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Abstract. Payment channel networks like Bitcoin’s Lightning network
are an auspicious approach for realizing high transaction throughput
and almost-instant confirmations in blockchain networks. However, the
ability to successfully conduct payments in such networks relies on the
willingness of participants to lock collateral in the network. In Light-
ning, the key financial incentive to lock collateral are low fees for routing
payments of other participants. While users can choose these fees, real-
world data indicates that they mainly stick to default fees. By providing
insights on beneficial choices for fees, we aim to incentivize users to lock
more collateral and improve the effectiveness of the network.

In this paper, we consider a node A that given the network topology
and the channel details establishes channels and chooses fees to maximize
its financial gain. Our contributions are i) formalization of the optimiza-
tion problem, ii) proving that the problem is NP-hard, and iii) designing
and evaluating a greedy algorithm to approximate the optimal solution.
In each step, our greedy algorithm establishes a channel that maximizes
the increase to A’s total reward, which corresponds to maximizing the
number of shortest paths passing through A. Our simulation study lever-
aged real-world data sets to quantify the impact of our gain optimization
and indicates that our strategy is at least a factor two better than other
strategies.

1 Introduction

Payment channel networks [14] overcome the need to globally agree on every
transaction in a blockchain. Instead, nodes can open and close channels that
they can use to transfer coins directly. In the absence of disputes, transactions
only require local communication between the parties involved in a transaction.
Nodes without a direct payment channel can route payments via intermediaries
to avoid the transaction fees and delays of channel opening. Thus, by mov-
ing transactions off-chain, payment channels have the potential to drastically
increase the transaction throughput while reducing the confirmation times from
tens of minutes to sub-seconds. The most notable examples of payment channel
networks are Bitcoin’s Lightning [19] and Ethereum’s Raiden [2].

When opening a payment channel, nodes need to lock coins that they cannot
use outside of the channel during the lifetime of the channel. This opportu-
nity cost makes it unattractive to maintain payment channels. However, routing
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payments in a network requires that the network has well-funded channels [14].
The key incentives for locking collateral in a channel are i) frequent transaction
with the other party [7] and ii) financial gain through routing fees [11], i.e., fees
that nodes charge for routing payments as intermediaries. Our analysis of the
Lightning network shows that the fees charged for routing are currently low and
mainly equal to the default value [21]. We conjecture that the current payment
channel networks primarily rely on the first incentive. However, research on the
Lightning network suggests that this incentive entails networks of a low resilience
with a few central hubs [22]. Analyzing the second incentives and show-casing
that payment channels can entail financial profit is the most promising avenue of
research to incentivize the participation in payment channel networks and fully
leverage the potential of this promising blockchain scalability approach.

In this paper, we adapt a payment channel network (PCN) model based on
Lightning. We assume a known topology and fees. Nodes select the cheapest path
to conduct a payment. A node A aims to maximize its profit through routing
fees by choosing both its payment channels and fees. The problem is challenging
as higher fees indicate a higher profit if the node routes the payment but also
a lower probability to be chosen for routing due to the transactions taking the
cheapest path.

Despite the importance of fees in payment channel networks, the issue
has been mainly ignored in past research. The majority of papers deal with
cryptographic protocols for channel establishment and multi-hop payments
(e.g., [6,7,10,15,17]) as well as algorithms for routing payments (e.g., [16,20,23]).
There is some work on comparing routing fees to the on-chain fees of blockchains
and presenting an economical analysis of the relation between the two fee types
[5,11]. It is interesting to note that routing fees are related to the payment value
whereas on-chain blockchain fees usually relate to the size of the transactions.
In contrast, Di Stasi et al. [24] evaluated the impact of routing fees on keep-
ing channels balanced, i.e., ensuring that a channel is not used exclusively in
one direction. The authors suggest a novel linear fee policy for each channel to
improve channel balances. Most similar to our work, Avarikioti et al. [3] stud-
ied the optimal fee assignment of channels from the point of view of a payment
service provider (PSP). The authors analyzed optimal channel fees of the whole
network that maximizes the total reward of the PSP instead of focusing on a
node, which defines our problem. However, the authors can only solve for tree-
structured networks, which does not make the approach useful in practice.

We are hence the first to cover the aspect of maximizing fees in payment
channel networks. More precisely, we formalize the problem of maximizing fees
in a Lightning-inspired system model. We present an algorithm for solving the
defined optimization problem heuristically. Our greedy algorithm iteratively i)
adds channels and ii) selects fees such that each added channel increases the
profit maximally for the previously selected channels. For this purpose, we lever-
age the concept of (edge) betweenness centrality, i.e., the fraction of cheapest
paths a vertex or edge is contained in. We evaluate our algorithm for real-world
data sets of the Lightning network. Our evaluation strongly indicates that our
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approach does not only greatly improve the profit in comparison to default fees
but also that leveraging betweenness centrality for selecting channels offers con-
siderably better results than other network centrality measures. More preciously,
our algorithm increases the profit by a factor 4 in comparison to default fee
values and is at least a factor 2 better than other strategies. Our evaluation
further demonstrates that nodes with already established channels can increase
their profit by utilizing only our fee selection algorithm without establishing new
channels.

2 Background

This section summarizes key concepts from the field of payment channels. Fur-
thermore, as our algorithm relies on graph centrality metrics, this section defines
these metrics and gives some intuition on their role.

2.1 Payment Channel Networks

Payment channel networks are one key approaches to scaling blockchains by mov-
ing transactions off-chain [14]. Two parties open a payment channel through an
initial funding transaction on the blockchain that locks coins such that they can
only be used for transactions between the two parties. After this initial funding
transaction, the two parties can conduct payments without directly interacting
with the blockchain. They commit to the latest balance of the channel, i.e., the
distribution of the total number of locked coins over the two parties. For instance,
let nodes u and v open a payment channel such that u locks x coins and v locks
y coins. The initial balance of the channel is (x, y) and its total capacity is x+y.
If u sends one coin to v, the balance changes to (x − 1, y + 1).

In case of a dispute about the channel balance, the signed commitments
documenting the state changes are published on the blockchain. The blockchain
consensus then assigns the coins according to the latest valid channel state.
Once the two parties decide to close their channel, they have to conduct a clos-
ing transaction on the blockchain. Afterward, they receive the coins locked in
the channel with the number of coins per party corresponding to the channel
balance at the time of the closure. In the absence of disputes, the intermediary
transactions are almost instant and the number of transaction is merely bound
locally by the bandwidth and latency of nodes.

Establishing a payment channel does not make sense if parties do not trade
with each other regularly due to i) the on-chain fees for establishing the channel
and ii) the opportunity cost caused by locking coins to the channel. Thus, most
nodes will only establish a few channels with frequent trading partners. Routing
payments via a path consisting of multiple channels nevertheless allows nodes
to trade without having a direct channel. For instance, a node s can make a
payment to a node r via two intermediary nodes u and v, meaning that the
payment is routed via three payment channels: s to u, u to v, and v to r. The
balances along all these channels change according to the transaction value.
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The intermediary nodes charge fees for the use of their channels. For a channel
Chi from u to v, these fees consist of a basic fee BFChi

for using the channel
and fee rate FRChi

per transferred unit. The overall fee of a transaction tx for
the channel is hence

f(Chi, tx) = BFChi
+ FRChi

· |tx|, (1)

where |tx| denotes the transaction amount. The fees are determined by and paid
to u. The sender s has to pay the fees. Note that the fee calculation formula
given in Eq. 1 is specific to the Lightning network [1]. Still, the other payment
or state channel networks have a similar structure.

2.2 Graph Centrality Metrics

In this work, we model a PCN network as a directed graph. In this manner,
each node in the payment channel represents a vertex in the graph and each
channel is represented by two directional edges between the nodes (one for each
direction). The channel fees correspond to the weights of the edges.

As a consequence, we can make use of graph metrics that characterize the
importance of certain nodes in a weighted directed graph. Our key metrics are
(vertex) betweenness centrality and edge betweenness centrality.

Definition 1 (Betweenness Centrality). The betweenness centrality of a
vertex [12] v is proportional to the total number of shortest paths that pass
through that vertex, i.e.,

bc(v) =
∑

s �=t�=v
σst �=0

σstv

σst
,

where σst denotes the number of shortest paths between s and t and σstv is the
number of such shortest paths containing the vertex v.

Similarly, the edge betweenness centrality [13] of an edge relates to the total
number of shortest paths that pass through that edge, i.e.,

e([v1v2]) =
∑

s �=t
σst �=0

σst[v1v2]

σst
,

where σst[v1v2] is the number of shortest paths passing through the edge [v1v2].

The analysis of this paper makes use of the following result about vertex
betweenness centrality to assess the suitability of our greedy heuristic for select-
ing channel fees.

Theorem 1 ([4]). For each vertex v, betweenness centrality function bc(v) is a
monotone function for the set of edges incident to v.

An important problem concerning the betweenness centrality is the maximum
betweenness improvement (MBI) problem.
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Definition 2 (MBI problem [4]). Maximum Betweenness Improvement prob-
lem: Given a directed graph G and a vertex v, find k edges incident to node v
such that bc(v) is maximal.

With the help of the following theorem concerning the MBI problem, we prove
that our problem of maximizing the reward (MRI) is NP-hard.

Theorem 2 ([4]). MBI problem cannot be approximated in polynomial time
within a factor greater than 1 − 1

2ε ,unless P = NP .

3 Our PCN Model

There are a number of PCNs with Lightning [19], Raiden [2], Perun [9] and
Celer [8] being key examples. All of them use slightly different assumptions and
properties. We base our system model on Bitcoin’s Lightning network.

In the following, we first describe our PCN model LN. In this model, we
then define the problem of an individual participant aiming to maximize their
gain. We summarize the notation used in the paper in Table 1.

Table 1. Notation and Abbreviation Table

Symbol Explanation

CSF The channel selection function

CFF The channel fee function

LN The payment channel network

c(X) The total amount of coins of X

f(Ch, tx)1 The charging fee of the channel Ch for a transaction of value tx

bc(n,N) (See footnote 1) The betweenness centrality of the node n in a network N

e(Ch,N) (See footnote 1) The edge betweenness centrality of the channel Ch in a network N

s(Chi), r(Chi) The source and destination nodes of the channel Chi

ChCost The channel opening and closing on-chain cost

3.1 Network Topology, Fees, and Routing

Nodes open and close payment channels through blockchain transactions. For
simplicity, we assume that the cost ChCost of opening and closing remains
constant over time.

In Lightning, the complete topology of the network is known to every node.
Nodes publicly announce on the blockchain that they establish or close a channel.
Furthermore, nodes willing to route payments announce their channels and fees

1 For brevity in the notation, tx and N can be omitted unless they alter with time.
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to the complete network. Thus, we assume in our model that both the topology
and the fees of all nodes are publicly known. For simplicity, we assume that the
topology and routing fees of the nodes that do not strategically change them
remain fixed over time. Otherwise, our fee selection strategy would require a
model to anticipate the expected changes. Current research on payment channel
networks does not provide such a model. Our analysis of the Lightning network
data from 1ml.com indicates that fees are indeed usually the default value. As
topology changes require on-chain transactions, which are costly in both time
and on-chain fees, the topology also should not change considerably. Moreover,
we assume that nodes apply source routing to find one cheapest path from source
to destination, as is the case in the current implementation of Lightning.

3.2 Problem Definition

We represent a network LN as a graph G = (V,E) of vertices V and edges E. A
node A aims to maximize its revenue in running a node in a payment channel
network. For this purpose, A opens channels with other nodes in the network,
each channel having a total cost of ChCost for opening and closing. We assume
that A can strategically select the nodes it establishes channels with from all
nodes in the network. After all, these nodes do not need to invest anything into
the channel as A completely funds them and they will likely receive additional
monetary gains through routing fees. Furthermore, A has a budget of c(A) coins
to use as collateral for the channels in total.

Formally, let C be the set of channels established by A. For each chan-
nel Chi ∈ C, we have the coins allocated to the channel c(Chi) and the
channel fee f(Chi, tx) for a transaction value tx. Wlog, transaction values are
integers between 1 and Tmax following a distribution T . Let Xi(tx, S,R) be
the event that a transaction of value tx going from a node S to a node R
passes through the channel Chi. Then the expected fee from that transaction
is f(Chi, tx)Pr[Xi(tx, S,R)]. Last, we require the distribution M that returns a
sender-receiver pair. A’s objective is to find C, f , and c() such that the overall
expected gain of one transaction

∑

∀S,R∈V
S �=R �=A

Pr(M = (S,R))
Tmax∑

j=1

Pr(T = j)
∑

Chi∈C

f(Chi, j) · Pr[Xi(j, S,R)] (2)

is maximized while adhering to the constraint that
∑

Chi∈C c(Chi) ≤ c(A).
Equation 2 computes the expected gain over the involved variables T and M .
If the capacity of the channel c(Chi) is less than the transaction amount tx,
Pr[Xi(tx, S,R)] = 0. Similarly, if there does not exist a shortest path from S to
R that passes through Chi, Pr[Xi(tx, S,R)] = 0. Otherwise, Pr[Xi(tx, S,R)] is
equal to the number of shortest paths from S to R passing through Chi divided
by the total number of shortest paths from S to R.
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Note that Eq. 2 ignores the cost of opening C channels, |C| · ChCost. The
impact of this cost depends on the number of transactions K that occur during
the lifetime of a channel. Let max be the maximal value for Eq. 2. The overall
gain of the node is then the difference: K · max − |C| · ChCost. By increasing
the lifetime of the channel arbitrarily, the impact of |C| · ChCost diminishes,
which is why we disregard it for Eq. 2. Our model furthermore disregards the
opportunity cost caused by locking coins due to the absence of suitable models
for such a cost.

4 Our Fee Strategy

We start by showing that maximizing the objective function given in Eq. 2 is NP-
hard. Afterwards, we present our greedy algorithm for approximating a solution.
As our algorithm contains an equation for choosing channel fees without a closed-
form solution, the last part of the section demonstrates a method for solving the
equation numerically.

Our proof and algorithm act on a version of Eq. 2 for specific distributions T
and M . In the absence of real-world data for these distributions, we utilize two
straight-forward distributions. Concretely, our work considers a fixed transaction
value, i.e., the random variable T only takes one value tx. For the distribution
M , which characterizes the likelihood of two nodes to trade, assuming that all
nodes are equally likely to trade with each other is the most natural choice in
the absence of a concrete alternative model. Thus, M is a uniform distribution
over all pairs of nodes in the following.

For the design of our algorithm, we furthermore bound the maximal channel
fee by fmax. Assuming a maximal channel fee does not reduce the generality of
our approach. As nodes send payments along the path with the lowest fee, any
channel fee that entails the channel is not contained in any such path can be
disregarded.

4.1 NP-Hardness of the Problem

Before presenting the actual proof, we rephrase Eq. 2 to relate it to the concept
of (edge) betweenness centrality.

Choosing M to be a uniform distribution implies that Pr(M = (S,R)) =
1

(|V |−1)(|V |−2)
2 is a constant, which can disregarded for the optimization. Fur-

thermore, choosing a constant transaction value tx removes the second sum in
Eq. 2. Hence our modified objective function is

∑

Chi∈C

f(Chi, tx) · Pr[Xi(tx, S,R)]. (3)

The next step relates Pr[Xi(tx, S,R)] in Eq. 3 to the betweenness centrality.
There are two important quantities to consider: the number of shortest paths
2 (|V | − 1)(|V | − 2) is the number of pairs of nodes when not including A.
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including the channel and total fee reward gained from these paths. Maximizing
the number of shortest paths passing through a channel or node corresponds to
the edge or vertex betweenness centrality (BC), respectively, as defined in Sect. 2.
However, maximizing the BC does not necessarily imply maximal revenue. As
fees represent edge weights, the shortest path here is a path whose edges have
the minimal sum of weights. Choosing low fees hence increases the probability
to be contained in the shortest path but low fees also indicate a low gain from
each transaction.

Rather, the expected reward of a channel Chi is equal to the probability
of the transaction passing through that channel times the fee. Note that each
channel needs to have a capacity of at least tx for the payment to choose this
path. Thus, an optimal solution for Eq. 3 will only create channels of sufficient
capacity and we can exclude the capacity aspect from Pr[Xi(tx, S,R)]. With
e(Chi) denoting the edge betweenness centrality of a channel Chi with fees
f(Chi)3, the formal expression for the expected reward of Chi is

ER(Chi) = f(Chi) · e(Chi). (4)

As a consequence, the total expected reward of A from Eq. 3 is

ER(A) =
∑

Chi∈C

ER(Chi). (5)

Now, we can formally define the problem from Eq. 2 as the maximum reward
improvement (MRI) problem.

Definition 3 (MRI Problem). Maximum Reward Improvement problem: For
a payment channel network LN and a node n, find k channels incident to node
n such that ER(n) is maximized.

The following theorem states that it is not possible to design an algorithm
CSF that finds the optimum solution within polynomial time, unless P = NP .

Theorem 3 (MRI Approximation Theorem). MRI problem cannot be
approximated in polynomial time within a factor greater than 1 − 1

2ε , unless
P = NP .

Proof. To prove this theorem, we reduce our MRI problem to the MBI problem
presented in Definition 2. Using Eq. 5, we can formulate the MRI problem as
follows:

MRI(LN, n, k) → CHM = argmax
|CH|≤k

s(Chi)=n
f(Chi)∈[1,fmax]

(
ER(n) =

∑

Chi∈CH
ER(Chi)

)
.

3 For the rest of section, we drop the transaction amount tx from the channel fee
formula f(Chi) as it is fixed.



292 O. Ersoy et al.

We introduce a subproblem, namely MRI FF, where the upper limit of the
fee fmax is equal to 1, which means that all the channel fee are equal to 1. Using
the Eq. 4, MRI FF can be formulated as:

MRI FF(LN, n,Nc) → CHM = argmax
|CH|≤k

s(Chi)=n

(
∑

Chi∈CH
e(Chi)

)
(6)

(∗)
= argmax

|CH|≤k
s(Chi)||r(Chi)=n

(bcn)
(∗∗)
= MBI(LN, n, k),

which reduces to the MBI problem. Here, the first equality (∗) holds because
the summation of the all shortest paths passing from out-going edges is equal to
the total number of shortest paths passing through that node. In other words,
the summation of edge betweenness centrality of all out-going edges of a node
is equal to betweenness centrality of that node. The second equality (∗) follows
from the definition of the MBI problem given in Definition 2.

Now, we can prove our theorem by contradiction. Let assume there exists
an approximation to MRI problem within a factor greater than 1 − 1

2ε . Then,
the same approximation would hold for the subproblem of MRI, MRI FF with a
certain maximal fee, namely 1. However, in Eq. 6, we showed that MRI FF prob-
lem is equivalent to the MBI problem. This contradicts Theorem2. Therefore,
MRI problem cannot be polynomially approximated within a factor greater than
1 − 1

2ε , unless P = NP . ��

4.2 Channel Selection Function

We present a greedy algorithm CSF to approximate the MRI problem. CSF takes
the PCN and the requested number of channels as input and outputs the set of
nodes to whom channels are created. It internally calls CFF, the algorithm for
deciding the fee of a channel. Formally, we have

CFF(CH ∪ Ch) → RCh :
RCh = TotalER(CH ∪ Ch, f) where f = argmax

fi∈[1,fmax]

(TotalER(CH ∪ Ch, fi)) ,

TotalER(CH ∪ Ch, fi) = ER(Ch)f(Ch)=fi
+

∑

Chj∈CH
ER(Chj). (7)

As detailed in Algorithm1, our greedy algorithm for CSF consists of the fol-
lowing five key steps:

1. Start with an initial PCN of nodes and channels.
2. At each step, try all possible channels between our node and other nodes.
3. Compute the maximum reward of the channel by using CFF.
4. Connect to the node who gives the maximum reward and update the PCN.
5. Go to step (2) until the desired number of channels is established.
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Algorithm 1. Channel Selection Function
Input: LN and Nc

Output: CH
1: function CSF(LN, Nc)
2: CH ← ∅
3: while |CH| < Nc do
4: maxRew ← 0, selectednode = None
5: for Each node ni ∈ LN do
6: Create a channel between (n, ni): LNi ← AddEdges(LN, [n, ni])
7: Calculate the reward Rni ← CFF(LNi, CH ∪ [n, ni])
8: if maxRew ≤ Rni then
9: maxRew = Rni

10: selectednode = ni

11: end if
12: end for
13: CH ← CH ⋃{selectednode}
14: LN ← AddEdges(LN, [n, selectednode])
15: end while
16: return CH
17: end function

Next, we ascertain that channel additions cannot reduce the expected rev-
enue, indicating that nodes should add all channels they can fund. Here, it is
important to note that we do not take into account the channel opening cost
ChCost. Thus, if the marginal reward improvement of a new channel is zero,
there is no point in add the channel.

Theorem 4 (Monotonicity). The objective function of Algorithm1 is a
monotone non-decreasing function.

Proof A function F : Ω → R is a monotone function if it satisfies the following
condition:

∀S ⊆ T ⊆ Ω, F(S) ≤ F(T ). (8)

In our case, we have to show that CFF(CH ∪ [n, ni]) ≥ CFF(CH) for any solution
CH and node ni such that [n, ni] /∈ CH where CH is the current channel list of
node n.

Note that CFF checks for all possible fee values to maximize the total reward.
In that sense, it would be enough to show that for the maximum fee value
fmax, which can be formulated by using Eq. 7 (with LN0 = LN ∪ CH and
LNi = LN ∪ CH ∪ [n, ni]):
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CFF(LN, CH ∪ [n, ni]) ≥ TotalER(LN, CH ∪ [n, ni], f = fmax)
?≥ CFF(LN, CH)

⇐⇒ ER(Ch,LNi)f=fmax
+

∑

∀Chj∈CH
ER(Chj ,LNi)

?≥
∑

∀Chj∈CH
ER(Chj ,LN0)

⇐⇒ ER(Ch,LNi)f=fmax

?≥
∑

∀Chj∈CH
ER(Chj ,LN0) − ER(Chj ,LNi)

⇐⇒ e([n, ni],LNi) · fmax

?≥
∑

∀Chj∈CH
(e(Chj ,LN0) − e(Chj ,LNi)) · f(Chj)

(∗)⇐= e([n, ni],LNi)
?≥

∑

∀Chj∈CH
(e(Chj ,LN0) − e(Chj ,LNi))

⇐⇒ e([n, ni],LNi) +
∑

∀Chj∈CH
e(Chj ,LNi)

?≥
∑

∀Chj∈CH
e(Chj ,LN0)

(∗∗)⇐⇒ bc(n,LNi)
?≥ bc(n,LN0).

Here, (∗) condition is true since for all channels f(Chi) ≤ fmax by the defini-
tion. Also, each term e(Chj ,LN0)−e(Chj ,LNi) is non-negative as new channels
of node n cannot increase the number of shortest paths passing through existing
channels of the same node. Thus, the multiplication with a positive number pre-
serves the inequality. (∗∗) is satisfied since the summation of edge betweenness
centrality of all out-going edges of a node is equal to betweenness centrality of
that node. At the end, bc(n,LNi) ≥ bc(n,LN0) holds because betweenness
centrality is a monotone function, see Theorem 1. ��

4.3 Efficient Search Algorithm for the Channel Fee Function

No closed-form formula finds the best fee amount maximizing the expected
reward due to the term e(Ch) for a channel Ch. Here, we analyze Eq. 4 to
minimize the computational cost by discarding some parts of the search space.
First of all, since e(LN) is not affected by changes to the fees of channels, the
denominator is irrelevant for optimizing the ER(Ch). Therefore, CFF can be seen
as a function of the edge betweenness centrality of the channel e(Ch) and its fee
f(Ch). Secondly, e(Ch) is negatively affected by f(Ch) because increasing the
fee means an increase in the weight of the edge that results in a lower chance of
being in the shortest paths (see Fig. 3 in AppendixA for an illustrative example).

Two observations give rise to an efficient search algorithm for finding the
most suitable fee. The first observation utilizes the fact that edge betweenness
centrality is a monotone decreasing function concerning the channel fee. Let
the expected reward of a channel for chosen fees f3 > f1 be r1 = e1 · f1 and
r3 = e3 · f3, respectively. If r3 > r1, let

f2 = f1 · r3
r1

= f3 · e3
e1

. (9)
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It can be seen that the expected reward rα for any fee fα where f1 < fα ≤ f2 is
at most r3:

rα = eα · fα ≤ e1 · fα ≤ e1 · f2 = e3 · f3 = r3. (10)

In other words, there is no need to compute the expected reward values for the
fees in between f1 and f2 as they cannot be optimal values.

The second observation is that increasing the fee of an out-going channel Ch
cannot decrease the edge betweenness of another out-going channel Ch′ of the
same node. Such an increase can only reduce the edge betweenness of channels
that are on a path containing Ch by removing the path from the set of shortest
paths. However, as shortest paths cannot have loops, two out-going channels of
the same node cannot be on the same shortest path. Now, let CH be the set of
previously selected channels. Let r′

1 and r′
3 be the sum of the expected fees of all

channels Ch′ ∈ CH for fees f1 and f3 with f3 > f1. By the above observation,
we have r′

3 ≥ r′
1.

Our recursive algorithm divides the space of all possible fee values from 1
to fmax into d intervals. For each interval i, let ri = ER(Ch, f(Ch) = fi) be
the expected reward of Ch and r′

i ← ∑
Ch′∈CH ER(Ch′, f(Ch′)) be the total

reward of the other channels. By the first observation, the maximal increase
in ri is fi+1

fi
and by the second observation r′

i+1 ≥ r′
i as fi+1 > fi. Thus, the

maximum possible reward value for interval i is R̃i = ri · fi+1
fi

+ r′
i+1. If R̃i

is greater than the current maximum reward value, the algorithm recursively
searches for a maximum in the interval, otherwise discards the interval. We
present the pseudocode of the algorithm in AppendixB.

This completes the description of our algorithm, which we evaluate in the
following in comparison to other approaches based on common centrality metrics.

5 Evaluation

In this section, we evaluate our proposed fee strategy for a real-world topology.
Our evaluation quantifies the total reward gained by A when using our greedy
algorithm.

To emphasize the high effectiveness of our solution, we compared it with
other channel and fee selection algorithm. For the channel selection, we consid-
ered random nodes as well as connecting to nodes with a high centrality for three
centrality metrics: i) degree, i.e., connecting to the nodes with the most connec-
tions, ii) betweenness centrality, and iii) pagerank [18]. For the fee strategy, we
compute the results for both cases where the channel fees are the default values
and they are determined by CFF.

5.1 Model

In Lightning network, the upcoming transactions and current balances of chan-
nels are not known. Thus, we need to model the network and transactions.
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Transactions. Like Sect. 4, our evaluation assumes that all source-destination
pairs are equally likely. Furthermore, we categorize the transactions into three
groups based on the amounts:

– Micro payments are the transactions involving a very small amount of coins.
To represent this category, we use the transaction amount of 100 Satoshi,
which is about one cent4. An example of a use case would be the streaming
services where you pay small amounts per service.

– Medium payments: are the transactions spent for daily living expenses like
buying a coffee, which is represented with 10000 Satoshi.

– Macro payments: are transactions of high amounts, which is represented with
1000000 Satoshi. The amount of these transactions are in the order of 100
Euros.

From these categories, it is most likely that micro payments are usually
restricted to nodes that have a direct channel. Otherwise, the base fee for the
payment greatly exceeds the actual payment value. Therefore, our target trans-
actions are medium and macro payments, which are analyzed separately.

Network. Following our system model in Sect. 3, networks are represented as
weighted directed graphs. The weights of the edges in the graph model are cal-
culated according to the fee rate and base fees of the channels. Since the fee rate
depends on the transaction amount, the weights of the same edges for medium
and macro payments will be different. The graph generated for the medium
(macro) payments is called medium (macro) graph.

5.2 Setup

We obtained a snapshot of the Lightning Network (LN) data from 1ml.com on
July 10 2019, which contains 4618 nodes and 68729 edges in total. When we
delete the edges with insufficient capacity, the medium graph has 68697 edges
and the macro graph has 32193 edges.

As a node requires at least two connections to be contained in any shortest
paths, we first connected A to the two nodes with the highest degree (, which
happen to have the highest pagerank as well). For these two connections, we use
the default fee rate and base fee values in both directions of the edges. Based on
this initial scenario, we now connect A to additional nodes.

The experiments use ChCost = 8192 Satoshi, which reflects the fluctuat-
ing Bitcoin transaction fee estimates5. When establishing a new channel, our
simulation added edges in both directions. The base fee and the fee rate of the
in-coming edge corresponded to the default value to model that i) most users
currently stick to the default values and ii) A has no control over the in-coming
channel fees as they are determined by the other party. For the outgoing edges,
we utilize either CFF to determine the best fee value or use default values. When
4 https://awebanalysis.com/en/convert-satoshi-to-euro-eur/.
5 https://bitcoinfees.info/.

https://awebanalysis.com/en/convert-satoshi-to-euro-eur/.
https://bitcoinfees.info/
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using CFF, we set fmax = ChCost. Otherwise, the total fee cost of the transac-
tion in the payment network is higher than the cost in the Bitcoin network and
the sender is hence unlikely to proceed with the payment.

5.3 Experimental Results

Figures 1 and 2 show the performance of our greedy algorithm in comparison to
the other approaches in terms of the total reward improvement per new channel
connections. The x-axis shows the number of connections added and the y-axis
represents the total reward of node A. Since, for each case, we started with the
same two connections, the total reward values have the same offset.

Figure 1 displays the result for the medium graph. When using default values,
the reward was consistently lower than for our fee selection algorithm. More
precisely, for centrality-based selection of channels, fee optimization increased the
reward by a factor of roughly 2. Selecting channels strategically doubled the gain
further in comparison to using Pagerank centrality, which was the most beneficial
one of the centrality-based selection methods. Figure 2 shows the results of macro
graph. The results were similar to the case of medium payments, though the
overall gain was slightly higher.

In terms of fee computation efficiency, our experimental results show that
the recursive algorithm described in Sect. 4.3 reduced the search space of fees in
the magnitude of 10–100.

5.4 Discussion

From the experimental results, it can be seen that our greedy algorithm out-
performed other centrality metrics. Furthermore, the beneficial effect of the fee
selection function was evident when comparing the results with and without it.

Note that adding new connections to the nodes with the highest centrality
metrics did not increase the total reward in comparison to random selection
much, in particular for betweenness centrality. The reason here is that connecting
to nodes with many shortest path passing them does not imply that the newly
added channels offer shorter paths. Instead, directly focusing on the betweenness
centrality of A results in larger improvements.

Figures 1 and 2 furthermore show few but notable differences between
medium and macro payments. First, the overall gain was higher for macro pay-
ments as expected due to the higher transaction value and hence increased rev-
enue for a similar fee rate. However, the base rate, which is 1000 Satoshi by
default6 in comparison to a default rate of 0.001, dominates the fee value, so
that the 100-fold increase in the transaction value does not translate to a similar
increase in gain. Secondly, the differences between various centrality measures
are more distinct for macro payments, see Fig. 2.

6 The default fee values may change regarding the imported implementation. Our
analysis on dataset shows that 33177 out of 68733 edges use the defaults we adopted.
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Fig. 1. Total fee reward of our node in medium graph. The bottom figure excludes the
greedy results to present a clear comparison of the rest.

Fig. 2. Total fee reward of our node in macro graph. The bottom figure excludes the
greedy results to present a clear comparison of the rest.
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Overall, our greedy algorithm promises higher fees for individual nodes. Even
if nodes cannot or do not desire to select their channels, they can still gain an
advantage by using our more sophisticated fee selection algorithm for already
established channels.

One key limitation of our design is that it does not consider channel capacities
as such. When all transactions have the same known value, A will only establish
channels with sufficient collateral. However, in practice, A does not have such
information and routing may fail due to a lack of capacity. Thus, integrating
capacity information into both our model and our evaluation is clearly necessary
in the future.

6 Conclusion

In this paper, we formalized an optimization problem for maximizing fees in pay-
ment channel networks, presented a heuristic algorithm for solving the problem,
and evaluated our algorithm on real-world data sets. Our work demonstrates
that routing fees can be a strong incentive for locking coins in payment chan-
nels. Fees as incentive hence have the potential to motivate rational users to
fund payment channel and hence increase the ability of these networks to route
payments.

In this work, we focused on one individual node aiming to optimize its profit.
Future work should design a game-theoretical framework for networks contain-
ing only rational nodes aiming to maximize their profit. For the continued usage
of payment channel networks, incentives should ensure that strategies for opti-
mizing profit locally also optimize the overall network health in terms of the
availability of cost-effective paths. It remains an open question if the current fee
model is a suitable incentive to further collaboration and network health.

Acknowledgments. This work was partially supported by Ripple’s University
Blockchain Research Initiative.



300 O. Ersoy et al.

A Illustrative Example of the EBC vs. Fee Relationship
of a Channel

fee

EBC

e1

e2

f1 f2

e3

f3

Fig. 3. Illustrative example of the EBC vs. fee relationship of a channel.

B Pseudocode Channel Fee Function

Algorithm 2 is a recursive algorithm for determining the best fee in one step of
the greedy algorithm.
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Algorithm 2. Channel Fee Function
Input: LN, CH and Ch
Output: Rmax and fmax

1: function CFF(LN, CH ∪ Ch, fl, fh)
2: % Initialization: fl ← 1, fh ← ChCost,Rmax ← 0, fmax ← 1
3: % d is the division parameter
4: if fh − fl ≤ d then % Anchor step:
5: for f ∈ {fl, . . . , fh} do
6: [r, r′] ← TotalER(CH ∪ Ch, f)
7: Calculate the reward R ← r + r′

8: if R ≥ Rmax then
9: Rmax ← R

10: fmax ← f
11: end if
12: end for
13: return
14: else % Recursion step:
15: for i ∈ {1, . . . , d} do
16: fi ← i · fh−fl

d
+ fl

17: end for
18: for i ∈ {1, . . . , d} do
19: [ri, r

′
i] ← TotalER(CH ∪ Ch, fi)

20: Calculate the reward Ri = ri + r′
i

21: if Ri ≥ Rmax then
22: Rmax ← Ri

23: fmax ← fi
24: end if
25: end for
26: for i ∈ {1, . . . , d} do

27: Calculate the possible maximum reward R̃i = ri · fi+1
fi

+ r′
i+1

28: if R̃i > Rmax then
29: fl ← fi, fh ← fi+1

30: return CFF(LN, CH ∪ Ch, fl, fh)
31: else
32: % Do nothing - Discard this interval
33: end if
34: end for
35: end if
36: end function
37:
38: function TotalER(CH ∪ Ch, f)
39: r ← ER(Ch, f(Ch) = f)
40: r′ ← ∑

∀Chj∈CH ER(Chj , f(Chj))

41: return [r, r′]
42: end function
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