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Abstract. Construction sites are one of the most perilous environments where
many potential hazards may occur. Even though workers are trained to stay
away from potential dangers, there are still many types of risks that can occur
within only a few minutes of carelessness. Personal Protective Equipment
(PPE) is an important safety measure used to protect construction workers from
accidents. However, PPE usage is not strictly enforced among workers due to all
kinds of reasons. This paper proposes the combination of deep learning-based
object detection and individual detection using geometry relationships analysis
to automatically identify non-PPE-use (NPU); i.e., if a worker is wearing
hardhat, eye protection visors, dust masks, or both, to help to facilitate the safety
monitoring work of construction workers to ensure PPE are appropriately used.
The experimental results demonstrate that the approach was capable of detecting
NPU workers with high precision (84.13%) and recall rate (93.10%) while
ensuring real-time performance (7.95 FPS on average).

Keywords: Construction safety - Personal Protective Equipment (PPE) - Deep
learning - Object detection

1 Introduction

Construction work is much more dangerous than most other occupations, where many
potential hazards may occur. According to the United States’ Bureau of Labor
Statistics, the number of construction fatalities in the US has gradually increased from
933 to 1013 between 2014 and 2017 [1]. Similarly, in Japan, there were 926 con-
struction fatal accidents during 2016-2018 and the Ministry of Health, Labor and
Welfare of Japan is aiming to reduce construction fatalities by at least 15% (relative to
the 2017 level) by 2022 [2].

The construction fatalities are always caused by the combination of different factors
that involve occupational risk exposures (e.g., electricity), tools (e.g., grinder),
equipment (e.g., crane), and environment (e.g., dust and noise) in the construction sites.
The consequences of head injuries caused by falling from height or being stuck by
vehicles and other moving plants and equipment are one of the most serious of all
construction accidents. A total of 2,210 construction fatalities occurred because of
traumatic brain injury (TBI) which represented 25% of all construction fatalities during
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2003 and 2010 [3]. The Occupational Safety and Health Administration (OSHA) in the
United States stipulated that workers working in areas where there is a possible danger
of head injury from impact, or from falling or flying objects, or from electrical shock
and burns shall be protected by hardhats [4]. Furthermore, construction-related occu-
pational eye injuries are an important cause of vision loss. According to the National
Institute for Occupational Safety and Health (NIOSH), an average of 2,000 U.S.
workers require medical treatment for job-related eye injuries every day [5]. The
majority of construction-related ocular injuries are preventable. The reasons cited for
the majority of ocular injuries include the non-wearing of available eye protection or
wearing of inappropriate eye protection for the current task [6]. On the other hand, fine
dust and particles, gases and vapors can be produced when using machine tools and
silica dust from bricks can cause lung and airway diseases such as emphysema,
bronchitis and silicosis, and may increase cancer risks. Personal Protective Equipment
(PPE) such as respirators or dust masks are used to controls these hazards [7]. OSHA
indicates the workers shall be ensured to wear eye or face protection when exposed to
eye or face hazards from flying particles, molten metal, liquid chemicals, acids or
caustic liquids, chemical gases or vapors, or potentially injurious light radiation [8].
Nonetheless, the workers do not precisely follow the construction site’s safety regu-
lations due to all kinds of reasons, even if they have been previously educated and
trained. Thus, an automated monitoring approach is necessary to be conducted to help
to facilitate the safety monitoring work of construction workers to ensure PPE are
appropriately used.

In this paper, we present a real-time approach to automatically identify non-PPE-
use (NPU) in response to the limitations of monitoring systems in construction sites.
The goal is to detect hardhats, eye protection visors and dust masks in each observed
frame, and to identify whether individuals on construction sites are wearing PPE.
Firstly, we detect entities in each observed frame using deep learning-based models:
PPE(s) are recognized and localized using Yolov3 [9] and individual(s) are charac-
terized by extracting their joint positions using OpenPose [10]. Subsequently, we
associate detected PPE(s) with the detected individual(s). Finally, we identify whether
PPE(s) are appropriately used by analyzing the geometric relationships of detected
PPE(s) and individual(s). To summarize, this work contains the following contribu-
tions: (1) In contrast to commonly used object detection-based NPU identification
approaches, this study provides a novel solution to automatically identify any failure to
wear PPE by the combination of object detection and individual detection using
geometry relationships analysis which is more effective and robust with viewpoint
changes and different individual postures. (2) To the authors’ knowledge, almost no
research studies have been conducted concerning multi-class NPU identification other
than NHU. This paper explores the possibility of multi-class NPU identification for
non-hardhat-use (NHU), non-mask-use (NMU), and non-visor-use (NVU). (3) This
paper demonstrates that the proposed approach can rapidly handle NPU identification
to meet the industrial requirements of real-time processing.
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2 Related Works

At present, a number of methods have been studied for automatic NPU detection [11-
16], which can be divided into two categories: sensor-based detection and vision-based
detection.

Sensor-based detection primarily relies on remote locating and tracking techniques,
such as radio frequency identification (RFID) and wireless local area networks
(WLANSs). Kelm et al. [11] developed a mobile RFID portal for checking PPE com-
pliance of personnel. The RFID readers were located at the construction site entrance,
and therefore only the individuals who enter the construction site can be checked. Dong
et al. [12] developed the real-time location system (RTLS) and virtual construction for
worker location tracking to identify whether the worker should wear a hardhat by
placing a pressure sensor in the hardhat to identify whether a hardhat was being worn,
and if not, to transmit a warning. Generally, existing sensor-based methods relying on
physical tags or sensors employed in PPE have difficulty in identifying whether any
individuals on the sites are wearing PPE or not. Moreover, the practical use of the tags
or sensors will lead to high costs due to the large volume of devices required.

Vision-based methods are nonintrusive and less device-intensive because of the
wide application of on-site surveillance cameras. Shrestha, et al. [13] use edge
detection algorithms to recognize the edge of objects inside the upper head region i.e.
hardhats. However, this method relies on the recognition of facial features, therefore
workers who turn their face away from the cameras cannot be recognized. Park et al.
[14] proposed a vision-based NHU detection method that detects both a human body
and a hardhat simultaneously in each obtained frame. The detected human body region
and hardhat region are then matched for the detection of NHU. In general, these
methods rely heavily on hand-crafted features to analyze the individuals. Consequently,
they may fail in the case of complicated scenes with weather variability, different
viewpoints and/or occlusions.

Recently, deep learning-based object detection methods have shown remarkable
performance on most visual tasks in the construction industry. Fang et al. [15] proposed
a Faster R-CNN based method to detect construction workers” NHU automatically.
A total of 81,000 image frames were collected from various construction sites as a
training dataset to train the Faster R-CNN model. In the training phase, the worker-of-
interest (WOI) in the image was annotated as the ground truth for training. In the test
phase, the NHU workers were detected and the rest were considered the background.
Wau et al. [16] deployed a Single Shot Multibox Detector (SSD) based model combined
with the presented reverse progressive attention (RPA) to propagate contextual infor-
mation back to bottom layers discriminately. A benchmark dataset GDUT-HWD was
generated by downloading Internet images retrieved by search engines to train the
SSD-RPA model. However, existing deep learning-based detection methods are mainly
focused on learning to localize only PPE(s) or NPU individual(s) in the obtained
images, which may fail in cases of uncommon human gestures or appearance. Also,
almost no research studies have been conducted concerning multi-class NPU identi-
fication other than NHU and are limited in practical application to real scenarios. In
response to these limitations, the overall objective of this paper is to develop a new
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approach for monitoring workers and evaluate whether the proposed approach could be
used to detect failure use of hardhats, visors and masks in the construction site.

3 Methodology

The associated generic pipeline is illustrated in Fig. 1, and it follows the subsequent
stages:

(1) For each observed frame, individual(s) are detected, together with their keypoints
coordinates using OpenPose [10]. PPE(s) are recognized and localized using
YOLOV3 [9].

(2) Detected PPE(s) are associated with the detected individual(s).

(3) NPU identification is performed by analyzing the geometry relationships of the
individual’s keypoints and the detected PPE(s).

NHU identification

‘ i PPE
voL
{ YOLOSYUR 1 etection
x

Input Training : y i Gepmetr_y i . e
image dataset e - . relationships ! NMU identification

OpenPose | Individ_ual NVU identification
Sirpose detection

Fig. 1. Generic pipeline of the proposed approach.
3.1 Entity Detection

PPE Detection. We deploy YOLOV3 [9] to detect the PPE(s). YOLOvV3 uses Darknet-
53, a CNN with 53 layers, to extract image features. Subsequently, YOLOv3 makes
predictions at three scales, which are precisely given by downsampling the dimensions
of the input image by 32, 16 and 8 respectively. This method allows YOLOV3 to get
more meaningful semantic information from the upsampled features and finer-grained
information from the earlier feature map. The prediction result of the network is a 3-d
tensor that encodes bounding box, objectness score and prediction over classes:

NxNx (3% (4+1+C)) (1)

where N x N is the number of the grid cells of the system, and C is the number of the
classes to train the network on. Besides, YOLOV3 predicts a confidence score for each
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bounding box using logistic regression, which is overwhelmingly beneficial especially
considering that one image might enjoy multiple labels, and not all the labels are
guaranteed to be mutually exclusive.

In a word, predictions of YOLOV3 are carried out from one single network, which
can be trained end-to-end to improve accuracy. Higher efficiency and better perfor-
mance on small object detection make YOLOvV3 a reasonable option for real-time
processing for industrial purposes.

Individual Detection. We characterize the workers’ postures by extracting the joint
positions of the individual in the images using OpenPose [10], which processes images
through a two-branch multi-stage Convolutional Neural Network (CNN) and uses Part
Affinity Fields (PAFs) to learn to associate body parts with individuals in the image to
output the 2D keypoints for all people in the image. OpenPose provides the positions of
18 body joints (pre-trained using COCO 2016 keypoints challenge dataset [17], see
Fig. 2). The choice of OpenPose is motivated for its functionality on RGB images or
videos taken by on-site surveillance cameras in real-time. This provides a huge benefit
in comparison to the skeletal tracking capability of RGB-D devices (e.g., Microsoft
Kinect) which depend on depth information. To further improve the estimation speed,
we deploy a light-weight architecture, Mobilenetv2 [18] as the feather extractor instead
of VGG-19 [19] in the original paper.

Fig. 2. OpenPose Output Format.

However, Openpose may fails in detecting individuals without their full body
visible in the near field. In this case, we characterize individuals by localizing their
faces using YOLOV3.
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3.2 NPU Identification

We formulate the output of YOLOvV3 as a set of objects bounding boxes
B ={By,B,,...,B;}, where I is the number of detected objects bounding boxes in the
obtained frame. Each bounding box B; = (x;,yi, wi, hi,¢i), I € {1,2,...,1} contains
five elements, where (x;,y;) and (w;, h;) are respectively the bounding boxes position
and size and c¢; represents the class of objects in the bounding box. Let H =
{H\,Hz,...,H;} be the set of the detected individual(s) via OpenPose, where J is the

number of detected individual(s) in the obtained frame and H; = {(x](o)’ J@),

j
We associate a detected PPE i* to a specific individual j* by searching the minimum

(xj(-l),y;l)) e (x(-m,y,(-m)} represents the detected bodyparts of the jy, individual.

Euclidean distance between bounding boxes B and detected neck keypoints H!) =

{(xé”,yé”), (xgl),ygw), ey (xy),yy))} (bodypart 1 in Fig. 2) that satisfy the geo-
metric constraints to make sure each PPE is in the upper area of the candidate asso-
ciated individual:

o ow , m)2 m)?
i = argmin (xi - X ) + (yi - )
i€{1,2,. I} je{12,..0} (2)

1
Sy <y](*)

Subsequently, for each associated PPE and individual, we identify whether the PPE
is appropriately used by analyzing key lengths. We take advantage of Euclidean dis-
tance among detected neck keypoints and hip keypoints (bodyparts 8 and 11 in Fig. 2)
as reference threshold when the distance between the individual and the camera
changes, the reference threshold change synchronously:

1 8)\ 2 1 8)\ 2 2 1 2
ooy = maxW(x;nx;ﬂ) (o =Y (5 =) (o =) ) .

where 7 is the scaling coefficient to strike different NPU identification. If the Euclidean
distance between the detected PPE and detected neck keypoint of the associated
individual is smaller than the reference threshold ﬁih_,j;, then the detected PPE is
identified as being appropriately used by the individual (Fig. 3 (a)); otherwise the
condition is identified as NPU (Fig. 3 (b)).

In the case of OpenPose failure, PPE-individual association is performed using
detected face bounding boxes (Fig. 3 (c), (d)). Let B = {B’I,B’Z,...,B’K} be the
detected face bounding boxes, where K is the number of detected face bounding boxes
in the obtained frame. Similarly, we associate a detected PPE i* to a specific individual
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k* by searching the minimum Euclidean distance between PPE and face bounding
boxes:

ik = argmin \/(xi - x§c)2 + (yi — y}c)2 4)
ie{1,2,...,I},ke{1,2,...K}

where (x;, ;) is the position of the i,, PPE bounding box in B and (xg, yx) is the position
of the ky, face bounding box in B'. The reference threshold f;._ ;. is given as follow:

P = max(wﬁc*, h;c) (5)

where (w;c,hfc) is the size of the associated face bounding box in B’

(a) PPE proper use identified by OpenPose key- (b) NPU identified by OpenPose keypoints.
points.

(c) PPE proper use identified by detected face (d) NPU identified by detected face bounding
bounding boxes. boxes.

Fig. 3. NPU identification strategies.
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4 Experiments and Results

4.1 Experimental Dataset

To create the training dataset of PPE detection, we collected hardhat, eye protection
visor, and dust mask images from two sources: downloading Internet images retrieved
by search engines using keywords, and capturing real-world images using the webcam
as listed in Table 1. Also, we randomly selected 2,000 images from the WIDER FACE
dataset [20] to learn the features of face. A total of 7,929 images were collected and
annotated to train a YOLOvV3 model.

Table 1. Information of collected training dataset.

Internet images | Real-world images | Total
Hardhat | 933 1,209 2,142
Mask | 983 1,222 2,205
Visor | 110 736 846
Face 2,000 736 2,736
Overall | 4,026 3,903 7,929

Furthermore, to create the testing dataset to validate the performance of the trained
model, six volunteers were instructed to perform normal working behaviors while
wearing PPEs at different distances to the camera. As surveillance cameras are placed
in different locations on construction sites and the trajectory of workers is stochastic,
construction workers were captured in different resolutions in the surveillance videos.
Thus, different distance conditions (1 m, 3 m, 5 m) were considered in our experiments
to validate the robustness of our proposed approach. Finally, we randomly selected
1,500 images (500 images for each distance condition) from the collected image
sequences and created the testing dataset. The details are provided in Table 2 where
positive samples refer to the NPU (including NHU, NMU, and NVU) individuals and
negative samples referred to the individuals who are wearing PPE properly.

Table 2. Information of collected testing dataset.

Distance (m) | NPU Categories | Images | Positive samples | Negative samples
1 NHU 500 318 182
NMU 275 225
NVU 334 166
3 NHU 500 263 479
NMU 278 464
NVU 452 290
5 NHU 500 274 457
NMU 288 443
NVU 444 287
Overall 1,500 |2,926 2,993
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4.2 Evaluation Metrics

We adopted precision and recall to evaluate the performance of our approach:

.. TP
Precision = ———— (6)
TP+ FP
TP
Recall = —— (7)
TP+ FN

Where TP is defined as the number of correct detections of NPU individuals. FP is the
number of wrong detections of NPU individuals, while FN is the number of the ground
truth not detected as defined in Table 3.

Table 3. Definitions of TP, FP, and FN.

Predicted | Ground truth
TP | NPU NPU

FP | NPU Proper use
FN | Proper use | NPU

4.3 Implementation Details

We initialized the YOLOv3 model based on pre-trained weights on the ImageNet
dataset [21]. Training of YOLOv3 was performed in two stages. We first froze all
convolutional layers up to the last convolutional block in Darknet-53 and train with
frozen layers to get a stable loss. Subsequently, we proceed to unfreeze all convolu-
tional layers of Darknet-53 to perform fine-tuning. The learning rates for the first and
the second stage are le—3 and le—4 respectively. Adaptive Moment Estimation
(Adam) optimizer was adopted to adjust the learning rate during optimization auto-
matically. o (initial learning rate), f§; (exponential decay rate for the first moment
estimates), ff, (exponential decay rate for the second-moment estimates) and ¢ (a very
small number to prevent any division by zero in the implementation) were set to le—3,
0.9, 0.99, 1e—8, respectively.

4.4 Results

We report the identification results on the testing dataset in Table 4. As the distance
between the camera and individuals increases, the resolution of the individual’s critical
regions in the image gradually becomes smaller. Although the precision and recall rate
of NHU identification gradually decreased, the precision and recall rate remained
higher than 80% and 81%, respectively. For NMU identification, the precision and
recall rate declined only slightly from 1 m to 3 m, and even the masks were quite small
in far-field (5 m) images, our approach still achieved precision and recall rates of
approximately 80%. For NVU identification, the precision and recall rate between 1 m
to 3 m remained higher than 85% and 97%, respectively. However, the performance is
decreased in the 5 m case since it is challenging to detect transparent visors with
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relatively low resolution. The overall precision and recall rates are 84.13% and 93.10%,
respectively, which demonstrates the robustness of the proposed approach in PPE
wearing identification at different distances. Figure 4 illustrates the identification

examples on the testing dataset.

Table 4. Identification results under different distance.

NPU Categories | Distance (m) | TP | FP |EN | Precision (%) | Recall (%)
NHU 1 318 13| 0]96.07 100
3 241 31| 2288.60 91.64
5 222 | 54| 52/80.43 81.02
NMU 1 247 | 28| 28/89.82 89.82
3 250 40| 2886.21 89.93
5 225 58| 63]79.51 78.13
NVU 1 325| 47| 9/87.37 97.31
3 452 75| 085.77 100
5 4441168 | 07255 100
Overall 2724514202 | 84.13 93.10

(a) Distance: 1m

(b) Distance: 3m

(c) Distance: 5m

Fig. 4. Identification examples on the testing dataset.
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4.5 Computational Efficiency Analysis

To meet the industrial requirements of real-time processing, we also conducted com-
putational efficiency analysis experiments. Computational efficiency analysis results are
presented in Table 5, the inference time of our approach outperforms other state-of-the-
art methods while preserving high-quality results. It is able to run at about 7.95 FPS in
a machine with a GeForce GTX 1080 Max-Q with 8 GB of GDDR5X memory and
2560 CUDA cores and it indicates that our approach is more effective compared to the
Faster R-CNN approach adopted by Fang et al. [15] and SSD-RPA method proposed
by Wu et al. [16].

Table 5. Computational efficiency analysis results.

Approach Input size | FPS
Faster R-CNN [13] | 300 x 500 | 4.88
SSD-RPA [14] 304 x 304 |3.22
Ours 416 x 416|7.95

5 Conclusion

This paper has presented a new vision-based approach to address the difficulties of PPE
proper use management in the construction sites. Firstly, we created a dataset using
Internet images and real-world images to train the YOLOv3 model to recognize
hardhats, eye protection visors, and dust masks. Subsequently, we conducted NPU
identification using geometric relationships of the outputs of OpenPose and YOLOv3.
The performance of the proposed approach was experimentally evaluated under various
distance conditions. The test results indicate that the approach was capable of detecting
NPU workers with high precision (84.13%) and recall rate (93.10%) while ensuring
real-time performance (7.95 FPS on average). Further extensions of this work follow
the consideration of on-site system implementation and performance improvement
based on time-series analysis.
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