophy via process semantics.

On the other hand, shortly after Petri’s first publications about the nets that
carry his name [7] researchers started investigating what happens when nets are
enriched with new features. One of the most successful extensions of Petri nets
is guarded (or coloured) nets [3]. Modulo different flavors of modeling what boils
down to be the same concept, a guarded net is a Petri net with the following
extra properties:

– To each token is attached some “attribute”. The kind of attributes we can
attach to tokens depends on the place the token is in;

– Each arc is decorated with an expression, which modifies tokens’ attributes
as they flow through the net;

– Each transition is decorated with a predicate and only fires on tokens whose
attributes satisfy the predicate.

At a fist glance, guarded nets allow for a more expressive form of modeling with
respect to their unguarded counterparts, but as we will see shortly, this is not
necessarily the case. Indeed, depending on the underlying theory from which
properties, expressions, and predicates are drawn the gain in expressive power
with respect to undecorated nets may be nil: With a wise choice of underlying
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theory, coloured nets amount to be nothing more than syntactic sugar for stan-
dard nets, though of course the availability of such syntactic sugar can greatly
simplify the modeling of complex processes using the Petri net formalism.

Recently there has been renewed interest in employing Petri nets as the
basis for a programming language [10]. In this setting, the categorical correspon-
dence between nets and symmetric monoidal categories has been of the utmost
importance, single-token philosophy being considered necessary to make the pro-
gramming language usable [9]. Clearly, extending nets with new features such as
guards or timings is desirable to make the language more expressive.

In this work we try to unify these two longstanding directions of research –
the categorical approach to Petri nets and the study of guarded nets – by showing
how guarded nets can be modeled as ordinary Petri nets with a particular flavor
of semantics in the style of [1].

Importantly, we are able to define both a deterministic semantics and a non-
deterministic semantics in our formalism. The first models the traditional notion
of guards deterministically modifying data attached to tokens, while the second
describes a setting where token data is modified depending on side effects.

Using the Grothendieck construction, we show how the guard semantics can
be internalized in the net itself, providing a categorical proof that in our model,
guarded nets do not increase expressivity, as compared to traditional nets. This
is a desired feature, since it means that many nice properties of nets such as
termination or decidability of the reachability relation are preserved. It also
shows that the core mathematical abstraction in computer implementations of
Petri nets need not be modified when offering users the flexibility of guarded
nets.

We save all proofs for the appendix, which starts on page 14.

2 Guarded Nets

Having given an intuitive version of what a guarded net is, we now start modeling
the concept formally. We will use the formalism developed in [1], of which we
recall some core concepts.

We denote by F (N) the free symmetric strict monoidal category associated
to a Petri net N , and with U (C) the Petri net associated to the free symmetric
strict monoidal category C. We denote composition in diagrammatic order; i.e.
given f : c → d and g : d → e, we denote their composite by (f � g) : c → e.

Definition 1. Given a strict monoidal category S, a Petri net with S-semantics
is a pair

(
N,N �

)
, consisting of a Petri net N and a strict monoidal functor

N � : F (N) → S.

A morphism F :
(
M,M �

) → (
N,N �

)
is just a strict monoidal functor F :

F (M) → F (N) such that M � = F � N �.
Nets equipped with S-semantics and their morphisms form a monoidal cat-

egory denoted PetriS , with the monoidal structure arising from the product in
Cat.
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Definition 2. We denote by Set∗ the category of sets and partial functions, and
by Span the 1-category of sets and spans, where isomorphic spans are identified.
Both these categories are symmetric monoidal. From now on, we will work with
the strictified version of Set∗ and Span, respectively.

Example 1. Let 1 denote the terminal symmetric monoidal category. A Petri net
with 1-semantics is just a Petri net. Petri nets are in bijective correspondence
with free symmetric strict monoidal categories, so Petri1 denotes the usual cat-
egory of free symmetric strict monoidal categories and strict monoidal functors
between them.

Notation 1. Recall that a morphism A → B in Span consists of a set S and
a pair of functions A ← S → B. When we need to notationally extract this data
from f , we write

A
f1←− Sf

f2−→ B

We sometimes consider the span as a function f : Sf → A × B, thus we may
write f(s) = (a, b) for s ∈ Sf with f1(s) = a and f2(s) = b.

Perhaps unsurprisingly, Set∗ and Span will be the target semantics corre-
sponding to two different flavors for our guards, with Span allowing for some
form of nondeterminism – expressed as the action of side-effects – whereas Set∗
models a purely deterministic semantics. Expressing things formally:

Definition 3. A guarded net is an object of PetriSet∗ . A guarded net with side
effects is an object of PetriSpan. A morphism of guarded nets (with side effects)
is a morphism in PetriSet∗ (resp. in PetriSpan).

Remark 1. Although it doesn’t affect our formalism by any means, in practice
the choice of semantics, both for Set∗ and Span, is limited by computational
requirements: the places in a net are usually sent to finite sets, while transi-
tions are usually sent to computable functions and spans1, respectively. Such
restrictions are necessary to make sure the net is executable and to keep model
checking decidable.

Let us unroll the cryptic Definition 3, starting from the case PetriSet∗ .
An object in PetriSet∗ is a net N together with a strict monoidal functor
N � : F (N) → Set∗. It assigns to each place p of N – corresponding to a generat-
ing object of F (N) – a set N �(p), representing all the possible colours a token in
p can assume. A transition f : p → p′ – corresponding to a generating morphism
of F (N) – gets sent to a partial function N �(f) : N �(p) → N �(p′), representing
how token colours are transformed during firing. Importantly, the fact that the
functions in the semantics are partial means that a transition may not be defined
for tokens of certain colors. An example of this is the net in Fig. 1a, which is
shown together with its semantics. Although reachability in the base net seems
quite straightforward, we see that a token in the leftmost place will never reach
the rightmost place, since the rightmost transition is not defined on the tokens
output by the leftmost one.
1 A computable span is one for which both legs are computable functions.
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(a) Semantics in Set

s1

s2

s3
z2

z1

(b) Semantics in Span

Fig. 1. The same net (below), equipped with a partial function and span semantics,
respectively (above).

In the case of PetriSpan the intuition is similar. Objects are sent to sets,
exactly as in PetriSet∗ , but transitions are mapped to spans. Spans can be
understood as relations with witnesses, provided by elements in the apex of
the span. Practically, this means that each path from the span domain to its
codomain is indexed by some element of the span apex, as it is shown in Fig. 1b.
The presence of witnesses allows to consider different paths between the same
elements. Moreover, an element in the domain can be sent to different elements
in the codomain via different paths. We interpret this as non-determinism: The
firing of the transition is not only a matter of the tokens input and output, it
also includes the path chosen, which we interpret as having side-effects that are
interpreted outside of our model. As one can see, in both Figs. 1a and 1b the
composition of paths is the empty function (resp. span). Seeing things from a
reachability point of view, the process given by firing the left transition and then
the right will never occur. Let us make this intuition precise:

Definition 4. Given a guarded Petri net (with side effects)
(
N,N �

)
, a marking

for
(
N,N �

)
is a pair (X,x) where X is an object of F (N) and x ∈ N �X. We say

that a marking (Y, y) is reachable from (X,x) if there is a morphism f : X → Y
in F (N) such that N �f(x) = y.

The goal we will pursue in the next section will be to internalize the guard
semantics in the free category F (N) associated to a net.

3 Internalizing Guards

By “internalizing the semantics of a guarded net N in F (N)” we mean obtaining
an unguarded net M such that F (M) represents all the possible runs of N .
For readers familiars with coloured Petri nets, this corresponds to the claim
that reachability in a coloured net is equivalent to reachability in a suitably
constructed “standard” net [3].

Since our point of view is process-theoretic, and we are working with symmet-
ric strict monoidal categories and functors, such internalization must be built cat-
egorically. The main tool we will use is the Grothendieck construction [4], which
in our context we will specialize to functors to Set∗ and Span, respectively.
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Definition 5. Let
(
M,M �

) ∈ PetriSet∗ be a guarded net. We define its inter-
nalization, denoted

∫
M �, as the following category:

– The objects of
∫

M � are pairs (X,x), where X is an object of F (M) and x is
an element of M �X. Concisely:

Obj
∫

M � :=
{
(X,x) | | (X ∈ Obj F (M)) ∧ (x ∈ M �X)

}
.

– A morphism from (X,x) to (Y, y) in
∫

M � is a morphism f : X → Y in F (M)
such that x is sent to y via M �f . Concisely:

Hom∫
M � [(X,x), (Y, y)] :=

{
f | | (f ∈ HomF(M) [X,Y ]) ∧ (M �f(x) = y)

}
.

It is worth giving some intuition of what the Grothendieck construction does
in our context. It basically makes a place for each element of the set we send a
place to, and makes a transition for each path between these elements, as shown
below:

�

An equivalent definition exists when the semantics is taken to be in Span, which
is the following:

Definition 6. Let
(
M,M �

) ∈ PetriSpan be a guarded net with side effects. We
define the internalization of

(
M,M �

)
, denoted with

∫
M �, as the following cate-

gory:

– The objects of
∫

M � are pairs (X,x), where X is an object of F (M) and x is
an element of M �X. Concisely:

Obj
∫

M � :=
{
(X,x) | | (X ∈ Obj F (M)) ∧ (x ∈ M �X)

}
.

– A morphism from (X,x) to (Y, y) in
∫

M � is a pair (f, s) where f : X → Y
in F (M) and s ∈ SM�f in the apex of the corresponding span connects x to
y. Concisely:

Hom∫
M � [(X,x), (Y, y)] :=

:=
{
(f, s) | | (f ∈ HomF(M) [X,Y ]) ∧ (s ∈ SM�f ) ∧ (M �f(s) = (x, y))

}
.

The intuition in the span case is exactly as for partial functions, and we
don’t deem it useful to draw the same picture again. Looking at the example,
though, a couple of things become clear. The first is that to justify the idea of
the Grothendieck construction turning an assignment of semantics into a net
we have to prove that the resulting category is symmetric strict monoidal and
free. The second is that the net thus built is fibered over the base net, and there
should be an opposite construction sending

∫
M � to M . Both of these claims are

true, as we now prove:
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Lemma 1. In the case of both Set∗ and Span, the category
∫

M � has a strict
symmetric monoidal structure.

Theorem 1. In both the case of Set∗ and of Span the strict symmetric
monoidal category

∫
M � is free.

Counterexample 1 (Relations). Theorem1 does not hold – the Grothendieck
construction does not yield a free symmetric strict monoidal category – if we
replace Set∗ or Span with Rel. To see this, consider

∫
M � in the case that

M � : F (M) → Rel. Let M be the Petri net consisting of three places X,Y,Z
and two transitions f : X → Y and g : Y → Z. Let M � send X to {x}, Y to
{y1, y2}, and Z to {z}. On morphisms, let M � send f to the maximal relation
on {x}×{y1, y2} and g to the maximal relation on {y1, y2}×{z}. Then we have
the following four generating morphisms in

∫
M �:

f1 : (X,x) → (Y, y1) f2 : (X,x) → (Y, y2)
g1 : (Y, y1) → (Z, z) g2 : (Y, y2) → (Z, z)

There is an equality f1 � g1 = f2 � g2 as morphisms (X,x) → (Z, z) in
∫

M �,
proving

∫
M � is not free.

The reason that Theorem1 holds in the span case is that spans keep track of
different paths between elements, whereas relations do not. To see this, consider
the span composition:

{x} {y1, y2} {z}

{y1, y2} {y1, y2}

{y1, y2}

! !

It is clear that in this composition the two paths from x to z are considered
as separated in the Span case, and witnessed by y1, y2 respectively, while in the
case of Rel they would have been conflated to one. The result is that these paths
correspond to the same morphism in the relational case of

∫
M �, introducing new

equations and breaking freeness, while they stay separated in the span case.

Lemma 2. In the case of both Set∗ and Span, there is a strict monoidal functor
πM :

∫
M � → F (M) sending (X,x) to X and f : (X,x) → (Y, y) to f : X → Y

(resp. (f, s) : (X,x) → (Y, y) to f : X → Y ).

Remark 2. In general, πM is not an opfibration. This is because our target cate-
gories Set∗ and Span allow for partial functions. Indeed, if f : X → Y in M is
sent by M � to a partial function that is not defined on x ∈ M �X, then there is
no coCartesian lift emanating from (X,x) for the morphism f .
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We conclude this section by proving that the reachability semantics of a
guarded net coincides with the reachability semantics of its internalization.

Theorem 2. Let
(
N,N �

)
be a guarded Petri net (with side effects). (Y, y) is

reachable from (X,x) if and only if (Y, y) is reachable from (X,x) in the net
U

(∫
N �

)
.

4 Properties of Internalizations

The Grothendieck construction provides a way to internalize partial function and
span semantics to nets. As such, it acts on objects of the categories PetriSet∗

and PetriSpan, respectively. It is thus worth asking what happens to morphisms
in these categories. The answer is, luckily, easy to find:

Lemma 3. Let F :
(
M,M �

) → (
N,N �

)
be a morphism in PetriSet∗ (resp. in

PetriSpan). Then it lifts to strict monoidal functor
⇀

F :
∫

M � → ∫
N � (resp.

F̂ :
∫

M � → ∫
N �), such that the following diagram on the left (resp. on the

right) commutes:

∫
M �

F (M)

∫
N �

F (N)

Set∗

πM πN

F

⇀

F

M � N �

∫
M �

F (M)

∫
N �

F (N)

Span

πM πN

F

F̂

M � N �

Notation 2. The notation for the liftings in Lemma 3 is easy to remember: The
arrow over

⇀

F looks like a stylized function, while the hat over F̂ looks like a sylized
span.

The lifting of Lemma 3 is quite well-behaved. First of all, it is worth stressing
how it preserves some relevant categorical properties:

Lemma 4. For any map F : (M,M �) → (N,N �) in PetriSet∗ (respectively in
PetriSpan), the functor F is faithful if and only if

⇀

F is faithful (resp. F̂ is
faithful). If F is full, then so is

⇀

F (resp. F̂ ).

Having ascertained that “basic” categorical properties are preserved, it is
worth asking what happens to particular classes of functors in PetriSet∗ and
PetriSpan, respectively.

Following [1], there are three relevant kinds of morphisms in a category of
Petri nets with semantics. On one hand there are transition-preserving functors,
which represent morphisms of free monoidal categories arising purely from the
topological structure of their underlying net. On the other there are functors
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representing glueings of nets, which are themselves divided into synchronizations
(defined in terms of addition and erasing of generators, that is, double pushouts)
and identifications (defined in terms of pushouts). Let us investigate which ones
of these properties are preserved.

Definition 7. A strict symmetric monoidal functor F between FSSMCs C, D is
said to be transition-preserving when each generating morphism f of C is mapped
to σ � g � σ′ for some generating morphism g of D and symmetries σ, σ′.

Lemma 5. If F is transition-preserving, so are
⇀

F and F̂ .

Lemma 6. If F is injective on objects, so are
⇀

F and F̂ .

Another interesting class of morphisms is identifications:

Definition 8. A Petri net
(
N,N �

)
is said to be an identification of

(
M,M �

)
if

there is a morphism F :
(
M,M �

) → (
N,N �

)
such that:

– There is a Petri net O, and a pair of transition-preserving functors l, r :
F (O) → F (M);

– l � M � = r � M �; and
– F is the coequalizer of l and r.

Identifications are also preserved. The ultimate reason for this is that iden-
tifications are defined purely in terms of coequalizers of transition-preserving
functors, which are preserved by the Grothendieck construction.

Lemma 7. If
(
N,N �

)
is an identification of

(
M,M �

)
via F and witnesses O, l, r,

then
∫

N � is an identification of
∫

M � via
⇀

F and witnessesU
(∫

(l � M �)
)
,

⇀

l , ⇀r . The
span case is analogous.

Preservation of identifications also entails that addition of generators for a
net are preserved by internalizations.

Definition 9. A net
(
M,M �

)
is an addition of generating morphisms to(

K,K�
)

via W,w if:

– There is a net W together with a strict monoidal functor w : F (W ) → F (K)
which sends generating objects to generating objects, is injective on objects
and faithful;

– F (M) is the pushout of F
(
W

)
↪→ F (W ) w−→ F (K) and F

(
W

)
↪→ F (W ),

where W denotes the net with the same places of W and no transitions; and
– M � arises from the universal property of the pushout.
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Lemma 8. Let
(
M,M �

)
be an addition of generating morphisms to

(
K,K�

)

via W,w. Then
∫

M � is an addition of generating morphisms to
∫

K� via
U

(∫
(w � K�)

)
, ⇀w. The span case is analogous.

Finally, we investigate what happens when considering erasings of generators
from a net. To do this, we first follow [1] to define subnets:

Definition 10. Given Petri nets N,Nw, we say that Nw is a subnet of N if its
places and transitions are a subset of places and transitions of N , and input and
output functions on Nw are restrictions of the input and output functions on N .
If Nw is a subnet of N , then there is an obvious identity on objects, identity on
morphisms strict monoidal functor, ι : F (Nw) ↪→ F (N) between their associated
free symmetric strict monoidal categories. From this, we say that a net (Nw, Nw

�)
is a subnet of

(
N,N �

)
if Nw is a subnet of N and Nw

� = ι � N �.

This enables us to define erasings of generators:

Definition 11. Let (Nw, (Nw)�) be a subnet of
(
N,N �

)
. An erasing of genera-

tors of
(
N,N �

)
via Nw is a net

(
K,K�

)
such that:

–
(
K,K�

)
is a subnet of

(
N,N �

)
;

–
(
Nw, Nw

�
)
, where Nw denotes the net with the same places of Nw and no

transitions, is a subnet of
(
K,K�

)
; and

– F (N) is the pushout of F
(
Nw

)
↪→ F (Nw); and F

(
Nw

)
↪→ F (K).

Indeed, erasings of generators are preserved as well by our internalization:

Lemma 9. Let
(
K,K�

)
be an erasing of generating morphisms from

(
N,N �

)

via a subnet Nw. Then
∫

K� is an erasing of generators from
∫

N � via
∫

subNw
�

N �. The span case is analogous.

Surprisingly, even if erasing and addition of generators are preserved by inter-
nalizations, synchronizations are not. Indeed, following [1],

(
M,M �

)
is a synchro-

nization of
(
N,N �

)
via W,w when F (M) is defined to be the result of applying

the following double pushout rewrite rule to F (N):

F (Nw) w′
←− F (W )

inW←−−↩ F
(
W

) inW
↪−−→ F (W )

Here, we require that w factorizes through w′. In internalizing this construction
the pushouts are preserved, but the rewrite rule is not! This becomes evident
by lifting the definition of synchronization altogether, where in the following
diagram we are sticking to the notation developed in [1]:
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F (Nw) F (W ) F
(
W

)
F (W )

F (N) F (K) F (M)

Set∗

∫
subNw

� N �
∫

w � N �
∫

inW � w � N �
∫

w � N �

∫
N �

∫
K�

∫
M �

inWw′ inW

subNw

w

k

subK ι1

ι2

⇀

inW
⇀

w′ ⇀

inW

⇀

subNw

⇀w

⇀

k

⇀

subK
⇀ι1

⇀ι2

π π π π

π π π

w � N �

N �

subK � N �

M �

The black arrows are just the definition of synchronization. The dotted arrows
denote the pushout arrows, while the dashed arrows arise from the universal prop-
erty of the pushout. The maroon arrows and objects represent the Grothendieck
construction and the lifting of the functors obtained from Lemma3, while the
πs stand for the functors obtained in Lemma2, where we omitted subscripts to
avoid clutter.

As one can see the pushout squares are both preserved, but
∫

M � is not a
synchronization of

∫
N � via

∫
inW � w � N � since

∫
subNw

� N � �= (∫
N �

)∫
w � N �

In other words,
∫

subNw
� N � is too big of a subcategory of

∫
N � to make

∫
M �

into a synchronization. An analogous observation holds for spans.

Counterexample 2 (Synchronizations not preserved). We provide a practical
counterexample of why synchronizations are not preserved by internalizations.
Consider the following nets, where we are borrowing the graphical notation devel-
oped in [1], decorating net elements with their images in Set∗.

X f � g Z

πM

x (f � g)x z

F

⇀

F

X f Y g Z

πN

x f(x)

y1

y2

g(y1)

g(y2)
z
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At the base level we have two nets, M on the left and N on the right. Eliding
the functor N �, the places of N are mapped to sets:

X := {x} Y := {y1, y2} Z := {z}
While transitions are mapped to partial functions f : X → Y and g : Y → Z,
defined as follows:

f(x) = y1 g(y1) = g(y2) = z

M is clearly a synchronization of N via F : The generators f and g have
been erased and a generator corresponding to f � g has been added. Taking the
Grothendieck construction on M and N (top left and top right in the figure,
respectively), we see how the erasing of generators is problematic: The morphism
g in N branches into g(y1) and g(y2) in

∫
N �, of which only g(y1) forms a path

with f(x). In lifting the synchronization M to
∫

M �, we would expect g(y1) and
f(x) to be erased and conflated into f(x) � g(y1), whereas g(y2) stays. But this
is not the case, since in M the generator g has already been erased “before being
allowed to branch”, taking g(y2) with it when we take

∫
M �!

As we said before, this ultimately depends on the fact that the internaliza-
tion of the subnet provided by the synchronization witness contains too many
morphisms, and ends up erasing more generators than we would like it to.

5 Internalization as a Functor

In this final section, we put together some of the properties we have proved so far
about internalizations, and prove that internalization is a functor. The intuitive
argument behind the results that are about to follow is this: If

∫
N � internalizes

the semantics of
(
N,N �

)
, in either the case N � : N → Set∗ or N � : N → Span,

then
∫

N � should be considered as “just a ne”, that is, an object of Petri1; see
Example 1.

Putting together results about lifting of functors obtained in the previous
section, we are indeed able to prove this.

Theorem 3. Denote with 1 the terminal category, together with the trivial sym-
metric monoidal structure on it. There is a faithful, strong monoidal functor
embSet∗ : PetriSet∗ → Petri1 defined as follows:

– On objects, it sends
(
M,M �

)
to

(
U

(∫
M �

)
,U

(∫
M �

)�
)
.

– On morphisms, we send the functor F :
(
M,M �

) → (
N,N �

)
to the functor2

F̂ :
(
U

(∫
M �

)
,U

(∫
M �

)�
)

→
(
U

(∫
N �

)
,U

(∫
N �

)�
)

Similarly, there is a faithful, strong monoidal functor embSpan : PetriSpan →
Petri1 defined as follows:

2 To be absolutely precise, we are referring to the functor F
(
U

(∫
M �

)) � ∫
M � F̂−→∫

N � � F
(
U

(∫
N �

))
.
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– On objects, it sends
(
M,M �

)
to

(
U

(∫
M �

)
,U

(∫
M �

)�
)
.

– On morphisms, we send the functor F :
(
M,M �

) → (
N,N �

)
to the functor3

F̂ :
(
U

(∫
M �

)
,U

(∫
M �

)�
)

→
(
U

(∫
N �

)
,U

(∫
N �

)�
)

Finally, it is worth nothing that for each choice of semantics S there is another
obvious functor from PetriS to Petri1, which just forgets the semantics alto-
gether. It is worth asking how this functor and the ones provided in Theorem3
are related.

Proposition 1. Denote with

forSet∗ : PetriSet∗ → Petri1 forSpan : PetriSpan → Petri1

the “forgetful” functors defined by sending each Petri net
(
M,M �

)
to

(
M,M �

)
.

Then there are natural transformations:

PetriSet∗ Petri1
⇒

π

forSet∗

embSet∗

PetriSpan Petri1

⇒

π

forSpan

embSpan

6 Conclusion and Future Work

In this work, we described guarded Petri nets as Petri nets endowed with a functo-
rial semantics. We provided two different styles of semantics: a deterministic one,
realized using the category of sets and partial functions, and a non-deterministic
one that allows for side effects, realized using the category of partial functions
and that of spans.

We moreover showed how, using the Grothendieck construction, the guards
can be internalized, obtaining a Petri net whose reachability relation is equiva-
lent to the one of the guarded one. We proved that internalizations have nice
properties, and the internalization construction is functorial in the choice of the
guarded net we start from.

Regarding directions of future work, a pretty straightforward thing to do
would be to figure out which semantics, other than Set∗ and Span, are internal-
izable. That is, if F : F (N) → S is a symmetric monoidal functor, which prop-
erties do S and F need to have so that

∫
F is a free symmetric strict monoidal

category.

3 To be absolutely precise, we are referring to the functor F
(
U

(∫
M �

)) � ∫
M � F̂−→∫

N � � F
(
U

(∫
N �

))
.
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Appendix – Proofs

Lemma 1. In the case of both Set∗ and Span , the category
∫

M � has a strict
symmetric monoidal structure.

Proof. We start with the case of Set∗. Since M � is strict monoidal, M �(X⊗Y ) =
M �X × M �Y . Thus on objects, we can set (X,x) ⊗ (Y, y) := (X ⊗ Y, (x, y)). On
morphisms, we just use the monoidal product f ⊗ g from F (M). The monoidal
unit is (I, ∗), where I is the monoidal unit of F (M) and ∗ is the unique element
of the monoidal unit {∗} of Set∗. The rest of the proof is a straightforward
check.

Now we consider the case of Span. On objects, we set again (X,x)⊗(Y, y) :=
(X ⊗Y, (x, y)). On morphisms, we set (f, s)⊗ (g, t) := (f ⊗ g, (s, t)), where f ⊗ g
is as in F (M) and (s, t) is the pair of span-apex elements:

M �X S M �X ′

(x, y) (s, t) (x′, y′)

M �Y T M �Y ′

f1 f2

(f1,g1) (f2,g2)

g1 g2

The monoidal unit is (I, ∗), where I is the monoidal unit of F (M) and ∗ is the
unique element of the monoidal unit {∗} of Span.

The remainder of the proof is as in the previous case. 
�

Theorem 1. In both the case of Set∗ and of Span the strict symmetric monoidal
category

∫
M � is free.

Proof. We start with the case of Set∗. Consider the free symmetric strict
monoidal category M̂ generated as follows:

– Object generators are pairs (X,x), with X object generator in F (M) and
x ∈ M �X;

– A morphism generator (X,x) → (Y, y) is a morphism generator f : X → Y
of F (M) such that M �f(x) = y.

We want to prove that M̂ and
∫

M � are isomorphic.
First, let (X,x) be an object in

∫
M �. Then X is an object of F (M), which

is free, and hence we have X = X1 ⊗ . . . ⊗ Xn for generating objects X1 . . . Xn

in F (M). By definition, we have x ∈ M �X. Being M � strict, this means:

x ∈ M �X ⇔ x ∈ M �(X1 ⊗ . . . ⊗ Xn)

⇔ x ∈ M �X1 × · · · × M �Xn

⇔ ∃!(x1 ∈ M �X1), . . . ,∃!(xn ∈ M �Xn).(x = (x1, . . . , xn))
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Hence (X,x) = (X1, x1) ⊗ . . . ⊗ (Xn, xn), and the object generators of
∫

M � are
the pairs (X,x) with X object generator in F (M) and x ∈ M �X. This means
that there is a bijection on objects of M̂ and

∫
M �:

(X1, x1) ⊗ . . . ⊗ (Xn, xn) �→ (X1 ⊗ . . . ⊗ Xn, (x1, . . . , xn))

We can then define a symmetric monoidal functor T : M̂ → ∫
M � that is bijective

on objects, and sends a generating morphism f : (X,x) → (Y, y) of M̂ to the
morphism f : (X,x) → (Y, y) in

∫
M �.

We want to prove that T is full and faithful. Faithfulness is obvious; given
f1, f2 : (X,x) → (Y, y) in M̂ , if T (f1) = T (f2) then in particular f1 = f2 in F (M).
It follows from the fact that M � is at most single-valued – i.e. M �g(x) = x′ and
M �g(x) = x′′ imply x′ = x′′ – that f1 = f2 also in M̂ . For fullness, take a
morphism f : (X,x) → (Z, z) in

∫
M �, and notice the following:

– If f : (X,x) → (Z, z) is equal to f1 � f2, where f1 : X → Y and f2 : Y → Z,
then we have:

z = M �f(x) = M �(f1 � f2)(x) = (M �f1 � M �f2)(x)

So there is a y ∈ M �Y such that M �f1(x) = y and M �f2(y) = z. This means
that f1 : (X,x) → (Y, y) and f2 : (Y, y) → (Z, z) are morphisms in

∫
M �;

– If f : (X1 ⊗ X2, (x1, x2)) → (Y1 ⊗ Y2, (y1, y2)) is equal to f1 ⊗ f2, where
f1 : X1 → Y1 and f2 : X2 → Y2, then we have:

(y1, y2) = M �f(x1, x2) = M �(f1 ⊗ f2)(x1, x2) = (M �f1 × M �f2)(x1, x2)

This means that M �f1(x1) = y1 and M �f2(x2) = y2, and hence that
f1 : (X1, x1) → (Y1, y1) and f2 : (X2, x2) → (Y2, y2) are morphisms in

∫
M �.

By definition, since F (M) is free, any morphism f : X → Z can be decomposed
into a composition of monoidal products of morphism generators, symmetries
and identities. The points above prove that f : (X,x) → (Z, z) can be decom-
posed in the same way, and hence is in the image of T ; thus it is full.

Our correspondence is bijective on objects and fully faithful, proving that M̂
and

∫
M � are isomorphic as categories. Since M̂ is free so is

∫
M �, completing

the proof.
We now consider the case of Span. The structure of the proof is similar. Consider
the free symmetric strict monoidal category M̂ generated as follows:

– Object generators are pairs (X,x), with X object generator in F (M) and
x ∈ M �X;

– For each morphism generator f : X → Y and s ∈ S such that M �f(s) = (x, y),
there is a morphism generator (f, s) : (X,x) → (Y, y).

We want to prove that M̂ and
∫

M � are isomorphic.
On objects, the proof of bijectivity is as in the previous case. We can then

define a symmetric monoidal functor M̂ → ∫
M � that is bijective on objects,
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and sends a generating morphism (f, s) : (X,x) → (Y, y) of M̂ to the morphism
(f, s) : (X,x) → (Y, y) in

∫
M �.

We want to prove that this functor is full and faithful. Faithfulness is again
straightforward. Suppose given (f1, s1), (f2, s2) : (X,x) → (Y, y) in M̂ . By con-
struction, (f1, s1) = (f2, s2) in

∫
M � if and only if f1 = f2 in F (M) and s1 = s2.

But this means that (f1, s1) = (f2, s2) also in M̂ .
For fullness, take a morphism (f, s) : (X,x) → (Z, z) in

∫
M �, and notice the

following:

– Each morphism (f, s) such that f is a generator, an identity or a symmetry
in F (M) is also in M̂ ;

– If (f, s) : (X,x) → (Z, z) is such that f = g � h, where g : X → Y and
h : Y → Z, then by definition of composition in Span, we have s = (t, u)
for some t, u with M �g(t) = (x, y) and M �h(u) = (y, z). This means that
(g, t) : (X,x) → (Y, y) and (h, u) : (Y, y) → (Z, z) are morphisms in

∫
M �;

– If (f, s) : (X1 ⊗ X2, (x1, x2)) → (Y1 ⊗ Y2, (y1, y2)) is such that f = f1 ⊗ f2,
where f1 : X1 → Y1 and f2 : X2 → Y2, then s = (s1, s2) for some s1, s2, and
we have:

((x1, x2), (y1, y2)) = M �f(s) = M �(f1 ⊗ f2)(s1, s2) = (M �f1 × M �f2)(s1, s2)

This means that M �f1(s1) = (x1, y1) and M �f2(s2) = (x2, y2), and hence that
(f1, s1) : (X1, x1) → (Y1, y1) and (f2, s2) : (X2, x2) → (Y2, y2) are morphisms
in

∫
M �.

By definition, since F (M) is free, any morphism f can be decomposed into
a composition of monoidal products of morphism generators, symmetries and
identities. The points above prove that each of such morphisms is also in

∫
M �,

and hence in M̂ . So f in
∫

M � is the image of f in M̂ , and the functor is full.
Since our correspondence is bijective on objects and fully faithful, this proves

that M̂ and
∫

M � are isomorphic as categories. Since M̂ is free so is
∫

M �,
completing the proof. 
�

Theorem 2. Let
(
N,N �

)
be a guarded Petri net (with side effects). (Y, y) is

reachable from (X,x) if and only if (Y, y) is reachable from (X,x) in the net
U

(∫
N �

)
.

Proof. By definition (Y, y) is reachable from (X,x) if and only if there is a
morphism f : X → Y in F (N) such that N �f(x) = y (resp. N �f(s) = (x, y) for
some s ∈ Sf ). Again by definition, this means that f : (X,x) → (Y, y) (resp.
fs : (X,x) → (Y, y)) is a morphism of

∫
N �. Since

∫
N � is free, f (resp. fs) can

be decomposed as a composition of monoidal products of generating morphisms.
But every generating morphism of

∫
N � corresponds to a transition of U

(∫
N �

)
,

from which the thesis follows. 
�

Lemma 5. If F is transition-preserving, so are
⇀

F and F̂ .
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Proof. The proof is obvious considering that, by construction, f : (X,x) → (Y, y)
is a generator (resp. a symmetry) in

∫
N � if and only if it is a generator (resp. a

symmetry) in F (N).
An analogous argument holds for F̂ . 
�

Theorem 3. Denote with 1 the terminal category, together with the trivial sym-
metric monoidal structure on it. There is a faithful, strong monoidal functor
embSet∗ : PetriSet∗ → Petri1 defined as follows:

– On objects, it sends
(
M,M �

)
to

(
U

(∫
M �

)
,U

(∫
M �

)�
)
.

– On morphisms, we send the functor F :
(
M,M �

) → (
N,N �

)
to the functor4

⇀

F :
(
U

(∫
M �

)
,U

(∫
M �

)�
)

→
(
U

(∫
N �

)
,U

(∫
N �

)�
)

Similarly, there is a faithful, strong monoidal functor embSpan : PetriSpan →
Petri1 defined as follows:

– On objects, it sends
(
M,M �

)
to

(
U

(∫
M �

)
,U

(∫
M �

)�
)
.

– On morphisms, we send the functor F :
(
M,M �

) → (
N,N �

)
to the functor5

F̂ :
(
U

(∫
M �

)
,U

(∫
M �

)�
)

→
(
U

(∫
N �

)
,U

(∫
N �

)�
)

.

Proof. The proofs for Set∗ and Span are very similar, so we just provide
the one for Set∗. Clearly if F is the identity functor

(
M,M �

) → (
M,M �

)

then so is
⇀

F . For composition, consider F :
(
M,M �

) → (
M,M �

)
N � and

G :
(
N,N �

) → (
P, P �

)
. We have to prove that

⇀

F � G =
⇀

F �
⇀

G. On objects,
⇀

F � G sends (X,x) in
∫

M � to ((F � G)X,x) in
∫

P �, so it coincides with
⇀

F � LiftSetSG. Now consider a morphism f : (X,x) → (Y, y) in
∫

M �. This
is sent by

⇀

F to Ff : (FX, x) → (FY, y), and applying
⇀

G to it one gets
G(Ff) : (G(FX), x) → (G(FY ), y). Since G(F ( )) is (F � G)( ), we are done.
This proves that embSet∗ is a functor. Faithfulness is trivial.

Now we focus on monoidality. First of all we have to prove that

embSet∗
((

M,M �
) ⊗ (

N,N �
)) � embSet∗

(
M,M �

) ⊗ embSet∗
(
N,N �

)

Remembering from Definition 1 that for each choice of semantics S the monoidal
structure on PetriS is defined in terms of coproduct of symmetric monoidal

4 To be absolutely precise, we are referring to the functor F
(
U

(∫
M �

)) � ∫
M �

⇀
F−→∫

N � � F
(
U

(∫
N �

))
.

5 To be absolutely precise, we are referring to the functor F
(
U

(∫
M �

)) � ∫
M � ̂F−→∫

N � � F
(
U

(∫
N �

))
.
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categories, and hence from the coproduct of the underlying nets, this means
that:

(
U

(∫
[M �, N �]

)
,U

(∫
[M �, N �]

)�
)

=

= embSet∗(M + N, [M �, N �])

= embSet∗(
(
M,M �

) ⊗ (
N,N �

)
)

� embSet∗
(
M,M �

) ⊗ embSet∗
(
N,N �

)

=
(
U

(∫
M �

)
,U

(∫
M �

)�
)

⊗
(
U

(∫
N �

)
,U

(∫
N �

)�
)

=
(
U

(∫
M �

)
+ U

(∫
N �

)
,
[
U

(∫
M �

)�
,U

(∫
N �

)�
])

Since U ( ) preserves isomorphisms and coproducts, it is sufficient to prove:
∫

[M �, N �] � ∫
M � +

∫
N �

– By definition, objects of
∫

[M �, N �] are pairs (X,x) with X ∈ F (M + N) �
F (M) + F (N) and x ∈ [M �, N �]X. This is clearly isomorphic to Obj

∫
M � �

Obj
∫

N �.
– Again by definition, we have

Hom∫
[M �, N �] [(X,x), (Y, y)] :=

:=
{
f ∈ HomF(M)+F(N) [X,Y ] | | [M �, N �]f(x) = y

}

This follows noting that by definition the set of morphisms of F (M) + F (N)
is the disjoint union of the sets of morphisms of F (M) and F (N).

Then we have to prove that embSet∗(F ⊗ G) = embSet∗F ⊗ embSet∗G. Unrolling
definitions this amounts to prove that

⇀

F + G =
⇀

F +
⇀

G, which is obvious.
Finally, we need to prove that embSet∗ preserves the monoidal unit. Notice

that for each choice of semantics S the monoidal unit in PetriS is taken to be
(∅, ∅�S). F (∅) is the free category consisting of only the monoidal unit I, and
∅�S : F (∅) → S sends the monoidal unit to the monoidal unit and its identity to
itself. In our case, the monoidal unit of PetriSet∗ is (∅, ∅�), with ∅� sending the
monoidal unit of F (∅) to the singleton set {∗} in Set∗. In particular, this means
that

∫ ∅� � F (∅), proving that

embSet∗
(∅, ∅�

)
=

(
U

(∫ ∅�
)
,U

(∫ ∅�
)�

)
�

(
U (F (∅)) ,U (F (∅))�

)
� (∅, ∅�

)


�

Proposition 1. Denote with

forSet∗ : PetriSet∗ → Petri1 forSpan : PetriSpan → Petri1
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the functors defined by sending each Petri net
(
M,M �

)
to

(
M,M �

)
. Then there

are natural transformations:

PetriSet∗ Petri1

⇒

π

forSet∗

embSet∗

PetriSpan Petri1

⇒

π

forSpan

embSpan

Proof. For each object
(
M,M �

)
in PetriSet∗ , we set

π(M,M�) :
(
U

(∫
M �

)
,U

(∫
M �

)�
)

→ (
M,M �

)

to be the functor F
(
U

(∫
M �

)) � ∫
M � πM−−→ F (M), where πM is defined as in

Lemma 3. The naturality condition follows from Lemma3 as well. The span case
is analogous. 
�
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Abstract. Attributed graph grammars can specify the transformation
of complex data and object structures within a natural rule-based model
of concurrency. This is crucial to their use in modelling interfaces of
services and components as well as the evolution of complex systems
and networks. However, the established concurrent semantics of graph
grammars by unfolding does not cover attributed grammars. We develop
a theory of unfolding for attributed graph grammars where attribution is
represented symbolically, via logical constraints. We establish a functorial
representation (a coreflection) of unfolding which guarantees it to be
correct, complete and fully abstract.

As a case study and running example we demonstrate the use of visual
contracts to specify an escrow smart contract.

Keywords: Symbolic attribute graph transformation · Unfolding
semantics · Visual smart contracts

1 Introduction

The majority of software developed today is distributed and concurrent, includ-
ing mobile, service-oriented, cloud- and component-based applications, smart
contracts and decentralised applications (Dapps) on blockchain platforms such
a Ethereum or Neo, P2P applications, etc. Technical and organisational chal-
lenges, such as the lack of a central authority both at runtime and during devel-
opment are being addressed by model-based software engineering methods. In
order to model such applications using graph transformation systems, we rely on
a natural rule-based model of concurrency. In its most comprehensive form, the
concurrent behaviour of graph grammars is formalised by their unfolding [1,3,4].
This represents in one structure the branching computations of the grammar in
(what could be called) a partial-order variant of its derivation tree.

Many practical applications of graph transformation, including to model-
based software engineering, require graphs attributed by numerical or textual
data and transformations combining structural with attribute updates, i.e.,
c© Springer Nature Switzerland AG 2020
F. Gadducci and T. Kehrer (Eds.): ICGT 2020, LNCS 12150, pp. 75–90, 2020.
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attributed graph grammars [5]. However, the theory of unfolding has so far
only been developed for the un-attributed case. Indeed, in the presence of
attributes, the concurrent and non-deterministic behaviour of a graph gram-
mar becomes significantly more complex. While, traditionally, dependencies and
conflicts between transformations are based on how their left- and right-hand
sides overlap in given or derived graphs, and how these overlaps include ele-
ments created or deleted by one rule and required or preserved by the other, the
presence of data requires a deeper analysis of conflicts and dependencies. For
example, two rules updating the same attribute, one after the other, may still
be exchangeable if the attribute operations performed are commutative. Also,
the choice of different assignments for variables may lead to infinitely branching
systems even if the branching structure of their underlying structural grammar
is finite.

In this paper we lift the theory of unfolding to attributed graph grammars,
providing the semantic foundations for concurrent and distributed system mod-
els with data. By treating attribution purely logically, based on the notion of
symbolic attributed graphs, we are able to separate attribute computations from
structural unfolding. In particular, the use of lazy symbolic graph transforma-
tions [9] allows to abstract from specific attribute values while keeping track
of all constraints such values have to satisfy. The resulting theory follows the
un-attributed case in establishing unfolding as a coreflection, i.e., a right adjoint
to the inclusion of the subcategory of occurrence grammars into the category
of attributed graph grammars. This shows the construction to be correct and
complete in representing only and all steps of the given grammar, and to be fully
abstract (i.e. represented in a minimal way).

We introduce the main concepts of symbolic attributed graph grammars,
including the notion of lazy symbolic transformations, and present the escrow
contract model as running example. Section 3 recalls the unfolding of classical
DPO graph grammars, which is extended to attributed grammars in Sects. 4 and
5. In Sect. 6 we draw conclusions and discuss related and future work.

2 Symbolic Attributed Graph Transformation

Given a data algebra D with non-empty carrier sets, an attributed graph [5]
over D is a graph whose graph objects (nodes and edges) are labelled over D.
Elements of D are represented as data nodes and connected to graph objects by
attribute links. Formally this structure is known as an E-graph [5]. A symbolic
attributed graph [8] specifies a class of attributed graphs by means of constraints.
Formally 〈G,Φ〉 is an E-graph whose graph objects are labelled by a set of
variables x ∈ XG, together with a set of constraints Φ over XG.

In our case, constraints are equations over XG using values in D as con-
stants. Each substitution σ : XG → D extends canonically to such equations.
If they hold in D, denoted D |= σ(Φ), this defines an attributed graph σ(G)
replacing variables x with data values σ(x). Hence, the semantics of 〈G,Φ〉 is
Sem(〈G,Φ〉) = {σ(G) | D |= σ(Φ)}. To simplify notation we will identify G with
the symbolic attributed graph, denoting its constraints ΦG.
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Fig. 1. Symbolic attributed type and instance graphs

An attributed graph morphism h : 〈G1, Φ1〉 → 〈G2, Φ2〉 is a graph homomor-
phism h : G1 → G2 such that D |= (Φ2 ⇒ h(Φ1)), where h(Φ1) are the formulas
obtained by replacing in Φ1 every variable x1 by h(x1). Symbolic graphs and
morphisms over D form the category SGraphD, or just SGraph if D is under-
stood.1,2

In the rest of the paper, we will work with typed graphs. Given a dedicated
type graph TG defining the types of nodes, edges and attributes, a TG-typed
(symbolic attributed) instance graph is a graph G with a morphism tG : G → TG
mapping elements in G to their types. The category SGraphTG has TG-typed
instance graphs 〈Gi, tGi

〉 as objects and as arrows h : 〈G1, tG1〉 → 〈G2, tG2〉
attributed graph morphisms h : G1 → G2 such that tG2 ◦ h = tG1 .

Example 1 (type and instance graphs of escrow model). Figure 1 shows a type
graph in the bottom right corner and one of its instances in the top left. Note
that, according to our definitions, this is an E-graph whose data nodes are vari-
ables related to their values by equations. For example, node w1 is a node of
type Wallet and has an attribute link of type balance pointing to an (invisi-
ble) variable node (say b) whose value is given by an equation b = 100 in the
constraints ΦG.

Modern blockchain technologies allow developers to offer smart contracts
as services based on the blockchain’s distributed data model and other basic
features, such as wallets and payments. A popular example is an escrow service,
1 We use D to denote both the many-sorted algebra and the disjoint union of its

carrier sets.
2 We write h(Φ1) in a slight abuse of notation. To be more rigorous (and less readable)

we should write h#
X(Φ1), where hX is the restriction of h to the set of variables of

G1, mapping them to variables in G2, and h#
X is the (unique) extension of hX to

terms over D’s signature.
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to act as intermediary between sellers and buyers in commercial transactions.
The type graph defines the data model for such a service. Type escrow acts as
container and defines a stake factor, by which the price of a widget is multiplied
to define the stake to be raised by both seller and buyer. Items to be sold and
bought are of type Widget, with attributes for cost (reflecting the cost to the
seller at which a widget was obtained or produced), value (the presumed value
to a prospective buyer), and delivery (shipping cost). Type Contract represents
the smart contract, created when buyer and seller enter into a transaction, to
maintain the relevant data.

In general, an attribute can have a set of values, i.e., link to several variable
nodes. For a TG-typed graph G and a graph object (node or edge) o in G we
write o.at for the set of variables x such that there is an attribute link al in
G from o to x with tG(al) = at. If o.at is singleton, we write o.at = x ∈ G.
Generally, in rules, input and reachable graphs, attribution is unique, i.e., o.at
is singleton for all graph objects o and attributes at.

As illustrated in the example above, an attributed graph can be presented
as a symbolic one by replacing all its attribute values in the data algebra D by
variables, and for each value v, where xv is the variable replacing it, including an
equation xv = v in the set of constraints. We call such symbolic graphs grounded.

A symbolic attributed graph G is linear if each variable x ∈ XG occurs as an
attribute value of at most one node or edge in G. A TG-typed symbolic attributed
graph transformation rule over D is a triple r = 〈ΦL, L ←↩ K ↪→ R,ΦR〉, where
L ←↩ K ↪→ R is a span of TG-typed graph inclusions such that L is linear,
XL = XK ⊆ XR, and where ΦL, ΦR are sets of constraints over XL ∪ D and
XR ∪ D, respectively, satisfying D |= (ΦR ⇒ ΦL).

Typed symbolic attributed graph transformation is defined following the
double-pushout (DPO) approach [5] by a transformation of the underlying E-
graphs satisfying the constraints: Given a rule r as above and a morphism
m : L → G, a transformation 〈G,ΦG〉 =

r,m
==⇒ 〈H,ΦG ∪ m′(ΦR)〉 exists iff there

is a DPO step G =
r,m
==⇒ H of the E-graphs such that D |= (ΦG ⇒ m(ΦL)) and

ΦG ∪m′(ΦR) is satisfiable in D. That means, if the left-hand side constraints are
implied by the constraints in the given graph, the right-hand side constraints
are added to the derived graph assuming that the result is consistent.

The use of the DPO approach to define the structural transformation means
that rule r is only applicable at match m if the dangling and dangling identi-
fication conditions are satisfied. Match m satisfies the dangling condition if no
node in G about to be deleted by r is the source or target of an edge outside
m(L) (because such an edge would be left “dangling” when deleting the node).
The identification condition requires that a node or edge x in L \ R (i.e., m(x)
is deleted by the rule) cannot be identified with any other object y in L, i.e.,
m(x) = m(y) implies x = y. This ensures resource consciousness for deleted
graph objects while allowing non-injective matching in general.

Example 2 (sell rule and transformation). The top half of Fig. 2 shows an
attributed graph transformation rule from our escrow example specifying an
operation sell(u1:User, w:Widget, p:Int): Contract. We only show graphs L and R,
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with the interface left K implicit as their intersection. The rule assumes objects
and data on the left of the arrow, introducing variables such as e : Escrow and
sf to capture them for use in the right-hand side to create links to new objects
such as c : Contract and in expressions of attribute assignments and updates.
The match m is controlled by input parameters u1, w, p subject to the condition
in the yellow box restricting the choice of price p.

Fig. 2. Attributed rule and transformation (Color figure online)

The variables in this rule are XL = {p, sf, b1, cst, val, d} and XR = XL ∪
{b1′, b, s}, the latter referring to the new values of the w.balance, c.balance,
and c.stake, respectively. The input parameter p is part of the left-
hand side and therefore chosen by the match. This leads to branch-
ing over all values of p, a degree of non-determinism that makes the
direct computation of all derivations impossible. ΦL = {cst + d <
p < val} and ΦR = ΦL ∪ {balance = p × sf, price = p,
stake = p × sf, balance = b1 − p × sf}. In the bottom half we show an applica-
tion of the rule, transforming an instance graph which, in addition to the objects
in the rule, has a second user. Note that attributes here have actual values, and
how new values are computed in the derived graph on the right.

Constraints added by r can be satisfied by several non-isomorphic graphs.
Rule r is ground-preserving if for any grounded graph G and transformation
G =

r,m
==⇒ H, graph H is grounded. All rules in this paper are ground-preserving.
To separate the handling of constraints, we may want to apply a rule r =

〈ΦL, L ←↩ K ↪→ R,ΦR〉 without checking entailment of m(ΦL). This is equivalent
to applying the corresponding lazy rule r∅ = 〈∅, L ←↩ K ↪→ R,ΦR〉, in a lazy
transformation.

Proposition 1 (lazy transformation of grounded graphs). A symbolic
graph transformation rule r = 〈ΦL, L ←↩ K ↪→ R,ΦR〉 and its lazy counterpart
r∅ = 〈∅, L ←↩ K ↪→ R,ΦR〉 are equivalent on grounded graphs. That means, given
a symbolic transformation G =

r,m
==⇒ H with G grounded, this also represents a lazy

transformation using r∅, and vice versa.
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Sometimes we want to translate graphs, rules and transformations from one
type graph to another. This is possible because a morphism f : TG1 → TG2

between type graphs induces a translation of instances. Formally, we denote by
f>
TG : SGraphsTG1

→ SGraphsTG2
the covariant retyping functor from TG1-

typed to TG2-typed instance graphs, defined by composition of fTG with the
typing morphisms as f>

TG(〈G1, tG1〉) = 〈G1, fTG ◦ tG1〉. Note that, the func-
tor only affects the typing, i.e., the attributed graphs with their variables and
constraints remain unchanged. Hence f>

TG also acts as identity on morphisms.

Definition 1 (attributed graph grammar). A (typed symbolic) attributed
graph grammar (AGG) over a data algebra D is a 4-tuple AG = 〈TG,Gin, P, π〉,
where TG is a type graph over D, Gin is the TG-typed initial graph, P is a set
of rule names, and π is a mapping associating to any p ∈ P a TG-typed rule
π(p) = 〈ΦLp

, Lp ←↩ Kp ↪→ Rp, ΦRp
〉 over D.

An AGG morphism f : 〈TG,Gin, P, π〉 → 〈TG′, G′
in, P ′, π′〉 between gram-

mars over the same data algebra D is a pair 〈fTG, fP 〉 where fTG : TG → TG′

is a retyping morphism and fP : P → P ′ is a mapping of rule names such that

– f>
TG(Gin) = G′

in

– For all p ∈ P , π′(fP (p)) = 〈ΦLp,f
>
TG(Lp) ← f>

TG(Kp) → f>
TG(Rp), ΦRp

〉.
The category of attributed graph grammars and their morphisms is AGG.

A derivation in AG is a finite sequence of transformations s = (Gin = G0 =
p1,m1===⇒

· · · =
pn,mn====⇒ Gn) with pi ∈ P . Since f>

TG preserves pushouts and rules spans
and constraints remain the same but for typing, morphisms of attributed graph
grammars preserve derivations. That is, a derivation s in AG is translated by f to

a derivation f(s) = (f>
TG(Gin) = f>

TG(G0) =
fP (p1),f

>
TG(m1)==========⇒ · · · =

fP (pn),f
>
TG(mn)==========⇒

f>
TG(Gn)).

Given an attributed graph grammar AG = 〈TG,Gin, P, π〉, its underlying
(unattributed) grammar is AGG = 〈TGG, Gin,G, P, πG〉 where TGG and Gin,G

are the restrictions of TG and Gin to their graph components (excluding vari-
ables and attribution edges) and for all p ∈ P with π(p) = 〈ΦLp

, Lp ←↩ Kp ↪→
Rp, ΦRp

〉 their rules reduce to πG(p) = 〈∅, (Lp)G ←↩ (Kp)G ↪→ (Rp)G, ∅〉. It is
easy to see that a derivation s in AG reduces to a derivation sG in the underlying
grammar GG. Similarly, by AGEG we denote the underlying E-graph grammar,
retaining attribute links and variables, but dropping all constraints.

Example 3 (attributed graph grammar for escrow smart contract). The rules
specifying the service are shown in Fig. 3 using an integrated notation merging
left- and right hand side graphs into a single rule graph L ∪ R. We indicate by
colours and labels which elements are required but preserved (grey), required
and deleted (red), or newly created (green). That means, the left-hand side L
is given by all grey and red elements, the right-hand side by all grey and green
ones, and the interface K by the grey elements only.

The service works as follows. The price is set by the seller using input param-
eter p > 0, which is recorded in the contract created as part of the sell operation.
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This step also incurs the stake of stakeFactor × p, which is transferred from the
seller’s wallet to the balance of the contract. If the seller changes their mind and
withdraws the widget, the stake is refunded.

The buyer uses the buy operation to indicate their intend to buy at the price
c.price as listed in contract c while transferring the same stake as the seller.
When entering into a contract, seller and buyer use up a token, modelled by
a loop, used to control the number of contracts each user can engage in. This
can either be returned when they leave the contract, allowing them to enter into
a new one (in the current version) or it can be a single-use token (in a later
variant). If the seller withdraws after the buyer entered into the contract, the
buyer can leave with the stake returned, and then the contract is deleted. Note
that, due to the dangling condition, leave is only applicable if the contract does

Fig. 3. Rules of the escrow model, in Henshin notation (Color figure online)
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not have any further connections, in particular no selling link. That means it is
only applicable after withdraw.

Once buyer and seller have entered the contract, the widget can be delivered.
This leads to the transfer of the price from the buyer to the contract. The
buyer can also change their mind and cancel either before delivery, in which
case the buyer’s and seller’s stakes are refunded, or after delivery, e.g., if they
are unsatisfied with the widget received. In the latter case they need to return
the widget to get the price refunded. If the widget is to the buyer’s satisfaction,
they can acknowledge receipt leading to the resolution of the contract and the
ultimate payment to the seller’s wallet of the price and the refund of both stakes.

3 DPO Occurrence Graph Grammars and Unfolding

As a prerequisite to considering attributed grammars, in this section we review
the theory of unfolding for typed DPO graph grammars [4]. In the rest of the
paper we assume that all rules are consuming, i.e., their left-hand side morphism
is not an isomorphism.

A grammar G = 〈TG,Gin, P, π〉 is (strongly) safe if, for all H such that
Gin ⇒∗ H, H has an injective typing morphism. Instance graphs with injective
typing can be safely identified with the corresponding subgraphs of the type
graph (thinking of injective morphisms as inclusions). Therefore, in particular,
each graph 〈G, tG〉 reachable in a safe grammar can be identified with the sub-
graph tG(G) of the type graph TG. For a safe grammar G, the set of its elements
is defined as Elem(G) = TGE ∪ TGN ∪ P , assuming without loss of generality
that the three sets are mutually disjoint.

Using a net-like language, we speak of pre-set •q, context q and post-set q•

of a rule q, defined as the sets of element deleted, preserved, or created by the
rule. Similarly for a node or edge x in TG we write •x, x and x• to denote the
sets of rules which produce, preserve and consume x. The causal relation of a
grammar G is the binary relation < over Elem(G) defined as the least transitive
relation satisfying, for any node or edge x in TG and q1, q2 ∈ P : (1) if x ∈ •q1
then x < q1; (2) if x ∈ q1

• then q1 < x; and (3) if q1
• ∩ q2 = ∅ then q1 < q2. As

usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote by
�x� the set of causes of x in P , namely {q ∈ P : q ≤ x}.

The asymmetric conflict relation of G is the binary relation ↗ over P , given
by (1) if q1 ∩ •q2 = ∅ then q1 ↗ q2; (2) if •q1 ∩ •q2 = ∅ and q1 = q2 then q1 ↗ q2;
and if q1 < q2 then q1 ↗ q2.

A (nondeterministic) occurrence grammar is an acyclic grammar which rep-
resents, in a branching structure, several possible computations starting from its
initial graph and using each rule at most once.

Definition 2 (occurrence grammar). An occurrence grammar is a safe
graph grammar O = 〈TG,Gin, P, π〉 where

1. for each rule q : 〈L, tL〉 l← 〈K, tK〉 r→ 〈R, tR〉, typing morphisms tL, tK , tR
are injective;
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2. its causal relation ≤ is a partial order, and for any q ∈ P , the set �q� is finite
and asymmetric conflict ↗ is acyclic on �q�;

3. the initial graph Gin coincides with the set Min(O) of minimal elements of
〈Elem(O),≤〉 (with the graphical structure inherited from TG and typed by
the inclusion);

4. each arc or node x in TG is created by at most one rule in P : | •x |≤ 1.

Fig. 4. Type graph, causality (solid) and asymmetric conflicts (dashed) of attributed
occurrence grammar (Color figure online)

Since the initial graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly.

One can show that each occurrence grammar is safe [4].

Example 4 (occurrence graph grammar). An occurrence grammar based on the
underlying grammar AGG of the escrow model is shown in Fig. 4 with its type
graph on the left and relations on the right. In the graph, all preserved (grey)
elements are minimal, making up the input graph. The rules are the same as in
Fig. 3. Matches and co-matches are defined by name, e.g., c : Contract in any of
the rules maps to c : Contract in the type graph. This is possible here because
we apply each rule exactly once. The causality and asymmetric conflict relations
are justified below, with relations covered by transitive closure omitted.

– sell < withdraw, buy because sell creates the contract used by withdraw,
buy;

– buy < deliver, cancel, leave because buy creates the buying link used by
deliver and consumed by both leave, cancel; buy ↗ withdraw because buy
uses the widget link deleted by withdraw;

– withdraw ↗ leave because leave deletes the contract used by withdraw;
– deliver < ack, return because deliver creates the has link used by both

ack, return; deliver ↗ withdraw, leave, cancel because withdraw and cancel
both consume the selling link and leave the contract used by deliver;

– cancel ↗ withdraw because withdraw deletes the selling link used by cancel
– cancel, leave, ack are in mutual conflict because all delete the buying link;
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– ack ↗ return because return deletes the has link used by ack;
– return ↗ ack because ack deletes the contract used by return;

Note the lack of a causal dependency withdraw < leave; however due to
the dangling condition leave can only be applied after withdraw. For a similar
reason, leave cannot occur after deliver because sell, buy, deliver, leave violates
the dangling condition due to the lack of withdraw while sell, buy, withdraw,
deliver, leave is disallowed by deliver ↗ withdraw. Such subsets of rules, that
are not fully executable in any order, do not form configurations. Subsets of rules
that do, represent reachable graphs.

Occurrence grammars can be created by unfolding consuming graph gram-
mars. The idea is to start from the initial graph of the grammar, then apply in
all possible ways its rules while recording each occurrence and each new graph
item generated with their causal histories. The basic ingredient here is the gluing
operation, that we borrow literally from [4].

By glue∗(q,m,G) we represent the additive application of rule q at match m
to graph G, generating new items as specified by the rule and labelling them by
∗, but not removing items that should have been deleted. This is because such
items may still be used by another rule in the nondeterministic unfolding.

4 Attributed Occurrence Grammars

In this and the following section we lift the theory of occurrence grammars and
unfolding from typed graph grammars to lazy typed symbolic attributed ones.
On grounded graphs, lazy rules are equivalent to general symbolic rules. Limiting
ourselves to ground-preserving rules and a grounded start graph, all derivations
will be grounded, which will allow us to transfer the results to the general case,
including non-lazy rules.

Definition 3 (safe attributed graph grammar). An attributed graph gram-
mar AG = 〈TG,P,Gin, π〉 is safe if TG is linear and its underlying E-graph
grammar AGEG is safe (reachable graphs H have injective typing tH : H → TG).

A reachable graphs H will be seen as subgraphs of TG, and hence XH ⊆ XTG

and D |= (ΦTG =⇒ ΦH). That means, XTG is a global set of variables for AG.
The set of elements of a safe grammar AG is Elem(AG) = P ∪ TGG ∪ XTG,
including the rules, graph objects and variables in its type graph, but not its
attribute links. With this, the causal and asymmetric conflict relations < and
↗ carry over to the rules and graph objects of AG via its underlying E-graph
grammar AGEG. Applied to E-graphs, these relations include variable nodes
(although variables are never deleted, so •q ∩XTG = ∅) but no attribution links.
In particular, x ∈ q• iff x ∈ XRq

\ XLq
and x ∈ q iff x ∈ XLq

∩ XRq
.

Let’s examine the impact on the causal and asymmetric conflict relations of
omitting attribute links from context, pre- and post-sets. When an attribute is
updated, its attribute link is deleted and a new one is created pointing to a new
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variable. If two rules q1, q2 update the same attribute one after the other, q1
creates the attribute link resulting in the first update and q2 deletes the link.
That means, in a causal relation including attribute links q1 < q2 based on
clauses 1 and 2 in the definition of <. Now, without considering attribute links
q1 < q2 by clause 3 because v ∈ q1

• ∩ q2. However, disregarding attribute links
impacts on asymmetric conflicts because variable nodes are never deleted, so
neither clause 1 nor 2 of ↗ apply. That means, in a structural sense, attribute
updates never cause conflicts. This is significant because it allows to separate
attribute computations from structural unfolding.

For e ∈ Elem(AG) we let �e� = {q ∈ P | q ≤ e} and �E� the extension to
sets E ⊆ Elem(AG). The set of constraints of R ⊆ P is Φ(R) =

⋃

p∈R

(
tLp

(ΦLp
) ∪

tRp
(ΦRp

)
)
. Given G ⊆ TG, variable x ∈ XG is current in G if there is no rule

p ∈ �G� with o.a = x ∈ Lp and o.a = y ∈ Rp \ Lp. Graph G is current if all
variables in XG are and every attribute has at most one variable as a label (i.e.
cannot have both o.a = y and o.a = z with y = z in the same graph G).

Definition 4 (attributed occurrence grammar). An attributed occurrence
grammar is a safe attributed graph grammar AG = 〈TG,Gin, P, π〉 where

1. for each rule q the typing morphisms tLp
, tKq

and tRq
are injective

2. for all q ∈ P , (↗)�q� is acyclic, Lq current, �q� finite, and Φ(�q�∪{q})∪ΦGin

satisfiable
3. the initial graph Gin consists of the minimal elements Min(AG) of

〈Elem(AG), ≤〉3 with attribution and graph structure inherited from TG and
typed by the inclusion

4. each element (arc, node, variable or attribution edge) e in TG is created by
at most one rule in P : | •e |≤ 1

The category of attributed occurrence grammars and AGG morphisms is AOG.

Given attributed occurrence grammar AO, its underlying grammar AOG is an
occurrence grammar. In particular, AOG is obtained from AO by dropping its
variables, attribute links and constraints. Hence conditions (2–4) in Definition 4
reduce to (2–4) in Definition 2.

Example 5 (attributed occurrence grammar). Figure 5 shows the rules and causal
relation of an attributed occurrence grammar extending that of Example 4.
Dependencies caused by attribute updates (of the contract’s balance attribute)
are shown as red dotted lines. Structurally, each such update reads the variable
node representing the old value, creates a new variable node and changes the
attribute link from the old to the new variable node. That means, subsequent
rule applications access the new version of the variable node, which makes them
different from applications of the same rules to the same graph objects accessing
earlier versions of the attribute. Hence the duplication of rule occurrences in the

3 Notice that Min(AG) ⊆ NTG ∪ ETG, i.e., it does not contain rules, since the
grammar is consuming.
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dependency structure. All asymmetric conflicts carry over from the unattributed
case, i.e., if p ↗ q in Example 4, then p? ↗ q? for all copies p?, q? of p, q. As
discussed earlier, there are no new conflicts due to attribute updates.

Furthermore, in any current graph every attribute is labelled by at most one
variable. To clarify the importance of this condition, consider the branching from
cancel2 to withdraw6 and return2 both of which update attribute c.balance.
The former substitutes it by c.balance − c.stake and the latter by c.balance −
c.price. Applying both rules in parallel yields {b2 = b1 − c.stake, b3 = b1 −
c.price} ⊂ Φ(�G�) which is always satisfiable. However this result does not
correspond to any sequence of rule applications since both updates of c.balance
use b1 as the previous value. By preventing an attribute from having more than
one label in a current graph, we disallow multiple versions of the same attribute.

Fig. 5. Causality relation of attributed occurrence grammar (Color figure online)

5 Unfolding Attributed Graph Grammars

This section introduces the unfolding construction which, applied to an
attributed graph grammar AG, produces an attributed occurrence grammar UAG
describing the behaviour of AG. The unfolding is equipped with a morphism uAG
to the original grammar AG which allows to see rules in UAG as rule applica-
tions in AG, and items of the type graph of UAG as instances of items of the
type graph of AG. Starting from the initial graph of the grammar, we apply in
all possible ways its rules, and record in the unfolding each redex and new graph
item generated with their causal histories. In order for these rule applications
to reflect reachable transformations, we introduce attribute concurrent graphs
representing reachable matches.

Definition 5 (attribute concurrent graph). Let AO = 〈TG,Gin, P, π〉 be
an attributed occurrence grammar. A subgraph G of TG is called attribute con-
current if

1. ¬(x < y) for all x, y ∈ G;
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2. G is current and �G� finite;
3. ↗ is acyclic on �G�;
4. for all e ∈ TG and n ∈ {s(e), t(e)}, if n• ∩ �G� = ∅ and •e ⊆ �G� then

e• ∩ �G� = ∅;
5. ΦGin

∪ Φ(�G�) is satisfiable.

Proposition 2 (attribute concurrent graphs are coverable). A graph
G ⊆ TG is attribute concurrent if and only if it is coverable in AO, i.e. there is
a derivation Min(AO) ⇒∗ H with G ⊆ H.

For every concurrent graph G one can find a derivation Min(O) ⇒∗ H which
applies exactly once every rule in �G�, in any order consistent with (↗�G�)∗.
Vice versa for each derivation Min(O) ⇒∗ G in O, the set of rules it applies
contains �G� and their order is compatible with ↗∗. Therefore reachable graphs
are concurrent. Furthermore, each subgraph of a concurrent graph is concurrent
as well, thus so are all coverable graphs.

The proof is based on an analogous result for the un-attributed case,
analysing the additional dependencies arising from attribute updates, and deriv-
ing the satisfiability of constraints added throughout derivations from that of
Φ(�q� ∪ {q}) ∪ ΦGin

in Definition 4.2.
The unfolding of an attributed grammar AG = 〈TG,Gin, P, π〉 is defined as

follows. For each n, we construct a partial unfolding U(AG)(n) = 〈U (n), u(n)〉,
where U (n) = 〈TG(n), Gin, P (n), π(n)〉 is an attributed occurrence grammar and
u(n) = 〈u(n)

TG, u
(n)
P 〉 : U (n) → AG an AGG morphism. Intuitively, the occurrence

grammar generated at level n contains all possible computations of the grammar
with “causal depth” at most n.

– (n = 0) 〈U (0), u(0)〉 is defined as U (0) = 〈Gin, Gin, ∅, ∅〉 with u
(0)
TG = tGin

.

– (n → n + 1) Given U(AG)(n), the partial unfolding U(AG)(n+1) is obtained
by applying all enabled redexes m : Lq → 〈TG(n), u

(n)
TG〉 of q ∈ P in TG(n).

Let P(n+1) be the set of all triples q∗
i = 〈qi,mi,G,mi,X〉 such that m(Lq) ⊆

TG(n) is attribute concurrent and mi(Φp) is satisfiable. Then, U(AG)(n+1) is
given by

• TG(n+1) = glueq∗
k
(qk,mk, . . . glueq∗

1
(q1,m1, TG(n)) . . . ), the consecutive

gluing of TG(n) with Rq1 . . . Rqk along Kq1 . . . Kqk , respectively, with con-
straints ΦTG(n+1) = ΦTG(n) ∪ m1(ΦRq1

) ∪ · · · ∪ mk(ΦRqk
);

• morphism u
(n)
TG extended canonically to u

(n+1)
TG : TG(n+1) → TG;

• P (n+1) = P (n) ∪ {〈q,mG,mX〉 | 〈q,m〉 ∈ P(n+1)};
• u

(n+1)
P = u

(n)
P ∪ uP,(n+1) where uP,(n+1)(〈q,mG,mX〉) = q;

• π(n+1)(〈q,mG,mX〉) coinciding with π(q) except for retyping.

The result of the gluing operation is independent of the order of redexes applied.
The match of a rule, which is part of its name in the unfolding, records the

causal history by way of the graph and data elements it maps to, which in turn
are labelled by the name of the rule that created them. This allows to distinguish
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rule occurrences with different histories. Note that if a rule is applied twice (also
in different steps) with the same graphical match and variable mapping, the
generated items are the same and thus they appear only once in the unfolding.
By construction it is evident that U(AG)(n) ⊆ U(AG)(n+1), component-wise.

Definition 6 (attributed unfolding). The unfolding U(AG) = 〈UAG , uAG〉 is
defined as

⋃
n U(AG)(n), where union is applied componentwise.

The folding morphism u is defined by mapping rules by their names, while on
types uTG(x : X) = X.

Example 6 (unfolding). In Example 5 we presented a partial unfolding of the
grammar in Example 3. The set of rules {sell, buy, deliver, cancel, return}
admits two possible linearisation sell, buy, deliver, cancel, return and sell,
buy, deliver, return, cancel that only differ in the order of applying cancel
and return. While the structural unfolding does not distinguish between the
sequences, in the attributed unfolding they both update attributes c.balance
and w2.balance. Hence, whichever occurs second will depend on the first. The
shared part of both linearisation is shown below, the two distinct parts in the
following tables.

i Rule Rule

application

X(i) \ X(i−1) Constraint

1 sell sell1 〈w1.balance, sell1〉 〈w1.balance, in〉 − 〈p, in〉 × 〈e.stakeFactor, in〉
〈c.balance, sell1〉 〈p, in〉 × 〈e.stakeFactor, in〉
〈c.price, sell1〉 〈p, in〉
〈c.stake, sell1〉 〈p, in〉 × 〈e.stakeFactor, in〉

2 buy buy1 〈w2.balance, buy1〉 〈w2.balance, in〉 − 〈c.stake, sell1〉
〈c.balance, buy1〉 〈c.balance, sell1〉 + 〈c.stake, sell1〉

3 deliver deliver1 〈c.balance, deliver1〉 〈c.balance, buy1〉 + 〈c.price, sell1〉
〈w1.balance, deliver1〉 〈w1.balance, sell1〉 − 〈w.delivery, in〉
〈w2.balance, deliver1〉 〈w2.balance, buy1〉 − 〈c.price, sell1〉

i Rule Rule
application

X(i) \ X(i−1) Constraint

4 cancel cancel2 〈c.balance, cancel2〉 〈c.balance, deliver1〉 − 〈c.stake, sell1〉
〈w2.balance, cancel2〉 〈w2.balance, deliver1〉 + 〈c.stake, sell1〉

5 return return2 〈c.balance, return2〉 〈c.balance, cancel2〉 − 〈c.price, sell1〉
〈w2.balance, return2〉 〈w2.balance, cancel2〉 + 〈c.price, sell1〉

Through substitution we find that in both linearisation the end result is
the same, i.e., both c.balance and w2.balance are equal to their initial values.
However, the causal dependencies are different due to different data flow:

The two paths are confluent (produce the same result) but not equivalent (do
not represent the same concurrent computation). For applications where we are
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i Rule Rule
application

X(i) \ X(i−1) Formula

4 return return1 〈c.balance, return1〉 〈c.balance, deliver1〉 − 〈c.stake, sell1〉
〈w2.balance, return1〉 〈w2.balance, deliver1〉 + 〈c.price, sell1〉

5 cancel cancel3 〈c.balance, cancel3〉 〈c.balance, return1〉 − 〈c.stake, sell1〉
〈w2.balance, cancel3〉 〈w2.balance, return1〉 + 〈c.stake, sell1〉

cancel before return return before cancel

cancel2 < return2

〈c.balance, cancel2〉 < 〈c.balance, return2〉
〈w2.balance, cancel2〉 < 〈w2.balance, return2〉

return1 < cancel3

〈c.balance, return1〉 < 〈c.balance, cancel3〉
〈w2.balance, return1〉 < 〈w2.balance, cancel3〉

only interested in the end results of non-deterministic concurrent computations,
it makes sense to explore whether confluence can be used to restrict the unfolding
construction, avoiding exploration of confluent alternatives.

Proposition 3 (attributed unfolding). UAG is an attributed occurrence
grammar and uAG : UAG → AG is an attributed graph grammar morphism.

Since AGG morphisms preserve derivations, this implies the correctness of
the unfolding, i.e., uG maps all derivations in UAG to derivations in AG. The con-
struction can be lifted to a functor between attributed grammars and occurrence
grammars which is a right adjoint to the inclusion functor.

Theorem 1 (coreflection). Unfolding is a coreflection U : AGG → AOG,
that is, right-adjoint to the inclusion of AOG in AGG.

The proof established the unfolding as a co-free construction from attributed
grammars to attributed occurrence grammars. That means, the unfolding is
maximal among all attributed occurrence grammars equipped with a morphism
back to the original grammar, in the sense that there exists a unique commuting
morphisms from every other candidate. The existence of this morphism shows
that the unfolding is complete in representing all possible behaviours present in
the given grammar. Uniqueness shows that they are represented in a minimal
way, so there is only one choice as to how the morphism can be defined.

6 Related Work and Conclusion

We presented occurrence grammars and unfoldings for attributed graph gram-
mars. Since unfolding is a coreflection, the semantics is correct (only representing
derivations specified by the grammar), complete (representing all such deriva-
tions) and fully abstract (represented in a minimal way). Our approach uses
symbolic graph transformation [8,9] and the theory of unfolding of graph gram-
mars [1,2], in turn generalising results for Petri Nets [6]. [7] uses approximated
unfolding and abstract interpretation to analyse attributed graph grammars.
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While their focus is on scalable analysis with numerical data, rather than compre-
hensive semantics, we share the objective of separating structural from attribute
computations.

We will use the relation of occurrence grammars and event structures to
develop, based on Rideau and Winskel’s concurrent games as event structures
[10], a notion of concurrent game over attributed graph grammars, with appli-
cations to analysing smart contracts. We also plan to integrate the theories of
unfolding for attributed and conditional grammars.

Acknowledgement. We would like to thank the authors of [2] for their support and
advice.
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Abstract. The elegance of the single-pushout (SPO) approach to graph
transformations arises from substituting total morphisms by partial ones
in the underlying category. Thus, SPO’s applicability depends on the
durability of pushouts after this transition. There is a wide range of work
on the question when pushouts exist in categories with partial morphisms
starting with the pioneering work of Löwe and Kennaway and ending
with an essential characterisation in terms of an exactness property (for
the interplay between pullbacks and pushouts) and an adjointness con-
dition (w.r.t. inverse image functions) by Hayman and Heindel.

Triple graphs and graph diagrams are frameworks to synchronize two
or more updatable data sources by means of internal mappings, which
identify common sub-structures. Comprehensive systems generalise these
frameworks, treating the network of data sources and their structural
inter-relations as a homogeneous comprehensive artifact, in which par-
tial maps identify commonalities. Although this inherent partiality pro-
duces amplified complexity, Heindel’s characterisation still yields cocom-
pleteness of the category of comprehensive systems equipped with closed
partial morphisms and thus enables computing by SPO graph transfor-
mation.

Keywords: Single Pushout Rewriting · Partial morphism · Category
theory · Hereditary pushout · Upper adjoint · Comprehensive system

1 Introduction and Motivation

We want to dedicate this paper to Michael Löwe, the founder of the single-
pushout approach [12] and simultaneously a pioneer in the investigation of cat-
egories of partial algebras with partial morphisms between them [13].

In this paper, we want to combine these two theories. We introduce the cate-
gory of comprehensive systems, formally a category in which the inner structure
of the objects can be described with partial maps, and will show that SPO
rewriting is applicable in this category.
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(1) (2)(3)

Fig. 1. Comprehensive system

Comprehensive Systems have been
introduced in [21] (see also [22]) as a means
for global consistency management, rep-
resenting a collection of inter-related sys-
tems. To provide an intuition of a com-
prehensive system (Definition 3 in Sect. 3),
take a look at Fig. 1. There are three con-
ceptual models A1, A2, A3, which depict
persons ( ) with certain features: In A1 a
phone number ( ) is assigned to the per-
son, in A2 and A3 the person possesses
a home address ( ), and in A3 persons
additionally may have a business address
( ) . You may think of A1/2/3 representing (excerpts of) the contents of three
databases possibly in three distributed IT-systems, the first stores records of
persons and phone numbers while the second and third store records of persons
and addresses.

In many cases it is necessary to maintain global consistency of the databases’
contents, especially in the presence of inter-model constraints [20]. Let us assume
the following constraint:

IMC Every person with a business address must either provide a phone number
or a home address or both.

Violations of this constraint can only be discovered, if common elements in the
models are identified. Thus one has to specify that a recorded person in A1 is
actually the same as some person record in A2 and/or A3. Such commonality
specifications extend the modelling language and are commonly used in practice,
e.g. [5]. In Fig. 1 we employ grey-coloured “tentacles” to visualise three common-
alities: (1) The three person records, (2) the two home addresses, and also (3)
the two assignments of the home address to the person.

Note that A1/2/3 formally represent directed graphs. But the junctions of
each commonality (•) – called commonality representatives – form another graph
A0 in Fig. 1. Elements of A0 witness common elements among A1/2/3 and these
commonalities must obviously respect node-edge-incidences (see the person to
home address assignment), such that their respective outgoing grey lines are in
fact graph morphisms ai : A0 → Ai, i ∈ I = {1, 2, 3}.

For |I| = 2 the underlying star-shape of comprehensive systems (finite col-
lections of arrows (ai)i∈{1,...,n} with common source) reduces to the span shape
• ← • → •, which is the underlying setting for triple graphs [18], the common
source in the middle specifying the commonality graph. An extension of triple
graphs are graph diagrams [23], a framework for multi-ary model synchroni-
sation. Since multi-ary commonality relations such as the ternary tentacles of
identical person records in Fig. 1 can not be encoded with several binary relations
[19], one must distinguish relations of different arity in the underlying shape for
graph diagrams: E.g. in Fig. 1, a shape with two nodes is required: One node
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specifies the existence of a graph containing binary home address commonali-
ties and one node is used for ternary commonalities of person records. In larger
system landscapes (n > 3), there may be many more commonality relations of
arbitrary arity k ≤ n, which would cause a considerable amount of heterogene-
ity of commonality nodes in the underlying shape for graph diagrams. Moreover,
this schema and hence the basic setting for implementations must be altered,
whenever new commonality relations are added.

We showed in [21,22] that comprehensive systems are a homogeneous gener-
alisation of graph diagrams. They are homogeneous, because we need only one
node to cope with commonality relations of arbitrary arity (the center of the star-
shape specifying commonality graph A0) and must not alter the base setting, if
new relations are added. It is a generalisation, because we can implement each
graph diagram as a comprehensive system, i.e. we can jointly collect different
commonalities into one graph A0.

An important distinction, however, is that graph morphisms ai : A0 → Ai in
comprehensive systems are allowed to be partial. E.g. a1 : A0 → A1 in Fig. 1 is
undefined on (2) and (3) in A0. Nevertheless can we show that comprehensive
systems form a category CS, in which graph rewriting, especially SPO rewriting,
is possible. For this, we will also consider the category Par(CS), i.e. CS equipped
with partial morphisms, cf. Sect. 2. Although this requires handling both intrinsic
and extrinsic partiality, we can prove existence of all pushouts in this category
(Theorem 1 in Sect. 4) and hence demonstrate applicability of SPO rewriting.

Fig. 2. Pullback
along f

We expect the reader to have basic knowledge in cate-
gory theory. For categorical artefacts, we employ the following
notations: Categories like C will be denoted in a double-struck
font. When distinguishing between members of C, we write
|C| (or just C) for its objects and Arr(C) for its morphisms.
Moreover, there are identities idA : A → A and composition,
e.g. g ◦ f , for f : A → B and g : B → C. SET is the category
of sets and total mappings and we will use the letter G for
categories that are based on a signature with unary operation
symbols only, see Sect. 3 for more details. Monomorphisms (�), epimorphisms
(�) and – if applicable – inclusions (↪→) have special notations. We furthermore
expect the reader to be familiar with basic universal constructions like pullbacks,
coproducts, and pushouts. When describing a pullback as in Fig. 2, we either say
that the span (g′, f ′) is the pullback of co-span (f, g) or we call g′ the pullback
of g along f . Moreover, the pullback object D in this construction is highlighted
with a small adjacent right angle.

2 SPO Rewriting

2.1 Graph-Like Structures

A category G is called based on a signature with unary operation symbols only, if
it is isomorphic to a category of total algebras w.r.t. a signature, which only con-
tains sorts and unary operation symbols. The simplest example in our context –
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and the rationale behind using letter G – are directed graphs, which are based on
a signature with sorts E and V and two unary operation symbols s, t : E → V .
We do not endorse directed graphs in particular and could likewise choose G

to be given by E-Graphs [4] or bipartite artefacts like condition-event-nets. It
is well-known that all these categories are topoi and thus possess all limits (e.g.
pullbacks) and colimits (coproducts, pushouts) [6].

Objects of such categories G are sometimes called “graph-like structures”, as
e.g. in [14], and thus we will simply call G-objects and morphisms “graphs” and
“graph morphisms” bearing in mind the above mentioned more general setting.

Remark: G will serve as the base category (or base structure) for assembling
comprehensive systems, cf. Fig. 1. Actually, we could have traded G for more
general (weak) adhesive (HLR) categories w.r.t. an admissible subclass M of
all monomorphisms.1 Adhesive HLR categories have mainly been introduced to
model attributes, which poses some challenges regarding adhesiveness, in turn
requiring to work with special subclasses of morphisms, which are isomorphic on
the “data part”. However, we restrict ourselves to graph-like structures because
we are not focusing on attributes here and we want to stay in the tradition
of Michael Löwe, who originally investigated graph-like structures only. Since
graph-like structures are sufficiently concrete, we can actually refer to an element
x ∈ A for some A ∈ G, i.e. an element of some carrier set of graph A. Likewise,
“∀x ∈ A” means “for all x of any sort s in the carrier set of A”.

2.2 Partial Map Categories

Consider an arbitrary category C with pullbacks. Michael had the courage to
leave the comfortable world of total C-morphisms and utilised partial morphisms
[17] for the SPO approach. While other researchers adhered to total morphisms,
he forcefully followed through with partiality and proved that it is worthwhile

[12]. He used the following definitions: A C-span X dom(f)��m��
f

�� Y , is

equivalent to a second span X dom(f ′)��m′
��

f ′
�� Y , if and only if there is an

isomorphism i : dom(f) → dom(f ′) such that m′ ◦i = m and f ′ ◦i = f . A partial
morphism is an equivalence class w.r.t. this relation, denoted by 〈m, f〉 : X ⇀ Y ,
i.e. the pair (m, f) is a representative of its equivalence class. 〈m, f〉 is called
total, if m is an isomorphism, and we use the usual arrow tip in this case:
〈m, f〉 : X → Y .

It is then easy to see that the objects of C together with partial morphisms
constitute a new category Par(C): An identity is the equivalence class of the
identity span and composition of 〈m1, f1〉 : G1 ⇀ G2 and 〈m2, f2〉 : G2 ⇀ G3

is given by constructing the pullback span (m′
2, f

′
1) of co-span (f1,m2) yielding

the composed partial morphism 〈m1 ◦ m′
2, f2 ◦ f ′

1〉. This is in fact independent
of the choice of pullbacks and independent of the choice of representatives.

1 It seems that the subsequent proofs can still be carried out, if G is such a more
general structure. We will provide respective facts from time to time.
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Furthermore we obtain an identity-on-objects functor

Γ :

{
C → Par(C)

(A
f−→ B) 
→ (A

〈idA,f〉−−−−−⇀ B)

called the graphing functor [8], i.e. a canonical embedding of totality into par-
tiality.

Definition 1 (Hereditary Pushout). [8] Any pushout in C is called heredi-
tary, if its Γ -image is a pushout in Par(C). If all pushouts exist in C and they
are all hereditary, we say that C is a hereditary pushout category.

The following result can be found in [10]:

Proposition 1. If the Γ -image of a C-span has a pushout in Par(C), then this
cocone consists of two total morphisms, which are the Γ -image of the pushout of
this span in C. ��
For C := G, we can refer to elements inside objects of G, such that we will work
with representatives G

m←−↩ dom(f)
f−→ H of a partial morphism, in which the left

leg m is chosen as the effective inclusion of dom(f), the domain of definition of
the partial morphism, into G. Since the name m is of minor importance, we may
as well write f : G ⇀ H. In this setting, we will call f “total”, if the inclusion
m is the identity. For the remainder of this paper we will use G-inclusions when
there is a choice for monomorphisms (replacing � with ↪→).

The following result was stated in [7] but fully worked out already in [12]:

Proposition 2. G is a hereditary pushout category. ��

Fig. 3. Commutative cube

Finally, hereditariness can equivalently be characterised as follows:

Proposition 3 (Equivalent Characterisation of Hereditariness). [9] A
pushout like the top face in the cube in Fig. 3 is hereditary, if and only if in
any commutative cube as in Fig. 3 with rear faces being pullbacks and vertical
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front left and back right arrows (c and b in Fig. 3) being monomorphisms, the
following equivalence holds: The bottom face is a pushout if and only if (1) the
two front faces are pullbacks and (2) the vertical front right arrow (the dashed
arrow in Fig. 3) is a monomorphism. ��

2.3 Rewriting Rule and Derivation

While the double-pushout approach (DPO) [4] requires the construction of a
pushout complement and another pushout in the underlying category C, the
introduction of partial morphisms enables graph transformations to be expressed
by a single pushout in Par(C). This elegant alternative to DPO was initiated by
Raoult [16] and then fully worked out in Michael’s PhD Thesis [12].

Definition 2 (Rule, Match, Derivation, Conflict-Freeness). An SPO
rule is a morphism L

ρ−⇀ R of Par(C). A match for ρ at (host) G ∈ C is a
total morphism μ : L → G. A pushout of ρ and μ in Par(C) generates the (SPO-
) derivation G

ρ,μ⇒ H with trace ρ′ and co-match μ′, see Fig. 4. The match μ is
called conflict-free, if μ′ is a total morphism.

Fig. 4. SPO
derivation

Computing by SPO graph transformation requires the exis-
tence of pushouts in Par(C) and it requires conflict freeness of
matches, cf. Definition 2, if one wants to avoid partial matches.
We can prove existence of pushouts for Par(CS) in Sect. 4, but -
in contrast to a simple criterion for conflict freeness in terms of
injectivity of μ on delete-preserve pairs [12] - we have to leave the
question of a criterion for conflict freeness in Par(CS) for future
research.

3 Comprehensive Systems

For now and the rest of the paper, we fix a sufficiently large number n ∈ N.2

3.1 Definitions and Background

Definition 3 (Comprehensive System). Let (Ai)0≤i≤n be an n+1-tuple of
G-objects. We call

– (Aj)1≤j≤n the Components and
– A0 the Commonality Representatives

of a Comprehensive System

A := (aj : A0 ⇀ Aj)j∈{1,...,n}

i.e. of an n-tuple of partial graph morphisms (aj)1≤j≤n, which we call projec-
tions3.
2 Usually the number of distributed systems under consideration.
3 One might consider elements of A0 to be vectors (of arbitrary arity), in which com-
mon elements are listed, hence the term “projection” for the aj .
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In order to make reading easier, we always use letter i, if indexing comprises
graphs A0, A1, . . . , An and we use letter j, if indexing is only over the components
A1, . . . , An. Moreover, we denote comprehensive systems with bold face letters.

Comprehensive systems admit an all-embracing view on a system of possibly
heterogeneously typed components, in which all necessary informational overlaps
are coded, cf. Fig. 1. They have been treated on the level of graphs in [20] and –
on a more abstract level – in [3].

Definition 4 (Morphism of Comprehensive Systems). Let A := (aj :
A0 ⇀ Aj)j∈{1,...,n} and A′ := (a′

j : A′
0 ⇀ A′

j)j∈{1,...,n} be two comprehensive
systems. A morphism f : A → A′ is a family (fi : Ai → A′

i)0≤i≤n of total G-
morphisms, such that for all 1 ≤ j ≤ n

a′
j ◦ f0 = fj ◦ aj (1)

holds in Par(G), the category of graphs and partial morphisms.

Whenever we mention morphisms f : A → A′ between comprehensive systems,
we implicitly assume the components of A and A′ be denoted as in Definition 3
and we assume the constituents of f be denoted as in Definition 4.

There is the obvious identical morphism idA for each comprehensive system
A and composition can be defined componentwise. Hence we obtain

Proposition 4 (Category CS and Component Functors). Let G be a cat-
egory as described above.

– Comprehensive Systems and morphisms between them constitute a category,
denoted CSG or often just CS, if the base category is clear from the context.

– For each i ∈ {0, . . . , n} there is the component functor Ci : CS → G defined

by Ci(f : A → A′) = Ai
fi−→ A′

i for any f defined as in Definition 4. ��
It is important to note that we claim (1) to hold in Par(G) and not in G!

Let’s investigate the consequences: Recall that the definition of composition of
partial morphisms involves pullbacks. In the situation in Fig. 5 this enforces that
a pullback of ⊆′

j along f0 (to express the composition of 〈⊆′
j , a

′
j〉 and 〈idA0 , f0〉)

can be chosen to be equal to ⊆j , the inclusion of the domain of definition of
fj ◦ aj into A0, see the upper square in Fig. 5, and it enforces that the lower
square commutes. If x ∈ A0, this observation is equivalent to the statement x ∈
dom(aj) ⇐⇒ f0(x) ∈ dom(a′

j), because “⇒” corresponds to commutatitivity
of the upper square and “⇐” corresponds to the pullback property (in SET and
hence in G, in which pullbacks are constructed sortwise). This yields a more
handy admissibility characterisation for CS-morphisms:

Proposition 5 (Preservation and Reflection of Definedness).
f : A → A′ as defined in Definition 4 is a morphism of comprehensive systems
if and only if for all j ∈ {1, . . . , n} and for all x ∈ A0:

aj(x) is defined ⇐⇒ a′
j(f0(x)) is defined (2)

and the lower square in Fig. 5 commutes. ��
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Fig. 5. Composing partial and
total morphisms

Usually a morphism between two partial alge-
bras A and B requires only preservation of
definedness, i.e. “⇒” in (2). In the next section,
we justify why we additionally need reflection of
definedness.

3.2 Why Must Definedness Be Reflected?

Since our goal is to show that SPO rewrit-
ing is applicable for comprehensive systems, we
must show that Par(CS) possesses all pushouts.
Assume we would not have claimed reflection of definedness for CS-morphisms,
but only commutativity of the two squares in Fig. 5, which is equivalent to claim-
ing the properties of Proposition 5 except for the implication direction “⇐” in
(2). In this case let’s consider for n = 1 two simple comprehensive systems.
Let G = SET and A0 = {∗} and A1 = {•} be two one-element sets and
let A = (a1 : A0 ⇀ A1) with a1 the totally undefined map depicted with
(∗ •) and A′ = (a′

1 : A0 → A1) with a′
1 the unique total map from A0 to

A1 depicted (∗ 
→ •). If we only work with preservation of definedness, then
morphism 〈idA, f〉 : A → A′, in which f0 maps ∗ to ∗ and f1 maps • to •, is

an admissible morphism. We claim that the span A′ 〈idA,f〉←−−−−− A
〈idA,f〉−−−−−→ A′ does

not possess a pushout in Par(CS).
If there would be a pushout of this span of two total morphisms in Par(CS),

then, by Proposition 1, it must coincide with the pushout of them in CS. Since
f is an epimorphism in CS (because all fj are epimorphims in G), the pushout
in CS must have p1 = p2 = idA′ as cocone, see the left top square in Fig. 6. The
two partial morphisms 〈m,h〉 and 〈idA′ , idA′〉 let the outer rectangle of partial
morphisms commute, i.e.

〈m,h〉 ◦ 〈idA, f〉 = 〈idA′ , idA′〉 ◦ 〈idA, f〉
in Par(CS), because the pullback object of m and f equals the pullback object
of idA′ and f in CS. If there would be a unique mediator u, see the dashed line
in the diagram, we must have u = 〈idA′ , idA′〉, because the lower rhombus must
be commutative. However, for this u the right rhombus fails to be commutative,
because u ◦ 〈idA′ , p2〉 = 〈idA′ , idA′〉 �= 〈m,h〉.

Fig. 6. Counterexample

This example shows that we cannot
expect to have all pushouts in Par(CS), if
we would not require reflection of defined-
ness. And this is true, even if the two mor-
phisms, for which the pushout shall be
constructed, are total monomorphisms.

3.3 Important Properties

Let’s now assume all CS-morphisms to
reflect definedness.
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In the sequel, we will use formulations like “a property is valid component-
wise” in CS or some construction “is carried out componentwise”. Since many of
the following considerations are based on this methodology, we give a formalisa-
tion: “Pushout”, “Pullback”, “Monomorphism”, “Commutativity” impose truth
of a predicate (a certain property) on a diagram in a category C. For pushouts
and pullbacks the underlying diagram is a square, for the predicate “Monomor-
phism” it is a single arrow, for “Commutativity” it is an appropriate triangle of
arrows. E.g. CS-morphism f : A → B is a componentwise monomorphism means
that each fi is a G-monomorphism. More precisely: Given a diagram D of any
of the above mentioned shapes in CS, let Di := Ci(D) with component functor
Ci from Proposition 4, then the predicate p is true componentwise if and only if
it is true for Di in G for all i ∈ {0, . . . , n}.

Another formulation is “componentwise construction of predicate p”, where
p is based on a certain universal property. If e.g. p is the predicate for pushouts,

componentwise construction of a CS-cospan C f ′
−→ D

g′
←− B from a CS-span

C
g←− A f−→ B consists of two steps: In a first step one constructs pushout cospans

Ci
f ′
i−→ Di

g′
i←− Bi of spans Ci(C

g←− A f−→ B) for each i ∈ {0, . . . , n}. In a second
step one tries to define the projections dj in D := (dj : D0 ⇀ Dj)1≤j≤n, cf.
Definition 3, with the help of the pushouts’ unique mediators. The cospan mor-
phisms f ′ and g′ consist of the respective components (f ′

i)0≤i≤n and (g′
i)0≤i≤n.

The phrase “p can be constructed componentwise” then means that the newly
constructed object D is an admissible object according to Definition 3, that the
newly created morphisms f ′ and g′ are admissible according to Definition 4, and
that predicate p holds on the resulting diagram in CS, i.e. the square that arises
from enhancing the above CS-span by the CS-cospan yields a pushout in CS. Of
course, this procedure applies to other universal constructions in a similar way
and after such a construction, we know that property p is valid componentwise.

“Commutatitivity” is valid componentwise by definition, but we also obtain.

Proposition 6 (Componentwise Properties of CS). Morphism f : A → B
is a monomorphism if and only if it is such componentwise.

Moreover, CS has

1. all pullbacks
2. all pushouts
3. all coproducts

(and is thus cocomplete) and they are constructed componentwise, resp.

Proof. Componentwise validity of monomorphy and componentwise construction
of pullbacks have been proved in [11] for so-called S-cartesian functor categories.
We showed in [21] (see also [22]) that - for a certain schema category - this functor
category is equivalent to CS.

Thus, it remains to prove 2 and 3. For the proof of 2, let a span (f : A → B,
g : A → C) of CS-morphisms be given where f = (fi : Ai → Bi)0≤i≤n and
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Fig. 7. Two commutative cubes

g = (gi : Ai → Bi)0≤i≤n. Resolving these two morphisms into a triple of G-
morphisms for each j ∈ {1, . . . , n} as in Fig. 5 and constructing pushouts com-
ponentwise in G, i.e. for f0 and g0, fj and gj , and for the span of resulting
domain mappings df and dg, see the dashed arrow in Fig. 5, yields two cubes
on top of each other for each j ∈ {1, . . . , n}, cf. Fig. 7, in which the vertical
front right arrows dj and dj are unique mediators w.r.t. the middle pushout.
Because G is a hereditary pushout category by Proposition 2 and because the
top face in the upper cube in Fig. 7 is a G-pushout and the two back faces are
pullbacks (cf. Definition 4 and the definition of composition of partial arrows
on page 4), the prerequisite of the equivalent characterization of hereditaryness
in Proposition 3 are fulfilled. Hence the fact that the middle layer in Fig. 7 is
also a pushout (by construction) implies that the two upper front faces become
pullbacks and the vertical upward arrow dj in the front right can be chosen to
be an inclusion arrow. This shows that the componentwise construction indeed
yields an admissible comprehensive system

D := (D0
dj−⇀ Dj)1≤j≤n

and a commutative square (f : A → B,g′ : B → D,g : A → C, f ′ : C → D) in
CS. It remains to show that it is also a pushout.

Let for this a CS-object Z := (Z0
zj−⇀ Zj)1≤j≤n and two CS-morphisms

h : B → Z and k : C → Z be given such that h◦ f = k◦g. Then componentwise
considerations easily yield unique u := (ui : Di → Zi)0≤i≤n factoring through
the components of h and k, resp., see Fig. 8, which shows the situation involving
h only. It is easy to see that universality of dj and dj yield commutativity of all
squares in Fig. 8, such that it remains to show that u is a CS-morphism. For this
we use the equivalent characterization in Proposition 5, in particular we have to
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show (2) for u. Let for this x ∈ D0 be given. It is well known that pushouts in G

yield jointly surjective cospans, i.e. x has a preimage y in C0 or in B0, cf. again
Fig. 7. Assume w.l.o.g. that there is y ∈ B0 and g′

0(y) = x (the case, where there
is a preimage in C0, is similar). Then again using Proposition 5 several times
yields

dj(x) is defined ⇐⇒ bj(y) is defined (because g′ : B → D ∈ Arr(CS))
⇐⇒ zj(h0(y)) is defined (h : B → Z ∈ Arr(CS), see Fig. 8)
⇐⇒ zj(u0(x)) is defined (h0 = u0 ◦ g′

0 and x = g′
0(y)),

which shows that u is a CS-morphism.4

Fig. 8. Admissibility of u

The proof of the existence of coprod-

ucts is similar: Let (Ak := (Ak
0

ak
j−⇀

Ak
0)1≤j≤n)k∈I be a family of comprehen-

sive systems indexed over some (possibly
infinite) index set I. It is then easy to see
that

A := (
∐
k∈I

Ak
0

∐
k∈I ak

j−−−−−⇀
∐
k∈I

Ak
j )1≤j≤n

is the coproduct of them, where
∐

k∈I Ak
i

denotes G-coproducts (hence the CS-
coproduct is constructed componentwise).
For each j the partial morphism

∐
k∈I ak

j is defined to be equal to ar
j on each

Ar
0. The unique mediator for a family (fk : Ak → B) can be shown to be a CS-

morphism by similar arguments as above for u. It is well-known that all colimits
can be constructed from binary pushouts and coproducts [1], hence CS is indeed
cocomplete. ��

The equivalent characterization of hereditaryness in Proposition 3 uses the
predicates pushout, pullback, monomorphism, and commutativity, of which we
have shown that validity in CS is equivalent to componentwise validity. By jump-
ing back and forth from a comprehensive system to its components, this yields

Corollary 1. CS is a hereditary pushout category. ��
Although it is not the focus of this paper, we mention another important conse-
quence for the application of graph transformations in CS:

Corollary 2. CS is a weak adhesive HLR category [4] w.r.t. the class of all
monomorphisms.

Proof. Heindel proves in [8], Prop. 8.1 that this conclusion can be drawn from
Corollary 1, if pushouts are always stable under pullbacks, i.e. the implication
4 Amore general proof has been given in [11], if G is a (variant of an) adhesive category,
such that the result carries over to these base structures, as well.
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“top face pushout, all side faces pullbacks ⇒ bottom face pushout” holds for
all choices of vertical morphisms in Fig. 3. But this implication is true in CS by
Proposition 6 and because this holds in G [6]. ��
This corollary guarantees validity of the classical theorems for DPO rewriting
such as Local Church Rosser, Parallelism, or Local Confluence Theorem to hold
in CS, as well.5

4 The Partial Map Category of Comprehensive Systems
Admits All Pushouts

The goal of this section is to prove that SPO rewriting is well possible for compre-
hensive systems CS by showing that the category Par(CS) possesses all pushouts.
This will follow mainly from a result of Hayman and Heindel:

Proposition 7 (Existence of Pushouts of Partial Maps, [7]). Let C be a

category with pullbacks in which for each span C
g←− A

f−→ B of morphisms there

is a cospan C
f ′
−→ D

g′
←− B making the resulting square commutative. Par(C) has

all pushouts if and only if C is a hereditary pushout category and inverse image
functions have upper adjoints. ��
Section 4.1 is devoted to define inverse image functions and upper adjoints and
Sect. 4.2 will show that they exist in CS.

4.1 Upper Adjoints in General . . .

Let in a category C with pullbacks an object A be given. There is the semilattice
Sub(A) of subobjects of A, which consists of all monomorphisms m : M � A
modulo the equivalence relation m ≡ (m′ : M ′ � A), where m ≡ m′, if and
only if there is an isomorphism i : M → M ′ such that m′ ◦ i = m. In the sequel,
subobjects will be denoted by small letters m,n, . . . and we implicitly assume
their domain to be the corresponding upper case letter M,N, . . ..

The following definitions are well-known from the literature, e.g. [6]. We
write m � m′, if there is a (necessarily unique) morphism f : M → M ′ with
m′ ◦ f = m. In such a way � becomes a partial order and in fact a semilattice
with meets, because C has pullbacks and the meet of m and m′ is the diagonal
in the pullback of m and m′. Furthermore one says that C has images, if for
each C-morphism f : X → A there is a least (w.r.t. �) m ∈ Sub(A) such that
f = m ◦ e for some e : X → M and we write Im(f) := M . Finally, if C has
coproducts, then, for a family (mk)k∈I of subobjects of A,

⋃
k∈I mk denotes

the image of [mk]k∈I :
∐

k∈I Mk → A, the latter being the unique coproduct
mediator of the family (mk : Mk → A)k∈I . Thus, in particular, for all p ∈ I

mp �
⋃
k∈I

mk. (3)

5 Whereas we obtain this result as a corollary from hereditariness, it is proved directly
for underlying adhesive categories in [11].



Single Pushout Rewriting in Comprehensive Systems 103

Definition 5 (Inverse Images and Upper Adjoints). [7] Let f : A → B
be given in a category C with pullbacks. We denote by f−1 : Sub(B) → Sub(A)
the inverse image function which assigns to m ∈ Sub(B) its pullback along f .6

A monotone7 function U : Sub(A) → Sub(B) is called an upper adjoint of f−1,
if for all n ∈ Sub(A) and m ∈ Sub(B):

f−1(m) � n ⇐⇒ m � U(n) (4)

Note that U is unique, if it exists [7], and that f−1 is monotone, since pulling
back (between comma categories) is functorial and preserves monomorphisms.

4.2 . . . and in CS

Proposition 8. CS has images and the pullback functors preserve them.

Proof. Let f : A → A′ = (Ai
fi−→ A′

i)0≤i≤n be a CS-arrow. We use G’s epi-
mono-factorizations [6] to decompose f0 and (fj)1≤j≤n in Fig. 5 accordingly. In
particular f0 =: m0◦e0. Then the pullback of m0 and ⊆′

j and its unique mediator
u w.r.t. df and e0◦ ⊆j yields the situation in Fig. 9a, where the left upper square
is a pullback by the pullback decomposition lemma.

Fig. 9. Images in CS

In G pullbacks preserve epimorphisms, i.e. u is an epimorphism and the
square in Fig. 9b has a unique diagonal [6] âj : I → Im(fj), such that every-

thing commutes. Adding this diagonal in Fig. 9a yields Im(f) := (Im(f0)
âj−⇀

Im(fj))1≤j≤n and the inclusion Im(f) ↪−→ A′. Moreover, Im(f) can be shown to

6 Since we are working with equivalence classes, is easy to see that f−1 is independent
of the choice of representative of m and independent of the choice of pullback.

7 A function U : (X,≤X) → (Y,≤Y ) between two partially ordered sets is called
monotone, if it preserves the order, i.e. ∀x, x′ ∈ X : x ≤X x′ ⇒ U(x) ≤Y U(x′).
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be the image of f : A → A′ in CS, because it was set up by componentwise epi-
mono-factorization (in G), in which the mono-part is componentwise the least
subobject of the respective codomains of f0 and fj .

Pullback functors preserve images in CS because of the essential unique-
ness of epi-mono-factorisations, of preservation of monomorphisms and epi-
morphisms [6] under pullbacks in G, and componentwise pullback construction
(cf. Proposition 6). ��
Proposition 9 (Upper Adjoints in CS). Let f : A → B and n ∈ Sub(A),
then U(n) :=

⋃{m ∈ Sub(B) | f−1(m) � n} is the upper adjoint of f−1.

Proof. To prove that U is monotone, assume n,n′ ∈ Sub(A) with n � n′. Hence
X := {m ∈ Sub(B) | f−1(m) � n} ⊆ {m ∈ Sub(B) | f−1(m) � n′} =: X ′ and
thus there is the mediator u :

∐
m∈X dom(m) → ∐

m∈X′ dom(m), such that
U(n′) becomes a factor in a decomposition of

∐
m∈X dom(m) → A. Since U(n)

is the least of these factors, we obtain U(n) � U(n′).
In equivalence (4) “⇒” follows immediately from (3), such that it remains to

prove “⇐”. For this it is sufficient to show f−1(U(n)) � n for all n ∈ Sub(A),
because f−1 is monotone. Let for this n ∈ Sub(A) be arbitrary, U(n) :=⋃

k∈I mk : J ↪→ B, and fix some p ∈ I. Then there is the coproduct injec-
tion ip : Mp → ∐

k∈I Mk and by the definition of
⋃

k∈I mk in Sect. 4.1, we
obtain the diagram

Mp
ip

��
� �

mp

��∐
k∈I Mk e

�� J � �
⋃

k∈I mk

�� B (5)

which is mapped by f−1 (interpreted as pullback functor) to the upper part of
the following diagram:

f−1(Mp)
f−1(ip)

��

 �

f−1(mp)

��

hp

  ����
�����

�����
�����

�����
���

∐
k∈I f−1(Mk)

f−1(e)
��

v

���
�����
f−1(J) �

� f−1(
⋃

k∈I mk)
�� A.

N
� �

n

����������������������

In this diagram, hp exists with n ◦ hp = f−1(mp), because p ∈ I and thus
f−1(mp) � n by the definition of U . Note that the coproduct in (5) is mapped
to

∐
k∈I f−1(Mk) and f−1(ip) are the respective coproduct injections, because

pullbacks preserve coproducts in G and both are constructed componentwise, cf.
Proposition 6. We obtain v as the unique mediator out of this coproduct w.r.t. all
arrows {hp | p ∈ I}, i.e. v◦f−1(ip) = hp and hence for all p ∈ I: n◦v◦f−1(ip) =
f−1(mp) = f−1(

⋃
k∈I mk) ◦ f−1(e) ◦ f−1(ip), the last equality by functoriality

of f−1. By universality of coproducts this yields n◦v = f−1(
⋃

k∈I mk)◦f−1(e).
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By Proposition 8, the latter term in this equation is the image factorisation of
n ◦ v and hence f−1(U(n)) = f−1(

⋃
k∈I mk) � n, the former being the least,

the latter being some subobject of A factoring through n ◦ v. ��

4.3 The Main Theorem

Theorem 1. Par(CS) has all pushouts.

Proof. Because CS has all pushouts by Proposition 6 and thus span-completions,
this follows from Proposition 7, Corollary 1 and Proposition 9. ��
Due to space limitations we can not provide an example in which the full power
of SPO rewriting compared to the DPO approach can be demonstrated. Instead
we provide a simple example, which reveals one additional helpful aspect of our
definition of CS-morphisms. The proper construction of arbitrary pushouts in
Par(CS) (with non-injective rules and/or partial matches) is elaborated in [7].

Assume that a comprehensive system is in state G (the bottom left sys-
tem in Fig. 10) which is apparently inconsistent w.r.t IMC in Sect. 1, because
the person in G2/3 possesses no phone. If it turns out that this person is the
same as the one in G1, we can restore global consistency by applying rule
ρ : L ⇀ R ∈ Arr(Par(CS)), which deletes a binary commonality (dashed)
among two person records and adds a new ternary commonality which com-
prises these two records. The application of the rule yields a comprehensive
system H (bottom right), which satisfies IMC. Despite being relatively simple,
this example demonstrates an advantage of our approach: We do not need Nega-
tive Application Conditions to prevent repeated application of the rule, because
there is no longer a corresponding match of L into H. This is the case, because l1

Fig. 10. SPO rule application
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(the projection of L0 into L1, cf. Definition 3) is undefined on the only element
in L0, but the respective projection h1 in H is defined on the hypothetically
matched element (in H0), i.e. the required reflection of definedness is violated,
cf. Definition 4.

5 Related and Future Work

The best reference for Single Pushout Rewriting is [12], see also [2]. Comprehen-
sive systems are basically a functor category invented in [20] and generalized in
[11], its basic ideas originating from the theory of triple graphs [18]. Pushouts
in partial map categories and especially hereditariness of colimits have been
thoroughly investigated in [7,8].

Our approach still lacks the proof that it is practically applicable, but we
hope that SPO rules can serve as a basis for repair rules [15] in order to maintain
consistency of informationally overlapping multimodels. We must also find an
appropriate way of SPO rule typing, which can not rely on pure slice categories,
because a typing morphism should not be forced to reflect definedness. And
there should be a thorough characterisation of conflict-freeness in CS, which is
difficult, because upper adjoints in CS are not constructed componentwise. The
situation is as in the following quotation: “The contents of this [paper] should
rather be considered a starting point . . . than the final document of this research
issue”8.
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retical results needed to produce the results in this paper. Moreover, we would like to
thank the referees for their constructive criticism.
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2. Burmeister, P., Monserrat, M., Rosselló, F., Valiente, G.: Algebraic transformation
of unary partial algebras II: single-pushout approach. Theor. Comput. Sci. 216(1–
2), 311–362 (1999)

3. Diskin, Z., König, H., Lawford, M.: Multiple model synchronization with multiary
delta lenses with amendment and K-Putput. Formal Aspects Comput. 31(5), 611–
640 (2019). https://doi.org/10.1007/s00165-019-00493-0

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

5. Feldmann, S., Kernschmidt, K., Wimmer, M., Vogel-Heuser, B.: Managing inter-
model inconsistencies in model-based systems engineering: application in auto-
mated production systems engineering. J. Syst. Softw. 153, 105–134 (2019).
https://doi.org/10.1016/j.jss.2019.03.060. http://www.sciencedirect.com/science/
article/pii/S0164121219300639

8 This is an almost identical citation of the last statement in Michael’s PhD Thesis!

http://katmat.math.uni-bremen.de/acc/acc.pdf
https://doi.org/10.1007/s00165-019-00493-0
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1016/j.jss.2019.03.060
http://www.sciencedirect.com/science/article/pii/S0164121219300639
http://www.sciencedirect.com/science/article/pii/S0164121219300639


Single Pushout Rewriting in Comprehensive Systems 107

6. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover Publications, New
York (1984)

7. Hayman, J., Heindel, T.: On pushouts of partial maps. In: Giese, H., König, B.
(eds.) ICGT 2014. LNCS, vol. 8571, pp. 177–191. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09108-2 12

8. Heindel, T.: A category theoretical approach to the concurrent semantics of rewrit-
ing: adhesive categories and related concepts. Ph.D. thesis, University of Duisburg-
Essen (2009). http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/
Derivate-24329/diss.pdf

9. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
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Abstract. We extend the theory of initial conflicts in the framework of
M-adhesive categories to transformation rules with ACs. We first show
that for rules with ACs, conflicts are in general neither inherited from
a bigger context any more, nor is it possible to find a finite and com-
plete subset of finite conflicts as illustrated for the category of graphs.
We define initial conflicts to be special so-called symbolic transforma-
tion pairs, and show that they are minimally complete (and in the case
of graphs also finite) in this symbolic way. We show that initial conflicts
represent a proper subset of critical pairs again. We moreover demon-
strate that (analogous to the case of rules without ACs) for each conflict
a unique initial conflict exists representing it. We conclude with present-
ing a sufficient condition illustrating important special cases for rules
with ACs, where we do not only have initial conflicts being complete in
a symbolic way, but also find complete (and in the case of graphs also
finite) subsets of conflicts in the classical sense.

Keywords: Graph transformation · Critical pairs · Conflicts

1 Introduction

Detecting and analyzing conflicts is an important issue in software analysis and
design, which has been addressed successfully using powerful techniques from
graph transformation (see, e.g., [12,15,17,24]), most of them based on critical
pair analysis. The power of critical pairs is a consequence of the fact that: a)
they are complete, in the sense that they represent all conflicts; b) there is
a finite number of them; and c) they can be computed statically. The main
problem is that their computation has exponential complexity in the size of the
preconditions of the rules. For this reason, some significantly smaller subsets of
critical pairs that are still complete have been defined [1,19,21], clearing the way
for a more efficient computation. In particular, recently, in [19], a new approach
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Table 1. Critical pairs versus initial conflicts

Plain rules Rules with NACs Rules with ACs

Critical pairs
(CPs)

Subset of conflicts,
complete [27]

Subset of conflicts,
complete [17,20]

Symbolic,
complete [6,9]

Initial
conflicts

Subset of conflicts,
min. complete,
proper subset of
CPs [1,19]

Symbolic (Definition 10),
min. complete, regular
(Theorem 6) &
conservative extension of
CPs (Theorem 7)

Symbolic
(Definition 10),
min. complete,
proper subset of
CPs (Theorem 3)

for conflict detection was introduced based on a different intuition. Instead of
considering conflicts in a minimal context, as for critical pairs, we used the
notion of initiality to characterize a complete set of minimal conflicts, showing
that initial conflicts form a strict subset of critical pairs. In particular, we have
that every conflict is represented by a unique initial conflict, as opposed to the
fact that each conflict may be represented by many critical pairs.

Most of the work on critical pairs only applies to plain graph transformation
systems, i.e. transformation systems with unconditional rules. Nevertheless, in
practice, we often need to limit the application of rules, defining some kind of
application conditions (ACs). In this sense, in [17,20] we defined critical pairs for
rules with negative application conditions (NACs), and in [6,9] for the general
case of ACs, where conditions are as expressive as arbitrary first-order formulas
on graphs. However, to our knowledge, no work has addressed up to now the
problem of finding significantly smaller subsets of critical pairs for this kind of
rules. In this paper we generalize the theory of initial conflicts to rules with ACs
in the framework of M-adhesive transformation systems. In particular, the main
contributions of this paper (as summarized in Table 1) are:

– The definition of the notion of initial conflict for rules with ACs, based on a
notion of symbolic transformation pair, showing that the set of initial conflicts
is a proper subset of the set of critical pairs and that it is minimally complete1,
in the sense that, no smaller set of symbolic transformation pairs exists that
is also complete. In particular, the cardinality of the set of initial conflicts is,
at most, the cardinality of the set of initial conflicts for the plain case, when
disregarding the ACs, plus one. Moreover, as in the plain case, every conflict
is an instance of a unique initial conflict.

– The identification of a class of regular initial conflicts that demonstrate a
certain kind of regularity in their application conditions. This allows us to
unfold them into a complete (and in the case of graphs also finite) subset
of conflicts. In particular, we show that, in the case of rules with NACs,
initial conflicts are regular, implying that our initial conflicts represent a
conservative extension of the critical pair theory for rules with NACs.

The paper is organized as follows. We describe related work in Sect. 2 and, in
Sect. 3, we present some preliminary material, where we also include some new
1 Provided that the considered category has initial conflicts for the plain case.
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results. More precisely, in Subsect. 3.1 and Subsect. 3.2 we briefly reintroduce
the framework of M-adhesive categories and of rules with ACs; in Subsect. 3.3
we reintroduce critical pairs for rules with ACs following [6,9]; in Subsect. 3.4
we reintroduce initial conflicts for plain rules, and in Sect. 4 we introduce initial
parallel independent transformation pairs. This result is used in Sect. 4, where
we present the main results of the paper about initial conflicts for rules with
ACs. Then, in Sect. 5 we show our results on unfolding initial conflicts. Finally,
we conclude in Sect. 6 discussing some future work. Detailed proofs can be found
in the full version of the paper [23].

2 Related Work

Most work on checking confluence for rule-based rewriting systems is based on
the seminal paper from Knuth and Bendix [14], who reduced the problem of
checking local confluence to checking the joinability of a finite set of critical
pairs. This technique has been extensively studied in the area of term rewriting
systems (see, e.g., [25]), and it was introduced in the area of graph transformation
by Plump [27] in the context of term-graph and hypergraph rewriting. Moreover,
he also proved that (local) confluence of graph transformation systems is unde-
cidable, even for terminating systems, as opposed to what happens in the area
of term rewriting systems. However, recently, in [2] it is shown that confluence
of terminating DPO transformation of graphs with interfaces is decidable. The
authors explain that the reason is that interfaces play the same role as vari-
ables in term rewriting systems, where confluence is undecidable for terminating
ground (i.e., without variables) systems, but decidable for non-ground ones.

Computing critical pairs in graph transformation, as introduced by Plump
[27], is exponential in the size of the preconditions of the rules. For this reason,
different proper subsets of critical pairs with a considerably reduced size were
studied that are still complete [1,19,21], clearing the way for a more efficient
computation. The notion of essential critical pair [21] for graph transformation
systems already allowed for a significant reduction, and, the notion of initial
conflict [19], introduced for the more general M-adhesive systems, allowed for
an even larger reduction. However, not all M-adhesive categories have initial
conflicts. In [19] it is shown that typed graphs do have them and [1] extended
that result proving that arbitrary M-adhesive categories satisfying some given
conditions also have initial conflicts.

A recent line of work concentrates on the development of multi-granular
conflict detection techniques [3,18,24]. An extensive literature survey shows [24]
that conflict detection is used at different levels of granularity depending on its
application field. The overview shows that conflict detection can be used for the
analysis and design phase of software systems (e.g. for finding inconsistencies in
requirement specifications), for model-driven engineering (e.g. supporting model
version management), for testing (e.g. generation of interesting test cases), or for
optimizing rule-based computations (e.g. avoiding backtracking). These multi-
granular techniques are presented for rules without application conditions (ACs).
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Our work builds further foundations for providing multi-granular techniques also
in the case of rules with ACs in the future.

The use of (negative) application conditions, to limit the application of graph
transformation rules, was introduced in [8,10], while the more general approach,
using nested conditions, was introduced by Habel and Penneman [11]. Check-
ing confluence for graph transformation systems with application conditions
(ACs) has been studied in [17,20] for the case of negative application condi-
tions (NACs), and in [6,9] for the more general case of ACs. However, it is an
open issue to find proper subsets of critical pairs of considerably reduced size in
the general case.

3 Preliminaries

We start with a brief introduction of M-adhesive categories, rules with nested
application conditions (ACs) (cf. Subsect. 3.2), and the main parts of critical
pair theory for this type of rules [6,9] (cf. Subsect. 3.3). Thereafter, we reintro-
duce the notion of initial conflicts [19] for plain rules, i.e. rules without ACs
(cf. Subsect. 3.4). We also introduce the notion of initial parallel independent
transformation pairs as a counterpart (cf. Subsect. 3.5), since it will play a par-
ticular role when defining initial conflicts for rules with ACs in Subsect. 3.4. We
assume that the reader is acquainted with the basic theory of DPO graph trans-
formation and, in particular, the standard definitions of typed graphs and typed
graph morphisms (see, e.g., [5]) and its associated category, GraphsTG.

3.1 Graphs and High-Level Structures

Our results do not only apply to a specific class of graph transformation sys-
tems, like standard (typed) graph transformation systems, but to systems over
any M-adhesive category [5]. The idea behind considering M-adhesive categories
is to avoid similar investigations for different instantiations like e.g. Petri nets
or hypergraphs. An M-adhesive category is a category C with a distinguished
morphism class M of monomorphisms satisfying certain properties. The most
important one is the van Kampen (VK) property stating a certain kind of com-
patibility of pushouts and pullbacks along M-morphisms. Moreover, additional
properties are needed in our context: initial pushouts, describing the existence of
a special “smallest” pushout over a morphism, E ′-M pair factorizations, extend-
ing the classical epi-mono factorization to a pair of morphisms with the same
codomain. The definitions of these properties can be found in [6,7].
Assumption 1. We assume that 〈C,M〉 is an M-adhesive category with a
unique E ′-M pair factorization (needed for Lemma 1, Definition 5, Theorem3,
Corollary 1) and binary coproducts (needed for Lemma 3, Definition 8,
Theorem1). For the Local Confluence Theorem for initial conflicts of rules with
ACs we in addition need initial pushouts (cf. Subsect. 4.4).

Remark 1. Most categories of structures used for specification are M-adhesive
and satisfy these additional properties [5], including the category 〈GraphsTG,M〉
with M being the class of all injective typed graph morphisms.
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3.2 Rules with Application Conditions and Parallel Independence

Nested application conditions [11] (in short, application conditions, or just ACs)
generalize the corresponding notions in [4,10,15], where a negative (positive)
application condition, short NAC (PAC), over a graph P , denoted ¬∃a (∃a) is
defined in terms of a morphism a : P → C. Informally, a morphism m : P → G
satisfies ¬∃a (∃a) if there does not exist a morphism q : C → G extending a to m
(if there exists q extending a to m). Then, an AC is either the special condition
true or a pair of the form ∃(a, acC) or ¬∃(a, acC), where acC is an additional AC
on C. Intuitively, a morphism m : P → G satisfies ∃(a, acC) if m satisfies a and
the corresponding extension q satisfies acC . Moreover, ACs may be combined
with the usual logical connectors. For a concrete definition of ACs we address
the reader to [11] or [6].

ACs are used to restrict the application of rules to a given object. The idea
is to equip the precondition (or left hand side) of rules with an application con-
dition. Then we can only apply a given rule to an object G if the corresponding
match morphism satisfies the AC of the rule. However, for technical reasons, we
also introduce the application of rules disregarding the associated ACs.

Definition 1 (rules and transformations). A rule ρ = 〈p, acL〉 consists of
a plain rule p = 〈L ←↩ I → R〉 with I ↪→ L and I ↪→ R morphisms in M and
an application condition acL over L.

L I R

DG H

m m∗(1) (2)

acL =|

A direct transformation t : G ⇒ρ,m,m∗ H consists of two pushouts (1) and (2),
called DPO, with match m and comatch m∗ such that m |= acL. G ←↩ D ↪→
H is called the derived span of t. An AC-disregarding direct transformation
G ⇒ρ,m,m∗ H consists of DPO (1) and (2), where m does not necessarily need
to satisfy acL. Given a set of rules R for 〈C,M〉, the triple 〈C,M,R〉 is an
M-adhesive system.

Remark 2. In the rest of the paper we assume that each rule (resp. transforma-
tion or M-adhesive system) comes with ACs. Otherwise, we state that we have
a plain rule (resp. transformation or M-adhesive system), which can be seen as
a special case, in the sense that the ACs are (equivalent to) true.

ACs can be shifted over morphisms and rules as shown in the following lemma
(for constructions see [7]2 and [7,11], respectively).

2 Since this construction entails the enumeration of jointly epimorphic morphism pairs,
its computation has exponential complexity in the size of the precondition of the rule
and the size of the AC.
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Lemma 1 (shift ACs over morphisms [7]). There is a transformation Shift
from morphisms and ACs to ACs such that for each AC, acP , and each morphism
b : P → P ′, Shift transforms acP via b into an AC Shift(b, acP ) over P ′ such that
for each morphism n : P ′ → H it holds that n ◦ b |= acP ⇔ n |= Shift(b, acP ).

Lemma 2 (shift ACs over rules [7,11]). There is a transformation L from
rules and ACs to ACs such that for every rule ρ : L ←↩ I ↪→ R and every AC on
R, acR, L transforms acR via ρ into the AC L(ρ, acR) on L, such that for every
direct transformation G ⇒ρ,m,m∗ H, m |= L(ρ, acR) ⇔ m∗ |= acR.

For parallel independence, when working with rules with ACs, we need not
only that each rule does not delete any element which is part of the match of
the other rule, but also that the resulting transformation defined by each rule
application still satisfies the ACs of the other rule application.

Definition 2 (transformation pairs and parallel independence). A tran-
sformation pair H1 ⇐ρ1,o1 G ⇒ρ2,o2 H2 is parallel independent if there exists a
morphism d12 : L1 → D2 such that k2 ◦ d12 = o1 and c2 ◦ d12 |= acL1 and there
exists a morphism d21 : L2 → D1 such that k1 ◦ d21 = o2 and c1 ◦ d21 |= acL2 .

GD1H1

R1 I1 L1

D2 H2

R2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

A transformation pair is in conflict or conflicting if it is parallel dependent.
We distinguish different conflict types, generalizing straightforwardly the conflict
characterization introduced for rules with NACs [20]. The transformation pair
H1 ⇐ρ1,o1 G ⇒ρ2,o2 H2 is a use-delete (resp. delete-use) conflict if in Definition 2
the commuting morphism d12 (resp. d21) does not exist, i.e. the second (resp.
first) rule deletes something used by the first (resp. second) one. Moreover, it
is an AC-produce (resp. produce-AC ) conflict if in Definition 2 the commuting
morphism d12 (resp. d21) exists, but an extended match is produced by the
second (resp. first) rule that does not satisfy the rule AC of the first (resp.
second) rule. If a transformation pair is an AC-produce or produce-AC conflict,
then we also say that it is an AC conflict or AC conflicting.

Remark 3 (use-delete XOR AC-produce). A use-delete (resp. delete-use) con-
flict cannot occur simultaneously to an AC-produce (resp. produce-AC) con-
flict, since the AC of the first (resp. second) rule can only be violated iff there
exists an extended match for the first (resp. second) rule. However, a use-delete
(resp. delete-use) conflict may occur simultaneously to a produce-AC (resp. AC-
produce) conflict.

For grasping the notion of completeness of transformation pairs w.r.t. a prop-
erty like parallel (in-)dependence, it is first important to understand how a given
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transformation can be extended to another transformation. In particular, an
extension diagram describes how a transformation t : G0 ⇒∗ Gn can be extended
to a transformation t′ : G′

0 ⇒∗ G′
n via the same rules and an extension morphism

k0 : G0 → G′
0 that maps G0 to G′

0 as shown in the following diagram on the left.
For each rule application and transformation step, we have two double pushout
diagrams as shown on the right, where the rule ρi+1 is applied to Gi and G′

i.

G0 Gn

G′
0 G′

n

Li+1 Ii+1 Ri+1

Gi Di Gi+1

G′
i D′

i G′
i+1

k0 kn

∗

∗
(1)

We introduce two notions of completeness, distinguishing M-completeness
from regular completeness, depending on the membership of the extension mor-
phism in M. It is known that critical pairs (resp. initial conflicts) for plain
rules are M-complete (resp. complete) w.r.t. parallel dependence [5,19]. In
Subsect. 3.3, we reintroduce the fact that critical pairs for rules with ACs are
M-complete w.r.t. parallel dependence, but as symbolic transformation pairs.
We learn in Sect. 4 that initial conflicts for rules with ACs are also complete in
this symbolic way.

Definition 3 ((M-)completeness of transformation pairs). A set of
transformation pairs S for a pair of rules 〈ρ1, ρ2〉 is complete (resp. M-
complete) w.r.t. parallel (in-)dependence if there is a pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2

from S and an extension diagram via extension morphism m (resp. m ∈ M) for
each parallel (in-)dependent direct transformation pair H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2.

KP1 P2

GH1 H2

m

ρ1, o1 ρ2, o2

ρ1, m1 ρ2, m2

Fig. 1. (M-)completeness of transformation pairs

3.3 Critical Pairs

Critical pairs for plain rules are just transformation pairs, where morphisms o1
and o2 are in E ′ (i.e., roughly, K is an overlapping of L1 and L2). In the category
of Graphs they lead to finite and complete subsets of finite conflicts [4] (assumed
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that the rule graphs are also finite). However, when rules include ACs, we cannot
use the same notion of critical pair since, as we show in Theorem 2, in general,
for any two rules with ACs, there is no complete set of transformation pairs that
is finite. To avoid this problem, our critical pairs for rules with ACs also include
ACs, as in [6,9], where they are proved to be M-complete, and they are also
finite in the category of Graphs (assumed again that the rules are finite).

In particular, critical pairs are based on the notion of symbolic transformation
pairs, which are pairs of AC-disregarding transformations on some object K
with two special ACs on K. These two ACs, acK (extension AC ) and ac∗

K

(conflict-inducing AC ), are used to characterize which embeddings of this pair,
via some morphism m : K → G, give rise to a transformation pair that is parallel
dependent. If m |= acK , then m ◦ o1 : L1 → G and m ◦ o2 : L2 → G are two
morphisms, satisfying the associated ACs of ρ1 and ρ2, respectively. Moreover, if
m |= ac∗

K , then the two transformations H1 ⇐ρ1,m◦o1 G ⇒ρ2,m◦o2 H2 are parallel
dependent. Symbolic transformation pairs allow us to present critical pairs as
well as initial conflicts (cf. Subsect. 3.4) in a compact and unified way, since
they both are instances of symbolic transformation pairs. Finally, note that each
symbolic transformation pair stpK : 〈tpK , acK , ac∗

K〉 is by definition uniquely
determined (up to isomorphism and equivalence of the extension AC and conflict-
inducing AC) by its underlying AC-disregarding transformation pair.

Definition 4 (symbolic transformation pair). Given rules ρ1 = 〈p1, acL1〉
and ρ2 = 〈p2, acL2〉, a symbolic transformation pair stpK : 〈tpK , acK , ac∗

K〉 for
〈ρ1, ρ2〉 consists of a pair tpK : P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 of AC-disregarding
transformations together with ACs acK and ac∗

K on K given by:

acK = Shift(o1, acL1) ∧ Shift(o2, acL2), called extension AC, and
ac∗

K = ¬(ac∗
K,d12

∧ ac∗
K,d21

), called conflict-inducing AC

with ac∗
K,d12

and ac∗
K,d21

given as follows:

if (∃ d12 with k2◦d12=o1) then ac∗
K,d12

= L(p∗
2,Shift(c2◦d12, acL1))

else ac∗
K,d12

= false

if (∃ d21 with k1◦d21=o2) then ac∗
K,d21

= L(p∗
1,Shift(c1◦d21, acL2))

else ac∗
K,d21

= false

where p∗
1 = 〈K k1←↩ D1

c1
↪→ P1〉 and p∗

2 = 〈K k2←↩D2
c2
↪→P2〉 are defined by the corre-

sponding double pushouts.

KD1P1p∗
1 :

R1p1 : I1 L1

D2 P2 : p∗
2

R2 : p2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

A critical pair is now a symbolic transformation pair in a minimal context
such that there exists at least one extension to a pair of transformations being
parallel dependent.
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Definition 5 (critical pair). Given rules ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2,
acL2〉, a critical pair for 〈ρ1, ρ2〉 is a symbolic transformation pair stpK : 〈tpK ,
acK , ac∗

K〉, where the match pair (o1, o2) of tpK is in E ′, and there exists a mor-
phism m : K → G ∈ M such that m |= acK ∧ ac∗

K and mi = m ◦ oi, for i = 1, 2,
satisfy the gluing conditions, i.e. mi has a pushout complement w.r.t. pi.

Definition 6 ((M-)completeness of symbolic transformation pairs). A
set of symbolic transformation pairs S for a pair of rules 〈ρ1, ρ2〉 is complete
(resp. M-complete) w.r.t. parallel dependence if there is a symbolic transfor-
mation pair stpK : 〈tpK : P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2, acK , ac∗

K〉 from S and an
extension diagram as depicted in Fig. 1 with m : K → G (resp. m : K →
G ∈ M) and m |= acK ∧ ac∗

K for each parallel dependent direct transformation
H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2.

In [6,9] it is shown that the set of critical pairs for a pair of rules is M-
complete w.r.t. parallel dependence.

3.4 Initial Conflicts for Plain Rules

Initial conflicts for plain rules follow an alternative approach to the original
idea of critical pairs. Instead of considering all conflicting transformations in a
minimal context (materialized by a pair of jointly epimorphic matches), initial
conflicts use the notion of initiality of transformation pairs to obtain a more
declarative view on the minimal context of critical pairs. Each initial conflict
is a critical pair but not the other way round. Moreover, all initial conflicts
for plain rules are complete w.r.t. parallel dependence and they still satisfy the
Local Confluence Theorem for plain rules. Consequently, initial conflicts for plain
rules represent an important, proper subset of critical pairs for performing static
conflict detection as well as local confluence analysis.

Definition 7 (initial transformation pair and initial conflict). Given a
pair of plain direct transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2, then tpI :
HI

1 ⇐p1,mI
1

GI ⇒p2,mI
2

HI
2 is an initial transformation pair for tp if it can be

embedded into tp via extension diagrams (1) and (2) and extension morphism
f I , as in the left diagram below, such that for each transformation pair tp′ :
H ′

1 ⇐p1,m′
1

G′ ⇒p2,m′
2

H ′
2 that can be embedded into tp via extension diagrams

(3) and (4) and extension morphism f , as in the left diagram below, it holds
that tpI can be embedded into tp′ via unique extension diagrams (5) and (6) and
unique vertical morphism f ′I s.t. f ◦ f ′I = f I .

Given a plain M-adhesive system with initial transformation pairs for con-
flicts, an initial conflict is a conflict tp isomorphic to tpI .
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The idea of representing all conflicts by a (finite) set of initial conflicts is
based on the requirement of the existence of initial transformation pairs for
parallel dependent or conflicting plain transformation pairs. This requirement
holds for the category of typed graphs [19] and for any arbitrary M-adhesive
category fulfilling some extra conditions [1].

For plain M-adhesive systems, initial conflicts are critical pairs [19]. More-
over, they are complete and minimal as transformation pairs w.r.t. parallel
dependence, whereas critical pairs for plain rules are M-complete [4].

3.5 Initial Parallel Independent Transformation Pairs for Plain
Rules

In this section, we show the existence of initial transformation pairs for parallel
independent transformation pairs (Fig. 2), allowing us to define a complete sub-
set also w.r.t. parallel independence. The proof requires that binary coproducts
exist.

Lemma 3 (existence of initial transformation pair for parallel inde-
pendent transformation pair). Given a pair of parallel independent plain
direct transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2, then tpL1+L2 : R1 +
L2 ⇐p1,i1 L1+L2 ⇒p2,i2 L1+R2, where i1 : L1 → L1+L2 and i2 : L2 → L1+L2

are the coproduct morphisms, is initial for tp.

L1 + L2I1 + L2R1 + L2p∗
1 :

R1p1 : I1 L1

L1 + I2 L1 + R2 : p∗
2

R2 : p2I2L2

GD1H1 D2 H2

m

k1c1

i1

k2 c2

i2

d21 d12

acL1 acL2

Fig. 2. Initial parallel independent transformation pair tpL1+L2
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Uniqueness of initial transformation pairs up to isomorphism implies that
for each pair of plain rules 〈p1, p2〉 there is a unique initial parallel independent
transformation pair tpL1+L2 : R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2.

Definition 8 (initial parallel independent transformation pair). A pair
of parallel independent plain transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2 is
an initial parallel independent transformation pair if it is isomorphic to the
transformation pair tpL1+L2 : R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2.

The one-element set consisting of the initial parallel independent transfor-
mation pair for a given pair of rules is complete w.r.t. parallel independence.

Theorem 1 (completeness of initial parallel independent transforma-
tion pairs). The set consisting of the initial parallel independent transformation
pair tpL1+L2 : R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2 for a pair of plain rules
〈p1, p2〉 is complete w.r.t. parallel independence.

4 Initial Conflicts

We start with showing why it is not possible to straightforwardly generalize the
idea of initial conflicts from plain rules to rules with ACs. On the one hand,
conflict inheritance, which was the basis for showing completeness of initial con-
flicts for plain rules, does not hold any more. Moreover, it is impossible in gen-
eral to find a finite and complete subset of finite conflicts for rules with ACs
(cf. Subsect. 4.2). This motivates again the need for having symbolic transfor-
mation pairs as introduced in Definition 4, allowing us to define initial conflicts
(cf. Subsect. 4.3) as a set of specific symbolic transformation pairs, being com-
plete w.r.t. parallel dependence indeed (as shown in Subsect. 4.4).

4.1 Conflict Inheritance

Conflicts are in general not inherited (as opposed to the case of plain rules [19]),
i.e., not each (initial) transformation pair that can be embedded into a conflicting
one will be conflicting again. This may happen in particular for AC conflicts.
Use-delete (resp. delete-use) conflicts for rules with ACs are still inherited.

Lemma 4 (Use-delete (delete-use) conflict inheritance). Given a pair
of direct transformations tp in use-delete (resp. delete-use) conflict and another
pair of direct transformations tp′ that can be embedded into tp via extension
morphism f and corresponding extension diagrams, then tp′ is also in use-delete
(resp. delete-use) conflict.

Example 1 (No inheritance for AC conflicts). Consider rules p1 : ← →
(with AC true), producing an outgoing edge with a node, and p2 : ←

→ with NAC ¬∃n : → , producing a node only if two other nodes
do not exist already. Consider graph G = , holding two nodes. Applying both
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rules to G (with the matches sharing one node in G) we obtain a produce-AC
conflict since the first rule creates a third node, forbidden by the second rule.
Now both rules can be applied similarly to the shared node in the subgraph
G′ = of G obtaining parallel independent transformations, illustrating that
AC-conflicts are not inherited.

4.2 Complete Subset of Conflicts

We show that in M-adhesive categories, in particular in the category of graphs,
it is in general impossible to find a finite and complete subset of conflicts for finite
rules with ACs. If it would always exist, we could derive that each first-order
formula is equivalent to a finite disjunction of atomic formulas.

Theorem 2. Given finite rules ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉 for the
M-adhesive category Graphs, in general, there is no finite set of finite trans-
formation pairs S for ρ1 and ρ2 that is complete w.r.t. parallel dependence.

4.3 Initial Conflicts

We generalize the notion of initial conflicts for plain rules to rules with ACs. In
particular, we introduce them as special symbolic transformation pairs. They are
conflict-inducing meaning that there needs to exist an unfolding of the symbolic
transformation pair into a concrete conflicting transformation pair. Moreover,
their AC-disregarding transformation pair needs to be an initial conflict or initial
parallel independent transformation pair. We also show the relationship between
initial conflicts and critical pairs as reintroduced in Subsect. 3.3, demonstrating
that initial conflicts represent a proper subset of critical pairs.

Definition 9 (unfolding of symbolic transformation pair). Given a sym-
bolic transformation pair stpK : 〈tpK , acK , ac∗

K〉 for rule pair 〈ρ1, ρ2〉, then its
unfolding U(stpK) consists of all transformation pairs H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2

representing the lower row of the extension diagrams via some extension mor-
phism m : K → G as shown in Fig. 1 (with AC-disregarding transformation pair
tpK in the upper row). Moreover, we say that stpK is conflict-inducing if its
unfolding includes a conflicting transformation pair.

Definition 10 (initial conflict). Consider an M-adhesive system with initial
transformation pairs for conflicts along plain rules. An initial conflict for rules
ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉 is a conflict-inducing symbolic transforma-
tion pair stpK : 〈tpK , acK , ac∗

K〉 with the AC-disregarding transformation pair
tpK being initial, i.e. either tpK is an initial conflict for rules p1 and p2 (in this
case stpK is called a use-delete/delete-use initial conflict) or it is the initial par-
allel independent transformation pair tpL1+L2 for rules p1 and p2 (in this case
stpK = stpL1+L2 = 〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉 is called the AC initial conflict).
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Note that the unfolding of a conflict-inducing symbolic transformation pair
(and in particular of an AC initial conflict) may also include parallel independent
transformation pairs. All conflicts in the unfolding of an AC initial conflict are
AC conflicts, and never use-delete/delete-use conflicts (because otherwise we
would get a contradiction using Lemma 4).

Example 2 (initial conflict). Consider again the rules from Example 1. Applying
both rules to L1 + L2 = (with disjoint matches) we obtain the AC initial
conflict stpK = stpL1+L2 = 〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉. Thereby acL1+L2 is

equivalent to ¬∃(
1 2

→
1 2

) ∧ ¬∃(
1 2

→
1,2

), expressing that when
during extension both nodes are merged, no two additional nodes, otherwise
not one additional node should be given. Moreover, ac∗

L1+L2
is equivalent to

∃(
1 2

→
1,2

) ∨ ∃(
1 2

→
1 2

), expressing that either both nodes are not
merged during extension, otherwise one additional node should be present for a
conflict to arise. Both transformation pairs (the conflicting one from G =
as well as the parallel independent one from its subgraph G′ = , sharing the
merged node in their matches) described in Example 1 belong to its unfolding.

Each initial conflict is in particular also a critical pair.

Theorem 3 (initial conflict is critical pair). Consider an M-adhesive sys-
tem with initial transformation pairs for conflicts along plain rules. Each initial
conflict stpK : 〈tpK , acK , ac∗

K〉 is a critical pair.

The reverse direction of Theorem 3 does not hold. In general, critical pairs
stpK : 〈tpK , acK , ac∗

K〉 where tpK represents a use-delete/delete-use conflict (but
is not initial yet) are represented by the initial conflict stpI : 〈tpI , acI , ac∗

I〉
with tpI the unique initial conflict for tpK as plain transformation pair. More-
over, critical pairs stpK : 〈tpK , acK , ac∗

K〉 where tpK is parallel independent
as plain transformation pair are represented by one initial conflict stpL1+L2 :
〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉 with tpL1+L2 the initial parallel independent trans-

formation pair.

Example 3 (initial conflicts: proper subset of critical pairs). Consider again the
rules from Example 1 and their application to G′ = . The symbolic transfor-
mation pair stpG′ : 〈tpG′ , acG′ , ac∗

G′〉 is a critical pair, but not an initial conflict.

4.4 Completeness

We show that initial conflicts are complete (not M-complete as in the case of
critical pairs) w.r.t. parallel dependence as symbolic transformation pairs.

Theorem 4 (completeness of initial conflicts). Consider an M-adhesive
system with initial transformation pairs for conflicts along plain rules. The set of
initial conflicts for a pair of rules 〈ρ1, ρ2〉 is complete w.r.t. parallel dependence.
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Remark 4 (uniqueness of initial conflicts). For each conflict a unique (up-to-
isomorphism) initial conflict exists representing it, since this property is inherited
from the one for plain rules [19] and the fact that the initial parallel independent
pair of transformations is unique w.r.t. a given rule pair.

Initial conflicts are also minimally complete, i.e. we are able to generalize the
corresponding result for plain rules to rules with ACs.

5 Unfoldings of Initial Conflicts

We show a sufficient condition for being able to unfold initial conflicts into
a complete set of conflicts that is finite if the set of initial conflicts is finite
(cf. Subsect. 5.1). We demonstrate moreover that this sufficient condition is ful-
filled for the special case of having merely NACs as rule application conditions
(cf. Subsect. 5.2). Finally, we show that in this case we obtain in particular
specific critical pairs for rules with negative application conditions (NACs) as
introduced in [20] again. In this sense we show explicitly that initial conflicts as
introduced in this paper represent a conservative extension of the critical pair
theory for rules with NACs.

5.1 Finite and Complete Unfolding

We introduce regular initial conflicts leading to M-complete subsets of con-
flicts by unfolding them in some particular way (cf. disjunctive unfolding in
Definition 11). The idea is that the extension and conflict-inducing AC (acK

and ac∗
K , respectively) of such a conflict stpK : 〈tpK , acK , ac∗

K〉 have a spe-
cific form that is amenable to finding M-complete unfoldings. We expect the
condition acK ∧ ac∗

K to consist of a disjunction of positive literals (conditions
of the form ∃(ai : K → Ci, ci)) with a negative remainder (i.e. a condition
ci = ∧j∈J¬∃(bj : Ci → Cj , dj)). Intuitively, this means that there is a finite
number of possibilities to unfold the symbolic conflict into a concrete conflict
by adding some specific positive context (expressed by the morphism ai). The
negative remainder ci ensures that by adding this positive context to the con-
text K of the symbolic transformation pair within the initial conflict, we indeed
find a concrete conflict when not extending further at all. Moreover, it expresses
under which condition the corresponding concrete representative conflict leads
to further conflicts by extension. Finally, the subsets of M-complete conflicts
built using the disjunctive unfolding are finite if the set of initial conflicts it is
derived from is finite.

Definition 11 (regular initial conflict, disjunctive unfolding). Consider
an M-adhesive system with initial transformation pairs for conflicts along plain
rules. Given an initial conflict stpK : 〈tpK , acK , ac∗

K〉 for rules 〈ρ1, ρ2〉, then
we say that it is regular if acK ∧ ac∗

K is equivalent to a condition ∨i∈I∃(ai :
K → Ci, ci) with ci = ∧j∈J¬∃(bj : Ci → Cj , dj) a condition on Ci, bj
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non-isomorphic and I some non-empty index set. Given a regular initial con-
flict stpK : 〈tpK , acK , ac∗

K〉, then UD(stpK) = ∪i∈I{tpCi
: D1,i ⇐ρ1,ai◦o1

Ci ⇒ρ2,ai◦o2 D2,i} is the disjunctive unfolding of stpK .

Remark 5 (disjunctive unfolding). The disjunctive unfolding of a regular conflict
is non-empty, but might consist of less elements than literals in the disjunction
∨i∈I∃(ai : K → Ci, ci): if a morphism ai does not satisfy the gluing condition
of the derived spans, then also every extension morphism starting from there
will not satisfy the gluing condition, and we can safely ignore that case from the
disjunctive unfolding.

Theorem 5 (finite and complete unfolding). Consider an M-adhesive
system with initial transformation pairs for conflicts along plain rules. Given a
rule pair 〈ρ1, ρ2〉 with set S of initial conflicts such that each initial conflict stp
in S is regular, then ∪stp∈SUD(stp) is M-complete w.r.t. parallel dependence.
Moreover, ∪stp∈S UD(stp) is finite if S is finite.

It is possible to automatically check if some initial conflict is regular by
using dedicated automated reasoning [22] as well as symbolic model generation
for ACs [28] as follows. The reasoning mechanism [22] is shown to be refutation-
ally complete ensuring that if the condition acK ∧ ac∗

K of some initial conflict
is unsatisfiable, this will be detected eventually. Moreover, the related symbolic
model generation mechanism [28] is able to automatically transform each condi-
tion acK ∧ ac∗

K into some disjunction ∨i∈I∃(ai : K → Ci, ci) with ci a negative
remainder if such an equivalence holds.

5.2 Unfolding for Rules with NACs

We show that for rules with NACs initial conflicts are regular. This means that
in this special case there exists a complete subset of conflicts that is finite (in the
case of graphs and assuming finite rules). This conforms to the findings in [17,20],
where an M-complete set of critical pairs – as specific subset of conflicts – for
graph transformation rules with NACs was introduced [20] (and generalized to
M-adhesive transformation systems [17]).

Theorem 6 (regular initial conflicts for rules with NACs). Consider an
M-adhesive system with initial transformation pairs for conflicts along plain
rules. Given some initial conflict stpK : 〈tpK , acK , ac∗

K〉 for a pair of rules
〈ρ1, ρ2〉 with acLi

= ∧j∈J¬∃nj : Li → Nj for i = 1, 2 and J some finite index
set, then it is regular. In particular, acK ∧ ac∗

K is equivalent to a condition
∨i∈I∃(ai : K → Ci, ci) with ci = ∧q∈Q¬∃nq a condition on Ci and I some
non-empty index set.

The negative remainder ci of each literal in ∨i∈I∃(ai : K → Ci, ci) of a regular
initial conflict for rules with NACs thus consists of a set of NACs. Intuitively this
means that we obtain for each initial conflict an M-complete subset of concrete
conflicts by adding the context described by ai. As long as no NAC from ci is
violated we can extend such a concrete conflict to further ones.
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Corollary 1 (complete unfolding: rules with NACs). Consider an M-
adhesive system, with initial transformation pairs for conflicts along plain rules.
Given a rule pair 〈ρ1, ρ2〉 with acLi

= ∧j∈J¬∃nj : Li → Nj for i = 1, 2, then
∪stp∈SUD(stp) is M-complete w.r.t. parallel dependence.

We show moreover that the initial conflict definition is a conservative exten-
sion of the critical pair definition for rules with NACs as given in [17,20], i.e.,
we show that each conflict in the disjunctive unfolding of an initial conflict as
chosen in the proof of Theorem6 is a critical pair for rules with NACs.

Theorem 7 (conservative unfolding). In an M-adhesive system with initial
transformation pairs for conflicts along plain rules, if stpK : 〈tpK , acK , ac∗

K〉 is
an initial conflict for rules 〈ρ1, ρ2〉 with acLi

= ∧j∈J¬∃nj : Li → Nj for i = 1, 2
and J some finite index set, then each conflict as chosen in the proof of Theorem6
in UD(stp) is in particular a critical pair for 〈ρ1, ρ2〉 as given in [17,20].

Example 4 (conservative unfolding). Consider again the rules from Example 1
(having only NACs as ACs) and their application to the graph G = . The
corresponding transformation pair tpG is a critical pair for rules with NACs as
given in [17,20]. This is because it is in particular a conflicting pair of transforma-
tions, and the morphism violating the NAC (since finding the three nodes) and
therefore causing the conflict after applying the first rule to G = obtaining
some graph H1 = is jointly surjective together with the corresponding
co-match. As argued already in Example 2 this critical pair for rules with NACs
belongs to the unfolding (and in particular to the disjunctive unfolding) of the
unique AC initial conflict stpL1+L2 : 〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉.

6 Conclusion and Outlook

In this paper we have generalized the theory of initial conflicts (from plain rules,
i.e. rules without application conditions) to rules with application conditions
(ACs) in the framework of M-adhesive transformation systems. We build on
the notion of symbolic transformation pairs, since it turns out that it is not
possible to find a complete subset of concrete conflicting transformation pairs in
the case of rules with ACs. We have shown that initial conflicts are (minimally)
complete w.r.t. parallel dependence as symbolic transformation pairs. Moreover,
initial conflicts represent (analogous to the case of plain rules) proper subsets of
critical pairs in the sense that for each critical pair (or also for each conflict),
there exists a unique initial conflict representing it. We concluded the paper by
showing sufficient conditions for finding unfoldings of initial conflicts that lead
to (finite and) complete subsets of conflicts (as in the case of rules with NACs).
Thereby we have shown that initial conflicts for rules with ACs represent a
conservative extension of the critical pair theory for rules with NACs.

As future work we aim at finding further interesting classes allowing finite
and (minimally) complete unfoldings into subsets of conflicts. This will serve as
a guideline to be able to develop and implement efficient conflict detection tech-
niques for rules with (specific) ACs, which has been an open challenge until today.
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We are moreover planning to develop (semi-)automated detection of unfoldings
of initial conflicts of rules with arbitrary ACs using dedicated automated reason-
ing and model finding for graph conditions [22,26,28]. It would be interesting
to investigate in which use cases initial conflicts (or critical pairs) are useful
already as symbolic transformation pairs, and in which use cases we rather need
to consider unfoldings indeed. This is in line with the research on multi-granular
conflict detection [3,18,24] investigating different levels of granularity that can
be interesting from the point of view of applying conflict detection to different
use cases. Finally, we plan to investigate conflict detection in the light of initial
conflict theory for attributed graph transformation [5,13,16], and in particular
the case of rules with so-called attribute conditions more specifically. It would
also be interesting to further investigate initial conflicts for transformation rules
(with ACs) not following the DPO approach.

Acknowledgement. We thank Jens Kosiol for pointing out that the set of initial
conflicts for plain rules is not only complete, but also minimally complete. We were
able to transfer this result to rules with ACs in this paper. Many thanks also to the
reviewers for their detailed and constructive comments helping to finalize the paper.
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of graph rewriting with interfaces. In: Yang, H. (ed.) ESOP 2017. LNCS, vol.
10201, pp. 141–169. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54434-1 6
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18. Lambers, L., Born, K., Kosiol, J., Strüber, D., Taentzer, G.: Granularity of conflicts
and dependencies in graph transformation systems: a two-dimensional approach.
J. Log. Algebr. Methods Program. 103, 105–129 (2019). https://doi.org/10.1016/
j.jlamp.2018.11.004
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Abstract. The basic principle of graph rewriting is the stepwise replace-
ment of subgraphs inside a host graph. A challenge in such replacement
steps is the treatment of the patch graph, consisting of those edges of the
host graph that touch the subgraph, but are not part of it.

We introduce patch graph rewriting, a visual graph rewriting language
with precise formal semantics. The language has rich expressive power in
two ways. First, rewrite rules can flexibly constrain the permitted shapes
of patches touching matching subgraphs. Second, rules can freely trans-
form patches. We highlight the framework’s distinguishing features by
comparing it against existing approaches.

Keywords: Graph rewriting · Embedding · Visual language

1 Introduction

When matching a graph pattern P inside a host graph G, G can be partitioned
into (i) a match M , a subgraph of G isomorphic to the pattern P ; (ii) a context
C, the largest subgraph of G disjoint from M ; and (iii) a patch J , the graph
consisting of the edges that are neither in M nor in C. So the patch consists of
edges that are either (a) between M and C, in either direction, or (b) between
vertices of M not captured by the pattern P . For example, if P and G are
respectively

b

aa and

b

aa

b

a

b
c

then the thick green subgraph is the (only) match M of P in G. The black
subgraph of G is the context C, and the dotted red subgraph is the patch J .
Metaphorically, patch J patches match M and context C together.

In graph rewriting, subgraphs of some host graph are stepwise replaced by
other subgraphs. A requirement for such replacements is that they are prop-
erly re-embedded in the host graph. We contend that the patch is the most
distinctive and interesting aspect of graph rewriting. This is because its shape
is generally unpredictable, making it challenging to specify what constitutes a
c© Springer Nature Switzerland AG 2020
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proper re-embedding of a subgraph replacement. This contrasts strongly with the
situation for string and term rewriting, in which the embeddings of substrings
and subterms are highly regular.

Most existing approaches to graph rewriting are rather uniform and coarse-
grained in their treatment of the patch. For instance, suppose that we wish
to delete the match M from G. What should happen to the edges of patch
J , which would be left “dangling” by such a removal? The popular double-
pushout (DPO) [9] approach to graph rewriting conservatively dictates that
the application is not allowed in the first place: nodes connected to the patch
must be preserved by the rewrite step, and the patch shall remain connected as
before. The single-pushout (SPO) [18] variant, by contrast, permissively answers
that such a deletion is always possible. As a side-effect, however, any resulting
dangling patch edges are discarded.

In this paper, we introduce the patch graph rewriting (PGR) language. It has
the following features:

– Pluriform, fine-grained control over patches. Rules themselves encode which
kinds of patches are allowed around matches, as well as how they should
be transformed for the re-embedding, using a unified notation. Thus, these
policies are distinctly not decided on the level of the framework.

– An intuitive visual language. Despite their expressive power and formal
semantics, patch rewrite rules admit a visual representation that we believe
to be highly intuitive.

– Lightweight formal semantics. The formal details of PGR are based on ele-
mentary set and graph theory, and therefore accessible to a wide audience. In
particular, an understanding of category theory is not required to understand
these details, unlike for many dominant approaches in graph rewriting.

The remainder of our paper is structured as follows. To fix ideas and empha-
size the visual language of PGR, we first provide an intuitive exposition in Sect. 2,
and then follow with a formal introduction in Sect. 3. We show the usefulness of
PGR by modeling wait-for graphs and deadlock detection in Sect. 4. We compare
PGR to other approaches in Sect. 5. In Sect. 6, finally, we mention some future
research directions for PGR.

2 Intuitive Semantics

We start with an intuitive introduction of PGR, to be made formally precise in
Sect. 3. The graph G in Fig. 1 will serve as our leading example.

b

c

a

d

e

Fig. 1. Graph G.

a b

Fig. 2. A simple rule.

b

c

a

d

e

Fig. 3. Match, context and patch.
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We begin by considering the rewrite rule in Fig. 2. Figure 3 contains a depic-
tion of G in which the match, context and patch are highlighted: the thick green
subgraph is the match for the left-hand side of the rule, the solid black subgraph
is the context for this rule application, and the red dotted edges form the patch.
In PGR, the rewrite rule in Fig. 2 cannot yet be applied in G. This is because
without further annotations, the rule may only be applied if the patch is empty,
that is, if the node with the a-loop has no additional edges. In effect, this rule
only allows replacing an isolated node with an a-loop by two isolated nodes, one
of which has a b-loop.

a

1 2

b

1
2

Fig. 4. An annotated rule.

b

c

a

d

e b e

Fig. 5. Applying the rule on the left.

The rule in Fig. 2 can be generalized to allow for patch edges from and to
the context by annotating the left-hand side of the rule as shown in Fig. 4. We
call such annotations patch type edges. They can be thought of as placeholders
for sets of patch edges:

(i) The dotted arrow with source 1 is a placeholder for an arbitrary number
of edges from the context to the node with the a-loop.

(ii) Likewise, the outgoing dotted arrow with target 2 is a placeholder for
an arbitrary number of edges going into the context.

The rule is now applicable to all nodes that have an a-loop and no other loop,
allowing the node to be connected to the context through an arbitrary number
of edges. In particular, then, the rule is applicable to the match highlighted in
Fig. 3, and it gives rise to the step shown in Fig. 5.

Although we see how patch type edge annotations on the left-hand side can
be used to constrain the set of permitted patches around a match, it does not
tell us what to do with patch edges if a match is found. To indicate such trans-
formations, the solution is simply to reuse the patch type edges in the right-hand
side of the rule. The rule shown in Fig. 4 does not reuse any of the patch type
edges, explaining why the corresponding patch edges are deleted in Fig. 5.

One way to preserve the incoming edges bound to 1 and the outgoing
edges bound to 2 is shown in Fig. 6. As the visual representation suggests,
the incoming edges bound to 1 get redirected to target the upper node of
the right-hand side, and the sources of the outgoing edges bound to 2 are
redirected to the lower node. The respective sources and targets of the edges are
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a

1 2

b

1
2

Fig. 6. Redirecting patch edges.

b

c

a

d

e b e
b

c
d

Fig. 7. Applying the rule on the left.

defined to remain unchanged. Applying the rule in G results in the rewrite step
depicted in Fig. 7.

a

1 2

b
2

2

2

Fig. 8. Duplicating patch edges.

b

c

a

d

e
b e

d

d
d

Fig. 9. Applying the rule on the left.

Using this visual language, it is easy to duplicate, remove, and redirect edges
in the patch. The rule displayed in Fig. 8 removes the incoming patch edges
bound to 1 , and duplicates the patch edges bound to 2 : one copy for
the upper node of the right-hand side, and two copies for the lower node. The
resulting rewrite step is shown in Fig. 9.

a

1 2

b

1 2

2

Fig. 10. Complex transformation.
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Fig. 11. Applying the rule on the left.
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3

Fig. 12. Node duplication.
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Fig. 13. Applying the rule on the left.
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Patch graph rewriting also allows for some more exotic transformations, such
as inverting patch edges or pulling edges from the context into the pattern. The
rule in Fig. 10 reverses the direction of 1 and pulls 2 into the pattern, giving
rise to the step in Fig. 11.

All of the above rules are only applicable to nodes that have an a-loop and
no other loop. If we want the rule to be applicable to nodes that have additional
loops, this can be expressed as in Fig. 12. This rule is now applicable to any node
with an a-loop. It makes a copy of the node, as well as all edges incident to it
(except for the a-loop, which is removed). If we slightly modify G to include an
f -loop on the middle node, the rule gives rise to the rewrite step in Fig. 13.

In this brief visual introduction, we have focused on the transformation of
the patch. The left-hand sides of the rules has each time been a single node
with an a-loop. Its generalization to other patterns is largely obvious, but
some edge cases arise. For instance, what could be the semantics of the rule

1 1 which redirects patch edges between nodes of the pat-
tern into the context? We now turn to the formal semantics of path rewriting,
which makes all preceding transformations precise and excludes such edge cases.

3 Formal Semantics

Notation 1 (Preliminaries). For functions f : Af → Bf and g : Ag → Bg with
disjoint domains (but possibly overlapping codomains), we write f ∪ g for the
function (f ∪ g) : (Af ∪ Ag) → (Bf ∪ Bg) given by the union of f and g’s
underlying graphs. If typing permits, we generalize functions f to tuples (x, y)
and sets S in the obvious way, i.e., f((x, y)) = (f(x), f(y)) and f(S) = { f(x) |
x ∈ S }.

We define directed, edge-labeled multigraphs in the standard way.

Definition 2 (Graph). A graph G = (V,E, s, t, �) with edge labels from L
consists of a finite set of vertices (or nodes) V , a finite set of edges E, a source
map s : E → V , a target map t : E → V , and a labeling � : E → L. For e ∈ E,
we say that s(e), t(e) and �(e) are the source, target and label of e, respectively.

For convenience, we will write x
α−→ y ∈ E to denote an edge e ∈ E such that

s(e) = x, t(e) = y and �(e) = α.

Definition 3 (Basic Graph Notions). We define the following basic graph
notions:

(i) An unlabeled graph G = (V,E, s, t) is a graph (V,E, s, t, �) over a singleton
label set. In this case we suppress the edge labels.

(ii) A graph is simple if for all e, e′ ∈ E, s(e) = s(e′), t(e) = t(e′) and �(e) =
�(e′) together imply e = e′.

(iii) We say that graphs G and H are disjoint if VG ∩ VH = ∅ = EG ∩ EH .
(iv) For disjoint edge sets E ∩ E′ = ∅, we define the graph union as follows:

(V,E, s, t, �) ∪ (V ′, E′, s′, t′, �′) = (V ∪ V ′, E ∪ E′, s ∪ s′, t ∪ t′, � ∪ �′).
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To rename vertices and edges of a graph, we introduce “graph renamings”. A
renaming is a graph isomorphism, where the domain of the renaming is allowed
to be a superset of the set of vertices/edges of the graph. In this way, the same
renaming can be applied to various graphs with different vertex and edge sets.

Definition 4 (Graph Renaming). A graph renaming φ for a graph G consists
of two bijective functions φV : V1 → V2 and φE : E1 → E2 such that VG ⊆ V1

and EG ⊆ E1.
The φ-renaming of G, denoted φ(G), is the graph (V,E, s, t, �) defined by

V = φV (VG) s(φE(e)) = φV (sG(e)) �(φE(e)) = �G(e)
E = φE(EG) t(φE(e)) = φV (tG(e))

for every e ∈ EG.

Definition 5 (Graph Isomorphism). Graphs G and H are isomorphic,
denoted G ≈ H, if there is a graph renaming φ such that H = φ(G).

Let L be a finite nonempty set of labels. In the sequel, we tacitly assume
that all graphs have labels from L.

As motivated by the preceding sections, we allow to compose a context graph
C and a match graph M by a “patch” J that may add edges between the nodes
of C and M , as well as between the nodes of M .

Definition 6 (Patch). Let C and M be disjoint graphs. A patch for C and M
is a graph J such that EJ ∩ (EC ∪ EM ) = ∅ and VJ = s(EJ ) ∪ t(EJ ), and

(s(e), t(e)) ∈ (VC × VM ) ∪ (VM × VC) ∪ (VM × VM )

for every edge e ∈ EJ . In this relation mediated by J , we call C the context
graph and M the match graph.

Definition 7 (Patch Composition). Let J be a patch for a context graph C
and a match graph M . The patch composition of C and M through patch J ,
denoted by C ·J M , is the graph union C ∪ J ∪ M .

Example 8. Consider the following graphs C, M and G, respectively:

1 2
b

3 4

56

b

a

a

c

3 4

56

b

a

a

c21
b

a

b
b b

The composition of C and M through patch J = { 2 a→ 3, 6 b→ 2, 4 b→ 5, 4 b→ 6 }
is G, in which C functions as the context graph and M functions as the match
graph (w.r.t. J).
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Before we consider the formal definition of rewriting, let us discuss the basic
principle and motivate some of the design choices. As a first approximation, a
graph rewrite rule L → R is a pair of graphs that behave like patterns. Since the
edge and vertex identities in such rules are arbitrary (not to be confused with
the edge labeling), we close the rule under isomorphism. The rule should also be
applicable in contexts in which a patch connects a context and the pattern of the
rule. The rule L → R thus give rise to rewrite steps of the form C ·J L′ → C ·J ′ R′

for graphs C, valid patches J, J ′ and graphs L′ ≈ L and R′ ≈ R.
Additionally, we would like to exert control over the shape of patches in two

ways. A graph rewriting rule should enable one to (a) constrain the choices for
the patch J , and (b) define the patch J ′ in terms of J . For these purposes, we
introduce the concepts of a patch type and a scheme.

Definition 9 (Patch Type). A patch type T for a graph G is an unlabeled
patch for G and the trivial graph with node set {� }. Here, the trivial graph
functions as the context graph.

Let J be a patch for a context graph C and match graph M , and T a patch
type for M . A patch edge (js

α−→ jt) ∈ EJ (α any label) adheres to a patch type
edge (ts → tt) ∈ ET if the following conditions hold:

js ∈ VC ⇒ ts = � js ∈ VM ⇒ js = ts

jt ∈ VC ⇒ tt = � jt ∈ VM ⇒ jt = tt

The patch J adheres to patch type T if there exists an adherence map from J
to T , i.e., a function f : EJ → ET such that e adheres to f(e) for every e ∈ EJ .

The restriction to unlabeled patch type edges is motivated purely by simplic-
ity. We intend to relax the definition in future work.

Proposition 10 (UniqueAdherences). Let the patch type T be a simple
graph. If a patch J adheres to T , then the witnessing adherence map is unique.

Intuitively, we use patch types to annotate the patterns of a rewrite rule.
The result we call a scheme.

Definition 11 (Scheme). A scheme is a pair (P, T ) consisting of a graph P ,
called a pattern, and a patch type T for P .

1 2

3

4

a
b

a

Example 12 (Depicting Schemes). We extend the repre-
sentation for graphs to schemes (P, T ) as shown on the
right. The pattern P consists of the solid labeled arrows,
and the patch type T consists of the dotted arrows. For
dotted arrows without a source (or target), the source
(or target) is implicitly the context graph node �. So T
consists of the edges {� → 1, 3 → �, � → 4, 4 →
�, 1 → 3 }.
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We are now ready to define a graph rewrite rule as a relation between schemes
(PL, TL) and (PR, TR). We equip the rewrite rule with a “trace function” τ
that relates edges in TR back to edges in TL, allowing us to interpret TR as
a transformation of TL, in which patch edges may be freely moved, deleted,
duplicated and inverted. For this we require the following constraint: if a patch
type edge e ∈ ETR

connects to the context, the corresponding edge τ(e) ∈ ETL

must also connect to the context. Without this constraint, it would not be clear
how to interpret e’s connection to the context.

Definition 13 (Quasi Patch Graph Rewrite Rule). A quasi patch graph
rewrite rule L

τ−→ R is a pair of schemes L = (PL, TL) and R = (PR, TR),
equipped with a trace function τ : ETR

→ ETL
that satisfies � ∈ {s(e), t(e)} =⇒

� ∈ {s(τ(e)), t(τ(e))} for all e ∈ ETR
.

We normally require the left patch type TL to be simple, so that the edges
of TL-adherent patches J adhere to a single edge in TL (Proposition 10). As we
shall see, this allows us to define a graph rewrite relation in which matches of a
rule produce a unique result (modulo ≈).

Definition 14 (Patch Graph Rewrite Rule). A patch graph rewrite rule is
a quasi patch graph rewrite rule (PL, TL) τ−→ (PR, TR) in which TL is simple.

Since we restrict attention to unlabeled patch type graphs in this paper, we
will use the opportunity to visualize the trace function τ by means of labels on
patch type edges.

Example 15 (Depicting Rules). A depiction of a valid rewrite rule is:

a
b

a

2

1

3

4 5

2
1

c

a

4

4

3

The trace function τ is visualized by means of labels on the type edges: τ maps
type edges with label n on the right-hand side to the type edge with label n on the
left-hand side. Throughout the paper, colors are merely used as a supplementary
visual aid. (An application example will be given in Example 19.)

Definition 16 (Rule Isomorphism). (Quasi) rewrite rules L1
τ1−→ R1 and

L2
τ2−→ R2 are isomorphic, denoted L1

τ1−→ R1 ≈ L2
τ2−→ R2, if there exists a graph

renaming φ such that φV (�) = �, φ((L1, R1)) = (L2, R2), and φE ◦τ1 = τ2 ◦φE.

Definition 17 (Patch Graph Rewrite System). A (quasi) patch graph
rewrite system (PGR) R is a set of (quasi) rewrite rules. For R we define
the isomorphism closure class R≈ = { y | x ∈ R, y ≈ x }.
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For a patch J , patch type T and adherence map h : EJ → ET , we define

ctx (e, h) =

⎧
⎪⎨

⎪⎩

{ s(e) } if s(h(e)) = �
{ t(e) } if t(h(e)) = �
∅ otherwise

for every e ∈ EJ . So ctx (e, h) contains the context node involved in the edge e,
or is ∅ if the edge does not involve the context.

Definition 18 (Patch Graph Rewriting). A (quasi) patch graph rewrite sys-
tem R induces a rewrite relation →R on the set of graphs as follows:
C ·J PL →R C ·J ′ PR if

(i) (PL, TL) τ−→ (PR, TR) ∈ R≈,
(ii) hL : EJ → ETL

is an adherence map from patch J to patch type TL,
(iii) hR : EJ ′ → ETR

is an adherence map from patch J ′ to patch type TR, and
(iv) for every t ∈ ETR

there exists a bijection σ : h−1
R (t) → h−1

L (τ(t)) such that
�R(e) = �L(σ(e)) and ctx (e, hR) ⊆ ctx (σ(e), hL) for every e ∈ h−1

R (t).

For such a rewrite step, we say that the graph C ·J PL contains the redex PL.

Example 19 (Application Example). The rule given in Example 15 gives rise to
the following rewrite step:

a

b

a

b

d

b

b

b

c c

a
b

b
d

b

b

c

In the graph on the left we have highlighted the match (thick green) and the
patch (dotted). We have additionally indicated the adherence map of the patch
edges by reusing the colors of the rule definition.

We refer to Sect. 2 for many examples of simple rewrite rules and rewrite steps.
A graph rewrite system modeling wait-for-graphs will be given in Sect. 4.

Remark 20 (Finding Redexes). Checking for the presence of a redex is simple. A
graph G contains a redex with respect to rule (PL, TL) τ−→ (PR, TR) ∈ R if and
only if

1. there exists a subgraph M of G isomorphic to PL, and
2. every edge e /∈ EM incident to a v ∈ VM adheres to an edge in TL.

Definition 18 can be understood in more operational terms as follows.

Lemma 21 (Constructing J ′). If conditions (i) and (ii) of Definition 18 are
satisfied (fixing some adherence map hL), the patch J ′ and adherence map hR

that satisfy conditions (iii) and (iv) are uniquely determined up to isomorphism.
The patch J ′ can be constructed using the following procedure.

For every type edge t = (ts → tt) ∈ ETR
, consider every patch edge j =

(js
α−→ jt) ∈ EJ for which hL(j) = τ(t) = (tτs → tτt ) ∈ ETL

. There are five
exclusive cases:
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1. If � /∈ {ts, tt}, add a new edge ts
α−→ tt to J ′.

2. If ts = tτs = �, add a new edge js
α−→ tt to J ′.

3. If tt = tτt = �, add a new edge ts
α−→ jt to J ′.

4. If ts = tτt = �, add a new edge jt
α−→ tt to J ′.

5. If tt = tτs = �, add a new edge ts
α−→ js to J ′.

Here, the “new” edge j′ is an edge not in C, PR or the intermediate construction
of J ′. The adherence map hR is defined such that hR(j′) = t for each of the
considered j′ and t.

Non-quasi rules have the following desirable property.

Proposition 22 (Rule Determinism). Let G = C ·J PL. If a rule (PL, TL) τ−→
(PR, TR) ∈ R≈ derives both G →R C ·J ′ PR = G′ and G →R C ·J ′′ PR = G′′,
then G′ ≈ G′′.

Proof. This is a direct consequence of Proposition 10 and Lemma 21. 
�
In contrast to (non-quasi) graph rewrite rules, quasi rules are not generally

deterministic. For instance, consider the quasi rewrite rule

1
2

1

which can match any graph G consisting of two nodes x and y and n edges from
x to y. For each e ∈ EG, the left adherence map hL can either map e to the
patch type edge labeled with 1, or to the type edge labeled with 2. Thus, 2n

choices for hL are possible, and each choice causes a different subset of J to be
deleted in a single rewrite step.

Notation 23 (Shorthand Notation). Given a pattern P , we often want to allow
for any patch edges between the nodes of a subset N ⊆ VP as well as the context
node �. In the notation we have discussed so far, we would then need to draw
the complete patch type graph induced by N ∪ {� } (minus the loop on �),
which consists of (|N | + 1)2 − 1 patch type edges.

To avoid spaghetti-like figures, we extend the visual presentation of schemes
by allowing each node to be annotated with a set of names (written without set
brackets). We say that a node has name x if x is in the set of names of this node.
So a node can have 0 or more names. The name annotations are then shorthand
for the following patch type edges:

(i) For every node n and name x of n, the node n has the two patch type edges
n(�, x) (x,�) from and to the context.

(ii) For every pair of nodes n,m and every name x of n and y of m, there is
implicitly the patch type edge n m(x, y) from n to m. Here n and
m can be the same node, and x can be equal to y.
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Observe that rules are non-quasi iff every node in the left-hand side has at most
one name. We therefore require that distinct nodes do not share names.

As an example, a rule for merging two nodes can be written as

x y

a

x, y
(1)

which is shorthand for

a

(�, x)

(x,�)

(x, x)

(x, y)

(y, x) (�, y)

(y,�)

(y, y)

(�, x)

(x,�)

(�, y)

(y,�)

(x, x) (y, y)

(x, y)

(y, x)

4 Modeling Wait-for Graphs and Deadlock Detection

We now give a more extensive and more realistic modeling example that show-
cases the expressive power of PGR.

A wait-for graph [14] is a hypergraph in which nodes represent processes, and
hyperedges represent requests for resources. A hyperedge has a single source p,
representing the process requesting the resources, and M > 0 targets distinct
from p, representing the processes from which a resource is requested. The pro-
cess p requires 0 < N ≤ M of these resources. Thus, for a fixed M , there are
multiple types of hyperedges, each representing a particular N -out-of-M request.
Processes can have at most one outgoing N -out-of-M request.

The following distributed system behavior is associated with wait-for graphs.
A process without an outgoing request is said to be unblocked. An unblocked
process can grant an incoming request, deleting the edge, or create a new N -
out-of-M request. A process becomes unblocked when its pending N -out-of-M
request is resolved, i.e., when N targeted processes have granted the request.

In order to better illustrate some of PGR’s transformational power, we intro-
duce one additional, noncanonical behavior. We consider a process p overloaded
when it has n > 2 incoming requests. When p is overloaded, a clone of p, c(p),
may be created which takes over n − 2 of p’s incoming requests. Because we
assume that any outgoing request must be resolved before any incoming requests
can be resolved, c(p) replicates p’s outgoing request, if p has one.

We first define a graph grammar that defines the class of valid wait-for graphs.
Then, we will show how to augment the rule set in order to model the distributed
system behavior. Finally, we explain how deadlocks can be detected. Through-
out, we encode hypergraphs as multigraphs. Note that in this encoding, vertices
representing processes are always free of loops, while vertices representing hyper-
edges always have loops. Hence, the given rules can appropriately discriminate
between the two types of vertices.
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4.1 Wait-for Graph Grammar

The starting graph of the grammar is the empty graph, denoted by ∅. Rule

∅ (create)

models process creation, and rule

2 3

1

2 3

1

z s
(1-of-1)

allows constructing a valid 1-out-of-1 request between nodes. Labels z and s
should be interpreted as 0 and the successor function, respectively, so that n
s-loops encode that n requests are yet to be granted.

In the grammar, any N -out-of-M request can be extended to a valid N -out-
of-(M + 1) request using rule

4 5

1

3

z 2

4 5

1

3

z 2

(ext-0)

and to a valid (N + 1)-out-of-(M + 1) request using rule

4 5

1

3

z 2

4 5

1

3

z 2s

(ext-1)

These four rules suffice for generating any valid wait-for graph.

4.2 System Modeling

To model a distributed system, we need rule CREATE for process creation,
as well as its inverse, destroy, for process destruction. Note that destroy
constrains the process selected for destruction to be isolated in our framework
(i.e., it is not associated with any pending requests), as desired.

Any N -out-of-M request is understood to be an atomic action. So for, e.g.,
modeling 2-out-of-2 requests, we need the rule

2

3

4

5

1

2

3

4

5

1

z s
s

(2-of-2)
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Such rules can be easily simulated by a contiguous sequence of rewrite steps
1-OF-1 · EXT-0∗ · EXT-1∗, in which the node making the request remains
fixed. We omit the details.

A grant request may be modeled by

2

1

s

3

4

2

1

3

4

(grant)

and a request resolution by

z
1
2

∅ (resolve)

This leaves only the cloning behavior for an overloaded process p. This
requires two rules: one for the case in which p is unblocked, and one for the
case in which p is blocked. We use the shorthand notation introduced in Nota-
tion 23, so that named nodes ri induce type edges among themselves and from
and into the context.1

The case in which p is unblocked is modeled by rule

r2

r1

r3

1

r2

r1

r3
1 (clone-1)

and the case in which p is blocked is modeled by rule

r2

r1

r3
1

2

3
r2

r1

r3
1

2

3

2

3

(clone-2)

Cloning would be easier to express if PGR were to be extended with support
for hyperedges and cardinality constrained type edges. We envision a rule like

1

2
3

= 2

> 0

1

2

3

3
(clone*)

to capture the same cases as rules CLONE-1 and CLONE-2 combined. We leave
such an extension to future work. In particular, the precise semantics of hyper-
edge transformation would have to be determined.
1 The type edges between distinctly named nodes ri �= rj are redundant in the con-

sidered scenario, since we know that these type edges will never have adherents.
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4.3 Deadlock Detection

Deadlock detection on some valid wait-for graph G can be performed by restrict-
ing the rewrite system to rules GRANT, RESOLVE and destroy, yielding a
terminating rewrite system. Then the network represented by G contains a dead-
lock if and only if the (unique) normal form of G is the empty graph ∅.

5 Comparison

We compare PGR to several other rewriting frameworks. We have selected these
frameworks because of their popularity and/or because they bear certain simi-
larities to our approach.

Double-Pushout (DPO). Ehrig et al.’s double-pushout approach (DPO) [9]
is one of the most prominent approaches in graph rewriting.

A rewrite rule in the DPO approach is of the form L ←↩ K → R, where L is
the subgraph to be replaced by subgraph R. The graph K is an “interface”, used
to identify a part of L with a part of R, and it can be thought of as describing
which part of L is preserved by the rule. The identification is formally established
through the inclusion L ←↩ K and the graph morphism K → R. The morphism
K → R may be non-injective, allowing it to merge nodes that are in the interface.

A DPO rewrite rule L
ϕ←↩ K

ψ→ R is applied inside a graph G as follows [7,8].
Let m : L → G be a graph morphism, which we may assume to be injective [16].
The graph m(L) ≈ L is said to be a match for L. The arising rewrite step
replaces m(L) of G by a fresh copy c(R) of R, redirecting edges left dangling by
the removal of a v ∈ m(L) to node c(ψ(ϕ−1(m−1(v)))). For the redirection of
edges to work, nodes that leave dangling ends need to be part of the interface,
that is, in m(ϕ(K)). This is known as the “gluing condition”.2 If the gluing
condition is not met, the rewrite step is not permitted.

Using Notation 23, it is easy to see that PGR at least as expressive as DPO
with respect to the generated rewrite relation. A DPO rule L

ϕ←↩ K
ψ→ R can

be directly simulated by a PGR rule L → R in which the nodes are annotated
with their (set of) names in the interface: v ∈ VL is annotated with the names
ϕ−1(v), and v ∈ VR is annotated with the names ψ−1(v).

However, DPO is stronger in one respect: a DPO rewrite step preserves the
subgraph specified in K, whereas a PGR rewrite can be thought of as destroying
and replacing the left-hand side of the rule. The consequences for metaproperties
relating to parallelism and concurrency will have to be investigated.

Generalized DPO. In some variants of DPO, the inclusion L ←↩ K is general-
ized to a (possibly non-injective) morphism ϕ : K → L. Intuitively, this allows a
node v of L to be “split apart” in the interface K. Applying the DPO method to
a host graph ensures that the patch graph edges incident to v will be incident to

2 By the injectivity assumption for m, we need not consider what is known as the
“identification condition”.
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one of v’s split copies. It does not dictate how these edges should be distributed.
Thus, such rewrite steps are non-deterministic.

Generalized DPO rules L
ϕ← K

ψ→ R can be translated to PGR rules L → R
in the same way as discussed for DPO. Since ϕ is no longer required to be
injective, nodes v ∈ VL can be annotated with multiple names ϕ−1(v), thereby
leading to (non-deterministic) quasi rules (Definition 13).

Single-Pushout (SPO). The single-pushout (SPO) approach by Löwe [18] is
the destructive sibling of DPO. It is operationally like DPO, but it drops the
gluing condition. Any edges that would become dangling in the host graph are
instead removed.

An SPO rule L
ϕ←↩ K

ψ→ R can be simulated by a PGR rule L → R with
annotations as discussed above for DPO, except that each node v ∈ VL, for
which ϕ−1(v) is empty, is now annotated by a fresh name. The rewrite step will
then delete all patch edges connected to such a node.

DPO Rewriting in Context (DPO-C). The DPO Rewriting in Context
(DPO-C) approach by Löwe [19,20] addresses the issue of non-determinism in
generalized variants of DPO, using ingoing and outgoing arrow annotations to
dictate how these edges should be distributed over split copies. The visual repre-
sentation of DPO-C therefore bears some similarity to that of PGR. In addition,
absence of arrow annotations also define negative application conditions like
in PGR. However, the patch cannot be transformed as freely as in PGR. For
instance, see rule (2) below.

AGREE. AGREE [3] and PBPO [4] by Corradini et al. extend DPO with the
ability to erase and clone nodes, while also being able to specify how patch
edges are distributed among the copies. For this purpose, a “filter” for the edges
determines what kind of patch edges are to be dropped. This filter can distin-
guish different types of edges based on their source, target and label. Thereby
AGREE and PBPO subsume mildly restricted versions of DPO, SPO, and other
formalisms.

PGR has some features that are not present in AGREE and PBPO. First, in
PGR rule applicability can be restricted by conditions on the permitted shape
of the patch. Second, PGR allows (almost) arbitrary redirecting, moving and
copying of patch edges outside the scope of AGREE and PBPO. For instance,

1 2 6 7 126 7 (2)

cannot be expressed in the latter frameworks. Also inverting the direction of
patch edges, or moving patch edges between nodes of the pattern is not possible
in AGREE and PBPO.

On the other hand, AGREE and PBPO capture some transformations that
cannot be expressed in PGR. First, AGREE and PBPO can express some global
transformations, unlike PGR. Second, the “patch edge filter” in AGREE and
PBPO can distinguish patch edges depending on their label and the “type” of
the source/target in the context (here the type is given by some type graph).
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Both features are not present in PGR as presented in this paper. However,
PGR can be extended with constraints on the patch type edges. We leave the
investigation of a suitable constraint language to future work.

Nagl’s Approach. Nagl [21] has defined a very powerful graph transformation
approach. Rather than identifying “gluing points” for the replacement of L by
R in a host graph G (as in the previous approaches), rules are equipped with
expressions that describe how R is to be embedded into the remainder graph
G− = G−L. An expression can, e.g., specify that an edge must be created from
u ∈ G− to v ∈ R if there existed a path (of certain length and containing certain
labels) from u to a w ∈ L. Thus, the embedding context may no longer even be
local.

While not all of these transformations are supported by PGR, the expres-
sions are arguably much less intuitive than our representation, in which both
application conditions and transformations are visualized in a unified manner.

Habel et al.’s Approach. Habel et al. [15] have introduced graph grammars
with rule-dependent application conditions that also admit a very intuitive visual
representation. These conditions are more powerful than PGR’s application con-
ditions, since they can extend arbitrarily far into the context graph. However,
transformations are not included in the approach, unlike in PGR, in which the
notations for application conditions and transformations are unified.

Drags. To generalize term rewriting techniques to the domain of graphs, Der-
showitz and Jouannaud [6] have recently defined the drag data structure and
framework. A drag is a multigraph in which nodes are labeled by symbols that
have an arity equal to the node’s outdegree. Nodes labeled with nullary variable
symbols are called sprouts, and resemble output ports. In addition, the drag
comes equipped with a finite number of roots, which resemble input ports.

A composition operation ⊗ξ for drags, parameterized by a two-way switch-
board ξ identifying sprouts with roots, gives rise to a rewrite relation W ⊗ξ L →
W ⊗ξ R. For this rewrite relation to be well-defined, it is required, among others,
that L and R have the same number of roots and the same multisets of variables.

Since drag rewriting imposes arity restrictions on nodes, it is more restrictive
than patch rewriting concerning the shapes of the graphs that can be rewritten.
As drag rewrite steps are local, we believe that PGR can simulate them, but we
leave this investigation to future work.

6 Conclusion

We have introduced patch graph rewriting, a framework for graph rewriting that
enriches the rewrite rules with a simple, yet powerful language for constraining
and transforming the local embedding—or patch.

For future work, we plan to investigate various meta-properties central in
graph rewriting [8], in particular confluence [12,17,22], termination [2,5], the
concurrency theorem [10], decomposability and reversibility of rules. We intend
to study these properties both globally, for all graphs, as well as locally [11,13],
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for a given language of graphs [23]. Furthermore, we are interested in extending
the framework with constraint labels on patch type edges, and in allowing label
transformations. We believe this could be useful for modeling a larger class
of distributed algorithms [14]. Another interesting direction of research is an
equational perspective on patch rewriting, as similarly investigated by Ariola
and Klop for term graph rewriting [1].

Acknowledgments. This paper has benefited from discussions with Jan Willem
Klop, Nachum Dershowitz, Femke van Raamsdonk, Roel de Vrijer, and Wan Fokkink.
We thank Andrea Corradini and the anonymous reviewers for their useful sugges-
tions. Both authors received funding from the Netherlands Organization for Scientific
Research (NWO) under the Innovational Research Incentives Scheme Vidi (project.
No. VI.Vidi.192.004).

References

1. Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundamenta Informat-
icae. 26(3,4), 207–240 (1996). https://doi.org/10.3233/FI-1996-263401

2. Bruggink, H.J.S., König, B., Zantema, H.: Termination analysis for graph trans-
formation systems. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 15

3. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21145-9 3

4. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: The PBPO graph
transformation approach. J. Log. Algebr. Meth. Program. 103, 213–231 (2019).
https://doi.org/10.1016/j.jlamp.2018.12.003

5. Dershowitz, N., Jouannaud, J.-P.: Graph path orderings. In LPAR, volume 57 of
EPiC Series in Computing, EasyChair, pp. 307–325 (2018). https://doi.org/10.
29007/6hkk

6. Dershowitz, N., Jouannaud, J.-P.: Drags: a compositional algebraic framework for
graph rewriting. Theor. Comput. Sci. 777, 204–231 (2019). https://doi.org/10.
1016/j.tcs.2019.01.029

7. Ehrig, H.: Tutorial introduction to the algebraic approach of graph grammars. In:
Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986.
LNCS, vol. 291, pp. 1–14. Springer, Heidelberg (1987). https://doi.org/10.1007/3-
540-18771-5 40
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Abstract. This work is an attempt to generalize categorial grammars,
which deal with string languages, to hypergraphs. We consider a partic-
ular approach called basic categorial grammar (BCG) and introduce its
natural extension to hypergraphs — hypergraph basic categorial grammar
(HBCG). We show that BCGs can be naturally embedded in HBCGs.
It turns out that, as BCGs are equivalent to context-free grammars,
HBCGs are equivalent to hyperedge replacement grammars in general-
ized Greibach normal form. We also present several structural properties
of HBCGs. From practical point of view, we show that HBCGs can be
used to describe semantics of sentences of natural languages. We incor-
porate the lambda semantics into the new mechanism in the same way
as it is done for BCGs and show that such an embedding allows one to
describe semantics of sentences with cross-serial dependencies.

1 Introduction

Formal mechanisms serving to describe formal (string) languages include two
large classes: generative grammars and categorial grammars. The former gen-
erate strings using rewriting rules (productions): a string is correct if it can be
produced by a grammar. The most well-known example of such a formalism is
context-free grammar (CFG). Categorial grammars, in opposite, take the whole
string at first and then check whether it is correct as follows: there is a set
of types and a uniform mechanism which defines what sequences of types are
correct; a particular grammar contains a lexicon, i.e. a correspondence between
symbols in an alphabet and types of the system. In order to check whether a
string a1 . . . an is correct one chooses types T1, . . . , Tn such that ai corresponds
to Ti in the grammar and then checks if T1, . . . , Tn is correct with respect to
uniform rules of the formalism.

One of the most fundamental examples of categorial grammars is basic cat-
egorial grammar (BCG). It is introduced in works of Ajdukiewicz [2] and Bar-
Hillel [3]. Types in BCGs are built of primitive types Pr using left and right
divisions \, /. There are two uniform rules of interaction between types: given
A, (A\B) or (B/A), A standing nearby each other within a sequence of types
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one can replace them by B. The sequence of types is said to be correct iff it can
be reduced to some distinguished s ∈ Pr. It is proved by Gaifman [4] that this
approach has the same generating power as context-free grammars.

BCGs can serve to describe natural languages. E.g. the sentence Tim thinks
Helen is smart corresponds to the sequence of types NP , (NP\S)/S, NP ,
(NP\S)/ADJ , ADJ , which can be reduced to S; thus this sentence is gram-
matically correct1. Moreover, it is possible to combine BCGs with the λ-calculus
and to model semantics of this sentence. Namely, if the λ-term λx.smart(x) is
assigned to the adjective smart, the λ-term λs.λx.think(s)(x) is assigned to the
verb thinks, and the λ-term λf.λx.f(x) is assigned to is, then the reductions that
are done in order to obtain S from the sequence above can be treated as appli-
cations in the λ-calculus; hence, the sentence above is described by the meaning
think(smart(Helen))(Tim).

Let us return to generative grammars. The principles underlying them can
be extended to graphs; a class of resulting formalisms is called graph grammars.
In this paper we focus on a particular approach to generating graphs named
hyperedge replacement grammar (HRG in short). An overview on HRGs can
be found in [9]. We are interested in HRG because it is closely related to CFG:
definitions of these formalisms are similar to each other; consequently, they share
many crucial properties, e.g. the pumping lemma and the fixed-point theorem.
Moreover, HRGs represent a natural extension of CFGs, since strings can be
represented by string graphs and CFGs can be modeled using HRGs.

The question we are going to discuss in this paper is how to generalize
basic categorial grammars to hypergraphs and to obtain a categorial mechanism
related to HRGs. We present such a generalization — hypergraph basic categorial
grammars. We extend notions of types, of reduction laws, and of semantics to
hypergraphs. As expected, the resulting mechanism is closely related both to
BCGs and HRGs, which is shown in Sects. 5 and 6. In Sect. 7 several structural
properties of HBCGs are studied. In Sect. 8 we show how to enrich our mecha-
nism with the lambda semantics. In Sect. 9 we show an application of our theory
to linguistics.

2 Basic Categorial Grammars (for Strings)

The survey of categorial grammars including basic categorial grammars can be
found in [8]. Here we introduce the main definitions to show connections with
the new formalism.

Let us fix a countable set Pr = {pi}∞
i=1 of primitive types.

Definition 2.1. The set Tp of types is defined inductively as follows: it is the
least set such that Pr ⊆ Tp and for each A,B ∈ Tp B\A,A/B are also in Tp.

1 In the types considered, NP stands for noun phrases, ADJ stands for adjectives,
and S stands for sentences.
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Throughout this paper small letters p, q, . . . and strings composed of them
(e.g. np, cp) range over primitive types. Capital letters A,B, . . . usually range
over types (however, graphs are often referred to as G and H).

There are two rules of BCGs:

1. Γ,A,A\B,Δ �→ Γ,B,Δ
2. Γ,B/A,A,Δ �→ Γ,B,Δ

Here Γ,Δ are finite (possibly empty) sequences of types. Thus �→ is a relation on
Tp+×Tp+. We denote by ∗�→ its reflexive transitive closure. Γ

k�→ Δ denotes that
Δ is obtained from Γ in k steps (the same notation is used for all the relations
in this work).

Definition 2.2. A basic categorial grammar is a tuple Gr = 〈Σ, s, �〉 where Σ
is a finite set (alphabet), s is a distinguished primitive type, and � ⊆ Σ × Tp is
a finite binary relation, i.e. it assigns a finite number of types to each symbol in
the alphabet.

The language L(Gr) generated by Gr is the set of all strings a1 . . . an for
which there are types T1, . . . , Tn such that ai � Ti, and T1, . . . , Tn

∗�→ s.

3 Hypergraphs and Operations on Them

This section is concerned with definitions related to hypergraphs. All the notions
except for compression are well known and widely accepted (see [9]). Note that
we use a slightly different notation from that in [9].

3.1 Hypergraphs, Sub-hypergraphs

N includes 0. The set Σ∗ is the set of all strings over the alphabet Σ including
the empty string ε. The length |w| of the word w is the number of symbols in w.
Σ+ denotes the set of all nonempty strings. The set Σ� is the set of all strings
consisting of distinct symbols. The set of all symbols contained in the word w is
denoted by [w]. If f : Σ → Δ is a function from one set to another, then it is
naturally extended to a function f : Σ∗ → Δ∗ (f(σ1 . . . σk) = f(σ1) . . . f(σk)).

Let C be some fixed set of labels for whom the function type : C → N is
considered.

Definition 3.1. A hypergraph G over C is a tuple G = 〈V,E, att, lab, ext〉
where V is the set of nodes, E is the set of hyperedges, att : E → V � assigns
a string (i.e. an ordered set) of attachment nodes to each edge, lab : E → C
labels each edge by some element of C in such a way that type(lab(e)) = |att(e)|
whenever e ∈ E, and ext ∈ V � is a string of external nodes.

Components of a hypergraph G are denoted by VG, EG, attG, labG, extG resp.
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In the remainder of the paper, hypergraphs are simply called graphs, and
hyperedges are simply called edges. The set of all graphs with labels from C
is denoted by H(C). In drawings of graphs black dots correspond to nodes,
labeled squares correspond to edges, att is represented with numbered lines, and
external nodes are depicted by numbers in brackets. If an edge has exactly two
attachment nodes, it can be denoted by an arrow (which goes from the first
attachment node to the second one).

Definition 3.2. The function type (or typeG to be exact) returns the number
of nodes attached to some edge in a graph G: typeG(e) := |attG(e)|. If G is a
graph, then type(G) := |extG|.

Example 3.1. There are two hypergraphs on Fig. 1, to the left and right of the
symbol �→

χ
. E.g., the graph on the left has 5 edges; there are three edges within

it for which type equals 2, one edge with type equal to 1, and an edge with type
equal to 3.

Definition 3.3. A sub-hypergraph (or just subgraph) H of a graph G is a hyper-
graph such that VH ⊆ VG, EH ⊆ EG, and for all e ∈ EH attH(e) = attG(e),
labH(e) = labG(e).

Definition 3.4. If H = 〈{vi}n
i=1, {e0}, att, lab, v1 . . . vn〉, att(e0) = v1 . . . vn and

lab(e0) = a, then H is called a handle. It is denoted by �(a).

Definition 3.5. Let H ∈ H(C) be a graph, and let f : EH → C be a relabeling
function. Then f(H) = 〈VH , EH , attH , labf(H), extH〉 where labf(H)(e) = f(e)
for all e in EH . It is required that type(labH(e)) = type(f(e)) for e ∈ EH .

If one wants to relabel only one edge e0 within H with a label a, then the
result can be denoted by H[e0 := a]

Definition 3.6. An isomorphism between graphs G and H is a pair of bijective
functions E : EG → EH , B : VG → VH such that attH ◦ E = B ◦ attG, labG =
labH◦E, B(extG) = extH . In this work, we do not distinguish between isomorphic
graphs.

3.2 Operations on Graphs

In graph formalisms certain graph transformation are in use. To generalize cat-
egorial grammars we present the following operation called compression.

Compression. Let G be a graph, and let H be a subgraph of G. Compression
of H into an a-labeled edge within G is a procedure of transformation of G,
which can be done under the following conditions:

(a) For each v ∈ VH , if v is attached to some edge e ∈ EG\EH (i.e. v ∈ [att(e)]),
then v has to be external in H (v ∈ [extH ]).
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(b) If v ∈ VH is external in G, then it is external in H ([extG] ∩ VH ⊆ [extH ]).
(c) type(H) = type(a).

Then the procedure is the following:

1. Remove all nodes of VH except for those of extH from VG;
2. Remove EH from EG;
3. Add a new edge ẽ;
4. Set att(ẽ) = extH , lab(ẽ) = a.

Let G�a/H� (or G�a, ẽ/H�) denote the resulting graph. Formally, G�a/H� =
〈V ′, E′, att′, lab′, extG〉, where V ′ = VG \ (VH \ extH), E′ = {ẽ} ∪ (EG \ EH),
att′(e) = attG(e), lab′(e) = labG(e) for e �= ẽ, and att′(ẽ) = extH , lab′(ẽ) = a.

Replacement. This procedure is defined in [9]. In short, the replacement of an
edge e0 in G with a graph H can be done if type(e0) = type(H) as follows:

1. Remove e0;
2. Insert an isomorphic copy of H (namely, H and G have to consist of disjoint

sets of nodes and edges);
3. For each i, fuse the i-th external node of H with the i-th attachment node of

e0.

To be more precise, the set of edges in the resulting graph is (EG \ {e0}) ∪ EH ,
and the set of nodes is VG ∪ (VH \ extH). The result is denoted by G[H/e0].

Proposition 3.1. Compression and replacement are opposite:

1. G�a, e/H�[H/e] ≡ G (for a subgraph H of G satisfying conditions (a) and
(b); a is an arbitrary label);

2. G[H/e]�a, e/H� ≡ G (provided e : type(e) = type(H) and a = labG(e)).

3.3 Hyperedge Replacement Grammars

Definition 3.7. A hyperedge replacement grammar is a tuple Gr = 〈N,Σ,
P, S〉, where N is a finite alphabet of nonterminal symbols, Σ is a finite alphabet
of terminal symbols (N ∩ Σ = ∅), P is a set of productions, and S ∈ N . Each
production is of the form A → H where A ∈ N , H ∈ H(N ∪ Σ) and type(A) =
type(H).

Edges labeled by terminal (nonterminal) symbols are called terminal (non-
terminal) edges.

If G is a graph, e0 ∈ EG, lab(e0) = A and A → H ∈ P , then G directly
derives G[H/e0] (denote G ⇒ G[H/e0]). The transitive reflexive closure of ⇒
is denoted by ∗⇒. If G

∗⇒ H, then G is said to derive H. The corresponding
sequence of production applications is called a derivation.

Definition 3.8. The language generated by an HRG 〈N,Σ,P, S〉 is the set of
graphs H ∈ H(Σ) such that �(S) ∗⇒ H. Two grammars are said to be equivalent
iff they generate the same language.

Further we simply write A
∗⇒ G instead of �(A) ∗⇒ G.
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4 Hypergraph Basic Categorial Grammars

In this section, we present definitions needed to extend BCGs to graphs. Firstly,
we introduce the notion of a type; then we define a rewriting rule, which operates
on graphs labeled by types; finally, we introduce the definitions of a hypergraph
basic categorial grammar and of a language generated by it.

4.1 Types

We fix a countable set Pr of primitive types and a function type : Pr → N such
that for each n ∈ N there are infinitely many p ∈ Pr for which type(p) = n.
Types are constructed from primitive types using division. Simultaneously, we
define the function type on types.

Let us fix some symbol $ that is not included in all the sets considered. NB!
This symbol is allowed to label edges with different number of attachment nodes.
To be consistent with Definition 3.1 one can assume that there are countably
many symbols $n such that type($n) = n.

Definition 4.1. The set Tpχ of types is the least set satisfying the following
conditions:

1. Pr ⊆ Tpχ;
2. Let N (“numerator”) be in Tpχ. Let D (“denominator”) be a graph such that

exactly one of its edges (call it e0) is labeled by $, and other edges (possibly,
there are none of them) are labeled by elements of Tpχ; let also type(N) =
type(D). Then T = ÷(N/D) also belongs to Tpχ, and type(T ) := typeD(e0).

In types, $ serves to “connect” a denominator and a numerator.

Example 4.1. The following structure is a type:

E0 = ÷

⎛

⎜

⎜

⎜

⎝

q

/
(1)

q
(3)

(2)

$

p

1

2 3

⎞

⎟

⎟

⎟

⎠

.

Here p, q belong to Pr, type(p) = 2, type(q) = 3; type(E0) = 2.

4.2 D-Isomorphism

In order to generalize the rules A/B,B �→ A and B,B\A �→ A, denominators of
types are going to be “overlaid” on subgraphs of graphs. This idea is formalized
by the notion of a d-isomorphism.
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Definition 4.2. A graph D that has exactly one edge labeled by $ while other
ones are labeled by elements of Tpχ, is called d-formed. The only edge of D
labeled by $ is denoted head(D).

Definition 4.3. A graph-edge pair is a pair (H; e0) where H is a graph, and
e0 ∈ EH .

Definition 4.4. A d-isomorphism between a d-formed graph D and an graph-
edge pair (H; e0) is a pair of functions (ε;β) such that

– ε : ED → EH , β : VD → VH are bijections;
– attH ◦ ε = β ◦ attD;
– ε(head(D)) = e0;
– For all e ∈ ED \ {head(D)} labD(e) = labH(ε(e));
– β(extD) = extH .

4.3 Rule (÷)

The concept of hypergraph basic categorial grammars (HBCGs) is based on the
mechanism of reduction of hypergraphs labeled by types. There is an inference
rule, which is denoted by (÷), generalizing two rules for BCGs presented earlier.

The following dramatis personae participate in the rule (÷):

– G ∈ H(Tpχ);
– H — a subgraph of G, and (H; e0), which is a graph-edge pair;
– lab(e0) = ÷(N/D);
– (ε;β) — a d-isomorphism between D and (H; e0).

The rule (÷) can be applied to (H; e0) if the following conditions are fulfilled:

1. If v ∈ [att(e)] for some e ∈ EG \ EH and v ∈ VH , then v ∈ [extH ];
2. [extG] ∩ VH ⊆ [extH ].

Then the rule is of the form

G �→
χ

G�N/H� (÷).

Requirements 1 and 2 guarantee that compression is possible.
If G

∗�→
χ

H, then G is said to be reducible to H (as usual, ∗�→
χ

is the reflexive

transitive closure of �→
χ

).

q
(1)

s

E0

p

1

2 31

t

�→
χ q

(1)

s

1 3

2

1

t

�→
χ

Fig. 1. Example of the application of (÷). Here E0 is from Example 4.1. Note that the
order of attachement node of the q-labeled edge is changed w.r.t. to E0.
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4.4 Hypergraph Basic Categorial Grammar

Definition 4.5. A hypergraph basic categorial grammar (HBCG for short) Gr
is a tuple Gr = 〈Σ, s, �〉 where Σ is a finite alphabet, s is a primitive type, and
� ⊆ Σ ×Tpχ is a binary relation (called a lexicon) which assigns a finite number
of types to each symbol in the alphabet. Additionally, we require that the function
type is defined on Σ such that a � T implies type(a) = type(T ).

The set dict(Gr) = {T ∈ Tpχ|∃ a ∈ Σ : a � T} ∪ {s} is called a dictionary.

Definition 4.6. The language L(Gr) generated by an HBCG Gr = 〈Σ, s, �〉 is
the set of all hypergraphs G ∈ H(Σ) for which a function fG : EG → Tpχ exists
such that:

1. labG(e) � fG(e) whenever e ∈ EG;
2. fG(G) ∗�→

χ
�(s).

All the definitions presented above are slightly more complicated and tech-
nical than that of BCGs; however, the concept of HBCGs is closely related both
to HRGs and BCGs.

Example 4.2. Let us consider an example of an HRG from [11] (a little bit mod-
ified) generating abstract meaning representations, which contains four rules:

S → X

(1)

go
arg0

I

1

2 X → Y

(2)

(1)want

arg0

arg1

1

2
Y → X

(2)

(1)need

arg0

arg1

1

2
Y →

(1)

(2)

need
arg1

arg0

Here S is the initial symbol. This HRG can be converted into an equivalent
HBCG as follows. Let s, x, y, i, a0, a1 be primitive types. Then the following
lexicon defines an HBCG that generates the same language as the HRG above:

go � ÷

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s

/

x

$
a0

i

1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; want � ÷

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x

/

y

(2)

(1)$

a0

a1

1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; arg0 � a0;

need � ÷

⎛

⎜

⎜

⎜

⎜

⎜

⎝

y

/

x

(2)

(1)$

a0

a1

1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; need � ÷

⎛

⎜

⎜

⎜

⎜

⎜

⎝

y

/

(1)

(2)

$
a1

a0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; arg1 � a1;

I � i.
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To be more precise, the HBCG is of the form 〈{want,need, go, I, arg0, arg1}, s, �〉.
All the primitive types have type being equal to 2.

The conversion can be done since there is a terminal edge in the right-hand
side of each production (see more in Sect. 6). A more thorough example of an
HBCG is given in Sect. 9.

5 Embedding of BCG

To justify that HBCGs appropriately extend BCGs, we present an embedding
of the latter into the former in a natural and a simple way.

A function tr : Tp → Tpχ presented below embeds string types into graph
types:

– tr(p) := p, p ∈ Pr, type(p) = 2;

– tr(A/B) := ÷
(

tr(A)

/

(1) (2)
$ tr(B)

)

– tr(B\A) := ÷
(

tr(A)

/

(1) (2)
tr(B) $

)

Recall that a string graph induced by a word w = a1 . . . an is a graph of the
form 〈{vi}n

i=0, {ei}n
i=1, att, lab, v0vn〉 where att(ei) = vi−1vi, lab(ei) = ai. This

graph is denoted by w•.
tr(Tp) denotes the set of translations of all types. If Γ = T1, . . . , Tn is a

sequence of types, then tr(Γ ) := (tr(T1) . . . tr(Tn))•. If Gr = 〈Σ, s, �〉 is a BCG,
then tr(Gr) is the HBCG 〈Σ, s, �χ〉 where a �χ T ⇔ T = tr(A) and a � A.
Two propositions below establish connection between BCGs and HBCGs.

Proposition 5.1. If G ∈ H(tr(Tp)), C ∈ Tp and G
∗�→
χ

�(tr(C)), then G =

tr(Γ ) for some Γ such that Γ
∗�→ C.

Proof. Proof by induction on the number of steps in the derivation G
n�→
χ

�(tr(C)).
Basis. If n = 0, then G = �(tr(C)) and C

0�→ C. Step. Let the
first reduction be applied to (H; e0) within G. If lab(e0) = tr(A/B), then
H = 〈{v0, v1, v2}, {e0, e1}, att, lab, v0v2〉 where att(ei) = vivi+1, i = 0, 1 and
lab(e1) = tr(B). Since G�ẽ, tr(A)/H�

∗�→
χ

�(tr(C)), by the induction hypoth-

esis we obtain G�ẽ, tr(A)/H� = tr(Δ) such that Δ = Φ,A, Ψ
∗�→ C. Then

G = G�ẽ, tr(A)/H�[H/ẽ] = tr(Φ,A/B,B, Ψ) and Φ,A/B,B, Ψ
∗�→ C.

The case lab(e0) = tr(B\A) is treated similarly. ��

Proposition 5.2. If Γ
∗�→ C, then tr(Γ ) ∗�→

χ
�(tr(C)).
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It is proved by a straightforward conversion of the reduction process for
strings into the reduction process for graphs. These propositions yield

Theorem 5.1. If Gr is a BCG, then L(tr(Gr)) = {w•|w ∈ L(Gr)}.

6 Equivalence of HRGs and HBCGs

It is well known that CFGs and BCGs are equivalent; one of the simplest proofs
involves Greibach normal form for CFGs. In this section, we show that this proof
can be generalized to a wide class of graph grammars in a natural way.

6.1 Greibach Normal Form for HRGs

Firstly, one has to extend the notion of the (weak) Greibach normal form. There
are a few works in which variants of such extension are introduced, see [10,12].
However, normal forms presented in these works are more strict than it is needed
for our purposes. In this paper, we use the following

Definition 6.1. The HRG Gr is in the weak Greibach normal form (WGNF)
iff there is exactly one terminal edge in the right-hand side of each production.
Formally, ∀(X → H) ∈ PGr ∃!e0 ∈ EH : labH(e0) ∈ ΣGr and for e �= e0
labH(e) ∈ NGr.

Note that not each language generated by some HRG can be generated by
an HRG in GNF. It follows from

Example 6.1. Consider an HRG Gr = 〈{S}, {a}, P, S〉 where P contains two
productions (for type(S) = type(a) = 0):

– S → 〈{v0}, {e0}, att, lab, ε〉, lab(e0) = S, att(e0) = ε;
– S → �(a).

This grammar produces graphs that have exactly one edge labeled by a and
arbitrarily many isolated nodes. If there is an equivalent Gr′ = 〈N, {a}, P ′, S′〉
in GNF, then each right-hand side of each production in P ′ contains exactly one
terminal edge. Note that if S′ k⇒ G,G ∈ H({a}) in Gr′, then G has k terminal
edges; hence k has to equal 1 and therefore S′ → G ∈ P ′. However, there are
infinitely many graphs in L(Gr) while |P ′| < ∞. ��

The characterization of languages generated by HRGs in the WGNF is a
subject of the further study.

It turns out that HBCGs generate the same class of languages as HRGs in
the normal form presented. This is proved below.
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6.2 The Equivalence Theorems

Definition 6.2. The set st(T ) of subtypes of a type T is defined inductively as
follows:

1. st(p) = {p}, p ∈ Pr;
2. st(÷(N/D)) = {÷(N/D)} ∪ st(N) ∪

(

⋃

e∈ED\{head(D)} st (labD(e))
)

.

Theorem 6.1. For each HBCG an equivalent HRG in GNF exists.

Proof. Let Gr = 〈Σ, s, �〉 be an HBCG. We denote by N the set of subtypes of
all types contained in the dictionary (formally, N = {R ∈ Tpχ|R ∈ st(T ), T ∈
dict(Gr)}). The set P contains the following productions:

1. If a � T , then T → �(a) ∈ P .
2. If a � ÷(N/D), then N → D[head(D) := a] ∈ P .

It is argued that Gr′ = 〈N,Σ,P, s〉 generates the same language as Gr. It suffices
to show that T

∗⇒ G for G ∈ H(Σ), T ∈ N if and only if f(G) ∗�→
χ

�(T ) for some

f : EG → Tpχ such that lab(e) � f(e). It is done in a straightforward way by
induction on the number of steps in the derivation:

“Only if” part. Let T
k⇒ G. Induction on k. Basis: if k = 1, then either

G = �(a) and a � T or G = D[head(D) := a] is obtained in such a way
that a � ÷(T/D) and |ED| = 1. Then D[head(D) := ÷(T/D)] �→

χ
�(T ). Step

(k > 1): let the first production applied be of the form T → D[head(D) := a] for
a � ÷(T/D) and let D \ {head(D)} = {e1, . . . , en}, n ≥ 1. Let Gi ∈ H(Σ) be a
graph that is obtained from Ti = lab(ei) in the derivation process (i = 1, . . . , n).
Note that Gi is a subgraph of G. By induction hypothesis, fi(Gi)

∗�→
χ

�(Ti) for

some appropriate fi : EGi
→ Tpχ. Then fi can be combined into a single function

f as follows: f(e) := fi(e) whenever e ∈ Gi and f(head(D)) := ÷(T/D). Thus
f(G) can be reduced to ˜G = D[head(D) := ÷(T/D)] by induction hypothesis
(its n subgraphs is compressed into n edges), and then (÷) can be applied to
÷(N/D) in such a way that ˜G �→

χ
�(T ).

The “if” part is proved similarly: one has to transform applications of (÷) in
Gr into productions in Gr′. ��

Example 4.2 provides an example of application of the theorem above.

Theorem 6.2. Each HRG Gr in GNF is equivalent to some HBCG.

Proof. Let Gr = 〈N,Σ,P, S〉. Consider elements of N as elements of Pr with
the same function type defined on them. Since Gr is in GNF, each production in
P is of the form π = X → G where G contains exactly one terminal edge e0 (say
labG(e0) = a ∈ Σ). We convert this production into the type Tπ := ÷(X/G[e0 :=
$]). Then we introduce the HBCG Gr′ = 〈Σ,S, �〉 where � is defined as follows:
a � Tπ. Finally, note that, if one applies the transformation described in Theorem
6.1 to Gr′, he obtains Gr, which implies that L(Gr) = L(Gr′). ��
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Corollary 6.1. The problem of whether a given graph belongs to the language
generated by a given HBCG is NP-complete.

Proof. This problem is in NP since, if the answer is “YES”, there is a certificate
of polynomial size that justifies this; namely, this is a sequence of applications
of (÷) (a derivation). Another explanation is that an HBCG can be converted
into an equivalent HRG in polynomial time for whom the membership problem
is in NP.

In [9], an NP-complete graph language generated by some HRG ERG is
introduced. One notices that there is at least one terminal edge in each produc-
tion in ERG; by adding nonterminal symbols corresponding to terminal ones
one transforms ERG into an equivalent one in GNF, and then — to an HBCG
using Theorem 6.2 (it all takes polynomial time). ��

7 Structural Properties

In this section, we study some structural properties of HBCGs.

7.1 HBCGs with One Primitive Type

The set of primitive types Pr is countably infinite; i.e. we are allowed to use as
many primitive types as we want. However, the following theorem shows that it
suffices to have one primitive type only.

Theorem 7.1. For each HBCG Gr = 〈Σ, s, �〉 an equivalent one 〈Σ, s, �′〉 exists
such that types in its dictionary do not have primitive subtypes except for s.

Proof. We consider the following substitution of primitive types. Let s, p1, . . . , pn

be all the primitive types occurring in dict(Gr) and let T be the set of all
subtypes of all types in dict(Gr). Denote M := max{type(T )|T ∈ T }. Then we
define F (pk) = ÷(s/Dk) (k = 1, . . . , n):

– VDk
= {v1, v2, . . . , vtk , w1, w2, . . . , wM+k} (for tk = type(pk)).

– EDk
= {e0, e1}.

– attDk
(e0) = v1v2 . . . vtk , attDk

(e1) = w1w2 . . . wM+k.
– lab(e0) = $, lab(e1) = Tk where

• Tk = ÷(s/D′
k);

• D′
k = 〈{u1, . . . , uM+k}, e′, att′, lab′, u1 . . . ut〉 (for t = type(s));

• att′(e′) = u1 . . . uM+k, lab′(e′) = $.
– extDk

= w1w2 . . . wt.

Behind this definition a simple idea stands: F (pk) has a huge edge in the denom-
inator, which is larger than any edge existing in the lexicon.

Let F (T ) stand for a type obtained from T ∈ T by substituting each pk

with F (pk) (we do not change s). Now, if a � T , then let a �′ F (T ). No more
relations in �′ exist. We argue that Gr′ = 〈Σ, s, �′〉 is a desired grammar. It
follows from its definition that it contains only s as a primitive type. Clearly,
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L(Gr) ⊆ L(Gr′): each derivation in Gr can be remade in Gr′, if one considers
F (pk) as an atomic, indivisible type corresponding to pk.

To prove the reverse inclusion let us consider the set T ′ = {F (T )|T ∈ T }.
Assume that for a graph G ∈ H(T ) the graph F (G) is reducible to �(s) (here
F (G) is obtained from G by changing each label a by the label F (a)). At each
step of the reduction process the rule (÷) is applied either to a type of the form
F (÷(N/D)), ÷(N/D) ∈ T or to F (pk). However, note that no edges in F (G)
have type exceeding M , whereas Dk requires to be overlaid on the edge of the
type M +k > M . Consequently, (÷) cannot be applied to F (pk), and G

∗�→
χ

�(s).

If H belongs to L(Gr′), then there is a function f : EH → T ′ such that
lab(e) �′ f(e) whenever e ∈ EH and f(H) ∗�→

χ
�(s). Since f(H) = F (G) for some

G ∈ H(T ), G is also reducible to �(s). Finally, note that g = F−1 ◦ f satisfies
the condition lab(e) � g(e) for e ∈ EH and G = g(H) ∗�→

χ
�(s). Therefore, H

belongs to L(Gr). ��

7.2 Counters

One of the features HBCGs inherit from BCGs is so-called counters.

Definition 7.1. Let f : Pr → Z be some function. An f-counter #f : Tpχ → Z

is defined as follows:

– #f (p) = f(p);
– If T = ÷(N/D) and ED = {head(D), e1, . . . , en}, then

#f (T ) = #f (N) −
n

∑

i=1

#f (lab(ei)).

If G is labeled by types and EG = {e1, . . . , en}, then #f (G) :=
∑n

i=1 #f (lab(ei)).

Proposition 7.1. If G
k�→
χ

G′, then #f (G) = #f (G′) for each f .

Proof. Induction on k. Basis: if k = 0, then G = G′.
Step: let G �→

χ
G�N/H�

k−1�→
χ

G′ where ÷(N/D) is the type involved in

the first rule (÷). Let us denote all the participants of the compression
G �→

χ
G�N/H� similarly to those in Sect. 4.3. Then, since D and (H; e0) are

d-isomorphic, #f (lab(e)) = #f (lab(ε(e))) for e ∈ ED, e �= head(D). Thus
#f (G) = #f (G�N/H�). The induction hypothesis completes the proof. ��

Counters can be used to check whether a graph G can be reduced to another
one G′: if #f (G) �= #f (G′) for some f , then G � ∗�→

χ
G′.

Example 7.1. We provide two specific examples of counters:

– f = gq, q ∈ Pr : gq(p) = 1 whenever p = q and gq(p) = 0 otherwise. E.g. for
the graph E0 from Example 4.1 #gp

(E0) = −1, #gq
(E0) = 0.

– f = hm,m ∈ N : hm(p) = 1 whenever type(p) = m and hm(p) = 0 otherwise.
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8 Lambda Semantics

The λ-calculus is a formal tool, which has a number of applications in functional
programming and in formal semantics. In this paper, we do not provide the
definitions of this mechanism and refer the reader to the paper [5], which is an
overview of the λ-calculus.

In basic categorial grammars, one can assign λ-terms to types. α : A denotes a
λ-term α assigned to a type A (i.e. this is the pair (α;A)). The rules of reduction
then have the following form:

1. Γ, α : A, β : A\B,Δ �→ Γ, βα : B,Δ
2. Γ, β : B/A,α : A,Δ �→ Γ, βα : B,Δ

Here βα stands for the application of β to α. A linguistic example that shows
how λ-terms describe semantics of a natural language was given in Sect. 1.

This approach can be generalized to hypergraphs and HBCGs. Let T be a
type, i.e. belong to Tpχ. By τ : T we denote a pair containing a λ-term τ .

Now we are going to incorporate the λ-calculus into the rule (÷). Let objects
involved in this rule be denoted as in Sect. 4.3. We additionally require that
edges in ED are numbered: ED = {e0, e1, . . . , ek} (and this numbering is fixed
for a given type). If a λ-term τ is assigned to ÷(N/D) and for i > 0 lab(ε(ei)) =
αi : Ti, then the rule (÷) is of the form

G �→
χ

G�τα1α2 . . . αk : N/H� (÷).

Here τα1α2 . . . αk = (((τα1)α2) . . . )αk. This means that λ-terms written on
edges that are consumed by the denominator D are treated as arguments of the
λ-term assigned to ÷(N/D).

An example of an application of HBCGs enriched with the λ-calculus to
linguistics is presented in the next section.

9 Cross-serial Dependencies

It is well known that context-free languages in the usual sense fail to describe
certain linguistic phenomena. One of them is so-called cross-serial dependencies
(CSD) — a class of phenomena that that can be described by the language
{ww|w ∈ Σ∗} of reduplicated strings.

We focus here on the following example of CSD from the Russian language:

The meaning of this sentence is: Olya was the first who finished, Petya was the
second who finished, and Vasya was the third who finished (e.g. when speaking
about a competition). In Russian, the ordinal numerals the first, the second,
the third agree with nouns in gender which leads to CSD (note that Olya is a
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female name, and Petya, Vasya are male ones). Below we show how to generate
such Russian sentences using an HBCG and how to model their semantics using
the λ-calculus. In order to simplify the example, we ignore some features of the
Russian language. We denote by pdm (pdf ) a primitive type which stands for
masculine (feminine resp.) predicate phrases in singular form in the instrumental
case (such as ordinal numbers, e.g. ); we denote by npm (npf ) a primi-
tive type corresponding to masculine (feminine) noun phrases in singular form
in the nominative case (such as proper nouns, e.g. ); npp (pdp) denotes
nouns (predicate phrases resp.) in a plural form; s denotes sentences (it is a
distinguished type). Then the grammar generating sentences of the above form
is the following:

Here Z equals Note that tr is defined in Sect. 5.

Let us denote the first type in the first row above as Im, and the second one as
Tm; by analogue, types in the second row are denoted by If and Tf resp.

In addition, we assign semantic types to the syntactic ones:

– � λP.λf.f(P )(V asya) : Im, λζ.λP.λf. (f(P )(V asya) ∧ ζf) : Tm; . . .
– � λP.λf.f(P )(Olya) : If , λζ.λP.λf. (f(P )(Olya) ∧ ζf) : Tf ; . . .
– :first : pdm, :second : pdm, . . . ;
– :first : pdf , :second : pdf , . . . ;
– :λP.λx.finish(P )(x) : T0.

Then the sentence (1) belongs to the language generated by this HBCG:
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Let us track the λ-terms occuring in the derivation process step-by-step:

1. There is a term τ1 = λf.f(first)(Olya) assigned to Z after the first step;
2. ζ = τ1 and P = second are applied to λζ.λP.λg. (g(P )(Petya) ∧ ζg) in the

second step; the result is λg. (g(second)(Petya) ∧ g(first)(Olya)).
3. Similarly, after the third step the following λ-term is assigned to Z:

λh. (h(third)(V asya) ∧ (h(second)(Petya) ∧ h(first)(Olya))) .

4. Finally, one obtains the following term:

finish(third)(V asya) ∧ (finish(second)(Petya) ∧ finish(first)(Olya)) .

Thus, this HBCG not only generates sentences of the form (1) (HRGs can deal
with them as well) but also provides their semantical representation which is
composed of λ-terms assigned to types.

10 Conclusions and Related Work

There are a few papers devoted to combining categorial grammars with graph
tools. E.g. there is a recent work of Sebastian Beschke and Wolfgang Menzel
[7] where it is shown how to enrich the Lambek calculus, which is another cat-
egorial approach (see [13]), with graph semantics. In the paper [14] (which is
rather linguistic than mathematical) an extension of some concepts of the Lam-
bek calculus to graphs is presented; namely, sentences are considered to be graph
structures (functor-argumentor-structures), and then categorial graph grammars
are introduced, which deal with these structures. Hypergraph basic categorial
grammars introduced in our work, however, do not seem to be closely related
to any of these approaches. Possibly, it is because our motivation for HBCGs
is rather logical and mathematical: our main purpose was to directly combine
concepts of BCGs and HRGs, so the resulting mechanism satisfies these require-
ments. Nevertheless, we hope that HBCGs also can be used (possibly, with some
further modifications) in practical applications, e.g. in linguistics.

Note that there is a work [6] where HRGs are used to describe CSD of
the Dutch language. Actually, examples in Sect. 9 have a similar structure with
examples in [6]. Comparing [6] with this paper, we conclude that one of the
crucial features distinguishing between HRGs and HBCGs from linguistic point
of view is the λ-semantics, which can be naturally built into the latter.

There is a number of questions that remain open; we hope to study them in
future works.
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– We showed that the membership problem for HBCGs is NP-complete. How
to restrict HBCGs in order to obtain efficient parsing algorithms?

– We introduced some applications of HBCGs to linguistics. We are interested
in further developing a theory that would use HBCGs and the λ-calculus to
model visual structures related to natural languages. Particularly, we desire
to consider syntactic trees which linguists deal with from the point of view
of our approach.

– How to generalize other string categorial approaches to hypergraphs?

Acknowledgments. I thank my scientific advisor prof. Mati Pentus for his careful
attention to my study and anonymous reviewers for their valuable advice.
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Abstract. Multilevel modeling extends traditional modeling techniques
with a potentially unlimited number of abstraction levels. Multilevel
models can be formally represented by multilevel typed graphs whose
manipulation and transformation are carried out by multilevel typed
graph transformation rules. These rules are cospans of three graphs and
two inclusion graph homomorphisms where the three graphs are multi-
level typed over a common typing chain. In this paper, we show that
typed graph transformations can be appropriately generalized to multi-
level typed graph transformations improving preciseness, flexibility and
reusability of transformation rules. We identify type compatibility con-
ditions, for rules and their matches, formulated as equations and inequa-
tions, respectively, between composed partial typing morphisms. These
conditions are crucial presuppositions for the application of a rule for a
match—based on a pushout and a final pullback complement construc-
tion for the underlying graphs in the category Graph—to always provide
a well-defined canonical result in the multilevel typed setting. Moreover,
to formalize and analyze multilevel typing as well as to prove the nec-
essary results, in a systematic way, we introduce the category Chain of
typing chains and typing chain morphisms.

Keywords: Typing chain · Multilevel typed graph transformation ·
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1 Introduction

Multilevel modeling (MLM) extends conventional techniques from the area of
Model-Driven Engineering by providing model hierarchies with multiple levels of
abstraction. The advantages of allowing multiple abstraction levels (e.g. reducing
accidental complexity in software models and avoiding synthetic type-instance
anti-patterns) and flexible typing (e.g. multiple typing, linguistic extension and
deep instantiation), as well as the exact nature of the techniques used for MLM
are well studied in the literature [1,4–6,8,10,17]. Our particular approach [19,20]
to MLM facilitates the separation of concerns by allowing integration of different
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multilevel modeling hierarchies as separate aspects of the system to be modelled.
In addition, we enhance reusability of concepts and their behaviour by allowing
the definition of flexible transformation rules which are applicable to different
hierarchies with a variable number of levels. In this paper, we present a revised
and extended formalisation of these rules using graph theory and category theory.

G

Gn

. . .

G1

G0

Partial graph
homomorphism

Multilevel
typing

Multilevel
typed
graph

Typing
chain

Path in
multilevel
modelling
hierarchy

Fig. 1. MLM terminology

As models are usually represented
abstractly as graphs, we outline in this paper
the graph theoretic foundations of our app-
roach to MLM using multilevel typed graphs,
prior to introducing our formalisation of mul-
tilevel typed rule definition and application.
Multilevel models are organized in hierar-
chies, where any graph G is multilevel typed
over a typing chain of graphs (see Fig. 1).
The typing relations of elements within each
graph are represented via graph morphisms.
Since we allow for deep instantiation [4–6,8],
which refers to the ability to instantiate an
element at any level below the level in which
it is defined, these morphisms need to be par-

tial graph homomorphisms. Moreover, more than one model can be typed by the
same typing chain (or, conversely, models can be instantiated more than once),
hence, all the paths that contain such typing relations constitute a full, tree-
shaped multilevel modelling hierarchy (see Example 1). Finally, the topmost
model G0 in any hierarchy is fixed, and the typing relations of all models (and
the elements inside them) must converge, directly or via a sequence of typing
morphisms, into G0. Therefore, the graph morphisms into G0 are always total.

Multilevel typed graph transformation rules are cospans L I Rλ ρ

of inclusion graph homomorphisms, with I = L ∪ R, where the three graphs are
multilevel typed over a common typing chain MM. A match of the left-hand
side L of the rule in a graph S , at the bottom of a certain hierarchy, multilevel
typed over a typing chain T G , is given by a graph homomorphism μ : L → S
and a flexible typing chain morphism from MM into T G . The typing chain
MM is local for the rules and is usually different from T G which is determined
by the path from S to the top of the hierarchy (see Fig. 1).

L I R

S D T

λ ρ

ς θ

μ δ νPO FPBC

Fig. 2. Rule structure and basic
constructions for rule application

To apply these rules we rely on an adap-
tation of the Sesqui pushout (Sq-PO) app-
roach [7] to cospans. We construct first the
pushout and then the final pullback comple-
ment (FPBC) of the underlying graph homo-
morphisms in the category Graph as shown
in Fig. 2. Based on these traditional con-
structions we want to build, in a canonical
way, type compatible multilevel typings of

the result graphs D and T over the typing chain T G . For this to work, we need
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quite reasonable type compatibility conditions for rules and relatively flexible
conditions for matches, formulated as equations and inequations, resp., between
composed partial typing morphisms.

We introduce typing chain morphisms, and the corresponding category Chain
of typing chains and typing chain morphisms, to formalize flexible matching and
application of multilevel typed rules. The composition of partial graph homo-
morphisms is based on pullbacks in the category Graph, thus type compatibility
conditions can be equivalently expressed by commutativity and pullback condi-
tions in Graph. Therefore, we formalize and analyze multilevel typing as well as
describe constructions and prove the intended results, in a systematic way, within
the category Chain. Especially, we show that the first step in a rule application
can be described by a pushout in Chain. Moreover, the second step is described
as a canonical construction in Chain, however, it is an open question whether
this is a final pullback construction in Chain or not.

A preliminary version of typing chains are an implicit constituent of the
concept “deep metamodeling stack” introduced in [22] to formalize concepts like
parallel linguistic and ontological typing, linguistic extensions, deep instantiation
and potencies in deep metamodeling. We revised this earlier version and further
developed it to a concept of its own which serves as a foundation of our app-
roach to multilevel typed model transformations in [20,26]. Compared to [20],
we present in this paper a radically revised and extended theory of multilevel
typed graph transformations. In particular, the theory is now more powerful,
since we drop the condition that typing chain morphisms have to be closed (see
Definition 5). Moreover, we detail the FPBC step which is missing in [20]. Due
to space limitations, we will not present the background results concerning the
equivalence between the practice of individual direct typing – which are used
in applications and implementations – and our categorical reformulation of this
practice by means of typing chains. These equivalence results as well as examples
and proofs can be found in [26].

2 Typing Chains and Multilevel Typing of Graphs

Graph denotes the category of (directed multi-) graphs G = (GN , GA, scG, tgG)
and graph homomorphisms φ = (φN,φA) : G → H [12]. We will use the term
element to refer to both nodes and arrows.

Multilevel typed graphs are graphs typed over a typing chain, i.e., a sequence
[Gn, Gn−1, . . . , G1, G0] of graphs where the elements in any of the graphs
Gi, with n ≥ i ≥ 1, are, on their part, multilevel typed over the sequence
[Gi−1, . . . , G1, G0]. Paths in our MLM hierarchies give rise to typing chains. The
indexes i refer to the abstraction levels in a modeling hierarchy where 0 denotes
the most abstract top level.

Following well-established approaches in the Graph Transformations field
[12], we define typing by means of graph homomorphisms. This enables us to
establish and develop our approach by reusing, variating, and extending the wide
range of constructions and results achieved in that field. Moreover, this paves the
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way to generalize the present “paradigmatic” approach, where models are just
graphs, to more sophisticated kinds of diagrammatic models, especially those
that take advantage of diagrammatic constraints [22,23].

We allow typing to jump over abstraction levels, i.e., an element in graph
Gi may have no type in Gi−1 but only in one (or more) of the graphs
Gi−2, . . . , G1, G0. Two different elements in the same graph may have their types
located in different graphs along the typing chain. To formalize this kind of flex-
ible typing, we use partial graph homomorphisms that we introduced already
in [22].

Definition 1. A partial graph homomorphism ϕ : G ◦−→H is given by a
subgraph D(ϕ) � G, called the domain of definition of ϕ, and a graph homo-
morphism ϕ : D(ϕ) −→ H .

Note that we use, in abuse of notation, the same name for both the partial and
the corresponding total graph homomorphisms. To express transitivity of typing
and later also compatibility of typing, we need as well the composition of partial
graph homomorphisms as a partial order between partial graph homomorphisms.

Definition 2. The composition ϕ;ψ : G ◦−→K of two partial graph homomor-
phisms ϕ : G ◦−→H and ψ : H ◦−→K is defined as follows:

– D(ϕ;ψ) := ϕ−1(D(ψ)),
– (ϕ;ψ)N (e) := ψN (ϕN (e)) for all e ∈ D(ϕ;ψ)N and (ϕ;ψ)A(f) := ψA(ϕA(f))

for all f ∈ D(ϕ;ψ)A.

More abstractly, the composition of two partial graph homomorphisms is defined
by the following commutative diagram of total graph homomorphisms.

D(ϕ;ψ)

D(ϕ) D(ψ)

G H K

� ϕ|ψ

� ϕ � ψ

ϕ;ψ

PB

Note that D(ϕ;ψ) = D(ϕ) if ψ is total, i.e., H = D(ψ).

Definition 3. For any two partial graph homomorphisms ϕ, φ : G ◦−→H we
have ϕ � φ iff D(ϕ) � D(φ) and ϕ, φ coincide on D(ϕ).

Now, we can define typing chains as a foundation for our investigation of
multilevel typed graph transformations in the rest of the paper.

Definition 4. A typing chain G = (G,n, τG) is given by a natural number n,
a sequence G = [Gn, Gn−1, . . . , G1, G0] of graphs of length n + 1 and a family
τG = (τG

j,i : Gj ◦−→Gi | n ≥ j > i ≥ 0) of partial graph homomorphisms, called
typing morphisms, satisfying the following properties:

– Total: All the morphisms τG
j,0 : Gj → G0 with n ≥ j ≥ 1 are total.
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– Transitive: For all n ≥ k > j > i ≥ 0 we have τG
k,j ; τ

G
j,i � τG

k,i.
– Connex: For all n ≥ k > j > i ≥ 0 we have D(τG

k,j)∩D(τG
k,i) � D(τG

k,j ; τ
G
j,i) =

(τG
k,j)

−1(D(τG
j,i)), moreover, τG

k,j ; τ
G
j,i and τG

k,i coincide on D(τG
k,j) ∩ D(τG

k,i).

Due to Definitions 2 and 3, transitivity and connexity together mean that
D(τG

k,j) ∩ D(τG
k,i) = D(τG

k,j ; τ
G
j,i), i.e., we do have a (unique) total graph homo-

morphism τG
k,j|i : D(τG

k,j) ∩ D(τG
k,i) → D(τG

j,i) and the following commutative
diagram of total graph homomorphisms

D(τG
k,i) Gi

D(τG
k,j) ∩ D(τG

k,i) D(τG
j,i)

D(τG
k,j) Gj

Gk

τG
k,i

τG
k,j|i

τG
k,j

�

�

τG
j,i

�

�

�

=

PB

PB

Remark 1. For any element e in any graph Gi in a typing chain, with i > 0,
there exists a unique index me, with i > me ≥ 0, such that e is in the domain of
the typing morphism τG

i,me
but not in the domain of any typing morphism τG

i,j

with i > j > me. We call τG
i,me

(e) the direct type of e. For any other index k,
with me > k ≥ 0, we call τG

i,k(e), if it is defined, a transitive type of e.

Example 1. Figure 3 depicts the typing morphisms between the graphs in a sim-
plified sample hierarchy. The direct types for nodes and arrows are indicated with
blue and cursive labels, respectively. All typing morphisms in the simple typing
chain T G , determined by the sequence [hammer plant, generic plant, Ecore]
of graphs, are total except the one from hammer plant to generic plant, since
the direct type of has is located in Ecore. We have chosen Ecore as the top-most
graph since it provides implementation support through the Eclipse Modeling
Framework [24]. This enables our approach to MLM to exploit the best from
fixed-level and multi-level concepts [18]. 
�

To describe later the flexible matching of multilevel typed rules and the
result of rule applications, we need a corresponding flexible notion of morphisms
between typing chains.

Definition 5. A typing chain morphism (φ, f) : G → H between two typing
chains G = (G,n, τG) and H = (H,m, τH) with n ≤ m is given by

– a function f : [n] → [m], where [n] = {0, 1, 2, . . . , n}, such that (1) f(0) = 0
and (2) j > i implies f(j) − f(i) ≥ j − i for all i, j ∈ [n], and

– a family of total graph homomorphisms φ = (φi : Gi → Hf(i) | i ∈ [n]) such
that

τG
j,i;φi � φj ; τH

f(j),f(i) for all n ≥ j > i ≥ 0, (1)



168 U. Wolter et al.

ghead
GenHead

h1
Headc1

crt

hammer config stool config

GenHead
Machine

Head
Part

Hammer
Part

crt

creates

hasEReference

hammer plant stool plant

Machine
EClass

Part
EClasscreates

EReference

generic plant

EClass
EReference

Ecore
Level
0

Level
1

Level
2

Level
3

Fig. 3. Multilevel modeling hierarchy with typing morphisms

i.e., due to Definitions 2 and 3, we assume for any n ≥ j > i ≥ 0 the
existence of a total graph homomorphism φj|i that makes the diagram of total
graph homomorphisms displayed in Fig. 4 commutative.

A typing chain morphism (φ, f) : G → H is closed iff τG
j,i;φi = φj ; τH

f(j),f(i) for
all n ≥ j > i ≥ 0, i.e., the right lower square in Fig. 4 is a pullback.

Gi
Hf(i) Gi

Hf(i)

D(τG
j,i) D(τH

f(j),f(i))

Gj Hf(j) Gj Hf(j)

φi φi

φj|i

φj φj

� �

τG
j,i

τG
j,i

τH
f(j),f(i)

τH
f(j),f(i)

�
=

= (PB)

Fig. 4. Establishing a morphism between two typing chains, level-wise

Typing morphisms are composed by the composition of commutative squares.

Definition 6. The composition (φ, f); (ψ, g) : G → K of two typing chain
morphisms (φ, f) : G → H, (ψ, g) : H → K between typing chains G = (G,n, τG),
H = (H,m, τH), K = (K, l, τK) with n ≤ m ≤ l is defined by (φ, f); (ψ, g) :=
(φ;ψ↓f , f ; g), where ψ↓f := (ψf(i) : Hf(i) → Kg(f(i)) | i ∈ [n]), and thus φ;ψ↓f :=
(φi;ψf(i) : Gi → Kg(f(i)) | i ∈ [n]).
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Chain denotes the category of typing chains and typing chain morphisms.
A natural way to define multilevel typing of a graph H over a typing chain

G would be a family σ = (σi : H ◦−→Gi | n ≥ i ≥ 0) of partial graph homomor-
phisms satisfying certain properties. However, as shown in [26], those families
are not appropriate to state adequate type compatibility requirements for rules
and matches and to construct the results of rule applications. Therefore, we
employ the sequence of the domains of definition of the σi’s as a typing chain
and describe multilevel typing by means of typing chain morphisms. The fol-
lowing Lemma describes how any sequence of subgraphs gives rise to a typing
chain.

Lemma 1. Any sequence H = [Hn,Hn−1, . . . , H1,H0] of subgraphs of a graph
H , with H0 = H, can be extended to a typing chain H = (H,n, τH) where for
all n ≥ j > i ≥ 0 the corresponding typing morphism τH

j,i : Hj ◦−→Hi is given
by D(τH

j,i) := Hj ∩ Hi and the span of total inclusion graph homomorphisms

Hj D(τH
j,i) = Hj ∩ Hi Hi

� τH
j,i

.

We call the typing chain H = (H,n, τH) an inclusion chain on H .

A multilevel typing of a graph H over a typing chain G = (G,n, τG) is
given by an inclusion chain H = (H,n, τH) on H (of the same length as G) and
a typing chain morphism (σH, id[n]) : H → G.

3 Multilevel Typed Graph Transformations

Underlying Graph Transformation. To meet the characteristics of our

application areas [19–21] we work with cospans L I Rλ ρ
of inclusion

graph homomorphisms, where I = L ∪ R, as the underlying graph transfor-
mation rule of a multilevel typed rule. To apply such a rule [7,12,13], we have
to find a match μ : L → S of L in a graph S at the bottom-most level of an
MLM hierarchy. To describe the effect of a rule application, we adapt the Sq-
PO approach [7] to our cospan-rules: First, we construct a pushout and, second,
a final pullback complement (FPBC) to create the graphs D and T , resp. (see
Fig. 2). The details behind choosing cospan rules and Sq-PO, as opposed to span
rules and double-pushout (DPO), are out of the scope of this paper. In short,
however: (i) cospan rules are more suitable from an implementation point-of-
view since they allow for first adding new elements then deleting (some of the)
old elements [13], and (ii) having both old and new elements in I allows us to
introduce constraints on new elements depending on old constraints involving
elements to be deleted [23]. Moreover, we apply the rules using our variant of
Sq-PO [7,13] since (i) the pushout complement in DPO, even if it exists, may
not be unique, in contrast the FPBC, if it exists, is always unique (up to iso-
morphism), (ii) FPBC allows faithful deletion in unknown context, i.e., dangling
edges may be deleted by applying the rules, however, the co-match ν is always
total, i.e., if the match μ identifies elements to be removed with elements to be
preserved, the FPBC will not exist and the application will not be allowed.
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Multilevel Typed Rule. We augment the cospan rule to a multilevel typed
rule by chosing a typing chain MM = (MM,n, τMM), the typing chain of
the rule, together with coherent multilevel typings over MM of L and R,
respectively. That is, we choose an inclusion chain L = (L, n, τL) on L, an
inclusion chain R = (R,n, τR) on R and typing chain morphisms (σL, id[n]) :
L → MM with σL = (σL

i : Li → MMi | i ∈ [n]), (σR, id[n]) : R → MM with
σR = (σR

i : Ri → MMi | i ∈ [n]) (see Fig. 5), such that Li∩R = L∩Ri = Li∩Ri

and, moreover, σL
i and σR

i coincide on the intersection Li ∩ Ri for all i ∈ [n].

MM

L I R

= =
(σL, id[n]) (σR, id[n])(σI , id[n])

(λ, id[n]) (ρ, id[n])

Fig. 5. Rule morphisms and their type compatibility

The inclusion chain I = (I , n, τI) on the union (pushout) I = L∪R is simply
constructed by level-wise unions (pushouts): Ii := Li ∪ Ri for all i ∈ [n]; thus,
we have I0 = I . Since Graph is an adhesive category [12], the construction of I
by pushouts and the coherence condition ensure that we get for any i ∈ [n] two
pullbacks as shown in Fig. 6. The existence of these pullbacks implies, according
to the following Lemma, that we can reconstruct the inclusion chains L and R,
respectively, as reducts of the inclusion chain I.

Lemma 2. Let be given two inclusion chains G = (G,n, τG) and H =
(H,m, τH) with n ≤ m and a function f : [n] → [m] such that f(0) = 0
and j > i implies f(j) − f(i) ≥ j − i for all i, j ∈ [n]. For any family
φ = (φi : Gi → Hf(i) | i ∈ [n]) of graph homomorphisms the following two
requirements are equivalent:

1. For all n ≥ j > 0 the left-hand square in Fig. 7 is a pullback.
2. The pair (φ, f) constitutes a closed typing chain morphism (φ, f) : G → H

where for all n ≥ j > i ≥ 0 the right-hand diagram in Fig. 7 consists of two
pullbacks.

Given a closed typing chain morphism (φ, f) : G → H between inclusion
chains, as described in Lemma 2, we call G the reduct of H along φ0 : G0 → H0

and f : [n] → [m] while (φ, f) : G → H is called a reduct morphism. Note
that the composition of two reduct morphisms is a reduct morphism as well.

Lemma 2 ensures that the families (λi : Li → Ii | i ∈ [n]) and (ρi : Ri →
Ii | i ∈ [n]) of inclusion graph homomorphisms establish reduct morphisms
(λ, id[n]) : L → I and (ρ, id[n]) : R → I, resp., as shown in Fig. 5.
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L0 = L I0 = L0 ∪ R0 R0 = R

Li Ii = Li ∪ Ri Ri

MMi

PB PB

= =

λi

τL
i,0

ρi

τR
i,0τI

i,0

λ0 := λ ρ0 := ρ

σL
i σR

i

σI
i

Fig. 6. Type compatibility of rule morphisms level-wise

G0 H0

Gj Hf(j)
φj

φ0

τG
j,0 τH

f(j),0
PB

Gi Hf(i]

Gj ∩ Gi Hf(j) ∩ Hf(i)

Gj Hf(j)

φi

φj

φj|i

τG
j,i τH

f(j),f(i)

� �

PB

PB

Fig. 7. Reduct of inclusion chains

Finally, we have to construct a typing chain morphism (σI , id[n]) : I → MM
making the diagram in Fig. 5 commute: For all i ∈ [n], we constructed the union
(pushout) Ii := Li ∪Ri. Moreover, σL

i and σR
i coincide on Li ∩Ri, by coherence

assumption, thus we get a unique σI
i : Ii → MMi such that (see Fig. 6)

σL
i = λi;σI

i and σR
i = ρi;σI

i (2)

Since Graph is adhesive, Lemma 2 ensures that the family σI = (σI
i : Ii →

MMi | i ∈ [n]) of graph homomorphisms establishes indeed a typing chain
morphism (σI , id[n]) : I → MM while the Eq. 2 ensure that the diagram in
Fig. 5 commutes indeed.

Example 2. Figure 8 shows a multilevel typed rule CreatePart from a case study
[20]. This rule can be used to specify the behaviour of machines that create parts,
by matching an existing type of machine that generates a certain type of parts,
and in the instance at the bottom, generating such a part. META defines a typing
chain MM of depth 3. It declares the graph ( M1 P1

cr ) that becomes MM2.
The declaration of the direct types Machine, creates, Part for the elements in

MM2 declares, implicitly, a graph MM1 := ( Machine Part
creates ) that is
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in turn, implicitly, typed over MM0 := ECore. All the morphisms in τMM are
total and uniquely determined thus we have, especially, τMM

2,0 = τMM
2,1 ; τMM

1,0 .
FROM and TO declare as well the left-hand side L := ( m1 ) and the right-

hand-side R := ( m1 p1c ), resp., of the rule and the direct types of the
elements in L and R. These direct types are all located in MM2 thus L2 = L
and R2 = R where the direct types define nothing but the typing morphisms
σL
2 : L2 → MM2 and σR

2 : R2 → MM2, resp. The other typing morphisms
are obtained by “transitive closure”, i.e., σL

1 := σL
2 ; τMM

2,1 , σL
0 := σL

2 ; τMM
2,0 and

σR
1 := σR

2 ; τMM
2,1 , σR

0 := σR
2 ; τMM

2,0 , thus we have L = L0 = L1 = L2 and
R = R0 = R1 = R2.

For the “plain variant” of the rule CreatePart (in Fig. 15), MM consists
only of the graphs MM1 = ( M1 P1

cr ), MM0 = ECore and the trivial τMM
1,0 .

Multilevel Typed Match. In the multilevel typed setting all the graphs S ,
D, T are multilevel typed over a common typing chain T G = (TG,m, τT G),
with n ≤ m, that is determined by the path from S to the top of the current
MLM hierarchy (see Fig. 1).

M1
Machine

P1
Partcrt

creates

m1
M1

m1
M1

p1
P1c1

crt

META

FROM TO

Fig. 8. CreatePart : a sample rule

A match of the multilevel typed
rule into a graph S with a given multi-
level typing over T G , i.e., an inclusion
chain S = (S,m, τS) with S0 = S and
a typing chain morphism (σS , id[m]) :
S → T G , is given by a graph homo-
morphism μ : L → S and a typing
chain morphism (β, f) : MM → T G
such that the following two conditions
are satisfied:

– Reduct: L is the reduct of S along μ : L → S and f : [n] → [m], i.e.,
μ0 := μ : L0 = L −→ S0 = S extends uniquely (by pullbacks) to a reduction
morphism (μ, f) : L → S with μ = (μi : Li → Sf(i) | i ∈ [n]) (see Fig. 9).

– Type compatibility: (σL, id[n]); (β, f) = (μ, f); (σS , id[m]), i.e., we require

σL
i ;βi = μi;σS

f(i) for all n ≥ i > 0. (3)
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L0 = L S0 = S

Li Sf(i)

MMi TGf(i)
βi

μ0 := μ

μi

τL
i,0 τS

f(i),f(0)

σL
i σS

f(i)=

PB MM T G

L S

(σL, id[n])

(β, f)

(σS , id[m])

(μ, f)

=

Fig. 9. Conditions for multilevel typEd Match

Application of a Multilevel Typed Rule – Objectives. The basic idea is
to construct for a given application of a graph transformation rule, as shown in
Fig. 2, a unique type compatible multilevel typing of the result graphs D and
T . The parameters of this construction are typing chains MM, T G ; a coherent
multilevel typing of the graph transformation rule over MM; a multilevel typing
of the graph S over T G and a typing chain morphism (β, f) : MM → T G
extending the given match μ : L → S of graphs to a multilevel typed match
satisfying the two respective conditions for multilevel typed matches.

Example 3 (Multilevel Typed Match). To achieve precision in rule application
the elements Machine, creates, Part in the original rule CreatePart are con-
stants required to match syntactically with elements in the hierarchy. In such

a way, MM1 = ( Machine Part
creates )has to match with generic plant

while MM2 = ( M1 P1
cr ) could match with hammer plant or stool plant.

We will observe later that for the plain version of the rule CreatePart in Fig. 15
we could match MM1 = ( M1 P1

cr ) either with TG2 = hammer plant or
TG1 = generic plant in the hierarchy in Fig. 3, where the second match would
lead to undesired results (see Example 4).

Pushout step. As shown later, the pushout of the span S L Iλμ

in Graph extends, in a canonical way, to a pushout of the span

S L I
(μ, f) (λ, id[n])

of reduct morphisms in Chain such that the result typing chain D = (D,m, τD)
is an inclusion chain and the typing chain morphisms (ς, id[m]) : S ↪→ D and
(δ, f) : I → D become reduct morphisms (see the bottom in Fig. 10).
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L I

MM

S D

T G

(μ, f)

(λ, id[n])

(ς, id[m])

(σD, id[m])

(σI , id[n])
(σS , id[m])

(σL, id[n])

(δ, f)

(β, f)

Fig. 10. Pushout step

We get also a type com-
patible typing chain mor-
phism from D into T G : The
back triangle in Fig. 10 com-
mutes due to the type com-
patibility of the rule (see
Fig. 5). The roof square com-
mutes since the match is
type compatible (see Fig. 9).
This gives us (μ, f);
(σS , id[m]) = (λ, id[n]); (σI ,
id[n]); (β, f), thus the uni-
versal property of the
pushout bottom square pro-

vides a unique chain morphism (σD, id[m]) : D → T G such that both type com-
patibility conditions (ς, id[m]); (σD, id[m]) = (σS , id[m]) and (δ, f); (σD, id[m]) =
(σI , id[n]); (β, f) are satisfied.

Pullback Complement Step. As shown later, the final pullback complement

D T Rνθ in Graph extends, in a canonical way, to a sequence of

reduct morphisms D T R
(ν, f)(θ, id[n])

in Chain such that the
bottom square in Fig. 11 commutes.

I R

MM

D T

T G

(ν, f)
(ρ, id[n])

(θ, id[m])

(σD, id[m])

(σI , id[n]) (σT , id[m])
(σR, id[n])

(δ, f)

(β, f)

Fig. 11. Pullback complement step

Pushout of Reduct Morphisms – Two Steps. We discuss the intended
pushout of the span

S L I
(μ, f) (λ, id[n])
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of reduct morphisms in Chain. The reduct morphism (λ, id[n]) is surjective w.r.t.
levels, thus the pushout inclusion chain D should have the same length as S.
The rule provides, however, only information how to extend the subgraphs of
S0 = S at the levels f([n]) ⊆ [m]. For the subgraphs in S at levels in [m]\f([n])
the rule does not impose anything thus we let the subgraphs at those levels
untouched. In terms of typing chain morphisms, this means that we factorize
the reduct morphism (μ, f) into two reduct morphisms and that we will con-
struct the resulting inclusion chain D in two pushout steps (see Fig. 12) where
S↓f := (S↓f , n, τS

↓f ) with S↓f := [Sf(n), Sf(n−1), . . . , Sf(1), Sf(0)=0] and τS
↓f :=

(τS
f(j),f(i) : Sf(j) ◦−→Sf(i) | n ≥ j > i ≥ 0) Note, that S↓f := [Sf(n), . . . , Sf(0)] is

just a shorthand for the defining statement: (S↓f )i := Sf(i) for all n ≥ i ≥ 0.

L S↓f S

I D↓f D

(1) (2)

(μ, id[n])

(μ, f)

(id
S
↓f , f)

(λ, id[n]) (ς↓f , id[n]) (ς, id[m])

(δ, id[n])

(δ, f)

(id
D
↓f , f)

Fig. 12. Two pushout steps to construct the inclusion chain D

The reduct morphism (id
S
↓f , f) : S↓f → S is a level-wise identity and just

embeds an inclusion chain of length n + 1 into an inclusion chain of length
m + 1, i.e., id

S
↓f = (idf(i) : Sf(i) → Sf(i) | i ∈ [n]). In the pushout step (1)

we will construct a pushout of inclusion chains of equal length and obtain a
chain D↓f := (D↓f , n, τD

↓f ) with D↓f = [Df(n),Df(n−1), . . . , Df(1),Df(0)=0] and
τD
↓f = (τD

f(j),f(i) : Df(j) ◦−→Df(i) | n ≥ j > i ≥ 0).
In the pushout step (2) we will fill the gaps in D↓f with the corresponding

untouched graphs from the original inclusion chain S.

Pushouts of Graphs for Inclusion Graph Homomorphisms. Our con-
structions and proofs rely on the standard construction of pushouts in Graph
for a span of an inclusion graph homomorphism φ : G ↪→ H and an arbitrary
graph homomorphism ψ : G → K where we assume that H and K are disjoint.
The pushout P is given by PN := KN ∪ HN \ GN , PA := KA ∪ HA \ GA and
scP (e) := scK(e), if e ∈ KA, and scP (e) := ψA(scH(e)), if e ∈ HA \ GA. tgP

is defined analogously. φ∗ : K ↪→ P is an inclusion graph homomorphism by
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construction and ψ∗ : H → P is defined for X ∈ {A,N} by ψ∗X(v) := ψX(v),
if v ∈ GX and ψ∗X(v) := v , if v ∈ HX \ GX .

The pair G \ H := (HN \ GN ,HA \ GA) of subsets of nodes and arrows of
H is, in general, not establishing a subgraph of H . We will nevertheless use the
notation P = K + H \ G to indicate that P is constructed as described above.
ψ∗ can be described then as a sum of two parallel pairs of mappings

ψ∗ = ψ + idH\G := (ψN + idHN\GN , ψA + idHA\GA) (4)

Pushout for Inclusion Chains with Equal Depth. We consider now the
span

S↓f L I
(μ, id[n]) (λ, id[n])

of reduct morphisms in Chain (see Fig. 12). For each level i ∈ [n] we construct
the corresponding pushout of graph homomorphisms. This ensures, especially,

λi; δi = μi; ςf(i) for all i ∈ [n]. (5)

L0 = L I0 = I

Li Ii

S0 = S D0 = D = S + I \ L

Sf(i) Df(i) = Sf(i) + Ii \ Li

PO

PO

λ0 = λ

λi

τL
i,0

τI
i,0

ς0 = ς

ςf(i)

τS
f(i),0

τD
f(i),0(= τS

f(i),0 + τI
i,0↓Ii\Li

)

μ0 δ0

μi δi

Fig. 13. Level-wise pushout construction

We look at an arbitrary level n ≥ i ≥ 1 together with the base level 0 (see
Fig. 13). We get a cube where the top and bottom square are pushouts by con-
struction. In addition, the left and back square are pullbacks since (μ, id[n]) and
(λ, id[n]), respectively, are reduct morphisms. We get a unique graph homomor-
phism τD

f(i),0 : Df(i) → D that makes the cube commute. By the uniqueness
of mediating morphisms and the fact that the top pushout square has the Van
Kampen property (see [12,25]), we can conclude that the front and the right
square are pullbacks as well. That the back square is a pullback means nothing
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but Li = L ∩ Ii. This entails Ii \ Li ⊆ I \ L thus τD
f(i),0 turns out to be the sum

of the two inclusions τS
f(i),0 : Sf(i) ↪→ S and τI

i,0↓Ii\Li
: Ii \ Li ↪→ I \ L and is

therefore an inclusion itself.
The sequence [Df(n),Df(n−1), . . . , Df(1),D0] of subgraphs of D = D0 defines

the intended inclusion chain D↓f . Since the front and right squares in Fig. 13 are
pullbacks, Lemma 2 ensures that the family ς↓f = (ςf(i) : Sf(i) ↪→ Df(i) | i ∈ [n])
of inclusion graph homomorphisms constitutes a reduct morphism (ς↓f , id[n]) :
S↓f → D↓f while the family δ = (δi : Ii → Df(i) | i ∈ [n]) of graph homo-
morphisms constitutes a reduct morphism (δ, id[n]) : I → D↓f . Finally, Eq. 5
ensures that the resulting square (1) of reduct morphisms in Fig. 12 commutes.
The proof that we have constructed a pushout in Chain is given in [26].

Remark 2 (Only one pushout). ςf(i) and δi are jointly surjective for all n ≥ i ≥ 1
thus we can describe Df(i) as the union Df(i) = ς(Sf(i))∪δ(Ii). Hence in practice,
there is no need for an explicit construction of pushouts at all the levels n ≥ i ≥ 1;
these are all constructed implicitly by the pushout construction at level 0.

Pushout by Chain Extension. To obtain an inclusion chain D of length
m + 1, we fill the gaps in D↓f by corresponding subgraphs of S: Da := Da if
a ∈ f([n]) and Da := Sa if a ∈ [m] \ f([n]) and obtain the intended inclusion
chain D = (D,m, τD). The family id

D
↓f = (idD

f(i)
: Df(i) → Df(i) | i ∈ [n])

of identities defines trivially a reduct morphism (Id
D
↓f , f) : D↓f → D. One can

show that the family ς = (ςa : Sa → Da | a ∈ [m]) of graph homomorphisms
defined by

ςa :=

{
ςa : Sa ↪→ Da if a ∈ f([n])
idSa

: Sa → Da = Sa if a ∈ [m] \ f([n])

establishes a reduct morphism (ς, id[m]) : S → D. The two reduct morphisms

(id
D
↓f , f) : D↓f → D and (ς, id[m]) : S → D establish square (2) in Fig. 12 that

commutes trivially. In [26] it is shown that square (2) is also a pushout in Chain.

Pullback Complement. We construct the reduct of D = (D,m, τD) along θ :
T ↪→ D and id[m] by level-wise intersection (pullback) for all n ≥ i ≥ 1 (see the
pullback square below). Due to Lemma 2, we obtain, in such a way, an inclusion
chain T = (T ,m, τT ) together with a reduct morphism (θ, id[m]) : T → D. The
multilevel typing of T is simply borrowed from D, that is, we define (see Fig. 11)

(σT , id[m]) := (θ, id[m]); (σD, id[m]) (6)

and this gives us trivially the intended type compatibility of (θ, id[m]). The typing
chain morphism (ν, f) : R → T with ν = (νi : Ri → Tf(i) | i ∈ [n]) such that

(ρ, id[n]); (δ, f) = (ν, f); (θ, id[m]) (7)

is simply given by pullback composition and decomposition in Graph: For each
n ≥ i ≥ 1 we consider the following incomplete cube on the right-hand side:
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D0 = D T0 = T

Di Ti

θ0 = θ

θi

τD
i,0 τT

i,0
PB

I0 = I R0 = R

Ii Ri

D0 = D T0 = T

Df(i) Tf(i)

ρ0 = ρ

ρi

τI
i,0 τR

i,0

θ0 = θ

θf(i)

τD
f(i),0

τT
f(i),0

δ0 = δ ν0 = ν

δi

νi

The back square, the left square as well as the front square are pullbacks since
(ρ, id[n]), (δ, f) and (θ, id[m]), respectively, are reduct morphisms. The top square
is constructed as a pullback complement. The diagonal square from τR

i,0 to τD
f(i),0

is a pullback due to the composition of the back pullback and the left pullback.
The decomposition of this diagonal pullback w.r.t. the front pullback gives us
νi : Ri → Ti making the cube, and especially the bottom square, commute and
making the right square to a pullback as well.

According to Lemma 2 the family ν = (νi : Ri → Tf(i) | i ∈ [n]) of graph
homomorphisms defines a reduct morphism (ν, f) : R → T where condition 7
is simply satisfied by construction. Finally, (ν, f) is also type compatible since
conditions 6 and 7 ensure that the roof square in Fig. 11 commutes.

Example 4. To present a non-trivial rule application for our example, we discuss
the undesired application of the plain version of rule CreatePart (see Fig. 14),
mentioned in Example 3, for a state of the hammer configuration with only one
node ghead, as shown in hammer config 0 in Fig. 15. So, we have f : [1] → [2],
with f(0) = 0, f(1) = 1, and the “undesired match” of MM1 = ( M1 P1

cr )

with TG1 = generic plant = ( Machine Part
creates ) together with the

trivial match of the left-hand side L = ( m1 ) of the rule with hammer config 0 =
( ghead ). The resulting inclusion chains S, L, R and two reduct morphisms
between them are depicted in Fig. 14. Note, that the ellipse and cursive labels
indicate here the corresponding typing chain morphisms (σS , id[2]), (σL, id[1])
and (σR, id[1]), respectively.

For the two levels in f([1]) = {0, 1} ⊂ [2] we construct the pushouts D0 and
D1 while D2 is just taken as S2. The lowest level in D, where the new elements
p1 and c appear, is level 1 thus the constructed direct types of p1 and c are
Part and creates, resp., as shown in hammer config 1 in Fig. 15.
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D = T

ghead
EClass

p1
EClassc

EReference

D0

ghead
Machine

p1
Partc

creates

D1

ghead
GenHead

D2

S

ghead
EClass

S0

ghead
Machine

S1

ghead
GenHead

S2

L

m1
EClass

L0

m1
M1

L1

R = I

m1
EClass

p1
EClassc

EReference

R0

m1
M1

p1
P1c

crt

R1

(ς, id[2]) (μ, f ) (λ, id[1])

Fig. 14. Inclusion chains for the plain version of CreatePart

M1
EClass

P1
EClasscreates

EReference

m1
M1

m1
M1

p1
P1c

creates

META

FROM TO

ghead
GenHead

hammer config

ghead
GenHead

p1
Partc

creates

hammer config 1

Fig. 15. Plain version of CreatePart and its application

4 Conclusions, Related and Future Work

Conclusion. Multilevel modeling offers more flexibility on top of traditional
modeling techniques by supporting an unlimited number of abstraction levels.
Our approach to multilevel modeling enhances reusability of concepts and their
behaviour by allowing the definition of flexible transformation rules which are
applicable to different hierarchies with a variable number of levels. In this paper,
we have presented a formalization of these flexible and reusable transformation
rules based on graph transformations. We represent multilevel models by mul-
tilevel typed graphs whose manipulation and transformation are carried out by
multilevel typed graph transformation rules. These rules are cospans of three
graphs and two inclusion graph homomorphisms where the three graphs are
multilevel typed over a common typing chain. As these rules are represented
as cospans, their application is carried out by a pushout and a final pullback
complement construction for the underlying graphs in the category Graph. We
have identified type compatibility conditions, for rules and their matches, which
are crucial for rule applications. Moreover, we have shown that typed graph
transformations can be generalized to multilevel typed graph transformations
improving preciseness, flexibility and reusability of transformation rules.

Related work. The theory and practise of graph transformations are well-
studied, and the concept of model transformations applied to MLM is not novel.
Earlier works in the area have worked in the extension of pre-existing model
transformation languages to be able to manipulate multilevel models and model
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hierarchies. In [3], the authors adapt ATL [15] to manipulate multilevel models
built with the Melanee tool [2]. In a similar manner, [11] proposes the adapta-
tion of ETL [16] and other languages from the Epsilon family [14] for the appli-
cation of model transformation rules into multilevel hierarchies created with
MetaDepth [8]. These works, however, tackle the problem from the practical
point of view. That is, how to reuse mature off-the-shelf tools for model trans-
formation in the context of MLM, via the manipulation of a “flattened” repre-
sentation of the hierarchy to emulate multilevel transformations. Our approach,
on the contrary, has been developed from scratch with a multilevel setting in
mind, and we believe it can be further extended to tackle all scenarios consid-
ered by other approaches. Therefore, to the best of our knowledge, there are
no formal treatments of multilevel typed graph transformations in the literature
except for our previous works [19,20,26] (see Sect. 4 in [26]). Hence, we consider
our approach the first approximation to formally address the challenges which
come with multilevel modeling and multilevel model transformations.

Common for our work and [9] is that the concepts of typing chains, multilevel
typed graphs and multilevel models originate in [22]. However, [9] presents partial
morphisms as spans of total morphisms and does not use the composition of those
spans explicitly. Wrt. typing chains, a multilevel model in [9] is a sequence of
graphs [Gn, Gn−1, . . . , G1, G0] together with the subfamily (τG

i+1,i : Gi+1 ◦−→Gi |
n ≥ i ≥ 0) of typing morphisms.

Future work. Although it is trivial to see that the bottom square in the cube for
the pullback complement step becomes a pullback for all n ≥ i ≥ 1, we leave it
for future work to prove that we indeed have constructed a final pullback comple-
ment in Chain. A utilization of our theory to deal with coupled transformations
[21] in the setting of multilevel typed modelling is also desirable. Furthermore,
it would be interesting to investigate the category Chain for its own; e.g., study
its monomorphisms and epimorphisms, possible factorization systems, and the
conditions for existence of general pushouts and pullbacks.
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Abstract. The Kappa biochemistry and the MØD organo-chemistry
frameworks are amongst the most intensely developed applications of
rewriting theoretical methods in the life sciences to date. A typical fea-
ture of these types of rewriting theories is the necessity to implement
certain structural constraints on the objects to be rewritten (a protein
is empirically found to have a certain signature of sites, a carbon atom
can form at most four bonds, . . . ). In this paper, we contribute to the
theoretical foundations of these types of rewriting theory a number of
conceptual and technical developments that permit to implement a uni-
versal theory of continuous-time Markov chains (CTMCs) for stochas-
tic rewriting systems. Our core mathematical concepts are a novel rule
algebra construction for the relevant setting of rewriting rules with con-
ditions, both in Double- and in Sesqui-Pushout semantics, augmented
by a suitable stochastic mechanics formalism extension that permits to
derive dynamical evolution equations for pattern-counting statistics.

Keywords: Double-pushout rewriting · Sesqui-pushout rewriting ·
Rule algebra · Stochastic mechanics · Biochemistry · Organic chemistry

1 Motivation

One of the key applications that rewriting theory may be considered for in the
life sciences is the theory of continuous-time Markov chains (CTMCs) model-
ing complex systems. In fact, since Delbrück’s seminal work on autocatalytic
reaction systems in the 1940s [20], the mathematical theory of chemical reaction
systems has effectively been formulated as a rewriting theory in disguise, namely
via the rule algebra of discrete graph rewriting [11]. In the present paper, we pro-
vide the necessary technical constructions in order to consider the CTMCs and
analysis methods of relevance for more general types of compositional rewriting

An extended version of this paper containing additional technical appendices is avail-
able online [9].
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theories with conditions, with key examples provided in the form of biochemical
graph rewriting in the sense of the Kappa framework (https://kappalanguage.
org) [12], and (organo-) chemical graph rewriting in the sense of the MØD frame-
work (https://cheminf.imada.sdu.dk/mod/) [1]. The present paper aims to serve
two main purposes: the first consists in providing an extension of the existing
category-theoretical rule-algebra frameworks [4,10,11] by the rewriting theoreti-
cal design feature of incorporating rules with conditions as well as constraints on
objects (Sect. 3). Based upon these technical developments, we then investigate
to which extent it is possible to utilize the rule-algebraic stochastic mechanics
frameworks of the relevant types (Sect. 4) in order to compute evolution equa-
tions for the moments of pattern-count observables within the Kappa and MØD
frameworks (Sect. 5 and 6).

2 Compositional Rewriting Theories with Conditions

The well-established Double-Pushout (DPO) [21] and Sesqui-Pushout (SqPO)
[13] frameworks for rewriting systems over categories with suitable adhesivity
properties [23,24,26,30] provide a principled and very general foundation for
rewriting theories. In practice, many applications require the rewriting of objects
that are not part of an adhesive category themselves, but which may be obtained
from a suitable “ambient” category via the notion of conditions on objects.
Together with a corresponding notion of constraints on rewriting rules, this yields
a versatile extension of rewriting theory. In the DPO setting, this modification
had been well-known [21–23,27], while it has been only very recently introduced
for the SqPO setting [8]. For the rule algebra constructions presented in the
main part of this contribution, we require in addition a certain compositionality
property of our rewriting theories (established for the DPO case in [10,11], for
the SqPO case in [4], and for both settings augmented with conditions in [8]).

2.1 Category-Theoretical Prerequisites

Throughout this paper, we will make the following assumptions1:

Assumption 1. C ≡ (C,M) is a finitary M-adhesive category with M-initial
object, M-effective unions and epi-M-factorization. In the setting of Sesqui-
Pushout (SqPO) rewriting, we assume in addition that all final pullback com-
plements (FPCs) along composable pairs of M-morphisms exist, and that M-
morphisms are stable under FPCs.

Both of the main application examples presented within this paper rely upon
typed variants of undirected multigraphs.

1 We review in Appendix A.1 of [9] (an extended version of the present paper) some
of the salient background material on M-adhesive categories and the relevant nota-
tional conventions.

https://kappalanguage.org
https://kappalanguage.org
https://cheminf.imada.sdu.dk/mod/
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Definition 1. Let P(1,2) : Set → Set be the restricted powerset functor (map-
ping a set S to the set of its subsets P ⊂ S with 1 ≤ |P | ≤ 2). The category
uGraph [11] of finite undirected multigraphs is defined as the finitary restric-
tion of the comma category (IDSet,P(1,2)). Thus an undirected multigraph is
specified as G = (EG, VG, iG), where EG and VG are (finite) sets of edges and
vertices, respectively, and where iG : EG → P(1,2)(VG) is the edge-incidence map.

Theorem 1. uGraph satisfies Assumption 1, both for the DPO- and for the
extended SqPO-variant.

Proof. As demonstrated in [11], uGraph is indeed a finitary M-adhesive
category with M-initial object and M-effective unions, for M the class of
component-wise monic uGraph-morphisms. It thus remains to prove the exis-
tence of an epi-M-factorization as well as the properties related to FPCs. To this
end, utilizing the fact that the category Set upon which the comma category
uGraph is based possesses an epi-mono-factorization, we may construct the fol-
lowing diagram from a uGraph-morphism ϕ = (ϕE ,P(1,2)(ϕV )) (for component
morphisms ϕE : E → E′ and ϕV : V → V ′):

E P(1,2)(V ) V

E E P P(1,2)(V ) V

E′ P(1,2)(V ′) V ′

ϕE

eE

i

p
eP P(1,2)(eV )

ϕV

P(1,2)

eV

∃
∼=

mE

mP

pE

pV

PB
P(1,2)(mV ) mV

P(1,2)

i′
P(1,2)

(1)

The diagram is constructed as follows:

1. Perform the epi-mono-factorizations ϕE = mE ◦ eE and ϕV = mV ◦ eV ,
and apply the functor P(1,2) in order to obtain the morphisms P(1,2)(eV )
and P(1,2)(mV ); since the functor P(1,2) preserves monomorphisms [31],
P(1,2)(mV ) ∈ mono(Set).

2. Construct the pullback

(E′← P →P(1,2)(V )) := PB(E′ → P(1,2)(V ′) ← P(1,2)(V )),

Since monomorphisms are stable under pullback in Set, having proved that
P(1,2)(mV ) ∈ mono(Set) implies (pE : P → E′) ∈ mono(Set).

3. By the universal property of pullbacks, there exists a morphism (p : E → P ).
Let p = mP ◦ eP be the epi-mono-factorization of this morphism.

4. By stability of monomorphisms under composition in Set, we find that pE ◦
mP ∈ mono(Set), and consequently ϕE = (pE ◦mP )◦eP yields an alternative
epi-mono-factorization of ϕE . Then by uniqueness of epi-mono-factorizations
up to isomorphism, there must exist an isomorphism (E→ E) ∈ iso(Set).
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We have thus demonstrated that both (eE ,P(1,2)(eV )) and (mE ,P(1,2)(mV )) are
morphisms in uGraph. Since morphisms in comma categories are mono-, epi-
or iso-morphisms if they are so componentwise [21], we conclude that

(eE ,P(1,2)(eV )) ∈ epi(uGraph), (mE ,P(1,2)(mV )) ∈ mono(uGraph),

which finally entails that we have explicitly constructed an epi-mono-
factorization of the uGraph-morphism (ϕE ,P(1,2)(ϕV )).

In order to demonstrate that FPCs along pairs of composable M-morphisms
ϕA, ϕB ∈ M in uGraph exist (for M the class of component-wise monomo-
mophic uGraph morphisms), we provide the following explicit construction:

A B

C D

ϕA

ϕC FPC ϕB

ϕD

VC = VD \ (VB \ VA)

EC = {e ∈ ED \ (EB \ EA) | uD(e) ∈ P(1,2)(VC)}
uC = uD|EC

ϕC = (EA ↪→ EC ,P(1,2)(VA ↪→ VC))

ϕD = (EC ↪→ ED,P(1,2)(VC ↪→ VD))

(2)

2.2 Conditions

Referring to [9, Appendix A.2] for further details and technical definitions, we
will utilize as a notational convention the standard shorthand notations

∃(X ↪→ Y ) := ∃(X ↪→ Y, trueY ), ∀(X ↪→ Y, cY ) := ¬∃(X ↪→ Y,¬cY ). (3)

For example, the constraints
c
(1)
∅

= ∃(∅ ↪→ ) , c
(2)
∅

=� ∃(∅ ↪→ ) , c
(3)
∅

= ∀(∅ ↪→ ,∃( ↪→ ))

express for a given object Z ∈ obj(C) that Z contains at least two vertices (if
Z � c

(1)
∅

), that Z does not contain parallel pairs of directed edges (if Z � c
(2)
∅

),
and that for every directed edge in Z there also exists a directed edge between
the same endpoints with opposite direction (if Z � c

(3)
∅

), respectively.

2.3 Compositional Rewriting with Conditions

Throughout this section, we assume that we are given a type T ∈ {DPO,SqPO}
of rewriting semantics and an M-adhesive category C satisfying the respective
variant of Assumption 1. In categorical rewriting theories, the universal con-
structions utilized such as pushouts, pullbacks, pushout complements and final
pullback complements are unique only up to universal isomorphisms. This moti-
vates specifying a suitable notion of equivalence classes of rules with conditions:

Definition 2 (Rules with conditions). Let Lin(C) denote the class of (lin-
ear) rules with conditions, defined as

Lin(C) := {(O o←− K
i−→ I; cI) | o, i ∈ M, cI ∈ cond(C)}. (4)
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O1 K1 I1

O2 K2 I2

ω∼= κ∼= ι∼= (5)

We define two rules with conditions Rj =
(rj , cIj

) (j = 1, 2) equivalent, denoted R2 ∼
R1, iff cI1 ≡ cI2 and if there exist isomor-
phisms ω, κ, ι ∈ iso(C) such that the diagram
on the right commutes. We denote by Lin(C)∼
the set of equivalence classes under ∼ of rules
with conditions.

Definition 3 (Direct derivations). Let r = (O ←↩ K ↪→ I) ∈ Lin(C) and
cI ∈ cond(C) be concrete representatives of some equivalence class R ∈ Lin(C)∼,
and let X,Y ∈ obj(C) be objects. Then a type T direct derivation is defined as
a commutative diagram such as below right, where all morphism are in M (and
with the left representation a shorthand notation)

O I

Y X

m∗ m

r

T :=

O K I

Y K X

m∗ k(B) (A) m . (6)

with the following pieces of information required relative to the type:

1. T = DPO: given (m : I ↪→ X) ∈ M, m is a DPO-admissible match of R into
X, denoted m ∈ MDP O

R (X), if m � cI and (A) is constructable as a pushout
complement, in which case (B) is constructed as a pushout.

2. T = SqPO: given (m : I ↪→ X) ∈ M, m is a SqPO-admissible match of R
into X, denoted m ∈ MSqP O

R (X), if m � cI , in which case (A) is constructed
as a final pullback complement and (B) as a pushout.

3. T = DPO†: given just the “plain rule” r and (m∗ : O ↪→ Y ) ∈ M, m∗ is
a DPO†-admissible match of r into X, denoted m ∈ MDP O†

r (Y ), if (B) is
constructable as a pushout complement, in which case (B) is constructed as
a pushout.

For types T ∈ {DPO,SqPO}, we will sometimes employ the notation Rm(X)
for the object Y .

Note that at this point, we have not yet resolved a conceptual issue that arises
from the non-uniqueness of a direct derivation given a rule and an admissible
match. Concretely, the pushout complement, pushout and FPC constructions are
only unique up to isomorphisms. This issue will ultimately be resolved as part
of the rule algebraic theory. We next consider a certain composition operation
on rules with conditions that is quintessential to our main constructions:

Definition 4 (Rule compositions). Let R1, R2 ∈ Lin(C)∼ be two equiva-
lence classes of rules with conditions, and let rj ∈ Lin(C) and cIj

be con-
crete representatives of Rj (for j = 1, 2). For T ∈ {DPO,SqPO}, an M-span
μ = (I2 ←↩ M21 ↪→ O1) (i.e. with (M21 ↪→ O1), (M21 ↪→ I2) ∈ M) is a T-
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admissible match of R2 into R1 if the diagram below is constructable (with N21

constructed by taking pushout)

O2 I2 M21 O1 I1

O21 N21 I21

r2

T PO DPO†

r1

(7)

and if cI21 �≡̇ false. Here, the condition cI21 is computed as

cI21 := Shift(I1 ↪→ I21, cI1) ∧ Trans(N21 ↼ I21,Shift(I2 ↪→ N21, cI2)). (8)

In this case, we define the type T composition of R2 with R1 along μ, denoted
R2

μ	TR1, as
R2

μ	TR1 := [(O21 ↼ I21; cI21)]∼, (9)

where (O21 ↼ I21) := (O21 ↼ N21) ◦ (N21 ↼ I21) (with ◦ the span composition
operation).

We refer the interested readers to [9, Appendix A.3] for a summary of the
relevant technical results on two variants of concurrency theorems following [8]
(where the DPO-type concurrency theorem is of course classical, cf. e.g. [21]).

3 Rule Algebras for Compositional Rewriting
with Conditions

The associativity property of rule compositions in both DPO- and SqPO-
type semantics for rewriting with conditions as proved in [8] may be fruit-
fully exploited within rule algebra theory. One possibility to encode the non-
determinism in sequential applications of rules to objects is given by lifting each
possible configuration X ∈ obj(C)∼= (i.e. isomorphism class of objects) to a basis
vector |X〉 of a vector space Ĉ; then a rule r is lifted to a linear operator acting
on Ĉ, with the idea that this operator acting upon a basis vector |X〉 should eval-
uate to the “sum over all possibilities to act with r on X”. We will extend here
the general rule algebra framework [4,6,10] to the present setting of rewriting
rules with conditions.

We will first lift the notion of rule composition into the setting of a compo-
sition operation on a certain abstract vector space over rules, thus realizing the
heuristic concept of “summing over all possibilities to compose rules”.

Definition 5. Let T ∈ {DPO,SqPO} be the rewriting type, and let C be a
category satisfying the relevant variant of Assumption 1. Let RC be an R-vector
space, defined via a bijection δ : Lin(C)∼

∼=−→ basis(RC) from the set of equiv-
alence classes of linear rules with conditions to the set of basis vectors of RC.
Let �T denote the type T rule algebra product, a binary operation defined via
its action on basis elements δ(R1), δ(R1) ∈ RC (for R1, R2 ∈ Lin(C)∼) as

δ(R2) �T δ(R1) :=
∑

μ∈MT

R2
(R1)

δ (R2
μ	TR1) . (10)
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We refer to RT

C := (RC, �T) as the T-type rule algebra over C.

Theorem 2. For type T ∈ {DPO,SqPO} over a category C satisfying Assump-
tion 1, the rule algebra RT

C is an associative unital algebra, with unit element
δ(R∅), where R∅ := (∅ ←↩ ∅ ↪→ ∅; true).

Proof. Associativity follows from [9, Theorem 7], while unitality, i.e. that

∀R ∈ Lin(C)∼ : δ(R∅) �T δ(R) = δ(R) �T δ(R∅) = δ(R)

follows directly from an explicit computation of the relevant rule compositions.

As alluded to in the introduction, the prototypical example of rule algebras
are those of DPO- or (in this case equivalently) SqPO-type over discrete graphs,
giving rise as a special case to the famous Heisenberg-Weyl algebra of key impor-
tance in mathematical chemistry, combinatorics and quantum physics (see [11]
for further details). We will now illustrate the rule algebra concept in an example
involving a more general base category.

Example 1. For the category uGraph and DPO-type rewriting semantics, con-
sider as an example the following two rules with conditions:

RC :=
(

←↩ ↪→ ;¬∃
(

↪→
))

, RV := ( ←↩ ∅ ↪→ ; true) . (11)

The first rule is a typical example of a rule with application conditions, i.e.
here stating that the rule may only link two vertices if they were previously not
already linked to each other. The second rule, owing to DPO semantics, can in
effect only be applied to vertices without any incident edges. The utility of the
rule-algebraic composition operation then consists in reasoning about sequential
compositions of these rules, for example (letting ∗ := �DPO):

δ(RC) ∗ δ(RV ) = δ(RC 	 RV ) + 2δ(R′
C) , R′

C := ←↩ ↪→ ; true
)

δ(RV ) ∗ δ(RC) = δ(RC 	 RV ) .

(12)

To provide some intuition: the first computation encodes the causal information
that the two rules may either be composed along a trivial overlap, or rule RC

may overlap on one of the vertices in the output of RV ; in the latter case, any
vertex to which first RV and then RC applies must not have had any incident
edges, i.e. in particular no edge violating the constraint of RC , which is why
the composite rule R′

C does not feature any non-trivial constraint. In the other
order of composition, the two vertices in the output of RC are linked by an edge,
so RV cannot be applied to any of these two vertices (leaving just the trivial
overlap contribution).
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Just as the rule algebra construction encodes the compositional associativity
property of rule compositions, the following representation construction encodes
in a certain sense the properties described by the concurrency theorem:

Definition 6. Let C be an M-adhesive category satisfying Assumption 1. Let Ĉ
be defined as the R-vector space whose set of basis vectors is isomorphic to the
set2 of iso-classes of objects of C via a bijection |.〉 : obj(C)∼= → basis(Ĉ). Then
the T-type canonical representation of the T-type rule algebra over C, denoted
ρT

C, is defined as the morphism ρT

C : RT

C → EndR(Ĉ) specified via

∀R ∈ Lin(C)∼,X ∈ obj(C)∼= : ρT

C (δ(R)) |X〉 :=
∑

m∈MT

R(X)

|Rm(X)〉 . (13)

Theorem 3. ρT

C as defined above is an algebra homomorphism (and thus in
particular a well defined representation).

Proof. The proof that we provide in [9, Appendix B.1] is entirely analogous to
the one for the case without application conditions [4,10].

4 Stochastic Mechanics Formalism

Referring to [6,7,11] for further details and derivations, suffice it here to high-
light the key role played by the algebraic concept of commutators in stochastic
mechanics. Let us first provide the constructions of continuous-time Markov
chains (CTMCs) and observables in stochastic rewriting systems.

Definition 7. Let 〈| : Ĉ → R (referred to as dual projection vector) be defined
via its action on basis vectors of Ĉ as 〈 |X〉 := 1R.

Theorem 4. Let C be a category satisfying the relevant variant of Assump-
tion 1, and let RT

C be the T-type rule algebra of linear rules with conditions over
C. Let ρ ≡ ρT

C denote the T-type canonical representation of RT

C. Then the
following results hold:

1. The basis elements of the space obs(C)T of T-type observables, i.e. the diag-
onal linear operators that arise as (linear combinations of) T-type canonical
representations of rewriting rules with conditions, have the following structure
(ÔcP

P,q in the DPO case, ÔcP

P in the SqPO case):

ÔcP

P,q := ρ(δ(P
q←− Q

q−→ P ; cP )) (P ∈ obj(C)∼=, q ∈ M, cP ∈ cond(C)∼)

ÔcP

P := ρ(δ(P
∼=←− P

∼=−→ P ; cP )) (P ∈ obj(C)∼=, cP ∈ cond(C)∼).
(14)

2 We assume here that the isomorphism classes of objects of C form a set (i.e. not a
proper class).
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2. DPO-type jump closure property: for every linear rule with condition
R ≡ (O ←↩ K ↪→ I, cI) ∈ Lin(C), we find that

〈| ρ(δ(R)) = 〈| Ô(δ(R)), (15)

where Ô : RDPO

C → EndR(Ĉ) is the homomorphism defined via its action on
basis elements δ(R) for R = (O ←↩ K ↪→ I; cI) ∈ Lin(C)∼ as

Ô(δ(R)) := ρ(δ(I ←↩ K ↪→ I; cI)) ∈ obs(C). (16)

3. SqPO-type jump closure property: for every linear rule with condition
R ≡ (O ←↩ K ↪→ I, cI) ∈ Lin(C), we find that

〈| ρ(δ(R)) = 〈| Ô(δ(R)), (17)

where3 Ô : RSqPO

C → EndR(Ĉ) is the homomorphism defined via

Ô(δ(R)) := ρ(δ(I
∼=←− I

∼=−→ I; cI)) ∈ obs(C). (18)

4. CTMCs via stochastic rewriting systems: Let Prob(C) be the space of
(sub-)probability distributions over Ĉ (i.e. |Ψ〉 =

∑
X∈obj(C)∼=

ψX |X〉). Let
T be a collection of N pairs of positive real-valued parameters κj (referred to
as base rates) and linear rules Rj with application conditions,

T := {(κj , Rj)}1≤j≤N (κj ∈ R≥0, Rj ≡ (rj , cIj
) ∈ Lin(C)) . (19)

Then given an initial state |Ψ0〉 ∈ Prob(C), the T-type stochastic rewriting
system based upon the transitions T gives rise to the CTMC (H, |Ψ(0)〉) with
time-dependent state |Ψ(t)〉 ∈ Prob(C) (for t ≥ 0) and evolution equation

∀t ≥ 0 : d
dt |Ψ(t)〉 = H |Ψ(t)〉 , |Ψ(0)〉 = |Ψ0〉 . (20)

Here, the infinitesimal generator H of the CTMC is given by

H = Ĥ − Ô(Ĥ), Ĥ =
N∑

j=1

κj ρ(δ(Rj)). (21)

Proof. See [9, Appendix B.2].

Remark 1. The operation Ô featuring in the DPO- and SqPO-type jump-closure
properties has a very intuitive interpretation: given a linear rule with condition
R ≡ (r, cI) ∈ Lin(C), the linear operator Ô(δ(R)) is an observable that evaluates
on a basis vector |X〉 ∈ Ĉ as Ô(δ(R)) |X〉 = (# of ways to apply R to X)· |X〉.

3 Since in applications we will always fix the type of rewriting to either DPO or SqPO,
we will use the same symbol for the jump-closure operator in both cases.
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As for the concrete computational techniques offered by the stochastic
mechanics formalism, one of the key advantages of this rule-algebraic frame-
work is the possibility to reason about expectation values (and higher moments)
of pattern-count observables in a principled and universal manner. The precise
formulation is given by the following generalization of results from [7] to the
setting of DPO- and SqPO-type rewriting for rules with conditions:

Theorem 5. Given a CTMC (|Ψ0〉 ,H) with time-dependent state |Ψ(t)〉 (for t ≥
0), a set of observables O1, . . . On ∈ obs(C) and n formal variables λ1, . . . , λn,
define the exponential moment-generating function (EMGF) M(t;λ) as

M(t;λ) := 〈| eλ·O |Ψ(t)〉 , λ · O :=
n∑

j=1

λjOj . (22)

Then M(t;λ) satisfies the following formal evolution equation (for t ≥ 0):

d
dtM(t;λ) =

∑

q≥1

1
q! 〈|

(
ad◦q

λ·O(Ĥ)
)

eλ·O |Ψ(t)〉 , M(0;λ) = 〈| eλ·O |Ψ0〉 . (23)

Proof. In full analogy to the case of rules without conditions [7], the proof follows
from the BCH formula eλABe−λA = eadλA(B) (for A,B ∈ EndR(Ĉ)). Here,
ad◦0

A (B) := B, adA(B) := AB − BA (also referred to as the commutator [A,B]
of A and B), and ad

◦(q+1)
A (B) := adA(ad◦q

A (B)) for q ≥ 1. Finally, the q = 0
term in the above expression evaluates identically to 0 due to 〈| H = 0.

Combining this theorem with the notion of T-type jump-closure, one can in
favorable cases express the EMGF evolution equation as a PDE on formal power
series in λ1, . . . , λn and with t-dependent real-valued coefficients. Referring the
interested readers to [7] for further details on this technique, let us provide here
a simple non-trivial example of such a calculation.

Example 2. Let us consider a stochastic rewriting system over the category C =
uGraph of finite undirected multigraphs, with objects further constrained by
the structure constraint cS

∅
:= ¬∃(∅ ↪→ ) ∈ cond(uGraph) that prohibits

multiedges. Let us consider for type T = SqPO the four rules with conditions
RE± (edge-creation/-deletion) and RV± (vertex creation/deletion), defined as

RE+ := 1
2δ

(
←↩ ↪→ ;¬∃

(
↪→

))
, RV+ := δ( ←↩ ∅ ↪→ ∅; true)

RE− := 1
2δ

(
←↩ ↪→ ; true

)
, RV− := δ(∅ ←↩ ∅ ↪→ ; true) .

Here, the prefactors 1
2 for RE± are chosen purely for convenience. Note that

RE+ is the only rule requiring a non-trivial application condition, since linking
two vertices with an edge might create a multiedge (precisely when the two
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vertices were already linked). Introducing base rates ν±, ε± ∈ R>0 and letting
X̂ := ρ(RX), we may assemble the infinitesimal generator H of a CTMC as

H = Ĥ + Ô(Ĥ), Ĥ := ν+V̂+ + ν−V̂− + ε+Ê+ + ε−Ê−. (24)

One might now ask whether there is any interesting dynamical structure e.g. in
the evolution of the moments of the observables that count the number of times
each of the transitions of this system is applicable,

O•|• := Ô(δ(RC)), O•−• := Ô(δ(RD)), O• := Ô(δ(RV D)). (25)

The algebraic data necessary in order to formulate EMGF evolution equations
are all commutators of the observables with the contributions X̂ := ρ(δ(RX))
to the “off-diagonal part” Ĥ of the infinitesimal generator H. We will present here
for brevity just those commutators necessary in order to compute the evolution
equations for the averages of the three observables:

[O•, V̂±] = ±V̂±, [O•, Ê±] = 0

[O•|•, V̂+] = Â, [O•|•, V̂−] = −B̂, [O•|•, Ê±] = ∓Ê±

[O•−•, V̂+] = 0, [O•−•, V̂−] = −Ĉ, [O•−•, Ê±] = ±Ê±

(26)

As typical in these types of commutator computations, we find a number of
contributions (here Â, B̂ and Ĉ) that were not either observables or based upon
rules of the SRS:

Â := ρ

(
δ

(
←↩ ↪→ ; true

))
, B̂ := ρ

(
δ

(
←↩ ↪→ ;¬∃

(
↪→

)))

Ĉ := ρ

(
δ

(
←↩ ↪→ ; true

))
, Ô(Â) = O• , Ô(B̂) = 2O•|• , Ô(Ĉ) = 2O•−•

Picking for simplicity as an initial state |Ψ(0)〉 = |∅〉 just the empty graph,
and invoking the SqPO-type jump-closure property (cf. Theorem4) repeatedly
in order to evaluate 〈[OP , Ĥ]〉(t) = 〈Ô([OP , Ĥ])〉(t), the moment EGF evolution
equation (23) specializes to the following “Ehrenfest-like” [7] ODE system:

d
dt 〈O•〉(t) = 〈[O•,H]〉(t) = ν+ − ν−〈O•〉(t)

d
dt 〈O•|•〉(t) = 〈[O•|•,H]〉(t) = ν+〈O•〉(t) − (2ν− + ε+)〈O•|•〉(t) + ε−〈O•−•〉(t)
d
dt 〈O•−•〉(t) = 〈[〈O•−•〉(t),H]〉(t) = ε+〈O•|•〉(t) − (2ν− + ε−)〈O•−•〉(t)

〈O•〉(0) = 〈O•|•〉(t) = 〈O•−•〉(t) = 0.

This ODE system may be solved exactly (see [9, Appendix C]). We depict in
Fig. 1 two exemplary evolutions of the three average pattern counts for different
choices of parameters. Since due to SqPO-semantics the vertex deletion and
creation transitions are entirely independent of the edge creation and deletion
transitions, the vertex counts stabilize on a Poisson distribution of parameter
ν+/ν− (where we only present the average vertex count value here). As for
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the non-linked vertex pair and edge patter counts, the precise average values
are sensitive to the parameter choices (i.e. whether or not vertices tend to be
linked by an edge or not may be freely tuned in this model via adjusting the
parameters).

Fig. 1. Time-evolutions of pattern count observables for different parameter choices.

While the example presented was chosen mainly to illustrate the compu-
tational techniques, it highlights the typical feature of the emergence of con-
tributions in the relevant (nested) commutator calculations that may not have
been included in the non-diagonal part Ĥ of the infinitesimal generator of the
CTMC. We refer the interested readers to [7] for an extended discussion of this
phenomenon, and for computation strategies for higher-order moment evolution
equations.

5 Application Scenario 1: Biochemistry with Kappa

The Kappa platform [18,19] for rule-based modeling of biochemical reaction
systems is based upon the notion of so-called site-graphs that abstract proteins
and other complex macro-molecules into agents (with sites representing inter-
action capacities of the molecules). This open source platform offers a variety of
high-performance simulation algorithms (for CTMCs based upon Kappa rewrit-
ing rules) as well as several variants of static analysis tools to analyze and verify
biochemical models [12]. In view of the present paper, it is interesting to note that
since the start of the Kappa development, the simulation-based algorithms have
been augmented by differential semantics modules aimed at deriving ODE sys-
tems for the evolution of pattern-count observable average values [14,15,17,29].
In this section, we will experiment with a (re-)encoding of Kappa in terms
of typed undirected graphs with certain structural constraints that permits to
express such moment statistics ODEs via our general rule-algebraic stochas-
tic mechanics formalism. We will then provide an illustrative exemplary com-
putation of ODEs in order to point out certain intrinsic intricacies (notably
non-closure properties) typical of such calculations. One of the key theoretical

https://kappalanguage.org
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features of Kappa is its foundation upon the notion of rigidity [16]. In practice,
the construction involves an ambient category A (which possesses suitable adhe-
sivity properties), a pattern category P (obtained from A via certain negative
constraints) and finally a state category S (obtained from P via additional posi-
tive constraints). We will now present one possible realization of Kappa based
upon the M-adhesive category of typed undirected multigraphs:

Definition 8. For a Kappa model K, let A = uGraph/TK be the category of
finite undirected multigraphs typed over TK , where TK distinguishes agent vertex
types, site vertex types and three forms of edge types: agent-site, site-site and
loops on sites. For each agent type vertex X ∈ {A,B, . . .}, the type graph contains
the site type vertices x1 : X, . . . , xnX

: X (incident to the X-type vertex via an
edge, and where nX < ∞). TK also contains link type edges between sites that
encode which sites can be linked, and loops on site type vertices that represent
dynamic attributes, such as the phosphorylation state of a site. Indicating the
three different edge types by wavy lines (agent-site), solid lines (site-site) and

dotted lines (property loops), the agent vertices with filled circles X and the site
vertices by open circles x , and using the placeholder • for a vertex and a dashed
line for an edge of any type, we may introduce the negative constraints defining
the pattern category PK as cNK

:= ∧N∈NK
¬∃(∅ ↪→ N), with the set NK of

“forbidden subgraphs” defined as

NK := { } ∪
⋃

x

{
x

}
∪

⋃

X,x

{
Xx x , xX X

}
. (27)

Finally, the state category SK is obtained from PK via imposing a positive con-
straint cPK

that ensures that each agent X is linked to exactly one of each of
its site vertices x : X, and if a site x : X can carry a property or alternative
variants thereof, it also carries a loop that signifies one of these properties (see
the example below for further details). Moreover, a given site x : X must be
linked to an agent X (i.e. cannot occur in isolation).

Example 3. Consider a simple Kappa model with a type graph as below left
that introduces two agent types K (for “kinase”) and P (for “protein”), where
K has a site k : K, and where P has sites pt, pl, pb : P. Moreover, the sites pt

and pb can carry properties u (“unphosphorylated”) and p (“phosphorylated”),
depicted as dotted loops in the type graph. Sites k : K and pl : P can bind (as
indicated by the solid line in the type graph).

kK

pt

pl P

pb

u p

u p

∅

k+−−⇀↽−−
k−

K

K P
l+−−⇀↽−−
l−

K P

K P

u t+−−⇀↽−−
t−

K P

p

K P
u

b+−−⇀↽−−
b−

K P
p

K
robsK↼−−−− K

P

p

p

robsP↼−−−− P

p

p
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As a prototypical example of a Kappa stochastic rewriting system, consider a
system based upon the rewriting rules k±, l±, t± and b±. Here, for the rule
l+, we have indicated that it must be equipped with an application condition
that ensures that the site of the K-type agent and the left site of the P-type
agent must be free before binding. As common practice also in the standard
Kappa theory, we otherwise leave in the graphical depictions those application
conditions necessary to ensure consistent matches implicit as much as possible.
Consider then for a concrete computational example the time-evolution of the
average count of the pattern described in the identity rule robsP

. As typical in
Kappa rule specifications robsP

as well as several of the other rules depicted
only explicitly involve patterns, but not necessarily states, since e.g. in robsP

the left site of the P-type agent is not mentioned. In complete analogy to the
computation presented in Example 2, let us first compute the commutators of
the observable OK = ρ(δ(robsK

; cobsK
)) with the operators X̂ := ρ(δ(rX ; cX)):

[OK, K̂±] = ±K̂±, [OK, L̂±] = [OK, T̂±] = [OK, B̂±] = 0 (28)

However, letting O
(x,y)
P , O

(x,y)
link and O

(x,y)
free denote the observables for the patterns

ω
(x,y)
P := P

x

y
, ω

(x,y)
link := K P

x

y
, ω

(x,y)
free := K P

x

y

one may easily demonstrate that even a comparatively simple observable such as
O

(p,p)
P already leads to an infinite cascade of contributions to the ODEs for the

averages of pattern counts. As typical in these sorts of computations, the dis-
covery of a new pattern observable via applying SqPO-type jump-closure (The-
orem 4) to the commutator contributions to d

dt 〈O
(p,p)
P 〉(t) leads to the discovery

of new pattern observables yet again, such as in

[OP, T̂+] = T̂
(p)
+ , Ô(T̂ (p)

+ ) = O
(u,p)
link , [O(u,p)

link , L̂+] = L̂(u,p), Ô(L̂(u,p)) = O
(u,p)
free .

In particular the last observable O
(u,p)
free is found to lead to an infinite tower of

other observables (i.e. “ODE non-closure”), starting from

[O(u,p)
free , L̂+] = −L̂(u,p) −

⎛

⎜⎝
K

K

P

u

p ↼
K

K

P

u

p

⎞

⎟⎠ −

⎛

⎜⎝
K

P

P

u

p

↼

K

P

P

u

p

⎞

⎟⎠ .

This exemplary and preliminary analysis reveals that while the rule-algebraic
CTMC implementation is in principle applicable to the formulation and analysis
Kappa systems, further algorithmic and theoretical developments will be neces-
sary (including possibly ideas of fragments and refinements as in [14,15,29]) in
order to obtain a computationally useful alternative rewriting-theoretic imple-
mentation of Kappa.
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6 Application Scenario 2: Organic Chemistry with MØD

The MØD platform [1] for organo-chemical reaction systems is a prominent
example of a DPO-type rewriting theory of high relevance to the life sciences.
From a theoretical perspective, MØD has been designed [3] as a rewriting sys-
tem over so-called chemical graphs, a certain typed and undirected variant of the
category PLG of partially labelled directed graphs. While the latter category
had been introduced in [28] as a key example of an M-N -adhesive category,
with the motivation of permitting label-changes in rewriting rules, it was also
demonstrated in loc cit. that PLG is not M-adhesive. Since moreover no con-
crete construction of a tentative variant uPLG of PLG for undirected graphs,
let alone results on the possible adhesivity properties of such a category are
known in the literature, we propose here an alternative and equivalent encoding
of chemical graphs. We mirror the constructions of [1,3] in that chemical graphs
will be a certain typed variant of undirected graphs, with vertex types repre-
senting atom types, edge types ranging over the types {−,=,#, :} representing
single, double, triple and aromatic bonds, respectively, and with the graphs being
required to not contain multiedges. Inspired by the Kappa constructions in the
previous section, we opt to represent properties (such as e.g. charges on atoms)
as typed loop edges on vertices representing atoms, whence the change of a prop-
erty (which was the main motivation in [3] for utilizing a variant of PLG) may
be encoded in a rewriting rule simply via deletion/creation of property-encoding
loops. Unfortunately, while the heuristics presented thus far would suggest that
chemical graphs in the alternative categorical setting should be just simple typed
undirected graphs, the full specification of chemical graphs would also have to
include additional, empirical information from the chemistry literature. Con-
cretely, atoms such as e.g. carbon only support a limited variety of bond types
and configurations of incident bonds (referred to as valencies), with additional
complications such as poly-valencies possible for some types of atoms as illus-
trated by the following example.

Example 4. The Meisenheimer-2-3-rearrangement reaction [32] (cf. also [2]) con-
stitutes an example4 of a reaction where polyvalence is encountered:

(29)

Upon matching this rule into a chemically valid mixture, the N atom on the
input of the rule will have valence 5, while on the output it will have valence 3.
This type of information is evidently in no way contained in the chemical graphs
alone, and must therefore be encoded in terms of suitable additional typing on
the graphs and application conditions.

4 This example reaction was typeset directly via MØD (cf. [9, Appendix D]).

https://cheminf.imada.sdu.dk/mod/
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While thus at present no encoding of chemical graphs into a categorical
framework with suitable adhesivity properties is available, we posit that it would
be highly fruitful in light of the stochastic mechanics framework presented in this
paper to develop such an encoding (joint work in progress with J.L. Andersen,
W. Fontana and D. Merkle).

7 Conclusion and Outlook

Rewriting theories of DPO- and SqPO-type for rules with conditions over M-
adhesive categories are poised to provide a rich theoretical and algorithmic
framework for modeling stochastic dynamical systems in the life sciences. The
main result of the present paper consists in the introduction of a rule alge-
bra framework that extends the pre-existing constructions [4,6,10] precisely
via incorporating the notion of conditions. The sophisticated Kappa [12] and
MØD [1] bio-/organo-chemistry platforms and related developments have posed
one of the main motivations for this work. For both of these platforms, we present
a first analysis and stepping stones towards bridging category-theoretical rewrit-
ing theories and stochastic mechanics computations. Especially for the organo-
chemistry setting, our work motivates the development of a full encoding of (at
least a reasonable fragment of) organic chemistry in terms of chemical graphs
and rewriting rules thereof, which to date is still unavailable. This encoding will
be beneficial also in the development of tracelet-based techniques [5], and is
current work in progress.

An intriguing perspective for future developments in categorical rewriting
theory consists in developing a robust and versatile methodology for the analy-
sis of ODE systems of pattern-counting observables in stochastic rewriting sys-
tems. While the results of this paper permit to formulate dynamical evolution
equations for arbitrary higher moments of such observables, in general cases (as
illustrated in Sect. 5) the non-closure of the resulting ODE systems remains a
fundamental technical challenge. In the Kappa literature, sophisticated concep-
tual and algorithmic approaches to tackle this problem have been developed
such as refinements [14,16], model reduction techniques [15] and stochastic frag-
ments [25] (see also [7] for an extended discussion). We envision that a detailed
understanding of these approaches from within the setting of categorical rewrit-
ing and of rule algebra theory could provide a very fruitful enrichment of the
methodology of rewriting theory.
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Abstract. Complex problems can be sometimes solved efficiently via
recursive decomposition strategies. In this line, the tree decomposition
approach equips problems modelled as graphs with tree-like parsing
structures. Following Milner’s flowgraph algebra, in a previous paper two
of the authors introduced a strong network algebra to represent open
graphs (up to isomorphism), so that homomorphic properties of open
graphs can be computed via structural recursion. This paper extends this
graphical-algebraic foundation to tree decomposable graphs. The corre-
spondence is shown: (i) on the algebraic side by a loose network algebra,
which relaxes the restriction reordering and scope extension axioms of
the strong one; and (ii) on the graphical side by Milner’s binding bigraphs,
and elementary tree decompositions. Conveniently, an interpreted loose
algebra gives the evaluation complexity of each graph decomposition. As
a key contribution, we apply our results to dynamic programming (DP).
The initial statement of the problem is transformed into a term (this is
the secondary optimisation problem of DP). Noting that when the scope
extension axiom is applied to reduce the scope of the restriction, then
also the complexity is reduced (or not changed), only so-called canonical
terms (in the loose algebra) are considered. Then, the canonical term is
evaluated obtaining a solution which is locally optimal for complexity.
Finding a global optimum remains an NP-hard problem.

Keywords: Tree decomposition · Bigraphs · Graph algebras

1 Introduction

Many quite relevant complex graph problems become easy for specific classes of
graphs. Usually these graphs are equipped with a suitable recursive structure
which allows to compute the solution by problem reduction. The typical struc-
ture studied in the literature is tree decomposition [3,4,7,11,14,18]. Another
suggestive approach is to consider a hyperedge replacement grammar [5], where
the structure of a derived graph is its derivation tree.
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In [17], a strong network algebra, called Soft Constraint Evaluation Problems
(SCEP), is introduced (see also [12]). The algebra has operations of parallel
composition, node restriction and permutation and, in particular, has the axioms
of restriction reordering and of scope extension. Equivalence classes of strong
terms correspond exactly to open graphs up to isomorphism, which thus can
be seen as standard representatives of the classes. Consequently, homomorphic
properties of open graphs can be conveniently computed via structural recursion.
While two strongly equivalent graphs evaluate to the same result by construction,
it may happen that the complexities of their evaluations be vastly different. To
represent explicitly similar additional information, it is convenient to introduce
a finer graphical-algebraic initial pair of models. For instance, an algebra for the
computational complexity of problems should fit the new axiomatisation.

In this paper, we choose elementary tree decompositions, a simple variant
of the classical tree decomposition approach, as the reference graphical model.
Interestingly, for obtaining an adequate algebraic model it is enough to elimi-
nate the axioms of restriction reordering and of scope extension from the strong
specification. The resulting specification is called loose. In [17], an alternative
version of algebraic model was chosen, by eliminating only the axiom of scope
extension, and called weak. The present axiomatisation is needed in order to
achieve a tighter correspondence with tree decompositions.

Here we also consider Milner’s bigraphs [16], a widely studied graphical model
for process calculi. Once equipped with a suitable signature, bigraphs can be put
into bijective correspondence with equivalence classes of loose terms: the link
graph represents the variables, and the place graph the nesting of restrictions.

As in the strong case, the existence of graphical standard representatives
for the initial algebra makes it easy to define interesting algebras of the class.
For instance, the evaluation complexity of a term can be easily computed by
its interpretation within a simple loose algebra. Notably, the reverse application
of the scope extension axiom (i.e. aimed to reduce the scope of the restriction)
reduces, or does not change, the evaluation complexity of a term. Thus minimal
complexity must be achieved by terms which are fully reduced with respect to the
extension axiom (they are called canonical) and search for optimal evaluations
can be restricted to canonical terms. To take advantage of this property, we
define a type system where only canonical terms are typeable.

An algebra of graphs of special interest naturally arises in the case of dynamic
programming (DP) [1]. DP usually consists of minimising a cost function F of
variables X while keeping variables Y as parameters, i.e. F (Y ) = minX F (X,Y ).
Typically, function F has the form

F (X,Y ) = F1(X1, Y1) + ... + Fn(Xn, Yn).

where each function F1, ...,Fn is dependent only on a few variables. The key issue
is how the variables in X and Y are used in F1, ...,Fn. The sharing structure can
be conveniently represented by a hypergraph F where nodes are variables and
hyperedges are labelled by functions Fi, represented as multidimensional tables.

The evaluation procedure corresponds to compute by structural recursion
the optimal cost of F , where values are multidimensional tables representing
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intermediate functions, parallel composition is sum, constants are hyperedge
labels and restriction with respect to a variable x, �(x)F (X,Y )�, corresponds to
eliminate variable x in table F (X,Y ): minx�F (X,Y )�. In conclusion, the solution
of an optimisation problem via dynamic programming consists of two steps: (i)
find a canonical loose term of low complexity for F ; and (ii) evaluate the term.

To compute the complexity, it is enough to define a loose homomorphism
where parallel composition F1|F2 is the max of the complexities of F1 and F2

and of the number of free variables of F1|F2, a constant is the number of variables
in the corresponding hyperedge, and restriction is the identity. Notice that since
table handling is typically of exponential complexity with respects to dimension,
the complexity of a sequence of steps is assumed to be just the max.

The computational cost of (ii) typically depends on the chosen term, but not
on the values stored in the tables. Thus the chosen term determines the complex-
ity of step (ii). This property allows to separate the two optimisation procedures:
the first step is called the secondary optimisation problem of DP [2]. Unfortu-
nately, the secondary problem is NP hard [21], thus typically it is convenient to
solve it exactly only if the evaluation must be executed many times.

Structure of the Paper. In Sect. 2 we briefly recall some basic notions and some
results from [17]. The original contribution starts in Sect. 3, where we present
the loose network specification and draw the graphical-algebraic correspondence
with binding bigraphs. Section 4 focuses on dynamic programming, tree decom-
position and canonical form, showing how to move from one to the other. There
we also define the (loose) algebra we introduced above for computing the evalu-
ation complexity. A simple type system characterises canonical forms. Finally, it
is shown that all and only canonical forms are computed by an algorithm based
on bucket elimination. Concluding remarks are in Sect. 5.

2 Background

Notation. Given a set V we denote by V � the set of (finite) sequences over V
and we let | · | return the length of a sequence. Given a function f : V1 → V2 we
overload the symbol f to denote also its lifting f : V �

1 → V �
2 , defined elementwise.

Hypergraphs. A ranked alphabet E is a set where each element e ∈ E has an
arity ar(e) ∈ N. A labelled hypergraph over a ranked alphabet E is a tuple G =
(VG, EG, aG, labG), where: VG is the set of vertices (also called nodes); EG is the
set of (hyper)edges; aG : EG → V �

G assigns to each hyperedge e the sequence of
nodes attached to it; labG : EG → E is a labeling function, assigning a label to
each hyperedge e such that |aG(e)| = ar(labG(e)).

Given two hypergraphs G1 and G2 over E , a homomorphism between them
is a pair of functions h = (hV : VG1 → VG2 , hE : EG1 → EG2) preserving con-
nectivity and labels, namely: hV ◦ aG1 = aG2 ◦ hE and labG2 ◦ hE = labG1 . We
say that G1 and G2 are isomorphic, denoted G1

∼= G2, whenever there exists
a homomorphism between them which is a component-wise isomorphism. We
write G1 � G2 for the component-wise disjoint union of G1 and G2.
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Permutation Algebras. Given a countable set of variables V, we write Perm(V)
for the set of finite permutations over V, i.e., bijective functions π : V → V. A
permutation algebra is an algebra for the signature comprising all finite permu-
tations and the formal equations x id = x and (x π1) π2 = x (π2 ◦ π1).

2.1 Strong Network Algebras

In [15] Milner introduced an algebra of flowgraphs defined by simple axioms. Here
we introduce an algebra of networks that has essentially the same axioms, but
that exploits a nominal structure for nodes. Hereafter we fix a ranked alphabet E
and a countable set of variables V. We also assume functions var : E → V

� (with
ar(A) = |var(A)|, for all A ∈ E), assigning a tuple of distinct canonical variables
to each symbol of the alphabet. We require var(A) ∩ var(B) = ∅ whenever A 	= B.

We explicitly equip hypergraphs with an interface, specifying which nodes
allow them to interact when composed. We call these hypergraphs networks.

Definition 1 (Concrete network). A concrete network is a pair I � G of a
hypergraph G without isolated nodes1 such that VG ⊆ V, and a set I ⊆ VG.

Every edge e in a network can be connected to the same node multiple times.
This can be understood as having a variable substitution σ mapping the tuple
of canonical variables var(labG(e)) to the actual variables aG(e) to which e is
connected.

Two networks I1 � G1 and I2 � G2 are isomorphic whenever I1 = I2 and
there exists an isomorphism ι : G1 → G2 such that ι|I1 = idI1 .

Definition 2 (Abstract network). An abstract network is an isomorphism-
class of a concrete network.

Intuitively, abstract networks are taken up to α-conversion of non-interface
nodes. We write I � G to denote the abstract network that corresponds to the
equivalence class of the concrete network I � G.

Concrete networks can be seen as terms of an algebraic specification which we
call strong network specification, where free variables correspond to the interface,
and variable restriction (written (x)P ) is used to declare local (non-interface)
nodes (x is local to P in (x)P ). Following well-known algebraic descriptions
of nominal calculi [10], terms will carry a permutation algebra structure. This
enables an algebraic treatment of variable binding, together with associated
notions of scope, free/bound variables and α-conversion.

The syntax of networks is given by the following grammar:

P,Q := A(x̃) | P |Q | (x)P | Pπ | nil

where A ∈ E , π ∈ Perm(V), x ∈ V, x̃ ∈ V
� and |x̃| = ar(A). The free variables

fv(P ) of P are the unrestricted ones, and are defined by recursion as expected.
1 In the network specification below, nodes are introduced as support of the per-

mutation algebra of hyperarcs. Isolated nodes would require additional items with
singleton support of little use in our model.
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(AX|)

P |Q ≡s Q|P (P |Q)|R ≡s P |(Q|R) P |nil ≡s P

(AX(x) XA() α)

(x)(y)P ≡s (y)(x)P (x)nil ≡s nil (x)P ≡s (y)P [x �→ y] (y /∈ fv(P ))

(AXSE) (AXπ)

(x)(P |Q) ≡s (x)P | Q (x /∈ fv(Q)) P id ≡s P (Pπ′)π ≡s P (π ◦ π′)

(AXp
π)

A(x1, . . . , xn)π ≡s A(π(x1), . . . , π(xn)) nilπ ≡s nil (P |Q)π ≡s Pπ | Qπ

((x)P )π ≡s (π(x))(Pπ)

Fig. 1. Axioms of strong networks.

The atom A(x̃) represents an A-labelled hyperedge, connecting the nodes x̃,
possibly with repetitions. The parallel composition P |Q represents the union of
networks P and Q, possibly sharing some nodes. The restriction (x)P represents
a network where x is local, and hence cannot be shared. The permutation Pπ is
P where its free variables have been renamed according to π. As usual in permu-
tation algebras, π is not a capture-avoiding substitution, but just a renaming of
all global and local names that appear in the term. The constant nil represents
the empty graph. We say that a term P is nil-free if nil is not a subterm of P .

We now introduce a strong network specification, which, as opposed to the
loose one, shown later, identifies more terms.

Definition 3 (Strong network specification). The strong network specifi-
cation consists of the syntax given above, subject to the axioms of Fig. 1.

The operator | forms a commutative monoid (AX|). Restrictions can be α-
converted (AXα), reordered and removed whenever their scope is nil (AX(x)).
The scope of restricted variables can be narrowed to terms where they occur
free by the scope extension axiom (AXSE). Axioms for permutations say that
identity and composition behave as expected (AXπ) and that permutations dis-
tribute over syntactic operators (AXp

π). Permutations replace all names bijec-
tively, including the bound ones.

Example 1. Consider the terms

(x)(y)(z)( A(x, y) | B(y, z) ) and (y)( (x)A(x, y) | (z)B(y, z) )

They are proved to be (strong) equivalent by exploiting (AX(x)) to switch the
order of restrictions on x and y and then (AXSE) (twice) to move the restrictions
on x and z inside parallel composition.

An s-algebra A is a set together with an interpretation opA of each operator
op. The set of freely generated terms modulo the axioms of Fig. 1 is an initial
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algebra. By initiality, for any such term P there is a unique interpretation �P �
A

of P as an element of A.
In [17] we show that abstract networks form an initial s-algebra. Hence, we

have a unique evaluation of abstracts networks into any other s-algebra.

Definition 4 (Initial s-algebra). The initial s-algebra N consists of abstract
networks, and the following interpretation of operations:

where: Gπ is G where each node v is replaced with π(v); G1 �I1,I2 G2 is the
disjoint union of G1 and G2 where nodes in I1 ∪ I2 with the same name are
identified; and 1G is the empty hypergraph.

Permutations in the specification allow computing the set of free variables,
called support, in any s-algebra.

Definition 5 (Support). Let A be an s-algebra. We say that a finite X ⊂ V

supports P ∈ A whenever Pπ = P , for all permutations π such that π|X = idX .
The (minimal) support supp(P ) is the intersection of all sets supporting P .

It is important to note that supp(I � G) = I.

2.2 Tree Decomposition

A decomposition of a graph can be represented as a tree decomposition [3,4,7,
11,14,18], i.e., a tree where each node is a piece of the graph. Following [17],
we introduce a notion of rooted tree decomposition. Recall that a rooted tree
T = (VT , ET ) is a set of nodes VT and a set of edges ET ⊆ VT × VT , such that
there is a root, i.e. a node r ∈ VT :

– with no ingoing edges: there are no edges (v, r) in ET ;
– such that, for every v ∈ VT , v 	= r, there is a unique path from r to v.

Definition 6 (Rooted tree decomposition). A rooted tree decomposition
of a hypergraph G is a pair T = (T,X), where T is a rooted tree and X =
{Xt}t∈VT

is a family of subsets of VG, one for each node of T , such that:

1. for each node v ∈ VG, there exists a node t of T such that v ∈ Xt;
2. for each hyperedge e ∈ EG, there is a node t of T such that aG(e) ⊆ Xt;
3. for each node v ∈ VG, let Sv = {t | v ∈ Xt}, and Ev = {(x, y) ∈ ET | x, y ∈

Sv}; then (Sv, Ev) is a rooted tree.
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We gave a slightly different definition of tree decomposition: the original one
refers to a non-rooted, undirected tree. In our dynamic programming application
it is convenient to model hierarchical problem reductions as rooted structures.
All tree decompositions in this paper are rooted, so we will just call them tree
decompositions, omitting “rooted”. Of course the above definition includes triv-
ial decompositions, like the one with a single node, or the one where Xt = VG

for every node t. They will be ruled out by the notion of elementary tree decom-
position on which our contribution is centred (see Sect. 4.3).

Tree decompositions are suited to decompose networks: we require that inter-
face variables are located at the root.

Definition 7 (Decomposition of a network). The decomposition of a net-
work I � G is a decomposition of G rooted in r, such that I ⊆ Xr.

3 Loose Specification

In strong network specifications the order and positions of restrictions are imma-
terial. However, the order and positions in which restrictions appear in a term
provide some sort of parsing structure for the underlying network. In this section
we relax some axioms of the strong algebra to make explicit the hierarchical
structure in the network. This is achieved by showing a tight correspondence
between terms of the relaxed algebra and Milner’s binding bigraphs [13]. In the
next sections we will show that the same correspondence can be extended to
characterise some special kinds of tree decompositions, called elementary, and
also the output produced by an algorithm based on bucket elimination [9].

Definition 8 (Loose network specification). The loose network specifica-
tion is the strong one without axioms (AXSE) and (AX(x)).

The removal of axioms (AX(x)) means that the order in which restrictions
are applied is recorded in each equivalence class. The removal of axiom (AXSE)
means that the hierarchy imposed by a restriction on name x is not permeable
to all hyperarcs, even those that are not attached to x, in the sense that the
axioms do not allow to freely move them down and sideways to the restriction
on x. We write P ≡l Q if P and Q are in the same loose equivalence class.

3.1 Initial Loose Algebra of Binding Bigraphs

Our first result shows that, in the same way as the algebra of strong terms
offers a syntax for open graphs, the algebra of loose terms offers a syntax for a
well-known model of structured hypergraphs, called binding bigraphs [8,13].

We recall that bigraphs are structures where two dimensions coexist: one
related to a tree of nested components, mimicking the structure of a term; and
another related to the sharing of names. The first is called place graph, the
second link graph. The nodes of the graph are labelled by so-called controls that
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A

x1 xn

(a) AB(x1, ..., xn)

0
x

(b) (x)B

0 1

(c) |B

Fig. 2. The loose algebra of binding bigraphs

fix their type and arity. A set of controls gives the signature of a class of bigraphs.
See [8] for the exact definitions.

In binding bigraphs, places can act as binders for names and the scope rule
guarantees that whenever a name is linked to some component then it is either
a free name or one bound to some parent of the (place of the) component.

Graphically a bigraph consists of some roots (dashed boxes) where nodes
(solid boxes) can be nested inside (according to the place graph). Each node is
labelled by a control that indicates the number of ports for linkage of the node.
Binding ports are denoted by circular attachments. Bigraphs can also contain
sites (grey boxes) that represent some holes where other bigraphs can be plugged
in. Sites are numbered, starting from 0. Bigraphs have also names (denoted by
x, y, z, ...) that are local if introduced by some binding port or global otherwise.
Ports and names are linked by lines, (according to the link graph).

The tensor product A ⊗ B of two bigraphs corresponds to put them side by
side, while the composition A ◦ B of two bigraphs is defined when the number
of holes in A matches with the number of roots in B and it corresponds to plug
each root of B in the corresponding hole of A.

In the following we mostly consider ground bigraphs, i.e., without sites, with
a unique root and with just global outer names. As explained in the Appendix,
we take (lean support) equivalence classes of concrete bigraphs, up-to graph
isomorphism, renaming of local names and presence of unused names.

The correspondence between loose terms and binding bigraphs is obtained
by taking one control A (drawn as a rounded box) for each constant A(x̃) with
binding arity arb(A) = 0 and free arity arf (A) = |x̃| and one control ν (drawn
as an oval) for each binding expression (x), with arb(ν) = 1 and arf (ν) = 0.

Definition 9 (The loose algebra of binding bigraphs). The l-algebra of
binding bigraphs consists of (lean-support equivalence classes of) ground binding
bigraphs (i.e., with one root and no sites). The symbols of the signature are
mapped to the binding bigraphs as shown in the table in Fig. 2 (permutations
are just applied to rename the global ports of the graph) and term substitution
corresponds to bigraph composition.

Some examples of interpretations are in Fig. 3.
Binding bigraphs offer a convenient model for the loose network specification.

Proposition 1. Binding bigraphs form an initial loose network algebra.
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A B

x y z

(a) A(x, y)|B(y, z)

A B

x

y

z

(b) (y)(A(x, y)|B(y, z))

A B

x

y

z

(c) (y)(((x)A(x, y))|(z)B(y, z))

Fig. 3. Some examples of bigraphs

4 Dynamic Programming

The structure of a number of optimisation problems can be conveniently repre-
sented as dynamic programming (DP) networks, where hyperedges correspond
to atomic subproblems and nodes to (possibly shared) variables. Costs of sub-
problems are summed up and restricted variables are assigned optimal values.

In this section we will first show how optimisation problems are represented
in our framework. We will then turn our attention to the secondary optimisation
problem, i.e., the problem of finding a decomposition into subproblems of minimal
complexity. This is a problem of paramount practical importance for DP.

We have so far given two equivalent ways of decomposing a network: l-terms
and binding bigraphs. We will introduce a notion of evaluation complexity for
l-terms, and we will characterise local optima as l-canonical terms. Then we will
establish a formal connection with another way of decomposing DP problems,
namely (elementary) tree decompositions.

Finally, we will show that the well-known bucket elimination algorithm (see,
e.g., [19, 5.2.4]) precisely corresponds to computing the l-canonical form of a
term w.r.t. a given ordering on restricted variables. Leveraging the algebraic
representation of networks as terms, and the correspondence between l-terms
and tree decompositions, this result provides us with a way to compute a locally
optimal decomposition of a network in three equivalent ways: as a l-canonical
term, a binding bigraph, or a tree decomposition.

4.1 Networks as Optimisation Problems

We now introduce an s-algebra of cost functions, where networks are evaluated
to solutions of the corresponding optimisation problem. We fix a domain D of
values for variables. Then an element of the s-algebra is a cost function ϕ : (V →
D) → R∞ that given an assignment of values to variables returns its cost. To
interpret all terms we assume that an interpretation is given of each symbol
A ∈ E as a cost function funcA : (V → D) → R∞ such that, for any ρ, ρ′ : V → D,
ρ|var(A) = ρ′

|var(A) implies funcA ρ = funcA ρ′, i.e., funcA only depends on the
canonical variables of A.

Definition 10 (S-algebra of cost functions). The s-algebra V consists of
cost functions ϕ : (V → D) → R∞ and the following interpretation of operations,
for any ρ : V → D:
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AV(x̃)ρ = funcA(ρ ◦ σ) nilVρ = 1

((x)Vφ)ρ = min{φρ[x �→ d]}d∈D (φπV)ρ = φ(ρ ◦ π) (φ1|Vφ2)ρ = φ1ρ + φ2ρ

where σ : V → V is a substitution mapping var(A) to x̃ component-wise and
expressing the connection between the canonical vertices of an A-labelled hyper-
edge and the actual nodes of the graph it is connected to.

Example 2. Consider the term P = (y)(x)(z)( A(x, y) | B(y, z) ). This is eval-
uated as the optimisation problem consisting in minimising the sum of the cost
functions for A and B w.r.t. to all the variables. Explicitly:

�P �
V = λρ.min {funcA(ρ[x �→ d1, y �→ d2])+ funcB(ρ[y �→ d2, z �→ d3])}d1,d2,d3∈D

which, since funcA and funcB only depends on {x, y} and {y, z}, respectively, is
a single value that does not depend on ρ.

Although all terms for the same network have the same evaluation in any
algebra, different ways of computing such an evaluation, represented as different
terms, may have different computational costs.

We make this precise by introducing a notion of evaluation complexity.

4.2 Evaluation Complexity

We define the complexity of a term P as the maximum “size” of elements of an
algebra A computed while inductively constructing �P �

A, the size being given
by the number of variables in the support. Intuitively, a step of DP consists of
solving a subproblem parametrically with respect to a number n of variables.
Thus if the number of possible values of a variable is |D|, then the number of
cases to consider for solving the subproblem is |D|n, namely it is exponential
with the number n of parameters of the subproblem. As a consequence, we can
approximate the complexity of the whole problem with the complexity of the
hardest subproblem.

In our algebraic representation, DP problems are terms P of the strong alge-
bra interpreted as functions ϕ : (V → D) → R∞ and their cost is just the evalua-
tion of P . Solving a subproblem corresponds to evaluating a restriction operator
(x)P of a term P , while the parameters are the variables in its support. On
the other hand, the cost of a single case is again proportional to |D|: we fix the
parameters and we optimize with respect to the values of the restricted variable.
Thus the complexity of evaluating (x)P is |fv(P )|. Notice that it represents the
space and time complexity of the problem. In fact, it correctly coincides with the
dimension of the matrix needed to represent the function ϕ : (V → D) → R∞
corresponding to �P �

A. The key observation is that if we take two strong equiv-
alent terms P1 and P2, they will necessarily evaluate to the same cost function
in (V → D) → R∞, but they will not have necessarily the same complexity.

Example 3. Consider the following terms:

P = (y)(x)(z)( A(x, y) | B(y, z) ) Q = (y)( (x)A(x, y) | (z)B(y, z) ).
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Although P ≡s Q, these terms have different complexities. The term P
has complexity 3 because, when evaluating it in any algebra, one has to
evaluate A(x, y)|B(y, z), and then solve it w.r.t. all its variables. Intuitively,
A(x, y)|B(y, z) is the most complex subproblem one considers in P , with 3 vari-
ables. Instead, the complexity of Q is 2, because its evaluation requires solving
A(x, y) and B(y, z) w.r.t. x and z, which are problems with 2 variables.

Given a term in the strong algebra, the problem of finding a (syntactical) term
with minimal complexity corresponds to the secondary optimisation problem of
DP. In [17] we have inductively defined a complexity function for terms.

Definition 11. Given a term P , its complexity 〈〈P 〉〉 is defined as follows:

〈〈P |Q〉〉 = max {〈〈P 〉〉, 〈〈Q〉〉, |fv(P |Q)|} 〈〈(x)P 〉〉 = 〈〈P 〉〉 〈〈Pπ〉〉 = 〈〈P 〉〉
〈〈A(x̃)〉〉 = |set(x̃)| 〈〈nil〉〉 = 0

Complexity is well-defined for loose terms but not for strong terms, as applying
(AXSE) may change the complexity (see [17]).

Lemma 1. Given (x)(P |Q), with x /∈ fv(Q), we have 〈〈(x)P |Q〉〉 ≤ 〈〈(x)(P |Q)〉〉.
We now classify l-terms according to their complexity. We say an l-term is

pure if every subterm (x)P is such that x ∈ fv(P ).

Definition 12 (L-normal and l-canonical forms). An l-term is in l-normal
form whenever it is of the form

(x̃)( A1(x̃1) | A2(x̃2) | . . . | An(x̃n) )

A l-term is in l-canonical form whenever the directed form of (AXSE)

(x)(P |Q) → (x)P | Q (x /∈ fv(Q))

cannot be applied to it. For both forms, we assume that they are pure and that
nil sub-terms are removed via (AX|).

L-normal forms have maximal complexity. A term can be s-equivalent (≡s)
to several l-normal forms, all with the same complexity: they differ for the order
in which restrictions are applied.

Example 4. The l-term (z)(x)(y)(A(x, y)|B(y, z)) is in l-canonical form, while
the l-term (x)(y)(z)(A(x, y)|B(y, z)) is not, because the axiom (AXSE) is appli-
cable to restrict the scope of x as in (x)(y)(A(x, y)|(z)B(y, z)).

Due to Lemma 1, l-canonical forms are local minima of complexity w.r.t.
the application of strong axioms minus (AX(x)). In fact, (AX(x)) may enable
further applications of (AXSE), and lead to a further complexity reduction, as
shown in [17] for weak terms. This phenomenon is exemplified in Example 4,
where bringing (z) closer to the parallel via restriction swaps makes the term
suboptimal. By forbidding (AX(x)), we considerably simplify the algorithm for
computing local complexity optima, and we recover a full correspondence with
the bucket elimination algorithm [9], as we shall see later.
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4.3 Elementary Tree Decompositions

In this section we establish a correspondence between two ways of decomposing
problems that admit a graph model: loose terms and tree decompositions. We
first introduce the novel notion of elementary tree decomposition (e.t.d.).

Definition 13 (Elementary tree decomposition). A tree decomposition
(T,X) for a network I � G is elementary whenever |Xr \ I| ≤ 1 and, for all
non-root nodes t of T , |Xt \ Xparent(t)| = 1.

We can now adapt the translation function from tree decompositions to terms
from [17] to elementary tree decomposition (e.t.d. for short).

Definition 14 (From elementary tree decompositions to l-terms). Let
T = (T,X) be an e.t.d. for I � G. For each node t of T , let E(t) ⊆ EG and
V (t) ⊆ VG be sets of nodes and edges of G such that e ∈ E(t) (resp. v ∈ V (t))
if and only if t is the closest node to the root of T such that αG(e) ⊆ Xt (resp.
v ∈ Xt). Let τ(t) be recursively defined on nodes of T as follows:

τ(t) = (x)(A1(x̃1)|A2(x̃2)| . . . |An(x̃n)|τ(t1)|τ(t2)| . . . |τ(tk))

where E(t) = {e1, e2, . . . , en}, x ∈ V (t)\I (we drop the restriction if V (t)\I = ∅),
labG(ei) = Ai, αG(ei) = x̃i, and t1, t2, . . . , tk are the children of t in T . Then
we define term(T ) := τ(r), where r is the root of T .

It is immediate to observe that each e.t.d. is mapped to an l-term. In fact, at each
node we add at most one restriction, which results in an ordering over restricted
names. In general the mapping is not injective, as the following example shows.

Example 5. Consider the l-term (x)(A(x, y)|(z)B(y, z)). Then term( ) maps both
the elementary tree decompositions depicted in Fig. 4a to it.

We shall define a converse mapping, from pure l-terms to e.t.d.s. In the
following we exploit the fact that every pure l-term is congruent to the form

(R) (A1(x̃1)| . . . |A1(x̃n)|P1| . . . |Pk)

where |R| ≤ 1 and it occurs free in the rest of the term if non-empty, n, k ≥ 0,
and Pi are l-terms of the same form with a top level restriction.

Definition 15 (From pure l-terms to elementary tree decompositions).
Given a pure l-term P such that

P ≡l (R) (A1(x̃1)| . . . |An(x̃n)|P1| . . . |Pk)

the corresponding e.t.d. etd(P ) is recursively defined as follows:
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{x, y}

{x, y, z}

{x, y}

{y, z}

{x, y}

{x, y, z}

(a)

{x}

{x, y}

{x, y, z}

(b)

Fig. 4. E.t.d.s for Examples 5(a) and 6(b). For simplicity, we have annotated each node
t with the corresponding set Xt.

A(x̃) : set(x̃)
P : X

Pπ : π(X)
P : X ∪ {z}

(z)P : fv((z)P )
P1 : X1 P2 : X2

P1|P2 : X1 ∩ X2

Fig. 5. Type rules for l-canonical terms

The place graph of the binding bigraph PB is tightly connected to etd(P ).
In fact, if we remove from the place graph all leaves whose controls are atoms
A we get the tree structure of (controls that are) restrictions. Then each node
of the graph can be tagged with the names of the ports that are used by nested
controls and we get etd(P ). The free variables of P will also appear in the root.

Lemma 2. We have that etd(P ) is an elementary tree decomposition of �P �
N .

As for term( ), this translation is not injective (see the following example).

Example 6. Consider the l-terms P = (x)(y)(A(x, y)|(z)B(x, y, z)) and Q =
(x)(y)(z)(A(x, y)|B(x, y, z)). Then etd(P ) = etd(Q) is the e.t.d. in Fig. 4b.

The translation is injective if we restrict the domain to l-canonical terms.

Proposition 2. Different l-canonical terms give rise to different e.t.d.s.

We conjecture that term( ) is left-inverse to etd( ) on l-canonical terms.

4.4 A Type System for l-canonical Terms

We use a type system to characterise l-canonical forms. Type judgements are of
the form P : X where X denotes the set of names of P that can be restricted
immediately on top of P . The typing rules are in Fig. 5. Those for atoms and for
permutations are trivial.

The rule for restriction deserves some explanation. Let P be a term such that
the names in X ∪ {z} can be restricted, then for the term (z)P all remaining
names fv((z)P ) can also be restricted. This is because taken any name x ∈
fv((z)P ) \ X, in the l-term (x)(z)P we cannot swap x with z in order to apply
the axiom (AXSE). The fact that (AXSE) cannot be applied to z is guaranteed
by z being one of the names that can be restricted on top of P (see premise).
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Fig. 6. Two type derivations

Fig. 7. The wheel network W2(v, x)

The rule for parallel composition follows a simple criterion: only names that
are in common between all constituents can be restricted. If a name z appears in
P1 but not in P2, then obviously the term (z)(P1|P2) is not in l-canonical form.

Typing is preserved by the axioms of the loose network specification, in the
sense that for all nil-free terms P ≡l Q and type X, if P : X, then Q : X.

Proposition 3. For any P and type X, if P : X then P is in l-canonical form.

Proposition 4. If P 	= nil is in l-canonical form, then P : X for some X.

Example 7. The term (x)(y)(A(x, y) | (z)B(y, z)) is in l-canonical form as wit-
nessed by the derivation in Fig. 6, left. Also the term (y)( (x)A(x, y) | (z)B(y, z) )
is in l-canonical form (see Fig. 6, right). The term (x)(y)(z)(A(x, y)|B(y, z))
is not typeable, because A(x, y)|B(y, z) : {y} and z 	∈ {y} thus the subterm
(z)(A(x, y)|B(y, z)) is not typeable. In fact it is not in l-canonical form because
the axiom (AXSE) can be applied to restrict the scope of z to B(y, z).

Example 8. Consider the wheel example from [17] in Fig. 7 (see [20] for a
graph grammar presentation). Then R0(x, z, y) : {x}, but R1(x, z, y) =
(v)(R0(x, z, v)|R0(v, z, y)) is not typeable, as R0(x, z, v)|R0(v, z, y) : ∅. We can
give an alternative typeable definition of wheels where all terms are l-canonical:

R0(x, z, y) � (v)(A(x, v)|B(v, z)|A(v, y)) : {x, z, y}
Ri+1(x, z, y) � (v)(Ri(x, z, v)|Ri(v, z, y)|B(v, z)) : {x, z, y}

FWk(x, y) � (z)(Rk(x, z, y)|B(x, z)|B(y, z)) : {x, y}
Wk(x, y) � FWk(x, y)|A(y, x) : {x, y}
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Fig. 8. Bucket elimination algorithm for l-terms.

4.5 Computing l-canonical Forms

We now give an algorithm to compute an l-canonical form of a term. This is based
on bucket elimination (see, e.g., [19, 5.2.4]), also known as adaptive consistency.

We briefly recall the bucket elimination algorithm. Given a network represent-
ing an optimisation problem, and a total order over its variables, sub-problems
are partitioned into buckets: each sub-problem is placed into the bucket of its
last variable in the ordering. At each step, the bucket of a variable x is elimi-
nated by creating a new sub-problem involving all the variables in the bucket
different from x. This new problem is put into the bucket of its last variable,
and the process is iterated.

In [17] we have extended the algorithm to modify the ordering of variables
in the attempt of reducing the size of subproblems. This required an additional
backtracking step. Here we show that l-canonical forms can be computed via the
ordinary bucket elimination algorithm, suitably adapted to l-terms.

Our algorithm is shown in Fig. 8. Here putting a constraint in the bucket of
its last variable amounts to applying the scope extension axiom, and eliminating
a variable amounts to restricting it. The algorithm takes as input an l-term in
normal form (R)M , represented by a totally ordered set of variables R (recall
that restricted variables are assumed to be distinct), and a multiset of atomic
terms M . The algorithm first picks the max variable in the total order (line 3),
then it partitions the input l-term into subterms according to whether x occurs
free or not (line 4), and from the former it creates a new term P ′ where x is
restricted. It then adds P ′ to the remaining terms of P , removes x from the total
order R, and iterates the process for the resulting term.

Example 9. We now show an example of execution. We will run the algorithm
with the following l-normal term as input:

(a < b < c < d) {A1(c, d), A2(d, b), A3(d, a), A4(b, a)}

On the first iteration, line 3 picks d, and line 4 will select M ′ =
{A1(c, d), A2(d, b), A3(d, a)}. Then R and M in line 6 and 7 are

(a < b < c) {A4(b, a), (d){A1(c, d), A2(d, b), A3(d, a)} }
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At the next iteration, line 3 picks c, and line 6 and 7 give the following:

(a < b) {A4(b, a), (c)(d){A1(c, d), A2(d, b), A3(d, a)}}

Despite c occurring only in A1(c, d), the presence of (d), which is greater in the
ordering, prevents (c) from permeating the parallel composition. After two more
iterations, where the variables b and a are processed, the output is:

(a)(b)(A4(b, a) | (c)(d)(A1(c, d) | A2(d, b) | A3(d, a)))

The algorithm outputs all and only the l-canonical forms for a given term.

Proposition 5. Given a term P , a term C ≡s P is l-canonical if and only
if there is an l-normal form for P which, if provided as input to the bucket
elimination algorithm, outputs C.

5 Conclusion

Along the graphical-algebraic correspondence introduced by Milner [15] for net-
works and flow algebras, in [17] two of the authors have studied the connections
between tree decompositions and certain weak network algebras. In this paper
the correspondence of the two former models and, in addition, of a version of
Milner’s bigraphs [16], has been fully formalised introducing a small variation
of weak network algebras, called loose network algebras. Milner’s flow algebras
also fit in the schema as strong algebras. The algebraic treatment is instrumental
for conveniently expressing important computational properties of the complex
problem at hand. In this line, we examine the very relevant case of graphical opti-
misation problems solved via dynamic programming. We show that the solution
of a problem corresponds to the evaluation of a strong term, while the cost of
such a computation is obtained by evaluating the same term in a loose algebra.
It is also shown that reducing a loose term w.r.t. the axiom of scope expan-
sion produces a modified loose term of better or equal complexity. The notion
of l-canonical form for loose terms captures local minima of complexity and is
tightly related to particular kinds of tree decompositions, called elementary. We
also define a type system for checking if a term is in l-canonical form. Finally,
when a total ordering is imposed on the variables of a term, a term in l-canonical
form can be uniquely derived by applying Dechter’s bucket algorithm [9].

The problem of how to represent parsing trees for (hyper)graphs has been
studied in depth in the literature. We mention the work of Courcelle on graph
algebras [6]. Here tree decompositions are used to bound the complexity of
checking graph properties, and a term encoding allows employing automata-
theoretic tools. The focus is different than ours, and investigating connec-
tions is left for future work. Other approaches based on tree decompositions
are [3,4,7,11,14,18]. Here we provide an algebraic characterisation of tree
decompositions with locally minimal complexity. The application of bigraphs
to dynamic programming is also novel. We plan to study the relation between
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loose network specifications and graph grammars for hyperedge replacement [5],
where the structure of a derived graph is its derivation tree: it seems that our
approach has a simpler compositional structure, and an up-to-date foundation
for name handling.
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Abstract. Hyperedge replacement (HR) allows to define context-free
graph languages, but parsing is NP-hard in the general case. Predictive
top-down (PTD) is an efficient, backtrack-free parsing algorithm for sub-
classes of HR and contextual HR grammars, which has been described
and implemented in earlier work, based on a representation of graphs and
grammar productions as strings. In this paper, we define PTD parsers
for HR grammars by graph transformation rules and prove that they are
correct.

Keywords: Graph transformation · Hyperedge replacement ·
Parsing · Correctness

1 Introduction

Hyperedge replacement (HR, [8]) is one of the best-studied mechanisms for gen-
erating graphs. Being context-free, HR grammars inherit most of the favorable
structural and computational properties of context-free string grammars. Unfor-
tunately, simplicity of parsing is not one of these, as there are NP-complete
HR languages [1,14]. Hence, efficient parsing can only be done for suitable sub-
classes. The authors have devised predictive top-down (PTD, [4]) and predictive
shift-reduce (PSR, [6]) parsing for subclasses of HR grammars and, in fact, for
subclasses of contextual HR grammars (CHR grammars, [2,3]), which are a mod-
est extension of HR grammars that allows to overcome some of the structural
limitations of HR languages.

Although the concepts and implementation of PTD parsers have been
described at depth in [4], their correctness has not yet been formally established.
We show in this paper how PTD parsing can be defined by graph transforma-
tion rules and use this in order to prove the correctness of PTD parsers. Our
experience with the correctness proof for PSR parsing in [6] seems to indicate
that a graph- and rule-based definition of parsers can make this task easier.

Related work on using graph transformation for defining parsers has dealt
with LR string grammars [11] and two-level string grammars [12]. For a broader
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discussion of related work on parsing algorithms for graph grammars in general
we refer to [6, Sect. 10.1].

The paper is structured as follows. After recalling graph transformation con-
cepts (Sect. 2) and HR grammars (Sect. 3), we introduce threaded HR grammars
(Sect. 4), which impose a total order on the edges of their derived graphs, which
in turn induces a dependency relation on their nodes. In Sect. 5, we define a
general top-down parser for HR grammars that respects edge order and node
dependencies, and prove it correct. Since this parser is nondeterministic and
hence inefficient, we introduce properties that make the parser predictive, and
backtrack-free (Sect. 6) and show that this yields correct parsers that terminate
for grammars without left recursion.1 We conclude the paper by indicating some
future work (Sect. 7).

2 Preliminaries

In this paper, N denotes the set of non-negative integers and [n] denotes
{1, . . . , n} for all n ∈ N. A∗ denotes the set of all finite sequences over a set A; the
empty sequence is denoted by ε, and the length of a sequence α by |α|. As usual,
→+ and →∗ denote the transitive and the transitive reflexive closure of a binary
relation →. For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences
is defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all n ∈ N and a1, . . . , an ∈ A.
The composition of functions f : A → B and g : B → C is denoted as g ◦ f and
defined by (g ◦ f)(x) = g(f(x)) for x ∈ A. The restriction of f to some subset
X ⊆ A is denoted as f |X .

Definition 1 (Hypergraph). An alphabet Σ is a finite set of symbols that
comes with an arity function arity : Σ → N. A hypergraph (over Σ) is a tuple G =
(Ġ, Ḡ, att , lab), where Ġ and Ḡ are finite sets of nodes and hyperedges, respec-
tively, the function att : Ḡ → Ġ∗ attaches hyperedges to sequences of nodes, and
the function lab : Ḡ → Σ labels hyperedges so that |att(e)| = arity(lab(e)) for
every e ∈ Ḡ, i.e., the number of attached nodes of hyperedges is dictated by the
arity of their labels.

GΣ denotes the class of hypergraphs over Σ; 〈〉 denotes the empty hypergraph,
with empty sets of nodes and hyperedges. A set of hyperedges E ⊆ Ḡ induces
the subgraph consisting of these hyperedges and their attached nodes.

For brevity, we omit the prefix “hyper” in the sequel. Instead of “x ∈ Ġ or
x ∈ Ḡ”, we often write “x ∈ G”. We often refer to the functions of a graph G
by attG and labG. An edge carrying a label in an alphabet Σ is also called a
Σ-edge. And a node is called isolated if no edge is attached to it.

Definition 2 (Graph Morphism). Given graphs G and H, a graph morphism
(morphism, for short) m : G → H is a pair m = (ṁ, m̄) of functions ṁ : Ġ → Ḣ

1 Since this paper is dedicated to proving the correctness of PTD parsers, and it has
been established in [4] that they run in quadratic time at worst, we shall not dwell
on issues of efficiency here.
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and m̄ : Ḡ → H̄ that preserve attachments and labels, i.e., attH ◦ m̄ = ṁ∗ ◦ attG

and labH ◦ m̄ = labG. The morphism is injective or surjective if both ṁ and m̄
are, and a subgraph inclusion of G in H if m(x) = x for every x ∈ G; then we
write G ⊆ H. If m is surjective and injective, it is called an isomorphism, and
G and H are called isomorphic, written as G ∼= H.

For transforming graphs, we use the classical approach of [7], with injective
matching and non-injective rules [9], but without rules that delete nodes.

Definition 3 (Rule). A graph transformation rule r = (P,R, r◦) consists of a
pattern graph P , a replacement graph R, and a mapping r◦ : Ṗ → Ṙ. 2 We briefly
call r a rule and denote it as r : P ◦→ R. An injective morphism m : P → G into
a graph G is a match of r, and r transforms G at m to a graph H as follows:

– Remove all edges m(e), e ∈ P̄ , from G to obtain a graph K.
– Construct H from the disjoint union of K and R by identifying m(x) with

r◦(x) for every x ∈ Ṗ .

Then we write G⇒m
r H, but may omit m if it is irrelevant, and write G⇒R H

if R is a set of rules such that G⇒r H for some r ∈ R.

Sometimes it is necessary to restrict the application of a rule by requiring
the existence or non-existence of certain graphs in the context of its match. Our
definition of application conditions is based on [10].

Definition 4 (Conditional Rule). For a graph P , the set of conditions over
P is defined inductively as follows: (i) a subgraph relation P ⊆ C defines a basic
condition ∃C over P . (ii) if c, c′ are conditions over P , then ¬c, (c ∧ c′), and
(c ∨ c′) are conditions over P .3

An injective morphism m : P → G satisfies a condition c, written m � c, if

– c = ∃C and there is an injective morphism m′ : C → G so that m′|P = m;
– c = ¬c′ and m � c′;
– c = (c′ ∧ c′′) and both m � c′ and m � c′′;
– c = (c′ ∨ c′′) and m � c′ or m � c′′.

A conditional rule r′ = (r, c) consists of a rule r : P ◦→ R and a condition c over
P , and is denoted as r′ : c P ◦→ R. We let G⇒m

r′ H if m � c and G⇒m
r H. Note

that each rule P ◦→ R without a condition can also be seen as a conditional rule
∃P P ◦→ R. If C is a finite set of conditional rules, ⇒C denotes the conditional
transformation relation using these rules.

Examples of graphs and rules, with and without conditions, will be shown below.

2 This corresponds to a DPO rule P ⊇ I → R, where the interface I is the discrete
graph with nodes Ṗ , and the morphism I → R is given by (r◦,∅).

3 We omit nested conditions like “∀(C, ∃C′ ∧ ¬∃C′′)” since we do not need them.
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3 Hyperedge Replacement Graph Grammars

We recall graph grammars based on hyperedge replacement [8].4

Definition 5 (Hyperedge Replacement Grammar). Consider a finite
alphabet Σ and a subset N ⊆ Σ of nonterminals. Edges with labels in N are
accordingly nonterminal edges; those with labels in Σ \ N are terminal edges.

A rule p : P ◦→ R is a hyperedge replacement production (production, for
short) over Σ if the pattern P consists of a single edge e and its attached nodes,
where labP (e) ∈ N , and the mapping p◦ : Ṗ → Ṙ is injective.

A hyperedge-replacement grammar (HR grammar) Γ = 〈Σ,N ,P, Z〉 consists
of Σ and N ⊆ Σ as above, a finite set P of productions over Σ, and a start
graph Z ∈ GΣ .

The language generated by Γ is given by L(Γ ) = {G ∈ GΣ\N | Z ⇒∗
P G}.

Example 1 (HR Grammars for Trees). As a running example for the construc-
tions in this paper, we use the productions in Fig. 1. They derive n-ary trees
like the one in Fig. 2, if the pattern of production s is the start graph. We draw
nodes as circles, and nonterminal edges as boxes that contain their labels. Edges
are connected to their attached nodes by lines, called tentacles. Tentacles are
ordered counter-clockwise around the edge, starting in the north.

Fig. 1. HR productions for trees Fig. 2. A tree

For the purpose of this paper, we restrict ourselves to this simple example
because illustrations would otherwise become too complex. Further examples of
well-known HR languages for which PTD parsers can be built include string
graph languages such as palindromes, non-context-free ones like anbncn, arith-
metic expressions, and Nassi-Shneiderman diagrams.

In our running example, edges of shape with arity( ) = 1 designate root
nodes, whereas edges of shape with arity( ) = 2 connect parent nodes to their
children.

In productions (and later in other rules), nodes of the pattern P have the same
identifier ascribed in P as their images in R under p◦, like x in our example.
In the following, the letters s, l, and b under the arrows in Fig. 1 are used as
identifiers that refer to the corresponding production.

4 In contrast to [8] and [4], “merging rules”, with a non-injective node mapping, are
prohibited here as they complicate the following formal discussion considerably.
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Assumption 1. Throughout the remainder of this paper, we consider only HR
grammars Γ = 〈Σ,N ,P, Z〉 that satisfy the following conditions:

1. Z consists of a single edge e of arity 0.
2. L(Γ ) does not contain graphs with isolated nodes.

These assumptions imply no loss of generality: a new initial nonterminal with a
single start production according to Assumption 1 can be added easily. A gram-
mar that violates Assumption 1 and produces isolated nodes can be transformed
easily into an equivalent grammar that attaches virtual unary edges to those
nodes.

4 Threaded HR Grammars

We now prepare HR grammars for parsing. The edges in graphs, productions and
derivations will be ordered linearly with the idea that the parser is instructed to
process the symbols of a grammar in this order when it attempts to construct a
derivation for a given input graph. The edge order induces a dependency relation
between nodes of a graph as follows: for an edge, an attached node is “known”
if it is also attached to some preceeding edge, which will be processed earlier by
the parser; it is “unknown” otherwise. This defines what we call the profile of an
edge: a node is classified as incoming if it is known, and as outgoing otherwise.

Technically, edge order and profiles are represented by extending the struc-
ture and labels of a graph: Every edge is equipped with two additional tentacles
by which edges are connected to a thread, and the label � of an edge is equipped
with a profile ν ⊆ N indicating the positions of its incoming nodes. Unary hyper-
edges labeled with a fresh symbol distinguish thread nodes from kernel nodes of
a graph.

Definition 6 (Threaded Graph). The profiled alphabet of an alphabet Σ
is Σ̃ = {�ν | � ∈ Σ, ν ⊆ [arity(�)]} ∪ {�} with arity(�ν) = arity(�) + 2 and
arity(�) = 1. The profile of an edge labelled by �ν is ν.

Let G ∈ GΣ̃ . A node v ∈ Ġ is called a thread node if a �-edge is attached to
it and a kernel node otherwise. Ġ and ˜̇G denote the sets of all kernel nodes and
thread nodes of G, respectively. An edge e ∈ Ḡ is a profiled edge if labG(e) = �.
The set of all profiled edges of G is denoted by pe(G). The profile ν divides the
set of attached kernel nodes of e into sets inG(e) = {vi | i ∈ ν} and outG(e) =
{vi | i ∈ [arity(labG(e))] \ ν} of incoming and outgoing nodes, respectively.

A graph G ∈ GΣ̃ is threaded if the following hold:

1. Each node of G has at most one attached �-edge.
2. For every e ∈ pe(G) with labG(e) = �ν and attG(e) = v1 . . . vkvk+1vk+2, the

nodes v1, . . . , vk are kernel nodes of G and vk+1, vk+2 are thread nodes of G.
(Hence, inG(e) and outG(e) partition the kernel nodes of e into incoming and
outgoing nodes.)
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3. The profiled edges and thread nodes of G can be ordered as pe(G) =
{e1, . . . , en} and ˜̇G = {v0, . . . , vn} so that, for i ∈ [n],
(a) attG(ei) ends in vi−1vi and
(b) no edge ej with j ∈ [i − 1] is attached to any node in outG(ei).

We call v0 the first and vn the last thread node of G, and define furthermore
in(G) = Ġ \ ⋃

i∈[n] outG(ei).
The kernel graph of G is the graph G ∈ GΣ obtained by removing the profiles

of edge labels, the �-edges, the thread nodes and their attached tentacles. G̃Σ̃

denotes the set of threaded graphs over Σ̃; 〈•〉 denotes the empty threaded graph
that consists of a single thread node with its attached �-edge.

Remark 1 It is important to note that the profiles of the (profiled) edges of a
threaded graph G are uniquely determined by in(G) and the structure of G. To
see this, let pe(G) = {e1, . . . , en}, threaded in this order. For every v ∈ Ġ, let

first(v) =
{
0 if v ∈ in(G)
i if v /∈ in(G) and i = min{j ∈ [n] | attG(ej) contains v}.

Then v ∈ inG(ei) if v ∈ attG(ei) and first(v) < i.
Let the concatenation H = G ◦ G′ of two threaded graphs G and G′ with

Ḡ ∩ Ḡ′ = ˜̇G ∩ ˜̇G′ = ∅ be the threaded graph H that is constructed from the
union of G and G′ by identifying the last thread node of G with the first thread
node of G′ (and removing one of their attached �-edges). Note that kernel nodes
of G may also occur in G′.

Definition 7 (Threaded Production and HR grammar). A rule p : P ◦→
R is a threaded production if P and R are threaded and the following conditions
are satisfied:

1. the rule p : P ◦→ R, where p◦ is the restriction of p◦ to Ṗ , is a production,
called kernel production of p,

2. p◦ maps the first and last thread nodes of P onto the first and last thread
nodes of R, respectively, and

3. p◦(in(P )) = in(R).

An application G⇒m
p H of a threaded production p to a threaded graph G is

called leftmost, written G⇒
lm

m
p

H, if it replaces the first nonterminal on the thread

of G.
A HR grammar Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 over a profiled alphabet Σ̃ is threaded if

all its productions are threaded.

As in the case of context-free string grammars, the context-freeness of hyper-
edge replacement implies that derivations can be restricted to leftmost ones:

Fact 1. For every threaded HR grammar Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 and every G ∈ L(Γ̃ ),
there is a leftmost derivation Z̃ ⇒

lm

∗̃
P G, i.e., a derivation in which all applications

of productions are leftmost.
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This fact will be important, as top-down parsers for HR grammars attempt
to construct leftmost derivations of a graph.

It follows from Remark 1 and condition 3 of Definition 7 that the profiles of
edges in the replacement graph of a threaded production are uniquely determined
by the profile of the pattern. Hence, given a HR grammar Γ = 〈Σ,N ,P, Z〉 and
an order on R̄ for each of its productions p : P ◦→ R, a unique threaded version
Γ̃ of Γ is obtained as follows:

1. The threaded start graph Z̃ of Γ̃ is given by Z̃ = Z (recall that arity(Z) = 0).
2. Every production p : P ◦→ R of Γ is turned into all threaded productions

p̃ : P̃ ◦→ R̃ where P̃ = P , R̃ = R, and the edges of R̃ are threaded according
to the chosen order on R̄ (which defines the profiles of edges in R̃ uniquely).

While the procedure above creates an exponential number of profiles and thus
productions, in most cases many of them will be useless. A more efficient way
of constructing Γ̃ is thus to choose the threading order and then construct the
useful threaded productions inductively. The procedure would initially construct
the threaded start production (in which in(P ) = ∅) and then, as long as a
replacement graph of one of the constructed productions contains a hitherto
unseen profiled nonterminal, continue by constructing the threaded productions
for this nonterminal. This leads to the following definition:

Definition 8 (Threaded Version of a HR Grammar). Let Γ = 〈Σ,N ,P,
Z〉 be a HR grammar. A threaded version of Γ is a threaded grammar Γ̃ =
〈Σ̃, Ñ , P̃, Z̃〉, such that

1. P = {p | p ∈ P̃} and Z = Z̃,
2. all threaded productions with the same kernel production p : P ◦→ R order

the edges of R identically, and
3. Γ̃ is reduced, i.e., every production p ∈ P̃ can participate in the generation of

a graph in L(Γ̃ ): there is a derivation Z̃
∗⇒̃
P

G⇒
p

G′ ∗⇒̃
P

H such that H ∈ L(Γ̃ ).

Fig. 3. Threaded tree productions

Example 2 (Threaded Tree Grammar). We consider a threaded version of the
tree grammar, given by the threaded productions in Fig. 3. In examples such as
this one we draw thread nodes in gray and omit the attached �-edges, and we
write profiles as ascending sequences of numbers rather than as sets. The profiles
of profiled terminal edges are inscribed into the label symbols, i.e., 1 for 1 and
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Fig. 4. A leftmost threaded derivation of the tree in Fig. 2

ε for ε Moreover, we distinguish threaded productions with the same kernel
productions by the profile of the (unique edge in the) pattern in the production
name. The profiled symbols T ε, ε, 2, 12, and 1 do not appear as they occur
only in useless productions.

It is worthwhile to note that production l̃1 merges thread nodes t and n,
which we indicate in the drawing by annotating the corresponding node in the
replacement graph with “t=n”.

We arrange thread nodes from left to right and draw thread tentacles in gray
so that the kernel graph can be better identified. To make it easier to distinguish
incoming from outgoing attached nodes, we draw the former to the left of an
edge and the latter to the right of it.

In production b̃1, left-recursion was avoided by choosing the terminal edge
to be the first one on the thread. Figure 4 shows a threaded derivation of the
tree in Fig. 2, which is leftmost.

Threaded productions derive threaded graphs to threaded graphs.

Fact 2. If G⇒P̃ H and G is a threaded graph, H is a threaded graph as well,
and in(H) = in(G).
Threaded derivations and unthreaded ones correspond to each other.

Lemma 1. Let Γ = 〈Σ,N ,P, Z〉 be a HR grammar, Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 a
threaded version of Γ , and G a threaded graph such that Z̃ ⇒∗

P̃ G. Then it holds
for all graphs G′ that G ⇒P G′ if and only if there is a threaded graph H with
H = G′ and G⇒P̃ H.

Thus the threaded and unthreaded version of a HR grammar generate the
same language of kernel graphs.

Theorem 1. If Γ = 〈Σ,N ,P, Z〉 is a HR grammar and Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 is a
threaded version of Γ , then L(Γ ) = {G | G ∈ L(Γ̃ )}.
Proof. Easy induction on the length of derivations, using Lemma 1. ��
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5 General Top-Down Parsing for HR Grammars

We define top-down parsers for HR grammars as stack automata, which perform
transitions of configurations that represent the input graph and a stack. Con-
figurations are graphs, and transitions are described by graph transformation
rules. This definition is more precise than the original definition of PTD parsing
in [4], but avoids the technical complications occuring in the precise definition
of PSR parsing for HR grammars [6], where graphs are represented textually as
sequences of literals, and transitions are defined by the transformation of literal
sequences, involving substitution and renaming operations on node identifiers.
The use of graph transformation and graph morphisms avoids the explicit han-
dling of these technical issues.

A configuration consists of a threaded graph as in Definition 6, which repre-
sents its stack and its read input, edges without profile that induce its unread
input, and further edges that serve as flags, distinguishing different types of
nodes.

Definition 9 (Configuration). Given a HR grammar Γ = 〈Σ,N ,P, Z〉 and
its profiled alphabet Σ̃, let �, ⊗, and � be fresh symbols of arity 1. A graph G
without isolated nodes is a configuration (of Γ ) if the following hold:

– The subgraph thread(G) induced by its Σ̃-edges is a threaded graph.
– Exactly one thread node h of thread(G) is attached to a �-edge, representing

the top of the stack.
– Every kernel node of every profiled edge between the start node of the thread

and h is attached to a �-edge, marking it as read.
– Every node of every Σ-edge that is not attached to a profiled edge at the

same time is attached to a ⊗-edge, marking it as unread.
– No node is attached to several edges with labels in {�,⊗,�}.

We let read(G), the read input, denote the subgraph of thread(G) induced by
the profiled edges between the first thread node and h (including the �-edges
attached to those nodes). The (threaded) subgraph of thread(G) induced by the
profiled edges between h and the last node of the thread (again including the �-
edges attached to those nodes) represents the stack stack(G), and the subgraph
unread(G) induced by the Σ-edges represents the unread input. The union of
unread(G) and the kernel of read(G) is the input represented by G, denoted by
input(G).

A configuration G is

– initial if read(G) = 〈•〉 and stack(G) = Z̃, and
– accepting if stack(G) = 〈•〉 and unread(G) = 〈〉.
Definition 10 (Top-Down Parser). Let Γ be a HR grammar and R a set of
conditional rules. A derivation G⇒∗

R H is a parse if G is an initial configuration.
A parse G⇒∗

R H is successful if H is an accepting configuration. A configuration
G is promising (with respect to R) if there is an accepting configuration H so
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that G⇒∗
R H. R is a top-down parser for Γ if, for each initial configuration G,

unread(G) ∈ L(Γ ) if and only if G is promising. R terminates if there is no
infinite parse.

Consider in the following a threaded version Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 of a HR
grammar Γ = 〈Σ,N ,P, Z〉. We define two types of general top-down parsing
rules, called match and expand rules.

Definition 11 (Match and Expand Rules). For every terminal symbol aν ∈
Σ̃ \ Ñ , the match rule taν : P ◦→ R is given as follows:

– The pattern P is a configuration where
• read(P ) = 〈•〉,
• unread(P ) consists of one a-edge e with a ∈ Σ \N and attP (e) = v1 . . . vk

(where arity(a) = k), with a �-edge attached to every vi with i ∈ ν and
a ⊗-edge attached to every vi with i ∈ ν, and

• stack(P ) consists of one aν-edge e with attP (e) = v1 . . . vkvk+1vk+2 such
that vi = vi if i ∈ ν. If i /∈ ν, then vi is not attached to e.

– The replacement R is a configuration where
• read(R) = stack(P ), with a �-edge attached to every vi, for i ∈ [k],
• stack(R) = 〈•〉,
• unread(R) = 〈〉.

– The mapping t◦aν identifies node vi with vi if and only if i /∈ ν.

For each of the threaded productions p : P̃ ◦→ R̃ in P̃, the expand rule
tp : P ◦→ R is given as follows:

– read(P ) = read(R) = 〈•〉,
– unread(P ) = unread(R) = 〈〉,
– stack(P ) = P̃ and stack(R) = R̃,
– the mapping t◦p is the same as in p;

We let RM
Γ̃

denote the set of all match rules for terminal symbols, and RE
Γ̃

the set of all expand rules for productions of Γ̃ . In the following, we will show
that RΓ̃ = RM

Γ̃
∪ RE

Γ̃
is in fact a top-down parser for Γ , hence we call RΓ̃ a

general top-down parser of Γ̃ (for Γ ).

Example 3 (General Top-Down Parser for Trees). The expand rules of the gen-
eral top-down parser for trees in Fig. 5 differ from the threaded productions only
in the �-edge marking the top of the stack. (We draw �- and �-edges around
the nodes to which they are attached, so that they look like distinguished kinds
of nodes. Nodes with an attached ⊗-edge are drawn as ⊗, omitting the attached
edge in the drawing.) The match rules for the two edge patterns needed are
shown in Fig. 6.

Figure 7 shows snapshots of a successful parse of the tree in Fig. 2 with these
rules, where five configurations are omitted for brevity. The parse constructs the
leftmost derivation in Fig. 4.
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Fig. 5. Expand rules of the general top-down parser for trees

Fig. 6. Two match rules of the general top-down parser for trees

Fig. 7. A top-down parse of the tree in Fig. 2

Note that match rules do not change the thread, but just “move” the matched
terminal from the unread to the read subgraph of the configuration. In contrast,
expand rules do not modify the unread or read subgraphs of the configuration,
but just replace the first nonterminal on the thread by the replacement graph of a
threaded production for this nonterminal. We can summarize these observations
in the following fact:
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Fact 3. For a parse G⇒∗
RΓ̃

G′ ⇒r H (where r ∈ RΓ̃ ), the following hold:

1. input(G) ∼= input(G′) ∼= input(H);
2. if r = taν is a match for some a ∈ Σ \ N , then thread(G′) ∼= thread(H);
3. if r = tp for some threaded production p ∈ P̃, then thread(G′) lm⇒p thread(H).

Thus RΓ̃ constitutes a top-down parser: there is a successful parse if and
only if its input graph is in the language of the grammar.

Theorem 2. For every HR grammar Γ and each threaded version Γ̃ of Γ , RΓ̃

is a top-down parser for Γ .

Proof Sketch. Let G⇒∗
RΓ̃

H be a successful parse. Z̃ = thread(G)⇒∗
P̃ thread(H)

and unread(G) = input(G) ∼= input(H) hold by Fact 3; input(H) is the kernel of
thread(H) because H is accepting, and hence unread(G) ∈ L(Γ ) by Lemma 1.

In order to show the opposite direction, let us consider any configuration
G with terminal read input read(G) and H ′ a terminal threaded graph with
kernel H ′ = unread(G). It is easy to prove, by induction on the length of the
derivation, that thread(G)⇒

lm

∗̃
P read(G) ◦ H ′ implies G⇒∗

RΓ̃
H where H is an

accepting configuration obtained from read(G)◦H ′ by adding a �-edge to the last
thread node and �-edges to all kernel nodes, i.e., G is promising. Now let G be an
initial configuration with unread(G) ∈ L(Γ ). By Lemma 1, there is a threaded
graph H ′ with kernel unread(G) and thread(G) = Z̃ ⇒

lm

∗̃
P H ′ = read(G) ◦ H ′.

Hence, G must be promising. ��
If Γ̃ is not left-recursive, the general top-down parser terminates. Here, we say

that Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 is left-recursive if there is a threaded graph G consisting
of a single nonterminal edge labeled A (for some nonterminal A) and there is a
derivation G⇒+

P̃ H for some graph H such that the first profiled edge of H is
also labeled with A.

Theorem 3 (Termination). Let Γ̃ be a threaded version of a HR grammar.
The general top-down parser RΓ̃ terminates unless Γ̃ is left-recursive.

Proof Assume that there is an infinite parse G⇒t1 G1 ⇒t2 G2 ⇒t3 · · · with ti ∈
RΓ̃ for i ∈ N. Since unread(G) is finite and each match operation “removes” an
unread edge, there must be a k ∈ N such that ti is an expand rule for all i > k.
As their number is finite, there must be numbers i and j, k < i < j, such that
stack(Gi) and stack(Gj) start with edges labeled with the same nonterminal. By
Fact 3, thread(Gi)⇒

lm

+
P̃ thread(Gj), which proves that Γ̃ is left-recursive. ��

Inconveniently, the steps of the general top-down parser are nondeterministic:

1. The expansion of a nonterminal Aν may choose any of its productions.
2. The match of an edge aν may choose any unread edge fitting the profile ν.

We consider a parse G⇒∗
RΓ̃

H as a blind alley if the configuration H is not
accepting, but does not allow further steps (using RΓ̃ ). This is the case if
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– stack(H) starts with an edge aν , but taν does not apply (edge mismatch), or
– stack(H) = 〈•〉 but unread(H) = 〈〉 (input too big).

Due to nondeterminism, a successful parse may nevertheless exist in such a
situation. Exploring the entire search space of parses to determine whether a
successful one exists is very inefficient.

6 Predictive Top-Down Parsing for HR Grammars

The aim of predictive top-down parsing for threaded HR grammars is to avoid
backtracking, the major source of inefficiency of a straightforward implementa-
tion of the general top-down parser. So we have to cope with the nondeterminism
identified in the previous section. In every configuration of a parse, it must effi-
ciently be possible to predict which choices of moves are wrong in the sense that
they lead into a blind alley, whereas other moves could still lead to a success-
ful parse if there is any. However, this is most likely not achievable for every
threaded HR grammar Γ̃ because Theorem 2 in combination with the known
NP-completeness of some HR languages would otherwise imply that P=NP. For
such a grammar, certain configurations will allow more than one expansion, and
it may be the case that any of them is promising, or just some of them (or none).

Thus backtrack-free parsing only seems to be possible for HR grammars that
make correct moves of their top-down parsers predictable.

Let us first define predictive expand rules that will prevent a parser from
running into blind alleys by additionally checking so-called lookahead conditions.
Henceforth, given a rule r : P ◦→ R and a condition c over P , we denote the
conditional rule r′ : c P ◦→ R by r[c].

Definition 12 (Predictive expand rules). Let Γ be a HR grammar, Γ̃ a
threaded version of Γ , and RΓ̃ = RM

Γ̃
∪ RE

Γ̃
its general top-down parser. For an

expand rule tpν : P ◦→ R ∈ RE
Γ̃
, a condition c over P is a lookahead condition

for tpν if the following holds:

For every derivation G⇒∗
RΓ̃

H ⇒m
tpν H ′ where G is an initial configuration

and H is promising,5 if m � c then H ′ is promising.

A set R = {tpν [cpν ] | tpν ∈ RE
Γ̃
} of conditional rules is a set of predictive

expand rules for Γ̃ if cpν is a lookahead condition for every tpν ∈ RE
Γ̃
.

In the following, we briefly describe a simple way to check whether a set of
predictive expand rules can be obtained from RE

Γ̃
. For this purpose, let G be any

initial configuration and tpν : P ◦→ R any expand rule so that G⇒∗
RΓ̃

H ⇒m
tpν H ′

where H ′ is promising, i.e., there is an accepting configuration F such that

5 From now on, we call a configuration promising if it is in fact promising with respect
to RΓ̃ .



234 F. Drewes et al.

either H ⇒m
tpν H ′ ⇒∗

RE
Γ̃

K ⇒RM
Γ̃

K ′ ⇒∗
RΓ̃

F (1)

or H ⇒m
tpν H ′ ⇒∗

RE
Γ̃

F (2)

Consider case (1) first. There is an isomorphism iso : unread(K) → unread(H)
because K is obtained from H by expand rules only. Let e be the edge of
unread(K) that is read by the match operation K ⇒RM

Γ̃
K ′ and E the subgraph

of K induced by e. Clearly, m(P ) as well as iso(E) are both subgraphs of H.
Now select a graph C and an injective morphism m′ so that P ⊆ C, m = m′|P ,
and m′(C) = m(P ) ∪ iso(E). By definition, m � ∃C. In case (2), unread(H) is
empty and m � ∃P .

We can make use of this as follows. For an expand rule tpν , performing
the above analysis for all derivations of types (1) and (2) yields only finitely
many distinct graphs C (up to isomorphism). These graphs C1, . . . , Cn can be
computed by procedures similar to the construction of FIRST and FOLLOW
sets for LL(k) parsing [15, Sect. 5.5]. Defining ĉpν = ∃C1 ∨ ∃C2 ∨ · · · ∨ ∃Cn we
thus obtain for all promising graphs H,H ′ that H ⇒m

tpν H ′ implies m � ĉpν .
Thus, by contraposition, if H is promising and H ⇒m

tpν H ′ but m � ĉpν , then H ′

cannot be promising.
Note, however, that m � ĉpν does not necessarily imply that H ′ is promising

if H ⇒m
tpν H ′ and H is promising. Therefore, ĉpν can in general not directly serve

as a lookahead condition. To solve this problem, we define a relation � on expand
rules. For this purpose, let us consider two different expand rules tpν

a
, tpν

b
∈ RE

Γ̃
with isomorphic left-hand sides. Without loss of generality, we assume that the
left-hand sides are identical. We define tpν

a
� tpν

b
if there is an initial configuration

G and a derivation G⇒∗
RΓ̃

H ⇒m
tpν

a
H ′ where H ′ is promising and m � ĉpν

b
. In

fact, relation � can be defined while conditions ĉpν
i

are constructed.6
Note that � is in general not an ordering and that it may even contain

cycles tpν
a

� tpν
b

� · · · � tpν
a
. But if there are no such cycles, one can create

(by topological sorting) a linear ordering ≺ on all expand rules with isomorphic
left-hand sides (where we again assume that they have in fact identical left-hand
sides) so that tpν

a
� tpν

b
always implies tpν

a
≺ tpν

b
. We then define, for each expand

rule tpν , the condition cpν ≡ ĉpν ∧ ¬c1 ∧ ¬c2 ∧ · · · ∧ ¬cn where {c1, c2, . . . cn} =
{ĉp̄ν | tp̄ν ≺ tpν }. The following lemma states that these conditions can serve as
lookahead conditions for predictive expand rules:

Lemma 2. Let Γ be a HR grammar, Γ̃ a threaded version of Γ , and RΓ̃ =
RM

Γ̃
∪ RE

Γ̃
its general top-down parser. If � is acyclic and the condition cpν is

defined as above for each expand rule tpν ∈ RE
Γ̃
, then {tpν [cpν ] | tpν ∈ RE

Γ̃
} is a

set of predictive expand rules for Γ̃ .

6 ĉpν
i

identifies edges that must occur in H if H ⇒m
tpν

b
H ′′ where H ′′ is promising. And

if these edges may also occur in H if H ′ is promising, we define tpν
a

� tpν
b
.
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Proof. Consider any derivation G⇒∗
RΓ̃

H ⇒RE
Γ̃

H ′ where G is an initial config-
uration, and H is promising. Then there is an expand rule tpν so that H ⇒m

tpν K
and K is promising. By construction, m � ĉpν . If there were a smaller expand
rule tp̄ν ≺ tpν with m � ĉp̄ν , then this would imply tpν � tp̄ν because K is
promising, and therefore, tpν ≺ tp̄ν , contradicting the linearity of ≺. Therefore,
m � ¬ĉp̄ν for tp̄ν ≺ tpν and m � ĉpν , i.e., tpν is the only expand rule that satisfies
its lookahead condition for H, i.e., m � cpν . ��

The proof shows that these lookahead conditions always select a unique
expand rule. Clearly, this cannot succeed for situations where expand rules can
turn a promising configuration into two or more promising successor configura-
tions.

However, the existence of a set of predictive expand rules is not sufficient for
obtaining a predictive top-down parser. The threaded HR grammar must satisfy
the following property as well:

Definition 13 (Free edge choice property). Let Γ be a HR grammar, Γ̃ a
threaded version of Γ , and RΓ̃ = RM

Γ̃
∪RE

Γ̃
its general top-down parser. Γ̃ is said

to possess the free edge choice property if, for every derivation G⇒∗
RΓ̃

H ⇒RM
Γ̃

H ′

where G is an initial configuration and H is promising, H ′ is promising as well.

Theorem 4. Let Γ be a HR grammar, Γ̃ a threaded version of Γ without left-
recursion, and RΓ̃ = RM

Γ̃
∪ RE

Γ̃
its general top-down parser. Rptd = RM

Γ̃
∪ R is

a terminating top-down parser for Γ that cannot run into blind alleys if R is a
set of predictive expand rules for Γ̃ and Γ̃ has the free edge choice property.

Proof. Let Γ , Γ̃ , and Rptd be as in the theorem. Moreover, let Γ̃ satisfy the free
edge choice property, and let R be a set of predictive expand rules for Γ̃ . Each
derivation G⇒∗

Rptd H where G and H are initial and accepting configurations,
resp., is also a successful parse in RΓ̃ , i.e., unread(G) ∈ L(Γ ) by Theorem 2.

Now let G be any initial configuration with unread(G) ∈ L(Γ ), i.e., G is
promising. Any infinite derivation G⇒Rptd H1 ⇒Rptd H2 ⇒Rptd · · · would also
be an infinite parse G⇒RΓ̃

H1 ⇒RΓ̃
H2 ⇒RΓ̃

· · · , contradicting Theorem 3.
Finally assume that Rptd runs into a blind alley starting at G, i.e., there

is a derivation G⇒∗
Rptd H, H is not accepting, and there is no configuration

H ′ so that H ⇒Rptd H ′. By the free edge choice property and R being a set of
predictive expand rules, H must be promising, i.e., there is a configuration H ′′

so that H ⇒RM
Γ̃

H ′′ or H ⇒RE
Γ̃

H ′′. In either case, there is a configuration H ′ so
that H ⇒Rptd H ′, contradicting the assumption. ��

This theorem justifies to call a threaded HR grammar Γ̃ predictively top-
down parsable (PTD for short) if Γ̃ satisfies the free edge choice property and
there is a set of predictive expand rules for Γ̃ .

Example 4 (A Predictive Top-Down Tree Parser). The threaded tree grammar
in Example 2 is PTD. To see this, let us construct lookahead conditions for
expand rule tb̃1 and tl̃1 as described above.



236 F. Drewes et al.

Inspection of expand rule tb̃1 shows that choosing this rule cannot produce
a promising configuration if the unread part of the input does not contain a
-edge starting at node x. The existence of this edge is hence requested by the

graph condition ĉb̃1 ≡ ∃Cb̃1 , defined by the supergraph Cb̃1 of the pattern of
tb̃1 (see Fig. 8). No such edge can be requested for expand rule tl̃1 ; each match
of tl̃1 satisfies ĉl̃1 ≡ ∃Cl̃1 since Cl̃1 is just the pattern of tl̃1 . Condition ĉl̃1 is
in particular satisfied if choosing tb̃1 produces a promising configuration, and
therefore tb̃1 � tl̃1 . By Lemma 2, we can choose lookahead conditions cb̃1 ≡
ĉb̃1 ≡ ∃Cb̃1 and cl̃1 ≡ ĉl̃1 ∧ ¬cb̃1 ≡ ¬∃Cb̃1 .

Fig. 8. Graphs defining ĉb̃1 ≡ ∃Cb̃1 and ĉl̃1 ≡ ∃Cl̃1 for expand rule tb̃1 and tl̃1 , resp.

Fig. 9. Predictive expand operations of the tree parser

Figure 9 shows the resulting predictive expand rules for the nonterminal T
of the tree parser. For brevity, lookahead conditions show only those subgraphs
that must or must not exist in order to apply tb̃1 or tl̃1 . The match rules and
the expand rule ts̃ε for the start production remain the same as in Example 3.
Moreover, it is easy to see that match rule t 1 produces a promising configuration
for each of its matches, i.e., the threaded tree grammar has the free edge choice
property. With these modified expand rules, the predictive parser can select the
same parse as in Fig. 7. As mentioned earlier, other well-known examples that
allow for predictive parsing include palindromes, anbncn, arithmetic expressions,
and Nassi-Shneiderman diagrams.

7 Conclusions

In this paper, we have defined PTD parsers for HR grammars by graph transfor-
mation rules, and shown their correctness. The definition is consistent with the
implementation of PTD parsers in the graph parser distiller grappa7 described
7 Available at www.unibw.de/inf2/grappa. grappa also distills PSR and generalized

PSR parsers for CHR grammars [5,13].

www.unibw.de/inf2/grappa
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in [4], but some features are still missing: First, productions that merge nodes
of the left-hand side have been omitted. Such productions may occur when a
HR grammar is “left-factorized” in order to allow for predictive expansion. (This
corresponds to left-factorization of CF string grammars for LL-parsing.) Second,
PTD parsing for contextual HR grammars [2,3] has not been considered. Finally,
a more sophisticated way of calculating lookahead conditions, by approximating
Parikh images, has been ignored.

So our next step will be to extend our definitions and proofs to cover these
concepts as well. Our ultimate goal ist to use this definition to relate the power
of PTD parsing to that of PSR parsing, probably by using a definition of PSR
parsing that is based on graph transformation as well.

Acknowledgements. The authors thank Annegret Habel for her valuable suggestions
in several stages of this work.
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Abstract. Where graphs are used for modelling and specifying sys-
tems, consistency is an important concern. To be a valid model of a
system, the graph structure must satisfy a number of constraints. To
date, consistency has primarily been viewed as a binary property: a graph
either is or is not consistent with respect to a set of graph constraints.
This has enabled the definition of notions such as constraint-preserving
and constraint-guaranteeing graph transformations. Many practical app-
lications—for example model repair or evolutionary search—implicitly
assume a more graduated notion of consistency, but without an explicit
formalisation only limited analysis of these applications is possible. In
this paper, we introduce an explicit notion of consistency as a gradu-
ated property, depending on the number of constraint violations in a
graph. We present two new characterisations of transformations (and
transformation rules) enabling reasoning about the gradual introduc-
tion of consistency: while consistency-sustaining transformations do not
decrease the consistency level, consistency-improving transformations
strictly reduce the number of constraint violations. We show how these
new definitions refine the existing concepts of constraint-preserving and
constraint-guaranteeing transformations. To support a static analysis
based on our characterisations, we present criteria for deciding which
form of consistency ensuring transformations is induced by the appli-
cation of a transformation rule. We illustrate our contributions in the
context of an example from search-based model engineering.
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found in many (computer) systems and graph transformations provide intuitive
tools to specify the semantics of a model or implement refinement and analysis
techniques for specifications.

In all of these scenarios, it is important that the graphs used are consistent;
that is, that their structures satisfy a set of constraints. Some constraints can be
captured by typing graphs over so-called type graphs [8]—these allow capturing
basic structural constraints such as which kinds of nodes may be connected to
each other. To allow the expression of further constraints, the theory of nested
graph constraints has been introduced [11]. A graph is considered consistent if
it is correctly typed and satisfies all given constraints. Note that this notion of
consistency is binary: a graph either is consistent or it is not consistent. It is
impossible to distinguish different degrees of consistency.

In software engineering practice, it is often necessary to live with, and man-
age, a degree of inconsistency [23]. This requires tools and techniques for iden-
tifying, measuring, and correcting inconsistencies. In the field of graph-based
specifications, this has led to many practical applications, where a more fine-
grained notion of graph consistency is implicitly applied. For example, research
in model repair has aimed to automatically produce graph-transformation rules
that will gradually improve the consistency of a given graph. Such a rule may not
make a graph completely consistent in one transformation step, but performing
a sequence of such transformations will eventually produce a consistent graph
(e.g., [12,21,22,25]). In the area of search-based model engineering (e.g., [5,9]),
rules are required to be applicable to inconsistent graphs and, at least, not to
produce new inconsistencies. In earlier work, we have shown how such rules can
be generated at least with regard to multiplicity constraints [5]. However, in
all of these works, the notion of “partial” graph consistency remains implicit.
Without explicitly formalising this notion, it becomes difficult to reason about
the validity of the rules generated or the correctness of the algorithm by which
these rules were produced.

In this paper, we introduce a new notion of graph consistency as a gradu-
ated property. A graph can be consistent to a degree, depending on the num-
ber of constraint violations that occur in the graph. This conceptualisation
allows us to introduce two new characterisations of graph transformations: a
consistency-sustaining transformation does not decrease the overall consistency
level, while a consistency-improving transformation strictly decreases the num-
ber of violations in a graph. We lift these characterisations to the level of graph
transformation rules, allowing rules to be characterised as consistency sustain-
ing and consistency improving, respectively. We show how these definitions fit
with the already established terminology of constraint-preserving and constraint-
guaranteeing transformations/rules. Finally, we introduce formal criteria that
allow checking whether a given graph-transformation rule is consistency sustain-
ing or consistency improving w.r.t. constraints in specific forms.

Thus, the contributions of our paper are:

1. We present the first formalisation of graph consistency as a graduated prop-
erty of graphs;
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Fig. 1. Type graph and four mutation rules for the CRA problem.

2. We present two novel characterisations of graph transformations and trans-
formation rules with regard to this new definition of graph consistency and
show how these refine the existing terminology;

3. We present static analysis techniques for checking whether a graph-transfor-
mation rule is consistency sustaining or improving.

The remainder of this paper is structured as follows: We introduce a run-
ning example in Sect. 2 before outlining some foundation terminology in Sect. 3.
Section 4 introduces our new concepts and Sect. 5 discusses how graph-trans-
formation rules can be statically analysed for these properties. A discussion
of related work in Sect. 6 concludes the paper. All proofs are provided in an
extended version of this paper [16].

2 Example

Consider class responsibility assignment (CRA, [4]), a standard problem in ob-
ject-oriented software analysis. Given is a set of features (methods, fields) with
dependencies between them. The goal is to create a set of classes and assign
the features to classes so that a certain fitness function is maximized. The fit-
ness function rewards the assignment of dependent features to the same class
(cohesion), while punishing dependencies that run between classes (coupling)
and solutions with too few classes. Solutions can be expressed as instances of
the type graph shown in the left of Fig. 1. For realistic problem instances, an
exhaustive enumeration of all solutions to find the optimal one is not feasible.

Recently, a number of works have addressed the CRA problem via a combi-
nation of graph transformation and meta-heuristic search techniques, specifically
evolutionary algorithms [5,10,28]. An evolutionary algorithm uses genetic oper-
ators such as cross-over and mutation to find optimal solution candidates in an
efficient way. In this paper, we focus on mutation operators, which have been
specified using graph transformation rules in these works.

Figure 1 depicts four mutation rules for the CRA problem, taken from the
available MDEOptimiser solution [6]. The rules are specified as graph transfor-
mation rules [8] in the Henshin notation [1,29]: Rule elements are tagged as
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delete, create, preserve or forbid, which denotes them as being included in the
LHS, the RHS, in both rule sides, or a NAC. Rule assignFeature assigns a ran-
domly selected as-yet-unassigned feature to a class. Rule createClass creates a
class and assigns an as-yet-unassigned feature to it. Rule moveFeature moves a
feature between two classes. Rule deleteEmptyClass deletes a class to which no
feature is assigned.

Solutions in an optimization problem such as the given one usually need to
be consistent with regard to the constraints given by the problem domain. We
consider three constraints for the CRA case:

(c1) Every feature is contained in at most one class.
(c2) Every class contains at least one feature.
(c3) If a feature F1 has a dependency to another feature F2,

and F2 is contained in a different class than F1,
then F1 must have a dependency to a feature F3 in the same class.

Constraints c1 and c2 come from Fleck et al.’s formulation of the CRA prob-
lem [10]. Constraint c3 can be considered a helper constraint (compare helper
objectives [13]) that aims to enhance the efficiency of the search by formulating
a constraint with a positive impact to the fitness function: Assigning dependent
features to the same class is likely to improve coherence.

Given an arbitrary solution model (valid or invalid), mutations may intro-
duce new violations. For example, applying moveFeature can leave behind an
empty class, thus violating c2. While constraint violations can potentially be
removed using repair techniques [12,22,25], these can be computationally expen-
sive and may involve strategies that lead to certain regions of the search space
being preferred, threatening the efficiency of the search. Instead, it would be
desirable to design mutation operators that impact consistency in a positive
or at least neutral way. Each application of a mutation rule should contribute
to some particular violations being removed, or at least ensure that the degree
of consistency does not decrease. Currently, there exists no formal framework
for identifying such rules. The established notions of constraint-preserving and
constraint-guaranteeing rules [11] assume an already-valid model or a transfor-
mation that removes all violations at once; both are infeasible in our scenario.

3 Preliminaries

Our new contributions are based on typed graph transformation systems follow-
ing the double-pushout approach [8]. We implicitly assume that all graphs, also
the ones occurring in rules and constraints, are typed over a common type graph
TG ; that is, there is a class GraphTG of graphs typed over TG . A nested graph
constraint [11] is a tree of injective graph morphisms.

Definition 1 ((Nested) graph conditions and constraints). Given a graph
P , a (nested) graph condition over P is defined recursively as follows: true is
a graph condition over P and if a : P ↪→ C is an injective morphism and d is
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a graph condition over C, ∃ (a : P ↪→ C, d) is a graph condition over P again.
If d1 and d2 are graph conditions over P , ¬d1 and d1 ∧ d2 are graph conditions
over P . A (nested) graph constraint is a condition over the empty graph ∅.

A condition or constraint is called linear if the symbol ∧ does not occur, i.e., if
it is a (possibly empty) chain of morphisms. The nesting level nl of a condition c
is recursively defined by setting nl(true) := 0, nl(∃ (a : P ↪→ C, d)) := nl(d) + 1,
nl(¬d) := nl(d), and nl(d1 ∧ d2) := max(nl(d1),nl(d2)). Given a graph condition c
over P , an injective morphism p : P ↪→ G satisfies c, written p |= c, if the following
applies: Every morphism satisfies true. The morphism p satisfies a condition of
the form c = ∃ (a : P ↪→ C, d) if there exists an injective morphism q : C ↪→ G
such that p = q ◦ a and q satisfies d. For Boolean operators, satisfaction is defined
as usual. A graph G satisfies a graph constraint c, denoted as G |= c, if the empty
morphism toG does so. A graph constraint c1 implies a graph constraint c2, denoted
as c1 ⇒ c2, if G |= c1 ⇒ G |= c2 for all graphs G. The constraints are equivalent,
denoted as c1 ≡ c2, if c1 ⇒ c2 and c2 ⇒ c1.

In the notation of graph constraints, we drop the domains of the involved mor-
phisms and occurrences of true whenever they can unambiguously be inferred.
For example, we write ∃(C,¬∃C ′) instead of ∃(∅ ↪→ C,¬∃(a : C ↪→ C ′, true)).
Moreover, we introduce ∀(C, d) as an abbreviation for the graph constraint
¬∃(C,¬d). Further sentential connectives like ∨ or ⇒ can be introduced as
abbreviations as usual (which is irrelevant for linear constraints).

We define a normal form for graph conditions that requires that the occurring
quantifiers alternate. For every linear condition there is an equivalent condition
in this normal form [25, Fact 2].

Definition 2 (Alternating quantifier normal form (ANF)). A linear con-
dition c with nl(c) ≥ 1 is in alternating quantifier normal form (ANF) when the
occurring quantifiers alternate, i.e., if c is of the form Q(a1, Q̄(a2, Q(a3, . . . ) . . . )
with Q ∈ {∃,∀} and ∃̄ = ∀, ∀̄ = ∃, none of the occurring morphisms ai is an
isomorphism, and the only negation, if any, occurs at the innermost nesting level
(i.e., the constraint is allowed to end with false). If a constraint in ANF starts
with ∃, it is called existential, otherwise it is called universal.

Lemma 1 (Non-equivalence of constraints in ANF). Let c1 = ∃(C1, d1)
and c2 = ∀(C2, d2) be constraints in ANF. Then c1 ≡ c2.

We have c1 ≡ c2 since ∅ |= c2 but ∅ |= c1. Lemma 1 implies that the first
quantifier occurring in the ANF of a constraint separates linear constraints into
two disjoint classes. This ensures that our definitions in Sect. 4 are meaningful.

Graph transformation is the rule-based modification of graphs. The following
definition recalls graph transformation as a double-pushout.

Definition 3 (Rule and transformation). A plain rule r is defined by p =
(L ←↩ K ↪→ R) with L,K, and R being graphs connected by two graph inclusions.
An application condition ac for p is a condition over L. A rule r = (p, ac) consists
of a plain rule p and an application condition ac over L.
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Fig. 2. Rule application

A transformation (step) G ⇒r,m H which applies rule r to a graph G con-
sists of two pushouts as depicted in Fig. 2. Rule r is applicable at the injective
morphism m : L → G called match if m |= ac and there exists a graph D such
that the left square is a pushout. Morphism n is called co-match. Morphisms
g and h are called transformation morphisms. The track morphism [24] of a
transformation step G ⇒r,m H is the partial morphism tr : G ��� H defined by
tr(x) = h(g−1(x)) for x ∈ g(D) and undefined otherwise.

Obviously, transformations interact with the validity of graph constraints.
Two well-studied notions are constraint-guaranteeing and -preserving transfor-
mations [11].

Definition 4 (c-guaranteeing and -preserving transformation). Given a
constraint c, a transformation G ⇒r,m H is c-guaranteeing if H |= c. Such a
transformation is c-preserving if G |= c ⇒ H |= c. A rule r is c-guaranteeing
(c-preserving) if every transformation via r is.

As we will present criteria for consistency sustainment and improvement
based on conflicts and dependencies of rules, we recall these notions here as well.
Intuitively, a transformation step causes a conflict on another one if it hinders
this second one. A transformation step is dependent on another one if it is first
enabled by that.

Definition 5 (Conflict). Let a pair of transformations (t1, t2) : (G ⇒m1,r1

H1, G ⇒m2,r2 H2) applying rules ri = (Li ←↩ Ki ↪→ Ri, aci), i = 1, 2 be given

such that ti yields transformation morphisms G
gi← Di

hi→ Hi. Transformation
pair (t1, t2) is conflicting (or t1 causes a conflict on t2) if there does not exist
a morphism x : L2 → D1 such that g1 ◦ x = m2 and h1 ◦ x |= ac. Rule pair
(r1, r2) is conflicting if there exists a conflicting transformation pair (G ⇒m1,r1

H1, G ⇒m2,r2 H2). If (r1, r2) and (r2, r1) are both not conflicting, rule pair
(r1, r2) is called parallel independent.

Definition 6 (Dependency). Let a sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 X
of transformations applying rules ri = (Li ←↩ Ki ↪→ Ri, aci), i = 1, 2 be given
such that t1 yields transformation morphisms G

g1← D1
h1→ H1. Transformation

t2 is dependent on t1 if there does not exist a morphism x : L2 → D1 such
that h1 ◦ x = m2 and g1 ◦ x |= ac2. Rule r2 is dependent on rule r1 if there
exists a transformation sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 X such that t2 is
dependent on t1. If r1 is not dependent on r2 and r2 is not dependent on r1, rule
pair (r1, r2) is called sequentially independent.
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A weak critical sequence is a sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 X of
transformations such that t2 depends on t1, n1 and m2 are jointly surjective
(where n1 is the co-match of t1), and mi is not required to satisfy aci (i = 1, 2).

As rule r2 in a rule pair (r1, r2) will always be plain in this paper, a transforma-
tion step can cause a conflict on another one if and only if it deletes an element
that the second transformation step matches. Similarly, a transformation step
can depend on another one if and only if the first step creates an element that
the second matches or deletes an edge that is adjacent to a node the second one
deletes.

4 Consistency-Sustaining and Consistency-improving
Rules and Transformations

In this section, we introduce our key new concepts. We do so in three stages, first
introducing foundational definitions for partial consistency, followed by a generic
definition of consistency sustainment and improvement. Finally, we give stronger
definitions for which we will be able to provide a static analysis in Sect. 5.

4.1 Partial Consistency

To support the discussion and analysis of rules and transformations that improve
graph consistency, but do not produce a fully consistent graph in one step,
we introduce the notion of partial consistency. We base this notion on relating
the number of constraint violations to the total number of relevant occurrences
of a constraint. For the satisfaction of an existential constraint, a single valid
occurrence is enough. In contrast, universal constraints require the satisfaction
of some sub-constraint for every occurrence. Hence, the resulting notion is binary
in the existential case, but graduated in the universal one.

In the remainder of this paper, a constraint is always a linear constraint in
ANF having a nesting level ≥ 1.1 Moreover, all graphs are finite.

Definition 7 (Occurrences and violations). Let c = Q(∅ → C, d) with Q ∈
{∃,∀} be a constraint. An occurrence of c in a graph G is an injective morphism
p : C ↪→ G, and occ(G, c) denotes the number of such occurrences.

If c is universal, its number of relevant occurrences in a graph G, denoted
as ro(G, c), is defined as ro(G, c) := occ(G, c) and its number of constraint
violations, denoted as ncv(G, c), is the number of occurrences p for which p |= d.

If c is existential, ro(G, c) := 1 and ncv(G, c) := 0 if there exists an occurrence
p : C ↪→ G such that p |= d but ncv(G, c) := 1 otherwise.
1 Requiring nesting level ≥ 1 is no real restriction as constraints with nesting level

0 are Boolean combinations of true which means they are equivalent to true or
false, anyhow. In contrast, restricting to linear constraints actually excludes some
interesting cases. We believe that the extension of our definitions and results to
also include the non-linear case will be doable. Restricting to the linear case first,
however, makes the statements much more accessible and succinct.
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Fig. 3. Example constraints and graph.

Definition 8 (Partial consistency). Given a graph G and a constraint c, G
is consistent w.r.t. c if G |= c. The consistency index of G w.r.t. c is defined as

ci(G, c) := 1 − ncv(G, c)
ro(G, c)

where we set 0
0

:= 0. We say that G is partially consistent w.r.t. c if ci(G, c) > 0.

The next proposition makes precise that the consistency index runs between 0
and 1 and indicates the degree of consistency a graph G has w.r.t. a constraint c.

Fact 1 (Consistency index). Given a graph G and a constraint c, then 0 ≤
ci(G, c) ≤ 1 and G |= c if and only if ci(G, c) = 1. Consistency implies partial
consistency. Moreover, ci(G, c) ∈ {0, 1} for an existential constraint.

Example 1. Based on Fig. 3, we can express the three informal constraints from
Sect. 2 as nested graph constraints. Constraint c1 can be expressed as ¬∃Pc1 , con-
straint c2 becomes ∀(Pc2 ,∃P ′

c2), and constraint c3 becomes ∀(Pc3 ,∃P ′
c3). Graph

G (in the left top corner of Fig. 3) satisfies c1 and c2. It does not satisfy c3, since
we cannot find an occurrence of P ′

c3 for the occurrence of Pc3 in G where f1 and
f2 are mapped to f1 and f3, respectively. Graph G in Fig. 3 has the consistency
index 0.5 with regard to c3, since one violation exists, and two non-violating
occurrences are required.

4.2 Consistency Sustainment and Improvement

In the remainder of this section, our goal is to introduce the notions of con-
sistency-sustaining and consistency-improving rule applications which refine the
established notions of preserving and guaranteeing applications [11].
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Definition 9 (Consistency sustainment and improvement). Given a
graph constraint c and a rule r, a transformation t : G ⇒r,m H is consis-
tency sustaining w.r.t. c if ci(G, c) ≤ ci(H, c). It is consistency improving if it
is consistency sustaining, ncv(G, c) > 0, and ncv(G, c) > ncv(H, c).

The rule r is consistency sustaining if all of its applications are. It is con-
sistency improving if all of its applications are consistency sustaining and there
exists a graph G ∈ GraphTG with ncv(G, c) > 0 and a consistency-improving
transformation G ⇒r,m H. A consistency improving rule is strongly consis-
tency improving if all of its applications to graphs G with ncv(G, c) > 0 are
consistency-improving transformations.

In the above definition, we use the number of constraint violations (and not the
consistency index) to define improvement to avoid an undesirable side-effect:
Defining improvement via a growing consistency index would lead to consistency-
improving transformations (w.r.t. a universal constraint) which do not repair
existing violations but only create new valid occurrences of the constraint.
Hence, there would exist infinitely long transformation sequences where every
step increases the consistency index but validity is never restored. Consistency-
improving transformations, and therefore strongly consistency improving rules,
require that the number of constraint violations strictly decreases in each step.
Therefore, using only such transformations and rules, we cannot construct infi-
nite transformation sequences.

Any consistency-improving rule can be turned into a strongly consistency-
improving rule if suitable pre-conditions can be added that restrict the applica-
bility of the rule only to those cases where it can actually improve a constraint
violation. This links the two forms of consistency-improving rules to their prac-
tical applications: in model repair [21,25] we want to use rules that will only
make a change to a graph when there is a violation to be repaired—strongly
consistency-improving rules. However, in evolutionary search [5], we want to
allow rules to be able to make changes even when there is no need for repair, but
to fix violations when they occur; consistency-improving rules are well-suited
here as they can be applied even when no constraint violations need fixing.

4.3 Direct Consistency Sustainment and Improvement

While the above definitions are easy to state and understand, it turns out that
they are inherently difficult to investigate. Comparing numbers of (relevant)
occurrences and violations allows for very disparate behavior of consistency-
sustaining (-improving) transformations: For example, a transformation is
allowed to destroy as many valid occurrences as it repairs violations and is still
considered to be consistency sustaining w.r.t. a universal constraint.

Next, we introduce further qualified notions of consistency sustainment and
improvement. The idea behind this refinement is to retain the validity of occur-
rences of a universal constraint: valid occurrences that are preserved by a trans-
formation are to remain valid. In this way, sustainment and improvement become
more direct as it is no longer possible to compensate for introduced violations
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by introducing additional valid occurrences. The notions of (direct) sustainment
and improvement are related to one another and also to the already known ones
that preserve and guarantee constraints. In Sect. 5 we will show how these stricter
definitions allow for static analysis techniques to identify consistency-sustaining
and -improving rules.

G �� g

tr

��� � � � � � �
D

h �� H

C
p

��									 p′

  









pD

��

Fig. 4. Rule application with
morphisms from a graph C,
occurring in some constraint

The following definitions assume a transforma-
tion step to be given and relate occurrences of con-
straints in its start and result graph as depicted
in Fig. 4. The existence of a morphism pD such
that the left triangle commutes (and p′ might be
defined as h ◦ pD) is equivalent to the tracking
morphism tr : G ��� H being a total morphism
when restricted to p(C) which is equivalent to the
transformation not destroying the occurrence p.

Definition 10 (Direct consistency sustainment). Given a graph constraint
c, a transformation t : G ⇒m,r H via rule r at match m with trace tr (Fig. 4)
is directly consistency sustaining w.r.t. c if either c is existential and the trans-
formation is c-preserving or c = ∀(C, d) is universal and

∀p : C ↪→ G
(
(p |= d ∧ tr ◦ p is total) ⇒ tr ◦ p |= d

)∧
∀p′ : C ↪→ H

(¬∃p : C ↪→ G (p′ = tr ◦ p) ⇒ p′ |= d
)

.

A rule r is directly consistency sustaining w.r.t. c if all its applications are.

Table 1. Properties of example rules.

Rule Consistency
sustaining

Consistency
improving

c1 c2 c3 c1 c2 c3

assignFeature + + - - + -

createClass + + - - - -

moveFeature (+) - - - - -

deleteEmptyClass + + + - +* -

Legend: + denotes directly, (+) denotes
non-directly, * denotes strongly

The first requirement in the
definition checks that constraints
that were already valid in G
are still valid in H, unless their
occurrence has been removed;
that is, the transformation must
not make existing valid occur-
rences invalid. Note, however,
that we do not require that the
constraint be satisfied by the
same extension, just that there
is still a way to satisfy the con-
straint at that occurrence. The
second requirement in the definition checks that every “new” occurrence of the
constraint in H satisfies the constraint; that is, the transformation must not
introduce fresh violations.

The following theorem relates the new notions of (direct) consistency sus-
tainment to preservation and guarantee of constraints.

Theorem 2 (Sustainment relations). Given a graph constraint c, every c-
guaranteeing transformation is directly consistency-sustaining, every directly
consistency-sustaining transformation is consistency sustaining, and every
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Fig. 5. Generated preserving application condition for createClass w.r.t. constraint c1.
The feature named rf is the one from the LHS of createClass.

consistency-sustaining transformation is c-preserving. The analogous implica-
tions hold on the rule level:

constraint-preserving rule ��
[11]

		
Thm. 2

constraint-guaranteeing rule

Thm. 2




consistency-sustaining rule directly consistency-sustaining rule

Thm. 2
��

The following example illustrates these notions and shows that sustainment
is different from constraint guaranteeing or preserving.

Example 2. Table 1 denotes for each rule from the running example if it is consis-
tency sustaining w.r.t. each constraint. Rule createClass is directly consistency
sustaining w.r.t. c1 (no double assignments) and c2 (no empty classes), since it
cannot assign an already assigned feature or remove existing assignments. How-
ever, it is not consistency guaranteeing, since it cannot remove any violation
either. Rule moveFeature is consistency sustaining w.r.t c1, but not directly so,
since it can introduce new violations, but only while at the same time removing
another violation, leading to a neutral outcome. Starting with the plain version
of rule createClass and computing a preserving application condition for con-
straint c1 according to the construction provided by Habel and Pennemann [11]
results in the application condition depicted in Fig. 5. By construction, equip-
ping the plain version of createClass with that application condition results in
a consistency-preserving rule. However, whenever applied to an invalid graph,
the antecedent of this application condition evaluates to false and, hence, the
whole application condition to true. In particular, the rule with this application
condition might introduce further violations of c1 and is, thus, not sustaining.

Similarly, the direct notion of consistency improvement preserves the validity
of already valid occurrences in the case of universal constraints and degenerates
to the known concept of constraint-guarantee in the existential case.

Definition 11 (Direct consistency improvement). Given a graph con-
straint c, a transformation t : G ⇒m,r H via rule r at match m : L ↪→ G
with trace tr (Fig. 4) is directly consistency improving w.r.t. c if G � c, the
transformation is directly consistency sustaining, and either c is existential and
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the transformation is c-guaranteeing or c = ∀(C, d) is universal and

∃p : C ↪→ G
(
p � d ∧ p′ := tr ◦ p is total ∧ p′ |= d

)∨
∃p : C ↪→ G

(
p � d ∧ p′ := tr ◦ p is not total

)

We lift the notion of directly consistency-improving transformations to the
level of rules in the same way as in Definition 9. This leads to directly
consistency-improving rules and a strong form of directly consistency-improving
rules.

(Direct) consistency improvement is related to, but different from constraint
guarantee and consistency sustainment as made explicit in the next theorem.

Theorem 3 (Improvement relations). Given a graph constraint c, every
directly consistency-improving transformation is a consistency-improving trans-
formation and every consistency-improving transformation is consistency sus-
taining. Moreover, every c-guaranteeing transformation starting from a graph G
that is inconsistent w.r.t. c is a directly consistency-improving transformation.
The analogous implications hold on the rule level, provided that there exists a
match for the respective rule r in a graph G with G |= c:

consistency-sustaining rule		
Thm. 3

c-guaranteeing rule
Thm. 2

��

Thm. 3




consistency-improving rule �� Thm. 3

directly consistency-improving rule

Example 3. Table 1 denotes for each rule of the running example if it is consis-
tency improving w.r.t. each constraint. For example, the rule deleteEmptyClass is
directly strongly consistency improving but not guaranteeing w.r.t. c2 (no empty
classes), since it always removes a violation (empty class), but generally not all
violations in one step. Rule assignFeature is consistency improving w.r.t. c2, but
not directly so, since it can turn empty classes into non-empty ones, but does not
do so in every possible application. Rule createClass is consistency sustaining
but not improving w.r.t. c2, as it cannot reduce the number of empty classes.

5 Static Analysis for Direct Consistency Sustainment
and Improvement

In this section, we consider specific kinds of constraints and present a static anal-
ysis technique for direct consistency sustainment and improvement. We present
criteria for rules to be directly consistency sustaining or directly consistency
improving w.r.t. these kinds of constraint. The restriction to specific kinds of
constraint greatly simplifies the presentation; at the end of the section we hint
at how our results may generalize to arbitrary universal constraints.

The general idea behind our static analysis technique is to check for validity
of a constraint by applying a trivial (non-modifying) rule that just checks for the
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existence of a graph occurring in the constraint. This allows us to present our anal-
ysis technique in the language of conflicts and dependencies which has been devel-
oped to characterise the possible interactions between rule applications [8,24].
As a bonus, since the efficient detection of such conflicts and dependencies has
been the focus of recent theoretical and practical research [17,18], we obtain tool
support for an automated analysis based on Henshin.

In the remainder of this paper, we assume the following setting: Let r =
(L ←↩ K ↪→ R, ac) be a rule, c a graph constraint of the form ¬∃C = ∀(∅ ↪→
C, false) and d a graph constraint of the form ∀(C,∃C ′) = ∀(∅ ↪→ C,∃a :

C ↪→ C ′). Given a graph G, there is the rule checkG := G
idG←−−↩ G

idG
↪−−→ G

given.

For the statement of the following results, note that sequential independence
of the (non-modifying) rule checkC from r means that r cannot create a new
match for C. Similarly, parallel independence of checkC′ from r means that r
cannot destroy a match for C ′. We first state criteria for direct consistency sus-
tainment: If a rule cannot create a new occurrence of C, it is directly consistency
sustaining w.r.t. a constraint of the form ¬∃C. If, in addition, it cannot delete
an occurrence of C ′, it is directly consistency sustaining w.r.t. a constraint of
the form ∀(C,∃C ′).

Theorem 4 (Criteria for direct consistency sustainment). Rule r is
directly consistency sustaining w.r.t. constraint c if and only if checkC is sequen-
tially independent from r. If, in addition, checkC′ is parallel independent from
r, then r is directly consistency sustaining w.r.t. constraint d.

The above criterion is sufficient but not necessary for constraints of the form
∀(C,∃C ′). For example, it does not take into account the possibility of r creating
a new valid occurrence of C. The next proposition strengthens the above theorem
by partially remedying this.

Proposition 1. If checkC′ is parallel independent from r and for every weak
critical sequence G ⇒r,m H ⇒checkC ,p′′ H it holds that there is an injective
morphism q′′ : C ′ ↪→ H with q′′ ◦ a = p′′, i.e., p′′ |= ∃C ′, then r is directly
consistency sustaining w.r.t. constraint d.

For consistency improvement we state criteria on rules as well: If a rule is
directly consistency improving w.r.t. a constraint of the form ∀(C,∃C ′), it is
either (1) able to destroy an occurrence of C (deleting a part of it) or (2) to
bring about an occurrence of C ′ (creating a part of it). In case (2), we can even
be more precise: The newly created elements do not stem from C but from the
part of C ′ without C; this is what the formula in the next theorem expresses.
For constraints of the form ¬∃C, condition (1) is the only one that holds.
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Table 2. Generalisation of the criteria from Theorems 4 and 5 to universal constraints
up to nesting level 2. Here, ckC is short for checkC , r1 <D r2 denotes dependency of
r2 on r1, r1 <C r2 denotes r2 causing a conflict for r1, and crossed out versions denote
the respective absence.

Type of constr. Crit. for direct consist. sust. Crit. for direct consist. impr.

∀(C, false) ≡ ¬∃C ckC ≮D r ckC <C r

∀(C1, ∃C2) ckC1 ≮D r ∧ ckC2 ≮C r ckC1 <C r ∨ ckC2 <D r

∀(C1, ∃(C2, ¬∃C3)) ckC1 ≮D r ∧ ckC2 ≮C r ∧ ckC3 ≮D r ckC1 <C r ∨ ckC2 <D r ∨ ckC3 <C r

Table 3. Applying the criteria from Table 2 to the example; ckC is short for checkC .

Rule Consis. sust. (suff. cr.) Consis. impr. (necc. cr.)

seq. indep. par. indep. par. dep. seq. dep.

ckPc1
ckPc2

ckPc3
ckP ′

c2
ckP ′

c3
ckPc1

ckPc2
ckPc3

ckP ′
c2

ckP ′
c3

assignFeature - + - + + - - - + +

createClass - - - + + - - - + +

moveFeature - + - - - + - + + +

deleteEmptyClass + + + + + - + - - -

Theorem 5 (Criteria for direct consistency improvement). If rule r is
directly consistency sustaining w.r.t. constraint c, then it is directly consistency
improving w.r.t. c if and only if r causes a conflict for checkC . If r is directly
consistency improving w.r.t. constraint d, then r causes a conflict for checkC or
checkC′ is sequentially dependent on r in such a way that

n(R \ K) ∩ p′(C ′) ⊆ p′(C ′ \ a(C))

where, in this dependency, n is the co-match of the first transformation applying
r and p′ is the match for checkC′ .

The above criterion is not sufficient in case of constraint d. The existing
conflicts or dependencies do not ensure that actually an invalid occurrence of C
can be deleted or a new occurrence of C ′ can be created in such a way that an
invalid occurrence of C is “repaired”.

Looking closer to the criteria stated above, we can find some recurring pat-
terns. Table 2 lists the kinds of universal constraints up to nesting level 2 and the
corresponding criteria. While we have shown the criteria in the first two rows in
Theorems 4 and 5, we conjecture the criteria in the last row of Table 2. To prove
generalized theorems for nesting levels ≥ 2, however, is up to future work.

Example 4. We can use the criteria in Table 2 to semi-automatically reason
about consistency sustainment and improvement in our example. To this end,
we first apply automated conflict and dependency analysis (CDA, [18]) to the
relevant pairs of mutation and check rules. Using the detected conflicts and
dependencies, we infer parallel and sequential (in)dependence per definition, as
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shown in Table 3. For example, since no dependencies between assignFeature and
checkPc1

exist, we conclude that these rules are sequentially independent.

Consistency Sustainment: Based on Table 3, we find that the sufficient criterion
formulated in Theorem 4 is adequate to show direct consistency sustainment
in four out of seven positive cases as per Table 1: rule assignFeature with con-
straint c3 and rule deleteEmptyClass with constraints c1, c2 and c3. Moreover,
the stronger criterion in Proposition 1 allows to recognize the case of create-
Class with c2. Discerning the remaining two positive cases (assignFeature with
c1; createClass with c1) from the five negative ones requires further inspection.

Consistency Improvement: Based on Table 3, our necessary criterion allows to
detect the two positive cases in Table 1: rules deleteEmptyClass and assignFea-
ture with constraint c2. The former is due to parallel dependence, the latter due
to sequential dependence (where inspection of the CDA results reveals a critical
sequence with a suitable co-match). The criterion is also fulfilled in six negative
cases: assignFeature with c3, createClass with c2 and c3, and moveFeature with
c1, c2 and c3. Four negative cases are correctly ruled out by the criterion.

6 Related Work

In this paper, we introduce a graduated version of a specific logic on graphs,
namely of nested graph constraints. Moreover, we focus on the interaction of
this graduation with graph transformations. Therefore, we leave a comparison
with fuzzy or multi-valued logics (on graphs) to future work. Instead, we focus on
works that also investigate the interaction between the validity of nested graph
constraints and the application of transformation rules.

Given a graph transformation (sequence) G ⇒ H, the validity of graph H can
be established with basically three strategies: (1) graph G is already valid and
this validity is preserved, (2) graph G is not valid and there is a c-guaranteeing
rule applied, and (3) graph G is made valid by a graph transformation (sequence)
step-by-step.

Strategies (1) and (2) are supported by the incorporation of constraints in
application conditions of rules as presented in [11] for nested graph constraints in
general and implemented in Henshin [19]. As the applicability of rules enhanced
in that way can be severely restricted, improved constructions have been consid-
ered of specific forms of constraints. For constraints of the form ∀(C,∃C ′), for
example, a suitable rule scheme is constructed in [15]. In [2] refactoring rules are
checked for the preservation of constraints of nesting level ≤ 2. In [19], two of the
present authors also suggested certain simplifications of application conditions;
the resulting ones are still constraint-preserving. In [20], we even showed that
they result in the logically weakest application condition that is still directly con-
sistency sustaining. However, the result is only shown for negative constraints of
nesting level one. A very similar construction of negative application conditions
from such negative constraints has very recently been suggested in [3].

Strategy (3) is followed in most of the rule-based graph repair or model repair
approaches. In [22], the violation of mainly multiplicity constraints is considered.
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In [12], Habel and Sandmann derive graph programs from graph constraints of
nesting level ≤ 2. In [25], they extend their results to constraints in ANF which
end with ∃C or constraints of one of the forms ∃(C,¬∃C ′) or ¬∃C. They also
investigate whether a given set of rules allows to repair such a given constraint.
In [7] Dyck and Giese present an approach to automatically check whether a
transformation sequence yields a graph that is valid w.r.t. specific constraints of
nesting level ≤ 2.

Up to now, result graphs of transformations have been considered either
valid or invalid w.r.t. to a graph constraint; intermediate consistency grades
have not been made explicit. Thereby, c-preserving and c-guaranteeing trans-
formations [11] focus on the full validity of the result graphs. Our newly devel-
oped notions of consistency-sustainment and improvement are located properly
in between existing kinds of transformations (as proven in Theorems 2 and 3).
These new forms of transformations make the gradual improvements in consis-
tency explicit. While a detailed and systematic investigation (applying the static
methods developed in this paper) is future work, a first check of the kinds of
rules generated and used in [14] (model editing), [22] (model repair), and [5]
(search-based model engineering) reveals that—in each case—at least some of
them are indeed (directly) consistency-sustaining. We are therefore confident
that the current paper formalizes properties of rules that are practically relevant
in diverse application contexts. Work on partial graphs as in, e.g. [26], investi-
gates the validity of constraints in families of graphs which is not our focus here
and therefore, not further considered.

Stevens in [27] discusses similar challenges in the specific context of bidi-
rectional transformations. Here, consistency is a property of a pair of models
(loosely, graphs) rather than between a graph and constraint. In this sense, it
may be argued that our formalisation generalises that of [27]. Several concepts
are introduced that initially seem to make sense only in the specific context of
bidirectional transformations (e.g., the idea of

→
R candidates), but may provide

inspiration for a further extension of our framework with corresponding concepts.

7 Conclusions

In this paper, we have introduced a definition of graph consistency as a gradu-
ated property, which allows for graphs to be partially consistent w.r.t. a nested
graph constraint, inducing a partial ordering between graphs based on the num-
ber of constraint violations they contain. Two new forms of transformation can
be identified as consistency sustaining and consistency improving, respectively.
They are properly located in between the existing notions of constraint-preserving
and constraint-guaranteeing transformations. Lifting them to rules, we have pre-
sented criteria for determining whether a rule is consistency sustaining or improv-
ing w.r.t. a graph constraint. We have demonstrated how these criteria can be
applied in the context of a case study from search-based model engineering.

While the propositions we present allow us to check a given rule against
a graph constraint, their lifting to a set of constraints is the next step to go.
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Furthermore, algorithms for constructing consistency-sustaining or -improving
rules from a set of constraints are left for future work.
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18. Lambers, L., Strüber, D., Taentzer, G., Born, K., Huebert, J.: Multi-granular con-
flict and dependency analysis in software engineering based on graph transforma-
tion. In: ICSE, pp. 716–727. ACM (2018)

19. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing optimized validity-
preserving application conditions for graph transformation rules. In: Guerra, E.,
Orejas, F. (eds.) ICGT 2019. LNCS, vol. 11629, pp. 177–194. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23611-3 11

20. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing optimized validity-
preserving application conditions for graph transformation rules. J. Log. Algebraic
Meth. Program. (2020, to appear)

21. Nassar, N., Kosiol, J., Radke, H.: Rule-based repair of EMF models: formalization
and correctness proof. In: GCM (2017)

22. Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF models: an automated
interactive approach. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS,
vol. 10374, pp. 171–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61473-1 12

23. Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency respectable in soft-
ware development. J. Syst. Softw. 58(2), 171–180 (2001)

24. Plump, D.: Confluence of graph transformation revisited. In: Middeldorp, A., van
Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles:
Steps on the Road to Infinity. LNCS, vol. 3838, pp. 280–308. Springer, Heidelberg
(2005). https://doi.org/10.1007/11601548 16

25. Sandmann, C., Habel, A.: Rule-based graph repair. CoRR abs/1912.09610 (2019).
http://arxiv.org/abs/1912.09610
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Abstract. The behavior of various kinds of dynamic systems can be
formalized using typed attributed graph transformation systems (GTSs).
The states of these systems are then modelled using graphs and the
evolution of the system from one state to another is described by a finite
set of graph transformation rules. GTSs with small finite state spaces can
be analyzed with ease but analysis is intractable/undecidable for GTSs
inducing large/infinite state spaces due to the inherent expressiveness of
GTSs. Hence, automatic analysis procedures do not terminate or return
indefinite or incorrect results.

We propose an analysis procedure for establishing state-invariants for
GTSs that are given by nested graph conditions (GCs). To this end,
we formalize a symbolic analysis algorithm based on k-induction using
Isabelle, apply it to GTSs and GCs over typed attributed graphs, develop
support to single out some spurious counterexamples, and demonstrate
the feasibility of the approach using our prototypical implementation.

Keywords: Formal static analysis · Symbolic state space abstraction ·
k-induction · Symbolic graphs · Isabelle

1 Introduction

The verification of formal models of complex dynamic systems w.r.t. to formal
specifications is one of the grand challenges of model driven engineering. How-
ever, the expressiveness required to cover the multitude of complex actual and
desired behaviors of such systems renders analysis often undecidable. Indeed, the
formalism of graph transformation systems (GTSs) considered here is known to
be Turing complete. Hence, fully-automatic procedures for establishing mean-
ingful properties on the behavior of such systems are then guaranteed to be
not terminating in general or to produce indefinite or even incorrect results.
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We subsequently focus on GTSs where an analysis using an explicit state space
exploration using tools such as Groove [2] and Henshin [3] is not applicable
due to infinite or intractably large sets of initial or reachable states.

We approach this problem by combining the symbolic static analysis tech-
niques of k-induction and state abstractions to establish state invariants for
dynamic systems with infinite state spaces modelled by GTSs. The idea of k-
induction is to establish a state invariant by iteratively computing all shortest
derivations from an initial state to a violating state. The use of state abstractions,
which preserve and reflect the systems’ behavior w.r.t. the invariant candidate,
permits to handle GTSs with infinite sets of initial or violating states at the
concrete level but finite (and sufficiently small) such sets at the abstract level.

As main contributions, we (a) formalize the principle of k-induction in the
theorem prover Isabelle in the form of an analysis algorithm and (b) instantiate
this analysis algorithm for the setting of (b1) invariant candidates formalized
using the logic of nested graph conditions (GCs) and (b2) a suitable notion
of typed attributed graph transformation. This instantiation based approach
thereby also clearly separates aspects of k-induction from GTS related concepts.

To represent typed attributed graphs, we employ symbolic graphs [18–22],
which are similar to E-Graphs [12]. These symbolic graphs also give rise to an
instantiation of GCs that permits the specification of constraints on attributes
throughout the GCs. We employ a graph transformation step relation on sym-
bolic graphs that deviates from those formalized in [21,22] by being symmetric
(allowing a backwards application used in the k-induction analysis algorithm)
and by allowing for the removal of variables (not requiring that additional vari-
ables and their values must be guessed when computing backward steps).

As closest related work, approaches using k-induction have been used before
without formal foundation in [4] and in [7–11] assuming k = 1, graphs without
attributes, a single initial state, or a subclass of all GCs. Hence, we extend this
line of research by formally treating the more general case of an arbitrary value
of k, graphs with attributes, infinitely many initial states, and all GCs.

In [5,25,27,28], an abstraction of graphs results in shape graphs (which have
limited expressiveness compared to GCs) where multiple nodes in the graph are
represented by so called summary nodes in the shape graph and where multi-
plicity or even first-order logic constraints may further restrict this abstraction
(see also [6]). Moreover, in [15], an abstraction of graphs is given in terms of
consistent compasses (which can be encoded in GCs of depth one) containing a
set of graphs of which one is matchable and a set of non-matchable graphs. Also,
in [29], the tool Alloy is used to establish state invariants for typed graphs.

Further related analysis approaches are as follows. The tool Augur2 [1]
abstracts GTSs to Petri nets but imposes restrictions on graph transformation
rules thereby limiting expressiveness. Lastly, static analysis of programs for GTSs
w.r.t. pre/post conditions has been developed in [23] as well as [24].

In Sect. 2, we formalize the principle of k-induction in the form of an analysis
algorithm. In Sect. 3, we discuss our running example, our notion of attributed
graph transformation, and the logic of GCs. In Sect. 4, we instantiate the
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analysis algorithm for attributed graph transformation and apply our prototyp-
ical implementation of it to our running example demonstrating its feasibility.
In Sect. 5, we provide a conclusion and a discussion of future work.

2 Invariant Verification Using k-Induction

We now introduce our formalization of the technique of k-induction for the ver-
ification of (state) invariants. For this purpose, we introduce labelled transition
systems (LTS) as an abstract framework, which is instantiated later on for graph
transformation. The results of this section have been formalized in the interac-
tive theorem prover Isabelle and we therefore omit all proofs. An LTS consists of
a set S of states, a set L of labels, a relation δ of labelled steps between states,
and initial states identified via a state predicate Z.

Definition 1 (Labelled Transition System (LTS)). If S and L are sets of
states and labels, δ ⊆ S × L × S, Z : S B, and Γ = (S,L, δ, Z), then Γ is a
labelled transition system, written Γ ∈ S lts.

Moreover, a finite path π ∈ paths(Γ, n) of Γ of length n is a sequence of n
states from S interleaved with labels from L where s·l·s′ in π implies (s, l, s′) ∈ δ.
Also, πS and πL map indices to the states and labels of the path π.

In Sect. 4, we restrict the states of an LTS resulting in a sub-LTS as follows.

Definition 2 (Sub-LTS). If Γ = (S,L, δ, Z) ∈ S lts, S′ ⊆ S, and Γ ′ = (S′, L,
δ ∩ (S′ × L × S′), Z ∩ (S′ × B)) ∈ S lts, then Γ ′ is a sub-LTS of Γ .

A predicate I on the states of an LTS is an invariant for the LTS, if all states
that are reachable from an initial state of the LTS satisfy I.

Definition 3 (Invariant). If Γ =(S,L, δ, Z)∈S lts, I :S B, and ∀n∈N.
∀π∈paths(Γ, n). Z(πS(0)) → I(πS(n)), then Γ has invariant I, written
invariant(Γ, I).

Subsequently, we assume an invariant A (e.g. expressing earlier established
invariants) for the LTS to improve applicability of the analysis approach as
explained later on. For characterizing the k-induction algorithm below, we define
shortest violations of a state predicate I as a finite path leading from an initial
state to a state violating I visiting no further initial states and only passing
through states satisfying I as well as A.

Definition 4 (Shortest Violation). If Γ = (S,L, δ, Z) ∈ S lts, I : S B, A :
S B, k ∈ N, π ∈ paths(Γ, k), Z(πS(0)), ¬I(πS(k)), ∀0 < j ≤ k. ¬Z(πS(j)),
and ∀j < k. I(πS(j)) ∧ A(πS(j)), then π is a shortest violation of I by Γ of
length k under A, written π ∈ SVio(Γ,A, I, k).

The analysis algorithm I below checks for such shortest violations by (a) select-
ing all violating states s satisfying ¬I(s) and by (b) computing up to k steps
backwards ensuring that all k additional states s′ visited on each of the paths
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obtained satisfy A(s′) ∧ I(s′). Firstly, when a state s′, which is visited in this
process, satisfies Z(s′), a shortest violation is obtained. Secondly, when no such
path of k steps exists, there cannot be a shortest violation of greater length.
Note that this analysis process benefits from employing the assumed invariant
A, which is used to rule out paths with states that are known to be unreachable
from an initial state by not satisfying A.

The analysis algorithm I returns a value b with three different values where
b = i represents a successful verification of the given state predicate I as an
invariant (when no paths are left that may be extended to shortest violations),
where b = v represents that at least one shortest violation was determined, and
where b = u represents the situation that the analysis was unable to return one
of the two former definite results for the provided value of k that is decremented
in each recursive application of I inner.

Definition 5 (I). If Γ = (S,L, δ, Z) ∈ S lts, A : S B, I : S B, k ∈N, i ∈
N, paths ⊆ paths(Γ, i), then I inner(Γ,A, I, k, i, paths) ⊆ {(b, violations) | b ∈
{i, v, u} ∧ violations ⊆ paths(Γ, k + i)} as follows.

I inner(Γ,A, I, k, i, paths) =

⎧
⎪⎪⎨

⎪⎪⎩

if paths = ∅ then (i, ∅)
elseif vio(paths) 
= ∅ then (v, vio(paths))
elseif k = 0 then (u, paths)
else I inner(Γ,A, I, k − 1, i + 1, ext(paths))

where
vio(paths) = {π ∈ paths | Z(πS(0))}
ext(paths) = {s · � · π | π ∈ paths ∧ (s, �, πS(0)) ∈ δ ∧ A(s) ∧ I(s)}

Moreover, if k ∈ N and paths0 = {π ∈ paths(Γ, 0) | ¬I(πS(0))} is the set of
violating paths of length 0, then I(Γ,A, I, k) = I inner(Γ,A, I, k, 0, paths0 ).

The following theorem states that the analysis algorithm I performs a sound
state invariant analysis as just described above.

Theorem 1 (Soundness of I). If Γ =(S,L, δ, Z)∈S lts, A :S B, I :S B,
invariant(Γ,A), k ∈ N, and I(Γ,A, I, k) = (b, paths), then there is j ≤ k s.t.
paths ⊆ paths(Γ, j) and one of the following items holds.

• b = u, j = k, paths 
= ∅, and
⋃{SVio(Γ,A, I, i) | i ≤ k} = ∅.

• b = i, invariant(Γ, I) and paths = ∅.
• b = v, ¬invariant(Γ, I), paths = SVio(Γ,A, I, j) 
= ∅.
The analysis algorithm I is implementable when the set of paths considered is
finite throughout its computation. This is guaranteed when the LTS has viola-
tions for at most finitely many states (finite initial set of paths handed to I inner)
and when every state has at most finitely many predecessors (each path can only
be extended backwards to finitely many paths in I inner).

Definition 6 (Finitely Backwards Branching LTS). If Γ = (S,L, δ, Z) ∈
S lts, I : S B, finite({s ∈ S | ¬I(s)}), and ∀s′ ∈ S. finite({s | (s, �, s′) ∈ δ}),
then Γ is finitely backwards branching for I.
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The concrete instantiation of LTSs for GTSs in Sect. 4 is not finitely backwards
branching in general because invariant candidates I may be violated by infinitely
many states. Hence, we apply in Sect. 4 an abstraction leading to an abstract
instantiation of LTSs for GTSs where the corresponding invariant candidate I ′

is violated by finitely many states. We then establish a connection between both
instantiations in terms of an LTS abstraction relation (LTSAR), which permits to
analyze the abstract instantiation using I instead of the concrete instantiation.

Intuitively, the paths considered using I for the concrete LTS are symbolically
represented by the finite set of paths considered using I for the abstract LTS.
Formally, an LTSAR consists of two subrelations RS relating states and RL

relating labels of the underlying concrete and abstract LTSs. Note that we state
suitable requirements on the relations RS and RL of an LTSAR in the following
theorem and define only the type of an LTSAR here.

Definition 7 (LTS Abstraction Relation (LTSAR)). If Γ = (S,L, δ, Z) ∈
S lts, Γ ′ = (S′, L′, δ′, Z ′) ∈ S lts, RS ⊆ S × S′, RL ⊆ L × L′, then (RS , RL) is an
LTS Abstraction Relation from Γ to Γ ′, written Γ ≤RS ,RL

Γ ′.

For invariant candidates I and I ′ for Γ and Γ ′, the following theorem states six
requirements on an LTSAR (RS , RL), which guarantee that (a) a violation of
I ′ in Γ ′ implies the existence of a violation of I in Γ and (b) the absence of
violations of I ′ in Γ ′ implies the absence of violations of I in Γ .

Theorem 2 (Preservation/Reflection of Invariants using LTS Abstrac-
tion Relations). If Γ = (S,L, δ, Z) ∈ S lts, Γ ′ = (S′, L′, δ′, Z ′) ∈ S lts,
A : S B, invariant(Γ,A), I : S B, I ′ : S′ B, and Γ ≤RS ,RL

Γ ′, then
both of the following items hold.

• Part1: R1, R2, R3, R4, R5, and not invariant(Γ ′, I ′) imply not invariant(Γ, I).
• Part2: R1, R2, R3, R4, R6, and invariant(Γ ′, I ′) imply invariant(Γ, I).

The requirements R1–R6 used in these items are as follows.

• R1: ∀(s, s′) ∈ RS . I(s) ↔ I ′(s′) (RS is compatible with invariant satisfaction)
• R2: ∀(s, s′) ∈ RS . Z(s) ↔ Z ′(s′) (RS is compatible with initial states)
• R3: ∀s′ ∈ S′. ∃s ∈ S. (s, s′) ∈ RS

(RS relates a concrete state s ∈ S to each abstract state s′ ∈ S′)
• R4: ∀s ∈ S. (∃k∈N. ∃π∈SVio(Γ,A, I, k). πS(k)=s) → (∃s′ ∈S′. (s, s′)∈RS)

(RS relates an abstract state s′ ∈ S′ to each concrete state s ∈ S for which a
shortest violation of I exists)

• R5: ∀(s, s′) ∈ RS . ∀(s′, l′, s̄′) ∈ δ′. ∃(s, l, s̄) ∈ δ. (l, l′) ∈ RL ∧ (s̄, s̄′) ∈ RS

(every forward step of the abstract LTS Γ ′ can be mimicked (forwards) by
the concrete LTS Γ for two related source states (s, s′) to allow for the con-
cretization of a violating path)

• R6: ∀(s̄, s̄′)∈RS . ¬Z(s̄) → ∀(s, l, s̄)∈δ. ∃(s′, l′, s̄′)∈δ′. (l, l′)∈RL ∧ (s, s′)∈RS

(every backward step of the concrete LTS Γ (except for those leading to initial
states) can be mimicked (backwards) by the abstract LTS Γ ′ for two related
target states (s̄, s̄′) to allow for the abstraction of a violating path)
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3 Modelling and Specifying Graph Transformation

As a running example, we consider a single shuttle travelling on a network of
tracks (see Fig. 1a for the type graph used) where subsequent tracks are con-
nected using next edges. The graph attribution stores the velocity v and accel-
eration a of the shuttle and, moreover, the constants for minimal, maximal, and
safe velocities as well as the constant track length s in a System node. The rules
refer to the attributes to describe the velocity v′ of a shuttle after travelling over
a track based on its current velocity v, acceleration a, and the constant track
length s using the standard equation v′2 = v2 + 2as. The velocity of the shuttle
should be below the safe velocity on tracks with flag signal, the velocity of the
shuttle should be constant on tracks with flag const, and the flag warning on a
track indicates that a track with flag signal is to be expected ahead. Analysis
should establish the fact that the shuttle never violates signal and const flags
as an invariant, which is formalized in Fig. 1c using graph conditions explained
below. Note that tracks with flag const between tracks with flag warning and
tracks with flag signal may prevent timely deceleration. We employ an assumed
invariant to (a) specify the constant attribute values of the system node, (b) to
rule out track networks with dead ends and loops, and (c) to ensure warnings n
tracks ahead of signals for a parameter n ∈ N in all considered track networks.

We now recall attribute conditions (ACs) used by symbolic graphs and then
revisit GTSs and GCs over symbolic graphs for describing actual and desired
behavior in terms of a concrete LTS and state predicates from before.

(a) The typegraph TG (acc and vel abbreviate acceleration and velocity).

(b) Graphs G1and G2 with monomorphism m : G1     G2,which maps nodes, edges,
and variables ase xpected. All variable valuations that satisfy theat tribute constraint
of G1 also satisfy theat tribute constraint of G1 translatedvia m,that is, xa =  −2  
xa  = 0 is tautological./

(c) The invariant candidate φI stating that shuttles cannot accelerate on tracks with
const flag and that shuttles cannot exceed the safe velocity on tracks with signal flag.

Fig. 1. Type graph and invariant candidate for the shuttle scenario.
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The attribute logic AL contains ACs γ ∈ SAC
X of first-order logic (FOL)

ranging over a set X of variables. The satisfaction of γ by a valuation α : X V
is denoted by α |=AC γ. The SMT solver Z3 [17] supports ACs constructed
using a restricted set of operators for the sorts bool, int, real, and string. When
Z3 is unable to determine an answer to the satisfiability problem (note that AL
satisfaction is undecidable), which does not occur for the examples considered
here, we would notify the user in our prototypical implementation.

Symbolic graphs (called graphs subsequently) [18] are an adaptation of E-
Graphs [12]. A finite graph G (such as those depicted in Fig. 1b) contains
nodes, edges, variables G.X, and an AC G.ac ranging over G.X. Moreover,
nodes and edges are equipped with node and edge attributes, which are con-
nected to variables for which values are specified in the AC G.ac. A morphism
m : G1 G2 from graph G1 to G2 (see e.g. Fig. 1b) maps nodes, edges, variables,
node attributes, and edge attributes of G1 to those of G2. The mappings of m
must be compatible with the source and target functions of G1 and G2 as usual
and G2.ac must imply the translation m(G1.ac) of G1.ac for all variable valua-
tions to ensure that m characterizes a restriction of attributes (cf. Fig. 1b where
this implication is discussed). Moreover, the class of all finite graphs typed (as
usual using a typing morphism) over a given type graph TG is given by Sgraphs

fin,TG

or simply Sgraphs
fin when TG is known. In the remainder, we only employ mono-

morphisms, written m : G1 G2, with only injective mappings. The unique
monomorphism from the empty graph ∅ to a graph G is denoted i(G) : ∅ G.
Finally, the special monomorphism a(G) : G′ G describes that G′ is obtained
from G by setting the AC G.ac to true (i.e., G′ equals G except that G′.ac = ).

The graph logic GL [14,26] supports the specification of the (non)existence
of certain subgraphs in a given host graph G. Besides propositional operators
for (finite) conjunction and negation, GL features the exists operator ∃, which
specifies for a given match m : H G of a (context) graph H into the host graph
G that m can be extended to a match m′ : H ′ G by using a monomorphism
f : H H ′ that explains how H is extended to the (context) graph H ′.

The graph G2 from Fig. 1b does not satisfy φI because the initial monomor-
phism i(G2) : ∅ G2 can be extended to m from Fig. 1b, which is forbidden by
the left part ∃(i(G1),) of φI .

Definition 8 (Graph Logic (GL)). If H ∈ Sgraphs
fin is a finite graph, m :

H G is a monomorphism, then φ′ is a graph condition over H, written φ′ ∈
SGC

H , which is satisfied by m, written m |= φ′, if an item applies.

• φ′ = ∧S, S ⊆fin SGC
H , and (for satisfaction) ∀φ ∈ S.m |= φ.

• φ′ = ¬φ, φ ∈ SGC
H , and (for satisfaction) m 
|= φ.

• φ′ = ∃(f : H H ′, φ), φ ∈ SGC
H′ is a GC over the extended graph H ′, and

(for satisfaction) there is m′ : H ′ G s.t. m = m′ ◦ f and m′ |= φ.
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Moreover, we define the following notions.

• Derived operators: (true) , (false) ⊥, (disjunction) ∨S, and (for all) ∀(f, φ).
• Graph Satisfaction: If φ ∈ SGC

∅ is a GC over the empty graph satisfied by
the initial morphism i(G) (i.e., i(G) |= φ) then φ is satisfied by G, written
G |= φ′.

• Satisfying morphisms: If φ ∈ SGC
H is a GC, then �φ� = {m : H G | m |= φ}.

Moreover, we define that two GCs φ1 and φ2 are consistent, when φ1 only
describes elements also described by φ2 or none of them.

Definition 9 (Consistent GCs). If {φ1, φ2} ⊆ SGC
∅ and �φ1� ∩ �φ2� 
= ∅

implies �φ1� ⊆ �φ2�, then φ1 is consistent with φ2, written cons(φ1, φ2).

To check satisfiability of a GC and consistency of two GCs, we employ the
automated reasoning technique for GL in the form of the algorithm A for which
tool support is available in AutoGraph as introduced in [26]. The algorithm
A takes a GC φ as input, is known to terminate for unsatisfiable GCs (i.e., it is
refutationally complete), and incrementally generates the set of minimal graphs
satisfying φ (this set is empty for unsatisfiable GCs). As for the case of AL and
Z3, we carefully handle cases where A does not terminate and also generates no
minimal graph as discussed later on.

Fact 1 (Algorithm A). If φ ∈ SGC
∅ is a GC over the empty graph and A

terminates for φ, it returns the finite set of all minimal graphs satisfying φ.

The standard operation shift from [13] is also applicable to symbolic graphs [26].
It defines an adaptation of a GC φ with context graph H for a monomorphism
m : H H ′ resulting in an equivalent GC with context graph H ′ in the sense
of the following fact (by considering how additional elements of H ′ may be used
in a satisfaction proof for the given GC φ).

Fact 2 (Operation shift). If m1 : H H ′, m2 : H ′ H ′′, and φ ∈ SGC
H , then

m2 ◦ m1 |= φ iff m2 |= shift(m1, φ).

Graph transformation steps are defined using rules specifying structural and
attribute transformations. A rule ρ contains for the structural part (as in the
DPO approach) two monomorphisms ρ.del : K L and ρ.add : K R where
K, L − ρ.del(K), and R − ρ.add(K) contain the preserved/deleted/added ele-
ments. For the attribute part, L, K, and R have the trivial ACs  and a rule ρ
contains an AC ρ.ac instead, which is defined over the disjoint union V (i.e., the
coproduct, written � where ρ.lX and ρ.rX map variables to the disjoint union
V ) of the variables of L and R. Intuitively, variables originating from L are used
as unprimed variables and variables originating from R are used as primed vari-
ables. Finally, a rule contains left and right hand side application conditions ρ.lC
and ρ.rC defined over the graphs L and R and checked during the transformation
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as in the DPO approach. See Fig. 3 for two simple rules1 and, for our running
example, Fig. 2 for two of the total nine rules (see [8, Section C.1.6, p. 336] for a
full description of the assumed invariants and rules of the considered GTS).

Definition 10 (Graph Transformation Rules). If ρ.del : K L, ρ.add :
K R are to monomorphisms, �(ρ.lX : L.X V, ρ.rX : R.X V ) is a coprod-
uct, ρ.ac ∈ SAC

V , ρ.lC ∈ SGC
L , ρ.rC ∈ SGC

R , and L.ac = K.ac = R.ac = , then
ρ = (ρ.del, ρ.add, ρ.lX, ρ.rX, ρ.ac, ρ.lC, ρ.rC) is a rule, written ρ ∈ Srules.
Moreover, we define the following abbreviations.

• ρ.lG = L and ρ.rG = R are the left and right hand side graphs of the rule ρ.
• Srules

fin is the set of all rules where L, K, and R are finite.

Graph transformations systems then contain a finite set of finite rules (used for
graph transformation steps) and initial states described by a GC.

(a) The rule1ρtoDec describes that a  shut-
tle moves to the nex track and sets the
acceleration to −2 when the current track
has no warning or signal flag and the next
track has no const flag.

(b) The rule1ρtoSteady-Const-Warning describ-
es that a shuttle moves to the next
track and sets the acceleration to 0 when
the current track has no signal flag and
the next track has a const flag.

(c) A graph transformation sequence where a shuttle fails to decelerate sufficiently
before moving to a track with a signal flag due to the track with the const flag
prohibiting deceleration in between.

Fig. 2. Two rules and a graph transformation sequence for our shuttle scenario.
1 Here, L, K, and R are given in a single graph and preserved/deleted/added elements

are colored black/red/green and deleted/added elements are marked with �/⊕.
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(a)The rule ρ1 .It is not applicable to graphs that contain a C node with E2 loop. It
adds a B node, adds loop on a, and changes the value of the id attribute (given by
variable x) of node a using an AC that uses the if-then-else operation ite.

(b) The rule ρ2. It is not applicable to graphs where the matched A node has an 
E4 loop or an id attribute of at most 6. It adds a C node c′, adds an edge from the
matched A node to c′,and increases the id attribute (given by variable x) of node a.

(c)The initial states φZ

have a C node with E2 
loop.

(d)The assumed invariant
φA states that no A node
may have an id of 0.

(e)The invariant candi-
date φI states reachable
graph contain no B node.

(f)The analysis using I starts with the path π0 = X0 of length 0 where X0=(∅,¬φI).
Using Ext, a path π1 = X1·(k1, ρ1, k2)· X2 of length 1 is constructed by extending
π0. Using Ext, a path π2 = X3 · (k3, ρ2, k4) · X4 · (k5 ◦ k1, ρ1, k6 ◦ k2 ) · X5 of length 2 is
constructed by extending π1where the second step of π2 is obtained by refinement
of π1 via Ref.

(g) The abstract states Xi = (Gi, φi) from Figure 3f. To ease presentation, we use
GCs such as ρ1. lC on graphs different from L1. The ACs of Gi are obtained according
to the step relation considering the AC of the given source/target graph. (G1) G1.ac ≡
∃x′ . ρ1.ac ≡ 5 < x ∨ 2 < x ≡ 2 < x. (G2) G2.ac ≡ ∃ x.ρ1. ac ∧ 2 < x ≡ x′ = 0∨6 < x′. 
(G3) G3.ac ≡ ∃x′. ρ2.ac ∧ 2 < x′ ≡ 6 < x. (G4) G4.ac ≡ ∃x. ρ2.ac ∧ 6 < x ≡ 7 <x′.
(G5) G5.ac ≡ ∃x. ρ1.ac ∧ 7 < x ≡ x′ = 0.

Fig. 3. Example of invariant analysis for abstract LTS.
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Definition 11 (Graph Transformation System (GTS)). If P ⊆fin Srules
fin

and φZ ∈ SGC
∅ , then (P, φZ) is a graph transformation system.

Deviating from [22], we now introduce a notion of graph transformation steps in
which structural and attribute transformations are decoupled. The defined step
relation is symmetric and supports the removal as well as addition of variables,
which is also relevant when attribute values are to be modified.

Definition 12 (Steps). There is a step G1
σ G2 with label σ, whenever

• there is a rule ρ ∈ Srules
fin with ρ.lG = L and ρ.rG = R as depicted below,

• the graph L can be matched to G1 using m1 : L G1 that satisfies the left-
hand side application condition ρ.lC,

• the graph Ḡ1 is obtained from G1 by setting the AC of G1 to  inducing the
morphisms c1 and a(G1) compatible with m1,

• the graphs D and Ḡ2 are constructed according to the double pushout approach
as pushout complement and pushout from left to right,

• the graph G2 is obtained from Ḡ2 by setting the AC of G2 according to the
AC ρ.ac of the rule inducing morphisms m2 and a(G2) compatible with c2,
and

• the morphism m2 satisfies the right-hand side application condition ρ.rC.

L K R

D

�

ρ.lC

�

ρ.rC

Ḡ2Ḡ1G1 G2
a(G1) a(G2)

PO PO
m1 c1 c2d

ρ.del ρ.add

b1 b2

m2

For this construction, σ = (σ.rule, σ.drule, σ.match, σ.comatch) = (ρ, ρ̄,m1,m2)
is the used label where ρ̄ is the derived rule (cf. [13]) with ρ̄.del = b1, ρ̄.add = b2,
ρ̄.lC = shift(c1, ρ.lC), ρ̄.rC = shift(c2, ρ.lC), and where the AC ρ̄.ac is adapted
from ρ.ac according to the renamings of c1 and c2.

For our running example, see Fig. 2c for a graph transformation sequence apply-
ing the two rules from Fig. 2a and Fig. 2b. Note that the last graph of this
sequence violates the invariant candidate from Fig. 1c as the shuttle exceeds the
permitted velocity on a track with signal flag.

The steps defined by this construction immediately induce a concrete LTS
(see Definition 1) for a given GTS where the initial states are given by all graphs
satisfying the GC characterizing initial graphs of the GTS.

Definition 13 (Concrete LTS of Graph Transformation). If (P, φZ) is a
GTS then cLTS((P, φZ)) = Γ = (S,L, δ, Z) is the concrete LTS of (P, φZ) with

• S = Sgraphs
fin is the set of all finite graphs,

• L = Ssteps is the set of all step labels,
• δ = {(G, σ,H) | G σ H} is given by graph transformation steps of (P, φZ),
• Z(Ḡ) = Ḡ |= φZ uses the GC satisfaction relation,
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Moreover, a state G of Γ (i.e., a finite graph) satisfies a state predicate (cf. the
last item above) given by a GC φ defined over the empty graph ∅ iff G |= φ.

Finally, the operations left and the reverse operation right introduced in [13] can
be adapted to symbolic graphs. The operation left inductively propagates a GC φ
over the right hand side graph ρ.rG = R (such as the application condition ρ.lC)
of a rule ρ to the left hand side graph ρ.lG = L of ρ by applying the renaming
of graph elements according to ρ.del and ρ.add to the graphs in the GC φ. The
two operations ensure the following compatibility with steps (cf. [13]).

Fact 3 (Operations left and right). If ρ ∈ Srules
fin is a finite rule with the left

and right hand side graphs L and R, φL ∈ SGC
L and φR ∈ SGC

R are GCs over
L and R, and G

(ρ,ρ̄,m,m̄)
H is a graph transformation step, then m̄ |= φR iff

m |= left(ρ, φR) and m |= φL iff m̄ |= right(ρ, φL).

4 Invariant Analysis for Graph Transformation Systems

Based on the preliminaries from the previous section on graph transformation
and graph specification using GCs, we now apply our theory on k-induction from
Sect. 2. Note that the instantiation presented here is specific to the step relation
for graph transformation presented in the previous section due to the decoupling
of transformation of structure and ACs. For this instantiation, we construct an
LTS that is finitely backwards branching (see Definition 6) and that is related
to the concrete LTS Γ from the previous section via a suitable LTSAR (see
Definition 7) to permit an application of Theorem 2 for enabling the analysis
of the GTS using I according to Theorem 1. For this purpose, we assume a
fixed GTS (P, φZ), the induced LTS cLTS((P, φZ)) = Γ (see Definition 13), an
assumed invariant φA ∈ SGC

∅ , and an invariant candidate φI ∈ SGC
∅ .

For demonstration purposes, we consider the GTS ({ρ1, ρ2}, φZ) with
assumed invariant φA and invariant candidate φI from Fig. 3.

As an initial candidate for the LTS to be constructed, we define the LTS Γ ′

in which each state (Ḡ, φ̄) is given by a GC φ̄ and the graph Ḡ over which φ̄ is
defined for improved readability. The LTS Γ ′ induces an LTSAR in which the
relation RS contains pairs (G, (Ḡ, φ̄)) for which some monomorphism m : Ḡ G
with m |= φ̄ exists. The steps of Γ ′ adapt states (G1, φ1) to states (G2, φ2) using
a rule ρ of the GTS (P, φZ) for matches k1 : ρ.lG G1 and k2 : ρ.rG G2 at
the abstract level by considering all concrete steps of graphs H1 and H2 that
are related to G1 and G2 via RS (by means of instantiation morphisms m1 and
m2). That is, the same rule ρ can be applied to each graph covered by (G1, φ1)
and, vice versa, (G2, φ2) covers only the graphs reachable using such steps.

Definition 14 (Abstract LTS of GC Transformation). If (P, φZ) is a GTS
then aLTS((P, φZ)) = Γ ′ = (S′, L′, δ′, Z ′) is the abstract LTS of (P, φZ) with

• S′ = {(Ḡ, φ̄) | Ḡ ∈ Sgraphs
fin ∧ φ̄ ∈ SGC

Ḡ
},

• L′ = {(k1 : ρ.lG G1, ρ, k2 : ρ.rG G2) | ρ ∈ P, {G1, G2} ⊆ Sgraphs
fin },
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• ((G1, φ1), (k1, ρ, k2), (G2, φ2)) ∈ δ′ iff ρ ∈ P , k1 : L G1, k2 : R G2,
– ∀m1 ∈ �φ1�.∃m2 ∈ �φ2�. P (m1 ◦ k1,m2 ◦ k2, ρ) and
– ∀m2 ∈ �φ2�.∃m1 ∈ �φ1�. P (m1 ◦ k1,m2 ◦ k2, ρ) using the abbreviation P :
– P (n1, n2, ρ)=(∃σ.H1

σ H2 ∧σ.rule=ρ∧σ.match=n1 ∧σ.comatch=n2),

K

D

L RG1 G2

�

ρ.lC

�

ρ.rC

�

φ1

�

φ2

H̄2H̄1H1 H2
a(H1) a(H2)

m1

ρ.del ρ.add

m2

k1 k2

n1 n2

• Z ′((Ḡ, φ̄)) = �∃(i(Ḡ), φ̄) ∧ φZ� 
= ∅.
Moreover, a state (Ḡ, φ̄) of Γ ′ satisfies a state predicate (cf. the last item above)
given by a GC φ defined over the empty graph ∅ iff �∃(i(Ḡ), φ̄) ∧ φ� 
= ∅.2

We state that each sub-LTS Γ ′′ of Γ ′ induces a certain LTSAR for the LTS Γ .

Lemma 1 (LTSAR for GTS). If (P, φZ) is a GTS, Γ =cLTS((P, φZ)), Γ ′′ is
a sub-LTS of Γ ′=aLTS((P, φZ)), RS ={(G, (Ḡ, φ̄)) | ∃m : Ḡ G.m |= φ̄}, and
RL = {(σ, (k1, ρ, k2)) | σ.rule = ρ ∈ P}, then Γ ≤RS ,RL

Γ ′′ by Definition 7. ��
Selecting the entire LTS Γ ′′ = Γ ′ results in an LTSAR, which does not satisfy
the requirements of Theorem 2 in general. Instead, we obtain a suitable sub-LTS
Γ ′′ of Γ ′ in an on-the-fly manner during an application of I (see Definition 5): Γ ′′

then describes precisely the paths maintained by I inner in its parameter paths
at any point in the computation. Hence, the initial candidate is the sub-LTS
Γ ′′
0 that contains the single state (∅,¬φI) violating φI . Note that Γ ′′

0 induces an
LTSAR satisfying the requirements R1–R5 already. See Fig. 3f where node X0

represents this initial state inducing the path π0 of length 0.
Inside an application of I inner(Γ ′, φA, φI , k, i, paths) (see Definition 5), we

extend paths in paths w.r.t. Γ ′ and thereby adapt Γ ′′
i to Γ ′′

i+1 such that the
LTSAR for Γ ′′

i+1 (see Lemma 1) also satisfies the requirements R1–R5 of The-
orem2. The satisfaction of requirement R6 for the backwards simulation may
require that further path extensions are computed in subsequent iterations of
I inner. In Fig. 3f, the path π0 is extended to paths π1 and π2 where the last nodes
X2 and X5 are then incrementally more specific than X0 (w.r.t. the monomor-
phisms that satisfy their GCs).

When the application of I terminates with a definite result b ∈ {i, v}, the
obtained sub-LTS Γ ′′

i constructed up to this point induces an LTSAR, which
meets the relevant requirements listed in Theorem 2. In particular (see also The-
orem3 later on), (a) for the result (v, paths) meaning that the invariant candidate
φI is violated by Γ ′, we can apply Part1 of Theorem 2 because R1–R5 are sat-
isfied and (b) for the result (i, ∅) meaning that φI is established as an invariant
for Γ ′, we can apply Part2 of Theorem 2 because there are no further backward

2 Definition 16 resolves cases where ∃(i(Ḡ), φ̄) and φ are not consistent (Definition 8).
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steps that require consideration since all paths constructed so far were discarded
for not having any further relevant step implying also R6 as required.

In the remainder, we discuss the backwards construction of paths of Γ ′ for
a GTS using the operation Ext. This extension operation (see Definition 16)
entails a refining operation Ref (see Definition 15) used to adapt paths in line
with the operation ext(paths) used in I to ensure that the requirements R1–R5
are satisfied by the corresponding sub-LTS Γ ′′

i+1 constructed so far.
Extending a path π of Γ ′ starting in a state (Ḡ, φ̄) adding a backwards step for

a rule ρ may result in a refinement due to (a) additional graph elements when the
comatch of the step does not only match elements of Ḡ, (b) additional restrictions
originating from the application conditions of ρ, and (c) fewer variable valuations
satisfying the AC of the start graph of the path.

For example, in Fig. 3f, the path π1 = X1 · (k1, ρ1, k2) · X2 (in the second
line) is refined to X4 · (k5 ◦ k1, ρ1, k6 ◦ k2) · X5 according to the monomorphism
k5 : G1 G4 for the application of ρ2 in Extension-Step 2. Considering the
elements X1 and X4 given in more detail in Fig. 3g, we see that X4 is much more
specific than X2 due to the additional GC originating from ρ2, the inclusion of
node c and edge e, and a more restrictive AC.

The following operation Ref refines the path π starting in (Ḡ, φ̄G) to a path
π′ starting in (X̄, φ̄X) for a monomorphism m : Ḡ X̄ and a GC φ̄X defined on
X̄, which describe the effect of the backwards step on π. It does so by adapting
the monomorphisms contained in the labels of the steps in π, performs a step
leading to a graph Ȳ to propagate attribute restrictions given by the AC of X̄,
and propagates the additional GC φ̄X to the resulting graph Ȳ .

Definition 15 (Refinement of Abstract Paths). If Γ ′ = (S′, L′, δ′, Z ′) ∈
S lts, π ∈ paths(Γ ′, n), m : Ḡ X̄, φ̄X ∈ SGC

X̄
, π′ ∈ paths(Γ ′, n), then π′ is the

refinement of π via m and φ̄X , written π′ = Ref(π,m, φ̄X), if an item applies.

• n = 0, π = (Ḡ, φ̄G), and π′ = (X̄, φ̄X ∧ shift(m, φ̄G)).
• n > 0, π = (Ḡ, φ̄G) · (k1, ρ, k2) · π̃, πS(1) = (H̄, φ̄H), X̄

(ρ,ρ̄,m◦k1,m̄◦k2) Ȳ ,
φ̄Y = shift(a(Ȳ ), right(ρ̄,∃(a(X̄), φ̄X))), and π′ = (X̄, φ̄X ∧ shift(m, φ̄G)) · (m◦
k1, ρ, m̄ ◦ k2) · Ref(π̃, m̄, φ̄Y ).

Ḡ L K R H̄

X̄ X D Y Ȳ

k1 ρ.del ρ.add k2

a(X̄) a(Ȳ )m m̄

�φ̄G

�φ̄X

�φ̄H

�φ̄Y

Concrete violating paths of Γ (such as in Fig. 2c for our running example) can
be constructed from symbolic violating paths of Γ ′ starting in (Ḡ, φ̄G) by (a)
running the algorithm A from Fact 1 to obtain some monomorphism m : Ḡ X̄
satisfying φ̄G, (b) employing Z3 to determine a variable valuation satisfying
the AC of X̄ resulting in some monomorphism m′ : Ḡ Ȳ , and (c) applying
the operation Ref for m′ and φ̄Y = . Besides such concrete violating paths, we
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return all symbolic violating paths to the user for which A or Z3 fail to determine
definite results (which does not occur in the examples considered here).

We now introduce the operation Ext for extending a path of Γ ′ by adding
a further backwards step. To ensure that we construct all paths, we follow the
definition of E-concurrent rules from [13] to generate all minimal overlaps for
each successive rule application and to adjust GCs to the application conditions
of the rules. Moreover, in item (8), we employ the operation Ref to adapt the
given path of Γ ′ to the additional step. Finally, in item (9), item (10), and item
(11), we further split and filter the constructed paths to ensure that the state
predicate satisfaction is compatible with RS (see Theorem 3).

Definition 16 (Extension of Abstract Paths). If (P, φZ) is a GTS, Γ ′ =
aLTS((P, φZ)), π ∈ paths(Γ ′, n), then Ext(π) computes the possibly empty set of
all path extensions π′ ∈ paths(Γ ′, n + 1) of π using the following procedure.

(1) (Ḡ, φ̄G) is the first state of π.
(2) ρ ∈ P is some rule of the GTS with ρ.lG = L and ρ.rG = R.
(3) (e1 :R E, e2 :Ḡ E) ∈ E ′ is a minimal overlapping of R and Ḡ (cf.

[13]).3

(4) E
(rev(ρ),ρ̃,e1,m)

X̄ is a step of the GTS where ρ is reversed using rev and
applied forwards to E using match e1 to obtain the required backwards step.

(5) φ̄X = shift(a(X̄), ρ̄.lC ∧ left(ρ̄, ρ̄.rC ∧ ∃(a(E), shift(e2, φ̄G)))) is the GC for
X̄ obtained using GC propagation as in [13].

(6) X̄
(ρ,ρ̄,m,m̄◦e1) Ȳ is a step of the GTS using the rule ρ possibly further

restricting the AC from E to Ȳ .
(7) φ̄Y = shift(a(Ȳ ), ρ̄.rC ∧ right(ρ̄, ρ̄.lC)) ∧ shift(m̄ ◦ e2, φ̄G) is the GC for Ȳ

obtained using GC propagation as in [13].
(8) π̃0 = (X̄, φ̄X)·(m, ρ, n = m̄◦e1)·Ref(π, m̄◦e2, φ̄Y ) is obtained by prepending

the new step to the path refinement of π according to m̄ ◦ e2 and φ̄Y .

ḠL K R
ρ.del ρ.add

E
e1 e2

Y
a(E)

DX
b1 b2

X̄
a(X̄)

m c1 d c2

Ȳ

n

a(Ȳ )

m̄

�

φ̄G

�φ̄X �φ̄Y

�

ρ.lC

�

ρ.rC

�

ρ̄.lC

�

ρ̄.rC

(9) (Disambiguation of Abstraction for φI) If ∃(i(X̄), φ̄X) is consistent with
φI (see Definition 8), which can be checked using A, we know that (X̄, φ̄X)
either only covers graphs satisfying φI or no such graphs. In this case,
π̃1 is Ref(π̃, id(X̄), φI) or Ref(π̃, id(X̄),¬φI) (where id(X̄) is the identity
morphism on X̄) and π̃1 = π̃ otherwise.

(10) (Disambiguation of Abstraction for φZ) Analogous to item (9) for the GC
φZ representing the initial state of the GTS at hand obtaining π̃2 from π̃1.

3 E ′ denotes the set of pairs of monomorphisms that are jointly epimorphic, that is,
two monomorphisms that map to each graph element of their common target graph.
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Table 1. Results of invariant analysis for the abstract LTS for shuttle scenario.

Outcome (b, paths) of analysis algorithm I
Lookahead n Path length k Duration Element b Size of element paths

2 2 1 s u 6
3 3 2 s u 12
4 4 12 s u 8
5 5 63 s i 0

(11) (Nonemptyness of Abstraction) If A and Z3 determine that π̃2 represents
at least one concrete violation (as discussed subsequent to Definition 15)
compatible with φA, then π′ is equal to π̃2 (otherwise π̃2 results in no path
extension).

Figure 3f depicts two applications of Ext both requiring applications of Ref (the
first refinement regarding the empty path π0 is trivial and the second has been
discussed above). The first extension uses ρ1 from Fig. 3a, constructs the over-
lapping E0 where the two B nodes are identified (not explicitly depicted), applies
the reversal of rule ρ1 using the match e01 to obtain X1, and then applies ρ1
to obtain the AC refinement X2 = (G2, φ2) of E0 depicted in Fig. 3g. Note that
X2 = (G2, φ2) still violates the invariant candidate φI (for all monomorphisms
m : G2 H). The further extension using ρ2 then results in path π2 ending in
X5 = (G5, φ5), which does not need to be considered further as X5 violates the
assumed invariant φA (for all monomorphisms m : G5 H).

Finally, I from Definition 5 can be used to check a GTS against an invariant
candidate φI by applying I using the described instantiation.

Theorem 3 (Instantiation of k-Induction for GTSs). If (P, φZ) is a GTS,
φA ∈ SGC

∅ is an assumed invariant, φI ∈ SGC
∅ is an invariant candidate, k ∈ N,

and the application of the algorithm I using the described instantiation Γ ′ for
Γ , Ext (from Definition 16) for ext, and {(∅,¬φI)} for paths0 terminates with
(b, paths), then Theorem1 and Theorem2 are applicable and (b, paths) is a sound
judgement on whether φI is an invariant for (P, φZ).

Proof. The used operation Ext for path extension ensures that the last computed
sub-LTS Γ ′′ of Γ ′ results in an LTSAR (see Lemma 1) meeting the requirements
R1–R5 from Theorem 2 as follows (by induction on the parameter k for R4).

• Requirements R1 and R2 (preservation of invariant and initial state):
Ensured by item (9) and item (10) in Definition 16.

• Requirement R3 (RS is right total): Ensured by item (11) in Definition 16.
• Requirement R4 (RS is left total on violating states): R4 means that each

state G that violates φI in Γ via some shortest violation is covered by some
state (Ḡ, φ̄G) of Γ ′′. R4 is obviously satisfied by the initial LTS candidate
that has the only state (∅,¬φI). Moreover, every extension (entailing the
described refinement) of the set of paths in each iteration preserves this prop-
erty because the refinement only excludes paths that are known to be only
covering paths not representing shortest violations.
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• Requirement R5 (forward steps of Γ ′ are simulated by Γ ): Ensured by apply-
ing the path refinement operation Ref in the operation Ref.

Lastly, the requirement R6 is satisfied for all states that are not at the beginning
of a path in Γ ′′ since Ext considers all possible backward steps. ��
For our running example, we applied our prototypical implementation of the
analysis algorithm I. For k = 2, we obtained the indefinite result (u, paths)
where the sequence from Fig. 2c is a concretization of a path in paths that could
not be ruled out. As stated in Table 1, a path length of k = 5 (i.e., 5-induction)
was required to establish that φI is an invariant. While the time required for
invariant analysis increases exponentially with longer values of k due to the
exponentially increasing number of paths of that length, we believe that the
analysis times required for the running example already demonstrate feasibility
albeit a potential for further optimizations of our prototypical implementation.
Also note that the number of path extensions in each step grows exponentially
with the size of the rules.

5 Conclusion and Future Work

We formalized the static analysis approach of k-induction using Isabelle for the
abstract setting of LTSs establishing sufficient conditions for the preservation/re-
flection of invariants by means of an abstraction relation. We then applied this
analysis approach to typed attributed GTSs by abstracting graphs by nested
graph conditions (GCs) and by applying k-induction on these GCs. Our results
extend the state of the art by permitting attributes as well as nested GCs for
the specification of initial states, assumed invariants, and invariant candidates.

In the future, we want to develop support for probabilistic/timed GTSs such
as [16]. Moreover, we strive to develop further abstractions to improve support
for GTSs with multiple active components such as shuttles. Finally, heuristics
guiding the computation of paths in the analysis procedure using parameteriza-
tions may improve performance by e.g. prioritizing path extension over checking
for violations of attribute constraints of assumed invariants.
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Abstract. The nonpropositionalMetric Temporal Graph Logic (MTGL)
specifies the behavior of timed dynamic systems given by timed graph
sequences (TGSs), which contain typed attributed graphs representing
system states and the elapsed time between states. MTGL satisfaction can
be analyzed for finite TGSs by translating its satisfaction problem to the
satisfaction problem of nested graph conditions using a folding operation
(aggregating a TGS into a graph with history) and a reduction operation
(translating an MTGL condition into a nested graph condition).

In this paper, we introduce an analysis procedure for MTGL to allow
for an on-the-fly analysis of finite/infinite TGSs. To this end, we intro-
duce a further (optimistic) reduction of MTGL conditions, which leads
to violations during the on-the-fly analysis only when non-satisfaction is
guaranteed in the future whereas the former (pessimistic) reduction leads
to violations when satisfaction is not guaranteed in the future. We moti-
vate the relevance of our analysis procedure, which uses both reduction
operations, by means of a running example. Finally, we discuss prototyp-
ical support in the tool AutoGraph.

Keywords: Graph logic with binding · Nonpropositional metric
temporal logic · Runtime monitoring · Three-valued logic

1 Introduction

The challenges for developing embedded real-time systems with a high degree
of parallelism, data dependencies, and timing constraints that must adhere to a
given specification are manifold. The formal verification of such systems given
by formal models is often intractable and, moreover, such formal models cannot
be obtained for systems with unpredictable behaviors such as human-in-the-loop
systems. Model-based testing and runtime monitoring are two standard model-
driven approaches supporting the engineering of such systems.
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In this paper, we check the conformance of a timed graph sequence (TGS),
given by a sequence of states where time elapses between the states, against a
formal specification. TGSs can be (a) generated using timed graph transforma-
tion [3,7,17] or can be (b) returned incrementally by a monitor. While offline
analysis procedures suffice for finite TGSs, infinite TGSs require an on-the-fly
conformance analysis to determine violations as early and as precise as possible.

As a running example, we consider an operating system as an advanced
embedded real-time system in which tasks are executed by handlers computing
results. For such an operating system, we require the following property P.

P: Whenever a task T is created in a system S, S must have a handler H
applicable to T (based on a common id). Moreover, within 10 timeunits, H
must produce a result R with value ok and, during the computation of R,
no other handler H ′ applicable to T (based on a common id) may exist in S.

For specifying desired system behavior such as the property P from above, we
employ an extension of the Metric Temporal Graph Logic (MTGL) [8]. This logic
permits to concisely express (a) state properties to specify single graphs in a TGS
and (b) sequence properties relating graphs at different timepoints in a TGS by
their attributes and inner structure. For state properties, MTGL subsumes the
graph logic GL of nested graph conditions [9], which is as expressive as first-order
logic on graphs. For sequence properties, MTGL has metric temporal operators
that refer to matches of graph patterns in graphs in a TGS as first-class citizens.
Due to these operators, MTGL is more expressive compared to metric temporal
logics such as MTL [12] only relying on atomic propositions since MTGL allows
to keep track of an unbounded number of elements. For example, for the property
P, we must separately track tasks T and T ′ for which corresponding results R
and R′ must be created before the corresponding deadline expires.

The main contributions of this paper are as follows. Firstly, we integrate the
metric-exists-new operator as a first-class citizen into MTGL, which was not
explicitly done in [8]. It matches graph patterns as early as possible to fix a
timepoint from which a deadline can be started as in our running example when
a new task is matched. Secondly, we formally integrate attribute quantification
into MTGL and GL. Thirdly, we develop an on-the-fly checking procedure, which
takes a formal MTGL specification and considers a TGS incrementally returning
a lower (optimistic) and an upper (pessimistic) bound of the set of true violations,
which determine a ground truth of violations that would be obtained ideally.
The optimistic lower bound does not contain all true violations to handle TGSs
that are continued in a way leading to satisfaction in the future whereas the
pessimistic upper bound contains additional false violations to handle TGSs
that are continued in a way not leading to satisfaction in the future. Returning
the optimistic bound in addition to the pessimistic bound as computed in [8]
results essentially in a three valued logic1 where an intervention (e.g. by a user)
may depend on whether a pessimistic violation is also an optimistic violation.

1 At each timepoint during the on-the-fly analysis, we return either no violation, only
a pessimistic violation, or a pessimistic and an optimistic violation.
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In Sect. 2, we recall symbolic graphs and the logic GL of nested graph condi-
tions. In Sect. 3, we extend MTGL by integrating the operator metric-exists-new .
We present our on-the-fly analysis procedure and discuss its prototypical tool
support by AutoGraph in Sect. 4. Finally, we discuss related work in Sect. 5
and conclude the paper with a summary and remarks on future work in Sect. 6.

2 Symbolic Graphs and Graph Logic

We now recall typed attributed graphs and nested graph conditions used for
representing system states and properties on these states, respectively.

We use symbolic graphs (see e.g. [18–20,24]), called graphs subsequently,
to encode typed attributed graphs. Symbolic graphs are an adaptation of E-
Graphs [5] where nodes and edges of a graph G are connected to (sorted)
variables XG instead of data nodes representing actual values. To specify the
possible values of variables, graphs are equipped with an attribute constraint
(AC) ΘG over the variables XG (e.g. x = 5, ∃y. x ≤ y, and z = “aabb”).

An AC θ is constructed using variables from a set X and the usual operators
for the sorts bool, int, real, and string, which range over the set V of all values.
Satisfaction of an AC θ by a valuation α : X → V is denoted by α |=AC θ.2 If
an AC θ is satisfiable or tautological, we write sat∃(θ) or sat∀(θ), respectively.

In the following, we consider graphs that are typed over a type graph TG
using a typing morphism type : G → TG . Type graphs restrict attributed graphs
to an admitted subclass Graphs(TG). The empty graph is denoted by ∅. For our
running example, we employ the type graph TG from Fig. 1a. Examples of graphs
that are typed over TG are given in Fig. 3b.

Morphisms f : G1 → G2 between graphs G1 and G2 are defined as usual (see
e.g. [24] for a formal definition) and consist of mappings between the components
of G1 and G2. In the remainder of this paper, we only use morphisms f : G1 ↪−→
G2 for which all mappings are injective.

Moreover, we distinguish between two kinds of morphisms f : G1 ↪−→ G2.
Firstly, restrictive (mono)morphisms f : G1 ↪−→r G2 must ensure that the AC
of G2 is more restrictive compared to the AC of G1. This means that each
valuation that satisfies the AC of G2 also satisfies the f -translated AC of G1

(i.e., sat∀(ΘG2 → fX (ΘG1)) where fX is the mapping contained in f between
the variables of G1 and G2). Secondly, consistent morphisms f : G1 ↪−→c G2

must ensure that the AC of G2 is compatible with the AC of G1. This means
that there is at least one valuation that satisfies the AC of G2 as well as the
f -translated AC of G1 (i.e., sat∃(ΘG2 ∧ fX (ΘG1))). See Fig. 1b for examples of
restrictive and consistent morphisms. The initial (mono)morphism iG : ∅ → G
for graph G is restrictive and, when the AC of G is satisfiable, also consistent.

2 The solver Z3 [16] has support for checking satisfiability of ACs but is known to
return indefinite results because satisfiability is undecidable for ACs of unrestricted
form. While Z3 always succeeds for our running example, we handle this special case
in our prototypical implementation by providing warnings to the user.
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Fig. 1. The type graph TG of our running example, two morphisms, and a GC

The graph logic GL over nested graph conditions (GCs) can be used to specify
graphs. GL features propositional connectives and the operator ∃ (called exists)
to extend given matches of graph patterns (given by graphs) in a graph (called
host graph) with a satisfiable AC. Technically, the exists operator describes the
extension of a graph pattern H using a restrictive monomorphism f : H ↪−→r

H ′. See Fig. 1c for an example of a GC. For improved readability, we visualize
restrictive monomorphisms f : H ↪−→r H ′ occurring in GCs by omitting graph
elements from H not connected to graph elements in H ′ \ f(H).

Definition 1 (Nested Graph Conditions (GCs)). If H is a graph and f :
H ↪−→r H ′ is a restrictive monomorphism, then φH is a nested graph condition
(GC) over H, written φH ∈ ΦGC

H , as follows.

φH ::= � | ¬φH | φH ∧ φH | ∃(f, φH′)

We also make use of the operators false (⊥), disjunction (∨), and universal
quantification (∀), which can be derived from the operators above.

The semantics of GL is given by the satisfaction relation below, which deviates
from [24] by using (a) variable valuations α : XH → V and (b) consistent instead
of restrictive matches m : H ↪−→c G. Most notably, the GC φ = ∃(f : H ↪−→r

H ′, φ′) is satisfied by a match m and a valuation α when they can be extended
to a match m′ : H ′ ↪−→c G and a valuation α′ : XH′ → V that are consistent
with f . To ensure that the valuation α′ is used consistently when evaluating ACs
occurring in graphs in φ, we require that the consistency condition is satisfied
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Fig. 2. Satisfaction of GCs by graphs

by m′ (i.e., sat∃(m′
X (ΘH′)∧ΘG)) using a valuation compatible with α′. Finally,

as in [9,24], a graph G satisfies a GC defined over ∅ when the initial morphism
iG : ∅ ↪−→c G and the empty valuation α : ∅ → V satisfy the GC.

Definition 2 (Satisfaction of GCs). If φ ∈ ΦGC
H is a GC, m : H ↪−→cG is a

consistent morphism, and α : XH → V is a valuation, then m satisfies φ via α,
written (m,α) |= φ, if an item applies.

– φ = �.
– φ = ¬φ′ and (m,α) �|= φ′.
– φ = φ1 ∧ φ2, (m,α) |= φ1, and (m,α) |= φ2.
– φ = ∃(f : H ↪−→r H ′, φ′) and there are m′ : H ′ ↪−→c G and α′ : XH′ → V s.t.

m′ ◦ f = m, α′ ◦ fX = α, (m′, α′) |= φ′, and sat∃(α′(ΘH′ ∧ m′−1
X (ΘG))).3

If φ ∈ ΦGC
∅ , iG : ∅ ↪−→c G, α : ∅ → V, and (iG, α) |= φ, then G |= φ.

This novel adaptation of the satisfaction relation (informally handled in [8])
allows to express quantification over attribute values as required for our on-the-
fly analysis procedure in Sect. 4. For example, we can state that “for each x ∈ Z
satisfying 0 ≤ x ≤ 2 there is a variable y ∈ Z with the value of x” using the GC φ
in Fig. 2a, which is satisfied by the graph G from Fig. 2b containing a matchable
copy of x. In our implementation in the tool AutoGraph, we operationalize the
satisfaction check by constructing the AC from Fig. 2c incorporating all possible
matches for the variable y for which satisfiability then implies that G satisfies φ.

3 Metric Temporal Graph Logic

The Metric Temporal Graph Logic (MTGL) over metric temporal graph condi-
tions (MTGCs) [8] extends GL with two metric temporal operators. In particular,
(a) the until operator U is well-known from MTL [12] and (b) the formal inte-
gration of the metric-exists-new operator ∃N allows to match graph patterns at
a future timepoint (restricted by an interval) when the match is first available.
3 The partial function m′−1

X : XG ⇀ XH′ obtained as the reversal of the injective
function m′

X : XH′ → XG does not replace variables in ΘG that are not mapped to
by m′

X . For simplicity, we assume that G and H ′ have disjoint sets of variables.
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Fig. 3. The MTGC ψ and the TGS π from our running example

Definition 3 (Metric Temporal Graph Conditions (MTGCs)). If H is
a graph, f : H ↪−→r H ′ is a restrictive monomorphism, and I is an interval over
R0, then φH is a metric temporal graph condition (MTGC) over H, written
φH ∈ ΦMTGC

H , as follows.

φH ::= � | ¬φH | φH ∧ φH | ∃(f, φH′) | ∃N
I (f, φH′) | φH UI φH

The derived operator metric-forall-new (∀N) is the dual operator to ∃N. Also,
operators such as eventually and globally can be derived using the operator U.

The integration of graph pattern matching of GCs (for state properties) and the
two metric temporal operators (for sequence properties) allows for the formal-
ization of properties where a match into a graph (established using the operators
∃ or ∃N) is preserved/extended over multiple timed steps of the system (using
the operator U) and where the duration of these timed steps can be specified
using intervals. For our running example, see Fig. 3a for a formalization of the
property P introduced in Sect. 1 in the form of an MTGC ψ.

The semantics of MTGL is defined over Timed Graph Sequences (TGSs) [8]
(e.g. π in Fig. 3b), which describe a single (possibly infinite) evolution of a system
in terms of its visited states and the durations between these states. A TGS π
starting in a graph G (written π ∈ ΠG or π ∈ Πfin

G when π is finite) is a sequence
of timed spans (δ, � : D ↪−→r G1, r : D ↪−→r G2) where δ is the relative time at
which the successor state G2 is reached from G1 and where � and r describe the
deletion and addition of graph elements as usual. We also assume the reversal
operation rev(π), the concatenation operation π1;π2, the prefix relation π1 � π2,
the length operation length(π) ∈ N ∪ {∞} (which counts the timed spans),
the duration operation dur(π) ∈ R0 ∪ {∞} (which sums the durations δ of all
timed spans), the projection operation πt to the graph at timepoint t, and
the slicing operation π[t1,t2] delivering the TGS between timepoints t1 and t2.
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For well-definedness of the slicing operation (and the satisfaction relation of
MTGL later on), we require that length(π) = ∞ implies dur(π) = ∞ ruling out
Zeno TGSs.

For the semantics of MTGL, we define that a match m (also called binding)
is propagated over a single timed span (δ, �, r) by adapting it according to the
renaming given by � and r. However, the propagation operation is partial when
graph elements matched by m are not preserved across the timed span.

Definition 4 (Operation propagateMatch). If m : H ↪−→c G1, m′ : H ↪−→c G2

are consistent morphisms, ρ = (δ, � : D ↪−→r G1, r : D ↪−→r G2) is a timed span,
and there is a consistent morphism m̄ : H ↪−→c D s.t. � ◦ m̄ = m and r ◦ m̄ = m′,
then m′ is obtained by propagation of m over ρ, written m′ ∈ PM(m, ρ). Also,
we extend the operation propagateMatch to finite TGSs as expected.

The semantics of MTGL is given by the satisfaction relation below, which is
defined as for GL for the operators conjunction, negation, and exists and uses a
current observation timepoint t (which does not exceed the duration of the TGS)
in addition to a consistent match m : H ↪−→c G and a valuation α : XH → V. Note
that the target of the match m is adapted (via propagation over timed spans
from TGS π) and the current timepoint t is modified (according to the provided
intervals) only in the cases of the metric-exists-new and until operators. For
these two metric temporal operators, we provide further informal explanations
below. Finally, a TGS satisfies an MTGC defined over ∅ when the TGS, the
initial observation timepoint 0, the initial morphism iπ0 : ∅ ↪−→c π0 representing
an empty binding, and the empty valuation α : ∅ → V satisfy the MTGC.

Definition 5 (Satisfaction of MTGCs by TGSs). If φ ∈ ΦMTGC
H is an

MTGC, π ∈ ΠG is a TGS, 0 ≤ t ≤ dur(π) is a timepoint before the end of π,
m : H ↪−→c πt is a consistent morphism into the graph at timepoint t, and
α : XH → V is a valuation, then (π, t,m, α) |=TGS φ, if an item applies.

– φ = �.
– φ = ¬φ′ and (π, t,m, α) �|=TGS φ′.
– φ = φ1 ∧ φ2, (π, t,m, α) |=TGS φ1, and (π, t,m, α) |=TGS φ2.
– φ = ∃(f : H ↪−→r H ′, φ′) and there are m′ : H ′ ↪−→c πt and α′ : XH′ → V s.t.

m′◦f =m, α′◦fX =α, (π, t,m′, α′) |=TGS φ′, and sat∃(α′(ΘH′ ∧m′−1
X (Θπt

))).
– φ = ∃N

I (f : H ↪−→r H ′, φ′) and there are t′ ∈ t + I, m′ ∈ PM(m,π[t,t′]), and
m′′ : H ′ ↪−→c πt′ s.t.

• there is α′ : XH′ → V s.t. m′′◦f =m′, α′◦fX =α, (π, t′,m′′, α′) |=TGS φ′,
sat∃(α′(ΘH′ ∧ m′′−1

X (Θπt′ ))), and
• for each t′′ ∈ [0, t′) there is no m′′′ ∈ PM(m′′, rev(π[t′′,t′])).

– φ = φ′
1 UI φ′

2 and there is t′ ∈ t + I s.t.
• there is m′ ∈ PM(m,π[t,t′]) s.t. (π, t′,m′, α) |=TGS φ′

2 and
• for each t′′ ∈ [t, t′) there is m′′ ∈ PM(m,π[t,t′′]) s.t. (π, t′′,m′′, α) |=TGS

φ′
1.

If φ ∈ ΦMTGC
∅ , iπ0 : ∅ ↪−→c π0, α : ∅ → V, and (π, 0, iπ0 , α) |=TGS φ, then

π |=TGS φ.
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For the metric-exists-new operator, we state that there is some timepoint t′ in
the future that is compatible with the given interval I where the propagated
match m′ can be extended to a match m′′ such that (first item) this extension
is compatible with f as required for the case of exists and (second item) the
extended match m′′ cannot be propagated to any timepoint in the strict past.
For the until operator, we state (first item) that φ′

2 is eventually satisfied for
some timepoint t′ in the future that is compatible with the given interval I and
(second item) that φ′

1 is permanently satisfied for all timepoints between the
current observation timepoint t and the timepoint t′ except for t′.

For our running example, see Fig. 3b for a TGS π, which does not satisfy
the MTGC ψ from Fig. 3a. In this TGS, we find a fresh match of a task on
a system at timepoint t = 6 (after step 2). Moreover, we find immediately a
(unique) handler for this task (based on the common id 123 ) such that there is
no second handler for that task (with common id) until we find at timepoint
t = 21 a result with the successful attribute value ok obtained by the handler.
However, this result is not obtained within the specified interval of at most 10
timeunits, which corresponds to the global time interval 6 + [0, 10] in this case.

4 On-the-fly Analysis for MTGL

We now present an on-the-fly analysis procedure for checking MTGCs against
finite and infinite TGSs as our main contribution. For this aim, we build upon [8]
where an operation Reduce for translating an MTGC ψ into a GC ψ′ and an
operation Fold for translating a finite TGS π into a so-called graph with his-
tory (GH) G were presented. These two operations ensured that π |=TGS ψ
iff G |= ψ′, which allows for an efficient check of MTGL satisfaction for finite
TGSs by checking GL satisfaction for finite GHs instead. Note that the problem
of checking MTGL satisfaction (as for other metric temporal logics) becomes
particularly difficult when instances of until operators are nested.

When considering a TGS π in an on-the-fly scenario where timed spans are
added one-by-one, we cannot simply apply the procedure from [8] to all pre-
fixes of π because the MTGL satisfaction relation is inherently pessimistic not
returning the desirable results. For example, the MTGC ψ from Fig. 3a would be
violated by the TGS π from Fig. 3b not only at timepoint 21 when the violation
of the deadline is detected (as discussed before) but also at timepoint 6 since the
prefix of length 2 of π does not contain any node of type Result. Note that we
would indeed expect a violation at timepoint 6 already when the prefix of length
2 of π would be the entire TGS to be considered. As a ground truth of violations
that would ideally be returned by our procedure, we define true violations later
on in Definition 12 where also all subsequent behavior given by the timed spans
in the TGS, which is not available to the on-the-fly procedure, is also taken into
account.

For our on-the-fly analysis procedure (see Fig. 4 for an overview), we employ
extensions/adaptations of the operations Reduce and Fold from [8]. As inputs,
we consider an MTGC ψ and a finite/infinite TGS π that is incrementally con-
sidered. If the given TGS π is finite, it may include a node of type Terminated in
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Fig. 4. Overview of the on-the-fly analysis procedure

its last graph to denote that it is not going to be continued (see Fig. 3b). Firstly,
we employ a modification of the operation Reduce (see Definition 9) to obtain
for ψ (via a parameter mode ∈ {Pes,Opt}), in addition to the pessimistic GC
ψpes as in [8], a second optimistic GC ψopt . Note that we apply the operation
Reduce offline (once for each mode) before considering the timed spans of the
TGS for increased efficiency. Secondly, we split the operation Fold into two
operations Fold1st and FoldF to allow for an incremental rather than a batch
folding of a TGS. That is, Fold1st produces a first GH from the start graph of
the TGS and FoldF modifies a given GH G′

i into a GH G′
i+1 for each timed

span from the TGS as soon as that timed span is available. The sequence of
GHs constructed in this way results in a GH TGS π′ that corresponds to the
prefix of the TGS available so far. Thirdly, we check for the conformance of each
G′

i with ψpes and ψopt as soon as G′
i is available by separately applying the GL

satisfaction relation to G′
i and ψpes as well as to G′

i and ψopt . Each determined
non-satisfaction is a violation for which we add the global time of its occurrence
(which is given by the sum of all δi so far) to the resulting sets of pessimistic
and optimistic violations.

The operations Fold1st and FoldF ensure that each GH resulting from fold-
ing a TGS contains for each node/edge occurring in the TGS the timepoints
of its creation and (if it was deleted) its deletion using additional cts and dts
attributes. For our running example, the type graph TG from Fig. 1a contains
these cts and dts attributes already and the GH eventually obtained for the
entire finite terminated TGS π from Fig. 3b is given in Fig. 5c.

The operation Reduce returns GCs that encode the satisfaction checks for
MTGL operators according to Definition 5 using ACs. These ACs make use of
(a) the cts and dts attributes as added to the GH to control the matching of
elements, (b) additional variables for quantifying over observation timepoints as
in Definition 5, and (c) a variable xtv storing the current global time (i.e., the
duration of the considered TGS prefix π′). As for the variable x:Ax :int in Fig. 2,
the additional quantified variables and the variable xtv for the current global
time are required to be contained in the GHs. The operation Reduce returns
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for this purpose, besides the GC, also a graph Gtv containing these additional
variables including the distinguished global time variable xtv . For our running
example, the graph Gtv is given in Fig. 5b where all variables are associated with
:Encoding nodes to decrease the number of matches via the num attributes that
need to be considered when we check whether a GH subsuming Gtv satisfies the
obtained GC. Note that the construction of :Encoding nodes is omitted later in
Definition 9 to ease presentation. While Gtv is a subgraph of each constructed
GH, we add the AC xtv = dur(π′) to the current GH assigning the current global
time to the variable xtv just before checking GL satisfaction whenever a new GH
has been constructed during the on-the-fly analysis.

We now define the operations used in the on-the-fly analysis procedure. The
predicate Gtv identifies a unique global time variable xtv in a GH G (subsuming
the graph Gtv obtained from folding) and the operation Gta adds the AC that
assigns the current global time to the xtv into the graph G.

Definition 6 (Predicate Gtv and Operation Gta). If G is a GH with a
variable x of sort real, then G is a graph with global time variable x, written
Gtv(G, x). If, additionally, t ∈ R0 is a global timepoint and G′ is the graph
obtained from G by adding the AC x = t, then G′ is the time-assigned version
of G for the timepoint t, written Gta(G, x, t) = G′.

For incrementally folding a TGS starting in a graph H into a GH, we use in the
first step the following operation Fold1st, which joins the graphs Gtv and H as
well as adds cts attributes to all nodes and edges originating from H.

Definition 7 (Operation Fold1st). If G′ is the componentwise disjoint union
of the graphs Gtv and H where the attributes cts(α) = 0 and dts(α) = −1 are
added to each node and edge α originating from H, then Fold1st(Gtv ,H) = G′.

The operation FoldF adapts a GH G reached at global timepoint t to a GH
G′ by incorporating the changes described by a timed span ρ = (δ, �, r). Firstly,
dts attributes of nodes and edges deleted by � are updated to the new global
timepoint t+ δ. Secondly, cts attributes with new global timepoint t+ δ and dts
attributes with default value −1 are added to all nodes and edges created by r.

Definition 8 (Operation FoldF). If G is a graph, t ∈ R0 is the current global
timepoint, ρ = (δ, � : D ↪−→r H1, r : D ↪−→r H2) is a timed span, and G′ is a graph
constructed from G by (a) changing the attribute dts(α) to t + δ for each node
or edge α ∈ H1 − �(D), (b) renaming each node and edge α ∈ �(D) according to
�, (c) renaming each node and edge α ∈ r(D) according to r, (d) adding each
node and edge α ∈ H2 − r(D), and (e) adding the attributes cts(α) = t + δ and
dts(α) = −1 to each node and edge α ∈ H2 − r(D), then FoldF (G, t, ρ) = G′.

The operations Fold1st and FoldF preserve the predicate Gtv implying that
the variable xtv for the current global time can still be identified and used
after the folding steps during the on-the-fly analysis. Moreover, the operation
FoldF induces a timed span between the GHs G and G′ leading to a GH TGS
as discussed above. For our running example, the result of applying Fold1st and
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then incrementally FoldF to the TGS π from Fig. 3b leads to the graph G′
3 in

Fig. 5c where the elements of the graph Gtv from Fig. 5b are omitted for brevity.
Since no elements are deleted in π, all elements in G′

3 have dts attributes of
value −1.

We apply the operation Reduce, which is equipped with a mode parameter,
to separately construct the GCs ψpes and ψopt for a given MTGC ψ. The fol-
lowing definition of Reduce extends the definition in [8] by additionally covering
the optimistic reduction for mode = Opt and explicitly integrating the formal
reduction for the MTGL operator metric-exists-new introduced in Definition 3.

Definition 9 (Operation Reduce). If ψ ∈ ΦMTGC
∅ is an MTGC and mode ∈

{Pes,Opt} is the chosen mode for reduction, then Reduce(mode, ψ) = (Gtv , xtv ,
∃(iG0 ,Reducerec(ψ, x0))) where the graph G0 contains the variable xtv and an
additional variable x0 for the initial observation timepoint 0. The employed recur-
sive operation Reducerec is homomorphic for true, conjunction, and negation
and adds cts and dts attributes to all nodes and edges in the resulting GC. For
the remaining operators, Reducerec is defined as follows where the formal param-
eter xt corresponds to the variable t in Definition 5 capturing the timepoint at
which the MTGC provided to Reducerec is checked for satisfaction.

– Reducerec(∃(f : H ↪−→r H ′, φ′), xt) = ∃(f ′,Reducerec(φ′, xt)) where f ′ addi-
tionally requires alive(xt,H

′)4 ensuring that H ′ is matchable at timepoint xt.
– Reducerec(∃N

I (f : H ↪−→r H ′, φ′), xt) = ∃(f ′,Reducerec(φ′, x′
t)) where f ′

additionally requires a variable x′
t satisfying x′

t ∈ (xt + I) ∧ alive(x′
t,H

′) ∧
earliest(x′

t,H
′)5 ensuring that H ′ is matchable at timepoint x′

t but not earlier.
– Reducerec(φ′

1 UI φ′
2, xt) = ψpes ∨ ψext with

• ψpes = ∃(f0,Reducerec(φ′
2, x

′
t) ∧ ∀(f1,Reducerec(φ′

1, x
′′
t ))) where f0 addi-

tionally requires a variable x′
t satisfying x′

t ∈ [0, xtv ]∩(xt+I) ensuring that
x′

t is a future timepoint where φ′
2 is satisfied and f1 additionally requires

a variable x′′
t satisfying x′′

t ∈ [xt, x
′
t) for checking that φ′

1 is satisfied until
timepoint x′

t.
• ψext = ⊥ for mode = Pes disabling the optimistic check.
• ψext = ¬∃(f0,�) ∧ ∃(f1,�) ∧ ∀(f2,Reducerec(φ′

1, x
′′
t )) for mode = Opt

where f0 additionally requires a :Terminated node disabling the optimistic
check when the TGS corresponding to the GH against which the resulting
GC is checked is known to have ended, f1 additionally requires a variable
x′

t satisfying x′
t ∈ (xtv ,∞)∩(xt+I) ensuring that there is still a timepoint

in the strict future at which φ′
2 could be satisfied, and f2 additionally

requires a variable x′′
t satisfying x′′

t ∈ [xt, xtv ] for checking that φ′
1 was

satisfied at least until the current global time xtv .

The returned graph Gtv contains all additional variables used in the reduction.6

4 alive(x, H) is an AC based on cts and dts attributes stating that all nodes and edges
in H are created and not yet deleted at timepoint x.

5 earliest(x, H) is an AC stating that the highest cts attribute value in H is x.
6 Note that the predicate Gtv(Gtv , xtv ) is satisfied by construction.
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Fig. 5. The results of reducing the MTGC ψ from Fig. 3a and the result of incrementally
folding the entire TGS π from Fig. 3b

For our running example, the result of the reduction of the MTGC ψ from
Fig. 3a is given in Fig. 5a for both reduction modes. The first line requires that
the initial observation timepoint x0 is 0 and that the variable xtv is matched
into the GH thereby binding it to the current global time. The second line
(a) attempts to match T , e1, and S for some observation timepoint x2 in the
future of x0 such that the matched elements are alive at timepoint x2 and not
all of them are alive at any earlier timepoint (encoding the metric-forall-new
operator) and (b) then checks whether a suitable handler with the same id
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exists at timepoint x2. The third line (for mode = Pes) tries to determine some
timepoint x3 in the future of x2 restricted by the given interval [0, 10] of the
until operator where (a) a result with value ok can be matched and where (b) at
all timepoints x4 ∈ [x2, x3) no second handler with the same id can be matched.
The fourth line (for mode = Opt) checks whether the TGS has not terminated
already (which disables the optimistic checking), whether there is still some time
left for the right-hand side condition of the until operator to become satisfied,
and whether the left-hand side condition of the until operator was satisfied at
all timepoints x6 since x2 and up-to the current global time.

The theorem on soundness of Reduce from [8] is now adapted for the included
operator metric-exists-new and extended to cover also the optimistic mode.

Theorem 1 (Soundness of Reduce). If ψ ∈ ΦMTGC
∅ is an MTGC, π ∈ Πfin

H is
a finite TGS starting in H and ending in H ′, (Gtv , xtv , ψpes) = Reduce(Pes, ψ)
is the result of pessimistic reduction, (Gtv , xtv , ψopt) = Reduce(Opt, ψ) is the
result of optimistic reduction, and G is obtained from π and Gtv using Fold1st

and the iterated application of FoldF , then (a) π |=TGS ψ iff G |= ψpes and (b)
∃π′ ∈ ΠH′ . π;π′ |=TGS ψ only if G |= ψopt .

Proof Idea. Straightforward inductions on ψ and π along the lines of [8]. ��
The reverse direction of the item (b) in the theorem above does not hold for the
MTGC φ = � U[2,2] ⊥ even though non-satisfaction in the future is guaranteed.
Moreover, no other reduction can achieve the equivalence for item (b) since
satisfiability is undecidable for GCs and hence also for MTGCs implying that
guaranteed non-satisfiability as for φ cannot always be determined. However,
we may simplify generated GCs using the sound and refutationally complete
procedure from [24] for checking GL satisfiability. For example, the GC obtained
by reducing the MTGC φ from above can be simplified to ⊥ using this approach.

The following two operations Analyze1st and AnalyzeF rely on the opera-
tions Fold1st and FoldF , respectively, and are used in our on-the-fly analysis
procedure, which is given in pseudo code in Procedure 1. To simplify presenta-
tion, Procedure 1 describes the on-the-fly analysis using only one of both modes
requiring that two instances of Procedure 1 are executed concurrently to cover
the optimistic and the pessimistic mode. Procedure 1 maintains during its exe-
cution a triple (G, t, V ) consisting of the current GH G, the current global time
t, and the set of computed violations V . The operation Analyze1st constructs the
first triple (G, t, V ) by applying Fold1st and by inserting the initial timepoint 0
into the set of violations when the resulting GH G does not satisfy the GC ψ′.

Definition 10 (Operation Analyze1st). If (Gtv , xtv , ψ′) was returned by an
application of the operation Reduce, π ∈ Πfin

H is a finite TGS starting in graph
H, G is the GH obtained using Fold1st(Gtv ,H), and if Gta(G, xtv , 0) �|= ψ′ then
V = {0} else V = ∅, then Analyze1st((Gtv , xtv , ψ′), π) = (0, G, V ).

The operation AnalyzeF modifies a triple (G, t, V ) to a triple (G′, t′, V ′) accord-
ing to a timed span ρ by modifying the GH G to a GH G′, by increasing the
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Procedure 1. On-the-fly Analysis Procedure
Input: mode {A mode parameter from {Pes, Opt}}
Input: ψ {An MTGC from ΦMTGC

∅ }
Input: H {A start graph}
Input: stream {A stream of timed spans starting with H}
1: (Gtv , xtv , ψ

′) ← Reduce(mode, ψ)
2: t ← 0 {Current global time}
3: G ← Fold1st(Gtv , H) {Current GH}
4: loop
5: if Gta(G, xtv , t) �|= ψ′ then
6: print violation at timepoint t {Output violation}
7: end if
8: if stream. hasNext() then
9: ρ ← stream. next() {Get next timed span ρ}
10: G ← FoldF (G, t, ρ) {Modify GH according to ρ}
11: t ← t + ρ.δ {Modify current global time according to ρ}
12: else
13: return {Reached end of the TGS}
14: end if
15: end loop

Analyze1st

AnalyzeF

global time t to t′, and by inserting the global time t′ into the set of violations
V when G′ does not satisfy the GC ψ′.

Definition 11 (Operation AnalyzeF). If (Gtv , xtv , ψ′) was returned by an
application of the operation Reduce, ρ = (δ, �, r) is a timed span, t ∈ R0 is
the global time before ρ, G is a GH with time-storing variable xtv satisfying
Gtv(G, xtv ), V ⊆ R0 is a set of violations computed until the timepoint t, t′ =
t+δ is the global time after ρ, G′ = FoldF (G, t, ρ) is the modification of the GH
G according to ρ, and if Gta(G′, xtv , t′) �|= ψ′ then V ′ = V ∪ {t′} else V ′ = V
implements the conditional addition of a violation t′ to the set of violations V ,
then the triple (t,G, V ) is modified to the triple (t′, G′, V ′) according to the
timed span ρ, written (t,G, V ) AnalyzeF

xtv ,ψ′,ρ (t′, G′, V ′).
Moreover, we extend the operation AnalyzeF to finite TGSs using its iterated

application starting with the triple obtained using Analyze1st((Gtv , xtv , ψ′), π).

For our running example, Procedure 1 returns the sets {6, 21} and {21} of viola-
tions for the pessimistic and the optimistic mode, respectively. Note that the
given MTGC is violated at each timepoint in (16,∞), i.e., the violation is
detected with a delay of about 5 timeunits. However, we believe that assum-
ing a sufficiently high timed span rate (checking for violations permanently in a
hot loop) mitigates this problem of delayed detection. Also, we assume a user-
provided policy for deciding whether timepoints are recorded as violations when
employed solvers such as Z3 are unable to decide the satisfaction problem in time.

Subsequently, we formally evaluate Procedure 1 by comparing the violations
printed by it with a ground truth of violations that would be returned ideally.
This ground truth is defined by the operation trueViolations delivering the set
of true violations of an MTGC ψ in a TGS π for a maximum checking index n.
This set of true violations contains the durations of all prefixes π′ of the TGS π
where the MTGC ψ is not satisfied subsequently by any continuation π̃ that is
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a prefix of π. Observe that a precise detection of violations thereby requires the
knowledge of future steps, which is unavailable in the context of our proposed
on-the-fly analysis approach.

Definition 12 (Operation trueViolations). If ψ ∈ ΦMTGC
∅ is an MTGC, π ∈

ΠH is a TGS, n ∈ N is a maximum checking index, and length(π) ≥ n, then
trueViolations(ψ, π, n) = {t | ∃π′. (π′ � π) ∧ (length(π′) ≤ n) ∧ (t = dur(π′)) ∧
(∀π̃. (π′ � π̃ � π) → (π̃ �|=TGS ψ))}.
To enable a comparison of Procedure 1 with the set of true violations, we now
introduce the operation check, which gathers the optimistic and pessimistic vio-
lations printed by Procedure 1 up to a given index n.

Definition 13 (Operation check). If (Gtv , xtv , ψ′) = Reduce(mode, ψ) is
the reduction obtained using the operation Reduce, π ∈ ΠH is a TGS of
length at least n ∈ N starting in graph H, π̄ is the prefix of length n of π,
(t,G, V ) = Analyze1st((Gtv , xtv , ψ′), π) is the first triple for the on-the-fly anal-
ysis, and (t,G, V ) AnalyzeF

xtv ,ψ′,π̄ (t′, G′, V ′) computes the violations V ′ using
the on-the-fly analysis on the prefix π̄, then check(mode, ψ, π, n) = V ′.

Based on the presented definitions, we introduce our main result stating that the
optimistic and the pessimistic on-the-fly analysis carried out using Procedure 1
(and formalized using the operation check) determines under- and over-approxi-
mations of the set of true violations, respectively. That is, optimistic violations
must be true violations and pessimistic violations may be true violations.

Theorem 2 (Approximate Detection of True Violations using Opti-
mistic and Pessimistic On-the-fly Analysis). If ψ ∈ ΦMTGC

∅ is an MTGC,
π ∈ ΠH is a TGS, n ∈ N is a maximum checking index, and length(π) ≥ n, then

– check(Opt, ψ, π, n) ⊆ trueViolations(ψ, π, n) and
– trueViolations(ψ, π, n) ⊆ check(Pes, ψ, π, n).

Proof Idea. The first item holds using Theorem 1 since every violation of the
GC ψ′ obtained using reduction for mode = Opt ensures that the future evolu-
tion used in the operation trueViolations is also guaranteed to violate the MTGC
ψ as the violation cannot be undone in any continuation. The second item holds
using Theorem 1 because (via contraposition) when the GC ψ′ obtained using
reduction for mode = Pes is not violated, this means that the considered TGS
prefix π′ satisfies the MTGC ψ and therefore at least the empty continuation
π′ = π̃ satisfies ψ as well implying that the current global timepoint is no
true violation. ��
For our running example from Fig. 3 where the TGS π has length 3, we
observe that check(Opt, ψ, π, 3) = {21} = trueViolations(ψ, π, 3) ⊆ {6, 21} =
check(Pes, ψ, π, 3). This means that the optimistic on-the-fly analysis detects
only one true violation at global timepoint 21 but the pessimistic on-the-fly
analysis returns additionally a second violation at global timepoint 6 indicating
that the MTGC ψ may not be satisfied by all continuations, which indeed is the
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case for the TGS π. When changing δ2 to 1 in Fig. 3b, the pessimistic on-the-
fly analysis still generates the violation at global timepoint 6 but 6 is no true
violation since the result R is then generated in time.

Based on Theorem 2, we obtain, as mentioned in Sect. 1, a three-valued inter-
pretation of MTGL when using Procedure 1 (formalized using the operation
check) to generate optimistic and pessimistic violations. In this interpretation,
the absence of a pessimistic violation t guarantees satisfaction, each optimistic
violation t guarantees nonsatisfaction, and a pessimistic violation t that is no
optimistic violation is an indifferent judgement on satisfaction.

Definition 14 (Three-valued Interpretation of MTGL). If ψ ∈ ΦMTGC
∅

is an MTGC, π ∈ ΠH is a TGS of length at least n ∈ N, and π̄ is the prefix of
length n of π, then [[π, ψ]]n = true if dur(π̄) /∈ check(Pes, ψ, π, n), [[π, ψ]]n = false
if dur(π̄) ∈ check(Opt, ψ, π, n), and [[π, ψ]]n = indifferent otherwise.

From a practical point of view, Procedure 1 solves the satisfaction problem for
three kinds of TGSs. Firstly, non-terminating systems can be analyzed through-
out their entire runtime in an on-the-fly manner. Secondly, finite slices of TGSs
generated by long-running systems can be analyzed in an offline manner produc-
ing pessimistic but no optimistic violations for cases where the ongoing evolution
of the system may be admissible. Lastly, terminating systems where a Termi-
nated node is added by the last timed span can be analyzed where pessimistic
and optimistic violations coincide after the last step.

However, for formal specifications given by complex MTGCs, we intend to
equip violations given by timepoints with human-readable explanations. For this
purpose, we may use partial MTGC satisfaction trees following GC satisfaction
trees from [25]. We expect that this would also permit an analysis of the causal
dependencies among violations and their origins. For our running example, the
violation at timepoint 21 has the pessimistic violation at timepoint 6 as an origin
because the problematic task T connected to system S was freshly matched at
timepoint 6 leading to the violated deadline at timepoint 21.

We implemented Procedure 1 in the tool AutoGraph [24], which supports
GL and MTGL and relies on the constraint solver Z3 [16] for checking the
satisfiability of ACs. For a high level of confidence, we applied extensive testing
of the implemented functionality for diverse and deeply nested MTGCs also
covering our running example. Overall, the implementation is promising and
demonstrates the feasibility of our approach.

5 Related Work

Verification approaches for graph transformation systems are incomplete due
to their expressiveness. For example, logics such as CTL and PTCTL can be
applied to entire state spaces [6,15] but have limited support for sequence prop-
erties relying on atomic propositions. Similarly, invariant verification [4,23] as an
example of static analysis considers graph sequences but only state invariants.
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On-the-fly analysis of dynamic systems is used (before deployment) in test-
ing and (after deployment) in specification-based monitoring using specifica-
tions given by temporal logics, automata with quantification, and rule-based
systems [1]. These approaches are difficult to compare due to highly domain-
specific requirements regarding expressiveness, efficiency, and usability. Logic-
based approaches e.g. [11,14] often lack support for key features of MTGL such
as data elements, bindings, or metric bounds in temporal operators. A notable
exception is the Metric First-Order Temporal Logic (MFOTL) [2], supported by
the tool MonPoly, that represents a system state as a set of relations, supports
the binding of elements and uses a point based rather than an interval based
semantics as MTGL. Note that the encoding of MTGCs in MFOTL is highly
technical and error-prone (similarly, the logic of nested graph conditions [9] is
advantageous compared to FOL on graphs in graph centered scenarios). Finally,
MonPoly imposes syntactic limitations on MFOTL conditions to ensure that
provided conditions are satisfied/violated by a finite future.

Logics such as MTGL and MFOTL can be directly applied in the context
of runtime monitoring [1,13]. A roadmap towards such an application using an
extended subset of MTGL is presented in an informal way in [21,22].

6 Conclusion and Future Work

We introduced an on-the-fly analysis procedure for the satisfaction of MTGCs by
infinite TGSs (generated by non-terminating systems) and finite TGSs (gener-
ated by terminating systems or representing prefixes of infinite TGSs). The anal-
ysis procedure results in a three-valued interpretation of MTGL where unavoid-
able non-satisfaction is detected via optimistic violations and where potential
non-satisfaction in the future is detected via pessimistic violations as soon as
possible. The two sets of violations approximate the ground truth given by the
set of true violations, which can only be determined by offline analysis for finite
terminated TGSs. The on-the-fly analysis procedure including both sets of vio-
lations is supported by our extension of the tool AutoGraph.

In the future, we will (a) integrate the since operator into MTGL and the
proposed analysis procedure, (b) improve applicability of our approach using
more detailed violations, (c) improve the optimistic reduction by simplifying
the reduced MTGC using the constraint solver approach from [24], (d) employ
incremental GC checking to improve the on-the-fly checking performance, and
(e) compare our approach to other tools such as MonPoly w.r.t. efficiency.
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Abstract. We present a programming library for the rapid development
of graph tools, with applications in graph transformation and related
fields. Features include working with graphs, graph morphisms, basic
categorical constructions such as computing pushouts and pushout com-
plements or enumerating all morphisms with certain properties, but also
applications such as executing graph transformation steps. Additionally,
we offer graphical user interface widgets for visualization and manipula-
tion of graphs, morphisms and categorical diagrams.

Our objective is to allow users to quickly develop graph tools for both
simple and complex problems, to allow easy embedding into existing
software, and to have comprehensible code especially for the main algo-
rithms. Existing tools that demonstrate the versatility and ease of use
of the library include: DPOdactic (a didactic tool for teaching double-
pushout graph transformation), DrAGoM (a tool to handle multiply
annotated type graphs for abstract graph rewriting), and Grez (termi-
nation analysis of graph transformation systems).

Keywords: Graph transformation · Rapid development · Graph tools

1 Introduction

The graph transformation community has always been strong in the develop-
ment of tools, for support of generic graph rewriting, for supporting software
development and for verification and analysis (see for instance [2,6,8,15,16] for
a non-exhaustive enumeration).

However, to our knowledge there is no publicly available, easily accessible and
flexible library that provides a backbone and toolbox for the rapid development
of graph tools, including both the support of various constructions and visual-
ization of graphs. We have developed such a library and are still in the process
of extending it. Since we believe that there may be a wider interest, we will here
present it as a community service and describe existing tools that are already
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based on such a library. It does not contain groundbreaking new functionality,
but in our opinion we present a nice, comprehensive package.

Our design principles while developing this library are as follows:

– It is designed to have a low learning curve, which we have tested by its suc-
cessful use in several student projects. It has been integrated both into tools
that have been implemented from scratch, and the continued development of
existing tools.

– Simple tasks should be easy to implement quickly. We will illustrate this with
two suggestive examples:

• If you need to compute the composition of two given graph cospans, it
should – after becoming acquainted with the library – take you as much
time to do it by hand on paper, as it does to just write a small prototype
program.

• Assume you develop a nice theory about commuting hexagons of graph
morphisms and you want beautiful renderings of them. Using generic
utility functions, you can convert the abstract representation into a dis-
playable graph using no more than 50 well-formatted lines of code.

– We aim for readability and favor clear and understandable code over raw
speed. It should e.g. be possible to learn how to compute pushouts of graph
morphisms just by reading the code.

– We provide automatic visualization of entities such as graph morphisms, com-
muting squares, etc., which are typically not supported by general purpose
graph display libraries.

– We aim for easy integration of the library into your own application.

The library can be downloaded from https://www.uni-due.de/theoinf/
research/tools javagraph.php.

Related Work. We have evaluated some of the tools that are commonly used
in the context of graph transformation and offer similar functionality, in partic-
ular, Progres [16], GraJ [6], ENFORCe [2], AGG [15], and a tool for graph
transformation by computational category theory [13].

Progres is a suite of tools that focuses on the specific application of graph
grammars and graph rewriting systems. It is, however, not designed as a generic
library. Together with the fact that no source code is available (but only non-
portable binaries), it is probably hard to embed it into other applications.

GraJ is a tool for the execution of graph programs. It features a modular
design that facilitates embedding into custom tools. ENFORCe builds on GraJ
to prove correctness not only for graph programs, but also other weak adhesive
HLR categories. Notably, it also supports graph conditions and constraints. Both
tools are, however, currently unmaintained and not publicly available for down-
load. Thus we could not evaluate its suitability for e.g. prototyping purposes.

AGG also focuses on graph grammars and graph transformation. It too has
support for graph conditions, and has an extensible architecture. However, it
appears to be designed as a standalone tool. While it is a very powerful tool and

https://www.uni-due.de/theoinf/research/tools_javagraph.php
https://www.uni-due.de/theoinf/research/tools_javagraph.php
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the components that do the actual computations feature useful algorithms, the
programming interface does not appear to be specifically designed for use as a
library.

In [13], a library for carrying out graph transformation in an abstract cate-
gorical setting is proposed. In this way, it is similar to the CatLib component of
our work. The full code was not available for evaluation, but their focus is less on
graphs and more on the categorical side, which makes it potentially more diffi-
cult to work with the library. In addition the library does not offer a ready-to-use
visualization component.

Our justification for the development of a new library is not just to avoid
these particular problems, but to also focus on additional aspects (ease of use,
prioritize clear and understandable code over efficient implementations, make it
easy to embed into your own tools) as detailed above. In this regard, it is similar
in spirit to the SiTra library [1] which focuses not on practical applications, but
to “aid a programmer in learning the concept of writing transformation rules”.

Outline of the Paper. The article is structured as follows: In Sect. 2, we
describe the architecture and the features of our library. In Sect. 3, we give a
detailed overview of existing tools that are using the library. We conclude in
Sect. 4 with an outline of future work.

2 Components and Features

2.1 Components Overview

In this section, we give a detailed overview of the components that together
make up the library and the features that are available. The components can be
used together or independently of each other as needed.

The Java-Graph component provides the computational foundations. It pro-
vides abstract representations of graphs, graph morphisms, graph conditions and
related objects; categorical constructions such as pushout complements; enumer-
ation of morphisms with certain properties; graph transformation; loading and
saving of objects to files in a plaintext format that is easy to read and write. We
give a more detailed description of this component in Sect. 2.2.

Java-Graph by itself provides no graphical user interface and can therefore
be used for batch processing tasks, or as part of tools that already build on
different frameworks. Graphical output is provided by a separate component.

The VisiGraph component is responsible for displaying graphs to the user,
and provides a similar feature set as other graph display libraries. It automati-
cally layouts graphs that can then be shown to the user. Currently, it provides
display and editor widgets for Swing-based graphical user interfaces (however, it
does not have a strong dependency on Swing and can be quickly ported to work
with other GUI toolkits). It is also possible to export the graph to image files.

As a companion component, VisiGraphJS is a reimplementation in Javascript
and can be used to provide the same type of visualizations in web applications.
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It is also possible to do the layouting process in Java using VisiGraph and then
only display the result in a web browser.

The VxToolbox component serves as a bridge between Java-Graph and Visi-
Graph. It is responsible for creating useful visualizations not just for ordinary
graphs, but for the various objects that are supported by Java-Graph. As an
example, the visualization of a pushout square should put the four graphs at
the four corners of an appropriately-sized square, and to make the output more
easily graspable, common elements (e.g. nodes that are in both the domain and
codomain of some morphism) should be positioned in a consistent way. VxTool-
box provides not only visualization routines for the objects supported by Java-
Graph, but also basic building blocks to make it easy to generate visualizations of
custom objects (as a rule of thumb, visualizing e.g. commuting hexagons should
require no more than 50 lines of code).

Finally, CatLib is a generalization of Java-Graph to arbitrary categories.
CatLib can be used independently of, or together with, Java-Graph. Prototype
tools can thus be implemented in a generic way, doing computations on arbitrary
categories, where Java-Graph is used to showcase the generically implemented
tool for a specific example category. Currently, CatLib implements the categories
Set and, using Java-Graph, the category of finite (hyper)graphs Graphfin.

2.2 Detailed Description of the Java-Graph Component

At the core, we have the de.uni due.inf.ti.graph package (prefix abbreviated
hereinafter as ...ti.graph), with classes for the basic entities. Graphs are repre-
sented with the Graph class, containing collections of Nodes and (hyper-)Edges
with Labels. We provide the usual methods for construction and manipula-
tion of graphs such as graph.addEdge(new Label("A"), n0, n1, n2) to add
a ternary hyperedge or graph.getNodes() to obtain a (read-only) List of
the nodes in a Graph. Although edges are generally hyperedges, we provide
additional methods as simplifications for the common case of directed edges
(e.g. edge.getTarget() as an alternative to edge.getNodes().get(1)).

Using the ...ti.graph.io package, all supported objects (graphs, conditions
etc.) can be read and written in a custom text-based file format named SGF.
The textual representation of SGF resembles the way a graph would be writ-
ten on paper. The SGF code graph { n0 --A-> n1 --A-> n2 --A-> n0; };
describes a graph with three nodes (n0 to n2) that are connected by directed a-
labeled edges in a circle. Objects can be loaded from files or from strings. In our
example below, we use the latter, in conjunction with the Java 13 Text Blocks
feature, to obtain very concise prototype code.

Graph morphisms map elements of one graph to compatible elements of
another one, where the map can be either total or partial. A Morphism has a Map-
like interface (mor.get(node0), mor.getPreimage(edgeA) and the like) with
additional functionality; for instance, mor.put(domEdge, codomEdge) maps not
only the edge, but also creates mappings for all nodes that are incident to the
given edge (unless this mapping would conflict with the node mapping of the
graph, in which case an exception is thrown). Morphisms can be created easily
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by explicitly giving the node and edge mappings, either using the put method
in Java, or using => in SGF (see the example at the end of this section).

Graph conditions can be used to specify additional properties of graphs such
as the existence or absence of certain elements. They come in two flavours: the
nested conditions (roughly, first-order formulas on graphs) as introduced in [9]
for weak adhesive HLR categories; and cospan conditions, which use a slightly
different tree-based structure, as introduced in [3] for adhesive categories. As an
example for the former, the condition ∃(m1, true) ∨ ∃(m2, true), where m1,m2

are morphisms describing the elements that should exist at some point, can be
written in SGF as follows: c = or [ exists(m1,true), exists(m2,true) ];

We provide various fundamental categorical constructions (...ti.graph.ext).
Given a span, a cospan, or a pair of composable morphisms, it is pos-
sible to compute the pushout, pullback, or pushout complement, respec-
tively. It is possible to enumerate all morphisms between two graphs with
certain properties (examples include enumeration of all total injective mor-
phisms; all partial morphisms; all isomorphisms; all morphisms that extend a
given base morphism). Furthermore, given a span, it is possible to enumer-
ate all jointly epi squares. Enumerator implements Iterable, and hence can
be used in loops (e.g. for (Morphism i : Morphism.getIsomorphisms(g1,
g2)) { ... } to executesome code for all isomorphisms between two graphs
g1, g2), or as Streams (Morphism.getIsomorphisms(g1, g2).stream().map(i
-> ...)). All of these enumerators compute their results lazily and so also work
when the total number of possible morphisms is very large.

The following example code creates objects for a pair of graph morphisms
gL

mTL←−−− gT
mTR−−−→ gR, where gT =

1 2 3
(three isolated nodes), gL =

1 2 3A ,

gR =
1 2 3B , and morphisms mTL, mTR merge nodes 2, 3 and 1, 2 respectively.

Then their pushout is computed and the result is printed to standard output:

String sgfContent = """
gT = graph { node n1; node n2; node n3; };
gL = graph { n1 --ea:A-> n23; };
gR = graph { n12 --eb:B-> n3; };
mTL = morphism from gT to gL { n1 => n1; n2 => n23; n3 => n23; };
mTR = morphism from gT to gR { n1 => n12; n2 => n12; n3 => n3; };

""";
Map<String, Object> sgfMap = SgfParser.parseSgfString(sgfContent);
Morphism mTL = (Morphism) sgfMap.get("mTL");
Morphism mTR = (Morphism) sgfMap.get("mTR");
Square po = Pushout.compute(mTL, mTR);
System.out.println(po);

As an application of the fundamental constructions, graph transformation
systems using the single-pushout and double-pushout approaches can be directly
described and processed by the library (...ti.graph.transformation). So far
we restrict to injective match and rule morphisms. In SGF, if a rule morphism
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is not explicitly specified, then elements on the left and right hand sides are
automatically related if they have the same name. For instance, in the rule r =
rule { { n1 --A-> n2 --B-> n3 } => { n1 --C-> n3 } }, nodes n1, n3 are
mapped to their counterparts on the right hand side, the c-edge is created, and
node n2 and the two edges are deleted at rule application. To enumerate all
possible results of rewriting a Graph g using Rule r:

for (Morphism match : r.getMatches(g)) {
Transition t = r.applyToMatch(match);
Graph rewrittenGraph = t.getTarget();
// process rewrittenGraph somehow

}

3 Existing Tools Using the Library

In this section, we describe some of the existing tools that are currently using the
library. Notably, we present: DPOdactic (a didactic tool for graph transforma-
tion), DrAGoM (multiply annotated type graphs for abstract graph rewriting),
and Grez (termination analysis). Additionally, we give a quick overview of tools
that are currently under development. These tools demonstrate that the library
can be used in a variety of different application areas.

3.1 DPOdactic

DPOdactic [12] is a tool that walks the user through the process of applying
double-pushout (DPO) graph transformation rules. In this setting, a rule states
that the occurence of some subgraph L is to be replaced by another graph R.
The relationship between L and R is established via an interface graph I and
two injective morphisms that map I to L,R respectively. A rule is applied by
locating a match of L – where DPOdactic also allows non-injective matches –
removing parts of L, but keeping I, and then adding the missing parts of R.

In the tool (Fig. 1), the user is presented with a rule and a graph G that the
rule should be applied to. First, they select one of (possibly) multiple occurences
of L in G. Then, they input the context graph, followed by the morphisms that
relate it to the other graphs. Finally, they input the result of the transformation
step and the related morphisms. The tool checks all intermediate results for
inputs and provides direct feedback to the user, including hints on where to look
for mistakes. Optionally, the tool can also simply compute the result of each step.



A Flexible and Easy-to-Use Library for Graph Tools 303

Fig. 1. Main window of DPOdactic after the user has provided the correct context
graph, with the result graph yet to be computed (by the user or by the tool).

3.2 DrAGoM

DrAGoM [14] is a prototype tool to handle and manipulate so-called multiply
annotated type graphs. The main application of DrAGoM is to automatically
compute strongest postconditions in order to check invariants of graph transfor-
mation systems, in the framework of abstract graph rewriting.

DrAGoM uses a materialization construction to extract concrete instances
of a left-hand side graph out of an abstract graph. Then, it can be used to
automatically compute the strongest postcondition of the materialization, i.e.
an annotated type graph, specifying exactly the language of all graphs which
are reachable in one rewriting step.

3.3 Grez

Grez [5] is a tool to automatically produce proofs of uniform (non-)termination
of graph transformation systems, i.e. whether it is possible to obtain an infinite
sequence of rule applications from some start graph or not. Grez uses various
approaches for analysis: some are simple (e.g. if all rules reduce the number
of nodes, then rewriting must terminate at some point), while others are more
complicated (e.g. termination arguments based on weighted type graphs [4]).

Typically, algorithms classify rules as decreasing, non-increasing, or possibly-
increasing with respect to some order. Grez can then combine the results of mul-
tiple algorithms using a relative termination argument: if one algorithm can only
prove a subset of the rules as decreasing (thus terminating) and the remaining
rules as non-increasing, then termination of the remaining rules (for which a
different algorithm can be used) implies termination of the original system.
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3.4 Further Tools

Numerous other, smaller tools that are currently in alpha stage are being devel-
oped using the library, with areas of application being the analysis of (condi-
tional) graph transformation systems, satisfiability checking of graph conditions,
and tools that automate various basic tasks.

As an example for the automation of basic tasks, we have implemented a tool
(Podmineny) that, given a pair of cospans (typically corresponding to the left-
hand side of a rule and a graph with interfaces), computes all borrowed context
diagrams [7]; a task that is tedious and error-prone when done by hand.

As a case study, we have partially re-implemented the tableau resolution algo-
rithm for graph properties as described in [11]. While this tool only implements
part of the functionality, it encouraged us to start work on another prototype
tool, RSsat, for both model finding and unsatisfiability proofs in the more generic
setting of reactive systems.

Table 1. Overview of tools that are currently using the library. The columns indi-
cate which components (Java-Graph, VisiGraph, VisiGraphJS, VxToolbox, CatLib)
are currently used (•), will (◦) or could (◦) be used in future versions.

Tool Description Jg Vx Js Tb Cl

Grez Termination analysis for graph transformation
systems [5]

• • ◦ ◦

DrAGoM Manipulation of multiply annotated typegraphs [14] • • ◦
DPOdactic A didactic tool for double-pushout graph

transformation systems [12]
• •

Podmineny Enumeration of all borrowed context diagrams, given
two graph cospans

• • ◦ ◦ ◦

RSsat Prototype tool for model finding and unsatisfiability
proofs for conditions in reactive systems

• • • • •

TGC A partial implementation of tableau resolution [11] for
graph properties

• • ◦

Your tool here :-) ? ? ? ? ?

Table 1 gives a quick overview of current and future tools.

4 Future Work

In addition to the existing documentation for classes and methods, we plan
to provide an introductory user guide for getting started with the library. As
supporting material, we will implement several smaller tools that can serve as
examples or templates for the development of other tools.

Naturally, we also plan to lift the restrictions on the injectivity of match and
rule morphisms and to extend the functionality in general.

Our library currently supports SGF as a custom text-based data interchange
format. We feel that the simple syntax of SGF goes well with the design goal of
facilitating the development of prototype tools. Future versions of the library will
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additionally support the Graph eXchange Language (GXL) [10], an XML-based
interchange format that is used by other tools. Note that GXL is not primarily
designed to be hand-written by users (as SGF is), but to be generated by tools.

While the VisiGraph library has no strong dependency on Swing and support
for other toolkits can be easily added if needed, we plan to provide interfaces
to additional common GUI toolkits directly in our library. For the generation
of mechanical proofs (e.g. (non-)termination proofs for graph transformation
systems in Grez) we will also add direct generation of LATEX code.

Furthermore, we plan to use the library to develop further tools to demon-
strate applicability of our own future research, such as the analysis of reactive
systems conditions.
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Abstract. A graph grammar with parallel replacement of subgraphs,
based on the single-pushout approach in graph rewriting, was designed
which constructs Cayley graphs of monoids of transformations of a finite
set, with permutation groups as a special case. As input, graph-based
representations of a finite number of generating transformations have to
be specified; they will then correspond to the edge types of the Cayley
graph which is the final result of the rewriting process. The grammar
has 7 + d rules, where d is the number of generators, and operates at
two scale levels. The fine-scale level is the level of elements on which
the transformations act and where their composition is calculated by
parallel subgraph replacement. The coarse-scale level corresponds to the
transformations themselves which are organized in the Cayley graph in a
sequential rule application process. Both scale levels are represented in a
single graph. The graph grammar was implemented in the programming
language XL on the software platform GroIMP, a graph rewriting tool
which was originally designed for simulating the growth of plants.

Keywords: Graph grammar · Cayley graph · Permutation groups ·
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1 Introduction

Cayley graphs have been used for a long time to visualize the structure of discrete
groups (see, e.g., [2]). They can be generalized to other algebraic structures [1,8].
Particularly, for a monoid M (i.e., semigroup with neutral element), the Cayley
graph of M w.r.t. a set of generators G has the node set M , and for each node
n ∈ M and each generator g ∈ G there is a directed edge (n, n ◦ g). In this
small study we will demonstrate that the construction of the Cayley graph of
a monoid which is defined by a generating set G of transformations of a finite
set can be conceived as an application of a graph rewriting system. See [6] for
an introduction to finite transformation semigroups. Permutation groups, which
have been intensively studied for long time [3], and their Cayley graphs emerge
as a special case when all members of G are bijective.
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As our graph grammar formalism, we used the “relational growth grammars”
(RGGs) which enable a parallel replacement of subgraphs and are based on the
single-pushout approach [4]. “Parallel replacement” means here that in every dis-
crete time step all subgraphs which are instances of a left-hand side of a grammar
rule are replaced by the graph given on the respective right-hand side. (For a dis-
cussion of the advantages of the single-pushout approach see [9], p. 104.) RGGs
are supported by the programming language XL and are available on the plat-
form GroIMP [9,10]. They can be seen as generalizations of Lindenmayer systems
from strings to graphs and were primarily used to simulate the 3-dimensional
architecture and development of plants (see, e.g., [14]). The software GroIMP
contains also a powerful graph-drawing algorithm combining an energy-based
layout with a tree layout [5]. Furthermore, XL was recently extended to support
rewriting at several scale-levels simultaneously [12,13]. These were our main
reasons for choosing the RGG approach and GroIMP for our purpose. We think
other graph-grammar formalisms and software tools with a suitable expressive
power could solve our task as well.

It was not our intention to create yet another calculation tool for transfor-
mation semigroups or permutation groups. Several such tools, devoted to this
special field of application, exist already (see, e.g., [11]). We rather wanted to
show that an existing graph rewriting approach, originally introduced for a quite
different purpose, can solve our construction task. Our method is not optimized
in terms of computation time or memory efficiency.

In the following, we will specify our used graph model and all the rules of
our grammar. The description of the rules will also contain the proof that they
indeed build the Cayley graph defined by the generating transformations given
as input. Finally we will discuss some weaknesses of our method and also the
graph layout provided for the final results by GroIMP.

2 Method and Result

2.1 The Graph Model

The graphs supported by the language XL are finite, connected, directed, rooted
graphs with attributed, typed nodes with inheritance and with typed edges [9].
That means, each node belongs to a node type, with a class hierarchy among the
types like in object-oriented programming, and each node can optionally have
parameters (attributes), their number depending on the node type. In our case,
all parameters will be integers. There is always a single node of the distinguished
type “Root”. Edges belong to one of a finite number of edge types (without hier-
archy). There are no loops and no multiple edges of the same type and direction.
XL provides three standard edge types called successor (s), ramification (r) and
decomposition (d) which were taken from a graph model designed for multiscale
descriptions of plant architecture in [7]. Beyond that, additional edge types can
be defined by the user.

The concept of multiple scales within a graph has been introduced to repre-
sent several levels of spatial resolution in vegetation models [12]. Although there
is no geometry and hence no “spatial” scaling in our application here, we retain
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the concept of scale-level by denoting the transformations (i.e., the elements of
our monoid; node type T ) as “coarse-scale” and the n elements on which they
operate (node type E), which form a finite set S, as “fine-scale”. Without loss
of generality, we can assume S = {1, 2, . . . , n}. At the coarse-scale level we will
additionally need intermediate nodes (type I) of indegree 1 and outdegree 1
between any connected pair of T nodes—this is particularly necessary in the
case that the Cayley graph has loops, because our graph model does not permit
loops, and by inserting an intermediate node each loop will be expanded to a
cycle of length 2 –, and connector nodes (type C) which will provide the linkage
to the fine-scale level.

The T nodes will have an index parameter which will help to control the
step-by-step buildup of the Cayley graph. The I nodes will have a parameter
i, initially 0, which indicates if the target T node of the corresponding edge
was already used for constructing a subgraph at fine-scale level representing the
transformation for which this T node stands (i = 1) and if this transforma-
tion was already compared, in a subsequent step, with all previously generated
transformations (i = 2). The E nodes will have a parameter k between 1 and 2n
indicating which element of S they represent, either as a preimage (1 ≤ k ≤ n)
or as an image element (n + 1 ≤ k ≤ 2n) with respect to the transformation
under consideration.

As edge types, we utilize the standard types s, r and d as well as one edge
type gi for each generator (1 ≤ i ≤ d), and additionally two edge types x and
y which will be used at the fine-scale level to calculate the composition of two
transformations. In our graph, a transformation f : S → S will be represented
by a subgraph consisting of 2n nodes of type E, with edges of type x between
nodes Ek and Ef(k)+n where the subscript denotes the parameter of the node.
Each element of S is thus represented twice. We could have used a single set
of n nodes instead, with edges between Ek and Ef(k), but because our graph
rewriting mechanism does not allow non-injective embeddings of the left-hand
side of a rule into the host graph, this would have made the calculation of the
composition of two transformations more complicated.

2.2 The Grammar

Rule 1 (Initialization): From the start node (in XL called Axiom) a graph
is created which corresponds to the identical transformation id, shown in Fig. 1.
The nodes I, T and C represent the coarse-scale level. The C node is connected
by decomposition edges with the E nodes at fine-scale level. The interconnections
of the E nodes by edges of type x form the pattern of id on an n-element set.
In XL, the initialization rule is coded as follows:

Axiom ==>> I(2) T(0) +> c:C /> E(1) -x-> E(n+1) </ c,
for (int k = 2; k <= n; k++)

( c /> E(k) -x-> E(n+k) </ c );

where “+>” stands for a type r edge, a blank for a type s edge, “/>” for a type
d edge, and “-x->” for a type x edge. The parenthesized part in the third line is
iterated n−1 times. The syntax “c:” in the first line introduces an identifier for
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the particular instance of a node of type C generated at this place and allows to
refer to this instance by using the label “c” in the rest of the rule.

Rule 2 (Copy): To build up the Cayley graph, the transformations which exist
already in the graph have to be multiplied with the d generators. In the first step,
we simply make d copies of a transformation which is already represented in our
graph. (This rule will then be applied iteratively to all nodes of type T .) The
mapping pattern at fine-scale level of a copied transformation is still identical
with that of the original, i.e., the generators have not yet been applied (Fig. 2).
This copy rule application is controlled by a global variable m, initially 0, which
is incremented by 1 in each application. For the sake of simplicity, we display
here only the code for the case d = 2, with generators g and h. The generalization
to the general case, using the remainder of m mod d, is straightforward. On the
right-hand side of the rule, the XL method cloneSubgraph(c) is used which
creates a copy of the whole subgraph accessible from the node marked with
label c:

t:T(i) +> c:C, (i == (int)(m/2)) ==>>
if (m % 2 == 0)

( t [ c ] -g-> I(0) T(m+1) [ cloneSubgraph(c) ] )
else

( t [ c ] -h-> I(0) T(m+1) [ cloneSubgraph(c) ] )
{m++;};

Fig. 1. The graph which is gen-
erated after the application of
the initialization rule (rule 1).
Edge types: s = thin unbroken,
r = thick broken, d = thin dot-
ted, x = thick unbroken. The
fine-scale representation of the
transformation id forms the bot-
tom part of the graph, consist-
ing of type E nodes.

Fig. 2. The copy rule for generator gi. The type
T node represents the transformation f . uf is
the subgraph at fine-scale level corresponding to
f . On the right-hand side of the rule, the Cayley
graph is extended by adding a gi edge and the
node representing f ◦ gi. The subgraphs at fine-
scale level are not yet updated. Edge signatures
are the same as in Fig. 1, with an additional gi
edge (thick unbroken arrow).
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Rule Family 3 (Insertion): For each generator gi, there is a rule which adds a
third layer of type E nodes to the existing two layers. The new nodes are param-
eterized with n + 1, n + 2, ..., 2n like the nodes of the second layer (cf. bottom
part of Fig. 1). Connections are established between the second and the third layer
using edges of type y which mimic the application of the transformation gi on S.
These connection patterns are the input of our algorithm. The code of each of these
d rules thus depends on the action of the corresponding generator. As an example,
we show the rule code for the permutation g = (3 4) on a two-element set. It makes
use of a context condition, enclosed in starred parentheses, which ensures that the
rule is only applied to T nodes with an incoming path consisting of a type g edge
followed by a type s edge. The additional condition “i.used == 0” ensures that
this insertion rule is applied only once to each transformation node in the Cayley
graph:

(* T -g-> i:I T +> c:C /> *) r:E(j), (* c /> *) s:E(k),
(i.used == 0 && j == 3 && k == 4)

==>> r -y-> E(4) </ c, s -y-> E(3) </ c { i.used = 1; };

Note that in the third line the order of the parameters of the type E nodes, 4
and 3, has switched according to the represented transposition g which exchanges
3 and 4.

Rules 4 and 5 (Composition): Like the insertion rules, the two composition
rules work exclusively at fine-scale level. They perform the composition of the two
transformations represented between the first and the second layer and between
the second and third layer of type E nodes, respectively. At the end, the subgraph
where they have been applied has again only two layers of nodes, and the type
y edges have disappeared (Fig. 3). Rule 4 is the proper composition rule.

Fig. 3. (a) Rule 4, (b) rule 5 for composing two
transformations. Both rules are applied in paral-
lel mode, but all applications of (a) have to be
finished before the (b) applications start.

Rule 5 serves to remove
unused E nodes of the second
layer after rule 4 has already
been applied. Rule 5 is super-
fluous in the case that all trans-
formations are permutations,
because then all layer-2 nodes
will be consumed by the appli-
cations of rule 4.

In the XL code we have to
ensure that rule 5 is only applied
when all possible applications of
rule 4 have already been done.

To this purpose, XL provides the method call “derive()” enforcing to carry
out all preceding parallel rule applications listed before:

[ a:E -x-> E -y-> b:E ==>> a -x-> b; ]
derive();
[ E -y-> b:E ==> b; ]
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Rule 6 (Redirect): After copying the subgraph representing an already existing
transformation f , inserting the connection pattern for generator gi at fine scale
level and calculating the composition f ◦ gi at this level, we have to check if
this newly determined transformation occurs already in our graph. In this case,
the corresponding type gi edge at coarse-scale level which led to the T node
under consideration has to be redirected to the existing T node (which has the
identical pattern at fine-scale level below it), and the new T node, together with
the attached subgraph below it, has to be deleted (Fig. 4). The search for identical
subgraphs has to be done systematically, so in the XL code the rule application
is embedded into a control structure with graph queries (syntactically marked
by starred parentheses). The flag “used” guarantees that the redirect rule is
applied only once to a transformation node.

for ((* i:I y:T +> c:C *))
if (i[used] == 1) {

for ((* j:I z:T +> d:C *))
if ((j[used] == 2) && equalTransf(c, d))

{ [ i y ==>> i z; ] }
i[used] = 2; }

The method “equalTransf”, called in line 5 of this code, checks if the fine-
scale subgraphs below the nodes c and d represent the same transformation
(code not shown).

Fig. 4. The redirect rule (rule 6). The italicized numbers in parentheses show the
values of the parameter “used” of the type I nodes, which ensure that the rule is
applied only once to each newly created type T node (here: the T node below the I
node with value 1). The rule is applied only if the condition (u = u′) is valid for the
indicated subgraphs. Edge signatures as in Fig. 1.

Global control. After the growing Cayley graph was (possibly) modified by the
redirect rule, the rule application process starts again with the copy rule. The
indexing of the type T nodes and the application condition in the copy rule ensure
that each transformation is processed only as often as there are generators (i.e.,
d times). In XL, the correct order of rule applications is specified by a control
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structure where the rule blocks are called by their respective names (“compose”
stands for rules 4 and 5):

for (int i = 1; i <= d; i++) {
copy(); derive();
insert_gi(); derive();
compose(); derive();
redirect(); derive();
}

The execution of this loop of rule applications has itself to be iterated until
there are no more applicable rules (i.e., all transformations have been processed).
The result is then a graph consisting of the Cayley graph of the monoid generated
by g1, ..., gd at coarse-scale level (however, including insertion and connector
nodes) and with all generated transformation patterns at fine-scale level. As an
example, Fig. 5 shows the generated graph in the case of the Klein four-group
Z2 × Z2.

Fig. 5. The full graph representing the Klein four-group, generated by the permu-
tations (1 2) and (3 4). The Cayley graph is spanned by the four nodes of type T
(shaded). Edge signatures as in Figs. 1 and 2, additionally thick dotted arrows for the
second generator.

Rules 7 and 8 (Simplification): To obtain the proper Cayley graph, we can
first get rid of the fine-scale level by applying the rule C ==>>; which deletes
all connector nodes. Since in the single-pushout approach, all “dangling edges”
are deleted after removing a part of the host graph by rule application, this
disconnects all type E nodes from the root and thus, because of the requirement
of connectedness, deletes them, too. Only the coarse-level part of the generated
graph (without the C nodes) will be retained after this (parallel) rule application.
Finally, we can simplify the two-edge paths between two transformation nodes
by merging them into one edge: t:T -gi-> I u:T ==>> t -gi-> u; for all
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generators, i = 1, ..., d. This last step should only be done if the Cayley graph
has no loops (which is always the case for groups).

3 Discussion

The presented graph-rewriting method follows closely the way how one would
construct the Cayley graph of a given transformation monoid manually. To this
end, a combination of parallel subgraph replacement rule applications and pro-
cedural control structures (for ensuring the systematic, sequential visiting of all
type T nodes during the construction process, and for comparing their trans-
formations with all previously generated ones) turned out to be useful. The
language XL provides an appropriate environment for combining these program-
ming paradigms. However, some steps still required workarounds. Particularly,
for testing the identity of two (graphically-encoded) transformations we had to
write our own method “equalTransf” for using it in rule 6. The copying method
“cloneSubgraph”, used in rule 2, was already provided by XL, but, as for equality
checking, a more intuitive and short-hand notation would have made the rules
even more transparent.

In terms of calculation time, our method is far from being optimized. Par-
ticularly the search pattern in the insertion rule family tends to produce a lot of
mismatches which are then sorted out during testing the additional parameter
conditions, especially for larger values of n. A more intelligent pattern matching
strategy for the transformation-encoding subgraphs would probably be possible.
On the other hand, our calculation of the composition of transformations by
parallel graph-grammar rule application (rule 4) is potentially very efficient. To
make use of this parallelism, however, requires a splitting of the execution into
several threads and their processing by properly parallel devices (e.g., on the
GPU).

Cayley graphs are used to display an algebraic structure graphically and
thereby to visualize its symmetries (see, e.g., [2] for groups). This requires an
appropriate graph layout algorithm which is able to map abstract symmetries
into geometrical ones. GroIMP provides already a “standard” graph layout which
is a combination of an energy-based layout (using simulated annealing for opti-
mization) and a classical tree layout [5]. When applied to the full graph (before
simplification), it has the advantage to automatically separate the fine-scale from
the coarse-scale level. From the examples of final Cayley graphs (after simplifica-
tion) which we tested with our algorithm, we could see that this layout tends to
produce already quite appropriate results in the case of groups, whereas in the
more general case of monoids the existing patterns of similarity in the Cayley
graphs are often not fully reflected in the layouts. It will be a special challenge
in graph drawing to provide an improved graph layout algorithm for Cayley
graphs of finite monoids which could then be used in combination with our
graph-rewriting approach.
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Abstract. The Glasgow Subgraph Solver provides an implementation
of state of the art algorithms for subgraph isomorphism problems. It
combines constraint programming concepts with a variety of strong but
fast domain-specific search and inference techniques, and is suitable for
use on a wide range of graphs, including many that are found to be
computationally hard by other solvers. It can also be equipped with side
constraints, and can easily be adapted to solve other subgraph matching
problem variants. We outline its key features from the view of both users
and algorithm developers, and discuss future directions.

1 Introduction

The subgraph isomorphism family of problems involves finding a small “pat-
tern” graph inside a larger “target” graph, or establishing that the pattern does
not occur. When the pattern graph is part of the input, these problems are
NP-complete; despite this, subgraph isomorphism algorithms are widely used in
practice, including for model checking [23], for law enforcement [9], in biological
applications [1,6,20], for compiler implementation [5], in designing mechanical
locks [27], and inside graph databases [19]. This has encouraged the develop-
ment of practical subgraph isomorphism algorithms, which fall into two cate-
gories: those based upon backtracking and connectivity [6–8], and those based
upon constraint programming [3,4,15,18,25]. Presently, the constraint program-
ming approaches give spectacularly better performance on hard instances [19,26],
although simple backtrackers will often (but inconsistently) run faster on some
very easy instances due to lower overheads and faster startup costs.

This paper gives an overview of the Glasgow Subgraph Solver, which is the
current state of the art in subgraph solving for hard instances [26]. First, we
will discuss the range of subgraph isomorphism problems that people sometimes
wish to solve, and then describe the main techniques the solver uses to solve
these problems. We finish with a list of potential future directions.
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Fig. 1. The arrows show a non-induced subgraph isomorphism from the pattern graph
on the left to the target graph on the right. This subgraph isomorphism is not induced,
due to the extra edge between vertices 4 and 6 when c and d are not adjacent.

2 Subgraph Isomorphism Problems and Variants

Figure 1 illustrates a basic subgraph isomorphism problem: we have a small pat-
tern graph and a large target graph (both of which are inputs to the problem),
and we wish to decide whether the pattern graph occurs inside the target graph.
Usually this is expressed in terms of finding a mapping from the vertices of the
pattern graph to the vertices of the target graph, as shown using the dotted
arrows. Beyond this, different applications have different views of what exactly
the problem to be solved is—we therefore give a brief overview of the common
problem variants.

Adjacency, Loops, and Directed Edges. It is generally agreed that for a map-
ping to be a valid subgraph isomorphism, adjacent vertices must be mapped to
adjacent vertices. However, authors (particularly in application-oriented papers)
disagree over whether non-adjacent vertices must be mapped to non-adjacent
vertices. We use the term induced if non-adjacency must be preserved, and non-
induced otherwise; when we do not qualify our terms, we are talking about both
variants. A further question is on how to handle loops (that is, vertices which
are adjacent to themselves). We take the view that loops may only be mapped
to loops, and for induced problems, additionally that non-loops may only be
mapped to non-loops; some other solver authors disagree or have not considered
this question, and may handle this differently. Finally, in the case of graphs with
directed edges (which could potentially go in both directions), we treat non-
induced as meaning “the edges mapped to must be equal to or be a superset of
the pattern edges”, and induced as meaning “exactly equal to”.

Vertices and Injectivity. In the classical subgraph isomorphism problem, the
mapping is required to be injective—that is, each pattern vertex must be mapped
to a different target vertex. In some applications this restriction can be relaxed:
for example, we may prefer local injectivity (no two vertices that share a neigh-
bour are mapped to the same vertex) [12], or even to find a homomorphism,
where there are no injectivity requirements at all.

Labels. In some applications, either vertices, edges or both have labels, and
may only be mapped to vertices or edges with matching labels—for example, in
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chemistry problems, labels may represent different atoms in a molecule, and we
may not map a carbon atom to a hydrogen atom. Richer labelling rules may be
necessary in some applications, such as in temporal graphs when we care about
“before/after” labels rather than exact matches [21].

Deciding, Enumerating, and Counting. Instead of simply asking whether a sub-
graph isomorphism exists, some applications want to find all such mappings.
They may require that these be explicitly enumerated, but sometimes a count is
sufficient—and counting can be exponentially faster than enumerating in some
situations. A further complication is that the number of mappings and the num-
ber of images of mappings are not the same, and different applications assume
different definitions—sometimes, the number of mappings are called “labelled”
countings, whilst the number of images of mappings are called “unlabelled”.

Performance. Finally, we briefly discuss the common misconception that sub-
graph isomorphism being NP-complete somehow means that it is not viable to
solve the problem in practice, or that every instance will exhibit exponential
complexity. In fact, with good algorithms, instances that are actually hard to
solve in practice are rare. We caution that benchmarking algorithms for NP-
complete problems is challenging, that the size of the inputs is not an indicator
of difficulty, and that only comparing performance on a few easy instances can
lead to design flaws in applications built on top of these algorithms [19,26].

3 The Glasgow Subgraph Solver

The Glasgow Subgraph Solver provides a high quality implementation of algo-
rithms for many subgraph isomorphism problem variants. It is open source soft-
ware, released under the MIT licence (which allows for commercial and closed
source reuse). It may be downloaded from https://github.com/ciaranm/glasgow-
subgraph-solver. It is implemented in C++, using the Boost libraries. It supports
a variety of input file formats, but given the subtle and often undocumented dif-
ferences in meanings of inputs in supposedly common file formats (e.g. whether
edges are explicitly listed in both directions for undirected graphs), the solver
has been designed to make it easy to add new parsers. The solver is primarily
intended to be run from the command line or as a separate process, and its
output is easy to parse for use with other tools.

3.1 Algorithmic Details

The Glasgow Subgraph Solver is based upon ideas from constraint programming.
In a general constraint programming problem, we have a set of variables, each of
which has a domain of possible values. We also have a set of constraints, which
restrict valid combinations of values for subsets of the variables. The goal is to
give each variable a value from its domain, respecting all constraints; usually
this is done using a combination of inference and intelligent backtracking search.

https://github.com/ciaranm/glasgow-subgraph-solver
https://github.com/ciaranm/glasgow-subgraph-solver
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To model subgraph isomorphism using constraint programming, we have a
variable for each pattern vertex, and the domains are all of the target vertices.
The constraints depend upon the exact variant being modelled, but we will
usually have one constraint to deal with injectivity, and then a set of constraints
to deal with edge and adjacency rules. A key strength of constraint programming
is in the ability to add additional implied constraints, which we will now discuss—
these can vastly speed up the solving process.

Degree Filtering. In an injective mapping, it is easy to see that a pattern vertex
of degree d can never be mapped to a target vertex of degree less than d. This
often allows many values to be eliminated from domains before any search starts.
The solver uses even stronger filtering, based upon a result by Zampelli et al.
[28], which looks at the neighbourhood degree sequence of vertices.

Distances and Paths. Another source of additional constraints comes from rea-
soning about distances or paths, rather than just adjacency. Audemard et al. [4]
observed that the fact that subgraph isomorphisms preserve or reduce distances
can be used to provide additional filtering during search. An early precursor to
the Glasgow Subgraph Solver [18] strengthened this result, using instead the
fact that subgraph isomorphisms preserve paths: if there are exactly k paths of
length exactly � between two vertices in a pattern graph, then there must be at
least k paths of length exactly � between wherever these two vertices are mapped
in the target graph. This is exploited through the use of supplemental graphs,
as follows.

We define a supplemental graph to be a graph with two distinguished vertices,
that is subgraph isomorphic to itself under the interchange of these vertices. Let-
ting G be a graph, and S a supplemental graph, we define a new graph GS as
follows: the vertex set of GS is the same as the vertex set of G. Meanwhile, there
is an edge between vertices v and w in GS if there exists a non-induced subgraph
isomorphism i from S to G which maps the two distinguished vertices of S to v
and w respectively. It is reasonably straightforward to prove that any subgraph
isomorphism i : P → T also defines a subgraph isomorphism iS : PS → TS ,
where iS(v) = i(v). The Glasgow Subgraph Solver uses this result to generate
additional degree and adjacency-like constraints. This is sometimes extremely
powerful, as illustrated by the example in Fig. 2. Currently the choice of supple-
mental graphs is hard-coded, based upon performance on a range of standard
benchmark instances, but we believe it may be possible to automatically make
different choices for different families of problem instance.

All-Different Filtering. Suppose a pattern graph and a target graph both have
exactly five vertices of degree five or higher, then those five vertices in the tar-
get graph cannot be mapped to by any other pattern vertex in an injective
mapping. This is an example of all-different reasoning: more generally, if any
n undecided pattern vertices have less than n available target vertices between
them, we have found a contradiction, and if they have exactly n available target
vertices between them then those target vertices must all be used only for those
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c d
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1 2

3 4

5 6
T 1+2:

Fig. 2. On top, a pair of graphs P and T . In the middle, the supplemental graph 1+2.
On the bottom, the modified graphs P 1+2 and T 1+2. These modified graphs make it
immediately clear that no subgraph isomorphism exists between P and T .

pattern vertices. Deciding exactly how to filter all-different constraints is one
of the big differences between constraint programming approaches for subgraph
isomorphism [4,22,25]. Currently, the Glasgow Subgraph Solver uses a special
bit-parallel propagator, which gives a good tradeoff between performance and
filtering power [18].

The other major contributing aspect to a constraint programming solver’s
performance is how it carries out backtracking search.

Search Order. When performing a backtracking search, the choices of which vari-
able to branch on, and which value to try first, can make a staggering difference
to performance in practice. The Glasgow Subgraph Solver uses carefully chosen
strategies to decide how to direct its search [19], including always branching on
whichever vertex has fewest possibilities available to it (tie-breaking on highest
degree). This has interesting implications, which are not yet fully understood.
For example, in the absence of other filtering, this will cause the solver to always
grow connected components, which is the optimal behaviour for certain kinds of
pattern graph—but it is not clear whether exploiting additional filtering could
theoretically lose us performance guarantees in some cases.

Restarts and Nogood Recording. Rather than using simple backtracking, the
solver employs restarts and nogood recording [16,17]: the solver runs for a small
amount of time, and then restarts from the beginning, remembering not to revisit
any part of the search space which has already been explored. Combined with a
small amount of heavily biased randomness in how branching is carried out, this
avoids a strong commitment to early branching choices, which are most difficult
for a heuristic to get right [3].

Parallelism. Modern hardware provides a range of opportunities for parallelism.
The Glasgow Subgraph Solver exploits this in two ways: by using bit-parallel
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data structures and algorithms to carry out inference as quickly as possible [18],
and by using threads to explore multiple parts of the search space in parallel [3].
These parallel search capabilities scale at least as far as thirty-six cores.

3.2 Future Directions

We finish with a discussion of possible future directions for the solver, and with
ideas for research and engineering challenges which may be of broader interest.

Problem Variants. There are other problems involving finding mappings between
subgraphs, such as a surjective variant [13]. Some problems also involve wild-
cards, not just on labels, but on pattern vertices; work on k-less subgraph iso-
morphism [14] may prove useful for continuing to allow powerful inference when
wildcards are present. More generally, we have experimental support for connect-
ing the solver to an external constraint programming solver, to handle arbitrary
side constraints (a bit like Satisfiability Modulo Theories). This could be useful,
for example, for temporal graphs [21]; we would be interested in exploring this
direction further to tackle suitable real-world applications. Another potential
application area is inside graph rewriting systems [10]. Here, the pattern graphs
are considered “fixed”, rather than being part of the input, which has implica-
tions for the theoretical complexity of the problem. However, when patterns are
numerous or large and complex, or when side constraints are involved [2], it may
be more practical to use a general purpose solver than a dedicated algorithm for
each special case.

Symmetries. Some applications involve heavily symmetric pattern and target
graphs [27]. Handling such symmetries in constraint programming is, in princi-
ple, a well-understood problem. However, a practical difficulty is that because
the symmetries vary on an instance by instance basis, symmetry-breaking con-
straints must be computed for each individual input rather than for a model as
a whole. An implementation of the Schreier-Sims algorithm [24] which has no
costly external dependencies would make this approach more practical.

Faster Counting. Currently, the solver handles the counting problem by explicit
enumeration, except that for non-induced isomorphisms, any isolated vertices
in the pattern graph are treated specially. Although counting and enumeration
are equally difficult in general, we believe there are further opportunities for
speeding up counting, for example by decomposing the pattern graph into nearly-
unconnected components, or by handling pattern vertices of degree one and two
specially. We would also be interested in implementing approximate counting as
an option, as well as seeing whether uniform sampling of solutions can be carried
out more efficiently in practice than by explicit enumeration.

Special Classes of Pattern. Certain special classes of pattern may be counted
efficiently—for example, if the pattern is a star graph. Some applications involve
counting occurrences of many different kinds of small graph [1,9,20], and so it
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would be useful if solvers could detect when they were in an “easy” case and
switch algorithms, rather than relying upon end users to do this. There are also
classes of pattern graph where decision and counting are still NP-hard, but where
more efficient solving techniques are available—the solver currently switches to
a different dedicated algorithm if the input graph is a clique, for example.

Proof Logging. Given the increasing complexity of both the theory and imple-
mentations of subgraph isomorphism algorithms, we should be concerned as to
whether the outputs produced are correct. In the Boolean satisfiability commu-
nity, proof logging is the standard solution to this problem: solvers that claim
unsatisfiability are expected to be able to output a machine-verifiable proof of
this fact. Recently, Elffers et al. [11] introduced a more flexible form of proof
logging, that we believe is better suited for algorithms that perform strong infer-
ence. The Glasgow Subgraph Solver includes experimental support for producing
proofs in this format, and we hope to see further research in this direction.

Automatic Configuration. The solver supports a wide range of filtering options.
Its default configuration is designed to reduce the chances of poor performance on
hard instances, rather than to do well on very easy instances—for example, it will
create supplemental graphs before attempting any search, which is a relatively
expensive one-time cost that is not necessary for solving many instances. We have
previously shown that it can be beneficial to employ a simple connectivity-based
algorithm as a presolver [15]. However, it may be possible to take automatic
algorithm configuration further, for example by selecting the set of supplemental
graphs to use on an instance by instance basis.

Benchmarking. Finally, given the importance of having good instances for bench-
marking and for informing algorithm design, we would be very interested in col-
lecting sets of instances from other applications. The instances by Solnon1 orig-
inally used for algorithm portfolios [15] give a good starting point, but having
more instances from a diverse range of applications would be very beneficial—
even if those instances are all either very easy for all solvers, or are too hard for
any current solver to solve at all. We would very much welcome contributions
from the community.
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Abstract. Future cyber-physical systems, like networks of autonomous
vehicles, will result in a huge number of collaborating systems act-
ing together on large-scale topologies. Modeling them requires captur-
ing timed and probabilistic behavior as well as structure dynamics. In
[9], we introduced Probabilistic Timed Graph Transformation Systems
(PTGTSs) as a means of modeling a high-level view of these systems
of systems and provided model checking support. However, given the
scale of emerging systems of systems and their often complex topolo-
gies, analyzing only small or medium size models using model checking
is insufficient. To close this gap, we developed a simulator for PTGTSs
that can import real-world topologies, automatically detect violations of
state properties, and handle the graph pattern matching as well as time
and probabilities efficiently so that complex large-scale topologies can be
considered.

1 Introduction

In future large-scale cyber-physical systems, such as networks of autonomous
vehicles, the interconnection of the autonomous systems via complex software
and networking will result in massive systems of systems where a huge number
of systems collaborate and act together on complex large-scale topologies.

Since these systems of systems are often real-time critical and exhibit prob-
abilistic phenomena like failures, modeling them requires capturing timed and
probabilistic behavior. In addition, structure dynamics needs to be taken into
account since the interconnections between autonomous subsystems may change
at runtime. Finally, given the scale of emerging systems of systems and their
complex topologies, the modeling must also allow for capturing the complex
large-scale topologies in which these systems will operate.

In [9], we introduced Probabilistic Timed Graph Transformation Systems
(PTGTSs) as a means for modeling a high-level view of these systems of systems
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and provided model checking support. However, with model checking, only small
or medium size models could be analyzed, which is insufficient since the small
models will (1) likely not exhibit all characteristics of complex topologies that
can lead to failures and (2) likely will not allow to study emergent phenomena
and failures that result from the interaction of many autonomous systems.

To close this gap and to enable the analysis of large-scale systems of sys-
tems, we developed a simulator for PTGTSs that can import complex real-world
topologies, can automatically detect violations of state properties, and handles
the graph pattern matching as well as the concepts of time and probabilities
efficiently. The simulator maps the application of rules of a PTGTS to the prob-
abilistic application of graph transformation (GT) rules and a dedicated time
management. Scalability is achieved by exploiting the local nature of changes
and by managing time in a way that avoids global updates.

Employing graph transformation systems (GTSs) and incremental graph pat-
tern matching techniques for the simulation of complex systems has been pro-
posed in [13]. A link between GTSs and discrete event simulation has been con-
sidered in [14]. Also, an extension of GTSs with stochastic behavior and related
simulators like GraSS [15] and SimSG [4] have been developed. However, to the
best of our knowledge, no simulator for GTS variants that support timed and
probabilistic behavior (like PTGTSs [9]) has been presented so far.

This tool paper is structured as follows. The preliminaries, such as a running
example and the PTGTS formalism, are introduced in Sect. 2. The simulator’s
concept is outlined in Sect. 3. An evaluation in Sect. 4 shows that the tool
can import complex real-world topologies, can automatically detect violations
of state properties, and can handle graph pattern matching as well as time and
probabilities so efficiently that complex large-scale topologies can be considered.
The paper is closed with a conclusion and an outlook on future work in Sect. 5.

2 Preliminaries

In this section, we introduce our running example, briefly recall the framework
of GTSs, and recap the formalism of PTGTSs. As a running example, we model
a scenario inspired by the RailCab project [12] where autonomous shuttles on a
track topology form a system of systems.

In PTGTSs, we use the formalism of typed graphs [5] to describe the states
of the systems and their structure. A graph G = (GV , GE , sG, tG) is given
by a set GV of nodes, a set GE of edges, and source and target functions
sG, tG : GE →GV . Let G = (GV , GE , sG, tG) and H = (HV ,HE , sH , tH) be
two graphs, then a graph morphism f : G→ H is defined as a pair of mappings
fV : GV → HV , fE : GE → HE that are compatible with the source and target
functions, i.e., fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE .

Let TG be a distinguished graph, called a type graph. Then a typed graph
(G, type) consists of a graph G and a graph morphism type : G→ TG. For
two given typed graphs G′

1 = (G1, type1) and G′
2 = (G2, type2), a typed graph

morphism f : G′
1 →G′

2 is a graph morphism f : G1 → G2 that is compatible
with the typing functions, i.e., type2 ◦ f = type1.
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Fig. 1. Shuttle scenario type graph and generated extensions (grey, see Subsect. 3.2).

The type graph of the running example is given in Fig. 1 (without the grey
extensions). In the context of this scenario, track nodes are connected to the
adjacent tracks by next edges. Shuttle nodes are located on tracks, which is rep-
resented by at edges. Shuttles can move forward on tracks being in DRIVE mode
or can stop resp. brake by changing into STOP resp. BRAKE mode. To avoid
collisions and unnecessary braking maneuvers, shuttles can communicate and
establish connections. For this, adjacent tracks are marked by Conflict nodes.

PTGTSs are typed over some type graph TG containing at least a type node
Clock . Furthermore, for every graph G we use the function CN(G) = {n | n ∈
GV ∧ typeV(n) = Clock} to identify in every graph the nodes used for time
measurement only. In the following, we call such identified nodes simply clocks.

The type graph in Fig. 1 thus equips tracks with clocks needed for time
measurement to be able to control the time for rule applications.

The adaptation of graphs is realized using GT rules, which are to be under-
stood as local rule-based modifications defining additions and removals of sub-
structures. A rule ρ = L

l←− K
r−→ R is given by a span of injective typed graph

morphisms with the graphs L and R called the left-hand side and the right-hand
side of the rule, respectively. A match for a rule is a graph morphism from L to
the current graph G describing one option where the rule could be applied in G.
The transformation procedure defining a GT step is formally introduced by the
DPO approach [5].

According to [9], PTGTSs are a combination of Probabilistic Graph Transfor-
mation Systems (PGTSs) and Timed Graph Transformation Systems (TGTSs).
Similarly to PGTSs, transformation rules in PTGTSs can have multiple right-
hand sides where each of them is annotated with a probability. While the choice
for a rule match remains nondeterministic, the effect of a rule becomes probabilis-
tic. Similarly to TGTSs, each probabilistic timed graph transformation (PTGT)
rule has a guard formulated over clocks contained in the left-hand side of the
rule, which is used to control the rule application. Moreover, each rule contains
the information about clocks that have to be reset during the rule application.

A probabilistic timed graph transformation (PTGT) rule R is a tuple
(L,P, μ, φ, rC) where L is a common left-hand side graph, P is a finite set of
graph transformation rules with the left-hand side L, μ ∈ Dist(P ) is a prob-
ability distribution, φ ∈ Φ(CN(L)) is a guard over nodes of the type Clock
contained in L, and rC ⊆ CN(L) is a set of nodes of the type Clock in L to be
reset (see [9]).
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(2a): t1.c ≥ 3; p = 1; t2.c′ = 0 (2b): true

(2c): t.c ≤ 4

Fig. 2. PTGT rule drive (a), atomic proposition collision (b), and invariant shut-
tleDriveInvariant (c) of the shuttle scenario PTGTS in HENSHIN syntax.

In PTGTSs, we also employ negative application conditions (NACs) [7] and
attributes. They allow to increase the descriptive expressiveness of the rules and
can be added straightforwardly to the presented formalization.

The behavior of the shuttle scenario is modeled using 14 PTGT rules in
HENSHIN [3]. In the following, we only discuss one of them in more detail and
give an intuition for the other rules due to space restrictions (see more details
in [11]). Shuttles can drive alone or can build convoys to reduce the energy
consumption. The rule drive (see Fig. 2a) allows a shuttle leading a convoy or a
shuttle driving without a convoy to move forward if there are no shuttles located
too close in front of it. The restrictions for the location of other shuttles are
given by NACs of the rule. To reflect real-time behavior, we require that moving
on a single track can take between 3 and 4 time units, which we express using
the corresponding guards and invariants, respectively, formulated over the track
clocks for the driving rules. For the rule drive in Fig. 2a, the corresponding guard
is given by the annotation t1.c ≥ 3. For brevity, we refer to a clock c linked to an
element e as e.c and omit the extra node c. After rule application, we refer to c as
e.c′. To measure the time spent on a track, we reset the clock of the track to which
a shuttle is moving when applying the rule drive (annotation t2.c′ = 0). Other
rules of the scenario handle the connection attempts between shuttles as well as
situations when shuttles have to brake or stop. Some rules, such as the rules for
connection attempts, have higher priorities to ensure their timely application.
Furthermore, probabilistic effects are used to model connection failures.

State properties in the form of invariants and atomic propositions are both
given for PTGTSs as conditions (non-changing rules) over clocks, the satisfaction
of which can be checked for a given state. In the context of our shuttle scenario,
we consider an atomic proposition collision that is depicted in Fig. 2b and that
identifies a collision whenever two shuttles are at the same track without being
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Fig. 3. Architecture of the PTGTS simulator.

connected. The invariant shuttleDriveInvariant in Fig. 2c ensures that a shuttle
in mode DRIVE should not remain longer than 4 time units on a track (t.c <= 4).

A probabilistic timed graph transformation system (PTGTS) S is then a tuple
(TG,G0, v0,Π, I,AP , prio) where TG is a finite type graph including the type
node Clock , G0 is a finite initial graph over TG, v0 : CN(G0)→R is the initial
clock valuation assigning the clock value 0 to every clock, Π is a finite set of
PTGT rules, I is a finite set of probabilistic timed invariants, AP is a finite set of
probabilistic timed atomic propositions, and prio : Π →N is a priority function
assigning a priority to each rule (see [9]).

3 Simulator

In this section, we present the concepts behind our PTGTS simulator [11]. Each
PTGT rule is translated into multiple typed GT rules. During the simulation,
only specific GT rules must be applied to specific subgraphs. Structural matches
are marked to avoid searching large parts of the graph after a local change.

Our simulator consists of three active components highlighted in Fig. 3. The
rule generator creates GT rules from a PTGTS and the simulation engine selects
and applies these GT rules. The graph importer constructs input graphs based
on real-world public transport network topologies from OpenRailwayMap [10].

3.1 Simulation Engine

The simulation engine’s algorithm for applying GT rules is sketched in Fig. 4.
To select applicable rules and affected subgraphs, the engine keeps track of so-
called markers. The engine is implemented in Java. It uses the Eclipse Mod-
eling Framework (EMF) and an interpreter for story diagrams [6]. The inter-
preter allows for graph pattern matching starting with a fixed partial match,
which, together with the engine’s marker bookkeeping, makes the algorithm
incremental.
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Fig. 4. PTGTS simulation algorithm based on marking pattern matches.

Step 1: Add initial markers Patterns occurring in the input graph are marked
by generated FIND rules for PTGT rules, invariants, atomic propositions, and
NACs. Since the rules for NACs are applied first, NAC markers can be used in
other rules [2]. In the top example in Fig. 4, markers m1–m5 are created.

Step 2: Apply a rule Out of the created markers, the engine selects one that
represents an enabled rule application with highest available priority and satis-
fied time bounds. Afterwards, it computes a new global time t′g s.t. no invariants
are violated. Then, the engine uses a generated APPLY rule to apply the actual
PTGT rule at the marked pattern, and, finally, resets clocks. In the middle
example in Fig. 4, node h is deleted while node j and two edges are created.

Step 3: Update affected subgraph After a rule application, the subgraph
affected by the application (incl. all markers) is determined so that the neces-
sary updates to the markers can be conducted incrementally. As can be seen
in the bottom example in Fig. 4, CHECK rules remove markers that became
invalid (e.g. m3), FIND rules mark new patterns with new markers (e.g. m6),
and UPDATE rules update the time constraints of remaining markers (e.g. m4).

Termination. The simulation engine stops when no rules are applicable (due
to a lack of markers or due to violated invariants or time constraints) or when
an atomic proposition (e.g. collision from Fig. 2b) is matched.

Handling of Timed Behavior. Simulating the timed behavior of a PTGTS
requires according to PTGTS semantics the advancement of all clock values
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whenever time elapses. To avoid changing a potentially huge number of clock val-
ues each time, our simulation engine only maintains a global simulation time tg.
Instead of a time value t(c), each clock c in the model has a last reset time value
tr(c). Whenever a rule mandates a clock reset for c, the last reset time value
tr(c) is set to the global simulation time tg. Whenever the time value t(c) is
needed to evaluate a guard or invariant, it can be computed as t(c) = tg − tr(c).

To handle guards and invariants even more efficiently, they are translated
into lower and upper bounds, respectively. For example, the guard t1.c ≥ 3 of
the rule drive (see Fig. 2a) is translated into lower bound = tr(t1.c) + 3, which
can then be compared to the current global simulation time tg.

3.2 Generation of GT Type Graph and Rules

In this subsection, we describe the generation of the type graph and GT rules
based on the running example of the PTGT rule drive (see Fig. 2a). The GT
rules are generated once and stored in the form of story diagrams [6].

Extended Type Graph. Markers for all possible pattern matches are added
to the type graph. Moreover, a last reset attribute is added to the Clock node
in order to store the values of tr as well as lower and upper bound attributes to
marker types. Fig. 1 shows the type graph extensions for the PTGT rule drive
(see Fig. 2a). Similar extensions are made for all other rules but omitted here.

FIND: Identifying Pattern Matches. The FIND rules create markers for
pattern matches. Their left-hand side is equal to that of the respective PTGT
rule, with the exception that instead of NAC patterns, NAC markers are
employed. Similar FIND rules are generated for the NAC patterns themselves.
To ensure that NACs are found first, the ordering of FIND rules is stored in
the rule metadata. FIND rules also assign lower resp. upper time bounds to a
marker, which are computed from guards resp. invariants as described above.

t1 : Track t2 : Track t3 : Track

x : Shuttlet1c : Clock

at

next next

at

drive NAC1 Marker

x

NAC#1

...

drive Markerx

t1 t2 t3

NAC#6

⇒
t1 : Track t2 : Track t3 : Track

x : Shuttlet1c : Clock

at

next next

at

drive Marker
lower bound
= t1c.last reset + 3x

t1
t2 t3

APPLY: Applying a Rule. The APPLY rules are similar to the PTGT rules,
with the exception that they require a marker on the left-hand side and perform
clock resets. If a PTGT rule has more than one right-hand side, multiple APPLY
rules are created. Their probabilities are stored in the rule metadata.
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t1 : Track t2 : Track t3 : Track

x : Shuttle t2c : Clock

at

next next

at

drive Markerx

t1
t2 t3

⇒
t1 : Track t2 : Track t3 : Track

x : Shuttle
mode = DRIVE
canConnect = true

t2c : Clock
last reset = tg

at

next next

at

CHECK: Checking Completeness of Pattern Matches. The CHECK
rules remove markers for matches that have become invalid after a rule appli-
cation. A NAC of the whole original pattern ensures that unless the complete
pattern is found, the marker is deleted.

t1 : Track t2 : Track t3 : Trackx : Shuttle at next next

drive Marker

x t1 t2 t3

drive NAC1 Marker x

NAC#1.1

...

NAC#1

⇒ Empty
Graph

UPDATE: Updating Time Bounds. The UPDATE rules recompute lower
and upper bounds of markers affected by the update of last reset attributes.

t1 : Track t2 : Track t3 : Track

x : Shuttlet1c : Clock

at

next next

at

drive Markerx

t1 t2 t3
⇒

t1 : Track t2 : Track t3 : Track

x : Shuttlet1c : Clock

at

next next

at

drive Marker
lower bound
= t1c.last reset + 3x

t1
t2 t3

4 Evaluation

For evaluation, we constructed input graphs from the tram networks of four
different German cities, including Europe’s largest connected tram network in
Berlin, which we modeled with 9184 track nodes. We assumed a density of one
shuttle per 10 tracks and, in case of Potsdam, created an additional topology
with doubled density. For each topology, we generated three sets of initial shuttle
positions and ran each of these experiments three times, leading in total to 45
runs for up to 25.000 steps each (most ended earlier due to invariant violations).

We were able to use the simulator to improve the PTGTS by discovering
and analyzing situations where invariants were violated. These situations were
too complex to be efficiently discovered by our previous model checking app-
roach in [9] using PRISM [8] e.g. when a violation is caused by three shuttles
approaching two subsequent crossroads with a specific timing.

Also, we tested whether the average runtime for a simulation step does not
change according to a trend (i.e., it is stationary) after an initial interval. For
that, we ran three different stationarity tests (ADF, KPSS and PP, see [1]). All
tests showed statistically significant results (i.e., p-value < 0.05), except for a sin-
gle simulator run in Frankfurt where one of the three tests had a p-value of 0.09.
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Fig. 5. Distribution of runtime per simulation step after non-stationary first interval.

As can be seen in Fig. 5, when excluding the non-stationary first interval, the
size of our example models has no significant impact on the average runtime per
simulation step. However, the higher shuttle density appears to have an influence
on the runtime, which can be explained by a higher rate of rule applications for
the connection of shuttles that affect a larger subgraph.

5 Conclusion and Future Work

We presented a simulator for PTGTSs [9] and demonstrated that it can import
complex real-world topologies, automatically detect violations of state proper-
ties, and handle the graph pattern matching as well as the concepts of time and
probabilities so efficiently that complex large-scale topologies can be considered.
As future work, we plan to formally analyze and further improve the efficiency of
our tool, provide more mature tool support covering, in particular, the transition
to model checking, and support checking for more than state properties.

Acknowledgments. We thank our colleague Christian Medeiros Adriano who sup-
ported us in the statistical evaluation of the experiment results.
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4. Ehmes, S., Fritsche, L., Schürr, A.: SimSG: rule-based simulation using stochastic
graph transformation. J. Object Technol. 18, 1:1–17 (2019). The 12th International
Conference on Model Transformations

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2 15

https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-40530-8_11
https://www.eclipse.org/modeling/emft/henshin
https://www.eclipse.org/modeling/emft/henshin
https://doi.org/10.1007/3-540-31188-2_15
https://doi.org/10.1007/3-540-31188-2_15
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