
Non-interactive Proofs of Proof-of-Work

Aggelos Kiayias1, Andrew Miller2, and Dionysis Zindros3(B)

1 University of Edinburgh, IOHK, Edinburgh, Scotland
akiayias@inf.ed.ac.uk

2 University of Illinois at Urbana-Champaign,
Initiative for Cryptocurrencies and Contracts, Urbana, USA

amiller@cs.umd.edu
3 National and Kapodistrian University of Athens, IOHK, Athens, Greece

dionyziz@di.uoa.gr

Abstract. Decentralized consensus protocols based on proof-of-work
(PoW) mining require nodes to download data linear in the size of
the blockchain even if they make use of Simplified Payment Verifica-
tion (SPV). In this work, we put forth a new formalization of proof-of-
work verification by introducing a primitive called Non-Interactive Proofs
of Proof-of-Work (NIPoPoWs). We improve upon the previously known
SPV NIPoPoW by proposing a novel NIPoPoW construction using super-
blocks, blocks that are much heavier than usual blocks, which capture the
fact that proof-of-work took place without sending all of it. Unlike a tra-
ditional blockchain client which must verify the entire linearly-growing
chain of PoWs, clients based on superblock NIPoPoWs require resources
only logarithmic in the length of the chain, instead downloading a com-
pressed form of the chain. Superblock NIPoPoWs are thus succinct proofs
and, due to their non-interactivity, require only a single message between
the prover and the verifier of the transaction. Our construction allows
the creation of superlight clients which can synchronize with the net-
work quickly even if they remain offline for large periods of time. Our
scheme is provably secure in the Bitcoin Backbone model. From a theo-
retical point of view, we are the first to propose a cryptographic prover–
verifier definition for decentralized consensus protocols and the first to
give a construction which can synchronize non-interactively using only a
logarithmically-sized message.

1 Introduction

Proof-of-work blockchain clients such as mobile wallets today are based on the
Simplified Payment Verifications (SPV) protocol, which was described in the
original Bitcoin paper [14], and allows them to synchronize with the network
by downloading only block headers and not the entire blockchain with transac-
tions. However, such initial synchronization still requires receiving all the block
headers. In this work, we study the question of whether better protocols exist
and in particular if downloading fewer block headers is sufficient to securely syn-
chronize with the rest of the blockchain network. Our requirement is that the

c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 505–522, 2020.
https://doi.org/10.1007/978-3-030-51280-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51280-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-51280-4_27

506 A. Kiayias et al.

system remains decentralized and that useful facts about the blockchain (such as
the Merkle root of current account balances in Ethereum [5,19]) can be deduced
from the downloaded data.

Our Contributions. We put forth a cryptographic security definition for Non-
Interactive Proofs of Proof-of-Work protocols which describes what such a syn-
chronization protocol must achieve (Sect. 2). We then construct a protocol which
solves the problem and requires sending only a logarithmic number of blocks
from the chain. We construct a protocol which can synchronize recent blocks,
the suffix proofs protocol (Sect. 4). We analyze the security and succinctness of
our protocol in Sect. 5. In Sect. 6, we show a simple addition to the suffix proofs
protocol which allows synchronizing any part of the blockchain that the client
may be interested in, the infix proofs protocol.

Previous Work. The need for succinct clients was first identified by Nakamoto
in his original paper [14]. Predicates pertaining to events occurring in the block-
chain have been explored in the setting of sidechains [2]. It has also been imple-
mented for simple classes of predicates such as atomic swaps [10,15], which
do not allow full synchronization. Non-succinct certificates about proof-of-stake
blockchains have been proposed in [8], but their scheme is not applicable to
proof-of-work. Superblocks were first described in the Bitcoin Forum [13] and
later formalized [11] to describe their Proofs of Proof-of-Work which have lim-
ited applications due to interactivity, lack of security, and inability to prove facts
buried deep within the blockchain. We improve upon their work with a security
definition, an interactive construction, and an attack against their scheme which
works with overwhelming probability.

2 Model and Definitions

Our model is based on the “backbone” model for proof-of-work cryptocurren-
cies [7], extended with SPV. Following their model, we assume synchrony (partial
synchrony with bounded delay [16] is left for future work) and constant difficulty.

Backbone Model. The entities on the blockchain network are of 3 kinds: (1)
Miners, who try to mine new blocks on top of the longest known blockchain
and broadcast them as soon as they are discovered. Miners commit new transac-
tions they receive from clients. (2) Full nodes, who maintain the longest block-
chain without mining and also act as the provers in the network. (3) Verifiers or
stateless clients, who do not store the entire blockchain, but instead connect to
provers and ask for proofs in regards to which blockchain is the largest. The ver-
ifiers attempt to determine the value of a predicate on these chains, for example
whether a particular payment has been finalized.

Our main challenge is to design a protocol so that clients can sieve through
the responses they receive from the network and reach a conclusion that should
never disagree with the conclusion of a full node who is faced with the same
objective and infers it from its local blockchain state.

Non-interactive Proofs of Proof-of-Work 507

We model proof-of-work discovery attempts by using a random oracle [3]. The
random oracle produces κ-bit strings, where κ is the system’s security param-
eter. The network is synchronized into numbered rounds, which correspond to
moments in time. n denotes the total number of miners in the game, while t
denotes the total number of adversarial miners. Each miner is assumed to have
equal mining power captured by the number of queries q available per player to
the random oracle per round, each query of which succeeds independently with
probability p (a successful query produces a block with valid proof-of-work). Min-
ing pools and miners of different computing power can be captured by assuming
multiple players combine their computing power. This is made explicit for the
adversary, as they do not incur any network overhead to achieve communication
between adversarial miners. On the contrary, honest players discovering a block
must diffuse it (broadcast it) to the network at a given round and wait for it to
be received by the rest of the honest players at the beginning of the next round.
A round during which an honest block is diffused is called a successful round ;
if the number of honest blocks diffused is one, it is called a uniquely successful
round. We assume there is an honest majority, i.e., that t/n < 0.5 with a con-
stant minimum gap [7]. We further assume the network is adversarial, but there
is no eclipsing attacks [9]. More specifically, we allow the adversary to reorder
messages transmitted at a particular round, to inject new messages thereby cap-
turing Sybil attacks [6], but not to drop messages. Each honest miner maintains
a local chain C which they consider the current active blockchain. Upon receiving
a different blockchain from the network, the current active blockchain is changed
if the received blockchain is longer than the currently adopted one. Receiving a
different blockchain of the same length as the currently adopted one does not
change the adopted blockchain.

Blockchain blocks are generated by including the following data in them:
ctr, the nonce used to achieve the proof-of-work; x the Merkle tree [12] root of
the transactions confirmed in this block; and interlink [11], a vector containing
pointers to previous blocks, including the id of the previous block. The interlink
data structure contains pointers to more blocks than just the previous block. We
will explain this further in Sect. 3. Given two hash functions H and G modelled
as random oracles, the id of a block is defined as id = H(ctr,G(x, interlink)). In
bitcoin’s case, both H and G would be SHA256.

The Prover and Verifier Model. In our protocol, the nodes include a proof
along with their responses to clients. We need to assume that clients are able
to connect to at least one correctly functioning node (i.e., that they cannot be
eclipsed from the network [1,9]). Each client makes the same request to every
node, and by verifying the proofs the client identifies the correct response. Hence-
forth we will call clients verifiers and nodes provers.

The prover-verifier interaction is parameterized by a predicate (e.g. “the
transaction tx is committed in the blockchain”). The predicates of interest in
our context are predicates on the active blockchain. Some of the predicates are
more suitable for succinct proofs than others. We focus our attention in stable
predicates having the property that all honest miners share their view of them

508 A. Kiayias et al.

in a way that is updated in a predictable manner, with a truth-value that per-
sists as the blockchain grows (an example of an unstable predicate is e.g., the
least significant bit of the hash of last block). Following the work of [7], we wait
for k blocks to bury a block before we consider it confirmed and thereby the
predicates depending on it stable. k is the common prefix security parameter,
which in Bitcoin folklore is often taken to be k = 6.

In our setting, for a given predicate Q, several provers (including adversar-
ial ones) will generate proofs claiming potentially different truth values for Q
based on their claimed local longest chains. The verifier receives these proofs
and accepts one of the proofs, determining the truth value of the predicate. We
denote a blockchain proof protocol for a predicate Q as a pair (P, V) where P
is the prover and V is the verifier. P is a PPT algorithm that is spawned by a
full node when they wish to produce a proof, accepts as input a full chain C and
produces a proof π as its output. V is a PPT algorithm which is spawned at
some round (having only Genesis), receives a pair of proofs (πA, πB) from both
an honest party and the adversary and returns its decision d ∈ {T, F} before
the next round and terminates. The honest miners produce proofs for V using
P , while the adversary produces proofs following some arbitrary strategy. Before
we introduce the security properties for blockchain proof protocols we introduce
some necessary notation for blockchains.

Notation. Blockchains are finite block sequences obeying the blockchain prop-
erty : that in every block in the chain there exists a pointer to its previous block.
A chain is anchored if its first block is genesis, denoted Gen. For chain address-
ing we use Python brackets C[·] as in [17]. A zero-based positive number in a
bracket indicates the indexed block in the chain. A negative index indicates a
block from the end, e.g., C[−1] is the tip of the blockchain. A range C[i : j] is
a subarray starting from i (inclusive) to j (exclusive). Given chains C1, C2 and
blocks A,Z we concatenate them as C1C2 or C1A. C2[0] must point to C1[−1] and
A must point to C1[−1]. We denote C{A : Z} the subarray of the chain from A
(inclusive) to Z (exclusive). We can omit blocks or indices from either side of
the range to take the chain to the beginning or end respectively. The id function
returns the id of a block given its data, i.e., id = H(ctr,G(x, interlink)).

2.1 Provable Chain Predicates

Our aim is to prove statements about the blockchain, such as “The transaction
tx is included in the current blockchain” without transmitting all block headers.
We consider a general class of predicates that take on values true or false. Since
a Bitcoin-like blockchain can experience delays and intermittent forks, not all
honest parties will be in exact agreement about the entire chain. However, when
all honest parties are in agreement about the truth value of the predicate, we
require that the verifier also arrives at the same truth value.

To aid the construction of our proofs, we focus on predicates that are mono-
tonic; they start with the value false and, as the blockchain grows, can change
their value to true but not back.

Non-interactive Proofs of Proof-of-Work 509

Definition 1 (Monotonicity). A chain predicate Q(C) is monotonic if for all
chains C and for all blocks B we have that Q(C) ⇒ Q(CB).

Additionally, we require that our predicates only depend on the stable portion
of the blockchain, blocks that are buried under k subsequent blocks. This ensures
that the value of the predicate will not change due to a blockchain reorganization.

Definition 2 (Stability). Parameterized by k ∈ N, a chain predicate Q is k-
stable if its value only depends on the prefix C[: −k].

2.2 Desired Properties

We now define two desired properties of a non-interactive blockchain proof pro-
tocol, succinctness and security.

Definition 3 (Security). A blockchain proof protocol (P, V) about a predicate
Q is secure if for all environments and for all PPT adversaries A and for all
rounds r ≥ ηk, if V receives a set of proofs P at the beginning of round r, at
least one of which has been generated by the honest prover P , then the output of
V at the end of round r has the following constraints:

– If the output of V is false, then the evaluation of Q(C) for all honest parties
must be false at the end of round r − ηk.

– If the output of V is true, then the evaluation of Q(C) for all honest parties
must be true at the end of round r + ηk.

Fig. 1. The truth value of a fixed predicate Q about the blockchain, as seen from the
point of view of 5 honest nodes, drawn on the vertical axis, over time, drawn as the
horizontal axis. The truth value evolves over time starting as false at the beginning,
indicated by a dashed red line. At some point in time t0, the predicate is ready to
be evaluated as true, indicated by the solid blue line. The various honest nodes each
realize this independently over a period of ηk duration, shaded in gray. The predicate
remains false for everyone before t0 and true for everyone after t0 + ηk. (Color figure
online)

Some explanation is needed for the rationale of the above definition. The
parameter η is borrowed from the Backbone [7] work and indicates the rate at

510 A. Kiayias et al.

which new blocks are produced, i.e., the number of rounds needed on average
to produce a block. If the scheme is secure, this means that the output of the
verifier should match the output of a potential honest full node. However, in
various executions, not all potential honest full node behaviors will be instanti-
ated. Therefore, we require that, if the output of the proof verifier is true then,
consistently with honest behavior, all other honest full nodes will converge to
the value true. Conversely, if the output of the proof verifier is false then, con-
sistently with honest behavior, all honest full nodes must have indicated false
sufficiently long in the past. The period ηk is the period needed for obtaining
sufficient confirmations (k) in a blockchain system. A predicate’s value has the
potential of being true as seen by an honest party starting at time t0. Before
time t0, all honest parties agree that the predicate is false. It takes ηk time for
all parties to agree that the predicate is true, which is certain after time t0 + ηk.
The adversary may be able to convince the verifier that the predicate has any
value during the period from t0 to t0+ηk. However, our security definition man-
dates that before time t0 the verifier will necessarily output false and after time
t0 + ηk the verifier will necessarily output true (Fig. 1).

Definition 4 (Succinctness). A blockchain proof protocol (P, V) about a pred-
icate Q is succinct if for all PPT provers A, any proof π produced by A at some
round r, the verifier V only reads a O(polylog(r))-sized portion of π.

It is easy to construct a secure but not succinct protocol for any computable
predicate Q: The prover provides the entire chain C as a proof and the verifier
simply selects the longest chain: by the common-prefix property of the backbone
protocol (c.f. [7]), this is consistent with the view of every honest party (as long
as Q depends only on a prefix of the chain, as we explain in more detail shortly).
In fact this is how widely-used cryptocurrency clients (including SPV clients)
operate today.

It is also easy to build succinct but insecure clients: The prover simply sends
the predicate value directly. This is roughly what hosted wallets do [4].

The challenge we will solve is to provide a non-interactive protocol that at
the same time achieves security and succinctness over a large class of useful
predicates. We call this primitive a NIPoPoWs. Our particular instantiation for
NIPoPoWs is a superblock-based NIPoPoW construction.

3 Consensus Layer Support

3.1 The Interlink Pointers Data Structure

In order to construct our protocol, we rely on the interlink data structure [11].
This is an additional hash-based data structure that is proposed to be included
in the header of each block. The interlink data structure is a skip-list [18] that
makes it efficient for a verifier to process a sparse subset of the blockchain, rather
than only consecutive blocks.

Valid blocks satisfy the proof-of-work condition: id ≤ T , where T is the
mining target. Throughout this work, we make the simplifying assumption that

Non-interactive Proofs of Proof-of-Work 511

T is constant. Some blocks will achieve a lower id. If id ≤ T
2µ we say that the block

is of level μ. All blocks are level 0. Blocks with level μ are called μ-superblocks.
μ-superblocks for μ > 0 are also (μ−1)-superblocks. The level of a block is given
as μ = �log(T) − log(id(B))� and denoted level(B). By convention, for Gen we
set id = 0 and μ = ∞.

Observe that in a blockchain protocol execution it is expected 1/2 of the
blocks will be of level 1; 1/4 of the blocks will be of level 2; 1/8 will be of level 3;
and 1/2µ blocks will be of level μ. In expectation, the number of superblock levels
of a chain C will be Θ(log(C)) [11]. Figure 2 illustrates the blockchain superblocks
starting from level 0 and going up to level 3 in case these blocks are distributed
exactly according to expectation. Here, each level contains half the blocks of the
level below.

We wish to connect the blocks at each level with a previous block pointer
pointing to the most recent block of the same level. These pointers must be
included in the data of the block so that proof-of-work commits to them. As
the level of a block cannot be prediced before its proof-of-work is calculated, we
extend the previous block id structure of classical blockchains to be a vector, the
interlink vector. The interlink vector points to the most recent preceding block
of every level μ. Genesis is of infinite level and hence a pointer to it is included
in every block. The number of pointers that need to be included per block is in
expectation log(|C|).

Fig. 2. The hierarchical blockchain. Higher levels have achieved a lower target (higher
difficulty) during mining. All blocks are connected to the genesis block G.

The algorithm for this construction is shown in Algorithm 1 and is bor-
rowed from [11]. The interlink data structure turns the blockchain into a skiplist-
like [18] data structure.

The updateInterlink algorithm accepts a block B′, which already has an
interlink data structure defined on it. The function evaluates the interlink data
structure which needs to be included as part of the next block. It copies the
existing interlink data structure and then modifies its entries from level 0 to
level(B′) to point to the block B′.

512 A. Kiayias et al.

Algorithm 1. updateInterlink
1: function updateInterlink(B′)
2: interlink ← B′.interlink
3: for μ = 0 to level(B′) do
4: interlink[μ] ← id(B′)
5: end for
6: return interlink
7: end function

Traversing the Blockchain. As we have now extended blocks to contain mul-
tiple pointers to previous blocks, if certain blocks are omitted from the middle
of a chain we will obtain a subchain, as long as the blockchain property is main-
tained (i.e., that each block must contain an interlink pointer to its previous
block in the sequence).

Blockchains are sequences, but it is more convenient to use set notation for
some operations. Specifically, B ∈ C and ∅ have the obvious meaning. C1 ⊆ C2

means that all blocks in C1 exist in C2, perhaps with additional blocks inter-
twined. C1 ∪ C2 is the chain obtained by sorting the blocks contained in both
C1 and C2 into a sequence (this may be not always defined, as pointers may
be missing). We will freely use set builder notation {B ∈ C : p(B)}. C1 ∩ C2 is
the chain {B : B ∈ C1 ∧ B ∈ C2}. In all cases, the blockchain property must
be maintained. The lowest common ancestor is LCA(C1, C2) = (C1 ∩ C2)[−1]. If
C1[0] = C2[0] and C1[−1] = C2[−1], we say the chains C1, C2 span the same block
range.

It will soon become clear that it is useful to construct a chain containing only
the superblocks of another chain. Given C and level μ, the upchain C↑µ is defined
as {B ∈ C : level(B) ≥ μ}. A chain containing only μ-superblocks is called a
μ-superchain. It is also useful, given a μ-superchain C′ to go back to the regular
chain C. Given chains C′ ⊆ C, the downchain C′↓C is defined as C{C′[0] : C′[−1]}.
C is the underlying chain of C′. The underlying chain is often implied by context,
so we will simply write C′↓ . By the above definition, the C↑ operator is absolute:
(C↑µ)↑µ+i= C↑µ+i. Given a set of consecutive rounds S = {r, r +1, · · · , r + j} ⊆
N, we define CS = {B ∈ C : B was generated during S}.

4 Non-interactive Blockchain suffix proofs

In this section, we introduce our non-interactive suffix proofs. With foresight,
we caution the reader that the non-interactive construction we present in this
section is insecure. A small patch will later allow us to modify our construction
to achieve security.

We allow provers to prove general predicates Q about the chain C. Among
the predicates which are stable, in this section, we will limit ourselves to suffix
sensitive predicates. We extend the protocol to support more flexible predicates

Non-interactive Proofs of Proof-of-Work 513

(such as transaction inclusion, as needed for our applications) which are not
limited to the suffix in Sect. 6.

Definition 5 (Suffix sensitivity). A chain predicate Q is called k-suffix sen-
sitive if its value can be efficiently computed given the last k blocks of the chain.

Example. In general our applications will require predicates that are not suffix-
sensitive. However, as an example, consider the predicate “an Ethereum contract
at address C has been initialized with code h at least k blocks ago” where h
does not invoke the selfdestruct opcode. This can be implemented in a suffix-
sensitive way because, in Ethereum, each block includes a Merkle Trie over all
of the contract codes [5,19], which cannot be changed after initialization. This
predicate is thus also monotonic and k-stable. Any predicate which is both suffix-
sensitive and k-stable must solely depend on data at block C[−k].

4.1 Construction

We next present a generic form of the verifier first and the prover afterwards.
The generic form of the verifier works with any practical suffix proof protocol.
Therefore, we describe the generic verifier first before we talk about the specific
instantiation of our protocol. The generic verifier is given access to call a protocol-
specific proof comparison operator ≤m that we define. We begin the description
of our protocol by first illustrating the generic verifier. Next, we describe the
prover specific to our protocol. Finally, we show the instantiation of the ≤m

operator, which plugs into the generic verifier to make a concrete verifier for our
protocol.

The Generic Verifier. The Verify function of our NIPoPoW construction for
suffix predicates is described in Algorithm 2. The verifier algorithm is parame-
terized by a chain predicate Q and security parameters k,m; k pertains to the
amount of proof-of-work needed to bury a block so that it is believed to remain
stable (e.g., k = 6); m is a security parameter pertaining to the prefix of the
proof, which connects the genesis block to the k-sized suffix. The verifier receives
several proofs by different provers in a collection of proofs P at least one of which
will be honest. Iterating over these proofs, it extracts the best.

Each proof is a chain. For honest provers, these are subchains of the adopted
chain. Proofs consist of two parts, π and χ; πχ must be a valid chain; χ is the
proof suffix; π is the prefix. We require |χ| = k. For honest provers, χ is the
last k blocks of the adopted chain, while π consists of a selected subset of blocks
from the rest of their chain preceding χ. The method of choice of this subset will
become clear soon.

514 A. Kiayias et al.

Algorithm 2. The Verify algorithm for the NIPoPoW protocol
1: function VerifyQ

m,k(P)
2: π̃ ← (Gen) � Trivial anchored blockchain
3: for (π, χ) ∈ P do � Examine each proof (π, χ) in P
4: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then
5: π̃ ← π
6: χ̃ ← χ � Update current best
7: end if
8: end for
9: return Q̃(χ̃)

10: end function

The verifier compares the proof prefixes provided to it by calling the ≥m

operator. We will get to the operator’s definition shortly. Proofs are checked
for validity before comparison by ensuring |χ| = k and calling validChain which
checks if πχ is an anchored blockchain.

At each loop iteration, the verifier compares the next candidate proof prefix
π against the currently best known proof prefix π̃ by calling π ≥m π̃. If the
candidate prefix is better than the currently best known proof prefix, then the
currently known best prefix is updated by setting π̃ ← π. When the best known
prefix is updated, the suffix χ̃ associated with the best known prefix is also
updated to match the suffix χ of the candidate proof by setting χ̃ ← χ. While
χ̃ is needed for the final predicate evaluation, it is not used as part of any
comparison, as it has the same size k for all proofs. The best known proof prefix
is initially set to (Gen), the trivial anchored chain containing only the genesis
block. Any well-formed proof compares favourably against the trivial chain.

After the end of the for loop, the verifier will have determined the best proof
(π̃, χ̃). We will later prove that this proof will necessarily belong to an honest
prover with overwhelming probability. Since the proof has been generated by an
honest prover, it is associated with an underlying honestly adopted chain C. The
verifier then extracts the value of the predicate Q on the underlying chain. Note
that, because the full chain is not available to the verifier, the verifier here must
evaluate the predicate on the suffix. Because the predicate is suffix-sensitive, it is
possible to do so. As a technical detail, we denote Q̃ the predicate which accepts
only a k-suffix of a blockchain and outputs the same value that Q would have
output if it had been evaluated on a chain with that suffix.

Non-interactive Proofs of Proof-of-Work 515

Algorithm 3. The Prove algorithm for the NIPoPoW protocol
1: function Provem,k(C)
2: B ← C[0] � Genesis
3: for μ = |C[−k − 1].interlink| down to 0 do
4: α ← C[: −k]{B :}↑μ

5: π ← π ∪ α
6: if m < |α| then
7: B ← α[−m]
8: end if
9: end for

10: χ ← C[−k :]
11: return πχ
12: end function

The Concrete Prover. The NIPoPoW prover construction is shown in Algo-
rithm 3. The honest prover is supplied with an honestly adopted chain C and
security parameters m, k and returns proof πχ, which is a chain. The suffix χ
is the last k blocks of C. The prefix π is constructed by selecting various blocks
from C[: −k] and adding them to π, which consists of a number of blocks for
every level μ from the highest level |C[−k].interlink| down to 0. At the highest
possible level at which at least m blocks exist, all these blocks are included.
Then, inductively, for every superchain of level μ that is included in the proof,
the suffix of length m is taken. Then the underlying superchain of level μ − 1
spanning from this suffix until the end of the blockchain is also included. All
the μ-superblocks which are within this range of m blocks will also be (μ − 1)-
superblocks and so we do not want to keep them in the proof twice (we use the
union set notation to indicate this). Each underlying superchain will have 2m
blocks in expectation and always at least m blocks. This is repeated until level
μ = 0 is reached. Note that no check is necessary to make sure the top-most
level has at least m blocks, even though the verifier requires this. The reason is
the following: Assume the blockchain has at least m blocks in total. Then, when
a superchain of level μ has less than m blocks in total, these blocks will all be
necessarily included into the proof by a lower-level superchain μ − i for some
i > 0. Therefore, it does not hurt to add them to π earlier.

Figure 3 contains an example proof constructed for parameters m = k = 3.
The top superchain level which contains at least m blocks is level μ = 2. For the
m-sized suffix of that level, 6 blocks of superblock level 1 are included to span the
same range (2m blocks at this level). For the last 3 blocks of the 1-superchain,
blocks of level 0 spanning the same range are included (again 2m blocks at this
level). Note that the superchain at a lower levels may reach closer to the end of
the blockchain than a higher level. Level 3 was not used, as it does not yet have
a sufficient number of blocks.

516 A. Kiayias et al.

Fig. 3. NIPoPoW prefix π for m = 3. It includes the Genesis block G, three 2-
superblocks, six 1-superblocks, and six 0-blocks.

Algorithm 4. The algorithm implementation for the ≥m operator to compare
two proofs in the NIPoPoW protocol parameterized with security parameter
m. Returns true if the underlying chain of player A is deemed longer than the
underlying chain of player B.
1: function best-argm(π, b)
2: M ← {μ : |π↑μ {b :}| ≥ m} ∪ {0} � Valid levels
3: return maxμ∈M{2μ · |π↑μ {b :}|} � Score for level
4: end function
5: operator πA ≥m πB

6: b ← (πA ∩ πB)[−1] � LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator

The Concrete Verifier. The ≥m operator which performs the comparison of
proofs is presented in Algorithm 4. It takes proofs πA and πB and returns true if
the first proof is winning, or false if the second is winning. It first computes the
LCA block b between the proofs. As parties A and B agree that the blockchain
is the same up to block b, arguments will then be taken for the diverging chains
after b. An argument is a subchain of a proof provided by a prover such that its
blocks are after the LCA block b and they are all at the same level μ. The best
possible argument from each player’s proof is extracted by calling the best-argm
function. To find the best argument of a proof π given b, best-argm collects
all the indices μ which point to superblock levels that contain valid arguments
after block b. Argument validity requires that there are at least m μ-superblocks
following block b, which is captured by the comparison |π↑µ {b :}| ≥ m. 0 is
always considered a valid level, regardless of how many blocks are present there.
These level indices are collected into set M . For each of these levels, the score
of their respective argument is evaluated by weighting the number of blocks by
the level as 2µ|π↑µ {b :}|. The highest possible score across all levels is returned.
Once the score of the best argument of both A and B is known, they are directly
compared and the winner returned. An advantage is given to the first proof in
case of a tie by making the ≥m operator favour the adversary A.

Non-interactive Proofs of Proof-of-Work 517

Looking ahead, the core of the security argument will be that, given a block b,
it will be difficult for a mining minority adversary to produce blocks descending
from b faster than the honest party. This holds for blocks of any level.

5 Analysis

We now give a sketch indicating why our construction is secure. The fully formal
security proof, together with a detail in the construction which ensures statistical
goodness and is necessary for withstanding full 1/2 adversaries, appears in the
appendix.

Theorem 1 (Security). Assuming honest majority, the Non-interactive
Proofs of Proof-of-Work construction for computable k-stable monotonic suffix-
sensitive predicates is secure with overwhelming probability in κ.

Proof (Sketch). Suppose an adversary produces a proof πA and an honest party
produces a proof πB such that the two proofs cause the predicate Q to evaluate
to different values, while at the same time all honest parties have agreed that
the correct value is the one obtained by πB . Because of Bitcoin’s security, A will
be unable to make these claims for an actual underlying 0-level chain.

We now argue that the operator ≤m will signal in favour of the honest parties.
Suppose b is the LCA block between πA and πB. If the chain forks at b, there
can be no more adversarial blocks after b than honest blocks after b, provided
there are at least k honest blocks (due to the Common Prefix property). We will
now argue that, further, there can be no more disjoint μA-level superblocks than
honest μB-level superblocks after b.

To see this, let b be an honest block generated at some round r1 and let
the honest proof be generated at some round r3. Then take the sequence of
consecutive rounds S = (r1, · · · , r3). Because the verifier requires at least m
blocks from each of the provers, the adversary must have m μA-superblocks
in πA{b :} which are not in πB{b :}. Therefore, using a negative binomial tail
bound argument, we see that |S| must be long; intuitively, it takes a long time
to produce a lot of blocks |πA{b :}|. Given that |S| is long and that the honest
parties have more mining power, they must have been able to produce a longer
πB{b :} argument (of course, this comparison will have the superchain lengths
weighted by 2µA , 2µB respectively). To prove this, we use a binomial tail bound
argument; intuitively, given a long time |S|, a lot of μB-superblocks |πB{b :}|
will have been honestly produced.

We therefore have a fixed value for the length of the adversarial argument,
a negative binomial random variable for the number of rounds, and a binomial
random variable for the length of the honest argument. By taking the expecta-
tions of the above random variables and applying a Chernoff bound, we see that
the actual values will be close to their means with overwhelming probability,
completing the proof. ��

We formalize the above proof sketch in the full version of this paper.

518 A. Kiayias et al.

Lastly, the following theorem illustrates that our proofs are succinct. Intu-
itively, the number of levels exchanged is logarithmic in the length of the chain,
and the number of blocks in each level is constant. The formal proofs are included
in the Appendix.

Theorem 2 (Optimistic succinctness). In an optimistic execution, Non-
Interactive Proofs of Proof-of-Work produced by honest provers are succinct with
the number of blocks bounded by 4m log(|C|), with overwhelming probability in m.

6 Non-interactive Blockchain infix proofs

In the main body we have seen how to construct proofs for suffix predicates. As
mentioned, the main purpose of that construction is to serve as a stepping stone
for the construction of this section that presents a more useful class of proofs.
This class of proofs allows proving more general predicates that can depend on
multiple blocks even buried deep within the blockchain.

More specifically, the generalized prover for infix proofs allows proving any
predicate Q(C) that depends on a number of blocks that can appear anywhere
within the chain (except the k suffix for stability). These blocks constitute a
subset C′ of blocks, the witness, which may not necessarily form a chain. This
allows proving useful statements such as, for example, whether a transaction is
confirmed. We next formally define the class of predicates that will be of interest.

Definition 6 (Infix sensitivity). A chain predicate Qd,k is infix sensitive if
it can be written in the form

Qd,k(C) =

{
true, if ∃C′ ⊆ C[: −k] : |C′| ≤ d ∧ D(C′)
false, otherwise

where D is an arbitrary efficiently computable predicate such that, for any
block sets C1 ⊆ C2 we have that D(C1) → D(C2).

Note that C′ is a blockset and may not necessarily be a blockchain. Further-
more, observe that for all blocksets C′ ⊆ C we have that Q(C′) → Q(C). This will
allow us to later argue that adding more blocks to a blockchain cannot invalidate
its witness.

Similarly to suffix-sensitive predicates, infix-sensitive predicates Q can be
evaluated very efficiently. Intuitively this is possible because of their localized
nature and dependency on the D(·) predicate which requires only a small number
of blocks to conclude whether the predicate should be true.

Example. We next show how to express the predicate that asks whether a cer-
tain transaction with id txid has been confirmed as an infix sensitive predicate.
We define the predicate Dtxid that receives a single block and tests whether a
transaction with id txid is included. The predicate Qtxid

1,k is defined as in Defini-
tion 6 using the predicate Dtxid and the parameter k which in this case deter-
mines the desired stability of the assertion that txid is included (e.g., k = 6). Q

Non-interactive Proofs of Proof-of-Work 519

alone proves that a particular block is included in the blockchain. Some auxiliary
data is supplied by the prover to aid the provability of transaction inclusion: the
Merkle Tree proof-of-inclusion path to the transactions Merkle Tree root, similar
to an SPV proof. This data is logarithmic in the number of transactions in the
block and, hence, constant with respect to blockchain size. In case of a vendor
awaiting transaction confirmation to ship a product, the proof that a certain
transaction paid into a designated address for the particular order is sufficient.
In this scheme it is impossible to determine whether the money has subsequently
been spent in a future block, and so must only be used by the vendor holding
the respective secret keys.

In the above example, note that if the verifier outputs false, this behavior will
generally be inconclusive in the sense that the verifier could be outputting false
either because the payment has not yet been confirmed or because the payment
was never made.

Fig. 4. An infix proof descend. Only blue blocks are included in the proof. Blue blocks
of level 4 are part of π, while the blue blocks of level 1 through 3 are produced by
followDown to get to the block of level 0 which is part of C′. (Color figure online)

Algorithm 5. The Prove algorithm for infix proofs
1: function ProveInfixm,k(C, C′, height)
2: aux ← ∅
3: (π, χ) ← Provem,k(C) � Start with a suffix proof
4: for B ∈ C′ do
5: for E ∈ π do
6: if height[E] ≥ height[B] then
7: aux ← aux ∪ followDown(E, B, height)
8: break
9: end if

10: end for
11: end for
12: return (aux ∪ π, χ)
13: end function

520 A. Kiayias et al.

The construction of these proofs is shown in Algorithm 5. The infix prover
accepts two parameters: The chain C which is the full blockchain and C′ which is a
sub-blockset of the blockchain and whose blocks are of interest for the predicate
in question. The prover calls the previous suffix prover to produce a proof as
usual. Then, having the prefix π and suffix χ of the suffix proof in hand, the
infix prover adds a few auxiliary blocks to the prefix π. The prover ensures that
these auxiliary blocks form a chain with the rest of the proof π. Such auxiliary
blocks are collected as follows: For every block B of the subset C′, the immediate
previous (E′) and next (E) blocks in π are found. Then, a chain of blocks R
which connects E back to B is found by the algorithm followDown. If E′ is of
level μ, there can be no other μ-superblock between B and E′, otherwise it would
have been included in π. Therefore, B already contains a pointer to E′ in its
interlink, completing the chain.

The way to connect a superblock to a previous lower-level block is imple-
mented in Algorithm 6. Block B′ cannot be of higher or equal level than E,
otherwise it would be equal to E and the followDown algorithm would return.
The algorithm proceeds as follows: Starting at block E, it tries to follow a pointer
to as far as possible. If following the pointer surpasses B, then the procedure at
this level is aborted and a lower level is tried, which will cause a smaller step
within the skiplist. If a pointer was followed without surpassing B, the operation
continues from the new block, until eventually B is reached, which concludes the
algorithm.

Algorithm 6. The followDown function which produces the necessary blocks to
connect a superblock E to a preceeding regular block B.
1: function followDown(E, B, height)
2: aux ← ∅; μ ← level(E)
3: while E
= B do
4: B′ ← blockById[E.interlink[μ]]
5: if height[B′] < height[B] then
6: μ ← μ − 1
7: else
8: aux ← aux ∪ {E}
9: E ← B′

10: end if
11: end while
12: return aux
13: end function

An example of the output of followDown is shown in Fig. 4. This is a portion
of the proof shown at the point where the superblock levels are at level 4. A
descend to level 0 was necessary so that a regular block would be included in
the chain. The level 0 block can jump immediately back up to level 4 because it
has a high-level pointer.

Non-interactive Proofs of Proof-of-Work 521

The verification algorithm must then be modified as in Algorithm7.
The algorithm works by calling the suffix verifier. It also maintains a

blockDAG collecting blocks from all proofs (it is a DAG because interlink can be
adversarially defined in adversarially mined blocks). This DAG is maintained in
the blockById hashmap. Using it, ancestors uses simple graph search to extract
the set of ancestor blocks of a block. In the final predicate evaluation, the set of
ancestors of the best blockchain tip is passed to the predicate. The ancestors are
included to avoid an adversary who presents an honest chain but skips the blocks
of interest. In particular, such an adversary would work by including a complete
suffix proof, but “forgetting” to include the blocks generated by followDown for
the infix proof pertaining to blocks in C′.

Algorithm 7. The verify algorithm for the NIPoPoW infix protocol
1: function ancestors(B, blockById)
2: if B = Gen then
3: return {B}
4: end if
5: C ← ∅
6: for id ∈ B.interlink do
7: if id ∈ blockById then
8: B′ ← blockById[id]
9: C ← C ∪ ancestors(B′, blockById) � Collect into DAG

10: end if
11: end for
12: return C ∪ {B}
13: end function
14: function verify-infxD

�,m,k(P)
15: blockById ← ∅
16: for (π, χ) ∈ P do
17: for B ∈ π do
18: blockById[id(B)] ← B
19: end for
20: end for
21: π̃ ← best π ∈ P according to suffix verifier
22: return D(ancestors(π̃[−1], blockById))
23: end function

Acknowledgements. The authors wish to thank Giorgos Panagiotakos at the Uni-
versity of Edinburgh, Peter Gaz̆i at IOHK, and Nikos Leonardos at the University of
Athens for their insights regarding the attack against the interactive Proofs of Proof-of-
Work scheme. We also wish to thank Giorgos Christoglou at Imperial College London
and Kostis Karantias at the University of Ioannina for their insights and comments
while they implemented the schemes described in this paper as part of their master
theses, as well as Sebastien Guillemot at Emurgo R&D who provided valuable feedback.
All three of them read many versions of this paper in detail and their contributions
helped significantly shape and improve it.

522 A. Kiayias et al.

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

2. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
communications security, pp. 62–73. ACM (1993)

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy (SP), pp. 104–121. IEEE (2015)

5. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

6. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

8. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: IEEE Symposium
on Security & Privacy (2019)

9. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)

10. Maurice Herlihy. Atomic cross-chain swaps. arXiv preprint arXiv:1801.09515 (2018)
11. Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear

complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 5

12. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

13. Miller, A.: The high-value-hash highway, bitcoin forum post (2012)
14. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
15. Nolan, T.: Alt chains and atomic transfers, May 2013. bitcointalk.org
16. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

17. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 315–324. ACM (2017)

18. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

19. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arxiv.org/abs/1801.09515
https://doi.org/10.1007/978-3-662-53357-4_5
https://doi.org/10.1007/3-540-48184-2_32
https://bitcointalk.org
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

	Non-interactive Proofs of Proof-of-Work
	1 Introduction
	2 Model and Definitions
	2.1 Provable Chain Predicates
	2.2 Desired Properties

	3 Consensus Layer Support
	3.1 The Interlink Pointers Data Structure

	4 Non-interactive Blockchain suffix proofs
	4.1 Construction

	5 Analysis
	6 Non-interactive Blockchain infix proofs
	References

