
CONQUEST: A Framework for Building
Template-Based IQA Chatbots

for Enterprise Knowledge Graphs

Caio Viktor S. Avila(B), Wellington Franco, José Gilvan R. Maia,
and Vania M. P. Vidal

Department of Computing, Federal University of Ceará,
Campus do Pici, Fortaleza, CE, Brazil

caioviktor@alu.ufc.br

Abstract. The popularization of Enterprise Knowledge Graphs (EKGs)
brings an opportunity to use Question Answering Systems to consult
these sources using natural language. We present CONQUEST, a frame-
work that automates much of the process of building chatbots for the
Template-Based Interactive Question Answering task on EKGs. The
framework automatically handles the processes of construction of the
Natural Language Processing engine, construction of the question clas-
sification mechanism, definition of the system interaction flow, construc-
tion of the EKG query mechanism, and finally, the construction of the
user interaction interface. CONQUEST uses a machine learning-based
mechanism to classify input questions to known templates extracted from
EKGs, utilizing the clarification dialog to resolve inconclusive classifi-
cations and request mandatory missing parameters. CONQUEST also
evolves with question clarification: these cases define question patterns
used as new examples for training.

Keywords: Interactive Question Answering · ChatBot · Linked
Data · Knowledge Graph

1 Introduction

Linked Data technologies made it possible to merge data from many fields, ori-
gins, formats, and vocabularies into a unique, uniform, and semantically inte-
grated representation [6], known as Enterprise Knowledge Graph (EKG) [8]. An
EKG can be represented by a common vocabulary defined by a closed domain
ontology in OWL, which allows multiple heterogeneous sources to be accessed
simultaneously through queries written in SPARQL [9,11]. Competence Ques-
tions (CQs) are commonly used to guide the process of ontology construction for
EKGs [17]: domain experts list a set of questions that they hope to be answerable,
i.e., a CQ can be seen as templates of frequent queries to the EKG. However,
creating SPARQL queries is difficult for most users, so natural and intuitive

c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 60–72, 2020.
https://doi.org/10.1007/978-3-030-51310-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51310-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-51310-8_6

CONQUEST Framework 61

consultation interfaces are of paramount importance in this case [12]. Template-
Based Question Answering (TBQA) systems can be valuable within this context:
a question Q in Natural Language (NL) is mapped into a well-known SPARQL
query template Q′, so TBQA executes Q′ on the EKG in response to Q [4]. Each
template contains “slots” to be filled with user-provided parameters, e.g., val-
ues for filters, properties, and classes suitable for answering Q. TBQA systems
have the advantage of reducing the complex task of interpreting questions in NL
to a more straightforward task of classification of intention, which is substan-
tially cheaper than general Question Answering (QA). However, TBQA systems
can run into some problems, such as (1) inconclusive template classification or
(2) absence of mandatory query parameters in the question. User dialogue is
usually employed to disambiguate intent and request parameters, thus gener-
ating Template-Based Interactive Question Answering (TBIQA) systems [13].
Conversational systems are popularly known as chatbots.

The process of building a TBIQA system can vary greatly depending on its
domain, existing tools, and purpose [13]. In this paper, we propose the follow-
ing standard workflow for the process of creating TBIQA systems on EKG: (1)
construction of the templates of questions answerable by the system; (2) con-
struction of the Natural Language Processing (NLP) engine; (3) construction
of a question classification mechanism for mapping a question into a template;
(4) definition of the system interaction flow; (5) construction of the EKG query
mechanism; and (6) construction of the user interaction interface.

Thus, as the main contribution of this paper, we introduce CONQUEST
(Chatbot ONtology QUESTion), a framework for creating chatbots for the
TBIQA task on EKGs represented by a closed domain ontology. CONQUEST
automates much of the proposed workflow, automatically handling steps 2–6.
Thus, CONQUEST only delegates to the developer the task of building the
templates of questions to be answered.

2 Related Work

In [1], the authors present an approach for the automatic generation of query
templates supported by TBQA systems. The system has as input a set of pairs
of questions in NL and their answers. The questions are then generalized to a
template by mapping sets of questions to the same query. As an advantage, the
approach allows the composition of patterns for the resolution of complex queries
for which complete templates are not known. However, the method depends on
the quality of the lexicon used for the highest coverage of templates, and there
may be a need to extend the lexicon to specific domains. Besides, the system also
does not allow the user to control the templates supported by the system. The
authors do not discuss how the system can be made available to users, indicating
that this must be addressed per each specific case.

In [3], the authors present a TBQA system over KGs that automatically
generates supported questions based on the underlying KG. The process of con-
struction of the questions is carried out based on a small set of query patterns

62 C. V. S. Avila et al.

defined by the authors. The system then constructs the questions supported
for each of the predefined patterns, generating variations of them. These ques-
tions are then stored in an index that is consulted at run time to identify the
most likely question being asked by the user. In addition, the system allows the
interactive construction of queries with auto-completing. As a disadvantage, the
approach does not allow developers to control the questions supported by the
system, which would make it challenging to implement QC support and relevant
questions for specific applications.

Medibot [2] is a chatbot in Brazilian Portuguese on a KG in the domain of
medicines. Medibot has two modes of operation, the first of which is a TBQA,
where regular expressions are used to classify the template in which the user’s
question fits. The approach depends on the manual implementation of regular
expressions and the code for querying and building responses, which makes it dif-
ficult to reuse and apply in chatbots with a large number of templates. Moreover,
the implementation heavily depends on Telegram interface.

Many of the existing works in the area of TBQA focus on the automatic gen-
eration of templates. However, such approaches limit the developer control over
the supported questions, but try to increase the question coverage, which is a pos-
itive aspect in the context of consultation on the Web. In business environments,
it is expected that the discussions carried out will be limited to a specific set of
queries for the performance activities of the company, so it is essential that this
set is entirely and correctly covered. Consequently, CONQUEST ensures that
the developer has full control over the collection of supported templates, ensur-
ing the correctness of the queries that answer them. Besides, most systems do
not address how the TBQA service might be made available to users, leaving the
developer the task of customizing or creating systems access mechanisms from
scratch. CONQUEST deals with this by reusing instant messaging services as
an access channel to the chatbot, in addition to providing access to the service
through a REST API accessible through HTTP requests, all from the execution
of a single instance of the chatbot.

3 CONQUEST Framework

The CONQUEST framework is composed of the CONQUEST Trainer and
CONQUEST Chatbot modules. The first is responsible for training the necessary
components for the TBIQA chatbot being produced. The second is responsible
for executing the chatbot, using the components trained to provide a TBIQA
service. The source code of the framework can be found in the Github reposi-
tory1. In this paper, the term developer will refer to the developer of the chatbot.
The term user is referring to the end-user who issues questions to that chatbot.

The input given by the developer to the conquest framework is composed
of the set of template questions answerable by the system, together with the
EKG (ontology + instances) being consulted. The domain ontology provides
the structure for the instances, allowing the identification of the type of an
1 https://bit.ly/2JTE5I0.

https://bit.ly/2JTE5I0

CONQUEST Framework 63

instance or parameter value based on the context in which it appears (prop-
erties and relationships with which it is linked). A template question whose
system is capable of answering is called Question Answering Item (QAI).
Each QAI has its slots that will be filled with information from user ques-
tions, the so-called Context Variables (CV s). A QAI is formally defined as
QAI01 = ([QP1, QP2, ..., QPn], SP,RP), where: QPk is a Template (Question
Pattern) in NL associated to a question, where 1 ≤ k ≤ n; SP is a SPARQL
query Pattern, a template that is employed to retrieve information from the KG;
and RP is a Response Pattern, a template answer in NL shown to the user.

The following is an example of how the question “What is the maximum
price for a given drug in a certain state?” would be represented as a QAI. Where
it was given as input only the QP “What is the maximum price for the medicine
$medicine in $state?”. This template can be provided as input to the system
using a JSON file:

{"QPs": ["What is the maximum price for the medicine \$medicine in \$state?"],

"SP": "SELECT ?name (MAX(?priceAux) as ?price) WHERE{

?s a <Medicine>;

rdfs:label ?name;

<price> ?appliedPrice.

?appliedPrice a <Price>;

<state> $state;

<value> ?priceAux.

FILTER(REGEX(?name,$medicine,’i’))}",

"RP":{"header": "",

"body": "The ?name has a maximum prince of ?price reais",

"footer":""}}

3.1 CONQUEST Trainer

This module is executed only offline by the developer. First, two distinct indices
are built during Index Construction: a class index and a property index. Each
of these has information about the domain ontology schema being consulted and
are of fundamental importance for the next workflow steps. These indexes have
information about labels and definitions of classes and properties, as well as
information about properties that relate classes.

The Processing QAIs step takes place after the index construction step.
This step is divided into three processes. (1) Consistency check: for each QAI,
all CV s and Return Variables (RV s) declared in the query SP are enumerated.
Then, for each QP defined in this QAI, the framework checks whether the CV s
quoted in that QP belongs to the CV set declared in SP . Likewise, it is checked
whether the CV s and RV s quoted in the RP response pattern are contained
in the set declared in SP ; (2) Parsing and semantic interpretation of a
SPARQL query Pattern (SP): The semantic parsing of a SP is performed while
traversing the SPARQL query tree representation of SP that is generated by

64 C. V. S. Avila et al.

the RDFLib2 library. The CV s are retrieved during this traversal, together with
their type (resource or literal), class, and if this is literal type, their properties,
and classes owners. Further details about this complex process will be omitted
for the sake of space constraints.

The type of a CV indicates whether it should be replaced by a URI that
identifies a resource in the KG (if it is resource type) or a literal. If a CV is
inferred to be resource type, then the class attribute will represent the class to
which the resource replacing CV must be an instance. On the other hand, if a
CV is inferred as being literal, then the class attribute will assume on of the
following values: xsd:string ; xsd:double; xsd:integer ; xsd:datetime. In the case of a
literal CV , it still has two additional attributes, its “owner property” and “owner
class”. In the example given, the CV $state has <state> as its “owner property”
and <Price> as its “owner class”. For the sake of convenience, throughout this
article the pairs “owner property” and “owner class” will be regarded as a string
of the form “Property@Class”, which is referred to as “owner pair”; and (3)
Constructon of a vectorial representation (QV) for a QP : Each QP is
mapped into a “representative” vector, which will be called the Question Vector
(QV). A QV is formed by the concatenation of two other vectors, being the first
a Sentence Vector (V S) and the second a vector representing the kinds of CV s
used in the QP , i.e., a Context Vector (CV ec). Therefore, QV = V S ⊕ CV ec,
where ⊕ is the concatenation operation over two vectors. The V S is built by
resorting to NLP and Word Embedding techniques [14]. The first step in building
V S from a QP is replacing the CV s markers with Out of Vocabulary (OOV)
symbols. The second step consists on string normalization. The third and last
step is computing the very V S vector, so we resort to the NLP SpaCy [5] for
carrying out this computation. Since the V S vector is built solely based on the
text from a QP , V S is considered to be the vector carrying textual features.
CV ec is a vector representing the number of CV s (named entities required) to
answer the question encoded by that vector. CV ec is a vector of n+3 dimensions,
where n is the number of owner pairs (“Property@Class”) for CV s literals string.
The other three additional dimensions of CV ec refer to the CV s literals from
xsd:integer, xsd:double and xsd:datetime classes. Thus, for each CV existing in
QAI, the position of CV ec representing the CV type will be incremented by
1. Because of the use of information from the semantic interpretation from KG,
CV ec is considered the vector representing the semantic features of the template.

Training the NER Module is the third step in training stage. The Named
Entity Recognition [15] module is responsible for identifying potential candidates
in a natural language sentence for CV values. These candidates are used to con-
struct the CV ec vector for the given input question. Using NER allows possible
values for CV s to be identified directly from the question, eliminating the need to
request each CV individually during the consultation time. More specifically, in
CONQUEST, the NER module is trained to recognize possible values for literal
CV s. CONQUEST uses a simple regular expression mechanism for identifying
entities of numeric types, such as xsd:integer and xsd:double. For the recogni-

2 https://rdflib.readthedocs.io/en/stable/.

https://rdflib.readthedocs.io/en/stable/

CONQUEST Framework 65

tion of data type entities (xsd:datetime), CONQUEST reuses the dateparser
library [18]. For literals of the xsd:string class, CONQUEST classifies a candi-
date for its likely owner pair. This is done by querying terms in an Apache Solr
[20] index. For each owner pair used in the QAI set (only for xsd:string literals
CV s), its possible values contained in the KG are fetched. For example, if the
owner pair “ont:name@ont:Person” is used for a CV of type xsd:string, then
all possible values for the ont:name attribute of instances of class ont:Person
will be retrieved. These retrieved values will be indexed as search keys for the
owner pair “ont:name@ont:Person”. Thus, if the name of a person in the KG is
queried, then its owner pair will be returned.

Training the Question Classifier is a cornerstone for our architecture,
been the fourth step in the training stage. Based on the promising results
obtained recently in the field of Machine Learning (ML) [7] and aiming to address
the problem of linguistic variability, we resort to classification ML models due to
their high generalization capabilities and versatility. However, using such an app-
roach brings with it a new challenge, the issue of small training sample size [21].
The system is expected to face this problem during the early stages of deploy-
ing a chatbot built by CONQUEST. To overcome this challenge, CONQUEST
performs a semantic enrichment step over the input features by using CV ec as
part of the classifier input (Semantic Features). For classifier training, the set
of QV s produced during the stage of processing QAIs is used as the training
dataset, with the respective QAI of each QV as the output label of the classifier.
The default ML model adopted in CONQUEST is the Gaussian Näıve Bayes
(GaussianNB), which, coupled with the use of semantic features, performed as
one of the best models tested, both in terms of rating hit rates and time needed
for its training.

Saving the trained artifacts is the final step in training stage, where are
saved the artefacts: (1) Ontology Index that contains ontology schema informa-
tion so that it can be accessed directly and easily. This information is saved
as the indices described previously; (2) the QA Items are used in the process
of question interpretation, parameter checking and requesting, SPARQL query
construction, and response construction; (3) the NLP Model is used for natu-
ral language processing, including workflow for text normalization and segmen-
tation, word embeddings, and index (Apache Solr) used in NER; (4) and the
Classification Model that effectively maps a NL question to a QAI.

3.2 CONQUEST Chatbot

An instance of a CONQUEST Chatbot is executed during the online stage.
This instance accesses the trained artefacts stored in Persistence to provide
the TBIQA service. Figure 1 depicts the architecture of a CONQUEST Chatbot,
which is divided into three layers: User Interface, CONQUEST Core, and Data.

The User Interface layer aims to provide an intuitive and practical inter-
face for users accessing the chatbot. To this end, this layer has a set of APIs for
communicating with instant messenger services, i.e., the Chat Messenger API.

66 C. V. S. Avila et al.

Fig. 1. Architecture for a CONQUEST Chatbot.

The CONQUEST Core is the main layer of the architecture since it is respon-
sible for processing the questions and their answers. This layer consists of the
following six components: (1)CONQUEST Server , responsible for providing
chatbot services through HTTP requests, acting on the boundary between the
interface layer and the system core. This component gets HTTP requests as
input, forwarding them to Dialog Manager, and finally returning the respective
responses to the user. The CONQUEST Server can be accessed either through
an IM service (e.g., Telegram), or directly via HTTP requests, thus being avail-
able in a wide range of channels simultaneously; (2) Dialog Manager is the
central module regarding the execution of a CONQUEST Chatbot. The Dialog
Manager is responsible for managing the request processing flow, exchanging
information between components, and managing the dialog flow; (3) NLP Pro-
cessor is responsible for taking a question Q in natural language and converting
it to a vectorial representation QV . The following sequence of steps is performed
for this purpose: (I) normalization and tokenization of Q; (II) Identification of
named entities contained in the sentence by the NER component. The first type
of entities looked for are the literals of the xsd:string class. To do this, the sliding
window process of a n-gram [19] is performed over the tokens contained in Q.
The starting value of n is equal to the number of tokens in Q, where the window
slides from left to right, one token at a time, and decreasing in size by 1 each time
it reaches the end of the tokens sequence. During this process, each n-gram is
queried against the Solr index, and if it is contained, then it is removed from the
sequence. Subsequently, entities like xsd:datetime and numeric types are sought
as defined in Sect. 3.1; (III) Computation of SV vector for Q; (IV) Computation
of the CV ec vector for Q, using the named entities found in step II; and finally
(V) calculating the QV representation of Q; (4) Machine Learning Classi-
fier receives the QV vector representation of Q as input and then returns the
confidence classification level for each QAI; (5) QA Item Manager retrieves
information about the classified QAI. This information is used for (a) determin-
ing the CV s needed for the question by filling this information automatically

CONQUEST Framework 67

or requesting it from users, (b) retrieving the SPARQL query template (SP) to
be used, and (c) retrieving the response pattern (RP) to be generated; and (6)
Query Processor receives as input a template SPARQL SP and its set of filled
CV s. As a result, this module performs the actual assembling and execution of
the query in Endpoint SPARQL; Finally, the query result is returned to the Dia-
log Manager, which generates the natural language response based on the RP
template.

The third and last layer is the Data Layer, which is responsible for storing
the chatbot knowledge, which refers to both learned artifacts during the training
phase and the EKG being queried. This layer is divided into two components: (1)
Persistence holds the knowledge obtained in the offline stage. This knowledge
is retrieved by Dialog Manager and then distributed to the other CONQUEST
Core modules so that they can perform their tasks. Moreover, Persistence is
also used to store Interaction State that saves the current state of a user inter-
action during the chatflow. The state of the interaction consists of the current
point of interaction following Fig. 2 and the information acquired so far (e.g.,
question given as input, classified QAI, values for CV s and other information
for a coherent dialogue). This ensures that chatbot performs long interactions
consistently; (2) SPARQL Endpoint , which is external to the system, so it is
accessed using HTTP requests to execute SPARQL queries. The current imple-
mentation resorts to the SPARQL Wrapper [16] library, which is responsible for
handling requests and responses to this endpoint.

Fig. 2. Chatflow followed by a CONQUEST Chatbot.

CONQUEST Chatbot’s Chatflow is depicted by Fig. 2 and can be sum-
marized as: the chatbot receives the question in NL, classifying it for a QAI;
if this classification is not possible, then the chatbot performs the disambigua-
tion dialog; after a successful question classification, the chatbot checks to see if
all CV s have been filled in, prompting them to the user otherwise; finally, the
chatbot consults the EKG and returns the response to the user. In the case of

68 C. V. S. Avila et al.

confirmation of the clarification dialog, the question given as input is added as
a new Question Pattern (QP) to be considered in classifier training.

4 Results and Discussions

A qualitative assessment was carried out to assess the impact of using CON-
QUEST. For the sake of comparison, we re-implemented MediBot [2], a chatbot
published recently that fits our requirements since it adopts an TBIQA perspec-
tive to operate over KG.

The Template Construction process was shown to be quite natural and
required the developer to input only a few variations of the NL question. The
JSON file containing the QAIs used and the data needed to deploy an instance of
our implementation of MediBot on top of CONQUEST are publicly available3.
The example is given in Sect. 3 is an example of how one of the QAIs could be
written, and it will be considered in the discussions that follow in this section.

In NLP Engine Construction step, the developer should only select the
language supported by his chatbot being produced. CONQUEST uses the Spacy
library for NLP, which supports more than 53. However, support for each lan-
guage is at a different stage. At the same time, the library achieves great results
for English, the same cannot be said for Brazilian Portuguese (language sup-
ported by MediBot). Because of this, we used the 100-dimensional GloVe model
produced by [10] as the Word Embedding. This model was loaded into SpaCy,
thereby leveraging the entire processing pipeline of this library.

The Template Classifier Construction step is transparent to the devel-
oper, with CONQUEST already having a default classification model. Exper-
iments were carried out to select the best model and to assess the impact of
using semantic features on this task. For these experiments, the 8 query tem-
plates answered by MediBot presented by the authors were implemented. As a
set of training and validation, 10 variations of the question in NL were used for
each template, using cross-validation with parameter CV = 5. For the test set, 5
examples of variations for each template different from those used in the train-
ing/validation stage. The results presented are the average of the tests performed
10 times. The script with the experiments can be found at the link4.

Table 1 summarizes the results of main trained models without and using the
Semantic Features proposes in this work. In the first case, the best model was
the Multilayer Perceptron (MLP) classifier with two hidden layers. This MLP
model achieves a score of 0.926 on the F1 metric, which is considered a good
result. However, the time required for model training took around 0.229 seconds,
so this is one of the slowest models for training. Since the chatbots produced
by CONQUEST use the questions given at runtime as new training examples,
this results in constant growth of the dataset. Consequently, the cost for model
training is of critical importance. The use of Semantic Features generally presents
significant improvements in the evaluated models. In this case, it is important to
3 https://bit.ly/2T9Pbhu.
4 https://bit.ly/2I0WguG.

https://bit.ly/2T9Pbhu
https://bit.ly/2I0WguG

CONQUEST Framework 69

highlight the performance improvements of the GaussianNB model, which has
achieved the best performance in all measured aspects. When comparing the best
trained model with the use of Semantic Features against the best without them
(MLP with two hidden layers), it is possible to see a slight improvement of about
5.075%, which can already be considered a promising result. When comparing
the results under the light of the F1-score for the GaussianNB model without
and with Semantic Features, it is possible to notice an improvement of about
38.014 %, which configures a great improvement overall. The real improvement
comes from comparing the training time taken by the two best models, MLP with
two hidden layers and GaussianNB : there is a 98.280% reduction in the required
time to training, which means that the first model takes about 58 times longer
in training than the second. The results of the selected model (GaussianNB with
Semantic Features) in the test set was 0.979 for Precision, 0.975 for Recall and
0.974 for F1.

Table 1. Results of the model evaluation experiment.

Classifier Without semantic features With semantic features

Precision Recall F1 Time (secs) Precision Recall F1 Time (secs)

GaussianNB 0.772 0.712 0.705 00.023068 0.983 0.975 0.973 00.003952

LogisticRegression 0.8 0.787 0.764 01.301347 0.958 0.937 0.933 00.040490

SVC linear 0.916 0.875 0.870 00.048965 0.983 0.975 0.973 00.007134

DecisionTreeClassifier 0.545 0.575 0.534 00.056715 0.858 0.875 0.860 00.007359

MLPClassifier 2

layers

0.941 0.912 0.926 00.229768 0.966 0.962 0.96 00.176730

Nearest Neighbor 0.707 0.675 0.657 00.004416 0.879 0.875 0.86 00.006486

GaussianNB +

Logistic (Soft

Voting)

0.772 0.712 0.705 00.218400 0.983 0.975 0.973 00.110563

CONQUEST ’s Interaction Flow frees the developer from dealing with the
scheduling of the conversion flow using techniques such as state machines, con-
versation scripts, etc. In this example (Fig. 3), the user formulates the question
in a manner considerably different from the known template. Consequently, the
chatbot attempts to resolve user intent by displaying the QP template by replac-
ing the CV s values found by NER in the original question. Having the suggestion
confirmed by the user, a new example is added for this QAI after the CV s values
are replaced by their corresponding identifiers (e.g., “buscopan” is replaced by
$medicine). However, the chatbot realizes that the value for CV $state is still
missing, thus using the inferred type of CV to make its request. Finally, after
substituting the values of CV s in SP and executing it in endpoint SPARQL,
then the chatbot returns the response following RP .

The Query Engine Construction step is fully automatic. The SPARQL
query pattern (SP) passed in QAI is used to build the actual query to be exe-
cuted on the EKG. CV s markers present in SP are filled with the parameters

70 C. V. S. Avila et al.

Fig. 3. Using the clarification dialog in Telegram.

passed by the user at query time. In the current example, $medicine and $state in
SP are replaced by “Buscopan” and “Ceará”, respectively. CONQUEST builds
the final NL response by replacing the values of the output variables in the
response pattern (RP) in QAI with the values returned by executing the query
in the EKG. In the example, ?name and ?price in the “body” of RP are replaced
by the values of the variables ?name and ?price for each item of the query
response.

User Interface was tested with instant messaging application (Telegram)
and directly via HTTP requests. In the first case, immediate reuse eliminates
the need for the installation of new apps and adaptation by the final user. In
the second case, external applications can be integrated into larger services,
such as existing chatbots built with commercial environments (e.g., Dialogflow,
chatfuel, etc.), where CONQUEST can provide only the specific TBIQA skill for
a “larger” chatbot. Finally, CONQUEST allows the same instance of a chatbot
to be shown in different channels running from the same code, which facilitates
maintenance and service increment.

5 Conclusions

CONQUEST framework automates much of the process of building TBIQA
chatbots on EKGs, where supported templates must be provided as input and
dialogue are used to address the problems of inconclusive classification and the
lack of parameters in the question. CONQUEST resorts to machine learning to
acquire new ways in which the same question can be accomplished, which allows
the chatbot to evolve with usage. Unlike other works in the field, CONQUEST
allows complete control of the questions supported, which guarantees support for
complex and specific needs, e.g., Competency Questions, and also addresses the
problem of access to the built service, allowing support through multiple channels
simultaneously. As future work, we plan to address the automatic generation of
query templates to answer simple questions, so developers focus their efforts on
complex and challenging templates.

CONQUEST Framework 71

References

1. Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template gen-
eration for question answering over knowledge graphs. In: Proceedings of the 26th
International Conference on World Wide Web, pp. 1191–1200 (2017)

2. Avila, C.V., et al.: MediBot: an ontology based chatbot for Portuguese speak-
ers drug’s users. In: Proceedings of the 21st International Conference on Enter-
prise Information Systems. ICEIS, vol. 1, pp. 25–36. INSTICC, SciTePress (2019).
https://doi.org/10.5220/0007656400250036

3. Biermann, L., Walter, S., Cimiano, P.: A guided template-based question answering
system over knowledge graphs. In: Proceedings of the 21st International Conference
on Knowledge Engineering and Knowledge Management (2018)

4. Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question
answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569
(2017). https://doi.org/10.1007/s10115-017-1100-y

5. Explosion AI: Industrial-strength natural language processing (2019). https://
spacy.io

6. Frischmuth, P., et al.: Linked data in enterprise information integration. In: Seman-
tic Web, pp. 1–17 (2012)

7. Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc.,
Sebastopol (2017)

8. Gomez-Perez, J.M., Pan, J.Z., Vetere, G., Wu, H.: Enterprise knowledge graph: an
introduction. Exploiting Linked Data and Knowledge Graphs in Large Organisa-
tions, pp. 1–14. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45654-
6 1

9. Jin, G., Lü, F., Xiang, Z.: Enterprise information integration based on knowledge
graph and semantic web technology. J. Southeast Univ. (Nat. Sci. Ed.) 44(2),
250–255 (2014)

10. Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., Aluisio, S.:
Portuguese word embeddings: evaluating on word analogies and natural language
tasks. arXiv preprint arXiv:1708.06025 (2017)

11. Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth.
Lect. Semant. Web Theory Technol. 1(1), 1–136 (2011)

12. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 281–294. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76298-0 21

13. Konstantinova, N., Orasan, C.: Interactive question answering. In: Emerging Appli-
cations of Natural Language Processing: Concepts and New Research, pp. 149–169.
IGI Global (2013)

14. Li, Y., Yang, T.: Word embedding for understanding natural language: a survey.
In: Srinivasan, S. (ed.) Guide to Big Data Applications. SBD, vol. 26, pp. 83–104.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-53817-4 4

15. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvist. Investig. 30(1), 3–26 (2007)

16. RDFLib: SPARQL Wrapper SPARQL endpoint interface to Python (2019).
https://rdflib.github.io/sparqlwrapper/. Accessed 26 Nov 2019

https://doi.org/10.5220/0007656400250036
https://doi.org/10.1007/s10115-017-1100-y
https://spacy.io
https://spacy.io
https://doi.org/10.1007/978-3-319-45654-6_1
https://doi.org/10.1007/978-3-319-45654-6_1
http://arxiv.org/abs/1708.06025
https://doi.org/10.1007/978-3-540-76298-0_21
https://doi.org/10.1007/978-3-540-76298-0_21
https://doi.org/10.1007/978-3-319-53817-4_4
https://rdflib.github.io/sparqlwrapper/

72 C. V. S. Avila et al.

17. Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 752–767. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07443-6 50

18. Scrapinghub: dateparser date parsing library designed to parse dates from HTML
pages (2019). https://pypi.org/project/dateparser/. Accessed 25 Nov 2019

19. Shishtla, P.M., Pingali, P., Varma, V.: A character n-gram based approach for
improved recall in Indian language NER. In: Proceedings of the IJCNLP-2008
Workshop on Named Entity Recognition for South and South East Asian Lan-
guages (2008)

20. Smiley, D., Pugh, D.E.: Apache Solr 3 Enterprise Search Server. Packt Publishing
Ltd., Birmingham (2011)

21. Yang, P., Hwa Yang, Y., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods
in bioinformatics. Curr. Bioinform. 5(4), 296–308 (2010)

https://doi.org/10.1007/978-3-319-07443-6_50
https://doi.org/10.1007/978-3-319-07443-6_50
https://pypi.org/project/dateparser/

	CONQUEST: A Framework for Building Template-Based IQA Chatbots for Enterprise Knowledge Graphs
	1 Introduction
	2 Related Work
	3 CONQUEST Framework
	3.1 CONQUEST Trainer
	3.2 CONQUEST Chatbot

	4 Results and Discussions
	5 Conclusions
	References

